Merge branches 'fixes' and 'misc' into for-linus
[linux-2.6-microblaze.git] / net / core / dev.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *      Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:        Ross Biro
7  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *      Additional Authors:
11  *              Florian la Roche <rzsfl@rz.uni-sb.de>
12  *              Alan Cox <gw4pts@gw4pts.ampr.org>
13  *              David Hinds <dahinds@users.sourceforge.net>
14  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *              Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *      Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *              Alan Cox        :       device private ioctl copies fields back.
24  *              Alan Cox        :       Transmit queue code does relevant
25  *                                      stunts to keep the queue safe.
26  *              Alan Cox        :       Fixed double lock.
27  *              Alan Cox        :       Fixed promisc NULL pointer trap
28  *              ????????        :       Support the full private ioctl range
29  *              Alan Cox        :       Moved ioctl permission check into
30  *                                      drivers
31  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
32  *              Alan Cox        :       100 backlog just doesn't cut it when
33  *                                      you start doing multicast video 8)
34  *              Alan Cox        :       Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *              Alan Cox        :       Took out transmit every packet pass
37  *                                      Saved a few bytes in the ioctl handler
38  *              Alan Cox        :       Network driver sets packet type before
39  *                                      calling netif_rx. Saves a function
40  *                                      call a packet.
41  *              Alan Cox        :       Hashed net_bh()
42  *              Richard Kooijman:       Timestamp fixes.
43  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
44  *              Alan Cox        :       Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *                                      changes.
47  *              Rudi Cilibrasi  :       Pass the right thing to
48  *                                      set_mac_address()
49  *              Dave Miller     :       32bit quantity for the device lock to
50  *                                      make it work out on a Sparc.
51  *              Bjorn Ekwall    :       Added KERNELD hack.
52  *              Alan Cox        :       Cleaned up the backlog initialise.
53  *              Craig Metz      :       SIOCGIFCONF fix if space for under
54  *                                      1 device.
55  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
56  *                                      is no device open function.
57  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
58  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
59  *              Cyrus Durgin    :       Cleaned for KMOD
60  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
61  *                                      A network device unload needs to purge
62  *                                      the backlog queue.
63  *      Paul Rusty Russell      :       SIOCSIFNAME
64  *              Pekka Riikonen  :       Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *                                      - netif_rx() feedback
69  */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <trace/events/qdisc.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_netdev.h>
144 #include <linux/crash_dump.h>
145 #include <linux/sctp.h>
146 #include <net/udp_tunnel.h>
147 #include <linux/net_namespace.h>
148 #include <linux/indirect_call_wrapper.h>
149 #include <net/devlink.h>
150 #include <linux/pm_runtime.h>
151 #include <linux/prandom.h>
152 #include <linux/once_lite.h>
153
154 #include "net-sysfs.h"
155
156
157 static DEFINE_SPINLOCK(ptype_lock);
158 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
159 struct list_head ptype_all __read_mostly;       /* Taps */
160
161 static int netif_rx_internal(struct sk_buff *skb);
162 static int call_netdevice_notifiers_info(unsigned long val,
163                                          struct netdev_notifier_info *info);
164 static int call_netdevice_notifiers_extack(unsigned long val,
165                                            struct net_device *dev,
166                                            struct netlink_ext_ack *extack);
167 static struct napi_struct *napi_by_id(unsigned int napi_id);
168
169 /*
170  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
171  * semaphore.
172  *
173  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
174  *
175  * Writers must hold the rtnl semaphore while they loop through the
176  * dev_base_head list, and hold dev_base_lock for writing when they do the
177  * actual updates.  This allows pure readers to access the list even
178  * while a writer is preparing to update it.
179  *
180  * To put it another way, dev_base_lock is held for writing only to
181  * protect against pure readers; the rtnl semaphore provides the
182  * protection against other writers.
183  *
184  * See, for example usages, register_netdevice() and
185  * unregister_netdevice(), which must be called with the rtnl
186  * semaphore held.
187  */
188 DEFINE_RWLOCK(dev_base_lock);
189 EXPORT_SYMBOL(dev_base_lock);
190
191 static DEFINE_MUTEX(ifalias_mutex);
192
193 /* protects napi_hash addition/deletion and napi_gen_id */
194 static DEFINE_SPINLOCK(napi_hash_lock);
195
196 static unsigned int napi_gen_id = NR_CPUS;
197 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
198
199 static DECLARE_RWSEM(devnet_rename_sem);
200
201 static inline void dev_base_seq_inc(struct net *net)
202 {
203         while (++net->dev_base_seq == 0)
204                 ;
205 }
206
207 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
208 {
209         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
210
211         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
212 }
213
214 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
215 {
216         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
217 }
218
219 static inline void rps_lock(struct softnet_data *sd)
220 {
221 #ifdef CONFIG_RPS
222         spin_lock(&sd->input_pkt_queue.lock);
223 #endif
224 }
225
226 static inline void rps_unlock(struct softnet_data *sd)
227 {
228 #ifdef CONFIG_RPS
229         spin_unlock(&sd->input_pkt_queue.lock);
230 #endif
231 }
232
233 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
234                                                        const char *name)
235 {
236         struct netdev_name_node *name_node;
237
238         name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
239         if (!name_node)
240                 return NULL;
241         INIT_HLIST_NODE(&name_node->hlist);
242         name_node->dev = dev;
243         name_node->name = name;
244         return name_node;
245 }
246
247 static struct netdev_name_node *
248 netdev_name_node_head_alloc(struct net_device *dev)
249 {
250         struct netdev_name_node *name_node;
251
252         name_node = netdev_name_node_alloc(dev, dev->name);
253         if (!name_node)
254                 return NULL;
255         INIT_LIST_HEAD(&name_node->list);
256         return name_node;
257 }
258
259 static void netdev_name_node_free(struct netdev_name_node *name_node)
260 {
261         kfree(name_node);
262 }
263
264 static void netdev_name_node_add(struct net *net,
265                                  struct netdev_name_node *name_node)
266 {
267         hlist_add_head_rcu(&name_node->hlist,
268                            dev_name_hash(net, name_node->name));
269 }
270
271 static void netdev_name_node_del(struct netdev_name_node *name_node)
272 {
273         hlist_del_rcu(&name_node->hlist);
274 }
275
276 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
277                                                         const char *name)
278 {
279         struct hlist_head *head = dev_name_hash(net, name);
280         struct netdev_name_node *name_node;
281
282         hlist_for_each_entry(name_node, head, hlist)
283                 if (!strcmp(name_node->name, name))
284                         return name_node;
285         return NULL;
286 }
287
288 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
289                                                             const char *name)
290 {
291         struct hlist_head *head = dev_name_hash(net, name);
292         struct netdev_name_node *name_node;
293
294         hlist_for_each_entry_rcu(name_node, head, hlist)
295                 if (!strcmp(name_node->name, name))
296                         return name_node;
297         return NULL;
298 }
299
300 bool netdev_name_in_use(struct net *net, const char *name)
301 {
302         return netdev_name_node_lookup(net, name);
303 }
304 EXPORT_SYMBOL(netdev_name_in_use);
305
306 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
307 {
308         struct netdev_name_node *name_node;
309         struct net *net = dev_net(dev);
310
311         name_node = netdev_name_node_lookup(net, name);
312         if (name_node)
313                 return -EEXIST;
314         name_node = netdev_name_node_alloc(dev, name);
315         if (!name_node)
316                 return -ENOMEM;
317         netdev_name_node_add(net, name_node);
318         /* The node that holds dev->name acts as a head of per-device list. */
319         list_add_tail(&name_node->list, &dev->name_node->list);
320
321         return 0;
322 }
323 EXPORT_SYMBOL(netdev_name_node_alt_create);
324
325 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
326 {
327         list_del(&name_node->list);
328         netdev_name_node_del(name_node);
329         kfree(name_node->name);
330         netdev_name_node_free(name_node);
331 }
332
333 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
334 {
335         struct netdev_name_node *name_node;
336         struct net *net = dev_net(dev);
337
338         name_node = netdev_name_node_lookup(net, name);
339         if (!name_node)
340                 return -ENOENT;
341         /* lookup might have found our primary name or a name belonging
342          * to another device.
343          */
344         if (name_node == dev->name_node || name_node->dev != dev)
345                 return -EINVAL;
346
347         __netdev_name_node_alt_destroy(name_node);
348
349         return 0;
350 }
351 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
352
353 static void netdev_name_node_alt_flush(struct net_device *dev)
354 {
355         struct netdev_name_node *name_node, *tmp;
356
357         list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
358                 __netdev_name_node_alt_destroy(name_node);
359 }
360
361 /* Device list insertion */
362 static void list_netdevice(struct net_device *dev)
363 {
364         struct net *net = dev_net(dev);
365
366         ASSERT_RTNL();
367
368         write_lock(&dev_base_lock);
369         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
370         netdev_name_node_add(net, dev->name_node);
371         hlist_add_head_rcu(&dev->index_hlist,
372                            dev_index_hash(net, dev->ifindex));
373         write_unlock(&dev_base_lock);
374
375         dev_base_seq_inc(net);
376 }
377
378 /* Device list removal
379  * caller must respect a RCU grace period before freeing/reusing dev
380  */
381 static void unlist_netdevice(struct net_device *dev)
382 {
383         ASSERT_RTNL();
384
385         /* Unlink dev from the device chain */
386         write_lock(&dev_base_lock);
387         list_del_rcu(&dev->dev_list);
388         netdev_name_node_del(dev->name_node);
389         hlist_del_rcu(&dev->index_hlist);
390         write_unlock(&dev_base_lock);
391
392         dev_base_seq_inc(dev_net(dev));
393 }
394
395 /*
396  *      Our notifier list
397  */
398
399 static RAW_NOTIFIER_HEAD(netdev_chain);
400
401 /*
402  *      Device drivers call our routines to queue packets here. We empty the
403  *      queue in the local softnet handler.
404  */
405
406 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
407 EXPORT_PER_CPU_SYMBOL(softnet_data);
408
409 #ifdef CONFIG_LOCKDEP
410 /*
411  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
412  * according to dev->type
413  */
414 static const unsigned short netdev_lock_type[] = {
415          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
416          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
417          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
418          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
419          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
420          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
421          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
422          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
423          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
424          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
425          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
426          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
427          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
428          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
429          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
430
431 static const char *const netdev_lock_name[] = {
432         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
433         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
434         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
435         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
436         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
437         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
438         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
439         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
440         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
441         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
442         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
443         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
444         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
445         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
446         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
447
448 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
449 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
450
451 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
452 {
453         int i;
454
455         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
456                 if (netdev_lock_type[i] == dev_type)
457                         return i;
458         /* the last key is used by default */
459         return ARRAY_SIZE(netdev_lock_type) - 1;
460 }
461
462 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
463                                                  unsigned short dev_type)
464 {
465         int i;
466
467         i = netdev_lock_pos(dev_type);
468         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
469                                    netdev_lock_name[i]);
470 }
471
472 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
473 {
474         int i;
475
476         i = netdev_lock_pos(dev->type);
477         lockdep_set_class_and_name(&dev->addr_list_lock,
478                                    &netdev_addr_lock_key[i],
479                                    netdev_lock_name[i]);
480 }
481 #else
482 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
483                                                  unsigned short dev_type)
484 {
485 }
486
487 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
488 {
489 }
490 #endif
491
492 /*******************************************************************************
493  *
494  *              Protocol management and registration routines
495  *
496  *******************************************************************************/
497
498
499 /*
500  *      Add a protocol ID to the list. Now that the input handler is
501  *      smarter we can dispense with all the messy stuff that used to be
502  *      here.
503  *
504  *      BEWARE!!! Protocol handlers, mangling input packets,
505  *      MUST BE last in hash buckets and checking protocol handlers
506  *      MUST start from promiscuous ptype_all chain in net_bh.
507  *      It is true now, do not change it.
508  *      Explanation follows: if protocol handler, mangling packet, will
509  *      be the first on list, it is not able to sense, that packet
510  *      is cloned and should be copied-on-write, so that it will
511  *      change it and subsequent readers will get broken packet.
512  *                                                      --ANK (980803)
513  */
514
515 static inline struct list_head *ptype_head(const struct packet_type *pt)
516 {
517         if (pt->type == htons(ETH_P_ALL))
518                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
519         else
520                 return pt->dev ? &pt->dev->ptype_specific :
521                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
522 }
523
524 /**
525  *      dev_add_pack - add packet handler
526  *      @pt: packet type declaration
527  *
528  *      Add a protocol handler to the networking stack. The passed &packet_type
529  *      is linked into kernel lists and may not be freed until it has been
530  *      removed from the kernel lists.
531  *
532  *      This call does not sleep therefore it can not
533  *      guarantee all CPU's that are in middle of receiving packets
534  *      will see the new packet type (until the next received packet).
535  */
536
537 void dev_add_pack(struct packet_type *pt)
538 {
539         struct list_head *head = ptype_head(pt);
540
541         spin_lock(&ptype_lock);
542         list_add_rcu(&pt->list, head);
543         spin_unlock(&ptype_lock);
544 }
545 EXPORT_SYMBOL(dev_add_pack);
546
547 /**
548  *      __dev_remove_pack        - remove packet handler
549  *      @pt: packet type declaration
550  *
551  *      Remove a protocol handler that was previously added to the kernel
552  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
553  *      from the kernel lists and can be freed or reused once this function
554  *      returns.
555  *
556  *      The packet type might still be in use by receivers
557  *      and must not be freed until after all the CPU's have gone
558  *      through a quiescent state.
559  */
560 void __dev_remove_pack(struct packet_type *pt)
561 {
562         struct list_head *head = ptype_head(pt);
563         struct packet_type *pt1;
564
565         spin_lock(&ptype_lock);
566
567         list_for_each_entry(pt1, head, list) {
568                 if (pt == pt1) {
569                         list_del_rcu(&pt->list);
570                         goto out;
571                 }
572         }
573
574         pr_warn("dev_remove_pack: %p not found\n", pt);
575 out:
576         spin_unlock(&ptype_lock);
577 }
578 EXPORT_SYMBOL(__dev_remove_pack);
579
580 /**
581  *      dev_remove_pack  - remove packet handler
582  *      @pt: packet type declaration
583  *
584  *      Remove a protocol handler that was previously added to the kernel
585  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
586  *      from the kernel lists and can be freed or reused once this function
587  *      returns.
588  *
589  *      This call sleeps to guarantee that no CPU is looking at the packet
590  *      type after return.
591  */
592 void dev_remove_pack(struct packet_type *pt)
593 {
594         __dev_remove_pack(pt);
595
596         synchronize_net();
597 }
598 EXPORT_SYMBOL(dev_remove_pack);
599
600
601 /*******************************************************************************
602  *
603  *                          Device Interface Subroutines
604  *
605  *******************************************************************************/
606
607 /**
608  *      dev_get_iflink  - get 'iflink' value of a interface
609  *      @dev: targeted interface
610  *
611  *      Indicates the ifindex the interface is linked to.
612  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
613  */
614
615 int dev_get_iflink(const struct net_device *dev)
616 {
617         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
618                 return dev->netdev_ops->ndo_get_iflink(dev);
619
620         return dev->ifindex;
621 }
622 EXPORT_SYMBOL(dev_get_iflink);
623
624 /**
625  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
626  *      @dev: targeted interface
627  *      @skb: The packet.
628  *
629  *      For better visibility of tunnel traffic OVS needs to retrieve
630  *      egress tunnel information for a packet. Following API allows
631  *      user to get this info.
632  */
633 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
634 {
635         struct ip_tunnel_info *info;
636
637         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
638                 return -EINVAL;
639
640         info = skb_tunnel_info_unclone(skb);
641         if (!info)
642                 return -ENOMEM;
643         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
644                 return -EINVAL;
645
646         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
647 }
648 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
649
650 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
651 {
652         int k = stack->num_paths++;
653
654         if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
655                 return NULL;
656
657         return &stack->path[k];
658 }
659
660 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
661                           struct net_device_path_stack *stack)
662 {
663         const struct net_device *last_dev;
664         struct net_device_path_ctx ctx = {
665                 .dev    = dev,
666                 .daddr  = daddr,
667         };
668         struct net_device_path *path;
669         int ret = 0;
670
671         stack->num_paths = 0;
672         while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
673                 last_dev = ctx.dev;
674                 path = dev_fwd_path(stack);
675                 if (!path)
676                         return -1;
677
678                 memset(path, 0, sizeof(struct net_device_path));
679                 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
680                 if (ret < 0)
681                         return -1;
682
683                 if (WARN_ON_ONCE(last_dev == ctx.dev))
684                         return -1;
685         }
686         path = dev_fwd_path(stack);
687         if (!path)
688                 return -1;
689         path->type = DEV_PATH_ETHERNET;
690         path->dev = ctx.dev;
691
692         return ret;
693 }
694 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
695
696 /**
697  *      __dev_get_by_name       - find a device by its name
698  *      @net: the applicable net namespace
699  *      @name: name to find
700  *
701  *      Find an interface by name. Must be called under RTNL semaphore
702  *      or @dev_base_lock. If the name is found a pointer to the device
703  *      is returned. If the name is not found then %NULL is returned. The
704  *      reference counters are not incremented so the caller must be
705  *      careful with locks.
706  */
707
708 struct net_device *__dev_get_by_name(struct net *net, const char *name)
709 {
710         struct netdev_name_node *node_name;
711
712         node_name = netdev_name_node_lookup(net, name);
713         return node_name ? node_name->dev : NULL;
714 }
715 EXPORT_SYMBOL(__dev_get_by_name);
716
717 /**
718  * dev_get_by_name_rcu  - find a device by its name
719  * @net: the applicable net namespace
720  * @name: name to find
721  *
722  * Find an interface by name.
723  * If the name is found a pointer to the device is returned.
724  * If the name is not found then %NULL is returned.
725  * The reference counters are not incremented so the caller must be
726  * careful with locks. The caller must hold RCU lock.
727  */
728
729 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
730 {
731         struct netdev_name_node *node_name;
732
733         node_name = netdev_name_node_lookup_rcu(net, name);
734         return node_name ? node_name->dev : NULL;
735 }
736 EXPORT_SYMBOL(dev_get_by_name_rcu);
737
738 /**
739  *      dev_get_by_name         - find a device by its name
740  *      @net: the applicable net namespace
741  *      @name: name to find
742  *
743  *      Find an interface by name. This can be called from any
744  *      context and does its own locking. The returned handle has
745  *      the usage count incremented and the caller must use dev_put() to
746  *      release it when it is no longer needed. %NULL is returned if no
747  *      matching device is found.
748  */
749
750 struct net_device *dev_get_by_name(struct net *net, const char *name)
751 {
752         struct net_device *dev;
753
754         rcu_read_lock();
755         dev = dev_get_by_name_rcu(net, name);
756         dev_hold(dev);
757         rcu_read_unlock();
758         return dev;
759 }
760 EXPORT_SYMBOL(dev_get_by_name);
761
762 /**
763  *      __dev_get_by_index - find a device by its ifindex
764  *      @net: the applicable net namespace
765  *      @ifindex: index of device
766  *
767  *      Search for an interface by index. Returns %NULL if the device
768  *      is not found or a pointer to the device. The device has not
769  *      had its reference counter increased so the caller must be careful
770  *      about locking. The caller must hold either the RTNL semaphore
771  *      or @dev_base_lock.
772  */
773
774 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
775 {
776         struct net_device *dev;
777         struct hlist_head *head = dev_index_hash(net, ifindex);
778
779         hlist_for_each_entry(dev, head, index_hlist)
780                 if (dev->ifindex == ifindex)
781                         return dev;
782
783         return NULL;
784 }
785 EXPORT_SYMBOL(__dev_get_by_index);
786
787 /**
788  *      dev_get_by_index_rcu - find a device by its ifindex
789  *      @net: the applicable net namespace
790  *      @ifindex: index of device
791  *
792  *      Search for an interface by index. Returns %NULL if the device
793  *      is not found or a pointer to the device. The device has not
794  *      had its reference counter increased so the caller must be careful
795  *      about locking. The caller must hold RCU lock.
796  */
797
798 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
799 {
800         struct net_device *dev;
801         struct hlist_head *head = dev_index_hash(net, ifindex);
802
803         hlist_for_each_entry_rcu(dev, head, index_hlist)
804                 if (dev->ifindex == ifindex)
805                         return dev;
806
807         return NULL;
808 }
809 EXPORT_SYMBOL(dev_get_by_index_rcu);
810
811
812 /**
813  *      dev_get_by_index - find a device by its ifindex
814  *      @net: the applicable net namespace
815  *      @ifindex: index of device
816  *
817  *      Search for an interface by index. Returns NULL if the device
818  *      is not found or a pointer to the device. The device returned has
819  *      had a reference added and the pointer is safe until the user calls
820  *      dev_put to indicate they have finished with it.
821  */
822
823 struct net_device *dev_get_by_index(struct net *net, int ifindex)
824 {
825         struct net_device *dev;
826
827         rcu_read_lock();
828         dev = dev_get_by_index_rcu(net, ifindex);
829         dev_hold(dev);
830         rcu_read_unlock();
831         return dev;
832 }
833 EXPORT_SYMBOL(dev_get_by_index);
834
835 /**
836  *      dev_get_by_napi_id - find a device by napi_id
837  *      @napi_id: ID of the NAPI struct
838  *
839  *      Search for an interface by NAPI ID. Returns %NULL if the device
840  *      is not found or a pointer to the device. The device has not had
841  *      its reference counter increased so the caller must be careful
842  *      about locking. The caller must hold RCU lock.
843  */
844
845 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
846 {
847         struct napi_struct *napi;
848
849         WARN_ON_ONCE(!rcu_read_lock_held());
850
851         if (napi_id < MIN_NAPI_ID)
852                 return NULL;
853
854         napi = napi_by_id(napi_id);
855
856         return napi ? napi->dev : NULL;
857 }
858 EXPORT_SYMBOL(dev_get_by_napi_id);
859
860 /**
861  *      netdev_get_name - get a netdevice name, knowing its ifindex.
862  *      @net: network namespace
863  *      @name: a pointer to the buffer where the name will be stored.
864  *      @ifindex: the ifindex of the interface to get the name from.
865  */
866 int netdev_get_name(struct net *net, char *name, int ifindex)
867 {
868         struct net_device *dev;
869         int ret;
870
871         down_read(&devnet_rename_sem);
872         rcu_read_lock();
873
874         dev = dev_get_by_index_rcu(net, ifindex);
875         if (!dev) {
876                 ret = -ENODEV;
877                 goto out;
878         }
879
880         strcpy(name, dev->name);
881
882         ret = 0;
883 out:
884         rcu_read_unlock();
885         up_read(&devnet_rename_sem);
886         return ret;
887 }
888
889 /**
890  *      dev_getbyhwaddr_rcu - find a device by its hardware address
891  *      @net: the applicable net namespace
892  *      @type: media type of device
893  *      @ha: hardware address
894  *
895  *      Search for an interface by MAC address. Returns NULL if the device
896  *      is not found or a pointer to the device.
897  *      The caller must hold RCU or RTNL.
898  *      The returned device has not had its ref count increased
899  *      and the caller must therefore be careful about locking
900  *
901  */
902
903 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
904                                        const char *ha)
905 {
906         struct net_device *dev;
907
908         for_each_netdev_rcu(net, dev)
909                 if (dev->type == type &&
910                     !memcmp(dev->dev_addr, ha, dev->addr_len))
911                         return dev;
912
913         return NULL;
914 }
915 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
916
917 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
918 {
919         struct net_device *dev, *ret = NULL;
920
921         rcu_read_lock();
922         for_each_netdev_rcu(net, dev)
923                 if (dev->type == type) {
924                         dev_hold(dev);
925                         ret = dev;
926                         break;
927                 }
928         rcu_read_unlock();
929         return ret;
930 }
931 EXPORT_SYMBOL(dev_getfirstbyhwtype);
932
933 /**
934  *      __dev_get_by_flags - find any device with given flags
935  *      @net: the applicable net namespace
936  *      @if_flags: IFF_* values
937  *      @mask: bitmask of bits in if_flags to check
938  *
939  *      Search for any interface with the given flags. Returns NULL if a device
940  *      is not found or a pointer to the device. Must be called inside
941  *      rtnl_lock(), and result refcount is unchanged.
942  */
943
944 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
945                                       unsigned short mask)
946 {
947         struct net_device *dev, *ret;
948
949         ASSERT_RTNL();
950
951         ret = NULL;
952         for_each_netdev(net, dev) {
953                 if (((dev->flags ^ if_flags) & mask) == 0) {
954                         ret = dev;
955                         break;
956                 }
957         }
958         return ret;
959 }
960 EXPORT_SYMBOL(__dev_get_by_flags);
961
962 /**
963  *      dev_valid_name - check if name is okay for network device
964  *      @name: name string
965  *
966  *      Network device names need to be valid file names to
967  *      allow sysfs to work.  We also disallow any kind of
968  *      whitespace.
969  */
970 bool dev_valid_name(const char *name)
971 {
972         if (*name == '\0')
973                 return false;
974         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
975                 return false;
976         if (!strcmp(name, ".") || !strcmp(name, ".."))
977                 return false;
978
979         while (*name) {
980                 if (*name == '/' || *name == ':' || isspace(*name))
981                         return false;
982                 name++;
983         }
984         return true;
985 }
986 EXPORT_SYMBOL(dev_valid_name);
987
988 /**
989  *      __dev_alloc_name - allocate a name for a device
990  *      @net: network namespace to allocate the device name in
991  *      @name: name format string
992  *      @buf:  scratch buffer and result name string
993  *
994  *      Passed a format string - eg "lt%d" it will try and find a suitable
995  *      id. It scans list of devices to build up a free map, then chooses
996  *      the first empty slot. The caller must hold the dev_base or rtnl lock
997  *      while allocating the name and adding the device in order to avoid
998  *      duplicates.
999  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1000  *      Returns the number of the unit assigned or a negative errno code.
1001  */
1002
1003 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1004 {
1005         int i = 0;
1006         const char *p;
1007         const int max_netdevices = 8*PAGE_SIZE;
1008         unsigned long *inuse;
1009         struct net_device *d;
1010
1011         if (!dev_valid_name(name))
1012                 return -EINVAL;
1013
1014         p = strchr(name, '%');
1015         if (p) {
1016                 /*
1017                  * Verify the string as this thing may have come from
1018                  * the user.  There must be either one "%d" and no other "%"
1019                  * characters.
1020                  */
1021                 if (p[1] != 'd' || strchr(p + 2, '%'))
1022                         return -EINVAL;
1023
1024                 /* Use one page as a bit array of possible slots */
1025                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1026                 if (!inuse)
1027                         return -ENOMEM;
1028
1029                 for_each_netdev(net, d) {
1030                         struct netdev_name_node *name_node;
1031                         list_for_each_entry(name_node, &d->name_node->list, list) {
1032                                 if (!sscanf(name_node->name, name, &i))
1033                                         continue;
1034                                 if (i < 0 || i >= max_netdevices)
1035                                         continue;
1036
1037                                 /*  avoid cases where sscanf is not exact inverse of printf */
1038                                 snprintf(buf, IFNAMSIZ, name, i);
1039                                 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1040                                         set_bit(i, inuse);
1041                         }
1042                         if (!sscanf(d->name, name, &i))
1043                                 continue;
1044                         if (i < 0 || i >= max_netdevices)
1045                                 continue;
1046
1047                         /*  avoid cases where sscanf is not exact inverse of printf */
1048                         snprintf(buf, IFNAMSIZ, name, i);
1049                         if (!strncmp(buf, d->name, IFNAMSIZ))
1050                                 set_bit(i, inuse);
1051                 }
1052
1053                 i = find_first_zero_bit(inuse, max_netdevices);
1054                 free_page((unsigned long) inuse);
1055         }
1056
1057         snprintf(buf, IFNAMSIZ, name, i);
1058         if (!netdev_name_in_use(net, buf))
1059                 return i;
1060
1061         /* It is possible to run out of possible slots
1062          * when the name is long and there isn't enough space left
1063          * for the digits, or if all bits are used.
1064          */
1065         return -ENFILE;
1066 }
1067
1068 static int dev_alloc_name_ns(struct net *net,
1069                              struct net_device *dev,
1070                              const char *name)
1071 {
1072         char buf[IFNAMSIZ];
1073         int ret;
1074
1075         BUG_ON(!net);
1076         ret = __dev_alloc_name(net, name, buf);
1077         if (ret >= 0)
1078                 strlcpy(dev->name, buf, IFNAMSIZ);
1079         return ret;
1080 }
1081
1082 /**
1083  *      dev_alloc_name - allocate a name for a device
1084  *      @dev: device
1085  *      @name: name format string
1086  *
1087  *      Passed a format string - eg "lt%d" it will try and find a suitable
1088  *      id. It scans list of devices to build up a free map, then chooses
1089  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1090  *      while allocating the name and adding the device in order to avoid
1091  *      duplicates.
1092  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1093  *      Returns the number of the unit assigned or a negative errno code.
1094  */
1095
1096 int dev_alloc_name(struct net_device *dev, const char *name)
1097 {
1098         return dev_alloc_name_ns(dev_net(dev), dev, name);
1099 }
1100 EXPORT_SYMBOL(dev_alloc_name);
1101
1102 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1103                               const char *name)
1104 {
1105         BUG_ON(!net);
1106
1107         if (!dev_valid_name(name))
1108                 return -EINVAL;
1109
1110         if (strchr(name, '%'))
1111                 return dev_alloc_name_ns(net, dev, name);
1112         else if (netdev_name_in_use(net, name))
1113                 return -EEXIST;
1114         else if (dev->name != name)
1115                 strlcpy(dev->name, name, IFNAMSIZ);
1116
1117         return 0;
1118 }
1119
1120 /**
1121  *      dev_change_name - change name of a device
1122  *      @dev: device
1123  *      @newname: name (or format string) must be at least IFNAMSIZ
1124  *
1125  *      Change name of a device, can pass format strings "eth%d".
1126  *      for wildcarding.
1127  */
1128 int dev_change_name(struct net_device *dev, const char *newname)
1129 {
1130         unsigned char old_assign_type;
1131         char oldname[IFNAMSIZ];
1132         int err = 0;
1133         int ret;
1134         struct net *net;
1135
1136         ASSERT_RTNL();
1137         BUG_ON(!dev_net(dev));
1138
1139         net = dev_net(dev);
1140
1141         /* Some auto-enslaved devices e.g. failover slaves are
1142          * special, as userspace might rename the device after
1143          * the interface had been brought up and running since
1144          * the point kernel initiated auto-enslavement. Allow
1145          * live name change even when these slave devices are
1146          * up and running.
1147          *
1148          * Typically, users of these auto-enslaving devices
1149          * don't actually care about slave name change, as
1150          * they are supposed to operate on master interface
1151          * directly.
1152          */
1153         if (dev->flags & IFF_UP &&
1154             likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1155                 return -EBUSY;
1156
1157         down_write(&devnet_rename_sem);
1158
1159         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1160                 up_write(&devnet_rename_sem);
1161                 return 0;
1162         }
1163
1164         memcpy(oldname, dev->name, IFNAMSIZ);
1165
1166         err = dev_get_valid_name(net, dev, newname);
1167         if (err < 0) {
1168                 up_write(&devnet_rename_sem);
1169                 return err;
1170         }
1171
1172         if (oldname[0] && !strchr(oldname, '%'))
1173                 netdev_info(dev, "renamed from %s\n", oldname);
1174
1175         old_assign_type = dev->name_assign_type;
1176         dev->name_assign_type = NET_NAME_RENAMED;
1177
1178 rollback:
1179         ret = device_rename(&dev->dev, dev->name);
1180         if (ret) {
1181                 memcpy(dev->name, oldname, IFNAMSIZ);
1182                 dev->name_assign_type = old_assign_type;
1183                 up_write(&devnet_rename_sem);
1184                 return ret;
1185         }
1186
1187         up_write(&devnet_rename_sem);
1188
1189         netdev_adjacent_rename_links(dev, oldname);
1190
1191         write_lock(&dev_base_lock);
1192         netdev_name_node_del(dev->name_node);
1193         write_unlock(&dev_base_lock);
1194
1195         synchronize_rcu();
1196
1197         write_lock(&dev_base_lock);
1198         netdev_name_node_add(net, dev->name_node);
1199         write_unlock(&dev_base_lock);
1200
1201         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1202         ret = notifier_to_errno(ret);
1203
1204         if (ret) {
1205                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1206                 if (err >= 0) {
1207                         err = ret;
1208                         down_write(&devnet_rename_sem);
1209                         memcpy(dev->name, oldname, IFNAMSIZ);
1210                         memcpy(oldname, newname, IFNAMSIZ);
1211                         dev->name_assign_type = old_assign_type;
1212                         old_assign_type = NET_NAME_RENAMED;
1213                         goto rollback;
1214                 } else {
1215                         netdev_err(dev, "name change rollback failed: %d\n",
1216                                    ret);
1217                 }
1218         }
1219
1220         return err;
1221 }
1222
1223 /**
1224  *      dev_set_alias - change ifalias of a device
1225  *      @dev: device
1226  *      @alias: name up to IFALIASZ
1227  *      @len: limit of bytes to copy from info
1228  *
1229  *      Set ifalias for a device,
1230  */
1231 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1232 {
1233         struct dev_ifalias *new_alias = NULL;
1234
1235         if (len >= IFALIASZ)
1236                 return -EINVAL;
1237
1238         if (len) {
1239                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1240                 if (!new_alias)
1241                         return -ENOMEM;
1242
1243                 memcpy(new_alias->ifalias, alias, len);
1244                 new_alias->ifalias[len] = 0;
1245         }
1246
1247         mutex_lock(&ifalias_mutex);
1248         new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1249                                         mutex_is_locked(&ifalias_mutex));
1250         mutex_unlock(&ifalias_mutex);
1251
1252         if (new_alias)
1253                 kfree_rcu(new_alias, rcuhead);
1254
1255         return len;
1256 }
1257 EXPORT_SYMBOL(dev_set_alias);
1258
1259 /**
1260  *      dev_get_alias - get ifalias of a device
1261  *      @dev: device
1262  *      @name: buffer to store name of ifalias
1263  *      @len: size of buffer
1264  *
1265  *      get ifalias for a device.  Caller must make sure dev cannot go
1266  *      away,  e.g. rcu read lock or own a reference count to device.
1267  */
1268 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1269 {
1270         const struct dev_ifalias *alias;
1271         int ret = 0;
1272
1273         rcu_read_lock();
1274         alias = rcu_dereference(dev->ifalias);
1275         if (alias)
1276                 ret = snprintf(name, len, "%s", alias->ifalias);
1277         rcu_read_unlock();
1278
1279         return ret;
1280 }
1281
1282 /**
1283  *      netdev_features_change - device changes features
1284  *      @dev: device to cause notification
1285  *
1286  *      Called to indicate a device has changed features.
1287  */
1288 void netdev_features_change(struct net_device *dev)
1289 {
1290         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1291 }
1292 EXPORT_SYMBOL(netdev_features_change);
1293
1294 /**
1295  *      netdev_state_change - device changes state
1296  *      @dev: device to cause notification
1297  *
1298  *      Called to indicate a device has changed state. This function calls
1299  *      the notifier chains for netdev_chain and sends a NEWLINK message
1300  *      to the routing socket.
1301  */
1302 void netdev_state_change(struct net_device *dev)
1303 {
1304         if (dev->flags & IFF_UP) {
1305                 struct netdev_notifier_change_info change_info = {
1306                         .info.dev = dev,
1307                 };
1308
1309                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1310                                               &change_info.info);
1311                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1312         }
1313 }
1314 EXPORT_SYMBOL(netdev_state_change);
1315
1316 /**
1317  * __netdev_notify_peers - notify network peers about existence of @dev,
1318  * to be called when rtnl lock is already held.
1319  * @dev: network device
1320  *
1321  * Generate traffic such that interested network peers are aware of
1322  * @dev, such as by generating a gratuitous ARP. This may be used when
1323  * a device wants to inform the rest of the network about some sort of
1324  * reconfiguration such as a failover event or virtual machine
1325  * migration.
1326  */
1327 void __netdev_notify_peers(struct net_device *dev)
1328 {
1329         ASSERT_RTNL();
1330         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1331         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1332 }
1333 EXPORT_SYMBOL(__netdev_notify_peers);
1334
1335 /**
1336  * netdev_notify_peers - notify network peers about existence of @dev
1337  * @dev: network device
1338  *
1339  * Generate traffic such that interested network peers are aware of
1340  * @dev, such as by generating a gratuitous ARP. This may be used when
1341  * a device wants to inform the rest of the network about some sort of
1342  * reconfiguration such as a failover event or virtual machine
1343  * migration.
1344  */
1345 void netdev_notify_peers(struct net_device *dev)
1346 {
1347         rtnl_lock();
1348         __netdev_notify_peers(dev);
1349         rtnl_unlock();
1350 }
1351 EXPORT_SYMBOL(netdev_notify_peers);
1352
1353 static int napi_threaded_poll(void *data);
1354
1355 static int napi_kthread_create(struct napi_struct *n)
1356 {
1357         int err = 0;
1358
1359         /* Create and wake up the kthread once to put it in
1360          * TASK_INTERRUPTIBLE mode to avoid the blocked task
1361          * warning and work with loadavg.
1362          */
1363         n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1364                                 n->dev->name, n->napi_id);
1365         if (IS_ERR(n->thread)) {
1366                 err = PTR_ERR(n->thread);
1367                 pr_err("kthread_run failed with err %d\n", err);
1368                 n->thread = NULL;
1369         }
1370
1371         return err;
1372 }
1373
1374 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1375 {
1376         const struct net_device_ops *ops = dev->netdev_ops;
1377         int ret;
1378
1379         ASSERT_RTNL();
1380         dev_addr_check(dev);
1381
1382         if (!netif_device_present(dev)) {
1383                 /* may be detached because parent is runtime-suspended */
1384                 if (dev->dev.parent)
1385                         pm_runtime_resume(dev->dev.parent);
1386                 if (!netif_device_present(dev))
1387                         return -ENODEV;
1388         }
1389
1390         /* Block netpoll from trying to do any rx path servicing.
1391          * If we don't do this there is a chance ndo_poll_controller
1392          * or ndo_poll may be running while we open the device
1393          */
1394         netpoll_poll_disable(dev);
1395
1396         ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1397         ret = notifier_to_errno(ret);
1398         if (ret)
1399                 return ret;
1400
1401         set_bit(__LINK_STATE_START, &dev->state);
1402
1403         if (ops->ndo_validate_addr)
1404                 ret = ops->ndo_validate_addr(dev);
1405
1406         if (!ret && ops->ndo_open)
1407                 ret = ops->ndo_open(dev);
1408
1409         netpoll_poll_enable(dev);
1410
1411         if (ret)
1412                 clear_bit(__LINK_STATE_START, &dev->state);
1413         else {
1414                 dev->flags |= IFF_UP;
1415                 dev_set_rx_mode(dev);
1416                 dev_activate(dev);
1417                 add_device_randomness(dev->dev_addr, dev->addr_len);
1418         }
1419
1420         return ret;
1421 }
1422
1423 /**
1424  *      dev_open        - prepare an interface for use.
1425  *      @dev: device to open
1426  *      @extack: netlink extended ack
1427  *
1428  *      Takes a device from down to up state. The device's private open
1429  *      function is invoked and then the multicast lists are loaded. Finally
1430  *      the device is moved into the up state and a %NETDEV_UP message is
1431  *      sent to the netdev notifier chain.
1432  *
1433  *      Calling this function on an active interface is a nop. On a failure
1434  *      a negative errno code is returned.
1435  */
1436 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1437 {
1438         int ret;
1439
1440         if (dev->flags & IFF_UP)
1441                 return 0;
1442
1443         ret = __dev_open(dev, extack);
1444         if (ret < 0)
1445                 return ret;
1446
1447         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1448         call_netdevice_notifiers(NETDEV_UP, dev);
1449
1450         return ret;
1451 }
1452 EXPORT_SYMBOL(dev_open);
1453
1454 static void __dev_close_many(struct list_head *head)
1455 {
1456         struct net_device *dev;
1457
1458         ASSERT_RTNL();
1459         might_sleep();
1460
1461         list_for_each_entry(dev, head, close_list) {
1462                 /* Temporarily disable netpoll until the interface is down */
1463                 netpoll_poll_disable(dev);
1464
1465                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1466
1467                 clear_bit(__LINK_STATE_START, &dev->state);
1468
1469                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1470                  * can be even on different cpu. So just clear netif_running().
1471                  *
1472                  * dev->stop() will invoke napi_disable() on all of it's
1473                  * napi_struct instances on this device.
1474                  */
1475                 smp_mb__after_atomic(); /* Commit netif_running(). */
1476         }
1477
1478         dev_deactivate_many(head);
1479
1480         list_for_each_entry(dev, head, close_list) {
1481                 const struct net_device_ops *ops = dev->netdev_ops;
1482
1483                 /*
1484                  *      Call the device specific close. This cannot fail.
