Merge tag 'tty-5.10-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/tty
[linux-2.6-microblaze.git] / net / core / dev.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *      Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:        Ross Biro
7  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *      Additional Authors:
11  *              Florian la Roche <rzsfl@rz.uni-sb.de>
12  *              Alan Cox <gw4pts@gw4pts.ampr.org>
13  *              David Hinds <dahinds@users.sourceforge.net>
14  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *              Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *      Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *              Alan Cox        :       device private ioctl copies fields back.
24  *              Alan Cox        :       Transmit queue code does relevant
25  *                                      stunts to keep the queue safe.
26  *              Alan Cox        :       Fixed double lock.
27  *              Alan Cox        :       Fixed promisc NULL pointer trap
28  *              ????????        :       Support the full private ioctl range
29  *              Alan Cox        :       Moved ioctl permission check into
30  *                                      drivers
31  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
32  *              Alan Cox        :       100 backlog just doesn't cut it when
33  *                                      you start doing multicast video 8)
34  *              Alan Cox        :       Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *              Alan Cox        :       Took out transmit every packet pass
37  *                                      Saved a few bytes in the ioctl handler
38  *              Alan Cox        :       Network driver sets packet type before
39  *                                      calling netif_rx. Saves a function
40  *                                      call a packet.
41  *              Alan Cox        :       Hashed net_bh()
42  *              Richard Kooijman:       Timestamp fixes.
43  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
44  *              Alan Cox        :       Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *                                      changes.
47  *              Rudi Cilibrasi  :       Pass the right thing to
48  *                                      set_mac_address()
49  *              Dave Miller     :       32bit quantity for the device lock to
50  *                                      make it work out on a Sparc.
51  *              Bjorn Ekwall    :       Added KERNELD hack.
52  *              Alan Cox        :       Cleaned up the backlog initialise.
53  *              Craig Metz      :       SIOCGIFCONF fix if space for under
54  *                                      1 device.
55  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
56  *                                      is no device open function.
57  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
58  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
59  *              Cyrus Durgin    :       Cleaned for KMOD
60  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
61  *                                      A network device unload needs to purge
62  *                                      the backlog queue.
63  *      Paul Rusty Russell      :       SIOCSIFNAME
64  *              Pekka Riikonen  :       Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *                                      - netif_rx() feedback
69  */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/bpf.h>
95 #include <linux/bpf_trace.h>
96 #include <net/net_namespace.h>
97 #include <net/sock.h>
98 #include <net/busy_poll.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dsa.h>
102 #include <net/dst.h>
103 #include <net/dst_metadata.h>
104 #include <net/pkt_sched.h>
105 #include <net/pkt_cls.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/iw_handler.h>
115 #include <asm/current.h>
116 #include <linux/audit.h>
117 #include <linux/dmaengine.h>
118 #include <linux/err.h>
119 #include <linux/ctype.h>
120 #include <linux/if_arp.h>
121 #include <linux/if_vlan.h>
122 #include <linux/ip.h>
123 #include <net/ip.h>
124 #include <net/mpls.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/inetdevice.h>
133 #include <linux/cpu_rmap.h>
134 #include <linux/static_key.h>
135 #include <linux/hashtable.h>
136 #include <linux/vmalloc.h>
137 #include <linux/if_macvlan.h>
138 #include <linux/errqueue.h>
139 #include <linux/hrtimer.h>
140 #include <linux/netfilter_ingress.h>
141 #include <linux/crash_dump.h>
142 #include <linux/sctp.h>
143 #include <net/udp_tunnel.h>
144 #include <linux/net_namespace.h>
145 #include <linux/indirect_call_wrapper.h>
146 #include <net/devlink.h>
147 #include <linux/pm_runtime.h>
148 #include <linux/prandom.h>
149
150 #include "net-sysfs.h"
151
152 #define MAX_GRO_SKBS 8
153
154 /* This should be increased if a protocol with a bigger head is added. */
155 #define GRO_MAX_HEAD (MAX_HEADER + 128)
156
157 static DEFINE_SPINLOCK(ptype_lock);
158 static DEFINE_SPINLOCK(offload_lock);
159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160 struct list_head ptype_all __read_mostly;       /* Taps */
161 static struct list_head offload_base __read_mostly;
162
163 static int netif_rx_internal(struct sk_buff *skb);
164 static int call_netdevice_notifiers_info(unsigned long val,
165                                          struct netdev_notifier_info *info);
166 static int call_netdevice_notifiers_extack(unsigned long val,
167                                            struct net_device *dev,
168                                            struct netlink_ext_ack *extack);
169 static struct napi_struct *napi_by_id(unsigned int napi_id);
170
171 /*
172  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
173  * semaphore.
