bpf: sockmap, refactor sockmap routines to work with hashmap
[linux-2.6-microblaze.git] / net / core / filter.c
1 /*
2  * Linux Socket Filter - Kernel level socket filtering
3  *
4  * Based on the design of the Berkeley Packet Filter. The new
5  * internal format has been designed by PLUMgrid:
6  *
7  *      Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
8  *
9  * Authors:
10  *
11  *      Jay Schulist <jschlst@samba.org>
12  *      Alexei Starovoitov <ast@plumgrid.com>
13  *      Daniel Borkmann <dborkman@redhat.com>
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * as published by the Free Software Foundation; either version
18  * 2 of the License, or (at your option) any later version.
19  *
20  * Andi Kleen - Fix a few bad bugs and races.
21  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
22  */
23
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/mm.h>
27 #include <linux/fcntl.h>
28 #include <linux/socket.h>
29 #include <linux/sock_diag.h>
30 #include <linux/in.h>
31 #include <linux/inet.h>
32 #include <linux/netdevice.h>
33 #include <linux/if_packet.h>
34 #include <linux/if_arp.h>
35 #include <linux/gfp.h>
36 #include <net/inet_common.h>
37 #include <net/ip.h>
38 #include <net/protocol.h>
39 #include <net/netlink.h>
40 #include <linux/skbuff.h>
41 #include <net/sock.h>
42 #include <net/flow_dissector.h>
43 #include <linux/errno.h>
44 #include <linux/timer.h>
45 #include <linux/uaccess.h>
46 #include <asm/unaligned.h>
47 #include <asm/cmpxchg.h>
48 #include <linux/filter.h>
49 #include <linux/ratelimit.h>
50 #include <linux/seccomp.h>
51 #include <linux/if_vlan.h>
52 #include <linux/bpf.h>
53 #include <net/sch_generic.h>
54 #include <net/cls_cgroup.h>
55 #include <net/dst_metadata.h>
56 #include <net/dst.h>
57 #include <net/sock_reuseport.h>
58 #include <net/busy_poll.h>
59 #include <net/tcp.h>
60 #include <net/xfrm.h>
61 #include <linux/bpf_trace.h>
62 #include <net/xdp_sock.h>
63 #include <linux/inetdevice.h>
64 #include <net/ip_fib.h>
65 #include <net/flow.h>
66 #include <net/arp.h>
67
68 /**
69  *      sk_filter_trim_cap - run a packet through a socket filter
70  *      @sk: sock associated with &sk_buff
71  *      @skb: buffer to filter
72  *      @cap: limit on how short the eBPF program may trim the packet
73  *
74  * Run the eBPF program and then cut skb->data to correct size returned by
75  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
76  * than pkt_len we keep whole skb->data. This is the socket level
77  * wrapper to BPF_PROG_RUN. It returns 0 if the packet should
78  * be accepted or -EPERM if the packet should be tossed.
79  *
80  */
81 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
82 {
83         int err;
84         struct sk_filter *filter;
85
86         /*
87          * If the skb was allocated from pfmemalloc reserves, only
88          * allow SOCK_MEMALLOC sockets to use it as this socket is
89          * helping free memory
90          */
91         if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
92                 NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
93                 return -ENOMEM;
94         }
95         err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
96         if (err)
97                 return err;
98
99         err = security_sock_rcv_skb(sk, skb);
100         if (err)
101                 return err;
102
103         rcu_read_lock();
104         filter = rcu_dereference(sk->sk_filter);
105         if (filter) {
106                 struct sock *save_sk = skb->sk;
107                 unsigned int pkt_len;
108
109                 skb->sk = sk;
110                 pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
111                 skb->sk = save_sk;
112                 err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
113         }
114         rcu_read_unlock();
115
116         return err;
117 }
118 EXPORT_SYMBOL(sk_filter_trim_cap);
119
120 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
121 {
122         return skb_get_poff(skb);
123 }
124
125 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
126 {
127         struct nlattr *nla;
128
129         if (skb_is_nonlinear(skb))
130                 return 0;
131
132         if (skb->len < sizeof(struct nlattr))
133                 return 0;
134
135         if (a > skb->len - sizeof(struct nlattr))
136                 return 0;
137
138         nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
139         if (nla)
140                 return (void *) nla - (void *) skb->data;
141
142         return 0;
143 }
144
145 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
146 {
147         struct nlattr *nla;
148
149         if (skb_is_nonlinear(skb))
150                 return 0;
151
152         if (skb->len < sizeof(struct nlattr))
153                 return 0;
154
155         if (a > skb->len - sizeof(struct nlattr))
156                 return 0;
157
158         nla = (struct nlattr *) &skb->data[a];
159         if (nla->nla_len > skb->len - a)
160                 return 0;
161
162         nla = nla_find_nested(nla, x);
163         if (nla)
164                 return (void *) nla - (void *) skb->data;
165
166         return 0;
167 }
168
169 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
170            data, int, headlen, int, offset)
171 {
172         u8 tmp, *ptr;
173         const int len = sizeof(tmp);
174
175         if (offset >= 0) {
176                 if (headlen - offset >= len)
177                         return *(u8 *)(data + offset);
178                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
179                         return tmp;
180         } else {
181                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
182                 if (likely(ptr))
183                         return *(u8 *)ptr;
184         }
185
186         return -EFAULT;
187 }
188
189 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
190            int, offset)
191 {
192         return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
193                                          offset);
194 }
195
196 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
197            data, int, headlen, int, offset)
198 {
199         u16 tmp, *ptr;
200         const int len = sizeof(tmp);
201
202         if (offset >= 0) {
203                 if (headlen - offset >= len)
204                         return get_unaligned_be16(data + offset);
205                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
206                         return be16_to_cpu(tmp);
207         } else {
208                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
209                 if (likely(ptr))
210                         return get_unaligned_be16(ptr);
211         }
212
213         return -EFAULT;
214 }
215
216 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
217            int, offset)
218 {
219         return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
220                                           offset);
221 }
222
223 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
224            data, int, headlen, int, offset)
225 {
226         u32 tmp, *ptr;
227         const int len = sizeof(tmp);
228
229         if (likely(offset >= 0)) {
230                 if (headlen - offset >= len)
231                         return get_unaligned_be32(data + offset);
232                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
233                         return be32_to_cpu(tmp);
234         } else {
235                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
236                 if (likely(ptr))
237                         return get_unaligned_be32(ptr);
238         }
239
240         return -EFAULT;
241 }
242
243 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
244            int, offset)
245 {
246         return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
247                                           offset);
248 }
249
250 BPF_CALL_0(bpf_get_raw_cpu_id)
251 {
252         return raw_smp_processor_id();
253 }
254
255 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
256         .func           = bpf_get_raw_cpu_id,
257         .gpl_only       = false,
258         .ret_type       = RET_INTEGER,
259 };
260
261 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
262                               struct bpf_insn *insn_buf)
263 {
264         struct bpf_insn *insn = insn_buf;
265
266         switch (skb_field) {
267         case SKF_AD_MARK:
268                 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
269
270                 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
271                                       offsetof(struct sk_buff, mark));
272                 break;
273
274         case SKF_AD_PKTTYPE:
275                 *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET());
276                 *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
277 #ifdef __BIG_ENDIAN_BITFIELD
278                 *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
279 #endif
280                 break;
281
282         case SKF_AD_QUEUE:
283                 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, queue_mapping) != 2);
284
285                 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
286                                       offsetof(struct sk_buff, queue_mapping));
287                 break;
288
289         case SKF_AD_VLAN_TAG:
290         case SKF_AD_VLAN_TAG_PRESENT:
291                 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
292                 BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);
293
294                 /* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
295                 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
296                                       offsetof(struct sk_buff, vlan_tci));
297                 if (skb_field == SKF_AD_VLAN_TAG) {
298                         *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg,
299                                                 ~VLAN_TAG_PRESENT);
300                 } else {
301                         /* dst_reg >>= 12 */
302                         *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 12);
303                         /* dst_reg &= 1 */
304                         *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
305                 }
306                 break;
307         }
308
309         return insn - insn_buf;
310 }
311
312 static bool convert_bpf_extensions(struct sock_filter *fp,
313                                    struct bpf_insn **insnp)
314 {
315         struct bpf_insn *insn = *insnp;
316         u32 cnt;
317
318         switch (fp->k) {
319         case SKF_AD_OFF + SKF_AD_PROTOCOL:
320                 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);
321
322                 /* A = *(u16 *) (CTX + offsetof(protocol)) */
323                 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
324                                       offsetof(struct sk_buff, protocol));
325                 /* A = ntohs(A) [emitting a nop or swap16] */
326                 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
327                 break;
328
329         case SKF_AD_OFF + SKF_AD_PKTTYPE:
330                 cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
331                 insn += cnt - 1;
332                 break;
333
334         case SKF_AD_OFF + SKF_AD_IFINDEX:
335         case SKF_AD_OFF + SKF_AD_HATYPE:
336                 BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);
337                 BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, type) != 2);
338
339                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
340                                       BPF_REG_TMP, BPF_REG_CTX,
341                                       offsetof(struct sk_buff, dev));
342                 /* if (tmp != 0) goto pc + 1 */
343                 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
344                 *insn++ = BPF_EXIT_INSN();
345                 if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
346                         *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
347                                             offsetof(struct net_device, ifindex));
348                 else
349                         *insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
350                                             offsetof(struct net_device, type));
351                 break;
352
353         case SKF_AD_OFF + SKF_AD_MARK:
354                 cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
355                 insn += cnt - 1;
356                 break;
357
358         case SKF_AD_OFF + SKF_AD_RXHASH:
359                 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);
360
361                 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
362                                     offsetof(struct sk_buff, hash));
363                 break;
364
365         case SKF_AD_OFF + SKF_AD_QUEUE:
366                 cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
367                 insn += cnt - 1;
368                 break;
369
370         case SKF_AD_OFF + SKF_AD_VLAN_TAG:
371                 cnt = convert_skb_access(SKF_AD_VLAN_TAG,
372                                          BPF_REG_A, BPF_REG_CTX, insn);
373                 insn += cnt - 1;
374                 break;
375
376         case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
377                 cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
378                                          BPF_REG_A, BPF_REG_CTX, insn);
379                 insn += cnt - 1;
380                 break;
381
382         case SKF_AD_OFF + SKF_AD_VLAN_TPID:
383                 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_proto) != 2);
384
385                 /* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
386                 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
387                                       offsetof(struct sk_buff, vlan_proto));
388                 /* A = ntohs(A) [emitting a nop or swap16] */
389                 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
390                 break;
391
392         case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
393         case SKF_AD_OFF + SKF_AD_NLATTR:
394         case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
395         case SKF_AD_OFF + SKF_AD_CPU:
396         case SKF_AD_OFF + SKF_AD_RANDOM:
397                 /* arg1 = CTX */
398                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
399                 /* arg2 = A */
400                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
401                 /* arg3 = X */
402                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
403                 /* Emit call(arg1=CTX, arg2=A, arg3=X) */
404                 switch (fp->k) {
405                 case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
406                         *insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
407                         break;
408                 case SKF_AD_OFF + SKF_AD_NLATTR:
409                         *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
410                         break;
411                 case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
412                         *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
413                         break;
414                 case SKF_AD_OFF + SKF_AD_CPU:
415                         *insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
416                         break;
417                 case SKF_AD_OFF + SKF_AD_RANDOM:
418                         *insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
419                         bpf_user_rnd_init_once();
420                         break;
421                 }
422                 break;
423
424         case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
425                 /* A ^= X */
426                 *insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
427                 break;
428
429         default:
430                 /* This is just a dummy call to avoid letting the compiler
431                  * evict __bpf_call_base() as an optimization. Placed here
432                  * where no-one bothers.
433                  */
434                 BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
435                 return false;
436         }
437
438         *insnp = insn;
439         return true;
440 }
441
442 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
443 {
444         const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
445         int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
446         bool endian = BPF_SIZE(fp->code) == BPF_H ||
447                       BPF_SIZE(fp->code) == BPF_W;
448         bool indirect = BPF_MODE(fp->code) == BPF_IND;
449         const int ip_align = NET_IP_ALIGN;
450         struct bpf_insn *insn = *insnp;
451         int offset = fp->k;
452
453         if (!indirect &&
454             ((unaligned_ok && offset >= 0) ||
455              (!unaligned_ok && offset >= 0 &&
456               offset + ip_align >= 0 &&
457               offset + ip_align % size == 0))) {
458                 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
459                 *insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
460                 *insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP, size, 2 + endian);
461                 *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A, BPF_REG_D,
462                                       offset);
463                 if (endian)
464                         *insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
465                 *insn++ = BPF_JMP_A(8);
466         }
467
468         *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
469         *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
470         *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
471         if (!indirect) {
472                 *insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
473         } else {
474                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
475                 if (fp->k)
476                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
477         }
478
479         switch (BPF_SIZE(fp->code)) {
480         case BPF_B:
481                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
482                 break;
483         case BPF_H:
484                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
485                 break;
486         case BPF_W:
487                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
488                 break;
489         default:
490                 return false;
491         }
492
493         *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
494         *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
495         *insn   = BPF_EXIT_INSN();
496
497         *insnp = insn;
498         return true;
499 }
500
501 /**
502  *      bpf_convert_filter - convert filter program
503  *      @prog: the user passed filter program
504  *      @len: the length of the user passed filter program
505  *      @new_prog: allocated 'struct bpf_prog' or NULL
506  *      @new_len: pointer to store length of converted program
507  *      @seen_ld_abs: bool whether we've seen ld_abs/ind
508  *
509  * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
510  * style extended BPF (eBPF).
511  * Conversion workflow:
512  *
513  * 1) First pass for calculating the new program length:
514  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
515  *
516  * 2) 2nd pass to remap in two passes: 1st pass finds new
517  *    jump offsets, 2nd pass remapping:
518  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
519  */
520 static int bpf_convert_filter(struct sock_filter *prog, int len,
521                               struct bpf_prog *new_prog, int *new_len,
522                               bool *seen_ld_abs)
523 {
524         int new_flen = 0, pass = 0, target, i, stack_off;
525         struct bpf_insn *new_insn, *first_insn = NULL;
526         struct sock_filter *fp;
527         int *addrs = NULL;
528         u8 bpf_src;
529
530         BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
531         BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
532
533         if (len <= 0 || len > BPF_MAXINSNS)
534                 return -EINVAL;
535
536         if (new_prog) {
537                 first_insn = new_prog->insnsi;
538                 addrs = kcalloc(len, sizeof(*addrs),
539                                 GFP_KERNEL | __GFP_NOWARN);
540                 if (!addrs)
541                         return -ENOMEM;
542         }
543
544 do_pass:
545         new_insn = first_insn;
546         fp = prog;
547
548         /* Classic BPF related prologue emission. */
549         if (new_prog) {
550                 /* Classic BPF expects A and X to be reset first. These need
551                  * to be guaranteed to be the first two instructions.
552                  */
553                 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
554                 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
555
556                 /* All programs must keep CTX in callee saved BPF_REG_CTX.
557                  * In eBPF case it's done by the compiler, here we need to
558                  * do this ourself. Initial CTX is present in BPF_REG_ARG1.
559                  */
560                 *new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
561                 if (*seen_ld_abs) {
562                         /* For packet access in classic BPF, cache skb->data
563                          * in callee-saved BPF R8 and skb->len - skb->data_len
564                          * (headlen) in BPF R9. Since classic BPF is read-only
565                          * on CTX, we only need to cache it once.
566                          */
567                         *new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
568                                                   BPF_REG_D, BPF_REG_CTX,
569                                                   offsetof(struct sk_buff, data));
570                         *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
571                                                   offsetof(struct sk_buff, len));
572                         *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
573                                                   offsetof(struct sk_buff, data_len));
574                         *new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
575                 }
576         } else {
577                 new_insn += 3;
578         }
579
580         for (i = 0; i < len; fp++, i++) {
581                 struct bpf_insn tmp_insns[32] = { };
582                 struct bpf_insn *insn = tmp_insns;
583
584                 if (addrs)
585                         addrs[i] = new_insn - first_insn;
586
587                 switch (fp->code) {
588                 /* All arithmetic insns and skb loads map as-is. */
589                 case BPF_ALU | BPF_ADD | BPF_X:
590                 case BPF_ALU | BPF_ADD | BPF_K:
591                 case BPF_ALU | BPF_SUB | BPF_X:
592                 case BPF_ALU | BPF_SUB | BPF_K:
593                 case BPF_ALU | BPF_AND | BPF_X:
594                 case BPF_ALU | BPF_AND | BPF_K:
595                 case BPF_ALU | BPF_OR | BPF_X:
596                 case BPF_ALU | BPF_OR | BPF_K:
597                 case BPF_ALU | BPF_LSH | BPF_X:
598                 case BPF_ALU | BPF_LSH | BPF_K:
599                 case BPF_ALU | BPF_RSH | BPF_X:
600                 case BPF_ALU | BPF_RSH | BPF_K:
601                 case BPF_ALU | BPF_XOR | BPF_X:
602                 case BPF_ALU | BPF_XOR | BPF_K:
603                 case BPF_ALU | BPF_MUL | BPF_X:
604                 case BPF_ALU | BPF_MUL | BPF_K:
605                 case BPF_ALU | BPF_DIV | BPF_X:
606                 case BPF_ALU | BPF_DIV | BPF_K:
607                 case BPF_ALU | BPF_MOD | BPF_X:
608                 case BPF_ALU | BPF_MOD | BPF_K:
609                 case BPF_ALU | BPF_NEG:
610                 case BPF_LD | BPF_ABS | BPF_W:
611                 case BPF_LD | BPF_ABS | BPF_H:
612                 case BPF_LD | BPF_ABS | BPF_B:
613                 case BPF_LD | BPF_IND | BPF_W:
614                 case BPF_LD | BPF_IND | BPF_H:
615                 case BPF_LD | BPF_IND | BPF_B:
616                         /* Check for overloaded BPF extension and
617                          * directly convert it if found, otherwise
618                          * just move on with mapping.
619                          */
620                         if (BPF_CLASS(fp->code) == BPF_LD &&
621                             BPF_MODE(fp->code) == BPF_ABS &&
622                             convert_bpf_extensions(fp, &insn))
623                                 break;
624                         if (BPF_CLASS(fp->code) == BPF_LD &&
625                             convert_bpf_ld_abs(fp, &insn)) {
626                                 *seen_ld_abs = true;
627                                 break;
628                         }
629
630                         if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
631                             fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
632                                 *insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
633                                 /* Error with exception code on div/mod by 0.
634                                  * For cBPF programs, this was always return 0.
635                                  */
636                                 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
637                                 *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
638                                 *insn++ = BPF_EXIT_INSN();
639                         }
640
641                         *insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
642                         break;
643
644                 /* Jump transformation cannot use BPF block macros
645                  * everywhere as offset calculation and target updates
646                  * require a bit more work than the rest, i.e. jump
647                  * opcodes map as-is, but offsets need adjustment.
648                  */
649
650 #define BPF_EMIT_JMP                                                    \
651         do {                                                            \
652                 if (target >= len || target < 0)                        \
653                         goto err;                                       \
654                 insn->off = addrs ? addrs[target] - addrs[i] - 1 : 0;   \
655                 /* Adjust pc relative offset for 2nd or 3rd insn. */    \
656                 insn->off -= insn - tmp_insns;                          \
657         } while (0)
658
659                 case BPF_JMP | BPF_JA:
660                         target = i + fp->k + 1;
661                         insn->code = fp->code;
662                         BPF_EMIT_JMP;
663                         break;
664
665                 case BPF_JMP | BPF_JEQ | BPF_K:
666                 case BPF_JMP | BPF_JEQ | BPF_X:
667                 case BPF_JMP | BPF_JSET | BPF_K:
668                 case BPF_JMP | BPF_JSET | BPF_X:
669                 case BPF_JMP | BPF_JGT | BPF_K:
670                 case BPF_JMP | BPF_JGT | BPF_X:
671                 case BPF_JMP | BPF_JGE | BPF_K:
672                 case BPF_JMP | BPF_JGE | BPF_X:
673                         if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
674                                 /* BPF immediates are signed, zero extend
675                                  * immediate into tmp register and use it
676                                  * in compare insn.
677                                  */
678                                 *insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
679
680                                 insn->dst_reg = BPF_REG_A;
681                                 insn->src_reg = BPF_REG_TMP;
682                                 bpf_src = BPF_X;
683                         } else {
684                                 insn->dst_reg = BPF_REG_A;
685                                 insn->imm = fp->k;
686                                 bpf_src = BPF_SRC(fp->code);
687                                 insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
688                         }
689
690                         /* Common case where 'jump_false' is next insn. */
691                         if (fp->jf == 0) {
692                                 insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
693                                 target = i + fp->jt + 1;
694                                 BPF_EMIT_JMP;
695                                 break;
696                         }
697
698                         /* Convert some jumps when 'jump_true' is next insn. */
699                         if (fp->jt == 0) {
700                                 switch (BPF_OP(fp->code)) {
701                                 case BPF_JEQ:
702                                         insn->code = BPF_JMP | BPF_JNE | bpf_src;
703                                         break;
704                                 case BPF_JGT:
705                                         insn->code = BPF_JMP | BPF_JLE | bpf_src;
706                                         break;
707                                 case BPF_JGE:
708                                         insn->code = BPF_JMP | BPF_JLT | bpf_src;
709                                         break;
710                                 default:
711                                         goto jmp_rest;
712                                 }
713
714                                 target = i + fp->jf + 1;
715                                 BPF_EMIT_JMP;
716                                 break;
717                         }
718 jmp_rest:
719                         /* Other jumps are mapped into two insns: Jxx and JA. */
720                         target = i + fp->jt + 1;
721                         insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
722                         BPF_EMIT_JMP;
723                         insn++;
724
725                         insn->code = BPF_JMP | BPF_JA;
726                         target = i + fp->jf + 1;
727                         BPF_EMIT_JMP;
728                         break;
729
730                 /* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
731                 case BPF_LDX | BPF_MSH | BPF_B: {
732                         struct sock_filter tmp = {
733                                 .code   = BPF_LD | BPF_ABS | BPF_B,
734                                 .k      = fp->k,
735                         };
736
737                         *seen_ld_abs = true;
738
739                         /* X = A */
740                         *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
741                         /* A = BPF_R0 = *(u8 *) (skb->data + K) */
742                         convert_bpf_ld_abs(&tmp, &insn);
743                         insn++;
744                         /* A &= 0xf */
745                         *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
746                         /* A <<= 2 */
747                         *insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
748                         /* tmp = X */
749                         *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
750                         /* X = A */
751                         *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
752                         /* A = tmp */
753                         *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
754                         break;
755                 }
756                 /* RET_K is remaped into 2 insns. RET_A case doesn't need an
757                  * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
758                  */
759                 case BPF_RET | BPF_A:
760                 case BPF_RET | BPF_K:
761                         if (BPF_RVAL(fp->code) == BPF_K)
762                                 *insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
763                                                         0, fp->k);
764                         *insn = BPF_EXIT_INSN();
765                         break;
766
767                 /* Store to stack. */
768                 case BPF_ST:
769                 case BPF_STX:
770                         stack_off = fp->k * 4  + 4;
771                         *insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
772                                             BPF_ST ? BPF_REG_A : BPF_REG_X,
773                                             -stack_off);
774                         /* check_load_and_stores() verifies that classic BPF can
775                          * load from stack only after write, so tracking
776                          * stack_depth for ST|STX insns is enough
777                          */
778                         if (new_prog && new_prog->aux->stack_depth < stack_off)
779                                 new_prog->aux->stack_depth = stack_off;
780                         break;
781
782                 /* Load from stack. */
783                 case BPF_LD | BPF_MEM:
784                 case BPF_LDX | BPF_MEM:
785                         stack_off = fp->k * 4  + 4;
786                         *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
787                                             BPF_REG_A : BPF_REG_X, BPF_REG_FP,
788                                             -stack_off);
789                         break;
790
791                 /* A = K or X = K */
792                 case BPF_LD | BPF_IMM:
793                 case BPF_LDX | BPF_IMM:
794                         *insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
795                                               BPF_REG_A : BPF_REG_X, fp->k);
796                         break;
797
798                 /* X = A */
799                 case BPF_MISC | BPF_TAX:
800                         *insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
801                         break;
802
803                 /* A = X */
804                 case BPF_MISC | BPF_TXA:
805                         *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
806                         break;
807
808                 /* A = skb->len or X = skb->len */
809                 case BPF_LD | BPF_W | BPF_LEN:
810                 case BPF_LDX | BPF_W | BPF_LEN:
811                         *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
812                                             BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
813                                             offsetof(struct sk_buff, len));
814                         break;
815
816                 /* Access seccomp_data fields. */
817                 case BPF_LDX | BPF_ABS | BPF_W:
818                         /* A = *(u32 *) (ctx + K) */
819                         *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
820                         break;
821
822                 /* Unknown instruction. */
823                 default:
824                         goto err;
825                 }
826
827                 insn++;
828                 if (new_prog)
829                         memcpy(new_insn, tmp_insns,
830                                sizeof(*insn) * (insn - tmp_insns));
831                 new_insn += insn - tmp_insns;
832         }
833
834         if (!new_prog) {
835                 /* Only calculating new length. */
836                 *new_len = new_insn - first_insn;
837                 if (*seen_ld_abs)
838                         *new_len += 4; /* Prologue bits. */
839                 return 0;
840         }
841
842         pass++;
843         if (new_flen != new_insn - first_insn) {
844                 new_flen = new_insn - first_insn;
845                 if (pass > 2)
846                         goto err;
847                 goto do_pass;
848         }
849
850         kfree(addrs);
851         BUG_ON(*new_len != new_flen);
852         return 0;
853 err:
854         kfree(addrs);
855         return -EINVAL;
856 }
857
858 /* Security:
859  *
860  * As we dont want to clear mem[] array for each packet going through
861  * __bpf_prog_run(), we check that filter loaded by user never try to read
862  * a cell if not previously written, and we check all branches to be sure
863  * a malicious user doesn't try to abuse us.