1485                  *      Only if device is UP
1486                  *
1487                  *      We allow it to be called even after a DETACH hot-plug
1488                  *      event.
1489                  */
1490                 if (ops->ndo_stop)
1491                         ops->ndo_stop(dev);
1492
1493                 dev->flags &= ~IFF_UP;
1494                 netpoll_poll_enable(dev);
1495         }
1496 }
1497
1498 static void __dev_close(struct net_device *dev)
1499 {
1500         LIST_HEAD(single);
1501
1502         list_add(&dev->close_list, &single);
1503         __dev_close_many(&single);
1504         list_del(&single);
1505 }
1506
1507 void dev_close_many(struct list_head *head, bool unlink)
1508 {
1509         struct net_device *dev, *tmp;
1510
1511         /* Remove the devices that don't need to be closed */
1512         list_for_each_entry_safe(dev, tmp, head, close_list)
1513                 if (!(dev->flags & IFF_UP))
1514                         list_del_init(&dev->close_list);
1515
1516         __dev_close_many(head);
1517
1518         list_for_each_entry_safe(dev, tmp, head, close_list) {
1519                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1520                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1521                 if (unlink)
1522                         list_del_init(&dev->close_list);
1523         }
1524 }
1525 EXPORT_SYMBOL(dev_close_many);
1526
1527 /**
1528  *      dev_close - shutdown an interface.
1529  *      @dev: device to shutdown
1530  *
1531  *      This function moves an active device into down state. A
1532  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1533  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1534  *      chain.
1535  */
1536 void dev_close(struct net_device *dev)
1537 {
1538         if (dev->flags & IFF_UP) {
1539                 LIST_HEAD(single);
1540
1541                 list_add(&dev->close_list, &single);
1542                 dev_close_many(&single, true);
1543                 list_del(&single);
1544         }
1545 }
1546 EXPORT_SYMBOL(dev_close);
1547
1548
1549 /**
1550  *      dev_disable_lro - disable Large Receive Offload on a device
1551  *      @dev: device
1552  *
1553  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1554  *      called under RTNL.  This is needed if received packets may be
1555  *      forwarded to another interface.
1556  */
1557 void dev_disable_lro(struct net_device *dev)
1558 {
1559         struct net_device *lower_dev;
1560         struct list_head *iter;
1561
1562         dev->wanted_features &= ~NETIF_F_LRO;
1563         netdev_update_features(dev);
1564
1565         if (unlikely(dev->features & NETIF_F_LRO))
1566                 netdev_WARN(dev, "failed to disable LRO!\n");
1567
1568         netdev_for_each_lower_dev(dev, lower_dev, iter)
1569                 dev_disable_lro(lower_dev);
1570 }
1571 EXPORT_SYMBOL(dev_disable_lro);
1572
1573 /**
1574  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1575  *      @dev: device
1576  *
1577  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1578  *      called under RTNL.  This is needed if Generic XDP is installed on
1579  *      the device.
1580  */
1581 static void dev_disable_gro_hw(struct net_device *dev)
1582 {
1583         dev->wanted_features &= ~NETIF_F_GRO_HW;
1584         netdev_update_features(dev);
1585
1586         if (unlikely(dev->features & NETIF_F_GRO_HW))
1587                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1588 }
1589
1590 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1591 {
1592 #define N(val)                                          \
1593         case NETDEV_##val:                              \
1594                 return "NETDEV_" __stringify(val);
1595         switch (cmd) {
1596         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1597         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1598         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1599         N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1600         N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1601         N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1602         N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1603         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1604         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1605         N(PRE_CHANGEADDR)
1606         }
1607 #undef N
1608         return "UNKNOWN_NETDEV_EVENT";
1609 }
1610 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1611
1612 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1613                                    struct net_device *dev)
1614 {
1615         struct netdev_notifier_info info = {
1616                 .dev = dev,
1617         };
1618
1619         return nb->notifier_call(nb, val, &info);
1620 }
1621
1622 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1623                                              struct net_device *dev)
1624 {
1625         int err;
1626
1627         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1628         err = notifier_to_errno(err);
1629         if (err)
1630                 return err;
1631
1632         if (!(dev->flags & IFF_UP))
1633                 return 0;
1634
1635         call_netdevice_notifier(nb, NETDEV_UP, dev);
1636         return 0;
1637 }
1638
1639 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1640                                                 struct net_device *dev)
1641 {
1642         if (dev->flags & IFF_UP) {
1643                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1644                                         dev);
1645                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1646         }
1647         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1648 }
1649
1650 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1651                                                  struct net *net)
1652 {
1653         struct net_device *dev;
1654         int err;
1655
1656         for_each_netdev(net, dev) {
1657                 err = call_netdevice_register_notifiers(nb, dev);
1658                 if (err)
1659                         goto rollback;
1660         }
1661         return 0;
1662
1663 rollback:
1664         for_each_netdev_continue_reverse(net, dev)
1665                 call_netdevice_unregister_notifiers(nb, dev);
1666         return err;
1667 }
1668
1669 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1670                                                     struct net *net)
1671 {
1672         struct net_device *dev;
1673
1674         for_each_netdev(net, dev)
1675                 call_netdevice_unregister_notifiers(nb, dev);
1676 }
1677
1678 static int dev_boot_phase = 1;
1679
1680 /**
1681  * register_netdevice_notifier - register a network notifier block
1682  * @nb: notifier
1683  *
1684  * Register a notifier to be called when network device events occur.
1685  * The notifier passed is linked into the kernel structures and must
1686  * not be reused until it has been unregistered. A negative errno code
1687  * is returned on a failure.
1688  *
1689  * When registered all registration and up events are replayed
1690  * to the new notifier to allow device to have a race free
1691  * view of the network device list.
1692  */
1693
1694 int register_netdevice_notifier(struct notifier_block *nb)
1695 {
1696         struct net *net;
1697         int err;
1698
1699         /* Close race with setup_net() and cleanup_net() */
1700         down_write(&pernet_ops_rwsem);
1701         rtnl_lock();
1702         err = raw_notifier_chain_register(&netdev_chain, nb);
1703         if (err)
1704                 goto unlock;
1705         if (dev_boot_phase)
1706                 goto unlock;
1707         for_each_net(net) {
1708                 err = call_netdevice_register_net_notifiers(nb, net);
1709                 if (err)
1710                         goto rollback;
1711         }
1712
1713 unlock:
1714         rtnl_unlock();
1715         up_write(&pernet_ops_rwsem);
1716         return err;
1717
1718 rollback:
1719         for_each_net_continue_reverse(net)
1720                 call_netdevice_unregister_net_notifiers(nb, net);
1721
1722         raw_notifier_chain_unregister(&netdev_chain, nb);
1723         goto unlock;
1724 }
1725 EXPORT_SYMBOL(register_netdevice_notifier);
1726
1727 /**
1728  * unregister_netdevice_notifier - unregister a network notifier block
1729  * @nb: notifier
1730  *
1731  * Unregister a notifier previously registered by
1732  * register_netdevice_notifier(). The notifier is unlinked into the
1733  * kernel structures and may then be reused. A negative errno code
1734  * is returned on a failure.
1735  *
1736  * After unregistering unregister and down device events are synthesized
1737  * for all devices on the device list to the removed notifier to remove
1738  * the need for special case cleanup code.
1739  */
1740
1741 int unregister_netdevice_notifier(struct notifier_block *nb)
1742 {
1743         struct net *net;
1744         int err;
1745
1746         /* Close race with setup_net() and cleanup_net() */
1747         down_write(&pernet_ops_rwsem);
1748         rtnl_lock();
1749         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1750         if (err)
1751                 goto unlock;
1752
1753         for_each_net(net)
1754                 call_netdevice_unregister_net_notifiers(nb, net);
1755
1756 unlock:
1757         rtnl_unlock();
1758         up_write(&pernet_ops_rwsem);
1759         return err;
1760 }
1761 EXPORT_SYMBOL(unregister_netdevice_notifier);
1762
1763 static int __register_netdevice_notifier_net(struct net *net,
1764                                              struct notifier_block *nb,
1765                                              bool ignore_call_fail)
1766 {
1767         int err;
1768
1769         err = raw_notifier_chain_register(&net->netdev_chain, nb);
1770         if (err)
1771                 return err;
1772         if (dev_boot_phase)
1773                 return 0;
1774
1775         err = call_netdevice_register_net_notifiers(nb, net);
1776         if (err && !ignore_call_fail)
1777                 goto chain_unregister;
1778
1779         return 0;
1780
1781 chain_unregister:
1782         raw_notifier_chain_unregister(&net->netdev_chain, nb);
1783         return err;
1784 }
1785
1786 static int __unregister_netdevice_notifier_net(struct net *net,
1787                                                struct notifier_block *nb)
1788 {
1789         int err;
1790
1791         err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1792         if (err)
1793                 return err;
1794
1795         call_netdevice_unregister_net_notifiers(nb, net);
1796         return 0;
1797 }
1798
1799 /**
1800  * register_netdevice_notifier_net - register a per-netns network notifier block
1801  * @net: network namespace
1802  * @nb: notifier
1803  *
1804  * Register a notifier to be called when network device events occur.
1805  * The notifier passed is linked into the kernel structures and must
1806  * not be reused until it has been unregistered. A negative errno code
1807  * is returned on a failure.
1808  *
1809  * When registered all registration and up events are replayed
1810  * to the new notifier to allow device to have a race free
1811  * view of the network device list.
1812  */
1813
1814 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1815 {
1816         int err;
1817
1818         rtnl_lock();
1819         err = __register_netdevice_notifier_net(net, nb, false);
1820         rtnl_unlock();
1821         return err;
1822 }
1823 EXPORT_SYMBOL(register_netdevice_notifier_net);
1824
1825 /**
1826  * unregister_netdevice_notifier_net - unregister a per-netns
1827  *                                     network notifier block
1828  * @net: network namespace
1829  * @nb: notifier
1830  *
1831  * Unregister a notifier previously registered by
1832  * register_netdevice_notifier(). The notifier is unlinked into the
1833  * kernel structures and may then be reused. A negative errno code
1834  * is returned on a failure.
1835  *
1836  * After unregistering unregister and down device events are synthesized
1837  * for all devices on the device list to the removed notifier to remove
1838  * the need for special case cleanup code.
1839  */
1840
1841 int unregister_netdevice_notifier_net(struct net *net,
1842                                       struct notifier_block *nb)
1843 {
1844         int err;
1845
1846         rtnl_lock();
1847         err = __unregister_netdevice_notifier_net(net, nb);
1848         rtnl_unlock();
1849         return err;
1850 }
1851 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1852
1853 int register_netdevice_notifier_dev_net(struct net_device *dev,
1854                                         struct notifier_block *nb,
1855                                         struct netdev_net_notifier *nn)
1856 {
1857         int err;
1858
1859         rtnl_lock();
1860         err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1861         if (!err) {
1862                 nn->nb = nb;
1863                 list_add(&nn->list, &dev->net_notifier_list);
1864         }
1865         rtnl_unlock();
1866         return err;
1867 }
1868 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1869
1870 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1871                                           struct notifier_block *nb,
1872                                           struct netdev_net_notifier *nn)
1873 {
1874         int err;
1875
1876         rtnl_lock();
1877         list_del(&nn->list);
1878         err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1879         rtnl_unlock();
1880         return err;
1881 }
1882 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1883
1884 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1885                                              struct net *net)
1886 {
1887         struct netdev_net_notifier *nn;
1888
1889         list_for_each_entry(nn, &dev->net_notifier_list, list) {
1890                 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
1891                 __register_netdevice_notifier_net(net, nn->nb, true);
1892         }
1893 }
1894
1895 /**
1896  *      call_netdevice_notifiers_info - call all network notifier blocks
1897  *      @val: value passed unmodified to notifier function
1898  *      @info: notifier information data
1899  *
1900  *      Call all network notifier blocks.  Parameters and return value
1901  *      are as for raw_notifier_call_chain().
1902  */
1903
1904 static int call_netdevice_notifiers_info(unsigned long val,
1905                                          struct netdev_notifier_info *info)
1906 {
1907         struct net *net = dev_net(info->dev);
1908         int ret;
1909
1910         ASSERT_RTNL();
1911
1912         /* Run per-netns notifier block chain first, then run the global one.
1913          * Hopefully, one day, the global one is going to be removed after
1914          * all notifier block registrators get converted to be per-netns.
1915          */
1916         ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1917         if (ret & NOTIFY_STOP_MASK)
1918                 return ret;
1919         return raw_notifier_call_chain(&netdev_chain, val, info);
1920 }
1921
1922 static int call_netdevice_notifiers_extack(unsigned long val,
1923                                            struct net_device *dev,
1924                                            struct netlink_ext_ack *extack)
1925 {
1926         struct netdev_notifier_info info = {
1927                 .dev = dev,
1928                 .extack = extack,
1929         };
1930
1931         return call_netdevice_notifiers_info(val, &info);
1932 }
1933
1934 /**
1935  *      call_netdevice_notifiers - call all network notifier blocks
1936  *      @val: value passed unmodified to notifier function
1937  *      @dev: net_device pointer passed unmodified to notifier function
1938  *
1939  *      Call all network notifier blocks.  Parameters and return value
1940  *      are as for raw_notifier_call_chain().
1941  */
1942
1943 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1944 {
1945         return call_netdevice_notifiers_extack(val, dev, NULL);
1946 }
1947 EXPORT_SYMBOL(call_netdevice_notifiers);
1948
1949 /**
1950  *      call_netdevice_notifiers_mtu - call all network notifier blocks
1951  *      @val: value passed unmodified to notifier function
1952  *      @dev: net_device pointer passed unmodified to notifier function
1953  *      @arg: additional u32 argument passed to the notifier function
1954  *
1955  *      Call all network notifier blocks.  Parameters and return value
1956  *      are as for raw_notifier_call_chain().
1957  */
1958 static int call_netdevice_notifiers_mtu(unsigned long val,
1959                                         struct net_device *dev, u32 arg)
1960 {
1961         struct netdev_notifier_info_ext info = {
1962                 .info.dev = dev,
1963                 .ext.mtu = arg,
1964         };
1965
1966         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1967
1968         return call_netdevice_notifiers_info(val, &info.info);
1969 }
1970
1971 #ifdef CONFIG_NET_INGRESS
1972 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
1973
1974 void net_inc_ingress_queue(void)
1975 {
1976         static_branch_inc(&ingress_needed_key);
1977 }
1978 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1979
1980 void net_dec_ingress_queue(void)
1981 {
1982         static_branch_dec(&ingress_needed_key);
1983 }
1984 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1985 #endif
1986
1987 #ifdef CONFIG_NET_EGRESS
1988 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1989
1990 void net_inc_egress_queue(void)
1991 {
1992         static_branch_inc(&egress_needed_key);
1993 }
1994 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1995
1996 void net_dec_egress_queue(void)
1997 {
1998         static_branch_dec(&egress_needed_key);
1999 }
2000 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2001 #endif
2002
2003 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2004 #ifdef CONFIG_JUMP_LABEL
2005 static atomic_t netstamp_needed_deferred;
2006 static atomic_t netstamp_wanted;
2007 static void netstamp_clear(struct work_struct *work)
2008 {
2009         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2010         int wanted;
2011
2012         wanted = atomic_add_return(deferred, &netstamp_wanted);
2013         if (wanted > 0)
2014                 static_branch_enable(&netstamp_needed_key);
2015         else
2016                 static_branch_disable(&netstamp_needed_key);
2017 }
2018 static DECLARE_WORK(netstamp_work, netstamp_clear);
2019 #endif
2020
2021 void net_enable_timestamp(void)
2022 {
2023 #ifdef CONFIG_JUMP_LABEL
2024         int wanted;
2025
2026         while (1) {
2027                 wanted = atomic_read(&netstamp_wanted);
2028                 if (wanted <= 0)
2029                         break;
2030                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2031                         return;
2032         }
2033         atomic_inc(&netstamp_needed_deferred);
2034         schedule_work(&netstamp_work);
2035 #else
2036         static_branch_inc(&netstamp_needed_key);
2037 #endif
2038 }
2039 EXPORT_SYMBOL(net_enable_timestamp);
2040
2041 void net_disable_timestamp(void)
2042 {
2043 #ifdef CONFIG_JUMP_LABEL
2044         int wanted;
2045
2046         while (1) {
2047                 wanted = atomic_read(&netstamp_wanted);
2048                 if (wanted <= 1)
2049                         break;
2050                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2051                         return;
2052         }
2053         atomic_dec(&netstamp_needed_deferred);
2054         schedule_work(&netstamp_work);
2055 #else
2056         static_branch_dec(&netstamp_needed_key);
2057 #endif
2058 }
2059 EXPORT_SYMBOL(net_disable_timestamp);
2060
2061 static inline void net_timestamp_set(struct sk_buff *skb)
2062 {
2063         skb->tstamp = 0;
2064         if (static_branch_unlikely(&netstamp_needed_key))
2065                 __net_timestamp(skb);
2066 }
2067
2068 #define net_timestamp_check(COND, SKB)                          \
2069         if (static_branch_unlikely(&netstamp_needed_key)) {     \
2070                 if ((COND) && !(SKB)->tstamp)                   \
2071                         __net_timestamp(SKB);                   \
2072         }                                                       \
2073
2074 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2075 {
2076         return __is_skb_forwardable(dev, skb, true);
2077 }
2078 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2079
2080 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2081                               bool check_mtu)
2082 {
2083         int ret = ____dev_forward_skb(dev, skb, check_mtu);
2084
2085         if (likely(!ret)) {
2086                 skb->protocol = eth_type_trans(skb, dev);
2087                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2088         }
2089
2090         return ret;
2091 }
2092
2093 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2094 {
2095         return __dev_forward_skb2(dev, skb, true);
2096 }
2097 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2098
2099 /**
2100  * dev_forward_skb - loopback an skb to another netif
2101  *
2102  * @dev: destination network device
2103  * @skb: buffer to forward
2104  *
2105  * return values:
2106  *      NET_RX_SUCCESS  (no congestion)
2107  *      NET_RX_DROP     (packet was dropped, but freed)
2108  *
2109  * dev_forward_skb can be used for injecting an skb from the
2110  * start_xmit function of one device into the receive queue
2111  * of another device.
2112  *
2113  * The receiving device may be in another namespace, so
2114  * we have to clear all information in the skb that could
2115  * impact namespace isolation.
2116  */
2117 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2118 {
2119         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2120 }
2121 EXPORT_SYMBOL_GPL(dev_forward_skb);
2122
2123 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2124 {
2125         return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2126 }
2127
2128 static inline int deliver_skb(struct sk_buff *skb,
2129                               struct packet_type *pt_prev,
2130                               struct net_device *orig_dev)
2131 {
2132         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2133                 return -ENOMEM;
2134         refcount_inc(&skb->users);
2135         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2136 }
2137
2138 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2139                                           struct packet_type **pt,
2140                                           struct net_device *orig_dev,
2141                                           __be16 type,
2142                                           struct list_head *ptype_list)
2143 {
2144         struct packet_type *ptype, *pt_prev = *pt;
2145
2146         list_for_each_entry_rcu(ptype, ptype_list, list) {
2147                 if (ptype->type != type)
2148                         continue;
2149                 if (pt_prev)
2150                         deliver_skb(skb, pt_prev, orig_dev);
2151                 pt_prev = ptype;
2152         }
2153         *pt = pt_prev;
2154 }
2155
2156 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2157 {
2158         if (!ptype->af_packet_priv || !skb->sk)
2159                 return false;
2160
2161         if (ptype->id_match)
2162                 return ptype->id_match(ptype, skb->sk);
2163         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2164                 return true;
2165
2166         return false;
2167 }
2168
2169 /**
2170  * dev_nit_active - return true if any network interface taps are in use
2171  *
2172  * @dev: network device to check for the presence of taps
2173  */
2174 bool dev_nit_active(struct net_device *dev)
2175 {
2176         return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2177 }
2178 EXPORT_SYMBOL_GPL(dev_nit_active);
2179
2180 /*
2181  *      Support routine. Sends outgoing frames to any network
2182  *      taps currently in use.
2183  */
2184
2185 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2186 {
2187         struct packet_type *ptype;
2188         struct sk_buff *skb2 = NULL;
2189         struct packet_type *pt_prev = NULL;
2190         struct list_head *ptype_list = &ptype_all;
2191
2192         rcu_read_lock();
2193 again:
2194         list_for_each_entry_rcu(ptype, ptype_list, list) {
2195                 if (ptype->ignore_outgoing)
2196                         continue;
2197
2198                 /* Never send packets back to the socket
2199                  * they originated from - MvS (miquels@drinkel.ow.org)
2200                  */
2201                 if (skb_loop_sk(ptype, skb))
2202                         continue;
2203
2204                 if (pt_prev) {
2205                         deliver_skb(skb2, pt_prev, skb->dev);
2206                         pt_prev = ptype;
2207                         continue;
2208                 }
2209
2210                 /* need to clone skb, done only once */
2211                 skb2 = skb_clone(skb, GFP_ATOMIC);
2212                 if (!skb2)
2213                         goto out_unlock;
2214
2215                 net_timestamp_set(skb2);
2216
2217                 /* skb->nh should be correctly
2218                  * set by sender, so that the second statement is
2219                  * just protection against buggy protocols.
2220                  */
2221                 skb_reset_mac_header(skb2);
2222
2223                 if (skb_network_header(skb2) < skb2->data ||
2224                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2225                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2226                                              ntohs(skb2->protocol),
2227                                              dev->name);
2228                         skb_reset_network_header(skb2);
2229                 }
2230
2231                 skb2->transport_header = skb2->network_header;
2232                 skb2->pkt_type = PACKET_OUTGOING;
2233                 pt_prev = ptype;
2234         }
2235
2236         if (ptype_list == &ptype_all) {
2237                 ptype_list = &dev->ptype_all;
2238                 goto again;
2239         }
2240 out_unlock:
2241         if (pt_prev) {
2242                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2243                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2244                 else
2245                         kfree_skb(skb2);
2246         }
2247         rcu_read_unlock();
2248 }
2249 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2250
2251 /**
2252  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2253  * @dev: Network device
2254  * @txq: number of queues available
2255  *
2256  * If real_num_tx_queues is changed the tc mappings may no longer be
2257  * valid. To resolve this verify the tc mapping remains valid and if
2258  * not NULL the mapping. With no priorities mapping to this
2259  * offset/count pair it will no longer be used. In the worst case TC0
2260  * is invalid nothing can be done so disable priority mappings. If is
2261  * expected that drivers will fix this mapping if they can before
2262  * calling netif_set_real_num_tx_queues.
2263  */
2264 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2265 {
2266         int i;
2267         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2268
2269         /* If TC0 is invalidated disable TC mapping */
2270         if (tc->offset + tc->count > txq) {
2271                 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2272                 dev->num_tc = 0;
2273                 return;
2274         }
2275
2276         /* Invalidated prio to tc mappings set to TC0 */
2277         for (i = 1; i < TC_BITMASK + 1; i++) {
2278                 int q = netdev_get_prio_tc_map(dev, i);
2279
2280                 tc = &dev->tc_to_txq[q];
2281                 if (tc->offset + tc->count > txq) {
2282                         netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2283                                     i, q);
2284                         netdev_set_prio_tc_map(dev, i, 0);
2285                 }
2286         }
2287 }
2288
2289 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2290 {
2291         if (dev->num_tc) {
2292                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2293                 int i;
2294
2295                 /* walk through the TCs and see if it falls into any of them */
2296                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2297                         if ((txq - tc->offset) < tc->count)
2298                                 return i;
2299                 }
2300
2301                 /* didn't find it, just return -1 to indicate no match */
2302                 return -1;
2303         }
2304
2305         return 0;
2306 }
2307 EXPORT_SYMBOL(netdev_txq_to_tc);
2308
2309 #ifdef CONFIG_XPS
2310 static struct static_key xps_needed __read_mostly;
2311 static struct static_key xps_rxqs_needed __read_mostly;
2312 static DEFINE_MUTEX(xps_map_mutex);
2313 #define xmap_dereference(P)             \
2314         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2315
2316 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2317                              struct xps_dev_maps *old_maps, int tci, u16 index)
2318 {
2319         struct xps_map *map = NULL;
2320         int pos;
2321
2322         if (dev_maps)
2323                 map = xmap_dereference(dev_maps->attr_map[tci]);
2324         if (!map)
2325                 return false;
2326
2327         for (pos = map->len; pos--;) {
2328                 if (map->queues[pos] != index)
2329                         continue;
2330
2331                 if (map->len > 1) {
2332                         map->queues[pos] = map->queues[--map->len];
2333                         break;
2334                 }
2335
2336                 if (old_maps)
2337                         RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2338                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2339                 kfree_rcu(map, rcu);
2340                 return false;
2341         }
2342
2343         return true;
2344 }
2345
2346 static bool remove_xps_queue_cpu(struct net_device *dev,
2347                                  struct xps_dev_maps *dev_maps,
2348                                  int cpu, u16 offset, u16 count)
2349 {
2350         int num_tc = dev_maps->num_tc;
2351         bool active = false;
2352         int tci;
2353
2354         for (tci = cpu * num_tc; num_tc--; tci++) {
2355                 int i, j;
2356
2357                 for (i = count, j = offset; i--; j++) {
2358                         if (!remove_xps_queue(dev_maps, NULL, tci, j))
2359                                 break;
2360                 }
2361
2362                 active |= i < 0;
2363         }
2364
2365         return active;
2366 }
2367
2368 static void reset_xps_maps(struct net_device *dev,
2369                            struct xps_dev_maps *dev_maps,
2370                            enum xps_map_type type)
2371 {
2372         static_key_slow_dec_cpuslocked(&xps_needed);
2373         if (type == XPS_RXQS)
2374                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2375
2376         RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2377
2378         kfree_rcu(dev_maps, rcu);
2379 }
2380
2381 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2382                            u16 offset, u16 count)
2383 {
2384         struct xps_dev_maps *dev_maps;
2385         bool active = false;
2386         int i, j;
2387
2388         dev_maps = xmap_dereference(dev->xps_maps[type]);
2389         if (!dev_maps)
2390                 return;
2391
2392         for (j = 0; j < dev_maps->nr_ids; j++)
2393                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2394         if (!active)
2395                 reset_xps_maps(dev, dev_maps, type);
2396
2397         if (type == XPS_CPUS) {
2398                 for (i = offset + (count - 1); count--; i--)
2399                         netdev_queue_numa_node_write(
2400                                 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2401         }
2402 }
2403
2404 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2405                                    u16 count)
2406 {
2407         if (!static_key_false(&xps_needed))
2408                 return;
2409
2410         cpus_read_lock();
2411         mutex_lock(&xps_map_mutex);
2412
2413         if (static_key_false(&xps_rxqs_needed))
2414                 clean_xps_maps(dev, XPS_RXQS, offset, count);
2415
2416         clean_xps_maps(dev, XPS_CPUS, offset, count);
2417
2418         mutex_unlock(&xps_map_mutex);
2419         cpus_read_unlock();
2420 }
2421
2422 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2423 {
2424         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2425 }
2426
2427 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2428                                       u16 index, bool is_rxqs_map)
2429 {
2430         struct xps_map *new_map;
2431         int alloc_len = XPS_MIN_MAP_ALLOC;
2432         int i, pos;
2433
2434         for (pos = 0; map && pos < map->len; pos++) {
2435                 if (map->queues[pos] != index)
2436                         continue;
2437                 return map;
2438         }
2439
2440         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2441         if (map) {
2442                 if (pos < map->alloc_len)
2443                         return map;
2444
2445                 alloc_len = map->alloc_len * 2;
2446         }
2447
2448         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2449          *  map
2450          */
2451         if (is_rxqs_map)
2452                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2453         else
2454                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2455                                        cpu_to_node(attr_index));
2456         if (!new_map)
2457                 return NULL;
2458
2459         for (i = 0; i < pos; i++)
2460                 new_map->queues[i] = map->queues[i];
2461         new_map->alloc_len = alloc_len;
2462         new_map->len = pos;
2463
2464         return new_map;
2465 }
2466
2467 /* Copy xps maps at a given index */
2468 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2469                               struct xps_dev_maps *new_dev_maps, int index,
2470                               int tc, bool skip_tc)
2471 {
2472         int i, tci = index * dev_maps->num_tc;
2473         struct xps_map *map;
2474
2475         /* copy maps belonging to foreign traffic classes */
2476         for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2477                 if (i == tc && skip_tc)
2478                         continue;
2479
2480                 /* fill in the new device map from the old device map */
2481                 map = xmap_dereference(dev_maps->attr_map[tci]);
2482                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2483         }
2484 }
2485
2486 /* Must be called under cpus_read_lock */
2487 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2488                           u16 index, enum xps_map_type type)
2489 {
2490         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2491         const unsigned long *online_mask = NULL;
2492         bool active = false, copy = false;
2493         int i, j, tci, numa_node_id = -2;
2494         int maps_sz, num_tc = 1, tc = 0;
2495         struct xps_map *map, *new_map;
2496         unsigned int nr_ids;
2497
2498         if (dev->num_tc) {
2499                 /* Do not allow XPS on subordinate device directly */
2500                 num_tc = dev->num_tc;
2501                 if (num_tc < 0)
2502                         return -EINVAL;
2503
2504                 /* If queue belongs to subordinate dev use its map */
2505                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2506
2507                 tc = netdev_txq_to_tc(dev, index);
2508                 if (tc < 0)
2509                         return -EINVAL;
2510         }
2511
2512         mutex_lock(&xps_map_mutex);
2513
2514         dev_maps = xmap_dereference(dev->xps_maps[type]);
2515         if (type == XPS_RXQS) {
2516                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2517                 nr_ids = dev->num_rx_queues;
2518         } else {
2519                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2520                 if (num_possible_cpus() > 1)
2521                         online_mask = cpumask_bits(cpu_online_mask);
2522                 nr_ids = nr_cpu_ids;
2523         }
2524
2525         if (maps_sz < L1_CACHE_BYTES)
2526                 maps_sz = L1_CACHE_BYTES;
2527
2528         /* The old dev_maps could be larger or smaller than the one we're
2529          * setting up now, as dev->num_tc or nr_ids could have been updated in
2530          * between. We could try to be smart, but let's be safe instead and only
2531          * copy foreign traffic classes if the two map sizes match.
2532          */
2533         if (dev_maps &&
2534             dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2535                 copy = true;
2536
2537         /* allocate memory for queue storage */
2538         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2539              j < nr_ids;) {
2540                 if (!new_dev_maps) {
2541                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2542                         if (!new_dev_maps) {
2543                                 mutex_unlock(&xps_map_mutex);
2544                                 return -ENOMEM;
2545                         }
2546
2547                         new_dev_maps->nr_ids = nr_ids;
2548                         new_dev_maps->num_tc = num_tc;
2549                 }
2550
2551                 tci = j * num_tc + tc;
2552                 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2553
2554                 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2555                 if (!map)
2556                         goto error;
2557
2558                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2559         }
2560
2561         if (!new_dev_maps)
2562                 goto out_no_new_maps;
2563
2564         if (!dev_maps) {
2565                 /* Increment static keys at most once per type */
2566                 static_key_slow_inc_cpuslocked(&xps_needed);
2567                 if (type == XPS_RXQS)
2568                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2569         }
2570
2571         for (j = 0; j < nr_ids; j++) {
2572                 bool skip_tc = false;
2573
2574                 tci = j * num_tc + tc;
2575                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2576                     netif_attr_test_online(j, online_mask, nr_ids)) {
2577                         /* add tx-queue to CPU/rx-queue maps */
2578                         int pos = 0;
2579
2580                         skip_tc = true;
2581
2582                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2583                         while ((pos < map->len) && (map->queues[pos] != index))
2584                                 pos++;
2585
2586                         if (pos == map->len)
2587                                 map->queues[map->len++] = index;
2588 #ifdef CONFIG_NUMA
2589                         if (type == XPS_CPUS) {
2590                                 if (numa_node_id == -2)
2591                                         numa_node_id = cpu_to_node(j);
2592                                 else if (numa_node_id != cpu_to_node(j))
2593                                         numa_node_id = -1;
2594                         }
2595 #endif
2596                 }
2597
2598                 if (copy)
2599                         xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2600                                           skip_tc);
2601         }
2602
2603         rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2604
2605         /* Cleanup old maps */
2606         if (!dev_maps)
2607                 goto out_no_old_maps;
2608
2609         for (j = 0; j < dev_maps->nr_ids; j++) {
2610                 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2611                         map = xmap_dereference(dev_maps->attr_map[tci]);
2612                         if (!map)
2613                                 continue;
2614
2615                         if (copy) {
2616                                 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2617                                 if (map == new_map)
2618                                         continue;
2619                         }
2620
2621                         RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2622                         kfree_rcu(map, rcu);
2623                 }
2624         }
2625
2626         old_dev_maps = dev_maps;
2627
2628 out_no_old_maps:
2629         dev_maps = new_dev_maps;
2630         active = true;
2631
2632 out_no_new_maps:
2633         if (type == XPS_CPUS)
2634                 /* update Tx queue numa node */
2635                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2636                                              (numa_node_id >= 0) ?
2637                                              numa_node_id : NUMA_NO_NODE);
2638
2639         if (!dev_maps)
2640                 goto out_no_maps;
2641
2642         /* removes tx-queue from unused CPUs/rx-queues */
2643         for (j = 0; j < dev_maps->nr_ids; j++) {
2644                 tci = j * dev_maps->num_tc;
2645
2646                 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2647                         if (i == tc &&
2648                             netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2649                             netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2650                                 continue;
2651
2652                         active |= remove_xps_queue(dev_maps,
2653                                                    copy ? old_dev_maps : NULL,
2654                                                    tci, index);
2655                 }
2656         }
2657
2658         if (old_dev_maps)
2659                 kfree_rcu(old_dev_maps, rcu);
2660
2661         /* free map if not active */
2662         if (!active)
2663                 reset_xps_maps(dev, dev_maps, type);
2664
2665 out_no_maps:
2666         mutex_unlock(&xps_map_mutex);
2667
2668         return 0;
2669 error:
2670         /* remove any maps that we added */
2671         for (j = 0; j < nr_ids; j++) {
2672                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2673                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2674                         map = copy ?
2675                               xmap_dereference(dev_maps->attr_map[tci]) :
2676                               NULL;
2677                         if (new_map && new_map != map)
2678                                 kfree(new_map);
2679                 }
2680         }
2681
2682         mutex_unlock(&xps_map_mutex);
2683
2684         kfree(new_dev_maps);
2685         return -ENOMEM;
2686 }
2687 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2688
2689 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2690                         u16 index)
2691 {
2692         int ret;
2693
2694         cpus_read_lock();
2695         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2696         cpus_read_unlock();
2697
2698         return ret;
2699 }
2700 EXPORT_SYMBOL(netif_set_xps_queue);
2701
2702 #endif
2703 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2704 {
2705         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2706
2707         /* Unbind any subordinate channels */
2708         while (txq-- != &dev->_tx[0]) {
2709                 if (txq->sb_dev)
2710                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2711         }
2712 }
2713
2714 void netdev_reset_tc(struct net_device *dev)
2715 {
2716 #ifdef CONFIG_XPS
2717         netif_reset_xps_queues_gt(dev, 0);
2718 #endif
2719         netdev_unbind_all_sb_channels(dev);
2720
2721         /* Reset TC configuration of device */
2722         dev->num_tc = 0;
2723         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2724         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2725 }
2726 EXPORT_SYMBOL(netdev_reset_tc);
2727
2728 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2729 {
2730         if (tc >= dev->num_tc)
2731                 return -EINVAL;
2732
2733 #ifdef CONFIG_XPS
2734         netif_reset_xps_queues(dev, offset, count);
2735 #endif
2736         dev->tc_to_txq[tc].count = count;
2737         dev->tc_to_txq[tc].offset = offset;
2738         return 0;
2739 }
2740 EXPORT_SYMBOL(netdev_set_tc_queue);
2741
2742 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2743 {
2744         if (num_tc > TC_MAX_QUEUE)
2745                 return -EINVAL;
2746
2747 #ifdef CONFIG_XPS
2748         netif_reset_xps_queues_gt(dev, 0);
2749 #endif
2750         netdev_unbind_all_sb_channels(dev);
2751
2752         dev->num_tc = num_tc;
2753         return 0;
2754 }
2755 EXPORT_SYMBOL(netdev_set_num_tc);
2756
2757 void netdev_unbind_sb_channel(struct net_device *dev,
2758                               struct net_device *sb_dev)
2759 {
2760         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2761
2762 #ifdef CONFIG_XPS
2763         netif_reset_xps_queues_gt(sb_dev, 0);
2764 #endif
2765         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2766         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2767
2768         while (txq-- != &dev->_tx[0]) {
2769                 if (txq->sb_dev == sb_dev)
2770                         txq->sb_dev = NULL;
2771         }
2772 }
2773 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2774
2775 int netdev_bind_sb_channel_queue(struct net_device *dev,
2776                                  struct net_device *sb_dev,
2777                                  u8 tc, u16 count, u16 offset)
2778 {
2779         /* Make certain the sb_dev and dev are already configured */
2780         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2781                 return -EINVAL;
2782
2783         /* We cannot hand out queues we don't have */
2784         if ((offset + count) > dev->real_num_tx_queues)
2785                 return -EINVAL;
2786
2787         /* Record the mapping */
2788         sb_dev->tc_to_txq[tc].count = count;
2789         sb_dev->tc_to_txq[tc].offset = offset;
2790
2791         /* Provide a way for Tx queue to find the tc_to_txq map or
2792          * XPS map for itself.
2793          */
2794         while (count--)
2795                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2796
2797         return 0;
2798 }
2799 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2800
2801 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2802 {
2803         /* Do not use a multiqueue device to represent a subordinate channel */
2804         if (netif_is_multiqueue(dev))
2805                 return -ENODEV;
2806
2807         /* We allow channels 1 - 32767 to be used for subordinate channels.
2808          * Channel 0 is meant to be "native" mode and used only to represent
2809          * the main root device. We allow writing 0 to reset the device back
2810          * to normal mode after being used as a subordinate channel.
2811          */
2812         if (channel > S16_MAX)
2813                 return -EINVAL;
2814
2815         dev->num_tc = -channel;
2816
2817         return 0;
2818 }
2819 EXPORT_SYMBOL(netdev_set_sb_channel);
2820
2821 /*
2822  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2823  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2824  */
2825 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2826 {
2827         bool disabling;
2828         int rc;
2829
2830         disabling = txq < dev->real_num_tx_queues;
2831
2832         if (txq < 1 || txq > dev->num_tx_queues)
2833                 return -EINVAL;
2834
2835         if (dev->reg_state == NETREG_REGISTERED ||
2836             dev->reg_state == NETREG_UNREGISTERING) {
2837                 ASSERT_RTNL();
2838
2839                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2840                                                   txq);
2841                 if (rc)
2842                         return rc;
2843
2844                 if (dev->num_tc)
2845                         netif_setup_tc(dev, txq);
2846
2847                 dev_qdisc_change_real_num_tx(dev, txq);
2848
2849                 dev->real_num_tx_queues = txq;
2850
2851                 if (disabling) {
2852                         synchronize_net();
2853                         qdisc_reset_all_tx_gt(dev, txq);
2854 #ifdef CONFIG_XPS
2855                         netif_reset_xps_queues_gt(dev, txq);
2856 #endif
2857                 }
2858         } else {
2859                 dev->real_num_tx_queues = txq;
2860         }
2861
2862         return 0;
2863 }
2864 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2865
2866 #ifdef CONFIG_SYSFS
2867 /**
2868  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2869  *      @dev: Network device
2870  *      @rxq: Actual number of RX queues
2871  *
2872  *      This must be called either with the rtnl_lock held or before
2873  *      registration of the net device.  Returns 0 on success, or a
2874  *      negative error code.  If called before registration, it always
2875  *      succeeds.
2876  */
2877 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2878 {
2879         int rc;
2880
2881         if (rxq < 1 || rxq > dev->num_rx_queues)
2882                 return -EINVAL;
2883
2884         if (dev->reg_state == NETREG_REGISTERED) {
2885                 ASSERT_RTNL();
2886
2887                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2888                                                   rxq);
2889                 if (rc)
2890                         return rc;
2891         }
2892
2893         dev->real_num_rx_queues = rxq;
2894         return 0;
2895 }
2896 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2897 #endif
2898
2899 /**
2900  *      netif_set_real_num_queues - set actual number of RX and TX queues used
2901  *      @dev: Network device
2902  *      @txq: Actual number of TX queues
2903  *      @rxq: Actual number of RX queues
2904  *
2905  *      Set the real number of both TX and RX queues.
2906  *      Does nothing if the number of queues is already correct.
2907  */
2908 int netif_set_real_num_queues(struct net_device *dev,
2909                               unsigned int txq, unsigned int rxq)
2910 {
2911         unsigned int old_rxq = dev->real_num_rx_queues;
2912         int err;
2913
2914         if (txq < 1 || txq > dev->num_tx_queues ||
2915             rxq < 1 || rxq > dev->num_rx_queues)
2916                 return -EINVAL;
2917
2918         /* Start from increases, so the error path only does decreases -
2919          * decreases can't fail.