174  *
175  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
176  *
177  * Writers must hold the rtnl semaphore while they loop through the
178  * dev_base_head list, and hold dev_base_lock for writing when they do the
179  * actual updates.  This allows pure readers to access the list even
180  * while a writer is preparing to update it.
181  *
182  * To put it another way, dev_base_lock is held for writing only to
183  * protect against pure readers; the rtnl semaphore provides the
184  * protection against other writers.
185  *
186  * See, for example usages, register_netdevice() and
187  * unregister_netdevice(), which must be called with the rtnl
188  * semaphore held.
189  */
190 DEFINE_RWLOCK(dev_base_lock);
191 EXPORT_SYMBOL(dev_base_lock);
192
193 static DEFINE_MUTEX(ifalias_mutex);
194
195 /* protects napi_hash addition/deletion and napi_gen_id */
196 static DEFINE_SPINLOCK(napi_hash_lock);
197
198 static unsigned int napi_gen_id = NR_CPUS;
199 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
200
201 static DECLARE_RWSEM(devnet_rename_sem);
202
203 static inline void dev_base_seq_inc(struct net *net)
204 {
205         while (++net->dev_base_seq == 0)
206                 ;
207 }
208
209 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
210 {
211         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
212
213         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
214 }
215
216 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
217 {
218         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
219 }
220
221 static inline void rps_lock(struct softnet_data *sd)
222 {
223 #ifdef CONFIG_RPS
224         spin_lock(&sd->input_pkt_queue.lock);
225 #endif
226 }
227
228 static inline void rps_unlock(struct softnet_data *sd)
229 {
230 #ifdef CONFIG_RPS
231         spin_unlock(&sd->input_pkt_queue.lock);
232 #endif
233 }
234
235 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
236                                                        const char *name)
237 {
238         struct netdev_name_node *name_node;
239
240         name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
241         if (!name_node)
242                 return NULL;
243         INIT_HLIST_NODE(&name_node->hlist);
244         name_node->dev = dev;
245         name_node->name = name;
246         return name_node;
247 }
248
249 static struct netdev_name_node *
250 netdev_name_node_head_alloc(struct net_device *dev)
251 {
252         struct netdev_name_node *name_node;
253
254         name_node = netdev_name_node_alloc(dev, dev->name);
255         if (!name_node)
256                 return NULL;
257         INIT_LIST_HEAD(&name_node->list);
258         return name_node;
259 }
260
261 static void netdev_name_node_free(struct netdev_name_node *name_node)
262 {
263         kfree(name_node);
264 }
265
266 static void netdev_name_node_add(struct net *net,
267                                  struct netdev_name_node *name_node)
268 {
269         hlist_add_head_rcu(&name_node->hlist,
270                            dev_name_hash(net, name_node->name));
271 }
272
273 static void netdev_name_node_del(struct netdev_name_node *name_node)
274 {
275         hlist_del_rcu(&name_node->hlist);
276 }
277
278 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
279                                                         const char *name)
280 {
281         struct hlist_head *head = dev_name_hash(net, name);
282         struct netdev_name_node *name_node;
283
284         hlist_for_each_entry(name_node, head, hlist)
285                 if (!strcmp(name_node->name, name))
286                         return name_node;
287         return NULL;
288 }
289
290 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
291                                                             const char *name)
292 {
293         struct hlist_head *head = dev_name_hash(net, name);
294         struct netdev_name_node *name_node;
295
296         hlist_for_each_entry_rcu(name_node, head, hlist)
297                 if (!strcmp(name_node->name, name))
298                         return name_node;
299         return NULL;
300 }
301
302 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
303 {
304         struct netdev_name_node *name_node;
305         struct net *net = dev_net(dev);
306
307         name_node = netdev_name_node_lookup(net, name);
308         if (name_node)
309                 return -EEXIST;
310         name_node = netdev_name_node_alloc(dev, name);
311         if (!name_node)
312                 return -ENOMEM;
313         netdev_name_node_add(net, name_node);
314         /* The node that holds dev->name acts as a head of per-device list. */
315         list_add_tail(&name_node->list, &dev->name_node->list);
316
317         return 0;
318 }
319 EXPORT_SYMBOL(netdev_name_node_alt_create);
320
321 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
322 {
323         list_del(&name_node->list);
324         netdev_name_node_del(name_node);
325         kfree(name_node->name);
326         netdev_name_node_free(name_node);
327 }
328
329 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
330 {
331         struct netdev_name_node *name_node;
332         struct net *net = dev_net(dev);
333
334         name_node = netdev_name_node_lookup(net, name);
335         if (!name_node)
336                 return -ENOENT;
337         /* lookup might have found our primary name or a name belonging
338          * to another device.