864  */
865 static int check_load_and_stores(const struct sock_filter *filter, int flen)
866 {
867         u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
868         int pc, ret = 0;
869
870         BUILD_BUG_ON(BPF_MEMWORDS > 16);
871
872         masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
873         if (!masks)
874                 return -ENOMEM;
875
876         memset(masks, 0xff, flen * sizeof(*masks));
877
878         for (pc = 0; pc < flen; pc++) {
879                 memvalid &= masks[pc];
880
881                 switch (filter[pc].code) {
882                 case BPF_ST:
883                 case BPF_STX:
884                         memvalid |= (1 << filter[pc].k);
885                         break;
886                 case BPF_LD | BPF_MEM:
887                 case BPF_LDX | BPF_MEM:
888                         if (!(memvalid & (1 << filter[pc].k))) {
889                                 ret = -EINVAL;
890                                 goto error;
891                         }
892                         break;
893                 case BPF_JMP | BPF_JA:
894                         /* A jump must set masks on target */
895                         masks[pc + 1 + filter[pc].k] &= memvalid;
896                         memvalid = ~0;
897                         break;
898                 case BPF_JMP | BPF_JEQ | BPF_K:
899                 case BPF_JMP | BPF_JEQ | BPF_X:
900                 case BPF_JMP | BPF_JGE | BPF_K:
901                 case BPF_JMP | BPF_JGE | BPF_X:
902                 case BPF_JMP | BPF_JGT | BPF_K:
903                 case BPF_JMP | BPF_JGT | BPF_X:
904                 case BPF_JMP | BPF_JSET | BPF_K:
905                 case BPF_JMP | BPF_JSET | BPF_X:
906                         /* A jump must set masks on targets */
907                         masks[pc + 1 + filter[pc].jt] &= memvalid;
908                         masks[pc + 1 + filter[pc].jf] &= memvalid;
909                         memvalid = ~0;
910                         break;
911                 }
912         }
913 error:
914         kfree(masks);
915         return ret;
916 }
917
918 static bool chk_code_allowed(u16 code_to_probe)
919 {
920         static const bool codes[] = {
921                 /* 32 bit ALU operations */
922                 [BPF_ALU | BPF_ADD | BPF_K] = true,
923                 [BPF_ALU | BPF_ADD | BPF_X] = true,
924                 [BPF_ALU | BPF_SUB | BPF_K] = true,
925                 [BPF_ALU | BPF_SUB | BPF_X] = true,
926                 [BPF_ALU | BPF_MUL | BPF_K] = true,
927                 [BPF_ALU | BPF_MUL | BPF_X] = true,
928                 [BPF_ALU | BPF_DIV | BPF_K] = true,
929                 [BPF_ALU | BPF_DIV | BPF_X] = true,
930                 [BPF_ALU | BPF_MOD | BPF_K] = true,
931                 [BPF_ALU | BPF_MOD | BPF_X] = true,
932                 [BPF_ALU | BPF_AND | BPF_K] = true,
933                 [BPF_ALU | BPF_AND | BPF_X] = true,
934                 [BPF_ALU | BPF_OR | BPF_K] = true,
935                 [BPF_ALU | BPF_OR | BPF_X] = true,
936                 [BPF_ALU | BPF_XOR | BPF_K] = true,
937                 [BPF_ALU | BPF_XOR | BPF_X] = true,
938                 [BPF_ALU | BPF_LSH | BPF_K] = true,
939                 [BPF_ALU | BPF_LSH | BPF_X] = true,
940                 [BPF_ALU | BPF_RSH | BPF_K] = true,
941                 [BPF_ALU | BPF_RSH | BPF_X] = true,
942                 [BPF_ALU | BPF_NEG] = true,
943                 /* Load instructions */
944                 [BPF_LD | BPF_W | BPF_ABS] = true,
945                 [BPF_LD | BPF_H | BPF_ABS] = true,
946                 [BPF_LD | BPF_B | BPF_ABS] = true,
947                 [BPF_LD | BPF_W | BPF_LEN] = true,
948                 [BPF_LD | BPF_W | BPF_IND] = true,
949                 [BPF_LD | BPF_H | BPF_IND] = true,
950                 [BPF_LD | BPF_B | BPF_IND] = true,
951                 [BPF_LD | BPF_IMM] = true,
952                 [BPF_LD | BPF_MEM] = true,
953                 [BPF_LDX | BPF_W | BPF_LEN] = true,
954                 [BPF_LDX | BPF_B | BPF_MSH] = true,
955                 [BPF_LDX | BPF_IMM] = true,
956                 [BPF_LDX | BPF_MEM] = true,
957                 /* Store instructions */
958                 [BPF_ST] = true,
959                 [BPF_STX] = true,
960                 /* Misc instructions */
961                 [BPF_MISC | BPF_TAX] = true,
962                 [BPF_MISC | BPF_TXA] = true,
963                 /* Return instructions */
964                 [BPF_RET | BPF_K] = true,
965                 [BPF_RET | BPF_A] = true,
966                 /* Jump instructions */
967                 [BPF_JMP | BPF_JA] = true,
968                 [BPF_JMP | BPF_JEQ | BPF_K] = true,
969                 [BPF_JMP | BPF_JEQ | BPF_X] = true,
970                 [BPF_JMP | BPF_JGE | BPF_K] = true,
971                 [BPF_JMP | BPF_JGE | BPF_X] = true,
972                 [BPF_JMP | BPF_JGT | BPF_K] = true,
973                 [BPF_JMP | BPF_JGT | BPF_X] = true,
974                 [BPF_JMP | BPF_JSET | BPF_K] = true,
975                 [BPF_JMP | BPF_JSET | BPF_X] = true,
976         };
977
978         if (code_to_probe >= ARRAY_SIZE(codes))
979                 return false;
980
981         return codes[code_to_probe];
982 }
983
984 static bool bpf_check_basics_ok(const struct sock_filter *filter,
985                                 unsigned int flen)
986 {
987         if (filter == NULL)
988                 return false;
989         if (flen == 0 || flen > BPF_MAXINSNS)
990                 return false;
991
992         return true;
993 }
994
995 /**
996  *      bpf_check_classic - verify socket filter code
997  *      @filter: filter to verify
998  *      @flen: length of filter
999  *
1000  * Check the user's filter code. If we let some ugly
1001  * filter code slip through kaboom! The filter must contain
1002  * no references or jumps that are out of range, no illegal
1003  * instructions, and must end with a RET instruction.
1004  *
1005  * All jumps are forward as they are not signed.
1006  *
1007  * Returns 0 if the rule set is legal or -EINVAL if not.
1008  */
1009 static int bpf_check_classic(const struct sock_filter *filter,
1010                              unsigned int flen)
1011 {
1012         bool anc_found;
1013         int pc;
1014
1015         /* Check the filter code now */
1016         for (pc = 0; pc < flen; pc++) {
1017                 const struct sock_filter *ftest = &filter[pc];
1018
1019                 /* May we actually operate on this code? */
1020                 if (!chk_code_allowed(ftest->code))
1021                         return -EINVAL;
1022
1023                 /* Some instructions need special checks */
1024                 switch (ftest->code) {
1025                 case BPF_ALU | BPF_DIV | BPF_K:
1026                 case BPF_ALU | BPF_MOD | BPF_K:
1027                         /* Check for division by zero */
1028                         if (ftest->k == 0)
1029                                 return -EINVAL;
1030                         break;
1031                 case BPF_ALU | BPF_LSH | BPF_K:
1032                 case BPF_ALU | BPF_RSH | BPF_K:
1033                         if (ftest->k >= 32)
1034                                 return -EINVAL;
1035                         break;
1036                 case BPF_LD | BPF_MEM:
1037                 case BPF_LDX | BPF_MEM:
1038                 case BPF_ST:
1039                 case BPF_STX:
1040                         /* Check for invalid memory addresses */
1041                         if (ftest->k >= BPF_MEMWORDS)
1042                                 return -EINVAL;
1043                         break;
1044                 case BPF_JMP | BPF_JA:
1045                         /* Note, the large ftest->k might cause loops.
1046                          * Compare this with conditional jumps below,
1047                          * where offsets are limited. --ANK (981016)
1048                          */
1049                         if (ftest->k >= (unsigned int)(flen - pc - 1))
1050                                 return -EINVAL;
1051                         break;
1052                 case BPF_JMP | BPF_JEQ | BPF_K:
1053                 case BPF_JMP | BPF_JEQ | BPF_X:
1054                 case BPF_JMP | BPF_JGE | BPF_K:
1055                 case BPF_JMP | BPF_JGE | BPF_X:
1056                 case BPF_JMP | BPF_JGT | BPF_K:
1057                 case BPF_JMP | BPF_JGT | BPF_X:
1058                 case BPF_JMP | BPF_JSET | BPF_K:
1059                 case BPF_JMP | BPF_JSET | BPF_X:
1060                         /* Both conditionals must be safe */
1061                         if (pc + ftest->jt + 1 >= flen ||
1062                             pc + ftest->jf + 1 >= flen)
1063                                 return -EINVAL;
1064                         break;
1065                 case BPF_LD | BPF_W | BPF_ABS:
1066                 case BPF_LD | BPF_H | BPF_ABS:
1067                 case BPF_LD | BPF_B | BPF_ABS:
1068                         anc_found = false;
1069                         if (bpf_anc_helper(ftest) & BPF_ANC)
1070                                 anc_found = true;
1071                         /* Ancillary operation unknown or unsupported */
1072                         if (anc_found == false && ftest->k >= SKF_AD_OFF)
1073                                 return -EINVAL;
1074                 }
1075         }
1076
1077         /* Last instruction must be a RET code */
1078         switch (filter[flen - 1].code) {
1079         case BPF_RET | BPF_K:
1080         case BPF_RET | BPF_A:
1081                 return check_load_and_stores(filter, flen);
1082         }
1083
1084         return -EINVAL;
1085 }
1086
1087 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1088                                       const struct sock_fprog *fprog)
1089 {
1090         unsigned int fsize = bpf_classic_proglen(fprog);
1091         struct sock_fprog_kern *fkprog;
1092
1093         fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1094         if (!fp->orig_prog)
1095                 return -ENOMEM;
1096
1097         fkprog = fp->orig_prog;
1098         fkprog->len = fprog->len;
1099
1100         fkprog->filter = kmemdup(fp->insns, fsize,
1101                                  GFP_KERNEL | __GFP_NOWARN);
1102         if (!fkprog->filter) {
1103                 kfree(fp->orig_prog);
1104                 return -ENOMEM;
1105         }
1106
1107         return 0;
1108 }
1109
1110 static void bpf_release_orig_filter(struct bpf_prog *fp)
1111 {
1112         struct sock_fprog_kern *fprog = fp->orig_prog;
1113
1114         if (fprog) {
1115                 kfree(fprog->filter);
1116                 kfree(fprog);
1117         }
1118 }
1119
1120 static void __bpf_prog_release(struct bpf_prog *prog)
1121 {
1122         if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1123                 bpf_prog_put(prog);
1124         } else {
1125                 bpf_release_orig_filter(prog);
1126                 bpf_prog_free(prog);
1127         }
1128 }
1129
1130 static void __sk_filter_release(struct sk_filter *fp)
1131 {
1132         __bpf_prog_release(fp->prog);
1133         kfree(fp);
1134 }
1135
1136 /**
1137  *      sk_filter_release_rcu - Release a socket filter by rcu_head
1138  *      @rcu: rcu_head that contains the sk_filter to free
1139  */
1140 static void sk_filter_release_rcu(struct rcu_head *rcu)
1141 {
1142         struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1143
1144         __sk_filter_release(fp);
1145 }
1146
1147 /**
1148  *      sk_filter_release - release a socket filter
1149  *      @fp: filter to remove
1150  *
1151  *      Remove a filter from a socket and release its resources.
1152  */
1153 static void sk_filter_release(struct sk_filter *fp)
1154 {
1155         if (refcount_dec_and_test(&fp->refcnt))
1156                 call_rcu(&fp->rcu, sk_filter_release_rcu);
1157 }
1158
1159 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1160 {
1161         u32 filter_size = bpf_prog_size(fp->prog->len);
1162
1163         atomic_sub(filter_size, &sk->sk_omem_alloc);
1164         sk_filter_release(fp);
1165 }
1166
1167 /* try to charge the socket memory if there is space available
1168  * return true on success
1169  */
1170 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1171 {
1172         u32 filter_size = bpf_prog_size(fp->prog->len);
1173
1174         /* same check as in sock_kmalloc() */
1175         if (filter_size <= sysctl_optmem_max &&
1176             atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) {
1177                 atomic_add(filter_size, &sk->sk_omem_alloc);
1178                 return true;
1179         }
1180         return false;
1181 }
1182
1183 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1184 {
1185         if (!refcount_inc_not_zero(&fp->refcnt))
1186                 return false;
1187
1188         if (!__sk_filter_charge(sk, fp)) {
1189                 sk_filter_release(fp);
1190                 return false;
1191         }
1192         return true;
1193 }
1194
1195 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1196 {
1197         struct sock_filter *old_prog;
1198         struct bpf_prog *old_fp;
1199         int err, new_len, old_len = fp->len;
1200         bool seen_ld_abs = false;
1201
1202         /* We are free to overwrite insns et al right here as it
1203          * won't be used at this point in time anymore internally
1204          * after the migration to the internal BPF instruction
1205          * representation.
1206          */
1207         BUILD_BUG_ON(sizeof(struct sock_filter) !=
1208                      sizeof(struct bpf_insn));
1209
1210         /* Conversion cannot happen on overlapping memory areas,
1211          * so we need to keep the user BPF around until the 2nd
1212          * pass. At this time, the user BPF is stored in fp->insns.
1213          */
1214         old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1215                            GFP_KERNEL | __GFP_NOWARN);
1216         if (!old_prog) {
1217                 err = -ENOMEM;
1218                 goto out_err;
1219         }
1220
1221         /* 1st pass: calculate the new program length. */
1222         err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1223                                  &seen_ld_abs);
1224         if (err)
1225                 goto out_err_free;
1226
1227         /* Expand fp for appending the new filter representation. */
1228         old_fp = fp;
1229         fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1230         if (!fp) {
1231                 /* The old_fp is still around in case we couldn't
1232                  * allocate new memory, so uncharge on that one.
1233                  */
1234                 fp = old_fp;
1235                 err = -ENOMEM;
1236                 goto out_err_free;
1237         }
1238
1239         fp->len = new_len;
1240
1241         /* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1242         err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1243                                  &seen_ld_abs);
1244         if (err)
1245                 /* 2nd bpf_convert_filter() can fail only if it fails
1246                  * to allocate memory, remapping must succeed. Note,
1247                  * that at this time old_fp has already been released
1248                  * by krealloc().
1249                  */
1250                 goto out_err_free;
1251
1252         fp = bpf_prog_select_runtime(fp, &err);
1253         if (err)
1254                 goto out_err_free;
1255
1256         kfree(old_prog);
1257         return fp;
1258
1259 out_err_free:
1260         kfree(old_prog);
1261 out_err:
1262         __bpf_prog_release(fp);
1263         return ERR_PTR(err);
1264 }
1265
1266 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1267                                            bpf_aux_classic_check_t trans)
1268 {
1269         int err;
1270
1271         fp->bpf_func = NULL;
1272         fp->jited = 0;
1273
1274         err = bpf_check_classic(fp->insns, fp->len);
1275         if (err) {
1276                 __bpf_prog_release(fp);
1277                 return ERR_PTR(err);
1278         }
1279
1280         /* There might be additional checks and transformations
1281          * needed on classic filters, f.e. in case of seccomp.
1282          */
1283         if (trans) {
1284                 err = trans(fp->insns, fp->len);
1285                 if (err) {
1286                         __bpf_prog_release(fp);
1287                         return ERR_PTR(err);
1288                 }
1289         }
1290
1291         /* Probe if we can JIT compile the filter and if so, do
1292          * the compilation of the filter.
1293          */
1294         bpf_jit_compile(fp);
1295
1296         /* JIT compiler couldn't process this filter, so do the
1297          * internal BPF translation for the optimized interpreter.
1298          */
1299         if (!fp->jited)
1300                 fp = bpf_migrate_filter(fp);
1301
1302         return fp;
1303 }
1304
1305 /**
1306  *      bpf_prog_create - create an unattached filter
1307  *      @pfp: the unattached filter that is created
1308  *      @fprog: the filter program
1309  *
1310  * Create a filter independent of any socket. We first run some
1311  * sanity checks on it to make sure it does not explode on us later.
1312  * If an error occurs or there is insufficient memory for the filter
1313  * a negative errno code is returned. On success the return is zero.
1314  */
1315 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1316 {
1317         unsigned int fsize = bpf_classic_proglen(fprog);
1318         struct bpf_prog *fp;
1319
1320         /* Make sure new filter is there and in the right amounts. */
1321         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1322                 return -EINVAL;
1323
1324         fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1325         if (!fp)
1326                 return -ENOMEM;
1327
1328         memcpy(fp->insns, fprog->filter, fsize);
1329
1330         fp->len = fprog->len;
1331         /* Since unattached filters are not copied back to user
1332          * space through sk_get_filter(), we do not need to hold
1333          * a copy here, and can spare us the work.
1334          */
1335         fp->orig_prog = NULL;
1336
1337         /* bpf_prepare_filter() already takes care of freeing
1338          * memory in case something goes wrong.
1339          */
1340         fp = bpf_prepare_filter(fp, NULL);
1341         if (IS_ERR(fp))
1342                 return PTR_ERR(fp);
1343
1344         *pfp = fp;
1345         return 0;
1346 }
1347 EXPORT_SYMBOL_GPL(bpf_prog_create);
1348
1349 /**
1350  *      bpf_prog_create_from_user - create an unattached filter from user buffer
1351  *      @pfp: the unattached filter that is created
1352  *      @fprog: the filter program
1353  *      @trans: post-classic verifier transformation handler
1354  *      @save_orig: save classic BPF program
1355  *
1356  * This function effectively does the same as bpf_prog_create(), only
1357  * that it builds up its insns buffer from user space provided buffer.
1358  * It also allows for passing a bpf_aux_classic_check_t handler.
1359  */
1360 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1361                               bpf_aux_classic_check_t trans, bool save_orig)
1362 {
1363         unsigned int fsize = bpf_classic_proglen(fprog);
1364         struct bpf_prog *fp;
1365         int err;
1366
1367         /* Make sure new filter is there and in the right amounts. */
1368         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1369                 return -EINVAL;
1370
1371         fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1372         if (!fp)
1373                 return -ENOMEM;
1374
1375         if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1376                 __bpf_prog_free(fp);
1377                 return -EFAULT;
1378         }
1379
1380         fp->len = fprog->len;
1381         fp->orig_prog = NULL;
1382
1383         if (save_orig) {
1384                 err = bpf_prog_store_orig_filter(fp, fprog);
1385                 if (err) {
1386                         __bpf_prog_free(fp);
1387                         return -ENOMEM;
1388                 }
1389         }
1390
1391         /* bpf_prepare_filter() already takes care of freeing
1392          * memory in case something goes wrong.
1393          */
1394         fp = bpf_prepare_filter(fp, trans);
1395         if (IS_ERR(fp))
1396                 return PTR_ERR(fp);
1397
1398         *pfp = fp;
1399         return 0;
1400 }
1401 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1402
1403 void bpf_prog_destroy(struct bpf_prog *fp)
1404 {
1405         __bpf_prog_release(fp);
1406 }
1407 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1408
1409 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1410 {
1411         struct sk_filter *fp, *old_fp;
1412
1413         fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1414         if (!fp)
1415                 return -ENOMEM;
1416
1417         fp->prog = prog;
1418
1419         if (!__sk_filter_charge(sk, fp)) {
1420                 kfree(fp);
1421                 return -ENOMEM;
1422         }
1423         refcount_set(&fp->refcnt, 1);
1424
1425         old_fp = rcu_dereference_protected(sk->sk_filter,
1426                                            lockdep_sock_is_held(sk));
1427         rcu_assign_pointer(sk->sk_filter, fp);
1428
1429         if (old_fp)
1430                 sk_filter_uncharge(sk, old_fp);
1431
1432         return 0;
1433 }
1434
1435 static int __reuseport_attach_prog(struct bpf_prog *prog, struct sock *sk)
1436 {
1437         struct bpf_prog *old_prog;
1438         int err;
1439
1440         if (bpf_prog_size(prog->len) > sysctl_optmem_max)
1441                 return -ENOMEM;
1442
1443         if (sk_unhashed(sk) && sk->sk_reuseport) {
1444                 err = reuseport_alloc(sk);
1445                 if (err)
1446                         return err;
1447         } else if (!rcu_access_pointer(sk->sk_reuseport_cb)) {
1448                 /* The socket wasn't bound with SO_REUSEPORT */
1449                 return -EINVAL;
1450         }
1451
1452         old_prog = reuseport_attach_prog(sk, prog);
1453         if (old_prog)
1454                 bpf_prog_destroy(old_prog);
1455
1456         return 0;
1457 }
1458
1459 static
1460 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1461 {
1462         unsigned int fsize = bpf_classic_proglen(fprog);
1463         struct bpf_prog *prog;
1464         int err;
1465
1466         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1467                 return ERR_PTR(-EPERM);
1468
1469         /* Make sure new filter is there and in the right amounts. */
1470         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1471                 return ERR_PTR(-EINVAL);
1472
1473         prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1474         if (!prog)
1475                 return ERR_PTR(-ENOMEM);
1476
1477         if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1478                 __bpf_prog_free(prog);
1479                 return ERR_PTR(-EFAULT);
1480         }
1481
1482         prog->len = fprog->len;
1483
1484         err = bpf_prog_store_orig_filter(prog, fprog);
1485         if (err) {
1486                 __bpf_prog_free(prog);
1487                 return ERR_PTR(-ENOMEM);
1488         }
1489
1490         /* bpf_prepare_filter() already takes care of freeing
1491          * memory in case something goes wrong.
1492          */
1493         return bpf_prepare_filter(prog, NULL);
1494 }
1495
1496 /**
1497  *      sk_attach_filter - attach a socket filter
1498  *      @fprog: the filter program
1499  *      @sk: the socket to use
1500  *
1501  * Attach the user's filter code. We first run some sanity checks on
1502  * it to make sure it does not explode on us later. If an error
1503  * occurs or there is insufficient memory for the filter a negative
1504  * errno code is returned. On success the return is zero.
1505  */
1506 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1507 {
1508         struct bpf_prog *prog = __get_filter(fprog, sk);
1509         int err;
1510
1511         if (IS_ERR(prog))
1512                 return PTR_ERR(prog);
1513
1514         err = __sk_attach_prog(prog, sk);
1515         if (err < 0) {
1516                 __bpf_prog_release(prog);
1517                 return err;
1518         }
1519
1520         return 0;
1521 }
1522 EXPORT_SYMBOL_GPL(sk_attach_filter);
1523
1524 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1525 {
1526         struct bpf_prog *prog = __get_filter(fprog, sk);
1527         int err;
1528
1529         if (IS_ERR(prog))
1530                 return PTR_ERR(prog);
1531
1532         err = __reuseport_attach_prog(prog, sk);
1533         if (err < 0) {
1534                 __bpf_prog_release(prog);
1535                 return err;
1536         }
1537
1538         return 0;
1539 }
1540
1541 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1542 {
1543         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1544                 return ERR_PTR(-EPERM);
1545
1546         return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1547 }
1548
1549 int sk_attach_bpf(u32 ufd, struct sock *sk)
1550 {
1551         struct bpf_prog *prog = __get_bpf(ufd, sk);
1552         int err;
1553
1554         if (IS_ERR(prog))
1555                 return PTR_ERR(prog);
1556
1557         err = __sk_attach_prog(prog, sk);
1558         if (err < 0) {
1559                 bpf_prog_put(prog);
1560                 return err;
1561         }
1562
1563         return 0;
1564 }
1565
1566 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1567 {
1568         struct bpf_prog *prog = __get_bpf(ufd, sk);
1569         int err;
1570
1571         if (IS_ERR(prog))
1572                 return PTR_ERR(prog);
1573
1574         err = __reuseport_attach_prog(prog, sk);
1575         if (err < 0) {
1576                 bpf_prog_put(prog);
1577                 return err;
1578         }
1579
1580         return 0;
1581 }
1582
1583 struct bpf_scratchpad {
1584         union {
1585                 __be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1586                 u8     buff[MAX_BPF_STACK];
1587         };
1588 };
1589
1590 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1591
1592 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1593                                           unsigned int write_len)
1594 {
1595         return skb_ensure_writable(skb, write_len);
1596 }
1597
1598 static inline int bpf_try_make_writable(struct sk_buff *skb,
1599                                         unsigned int write_len)
1600 {
1601         int err = __bpf_try_make_writable(skb, write_len);
1602
1603         bpf_compute_data_pointers(skb);
1604         return err;
1605 }
1606
1607 static int bpf_try_make_head_writable(struct sk_buff *skb)
1608 {
1609         return bpf_try_make_writable(skb, skb_headlen(skb));
1610 }
1611
1612 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1613 {
1614         if (skb_at_tc_ingress(skb))
1615                 skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1616 }
1617
1618 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1619 {
1620         if (skb_at_tc_ingress(skb))
1621                 skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1622 }
1623
1624 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1625            const void *, from, u32, len, u64, flags)
1626 {
1627         void *ptr;
1628
1629         if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1630                 return -EINVAL;
1631         if (unlikely(offset > 0xffff))
1632                 return -EFAULT;
1633         if (unlikely(bpf_try_make_writable(skb, offset + len)))
1634                 return -EFAULT;
1635
1636         ptr = skb->data + offset;
1637         if (flags & BPF_F_RECOMPUTE_CSUM)
1638                 __skb_postpull_rcsum(skb, ptr, len, offset);
1639
1640         memcpy(ptr, from, len);
1641
1642         if (flags & BPF_F_RECOMPUTE_CSUM)
1643                 __skb_postpush_rcsum(skb, ptr, len, offset);
1644         if (flags & BPF_F_INVALIDATE_HASH)
1645                 skb_clear_hash(skb);
1646
1647         return 0;
1648 }
1649
1650 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1651         .func           = bpf_skb_store_bytes,
1652         .gpl_only       = false,
1653         .ret_type       = RET_INTEGER,
1654         .arg1_type      = ARG_PTR_TO_CTX,
1655         .arg2_type      = ARG_ANYTHING,
1656         .arg3_type      = ARG_PTR_TO_MEM,
1657         .arg4_type      = ARG_CONST_SIZE,
1658         .arg5_type      = ARG_ANYTHING,
1659 };
1660
1661 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1662            void *, to, u32, len)
1663 {
1664         void *ptr;
1665
1666         if (unlikely(offset > 0xffff))
1667                 goto err_clear;
1668
1669         ptr = skb_header_pointer(skb, offset, len, to);
1670         if (unlikely(!ptr))
1671                 goto err_clear;
1672         if (ptr != to)
1673                 memcpy(to, ptr, len);
1674
1675         return 0;
1676 err_clear:
1677         memset(to, 0, len);
1678         return -EFAULT;
1679 }
1680
1681 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1682         .func           = bpf_skb_load_bytes,
1683         .gpl_only       = false,
1684         .ret_type       = RET_INTEGER,
1685         .arg1_type      = ARG_PTR_TO_CTX,
1686         .arg2_type      = ARG_ANYTHING,
1687         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1688         .arg4_type      = ARG_CONST_SIZE,
1689 };
1690
1691 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1692            u32, offset, void *, to, u32, len, u32, start_header)
1693 {
1694         u8 *ptr;
1695
1696         if (unlikely(offset > 0xffff || len > skb_headlen(skb)))
1697                 goto err_clear;
1698
1699         switch (start_header) {
1700         case BPF_HDR_START_MAC:
1701                 ptr = skb_mac_header(skb) + offset;
1702                 break;
1703         case BPF_HDR_START_NET:
1704                 ptr = skb_network_header(skb) + offset;
1705                 break;
1706         default:
1707                 goto err_clear;
1708         }
1709
1710         if (likely(ptr >= skb_mac_header(skb) &&
1711                    ptr + len <= skb_tail_pointer(skb))) {
1712                 memcpy(to, ptr, len);
1713                 return 0;
1714         }
1715
1716 err_clear:
1717         memset(to, 0, len);
1718         return -EFAULT;
1719 }
1720
1721 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1722         .func           = bpf_skb_load_bytes_relative,
1723         .gpl_only       = false,
1724         .ret_type       = RET_INTEGER,
1725         .arg1_type      = ARG_PTR_TO_CTX,
1726         .arg2_type      = ARG_ANYTHING,
1727         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1728         .arg4_type      = ARG_CONST_SIZE,
1729         .arg5_type      = ARG_ANYTHING,
1730 };
1731
1732 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1733 {
1734         /* Idea is the following: should the needed direct read/write
1735          * test fail during runtime, we can pull in more data and redo
1736          * again, since implicitly, we invalidate previous checks here.