2920          */
2921         if (rxq > dev->real_num_rx_queues) {
2922                 err = netif_set_real_num_rx_queues(dev, rxq);
2923                 if (err)
2924                         return err;
2925         }
2926         if (txq > dev->real_num_tx_queues) {
2927                 err = netif_set_real_num_tx_queues(dev, txq);
2928                 if (err)
2929                         goto undo_rx;
2930         }
2931         if (rxq < dev->real_num_rx_queues)
2932                 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
2933         if (txq < dev->real_num_tx_queues)
2934                 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
2935
2936         return 0;
2937 undo_rx:
2938         WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
2939         return err;
2940 }
2941 EXPORT_SYMBOL(netif_set_real_num_queues);
2942
2943 /**
2944  * netif_get_num_default_rss_queues - default number of RSS queues
2945  *
2946  * This routine should set an upper limit on the number of RSS queues
2947  * used by default by multiqueue devices.
2948  */
2949 int netif_get_num_default_rss_queues(void)
2950 {
2951         return is_kdump_kernel() ?
2952                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2953 }
2954 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2955
2956 static void __netif_reschedule(struct Qdisc *q)
2957 {
2958         struct softnet_data *sd;
2959         unsigned long flags;
2960
2961         local_irq_save(flags);
2962         sd = this_cpu_ptr(&softnet_data);
2963         q->next_sched = NULL;
2964         *sd->output_queue_tailp = q;
2965         sd->output_queue_tailp = &q->next_sched;
2966         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2967         local_irq_restore(flags);
2968 }
2969
2970 void __netif_schedule(struct Qdisc *q)
2971 {
2972         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2973                 __netif_reschedule(q);
2974 }
2975 EXPORT_SYMBOL(__netif_schedule);
2976
2977 struct dev_kfree_skb_cb {
2978         enum skb_free_reason reason;
2979 };
2980
2981 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2982 {
2983         return (struct dev_kfree_skb_cb *)skb->cb;
2984 }
2985
2986 void netif_schedule_queue(struct netdev_queue *txq)
2987 {
2988         rcu_read_lock();
2989         if (!netif_xmit_stopped(txq)) {
2990                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2991
2992                 __netif_schedule(q);
2993         }
2994         rcu_read_unlock();
2995 }
2996 EXPORT_SYMBOL(netif_schedule_queue);
2997
2998 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2999 {
3000         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3001                 struct Qdisc *q;
3002
3003                 rcu_read_lock();
3004                 q = rcu_dereference(dev_queue->qdisc);
3005                 __netif_schedule(q);
3006                 rcu_read_unlock();
3007         }
3008 }
3009 EXPORT_SYMBOL(netif_tx_wake_queue);
3010
3011 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3012 {
3013         unsigned long flags;
3014
3015         if (unlikely(!skb))
3016                 return;
3017
3018         if (likely(refcount_read(&skb->users) == 1)) {
3019                 smp_rmb();
3020                 refcount_set(&skb->users, 0);
3021         } else if (likely(!refcount_dec_and_test(&skb->users))) {
3022                 return;
3023         }
3024         get_kfree_skb_cb(skb)->reason = reason;
3025         local_irq_save(flags);
3026         skb->next = __this_cpu_read(softnet_data.completion_queue);
3027         __this_cpu_write(softnet_data.completion_queue, skb);
3028         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3029         local_irq_restore(flags);
3030 }
3031 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3032
3033 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3034 {
3035         if (in_hardirq() || irqs_disabled())
3036                 __dev_kfree_skb_irq(skb, reason);
3037         else
3038                 dev_kfree_skb(skb);
3039 }
3040 EXPORT_SYMBOL(__dev_kfree_skb_any);
3041
3042
3043 /**
3044  * netif_device_detach - mark device as removed
3045  * @dev: network device
3046  *
3047  * Mark device as removed from system and therefore no longer available.
3048  */
3049 void netif_device_detach(struct net_device *dev)
3050 {
3051         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3052             netif_running(dev)) {
3053                 netif_tx_stop_all_queues(dev);
3054         }
3055 }
3056 EXPORT_SYMBOL(netif_device_detach);
3057
3058 /**
3059  * netif_device_attach - mark device as attached
3060  * @dev: network device
3061  *
3062  * Mark device as attached from system and restart if needed.
3063  */
3064 void netif_device_attach(struct net_device *dev)
3065 {
3066         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3067             netif_running(dev)) {
3068                 netif_tx_wake_all_queues(dev);
3069                 __netdev_watchdog_up(dev);
3070         }
3071 }
3072 EXPORT_SYMBOL(netif_device_attach);
3073
3074 /*
3075  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3076  * to be used as a distribution range.
3077  */
3078 static u16 skb_tx_hash(const struct net_device *dev,
3079                        const struct net_device *sb_dev,
3080                        struct sk_buff *skb)
3081 {
3082         u32 hash;
3083         u16 qoffset = 0;
3084         u16 qcount = dev->real_num_tx_queues;
3085
3086         if (dev->num_tc) {
3087                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3088
3089                 qoffset = sb_dev->tc_to_txq[tc].offset;
3090                 qcount = sb_dev->tc_to_txq[tc].count;
3091                 if (unlikely(!qcount)) {
3092                         net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3093                                              sb_dev->name, qoffset, tc);
3094                         qoffset = 0;
3095                         qcount = dev->real_num_tx_queues;
3096                 }
3097         }
3098
3099         if (skb_rx_queue_recorded(skb)) {
3100                 hash = skb_get_rx_queue(skb);
3101                 if (hash >= qoffset)
3102                         hash -= qoffset;
3103                 while (unlikely(hash >= qcount))
3104                         hash -= qcount;
3105                 return hash + qoffset;
3106         }
3107
3108         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3109 }
3110
3111 static void skb_warn_bad_offload(const struct sk_buff *skb)
3112 {
3113         static const netdev_features_t null_features;
3114         struct net_device *dev = skb->dev;
3115         const char *name = "";
3116
3117         if (!net_ratelimit())
3118                 return;
3119
3120         if (dev) {
3121                 if (dev->dev.parent)
3122                         name = dev_driver_string(dev->dev.parent);
3123                 else
3124                         name = netdev_name(dev);
3125         }
3126         skb_dump(KERN_WARNING, skb, false);
3127         WARN(1, "%s: caps=(%pNF, %pNF)\n",
3128              name, dev ? &dev->features : &null_features,
3129              skb->sk ? &skb->sk->sk_route_caps : &null_features);
3130 }
3131
3132 /*
3133  * Invalidate hardware checksum when packet is to be mangled, and
3134  * complete checksum manually on outgoing path.
3135  */
3136 int skb_checksum_help(struct sk_buff *skb)
3137 {
3138         __wsum csum;
3139         int ret = 0, offset;
3140
3141         if (skb->ip_summed == CHECKSUM_COMPLETE)
3142                 goto out_set_summed;
3143
3144         if (unlikely(skb_is_gso(skb))) {
3145                 skb_warn_bad_offload(skb);
3146                 return -EINVAL;
3147         }
3148
3149         /* Before computing a checksum, we should make sure no frag could
3150          * be modified by an external entity : checksum could be wrong.
3151          */
3152         if (skb_has_shared_frag(skb)) {
3153                 ret = __skb_linearize(skb);
3154                 if (ret)
3155                         goto out;
3156         }
3157
3158         offset = skb_checksum_start_offset(skb);
3159         BUG_ON(offset >= skb_headlen(skb));
3160         csum = skb_checksum(skb, offset, skb->len - offset, 0);
3161
3162         offset += skb->csum_offset;
3163         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3164
3165         ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3166         if (ret)
3167                 goto out;
3168
3169         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3170 out_set_summed:
3171         skb->ip_summed = CHECKSUM_NONE;
3172 out:
3173         return ret;
3174 }
3175 EXPORT_SYMBOL(skb_checksum_help);
3176
3177 int skb_crc32c_csum_help(struct sk_buff *skb)
3178 {
3179         __le32 crc32c_csum;
3180         int ret = 0, offset, start;
3181
3182         if (skb->ip_summed != CHECKSUM_PARTIAL)
3183                 goto out;
3184
3185         if (unlikely(skb_is_gso(skb)))
3186                 goto out;
3187
3188         /* Before computing a checksum, we should make sure no frag could
3189          * be modified by an external entity : checksum could be wrong.
3190          */
3191         if (unlikely(skb_has_shared_frag(skb))) {
3192                 ret = __skb_linearize(skb);
3193                 if (ret)
3194                         goto out;
3195         }
3196         start = skb_checksum_start_offset(skb);
3197         offset = start + offsetof(struct sctphdr, checksum);
3198         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3199                 ret = -EINVAL;
3200                 goto out;
3201         }
3202
3203         ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3204         if (ret)
3205                 goto out;
3206
3207         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3208                                                   skb->len - start, ~(__u32)0,
3209                                                   crc32c_csum_stub));
3210         *(__le32 *)(skb->data + offset) = crc32c_csum;
3211         skb->ip_summed = CHECKSUM_NONE;
3212         skb->csum_not_inet = 0;
3213 out:
3214         return ret;
3215 }
3216
3217 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3218 {
3219         __be16 type = skb->protocol;
3220
3221         /* Tunnel gso handlers can set protocol to ethernet. */
3222         if (type == htons(ETH_P_TEB)) {
3223                 struct ethhdr *eth;
3224
3225                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3226                         return 0;
3227
3228                 eth = (struct ethhdr *)skb->data;
3229                 type = eth->h_proto;
3230         }
3231
3232         return __vlan_get_protocol(skb, type, depth);
3233 }
3234
3235 /* openvswitch calls this on rx path, so we need a different check.
3236  */
3237 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3238 {
3239         if (tx_path)
3240                 return skb->ip_summed != CHECKSUM_PARTIAL &&
3241                        skb->ip_summed != CHECKSUM_UNNECESSARY;
3242
3243         return skb->ip_summed == CHECKSUM_NONE;
3244 }
3245
3246 /**
3247  *      __skb_gso_segment - Perform segmentation on skb.
3248  *      @skb: buffer to segment
3249  *      @features: features for the output path (see dev->features)
3250  *      @tx_path: whether it is called in TX path
3251  *
3252  *      This function segments the given skb and returns a list of segments.
3253  *
3254  *      It may return NULL if the skb requires no segmentation.  This is
3255  *      only possible when GSO is used for verifying header integrity.
3256  *
3257  *      Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3258  */
3259 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3260                                   netdev_features_t features, bool tx_path)
3261 {
3262         struct sk_buff *segs;
3263
3264         if (unlikely(skb_needs_check(skb, tx_path))) {
3265                 int err;
3266
3267                 /* We're going to init ->check field in TCP or UDP header */
3268                 err = skb_cow_head(skb, 0);
3269                 if (err < 0)
3270                         return ERR_PTR(err);
3271         }
3272
3273         /* Only report GSO partial support if it will enable us to
3274          * support segmentation on this frame without needing additional
3275          * work.
3276          */
3277         if (features & NETIF_F_GSO_PARTIAL) {
3278                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3279                 struct net_device *dev = skb->dev;
3280
3281                 partial_features |= dev->features & dev->gso_partial_features;
3282                 if (!skb_gso_ok(skb, features | partial_features))
3283                         features &= ~NETIF_F_GSO_PARTIAL;
3284         }
3285
3286         BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3287                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3288
3289         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3290         SKB_GSO_CB(skb)->encap_level = 0;
3291
3292         skb_reset_mac_header(skb);
3293         skb_reset_mac_len(skb);
3294
3295         segs = skb_mac_gso_segment(skb, features);
3296
3297         if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3298                 skb_warn_bad_offload(skb);
3299
3300         return segs;
3301 }
3302 EXPORT_SYMBOL(__skb_gso_segment);
3303
3304 /* Take action when hardware reception checksum errors are detected. */
3305 #ifdef CONFIG_BUG
3306 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3307 {
3308         netdev_err(dev, "hw csum failure\n");
3309         skb_dump(KERN_ERR, skb, true);
3310         dump_stack();
3311 }
3312
3313 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3314 {
3315         DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3316 }
3317 EXPORT_SYMBOL(netdev_rx_csum_fault);
3318 #endif
3319
3320 /* XXX: check that highmem exists at all on the given machine. */
3321 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3322 {
3323 #ifdef CONFIG_HIGHMEM
3324         int i;
3325
3326         if (!(dev->features & NETIF_F_HIGHDMA)) {
3327                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3328                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3329
3330                         if (PageHighMem(skb_frag_page(frag)))
3331                                 return 1;
3332                 }
3333         }
3334 #endif
3335         return 0;
3336 }
3337
3338 /* If MPLS offload request, verify we are testing hardware MPLS features
3339  * instead of standard features for the netdev.
3340  */
3341 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3342 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3343                                            netdev_features_t features,
3344                                            __be16 type)
3345 {
3346         if (eth_p_mpls(type))
3347                 features &= skb->dev->mpls_features;
3348
3349         return features;
3350 }
3351 #else
3352 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3353                                            netdev_features_t features,
3354                                            __be16 type)
3355 {
3356         return features;
3357 }
3358 #endif
3359
3360 static netdev_features_t harmonize_features(struct sk_buff *skb,
3361         netdev_features_t features)
3362 {
3363         __be16 type;
3364
3365         type = skb_network_protocol(skb, NULL);
3366         features = net_mpls_features(skb, features, type);
3367
3368         if (skb->ip_summed != CHECKSUM_NONE &&
3369             !can_checksum_protocol(features, type)) {
3370                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3371         }
3372         if (illegal_highdma(skb->dev, skb))
3373                 features &= ~NETIF_F_SG;
3374
3375         return features;
3376 }
3377
3378 netdev_features_t passthru_features_check(struct sk_buff *skb,
3379                                           struct net_device *dev,
3380                                           netdev_features_t features)
3381 {
3382         return features;
3383 }
3384 EXPORT_SYMBOL(passthru_features_check);
3385
3386 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3387                                              struct net_device *dev,
3388                                              netdev_features_t features)
3389 {
3390         return vlan_features_check(skb, features);
3391 }
3392
3393 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3394                                             struct net_device *dev,
3395                                             netdev_features_t features)
3396 {
3397         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3398
3399         if (gso_segs > READ_ONCE(dev->gso_max_segs))
3400                 return features & ~NETIF_F_GSO_MASK;
3401
3402         if (!skb_shinfo(skb)->gso_type) {
3403                 skb_warn_bad_offload(skb);
3404                 return features & ~NETIF_F_GSO_MASK;
3405         }
3406
3407         /* Support for GSO partial features requires software
3408          * intervention before we can actually process the packets
3409          * so we need to strip support for any partial features now
3410          * and we can pull them back in after we have partially
3411          * segmented the frame.
3412          */
3413         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3414                 features &= ~dev->gso_partial_features;
3415
3416         /* Make sure to clear the IPv4 ID mangling feature if the
3417          * IPv4 header has the potential to be fragmented.
3418          */
3419         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3420                 struct iphdr *iph = skb->encapsulation ?
3421                                     inner_ip_hdr(skb) : ip_hdr(skb);
3422
3423                 if (!(iph->frag_off & htons(IP_DF)))
3424                         features &= ~NETIF_F_TSO_MANGLEID;
3425         }
3426
3427         return features;
3428 }
3429
3430 netdev_features_t netif_skb_features(struct sk_buff *skb)
3431 {
3432         struct net_device *dev = skb->dev;
3433         netdev_features_t features = dev->features;
3434
3435         if (skb_is_gso(skb))
3436                 features = gso_features_check(skb, dev, features);
3437
3438         /* If encapsulation offload request, verify we are testing
3439          * hardware encapsulation features instead of standard
3440          * features for the netdev
3441          */
3442         if (skb->encapsulation)
3443                 features &= dev->hw_enc_features;
3444
3445         if (skb_vlan_tagged(skb))
3446                 features = netdev_intersect_features(features,
3447                                                      dev->vlan_features |
3448                                                      NETIF_F_HW_VLAN_CTAG_TX |
3449                                                      NETIF_F_HW_VLAN_STAG_TX);
3450
3451         if (dev->netdev_ops->ndo_features_check)
3452                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3453                                                                 features);
3454         else
3455                 features &= dflt_features_check(skb, dev, features);
3456
3457         return harmonize_features(skb, features);
3458 }
3459 EXPORT_SYMBOL(netif_skb_features);
3460
3461 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3462                     struct netdev_queue *txq, bool more)
3463 {
3464         unsigned int len;
3465         int rc;
3466
3467         if (dev_nit_active(dev))
3468                 dev_queue_xmit_nit(skb, dev);
3469
3470         len = skb->len;
3471         PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3472         trace_net_dev_start_xmit(skb, dev);
3473         rc = netdev_start_xmit(skb, dev, txq, more);
3474         trace_net_dev_xmit(skb, rc, dev, len);
3475
3476         return rc;
3477 }
3478
3479 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3480                                     struct netdev_queue *txq, int *ret)
3481 {
3482         struct sk_buff *skb = first;
3483         int rc = NETDEV_TX_OK;
3484
3485         while (skb) {
3486                 struct sk_buff *next = skb->next;
3487
3488                 skb_mark_not_on_list(skb);
3489                 rc = xmit_one(skb, dev, txq, next != NULL);
3490                 if (unlikely(!dev_xmit_complete(rc))) {
3491                         skb->next = next;
3492                         goto out;
3493                 }
3494
3495                 skb = next;
3496                 if (netif_tx_queue_stopped(txq) && skb) {
3497                         rc = NETDEV_TX_BUSY;
3498                         break;
3499                 }
3500         }
3501
3502 out:
3503         *ret = rc;
3504         return skb;
3505 }
3506
3507 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3508                                           netdev_features_t features)
3509 {
3510         if (skb_vlan_tag_present(skb) &&
3511             !vlan_hw_offload_capable(features, skb->vlan_proto))
3512                 skb = __vlan_hwaccel_push_inside(skb);
3513         return skb;
3514 }
3515
3516 int skb_csum_hwoffload_help(struct sk_buff *skb,
3517                             const netdev_features_t features)
3518 {
3519         if (unlikely(skb_csum_is_sctp(skb)))
3520                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3521                         skb_crc32c_csum_help(skb);
3522
3523         if (features & NETIF_F_HW_CSUM)
3524                 return 0;
3525
3526         if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3527                 switch (skb->csum_offset) {
3528                 case offsetof(struct tcphdr, check):
3529                 case offsetof(struct udphdr, check):
3530                         return 0;
3531                 }
3532         }
3533
3534         return skb_checksum_help(skb);
3535 }
3536 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3537
3538 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3539 {
3540         netdev_features_t features;
3541
3542         features = netif_skb_features(skb);
3543         skb = validate_xmit_vlan(skb, features);
3544         if (unlikely(!skb))
3545                 goto out_null;
3546
3547         skb = sk_validate_xmit_skb(skb, dev);
3548         if (unlikely(!skb))
3549                 goto out_null;
3550
3551         if (netif_needs_gso(skb, features)) {
3552                 struct sk_buff *segs;
3553
3554                 segs = skb_gso_segment(skb, features);
3555                 if (IS_ERR(segs)) {
3556                         goto out_kfree_skb;
3557                 } else if (segs) {
3558                         consume_skb(skb);
3559                         skb = segs;
3560                 }
3561         } else {
3562                 if (skb_needs_linearize(skb, features) &&
3563                     __skb_linearize(skb))
3564                         goto out_kfree_skb;
3565
3566                 /* If packet is not checksummed and device does not
3567                  * support checksumming for this protocol, complete
3568                  * checksumming here.
3569                  */
3570                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3571                         if (skb->encapsulation)
3572                                 skb_set_inner_transport_header(skb,
3573                                                                skb_checksum_start_offset(skb));
3574                         else
3575                                 skb_set_transport_header(skb,
3576                                                          skb_checksum_start_offset(skb));
3577                         if (skb_csum_hwoffload_help(skb, features))
3578                                 goto out_kfree_skb;
3579                 }
3580         }
3581
3582         skb = validate_xmit_xfrm(skb, features, again);
3583
3584         return skb;
3585
3586 out_kfree_skb:
3587         kfree_skb(skb);
3588 out_null:
3589         atomic_long_inc(&dev->tx_dropped);
3590         return NULL;
3591 }
3592
3593 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3594 {
3595         struct sk_buff *next, *head = NULL, *tail;
3596
3597         for (; skb != NULL; skb = next) {
3598                 next = skb->next;
3599                 skb_mark_not_on_list(skb);
3600
3601                 /* in case skb wont be segmented, point to itself */
3602                 skb->prev = skb;
3603
3604                 skb = validate_xmit_skb(skb, dev, again);
3605                 if (!skb)
3606                         continue;
3607
3608                 if (!head)
3609                         head = skb;
3610                 else
3611                         tail->next = skb;
3612                 /* If skb was segmented, skb->prev points to
3613                  * the last segment. If not, it still contains skb.
3614                  */
3615                 tail = skb->prev;
3616         }
3617         return head;
3618 }
3619 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3620
3621 static void qdisc_pkt_len_init(struct sk_buff *skb)
3622 {
3623         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3624
3625         qdisc_skb_cb(skb)->pkt_len = skb->len;
3626
3627         /* To get more precise estimation of bytes sent on wire,
3628          * we add to pkt_len the headers size of all segments
3629          */
3630         if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3631                 unsigned int hdr_len;
3632                 u16 gso_segs = shinfo->gso_segs;
3633
3634                 /* mac layer + network layer */
3635                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3636
3637                 /* + transport layer */
3638                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3639                         const struct tcphdr *th;
3640                         struct tcphdr _tcphdr;
3641
3642                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3643                                                 sizeof(_tcphdr), &_tcphdr);
3644                         if (likely(th))
3645                                 hdr_len += __tcp_hdrlen(th);
3646                 } else {
3647                         struct udphdr _udphdr;
3648
3649                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3650                                                sizeof(_udphdr), &_udphdr))
3651                                 hdr_len += sizeof(struct udphdr);
3652                 }
3653
3654                 if (shinfo->gso_type & SKB_GSO_DODGY)
3655                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3656                                                 shinfo->gso_size);
3657
3658                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3659         }
3660 }
3661
3662 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3663                              struct sk_buff **to_free,
3664                              struct netdev_queue *txq)
3665 {
3666         int rc;
3667
3668         rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3669         if (rc == NET_XMIT_SUCCESS)
3670                 trace_qdisc_enqueue(q, txq, skb);
3671         return rc;
3672 }
3673
3674 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3675                                  struct net_device *dev,
3676                                  struct netdev_queue *txq)
3677 {
3678         spinlock_t *root_lock = qdisc_lock(q);
3679         struct sk_buff *to_free = NULL;
3680         bool contended;
3681         int rc;
3682
3683         qdisc_calculate_pkt_len(skb, q);
3684
3685         if (q->flags & TCQ_F_NOLOCK) {
3686                 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3687                     qdisc_run_begin(q)) {
3688                         /* Retest nolock_qdisc_is_empty() within the protection
3689                          * of q->seqlock to protect from racing with requeuing.
3690                          */
3691                         if (unlikely(!nolock_qdisc_is_empty(q))) {
3692                                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3693                                 __qdisc_run(q);
3694                                 qdisc_run_end(q);
3695
3696                                 goto no_lock_out;
3697                         }
3698
3699                         qdisc_bstats_cpu_update(q, skb);
3700                         if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3701                             !nolock_qdisc_is_empty(q))
3702                                 __qdisc_run(q);
3703
3704                         qdisc_run_end(q);
3705                         return NET_XMIT_SUCCESS;
3706                 }
3707
3708                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3709                 qdisc_run(q);
3710
3711 no_lock_out:
3712                 if (unlikely(to_free))
3713                         kfree_skb_list(to_free);
3714                 return rc;
3715         }
3716
3717         /*
3718          * Heuristic to force contended enqueues to serialize on a
3719          * separate lock before trying to get qdisc main lock.
3720          * This permits qdisc->running owner to get the lock more
3721          * often and dequeue packets faster.
3722          * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3723          * and then other tasks will only enqueue packets. The packets will be
3724          * sent after the qdisc owner is scheduled again. To prevent this
3725          * scenario the task always serialize on the lock.
3726          */
3727         contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3728         if (unlikely(contended))
3729                 spin_lock(&q->busylock);
3730
3731         spin_lock(root_lock);
3732         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3733                 __qdisc_drop(skb, &to_free);
3734                 rc = NET_XMIT_DROP;
3735         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3736                    qdisc_run_begin(q)) {
3737                 /*
3738                  * This is a work-conserving queue; there are no old skbs
3739                  * waiting to be sent out; and the qdisc is not running -
3740                  * xmit the skb directly.
3741                  */
3742
3743                 qdisc_bstats_update(q, skb);
3744
3745                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3746                         if (unlikely(contended)) {
3747                                 spin_unlock(&q->busylock);
3748                                 contended = false;
3749                         }
3750                         __qdisc_run(q);
3751                 }
3752
3753                 qdisc_run_end(q);
3754                 rc = NET_XMIT_SUCCESS;
3755         } else {
3756                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3757                 if (qdisc_run_begin(q)) {
3758                         if (unlikely(contended)) {
3759                                 spin_unlock(&q->busylock);
3760                                 contended = false;
3761                         }
3762                         __qdisc_run(q);
3763                         qdisc_run_end(q);
3764                 }
3765         }
3766         spin_unlock(root_lock);
3767         if (unlikely(to_free))
3768                 kfree_skb_list(to_free);
3769         if (unlikely(contended))
3770                 spin_unlock(&q->busylock);
3771         return rc;
3772 }
3773
3774 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3775 static void skb_update_prio(struct sk_buff *skb)
3776 {
3777         const struct netprio_map *map;
3778         const struct sock *sk;
3779         unsigned int prioidx;
3780
3781         if (skb->priority)
3782                 return;
3783         map = rcu_dereference_bh(skb->dev->priomap);
3784         if (!map)
3785                 return;
3786         sk = skb_to_full_sk(skb);
3787         if (!sk)
3788                 return;
3789
3790         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3791
3792         if (prioidx < map->priomap_len)
3793                 skb->priority = map->priomap[prioidx];
3794 }
3795 #else
3796 #define skb_update_prio(skb)
3797 #endif
3798
3799 /**
3800  *      dev_loopback_xmit - loop back @skb
3801  *      @net: network namespace this loopback is happening in
3802  *      @sk:  sk needed to be a netfilter okfn
3803  *      @skb: buffer to transmit
3804  */
3805 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3806 {
3807         skb_reset_mac_header(skb);
3808         __skb_pull(skb, skb_network_offset(skb));
3809         skb->pkt_type = PACKET_LOOPBACK;
3810         if (skb->ip_summed == CHECKSUM_NONE)
3811                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3812         WARN_ON(!skb_dst(skb));
3813         skb_dst_force(skb);
3814         netif_rx_ni(skb);
3815         return 0;
3816 }
3817 EXPORT_SYMBOL(dev_loopback_xmit);
3818
3819 #ifdef CONFIG_NET_EGRESS
3820 static struct sk_buff *
3821 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3822 {
3823 #ifdef CONFIG_NET_CLS_ACT
3824         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3825         struct tcf_result cl_res;
3826
3827         if (!miniq)
3828                 return skb;
3829
3830         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3831         tc_skb_cb(skb)->mru = 0;
3832         tc_skb_cb(skb)->post_ct = false;
3833         mini_qdisc_bstats_cpu_update(miniq, skb);
3834
3835         switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
3836         case TC_ACT_OK:
3837         case TC_ACT_RECLASSIFY:
3838                 skb->tc_index = TC_H_MIN(cl_res.classid);
3839                 break;
3840         case TC_ACT_SHOT:
3841                 mini_qdisc_qstats_cpu_drop(miniq);
3842                 *ret = NET_XMIT_DROP;
3843                 kfree_skb(skb);
3844                 return NULL;
3845         case TC_ACT_STOLEN:
3846         case TC_ACT_QUEUED:
3847         case TC_ACT_TRAP:
3848                 *ret = NET_XMIT_SUCCESS;
3849                 consume_skb(skb);
3850                 return NULL;
3851         case TC_ACT_REDIRECT:
3852                 /* No need to push/pop skb's mac_header here on egress! */
3853                 skb_do_redirect(skb);
3854                 *ret = NET_XMIT_SUCCESS;
3855                 return NULL;
3856         default:
3857                 break;
3858         }
3859 #endif /* CONFIG_NET_CLS_ACT */
3860
3861         return skb;
3862 }
3863 #endif /* CONFIG_NET_EGRESS */
3864
3865 #ifdef CONFIG_XPS
3866 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3867                                struct xps_dev_maps *dev_maps, unsigned int tci)
3868 {
3869         int tc = netdev_get_prio_tc_map(dev, skb->priority);
3870         struct xps_map *map;
3871         int queue_index = -1;
3872
3873         if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
3874                 return queue_index;
3875
3876         tci *= dev_maps->num_tc;
3877         tci += tc;
3878
3879         map = rcu_dereference(dev_maps->attr_map[tci]);
3880         if (map) {
3881                 if (map->len == 1)
3882                         queue_index = map->queues[0];
3883                 else
3884                         queue_index = map->queues[reciprocal_scale(
3885                                                 skb_get_hash(skb), map->len)];
3886                 if (unlikely(queue_index >= dev->real_num_tx_queues))
3887                         queue_index = -1;
3888         }
3889         return queue_index;
3890 }
3891 #endif
3892
3893 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3894                          struct sk_buff *skb)
3895 {
3896 #ifdef CONFIG_XPS
3897         struct xps_dev_maps *dev_maps;
3898         struct sock *sk = skb->sk;
3899         int queue_index = -1;
3900
3901         if (!static_key_false(&xps_needed))
3902                 return -1;
3903
3904         rcu_read_lock();
3905         if (!static_key_false(&xps_rxqs_needed))
3906                 goto get_cpus_map;
3907
3908         dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
3909         if (dev_maps) {
3910                 int tci = sk_rx_queue_get(sk);
3911
3912                 if (tci >= 0)
3913                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3914                                                           tci);
3915         }
3916
3917 get_cpus_map:
3918         if (queue_index < 0) {
3919                 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
3920                 if (dev_maps) {
3921                         unsigned int tci = skb->sender_cpu - 1;
3922
3923                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3924                                                           tci);
3925                 }
3926         }
3927         rcu_read_unlock();
3928
3929         return queue_index;
3930 #else
3931         return -1;
3932 #endif
3933 }
3934
3935 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3936                      struct net_device *sb_dev)
3937 {
3938         return 0;
3939 }
3940 EXPORT_SYMBOL(dev_pick_tx_zero);
3941
3942 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3943                        struct net_device *sb_dev)
3944 {
3945         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3946 }
3947 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3948
3949 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3950                      struct net_device *sb_dev)
3951 {
3952         struct sock *sk = skb->sk;
3953         int queue_index = sk_tx_queue_get(sk);
3954
3955         sb_dev = sb_dev ? : dev;
3956
3957         if (queue_index < 0 || skb->ooo_okay ||
3958             queue_index >= dev->real_num_tx_queues) {
3959                 int new_index = get_xps_queue(dev, sb_dev, skb);
3960
3961                 if (new_index < 0)
3962                         new_index = skb_tx_hash(dev, sb_dev, skb);
3963
3964                 if (queue_index != new_index && sk &&
3965                     sk_fullsock(sk) &&
3966                     rcu_access_pointer(sk->sk_dst_cache))
3967                         sk_tx_queue_set(sk, new_index);
3968
3969                 queue_index = new_index;
3970         }
3971
3972         return queue_index;
3973 }
3974 EXPORT_SYMBOL(netdev_pick_tx);
3975
3976 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
3977                                          struct sk_buff *skb,
3978                                          struct net_device *sb_dev)
3979 {
3980         int queue_index = 0;
3981
3982 #ifdef CONFIG_XPS
3983         u32 sender_cpu = skb->sender_cpu - 1;
3984
3985         if (sender_cpu >= (u32)NR_CPUS)
3986                 skb->sender_cpu = raw_smp_processor_id() + 1;
3987 #endif
3988
3989         if (dev->real_num_tx_queues != 1) {
3990                 const struct net_device_ops *ops = dev->netdev_ops;
3991
3992                 if (ops->ndo_select_queue)
3993                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
3994                 else
3995                         queue_index = netdev_pick_tx(dev, skb, sb_dev);
3996
3997                 queue_index = netdev_cap_txqueue(dev, queue_index);
3998         }
3999
4000         skb_set_queue_mapping(skb, queue_index);
4001         return netdev_get_tx_queue(dev, queue_index);
4002 }
4003
4004 /**
4005  *      __dev_queue_xmit - transmit a buffer
4006  *      @skb: buffer to transmit
4007  *      @sb_dev: suboordinate device used for L2 forwarding offload
4008  *
4009  *      Queue a buffer for transmission to a network device. The caller must
4010  *      have set the device and priority and built the buffer before calling
4011  *      this function. The function can be called from an interrupt.
4012  *
4013  *      A negative errno code is returned on a failure. A success does not
4014  *      guarantee the frame will be transmitted as it may be dropped due
4015  *      to congestion or traffic shaping.
4016  *
4017  * -----------------------------------------------------------------------------------
4018  *      I notice this method can also return errors from the queue disciplines,
4019  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4020  *      be positive.
4021  *
4022  *      Regardless of the return value, the skb is consumed, so it is currently
4023  *      difficult to retry a send to this method.  (You can bump the ref count
4024  *      before sending to hold a reference for retry if you are careful.)
4025  *
4026  *      When calling this method, interrupts MUST be enabled.  This is because
4027  *      the BH enable code must have IRQs enabled so that it will not deadlock.
4028  *          --BLG
4029  */
4030 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4031 {
4032         struct net_device *dev = skb->dev;
4033         struct netdev_queue *txq;
4034         struct Qdisc *q;
4035         int rc = -ENOMEM;
4036         bool again = false;
4037
4038         skb_reset_mac_header(skb);
4039
4040         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4041                 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4042
4043         /* Disable soft irqs for various locks below. Also
4044          * stops preemption for RCU.
4045          */
4046         rcu_read_lock_bh();
4047
4048         skb_update_prio(skb);
4049
4050         qdisc_pkt_len_init(skb);
4051 #ifdef CONFIG_NET_CLS_ACT
4052         skb->tc_at_ingress = 0;
4053 #endif
4054 #ifdef CONFIG_NET_EGRESS
4055         if (static_branch_unlikely(&egress_needed_key)) {
4056                 if (nf_hook_egress_active()) {
4057                         skb = nf_hook_egress(skb, &rc, dev);
4058                         if (!skb)
4059                                 goto out;
4060                 }
4061                 nf_skip_egress(skb, true);
4062                 skb = sch_handle_egress(skb, &rc, dev);
4063                 if (!skb)
4064                         goto out;
4065                 nf_skip_egress(skb, false);
4066         }
4067 #endif
4068         /* If device/qdisc don't need skb->dst, release it right now while
4069          * its hot in this cpu cache.
4070          */
4071         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4072                 skb_dst_drop(skb);
4073         else
4074                 skb_dst_force(skb);
4075
4076         txq = netdev_core_pick_tx(dev, skb, sb_dev);
4077         q = rcu_dereference_bh(txq->qdisc);
4078
4079         trace_net_dev_queue(skb);
4080         if (q->enqueue) {
4081                 rc = __dev_xmit_skb(skb, q, dev, txq);
4082                 goto out;
4083         }
4084
4085         /* The device has no queue. Common case for software devices:
4086          * loopback, all the sorts of tunnels...
4087
4088          * Really, it is unlikely that netif_tx_lock protection is necessary
4089          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4090          * counters.)
4091          * However, it is possible, that they rely on protection
4092          * made by us here.
4093
4094          * Check this and shot the lock. It is not prone from deadlocks.
4095          *Either shot noqueue qdisc, it is even simpler 8)
4096          */
4097         if (dev->flags & IFF_UP) {
4098                 int cpu = smp_processor_id(); /* ok because BHs are off */
4099
4100                 /* Other cpus might concurrently change txq->xmit_lock_owner
4101                  * to -1 or to their cpu id, but not to our id.
4102                  */
4103                 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4104                         if (dev_xmit_recursion())
4105                                 goto recursion_alert;
4106
4107                         skb = validate_xmit_skb(skb, dev, &again);
4108                         if (!skb)
4109                                 goto out;
4110
4111                         PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4112                         HARD_TX_LOCK(dev, txq, cpu);
4113
4114                         if (!netif_xmit_stopped(txq)) {
4115                                 dev_xmit_recursion_inc();
4116                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4117                                 dev_xmit_recursion_dec();
4118                                 if (dev_xmit_complete(rc)) {
4119                                         HARD_TX_UNLOCK(dev, txq);
4120                                         goto out;
4121                                 }
4122                         }
4123                         HARD_TX_UNLOCK(dev, txq);
4124                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4125                                              dev->name);
4126                 } else {
4127                         /* Recursion is detected! It is possible,
4128                          * unfortunately
4129                          */
4130 recursion_alert:
4131                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4132                                              dev->name);
4133                 }
4134         }
4135
4136         rc = -ENETDOWN;
4137         rcu_read_unlock_bh();
4138
4139         atomic_long_inc(&dev->tx_dropped);
4140         kfree_skb_list(skb);
4141         return rc;
4142 out:
4143         rcu_read_unlock_bh();
4144         return rc;
4145 }
4146
4147 int dev_queue_xmit(struct sk_buff *skb)
4148 {
4149         return __dev_queue_xmit(skb, NULL);
4150 }
4151 EXPORT_SYMBOL(dev_queue_xmit);
4152
4153 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4154 {
4155         return __dev_queue_xmit(skb, sb_dev);
4156 }
4157 EXPORT_SYMBOL(dev_queue_xmit_accel);
4158
4159 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4160 {
4161         struct net_device *dev = skb->dev;
4162         struct sk_buff *orig_skb = skb;
4163         struct netdev_queue *txq;
4164         int ret = NETDEV_TX_BUSY;
4165         bool again = false;
4166
4167         if (unlikely(!netif_running(dev) ||
4168                      !netif_carrier_ok(dev)))
4169                 goto drop;
4170
4171         skb = validate_xmit_skb_list(skb, dev, &again);
4172         if (skb != orig_skb)
4173                 goto drop;
4174
4175         skb_set_queue_mapping(skb, queue_id);
4176         txq = skb_get_tx_queue(dev, skb);
4177         PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4178
4179         local_bh_disable();
4180
4181         dev_xmit_recursion_inc();
4182         HARD_TX_LOCK(dev, txq, smp_processor_id());
4183         if (!netif_xmit_frozen_or_drv_stopped(txq))
4184                 ret = netdev_start_xmit(skb, dev, txq, false);
4185         HARD_TX_UNLOCK(dev, txq);
4186         dev_xmit_recursion_dec();
4187
4188         local_bh_enable();
4189         return ret;
4190 drop:
4191         atomic_long_inc(&dev->tx_dropped);
4192         kfree_skb_list(skb);
4193         return NET_XMIT_DROP;
4194 }
4195 EXPORT_SYMBOL(__dev_direct_xmit);
4196
4197 /*************************************************************************
4198  *                      Receiver routines
4199  *************************************************************************/
4200
4201 int netdev_max_backlog __read_mostly = 1000;
4202 EXPORT_SYMBOL(netdev_max_backlog);
4203
4204 int netdev_tstamp_prequeue __read_mostly = 1;
4205 int netdev_budget __read_mostly = 300;
4206 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4207 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4208 int weight_p __read_mostly = 64;           /* old backlog weight */
4209 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4210 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4211 int dev_rx_weight __read_mostly = 64;
4212 int dev_tx_weight __read_mostly = 64;
4213
4214 /* Called with irq disabled */
4215 static inline void ____napi_schedule(struct softnet_data *sd,
4216                                      struct napi_struct *napi)
4217 {
4218         struct task_struct *thread;
4219
4220         if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4221                 /* Paired with smp_mb__before_atomic() in
4222                  * napi_enable()/dev_set_threaded().
4223                  * Use READ_ONCE() to guarantee a complete
4224                  * read on napi->thread. Only call
4225                  * wake_up_process() when it's not NULL.
4226                  */
4227                 thread = READ_ONCE(napi->thread);
4228                 if (thread) {
4229                         /* Avoid doing set_bit() if the thread is in
4230                          * INTERRUPTIBLE state, cause napi_thread_wait()
4231                          * makes sure to proceed with napi polling
4232                          * if the thread is explicitly woken from here.