339          */
340         if (name_node == dev->name_node || name_node->dev != dev)
341                 return -EINVAL;
342
343         __netdev_name_node_alt_destroy(name_node);
344
345         return 0;
346 }
347 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
348
349 static void netdev_name_node_alt_flush(struct net_device *dev)
350 {
351         struct netdev_name_node *name_node, *tmp;
352
353         list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
354                 __netdev_name_node_alt_destroy(name_node);
355 }
356
357 /* Device list insertion */
358 static void list_netdevice(struct net_device *dev)
359 {
360         struct net *net = dev_net(dev);
361
362         ASSERT_RTNL();
363
364         write_lock_bh(&dev_base_lock);
365         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
366         netdev_name_node_add(net, dev->name_node);
367         hlist_add_head_rcu(&dev->index_hlist,
368                            dev_index_hash(net, dev->ifindex));
369         write_unlock_bh(&dev_base_lock);
370
371         dev_base_seq_inc(net);
372 }
373
374 /* Device list removal
375  * caller must respect a RCU grace period before freeing/reusing dev
376  */
377 static void unlist_netdevice(struct net_device *dev)
378 {
379         ASSERT_RTNL();
380
381         /* Unlink dev from the device chain */
382         write_lock_bh(&dev_base_lock);
383         list_del_rcu(&dev->dev_list);
384         netdev_name_node_del(dev->name_node);
385         hlist_del_rcu(&dev->index_hlist);
386         write_unlock_bh(&dev_base_lock);
387
388         dev_base_seq_inc(dev_net(dev));
389 }
390
391 /*
392  *      Our notifier list
393  */
394
395 static RAW_NOTIFIER_HEAD(netdev_chain);
396
397 /*
398  *      Device drivers call our routines to queue packets here. We empty the
399  *      queue in the local softnet handler.
400  */
401
402 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
403 EXPORT_PER_CPU_SYMBOL(softnet_data);
404
405 #ifdef CONFIG_LOCKDEP
406 /*
407  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
408  * according to dev->type
409  */
410 static const unsigned short netdev_lock_type[] = {
411          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
412          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
413          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
414          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
415          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
416          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
417          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
418          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
419          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
420          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
421          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
422          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
423          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
424          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
425          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
426
427 static const char *const netdev_lock_name[] = {
428         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
429         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
430         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
431         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
432         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
433         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
434         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
435         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
436         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
437         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
438         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
439         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
440         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
441         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
442         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
443
444 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
445 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
446
447 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
448 {
449         int i;
450
451         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
452                 if (netdev_lock_type[i] == dev_type)
453                         return i;
454         /* the last key is used by default */
455         return ARRAY_SIZE(netdev_lock_type) - 1;
456 }
457
458 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
459                                                  unsigned short dev_type)
460 {
461         int i;
462
463         i = netdev_lock_pos(dev_type);
464         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
465                                    netdev_lock_name[i]);
466 }
467
468 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
469 {
470         int i;
471
472         i = netdev_lock_pos(dev->type);
473         lockdep_set_class_and_name(&dev->addr_list_lock,
474                                    &netdev_addr_lock_key[i],
475                                    netdev_lock_name[i]);
476 }
477 #else
478 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
479                                                  unsigned short dev_type)
480 {
481 }
482
483 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
484 {
485 }
486 #endif
487
488 /*******************************************************************************
489  *
490  *              Protocol management and registration routines
491  *
492  *******************************************************************************/
493
494
495 /*
496  *      Add a protocol ID to the list. Now that the input handler is
497  *      smarter we can dispense with all the messy stuff that used to be
498  *      here.
499  *
500  *      BEWARE!!! Protocol handlers, mangling input packets,
501  *      MUST BE last in hash buckets and checking protocol handlers
502  *      MUST start from promiscuous ptype_all chain in net_bh.