1737          *
1738          * Or, since we know how much we need to make read/writeable,
1739          * this can be done once at the program beginning for direct
1740          * access case. By this we overcome limitations of only current
1741          * headroom being accessible.
1742          */
1743         return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1744 }
1745
1746 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1747         .func           = bpf_skb_pull_data,
1748         .gpl_only       = false,
1749         .ret_type       = RET_INTEGER,
1750         .arg1_type      = ARG_PTR_TO_CTX,
1751         .arg2_type      = ARG_ANYTHING,
1752 };
1753
1754 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1755            u64, from, u64, to, u64, flags)
1756 {
1757         __sum16 *ptr;
1758
1759         if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1760                 return -EINVAL;
1761         if (unlikely(offset > 0xffff || offset & 1))
1762                 return -EFAULT;
1763         if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1764                 return -EFAULT;
1765
1766         ptr = (__sum16 *)(skb->data + offset);
1767         switch (flags & BPF_F_HDR_FIELD_MASK) {
1768         case 0:
1769                 if (unlikely(from != 0))
1770                         return -EINVAL;
1771
1772                 csum_replace_by_diff(ptr, to);
1773                 break;
1774         case 2:
1775                 csum_replace2(ptr, from, to);
1776                 break;
1777         case 4:
1778                 csum_replace4(ptr, from, to);
1779                 break;
1780         default:
1781                 return -EINVAL;
1782         }
1783
1784         return 0;
1785 }
1786
1787 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1788         .func           = bpf_l3_csum_replace,
1789         .gpl_only       = false,
1790         .ret_type       = RET_INTEGER,
1791         .arg1_type      = ARG_PTR_TO_CTX,
1792         .arg2_type      = ARG_ANYTHING,
1793         .arg3_type      = ARG_ANYTHING,
1794         .arg4_type      = ARG_ANYTHING,
1795         .arg5_type      = ARG_ANYTHING,
1796 };
1797
1798 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1799            u64, from, u64, to, u64, flags)
1800 {
1801         bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1802         bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1803         bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1804         __sum16 *ptr;
1805
1806         if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1807                                BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1808                 return -EINVAL;
1809         if (unlikely(offset > 0xffff || offset & 1))
1810                 return -EFAULT;
1811         if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1812                 return -EFAULT;
1813
1814         ptr = (__sum16 *)(skb->data + offset);
1815         if (is_mmzero && !do_mforce && !*ptr)
1816                 return 0;
1817
1818         switch (flags & BPF_F_HDR_FIELD_MASK) {
1819         case 0:
1820                 if (unlikely(from != 0))
1821                         return -EINVAL;
1822
1823                 inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1824                 break;
1825         case 2:
1826                 inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1827                 break;
1828         case 4:
1829                 inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1830                 break;
1831         default:
1832                 return -EINVAL;
1833         }
1834
1835         if (is_mmzero && !*ptr)
1836                 *ptr = CSUM_MANGLED_0;
1837         return 0;
1838 }
1839
1840 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1841         .func           = bpf_l4_csum_replace,
1842         .gpl_only       = false,
1843         .ret_type       = RET_INTEGER,
1844         .arg1_type      = ARG_PTR_TO_CTX,
1845         .arg2_type      = ARG_ANYTHING,
1846         .arg3_type      = ARG_ANYTHING,
1847         .arg4_type      = ARG_ANYTHING,
1848         .arg5_type      = ARG_ANYTHING,
1849 };
1850
1851 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
1852            __be32 *, to, u32, to_size, __wsum, seed)
1853 {
1854         struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1855         u32 diff_size = from_size + to_size;
1856         int i, j = 0;
1857
1858         /* This is quite flexible, some examples:
1859          *
1860          * from_size == 0, to_size > 0,  seed := csum --> pushing data
1861          * from_size > 0,  to_size == 0, seed := csum --> pulling data
1862          * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
1863          *
1864          * Even for diffing, from_size and to_size don't need to be equal.
1865          */
1866         if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
1867                      diff_size > sizeof(sp->diff)))
1868                 return -EINVAL;
1869
1870         for (i = 0; i < from_size / sizeof(__be32); i++, j++)
1871                 sp->diff[j] = ~from[i];
1872         for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
1873                 sp->diff[j] = to[i];
1874
1875         return csum_partial(sp->diff, diff_size, seed);
1876 }
1877
1878 static const struct bpf_func_proto bpf_csum_diff_proto = {
1879         .func           = bpf_csum_diff,
1880         .gpl_only       = false,
1881         .pkt_access     = true,
1882         .ret_type       = RET_INTEGER,
1883         .arg1_type      = ARG_PTR_TO_MEM_OR_NULL,
1884         .arg2_type      = ARG_CONST_SIZE_OR_ZERO,
1885         .arg3_type      = ARG_PTR_TO_MEM_OR_NULL,
1886         .arg4_type      = ARG_CONST_SIZE_OR_ZERO,
1887         .arg5_type      = ARG_ANYTHING,
1888 };
1889
1890 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
1891 {
1892         /* The interface is to be used in combination with bpf_csum_diff()
1893          * for direct packet writes. csum rotation for alignment as well
1894          * as emulating csum_sub() can be done from the eBPF program.
1895          */
1896         if (skb->ip_summed == CHECKSUM_COMPLETE)
1897                 return (skb->csum = csum_add(skb->csum, csum));
1898
1899         return -ENOTSUPP;
1900 }
1901
1902 static const struct bpf_func_proto bpf_csum_update_proto = {
1903         .func           = bpf_csum_update,
1904         .gpl_only       = false,
1905         .ret_type       = RET_INTEGER,
1906         .arg1_type      = ARG_PTR_TO_CTX,
1907         .arg2_type      = ARG_ANYTHING,
1908 };
1909
1910 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
1911 {
1912         return dev_forward_skb(dev, skb);
1913 }
1914
1915 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
1916                                       struct sk_buff *skb)
1917 {
1918         int ret = ____dev_forward_skb(dev, skb);
1919
1920         if (likely(!ret)) {
1921                 skb->dev = dev;
1922                 ret = netif_rx(skb);
1923         }
1924
1925         return ret;
1926 }
1927
1928 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
1929 {
1930         int ret;
1931
1932         if (unlikely(__this_cpu_read(xmit_recursion) > XMIT_RECURSION_LIMIT)) {
1933                 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
1934                 kfree_skb(skb);
1935                 return -ENETDOWN;
1936         }
1937
1938         skb->dev = dev;
1939
1940         __this_cpu_inc(xmit_recursion);
1941         ret = dev_queue_xmit(skb);
1942         __this_cpu_dec(xmit_recursion);
1943
1944         return ret;
1945 }
1946
1947 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
1948                                  u32 flags)
1949 {
1950         /* skb->mac_len is not set on normal egress */
1951         unsigned int mlen = skb->network_header - skb->mac_header;
1952
1953         __skb_pull(skb, mlen);
1954
1955         /* At ingress, the mac header has already been pulled once.
1956          * At egress, skb_pospull_rcsum has to be done in case that
1957          * the skb is originated from ingress (i.e. a forwarded skb)
1958          * to ensure that rcsum starts at net header.
1959          */
1960         if (!skb_at_tc_ingress(skb))
1961                 skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
1962         skb_pop_mac_header(skb);
1963         skb_reset_mac_len(skb);
1964         return flags & BPF_F_INGRESS ?
1965                __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
1966 }
1967
1968 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
1969                                  u32 flags)
1970 {
1971         /* Verify that a link layer header is carried */
1972         if (unlikely(skb->mac_header >= skb->network_header)) {
1973                 kfree_skb(skb);
1974                 return -ERANGE;
1975         }
1976
1977         bpf_push_mac_rcsum(skb);
1978         return flags & BPF_F_INGRESS ?
1979                __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
1980 }
1981
1982 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
1983                           u32 flags)
1984 {
1985         if (dev_is_mac_header_xmit(dev))
1986                 return __bpf_redirect_common(skb, dev, flags);
1987         else
1988                 return __bpf_redirect_no_mac(skb, dev, flags);
1989 }
1990
1991 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
1992 {
1993         struct net_device *dev;
1994         struct sk_buff *clone;
1995         int ret;
1996
1997         if (unlikely(flags & ~(BPF_F_INGRESS)))
1998                 return -EINVAL;
1999
2000         dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2001         if (unlikely(!dev))
2002                 return -EINVAL;
2003
2004         clone = skb_clone(skb, GFP_ATOMIC);
2005         if (unlikely(!clone))
2006                 return -ENOMEM;
2007
2008         /* For direct write, we need to keep the invariant that the skbs
2009          * we're dealing with need to be uncloned. Should uncloning fail
2010          * here, we need to free the just generated clone to unclone once
2011          * again.
2012          */
2013         ret = bpf_try_make_head_writable(skb);
2014         if (unlikely(ret)) {
2015                 kfree_skb(clone);
2016                 return -ENOMEM;
2017         }
2018
2019         return __bpf_redirect(clone, dev, flags);
2020 }
2021
2022 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2023         .func           = bpf_clone_redirect,
2024         .gpl_only       = false,
2025         .ret_type       = RET_INTEGER,
2026         .arg1_type      = ARG_PTR_TO_CTX,
2027         .arg2_type      = ARG_ANYTHING,
2028         .arg3_type      = ARG_ANYTHING,
2029 };
2030
2031 struct redirect_info {
2032         u32 ifindex;
2033         u32 flags;
2034         struct bpf_map *map;
2035         struct bpf_map *map_to_flush;
2036         unsigned long   map_owner;
2037 };
2038
2039 static DEFINE_PER_CPU(struct redirect_info, redirect_info);
2040
2041 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2042 {
2043         struct redirect_info *ri = this_cpu_ptr(&redirect_info);
2044
2045         if (unlikely(flags & ~(BPF_F_INGRESS)))
2046                 return TC_ACT_SHOT;
2047
2048         ri->ifindex = ifindex;
2049         ri->flags = flags;
2050
2051         return TC_ACT_REDIRECT;
2052 }
2053
2054 int skb_do_redirect(struct sk_buff *skb)
2055 {
2056         struct redirect_info *ri = this_cpu_ptr(&redirect_info);
2057         struct net_device *dev;
2058
2059         dev = dev_get_by_index_rcu(dev_net(skb->dev), ri->ifindex);
2060         ri->ifindex = 0;
2061         if (unlikely(!dev)) {
2062                 kfree_skb(skb);
2063                 return -EINVAL;
2064         }
2065
2066         return __bpf_redirect(skb, dev, ri->flags);
2067 }
2068
2069 static const struct bpf_func_proto bpf_redirect_proto = {
2070         .func           = bpf_redirect,
2071         .gpl_only       = false,
2072         .ret_type       = RET_INTEGER,
2073         .arg1_type      = ARG_ANYTHING,
2074         .arg2_type      = ARG_ANYTHING,
2075 };
2076
2077 BPF_CALL_4(bpf_sk_redirect_map, struct sk_buff *, skb,
2078            struct bpf_map *, map, u32, key, u64, flags)
2079 {
2080         struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
2081
2082         /* If user passes invalid input drop the packet. */
2083         if (unlikely(flags & ~(BPF_F_INGRESS)))
2084                 return SK_DROP;
2085
2086         tcb->bpf.flags = flags;
2087         tcb->bpf.sk_redir = __sock_map_lookup_elem(map, key);
2088         if (!tcb->bpf.sk_redir)
2089                 return SK_DROP;
2090
2091         return SK_PASS;
2092 }
2093
2094 struct sock *do_sk_redirect_map(struct sk_buff *skb)
2095 {
2096         struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
2097
2098         return tcb->bpf.sk_redir;
2099 }
2100
2101 static const struct bpf_func_proto bpf_sk_redirect_map_proto = {
2102         .func           = bpf_sk_redirect_map,
2103         .gpl_only       = false,
2104         .ret_type       = RET_INTEGER,
2105         .arg1_type      = ARG_PTR_TO_CTX,
2106         .arg2_type      = ARG_CONST_MAP_PTR,
2107         .arg3_type      = ARG_ANYTHING,
2108         .arg4_type      = ARG_ANYTHING,
2109 };
2110
2111 BPF_CALL_4(bpf_msg_redirect_map, struct sk_msg_buff *, msg,
2112            struct bpf_map *, map, u32, key, u64, flags)
2113 {
2114         /* If user passes invalid input drop the packet. */
2115         if (unlikely(flags & ~(BPF_F_INGRESS)))
2116                 return SK_DROP;
2117
2118         msg->flags = flags;
2119         msg->sk_redir = __sock_map_lookup_elem(map, key);
2120         if (!msg->sk_redir)
2121                 return SK_DROP;
2122
2123         return SK_PASS;
2124 }
2125
2126 struct sock *do_msg_redirect_map(struct sk_msg_buff *msg)
2127 {
2128         return msg->sk_redir;
2129 }
2130
2131 static const struct bpf_func_proto bpf_msg_redirect_map_proto = {
2132         .func           = bpf_msg_redirect_map,
2133         .gpl_only       = false,
2134         .ret_type       = RET_INTEGER,
2135         .arg1_type      = ARG_PTR_TO_CTX,
2136         .arg2_type      = ARG_CONST_MAP_PTR,
2137         .arg3_type      = ARG_ANYTHING,
2138         .arg4_type      = ARG_ANYTHING,
2139 };
2140
2141 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg_buff *, msg, u32, bytes)
2142 {
2143         msg->apply_bytes = bytes;
2144         return 0;
2145 }
2146
2147 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2148         .func           = bpf_msg_apply_bytes,
2149         .gpl_only       = false,
2150         .ret_type       = RET_INTEGER,
2151         .arg1_type      = ARG_PTR_TO_CTX,
2152         .arg2_type      = ARG_ANYTHING,
2153 };
2154
2155 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg_buff *, msg, u32, bytes)
2156 {
2157         msg->cork_bytes = bytes;
2158         return 0;
2159 }
2160
2161 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2162         .func           = bpf_msg_cork_bytes,
2163         .gpl_only       = false,
2164         .ret_type       = RET_INTEGER,
2165         .arg1_type      = ARG_PTR_TO_CTX,
2166         .arg2_type      = ARG_ANYTHING,
2167 };
2168
2169 BPF_CALL_4(bpf_msg_pull_data,
2170            struct sk_msg_buff *, msg, u32, start, u32, end, u64, flags)
2171 {
2172         unsigned int len = 0, offset = 0, copy = 0;
2173         struct scatterlist *sg = msg->sg_data;
2174         int first_sg, last_sg, i, shift;
2175         unsigned char *p, *to, *from;
2176         int bytes = end - start;
2177         struct page *page;
2178
2179         if (unlikely(flags || end <= start))
2180                 return -EINVAL;
2181
2182         /* First find the starting scatterlist element */
2183         i = msg->sg_start;
2184         do {
2185                 len = sg[i].length;
2186                 offset += len;
2187                 if (start < offset + len)
2188                         break;
2189                 i++;
2190                 if (i == MAX_SKB_FRAGS)
2191                         i = 0;
2192         } while (i != msg->sg_end);
2193
2194         if (unlikely(start >= offset + len))
2195                 return -EINVAL;
2196
2197         if (!msg->sg_copy[i] && bytes <= len)
2198                 goto out;
2199
2200         first_sg = i;
2201
2202         /* At this point we need to linearize multiple scatterlist
2203          * elements or a single shared page. Either way we need to
2204          * copy into a linear buffer exclusively owned by BPF. Then
2205          * place the buffer in the scatterlist and fixup the original
2206          * entries by removing the entries now in the linear buffer
2207          * and shifting the remaining entries. For now we do not try
2208          * to copy partial entries to avoid complexity of running out
2209          * of sg_entry slots. The downside is reading a single byte
2210          * will copy the entire sg entry.
2211          */
2212         do {
2213                 copy += sg[i].length;
2214                 i++;
2215                 if (i == MAX_SKB_FRAGS)
2216                         i = 0;
2217                 if (bytes < copy)
2218                         break;
2219         } while (i != msg->sg_end);
2220         last_sg = i;
2221
2222         if (unlikely(copy < end - start))
2223                 return -EINVAL;
2224
2225         page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC, get_order(copy));
2226         if (unlikely(!page))
2227                 return -ENOMEM;
2228         p = page_address(page);
2229         offset = 0;
2230
2231         i = first_sg;
2232         do {
2233                 from = sg_virt(&sg[i]);
2234                 len = sg[i].length;
2235                 to = p + offset;
2236
2237                 memcpy(to, from, len);
2238                 offset += len;
2239                 sg[i].length = 0;
2240                 put_page(sg_page(&sg[i]));
2241
2242                 i++;
2243                 if (i == MAX_SKB_FRAGS)
2244                         i = 0;
2245         } while (i != last_sg);
2246
2247         sg[first_sg].length = copy;
2248         sg_set_page(&sg[first_sg], page, copy, 0);
2249
2250         /* To repair sg ring we need to shift entries. If we only
2251          * had a single entry though we can just replace it and
2252          * be done. Otherwise walk the ring and shift the entries.
2253          */
2254         shift = last_sg - first_sg - 1;
2255         if (!shift)
2256                 goto out;
2257
2258         i = first_sg + 1;
2259         do {
2260                 int move_from;
2261
2262                 if (i + shift >= MAX_SKB_FRAGS)
2263                         move_from = i + shift - MAX_SKB_FRAGS;
2264                 else
2265                         move_from = i + shift;
2266
2267                 if (move_from == msg->sg_end)
2268                         break;
2269
2270                 sg[i] = sg[move_from];
2271                 sg[move_from].length = 0;
2272                 sg[move_from].page_link = 0;
2273                 sg[move_from].offset = 0;
2274
2275                 i++;
2276                 if (i == MAX_SKB_FRAGS)
2277                         i = 0;
2278         } while (1);
2279         msg->sg_end -= shift;
2280         if (msg->sg_end < 0)
2281                 msg->sg_end += MAX_SKB_FRAGS;
2282 out:
2283         msg->data = sg_virt(&sg[i]) + start - offset;
2284         msg->data_end = msg->data + bytes;
2285
2286         return 0;
2287 }
2288
2289 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2290         .func           = bpf_msg_pull_data,
2291         .gpl_only       = false,
2292         .ret_type       = RET_INTEGER,
2293         .arg1_type      = ARG_PTR_TO_CTX,
2294         .arg2_type      = ARG_ANYTHING,
2295         .arg3_type      = ARG_ANYTHING,
2296         .arg4_type      = ARG_ANYTHING,
2297 };
2298
2299 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
2300 {
2301         return task_get_classid(skb);
2302 }
2303
2304 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
2305         .func           = bpf_get_cgroup_classid,
2306         .gpl_only       = false,
2307         .ret_type       = RET_INTEGER,
2308         .arg1_type      = ARG_PTR_TO_CTX,
2309 };
2310
2311 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
2312 {
2313         return dst_tclassid(skb);
2314 }
2315
2316 static const struct bpf_func_proto bpf_get_route_realm_proto = {
2317         .func           = bpf_get_route_realm,
2318         .gpl_only       = false,
2319         .ret_type       = RET_INTEGER,
2320         .arg1_type      = ARG_PTR_TO_CTX,
2321 };
2322
2323 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
2324 {
2325         /* If skb_clear_hash() was called due to mangling, we can
2326          * trigger SW recalculation here. Later access to hash
2327          * can then use the inline skb->hash via context directly
2328          * instead of calling this helper again.
2329          */
2330         return skb_get_hash(skb);
2331 }
2332
2333 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
2334         .func           = bpf_get_hash_recalc,
2335         .gpl_only       = false,
2336         .ret_type       = RET_INTEGER,
2337         .arg1_type      = ARG_PTR_TO_CTX,
2338 };
2339
2340 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
2341 {
2342         /* After all direct packet write, this can be used once for
2343          * triggering a lazy recalc on next skb_get_hash() invocation.
2344          */
2345         skb_clear_hash(skb);
2346         return 0;
2347 }
2348
2349 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
2350         .func           = bpf_set_hash_invalid,
2351         .gpl_only       = false,
2352         .ret_type       = RET_INTEGER,
2353         .arg1_type      = ARG_PTR_TO_CTX,
2354 };
2355
2356 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
2357 {
2358         /* Set user specified hash as L4(+), so that it gets returned
2359          * on skb_get_hash() call unless BPF prog later on triggers a
2360          * skb_clear_hash().
2361          */
2362         __skb_set_sw_hash(skb, hash, true);
2363         return 0;
2364 }
2365
2366 static const struct bpf_func_proto bpf_set_hash_proto = {
2367         .func           = bpf_set_hash,
2368         .gpl_only       = false,
2369         .ret_type       = RET_INTEGER,
2370         .arg1_type      = ARG_PTR_TO_CTX,
2371         .arg2_type      = ARG_ANYTHING,
2372 };
2373
2374 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
2375            u16, vlan_tci)
2376 {
2377         int ret;
2378
2379         if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
2380                      vlan_proto != htons(ETH_P_8021AD)))
2381                 vlan_proto = htons(ETH_P_8021Q);
2382
2383         bpf_push_mac_rcsum(skb);
2384         ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
2385         bpf_pull_mac_rcsum(skb);
2386
2387         bpf_compute_data_pointers(skb);
2388         return ret;
2389 }
2390
2391 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
2392         .func           = bpf_skb_vlan_push,
2393         .gpl_only       = false,
2394         .ret_type       = RET_INTEGER,
2395         .arg1_type      = ARG_PTR_TO_CTX,
2396         .arg2_type      = ARG_ANYTHING,
2397         .arg3_type      = ARG_ANYTHING,
2398 };
2399
2400 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
2401 {
2402         int ret;
2403
2404         bpf_push_mac_rcsum(skb);
2405         ret = skb_vlan_pop(skb);
2406         bpf_pull_mac_rcsum(skb);
2407
2408         bpf_compute_data_pointers(skb);
2409         return ret;
2410 }
2411
2412 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
2413         .func           = bpf_skb_vlan_pop,
2414         .gpl_only       = false,
2415         .ret_type       = RET_INTEGER,
2416         .arg1_type      = ARG_PTR_TO_CTX,
2417 };
2418
2419 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
2420 {
2421         /* Caller already did skb_cow() with len as headroom,
2422          * so no need to do it here.
2423          */
2424         skb_push(skb, len);
2425         memmove(skb->data, skb->data + len, off);
2426         memset(skb->data + off, 0, len);
2427
2428         /* No skb_postpush_rcsum(skb, skb->data + off, len)
2429          * needed here as it does not change the skb->csum
2430          * result for checksum complete when summing over
2431          * zeroed blocks.
2432          */
2433         return 0;
2434 }
2435
2436 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
2437 {
2438         /* skb_ensure_writable() is not needed here, as we're
2439          * already working on an uncloned skb.
2440          */
2441         if (unlikely(!pskb_may_pull(skb, off + len)))
2442                 return -ENOMEM;
2443
2444         skb_postpull_rcsum(skb, skb->data + off, len);
2445         memmove(skb->data + len, skb->data, off);
2446         __skb_pull(skb, len);
2447
2448         return 0;
2449 }
2450
2451 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
2452 {
2453         bool trans_same = skb->transport_header == skb->network_header;
2454         int ret;
2455
2456         /* There's no need for __skb_push()/__skb_pull() pair to
2457          * get to the start of the mac header as we're guaranteed
2458          * to always start from here under eBPF.
2459          */
2460         ret = bpf_skb_generic_push(skb, off, len);
2461         if (likely(!ret)) {
2462                 skb->mac_header -= len;
2463                 skb->network_header -= len;
2464                 if (trans_same)
2465                         skb->transport_header = skb->network_header;
2466         }
2467
2468         return ret;
2469 }
2470
2471 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
2472 {
2473         bool trans_same = skb->transport_header == skb->network_header;
2474         int ret;
2475
2476         /* Same here, __skb_push()/__skb_pull() pair not needed. */
2477         ret = bpf_skb_generic_pop(skb, off, len);
2478         if (likely(!ret)) {
2479                 skb->mac_header += len;
2480                 skb->network_header += len;
2481                 if (trans_same)
2482                         skb->transport_header = skb->network_header;
2483         }
2484
2485         return ret;
2486 }
2487
2488 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
2489 {
2490         const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
2491         u32 off = skb_mac_header_len(skb);
2492         int ret;
2493
2494         /* SCTP uses GSO_BY_FRAGS, thus cannot adjust it. */
2495         if (skb_is_gso(skb) && unlikely(skb_is_gso_sctp(skb)))
2496                 return -ENOTSUPP;
2497
2498         ret = skb_cow(skb, len_diff);
2499         if (unlikely(ret < 0))
2500                 return ret;
2501
2502         ret = bpf_skb_net_hdr_push(skb, off, len_diff);
2503         if (unlikely(ret < 0))
2504                 return ret;
2505
2506         if (skb_is_gso(skb)) {
2507                 struct skb_shared_info *shinfo = skb_shinfo(skb);
2508
2509                 /* SKB_GSO_TCPV4 needs to be changed into
2510                  * SKB_GSO_TCPV6.