4233                          */
4234                         if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4235                                 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4236                         wake_up_process(thread);
4237                         return;
4238                 }
4239         }
4240
4241         list_add_tail(&napi->poll_list, &sd->poll_list);
4242         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4243 }
4244
4245 #ifdef CONFIG_RPS
4246
4247 /* One global table that all flow-based protocols share. */
4248 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4249 EXPORT_SYMBOL(rps_sock_flow_table);
4250 u32 rps_cpu_mask __read_mostly;
4251 EXPORT_SYMBOL(rps_cpu_mask);
4252
4253 struct static_key_false rps_needed __read_mostly;
4254 EXPORT_SYMBOL(rps_needed);
4255 struct static_key_false rfs_needed __read_mostly;
4256 EXPORT_SYMBOL(rfs_needed);
4257
4258 static struct rps_dev_flow *
4259 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4260             struct rps_dev_flow *rflow, u16 next_cpu)
4261 {
4262         if (next_cpu < nr_cpu_ids) {
4263 #ifdef CONFIG_RFS_ACCEL
4264                 struct netdev_rx_queue *rxqueue;
4265                 struct rps_dev_flow_table *flow_table;
4266                 struct rps_dev_flow *old_rflow;
4267                 u32 flow_id;
4268                 u16 rxq_index;
4269                 int rc;
4270
4271                 /* Should we steer this flow to a different hardware queue? */
4272                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4273                     !(dev->features & NETIF_F_NTUPLE))
4274                         goto out;
4275                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4276                 if (rxq_index == skb_get_rx_queue(skb))
4277                         goto out;
4278
4279                 rxqueue = dev->_rx + rxq_index;
4280                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4281                 if (!flow_table)
4282                         goto out;
4283                 flow_id = skb_get_hash(skb) & flow_table->mask;
4284                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4285                                                         rxq_index, flow_id);
4286                 if (rc < 0)
4287                         goto out;
4288                 old_rflow = rflow;
4289                 rflow = &flow_table->flows[flow_id];
4290                 rflow->filter = rc;
4291                 if (old_rflow->filter == rflow->filter)
4292                         old_rflow->filter = RPS_NO_FILTER;
4293         out:
4294 #endif
4295                 rflow->last_qtail =
4296                         per_cpu(softnet_data, next_cpu).input_queue_head;
4297         }
4298
4299         rflow->cpu = next_cpu;
4300         return rflow;
4301 }
4302
4303 /*
4304  * get_rps_cpu is called from netif_receive_skb and returns the target
4305  * CPU from the RPS map of the receiving queue for a given skb.
4306  * rcu_read_lock must be held on entry.
4307  */
4308 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4309                        struct rps_dev_flow **rflowp)
4310 {
4311         const struct rps_sock_flow_table *sock_flow_table;
4312         struct netdev_rx_queue *rxqueue = dev->_rx;
4313         struct rps_dev_flow_table *flow_table;
4314         struct rps_map *map;
4315         int cpu = -1;
4316         u32 tcpu;
4317         u32 hash;
4318
4319         if (skb_rx_queue_recorded(skb)) {
4320                 u16 index = skb_get_rx_queue(skb);
4321
4322                 if (unlikely(index >= dev->real_num_rx_queues)) {
4323                         WARN_ONCE(dev->real_num_rx_queues > 1,
4324                                   "%s received packet on queue %u, but number "
4325                                   "of RX queues is %u\n",
4326                                   dev->name, index, dev->real_num_rx_queues);
4327                         goto done;
4328                 }
4329                 rxqueue += index;
4330         }
4331
4332         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4333
4334         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4335         map = rcu_dereference(rxqueue->rps_map);
4336         if (!flow_table && !map)
4337                 goto done;
4338
4339         skb_reset_network_header(skb);
4340         hash = skb_get_hash(skb);
4341         if (!hash)
4342                 goto done;
4343
4344         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4345         if (flow_table && sock_flow_table) {
4346                 struct rps_dev_flow *rflow;
4347                 u32 next_cpu;
4348                 u32 ident;
4349
4350                 /* First check into global flow table if there is a match */
4351                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4352                 if ((ident ^ hash) & ~rps_cpu_mask)
4353                         goto try_rps;
4354
4355                 next_cpu = ident & rps_cpu_mask;
4356
4357                 /* OK, now we know there is a match,
4358                  * we can look at the local (per receive queue) flow table
4359                  */
4360                 rflow = &flow_table->flows[hash & flow_table->mask];
4361                 tcpu = rflow->cpu;
4362
4363                 /*
4364                  * If the desired CPU (where last recvmsg was done) is
4365                  * different from current CPU (one in the rx-queue flow
4366                  * table entry), switch if one of the following holds:
4367                  *   - Current CPU is unset (>= nr_cpu_ids).
4368                  *   - Current CPU is offline.
4369                  *   - The current CPU's queue tail has advanced beyond the
4370                  *     last packet that was enqueued using this table entry.
4371                  *     This guarantees that all previous packets for the flow
4372                  *     have been dequeued, thus preserving in order delivery.
4373                  */
4374                 if (unlikely(tcpu != next_cpu) &&
4375                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4376                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4377                       rflow->last_qtail)) >= 0)) {
4378                         tcpu = next_cpu;
4379                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4380                 }
4381
4382                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4383                         *rflowp = rflow;
4384                         cpu = tcpu;
4385                         goto done;
4386                 }
4387         }
4388
4389 try_rps:
4390
4391         if (map) {
4392                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4393                 if (cpu_online(tcpu)) {
4394                         cpu = tcpu;
4395                         goto done;
4396                 }
4397         }
4398
4399 done:
4400         return cpu;
4401 }
4402
4403 #ifdef CONFIG_RFS_ACCEL
4404
4405 /**
4406  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4407  * @dev: Device on which the filter was set
4408  * @rxq_index: RX queue index
4409  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4410  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4411  *
4412  * Drivers that implement ndo_rx_flow_steer() should periodically call
4413  * this function for each installed filter and remove the filters for
4414  * which it returns %true.
4415  */
4416 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4417                          u32 flow_id, u16 filter_id)
4418 {
4419         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4420         struct rps_dev_flow_table *flow_table;
4421         struct rps_dev_flow *rflow;
4422         bool expire = true;
4423         unsigned int cpu;
4424
4425         rcu_read_lock();
4426         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4427         if (flow_table && flow_id <= flow_table->mask) {
4428                 rflow = &flow_table->flows[flow_id];
4429                 cpu = READ_ONCE(rflow->cpu);
4430                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4431                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4432                            rflow->last_qtail) <
4433                      (int)(10 * flow_table->mask)))
4434                         expire = false;
4435         }
4436         rcu_read_unlock();
4437         return expire;
4438 }
4439 EXPORT_SYMBOL(rps_may_expire_flow);
4440
4441 #endif /* CONFIG_RFS_ACCEL */
4442
4443 /* Called from hardirq (IPI) context */
4444 static void rps_trigger_softirq(void *data)
4445 {
4446         struct softnet_data *sd = data;
4447
4448         ____napi_schedule(sd, &sd->backlog);
4449         sd->received_rps++;
4450 }
4451
4452 #endif /* CONFIG_RPS */
4453
4454 /*
4455  * Check if this softnet_data structure is another cpu one
4456  * If yes, queue it to our IPI list and return 1
4457  * If no, return 0
4458  */
4459 static int rps_ipi_queued(struct softnet_data *sd)
4460 {
4461 #ifdef CONFIG_RPS
4462         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4463
4464         if (sd != mysd) {
4465                 sd->rps_ipi_next = mysd->rps_ipi_list;
4466                 mysd->rps_ipi_list = sd;
4467
4468                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4469                 return 1;
4470         }
4471 #endif /* CONFIG_RPS */
4472         return 0;
4473 }
4474
4475 #ifdef CONFIG_NET_FLOW_LIMIT
4476 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4477 #endif
4478
4479 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4480 {
4481 #ifdef CONFIG_NET_FLOW_LIMIT
4482         struct sd_flow_limit *fl;
4483         struct softnet_data *sd;
4484         unsigned int old_flow, new_flow;
4485
4486         if (qlen < (netdev_max_backlog >> 1))
4487                 return false;
4488
4489         sd = this_cpu_ptr(&softnet_data);
4490
4491         rcu_read_lock();
4492         fl = rcu_dereference(sd->flow_limit);
4493         if (fl) {
4494                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4495                 old_flow = fl->history[fl->history_head];
4496                 fl->history[fl->history_head] = new_flow;
4497
4498                 fl->history_head++;
4499                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4500
4501                 if (likely(fl->buckets[old_flow]))
4502                         fl->buckets[old_flow]--;
4503
4504                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4505                         fl->count++;
4506                         rcu_read_unlock();
4507                         return true;
4508                 }
4509         }
4510         rcu_read_unlock();
4511 #endif
4512         return false;
4513 }
4514
4515 /*
4516  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4517  * queue (may be a remote CPU queue).
4518  */
4519 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4520                               unsigned int *qtail)
4521 {
4522         struct softnet_data *sd;
4523         unsigned long flags;
4524         unsigned int qlen;
4525
4526         sd = &per_cpu(softnet_data, cpu);
4527
4528         local_irq_save(flags);
4529
4530         rps_lock(sd);
4531         if (!netif_running(skb->dev))
4532                 goto drop;
4533         qlen = skb_queue_len(&sd->input_pkt_queue);
4534         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4535                 if (qlen) {
4536 enqueue:
4537                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4538                         input_queue_tail_incr_save(sd, qtail);
4539                         rps_unlock(sd);
4540                         local_irq_restore(flags);
4541                         return NET_RX_SUCCESS;
4542                 }
4543
4544                 /* Schedule NAPI for backlog device
4545                  * We can use non atomic operation since we own the queue lock
4546                  */
4547                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4548                         if (!rps_ipi_queued(sd))
4549                                 ____napi_schedule(sd, &sd->backlog);
4550                 }
4551                 goto enqueue;
4552         }
4553
4554 drop:
4555         sd->dropped++;
4556         rps_unlock(sd);
4557
4558         local_irq_restore(flags);
4559
4560         atomic_long_inc(&skb->dev->rx_dropped);
4561         kfree_skb(skb);
4562         return NET_RX_DROP;
4563 }
4564
4565 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4566 {
4567         struct net_device *dev = skb->dev;
4568         struct netdev_rx_queue *rxqueue;
4569
4570         rxqueue = dev->_rx;
4571
4572         if (skb_rx_queue_recorded(skb)) {
4573                 u16 index = skb_get_rx_queue(skb);
4574
4575                 if (unlikely(index >= dev->real_num_rx_queues)) {
4576                         WARN_ONCE(dev->real_num_rx_queues > 1,
4577                                   "%s received packet on queue %u, but number "
4578                                   "of RX queues is %u\n",
4579                                   dev->name, index, dev->real_num_rx_queues);
4580
4581                         return rxqueue; /* Return first rxqueue */
4582                 }
4583                 rxqueue += index;
4584         }
4585         return rxqueue;
4586 }
4587
4588 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4589                              struct bpf_prog *xdp_prog)
4590 {
4591         void *orig_data, *orig_data_end, *hard_start;
4592         struct netdev_rx_queue *rxqueue;
4593         bool orig_bcast, orig_host;
4594         u32 mac_len, frame_sz;
4595         __be16 orig_eth_type;
4596         struct ethhdr *eth;
4597         u32 metalen, act;
4598         int off;
4599
4600         /* The XDP program wants to see the packet starting at the MAC
4601          * header.
4602          */
4603         mac_len = skb->data - skb_mac_header(skb);
4604         hard_start = skb->data - skb_headroom(skb);
4605
4606         /* SKB "head" area always have tailroom for skb_shared_info */
4607         frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4608         frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4609
4610         rxqueue = netif_get_rxqueue(skb);
4611         xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4612         xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4613                          skb_headlen(skb) + mac_len, true);
4614
4615         orig_data_end = xdp->data_end;
4616         orig_data = xdp->data;
4617         eth = (struct ethhdr *)xdp->data;
4618         orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4619         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4620         orig_eth_type = eth->h_proto;
4621
4622         act = bpf_prog_run_xdp(xdp_prog, xdp);
4623
4624         /* check if bpf_xdp_adjust_head was used */
4625         off = xdp->data - orig_data;
4626         if (off) {
4627                 if (off > 0)
4628                         __skb_pull(skb, off);
4629                 else if (off < 0)
4630                         __skb_push(skb, -off);
4631
4632                 skb->mac_header += off;
4633                 skb_reset_network_header(skb);
4634         }
4635
4636         /* check if bpf_xdp_adjust_tail was used */
4637         off = xdp->data_end - orig_data_end;
4638         if (off != 0) {
4639                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4640                 skb->len += off; /* positive on grow, negative on shrink */
4641         }
4642
4643         /* check if XDP changed eth hdr such SKB needs update */
4644         eth = (struct ethhdr *)xdp->data;
4645         if ((orig_eth_type != eth->h_proto) ||
4646             (orig_host != ether_addr_equal_64bits(eth->h_dest,
4647                                                   skb->dev->dev_addr)) ||
4648             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4649                 __skb_push(skb, ETH_HLEN);
4650                 skb->pkt_type = PACKET_HOST;
4651                 skb->protocol = eth_type_trans(skb, skb->dev);
4652         }
4653
4654         /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4655          * before calling us again on redirect path. We do not call do_redirect
4656          * as we leave that up to the caller.
4657          *
4658          * Caller is responsible for managing lifetime of skb (i.e. calling
4659          * kfree_skb in response to actions it cannot handle/XDP_DROP).
4660          */
4661         switch (act) {
4662         case XDP_REDIRECT:
4663         case XDP_TX:
4664                 __skb_push(skb, mac_len);
4665                 break;
4666         case XDP_PASS:
4667                 metalen = xdp->data - xdp->data_meta;
4668                 if (metalen)
4669                         skb_metadata_set(skb, metalen);
4670                 break;
4671         }
4672
4673         return act;
4674 }
4675
4676 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4677                                      struct xdp_buff *xdp,
4678                                      struct bpf_prog *xdp_prog)
4679 {
4680         u32 act = XDP_DROP;
4681
4682         /* Reinjected packets coming from act_mirred or similar should
4683          * not get XDP generic processing.
4684          */
4685         if (skb_is_redirected(skb))
4686                 return XDP_PASS;
4687
4688         /* XDP packets must be linear and must have sufficient headroom
4689          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4690          * native XDP provides, thus we need to do it here as well.
4691          */
4692         if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4693             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4694                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4695                 int troom = skb->tail + skb->data_len - skb->end;
4696
4697                 /* In case we have to go down the path and also linearize,
4698                  * then lets do the pskb_expand_head() work just once here.
4699                  */
4700                 if (pskb_expand_head(skb,
4701                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4702                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4703                         goto do_drop;
4704                 if (skb_linearize(skb))
4705                         goto do_drop;
4706         }
4707
4708         act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4709         switch (act) {
4710         case XDP_REDIRECT:
4711         case XDP_TX:
4712         case XDP_PASS:
4713                 break;
4714         default:
4715                 bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
4716                 fallthrough;
4717         case XDP_ABORTED:
4718                 trace_xdp_exception(skb->dev, xdp_prog, act);
4719                 fallthrough;
4720         case XDP_DROP:
4721         do_drop:
4722                 kfree_skb(skb);
4723                 break;
4724         }
4725
4726         return act;
4727 }
4728
4729 /* When doing generic XDP we have to bypass the qdisc layer and the
4730  * network taps in order to match in-driver-XDP behavior.
4731  */
4732 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4733 {
4734         struct net_device *dev = skb->dev;
4735         struct netdev_queue *txq;
4736         bool free_skb = true;
4737         int cpu, rc;
4738
4739         txq = netdev_core_pick_tx(dev, skb, NULL);
4740         cpu = smp_processor_id();
4741         HARD_TX_LOCK(dev, txq, cpu);
4742         if (!netif_xmit_stopped(txq)) {
4743                 rc = netdev_start_xmit(skb, dev, txq, 0);
4744                 if (dev_xmit_complete(rc))
4745                         free_skb = false;
4746         }
4747         HARD_TX_UNLOCK(dev, txq);
4748         if (free_skb) {
4749                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4750                 kfree_skb(skb);
4751         }
4752 }
4753
4754 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4755
4756 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4757 {
4758         if (xdp_prog) {
4759                 struct xdp_buff xdp;
4760                 u32 act;
4761                 int err;
4762
4763                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4764                 if (act != XDP_PASS) {
4765                         switch (act) {
4766                         case XDP_REDIRECT:
4767                                 err = xdp_do_generic_redirect(skb->dev, skb,
4768                                                               &xdp, xdp_prog);
4769                                 if (err)
4770                                         goto out_redir;
4771                                 break;
4772                         case XDP_TX:
4773                                 generic_xdp_tx(skb, xdp_prog);
4774                                 break;
4775                         }
4776                         return XDP_DROP;
4777                 }
4778         }
4779         return XDP_PASS;
4780 out_redir:
4781         kfree_skb(skb);
4782         return XDP_DROP;
4783 }
4784 EXPORT_SYMBOL_GPL(do_xdp_generic);
4785
4786 static int netif_rx_internal(struct sk_buff *skb)
4787 {
4788         int ret;
4789
4790         net_timestamp_check(netdev_tstamp_prequeue, skb);
4791
4792         trace_netif_rx(skb);
4793
4794 #ifdef CONFIG_RPS
4795         if (static_branch_unlikely(&rps_needed)) {
4796                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4797                 int cpu;
4798
4799                 preempt_disable();
4800                 rcu_read_lock();
4801
4802                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4803                 if (cpu < 0)
4804                         cpu = smp_processor_id();
4805
4806                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4807
4808                 rcu_read_unlock();
4809                 preempt_enable();
4810         } else
4811 #endif
4812         {
4813                 unsigned int qtail;
4814
4815                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4816                 put_cpu();
4817         }
4818         return ret;
4819 }
4820
4821 /**
4822  *      netif_rx        -       post buffer to the network code
4823  *      @skb: buffer to post
4824  *
4825  *      This function receives a packet from a device driver and queues it for
4826  *      the upper (protocol) levels to process.  It always succeeds. The buffer
4827  *      may be dropped during processing for congestion control or by the
4828  *      protocol layers.
4829  *
4830  *      return values:
4831  *      NET_RX_SUCCESS  (no congestion)
4832  *      NET_RX_DROP     (packet was dropped)
4833  *
4834  */
4835
4836 int netif_rx(struct sk_buff *skb)
4837 {
4838         int ret;
4839
4840         trace_netif_rx_entry(skb);
4841
4842         ret = netif_rx_internal(skb);
4843         trace_netif_rx_exit(ret);
4844
4845         return ret;
4846 }
4847 EXPORT_SYMBOL(netif_rx);
4848
4849 int netif_rx_ni(struct sk_buff *skb)
4850 {
4851         int err;
4852
4853         trace_netif_rx_ni_entry(skb);
4854
4855         preempt_disable();
4856         err = netif_rx_internal(skb);
4857         if (local_softirq_pending())
4858                 do_softirq();
4859         preempt_enable();
4860         trace_netif_rx_ni_exit(err);
4861
4862         return err;
4863 }
4864 EXPORT_SYMBOL(netif_rx_ni);
4865
4866 int netif_rx_any_context(struct sk_buff *skb)
4867 {
4868         /*
4869          * If invoked from contexts which do not invoke bottom half
4870          * processing either at return from interrupt or when softrqs are
4871          * reenabled, use netif_rx_ni() which invokes bottomhalf processing
4872          * directly.
4873          */
4874         if (in_interrupt())
4875                 return netif_rx(skb);
4876         else
4877                 return netif_rx_ni(skb);
4878 }
4879 EXPORT_SYMBOL(netif_rx_any_context);
4880
4881 static __latent_entropy void net_tx_action(struct softirq_action *h)
4882 {
4883         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4884
4885         if (sd->completion_queue) {
4886                 struct sk_buff *clist;
4887
4888                 local_irq_disable();
4889                 clist = sd->completion_queue;
4890                 sd->completion_queue = NULL;
4891                 local_irq_enable();
4892
4893                 while (clist) {
4894                         struct sk_buff *skb = clist;
4895
4896                         clist = clist->next;
4897
4898                         WARN_ON(refcount_read(&skb->users));
4899                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4900                                 trace_consume_skb(skb);
4901                         else
4902                                 trace_kfree_skb(skb, net_tx_action,
4903                                                 SKB_DROP_REASON_NOT_SPECIFIED);
4904
4905                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4906                                 __kfree_skb(skb);
4907                         else
4908                                 __kfree_skb_defer(skb);
4909                 }
4910         }
4911
4912         if (sd->output_queue) {
4913                 struct Qdisc *head;
4914
4915                 local_irq_disable();
4916                 head = sd->output_queue;
4917                 sd->output_queue = NULL;
4918                 sd->output_queue_tailp = &sd->output_queue;
4919                 local_irq_enable();
4920
4921                 rcu_read_lock();
4922
4923                 while (head) {
4924                         struct Qdisc *q = head;
4925                         spinlock_t *root_lock = NULL;
4926
4927                         head = head->next_sched;
4928
4929                         /* We need to make sure head->next_sched is read
4930                          * before clearing __QDISC_STATE_SCHED
4931                          */
4932                         smp_mb__before_atomic();
4933
4934                         if (!(q->flags & TCQ_F_NOLOCK)) {
4935                                 root_lock = qdisc_lock(q);
4936                                 spin_lock(root_lock);
4937                         } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
4938                                                      &q->state))) {
4939                                 /* There is a synchronize_net() between
4940                                  * STATE_DEACTIVATED flag being set and
4941                                  * qdisc_reset()/some_qdisc_is_busy() in
4942                                  * dev_deactivate(), so we can safely bail out
4943                                  * early here to avoid data race between
4944                                  * qdisc_deactivate() and some_qdisc_is_busy()
4945                                  * for lockless qdisc.
4946                                  */
4947                                 clear_bit(__QDISC_STATE_SCHED, &q->state);
4948                                 continue;
4949                         }
4950
4951                         clear_bit(__QDISC_STATE_SCHED, &q->state);
4952                         qdisc_run(q);
4953                         if (root_lock)
4954                                 spin_unlock(root_lock);
4955                 }
4956
4957                 rcu_read_unlock();
4958         }
4959
4960         xfrm_dev_backlog(sd);
4961 }
4962
4963 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4964 /* This hook is defined here for ATM LANE */
4965 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4966                              unsigned char *addr) __read_mostly;
4967 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4968 #endif
4969
4970 static inline struct sk_buff *
4971 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4972                    struct net_device *orig_dev, bool *another)
4973 {
4974 #ifdef CONFIG_NET_CLS_ACT
4975         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4976         struct tcf_result cl_res;
4977
4978         /* If there's at least one ingress present somewhere (so
4979          * we get here via enabled static key), remaining devices
4980          * that are not configured with an ingress qdisc will bail
4981          * out here.
4982          */
4983         if (!miniq)
4984                 return skb;
4985
4986         if (*pt_prev) {
4987                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4988                 *pt_prev = NULL;
4989         }
4990
4991         qdisc_skb_cb(skb)->pkt_len = skb->len;
4992         tc_skb_cb(skb)->mru = 0;
4993         tc_skb_cb(skb)->post_ct = false;
4994         skb->tc_at_ingress = 1;
4995         mini_qdisc_bstats_cpu_update(miniq, skb);
4996
4997         switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
4998         case TC_ACT_OK:
4999         case TC_ACT_RECLASSIFY:
5000                 skb->tc_index = TC_H_MIN(cl_res.classid);
5001                 break;
5002         case TC_ACT_SHOT:
5003                 mini_qdisc_qstats_cpu_drop(miniq);
5004                 kfree_skb(skb);
5005                 return NULL;
5006         case TC_ACT_STOLEN:
5007         case TC_ACT_QUEUED:
5008         case TC_ACT_TRAP:
5009                 consume_skb(skb);
5010                 return NULL;
5011         case TC_ACT_REDIRECT:
5012                 /* skb_mac_header check was done by cls/act_bpf, so
5013                  * we can safely push the L2 header back before
5014                  * redirecting to another netdev
5015                  */
5016                 __skb_push(skb, skb->mac_len);
5017                 if (skb_do_redirect(skb) == -EAGAIN) {
5018                         __skb_pull(skb, skb->mac_len);
5019                         *another = true;
5020                         break;
5021                 }
5022                 return NULL;
5023         case TC_ACT_CONSUMED:
5024                 return NULL;
5025         default:
5026                 break;
5027         }
5028 #endif /* CONFIG_NET_CLS_ACT */
5029         return skb;
5030 }
5031
5032 /**
5033  *      netdev_is_rx_handler_busy - check if receive handler is registered
5034  *      @dev: device to check
5035  *
5036  *      Check if a receive handler is already registered for a given device.
5037  *      Return true if there one.
5038  *
5039  *      The caller must hold the rtnl_mutex.
5040  */
5041 bool netdev_is_rx_handler_busy(struct net_device *dev)
5042 {
5043         ASSERT_RTNL();
5044         return dev && rtnl_dereference(dev->rx_handler);
5045 }
5046 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5047
5048 /**
5049  *      netdev_rx_handler_register - register receive handler
5050  *      @dev: device to register a handler for
5051  *      @rx_handler: receive handler to register
5052  *      @rx_handler_data: data pointer that is used by rx handler
5053  *
5054  *      Register a receive handler for a device. This handler will then be
5055  *      called from __netif_receive_skb. A negative errno code is returned
5056  *      on a failure.
5057  *
5058  *      The caller must hold the rtnl_mutex.
5059  *
5060  *      For a general description of rx_handler, see enum rx_handler_result.
5061  */
5062 int netdev_rx_handler_register(struct net_device *dev,
5063                                rx_handler_func_t *rx_handler,
5064                                void *rx_handler_data)
5065 {
5066         if (netdev_is_rx_handler_busy(dev))
5067                 return -EBUSY;
5068
5069         if (dev->priv_flags & IFF_NO_RX_HANDLER)
5070                 return -EINVAL;
5071
5072         /* Note: rx_handler_data must be set before rx_handler */
5073         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5074         rcu_assign_pointer(dev->rx_handler, rx_handler);
5075
5076         return 0;
5077 }
5078 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5079
5080 /**
5081  *      netdev_rx_handler_unregister - unregister receive handler
5082  *      @dev: device to unregister a handler from
5083  *
5084  *      Unregister a receive handler from a device.
5085  *
5086  *      The caller must hold the rtnl_mutex.
5087  */
5088 void netdev_rx_handler_unregister(struct net_device *dev)
5089 {
5090
5091         ASSERT_RTNL();
5092         RCU_INIT_POINTER(dev->rx_handler, NULL);
5093         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5094          * section has a guarantee to see a non NULL rx_handler_data
5095          * as well.
5096          */
5097         synchronize_net();
5098         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5099 }
5100 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5101
5102 /*
5103  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5104  * the special handling of PFMEMALLOC skbs.
5105  */
5106 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5107 {
5108         switch (skb->protocol) {
5109         case htons(ETH_P_ARP):
5110         case htons(ETH_P_IP):
5111         case htons(ETH_P_IPV6):
5112         case htons(ETH_P_8021Q):
5113         case htons(ETH_P_8021AD):
5114                 return true;
5115         default:
5116                 return false;
5117         }
5118 }
5119
5120 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5121                              int *ret, struct net_device *orig_dev)
5122 {
5123         if (nf_hook_ingress_active(skb)) {
5124                 int ingress_retval;
5125
5126                 if (*pt_prev) {
5127                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
5128                         *pt_prev = NULL;
5129                 }
5130
5131                 rcu_read_lock();
5132                 ingress_retval = nf_hook_ingress(skb);
5133                 rcu_read_unlock();
5134                 return ingress_retval;
5135         }
5136         return 0;
5137 }
5138
5139 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5140                                     struct packet_type **ppt_prev)
5141 {
5142         struct packet_type *ptype, *pt_prev;
5143         rx_handler_func_t *rx_handler;
5144         struct sk_buff *skb = *pskb;
5145         struct net_device *orig_dev;
5146         bool deliver_exact = false;
5147         int ret = NET_RX_DROP;
5148         __be16 type;
5149
5150         net_timestamp_check(!netdev_tstamp_prequeue, skb);
5151
5152         trace_netif_receive_skb(skb);
5153
5154         orig_dev = skb->dev;
5155
5156         skb_reset_network_header(skb);
5157         if (!skb_transport_header_was_set(skb))
5158                 skb_reset_transport_header(skb);
5159         skb_reset_mac_len(skb);
5160
5161         pt_prev = NULL;
5162
5163 another_round:
5164         skb->skb_iif = skb->dev->ifindex;
5165
5166         __this_cpu_inc(softnet_data.processed);
5167
5168         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5169                 int ret2;
5170
5171                 migrate_disable();
5172                 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5173                 migrate_enable();
5174
5175                 if (ret2 != XDP_PASS) {
5176                         ret = NET_RX_DROP;
5177                         goto out;
5178                 }
5179         }
5180
5181         if (eth_type_vlan(skb->protocol)) {
5182                 skb = skb_vlan_untag(skb);
5183                 if (unlikely(!skb))
5184                         goto out;
5185         }
5186
5187         if (skb_skip_tc_classify(skb))
5188                 goto skip_classify;
5189
5190         if (pfmemalloc)
5191                 goto skip_taps;
5192
5193         list_for_each_entry_rcu(ptype, &ptype_all, list) {
5194                 if (pt_prev)
5195                         ret = deliver_skb(skb, pt_prev, orig_dev);
5196                 pt_prev = ptype;
5197         }
5198
5199         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5200                 if (pt_prev)
5201                         ret = deliver_skb(skb, pt_prev, orig_dev);
5202                 pt_prev = ptype;
5203         }
5204
5205 skip_taps:
5206 #ifdef CONFIG_NET_INGRESS
5207         if (static_branch_unlikely(&ingress_needed_key)) {
5208                 bool another = false;
5209
5210                 nf_skip_egress(skb, true);
5211                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5212                                          &another);
5213                 if (another)
5214                         goto another_round;
5215                 if (!skb)
5216                         goto out;
5217
5218                 nf_skip_egress(skb, false);
5219                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5220                         goto out;
5221         }
5222 #endif
5223         skb_reset_redirect(skb);
5224 skip_classify:
5225         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5226                 goto drop;
5227
5228         if (skb_vlan_tag_present(skb)) {
5229                 if (pt_prev) {
5230                         ret = deliver_skb(skb, pt_prev, orig_dev);
5231                         pt_prev = NULL;
5232                 }
5233                 if (vlan_do_receive(&skb))
5234                         goto another_round;
5235                 else if (unlikely(!skb))
5236                         goto out;
5237         }
5238
5239         rx_handler = rcu_dereference(skb->dev->rx_handler);
5240         if (rx_handler) {
5241                 if (pt_prev) {
5242                         ret = deliver_skb(skb, pt_prev, orig_dev);
5243                         pt_prev = NULL;
5244                 }
5245                 switch (rx_handler(&skb)) {
5246                 case RX_HANDLER_CONSUMED:
5247                         ret = NET_RX_SUCCESS;
5248                         goto out;
5249                 case RX_HANDLER_ANOTHER:
5250                         goto another_round;
5251                 case RX_HANDLER_EXACT:
5252                         deliver_exact = true;
5253                         break;
5254                 case RX_HANDLER_PASS:
5255                         break;
5256                 default:
5257                         BUG();
5258                 }
5259         }
5260
5261         if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5262 check_vlan_id:
5263                 if (skb_vlan_tag_get_id(skb)) {
5264                         /* Vlan id is non 0 and vlan_do_receive() above couldn't
5265                          * find vlan device.
5266                          */
5267                         skb->pkt_type = PACKET_OTHERHOST;
5268                 } else if (eth_type_vlan(skb->protocol)) {
5269                         /* Outer header is 802.1P with vlan 0, inner header is
5270                          * 802.1Q or 802.1AD and vlan_do_receive() above could
5271                          * not find vlan dev for vlan id 0.
5272                          */
5273                         __vlan_hwaccel_clear_tag(skb);
5274                         skb = skb_vlan_untag(skb);
5275                         if (unlikely(!skb))
5276                                 goto out;
5277                         if (vlan_do_receive(&skb))
5278                                 /* After stripping off 802.1P header with vlan 0
5279                                  * vlan dev is found for inner header.
5280                                  */
5281                                 goto another_round;
5282                         else if (unlikely(!skb))
5283                                 goto out;
5284                         else
5285                                 /* We have stripped outer 802.1P vlan 0 header.
5286                                  * But could not find vlan dev.
5287                                  * check again for vlan id to set OTHERHOST.
5288                                  */
5289                                 goto check_vlan_id;
5290                 }
5291                 /* Note: we might in the future use prio bits
5292                  * and set skb->priority like in vlan_do_receive()
5293                  * For the time being, just ignore Priority Code Point
5294                  */
5295                 __vlan_hwaccel_clear_tag(skb);
5296         }
5297
5298         type = skb->protocol;
5299
5300         /* deliver only exact match when indicated */
5301         if (likely(!deliver_exact)) {
5302                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5303                                        &ptype_base[ntohs(type) &
5304                                                    PTYPE_HASH_MASK]);
5305         }
5306
5307         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5308                                &orig_dev->ptype_specific);
5309
5310         if (unlikely(skb->dev != orig_dev)) {
5311                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5312                                        &skb->dev->ptype_specific);
5313         }
5314
5315         if (pt_prev) {
5316                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5317                         goto drop;
5318                 *ppt_prev = pt_prev;
5319         } else {
5320 drop:
5321                 if (!deliver_exact)
5322                         atomic_long_inc(&skb->dev->rx_dropped);
5323                 else
5324                         atomic_long_inc(&skb->dev->rx_nohandler);
5325                 kfree_skb(skb);
5326                 /* Jamal, now you will not able to escape explaining
5327                  * me how you were going to use this. :-)
5328                  */
5329                 ret = NET_RX_DROP;
5330         }
5331
5332 out:
5333         /* The invariant here is that if *ppt_prev is not NULL
5334          * then skb should also be non-NULL.
5335          *
5336          * Apparently *ppt_prev assignment above holds this invariant due to
5337          * skb dereferencing near it.
5338          */
5339         *pskb = skb;
5340         return ret;
5341 }
5342
5343 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5344 {
5345         struct net_device *orig_dev = skb->dev;
5346         struct packet_type *pt_prev = NULL;
5347         int ret;
5348
5349         ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5350         if (pt_prev)
5351                 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5352                                          skb->dev, pt_prev, orig_dev);
5353         return ret;
5354 }
5355
5356 /**
5357  *      netif_receive_skb_core - special purpose version of netif_receive_skb
5358  *      @skb: buffer to process
5359  *
5360  *      More direct receive version of netif_receive_skb().  It should
5361  *      only be used by callers that have a need to skip RPS and Generic XDP.
5362  *      Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5363  *
5364  *      This function may only be called from softirq context and interrupts
5365  *      should be enabled.
5366  *
5367  *      Return values (usually ignored):
5368  *      NET_RX_SUCCESS: no congestion
5369  *      NET_RX_DROP: packet was dropped
5370  */
5371 int netif_receive_skb_core(struct sk_buff *skb)
5372 {
5373         int ret;
5374
5375         rcu_read_lock();
5376         ret = __netif_receive_skb_one_core(skb, false);
5377         rcu_read_unlock();
5378
5379         return ret;
5380 }
5381 EXPORT_SYMBOL(netif_receive_skb_core);
5382
5383 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5384                                                   struct packet_type *pt_prev,
5385                                                   struct net_device *orig_dev)
5386 {
5387         struct sk_buff *skb, *next;
5388
5389         if (!pt_prev)
5390                 return;
5391         if (list_empty(head))
5392                 return;
5393         if (pt_prev->list_func != NULL)
5394                 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5395                                    ip_list_rcv, head, pt_prev, orig_dev);
5396         else
5397                 list_for_each_entry_safe(skb, next, head, list) {
5398                         skb_list_del_init(skb);
5399                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5400                 }
5401 }
5402
5403 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5404 {
5405         /* Fast-path assumptions:
5406          * - There is no RX handler.
5407          * - Only one packet_type matches.
5408          * If either of these fails, we will end up doing some per-packet
5409          * processing in-line, then handling the 'last ptype' for the whole
5410          * sublist.  This can't cause out-of-order delivery to any single ptype,
5411          * because the 'last ptype' must be constant across the sublist, and all
5412          * other ptypes are handled per-packet.
5413          */
5414         /* Current (common) ptype of sublist */
5415         struct packet_type *pt_curr = NULL;
5416         /* Current (common) orig_dev of sublist */
5417         struct net_device *od_curr = NULL;
5418         struct list_head sublist;
5419         struct sk_buff *skb, *next;
5420
5421         INIT_LIST_HEAD(&sublist);
5422         list_for_each_entry_safe(skb, next, head, list) {
5423                 struct net_device *orig_dev = skb->dev;
5424                 struct packet_type *pt_prev = NULL;
5425
5426                 skb_list_del_init(skb);
5427                 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5428                 if (!pt_prev)
5429                         continue;
5430                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5431                         /* dispatch old sublist */
5432                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5433                         /* start new sublist */
5434                         INIT_LIST_HEAD(&sublist);
5435                         pt_curr = pt_prev;
5436                         od_curr = orig_dev;
5437                 }
5438                 list_add_tail(&skb->list, &sublist);
5439         }
5440
5441         /* dispatch final sublist */
5442         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5443 }
5444
5445 static int __netif_receive_skb(struct sk_buff *skb)
5446 {
5447         int ret;
5448
5449         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5450                 unsigned int noreclaim_flag;
5451
5452                 /*
5453                  * PFMEMALLOC skbs are special, they should
5454                  * - be delivered to SOCK_MEMALLOC sockets only
5455                  * - stay away from userspace
5456                  * - have bounded memory usage
5457                  *
5458                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5459                  * context down to all allocation sites.
5460                  */
5461                 noreclaim_flag = memalloc_noreclaim_save();
5462                 ret = __netif_receive_skb_one_core(skb, true);
5463                 memalloc_noreclaim_restore(noreclaim_flag);
5464         } else
5465                 ret = __netif_receive_skb_one_core(skb, false);
5466
5467         return ret;
5468 }
5469
5470 static void __netif_receive_skb_list(struct list_head *head)
5471 {
5472         unsigned long noreclaim_flag = 0;
5473         struct sk_buff *skb, *next;
5474         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5475
5476         list_for_each_entry_safe(skb, next, head, list) {
5477                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5478                         struct list_head sublist;
5479
5480                         /* Handle the previous sublist */
5481                         list_cut_before(&sublist, head, &skb->list);
5482                         if (!list_empty(&sublist))
5483                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5484                         pfmemalloc = !pfmemalloc;
5485                         /* See comments in __netif_receive_skb */
5486                         if (pfmemalloc)
5487                                 noreclaim_flag = memalloc_noreclaim_save();
5488                         else
5489                                 memalloc_noreclaim_restore(noreclaim_flag);
5490                 }
5491         }
5492         /* Handle the remaining sublist */
5493         if (!list_empty(head))
5494                 __netif_receive_skb_list_core(head, pfmemalloc);
5495         /* Restore pflags */
5496         if (pfmemalloc)
5497                 memalloc_noreclaim_restore(noreclaim_flag);
5498 }
5499
5500 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5501 {
5502         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5503         struct bpf_prog *new = xdp->prog;
5504         int ret = 0;
5505
5506         switch (xdp->command) {
5507         case XDP_SETUP_PROG:
5508                 rcu_assign_pointer(dev->xdp_prog, new);
5509                 if (old)
5510                         bpf_prog_put(old);
5511
5512                 if (old && !new) {
5513                         static_branch_dec(&generic_xdp_needed_key);
5514                 } else if (new && !old) {
5515                         static_branch_inc(&generic_xdp_needed_key);
5516                         dev_disable_lro(dev);
5517                         dev_disable_gro_hw(dev);
5518                 }
5519                 break;
5520
5521         default:
5522                 ret = -EINVAL;
5523                 break;
5524         }
5525
5526         return ret;
5527 }
5528
5529 static int netif_receive_skb_internal(struct sk_buff *skb)
5530 {
5531         int ret;
5532
5533         net_timestamp_check(netdev_tstamp_prequeue, skb);
5534
5535         if (skb_defer_rx_timestamp(skb))
5536                 return NET_RX_SUCCESS;
5537
5538         rcu_read_lock();
5539 #ifdef CONFIG_RPS
5540         if (static_branch_unlikely(&rps_needed)) {
5541                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5542                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5543
5544                 if (cpu >= 0) {
5545                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5546                         rcu_read_unlock();
5547                         return ret;
5548                 }
5549         }
5550 #endif
5551         ret = __netif_receive_skb(skb);
5552         rcu_read_unlock();
5553         return ret;
5554 }
5555
5556 void netif_receive_skb_list_internal(struct list_head *head)
5557 {
5558         struct sk_buff *skb, *next;
5559         struct list_head sublist;
5560
5561         INIT_LIST_HEAD(&sublist);
5562         list_for_each_entry_safe(skb, next, head, list) {
5563                 net_timestamp_check(netdev_tstamp_prequeue, skb);
5564                 skb_list_del_init(skb);
5565                 if (!skb_defer_rx_timestamp(skb))
5566                         list_add_tail(&skb->list, &sublist);
5567         }
5568         list_splice_init(&sublist, head);
5569
5570         rcu_read_lock();
5571 #ifdef CONFIG_RPS
5572         if (static_branch_unlikely(&rps_needed)) {
5573                 list_for_each_entry_safe(skb, next, head, list) {
5574                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5575                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5576
5577                         if (cpu >= 0) {
5578                                 /* Will be handled, remove from list */
5579                                 skb_list_del_init(skb);
5580                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5581                         }
5582                 }
5583         }
5584 #endif
5585         __netif_receive_skb_list(head);
5586         rcu_read_unlock();
5587 }
5588
5589 /**
5590  *      netif_receive_skb - process receive buffer from network
5591  *      @skb: buffer to process
5592  *
5593  *      netif_receive_skb() is the main receive data processing function.