503  *      It is true now, do not change it.
504  *      Explanation follows: if protocol handler, mangling packet, will
505  *      be the first on list, it is not able to sense, that packet
506  *      is cloned and should be copied-on-write, so that it will
507  *      change it and subsequent readers will get broken packet.
508  *                                                      --ANK (980803)
509  */
510
511 static inline struct list_head *ptype_head(const struct packet_type *pt)
512 {
513         if (pt->type == htons(ETH_P_ALL))
514                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
515         else
516                 return pt->dev ? &pt->dev->ptype_specific :
517                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
518 }
519
520 /**
521  *      dev_add_pack - add packet handler
522  *      @pt: packet type declaration
523  *
524  *      Add a protocol handler to the networking stack. The passed &packet_type
525  *      is linked into kernel lists and may not be freed until it has been
526  *      removed from the kernel lists.
527  *
528  *      This call does not sleep therefore it can not
529  *      guarantee all CPU's that are in middle of receiving packets
530  *      will see the new packet type (until the next received packet).
531  */
532
533 void dev_add_pack(struct packet_type *pt)
534 {
535         struct list_head *head = ptype_head(pt);
536
537         spin_lock(&ptype_lock);
538         list_add_rcu(&pt->list, head);
539         spin_unlock(&ptype_lock);
540 }
541 EXPORT_SYMBOL(dev_add_pack);
542
543 /**
544  *      __dev_remove_pack        - remove packet handler
545  *      @pt: packet type declaration
546  *
547  *      Remove a protocol handler that was previously added to the kernel
548  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
549  *      from the kernel lists and can be freed or reused once this function
550  *      returns.
551  *
552  *      The packet type might still be in use by receivers
553  *      and must not be freed until after all the CPU's have gone
554  *      through a quiescent state.
555  */
556 void __dev_remove_pack(struct packet_type *pt)
557 {
558         struct list_head *head = ptype_head(pt);
559         struct packet_type *pt1;
560
561         spin_lock(&ptype_lock);
562
563         list_for_each_entry(pt1, head, list) {
564                 if (pt == pt1) {
565                         list_del_rcu(&pt->list);
566                         goto out;
567                 }
568         }
569
570         pr_warn("dev_remove_pack: %p not found\n", pt);
571 out:
572         spin_unlock(&ptype_lock);
573 }
574 EXPORT_SYMBOL(__dev_remove_pack);
575
576 /**
577  *      dev_remove_pack  - remove packet handler
578  *      @pt: packet type declaration
579  *
580  *      Remove a protocol handler that was previously added to the kernel
581  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
582  *      from the kernel lists and can be freed or reused once this function
583  *      returns.
584  *
585  *      This call sleeps to guarantee that no CPU is looking at the packet
586  *      type after return.
587  */
588 void dev_remove_pack(struct packet_type *pt)
589 {
590         __dev_remove_pack(pt);
591
592         synchronize_net();
593 }
594 EXPORT_SYMBOL(dev_remove_pack);
595
596
597 /**
598  *      dev_add_offload - register offload handlers
599  *      @po: protocol offload declaration
600  *
601  *      Add protocol offload handlers to the networking stack. The passed
602  *      &proto_offload is linked into kernel lists and may not be freed until
603  *      it has been removed from the kernel lists.
604  *
605  *      This call does not sleep therefore it can not
606  *      guarantee all CPU's that are in middle of receiving packets
607  *      will see the new offload handlers (until the next received packet).
608  */
609 void dev_add_offload(struct packet_offload *po)
610 {
611         struct packet_offload *elem;
612
613         spin_lock(&offload_lock);
614         list_for_each_entry(elem, &offload_base, list) {
615                 if (po->priority < elem->priority)
616                         break;
617         }
618         list_add_rcu(&po->list, elem->list.prev);
619         spin_unlock(&offload_lock);
620 }
621 EXPORT_SYMBOL(dev_add_offload);
622
623 /**
624  *      __dev_remove_offload     - remove offload handler
625  *      @po: packet offload declaration
626  *
627  *      Remove a protocol offload handler that was previously added to the
628  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
629  *      is removed from the kernel lists and can be freed or reused once this
630  *      function returns.
631  *
632  *      The packet type might still be in use by receivers
633  *      and must not be freed until after all the CPU's have gone
634  *      through a quiescent state.