2511                  */
2512                 if (shinfo->gso_type & SKB_GSO_TCPV4) {
2513                         shinfo->gso_type &= ~SKB_GSO_TCPV4;
2514                         shinfo->gso_type |=  SKB_GSO_TCPV6;
2515                 }
2516
2517                 /* Due to IPv6 header, MSS needs to be downgraded. */
2518                 skb_decrease_gso_size(shinfo, len_diff);
2519                 /* Header must be checked, and gso_segs recomputed. */
2520                 shinfo->gso_type |= SKB_GSO_DODGY;
2521                 shinfo->gso_segs = 0;
2522         }
2523
2524         skb->protocol = htons(ETH_P_IPV6);
2525         skb_clear_hash(skb);
2526
2527         return 0;
2528 }
2529
2530 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
2531 {
2532         const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
2533         u32 off = skb_mac_header_len(skb);
2534         int ret;
2535
2536         /* SCTP uses GSO_BY_FRAGS, thus cannot adjust it. */
2537         if (skb_is_gso(skb) && unlikely(skb_is_gso_sctp(skb)))
2538                 return -ENOTSUPP;
2539
2540         ret = skb_unclone(skb, GFP_ATOMIC);
2541         if (unlikely(ret < 0))
2542                 return ret;
2543
2544         ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
2545         if (unlikely(ret < 0))
2546                 return ret;
2547
2548         if (skb_is_gso(skb)) {
2549                 struct skb_shared_info *shinfo = skb_shinfo(skb);
2550
2551                 /* SKB_GSO_TCPV6 needs to be changed into
2552                  * SKB_GSO_TCPV4.
2553                  */
2554                 if (shinfo->gso_type & SKB_GSO_TCPV6) {
2555                         shinfo->gso_type &= ~SKB_GSO_TCPV6;
2556                         shinfo->gso_type |=  SKB_GSO_TCPV4;
2557                 }
2558
2559                 /* Due to IPv4 header, MSS can be upgraded. */
2560                 skb_increase_gso_size(shinfo, len_diff);
2561                 /* Header must be checked, and gso_segs recomputed. */
2562                 shinfo->gso_type |= SKB_GSO_DODGY;
2563                 shinfo->gso_segs = 0;
2564         }
2565
2566         skb->protocol = htons(ETH_P_IP);
2567         skb_clear_hash(skb);
2568
2569         return 0;
2570 }
2571
2572 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
2573 {
2574         __be16 from_proto = skb->protocol;
2575
2576         if (from_proto == htons(ETH_P_IP) &&
2577               to_proto == htons(ETH_P_IPV6))
2578                 return bpf_skb_proto_4_to_6(skb);
2579
2580         if (from_proto == htons(ETH_P_IPV6) &&
2581               to_proto == htons(ETH_P_IP))
2582                 return bpf_skb_proto_6_to_4(skb);
2583
2584         return -ENOTSUPP;
2585 }
2586
2587 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
2588            u64, flags)
2589 {
2590         int ret;
2591
2592         if (unlikely(flags))
2593                 return -EINVAL;
2594
2595         /* General idea is that this helper does the basic groundwork
2596          * needed for changing the protocol, and eBPF program fills the
2597          * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
2598          * and other helpers, rather than passing a raw buffer here.
2599          *
2600          * The rationale is to keep this minimal and without a need to
2601          * deal with raw packet data. F.e. even if we would pass buffers
2602          * here, the program still needs to call the bpf_lX_csum_replace()
2603          * helpers anyway. Plus, this way we keep also separation of
2604          * concerns, since f.e. bpf_skb_store_bytes() should only take
2605          * care of stores.
2606          *
2607          * Currently, additional options and extension header space are
2608          * not supported, but flags register is reserved so we can adapt
2609          * that. For offloads, we mark packet as dodgy, so that headers
2610          * need to be verified first.
2611          */
2612         ret = bpf_skb_proto_xlat(skb, proto);
2613         bpf_compute_data_pointers(skb);
2614         return ret;
2615 }
2616
2617 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
2618         .func           = bpf_skb_change_proto,
2619         .gpl_only       = false,
2620         .ret_type       = RET_INTEGER,
2621         .arg1_type      = ARG_PTR_TO_CTX,
2622         .arg2_type      = ARG_ANYTHING,
2623         .arg3_type      = ARG_ANYTHING,
2624 };
2625
2626 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
2627 {
2628         /* We only allow a restricted subset to be changed for now. */
2629         if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
2630                      !skb_pkt_type_ok(pkt_type)))
2631                 return -EINVAL;
2632
2633         skb->pkt_type = pkt_type;
2634         return 0;
2635 }
2636
2637 static const struct bpf_func_proto bpf_skb_change_type_proto = {
2638         .func           = bpf_skb_change_type,
2639         .gpl_only       = false,
2640         .ret_type       = RET_INTEGER,
2641         .arg1_type      = ARG_PTR_TO_CTX,
2642         .arg2_type      = ARG_ANYTHING,
2643 };
2644
2645 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
2646 {
2647         switch (skb->protocol) {
2648         case htons(ETH_P_IP):
2649                 return sizeof(struct iphdr);
2650         case htons(ETH_P_IPV6):
2651                 return sizeof(struct ipv6hdr);
2652         default:
2653                 return ~0U;
2654         }
2655 }
2656
2657 static int bpf_skb_net_grow(struct sk_buff *skb, u32 len_diff)
2658 {
2659         u32 off = skb_mac_header_len(skb) + bpf_skb_net_base_len(skb);
2660         int ret;
2661
2662         /* SCTP uses GSO_BY_FRAGS, thus cannot adjust it. */
2663         if (skb_is_gso(skb) && unlikely(skb_is_gso_sctp(skb)))
2664                 return -ENOTSUPP;
2665
2666         ret = skb_cow(skb, len_diff);
2667         if (unlikely(ret < 0))
2668                 return ret;
2669
2670         ret = bpf_skb_net_hdr_push(skb, off, len_diff);
2671         if (unlikely(ret < 0))
2672                 return ret;
2673
2674         if (skb_is_gso(skb)) {
2675                 struct skb_shared_info *shinfo = skb_shinfo(skb);
2676
2677                 /* Due to header grow, MSS needs to be downgraded. */
2678                 skb_decrease_gso_size(shinfo, len_diff);
2679                 /* Header must be checked, and gso_segs recomputed. */
2680                 shinfo->gso_type |= SKB_GSO_DODGY;
2681                 shinfo->gso_segs = 0;
2682         }
2683
2684         return 0;
2685 }
2686
2687 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 len_diff)
2688 {
2689         u32 off = skb_mac_header_len(skb) + bpf_skb_net_base_len(skb);
2690         int ret;
2691
2692         /* SCTP uses GSO_BY_FRAGS, thus cannot adjust it. */
2693         if (skb_is_gso(skb) && unlikely(skb_is_gso_sctp(skb)))
2694                 return -ENOTSUPP;
2695
2696         ret = skb_unclone(skb, GFP_ATOMIC);
2697         if (unlikely(ret < 0))
2698                 return ret;
2699
2700         ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
2701         if (unlikely(ret < 0))
2702                 return ret;
2703
2704         if (skb_is_gso(skb)) {
2705                 struct skb_shared_info *shinfo = skb_shinfo(skb);
2706
2707                 /* Due to header shrink, MSS can be upgraded. */
2708                 skb_increase_gso_size(shinfo, len_diff);
2709                 /* Header must be checked, and gso_segs recomputed. */
2710                 shinfo->gso_type |= SKB_GSO_DODGY;
2711                 shinfo->gso_segs = 0;
2712         }
2713
2714         return 0;
2715 }
2716
2717 static u32 __bpf_skb_max_len(const struct sk_buff *skb)
2718 {
2719         return skb->dev->mtu + skb->dev->hard_header_len;
2720 }
2721
2722 static int bpf_skb_adjust_net(struct sk_buff *skb, s32 len_diff)
2723 {
2724         bool trans_same = skb->transport_header == skb->network_header;
2725         u32 len_cur, len_diff_abs = abs(len_diff);
2726         u32 len_min = bpf_skb_net_base_len(skb);
2727         u32 len_max = __bpf_skb_max_len(skb);
2728         __be16 proto = skb->protocol;
2729         bool shrink = len_diff < 0;
2730         int ret;
2731
2732         if (unlikely(len_diff_abs > 0xfffU))
2733                 return -EFAULT;
2734         if (unlikely(proto != htons(ETH_P_IP) &&
2735                      proto != htons(ETH_P_IPV6)))
2736                 return -ENOTSUPP;
2737
2738         len_cur = skb->len - skb_network_offset(skb);
2739         if (skb_transport_header_was_set(skb) && !trans_same)
2740                 len_cur = skb_network_header_len(skb);
2741         if ((shrink && (len_diff_abs >= len_cur ||
2742                         len_cur - len_diff_abs < len_min)) ||
2743             (!shrink && (skb->len + len_diff_abs > len_max &&
2744                          !skb_is_gso(skb))))
2745                 return -ENOTSUPP;
2746
2747         ret = shrink ? bpf_skb_net_shrink(skb, len_diff_abs) :
2748                        bpf_skb_net_grow(skb, len_diff_abs);
2749
2750         bpf_compute_data_pointers(skb);
2751         return ret;
2752 }
2753
2754 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
2755            u32, mode, u64, flags)
2756 {
2757         if (unlikely(flags))
2758                 return -EINVAL;
2759         if (likely(mode == BPF_ADJ_ROOM_NET))
2760                 return bpf_skb_adjust_net(skb, len_diff);
2761
2762         return -ENOTSUPP;
2763 }
2764
2765 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
2766         .func           = bpf_skb_adjust_room,
2767         .gpl_only       = false,
2768         .ret_type       = RET_INTEGER,
2769         .arg1_type      = ARG_PTR_TO_CTX,
2770         .arg2_type      = ARG_ANYTHING,
2771         .arg3_type      = ARG_ANYTHING,
2772         .arg4_type      = ARG_ANYTHING,
2773 };
2774
2775 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
2776 {
2777         u32 min_len = skb_network_offset(skb);
2778
2779         if (skb_transport_header_was_set(skb))
2780                 min_len = skb_transport_offset(skb);
2781         if (skb->ip_summed == CHECKSUM_PARTIAL)
2782                 min_len = skb_checksum_start_offset(skb) +
2783                           skb->csum_offset + sizeof(__sum16);
2784         return min_len;
2785 }
2786
2787 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
2788 {
2789         unsigned int old_len = skb->len;
2790         int ret;
2791
2792         ret = __skb_grow_rcsum(skb, new_len);
2793         if (!ret)
2794                 memset(skb->data + old_len, 0, new_len - old_len);
2795         return ret;
2796 }
2797
2798 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
2799 {
2800         return __skb_trim_rcsum(skb, new_len);
2801 }
2802
2803 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
2804            u64, flags)
2805 {
2806         u32 max_len = __bpf_skb_max_len(skb);
2807         u32 min_len = __bpf_skb_min_len(skb);
2808         int ret;
2809
2810         if (unlikely(flags || new_len > max_len || new_len < min_len))
2811                 return -EINVAL;
2812         if (skb->encapsulation)
2813                 return -ENOTSUPP;
2814
2815         /* The basic idea of this helper is that it's performing the
2816          * needed work to either grow or trim an skb, and eBPF program
2817          * rewrites the rest via helpers like bpf_skb_store_bytes(),
2818          * bpf_lX_csum_replace() and others rather than passing a raw
2819          * buffer here. This one is a slow path helper and intended
2820          * for replies with control messages.
2821          *
2822          * Like in bpf_skb_change_proto(), we want to keep this rather
2823          * minimal and without protocol specifics so that we are able
2824          * to separate concerns as in bpf_skb_store_bytes() should only
2825          * be the one responsible for writing buffers.
2826          *
2827          * It's really expected to be a slow path operation here for
2828          * control message replies, so we're implicitly linearizing,
2829          * uncloning and drop offloads from the skb by this.
2830          */
2831         ret = __bpf_try_make_writable(skb, skb->len);
2832         if (!ret) {
2833                 if (new_len > skb->len)
2834                         ret = bpf_skb_grow_rcsum(skb, new_len);
2835                 else if (new_len < skb->len)
2836                         ret = bpf_skb_trim_rcsum(skb, new_len);
2837                 if (!ret && skb_is_gso(skb))
2838                         skb_gso_reset(skb);
2839         }
2840
2841         bpf_compute_data_pointers(skb);
2842         return ret;
2843 }
2844
2845 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
2846         .func           = bpf_skb_change_tail,
2847         .gpl_only       = false,
2848         .ret_type       = RET_INTEGER,
2849         .arg1_type      = ARG_PTR_TO_CTX,
2850         .arg2_type      = ARG_ANYTHING,
2851         .arg3_type      = ARG_ANYTHING,
2852 };
2853
2854 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
2855            u64, flags)
2856 {
2857         u32 max_len = __bpf_skb_max_len(skb);
2858         u32 new_len = skb->len + head_room;
2859         int ret;
2860
2861         if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
2862                      new_len < skb->len))
2863                 return -EINVAL;
2864
2865         ret = skb_cow(skb, head_room);
2866         if (likely(!ret)) {
2867                 /* Idea for this helper is that we currently only
2868                  * allow to expand on mac header. This means that
2869                  * skb->protocol network header, etc, stay as is.
2870                  * Compared to bpf_skb_change_tail(), we're more
2871                  * flexible due to not needing to linearize or
2872                  * reset GSO. Intention for this helper is to be
2873                  * used by an L3 skb that needs to push mac header
2874                  * for redirection into L2 device.
2875                  */
2876                 __skb_push(skb, head_room);
2877                 memset(skb->data, 0, head_room);
2878                 skb_reset_mac_header(skb);
2879         }
2880
2881         bpf_compute_data_pointers(skb);
2882         return 0;
2883 }
2884
2885 static const struct bpf_func_proto bpf_skb_change_head_proto = {
2886         .func           = bpf_skb_change_head,
2887         .gpl_only       = false,
2888         .ret_type       = RET_INTEGER,
2889         .arg1_type      = ARG_PTR_TO_CTX,
2890         .arg2_type      = ARG_ANYTHING,
2891         .arg3_type      = ARG_ANYTHING,
2892 };
2893
2894 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
2895 {
2896         return xdp_data_meta_unsupported(xdp) ? 0 :
2897                xdp->data - xdp->data_meta;
2898 }
2899
2900 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
2901 {
2902         void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
2903         unsigned long metalen = xdp_get_metalen(xdp);
2904         void *data_start = xdp_frame_end + metalen;
2905         void *data = xdp->data + offset;
2906
2907         if (unlikely(data < data_start ||
2908                      data > xdp->data_end - ETH_HLEN))
2909                 return -EINVAL;
2910
2911         if (metalen)
2912                 memmove(xdp->data_meta + offset,
2913                         xdp->data_meta, metalen);
2914         xdp->data_meta += offset;
2915         xdp->data = data;
2916
2917         return 0;
2918 }
2919
2920 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
2921         .func           = bpf_xdp_adjust_head,
2922         .gpl_only       = false,
2923         .ret_type       = RET_INTEGER,
2924         .arg1_type      = ARG_PTR_TO_CTX,
2925         .arg2_type      = ARG_ANYTHING,
2926 };
2927
2928 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
2929 {
2930         void *data_end = xdp->data_end + offset;
2931
2932         /* only shrinking is allowed for now. */
2933         if (unlikely(offset >= 0))
2934                 return -EINVAL;
2935
2936         if (unlikely(data_end < xdp->data + ETH_HLEN))
2937                 return -EINVAL;
2938
2939         xdp->data_end = data_end;
2940
2941         return 0;
2942 }
2943
2944 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
2945         .func           = bpf_xdp_adjust_tail,
2946         .gpl_only       = false,
2947         .ret_type       = RET_INTEGER,
2948         .arg1_type      = ARG_PTR_TO_CTX,
2949         .arg2_type      = ARG_ANYTHING,
2950 };
2951
2952 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
2953 {
2954         void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
2955         void *meta = xdp->data_meta + offset;
2956         unsigned long metalen = xdp->data - meta;
2957
2958         if (xdp_data_meta_unsupported(xdp))
2959                 return -ENOTSUPP;
2960         if (unlikely(meta < xdp_frame_end ||
2961                      meta > xdp->data))
2962                 return -EINVAL;
2963         if (unlikely((metalen & (sizeof(__u32) - 1)) ||
2964                      (metalen > 32)))
2965                 return -EACCES;
2966
2967         xdp->data_meta = meta;
2968
2969         return 0;
2970 }
2971
2972 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
2973         .func           = bpf_xdp_adjust_meta,
2974         .gpl_only       = false,
2975         .ret_type       = RET_INTEGER,
2976         .arg1_type      = ARG_PTR_TO_CTX,
2977         .arg2_type      = ARG_ANYTHING,
2978 };
2979
2980 static int __bpf_tx_xdp(struct net_device *dev,
2981                         struct bpf_map *map,
2982                         struct xdp_buff *xdp,
2983                         u32 index)
2984 {
2985         struct xdp_frame *xdpf;
2986         int err;
2987
2988         if (!dev->netdev_ops->ndo_xdp_xmit) {
2989                 return -EOPNOTSUPP;
2990         }
2991
2992         xdpf = convert_to_xdp_frame(xdp);
2993         if (unlikely(!xdpf))
2994                 return -EOVERFLOW;
2995
2996         err = dev->netdev_ops->ndo_xdp_xmit(dev, xdpf);
2997         if (err)
2998                 return err;
2999         dev->netdev_ops->ndo_xdp_flush(dev);
3000         return 0;
3001 }
3002
3003 static int __bpf_tx_xdp_map(struct net_device *dev_rx, void *fwd,
3004                             struct bpf_map *map,
3005                             struct xdp_buff *xdp,
3006                             u32 index)
3007 {
3008         int err;
3009
3010         switch (map->map_type) {
3011         case BPF_MAP_TYPE_DEVMAP: {
3012                 struct net_device *dev = fwd;
3013                 struct xdp_frame *xdpf;
3014
3015                 if (!dev->netdev_ops->ndo_xdp_xmit)
3016                         return -EOPNOTSUPP;
3017
3018                 xdpf = convert_to_xdp_frame(xdp);
3019                 if (unlikely(!xdpf))
3020                         return -EOVERFLOW;
3021
3022                 /* TODO: move to inside map code instead, for bulk support
3023                  * err = dev_map_enqueue(dev, xdp);
3024                  */
3025                 err = dev->netdev_ops->ndo_xdp_xmit(dev, xdpf);
3026                 if (err)
3027                         return err;
3028                 __dev_map_insert_ctx(map, index);
3029                 break;
3030         }
3031         case BPF_MAP_TYPE_CPUMAP: {
3032                 struct bpf_cpu_map_entry *rcpu = fwd;
3033
3034                 err = cpu_map_enqueue(rcpu, xdp, dev_rx);
3035                 if (err)
3036                         return err;
3037                 __cpu_map_insert_ctx(map, index);
3038                 break;
3039         }
3040         case BPF_MAP_TYPE_XSKMAP: {
3041                 struct xdp_sock *xs = fwd;
3042
3043                 err = __xsk_map_redirect(map, xdp, xs);
3044                 return err;
3045         }
3046         default:
3047                 break;
3048         }
3049         return 0;
3050 }
3051
3052 void xdp_do_flush_map(void)
3053 {
3054         struct redirect_info *ri = this_cpu_ptr(&redirect_info);
3055         struct bpf_map *map = ri->map_to_flush;
3056
3057         ri->map_to_flush = NULL;
3058         if (map) {
3059                 switch (map->map_type) {
3060                 case BPF_MAP_TYPE_DEVMAP:
3061                         __dev_map_flush(map);
3062                         break;
3063                 case BPF_MAP_TYPE_CPUMAP:
3064                         __cpu_map_flush(map);
3065                         break;
3066                 case BPF_MAP_TYPE_XSKMAP:
3067                         __xsk_map_flush(map);
3068                         break;
3069                 default:
3070                         break;
3071                 }
3072         }
3073 }
3074 EXPORT_SYMBOL_GPL(xdp_do_flush_map);
3075
3076 static void *__xdp_map_lookup_elem(struct bpf_map *map, u32 index)
3077 {
3078         switch (map->map_type) {
3079         case BPF_MAP_TYPE_DEVMAP:
3080                 return __dev_map_lookup_elem(map, index);
3081         case BPF_MAP_TYPE_CPUMAP:
3082                 return __cpu_map_lookup_elem(map, index);
3083         case BPF_MAP_TYPE_XSKMAP:
3084                 return __xsk_map_lookup_elem(map, index);
3085         default:
3086                 return NULL;
3087         }
3088 }
3089
3090 static inline bool xdp_map_invalid(const struct bpf_prog *xdp_prog,
3091                                    unsigned long aux)
3092 {
3093         return (unsigned long)xdp_prog->aux != aux;
3094 }
3095
3096 static int xdp_do_redirect_map(struct net_device *dev, struct xdp_buff *xdp,
3097                                struct bpf_prog *xdp_prog)
3098 {
3099         struct redirect_info *ri = this_cpu_ptr(&redirect_info);
3100         unsigned long map_owner = ri->map_owner;
3101         struct bpf_map *map = ri->map;
3102         u32 index = ri->ifindex;
3103         void *fwd = NULL;
3104         int err;
3105
3106         ri->ifindex = 0;
3107         ri->map = NULL;
3108         ri->map_owner = 0;
3109
3110         if (unlikely(xdp_map_invalid(xdp_prog, map_owner))) {
3111                 err = -EFAULT;
3112                 map = NULL;
3113                 goto err;
3114         }
3115
3116         fwd = __xdp_map_lookup_elem(map, index);
3117         if (!fwd) {
3118                 err = -EINVAL;
3119                 goto err;
3120         }
3121         if (ri->map_to_flush && ri->map_to_flush != map)
3122                 xdp_do_flush_map();
3123
3124         err = __bpf_tx_xdp_map(dev, fwd, map, xdp, index);
3125         if (unlikely(err))
3126                 goto err;
3127
3128         ri->map_to_flush = map;
3129         _trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
3130         return 0;
3131 err:
3132         _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
3133         return err;
3134 }
3135
3136 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
3137                     struct bpf_prog *xdp_prog)
3138 {
3139         struct redirect_info *ri = this_cpu_ptr(&redirect_info);
3140         struct net_device *fwd;
3141         u32 index = ri->ifindex;
3142         int err;
3143
3144         if (ri->map)
3145                 return xdp_do_redirect_map(dev, xdp, xdp_prog);
3146
3147         fwd = dev_get_by_index_rcu(dev_net(dev), index);
3148         ri->ifindex = 0;
3149         if (unlikely(!fwd)) {
3150                 err = -EINVAL;
3151                 goto err;
3152         }
3153
3154         err = __bpf_tx_xdp(fwd, NULL, xdp, 0);
3155         if (unlikely(err))
3156                 goto err;
3157
3158         _trace_xdp_redirect(dev, xdp_prog, index);
3159         return 0;
3160 err:
3161         _trace_xdp_redirect_err(dev, xdp_prog, index, err);
3162         return err;
3163 }
3164 EXPORT_SYMBOL_GPL(xdp_do_redirect);
3165
3166 static int __xdp_generic_ok_fwd_dev(struct sk_buff *skb, struct net_device *fwd)
3167 {
3168         unsigned int len;
3169
3170         if (unlikely(!(fwd->flags & IFF_UP)))
3171                 return -ENETDOWN;
3172
3173         len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN;
3174         if (skb->len > len)
3175                 return -EMSGSIZE;
3176
3177         return 0;
3178 }
3179
3180 static int xdp_do_generic_redirect_map(struct net_device *dev,
3181                                        struct sk_buff *skb,
3182                                        struct xdp_buff *xdp,
3183                                        struct bpf_prog *xdp_prog)
3184 {
3185         struct redirect_info *ri = this_cpu_ptr(&redirect_info);
3186         unsigned long map_owner = ri->map_owner;
3187         struct bpf_map *map = ri->map;
3188         u32 index = ri->ifindex;
3189         void *fwd = NULL;
3190         int err = 0;
3191
3192         ri->ifindex = 0;
3193         ri->map = NULL;
3194         ri->map_owner = 0;
3195
3196         if (unlikely(xdp_map_invalid(xdp_prog, map_owner))) {
3197                 err = -EFAULT;
3198                 map = NULL;
3199                 goto err;
3200         }
3201         fwd = __xdp_map_lookup_elem(map, index);
3202         if (unlikely(!fwd)) {
3203                 err = -EINVAL;
3204                 goto err;
3205         }
3206
3207         if (map->map_type == BPF_MAP_TYPE_DEVMAP) {
3208                 if (unlikely((err = __xdp_generic_ok_fwd_dev(skb, fwd))))
3209                         goto err;
3210                 skb->dev = fwd;
3211                 generic_xdp_tx(skb, xdp_prog);
3212         } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
3213                 struct xdp_sock *xs = fwd;
3214
3215                 err = xsk_generic_rcv(xs, xdp);
3216                 if (err)
3217                         goto err;
3218                 consume_skb(skb);
3219         } else {
3220                 /* TODO: Handle BPF_MAP_TYPE_CPUMAP */
3221                 err = -EBADRQC;
3222                 goto err;
3223         }
3224
3225         _trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
3226         return 0;
3227 err:
3228         _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
3229         return err;
3230 }
3231
3232 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
3233                             struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
3234 {
3235         struct redirect_info *ri = this_cpu_ptr(&redirect_info);
3236         u32 index = ri->ifindex;
3237         struct net_device *fwd;
3238         int err = 0;
3239
3240         if (ri->map)
3241                 return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog);
3242
3243         ri->ifindex = 0;
3244         fwd = dev_get_by_index_rcu(dev_net(dev), index);
3245         if (unlikely(!fwd)) {
3246                 err = -EINVAL;
3247                 goto err;
3248         }
3249
3250         if (unlikely((err = __xdp_generic_ok_fwd_dev(skb, fwd))))
3251                 goto err;
3252
3253         skb->dev = fwd;
3254         _trace_xdp_redirect(dev, xdp_prog, index);
3255         generic_xdp_tx(skb, xdp_prog);
3256         return 0;
3257 err:
3258         _trace_xdp_redirect_err(dev, xdp_prog, index, err);
3259         return err;
3260 }
3261 EXPORT_SYMBOL_GPL(xdp_do_generic_redirect);
3262
3263 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
3264 {
3265         struct redirect_info *ri = this_cpu_ptr(&redirect_info);
3266
3267         if (unlikely(flags))
3268                 return XDP_ABORTED;
3269
3270         ri->ifindex = ifindex;
3271         ri->flags = flags;
3272         ri->map = NULL;
3273         ri->map_owner = 0;
3274
3275         return XDP_REDIRECT;
3276 }
3277
3278 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
3279         .func           = bpf_xdp_redirect,
3280         .gpl_only       = false,
3281         .ret_type       = RET_INTEGER,
3282         .arg1_type      = ARG_ANYTHING,
3283         .arg2_type      = ARG_ANYTHING,
3284 };
3285
3286 BPF_CALL_4(bpf_xdp_redirect_map, struct bpf_map *, map, u32, ifindex, u64, flags,
3287            unsigned long, map_owner)
3288 {
3289         struct redirect_info *ri = this_cpu_ptr(&redirect_info);
3290
3291         if (unlikely(flags))
3292                 return XDP_ABORTED;
3293
3294         ri->ifindex = ifindex;
3295         ri->flags = flags;
3296         ri->map = map;
3297         ri->map_owner = map_owner;
3298
3299         return XDP_REDIRECT;
3300 }
3301
3302 /* Note, arg4 is hidden from users and populated by the verifier
3303  * with the right pointer.