5594  *      It always succeeds. The buffer may be dropped during processing
5595  *      for congestion control or by the protocol layers.
5596  *
5597  *      This function may only be called from softirq context and interrupts
5598  *      should be enabled.
5599  *
5600  *      Return values (usually ignored):
5601  *      NET_RX_SUCCESS: no congestion
5602  *      NET_RX_DROP: packet was dropped
5603  */
5604 int netif_receive_skb(struct sk_buff *skb)
5605 {
5606         int ret;
5607
5608         trace_netif_receive_skb_entry(skb);
5609
5610         ret = netif_receive_skb_internal(skb);
5611         trace_netif_receive_skb_exit(ret);
5612
5613         return ret;
5614 }
5615 EXPORT_SYMBOL(netif_receive_skb);
5616
5617 /**
5618  *      netif_receive_skb_list - process many receive buffers from network
5619  *      @head: list of skbs to process.
5620  *
5621  *      Since return value of netif_receive_skb() is normally ignored, and
5622  *      wouldn't be meaningful for a list, this function returns void.
5623  *
5624  *      This function may only be called from softirq context and interrupts
5625  *      should be enabled.
5626  */
5627 void netif_receive_skb_list(struct list_head *head)
5628 {
5629         struct sk_buff *skb;
5630
5631         if (list_empty(head))
5632                 return;
5633         if (trace_netif_receive_skb_list_entry_enabled()) {
5634                 list_for_each_entry(skb, head, list)
5635                         trace_netif_receive_skb_list_entry(skb);
5636         }
5637         netif_receive_skb_list_internal(head);
5638         trace_netif_receive_skb_list_exit(0);
5639 }
5640 EXPORT_SYMBOL(netif_receive_skb_list);
5641
5642 static DEFINE_PER_CPU(struct work_struct, flush_works);
5643
5644 /* Network device is going away, flush any packets still pending */
5645 static void flush_backlog(struct work_struct *work)
5646 {
5647         struct sk_buff *skb, *tmp;
5648         struct softnet_data *sd;
5649
5650         local_bh_disable();
5651         sd = this_cpu_ptr(&softnet_data);
5652
5653         local_irq_disable();
5654         rps_lock(sd);
5655         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5656                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5657                         __skb_unlink(skb, &sd->input_pkt_queue);
5658                         dev_kfree_skb_irq(skb);
5659                         input_queue_head_incr(sd);
5660                 }
5661         }
5662         rps_unlock(sd);
5663         local_irq_enable();
5664
5665         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5666                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5667                         __skb_unlink(skb, &sd->process_queue);
5668                         kfree_skb(skb);
5669                         input_queue_head_incr(sd);
5670                 }
5671         }
5672         local_bh_enable();
5673 }
5674
5675 static bool flush_required(int cpu)
5676 {
5677 #if IS_ENABLED(CONFIG_RPS)
5678         struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5679         bool do_flush;
5680
5681         local_irq_disable();
5682         rps_lock(sd);
5683
5684         /* as insertion into process_queue happens with the rps lock held,
5685          * process_queue access may race only with dequeue
5686          */
5687         do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5688                    !skb_queue_empty_lockless(&sd->process_queue);
5689         rps_unlock(sd);
5690         local_irq_enable();
5691
5692         return do_flush;
5693 #endif
5694         /* without RPS we can't safely check input_pkt_queue: during a
5695          * concurrent remote skb_queue_splice() we can detect as empty both
5696          * input_pkt_queue and process_queue even if the latter could end-up
5697          * containing a lot of packets.
5698          */
5699         return true;
5700 }
5701
5702 static void flush_all_backlogs(void)
5703 {
5704         static cpumask_t flush_cpus;
5705         unsigned int cpu;
5706
5707         /* since we are under rtnl lock protection we can use static data
5708          * for the cpumask and avoid allocating on stack the possibly
5709          * large mask
5710          */
5711         ASSERT_RTNL();
5712
5713         cpus_read_lock();
5714
5715         cpumask_clear(&flush_cpus);
5716         for_each_online_cpu(cpu) {
5717                 if (flush_required(cpu)) {
5718                         queue_work_on(cpu, system_highpri_wq,
5719                                       per_cpu_ptr(&flush_works, cpu));
5720                         cpumask_set_cpu(cpu, &flush_cpus);
5721                 }
5722         }
5723
5724         /* we can have in flight packet[s] on the cpus we are not flushing,
5725          * synchronize_net() in unregister_netdevice_many() will take care of
5726          * them
5727          */
5728         for_each_cpu(cpu, &flush_cpus)
5729                 flush_work(per_cpu_ptr(&flush_works, cpu));
5730
5731         cpus_read_unlock();
5732 }
5733
5734 static void net_rps_send_ipi(struct softnet_data *remsd)
5735 {
5736 #ifdef CONFIG_RPS
5737         while (remsd) {
5738                 struct softnet_data *next = remsd->rps_ipi_next;
5739
5740                 if (cpu_online(remsd->cpu))
5741                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
5742                 remsd = next;
5743         }
5744 #endif
5745 }
5746
5747 /*
5748  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5749  * Note: called with local irq disabled, but exits with local irq enabled.
5750  */
5751 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5752 {
5753 #ifdef CONFIG_RPS
5754         struct softnet_data *remsd = sd->rps_ipi_list;
5755
5756         if (remsd) {
5757                 sd->rps_ipi_list = NULL;
5758
5759                 local_irq_enable();
5760
5761                 /* Send pending IPI's to kick RPS processing on remote cpus. */
5762                 net_rps_send_ipi(remsd);
5763         } else
5764 #endif
5765                 local_irq_enable();
5766 }
5767
5768 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5769 {
5770 #ifdef CONFIG_RPS
5771         return sd->rps_ipi_list != NULL;
5772 #else
5773         return false;
5774 #endif
5775 }
5776
5777 static int process_backlog(struct napi_struct *napi, int quota)
5778 {
5779         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5780         bool again = true;
5781         int work = 0;
5782
5783         /* Check if we have pending ipi, its better to send them now,
5784          * not waiting net_rx_action() end.
5785          */
5786         if (sd_has_rps_ipi_waiting(sd)) {
5787                 local_irq_disable();
5788                 net_rps_action_and_irq_enable(sd);
5789         }
5790
5791         napi->weight = dev_rx_weight;
5792         while (again) {
5793                 struct sk_buff *skb;
5794
5795                 while ((skb = __skb_dequeue(&sd->process_queue))) {
5796                         rcu_read_lock();
5797                         __netif_receive_skb(skb);
5798                         rcu_read_unlock();
5799                         input_queue_head_incr(sd);
5800                         if (++work >= quota)
5801                                 return work;
5802
5803                 }
5804
5805                 local_irq_disable();
5806                 rps_lock(sd);
5807                 if (skb_queue_empty(&sd->input_pkt_queue)) {
5808                         /*
5809                          * Inline a custom version of __napi_complete().
5810                          * only current cpu owns and manipulates this napi,
5811                          * and NAPI_STATE_SCHED is the only possible flag set
5812                          * on backlog.
5813                          * We can use a plain write instead of clear_bit(),
5814                          * and we dont need an smp_mb() memory barrier.
5815                          */
5816                         napi->state = 0;
5817                         again = false;
5818                 } else {
5819                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
5820                                                    &sd->process_queue);
5821                 }
5822                 rps_unlock(sd);
5823                 local_irq_enable();
5824         }
5825
5826         return work;
5827 }
5828
5829 /**
5830  * __napi_schedule - schedule for receive
5831  * @n: entry to schedule
5832  *
5833  * The entry's receive function will be scheduled to run.
5834  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5835  */
5836 void __napi_schedule(struct napi_struct *n)
5837 {
5838         unsigned long flags;
5839
5840         local_irq_save(flags);
5841         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5842         local_irq_restore(flags);
5843 }
5844 EXPORT_SYMBOL(__napi_schedule);
5845
5846 /**
5847  *      napi_schedule_prep - check if napi can be scheduled
5848  *      @n: napi context
5849  *
5850  * Test if NAPI routine is already running, and if not mark
5851  * it as running.  This is used as a condition variable to
5852  * insure only one NAPI poll instance runs.  We also make
5853  * sure there is no pending NAPI disable.
5854  */
5855 bool napi_schedule_prep(struct napi_struct *n)
5856 {
5857         unsigned long val, new;
5858
5859         do {
5860                 val = READ_ONCE(n->state);
5861                 if (unlikely(val & NAPIF_STATE_DISABLE))
5862                         return false;
5863                 new = val | NAPIF_STATE_SCHED;
5864
5865                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5866                  * This was suggested by Alexander Duyck, as compiler
5867                  * emits better code than :
5868                  * if (val & NAPIF_STATE_SCHED)
5869                  *     new |= NAPIF_STATE_MISSED;
5870                  */
5871                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5872                                                    NAPIF_STATE_MISSED;
5873         } while (cmpxchg(&n->state, val, new) != val);
5874
5875         return !(val & NAPIF_STATE_SCHED);
5876 }
5877 EXPORT_SYMBOL(napi_schedule_prep);
5878
5879 /**
5880  * __napi_schedule_irqoff - schedule for receive
5881  * @n: entry to schedule
5882  *
5883  * Variant of __napi_schedule() assuming hard irqs are masked.
5884  *
5885  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
5886  * because the interrupt disabled assumption might not be true
5887  * due to force-threaded interrupts and spinlock substitution.
5888  */
5889 void __napi_schedule_irqoff(struct napi_struct *n)
5890 {
5891         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
5892                 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5893         else
5894                 __napi_schedule(n);
5895 }
5896 EXPORT_SYMBOL(__napi_schedule_irqoff);
5897
5898 bool napi_complete_done(struct napi_struct *n, int work_done)
5899 {
5900         unsigned long flags, val, new, timeout = 0;
5901         bool ret = true;
5902
5903         /*
5904          * 1) Don't let napi dequeue from the cpu poll list
5905          *    just in case its running on a different cpu.
5906          * 2) If we are busy polling, do nothing here, we have
5907          *    the guarantee we will be called later.
5908          */
5909         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5910                                  NAPIF_STATE_IN_BUSY_POLL)))
5911                 return false;
5912
5913         if (work_done) {
5914                 if (n->gro_bitmask)
5915                         timeout = READ_ONCE(n->dev->gro_flush_timeout);
5916                 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
5917         }
5918         if (n->defer_hard_irqs_count > 0) {
5919                 n->defer_hard_irqs_count--;
5920                 timeout = READ_ONCE(n->dev->gro_flush_timeout);
5921                 if (timeout)
5922                         ret = false;
5923         }
5924         if (n->gro_bitmask) {
5925                 /* When the NAPI instance uses a timeout and keeps postponing
5926                  * it, we need to bound somehow the time packets are kept in
5927                  * the GRO layer
5928                  */
5929                 napi_gro_flush(n, !!timeout);
5930         }
5931
5932         gro_normal_list(n);
5933
5934         if (unlikely(!list_empty(&n->poll_list))) {
5935                 /* If n->poll_list is not empty, we need to mask irqs */
5936                 local_irq_save(flags);
5937                 list_del_init(&n->poll_list);
5938                 local_irq_restore(flags);
5939         }
5940
5941         do {
5942                 val = READ_ONCE(n->state);
5943
5944                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5945
5946                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
5947                               NAPIF_STATE_SCHED_THREADED |
5948                               NAPIF_STATE_PREFER_BUSY_POLL);
5949
5950                 /* If STATE_MISSED was set, leave STATE_SCHED set,
5951                  * because we will call napi->poll() one more time.
5952                  * This C code was suggested by Alexander Duyck to help gcc.
5953                  */
5954                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5955                                                     NAPIF_STATE_SCHED;
5956         } while (cmpxchg(&n->state, val, new) != val);
5957
5958         if (unlikely(val & NAPIF_STATE_MISSED)) {
5959                 __napi_schedule(n);
5960                 return false;
5961         }
5962
5963         if (timeout)
5964                 hrtimer_start(&n->timer, ns_to_ktime(timeout),
5965                               HRTIMER_MODE_REL_PINNED);
5966         return ret;
5967 }
5968 EXPORT_SYMBOL(napi_complete_done);
5969
5970 /* must be called under rcu_read_lock(), as we dont take a reference */
5971 static struct napi_struct *napi_by_id(unsigned int napi_id)
5972 {
5973         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5974         struct napi_struct *napi;
5975
5976         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5977                 if (napi->napi_id == napi_id)
5978                         return napi;
5979
5980         return NULL;
5981 }
5982
5983 #if defined(CONFIG_NET_RX_BUSY_POLL)
5984
5985 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
5986 {
5987         if (!skip_schedule) {
5988                 gro_normal_list(napi);
5989                 __napi_schedule(napi);
5990                 return;
5991         }
5992
5993         if (napi->gro_bitmask) {
5994                 /* flush too old packets
5995                  * If HZ < 1000, flush all packets.
5996                  */
5997                 napi_gro_flush(napi, HZ >= 1000);
5998         }
5999
6000         gro_normal_list(napi);
6001         clear_bit(NAPI_STATE_SCHED, &napi->state);
6002 }
6003
6004 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6005                            u16 budget)
6006 {
6007         bool skip_schedule = false;
6008         unsigned long timeout;
6009         int rc;
6010
6011         /* Busy polling means there is a high chance device driver hard irq
6012          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6013          * set in napi_schedule_prep().
6014          * Since we are about to call napi->poll() once more, we can safely
6015          * clear NAPI_STATE_MISSED.
6016          *
6017          * Note: x86 could use a single "lock and ..." instruction
6018          * to perform these two clear_bit()
6019          */
6020         clear_bit(NAPI_STATE_MISSED, &napi->state);
6021         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6022
6023         local_bh_disable();
6024
6025         if (prefer_busy_poll) {
6026                 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6027                 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6028                 if (napi->defer_hard_irqs_count && timeout) {
6029                         hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6030                         skip_schedule = true;
6031                 }
6032         }
6033
6034         /* All we really want here is to re-enable device interrupts.
6035          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6036          */
6037         rc = napi->poll(napi, budget);
6038         /* We can't gro_normal_list() here, because napi->poll() might have
6039          * rearmed the napi (napi_complete_done()) in which case it could
6040          * already be running on another CPU.
6041          */
6042         trace_napi_poll(napi, rc, budget);
6043         netpoll_poll_unlock(have_poll_lock);
6044         if (rc == budget)
6045                 __busy_poll_stop(napi, skip_schedule);
6046         local_bh_enable();
6047 }
6048
6049 void napi_busy_loop(unsigned int napi_id,
6050                     bool (*loop_end)(void *, unsigned long),
6051                     void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6052 {
6053         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6054         int (*napi_poll)(struct napi_struct *napi, int budget);
6055         void *have_poll_lock = NULL;
6056         struct napi_struct *napi;
6057
6058 restart:
6059         napi_poll = NULL;
6060
6061         rcu_read_lock();
6062
6063         napi = napi_by_id(napi_id);
6064         if (!napi)
6065                 goto out;
6066
6067         preempt_disable();
6068         for (;;) {
6069                 int work = 0;
6070
6071                 local_bh_disable();
6072                 if (!napi_poll) {
6073                         unsigned long val = READ_ONCE(napi->state);
6074
6075                         /* If multiple threads are competing for this napi,
6076                          * we avoid dirtying napi->state as much as we can.
6077                          */
6078                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6079                                    NAPIF_STATE_IN_BUSY_POLL)) {
6080                                 if (prefer_busy_poll)
6081                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6082                                 goto count;
6083                         }
6084                         if (cmpxchg(&napi->state, val,
6085                                     val | NAPIF_STATE_IN_BUSY_POLL |
6086                                           NAPIF_STATE_SCHED) != val) {
6087                                 if (prefer_busy_poll)
6088                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6089                                 goto count;
6090                         }
6091                         have_poll_lock = netpoll_poll_lock(napi);
6092                         napi_poll = napi->poll;
6093                 }
6094                 work = napi_poll(napi, budget);
6095                 trace_napi_poll(napi, work, budget);
6096                 gro_normal_list(napi);
6097 count:
6098                 if (work > 0)
6099                         __NET_ADD_STATS(dev_net(napi->dev),
6100                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6101                 local_bh_enable();
6102
6103                 if (!loop_end || loop_end(loop_end_arg, start_time))
6104                         break;
6105
6106                 if (unlikely(need_resched())) {
6107                         if (napi_poll)
6108                                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6109                         preempt_enable();
6110                         rcu_read_unlock();
6111                         cond_resched();
6112                         if (loop_end(loop_end_arg, start_time))
6113                                 return;
6114                         goto restart;
6115                 }
6116                 cpu_relax();
6117         }
6118         if (napi_poll)
6119                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6120         preempt_enable();
6121 out:
6122         rcu_read_unlock();
6123 }
6124 EXPORT_SYMBOL(napi_busy_loop);
6125
6126 #endif /* CONFIG_NET_RX_BUSY_POLL */
6127
6128 static void napi_hash_add(struct napi_struct *napi)
6129 {
6130         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6131                 return;
6132
6133         spin_lock(&napi_hash_lock);
6134
6135         /* 0..NR_CPUS range is reserved for sender_cpu use */
6136         do {
6137                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6138                         napi_gen_id = MIN_NAPI_ID;
6139         } while (napi_by_id(napi_gen_id));
6140         napi->napi_id = napi_gen_id;
6141
6142         hlist_add_head_rcu(&napi->napi_hash_node,
6143                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6144
6145         spin_unlock(&napi_hash_lock);
6146 }
6147
6148 /* Warning : caller is responsible to make sure rcu grace period
6149  * is respected before freeing memory containing @napi
6150  */
6151 static void napi_hash_del(struct napi_struct *napi)
6152 {
6153         spin_lock(&napi_hash_lock);
6154
6155         hlist_del_init_rcu(&napi->napi_hash_node);
6156
6157         spin_unlock(&napi_hash_lock);
6158 }
6159
6160 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6161 {
6162         struct napi_struct *napi;
6163
6164         napi = container_of(timer, struct napi_struct, timer);
6165
6166         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6167          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6168          */
6169         if (!napi_disable_pending(napi) &&
6170             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6171                 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6172                 __napi_schedule_irqoff(napi);
6173         }
6174
6175         return HRTIMER_NORESTART;
6176 }
6177
6178 static void init_gro_hash(struct napi_struct *napi)
6179 {
6180         int i;
6181
6182         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6183                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6184                 napi->gro_hash[i].count = 0;
6185         }
6186         napi->gro_bitmask = 0;
6187 }
6188
6189 int dev_set_threaded(struct net_device *dev, bool threaded)
6190 {
6191         struct napi_struct *napi;
6192         int err = 0;
6193
6194         if (dev->threaded == threaded)
6195                 return 0;
6196
6197         if (threaded) {
6198                 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6199                         if (!napi->thread) {
6200                                 err = napi_kthread_create(napi);
6201                                 if (err) {
6202                                         threaded = false;
6203                                         break;
6204                                 }
6205                         }
6206                 }
6207         }
6208
6209         dev->threaded = threaded;
6210
6211         /* Make sure kthread is created before THREADED bit
6212          * is set.
6213          */
6214         smp_mb__before_atomic();
6215
6216         /* Setting/unsetting threaded mode on a napi might not immediately
6217          * take effect, if the current napi instance is actively being
6218          * polled. In this case, the switch between threaded mode and
6219          * softirq mode will happen in the next round of napi_schedule().
6220          * This should not cause hiccups/stalls to the live traffic.
6221          */
6222         list_for_each_entry(napi, &dev->napi_list, dev_list) {
6223                 if (threaded)
6224                         set_bit(NAPI_STATE_THREADED, &napi->state);
6225                 else
6226                         clear_bit(NAPI_STATE_THREADED, &napi->state);
6227         }
6228
6229         return err;
6230 }
6231 EXPORT_SYMBOL(dev_set_threaded);
6232
6233 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6234                     int (*poll)(struct napi_struct *, int), int weight)
6235 {
6236         if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6237                 return;
6238
6239         INIT_LIST_HEAD(&napi->poll_list);
6240         INIT_HLIST_NODE(&napi->napi_hash_node);
6241         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6242         napi->timer.function = napi_watchdog;
6243         init_gro_hash(napi);
6244         napi->skb = NULL;
6245         INIT_LIST_HEAD(&napi->rx_list);
6246         napi->rx_count = 0;
6247         napi->poll = poll;
6248         if (weight > NAPI_POLL_WEIGHT)
6249                 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6250                                 weight);
6251         napi->weight = weight;
6252         napi->dev = dev;
6253 #ifdef CONFIG_NETPOLL
6254         napi->poll_owner = -1;
6255 #endif
6256         set_bit(NAPI_STATE_SCHED, &napi->state);
6257         set_bit(NAPI_STATE_NPSVC, &napi->state);
6258         list_add_rcu(&napi->dev_list, &dev->napi_list);
6259         napi_hash_add(napi);
6260         /* Create kthread for this napi if dev->threaded is set.
6261          * Clear dev->threaded if kthread creation failed so that
6262          * threaded mode will not be enabled in napi_enable().
6263          */
6264         if (dev->threaded && napi_kthread_create(napi))
6265                 dev->threaded = 0;
6266 }
6267 EXPORT_SYMBOL(netif_napi_add);
6268
6269 void napi_disable(struct napi_struct *n)
6270 {
6271         unsigned long val, new;
6272
6273         might_sleep();
6274         set_bit(NAPI_STATE_DISABLE, &n->state);
6275
6276         for ( ; ; ) {
6277                 val = READ_ONCE(n->state);
6278                 if (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6279                         usleep_range(20, 200);
6280                         continue;
6281                 }
6282
6283                 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6284                 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6285
6286                 if (cmpxchg(&n->state, val, new) == val)
6287                         break;
6288         }
6289
6290         hrtimer_cancel(&n->timer);
6291
6292         clear_bit(NAPI_STATE_DISABLE, &n->state);
6293 }
6294 EXPORT_SYMBOL(napi_disable);
6295
6296 /**
6297  *      napi_enable - enable NAPI scheduling
6298  *      @n: NAPI context
6299  *
6300  * Resume NAPI from being scheduled on this context.
6301  * Must be paired with napi_disable.
6302  */
6303 void napi_enable(struct napi_struct *n)
6304 {
6305         unsigned long val, new;
6306
6307         do {
6308                 val = READ_ONCE(n->state);
6309                 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6310
6311                 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6312                 if (n->dev->threaded && n->thread)
6313                         new |= NAPIF_STATE_THREADED;
6314         } while (cmpxchg(&n->state, val, new) != val);
6315 }
6316 EXPORT_SYMBOL(napi_enable);
6317
6318 static void flush_gro_hash(struct napi_struct *napi)
6319 {
6320         int i;
6321
6322         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6323                 struct sk_buff *skb, *n;
6324
6325                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6326                         kfree_skb(skb);
6327                 napi->gro_hash[i].count = 0;
6328         }
6329 }
6330
6331 /* Must be called in process context */
6332 void __netif_napi_del(struct napi_struct *napi)
6333 {
6334         if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6335                 return;
6336
6337         napi_hash_del(napi);
6338         list_del_rcu(&napi->dev_list);
6339         napi_free_frags(napi);
6340
6341         flush_gro_hash(napi);
6342         napi->gro_bitmask = 0;
6343
6344         if (napi->thread) {
6345                 kthread_stop(napi->thread);
6346                 napi->thread = NULL;
6347         }
6348 }
6349 EXPORT_SYMBOL(__netif_napi_del);
6350
6351 static int __napi_poll(struct napi_struct *n, bool *repoll)
6352 {
6353         int work, weight;
6354
6355         weight = n->weight;
6356
6357         /* This NAPI_STATE_SCHED test is for avoiding a race
6358          * with netpoll's poll_napi().  Only the entity which
6359          * obtains the lock and sees NAPI_STATE_SCHED set will
6360          * actually make the ->poll() call.  Therefore we avoid
6361          * accidentally calling ->poll() when NAPI is not scheduled.
6362          */
6363         work = 0;
6364         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6365                 work = n->poll(n, weight);
6366                 trace_napi_poll(n, work, weight);
6367         }
6368
6369         if (unlikely(work > weight))
6370                 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6371                                 n->poll, work, weight);
6372
6373         if (likely(work < weight))
6374                 return work;
6375
6376         /* Drivers must not modify the NAPI state if they
6377          * consume the entire weight.  In such cases this code
6378          * still "owns" the NAPI instance and therefore can
6379          * move the instance around on the list at-will.
6380          */
6381         if (unlikely(napi_disable_pending(n))) {
6382                 napi_complete(n);
6383                 return work;
6384         }
6385
6386         /* The NAPI context has more processing work, but busy-polling
6387          * is preferred. Exit early.
6388          */
6389         if (napi_prefer_busy_poll(n)) {
6390                 if (napi_complete_done(n, work)) {
6391                         /* If timeout is not set, we need to make sure
6392                          * that the NAPI is re-scheduled.
6393                          */
6394                         napi_schedule(n);
6395                 }
6396                 return work;
6397         }
6398
6399         if (n->gro_bitmask) {
6400                 /* flush too old packets
6401                  * If HZ < 1000, flush all packets.
6402                  */
6403                 napi_gro_flush(n, HZ >= 1000);
6404         }
6405
6406         gro_normal_list(n);
6407
6408         /* Some drivers may have called napi_schedule
6409          * prior to exhausting their budget.
6410          */
6411         if (unlikely(!list_empty(&n->poll_list))) {
6412                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6413                              n->dev ? n->dev->name : "backlog");
6414                 return work;
6415         }
6416
6417         *repoll = true;
6418
6419         return work;
6420 }
6421
6422 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6423 {
6424         bool do_repoll = false;
6425         void *have;
6426         int work;
6427
6428         list_del_init(&n->poll_list);
6429
6430         have = netpoll_poll_lock(n);
6431
6432         work = __napi_poll(n, &do_repoll);
6433
6434         if (do_repoll)
6435                 list_add_tail(&n->poll_list, repoll);
6436
6437         netpoll_poll_unlock(have);
6438
6439         return work;
6440 }
6441
6442 static int napi_thread_wait(struct napi_struct *napi)
6443 {
6444         bool woken = false;
6445
6446         set_current_state(TASK_INTERRUPTIBLE);
6447
6448         while (!kthread_should_stop()) {
6449                 /* Testing SCHED_THREADED bit here to make sure the current
6450                  * kthread owns this napi and could poll on this napi.
6451                  * Testing SCHED bit is not enough because SCHED bit might be
6452                  * set by some other busy poll thread or by napi_disable().
6453                  */
6454                 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6455                         WARN_ON(!list_empty(&napi->poll_list));
6456                         __set_current_state(TASK_RUNNING);
6457                         return 0;
6458                 }
6459
6460                 schedule();
6461                 /* woken being true indicates this thread owns this napi. */
6462                 woken = true;
6463                 set_current_state(TASK_INTERRUPTIBLE);
6464         }
6465         __set_current_state(TASK_RUNNING);
6466
6467         return -1;
6468 }
6469
6470 static int napi_threaded_poll(void *data)
6471 {
6472         struct napi_struct *napi = data;
6473         void *have;
6474
6475         while (!napi_thread_wait(napi)) {
6476                 for (;;) {
6477                         bool repoll = false;
6478
6479                         local_bh_disable();
6480
6481                         have = netpoll_poll_lock(napi);
6482                         __napi_poll(napi, &repoll);
6483                         netpoll_poll_unlock(have);
6484
6485                         local_bh_enable();
6486
6487                         if (!repoll)
6488                                 break;
6489
6490                         cond_resched();
6491                 }
6492         }
6493         return 0;
6494 }
6495
6496 static __latent_entropy void net_rx_action(struct softirq_action *h)
6497 {
6498         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6499         unsigned long time_limit = jiffies +
6500                 usecs_to_jiffies(netdev_budget_usecs);
6501         int budget = netdev_budget;
6502         LIST_HEAD(list);
6503         LIST_HEAD(repoll);
6504
6505         local_irq_disable();
6506         list_splice_init(&sd->poll_list, &list);
6507         local_irq_enable();
6508
6509         for (;;) {
6510                 struct napi_struct *n;
6511
6512                 if (list_empty(&list)) {
6513                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6514                                 return;
6515                         break;
6516                 }
6517
6518                 n = list_first_entry(&list, struct napi_struct, poll_list);
6519                 budget -= napi_poll(n, &repoll);
6520
6521                 /* If softirq window is exhausted then punt.
6522                  * Allow this to run for 2 jiffies since which will allow
6523                  * an average latency of 1.5/HZ.
6524                  */
6525                 if (unlikely(budget <= 0 ||
6526                              time_after_eq(jiffies, time_limit))) {
6527                         sd->time_squeeze++;
6528                         break;
6529                 }
6530         }
6531
6532         local_irq_disable();
6533
6534         list_splice_tail_init(&sd->poll_list, &list);
6535         list_splice_tail(&repoll, &list);
6536         list_splice(&list, &sd->poll_list);
6537         if (!list_empty(&sd->poll_list))
6538                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6539
6540         net_rps_action_and_irq_enable(sd);
6541 }
6542
6543 struct netdev_adjacent {
6544         struct net_device *dev;
6545         netdevice_tracker dev_tracker;
6546
6547         /* upper master flag, there can only be one master device per list */
6548         bool master;
6549
6550         /* lookup ignore flag */
6551         bool ignore;
6552
6553         /* counter for the number of times this device was added to us */
6554         u16 ref_nr;
6555
6556         /* private field for the users */
6557         void *private;
6558
6559         struct list_head list;
6560         struct rcu_head rcu;
6561 };
6562
6563 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6564                                                  struct list_head *adj_list)
6565 {
6566         struct netdev_adjacent *adj;
6567
6568         list_for_each_entry(adj, adj_list, list) {
6569                 if (adj->dev == adj_dev)
6570                         return adj;
6571         }
6572         return NULL;
6573 }
6574
6575 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6576                                     struct netdev_nested_priv *priv)
6577 {
6578         struct net_device *dev = (struct net_device *)priv->data;
6579
6580         return upper_dev == dev;
6581 }
6582
6583 /**
6584  * netdev_has_upper_dev - Check if device is linked to an upper device
6585  * @dev: device
6586  * @upper_dev: upper device to check
6587  *
6588  * Find out if a device is linked to specified upper device and return true
6589  * in case it is. Note that this checks only immediate upper device,
6590  * not through a complete stack of devices. The caller must hold the RTNL lock.
6591  */
6592 bool netdev_has_upper_dev(struct net_device *dev,
6593                           struct net_device *upper_dev)
6594 {
6595         struct netdev_nested_priv priv = {
6596                 .data = (void *)upper_dev,
6597         };
6598
6599         ASSERT_RTNL();
6600
6601         return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6602                                              &priv);
6603 }
6604 EXPORT_SYMBOL(netdev_has_upper_dev);
6605
6606 /**
6607  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6608  * @dev: device
6609  * @upper_dev: upper device to check
6610  *
6611  * Find out if a device is linked to specified upper device and return true
6612  * in case it is. Note that this checks the entire upper device chain.
6613  * The caller must hold rcu lock.
6614  */
6615
6616 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6617                                   struct net_device *upper_dev)
6618 {
6619         struct netdev_nested_priv priv = {
6620                 .data = (void *)upper_dev,
6621         };
6622
6623         return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6624                                                &priv);
6625 }
6626 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6627
6628 /**
6629  * netdev_has_any_upper_dev - Check if device is linked to some device
6630  * @dev: device
6631  *
6632  * Find out if a device is linked to an upper device and return true in case
6633  * it is. The caller must hold the RTNL lock.
6634  */
6635 bool netdev_has_any_upper_dev(struct net_device *dev)
6636 {
6637         ASSERT_RTNL();
6638
6639         return !list_empty(&dev->adj_list.upper);
6640 }
6641 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6642
6643 /**
6644  * netdev_master_upper_dev_get - Get master upper device
6645  * @dev: device
6646  *
6647  * Find a master upper device and return pointer to it or NULL in case
6648  * it's not there. The caller must hold the RTNL lock.
6649  */
6650 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6651 {
6652         struct netdev_adjacent *upper;
6653
6654         ASSERT_RTNL();
6655
6656         if (list_empty(&dev->adj_list.upper))
6657                 return NULL;
6658
6659         upper = list_first_entry(&dev->adj_list.upper,
6660                                  struct netdev_adjacent, list);
6661         if (likely(upper->master))
6662                 return upper->dev;
6663         return NULL;
6664 }
6665 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6666
6667 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6668 {
6669         struct netdev_adjacent *upper;
6670
6671         ASSERT_RTNL();
6672
6673         if (list_empty(&dev->adj_list.upper))
6674                 return NULL;
6675
6676         upper = list_first_entry(&dev->adj_list.upper,
6677                                  struct netdev_adjacent, list);
6678         if (likely(upper->master) && !upper->ignore)
6679                 return upper->dev;
6680         return NULL;
6681 }
6682
6683 /**
6684  * netdev_has_any_lower_dev - Check if device is linked to some device
6685  * @dev: device
6686  *
6687  * Find out if a device is linked to a lower device and return true in case
6688  * it is. The caller must hold the RTNL lock.
6689  */
6690 static bool netdev_has_any_lower_dev(struct net_device *dev)
6691 {
6692         ASSERT_RTNL();
6693
6694         return !list_empty(&dev->adj_list.lower);
6695 }
6696
6697 void *netdev_adjacent_get_private(struct list_head *adj_list)
6698 {
6699         struct netdev_adjacent *adj;
6700
6701         adj = list_entry(adj_list, struct netdev_adjacent, list);
6702
6703         return adj->private;
6704 }
6705 EXPORT_SYMBOL(netdev_adjacent_get_private);
6706
6707 /**
6708  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6709  * @dev: device
6710  * @iter: list_head ** of the current position
6711  *
6712  * Gets the next device from the dev's upper list, starting from iter
6713  * position. The caller must hold RCU read lock.
6714  */
6715 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6716                                                  struct list_head **iter)
6717 {
6718         struct netdev_adjacent *upper;
6719
6720         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6721
6722         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6723
6724         if (&upper->list == &dev->adj_list.upper)
6725                 return NULL;
6726
6727         *iter = &upper->list;
6728
6729         return upper->dev;
6730 }
6731 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6732
6733 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6734                                                   struct list_head **iter,
6735                                                   bool *ignore)
6736 {
6737         struct netdev_adjacent *upper;
6738
6739         upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6740
6741         if (&upper->list == &dev->adj_list.upper)
6742                 return NULL;
6743
6744         *iter = &upper->list;
6745         *ignore = upper->ignore;
6746
6747         return upper->dev;
6748 }
6749
6750 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6751                                                     struct list_head **iter)
6752 {
6753         struct netdev_adjacent *upper;
6754
6755         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6756
6757         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6758
6759         if (&upper->list == &dev->adj_list.upper)
6760                 return NULL;
6761
6762         *iter = &upper->list;
6763
6764         return upper->dev;
6765 }
6766
6767 static int __netdev_walk_all_upper_dev(struct net_device *dev,
6768                                        int (*fn)(struct net_device *dev,
6769                                          struct netdev_nested_priv *priv),
6770                                        struct netdev_nested_priv *priv)
6771 {
6772         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6773         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6774         int ret, cur = 0;
6775         bool ignore;
6776
6777         now = dev;
6778         iter = &dev->adj_list.upper;
6779
6780         while (1) {
6781                 if (now != dev) {
6782                         ret = fn(now, priv);
6783                         if (ret)
6784                                 return ret;
6785                 }
6786
6787                 next = NULL;
6788                 while (1) {
6789                         udev = __netdev_next_upper_dev(now, &iter, &ignore);
6790                         if (!udev)
6791                                 break;
6792                         if (ignore)
6793                                 continue;
6794
6795                         next = udev;
6796                         niter = &udev->adj_list.upper;
6797                         dev_stack[cur] = now;
6798                         iter_stack[cur++] = iter;
6799                         break;
6800                 }
6801
6802                 if (!next) {
6803                         if (!cur)
6804                                 return 0;
6805                         next = dev_stack[--cur];
6806                         niter = iter_stack[cur];
6807                 }
6808
6809                 now = next;
6810                 iter = niter;
6811         }
6812
6813         return 0;
6814 }
6815
6816 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6817                                   int (*fn)(struct net_device *dev,
6818                                             struct netdev_nested_priv *priv),
6819                                   struct netdev_nested_priv *priv)
6820 {
6821         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6822         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6823         int ret, cur = 0;
6824
6825         now = dev;
6826         iter = &dev->adj_list.upper;
6827
6828         while (1) {
6829                 if (now != dev) {
6830                         ret = fn(now, priv);
6831                         if (ret)
6832                                 return ret;
6833                 }
6834
6835                 next = NULL;
6836                 while (1) {
6837                         udev = netdev_next_upper_dev_rcu(now, &iter);
6838                         if (!udev)
6839                                 break;
6840
6841                         next = udev;
6842                         niter = &udev->adj_list.upper;
6843                         dev_stack[cur] = now;
6844                         iter_stack[cur++] = iter;
6845                         break;
6846                 }
6847
6848                 if (!next) {
6849                         if (!cur)
6850                                 return 0;
6851                         next = dev_stack[--cur];
6852                         niter = iter_stack[cur];
6853                 }
6854
6855                 now = next;
6856                 iter = niter;
6857         }
6858
6859         return 0;
6860 }
6861 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6862
6863 static bool __netdev_has_upper_dev(struct net_device *dev,
6864                                    struct net_device *upper_dev)
6865 {
6866         struct netdev_nested_priv priv = {
6867                 .flags = 0,
6868                 .data = (void *)upper_dev,
6869         };
6870
6871         ASSERT_RTNL();
6872
6873         return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
6874                                            &priv);
6875 }
6876
6877 /**
6878  * netdev_lower_get_next_private - Get the next ->private from the
6879  *                                 lower neighbour list
6880  * @dev: device
6881  * @iter: list_head ** of the current position
6882  *
6883  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6884  * list, starting from iter position. The caller must hold either hold the
6885  * RTNL lock or its own locking that guarantees that the neighbour lower
6886  * list will remain unchanged.
6887  */
6888 void *netdev_lower_get_next_private(struct net_device *dev,
6889                                     struct list_head **iter)
6890 {
6891         struct netdev_adjacent *lower;
6892
6893         lower = list_entry(*iter, struct netdev_adjacent, list);
6894
6895         if (&lower->list == &dev->adj_list.lower)
6896                 return NULL;
6897
6898         *iter = lower->list.next;
6899
6900         return lower->private;
6901 }
6902 EXPORT_SYMBOL(netdev_lower_get_next_private);
6903
6904 /**
6905  * netdev_lower_get_next_private_rcu - Get the next ->private from the
6906  *                                     lower neighbour list, RCU
6907  *                                     variant
6908  * @dev: device
6909  * @iter: list_head ** of the current position
6910  *
6911  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6912  * list, starting from iter position. The caller must hold RCU read lock.
6913  */
6914 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6915                                         struct list_head **iter)
6916 {
6917         struct netdev_adjacent *lower;
6918
6919         WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
6920
6921         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6922
6923         if (&lower->list == &dev->adj_list.lower)
6924                 return NULL;
6925
6926         *iter = &lower->list;
6927
6928         return lower->private;
6929 }
6930 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6931
6932 /**
6933  * netdev_lower_get_next - Get the next device from the lower neighbour
6934  *                         list
6935  * @dev: device
6936  * @iter: list_head ** of the current position
6937  *
6938  * Gets the next netdev_adjacent from the dev's lower neighbour
6939  * list, starting from iter position. The caller must hold RTNL lock or
6940  * its own locking that guarantees that the neighbour lower
6941  * list will remain unchanged.