635  */
636 static void __dev_remove_offload(struct packet_offload *po)
637 {
638         struct list_head *head = &offload_base;
639         struct packet_offload *po1;
640
641         spin_lock(&offload_lock);
642
643         list_for_each_entry(po1, head, list) {
644                 if (po == po1) {
645                         list_del_rcu(&po->list);
646                         goto out;
647                 }
648         }
649
650         pr_warn("dev_remove_offload: %p not found\n", po);
651 out:
652         spin_unlock(&offload_lock);
653 }
654
655 /**
656  *      dev_remove_offload       - remove packet offload handler
657  *      @po: packet offload declaration
658  *
659  *      Remove a packet offload handler that was previously added to the kernel
660  *      offload handlers by dev_add_offload(). The passed &offload_type is
661  *      removed from the kernel lists and can be freed or reused once this
662  *      function returns.
663  *
664  *      This call sleeps to guarantee that no CPU is looking at the packet
665  *      type after return.
666  */
667 void dev_remove_offload(struct packet_offload *po)
668 {
669         __dev_remove_offload(po);
670
671         synchronize_net();
672 }
673 EXPORT_SYMBOL(dev_remove_offload);
674
675 /******************************************************************************
676  *
677  *                    Device Boot-time Settings Routines
678  *
679  ******************************************************************************/
680
681 /* Boot time configuration table */
682 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
683
684 /**
685  *      netdev_boot_setup_add   - add new setup entry
686  *      @name: name of the device
687  *      @map: configured settings for the device
688  *
689  *      Adds new setup entry to the dev_boot_setup list.  The function
690  *      returns 0 on error and 1 on success.  This is a generic routine to
691  *      all netdevices.
692  */
693 static int netdev_boot_setup_add(char *name, struct ifmap *map)
694 {
695         struct netdev_boot_setup *s;
696         int i;
697
698         s = dev_boot_setup;
699         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
700                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
701                         memset(s[i].name, 0, sizeof(s[i].name));
702                         strlcpy(s[i].name, name, IFNAMSIZ);
703                         memcpy(&s[i].map, map, sizeof(s[i].map));
704                         break;
705                 }
706         }
707
708         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
709 }
710
711 /**
712  * netdev_boot_setup_check      - check boot time settings
713  * @dev: the netdevice
714  *
715  * Check boot time settings for the device.
716  * The found settings are set for the device to be used
717  * later in the device probing.
718  * Returns 0 if no settings found, 1 if they are.
719  */
720 int netdev_boot_setup_check(struct net_device *dev)
721 {
722         struct netdev_boot_setup *s = dev_boot_setup;
723         int i;
724
725         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
726                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
727                     !strcmp(dev->name, s[i].name)) {
728                         dev->irq = s[i].map.irq;
729                         dev->base_addr = s[i].map.base_addr;
730                         dev->mem_start = s[i].map.mem_start;
731                         dev->mem_end = s[i].map.mem_end;
732                         return 1;
733                 }
734         }
735         return 0;
736 }
737 EXPORT_SYMBOL(netdev_boot_setup_check);
738
739
740 /**
741  * netdev_boot_base     - get address from boot time settings
742  * @prefix: prefix for network device
743  * @unit: id for network device
744  *
745  * Check boot time settings for the base address of device.
746  * The found settings are set for the device to be used
747  * later in the device probing.
748  * Returns 0 if no settings found.
749  */
750 unsigned long netdev_boot_base(const char *prefix, int unit)
751 {
752         const struct netdev_boot_setup *s = dev_boot_setup;
753         char name[IFNAMSIZ];
754         int i;
755
756         sprintf(name, "%s%d", prefix, unit);
757
758         /*
759          * If device already registered then return base of 1
760          * to indicate not to probe for this interface
761          */
762         if (__dev_get_by_name(&init_net, name))
763                 return 1;
764
765         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
766                 if (!strcmp(name, s[i].name))
767                         return s[i].map.base_addr;
768         return 0;
769 }
770
771 /*
772  * Saves at boot time configured settings for any netdevice.