3304  */
3305 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
3306         .func           = bpf_xdp_redirect_map,
3307         .gpl_only       = false,
3308         .ret_type       = RET_INTEGER,
3309         .arg1_type      = ARG_CONST_MAP_PTR,
3310         .arg2_type      = ARG_ANYTHING,
3311         .arg3_type      = ARG_ANYTHING,
3312 };
3313
3314 bool bpf_helper_changes_pkt_data(void *func)
3315 {
3316         if (func == bpf_skb_vlan_push ||
3317             func == bpf_skb_vlan_pop ||
3318             func == bpf_skb_store_bytes ||
3319             func == bpf_skb_change_proto ||
3320             func == bpf_skb_change_head ||
3321             func == bpf_skb_change_tail ||
3322             func == bpf_skb_adjust_room ||
3323             func == bpf_skb_pull_data ||
3324             func == bpf_clone_redirect ||
3325             func == bpf_l3_csum_replace ||
3326             func == bpf_l4_csum_replace ||
3327             func == bpf_xdp_adjust_head ||
3328             func == bpf_xdp_adjust_meta ||
3329             func == bpf_msg_pull_data ||
3330             func == bpf_xdp_adjust_tail)
3331                 return true;
3332
3333         return false;
3334 }
3335
3336 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
3337                                   unsigned long off, unsigned long len)
3338 {
3339         void *ptr = skb_header_pointer(skb, off, len, dst_buff);
3340
3341         if (unlikely(!ptr))
3342                 return len;
3343         if (ptr != dst_buff)
3344                 memcpy(dst_buff, ptr, len);
3345
3346         return 0;
3347 }
3348
3349 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
3350            u64, flags, void *, meta, u64, meta_size)
3351 {
3352         u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
3353
3354         if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
3355                 return -EINVAL;
3356         if (unlikely(skb_size > skb->len))
3357                 return -EFAULT;
3358
3359         return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
3360                                 bpf_skb_copy);
3361 }
3362
3363 static const struct bpf_func_proto bpf_skb_event_output_proto = {
3364         .func           = bpf_skb_event_output,
3365         .gpl_only       = true,
3366         .ret_type       = RET_INTEGER,
3367         .arg1_type      = ARG_PTR_TO_CTX,
3368         .arg2_type      = ARG_CONST_MAP_PTR,
3369         .arg3_type      = ARG_ANYTHING,
3370         .arg4_type      = ARG_PTR_TO_MEM,
3371         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
3372 };
3373
3374 static unsigned short bpf_tunnel_key_af(u64 flags)
3375 {
3376         return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
3377 }
3378
3379 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
3380            u32, size, u64, flags)
3381 {
3382         const struct ip_tunnel_info *info = skb_tunnel_info(skb);
3383         u8 compat[sizeof(struct bpf_tunnel_key)];
3384         void *to_orig = to;
3385         int err;
3386
3387         if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6)))) {
3388                 err = -EINVAL;
3389                 goto err_clear;
3390         }
3391         if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
3392                 err = -EPROTO;
3393                 goto err_clear;
3394         }
3395         if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
3396                 err = -EINVAL;
3397                 switch (size) {
3398                 case offsetof(struct bpf_tunnel_key, tunnel_label):
3399                 case offsetof(struct bpf_tunnel_key, tunnel_ext):
3400                         goto set_compat;
3401                 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
3402                         /* Fixup deprecated structure layouts here, so we have
3403                          * a common path later on.
3404                          */
3405                         if (ip_tunnel_info_af(info) != AF_INET)
3406                                 goto err_clear;
3407 set_compat:
3408                         to = (struct bpf_tunnel_key *)compat;
3409                         break;
3410                 default:
3411                         goto err_clear;
3412                 }
3413         }
3414
3415         to->tunnel_id = be64_to_cpu(info->key.tun_id);
3416         to->tunnel_tos = info->key.tos;
3417         to->tunnel_ttl = info->key.ttl;
3418
3419         if (flags & BPF_F_TUNINFO_IPV6) {
3420                 memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
3421                        sizeof(to->remote_ipv6));
3422                 to->tunnel_label = be32_to_cpu(info->key.label);
3423         } else {
3424                 to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
3425         }
3426
3427         if (unlikely(size != sizeof(struct bpf_tunnel_key)))
3428                 memcpy(to_orig, to, size);
3429
3430         return 0;
3431 err_clear:
3432         memset(to_orig, 0, size);
3433         return err;
3434 }
3435
3436 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
3437         .func           = bpf_skb_get_tunnel_key,
3438         .gpl_only       = false,
3439         .ret_type       = RET_INTEGER,
3440         .arg1_type      = ARG_PTR_TO_CTX,
3441         .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
3442         .arg3_type      = ARG_CONST_SIZE,
3443         .arg4_type      = ARG_ANYTHING,
3444 };
3445
3446 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
3447 {
3448         const struct ip_tunnel_info *info = skb_tunnel_info(skb);
3449         int err;
3450
3451         if (unlikely(!info ||
3452                      !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
3453                 err = -ENOENT;
3454                 goto err_clear;
3455         }
3456         if (unlikely(size < info->options_len)) {
3457                 err = -ENOMEM;
3458                 goto err_clear;
3459         }
3460
3461         ip_tunnel_info_opts_get(to, info);
3462         if (size > info->options_len)
3463                 memset(to + info->options_len, 0, size - info->options_len);
3464
3465         return info->options_len;
3466 err_clear:
3467         memset(to, 0, size);
3468         return err;
3469 }
3470
3471 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
3472         .func           = bpf_skb_get_tunnel_opt,
3473         .gpl_only       = false,
3474         .ret_type       = RET_INTEGER,
3475         .arg1_type      = ARG_PTR_TO_CTX,
3476         .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
3477         .arg3_type      = ARG_CONST_SIZE,
3478 };
3479
3480 static struct metadata_dst __percpu *md_dst;
3481
3482 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
3483            const struct bpf_tunnel_key *, from, u32, size, u64, flags)
3484 {
3485         struct metadata_dst *md = this_cpu_ptr(md_dst);
3486         u8 compat[sizeof(struct bpf_tunnel_key)];
3487         struct ip_tunnel_info *info;
3488
3489         if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
3490                                BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER)))
3491                 return -EINVAL;
3492         if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
3493                 switch (size) {
3494                 case offsetof(struct bpf_tunnel_key, tunnel_label):
3495                 case offsetof(struct bpf_tunnel_key, tunnel_ext):
3496                 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
3497                         /* Fixup deprecated structure layouts here, so we have
3498                          * a common path later on.
3499                          */
3500                         memcpy(compat, from, size);
3501                         memset(compat + size, 0, sizeof(compat) - size);
3502                         from = (const struct bpf_tunnel_key *) compat;
3503                         break;
3504                 default:
3505                         return -EINVAL;
3506                 }
3507         }
3508         if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
3509                      from->tunnel_ext))
3510                 return -EINVAL;
3511
3512         skb_dst_drop(skb);
3513         dst_hold((struct dst_entry *) md);
3514         skb_dst_set(skb, (struct dst_entry *) md);
3515
3516         info = &md->u.tun_info;
3517         memset(info, 0, sizeof(*info));
3518         info->mode = IP_TUNNEL_INFO_TX;
3519
3520         info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
3521         if (flags & BPF_F_DONT_FRAGMENT)
3522                 info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
3523         if (flags & BPF_F_ZERO_CSUM_TX)
3524                 info->key.tun_flags &= ~TUNNEL_CSUM;
3525         if (flags & BPF_F_SEQ_NUMBER)
3526                 info->key.tun_flags |= TUNNEL_SEQ;
3527
3528         info->key.tun_id = cpu_to_be64(from->tunnel_id);
3529         info->key.tos = from->tunnel_tos;
3530         info->key.ttl = from->tunnel_ttl;
3531
3532         if (flags & BPF_F_TUNINFO_IPV6) {
3533                 info->mode |= IP_TUNNEL_INFO_IPV6;
3534                 memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
3535                        sizeof(from->remote_ipv6));
3536                 info->key.label = cpu_to_be32(from->tunnel_label) &
3537                                   IPV6_FLOWLABEL_MASK;
3538         } else {
3539                 info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
3540         }
3541
3542         return 0;
3543 }
3544
3545 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
3546         .func           = bpf_skb_set_tunnel_key,
3547         .gpl_only       = false,
3548         .ret_type       = RET_INTEGER,
3549         .arg1_type      = ARG_PTR_TO_CTX,
3550         .arg2_type      = ARG_PTR_TO_MEM,
3551         .arg3_type      = ARG_CONST_SIZE,
3552         .arg4_type      = ARG_ANYTHING,
3553 };
3554
3555 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
3556            const u8 *, from, u32, size)
3557 {
3558         struct ip_tunnel_info *info = skb_tunnel_info(skb);
3559         const struct metadata_dst *md = this_cpu_ptr(md_dst);
3560
3561         if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
3562                 return -EINVAL;
3563         if (unlikely(size > IP_TUNNEL_OPTS_MAX))
3564                 return -ENOMEM;
3565
3566         ip_tunnel_info_opts_set(info, from, size);
3567
3568         return 0;
3569 }
3570
3571 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
3572         .func           = bpf_skb_set_tunnel_opt,
3573         .gpl_only       = false,
3574         .ret_type       = RET_INTEGER,
3575         .arg1_type      = ARG_PTR_TO_CTX,
3576         .arg2_type      = ARG_PTR_TO_MEM,
3577         .arg3_type      = ARG_CONST_SIZE,
3578 };
3579
3580 static const struct bpf_func_proto *
3581 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
3582 {
3583         if (!md_dst) {
3584                 struct metadata_dst __percpu *tmp;
3585
3586                 tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
3587                                                 METADATA_IP_TUNNEL,
3588                                                 GFP_KERNEL);
3589                 if (!tmp)
3590                         return NULL;
3591                 if (cmpxchg(&md_dst, NULL, tmp))
3592                         metadata_dst_free_percpu(tmp);
3593         }
3594
3595         switch (which) {
3596         case BPF_FUNC_skb_set_tunnel_key:
3597                 return &bpf_skb_set_tunnel_key_proto;
3598         case BPF_FUNC_skb_set_tunnel_opt:
3599                 return &bpf_skb_set_tunnel_opt_proto;
3600         default:
3601                 return NULL;
3602         }
3603 }
3604
3605 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
3606            u32, idx)
3607 {
3608         struct bpf_array *array = container_of(map, struct bpf_array, map);
3609         struct cgroup *cgrp;
3610         struct sock *sk;
3611
3612         sk = skb_to_full_sk(skb);
3613         if (!sk || !sk_fullsock(sk))
3614                 return -ENOENT;
3615         if (unlikely(idx >= array->map.max_entries))
3616                 return -E2BIG;
3617
3618         cgrp = READ_ONCE(array->ptrs[idx]);
3619         if (unlikely(!cgrp))
3620                 return -EAGAIN;
3621
3622         return sk_under_cgroup_hierarchy(sk, cgrp);
3623 }
3624
3625 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
3626         .func           = bpf_skb_under_cgroup,
3627         .gpl_only       = false,
3628         .ret_type       = RET_INTEGER,
3629         .arg1_type      = ARG_PTR_TO_CTX,
3630         .arg2_type      = ARG_CONST_MAP_PTR,
3631         .arg3_type      = ARG_ANYTHING,
3632 };
3633
3634 static unsigned long bpf_xdp_copy(void *dst_buff, const void *src_buff,
3635                                   unsigned long off, unsigned long len)
3636 {
3637         memcpy(dst_buff, src_buff + off, len);
3638         return 0;
3639 }
3640
3641 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
3642            u64, flags, void *, meta, u64, meta_size)
3643 {
3644         u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
3645
3646         if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
3647                 return -EINVAL;
3648         if (unlikely(xdp_size > (unsigned long)(xdp->data_end - xdp->data)))
3649                 return -EFAULT;
3650
3651         return bpf_event_output(map, flags, meta, meta_size, xdp->data,
3652                                 xdp_size, bpf_xdp_copy);
3653 }
3654
3655 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
3656         .func           = bpf_xdp_event_output,
3657         .gpl_only       = true,
3658         .ret_type       = RET_INTEGER,
3659         .arg1_type      = ARG_PTR_TO_CTX,
3660         .arg2_type      = ARG_CONST_MAP_PTR,
3661         .arg3_type      = ARG_ANYTHING,
3662         .arg4_type      = ARG_PTR_TO_MEM,
3663         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
3664 };
3665
3666 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
3667 {
3668         return skb->sk ? sock_gen_cookie(skb->sk) : 0;
3669 }
3670
3671 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
3672         .func           = bpf_get_socket_cookie,
3673         .gpl_only       = false,
3674         .ret_type       = RET_INTEGER,
3675         .arg1_type      = ARG_PTR_TO_CTX,
3676 };
3677
3678 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
3679 {
3680         struct sock *sk = sk_to_full_sk(skb->sk);
3681         kuid_t kuid;
3682
3683         if (!sk || !sk_fullsock(sk))
3684                 return overflowuid;
3685         kuid = sock_net_uid(sock_net(sk), sk);
3686         return from_kuid_munged(sock_net(sk)->user_ns, kuid);
3687 }
3688
3689 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
3690         .func           = bpf_get_socket_uid,
3691         .gpl_only       = false,
3692         .ret_type       = RET_INTEGER,
3693         .arg1_type      = ARG_PTR_TO_CTX,
3694 };
3695
3696 BPF_CALL_5(bpf_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
3697            int, level, int, optname, char *, optval, int, optlen)
3698 {
3699         struct sock *sk = bpf_sock->sk;
3700         int ret = 0;
3701         int val;
3702
3703         if (!sk_fullsock(sk))
3704                 return -EINVAL;
3705
3706         if (level == SOL_SOCKET) {
3707                 if (optlen != sizeof(int))
3708                         return -EINVAL;
3709                 val = *((int *)optval);
3710
3711                 /* Only some socketops are supported */
3712                 switch (optname) {
3713                 case SO_RCVBUF:
3714                         sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
3715                         sk->sk_rcvbuf = max_t(int, val * 2, SOCK_MIN_RCVBUF);
3716                         break;
3717                 case SO_SNDBUF:
3718                         sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
3719                         sk->sk_sndbuf = max_t(int, val * 2, SOCK_MIN_SNDBUF);
3720                         break;
3721                 case SO_MAX_PACING_RATE:
3722                         sk->sk_max_pacing_rate = val;
3723                         sk->sk_pacing_rate = min(sk->sk_pacing_rate,
3724                                                  sk->sk_max_pacing_rate);
3725                         break;
3726                 case SO_PRIORITY:
3727                         sk->sk_priority = val;
3728                         break;
3729                 case SO_RCVLOWAT:
3730                         if (val < 0)
3731                                 val = INT_MAX;
3732                         sk->sk_rcvlowat = val ? : 1;
3733                         break;
3734                 case SO_MARK:
3735                         sk->sk_mark = val;
3736                         break;
3737                 default:
3738                         ret = -EINVAL;
3739                 }
3740 #ifdef CONFIG_INET
3741         } else if (level == SOL_IP) {
3742                 if (optlen != sizeof(int) || sk->sk_family != AF_INET)
3743                         return -EINVAL;
3744
3745                 val = *((int *)optval);
3746                 /* Only some options are supported */
3747                 switch (optname) {
3748                 case IP_TOS:
3749                         if (val < -1 || val > 0xff) {
3750                                 ret = -EINVAL;
3751                         } else {
3752                                 struct inet_sock *inet = inet_sk(sk);
3753
3754                                 if (val == -1)
3755                                         val = 0;
3756                                 inet->tos = val;
3757                         }
3758                         break;
3759                 default:
3760                         ret = -EINVAL;
3761                 }
3762 #if IS_ENABLED(CONFIG_IPV6)
3763         } else if (level == SOL_IPV6) {
3764                 if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
3765                         return -EINVAL;
3766
3767                 val = *((int *)optval);
3768                 /* Only some options are supported */
3769                 switch (optname) {
3770                 case IPV6_TCLASS:
3771                         if (val < -1 || val > 0xff) {
3772                                 ret = -EINVAL;
3773                         } else {
3774                                 struct ipv6_pinfo *np = inet6_sk(sk);
3775
3776                                 if (val == -1)
3777                                         val = 0;
3778                                 np->tclass = val;
3779                         }
3780                         break;
3781                 default:
3782                         ret = -EINVAL;
3783                 }
3784 #endif
3785         } else if (level == SOL_TCP &&
3786                    sk->sk_prot->setsockopt == tcp_setsockopt) {
3787                 if (optname == TCP_CONGESTION) {
3788                         char name[TCP_CA_NAME_MAX];
3789                         bool reinit = bpf_sock->op > BPF_SOCK_OPS_NEEDS_ECN;
3790
3791                         strncpy(name, optval, min_t(long, optlen,
3792                                                     TCP_CA_NAME_MAX-1));
3793                         name[TCP_CA_NAME_MAX-1] = 0;
3794                         ret = tcp_set_congestion_control(sk, name, false,
3795                                                          reinit);
3796                 } else {
3797                         struct tcp_sock *tp = tcp_sk(sk);
3798
3799                         if (optlen != sizeof(int))
3800                                 return -EINVAL;
3801
3802                         val = *((int *)optval);
3803                         /* Only some options are supported */
3804                         switch (optname) {
3805                         case TCP_BPF_IW:
3806                                 if (val <= 0 || tp->data_segs_out > 0)
3807                                         ret = -EINVAL;
3808                                 else
3809                                         tp->snd_cwnd = val;
3810                                 break;
3811                         case TCP_BPF_SNDCWND_CLAMP:
3812                                 if (val <= 0) {
3813                                         ret = -EINVAL;
3814                                 } else {
3815                                         tp->snd_cwnd_clamp = val;
3816                                         tp->snd_ssthresh = val;
3817                                 }
3818                                 break;
3819                         default:
3820                                 ret = -EINVAL;
3821                         }
3822                 }
3823 #endif
3824         } else {
3825                 ret = -EINVAL;
3826         }
3827         return ret;
3828 }
3829
3830 static const struct bpf_func_proto bpf_setsockopt_proto = {
3831         .func           = bpf_setsockopt,
3832         .gpl_only       = false,
3833         .ret_type       = RET_INTEGER,
3834         .arg1_type      = ARG_PTR_TO_CTX,
3835         .arg2_type      = ARG_ANYTHING,
3836         .arg3_type      = ARG_ANYTHING,
3837         .arg4_type      = ARG_PTR_TO_MEM,
3838         .arg5_type      = ARG_CONST_SIZE,
3839 };
3840
3841 BPF_CALL_5(bpf_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
3842            int, level, int, optname, char *, optval, int, optlen)
3843 {
3844         struct sock *sk = bpf_sock->sk;
3845
3846         if (!sk_fullsock(sk))
3847                 goto err_clear;
3848
3849 #ifdef CONFIG_INET
3850         if (level == SOL_TCP && sk->sk_prot->getsockopt == tcp_getsockopt) {
3851                 if (optname == TCP_CONGESTION) {
3852                         struct inet_connection_sock *icsk = inet_csk(sk);
3853
3854                         if (!icsk->icsk_ca_ops || optlen <= 1)
3855                                 goto err_clear;
3856                         strncpy(optval, icsk->icsk_ca_ops->name, optlen);
3857                         optval[optlen - 1] = 0;
3858                 } else {
3859                         goto err_clear;
3860                 }
3861         } else if (level == SOL_IP) {
3862                 struct inet_sock *inet = inet_sk(sk);
3863
3864                 if (optlen != sizeof(int) || sk->sk_family != AF_INET)
3865                         goto err_clear;
3866
3867                 /* Only some options are supported */
3868                 switch (optname) {
3869                 case IP_TOS:
3870                         *((int *)optval) = (int)inet->tos;
3871                         break;
3872                 default:
3873                         goto err_clear;
3874                 }
3875 #if IS_ENABLED(CONFIG_IPV6)
3876         } else if (level == SOL_IPV6) {
3877                 struct ipv6_pinfo *np = inet6_sk(sk);
3878
3879                 if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
3880                         goto err_clear;
3881
3882                 /* Only some options are supported */
3883                 switch (optname) {
3884                 case IPV6_TCLASS:
3885                         *((int *)optval) = (int)np->tclass;
3886                         break;
3887                 default:
3888                         goto err_clear;
3889                 }
3890 #endif
3891         } else {
3892                 goto err_clear;
3893         }
3894         return 0;
3895 #endif
3896 err_clear:
3897         memset(optval, 0, optlen);
3898         return -EINVAL;
3899 }
3900
3901 static const struct bpf_func_proto bpf_getsockopt_proto = {
3902         .func           = bpf_getsockopt,
3903         .gpl_only       = false,
3904         .ret_type       = RET_INTEGER,
3905         .arg1_type      = ARG_PTR_TO_CTX,
3906         .arg2_type      = ARG_ANYTHING,
3907         .arg3_type      = ARG_ANYTHING,
3908         .arg4_type      = ARG_PTR_TO_UNINIT_MEM,
3909         .arg5_type      = ARG_CONST_SIZE,
3910 };
3911
3912 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
3913            int, argval)
3914 {
3915         struct sock *sk = bpf_sock->sk;
3916         int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
3917
3918         if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
3919                 return -EINVAL;
3920
3921         if (val)
3922                 tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
3923
3924         return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
3925 }
3926
3927 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
3928         .func           = bpf_sock_ops_cb_flags_set,
3929         .gpl_only       = false,
3930         .ret_type       = RET_INTEGER,
3931         .arg1_type      = ARG_PTR_TO_CTX,
3932         .arg2_type      = ARG_ANYTHING,
3933 };
3934
3935 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
3936 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
3937
3938 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
3939            int, addr_len)
3940 {
3941 #ifdef CONFIG_INET
3942         struct sock *sk = ctx->sk;
3943         int err;
3944
3945         /* Binding to port can be expensive so it's prohibited in the helper.
3946          * Only binding to IP is supported.