6942  */
6943 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6944 {
6945         struct netdev_adjacent *lower;
6946
6947         lower = list_entry(*iter, struct netdev_adjacent, list);
6948
6949         if (&lower->list == &dev->adj_list.lower)
6950                 return NULL;
6951
6952         *iter = lower->list.next;
6953
6954         return lower->dev;
6955 }
6956 EXPORT_SYMBOL(netdev_lower_get_next);
6957
6958 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6959                                                 struct list_head **iter)
6960 {
6961         struct netdev_adjacent *lower;
6962
6963         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6964
6965         if (&lower->list == &dev->adj_list.lower)
6966                 return NULL;
6967
6968         *iter = &lower->list;
6969
6970         return lower->dev;
6971 }
6972
6973 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
6974                                                   struct list_head **iter,
6975                                                   bool *ignore)
6976 {
6977         struct netdev_adjacent *lower;
6978
6979         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6980
6981         if (&lower->list == &dev->adj_list.lower)
6982                 return NULL;
6983
6984         *iter = &lower->list;
6985         *ignore = lower->ignore;
6986
6987         return lower->dev;
6988 }
6989
6990 int netdev_walk_all_lower_dev(struct net_device *dev,
6991                               int (*fn)(struct net_device *dev,
6992                                         struct netdev_nested_priv *priv),
6993                               struct netdev_nested_priv *priv)
6994 {
6995         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6996         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6997         int ret, cur = 0;
6998
6999         now = dev;
7000         iter = &dev->adj_list.lower;
7001
7002         while (1) {
7003                 if (now != dev) {
7004                         ret = fn(now, priv);
7005                         if (ret)
7006                                 return ret;
7007                 }
7008
7009                 next = NULL;
7010                 while (1) {
7011                         ldev = netdev_next_lower_dev(now, &iter);
7012                         if (!ldev)
7013                                 break;
7014
7015                         next = ldev;
7016                         niter = &ldev->adj_list.lower;
7017                         dev_stack[cur] = now;
7018                         iter_stack[cur++] = iter;
7019                         break;
7020                 }
7021
7022                 if (!next) {
7023                         if (!cur)
7024                                 return 0;
7025                         next = dev_stack[--cur];
7026                         niter = iter_stack[cur];
7027                 }
7028
7029                 now = next;
7030                 iter = niter;
7031         }
7032
7033         return 0;
7034 }
7035 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7036
7037 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7038                                        int (*fn)(struct net_device *dev,
7039                                          struct netdev_nested_priv *priv),
7040                                        struct netdev_nested_priv *priv)
7041 {
7042         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7043         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7044         int ret, cur = 0;
7045         bool ignore;
7046
7047         now = dev;
7048         iter = &dev->adj_list.lower;
7049
7050         while (1) {
7051                 if (now != dev) {
7052                         ret = fn(now, priv);
7053                         if (ret)
7054                                 return ret;
7055                 }
7056
7057                 next = NULL;
7058                 while (1) {
7059                         ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7060                         if (!ldev)
7061                                 break;
7062                         if (ignore)
7063                                 continue;
7064
7065                         next = ldev;
7066                         niter = &ldev->adj_list.lower;
7067                         dev_stack[cur] = now;
7068                         iter_stack[cur++] = iter;
7069                         break;
7070                 }
7071
7072                 if (!next) {
7073                         if (!cur)
7074                                 return 0;
7075                         next = dev_stack[--cur];
7076                         niter = iter_stack[cur];
7077                 }
7078
7079                 now = next;
7080                 iter = niter;
7081         }
7082
7083         return 0;
7084 }
7085
7086 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7087                                              struct list_head **iter)
7088 {
7089         struct netdev_adjacent *lower;
7090
7091         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7092         if (&lower->list == &dev->adj_list.lower)
7093                 return NULL;
7094
7095         *iter = &lower->list;
7096
7097         return lower->dev;
7098 }
7099 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7100
7101 static u8 __netdev_upper_depth(struct net_device *dev)
7102 {
7103         struct net_device *udev;
7104         struct list_head *iter;
7105         u8 max_depth = 0;
7106         bool ignore;
7107
7108         for (iter = &dev->adj_list.upper,
7109              udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7110              udev;
7111              udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7112                 if (ignore)
7113                         continue;
7114                 if (max_depth < udev->upper_level)
7115                         max_depth = udev->upper_level;
7116         }
7117
7118         return max_depth;
7119 }
7120
7121 static u8 __netdev_lower_depth(struct net_device *dev)
7122 {
7123         struct net_device *ldev;
7124         struct list_head *iter;
7125         u8 max_depth = 0;
7126         bool ignore;
7127
7128         for (iter = &dev->adj_list.lower,
7129              ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7130              ldev;
7131              ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7132                 if (ignore)
7133                         continue;
7134                 if (max_depth < ldev->lower_level)
7135                         max_depth = ldev->lower_level;
7136         }
7137
7138         return max_depth;
7139 }
7140
7141 static int __netdev_update_upper_level(struct net_device *dev,
7142                                        struct netdev_nested_priv *__unused)
7143 {
7144         dev->upper_level = __netdev_upper_depth(dev) + 1;
7145         return 0;
7146 }
7147
7148 static int __netdev_update_lower_level(struct net_device *dev,
7149                                        struct netdev_nested_priv *priv)
7150 {
7151         dev->lower_level = __netdev_lower_depth(dev) + 1;
7152
7153 #ifdef CONFIG_LOCKDEP
7154         if (!priv)
7155                 return 0;
7156
7157         if (priv->flags & NESTED_SYNC_IMM)
7158                 dev->nested_level = dev->lower_level - 1;
7159         if (priv->flags & NESTED_SYNC_TODO)
7160                 net_unlink_todo(dev);
7161 #endif
7162         return 0;
7163 }
7164
7165 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7166                                   int (*fn)(struct net_device *dev,
7167                                             struct netdev_nested_priv *priv),
7168                                   struct netdev_nested_priv *priv)
7169 {
7170         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7171         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7172         int ret, cur = 0;
7173
7174         now = dev;
7175         iter = &dev->adj_list.lower;
7176
7177         while (1) {
7178                 if (now != dev) {
7179                         ret = fn(now, priv);
7180                         if (ret)
7181                                 return ret;
7182                 }
7183
7184                 next = NULL;
7185                 while (1) {
7186                         ldev = netdev_next_lower_dev_rcu(now, &iter);
7187                         if (!ldev)
7188                                 break;
7189
7190                         next = ldev;
7191                         niter = &ldev->adj_list.lower;
7192                         dev_stack[cur] = now;
7193                         iter_stack[cur++] = iter;
7194                         break;
7195                 }
7196
7197                 if (!next) {
7198                         if (!cur)
7199                                 return 0;
7200                         next = dev_stack[--cur];
7201                         niter = iter_stack[cur];
7202                 }
7203
7204                 now = next;
7205                 iter = niter;
7206         }
7207
7208         return 0;
7209 }
7210 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7211
7212 /**
7213  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7214  *                                     lower neighbour list, RCU
7215  *                                     variant
7216  * @dev: device
7217  *
7218  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7219  * list. The caller must hold RCU read lock.
7220  */
7221 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7222 {
7223         struct netdev_adjacent *lower;
7224
7225         lower = list_first_or_null_rcu(&dev->adj_list.lower,
7226                         struct netdev_adjacent, list);
7227         if (lower)
7228                 return lower->private;
7229         return NULL;
7230 }
7231 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7232
7233 /**
7234  * netdev_master_upper_dev_get_rcu - Get master upper device
7235  * @dev: device
7236  *
7237  * Find a master upper device and return pointer to it or NULL in case
7238  * it's not there. The caller must hold the RCU read lock.
7239  */
7240 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7241 {
7242         struct netdev_adjacent *upper;
7243
7244         upper = list_first_or_null_rcu(&dev->adj_list.upper,
7245                                        struct netdev_adjacent, list);
7246         if (upper && likely(upper->master))
7247                 return upper->dev;
7248         return NULL;
7249 }
7250 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7251
7252 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7253                               struct net_device *adj_dev,
7254                               struct list_head *dev_list)
7255 {
7256         char linkname[IFNAMSIZ+7];
7257
7258         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7259                 "upper_%s" : "lower_%s", adj_dev->name);
7260         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7261                                  linkname);
7262 }
7263 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7264                                char *name,
7265                                struct list_head *dev_list)
7266 {
7267         char linkname[IFNAMSIZ+7];
7268
7269         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7270                 "upper_%s" : "lower_%s", name);
7271         sysfs_remove_link(&(dev->dev.kobj), linkname);
7272 }
7273
7274 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7275                                                  struct net_device *adj_dev,
7276                                                  struct list_head *dev_list)
7277 {
7278         return (dev_list == &dev->adj_list.upper ||
7279                 dev_list == &dev->adj_list.lower) &&
7280                 net_eq(dev_net(dev), dev_net(adj_dev));
7281 }
7282
7283 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7284                                         struct net_device *adj_dev,
7285                                         struct list_head *dev_list,
7286                                         void *private, bool master)
7287 {
7288         struct netdev_adjacent *adj;
7289         int ret;
7290
7291         adj = __netdev_find_adj(adj_dev, dev_list);
7292
7293         if (adj) {
7294                 adj->ref_nr += 1;
7295                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7296                          dev->name, adj_dev->name, adj->ref_nr);
7297
7298                 return 0;
7299         }
7300
7301         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7302         if (!adj)
7303                 return -ENOMEM;
7304
7305         adj->dev = adj_dev;
7306         adj->master = master;
7307         adj->ref_nr = 1;
7308         adj->private = private;
7309         adj->ignore = false;
7310         dev_hold_track(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7311
7312         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7313                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7314
7315         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7316                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7317                 if (ret)
7318                         goto free_adj;
7319         }
7320
7321         /* Ensure that master link is always the first item in list. */
7322         if (master) {
7323                 ret = sysfs_create_link(&(dev->dev.kobj),
7324                                         &(adj_dev->dev.kobj), "master");
7325                 if (ret)
7326                         goto remove_symlinks;
7327
7328                 list_add_rcu(&adj->list, dev_list);
7329         } else {
7330                 list_add_tail_rcu(&adj->list, dev_list);
7331         }
7332
7333         return 0;
7334
7335 remove_symlinks:
7336         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7337                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7338 free_adj:
7339         dev_put_track(adj_dev, &adj->dev_tracker);
7340         kfree(adj);
7341
7342         return ret;
7343 }
7344
7345 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7346                                          struct net_device *adj_dev,
7347                                          u16 ref_nr,
7348                                          struct list_head *dev_list)
7349 {
7350         struct netdev_adjacent *adj;
7351
7352         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7353                  dev->name, adj_dev->name, ref_nr);
7354
7355         adj = __netdev_find_adj(adj_dev, dev_list);
7356
7357         if (!adj) {
7358                 pr_err("Adjacency does not exist for device %s from %s\n",
7359                        dev->name, adj_dev->name);
7360                 WARN_ON(1);
7361                 return;
7362         }
7363
7364         if (adj->ref_nr > ref_nr) {
7365                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7366                          dev->name, adj_dev->name, ref_nr,
7367                          adj->ref_nr - ref_nr);
7368                 adj->ref_nr -= ref_nr;
7369                 return;
7370         }
7371
7372         if (adj->master)
7373                 sysfs_remove_link(&(dev->dev.kobj), "master");
7374
7375         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7376                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7377
7378         list_del_rcu(&adj->list);
7379         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7380                  adj_dev->name, dev->name, adj_dev->name);
7381         dev_put_track(adj_dev, &adj->dev_tracker);
7382         kfree_rcu(adj, rcu);
7383 }
7384
7385 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7386                                             struct net_device *upper_dev,
7387                                             struct list_head *up_list,
7388                                             struct list_head *down_list,
7389                                             void *private, bool master)
7390 {
7391         int ret;
7392
7393         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7394                                            private, master);
7395         if (ret)
7396                 return ret;
7397
7398         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7399                                            private, false);
7400         if (ret) {
7401                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7402                 return ret;
7403         }
7404
7405         return 0;
7406 }
7407
7408 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7409                                                struct net_device *upper_dev,
7410                                                u16 ref_nr,
7411                                                struct list_head *up_list,
7412                                                struct list_head *down_list)
7413 {
7414         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7415         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7416 }
7417
7418 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7419                                                 struct net_device *upper_dev,
7420                                                 void *private, bool master)
7421 {
7422         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7423                                                 &dev->adj_list.upper,
7424                                                 &upper_dev->adj_list.lower,
7425                                                 private, master);
7426 }
7427
7428 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7429                                                    struct net_device *upper_dev)
7430 {
7431         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7432                                            &dev->adj_list.upper,
7433                                            &upper_dev->adj_list.lower);
7434 }
7435
7436 static int __netdev_upper_dev_link(struct net_device *dev,
7437                                    struct net_device *upper_dev, bool master,
7438                                    void *upper_priv, void *upper_info,
7439                                    struct netdev_nested_priv *priv,
7440                                    struct netlink_ext_ack *extack)
7441 {
7442         struct netdev_notifier_changeupper_info changeupper_info = {
7443                 .info = {
7444                         .dev = dev,
7445                         .extack = extack,
7446                 },
7447                 .upper_dev = upper_dev,
7448                 .master = master,
7449                 .linking = true,
7450                 .upper_info = upper_info,
7451         };
7452         struct net_device *master_dev;
7453         int ret = 0;
7454
7455         ASSERT_RTNL();
7456
7457         if (dev == upper_dev)
7458                 return -EBUSY;
7459
7460         /* To prevent loops, check if dev is not upper device to upper_dev. */
7461         if (__netdev_has_upper_dev(upper_dev, dev))
7462                 return -EBUSY;
7463
7464         if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7465                 return -EMLINK;
7466
7467         if (!master) {
7468                 if (__netdev_has_upper_dev(dev, upper_dev))
7469                         return -EEXIST;
7470         } else {
7471                 master_dev = __netdev_master_upper_dev_get(dev);
7472                 if (master_dev)
7473                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
7474         }
7475
7476         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7477                                             &changeupper_info.info);
7478         ret = notifier_to_errno(ret);
7479         if (ret)
7480                 return ret;
7481
7482         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7483                                                    master);
7484         if (ret)
7485                 return ret;
7486
7487         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7488                                             &changeupper_info.info);
7489         ret = notifier_to_errno(ret);
7490         if (ret)
7491                 goto rollback;
7492
7493         __netdev_update_upper_level(dev, NULL);
7494         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7495
7496         __netdev_update_lower_level(upper_dev, priv);
7497         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7498                                     priv);
7499
7500         return 0;
7501
7502 rollback:
7503         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7504
7505         return ret;
7506 }
7507
7508 /**
7509  * netdev_upper_dev_link - Add a link to the upper device
7510  * @dev: device
7511  * @upper_dev: new upper device
7512  * @extack: netlink extended ack
7513  *
7514  * Adds a link to device which is upper to this one. The caller must hold
7515  * the RTNL lock. On a failure a negative errno code is returned.
7516  * On success the reference counts are adjusted and the function
7517  * returns zero.
7518  */
7519 int netdev_upper_dev_link(struct net_device *dev,
7520                           struct net_device *upper_dev,
7521                           struct netlink_ext_ack *extack)
7522 {
7523         struct netdev_nested_priv priv = {
7524                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7525                 .data = NULL,
7526         };
7527
7528         return __netdev_upper_dev_link(dev, upper_dev, false,
7529                                        NULL, NULL, &priv, extack);
7530 }
7531 EXPORT_SYMBOL(netdev_upper_dev_link);
7532
7533 /**
7534  * netdev_master_upper_dev_link - Add a master link to the upper device
7535  * @dev: device
7536  * @upper_dev: new upper device
7537  * @upper_priv: upper device private
7538  * @upper_info: upper info to be passed down via notifier
7539  * @extack: netlink extended ack
7540  *
7541  * Adds a link to device which is upper to this one. In this case, only
7542  * one master upper device can be linked, although other non-master devices
7543  * might be linked as well. The caller must hold the RTNL lock.
7544  * On a failure a negative errno code is returned. On success the reference
7545  * counts are adjusted and the function returns zero.
7546  */
7547 int netdev_master_upper_dev_link(struct net_device *dev,
7548                                  struct net_device *upper_dev,
7549                                  void *upper_priv, void *upper_info,
7550                                  struct netlink_ext_ack *extack)
7551 {
7552         struct netdev_nested_priv priv = {
7553                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7554                 .data = NULL,
7555         };
7556
7557         return __netdev_upper_dev_link(dev, upper_dev, true,
7558                                        upper_priv, upper_info, &priv, extack);
7559 }
7560 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7561
7562 static void __netdev_upper_dev_unlink(struct net_device *dev,
7563                                       struct net_device *upper_dev,
7564                                       struct netdev_nested_priv *priv)
7565 {
7566         struct netdev_notifier_changeupper_info changeupper_info = {
7567                 .info = {
7568                         .dev = dev,
7569                 },
7570                 .upper_dev = upper_dev,
7571                 .linking = false,
7572         };
7573
7574         ASSERT_RTNL();
7575
7576         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7577
7578         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7579                                       &changeupper_info.info);
7580
7581         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7582
7583         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7584                                       &changeupper_info.info);
7585
7586         __netdev_update_upper_level(dev, NULL);
7587         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7588
7589         __netdev_update_lower_level(upper_dev, priv);
7590         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7591                                     priv);
7592 }
7593
7594 /**
7595  * netdev_upper_dev_unlink - Removes a link to upper device
7596  * @dev: device
7597  * @upper_dev: new upper device
7598  *
7599  * Removes a link to device which is upper to this one. The caller must hold
7600  * the RTNL lock.
7601  */
7602 void netdev_upper_dev_unlink(struct net_device *dev,
7603                              struct net_device *upper_dev)
7604 {
7605         struct netdev_nested_priv priv = {
7606                 .flags = NESTED_SYNC_TODO,
7607                 .data = NULL,
7608         };
7609
7610         __netdev_upper_dev_unlink(dev, upper_dev, &priv);
7611 }
7612 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7613
7614 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7615                                       struct net_device *lower_dev,
7616                                       bool val)
7617 {
7618         struct netdev_adjacent *adj;
7619
7620         adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7621         if (adj)
7622                 adj->ignore = val;
7623
7624         adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7625         if (adj)
7626                 adj->ignore = val;
7627 }
7628
7629 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7630                                         struct net_device *lower_dev)
7631 {
7632         __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7633 }
7634
7635 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7636                                        struct net_device *lower_dev)
7637 {
7638         __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7639 }
7640
7641 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7642                                    struct net_device *new_dev,
7643                                    struct net_device *dev,
7644                                    struct netlink_ext_ack *extack)
7645 {
7646         struct netdev_nested_priv priv = {
7647                 .flags = 0,
7648                 .data = NULL,
7649         };
7650         int err;
7651
7652         if (!new_dev)
7653                 return 0;
7654
7655         if (old_dev && new_dev != old_dev)
7656                 netdev_adjacent_dev_disable(dev, old_dev);
7657         err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7658                                       extack);
7659         if (err) {
7660                 if (old_dev && new_dev != old_dev)
7661                         netdev_adjacent_dev_enable(dev, old_dev);
7662                 return err;
7663         }
7664
7665         return 0;
7666 }
7667 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7668
7669 void netdev_adjacent_change_commit(struct net_device *old_dev,
7670                                    struct net_device *new_dev,
7671                                    struct net_device *dev)
7672 {
7673         struct netdev_nested_priv priv = {
7674                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7675                 .data = NULL,
7676         };
7677
7678         if (!new_dev || !old_dev)
7679                 return;
7680
7681         if (new_dev == old_dev)
7682                 return;
7683
7684         netdev_adjacent_dev_enable(dev, old_dev);
7685         __netdev_upper_dev_unlink(old_dev, dev, &priv);
7686 }
7687 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7688
7689 void netdev_adjacent_change_abort(struct net_device *old_dev,
7690                                   struct net_device *new_dev,
7691                                   struct net_device *dev)
7692 {
7693         struct netdev_nested_priv priv = {
7694                 .flags = 0,
7695                 .data = NULL,
7696         };
7697
7698         if (!new_dev)
7699                 return;
7700
7701         if (old_dev && new_dev != old_dev)
7702                 netdev_adjacent_dev_enable(dev, old_dev);
7703
7704         __netdev_upper_dev_unlink(new_dev, dev, &priv);
7705 }
7706 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7707
7708 /**
7709  * netdev_bonding_info_change - Dispatch event about slave change
7710  * @dev: device
7711  * @bonding_info: info to dispatch
7712  *
7713  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7714  * The caller must hold the RTNL lock.
7715  */
7716 void netdev_bonding_info_change(struct net_device *dev,
7717                                 struct netdev_bonding_info *bonding_info)
7718 {
7719         struct netdev_notifier_bonding_info info = {
7720                 .info.dev = dev,
7721         };
7722
7723         memcpy(&info.bonding_info, bonding_info,
7724                sizeof(struct netdev_bonding_info));
7725         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7726                                       &info.info);
7727 }
7728 EXPORT_SYMBOL(netdev_bonding_info_change);
7729
7730 /**
7731  * netdev_get_xmit_slave - Get the xmit slave of master device
7732  * @dev: device
7733  * @skb: The packet
7734  * @all_slaves: assume all the slaves are active
7735  *
7736  * The reference counters are not incremented so the caller must be
7737  * careful with locks. The caller must hold RCU lock.
7738  * %NULL is returned if no slave is found.
7739  */
7740
7741 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
7742                                          struct sk_buff *skb,
7743                                          bool all_slaves)
7744 {
7745         const struct net_device_ops *ops = dev->netdev_ops;
7746
7747         if (!ops->ndo_get_xmit_slave)
7748                 return NULL;
7749         return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
7750 }
7751 EXPORT_SYMBOL(netdev_get_xmit_slave);
7752
7753 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
7754                                                   struct sock *sk)
7755 {
7756         const struct net_device_ops *ops = dev->netdev_ops;
7757
7758         if (!ops->ndo_sk_get_lower_dev)
7759                 return NULL;
7760         return ops->ndo_sk_get_lower_dev(dev, sk);
7761 }
7762
7763 /**
7764  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
7765  * @dev: device
7766  * @sk: the socket
7767  *
7768  * %NULL is returned if no lower device is found.
7769  */
7770
7771 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
7772                                             struct sock *sk)
7773 {
7774         struct net_device *lower;
7775
7776         lower = netdev_sk_get_lower_dev(dev, sk);
7777         while (lower) {
7778                 dev = lower;
7779                 lower = netdev_sk_get_lower_dev(dev, sk);
7780         }
7781
7782         return dev;
7783 }
7784 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
7785
7786 static void netdev_adjacent_add_links(struct net_device *dev)
7787 {
7788         struct netdev_adjacent *iter;
7789
7790         struct net *net = dev_net(dev);
7791
7792         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7793                 if (!net_eq(net, dev_net(iter->dev)))
7794                         continue;
7795                 netdev_adjacent_sysfs_add(iter->dev, dev,
7796                                           &iter->dev->adj_list.lower);
7797                 netdev_adjacent_sysfs_add(dev, iter->dev,
7798                                           &dev->adj_list.upper);
7799         }
7800
7801         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7802                 if (!net_eq(net, dev_net(iter->dev)))
7803                         continue;
7804                 netdev_adjacent_sysfs_add(iter->dev, dev,
7805                                           &iter->dev->adj_list.upper);
7806                 netdev_adjacent_sysfs_add(dev, iter->dev,
7807                                           &dev->adj_list.lower);
7808         }
7809 }
7810
7811 static void netdev_adjacent_del_links(struct net_device *dev)
7812 {
7813         struct netdev_adjacent *iter;
7814
7815         struct net *net = dev_net(dev);
7816
7817         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7818                 if (!net_eq(net, dev_net(iter->dev)))
7819                         continue;
7820                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7821                                           &iter->dev->adj_list.lower);
7822                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7823                                           &dev->adj_list.upper);
7824         }
7825
7826         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7827                 if (!net_eq(net, dev_net(iter->dev)))
7828                         continue;
7829                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7830                                           &iter->dev->adj_list.upper);
7831                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7832                                           &dev->adj_list.lower);
7833         }
7834 }
7835
7836 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7837 {
7838         struct netdev_adjacent *iter;
7839
7840         struct net *net = dev_net(dev);
7841
7842         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7843                 if (!net_eq(net, dev_net(iter->dev)))
7844                         continue;
7845                 netdev_adjacent_sysfs_del(iter->dev, oldname,
7846                                           &iter->dev->adj_list.lower);
7847                 netdev_adjacent_sysfs_add(iter->dev, dev,
7848                                           &iter->dev->adj_list.lower);
7849         }
7850
7851         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7852                 if (!net_eq(net, dev_net(iter->dev)))
7853                         continue;
7854                 netdev_adjacent_sysfs_del(iter->dev, oldname,
7855                                           &iter->dev->adj_list.upper);
7856                 netdev_adjacent_sysfs_add(iter->dev, dev,
7857                                           &iter->dev->adj_list.upper);
7858         }
7859 }
7860
7861 void *netdev_lower_dev_get_private(struct net_device *dev,
7862                                    struct net_device *lower_dev)
7863 {
7864         struct netdev_adjacent *lower;
7865
7866         if (!lower_dev)
7867                 return NULL;
7868         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7869         if (!lower)
7870                 return NULL;
7871
7872         return lower->private;
7873 }
7874 EXPORT_SYMBOL(netdev_lower_dev_get_private);
7875
7876
7877 /**
7878  * netdev_lower_state_changed - Dispatch event about lower device state change
7879  * @lower_dev: device
7880  * @lower_state_info: state to dispatch
7881  *
7882  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7883  * The caller must hold the RTNL lock.
7884  */
7885 void netdev_lower_state_changed(struct net_device *lower_dev,
7886                                 void *lower_state_info)
7887 {
7888         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7889                 .info.dev = lower_dev,
7890         };
7891
7892         ASSERT_RTNL();
7893         changelowerstate_info.lower_state_info = lower_state_info;
7894         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7895                                       &changelowerstate_info.info);
7896 }
7897 EXPORT_SYMBOL(netdev_lower_state_changed);
7898
7899 static void dev_change_rx_flags(struct net_device *dev, int flags)
7900 {
7901         const struct net_device_ops *ops = dev->netdev_ops;
7902
7903         if (ops->ndo_change_rx_flags)
7904                 ops->ndo_change_rx_flags(dev, flags);
7905 }
7906
7907 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7908 {
7909         unsigned int old_flags = dev->flags;
7910         kuid_t uid;
7911         kgid_t gid;
7912
7913         ASSERT_RTNL();
7914
7915         dev->flags |= IFF_PROMISC;
7916         dev->promiscuity += inc;
7917         if (dev->promiscuity == 0) {
7918                 /*
7919                  * Avoid overflow.
7920                  * If inc causes overflow, untouch promisc and return error.
7921                  */
7922                 if (inc < 0)
7923                         dev->flags &= ~IFF_PROMISC;
7924                 else {
7925                         dev->promiscuity -= inc;
7926                         netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
7927                         return -EOVERFLOW;
7928                 }
7929         }
7930         if (dev->flags != old_flags) {
7931                 pr_info("device %s %s promiscuous mode\n",
7932                         dev->name,
7933                         dev->flags & IFF_PROMISC ? "entered" : "left");
7934                 if (audit_enabled) {
7935                         current_uid_gid(&uid, &gid);
7936                         audit_log(audit_context(), GFP_ATOMIC,
7937                                   AUDIT_ANOM_PROMISCUOUS,
7938                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7939                                   dev->name, (dev->flags & IFF_PROMISC),
7940                                   (old_flags & IFF_PROMISC),
7941                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
7942                                   from_kuid(&init_user_ns, uid),
7943                                   from_kgid(&init_user_ns, gid),
7944                                   audit_get_sessionid(current));
7945                 }
7946
7947                 dev_change_rx_flags(dev, IFF_PROMISC);
7948         }
7949         if (notify)
7950                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
7951         return 0;
7952 }
7953
7954 /**
7955  *      dev_set_promiscuity     - update promiscuity count on a device
7956  *      @dev: device
7957  *      @inc: modifier
7958  *
7959  *      Add or remove promiscuity from a device. While the count in the device
7960  *      remains above zero the interface remains promiscuous. Once it hits zero
7961  *      the device reverts back to normal filtering operation. A negative inc
7962  *      value is used to drop promiscuity on the device.
7963  *      Return 0 if successful or a negative errno code on error.
7964  */
7965 int dev_set_promiscuity(struct net_device *dev, int inc)
7966 {
7967         unsigned int old_flags = dev->flags;
7968         int err;
7969
7970         err = __dev_set_promiscuity(dev, inc, true);
7971         if (err < 0)
7972                 return err;
7973         if (dev->flags != old_flags)
7974                 dev_set_rx_mode(dev);
7975         return err;
7976 }
7977 EXPORT_SYMBOL(dev_set_promiscuity);
7978
7979 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7980 {
7981         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7982
7983         ASSERT_RTNL();
7984
7985         dev->flags |= IFF_ALLMULTI;
7986         dev->allmulti += inc;
7987         if (dev->allmulti == 0) {
7988                 /*
7989                  * Avoid overflow.
7990                  * If inc causes overflow, untouch allmulti and return error.
7991                  */
7992                 if (inc < 0)
7993                         dev->flags &= ~IFF_ALLMULTI;
7994                 else {
7995                         dev->allmulti -= inc;
7996                         netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
7997                         return -EOVERFLOW;
7998                 }
7999         }
8000         if (dev->flags ^ old_flags) {
8001                 dev_change_rx_flags(dev, IFF_ALLMULTI);
8002                 dev_set_rx_mode(dev);
8003                 if (notify)
8004                         __dev_notify_flags(dev, old_flags,
8005                                            dev->gflags ^ old_gflags);
8006         }
8007         return 0;
8008 }
8009
8010 /**
8011  *      dev_set_allmulti        - update allmulti count on a device
8012  *      @dev: device
8013  *      @inc: modifier
8014  *
8015  *      Add or remove reception of all multicast frames to a device. While the
8016  *      count in the device remains above zero the interface remains listening
8017  *      to all interfaces. Once it hits zero the device reverts back to normal
8018  *      filtering operation. A negative @inc value is used to drop the counter
8019  *      when releasing a resource needing all multicasts.
8020  *      Return 0 if successful or a negative errno code on error.
8021  */
8022
8023 int dev_set_allmulti(struct net_device *dev, int inc)
8024 {
8025         return __dev_set_allmulti(dev, inc, true);
8026 }
8027 EXPORT_SYMBOL(dev_set_allmulti);
8028
8029 /*
8030  *      Upload unicast and multicast address lists to device and
8031  *      configure RX filtering. When the device doesn't support unicast
8032  *      filtering it is put in promiscuous mode while unicast addresses
8033  *      are present.
8034  */
8035 void __dev_set_rx_mode(struct net_device *dev)
8036 {
8037         const struct net_device_ops *ops = dev->netdev_ops;
8038
8039         /* dev_open will call this function so the list will stay sane. */
8040         if (!(dev->flags&IFF_UP))
8041                 return;
8042
8043         if (!netif_device_present(dev))
8044                 return;
8045
8046         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8047                 /* Unicast addresses changes may only happen under the rtnl,
8048                  * therefore calling __dev_set_promiscuity here is safe.
8049                  */
8050                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8051                         __dev_set_promiscuity(dev, 1, false);
8052                         dev->uc_promisc = true;
8053                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8054                         __dev_set_promiscuity(dev, -1, false);
8055                         dev->uc_promisc = false;
8056                 }
8057         }
8058
8059         if (ops->ndo_set_rx_mode)
8060                 ops->ndo_set_rx_mode(dev);
8061 }
8062
8063 void dev_set_rx_mode(struct net_device *dev)
8064 {
8065         netif_addr_lock_bh(dev);
8066         __dev_set_rx_mode(dev);
8067         netif_addr_unlock_bh(dev);
8068 }
8069
8070 /**
8071  *      dev_get_flags - get flags reported to userspace
8072  *      @dev: device
8073  *
8074  *      Get the combination of flag bits exported through APIs to userspace.
8075  */
8076 unsigned int dev_get_flags(const struct net_device *dev)
8077 {
8078         unsigned int flags;
8079
8080         flags = (dev->flags & ~(IFF_PROMISC |
8081                                 IFF_ALLMULTI |
8082                                 IFF_RUNNING |
8083                                 IFF_LOWER_UP |
8084                                 IFF_DORMANT)) |
8085                 (dev->gflags & (IFF_PROMISC |
8086                                 IFF_ALLMULTI));
8087
8088         if (netif_running(dev)) {
8089                 if (netif_oper_up(dev))
8090                         flags |= IFF_RUNNING;
8091                 if (netif_carrier_ok(dev))
8092                         flags |= IFF_LOWER_UP;
8093                 if (netif_dormant(dev))
8094                         flags |= IFF_DORMANT;
8095         }
8096
8097         return flags;
8098 }
8099 EXPORT_SYMBOL(dev_get_flags);
8100
8101 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8102                        struct netlink_ext_ack *extack)
8103 {
8104         unsigned int old_flags = dev->flags;
8105         int ret;
8106
8107         ASSERT_RTNL();
8108
8109         /*
8110          *      Set the flags on our device.
8111          */
8112
8113         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8114                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8115                                IFF_AUTOMEDIA)) |
8116                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8117                                     IFF_ALLMULTI));
8118
8119         /*
8120          *      Load in the correct multicast list now the flags have changed.
8121          */
8122
8123         if ((old_flags ^ flags) & IFF_MULTICAST)
8124                 dev_change_rx_flags(dev, IFF_MULTICAST);
8125
8126         dev_set_rx_mode(dev);
8127
8128         /*
8129          *      Have we downed the interface. We handle IFF_UP ourselves
8130          *      according to user attempts to set it, rather than blindly
8131          *      setting it.
8132          */
8133
8134         ret = 0;
8135         if ((old_flags ^ flags) & IFF_UP) {
8136                 if (old_flags & IFF_UP)
8137                         __dev_close(dev);
8138                 else
8139                         ret = __dev_open(dev, extack);
8140         }
8141
8142         if ((flags ^ dev->gflags) & IFF_PROMISC) {
8143                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8144                 unsigned int old_flags = dev->flags;
8145
8146                 dev->gflags ^= IFF_PROMISC;
8147
8148                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8149                         if (dev->flags != old_flags)
8150                                 dev_set_rx_mode(dev);
8151         }
8152
8153         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8154          * is important. Some (broken) drivers set IFF_PROMISC, when
8155          * IFF_ALLMULTI is requested not asking us and not reporting.
8156          */
8157         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8158                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8159
8160                 dev->gflags ^= IFF_ALLMULTI;
8161                 __dev_set_allmulti(dev, inc, false);
8162         }
8163
8164         return ret;
8165 }
8166
8167 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8168                         unsigned int gchanges)
8169 {
8170         unsigned int changes = dev->flags ^ old_flags;
8171
8172         if (gchanges)
8173                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8174
8175         if (changes & IFF_UP) {
8176                 if (dev->flags & IFF_UP)
8177                         call_netdevice_notifiers(NETDEV_UP, dev);
8178                 else
8179                         call_netdevice_notifiers(NETDEV_DOWN, dev);
8180         }
8181
8182         if (dev->flags & IFF_UP &&
8183             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8184                 struct netdev_notifier_change_info change_info = {
8185                         .info = {
8186                                 .dev = dev,
8187                         },
8188                         .flags_changed = changes,
8189                 };
8190
8191                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8192         }
8193 }
8194
8195 /**
8196  *      dev_change_flags - change device settings
8197  *      @dev: device
8198  *      @flags: device state flags
8199  *      @extack: netlink extended ack
8200  *
8201  *      Change settings on device based state flags. The flags are
8202  *      in the userspace exported format.
8203  */
8204 int dev_change_flags(struct net_device *dev, unsigned int flags,
8205                      struct netlink_ext_ack *extack)
8206 {
8207         int ret;
8208         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8209
8210         ret = __dev_change_flags(dev, flags, extack);
8211         if (ret < 0)
8212                 return ret;
8213
8214         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8215         __dev_notify_flags(dev, old_flags, changes);
8216         return ret;
8217 }
8218 EXPORT_SYMBOL(dev_change_flags);
8219
8220 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8221 {
8222         const struct net_device_ops *ops = dev->netdev_ops;
8223
8224         if (ops->ndo_change_mtu)
8225                 return ops->ndo_change_mtu(dev, new_mtu);
8226
8227         /* Pairs with all the lockless reads of dev->mtu in the stack */
8228         WRITE_ONCE(dev->mtu, new_mtu);
8229         return 0;
8230 }
8231 EXPORT_SYMBOL(__dev_set_mtu);
8232
8233 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8234                      struct netlink_ext_ack *extack)
8235 {
8236         /* MTU must be positive, and in range */
8237         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8238                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8239                 return -EINVAL;
8240         }
8241
8242         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8243                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8244                 return -EINVAL;
8245         }
8246         return 0;
8247 }
8248
8249 /**
8250  *      dev_set_mtu_ext - Change maximum transfer unit
8251  *      @dev: device
8252  *      @new_mtu: new transfer unit
8253  *      @extack: netlink extended ack
8254  *
8255  *      Change the maximum transfer size of the network device.
8256  */
8257 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8258                     struct netlink_ext_ack *extack)
8259 {
8260         int err, orig_mtu;
8261
8262         if (new_mtu == dev->mtu)
8263                 return 0;
8264
8265         err = dev_validate_mtu(dev, new_mtu, extack);
8266         if (err)
8267                 return err;
8268
8269         if (!netif_device_present(dev))
8270                 return -ENODEV;
8271
8272         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8273         err = notifier_to_errno(err);
8274         if (err)
8275                 return err;
8276
8277         orig_mtu = dev->mtu;
8278         err = __dev_set_mtu(dev, new_mtu);
8279
8280         if (!err) {
8281                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8282                                                    orig_mtu);
8283                 err = notifier_to_errno(err);
8284                 if (err) {
8285                         /* setting mtu back and notifying everyone again,
8286                          * so that they have a chance to revert changes.