3947          */
3948         err = -EINVAL;
3949         if (addr->sa_family == AF_INET) {
3950                 if (addr_len < sizeof(struct sockaddr_in))
3951                         return err;
3952                 if (((struct sockaddr_in *)addr)->sin_port != htons(0))
3953                         return err;
3954                 return __inet_bind(sk, addr, addr_len, true, false);
3955 #if IS_ENABLED(CONFIG_IPV6)
3956         } else if (addr->sa_family == AF_INET6) {
3957                 if (addr_len < SIN6_LEN_RFC2133)
3958                         return err;
3959                 if (((struct sockaddr_in6 *)addr)->sin6_port != htons(0))
3960                         return err;
3961                 /* ipv6_bpf_stub cannot be NULL, since it's called from
3962                  * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
3963                  */
3964                 return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, true, false);
3965 #endif /* CONFIG_IPV6 */
3966         }
3967 #endif /* CONFIG_INET */
3968
3969         return -EAFNOSUPPORT;
3970 }
3971
3972 static const struct bpf_func_proto bpf_bind_proto = {
3973         .func           = bpf_bind,
3974         .gpl_only       = false,
3975         .ret_type       = RET_INTEGER,
3976         .arg1_type      = ARG_PTR_TO_CTX,
3977         .arg2_type      = ARG_PTR_TO_MEM,
3978         .arg3_type      = ARG_CONST_SIZE,
3979 };
3980
3981 #ifdef CONFIG_XFRM
3982 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
3983            struct bpf_xfrm_state *, to, u32, size, u64, flags)
3984 {
3985         const struct sec_path *sp = skb_sec_path(skb);
3986         const struct xfrm_state *x;
3987
3988         if (!sp || unlikely(index >= sp->len || flags))
3989                 goto err_clear;
3990
3991         x = sp->xvec[index];
3992
3993         if (unlikely(size != sizeof(struct bpf_xfrm_state)))
3994                 goto err_clear;
3995
3996         to->reqid = x->props.reqid;
3997         to->spi = x->id.spi;
3998         to->family = x->props.family;
3999         if (to->family == AF_INET6) {
4000                 memcpy(to->remote_ipv6, x->props.saddr.a6,
4001                        sizeof(to->remote_ipv6));
4002         } else {
4003                 to->remote_ipv4 = x->props.saddr.a4;
4004         }
4005
4006         return 0;
4007 err_clear:
4008         memset(to, 0, size);
4009         return -EINVAL;
4010 }
4011
4012 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
4013         .func           = bpf_skb_get_xfrm_state,
4014         .gpl_only       = false,
4015         .ret_type       = RET_INTEGER,
4016         .arg1_type      = ARG_PTR_TO_CTX,
4017         .arg2_type      = ARG_ANYTHING,
4018         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
4019         .arg4_type      = ARG_CONST_SIZE,
4020         .arg5_type      = ARG_ANYTHING,
4021 };
4022 #endif
4023
4024 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
4025 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params,
4026                                   const struct neighbour *neigh,
4027                                   const struct net_device *dev)
4028 {
4029         memcpy(params->dmac, neigh->ha, ETH_ALEN);
4030         memcpy(params->smac, dev->dev_addr, ETH_ALEN);
4031         params->h_vlan_TCI = 0;
4032         params->h_vlan_proto = 0;
4033
4034         return dev->ifindex;
4035 }
4036 #endif
4037
4038 #if IS_ENABLED(CONFIG_INET)
4039 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
4040                                u32 flags)
4041 {
4042         struct in_device *in_dev;
4043         struct neighbour *neigh;
4044         struct net_device *dev;
4045         struct fib_result res;
4046         struct fib_nh *nh;
4047         struct flowi4 fl4;
4048         int err;
4049
4050         dev = dev_get_by_index_rcu(net, params->ifindex);
4051         if (unlikely(!dev))
4052                 return -ENODEV;
4053
4054         /* verify forwarding is enabled on this interface */
4055         in_dev = __in_dev_get_rcu(dev);
4056         if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
4057                 return 0;
4058
4059         if (flags & BPF_FIB_LOOKUP_OUTPUT) {
4060                 fl4.flowi4_iif = 1;
4061                 fl4.flowi4_oif = params->ifindex;
4062         } else {
4063                 fl4.flowi4_iif = params->ifindex;
4064                 fl4.flowi4_oif = 0;
4065         }
4066         fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
4067         fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
4068         fl4.flowi4_flags = 0;
4069
4070         fl4.flowi4_proto = params->l4_protocol;
4071         fl4.daddr = params->ipv4_dst;
4072         fl4.saddr = params->ipv4_src;
4073         fl4.fl4_sport = params->sport;
4074         fl4.fl4_dport = params->dport;
4075
4076         if (flags & BPF_FIB_LOOKUP_DIRECT) {
4077                 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
4078                 struct fib_table *tb;
4079
4080                 tb = fib_get_table(net, tbid);
4081                 if (unlikely(!tb))
4082                         return 0;
4083
4084                 err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
4085         } else {
4086                 fl4.flowi4_mark = 0;
4087                 fl4.flowi4_secid = 0;
4088                 fl4.flowi4_tun_key.tun_id = 0;
4089                 fl4.flowi4_uid = sock_net_uid(net, NULL);
4090
4091                 err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
4092         }
4093
4094         if (err || res.type != RTN_UNICAST)
4095                 return 0;
4096
4097         if (res.fi->fib_nhs > 1)
4098                 fib_select_path(net, &res, &fl4, NULL);
4099
4100         nh = &res.fi->fib_nh[res.nh_sel];
4101
4102         /* do not handle lwt encaps right now */
4103         if (nh->nh_lwtstate)
4104                 return 0;
4105
4106         dev = nh->nh_dev;
4107         if (unlikely(!dev))
4108                 return 0;
4109
4110         if (nh->nh_gw)
4111                 params->ipv4_dst = nh->nh_gw;
4112
4113         params->rt_metric = res.fi->fib_priority;
4114
4115         /* xdp and cls_bpf programs are run in RCU-bh so
4116          * rcu_read_lock_bh is not needed here
4117          */
4118         neigh = __ipv4_neigh_lookup_noref(dev, (__force u32)params->ipv4_dst);
4119         if (neigh)
4120                 return bpf_fib_set_fwd_params(params, neigh, dev);
4121
4122         return 0;
4123 }
4124 #endif
4125
4126 #if IS_ENABLED(CONFIG_IPV6)
4127 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
4128                                u32 flags)
4129 {
4130         struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
4131         struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
4132         struct neighbour *neigh;
4133         struct net_device *dev;
4134         struct inet6_dev *idev;
4135         struct fib6_info *f6i;
4136         struct flowi6 fl6;
4137         int strict = 0;
4138         int oif;
4139
4140         /* link local addresses are never forwarded */
4141         if (rt6_need_strict(dst) || rt6_need_strict(src))
4142                 return 0;
4143
4144         dev = dev_get_by_index_rcu(net, params->ifindex);
4145         if (unlikely(!dev))
4146                 return -ENODEV;
4147
4148         idev = __in6_dev_get_safely(dev);
4149         if (unlikely(!idev || !net->ipv6.devconf_all->forwarding))
4150                 return 0;
4151
4152         if (flags & BPF_FIB_LOOKUP_OUTPUT) {
4153                 fl6.flowi6_iif = 1;
4154                 oif = fl6.flowi6_oif = params->ifindex;
4155         } else {
4156                 oif = fl6.flowi6_iif = params->ifindex;
4157                 fl6.flowi6_oif = 0;
4158                 strict = RT6_LOOKUP_F_HAS_SADDR;
4159         }
4160         fl6.flowlabel = params->flowlabel;
4161         fl6.flowi6_scope = 0;
4162         fl6.flowi6_flags = 0;
4163         fl6.mp_hash = 0;
4164
4165         fl6.flowi6_proto = params->l4_protocol;
4166         fl6.daddr = *dst;
4167         fl6.saddr = *src;
4168         fl6.fl6_sport = params->sport;
4169         fl6.fl6_dport = params->dport;
4170
4171         if (flags & BPF_FIB_LOOKUP_DIRECT) {
4172                 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
4173                 struct fib6_table *tb;
4174
4175                 tb = ipv6_stub->fib6_get_table(net, tbid);
4176                 if (unlikely(!tb))
4177                         return 0;
4178
4179                 f6i = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, strict);
4180         } else {
4181                 fl6.flowi6_mark = 0;
4182                 fl6.flowi6_secid = 0;
4183                 fl6.flowi6_tun_key.tun_id = 0;
4184                 fl6.flowi6_uid = sock_net_uid(net, NULL);
4185
4186                 f6i = ipv6_stub->fib6_lookup(net, oif, &fl6, strict);
4187         }
4188
4189         if (unlikely(IS_ERR_OR_NULL(f6i) || f6i == net->ipv6.fib6_null_entry))
4190                 return 0;
4191
4192         if (unlikely(f6i->fib6_flags & RTF_REJECT ||
4193             f6i->fib6_type != RTN_UNICAST))
4194                 return 0;
4195
4196         if (f6i->fib6_nsiblings && fl6.flowi6_oif == 0)
4197                 f6i = ipv6_stub->fib6_multipath_select(net, f6i, &fl6,
4198                                                        fl6.flowi6_oif, NULL,
4199                                                        strict);
4200
4201         if (f6i->fib6_nh.nh_lwtstate)
4202                 return 0;
4203
4204         if (f6i->fib6_flags & RTF_GATEWAY)
4205                 *dst = f6i->fib6_nh.nh_gw;
4206
4207         dev = f6i->fib6_nh.nh_dev;
4208         params->rt_metric = f6i->fib6_metric;
4209
4210         /* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
4211          * not needed here. Can not use __ipv6_neigh_lookup_noref here
4212          * because we need to get nd_tbl via the stub
4213          */
4214         neigh = ___neigh_lookup_noref(ipv6_stub->nd_tbl, neigh_key_eq128,
4215                                       ndisc_hashfn, dst, dev);
4216         if (neigh)
4217                 return bpf_fib_set_fwd_params(params, neigh, dev);
4218
4219         return 0;
4220 }
4221 #endif
4222
4223 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
4224            struct bpf_fib_lookup *, params, int, plen, u32, flags)
4225 {
4226         if (plen < sizeof(*params))
4227                 return -EINVAL;
4228
4229         switch (params->family) {
4230 #if IS_ENABLED(CONFIG_INET)
4231         case AF_INET:
4232                 return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
4233                                            flags);
4234 #endif
4235 #if IS_ENABLED(CONFIG_IPV6)
4236         case AF_INET6:
4237                 return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
4238                                            flags);
4239 #endif
4240         }
4241         return 0;
4242 }
4243
4244 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
4245         .func           = bpf_xdp_fib_lookup,
4246         .gpl_only       = true,
4247         .ret_type       = RET_INTEGER,
4248         .arg1_type      = ARG_PTR_TO_CTX,
4249         .arg2_type      = ARG_PTR_TO_MEM,
4250         .arg3_type      = ARG_CONST_SIZE,
4251         .arg4_type      = ARG_ANYTHING,
4252 };
4253
4254 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
4255            struct bpf_fib_lookup *, params, int, plen, u32, flags)
4256 {
4257         if (plen < sizeof(*params))
4258                 return -EINVAL;
4259
4260         switch (params->family) {
4261 #if IS_ENABLED(CONFIG_INET)
4262         case AF_INET:
4263                 return bpf_ipv4_fib_lookup(dev_net(skb->dev), params, flags);
4264 #endif
4265 #if IS_ENABLED(CONFIG_IPV6)
4266         case AF_INET6:
4267                 return bpf_ipv6_fib_lookup(dev_net(skb->dev), params, flags);
4268 #endif
4269         }
4270         return -ENOTSUPP;
4271 }
4272
4273 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
4274         .func           = bpf_skb_fib_lookup,
4275         .gpl_only       = true,
4276         .ret_type       = RET_INTEGER,
4277         .arg1_type      = ARG_PTR_TO_CTX,
4278         .arg2_type      = ARG_PTR_TO_MEM,
4279         .arg3_type      = ARG_CONST_SIZE,
4280         .arg4_type      = ARG_ANYTHING,
4281 };
4282
4283 static const struct bpf_func_proto *
4284 bpf_base_func_proto(enum bpf_func_id func_id)
4285 {
4286         switch (func_id) {
4287         case BPF_FUNC_map_lookup_elem:
4288                 return &bpf_map_lookup_elem_proto;
4289         case BPF_FUNC_map_update_elem:
4290                 return &bpf_map_update_elem_proto;
4291         case BPF_FUNC_map_delete_elem:
4292                 return &bpf_map_delete_elem_proto;
4293         case BPF_FUNC_get_prandom_u32:
4294                 return &bpf_get_prandom_u32_proto;
4295         case BPF_FUNC_get_smp_processor_id:
4296                 return &bpf_get_raw_smp_processor_id_proto;
4297         case BPF_FUNC_get_numa_node_id:
4298                 return &bpf_get_numa_node_id_proto;
4299         case BPF_FUNC_tail_call:
4300                 return &bpf_tail_call_proto;
4301         case BPF_FUNC_ktime_get_ns:
4302                 return &bpf_ktime_get_ns_proto;
4303         case BPF_FUNC_trace_printk:
4304                 if (capable(CAP_SYS_ADMIN))
4305                         return bpf_get_trace_printk_proto();
4306         default:
4307                 return NULL;
4308         }
4309 }
4310
4311 static const struct bpf_func_proto *
4312 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
4313 {
4314         switch (func_id) {
4315         /* inet and inet6 sockets are created in a process
4316          * context so there is always a valid uid/gid
4317          */
4318         case BPF_FUNC_get_current_uid_gid:
4319                 return &bpf_get_current_uid_gid_proto;
4320         default:
4321                 return bpf_base_func_proto(func_id);
4322         }
4323 }
4324
4325 static const struct bpf_func_proto *
4326 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
4327 {
4328         switch (func_id) {
4329         /* inet and inet6 sockets are created in a process
4330          * context so there is always a valid uid/gid
4331          */
4332         case BPF_FUNC_get_current_uid_gid:
4333                 return &bpf_get_current_uid_gid_proto;
4334         case BPF_FUNC_bind:
4335                 switch (prog->expected_attach_type) {
4336                 case BPF_CGROUP_INET4_CONNECT:
4337                 case BPF_CGROUP_INET6_CONNECT:
4338                         return &bpf_bind_proto;
4339                 default:
4340                         return NULL;
4341                 }
4342         default:
4343                 return bpf_base_func_proto(func_id);
4344         }
4345 }
4346
4347 static const struct bpf_func_proto *
4348 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
4349 {
4350         switch (func_id) {
4351         case BPF_FUNC_skb_load_bytes:
4352                 return &bpf_skb_load_bytes_proto;
4353         case BPF_FUNC_skb_load_bytes_relative:
4354                 return &bpf_skb_load_bytes_relative_proto;
4355         case BPF_FUNC_get_socket_cookie:
4356                 return &bpf_get_socket_cookie_proto;
4357         case BPF_FUNC_get_socket_uid:
4358                 return &bpf_get_socket_uid_proto;
4359         default:
4360                 return bpf_base_func_proto(func_id);
4361         }
4362 }
4363
4364 static const struct bpf_func_proto *
4365 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
4366 {
4367         switch (func_id) {
4368         case BPF_FUNC_skb_store_bytes:
4369                 return &bpf_skb_store_bytes_proto;
4370         case BPF_FUNC_skb_load_bytes:
4371                 return &bpf_skb_load_bytes_proto;
4372         case BPF_FUNC_skb_load_bytes_relative:
4373                 return &bpf_skb_load_bytes_relative_proto;
4374         case BPF_FUNC_skb_pull_data:
4375                 return &bpf_skb_pull_data_proto;
4376         case BPF_FUNC_csum_diff:
4377                 return &bpf_csum_diff_proto;
4378         case BPF_FUNC_csum_update:
4379                 return &bpf_csum_update_proto;
4380         case BPF_FUNC_l3_csum_replace:
4381                 return &bpf_l3_csum_replace_proto;
4382         case BPF_FUNC_l4_csum_replace:
4383                 return &bpf_l4_csum_replace_proto;
4384         case BPF_FUNC_clone_redirect:
4385                 return &bpf_clone_redirect_proto;
4386         case BPF_FUNC_get_cgroup_classid:
4387                 return &bpf_get_cgroup_classid_proto;
4388         case BPF_FUNC_skb_vlan_push:
4389                 return &bpf_skb_vlan_push_proto;
4390         case BPF_FUNC_skb_vlan_pop:
4391                 return &bpf_skb_vlan_pop_proto;
4392         case BPF_FUNC_skb_change_proto:
4393                 return &bpf_skb_change_proto_proto;
4394         case BPF_FUNC_skb_change_type:
4395                 return &bpf_skb_change_type_proto;
4396         case BPF_FUNC_skb_adjust_room:
4397                 return &bpf_skb_adjust_room_proto;
4398         case BPF_FUNC_skb_change_tail:
4399                 return &bpf_skb_change_tail_proto;
4400         case BPF_FUNC_skb_get_tunnel_key:
4401                 return &bpf_skb_get_tunnel_key_proto;
4402         case BPF_FUNC_skb_set_tunnel_key:
4403                 return bpf_get_skb_set_tunnel_proto(func_id);
4404         case BPF_FUNC_skb_get_tunnel_opt:
4405                 return &bpf_skb_get_tunnel_opt_proto;
4406         case BPF_FUNC_skb_set_tunnel_opt:
4407                 return bpf_get_skb_set_tunnel_proto(func_id);
4408         case BPF_FUNC_redirect:
4409                 return &bpf_redirect_proto;
4410         case BPF_FUNC_get_route_realm:
4411                 return &bpf_get_route_realm_proto;
4412         case BPF_FUNC_get_hash_recalc:
4413                 return &bpf_get_hash_recalc_proto;
4414         case BPF_FUNC_set_hash_invalid:
4415                 return &bpf_set_hash_invalid_proto;
4416         case BPF_FUNC_set_hash:
4417                 return &bpf_set_hash_proto;
4418         case BPF_FUNC_perf_event_output:
4419                 return &bpf_skb_event_output_proto;
4420         case BPF_FUNC_get_smp_processor_id:
4421                 return &bpf_get_smp_processor_id_proto;
4422         case BPF_FUNC_skb_under_cgroup:
4423                 return &bpf_skb_under_cgroup_proto;
4424         case BPF_FUNC_get_socket_cookie:
4425                 return &bpf_get_socket_cookie_proto;
4426         case BPF_FUNC_get_socket_uid:
4427                 return &bpf_get_socket_uid_proto;
4428 #ifdef CONFIG_XFRM
4429         case BPF_FUNC_skb_get_xfrm_state:
4430                 return &bpf_skb_get_xfrm_state_proto;
4431 #endif
4432         case BPF_FUNC_fib_lookup:
4433                 return &bpf_skb_fib_lookup_proto;
4434         default:
4435                 return bpf_base_func_proto(func_id);
4436         }
4437 }
4438
4439 static const struct bpf_func_proto *
4440 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
4441 {
4442         switch (func_id) {
4443         case BPF_FUNC_perf_event_output:
4444                 return &bpf_xdp_event_output_proto;
4445         case BPF_FUNC_get_smp_processor_id:
4446                 return &bpf_get_smp_processor_id_proto;
4447         case BPF_FUNC_csum_diff:
4448                 return &bpf_csum_diff_proto;
4449         case BPF_FUNC_xdp_adjust_head:
4450                 return &bpf_xdp_adjust_head_proto;
4451         case BPF_FUNC_xdp_adjust_meta:
4452                 return &bpf_xdp_adjust_meta_proto;
4453         case BPF_FUNC_redirect:
4454                 return &bpf_xdp_redirect_proto;
4455         case BPF_FUNC_redirect_map:
4456                 return &bpf_xdp_redirect_map_proto;
4457         case BPF_FUNC_xdp_adjust_tail:
4458                 return &bpf_xdp_adjust_tail_proto;
4459         case BPF_FUNC_fib_lookup:
4460                 return &bpf_xdp_fib_lookup_proto;
4461         default:
4462                 return bpf_base_func_proto(func_id);
4463         }
4464 }
4465
4466 static const struct bpf_func_proto *
4467 lwt_inout_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
4468 {
4469         switch (func_id) {
4470         case BPF_FUNC_skb_load_bytes:
4471                 return &bpf_skb_load_bytes_proto;
4472         case BPF_FUNC_skb_pull_data:
4473                 return &bpf_skb_pull_data_proto;
4474         case BPF_FUNC_csum_diff:
4475                 return &bpf_csum_diff_proto;
4476         case BPF_FUNC_get_cgroup_classid:
4477                 return &bpf_get_cgroup_classid_proto;
4478         case BPF_FUNC_get_route_realm:
4479                 return &bpf_get_route_realm_proto;
4480         case BPF_FUNC_get_hash_recalc:
4481                 return &bpf_get_hash_recalc_proto;
4482         case BPF_FUNC_perf_event_output:
4483                 return &bpf_skb_event_output_proto;
4484         case BPF_FUNC_get_smp_processor_id:
4485                 return &bpf_get_smp_processor_id_proto;
4486         case BPF_FUNC_skb_under_cgroup:
4487                 return &bpf_skb_under_cgroup_proto;
4488         default:
4489                 return bpf_base_func_proto(func_id);
4490         }
4491 }
4492
4493 static const struct bpf_func_proto *
4494 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
4495 {
4496         switch (func_id) {
4497         case BPF_FUNC_setsockopt:
4498                 return &bpf_setsockopt_proto;
4499         case BPF_FUNC_getsockopt:
4500                 return &bpf_getsockopt_proto;
4501         case BPF_FUNC_sock_ops_cb_flags_set:
4502                 return &bpf_sock_ops_cb_flags_set_proto;
4503         case BPF_FUNC_sock_map_update:
4504                 return &bpf_sock_map_update_proto;
4505         default:
4506                 return bpf_base_func_proto(func_id);
4507         }
4508 }
4509
4510 static const struct bpf_func_proto *
4511 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
4512 {
4513         switch (func_id) {
4514         case BPF_FUNC_msg_redirect_map:
4515                 return &bpf_msg_redirect_map_proto;
4516         case BPF_FUNC_msg_apply_bytes:
4517                 return &bpf_msg_apply_bytes_proto;
4518         case BPF_FUNC_msg_cork_bytes:
4519                 return &bpf_msg_cork_bytes_proto;
4520         case BPF_FUNC_msg_pull_data:
4521                 return &bpf_msg_pull_data_proto;
4522         default:
4523                 return bpf_base_func_proto(func_id);
4524         }
4525 }
4526
4527 static const struct bpf_func_proto *
4528 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
4529 {
4530         switch (func_id) {
4531         case BPF_FUNC_skb_store_bytes:
4532                 return &bpf_skb_store_bytes_proto;
4533         case BPF_FUNC_skb_load_bytes:
4534                 return &bpf_skb_load_bytes_proto;
4535         case BPF_FUNC_skb_pull_data:
4536                 return &bpf_skb_pull_data_proto;
4537         case BPF_FUNC_skb_change_tail:
4538                 return &bpf_skb_change_tail_proto;
4539         case BPF_FUNC_skb_change_head:
4540                 return &bpf_skb_change_head_proto;
4541         case BPF_FUNC_get_socket_cookie:
4542                 return &bpf_get_socket_cookie_proto;
4543         case BPF_FUNC_get_socket_uid:
4544                 return &bpf_get_socket_uid_proto;
4545         case BPF_FUNC_sk_redirect_map:
4546                 return &bpf_sk_redirect_map_proto;
4547         default:
4548                 return bpf_base_func_proto(func_id);
4549         }
4550 }
4551
4552 static const struct bpf_func_proto *
4553 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
4554 {
4555         switch (func_id) {
4556         case BPF_FUNC_skb_get_tunnel_key:
4557                 return &bpf_skb_get_tunnel_key_proto;
4558         case BPF_FUNC_skb_set_tunnel_key:
4559                 return bpf_get_skb_set_tunnel_proto(func_id);
4560         case BPF_FUNC_skb_get_tunnel_opt:
4561                 return &bpf_skb_get_tunnel_opt_proto;
4562         case BPF_FUNC_skb_set_tunnel_opt:
4563                 return bpf_get_skb_set_tunnel_proto(func_id);
4564         case BPF_FUNC_redirect:
4565                 return &bpf_redirect_proto;
4566         case BPF_FUNC_clone_redirect:
4567                 return &bpf_clone_redirect_proto;
4568         case BPF_FUNC_skb_change_tail:
4569                 return &bpf_skb_change_tail_proto;
4570         case BPF_FUNC_skb_change_head:
4571                 return &bpf_skb_change_head_proto;
4572         case BPF_FUNC_skb_store_bytes:
4573                 return &bpf_skb_store_bytes_proto;
4574         case BPF_FUNC_csum_update:
4575                 return &bpf_csum_update_proto;
4576         case BPF_FUNC_l3_csum_replace:
4577                 return &bpf_l3_csum_replace_proto;
4578         case BPF_FUNC_l4_csum_replace:
4579                 return &bpf_l4_csum_replace_proto;
4580         case BPF_FUNC_set_hash_invalid:
4581                 return &bpf_set_hash_invalid_proto;
4582         default:
4583                 return lwt_inout_func_proto(func_id, prog);
4584         }
4585 }
4586
4587 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
4588                                     const struct bpf_prog *prog,
4589                                     struct bpf_insn_access_aux *info)
4590 {
4591         const int size_default = sizeof(__u32);
4592
4593         if (off < 0 || off >= sizeof(struct __sk_buff))
4594                 return false;
4595
4596         /* The verifier guarantees that size > 0. */
4597         if (off % size != 0)
4598                 return false;
4599
4600         switch (off) {
4601         case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
4602                 if (off + size > offsetofend(struct __sk_buff, cb[4]))
4603                         return false;
4604                 break;
4605         case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
4606         case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
4607         case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
4608         case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
4609         case bpf_ctx_range(struct __sk_buff, data):
4610         case bpf_ctx_range(struct __sk_buff, data_meta):
4611         case bpf_ctx_range(struct __sk_buff, data_end):
4612                 if (size != size_default)
4613                         return false;
4614                 break;
4615         default:
4616                 /* Only narrow read access allowed for now. */
4617                 if (type == BPF_WRITE) {
4618                         if (size != size_default)
4619                                 return false;
4620                 } else {
4621                         bpf_ctx_record_field_size(info, size_default);
4622                         if (!bpf_ctx_narrow_access_ok(off, size, size_default))
4623                                 return false;
4624                 }
4625         }
4626
4627         return true;
4628 }
4629
4630 static bool sk_filter_is_valid_access(int off, int size,
4631                                       enum bpf_access_type type,
4632                                       const struct bpf_prog *prog,
4633                                       struct bpf_insn_access_aux *info)
4634 {
4635         switch (off) {
4636         case bpf_ctx_range(struct __sk_buff, tc_classid):
4637         case bpf_ctx_range(struct __sk_buff, data):
4638         case bpf_ctx_range(struct __sk_buff, data_meta):
4639         case bpf_ctx_range(struct __sk_buff, data_end):
4640         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
4641                 return false;
4642         }
4643
4644         if (type == BPF_WRITE) {
4645                 switch (off) {
4646                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
4647                         break;
4648                 default:
4649                         return false;
4650                 }
4651         }
4652
4653         return bpf_skb_is_valid_access(off, size, type, prog, info);
4654 }
4655
4656 static bool lwt_is_valid_access(int off, int size,
4657                                 enum bpf_access_type type,
4658                                 const struct bpf_prog *prog,
4659                                 struct bpf_insn_access_aux *info)
4660 {
4661         switch (off) {
4662         case bpf_ctx_range(struct __sk_buff, tc_classid):
4663         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
4664         case bpf_ctx_range(struct __sk_buff, data_meta):
4665                 return false;
4666         }
4667
4668         if (type == BPF_WRITE) {
4669                 switch (off) {
4670                 case bpf_ctx_range(struct __sk_buff, mark):
4671                 case bpf_ctx_range(struct __sk_buff, priority):
4672                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
4673                         break;
4674                 default:
4675                         return false;
4676                 }
4677         }
4678
4679         switch (off) {
4680         case bpf_ctx_range(struct __sk_buff, data):
4681                 info->reg_type = PTR_TO_PACKET;
4682                 break;
4683         case bpf_ctx_range(struct __sk_buff, data_end):
4684                 info->reg_type = PTR_TO_PACKET_END;
4685                 break;
4686         }
4687
4688         return bpf_skb_is_valid_access(off, size, type, prog, info);
4689 }
4690
4691
4692 /* Attach type specific accesses */
4693 static bool __sock_filter_check_attach_type(int off,
4694                                             enum bpf_access_type access_type,
4695                                             enum bpf_attach_type attach_type)
4696 {
4697         switch (off) {
4698         case offsetof(struct bpf_sock, bound_dev_if):
4699         case offsetof(struct bpf_sock, mark):
4700         case offsetof(struct bpf_sock, priority):
4701                 switch (attach_type) {
4702                 case BPF_CGROUP_INET_SOCK_CREATE:
4703                         goto full_access;
4704                 default:
4705                         return false;
4706                 }
4707         case bpf_ctx_range(struct bpf_sock, src_ip4):
4708                 switch (attach_type) {
4709                 case BPF_CGROUP_INET4_POST_BIND:
4710                         goto read_only;
4711                 default:
4712                         return false;
4713                 }
4714         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
4715                 switch (attach_type) {
4716                 case BPF_CGROUP_INET6_POST_BIND:
4717                         goto read_only;
4718                 default:
4719                         return false;
4720                 }
4721         case bpf_ctx_range(struct bpf_sock, src_port):
4722                 switch (attach_type) {
4723                 case BPF_CGROUP_INET4_POST_BIND:
4724                 case BPF_CGROUP_INET6_POST_BIND:
4725                         goto read_only;
4726                 default:
4727                         return false;
4728                 }
4729         }
4730 read_only:
4731         return access_type == BPF_READ;
4732 full_access:
4733         return true;
4734 }
4735
4736 static bool __sock_filter_check_size(int off, int size,
4737                                      struct bpf_insn_access_aux *info)
4738 {
4739         const int size_default = sizeof(__u32);
4740
4741         switch (off) {
4742         case bpf_ctx_range(struct bpf_sock, src_ip4):
4743         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
4744                 bpf_ctx_record_field_size(info, size_default);
4745                 return bpf_ctx_narrow_access_ok(off, size, size_default);
4746         }
4747
4748         return size == size_default;
4749 }
4750
4751 static bool sock_filter_is_valid_access(int off, int size,
4752                                         enum bpf_access_type type,
4753                                         const struct bpf_prog *prog,
4754                                         struct bpf_insn_access_aux *info)
4755 {
4756         if (off < 0 || off >= sizeof(struct bpf_sock))
4757                 return false;
4758         if (off % size != 0)
4759                 return false;
4760         if (!__sock_filter_check_attach_type(off, type,
4761                                              prog->expected_attach_type))
4762                 return false;
4763         if (!__sock_filter_check_size(off, size, info))
4764                 return false;
4765         return true;
4766 }
4767
4768 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
4769                                 const struct bpf_prog *prog, int drop_verdict)
4770 {
4771         struct bpf_insn *insn = insn_buf;
4772
4773         if (!direct_write)
4774                 return 0;
4775
4776         /* if (!skb->cloned)
4777          *       goto start;
4778          *
4779          * (Fast-path, otherwise approximation that we might be
4780          *  a clone, do the rest in helper.)
4781          */
4782         *insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET());
4783         *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
4784         *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
4785
4786         /* ret = bpf_skb_pull_data(skb, 0); */
4787         *insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
4788         *insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
4789         *insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
4790                                BPF_FUNC_skb_pull_data);
4791         /* if (!ret)
4792          *      goto restore;
4793          * return TC_ACT_SHOT;
4794          */
4795         *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
4796         *insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
4797         *insn++ = BPF_EXIT_INSN();
4798
4799         /* restore: */
4800         *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
4801         /* start: */
4802         *insn++ = prog->insnsi[0];
4803
4804         return insn - insn_buf;
4805 }
4806
4807 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
4808                           struct bpf_insn *insn_buf)
4809 {
4810         bool indirect = BPF_MODE(orig->code) == BPF_IND;
4811         struct bpf_insn *insn = insn_buf;
4812
4813         /* We're guaranteed here that CTX is in R6. */
4814         *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
4815         if (!indirect) {
4816                 *insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
4817         } else {
4818                 *insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
4819                 if (orig->imm)
4820                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
4821         }
4822
4823         switch (BPF_SIZE(orig->code)) {
4824         case BPF_B:
4825                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
4826                 break;
4827         case BPF_H:
4828                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
4829                 break;
4830         case BPF_W:
4831                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
4832                 break;
4833         }
4834
4835         *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
4836         *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
4837         *insn++ = BPF_EXIT_INSN();
4838
4839         return insn - insn_buf;
4840 }
4841
4842 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
4843                                const struct bpf_prog *prog)
4844 {
4845         return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
4846 }
4847
4848 static bool tc_cls_act_is_valid_access(int off, int size,
4849                                        enum bpf_access_type type,
4850                                        const struct bpf_prog *prog,
4851                                        struct bpf_insn_access_aux *info)
4852 {
4853         if (type == BPF_WRITE) {
4854                 switch (off) {
4855                 case bpf_ctx_range(struct __sk_buff, mark):
4856                 case bpf_ctx_range(struct __sk_buff, tc_index):
4857                 case bpf_ctx_range(struct __sk_buff, priority):
4858                 case bpf_ctx_range(struct __sk_buff, tc_classid):
4859                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
4860                         break;
4861                 default:
4862                         return false;
4863                 }
4864         }
4865
4866         switch (off) {
4867         case bpf_ctx_range(struct __sk_buff, data):
4868                 info->reg_type = PTR_TO_PACKET;
4869                 break;
4870         case bpf_ctx_range(struct __sk_buff, data_meta):
4871                 info->reg_type = PTR_TO_PACKET_META;
4872                 break;
4873         case bpf_ctx_range(struct __sk_buff, data_end):
4874                 info->reg_type = PTR_TO_PACKET_END;
4875                 break;
4876         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
4877                 return false;
4878         }
4879
4880         return bpf_skb_is_valid_access(off, size, type, prog, info);
4881 }
4882
4883 static bool __is_valid_xdp_access(int off, int size)
4884 {
4885         if (off < 0 || off >= sizeof(struct xdp_md))
4886                 return false;
4887         if (off % size != 0)
4888                 return false;
4889         if (size != sizeof(__u32))
4890                 return false;
4891
4892         return true;
4893 }
4894
4895 static bool xdp_is_valid_access(int off, int size,
4896                                 enum bpf_access_type type,
4897                                 const struct bpf_prog *prog,
4898                                 struct bpf_insn_access_aux *info)
4899 {
4900         if (type == BPF_WRITE) {
4901                 if (bpf_prog_is_dev_bound(prog->aux)) {
4902                         switch (off) {
4903                         case offsetof(struct xdp_md, rx_queue_index):
4904                                 return __is_valid_xdp_access(off, size);
4905                         }
4906                 }
4907                 return false;
4908         }
4909
4910         switch (off) {
4911         case offsetof(struct xdp_md, data):
4912                 info->reg_type = PTR_TO_PACKET;
4913                 break;
4914         case offsetof(struct xdp_md, data_meta):
4915                 info->reg_type = PTR_TO_PACKET_META;
4916                 break;
4917         case offsetof(struct xdp_md, data_end):
4918                 info->reg_type = PTR_TO_PACKET_END;
4919                 break;
4920         }
4921
4922         return __is_valid_xdp_access(off, size);
4923 }
4924
4925 void bpf_warn_invalid_xdp_action(u32 act)
4926 {
4927         const u32 act_max = XDP_REDIRECT;
4928
4929         WARN_ONCE(1, "%s XDP return value %u, expect packet loss!\n",
4930                   act > act_max ? "Illegal" : "Driver unsupported",
4931                   act);
4932 }
4933 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
4934
4935 static bool sock_addr_is_valid_access(int off, int size,
4936                                       enum bpf_access_type type,
4937                                       const struct bpf_prog *prog,
4938                                       struct bpf_insn_access_aux *info)
4939 {
4940         const int size_default = sizeof(__u32);
4941
4942         if (off < 0 || off >= sizeof(struct bpf_sock_addr))
4943                 return false;
4944         if (off % size != 0)
4945                 return false;
4946
4947         /* Disallow access to IPv6 fields from IPv4 contex and vise
4948          * versa.
4949          */
4950         switch (off) {
4951         case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
4952                 switch (prog->expected_attach_type) {
4953                 case BPF_CGROUP_INET4_BIND:
4954                 case BPF_CGROUP_INET4_CONNECT:
4955                         break;
4956                 default:
4957                         return false;
4958                 }
4959                 break;
4960         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
4961                 switch (prog->expected_attach_type) {
4962                 case BPF_CGROUP_INET6_BIND:
4963                 case BPF_CGROUP_INET6_CONNECT:
4964                         break;
4965                 default:
4966                         return false;
4967                 }
4968                 break;
4969         }
4970
4971         switch (off) {
4972         case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
4973         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
4974                 /* Only narrow read access allowed for now. */
4975                 if (type == BPF_READ) {
4976                         bpf_ctx_record_field_size(info, size_default);
4977                         if (!bpf_ctx_narrow_access_ok(off, size, size_default))
4978                                 return false;
4979                 } else {
4980                         if (size != size_default)
4981                                 return false;
4982                 }
4983                 break;
4984         case bpf_ctx_range(struct bpf_sock_addr, user_port):
4985                 if (size != size_default)
4986                         return false;
4987                 break;
4988         default:
4989                 if (type == BPF_READ) {
4990                         if (size != size_default)
4991                                 return false;
4992                 } else {
4993                         return false;
4994                 }
4995         }
4996
4997         return true;
4998 }
4999
5000 static bool sock_ops_is_valid_access(int off, int size,
5001                                      enum bpf_access_type type,
5002                                      const struct bpf_prog *prog,
5003                                      struct bpf_insn_access_aux *info)
5004 {
5005         const int size_default = sizeof(__u32);
5006
5007         if (off < 0 || off >= sizeof(struct bpf_sock_ops))
5008                 return false;
5009
5010         /* The verifier guarantees that size > 0. */
5011         if (off % size != 0)
5012                 return false;
5013
5014         if (type == BPF_WRITE) {
5015                 switch (off) {
5016                 case offsetof(struct bpf_sock_ops, reply):
5017                 case offsetof(struct bpf_sock_ops, sk_txhash):
5018                         if (size != size_default)
5019                                 return false;
5020                         break;
5021                 default:
5022                         return false;
5023                 }
5024         } else {
5025                 switch (off) {
5026                 case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
5027                                         bytes_acked):
5028                         if (size != sizeof(__u64))
5029                                 return false;
5030                         break;
5031                 default:
5032                         if (size != size_default)
5033                                 return false;
5034                         break;
5035                 }
5036         }
5037
5038         return true;
5039 }
5040
5041 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
5042                            const struct bpf_prog *prog)
5043 {
5044         return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
5045 }
5046
5047 static bool sk_skb_is_valid_access(int off, int size,
5048                                    enum bpf_access_type type,
5049                                    const struct bpf_prog *prog,
5050                                    struct bpf_insn_access_aux *info)
5051 {
5052         switch (off) {
5053         case bpf_ctx_range(struct __sk_buff, tc_classid):
5054         case bpf_ctx_range(struct __sk_buff, data_meta):
5055                 return false;
5056         }
5057
5058         if (type == BPF_WRITE) {
5059                 switch (off) {
5060                 case bpf_ctx_range(struct __sk_buff, tc_index):
5061                 case bpf_ctx_range(struct __sk_buff, priority):
5062                         break;
5063                 default:
5064                         return false;
5065                 }
5066         }
5067
5068         switch (off) {
5069         case bpf_ctx_range(struct __sk_buff, mark):
5070                 return false;
5071         case bpf_ctx_range(struct __sk_buff, data):
5072                 info->reg_type = PTR_TO_PACKET;
5073                 break;
5074         case bpf_ctx_range(struct __sk_buff, data_end):
5075                 info->reg_type = PTR_TO_PACKET_END;
5076                 break;
5077         }
5078
5079         return bpf_skb_is_valid_access(off, size, type, prog, info);
5080 }
5081
5082 static bool sk_msg_is_valid_access(int off, int size,
5083                                    enum bpf_access_type type,
5084                                    const struct bpf_prog *prog,
5085                                    struct bpf_insn_access_aux *info)
5086 {
5087         if (type == BPF_WRITE)
5088                 return false;
5089
5090         switch (off) {
5091         case offsetof(struct sk_msg_md, data):
5092                 info->reg_type = PTR_TO_PACKET;
5093                 break;
5094         case offsetof(struct sk_msg_md, data_end):
5095                 info->reg_type = PTR_TO_PACKET_END;
5096                 break;
5097         }
5098
5099         if (off < 0 || off >= sizeof(struct sk_msg_md))
5100                 return false;
5101         if (off % size != 0)
5102                 return false;
5103         if (size != sizeof(__u64))
5104                 return false;
5105
5106         return true;
5107 }
5108
5109 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
5110                                   const struct bpf_insn *si,
5111                                   struct bpf_insn *insn_buf,
5112                                   struct bpf_prog *prog, u32 *target_size)
5113 {
5114         struct bpf_insn *insn = insn_buf;
5115         int off;
5116
5117         switch (si->off) {
5118         case offsetof(struct __sk_buff, len):
5119                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5120                                       bpf_target_off(struct sk_buff, len, 4,
5121                                                      target_size));
5122                 break;
5123
5124         case offsetof(struct __sk_buff, protocol):
5125                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
5126                                       bpf_target_off(struct sk_buff, protocol, 2,
5127                                                      target_size));
5128                 break;
5129
5130         case offsetof(struct __sk_buff, vlan_proto):
5131                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
5132                                       bpf_target_off(struct sk_buff, vlan_proto, 2,
5133                                                      target_size));
5134                 break;
5135
5136         case offsetof(struct __sk_buff, priority):
5137                 if (type == BPF_WRITE)
5138                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
5139                                               bpf_target_off(struct sk_buff, priority, 4,
5140                                                              target_size));
5141                 else
5142                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5143                                               bpf_target_off(struct sk_buff, priority, 4,
5144                                                              target_size));
5145                 break;
5146
5147         case offsetof(struct __sk_buff, ingress_ifindex):
5148                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5149                                       bpf_target_off(struct sk_buff, skb_iif, 4,
5150                                                      target_size));
5151                 break;
5152
5153         case offsetof(struct __sk_buff, ifindex):
5154                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
5155                                       si->dst_reg, si->src_reg,
5156                                       offsetof(struct sk_buff, dev));
5157                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
5158                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
5159                                       bpf_target_off(struct net_device, ifindex, 4,
5160                                                      target_size));
5161                 break;
5162
5163         case offsetof(struct __sk_buff, hash):
5164                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5165                                       bpf_target_off(struct sk_buff, hash, 4,
5166                                                      target_size));
5167                 break;
5168
5169         case offsetof(struct __sk_buff, mark):
5170                 if (type == BPF_WRITE)
5171                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
5172                                               bpf_target_off(struct sk_buff, mark, 4,
5173                                                              target_size));
5174                 else
5175                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5176                                               bpf_target_off(struct sk_buff, mark, 4,
5177                                                              target_size));
5178                 break;
5179
5180         case offsetof(struct __sk_buff, pkt_type):
5181                 *target_size = 1;
5182                 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
5183                                       PKT_TYPE_OFFSET());
5184                 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
5185 #ifdef __BIG_ENDIAN_BITFIELD
5186                 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
5187 #endif
5188                 break;
5189
5190         case offsetof(struct __sk_buff, queue_mapping):
5191                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
5192                                       bpf_target_off(struct sk_buff, queue_mapping, 2,
5193                                                      target_size));
5194                 break;
5195
5196         case offsetof(struct __sk_buff, vlan_present):
5197         case offsetof(struct __sk_buff, vlan_tci):
5198                 BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);
5199
5200                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
5201                                       bpf_target_off(struct sk_buff, vlan_tci, 2,
5202                                                      target_size));
5203                 if (si->off == offsetof(struct __sk_buff, vlan_tci)) {
5204                         *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg,
5205                                                 ~VLAN_TAG_PRESENT);
5206                 } else {
5207                         *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 12);
5208                         *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, 1);
5209                 }
5210                 break;
5211
5212         case offsetof(struct __sk_buff, cb[0]) ...
5213              offsetofend(struct __sk_buff, cb[4]) - 1:
5214                 BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, data) < 20);
5215                 BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
5216                               offsetof(struct qdisc_skb_cb, data)) %
5217                              sizeof(__u64));
5218
5219                 prog->cb_access = 1;
5220                 off  = si->off;
5221                 off -= offsetof(struct __sk_buff, cb[0]);
5222                 off += offsetof(struct sk_buff, cb);
5223                 off += offsetof(struct qdisc_skb_cb, data);
5224                 if (type == BPF_WRITE)
5225                         *insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
5226                                               si->src_reg, off);
5227                 else
5228                         *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
5229                                               si->src_reg, off);
5230                 break;
5231
5232         case offsetof(struct __sk_buff, tc_classid):
5233                 BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, tc_classid) != 2);
5234
5235                 off  = si->off;
5236                 off -= offsetof(struct __sk_buff, tc_classid);
5237                 off += offsetof(struct sk_buff, cb);
5238                 off += offsetof(struct qdisc_skb_cb, tc_classid);
5239                 *target_size = 2;
5240                 if (type == BPF_WRITE)
5241                         *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg,
5242                                               si->src_reg, off);
5243                 else
5244                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
5245                                               si->src_reg, off);
5246                 break;
5247
5248         case offsetof(struct __sk_buff, data):
5249                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
5250                                       si->dst_reg, si->src_reg,
5251                                       offsetof(struct sk_buff, data));
5252                 break;
5253
5254         case offsetof(struct __sk_buff, data_meta):
5255                 off  = si->off;
5256                 off -= offsetof(struct __sk_buff, data_meta);
5257                 off += offsetof(struct sk_buff, cb);
5258                 off += offsetof(struct bpf_skb_data_end, data_meta);
5259                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
5260                                       si->src_reg, off);
5261                 break;
5262
5263         case offsetof(struct __sk_buff, data_end):
5264                 off  = si->off;
5265                 off -= offsetof(struct __sk_buff, data_end);
5266                 off += offsetof(struct sk_buff, cb);
5267                 off += offsetof(struct bpf_skb_data_end, data_end);
5268                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
5269                                       si->src_reg, off);
5270                 break;
5271
5272         case offsetof(struct __sk_buff, tc_index):
5273 #ifdef CONFIG_NET_SCHED
5274                 if (type == BPF_WRITE)
5275                         *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
5276                                               bpf_target_off(struct sk_buff, tc_index, 2,
5277                                                              target_size));
5278                 else
5279                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
5280                                               bpf_target_off(struct sk_buff, tc_index, 2,
5281                                                              target_size));
5282 #else
5283                 *target_size = 2;
5284                 if (type == BPF_WRITE)
5285                         *insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
5286                 else
5287                         *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
5288 #endif
5289                 break;
5290
5291         case offsetof(struct __sk_buff, napi_id):
5292 #if defined(CONFIG_NET_RX_BUSY_POLL)
5293                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5294                                       bpf_target_off(struct sk_buff, napi_id, 4,
5295                                                      target_size));
5296                 *insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
5297                 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
5298 #else
5299                 *target_size = 4;
5300                 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
5301 #endif
5302                 break;
5303         case offsetof(struct __sk_buff, family):
5304                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_family) != 2);
5305
5306                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
5307                                       si->dst_reg, si->src_reg,
5308                                       offsetof(struct sk_buff, sk));
5309                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
5310                                       bpf_target_off(struct sock_common,
5311                                                      skc_family,
5312                                                      2, target_size));
5313                 break;
5314         case offsetof(struct __sk_buff, remote_ip4):
5315                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_daddr) != 4);
5316
5317                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
5318                                       si->dst_reg, si->src_reg,
5319                                       offsetof(struct sk_buff, sk));
5320                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
5321                                       bpf_target_off(struct sock_common,
5322                                                      skc_daddr,
5323                                                      4, target_size));
5324                 break;
5325         case offsetof(struct __sk_buff, local_ip4):
5326                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
5327                                           skc_rcv_saddr) != 4);
5328
5329                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
5330                                       si->dst_reg, si->src_reg,
5331                                       offsetof(struct sk_buff, sk));
5332                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
5333                                       bpf_target_off(struct sock_common,
5334                                                      skc_rcv_saddr,
5335                                                      4, target_size));
5336                 break;
5337         case offsetof(struct __sk_buff, remote_ip6[0]) ...
5338              offsetof(struct __sk_buff, remote_ip6[3]):
5339 #if IS_ENABLED(CONFIG_IPV6)
5340                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
5341                                           skc_v6_daddr.s6_addr32[0]) != 4);
5342
5343                 off = si->off;
5344                 off -= offsetof(struct __sk_buff, remote_ip6[0]);
5345
5346                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
5347                                       si->dst_reg, si->src_reg,
5348                                       offsetof(struct sk_buff, sk));
5349                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
5350                                       offsetof(struct sock_common,
5351                                                skc_v6_daddr.s6_addr32[0]) +
5352                                       off);
5353 #else
5354                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
5355 #endif
5356                 break;
5357         case offsetof(struct __sk_buff, local_ip6[0]) ...
5358              offsetof(struct __sk_buff, local_ip6[3]):
5359 #if IS_ENABLED(CONFIG_IPV6)
5360                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
5361                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
5362
5363                 off = si->off;
5364                 off -= offsetof(struct __sk_buff, local_ip6[0]);
5365
5366                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
5367                                       si->dst_reg, si->src_reg,
5368                                       offsetof(struct sk_buff, sk));
5369                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
5370                                       offsetof(struct sock_common,
5371                                                skc_v6_rcv_saddr.s6_addr32[0]) +
5372                                       off);
5373 #else
5374                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
5375 #endif
5376                 break;
5377
5378         case offsetof(struct __sk_buff, remote_port):
5379                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_dport) != 2);
5380
5381                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
5382                                       si->dst_reg, si->src_reg,
5383                                       offsetof(struct sk_buff, sk));
5384                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
5385                                       bpf_target_off(struct sock_common,
5386                                                      skc_dport,
5387                                                      2, target_size));
5388 #ifndef __BIG_ENDIAN_BITFIELD
5389                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
5390 #endif
5391                 break;
5392
5393         case offsetof(struct __sk_buff, local_port):
5394                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_num) != 2);
5395
5396                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
5397                                       si->dst_reg, si->src_reg,
5398                                       offsetof(struct sk_buff, sk));
5399                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
5400                                       bpf_target_off(struct sock_common,
5401                                                      skc_num, 2, target_size));
5402                 break;
5403         }
5404
5405         return insn - insn_buf;
5406 }
5407
5408 static u32 sock_filter_convert_ctx_access(enum bpf_access_type type,
5409                                           const struct bpf_insn *si,
5410                                           struct bpf_insn *insn_buf,
5411                                           struct bpf_prog *prog, u32 *target_size)
5412 {
5413         struct bpf_insn *insn = insn_buf;
5414         int off;
5415
5416         switch (si->off) {
5417         case offsetof(struct bpf_sock, bound_dev_if):
5418                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_bound_dev_if) != 4);
5419
5420                 if (type == BPF_WRITE)
5421                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
5422                                         offsetof(struct sock, sk_bound_dev_if));
5423                 else
5424                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5425                                       offsetof(struct sock, sk_bound_dev_if));
5426                 break;
5427
5428         case offsetof(struct bpf_sock, mark):
5429                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_mark) != 4);
5430
5431                 if (type == BPF_WRITE)
5432                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
5433                                         offsetof(struct sock, sk_mark));
5434                 else
5435                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5436                                       offsetof(struct sock, sk_mark));
5437                 break;
5438
5439         case offsetof(struct bpf_sock, priority):
5440                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_priority) != 4);
5441
5442                 if (type == BPF_WRITE)
5443                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
5444                                         offsetof(struct sock, sk_priority));
5445                 else
5446                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5447                                       offsetof(struct sock, sk_priority));
5448                 break;
5449
5450         case offsetof(struct bpf_sock, family):
5451                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_family) != 2);
5452
5453                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
5454                                       offsetof(struct sock, sk_family));
5455                 break;
5456
5457         case offsetof(struct bpf_sock, type):
5458                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5459                                       offsetof(struct sock, __sk_flags_offset));
5460                 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_TYPE_MASK);
5461                 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_TYPE_SHIFT);
5462                 break;
5463
5464         case offsetof(struct bpf_sock, protocol):
5465                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5466                                       offsetof(struct sock, __sk_flags_offset));
5467                 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_PROTO_MASK);
5468                 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_PROTO_SHIFT);
5469                 break;
5470
5471         case offsetof(struct bpf_sock, src_ip4):
5472                 *insn++ = BPF_LDX_MEM(
5473                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
5474                         bpf_target_off(struct sock_common, skc_rcv_saddr,
5475                                        FIELD_SIZEOF(struct sock_common,
5476                                                     skc_rcv_saddr),
5477                                        target_size));
5478                 break;
5479
5480         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
5481 #if IS_ENABLED(CONFIG_IPV6)
5482                 off = si->off;
5483                 off -= offsetof(struct bpf_sock, src_ip6[0]);
5484                 *insn++ = BPF_LDX_MEM(
5485                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
5486                         bpf_target_off(
5487                                 struct sock_common,
5488                                 skc_v6_rcv_saddr.s6_addr32[0],
5489                                 FIELD_SIZEOF(struct sock_common,
5490                                              skc_v6_rcv_saddr.s6_addr32[0]),
5491                                 target_size) + off);
5492 #else
5493                 (void)off;
5494                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
5495 #endif
5496                 break;
5497
5498         case offsetof(struct bpf_sock, src_port):
5499                 *insn++ = BPF_LDX_MEM(
5500                         BPF_FIELD_SIZEOF(struct sock_common, skc_num),
5501                         si->dst_reg, si->src_reg,
5502                         bpf_target_off(struct sock_common, skc_num,
5503                                        FIELD_SIZEOF(struct sock_common,
5504                                                     skc_num),
5505                                        target_size));
5506                 break;
5507         }
5508
5509         return insn - insn_buf;
5510 }
5511
5512 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
5513                                          const struct bpf_insn *si,
5514                                          struct bpf_insn *insn_buf,
5515                                          struct bpf_prog *prog, u32 *target_size)
5516 {
5517         struct bpf_insn *insn = insn_buf;
5518
5519         switch (si->off) {
5520         case offsetof(struct __sk_buff, ifindex):
5521                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
5522                                       si->dst_reg, si->src_reg,
5523                                       offsetof(struct sk_buff, dev));
5524                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
5525                                       bpf_target_off(struct net_device, ifindex, 4,
5526                                                      target_size));
5527                 break;
5528         default:
5529                 return bpf_convert_ctx_access(type, si, insn_buf, prog,
5530                                               target_size);
5531         }
5532
5533         return insn - insn_buf;
5534 }
5535
5536 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
5537                                   const struct bpf_insn *si,
5538                                   struct bpf_insn *insn_buf,
5539                                   struct bpf_prog *prog, u32 *target_size)
5540 {
5541         struct bpf_insn *insn = insn_buf;
5542
5543         switch (si->off) {
5544         case offsetof(struct xdp_md, data):
5545                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
5546                                       si->dst_reg, si->src_reg,
5547                                       offsetof(struct xdp_buff, data));
5548                 break;
5549         case offsetof(struct xdp_md, data_meta):
5550                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
5551                                       si->dst_reg, si->src_reg,
5552                                       offsetof(struct xdp_buff, data_meta));
5553                 break;
5554         case offsetof(struct xdp_md, data_end):
5555                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
5556                                       si->dst_reg, si->src_reg,
5557                                       offsetof(struct xdp_buff, data_end));
5558                 break;
5559         case offsetof(struct xdp_md, ingress_ifindex):
5560                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
5561                                       si->dst_reg, si->src_reg,
5562                                       offsetof(struct xdp_buff, rxq));
5563                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
5564                                       si->dst_reg, si->dst_reg,
5565                                       offsetof(struct xdp_rxq_info, dev));
5566                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
5567                                       offsetof(struct net_device, ifindex));
5568                 break;
5569         case offsetof(struct xdp_md, rx_queue_index):
5570                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
5571                                       si->dst_reg, si->src_reg,
5572                                       offsetof(struct xdp_buff, rxq));
5573                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
5574                                       offsetof(struct xdp_rxq_info,
5575                                                queue_index));
5576                 break;
5577         }
5578
5579         return insn - insn_buf;
5580 }
5581
5582 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
5583  * context Structure, F is Field in context structure that contains a pointer
5584  * to Nested Structure of type NS that has the field NF.
5585  *
5586  * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
5587  * sure that SIZE is not greater than actual size of S.F.NF.