8287                          */
8288                         __dev_set_mtu(dev, orig_mtu);
8289                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8290                                                      new_mtu);
8291                 }
8292         }
8293         return err;
8294 }
8295
8296 int dev_set_mtu(struct net_device *dev, int new_mtu)
8297 {
8298         struct netlink_ext_ack extack;
8299         int err;
8300
8301         memset(&extack, 0, sizeof(extack));
8302         err = dev_set_mtu_ext(dev, new_mtu, &extack);
8303         if (err && extack._msg)
8304                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8305         return err;
8306 }
8307 EXPORT_SYMBOL(dev_set_mtu);
8308
8309 /**
8310  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
8311  *      @dev: device
8312  *      @new_len: new tx queue length
8313  */
8314 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8315 {
8316         unsigned int orig_len = dev->tx_queue_len;
8317         int res;
8318
8319         if (new_len != (unsigned int)new_len)
8320                 return -ERANGE;
8321
8322         if (new_len != orig_len) {
8323                 dev->tx_queue_len = new_len;
8324                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8325                 res = notifier_to_errno(res);
8326                 if (res)
8327                         goto err_rollback;
8328                 res = dev_qdisc_change_tx_queue_len(dev);
8329                 if (res)
8330                         goto err_rollback;
8331         }
8332
8333         return 0;
8334
8335 err_rollback:
8336         netdev_err(dev, "refused to change device tx_queue_len\n");
8337         dev->tx_queue_len = orig_len;
8338         return res;
8339 }
8340
8341 /**
8342  *      dev_set_group - Change group this device belongs to
8343  *      @dev: device
8344  *      @new_group: group this device should belong to
8345  */
8346 void dev_set_group(struct net_device *dev, int new_group)
8347 {
8348         dev->group = new_group;
8349 }
8350 EXPORT_SYMBOL(dev_set_group);
8351
8352 /**
8353  *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8354  *      @dev: device
8355  *      @addr: new address
8356  *      @extack: netlink extended ack
8357  */
8358 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8359                               struct netlink_ext_ack *extack)
8360 {
8361         struct netdev_notifier_pre_changeaddr_info info = {
8362                 .info.dev = dev,
8363                 .info.extack = extack,
8364                 .dev_addr = addr,
8365         };
8366         int rc;
8367
8368         rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8369         return notifier_to_errno(rc);
8370 }
8371 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8372
8373 /**
8374  *      dev_set_mac_address - Change Media Access Control Address
8375  *      @dev: device
8376  *      @sa: new address
8377  *      @extack: netlink extended ack
8378  *
8379  *      Change the hardware (MAC) address of the device
8380  */
8381 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8382                         struct netlink_ext_ack *extack)
8383 {
8384         const struct net_device_ops *ops = dev->netdev_ops;
8385         int err;
8386
8387         if (!ops->ndo_set_mac_address)
8388                 return -EOPNOTSUPP;
8389         if (sa->sa_family != dev->type)
8390                 return -EINVAL;
8391         if (!netif_device_present(dev))
8392                 return -ENODEV;
8393         err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8394         if (err)
8395                 return err;
8396         err = ops->ndo_set_mac_address(dev, sa);
8397         if (err)
8398                 return err;
8399         dev->addr_assign_type = NET_ADDR_SET;
8400         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8401         add_device_randomness(dev->dev_addr, dev->addr_len);
8402         return 0;
8403 }
8404 EXPORT_SYMBOL(dev_set_mac_address);
8405
8406 static DECLARE_RWSEM(dev_addr_sem);
8407
8408 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8409                              struct netlink_ext_ack *extack)
8410 {
8411         int ret;
8412
8413         down_write(&dev_addr_sem);
8414         ret = dev_set_mac_address(dev, sa, extack);
8415         up_write(&dev_addr_sem);
8416         return ret;
8417 }
8418 EXPORT_SYMBOL(dev_set_mac_address_user);
8419
8420 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8421 {
8422         size_t size = sizeof(sa->sa_data);
8423         struct net_device *dev;
8424         int ret = 0;
8425
8426         down_read(&dev_addr_sem);
8427         rcu_read_lock();
8428
8429         dev = dev_get_by_name_rcu(net, dev_name);
8430         if (!dev) {
8431                 ret = -ENODEV;
8432                 goto unlock;
8433         }
8434         if (!dev->addr_len)
8435                 memset(sa->sa_data, 0, size);
8436         else
8437                 memcpy(sa->sa_data, dev->dev_addr,
8438                        min_t(size_t, size, dev->addr_len));
8439         sa->sa_family = dev->type;
8440
8441 unlock:
8442         rcu_read_unlock();
8443         up_read(&dev_addr_sem);
8444         return ret;
8445 }
8446 EXPORT_SYMBOL(dev_get_mac_address);
8447
8448 /**
8449  *      dev_change_carrier - Change device carrier
8450  *      @dev: device
8451  *      @new_carrier: new value
8452  *
8453  *      Change device carrier
8454  */
8455 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8456 {
8457         const struct net_device_ops *ops = dev->netdev_ops;
8458
8459         if (!ops->ndo_change_carrier)
8460                 return -EOPNOTSUPP;
8461         if (!netif_device_present(dev))
8462                 return -ENODEV;
8463         return ops->ndo_change_carrier(dev, new_carrier);
8464 }
8465 EXPORT_SYMBOL(dev_change_carrier);
8466
8467 /**
8468  *      dev_get_phys_port_id - Get device physical port ID
8469  *      @dev: device
8470  *      @ppid: port ID
8471  *
8472  *      Get device physical port ID
8473  */
8474 int dev_get_phys_port_id(struct net_device *dev,
8475                          struct netdev_phys_item_id *ppid)
8476 {
8477         const struct net_device_ops *ops = dev->netdev_ops;
8478
8479         if (!ops->ndo_get_phys_port_id)
8480                 return -EOPNOTSUPP;
8481         return ops->ndo_get_phys_port_id(dev, ppid);
8482 }
8483 EXPORT_SYMBOL(dev_get_phys_port_id);
8484
8485 /**
8486  *      dev_get_phys_port_name - Get device physical port name
8487  *      @dev: device
8488  *      @name: port name
8489  *      @len: limit of bytes to copy to name
8490  *
8491  *      Get device physical port name
8492  */
8493 int dev_get_phys_port_name(struct net_device *dev,
8494                            char *name, size_t len)
8495 {
8496         const struct net_device_ops *ops = dev->netdev_ops;
8497         int err;
8498
8499         if (ops->ndo_get_phys_port_name) {
8500                 err = ops->ndo_get_phys_port_name(dev, name, len);
8501                 if (err != -EOPNOTSUPP)
8502                         return err;
8503         }
8504         return devlink_compat_phys_port_name_get(dev, name, len);
8505 }
8506 EXPORT_SYMBOL(dev_get_phys_port_name);
8507
8508 /**
8509  *      dev_get_port_parent_id - Get the device's port parent identifier
8510  *      @dev: network device
8511  *      @ppid: pointer to a storage for the port's parent identifier
8512  *      @recurse: allow/disallow recursion to lower devices
8513  *
8514  *      Get the devices's port parent identifier
8515  */
8516 int dev_get_port_parent_id(struct net_device *dev,
8517                            struct netdev_phys_item_id *ppid,
8518                            bool recurse)
8519 {
8520         const struct net_device_ops *ops = dev->netdev_ops;
8521         struct netdev_phys_item_id first = { };
8522         struct net_device *lower_dev;
8523         struct list_head *iter;
8524         int err;
8525
8526         if (ops->ndo_get_port_parent_id) {
8527                 err = ops->ndo_get_port_parent_id(dev, ppid);
8528                 if (err != -EOPNOTSUPP)
8529                         return err;
8530         }
8531
8532         err = devlink_compat_switch_id_get(dev, ppid);
8533         if (!recurse || err != -EOPNOTSUPP)
8534                 return err;
8535
8536         netdev_for_each_lower_dev(dev, lower_dev, iter) {
8537                 err = dev_get_port_parent_id(lower_dev, ppid, true);
8538                 if (err)
8539                         break;
8540                 if (!first.id_len)
8541                         first = *ppid;
8542                 else if (memcmp(&first, ppid, sizeof(*ppid)))
8543                         return -EOPNOTSUPP;
8544         }
8545
8546         return err;
8547 }
8548 EXPORT_SYMBOL(dev_get_port_parent_id);
8549
8550 /**
8551  *      netdev_port_same_parent_id - Indicate if two network devices have
8552  *      the same port parent identifier
8553  *      @a: first network device
8554  *      @b: second network device
8555  */
8556 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8557 {
8558         struct netdev_phys_item_id a_id = { };
8559         struct netdev_phys_item_id b_id = { };
8560
8561         if (dev_get_port_parent_id(a, &a_id, true) ||
8562             dev_get_port_parent_id(b, &b_id, true))
8563                 return false;
8564
8565         return netdev_phys_item_id_same(&a_id, &b_id);
8566 }
8567 EXPORT_SYMBOL(netdev_port_same_parent_id);
8568
8569 /**
8570  *      dev_change_proto_down - set carrier according to proto_down.
8571  *
8572  *      @dev: device
8573  *      @proto_down: new value
8574  */
8575 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8576 {
8577         if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
8578                 return -EOPNOTSUPP;
8579         if (!netif_device_present(dev))
8580                 return -ENODEV;
8581         if (proto_down)
8582                 netif_carrier_off(dev);
8583         else
8584                 netif_carrier_on(dev);
8585         dev->proto_down = proto_down;
8586         return 0;
8587 }
8588 EXPORT_SYMBOL(dev_change_proto_down);
8589
8590 /**
8591  *      dev_change_proto_down_reason - proto down reason
8592  *
8593  *      @dev: device
8594  *      @mask: proto down mask
8595  *      @value: proto down value
8596  */
8597 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
8598                                   u32 value)
8599 {
8600         int b;
8601
8602         if (!mask) {
8603                 dev->proto_down_reason = value;
8604         } else {
8605                 for_each_set_bit(b, &mask, 32) {
8606                         if (value & (1 << b))
8607                                 dev->proto_down_reason |= BIT(b);
8608                         else
8609                                 dev->proto_down_reason &= ~BIT(b);
8610                 }
8611         }
8612 }
8613 EXPORT_SYMBOL(dev_change_proto_down_reason);
8614
8615 struct bpf_xdp_link {
8616         struct bpf_link link;
8617         struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
8618         int flags;
8619 };
8620
8621 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
8622 {
8623         if (flags & XDP_FLAGS_HW_MODE)
8624                 return XDP_MODE_HW;
8625         if (flags & XDP_FLAGS_DRV_MODE)
8626                 return XDP_MODE_DRV;
8627         if (flags & XDP_FLAGS_SKB_MODE)
8628                 return XDP_MODE_SKB;
8629         return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
8630 }
8631
8632 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
8633 {
8634         switch (mode) {
8635         case XDP_MODE_SKB:
8636                 return generic_xdp_install;
8637         case XDP_MODE_DRV:
8638         case XDP_MODE_HW:
8639                 return dev->netdev_ops->ndo_bpf;
8640         default:
8641                 return NULL;
8642         }
8643 }
8644
8645 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
8646                                          enum bpf_xdp_mode mode)
8647 {
8648         return dev->xdp_state[mode].link;
8649 }
8650
8651 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
8652                                      enum bpf_xdp_mode mode)
8653 {
8654         struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
8655
8656         if (link)
8657                 return link->link.prog;
8658         return dev->xdp_state[mode].prog;
8659 }
8660
8661 u8 dev_xdp_prog_count(struct net_device *dev)
8662 {
8663         u8 count = 0;
8664         int i;
8665
8666         for (i = 0; i < __MAX_XDP_MODE; i++)
8667                 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
8668                         count++;
8669         return count;
8670 }
8671 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
8672
8673 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
8674 {
8675         struct bpf_prog *prog = dev_xdp_prog(dev, mode);
8676
8677         return prog ? prog->aux->id : 0;
8678 }
8679
8680 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
8681                              struct bpf_xdp_link *link)
8682 {
8683         dev->xdp_state[mode].link = link;
8684         dev->xdp_state[mode].prog = NULL;
8685 }
8686
8687 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
8688                              struct bpf_prog *prog)
8689 {
8690         dev->xdp_state[mode].link = NULL;
8691         dev->xdp_state[mode].prog = prog;
8692 }
8693
8694 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
8695                            bpf_op_t bpf_op, struct netlink_ext_ack *extack,
8696                            u32 flags, struct bpf_prog *prog)
8697 {
8698         struct netdev_bpf xdp;
8699         int err;
8700
8701         memset(&xdp, 0, sizeof(xdp));
8702         xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
8703         xdp.extack = extack;
8704         xdp.flags = flags;
8705         xdp.prog = prog;
8706
8707         /* Drivers assume refcnt is already incremented (i.e, prog pointer is
8708          * "moved" into driver), so they don't increment it on their own, but
8709          * they do decrement refcnt when program is detached or replaced.
8710          * Given net_device also owns link/prog, we need to bump refcnt here
8711          * to prevent drivers from underflowing it.
8712          */
8713         if (prog)
8714                 bpf_prog_inc(prog);
8715         err = bpf_op(dev, &xdp);
8716         if (err) {
8717                 if (prog)
8718                         bpf_prog_put(prog);
8719                 return err;
8720         }
8721
8722         if (mode != XDP_MODE_HW)
8723                 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
8724
8725         return 0;
8726 }
8727
8728 static void dev_xdp_uninstall(struct net_device *dev)
8729 {
8730         struct bpf_xdp_link *link;
8731         struct bpf_prog *prog;
8732         enum bpf_xdp_mode mode;
8733         bpf_op_t bpf_op;
8734
8735         ASSERT_RTNL();
8736
8737         for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
8738                 prog = dev_xdp_prog(dev, mode);
8739                 if (!prog)
8740                         continue;
8741
8742                 bpf_op = dev_xdp_bpf_op(dev, mode);
8743                 if (!bpf_op)
8744                         continue;
8745
8746                 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
8747
8748                 /* auto-detach link from net device */
8749                 link = dev_xdp_link(dev, mode);
8750                 if (link)
8751                         link->dev = NULL;
8752                 else
8753                         bpf_prog_put(prog);
8754
8755                 dev_xdp_set_link(dev, mode, NULL);
8756         }
8757 }
8758
8759 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
8760                           struct bpf_xdp_link *link, struct bpf_prog *new_prog,
8761                           struct bpf_prog *old_prog, u32 flags)
8762 {
8763         unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
8764         struct bpf_prog *cur_prog;
8765         struct net_device *upper;
8766         struct list_head *iter;
8767         enum bpf_xdp_mode mode;
8768         bpf_op_t bpf_op;
8769         int err;
8770
8771         ASSERT_RTNL();
8772
8773         /* either link or prog attachment, never both */
8774         if (link && (new_prog || old_prog))
8775                 return -EINVAL;
8776         /* link supports only XDP mode flags */
8777         if (link && (flags & ~XDP_FLAGS_MODES)) {
8778                 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
8779                 return -EINVAL;
8780         }
8781         /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
8782         if (num_modes > 1) {
8783                 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
8784                 return -EINVAL;
8785         }
8786         /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
8787         if (!num_modes && dev_xdp_prog_count(dev) > 1) {
8788                 NL_SET_ERR_MSG(extack,
8789                                "More than one program loaded, unset mode is ambiguous");
8790                 return -EINVAL;
8791         }
8792         /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
8793         if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
8794                 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
8795                 return -EINVAL;
8796         }
8797
8798         mode = dev_xdp_mode(dev, flags);
8799         /* can't replace attached link */
8800         if (dev_xdp_link(dev, mode)) {
8801                 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
8802                 return -EBUSY;
8803         }
8804
8805         /* don't allow if an upper device already has a program */
8806         netdev_for_each_upper_dev_rcu(dev, upper, iter) {
8807                 if (dev_xdp_prog_count(upper) > 0) {
8808                         NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
8809                         return -EEXIST;
8810                 }
8811         }
8812
8813         cur_prog = dev_xdp_prog(dev, mode);
8814         /* can't replace attached prog with link */
8815         if (link && cur_prog) {
8816                 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
8817                 return -EBUSY;
8818         }
8819         if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
8820                 NL_SET_ERR_MSG(extack, "Active program does not match expected");
8821                 return -EEXIST;
8822         }
8823
8824         /* put effective new program into new_prog */
8825         if (link)
8826                 new_prog = link->link.prog;
8827
8828         if (new_prog) {
8829                 bool offload = mode == XDP_MODE_HW;
8830                 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
8831                                                ? XDP_MODE_DRV : XDP_MODE_SKB;
8832
8833                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
8834                         NL_SET_ERR_MSG(extack, "XDP program already attached");
8835                         return -EBUSY;
8836                 }
8837                 if (!offload && dev_xdp_prog(dev, other_mode)) {
8838                         NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
8839                         return -EEXIST;
8840                 }
8841                 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
8842                         NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
8843                         return -EINVAL;
8844                 }
8845                 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
8846                         NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
8847                         return -EINVAL;
8848                 }
8849                 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
8850                         NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
8851                         return -EINVAL;
8852                 }
8853         }
8854
8855         /* don't call drivers if the effective program didn't change */
8856         if (new_prog != cur_prog) {
8857                 bpf_op = dev_xdp_bpf_op(dev, mode);
8858                 if (!bpf_op) {
8859                         NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
8860                         return -EOPNOTSUPP;
8861                 }
8862
8863                 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
8864                 if (err)
8865                         return err;
8866         }
8867
8868         if (link)
8869                 dev_xdp_set_link(dev, mode, link);
8870         else
8871                 dev_xdp_set_prog(dev, mode, new_prog);
8872         if (cur_prog)
8873                 bpf_prog_put(cur_prog);
8874
8875         return 0;
8876 }
8877
8878 static int dev_xdp_attach_link(struct net_device *dev,
8879                                struct netlink_ext_ack *extack,
8880                                struct bpf_xdp_link *link)
8881 {
8882         return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
8883 }
8884
8885 static int dev_xdp_detach_link(struct net_device *dev,
8886                                struct netlink_ext_ack *extack,
8887                                struct bpf_xdp_link *link)
8888 {
8889         enum bpf_xdp_mode mode;
8890         bpf_op_t bpf_op;
8891
8892         ASSERT_RTNL();
8893
8894         mode = dev_xdp_mode(dev, link->flags);
8895         if (dev_xdp_link(dev, mode) != link)
8896                 return -EINVAL;
8897
8898         bpf_op = dev_xdp_bpf_op(dev, mode);
8899         WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
8900         dev_xdp_set_link(dev, mode, NULL);
8901         return 0;
8902 }
8903
8904 static void bpf_xdp_link_release(struct bpf_link *link)
8905 {
8906         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
8907
8908         rtnl_lock();
8909
8910         /* if racing with net_device's tear down, xdp_link->dev might be
8911          * already NULL, in which case link was already auto-detached
8912          */
8913         if (xdp_link->dev) {
8914                 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
8915                 xdp_link->dev = NULL;
8916         }
8917
8918         rtnl_unlock();
8919 }
8920
8921 static int bpf_xdp_link_detach(struct bpf_link *link)
8922 {
8923         bpf_xdp_link_release(link);
8924         return 0;
8925 }
8926
8927 static void bpf_xdp_link_dealloc(struct bpf_link *link)
8928 {
8929         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
8930
8931         kfree(xdp_link);
8932 }
8933
8934 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
8935                                      struct seq_file *seq)
8936 {
8937         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
8938         u32 ifindex = 0;
8939
8940         rtnl_lock();
8941         if (xdp_link->dev)
8942                 ifindex = xdp_link->dev->ifindex;
8943         rtnl_unlock();
8944
8945         seq_printf(seq, "ifindex:\t%u\n", ifindex);
8946 }
8947
8948 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
8949                                        struct bpf_link_info *info)
8950 {
8951         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
8952         u32 ifindex = 0;
8953
8954         rtnl_lock();
8955         if (xdp_link->dev)
8956                 ifindex = xdp_link->dev->ifindex;
8957         rtnl_unlock();
8958
8959         info->xdp.ifindex = ifindex;
8960         return 0;
8961 }
8962
8963 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
8964                                struct bpf_prog *old_prog)
8965 {
8966         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
8967         enum bpf_xdp_mode mode;
8968         bpf_op_t bpf_op;
8969         int err = 0;
8970
8971         rtnl_lock();
8972
8973         /* link might have been auto-released already, so fail */
8974         if (!xdp_link->dev) {
8975                 err = -ENOLINK;
8976                 goto out_unlock;
8977         }
8978
8979         if (old_prog && link->prog != old_prog) {
8980                 err = -EPERM;
8981                 goto out_unlock;
8982         }
8983         old_prog = link->prog;
8984         if (old_prog->type != new_prog->type ||
8985             old_prog->expected_attach_type != new_prog->expected_attach_type) {
8986                 err = -EINVAL;
8987                 goto out_unlock;
8988         }
8989
8990         if (old_prog == new_prog) {
8991                 /* no-op, don't disturb drivers */
8992                 bpf_prog_put(new_prog);
8993                 goto out_unlock;
8994         }
8995
8996         mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
8997         bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
8998         err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
8999                               xdp_link->flags, new_prog);
9000         if (err)
9001                 goto out_unlock;
9002
9003         old_prog = xchg(&link->prog, new_prog);
9004         bpf_prog_put(old_prog);
9005
9006 out_unlock:
9007         rtnl_unlock();
9008         return err;
9009 }
9010
9011 static const struct bpf_link_ops bpf_xdp_link_lops = {
9012         .release = bpf_xdp_link_release,
9013         .dealloc = bpf_xdp_link_dealloc,
9014         .detach = bpf_xdp_link_detach,
9015         .show_fdinfo = bpf_xdp_link_show_fdinfo,
9016         .fill_link_info = bpf_xdp_link_fill_link_info,
9017         .update_prog = bpf_xdp_link_update,
9018 };
9019
9020 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9021 {
9022         struct net *net = current->nsproxy->net_ns;
9023         struct bpf_link_primer link_primer;
9024         struct bpf_xdp_link *link;
9025         struct net_device *dev;
9026         int err, fd;
9027
9028         rtnl_lock();
9029         dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9030         if (!dev) {
9031                 rtnl_unlock();
9032                 return -EINVAL;
9033         }
9034
9035         link = kzalloc(sizeof(*link), GFP_USER);
9036         if (!link) {
9037                 err = -ENOMEM;
9038                 goto unlock;
9039         }
9040
9041         bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9042         link->dev = dev;
9043         link->flags = attr->link_create.flags;
9044
9045         err = bpf_link_prime(&link->link, &link_primer);
9046         if (err) {
9047                 kfree(link);
9048                 goto unlock;
9049         }
9050
9051         err = dev_xdp_attach_link(dev, NULL, link);
9052         rtnl_unlock();
9053
9054         if (err) {
9055                 link->dev = NULL;
9056                 bpf_link_cleanup(&link_primer);
9057                 goto out_put_dev;
9058         }
9059
9060         fd = bpf_link_settle(&link_primer);
9061         /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9062         dev_put(dev);
9063         return fd;
9064
9065 unlock:
9066         rtnl_unlock();
9067
9068 out_put_dev:
9069         dev_put(dev);
9070         return err;
9071 }
9072
9073 /**
9074  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
9075  *      @dev: device
9076  *      @extack: netlink extended ack
9077  *      @fd: new program fd or negative value to clear
9078  *      @expected_fd: old program fd that userspace expects to replace or clear
9079  *      @flags: xdp-related flags
9080  *
9081  *      Set or clear a bpf program for a device
9082  */
9083 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9084                       int fd, int expected_fd, u32 flags)
9085 {
9086         enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9087         struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9088         int err;
9089
9090         ASSERT_RTNL();
9091
9092         if (fd >= 0) {
9093                 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9094                                                  mode != XDP_MODE_SKB);
9095                 if (IS_ERR(new_prog))
9096                         return PTR_ERR(new_prog);
9097         }
9098
9099         if (expected_fd >= 0) {
9100                 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9101                                                  mode != XDP_MODE_SKB);
9102                 if (IS_ERR(old_prog)) {
9103                         err = PTR_ERR(old_prog);
9104                         old_prog = NULL;
9105                         goto err_out;
9106                 }
9107         }
9108
9109         err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9110
9111 err_out:
9112         if (err && new_prog)
9113                 bpf_prog_put(new_prog);
9114         if (old_prog)
9115                 bpf_prog_put(old_prog);
9116         return err;
9117 }
9118
9119 /**
9120  *      dev_new_index   -       allocate an ifindex
9121  *      @net: the applicable net namespace
9122  *
9123  *      Returns a suitable unique value for a new device interface
9124  *      number.  The caller must hold the rtnl semaphore or the
9125  *      dev_base_lock to be sure it remains unique.
9126  */
9127 static int dev_new_index(struct net *net)
9128 {
9129         int ifindex = net->ifindex;
9130
9131         for (;;) {
9132                 if (++ifindex <= 0)
9133                         ifindex = 1;
9134                 if (!__dev_get_by_index(net, ifindex))
9135                         return net->ifindex = ifindex;
9136         }
9137 }
9138
9139 /* Delayed registration/unregisteration */
9140 static LIST_HEAD(net_todo_list);
9141 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9142
9143 static void net_set_todo(struct net_device *dev)
9144 {
9145         list_add_tail(&dev->todo_list, &net_todo_list);
9146         dev_net(dev)->dev_unreg_count++;
9147 }
9148
9149 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9150         struct net_device *upper, netdev_features_t features)
9151 {
9152         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9153         netdev_features_t feature;
9154         int feature_bit;
9155
9156         for_each_netdev_feature(upper_disables, feature_bit) {
9157                 feature = __NETIF_F_BIT(feature_bit);
9158                 if (!(upper->wanted_features & feature)
9159                     && (features & feature)) {
9160                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9161                                    &feature, upper->name);
9162                         features &= ~feature;
9163                 }
9164         }
9165
9166         return features;
9167 }
9168
9169 static void netdev_sync_lower_features(struct net_device *upper,
9170         struct net_device *lower, netdev_features_t features)
9171 {
9172         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9173         netdev_features_t feature;
9174         int feature_bit;
9175
9176         for_each_netdev_feature(upper_disables, feature_bit) {
9177                 feature = __NETIF_F_BIT(feature_bit);
9178                 if (!(features & feature) && (lower->features & feature)) {
9179                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9180                                    &feature, lower->name);
9181                         lower->wanted_features &= ~feature;
9182                         __netdev_update_features(lower);
9183
9184                         if (unlikely(lower->features & feature))
9185                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9186                                             &feature, lower->name);
9187                         else
9188                                 netdev_features_change(lower);
9189                 }
9190         }
9191 }
9192
9193 static netdev_features_t netdev_fix_features(struct net_device *dev,
9194         netdev_features_t features)
9195 {
9196         /* Fix illegal checksum combinations */
9197         if ((features & NETIF_F_HW_CSUM) &&
9198             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9199                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9200                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9201         }
9202
9203         /* TSO requires that SG is present as well. */
9204         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9205                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9206                 features &= ~NETIF_F_ALL_TSO;
9207         }
9208
9209         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9210                                         !(features & NETIF_F_IP_CSUM)) {
9211                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9212                 features &= ~NETIF_F_TSO;
9213                 features &= ~NETIF_F_TSO_ECN;
9214         }
9215
9216         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9217                                          !(features & NETIF_F_IPV6_CSUM)) {
9218                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9219                 features &= ~NETIF_F_TSO6;
9220         }
9221
9222         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9223         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9224                 features &= ~NETIF_F_TSO_MANGLEID;
9225
9226         /* TSO ECN requires that TSO is present as well. */
9227         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9228                 features &= ~NETIF_F_TSO_ECN;
9229
9230         /* Software GSO depends on SG. */
9231         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9232                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9233                 features &= ~NETIF_F_GSO;
9234         }
9235
9236         /* GSO partial features require GSO partial be set */
9237         if ((features & dev->gso_partial_features) &&
9238             !(features & NETIF_F_GSO_PARTIAL)) {
9239                 netdev_dbg(dev,
9240                            "Dropping partially supported GSO features since no GSO partial.\n");
9241                 features &= ~dev->gso_partial_features;
9242         }
9243
9244         if (!(features & NETIF_F_RXCSUM)) {
9245                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9246                  * successfully merged by hardware must also have the
9247                  * checksum verified by hardware.  If the user does not
9248                  * want to enable RXCSUM, logically, we should disable GRO_HW.
9249                  */
9250                 if (features & NETIF_F_GRO_HW) {
9251                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9252                         features &= ~NETIF_F_GRO_HW;
9253                 }
9254         }
9255
9256         /* LRO/HW-GRO features cannot be combined with RX-FCS */
9257         if (features & NETIF_F_RXFCS) {
9258                 if (features & NETIF_F_LRO) {
9259                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9260                         features &= ~NETIF_F_LRO;
9261                 }
9262
9263                 if (features & NETIF_F_GRO_HW) {
9264                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9265                         features &= ~NETIF_F_GRO_HW;
9266                 }
9267         }
9268
9269         if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9270                 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9271                 features &= ~NETIF_F_LRO;
9272         }
9273
9274         if (features & NETIF_F_HW_TLS_TX) {
9275                 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9276                         (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9277                 bool hw_csum = features & NETIF_F_HW_CSUM;
9278
9279                 if (!ip_csum && !hw_csum) {
9280                         netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9281                         features &= ~NETIF_F_HW_TLS_TX;
9282                 }
9283         }
9284
9285         if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9286                 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9287                 features &= ~NETIF_F_HW_TLS_RX;
9288         }
9289
9290         return features;
9291 }
9292
9293 int __netdev_update_features(struct net_device *dev)
9294 {
9295         struct net_device *upper, *lower;
9296         netdev_features_t features;
9297         struct list_head *iter;
9298         int err = -1;
9299
9300         ASSERT_RTNL();
9301
9302         features = netdev_get_wanted_features(dev);
9303
9304         if (dev->netdev_ops->ndo_fix_features)
9305                 features = dev->netdev_ops->ndo_fix_features(dev, features);
9306
9307         /* driver might be less strict about feature dependencies */
9308         features = netdev_fix_features(dev, features);
9309
9310         /* some features can't be enabled if they're off on an upper device */
9311         netdev_for_each_upper_dev_rcu(dev, upper, iter)
9312                 features = netdev_sync_upper_features(dev, upper, features);
9313
9314         if (dev->features == features)
9315                 goto sync_lower;
9316
9317         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9318                 &dev->features, &features);
9319
9320         if (dev->netdev_ops->ndo_set_features)
9321                 err = dev->netdev_ops->ndo_set_features(dev, features);
9322         else
9323                 err = 0;
9324
9325         if (unlikely(err < 0)) {
9326                 netdev_err(dev,
9327                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
9328                         err, &features, &dev->features);
9329                 /* return non-0 since some features might have changed and
9330                  * it's better to fire a spurious notification than miss it
9331                  */
9332                 return -1;
9333         }
9334
9335 sync_lower:
9336         /* some features must be disabled on lower devices when disabled
9337          * on an upper device (think: bonding master or bridge)
9338          */
9339         netdev_for_each_lower_dev(dev, lower, iter)
9340                 netdev_sync_lower_features(dev, lower, features);
9341
9342         if (!err) {
9343                 netdev_features_t diff = features ^ dev->features;
9344
9345                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9346                         /* udp_tunnel_{get,drop}_rx_info both need
9347                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9348                          * device, or they won't do anything.
9349                          * Thus we need to update dev->features
9350                          * *before* calling udp_tunnel_get_rx_info,
9351                          * but *after* calling udp_tunnel_drop_rx_info.
9352                          */
9353                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9354                                 dev->features = features;
9355                                 udp_tunnel_get_rx_info(dev);
9356                         } else {
9357                                 udp_tunnel_drop_rx_info(dev);
9358                         }
9359                 }
9360
9361                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9362                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9363                                 dev->features = features;
9364                                 err |= vlan_get_rx_ctag_filter_info(dev);
9365                         } else {
9366                                 vlan_drop_rx_ctag_filter_info(dev);
9367                         }
9368                 }
9369
9370                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9371                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9372                                 dev->features = features;
9373                                 err |= vlan_get_rx_stag_filter_info(dev);
9374                         } else {
9375                                 vlan_drop_rx_stag_filter_info(dev);
9376                         }
9377                 }
9378
9379                 dev->features = features;
9380         }
9381
9382         return err < 0 ? 0 : 1;
9383 }
9384
9385 /**
9386  *      netdev_update_features - recalculate device features
9387  *      @dev: the device to check
9388  *
9389  *      Recalculate dev->features set and send notifications if it
9390  *      has changed. Should be called after driver or hardware dependent
9391  *      conditions might have changed that influence the features.
9392  */
9393 void netdev_update_features(struct net_device *dev)
9394 {
9395         if (__netdev_update_features(dev))
9396                 netdev_features_change(dev);
9397 }
9398 EXPORT_SYMBOL(netdev_update_features);
9399
9400 /**
9401  *      netdev_change_features - recalculate device features
9402  *      @dev: the device to check
9403  *
9404  *      Recalculate dev->features set and send notifications even
9405  *      if they have not changed. Should be called instead of
9406  *      netdev_update_features() if also dev->vlan_features might
9407  *      have changed to allow the changes to be propagated to stacked
9408  *      VLAN devices.
9409  */
9410 void netdev_change_features(struct net_device *dev)
9411 {
9412         __netdev_update_features(dev);
9413         netdev_features_change(dev);
9414 }
9415 EXPORT_SYMBOL(netdev_change_features);
9416
9417 /**
9418  *      netif_stacked_transfer_operstate -      transfer operstate
9419  *      @rootdev: the root or lower level device to transfer state from
9420  *      @dev: the device to transfer operstate to
9421  *
9422  *      Transfer operational state from root to device. This is normally
9423  *      called when a stacking relationship exists between the root
9424  *      device and the device(a leaf device).
9425  */
9426 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9427                                         struct net_device *dev)
9428 {
9429         if (rootdev->operstate == IF_OPER_DORMANT)
9430                 netif_dormant_on(dev);
9431         else
9432                 netif_dormant_off(dev);
9433
9434         if (rootdev->operstate == IF_OPER_TESTING)
9435                 netif_testing_on(dev);
9436         else
9437                 netif_testing_off(dev);
9438
9439         if (netif_carrier_ok(rootdev))
9440                 netif_carrier_on(dev);
9441         else
9442                 netif_carrier_off(dev);
9443 }
9444 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9445
9446 static int netif_alloc_rx_queues(struct net_device *dev)
9447 {
9448         unsigned int i, count = dev->num_rx_queues;
9449         struct netdev_rx_queue *rx;
9450         size_t sz = count * sizeof(*rx);
9451         int err = 0;
9452
9453         BUG_ON(count < 1);
9454
9455         rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9456         if (!rx)
9457                 return -ENOMEM;
9458
9459         dev->_rx = rx;
9460
9461         for (i = 0; i < count; i++) {
9462                 rx[i].dev = dev;
9463
9464                 /* XDP RX-queue setup */
9465                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9466                 if (err < 0)
9467                         goto err_rxq_info;
9468         }
9469         return 0;
9470
9471 err_rxq_info:
9472         /* Rollback successful reg's and free other resources */
9473         while (i--)
9474                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9475         kvfree(dev->_rx);
9476         dev->_rx = NULL;
9477         return err;
9478 }
9479
9480 static void netif_free_rx_queues(struct net_device *dev)
9481 {
9482         unsigned int i, count = dev->num_rx_queues;
9483
9484         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9485         if (!dev->_rx)
9486                 return;
9487
9488         for (i = 0; i < count; i++)
9489                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9490
9491         kvfree(dev->_rx);
9492 }
9493
9494 static void netdev_init_one_queue(struct net_device *dev,
9495                                   struct netdev_queue *queue, void *_unused)
9496 {
9497         /* Initialize queue lock */
9498         spin_lock_init(&queue->_xmit_lock);
9499         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9500         queue->xmit_lock_owner = -1;
9501         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9502         queue->dev = dev;
9503 #ifdef CONFIG_BQL
9504         dql_init(&queue->dql, HZ);
9505 #endif
9506 }
9507
9508 static void netif_free_tx_queues(struct net_device *dev)
9509 {
9510         kvfree(dev->_tx);
9511 }
9512
9513 static int netif_alloc_netdev_queues(struct net_device *dev)
9514 {
9515         unsigned int count = dev->num_tx_queues;
9516         struct netdev_queue *tx;
9517         size_t sz = count * sizeof(*tx);
9518
9519         if (count < 1 || count > 0xffff)
9520                 return -EINVAL;
9521
9522         tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9523         if (!tx)
9524                 return -ENOMEM;
9525
9526         dev->_tx = tx;
9527
9528         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9529         spin_lock_init(&dev->tx_global_lock);
9530
9531         return 0;
9532 }
9533
9534 void netif_tx_stop_all_queues(struct net_device *dev)
9535 {
9536         unsigned int i;
9537
9538         for (i = 0; i < dev->num_tx_queues; i++) {
9539                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9540
9541                 netif_tx_stop_queue(txq);
9542         }
9543 }
9544 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9545
9546 /**
9547  *      register_netdevice      - register a network device
9548  *      @dev: device to register
9549  *
9550  *      Take a completed network device structure and add it to the kernel
9551  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9552  *      chain. 0 is returned on success. A negative errno code is returned
9553  *      on a failure to set up the device, or if the name is a duplicate.
9554  *
9555  *      Callers must hold the rtnl semaphore. You may want
9556  *      register_netdev() instead of this.
9557  *
9558  *      BUGS:
9559  *      The locking appears insufficient to guarantee two parallel registers
9560  *      will not get the same name.
9561  */
9562
9563 int register_netdevice(struct net_device *dev)
9564 {
9565         int ret;
9566         struct net *net = dev_net(dev);
9567
9568         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9569                      NETDEV_FEATURE_COUNT);
9570         BUG_ON(dev_boot_phase);
9571         ASSERT_RTNL();
9572
9573         might_sleep();
9574
9575         /* When net_device's are persistent, this will be fatal. */
9576         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9577         BUG_ON(!net);
9578
9579         ret = ethtool_check_ops(dev->ethtool_ops);
9580         if (ret)
9581                 return ret;
9582
9583         spin_lock_init(&dev->addr_list_lock);
9584         netdev_set_addr_lockdep_class(dev);
9585
9586         ret = dev_get_valid_name(net, dev, dev->name);
9587         if (ret < 0)
9588                 goto out;
9589
9590         ret = -ENOMEM;
9591         dev->name_node = netdev_name_node_head_alloc(dev);
9592         if (!dev->name_node)
9593                 goto out;
9594
9595         /* Init, if this function is available */
9596         if (dev->netdev_ops->ndo_init) {
9597                 ret = dev->netdev_ops->ndo_init(dev);
9598                 if (ret) {
9599                         if (ret > 0)
9600                                 ret = -EIO;
9601                         goto err_free_name;
9602                 }
9603         }
9604
9605         if (((dev->hw_features | dev->features) &
9606              NETIF_F_HW_VLAN_CTAG_FILTER) &&
9607             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9608              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9609                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9610                 ret = -EINVAL;
9611                 goto err_uninit;
9612         }
9613
9614         ret = -EBUSY;
9615         if (!dev->ifindex)
9616                 dev->ifindex = dev_new_index(net);
9617         else if (__dev_get_by_index(net, dev->ifindex))
9618                 goto err_uninit;
9619
9620         /* Transfer changeable features to wanted_features and enable
9621          * software offloads (GSO and GRO).
9622          */
9623         dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
9624         dev->features |= NETIF_F_SOFT_FEATURES;
9625
9626         if (dev->udp_tunnel_nic_info) {
9627                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9628                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9629         }
9630
9631         dev->wanted_features = dev->features & dev->hw_features;
9632
9633         if (!(dev->flags & IFF_LOOPBACK))
9634                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
9635
9636         /* If IPv4 TCP segmentation offload is supported we should also
9637          * allow the device to enable segmenting the frame with the option
9638          * of ignoring a static IP ID value.  This doesn't enable the
9639          * feature itself but allows the user to enable it later.
9640          */
9641         if (dev->hw_features & NETIF_F_TSO)
9642                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
9643         if (dev->vlan_features & NETIF_F_TSO)
9644                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
9645         if (dev->mpls_features & NETIF_F_TSO)
9646                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
9647         if (dev->hw_enc_features & NETIF_F_TSO)
9648                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
9649
9650         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
9651          */
9652         dev->vlan_features |= NETIF_F_HIGHDMA;
9653
9654         /* Make NETIF_F_SG inheritable to tunnel devices.
9655          */
9656         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
9657
9658         /* Make NETIF_F_SG inheritable to MPLS.
9659          */
9660         dev->mpls_features |= NETIF_F_SG;
9661
9662         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
9663         ret = notifier_to_errno(ret);
9664         if (ret)
9665                 goto err_uninit;
9666
9667         ret = netdev_register_kobject(dev);
9668         if (ret) {
9669                 dev->reg_state = NETREG_UNREGISTERED;
9670                 goto err_uninit;
9671         }
9672         dev->reg_state = NETREG_REGISTERED;
9673
9674         __netdev_update_features(dev);
9675
9676         /*
9677          *      Default initial state at registry is that the
9678          *      device is present.
9679          */
9680
9681         set_bit(__LINK_STATE_PRESENT, &dev->state);
9682
9683         linkwatch_init_dev(dev);
9684
9685         dev_init_scheduler(dev);
9686         dev_hold(dev);
9687         list_netdevice(dev);
9688         add_device_randomness(dev->dev_addr, dev->addr_len);
9689
9690         /* If the device has permanent device address, driver should
9691          * set dev_addr and also addr_assign_type should be set to
9692          * NET_ADDR_PERM (default value).
9693          */
9694         if (dev->addr_assign_type == NET_ADDR_PERM)
9695                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
9696
9697         /* Notify protocols, that a new device appeared. */
9698         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
9699         ret = notifier_to_errno(ret);
9700         if (ret) {
9701                 /* Expect explicit free_netdev() on failure */
9702                 dev->needs_free_netdev = false;
9703                 unregister_netdevice_queue(dev, NULL);
9704                 goto out;
9705         }
9706         /*
9707          *      Prevent userspace races by waiting until the network
9708          *      device is fully setup before sending notifications.
9709          */
9710         if (!dev->rtnl_link_ops ||
9711             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
9712                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9713
9714 out:
9715         return ret;
9716
9717 err_uninit:
9718         if (dev->netdev_ops->ndo_uninit)
9719                 dev->netdev_ops->ndo_uninit(dev);
9720         if (dev->priv_destructor)
9721                 dev->priv_destructor(dev);
9722 err_free_name:
9723         netdev_name_node_free(dev->name_node);
9724         goto out;
9725 }
9726 EXPORT_SYMBOL(register_netdevice);
9727
9728 /**
9729  *      init_dummy_netdev       - init a dummy network device for NAPI
9730  *      @dev: device to init
9731  *
9732  *      This takes a network device structure and initialize the minimum
9733  *      amount of fields so it can be used to schedule NAPI polls without
9734  *      registering a full blown interface. This is to be used by drivers
9735  *      that need to tie several hardware interfaces to a single NAPI
9736  *      poll scheduler due to HW limitations.
9737  */
9738 int init_dummy_netdev(struct net_device *dev)
9739 {
9740         /* Clear everything. Note we don't initialize spinlocks
9741          * are they aren't supposed to be taken by any of the
9742          * NAPI code and this dummy netdev is supposed to be
9743          * only ever used for NAPI polls
9744          */
9745         memset(dev, 0, sizeof(struct net_device));
9746
9747         /* make sure we BUG if trying to hit standard
9748          * register/unregister code path
9749          */
9750         dev->reg_state = NETREG_DUMMY;
9751
9752         /* NAPI wants this */
9753         INIT_LIST_HEAD(&dev->napi_list);
9754
9755         /* a dummy interface is started by default */
9756         set_bit(__LINK_STATE_PRESENT, &dev->state);
9757         set_bit(__LINK_STATE_START, &dev->state);
9758
9759         /* napi_busy_loop stats accounting wants this */
9760         dev_net_set(dev, &init_net);
9761
9762         /* Note : We dont allocate pcpu_refcnt for dummy devices,
9763          * because users of this 'device' dont need to change
9764          * its refcount.
9765          */
9766
9767         return 0;
9768 }
9769 EXPORT_SYMBOL_GPL(init_dummy_netdev);
9770
9771
9772 /**
9773  *      register_netdev - register a network device
9774  *      @dev: device to register
9775  *
9776  *      Take a completed network device structure and add it to the kernel
9777  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9778  *      chain. 0 is returned on success. A negative errno code is returned
9779  *      on a failure to set up the device, or if the name is a duplicate.
9780  *
9781  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
9782  *      and expands the device name if you passed a format string to
9783  *      alloc_netdev.