5588  *
5589  * If offset OFF is provided, the load happens from that offset relative to
5590  * offset of NF.
5591  */
5592 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)          \
5593         do {                                                                   \
5594                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
5595                                       si->src_reg, offsetof(S, F));            \
5596                 *insn++ = BPF_LDX_MEM(                                         \
5597                         SIZE, si->dst_reg, si->dst_reg,                        \
5598                         bpf_target_off(NS, NF, FIELD_SIZEOF(NS, NF),           \
5599                                        target_size)                            \
5600                                 + OFF);                                        \
5601         } while (0)
5602
5603 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)                              \
5604         SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,                     \
5605                                              BPF_FIELD_SIZEOF(NS, NF), 0)
5606
5607 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
5608  * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
5609  *
5610  * It doesn't support SIZE argument though since narrow stores are not
5611  * supported for now.
5612  *
5613  * In addition it uses Temporary Field TF (member of struct S) as the 3rd
5614  * "register" since two registers available in convert_ctx_access are not
5615  * enough: we can't override neither SRC, since it contains value to store, nor
5616  * DST since it contains pointer to context that may be used by later
5617  * instructions. But we need a temporary place to save pointer to nested
5618  * structure whose field we want to store to.
5619  */
5620 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, OFF, TF)                \
5621         do {                                                                   \
5622                 int tmp_reg = BPF_REG_9;                                       \
5623                 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)          \
5624                         --tmp_reg;                                             \
5625                 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)          \
5626                         --tmp_reg;                                             \
5627                 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,            \
5628                                       offsetof(S, TF));                        \
5629                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,         \
5630                                       si->dst_reg, offsetof(S, F));            \
5631                 *insn++ = BPF_STX_MEM(                                         \
5632                         BPF_FIELD_SIZEOF(NS, NF), tmp_reg, si->src_reg,        \
5633                         bpf_target_off(NS, NF, FIELD_SIZEOF(NS, NF),           \
5634                                        target_size)                            \
5635                                 + OFF);                                        \
5636                 *insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,            \
5637                                       offsetof(S, TF));                        \
5638         } while (0)
5639
5640 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
5641                                                       TF)                      \
5642         do {                                                                   \
5643                 if (type == BPF_WRITE) {                                       \
5644                         SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, OFF,    \
5645                                                          TF);                  \
5646                 } else {                                                       \
5647                         SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(                  \
5648                                 S, NS, F, NF, SIZE, OFF);  \
5649                 }                                                              \
5650         } while (0)
5651
5652 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF)                 \
5653         SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(                         \
5654                 S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
5655
5656 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
5657                                         const struct bpf_insn *si,
5658                                         struct bpf_insn *insn_buf,
5659                                         struct bpf_prog *prog, u32 *target_size)
5660 {
5661         struct bpf_insn *insn = insn_buf;
5662         int off;
5663
5664         switch (si->off) {
5665         case offsetof(struct bpf_sock_addr, user_family):
5666                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
5667                                             struct sockaddr, uaddr, sa_family);
5668                 break;
5669
5670         case offsetof(struct bpf_sock_addr, user_ip4):
5671                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
5672                         struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
5673                         sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
5674                 break;
5675
5676         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
5677                 off = si->off;
5678                 off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
5679                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
5680                         struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
5681                         sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
5682                         tmp_reg);
5683                 break;
5684
5685         case offsetof(struct bpf_sock_addr, user_port):
5686                 /* To get port we need to know sa_family first and then treat
5687                  * sockaddr as either sockaddr_in or sockaddr_in6.
5688                  * Though we can simplify since port field has same offset and
5689                  * size in both structures.
5690                  * Here we check this invariant and use just one of the
5691                  * structures if it's true.
5692                  */
5693                 BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
5694                              offsetof(struct sockaddr_in6, sin6_port));
5695                 BUILD_BUG_ON(FIELD_SIZEOF(struct sockaddr_in, sin_port) !=
5696                              FIELD_SIZEOF(struct sockaddr_in6, sin6_port));
5697                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(struct bpf_sock_addr_kern,
5698                                                      struct sockaddr_in6, uaddr,
5699                                                      sin6_port, tmp_reg);
5700                 break;
5701
5702         case offsetof(struct bpf_sock_addr, family):
5703                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
5704                                             struct sock, sk, sk_family);
5705                 break;
5706
5707         case offsetof(struct bpf_sock_addr, type):
5708                 SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(
5709                         struct bpf_sock_addr_kern, struct sock, sk,
5710                         __sk_flags_offset, BPF_W, 0);
5711                 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_TYPE_MASK);
5712                 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_TYPE_SHIFT);
5713                 break;
5714
5715         case offsetof(struct bpf_sock_addr, protocol):
5716                 SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(
5717                         struct bpf_sock_addr_kern, struct sock, sk,
5718                         __sk_flags_offset, BPF_W, 0);
5719                 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_PROTO_MASK);
5720                 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg,
5721                                         SK_FL_PROTO_SHIFT);
5722                 break;
5723         }
5724
5725         return insn - insn_buf;
5726 }
5727
5728 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
5729                                        const struct bpf_insn *si,
5730                                        struct bpf_insn *insn_buf,
5731                                        struct bpf_prog *prog,
5732                                        u32 *target_size)
5733 {
5734         struct bpf_insn *insn = insn_buf;
5735         int off;
5736
5737         switch (si->off) {
5738         case offsetof(struct bpf_sock_ops, op) ...
5739              offsetof(struct bpf_sock_ops, replylong[3]):
5740                 BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, op) !=
5741                              FIELD_SIZEOF(struct bpf_sock_ops_kern, op));
5742                 BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, reply) !=
5743                              FIELD_SIZEOF(struct bpf_sock_ops_kern, reply));
5744                 BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, replylong) !=
5745                              FIELD_SIZEOF(struct bpf_sock_ops_kern, replylong));
5746                 off = si->off;
5747                 off -= offsetof(struct bpf_sock_ops, op);
5748                 off += offsetof(struct bpf_sock_ops_kern, op);
5749                 if (type == BPF_WRITE)
5750                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
5751                                               off);
5752                 else
5753                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5754                                               off);
5755                 break;
5756
5757         case offsetof(struct bpf_sock_ops, family):
5758                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_family) != 2);
5759
5760                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
5761                                               struct bpf_sock_ops_kern, sk),
5762                                       si->dst_reg, si->src_reg,
5763                                       offsetof(struct bpf_sock_ops_kern, sk));
5764                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
5765                                       offsetof(struct sock_common, skc_family));
5766                 break;
5767
5768         case offsetof(struct bpf_sock_ops, remote_ip4):
5769                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_daddr) != 4);
5770
5771                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
5772                                                 struct bpf_sock_ops_kern, sk),
5773                                       si->dst_reg, si->src_reg,
5774                                       offsetof(struct bpf_sock_ops_kern, sk));
5775                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
5776                                       offsetof(struct sock_common, skc_daddr));
5777                 break;
5778
5779         case offsetof(struct bpf_sock_ops, local_ip4):
5780                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_rcv_saddr) != 4);
5781
5782                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
5783                                               struct bpf_sock_ops_kern, sk),
5784                                       si->dst_reg, si->src_reg,
5785                                       offsetof(struct bpf_sock_ops_kern, sk));
5786                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
5787                                       offsetof(struct sock_common,
5788                                                skc_rcv_saddr));
5789                 break;
5790
5791         case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
5792              offsetof(struct bpf_sock_ops, remote_ip6[3]):
5793 #if IS_ENABLED(CONFIG_IPV6)
5794                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
5795                                           skc_v6_daddr.s6_addr32[0]) != 4);
5796
5797                 off = si->off;
5798                 off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
5799                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
5800                                                 struct bpf_sock_ops_kern, sk),
5801                                       si->dst_reg, si->src_reg,
5802                                       offsetof(struct bpf_sock_ops_kern, sk));
5803                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
5804                                       offsetof(struct sock_common,
5805                                                skc_v6_daddr.s6_addr32[0]) +
5806                                       off);
5807 #else
5808                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
5809 #endif
5810                 break;
5811
5812         case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
5813              offsetof(struct bpf_sock_ops, local_ip6[3]):
5814 #if IS_ENABLED(CONFIG_IPV6)
5815                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
5816                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
5817
5818                 off = si->off;
5819                 off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
5820                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
5821                                                 struct bpf_sock_ops_kern, sk),
5822                                       si->dst_reg, si->src_reg,
5823                                       offsetof(struct bpf_sock_ops_kern, sk));
5824                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
5825                                       offsetof(struct sock_common,
5826                                                skc_v6_rcv_saddr.s6_addr32[0]) +
5827                                       off);
5828 #else
5829                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
5830 #endif
5831                 break;
5832
5833         case offsetof(struct bpf_sock_ops, remote_port):
5834                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_dport) != 2);
5835
5836                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
5837                                                 struct bpf_sock_ops_kern, sk),
5838                                       si->dst_reg, si->src_reg,
5839                                       offsetof(struct bpf_sock_ops_kern, sk));
5840                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
5841                                       offsetof(struct sock_common, skc_dport));
5842 #ifndef __BIG_ENDIAN_BITFIELD
5843                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
5844 #endif
5845                 break;
5846
5847         case offsetof(struct bpf_sock_ops, local_port):
5848                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_num) != 2);
5849
5850                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
5851                                                 struct bpf_sock_ops_kern, sk),
5852                                       si->dst_reg, si->src_reg,
5853                                       offsetof(struct bpf_sock_ops_kern, sk));
5854                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
5855                                       offsetof(struct sock_common, skc_num));
5856                 break;
5857
5858         case offsetof(struct bpf_sock_ops, is_fullsock):
5859                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
5860                                                 struct bpf_sock_ops_kern,
5861                                                 is_fullsock),
5862                                       si->dst_reg, si->src_reg,
5863                                       offsetof(struct bpf_sock_ops_kern,
5864                                                is_fullsock));
5865                 break;
5866
5867         case offsetof(struct bpf_sock_ops, state):
5868                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_state) != 1);
5869
5870                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
5871                                                 struct bpf_sock_ops_kern, sk),
5872                                       si->dst_reg, si->src_reg,
5873                                       offsetof(struct bpf_sock_ops_kern, sk));
5874                 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
5875                                       offsetof(struct sock_common, skc_state));
5876                 break;
5877
5878         case offsetof(struct bpf_sock_ops, rtt_min):
5879                 BUILD_BUG_ON(FIELD_SIZEOF(struct tcp_sock, rtt_min) !=
5880                              sizeof(struct minmax));
5881                 BUILD_BUG_ON(sizeof(struct minmax) <
5882                              sizeof(struct minmax_sample));
5883
5884                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
5885                                                 struct bpf_sock_ops_kern, sk),
5886                                       si->dst_reg, si->src_reg,
5887                                       offsetof(struct bpf_sock_ops_kern, sk));
5888                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
5889                                       offsetof(struct tcp_sock, rtt_min) +
5890                                       FIELD_SIZEOF(struct minmax_sample, t));
5891                 break;
5892
5893 /* Helper macro for adding read access to tcp_sock or sock fields. */
5894 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)                         \
5895         do {                                                                  \
5896                 BUILD_BUG_ON(FIELD_SIZEOF(OBJ, OBJ_FIELD) >                   \
5897                              FIELD_SIZEOF(struct bpf_sock_ops, BPF_FIELD));   \
5898                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
5899                                                 struct bpf_sock_ops_kern,     \
5900                                                 is_fullsock),                 \
5901                                       si->dst_reg, si->src_reg,               \
5902                                       offsetof(struct bpf_sock_ops_kern,      \
5903                                                is_fullsock));                 \
5904                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 2);            \
5905                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
5906                                                 struct bpf_sock_ops_kern, sk),\
5907                                       si->dst_reg, si->src_reg,               \
5908                                       offsetof(struct bpf_sock_ops_kern, sk));\
5909                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,                   \
5910                                                        OBJ_FIELD),            \
5911                                       si->dst_reg, si->dst_reg,               \
5912                                       offsetof(OBJ, OBJ_FIELD));              \
5913         } while (0)
5914
5915 /* Helper macro for adding write access to tcp_sock or sock fields.
5916  * The macro is called with two registers, dst_reg which contains a pointer
5917  * to ctx (context) and src_reg which contains the value that should be
5918  * stored. However, we need an additional register since we cannot overwrite
5919  * dst_reg because it may be used later in the program.
5920  * Instead we "borrow" one of the other register. We first save its value
5921  * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
5922  * it at the end of the macro.
5923  */
5924 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)                         \
5925         do {                                                                  \
5926                 int reg = BPF_REG_9;                                          \
5927                 BUILD_BUG_ON(FIELD_SIZEOF(OBJ, OBJ_FIELD) >                   \
5928                              FIELD_SIZEOF(struct bpf_sock_ops, BPF_FIELD));   \
5929                 if (si->dst_reg == reg || si->src_reg == reg)                 \
5930                         reg--;                                                \
5931                 if (si->dst_reg == reg || si->src_reg == reg)                 \
5932                         reg--;                                                \
5933                 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,               \
5934                                       offsetof(struct bpf_sock_ops_kern,      \
5935                                                temp));                        \
5936                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
5937                                                 struct bpf_sock_ops_kern,     \
5938                                                 is_fullsock),                 \
5939                                       reg, si->dst_reg,                       \
5940                                       offsetof(struct bpf_sock_ops_kern,      \
5941                                                is_fullsock));                 \
5942                 *insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);                    \
5943                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
5944                                                 struct bpf_sock_ops_kern, sk),\
5945                                       reg, si->dst_reg,                       \
5946                                       offsetof(struct bpf_sock_ops_kern, sk));\
5947                 *insn++ = BPF_STX_MEM(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD),       \
5948                                       reg, si->src_reg,                       \
5949                                       offsetof(OBJ, OBJ_FIELD));              \
5950                 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,               \
5951                                       offsetof(struct bpf_sock_ops_kern,      \
5952                                                temp));                        \
5953         } while (0)
5954
5955 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)            \
5956         do {                                                                  \
5957                 if (TYPE == BPF_WRITE)                                        \
5958                         SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);        \
5959                 else                                                          \
5960                         SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);        \
5961         } while (0)
5962
5963         case offsetof(struct bpf_sock_ops, snd_cwnd):
5964                 SOCK_OPS_GET_FIELD(snd_cwnd, snd_cwnd, struct tcp_sock);
5965                 break;
5966
5967         case offsetof(struct bpf_sock_ops, srtt_us):
5968                 SOCK_OPS_GET_FIELD(srtt_us, srtt_us, struct tcp_sock);
5969                 break;
5970
5971         case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
5972                 SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
5973                                    struct tcp_sock);
5974                 break;
5975
5976         case offsetof(struct bpf_sock_ops, snd_ssthresh):
5977                 SOCK_OPS_GET_FIELD(snd_ssthresh, snd_ssthresh, struct tcp_sock);
5978                 break;
5979
5980         case offsetof(struct bpf_sock_ops, rcv_nxt):
5981                 SOCK_OPS_GET_FIELD(rcv_nxt, rcv_nxt, struct tcp_sock);
5982                 break;
5983
5984         case offsetof(struct bpf_sock_ops, snd_nxt):
5985                 SOCK_OPS_GET_FIELD(snd_nxt, snd_nxt, struct tcp_sock);
5986                 break;
5987
5988         case offsetof(struct bpf_sock_ops, snd_una):
5989                 SOCK_OPS_GET_FIELD(snd_una, snd_una, struct tcp_sock);
5990                 break;
5991
5992         case offsetof(struct bpf_sock_ops, mss_cache):
5993                 SOCK_OPS_GET_FIELD(mss_cache, mss_cache, struct tcp_sock);
5994                 break;
5995
5996         case offsetof(struct bpf_sock_ops, ecn_flags):
5997                 SOCK_OPS_GET_FIELD(ecn_flags, ecn_flags, struct tcp_sock);
5998                 break;
5999
6000         case offsetof(struct bpf_sock_ops, rate_delivered):
6001                 SOCK_OPS_GET_FIELD(rate_delivered, rate_delivered,
6002                                    struct tcp_sock);
6003                 break;
6004
6005         case offsetof(struct bpf_sock_ops, rate_interval_us):
6006                 SOCK_OPS_GET_FIELD(rate_interval_us, rate_interval_us,
6007                                    struct tcp_sock);
6008                 break;
6009
6010         case offsetof(struct bpf_sock_ops, packets_out):
6011                 SOCK_OPS_GET_FIELD(packets_out, packets_out, struct tcp_sock);
6012                 break;
6013
6014         case offsetof(struct bpf_sock_ops, retrans_out):
6015                 SOCK_OPS_GET_FIELD(retrans_out, retrans_out, struct tcp_sock);
6016                 break;
6017
6018         case offsetof(struct bpf_sock_ops, total_retrans):
6019                 SOCK_OPS_GET_FIELD(total_retrans, total_retrans,
6020                                    struct tcp_sock);
6021                 break;
6022
6023         case offsetof(struct bpf_sock_ops, segs_in):
6024                 SOCK_OPS_GET_FIELD(segs_in, segs_in, struct tcp_sock);
6025                 break;
6026
6027         case offsetof(struct bpf_sock_ops, data_segs_in):
6028                 SOCK_OPS_GET_FIELD(data_segs_in, data_segs_in, struct tcp_sock);
6029                 break;
6030
6031         case offsetof(struct bpf_sock_ops, segs_out):
6032                 SOCK_OPS_GET_FIELD(segs_out, segs_out, struct tcp_sock);
6033                 break;
6034
6035         case offsetof(struct bpf_sock_ops, data_segs_out):
6036                 SOCK_OPS_GET_FIELD(data_segs_out, data_segs_out,
6037                                    struct tcp_sock);
6038                 break;
6039
6040         case offsetof(struct bpf_sock_ops, lost_out):
6041                 SOCK_OPS_GET_FIELD(lost_out, lost_out, struct tcp_sock);
6042                 break;
6043
6044         case offsetof(struct bpf_sock_ops, sacked_out):
6045                 SOCK_OPS_GET_FIELD(sacked_out, sacked_out, struct tcp_sock);
6046                 break;
6047
6048         case offsetof(struct bpf_sock_ops, sk_txhash):
6049                 SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
6050                                           struct sock, type);
6051                 break;
6052
6053         case offsetof(struct bpf_sock_ops, bytes_received):
6054                 SOCK_OPS_GET_FIELD(bytes_received, bytes_received,
6055                                    struct tcp_sock);
6056                 break;
6057
6058         case offsetof(struct bpf_sock_ops, bytes_acked):
6059                 SOCK_OPS_GET_FIELD(bytes_acked, bytes_acked, struct tcp_sock);
6060                 break;
6061
6062         }
6063         return insn - insn_buf;
6064 }
6065
6066 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
6067                                      const struct bpf_insn *si,
6068                                      struct bpf_insn *insn_buf,
6069                                      struct bpf_prog *prog, u32 *target_size)
6070 {
6071         struct bpf_insn *insn = insn_buf;
6072         int off;
6073
6074         switch (si->off) {
6075         case offsetof(struct __sk_buff, data_end):
6076                 off  = si->off;
6077                 off -= offsetof(struct __sk_buff, data_end);
6078                 off += offsetof(struct sk_buff, cb);
6079                 off += offsetof(struct tcp_skb_cb, bpf.data_end);
6080                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
6081                                       si->src_reg, off);
6082                 break;
6083         default:
6084                 return bpf_convert_ctx_access(type, si, insn_buf, prog,
6085                                               target_size);
6086         }
6087
6088         return insn - insn_buf;
6089 }
6090
6091 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
6092                                      const struct bpf_insn *si,
6093                                      struct bpf_insn *insn_buf,
6094                                      struct bpf_prog *prog, u32 *target_size)
6095 {
6096         struct bpf_insn *insn = insn_buf;
6097
6098         switch (si->off) {
6099         case offsetof(struct sk_msg_md, data):
6100                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_buff, data),
6101                                       si->dst_reg, si->src_reg,
6102                                       offsetof(struct sk_msg_buff, data));
6103                 break;
6104         case offsetof(struct sk_msg_md, data_end):
6105                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_buff, data_end),
6106                                       si->dst_reg, si->src_reg,
6107                                       offsetof(struct sk_msg_buff, data_end));
6108                 break;
6109         }
6110
6111         return insn - insn_buf;
6112 }
6113
6114 const struct bpf_verifier_ops sk_filter_verifier_ops = {
6115         .get_func_proto         = sk_filter_func_proto,
6116         .is_valid_access        = sk_filter_is_valid_access,
6117         .convert_ctx_access     = bpf_convert_ctx_access,
6118         .gen_ld_abs             = bpf_gen_ld_abs,
6119 };
6120
6121 const struct bpf_prog_ops sk_filter_prog_ops = {
6122         .test_run               = bpf_prog_test_run_skb,
6123 };
6124
6125 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
6126         .get_func_proto         = tc_cls_act_func_proto,
6127         .is_valid_access        = tc_cls_act_is_valid_access,
6128         .convert_ctx_access     = tc_cls_act_convert_ctx_access,
6129         .gen_prologue           = tc_cls_act_prologue,
6130         .gen_ld_abs             = bpf_gen_ld_abs,
6131 };
6132
6133 const struct bpf_prog_ops tc_cls_act_prog_ops = {
6134         .test_run               = bpf_prog_test_run_skb,
6135 };
6136
6137 const struct bpf_verifier_ops xdp_verifier_ops = {
6138         .get_func_proto         = xdp_func_proto,
6139         .is_valid_access        = xdp_is_valid_access,
6140         .convert_ctx_access     = xdp_convert_ctx_access,
6141 };
6142
6143 const struct bpf_prog_ops xdp_prog_ops = {
6144         .test_run               = bpf_prog_test_run_xdp,
6145 };
6146
6147 const struct bpf_verifier_ops cg_skb_verifier_ops = {
6148         .get_func_proto         = sk_filter_func_proto,
6149         .is_valid_access        = sk_filter_is_valid_access,
6150         .convert_ctx_access     = bpf_convert_ctx_access,
6151 };
6152
6153 const struct bpf_prog_ops cg_skb_prog_ops = {
6154         .test_run               = bpf_prog_test_run_skb,
6155 };
6156
6157 const struct bpf_verifier_ops lwt_inout_verifier_ops = {
6158         .get_func_proto         = lwt_inout_func_proto,
6159         .is_valid_access        = lwt_is_valid_access,
6160         .convert_ctx_access     = bpf_convert_ctx_access,
6161 };
6162
6163 const struct bpf_prog_ops lwt_inout_prog_ops = {
6164         .test_run               = bpf_prog_test_run_skb,
6165 };
6166
6167 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
6168         .get_func_proto         = lwt_xmit_func_proto,
6169         .is_valid_access        = lwt_is_valid_access,
6170         .convert_ctx_access     = bpf_convert_ctx_access,
6171         .gen_prologue           = tc_cls_act_prologue,
6172 };
6173
6174 const struct bpf_prog_ops lwt_xmit_prog_ops = {
6175         .test_run               = bpf_prog_test_run_skb,
6176 };
6177
6178 const struct bpf_verifier_ops cg_sock_verifier_ops = {
6179         .get_func_proto         = sock_filter_func_proto,
6180         .is_valid_access        = sock_filter_is_valid_access,
6181         .convert_ctx_access     = sock_filter_convert_ctx_access,
6182 };
6183
6184 const struct bpf_prog_ops cg_sock_prog_ops = {
6185 };
6186
6187 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
6188         .get_func_proto         = sock_addr_func_proto,
6189         .is_valid_access        = sock_addr_is_valid_access,
6190         .convert_ctx_access     = sock_addr_convert_ctx_access,
6191 };
6192
6193 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
6194 };
6195
6196 const struct bpf_verifier_ops sock_ops_verifier_ops = {
6197         .get_func_proto         = sock_ops_func_proto,
6198         .is_valid_access        = sock_ops_is_valid_access,
6199         .convert_ctx_access     = sock_ops_convert_ctx_access,
6200 };
6201
6202 const struct bpf_prog_ops sock_ops_prog_ops = {
6203 };
6204
6205 const struct bpf_verifier_ops sk_skb_verifier_ops = {
6206         .get_func_proto         = sk_skb_func_proto,
6207         .is_valid_access        = sk_skb_is_valid_access,
6208         .convert_ctx_access     = sk_skb_convert_ctx_access,
6209         .gen_prologue           = sk_skb_prologue,
6210 };
6211
6212 const struct bpf_prog_ops sk_skb_prog_ops = {
6213 };
6214
6215 const struct bpf_verifier_ops sk_msg_verifier_ops = {
6216         .get_func_proto         = sk_msg_func_proto,
6217         .is_valid_access        = sk_msg_is_valid_access,
6218         .convert_ctx_access     = sk_msg_convert_ctx_access,
6219 };
6220
6221 const struct bpf_prog_ops sk_msg_prog_ops = {
6222 };
6223
6224 int sk_detach_filter(struct sock *sk)
6225 {
6226         int ret = -ENOENT;
6227         struct sk_filter *filter;
6228
6229         if (sock_flag(sk, SOCK_FILTER_LOCKED))
6230                 return -EPERM;
6231
6232         filter = rcu_dereference_protected(sk->sk_filter,
6233                                            lockdep_sock_is_held(sk));
6234         if (filter) {
6235                 RCU_INIT_POINTER(sk->sk_filter, NULL);
6236                 sk_filter_uncharge(sk, filter);
6237                 ret = 0;
6238         }
6239
6240         return ret;
6241 }
6242 EXPORT_SYMBOL_GPL(sk_detach_filter);
6243
6244 int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
6245                   unsigned int len)
6246 {
6247         struct sock_fprog_kern *fprog;
6248         struct sk_filter *filter;
6249         int ret = 0;
6250
6251         lock_sock(sk);
6252         filter = rcu_dereference_protected(sk->sk_filter,
6253                                            lockdep_sock_is_held(sk));
6254         if (!filter)
6255                 goto out;
6256
6257         /* We're copying the filter that has been originally attached,
6258          * so no conversion/decode needed anymore. eBPF programs that
6259          * have no original program cannot be dumped through this.
6260          */
6261         ret = -EACCES;
6262         fprog = filter->prog->orig_prog;
6263         if (!fprog)
6264                 goto out;
6265
6266         ret = fprog->len;
6267         if (!len)
6268                 /* User space only enquires number of filter blocks. */
6269                 goto out;
6270
6271         ret = -EINVAL;
6272         if (len < fprog->len)
6273                 goto out;
6274
6275         ret = -EFAULT;
6276         if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
6277                 goto out;
6278
6279         /* Instead of bytes, the API requests to return the number
6280          * of filter blocks.
6281          */
6282         ret = fprog->len;
6283 out:
6284         release_sock(sk);
6285         return ret;
6286 }