9784  */
9785 int register_netdev(struct net_device *dev)
9786 {
9787         int err;
9788
9789         if (rtnl_lock_killable())
9790                 return -EINTR;
9791         err = register_netdevice(dev);
9792         rtnl_unlock();
9793         return err;
9794 }
9795 EXPORT_SYMBOL(register_netdev);
9796
9797 int netdev_refcnt_read(const struct net_device *dev)
9798 {
9799 #ifdef CONFIG_PCPU_DEV_REFCNT
9800         int i, refcnt = 0;
9801
9802         for_each_possible_cpu(i)
9803                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
9804         return refcnt;
9805 #else
9806         return refcount_read(&dev->dev_refcnt);
9807 #endif
9808 }
9809 EXPORT_SYMBOL(netdev_refcnt_read);
9810
9811 int netdev_unregister_timeout_secs __read_mostly = 10;
9812
9813 #define WAIT_REFS_MIN_MSECS 1
9814 #define WAIT_REFS_MAX_MSECS 250
9815 /**
9816  * netdev_wait_allrefs - wait until all references are gone.
9817  * @dev: target net_device
9818  *
9819  * This is called when unregistering network devices.
9820  *
9821  * Any protocol or device that holds a reference should register
9822  * for netdevice notification, and cleanup and put back the
9823  * reference if they receive an UNREGISTER event.
9824  * We can get stuck here if buggy protocols don't correctly
9825  * call dev_put.
9826  */
9827 static void netdev_wait_allrefs(struct net_device *dev)
9828 {
9829         unsigned long rebroadcast_time, warning_time;
9830         int wait = 0, refcnt;
9831
9832         linkwatch_forget_dev(dev);
9833
9834         rebroadcast_time = warning_time = jiffies;
9835         refcnt = netdev_refcnt_read(dev);
9836
9837         while (refcnt != 1) {
9838                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
9839                         rtnl_lock();
9840
9841                         /* Rebroadcast unregister notification */
9842                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9843
9844                         __rtnl_unlock();
9845                         rcu_barrier();
9846                         rtnl_lock();
9847
9848                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
9849                                      &dev->state)) {
9850                                 /* We must not have linkwatch events
9851                                  * pending on unregister. If this
9852                                  * happens, we simply run the queue
9853                                  * unscheduled, resulting in a noop
9854                                  * for this device.
9855                                  */
9856                                 linkwatch_run_queue();
9857                         }
9858
9859                         __rtnl_unlock();
9860
9861                         rebroadcast_time = jiffies;
9862                 }
9863
9864                 if (!wait) {
9865                         rcu_barrier();
9866                         wait = WAIT_REFS_MIN_MSECS;
9867                 } else {
9868                         msleep(wait);
9869                         wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
9870                 }
9871
9872                 refcnt = netdev_refcnt_read(dev);
9873
9874                 if (refcnt != 1 &&
9875                     time_after(jiffies, warning_time +
9876                                netdev_unregister_timeout_secs * HZ)) {
9877                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
9878                                  dev->name, refcnt);
9879                         ref_tracker_dir_print(&dev->refcnt_tracker, 10);
9880                         warning_time = jiffies;
9881                 }
9882         }
9883 }
9884
9885 /* The sequence is:
9886  *
9887  *      rtnl_lock();
9888  *      ...
9889  *      register_netdevice(x1);
9890  *      register_netdevice(x2);
9891  *      ...
9892  *      unregister_netdevice(y1);
9893  *      unregister_netdevice(y2);
9894  *      ...
9895  *      rtnl_unlock();
9896  *      free_netdev(y1);
9897  *      free_netdev(y2);
9898  *
9899  * We are invoked by rtnl_unlock().
9900  * This allows us to deal with problems:
9901  * 1) We can delete sysfs objects which invoke hotplug
9902  *    without deadlocking with linkwatch via keventd.
9903  * 2) Since we run with the RTNL semaphore not held, we can sleep
9904  *    safely in order to wait for the netdev refcnt to drop to zero.
9905  *
9906  * We must not return until all unregister events added during
9907  * the interval the lock was held have been completed.
9908  */
9909 void netdev_run_todo(void)
9910 {
9911         struct list_head list;
9912 #ifdef CONFIG_LOCKDEP
9913         struct list_head unlink_list;
9914
9915         list_replace_init(&net_unlink_list, &unlink_list);
9916
9917         while (!list_empty(&unlink_list)) {
9918                 struct net_device *dev = list_first_entry(&unlink_list,
9919                                                           struct net_device,
9920                                                           unlink_list);
9921                 list_del_init(&dev->unlink_list);
9922                 dev->nested_level = dev->lower_level - 1;
9923         }
9924 #endif
9925
9926         /* Snapshot list, allow later requests */
9927         list_replace_init(&net_todo_list, &list);
9928
9929         __rtnl_unlock();
9930
9931
9932         /* Wait for rcu callbacks to finish before next phase */
9933         if (!list_empty(&list))
9934                 rcu_barrier();
9935
9936         while (!list_empty(&list)) {
9937                 struct net_device *dev
9938                         = list_first_entry(&list, struct net_device, todo_list);
9939                 list_del(&dev->todo_list);
9940
9941                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
9942                         pr_err("network todo '%s' but state %d\n",
9943                                dev->name, dev->reg_state);
9944                         dump_stack();
9945                         continue;
9946                 }
9947
9948                 dev->reg_state = NETREG_UNREGISTERED;
9949
9950                 netdev_wait_allrefs(dev);
9951
9952                 /* paranoia */
9953                 BUG_ON(netdev_refcnt_read(dev) != 1);
9954                 BUG_ON(!list_empty(&dev->ptype_all));
9955                 BUG_ON(!list_empty(&dev->ptype_specific));
9956                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
9957                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
9958 #if IS_ENABLED(CONFIG_DECNET)
9959                 WARN_ON(dev->dn_ptr);
9960 #endif
9961                 if (dev->priv_destructor)
9962                         dev->priv_destructor(dev);
9963                 if (dev->needs_free_netdev)
9964                         free_netdev(dev);
9965
9966                 /* Report a network device has been unregistered */
9967                 rtnl_lock();
9968                 dev_net(dev)->dev_unreg_count--;
9969                 __rtnl_unlock();
9970                 wake_up(&netdev_unregistering_wq);
9971
9972                 /* Free network device */
9973                 kobject_put(&dev->dev.kobj);
9974         }
9975 }
9976
9977 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
9978  * all the same fields in the same order as net_device_stats, with only
9979  * the type differing, but rtnl_link_stats64 may have additional fields
9980  * at the end for newer counters.
9981  */
9982 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
9983                              const struct net_device_stats *netdev_stats)
9984 {
9985 #if BITS_PER_LONG == 64
9986         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9987         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9988         /* zero out counters that only exist in rtnl_link_stats64 */
9989         memset((char *)stats64 + sizeof(*netdev_stats), 0,
9990                sizeof(*stats64) - sizeof(*netdev_stats));
9991 #else
9992         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
9993         const unsigned long *src = (const unsigned long *)netdev_stats;
9994         u64 *dst = (u64 *)stats64;
9995
9996         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
9997         for (i = 0; i < n; i++)
9998                 dst[i] = src[i];
9999         /* zero out counters that only exist in rtnl_link_stats64 */
10000         memset((char *)stats64 + n * sizeof(u64), 0,
10001                sizeof(*stats64) - n * sizeof(u64));
10002 #endif
10003 }
10004 EXPORT_SYMBOL(netdev_stats_to_stats64);
10005
10006 /**
10007  *      dev_get_stats   - get network device statistics
10008  *      @dev: device to get statistics from
10009  *      @storage: place to store stats
10010  *
10011  *      Get network statistics from device. Return @storage.
10012  *      The device driver may provide its own method by setting
10013  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10014  *      otherwise the internal statistics structure is used.
10015  */
10016 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10017                                         struct rtnl_link_stats64 *storage)
10018 {
10019         const struct net_device_ops *ops = dev->netdev_ops;
10020
10021         if (ops->ndo_get_stats64) {
10022                 memset(storage, 0, sizeof(*storage));
10023                 ops->ndo_get_stats64(dev, storage);
10024         } else if (ops->ndo_get_stats) {
10025                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10026         } else {
10027                 netdev_stats_to_stats64(storage, &dev->stats);
10028         }
10029         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10030         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10031         storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10032         return storage;
10033 }
10034 EXPORT_SYMBOL(dev_get_stats);
10035
10036 /**
10037  *      dev_fetch_sw_netstats - get per-cpu network device statistics
10038  *      @s: place to store stats
10039  *      @netstats: per-cpu network stats to read from
10040  *
10041  *      Read per-cpu network statistics and populate the related fields in @s.
10042  */
10043 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10044                            const struct pcpu_sw_netstats __percpu *netstats)
10045 {
10046         int cpu;
10047
10048         for_each_possible_cpu(cpu) {
10049                 const struct pcpu_sw_netstats *stats;
10050                 struct pcpu_sw_netstats tmp;
10051                 unsigned int start;
10052
10053                 stats = per_cpu_ptr(netstats, cpu);
10054                 do {
10055                         start = u64_stats_fetch_begin_irq(&stats->syncp);
10056                         tmp.rx_packets = stats->rx_packets;
10057                         tmp.rx_bytes   = stats->rx_bytes;
10058                         tmp.tx_packets = stats->tx_packets;
10059                         tmp.tx_bytes   = stats->tx_bytes;
10060                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10061
10062                 s->rx_packets += tmp.rx_packets;
10063                 s->rx_bytes   += tmp.rx_bytes;
10064                 s->tx_packets += tmp.tx_packets;
10065                 s->tx_bytes   += tmp.tx_bytes;
10066         }
10067 }
10068 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10069
10070 /**
10071  *      dev_get_tstats64 - ndo_get_stats64 implementation
10072  *      @dev: device to get statistics from
10073  *      @s: place to store stats
10074  *
10075  *      Populate @s from dev->stats and dev->tstats. Can be used as
10076  *      ndo_get_stats64() callback.
10077  */
10078 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10079 {
10080         netdev_stats_to_stats64(s, &dev->stats);
10081         dev_fetch_sw_netstats(s, dev->tstats);
10082 }
10083 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10084
10085 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10086 {
10087         struct netdev_queue *queue = dev_ingress_queue(dev);
10088
10089 #ifdef CONFIG_NET_CLS_ACT
10090         if (queue)
10091                 return queue;
10092         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10093         if (!queue)
10094                 return NULL;
10095         netdev_init_one_queue(dev, queue, NULL);
10096         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10097         queue->qdisc_sleeping = &noop_qdisc;
10098         rcu_assign_pointer(dev->ingress_queue, queue);
10099 #endif
10100         return queue;
10101 }
10102
10103 static const struct ethtool_ops default_ethtool_ops;
10104
10105 void netdev_set_default_ethtool_ops(struct net_device *dev,
10106                                     const struct ethtool_ops *ops)
10107 {
10108         if (dev->ethtool_ops == &default_ethtool_ops)
10109                 dev->ethtool_ops = ops;
10110 }
10111 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10112
10113 void netdev_freemem(struct net_device *dev)
10114 {
10115         char *addr = (char *)dev - dev->padded;
10116
10117         kvfree(addr);
10118 }
10119
10120 /**
10121  * alloc_netdev_mqs - allocate network device
10122  * @sizeof_priv: size of private data to allocate space for
10123  * @name: device name format string
10124  * @name_assign_type: origin of device name
10125  * @setup: callback to initialize device
10126  * @txqs: the number of TX subqueues to allocate
10127  * @rxqs: the number of RX subqueues to allocate
10128  *
10129  * Allocates a struct net_device with private data area for driver use
10130  * and performs basic initialization.  Also allocates subqueue structs
10131  * for each queue on the device.
10132  */
10133 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10134                 unsigned char name_assign_type,
10135                 void (*setup)(struct net_device *),
10136                 unsigned int txqs, unsigned int rxqs)
10137 {
10138         struct net_device *dev;
10139         unsigned int alloc_size;
10140         struct net_device *p;
10141
10142         BUG_ON(strlen(name) >= sizeof(dev->name));
10143
10144         if (txqs < 1) {
10145                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10146                 return NULL;
10147         }
10148
10149         if (rxqs < 1) {
10150                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10151                 return NULL;
10152         }
10153
10154         alloc_size = sizeof(struct net_device);
10155         if (sizeof_priv) {
10156                 /* ensure 32-byte alignment of private area */
10157                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10158                 alloc_size += sizeof_priv;
10159         }
10160         /* ensure 32-byte alignment of whole construct */
10161         alloc_size += NETDEV_ALIGN - 1;
10162
10163         p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10164         if (!p)
10165                 return NULL;
10166
10167         dev = PTR_ALIGN(p, NETDEV_ALIGN);
10168         dev->padded = (char *)dev - (char *)p;
10169
10170         ref_tracker_dir_init(&dev->refcnt_tracker, 128);
10171 #ifdef CONFIG_PCPU_DEV_REFCNT
10172         dev->pcpu_refcnt = alloc_percpu(int);
10173         if (!dev->pcpu_refcnt)
10174                 goto free_dev;
10175         dev_hold(dev);
10176 #else
10177         refcount_set(&dev->dev_refcnt, 1);
10178 #endif
10179
10180         if (dev_addr_init(dev))
10181                 goto free_pcpu;
10182
10183         dev_mc_init(dev);
10184         dev_uc_init(dev);
10185
10186         dev_net_set(dev, &init_net);
10187
10188         dev->gso_max_size = GSO_MAX_SIZE;
10189         dev->gso_max_segs = GSO_MAX_SEGS;
10190         dev->gro_max_size = GRO_MAX_SIZE;
10191         dev->upper_level = 1;
10192         dev->lower_level = 1;
10193 #ifdef CONFIG_LOCKDEP
10194         dev->nested_level = 0;
10195         INIT_LIST_HEAD(&dev->unlink_list);
10196 #endif
10197
10198         INIT_LIST_HEAD(&dev->napi_list);
10199         INIT_LIST_HEAD(&dev->unreg_list);
10200         INIT_LIST_HEAD(&dev->close_list);
10201         INIT_LIST_HEAD(&dev->link_watch_list);
10202         INIT_LIST_HEAD(&dev->adj_list.upper);
10203         INIT_LIST_HEAD(&dev->adj_list.lower);
10204         INIT_LIST_HEAD(&dev->ptype_all);
10205         INIT_LIST_HEAD(&dev->ptype_specific);
10206         INIT_LIST_HEAD(&dev->net_notifier_list);
10207 #ifdef CONFIG_NET_SCHED
10208         hash_init(dev->qdisc_hash);
10209 #endif
10210         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10211         setup(dev);
10212
10213         if (!dev->tx_queue_len) {
10214                 dev->priv_flags |= IFF_NO_QUEUE;
10215                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10216         }
10217
10218         dev->num_tx_queues = txqs;
10219         dev->real_num_tx_queues = txqs;
10220         if (netif_alloc_netdev_queues(dev))
10221                 goto free_all;
10222
10223         dev->num_rx_queues = rxqs;
10224         dev->real_num_rx_queues = rxqs;
10225         if (netif_alloc_rx_queues(dev))
10226                 goto free_all;
10227
10228         strcpy(dev->name, name);
10229         dev->name_assign_type = name_assign_type;
10230         dev->group = INIT_NETDEV_GROUP;
10231         if (!dev->ethtool_ops)
10232                 dev->ethtool_ops = &default_ethtool_ops;
10233
10234         nf_hook_netdev_init(dev);
10235
10236         return dev;
10237
10238 free_all:
10239         free_netdev(dev);
10240         return NULL;
10241
10242 free_pcpu:
10243 #ifdef CONFIG_PCPU_DEV_REFCNT
10244         free_percpu(dev->pcpu_refcnt);
10245 free_dev:
10246 #endif
10247         netdev_freemem(dev);
10248         return NULL;
10249 }
10250 EXPORT_SYMBOL(alloc_netdev_mqs);
10251
10252 /**
10253  * free_netdev - free network device
10254  * @dev: device
10255  *
10256  * This function does the last stage of destroying an allocated device
10257  * interface. The reference to the device object is released. If this
10258  * is the last reference then it will be freed.Must be called in process
10259  * context.
10260  */
10261 void free_netdev(struct net_device *dev)
10262 {
10263         struct napi_struct *p, *n;
10264
10265         might_sleep();
10266
10267         /* When called immediately after register_netdevice() failed the unwind
10268          * handling may still be dismantling the device. Handle that case by
10269          * deferring the free.
10270          */
10271         if (dev->reg_state == NETREG_UNREGISTERING) {
10272                 ASSERT_RTNL();
10273                 dev->needs_free_netdev = true;
10274                 return;
10275         }
10276
10277         netif_free_tx_queues(dev);
10278         netif_free_rx_queues(dev);
10279
10280         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10281
10282         /* Flush device addresses */
10283         dev_addr_flush(dev);
10284
10285         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10286                 netif_napi_del(p);
10287
10288         ref_tracker_dir_exit(&dev->refcnt_tracker);
10289 #ifdef CONFIG_PCPU_DEV_REFCNT
10290         free_percpu(dev->pcpu_refcnt);
10291         dev->pcpu_refcnt = NULL;
10292 #endif
10293         free_percpu(dev->xdp_bulkq);
10294         dev->xdp_bulkq = NULL;
10295
10296         /*  Compatibility with error handling in drivers */
10297         if (dev->reg_state == NETREG_UNINITIALIZED) {
10298                 netdev_freemem(dev);
10299                 return;
10300         }
10301
10302         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10303         dev->reg_state = NETREG_RELEASED;
10304
10305         /* will free via device release */
10306         put_device(&dev->dev);
10307 }
10308 EXPORT_SYMBOL(free_netdev);
10309
10310 /**
10311  *      synchronize_net -  Synchronize with packet receive processing
10312  *
10313  *      Wait for packets currently being received to be done.
10314  *      Does not block later packets from starting.
10315  */
10316 void synchronize_net(void)
10317 {
10318         might_sleep();
10319         if (rtnl_is_locked())
10320                 synchronize_rcu_expedited();
10321         else
10322                 synchronize_rcu();
10323 }
10324 EXPORT_SYMBOL(synchronize_net);
10325
10326 /**
10327  *      unregister_netdevice_queue - remove device from the kernel
10328  *      @dev: device
10329  *      @head: list
10330  *
10331  *      This function shuts down a device interface and removes it
10332  *      from the kernel tables.
10333  *      If head not NULL, device is queued to be unregistered later.
10334  *
10335  *      Callers must hold the rtnl semaphore.  You may want
10336  *      unregister_netdev() instead of this.
10337  */
10338
10339 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10340 {
10341         ASSERT_RTNL();
10342
10343         if (head) {
10344                 list_move_tail(&dev->unreg_list, head);
10345         } else {
10346                 LIST_HEAD(single);
10347
10348                 list_add(&dev->unreg_list, &single);
10349                 unregister_netdevice_many(&single);
10350         }
10351 }
10352 EXPORT_SYMBOL(unregister_netdevice_queue);
10353
10354 /**
10355  *      unregister_netdevice_many - unregister many devices
10356  *      @head: list of devices
10357  *
10358  *  Note: As most callers use a stack allocated list_head,
10359  *  we force a list_del() to make sure stack wont be corrupted later.
10360  */
10361 void unregister_netdevice_many(struct list_head *head)
10362 {
10363         struct net_device *dev, *tmp;
10364         LIST_HEAD(close_head);
10365
10366         BUG_ON(dev_boot_phase);
10367         ASSERT_RTNL();
10368
10369         if (list_empty(head))
10370                 return;
10371
10372         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10373                 /* Some devices call without registering
10374                  * for initialization unwind. Remove those
10375                  * devices and proceed with the remaining.
10376                  */
10377                 if (dev->reg_state == NETREG_UNINITIALIZED) {
10378                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10379                                  dev->name, dev);
10380
10381                         WARN_ON(1);
10382                         list_del(&dev->unreg_list);
10383                         continue;
10384                 }
10385                 dev->dismantle = true;
10386                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
10387         }
10388
10389         /* If device is running, close it first. */
10390         list_for_each_entry(dev, head, unreg_list)
10391                 list_add_tail(&dev->close_list, &close_head);
10392         dev_close_many(&close_head, true);
10393
10394         list_for_each_entry(dev, head, unreg_list) {
10395                 /* And unlink it from device chain. */
10396                 unlist_netdevice(dev);
10397
10398                 dev->reg_state = NETREG_UNREGISTERING;
10399         }
10400         flush_all_backlogs();
10401
10402         synchronize_net();
10403
10404         list_for_each_entry(dev, head, unreg_list) {
10405                 struct sk_buff *skb = NULL;
10406
10407                 /* Shutdown queueing discipline. */
10408                 dev_shutdown(dev);
10409
10410                 dev_xdp_uninstall(dev);
10411
10412                 /* Notify protocols, that we are about to destroy
10413                  * this device. They should clean all the things.
10414                  */
10415                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10416
10417                 if (!dev->rtnl_link_ops ||
10418                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10419                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
10420                                                      GFP_KERNEL, NULL, 0);
10421
10422                 /*
10423                  *      Flush the unicast and multicast chains
10424                  */
10425                 dev_uc_flush(dev);
10426                 dev_mc_flush(dev);
10427
10428                 netdev_name_node_alt_flush(dev);
10429                 netdev_name_node_free(dev->name_node);
10430
10431                 if (dev->netdev_ops->ndo_uninit)
10432                         dev->netdev_ops->ndo_uninit(dev);
10433
10434                 if (skb)
10435                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
10436
10437                 /* Notifier chain MUST detach us all upper devices. */
10438                 WARN_ON(netdev_has_any_upper_dev(dev));
10439                 WARN_ON(netdev_has_any_lower_dev(dev));
10440
10441                 /* Remove entries from kobject tree */
10442                 netdev_unregister_kobject(dev);
10443 #ifdef CONFIG_XPS
10444                 /* Remove XPS queueing entries */
10445                 netif_reset_xps_queues_gt(dev, 0);
10446 #endif
10447         }
10448
10449         synchronize_net();
10450
10451         list_for_each_entry(dev, head, unreg_list) {
10452                 dev_put(dev);
10453                 net_set_todo(dev);
10454         }
10455
10456         list_del(head);
10457 }
10458 EXPORT_SYMBOL(unregister_netdevice_many);
10459
10460 /**
10461  *      unregister_netdev - remove device from the kernel
10462  *      @dev: device
10463  *
10464  *      This function shuts down a device interface and removes it
10465  *      from the kernel tables.
10466  *
10467  *      This is just a wrapper for unregister_netdevice that takes
10468  *      the rtnl semaphore.  In general you want to use this and not
10469  *      unregister_netdevice.
10470  */
10471 void unregister_netdev(struct net_device *dev)
10472 {
10473         rtnl_lock();
10474         unregister_netdevice(dev);
10475         rtnl_unlock();
10476 }
10477 EXPORT_SYMBOL(unregister_netdev);
10478
10479 /**
10480  *      __dev_change_net_namespace - move device to different nethost namespace
10481  *      @dev: device
10482  *      @net: network namespace
10483  *      @pat: If not NULL name pattern to try if the current device name
10484  *            is already taken in the destination network namespace.
10485  *      @new_ifindex: If not zero, specifies device index in the target
10486  *                    namespace.
10487  *
10488  *      This function shuts down a device interface and moves it
10489  *      to a new network namespace. On success 0 is returned, on
10490  *      a failure a netagive errno code is returned.
10491  *
10492  *      Callers must hold the rtnl semaphore.
10493  */
10494
10495 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
10496                                const char *pat, int new_ifindex)
10497 {
10498         struct net *net_old = dev_net(dev);
10499         int err, new_nsid;
10500
10501         ASSERT_RTNL();
10502
10503         /* Don't allow namespace local devices to be moved. */
10504         err = -EINVAL;
10505         if (dev->features & NETIF_F_NETNS_LOCAL)
10506                 goto out;
10507
10508         /* Ensure the device has been registrered */
10509         if (dev->reg_state != NETREG_REGISTERED)
10510                 goto out;
10511
10512         /* Get out if there is nothing todo */
10513         err = 0;
10514         if (net_eq(net_old, net))
10515                 goto out;
10516
10517         /* Pick the destination device name, and ensure
10518          * we can use it in the destination network namespace.
10519          */
10520         err = -EEXIST;
10521         if (netdev_name_in_use(net, dev->name)) {
10522                 /* We get here if we can't use the current device name */
10523                 if (!pat)
10524                         goto out;
10525                 err = dev_get_valid_name(net, dev, pat);
10526                 if (err < 0)
10527                         goto out;
10528         }
10529
10530         /* Check that new_ifindex isn't used yet. */
10531         err = -EBUSY;
10532         if (new_ifindex && __dev_get_by_index(net, new_ifindex))
10533                 goto out;
10534
10535         /*
10536          * And now a mini version of register_netdevice unregister_netdevice.
10537          */
10538
10539         /* If device is running close it first. */
10540         dev_close(dev);
10541
10542         /* And unlink it from device chain */
10543         unlist_netdevice(dev);
10544
10545         synchronize_net();
10546
10547         /* Shutdown queueing discipline. */
10548         dev_shutdown(dev);
10549
10550         /* Notify protocols, that we are about to destroy
10551          * this device. They should clean all the things.
10552          *
10553          * Note that dev->reg_state stays at NETREG_REGISTERED.
10554          * This is wanted because this way 8021q and macvlan know
10555          * the device is just moving and can keep their slaves up.
10556          */
10557         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10558         rcu_barrier();
10559
10560         new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10561         /* If there is an ifindex conflict assign a new one */
10562         if (!new_ifindex) {
10563                 if (__dev_get_by_index(net, dev->ifindex))
10564                         new_ifindex = dev_new_index(net);
10565                 else
10566                         new_ifindex = dev->ifindex;
10567         }
10568
10569         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10570                             new_ifindex);
10571
10572         /*
10573          *      Flush the unicast and multicast chains
10574          */
10575         dev_uc_flush(dev);
10576         dev_mc_flush(dev);
10577
10578         /* Send a netdev-removed uevent to the old namespace */
10579         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
10580         netdev_adjacent_del_links(dev);
10581
10582         /* Move per-net netdevice notifiers that are following the netdevice */
10583         move_netdevice_notifiers_dev_net(dev, net);
10584
10585         /* Actually switch the network namespace */
10586         dev_net_set(dev, net);
10587         dev->ifindex = new_ifindex;
10588
10589         /* Send a netdev-add uevent to the new namespace */
10590         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
10591         netdev_adjacent_add_links(dev);
10592
10593         /* Fixup kobjects */
10594         err = device_rename(&dev->dev, dev->name);
10595         WARN_ON(err);
10596
10597         /* Adapt owner in case owning user namespace of target network
10598          * namespace is different from the original one.
10599          */
10600         err = netdev_change_owner(dev, net_old, net);
10601         WARN_ON(err);
10602
10603         /* Add the device back in the hashes */
10604         list_netdevice(dev);
10605
10606         /* Notify protocols, that a new device appeared. */
10607         call_netdevice_notifiers(NETDEV_REGISTER, dev);
10608
10609         /*
10610          *      Prevent userspace races by waiting until the network
10611          *      device is fully setup before sending notifications.
10612          */
10613         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10614
10615         synchronize_net();
10616         err = 0;
10617 out:
10618         return err;
10619 }
10620 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
10621
10622 static int dev_cpu_dead(unsigned int oldcpu)
10623 {
10624         struct sk_buff **list_skb;
10625         struct sk_buff *skb;
10626         unsigned int cpu;
10627         struct softnet_data *sd, *oldsd, *remsd = NULL;
10628
10629         local_irq_disable();
10630         cpu = smp_processor_id();
10631         sd = &per_cpu(softnet_data, cpu);
10632         oldsd = &per_cpu(softnet_data, oldcpu);
10633
10634         /* Find end of our completion_queue. */
10635         list_skb = &sd->completion_queue;
10636         while (*list_skb)
10637                 list_skb = &(*list_skb)->next;
10638         /* Append completion queue from offline CPU. */
10639         *list_skb = oldsd->completion_queue;
10640         oldsd->completion_queue = NULL;
10641
10642         /* Append output queue from offline CPU. */
10643         if (oldsd->output_queue) {
10644                 *sd->output_queue_tailp = oldsd->output_queue;
10645                 sd->output_queue_tailp = oldsd->output_queue_tailp;
10646                 oldsd->output_queue = NULL;
10647                 oldsd->output_queue_tailp = &oldsd->output_queue;
10648         }
10649         /* Append NAPI poll list from offline CPU, with one exception :
10650          * process_backlog() must be called by cpu owning percpu backlog.
10651          * We properly handle process_queue & input_pkt_queue later.
10652          */
10653         while (!list_empty(&oldsd->poll_list)) {
10654                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10655                                                             struct napi_struct,
10656                                                             poll_list);
10657
10658                 list_del_init(&napi->poll_list);
10659                 if (napi->poll == process_backlog)
10660                         napi->state = 0;
10661                 else
10662                         ____napi_schedule(sd, napi);
10663         }
10664
10665         raise_softirq_irqoff(NET_TX_SOFTIRQ);
10666         local_irq_enable();
10667
10668 #ifdef CONFIG_RPS
10669         remsd = oldsd->rps_ipi_list;
10670         oldsd->rps_ipi_list = NULL;
10671 #endif
10672         /* send out pending IPI's on offline CPU */
10673         net_rps_send_ipi(remsd);
10674
10675         /* Process offline CPU's input_pkt_queue */
10676         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
10677                 netif_rx_ni(skb);
10678                 input_queue_head_incr(oldsd);
10679         }
10680         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
10681                 netif_rx_ni(skb);
10682                 input_queue_head_incr(oldsd);
10683         }
10684
10685         return 0;
10686 }
10687
10688 /**
10689  *      netdev_increment_features - increment feature set by one
10690  *      @all: current feature set
10691  *      @one: new feature set
10692  *      @mask: mask feature set
10693  *
10694  *      Computes a new feature set after adding a device with feature set
10695  *      @one to the master device with current feature set @all.  Will not
10696  *      enable anything that is off in @mask. Returns the new feature set.
10697  */
10698 netdev_features_t netdev_increment_features(netdev_features_t all,
10699         netdev_features_t one, netdev_features_t mask)
10700 {
10701         if (mask & NETIF_F_HW_CSUM)
10702                 mask |= NETIF_F_CSUM_MASK;
10703         mask |= NETIF_F_VLAN_CHALLENGED;
10704
10705         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
10706         all &= one | ~NETIF_F_ALL_FOR_ALL;
10707
10708         /* If one device supports hw checksumming, set for all. */
10709         if (all & NETIF_F_HW_CSUM)
10710                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
10711
10712         return all;
10713 }
10714 EXPORT_SYMBOL(netdev_increment_features);
10715
10716 static struct hlist_head * __net_init netdev_create_hash(void)
10717 {
10718         int i;
10719         struct hlist_head *hash;
10720
10721         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
10722         if (hash != NULL)
10723                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
10724                         INIT_HLIST_HEAD(&hash[i]);
10725
10726         return hash;
10727 }
10728
10729 /* Initialize per network namespace state */
10730 static int __net_init netdev_init(struct net *net)
10731 {
10732         BUILD_BUG_ON(GRO_HASH_BUCKETS >
10733                      8 * sizeof_field(struct napi_struct, gro_bitmask));
10734
10735         if (net != &init_net)
10736                 INIT_LIST_HEAD(&net->dev_base_head);
10737
10738         net->dev_name_head = netdev_create_hash();
10739         if (net->dev_name_head == NULL)
10740                 goto err_name;
10741
10742         net->dev_index_head = netdev_create_hash();
10743         if (net->dev_index_head == NULL)
10744                 goto err_idx;
10745
10746         RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
10747
10748         return 0;
10749
10750 err_idx:
10751         kfree(net->dev_name_head);
10752 err_name:
10753         return -ENOMEM;
10754 }
10755
10756 /**
10757  *      netdev_drivername - network driver for the device
10758  *      @dev: network device
10759  *
10760  *      Determine network driver for device.
10761  */
10762 const char *netdev_drivername(const struct net_device *dev)
10763 {
10764         const struct device_driver *driver;
10765         const struct device *parent;
10766         const char *empty = "";
10767
10768         parent = dev->dev.parent;
10769         if (!parent)
10770                 return empty;
10771
10772         driver = parent->driver;
10773         if (driver && driver->name)
10774                 return driver->name;
10775         return empty;
10776 }
10777
10778 static void __netdev_printk(const char *level, const struct net_device *dev,
10779                             struct va_format *vaf)
10780 {
10781         if (dev && dev->dev.parent) {
10782                 dev_printk_emit(level[1] - '0',
10783                                 dev->dev.parent,
10784                                 "%s %s %s%s: %pV",
10785                                 dev_driver_string(dev->dev.parent),
10786                                 dev_name(dev->dev.parent),
10787                                 netdev_name(dev), netdev_reg_state(dev),
10788                                 vaf);
10789         } else if (dev) {
10790                 printk("%s%s%s: %pV",
10791                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
10792         } else {
10793                 printk("%s(NULL net_device): %pV", level, vaf);
10794         }
10795 }
10796
10797 void netdev_printk(const char *level, const struct net_device *dev,
10798                    const char *format, ...)
10799 {
10800         struct va_format vaf;
10801         va_list args;
10802
10803         va_start(args, format);
10804
10805         vaf.fmt = format;
10806         vaf.va = &args;
10807
10808         __netdev_printk(level, dev, &vaf);
10809
10810         va_end(args);
10811 }
10812 EXPORT_SYMBOL(netdev_printk);
10813
10814 #define define_netdev_printk_level(func, level)                 \
10815 void func(const struct net_device *dev, const char *fmt, ...)   \
10816 {                                                               \
10817         struct va_format vaf;                                   \
10818         va_list args;                                           \
10819                                                                 \
10820         va_start(args, fmt);                                    \
10821                                                                 \
10822         vaf.fmt = fmt;                                          \
10823         vaf.va = &args;                                         \
10824                                                                 \
10825         __netdev_printk(level, dev, &vaf);                      \
10826                                                                 \
10827         va_end(args);                                           \
10828 }                                                               \
10829 EXPORT_SYMBOL(func);
10830
10831 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
10832 define_netdev_printk_level(netdev_alert, KERN_ALERT);
10833 define_netdev_printk_level(netdev_crit, KERN_CRIT);
10834 define_netdev_printk_level(netdev_err, KERN_ERR);
10835 define_netdev_printk_level(netdev_warn, KERN_WARNING);
10836 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
10837 define_netdev_printk_level(netdev_info, KERN_INFO);
10838
10839 static void __net_exit netdev_exit(struct net *net)
10840 {
10841         kfree(net->dev_name_head);
10842         kfree(net->dev_index_head);
10843         if (net != &init_net)
10844                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
10845 }
10846
10847 static struct pernet_operations __net_initdata netdev_net_ops = {
10848         .init = netdev_init,
10849         .exit = netdev_exit,
10850 };
10851
10852 static void __net_exit default_device_exit(struct net *net)
10853 {
10854         struct net_device *dev, *aux;
10855         /*
10856          * Push all migratable network devices back to the
10857          * initial network namespace
10858          */
10859         rtnl_lock();
10860         for_each_netdev_safe(net, dev, aux) {
10861                 int err;
10862                 char fb_name[IFNAMSIZ];
10863
10864                 /* Ignore unmoveable devices (i.e. loopback) */
10865                 if (dev->features & NETIF_F_NETNS_LOCAL)
10866                         continue;
10867
10868                 /* Leave virtual devices for the generic cleanup */
10869                 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
10870                         continue;
10871
10872                 /* Push remaining network devices to init_net */
10873                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
10874                 if (netdev_name_in_use(&init_net, fb_name))
10875                         snprintf(fb_name, IFNAMSIZ, "dev%%d");
10876                 err = dev_change_net_namespace(dev, &init_net, fb_name);
10877                 if (err) {
10878                         pr_emerg("%s: failed to move %s to init_net: %d\n",
10879                                  __func__, dev->name, err);
10880                         BUG();
10881                 }
10882         }
10883         rtnl_unlock();
10884 }
10885
10886 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
10887 {
10888         /* Return with the rtnl_lock held when there are no network
10889          * devices unregistering in any network namespace in net_list.
10890          */
10891         struct net *net;
10892         bool unregistering;
10893         DEFINE_WAIT_FUNC(wait, woken_wake_function);
10894
10895         add_wait_queue(&netdev_unregistering_wq, &wait);
10896         for (;;) {
10897                 unregistering = false;
10898                 rtnl_lock();
10899                 list_for_each_entry(net, net_list, exit_list) {
10900                         if (net->dev_unreg_count > 0) {
10901                                 unregistering = true;
10902                                 break;
10903                         }
10904                 }
10905                 if (!unregistering)
10906                         break;
10907                 __rtnl_unlock();
10908
10909                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
10910         }
10911         remove_wait_queue(&netdev_unregistering_wq, &wait);
10912 }
10913
10914 static void __net_exit default_device_exit_batch(struct list_head *net_list)
10915 {
10916         /* At exit all network devices most be removed from a network
10917          * namespace.  Do this in the reverse order of registration.
10918          * Do this across as many network namespaces as possible to
10919          * improve batching efficiency.
10920          */
10921         struct net_device *dev;
10922         struct net *net;
10923         LIST_HEAD(dev_kill_list);
10924
10925         /* To prevent network device cleanup code from dereferencing
10926          * loopback devices or network devices that have been freed
10927          * wait here for all pending unregistrations to complete,
10928          * before unregistring the loopback device and allowing the
10929          * network namespace be freed.
10930          *
10931          * The netdev todo list containing all network devices
10932          * unregistrations that happen in default_device_exit_batch
10933          * will run in the rtnl_unlock() at the end of
10934          * default_device_exit_batch.
10935          */
10936         rtnl_lock_unregistering(net_list);
10937         list_for_each_entry(net, net_list, exit_list) {
10938                 for_each_netdev_reverse(net, dev) {
10939                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
10940                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
10941                         else
10942                                 unregister_netdevice_queue(dev, &dev_kill_list);
10943                 }
10944         }
10945         unregister_netdevice_many(&dev_kill_list);
10946         rtnl_unlock();
10947 }
10948
10949 static struct pernet_operations __net_initdata default_device_ops = {
10950         .exit = default_device_exit,
10951         .exit_batch = default_device_exit_batch,
10952 };
10953
10954 /*
10955  *      Initialize the DEV module. At boot time this walks the device list and
10956  *      unhooks any devices that fail to initialise (normally hardware not
10957  *      present) and leaves us with a valid list of present and active devices.
10958  *
10959  */
10960
10961 /*
10962  *       This is called single threaded during boot, so no need
10963  *       to take the rtnl semaphore.
10964  */
10965 static int __init net_dev_init(void)
10966 {
10967         int i, rc = -ENOMEM;
10968
10969         BUG_ON(!dev_boot_phase);
10970
10971         if (dev_proc_init())
10972                 goto out;
10973
10974         if (netdev_kobject_init())
10975                 goto out;
10976
10977         INIT_LIST_HEAD(&ptype_all);
10978         for (i = 0; i < PTYPE_HASH_SIZE; i++)
10979                 INIT_LIST_HEAD(&ptype_base[i]);
10980
10981         if (register_pernet_subsys(&netdev_net_ops))
10982                 goto out;
10983
10984         /*
10985          *      Initialise the packet receive queues.
10986          */
10987
10988         for_each_possible_cpu(i) {
10989                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
10990                 struct softnet_data *sd = &per_cpu(softnet_data, i);
10991
10992                 INIT_WORK(flush, flush_backlog);
10993
10994                 skb_queue_head_init(&sd->input_pkt_queue);
10995                 skb_queue_head_init(&sd->process_queue);
10996 #ifdef CONFIG_XFRM_OFFLOAD
10997                 skb_queue_head_init(&sd->xfrm_backlog);
10998 #endif
10999                 INIT_LIST_HEAD(&sd->poll_list);
11000                 sd->output_queue_tailp = &sd->output_queue;
11001 #ifdef CONFIG_RPS
11002                 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11003                 sd->cpu = i;
11004 #endif
11005
11006                 init_gro_hash(&sd->backlog);
11007                 sd->backlog.poll = process_backlog;
11008                 sd->backlog.weight = weight_p;
11009         }
11010
11011         dev_boot_phase = 0;
11012
11013         /* The loopback device is special if any other network devices
11014          * is present in a network namespace the loopback device must
11015          * be present. Since we now dynamically allocate and free the
11016          * loopback device ensure this invariant is maintained by
11017          * keeping the loopback device as the first device on the
11018          * list of network devices.  Ensuring the loopback devices
11019          * is the first device that appears and the last network device
11020          * that disappears.
11021          */
11022         if (register_pernet_device(&loopback_net_ops))
11023                 goto out;
11024
11025         if (register_pernet_device(&default_device_ops))
11026                 goto out;
11027
11028         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11029         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11030
11031         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11032                                        NULL, dev_cpu_dead);
11033         WARN_ON(rc < 0);
11034         rc = 0;
11035 out:
11036         return rc;
11037 }
11038
11039 subsys_initcall(net_dev_init);