773  */
774 int __init netdev_boot_setup(char *str)
775 {
776         int ints[5];
777         struct ifmap map;
778
779         str = get_options(str, ARRAY_SIZE(ints), ints);
780         if (!str || !*str)
781                 return 0;
782
783         /* Save settings */
784         memset(&map, 0, sizeof(map));
785         if (ints[0] > 0)
786                 map.irq = ints[1];
787         if (ints[0] > 1)
788                 map.base_addr = ints[2];
789         if (ints[0] > 2)
790                 map.mem_start = ints[3];
791         if (ints[0] > 3)
792                 map.mem_end = ints[4];
793
794         /* Add new entry to the list */
795         return netdev_boot_setup_add(str, &map);
796 }
797
798 __setup("netdev=", netdev_boot_setup);
799
800 /*******************************************************************************
801  *
802  *                          Device Interface Subroutines
803  *
804  *******************************************************************************/
805
806 /**
807  *      dev_get_iflink  - get 'iflink' value of a interface
808  *      @dev: targeted interface
809  *
810  *      Indicates the ifindex the interface is linked to.
811  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
812  */
813
814 int dev_get_iflink(const struct net_device *dev)
815 {
816         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
817                 return dev->netdev_ops->ndo_get_iflink(dev);
818
819         return dev->ifindex;
820 }
821 EXPORT_SYMBOL(dev_get_iflink);
822
823 /**
824  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
825  *      @dev: targeted interface
826  *      @skb: The packet.
827  *
828  *      For better visibility of tunnel traffic OVS needs to retrieve
829  *      egress tunnel information for a packet. Following API allows
830  *      user to get this info.
831  */
832 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
833 {
834         struct ip_tunnel_info *info;
835
836         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
837                 return -EINVAL;
838
839         info = skb_tunnel_info_unclone(skb);
840         if (!info)
841                 return -ENOMEM;
842         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
843                 return -EINVAL;
844
845         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
846 }
847 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
848
849 /**
850  *      __dev_get_by_name       - find a device by its name
851  *      @net: the applicable net namespace
852  *      @name: name to find
853  *
854  *      Find an interface by name. Must be called under RTNL semaphore
855  *      or @dev_base_lock. If the name is found a pointer to the device
856  *      is returned. If the name is not found then %NULL is returned. The
857  *      reference counters are not incremented so the caller must be
858  *      careful with locks.
859  */
860
861 struct net_device *__dev_get_by_name(struct net *net, const char *name)
862 {
863         struct netdev_name_node *node_name;
864
865         node_name = netdev_name_node_lookup(net, name);
866         return node_name ? node_name->dev : NULL;
867 }
868 EXPORT_SYMBOL(__dev_get_by_name);
869
870 /**
871  * dev_get_by_name_rcu  - find a device by its name
872  * @net: the applicable net namespace
873  * @name: name to find
874  *
875  * Find an interface by name.
876  * If the name is found a pointer to the device is returned.
877  * If the name is not found then %NULL is returned.
878  * The reference counters are not incremented so the caller must be
879  * careful with locks. The caller must hold RCU lock.
880  */
881
882 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
883 {
884         struct netdev_name_node *node_name;
885
886         node_name = netdev_name_node_lookup_rcu(net, name);
887         return node_name ? node_name->dev : NULL;
888 }
889 EXPORT_SYMBOL(dev_get_by_name_rcu);
890
891 /**
892  *      dev_get_by_name         - find a device by its name
893  *      @net: the applicable net namespace
894  *      @name: name to find
895  *
896  *      Find an interface by name. This can be called from any
897  *      context and does its own locking. The returned handle has
898  *      the usage count incremented and the caller must use dev_put() to
899  *      release it when it is no longer needed. %NULL is returned if no
900  *      matching device is found.
901  */
902
903 struct net_device *dev_get_by_name(struct net *net, const char *name)
904 {
905         struct net_device *dev;
906
907         rcu_read_lock();
908         dev = dev_get_by_name_rcu(net, name);
909         if (dev)
910                 dev_hold(dev);
911         rcu_read_unlock();
912         return dev;
913 }
914 EXPORT_SYMBOL(dev_get_by_name);
915
916 /**
917  *      __dev_get_by_index - find a device by its ifindex
918  *      @net: the applicable net namespace
919  *      @ifindex: index of device
920  *
921  *      Search for an interface by index. Returns %NULL if the device
922  *      is not found or a pointer to the device. The device has not
923  *      had its reference counter increased so the caller must be careful
924  *      about locking. The caller must hold either the RTNL semaphore
925  *      or @dev_base_lock.
926  */
927
928 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
929 {
930         struct net_device *dev;
931         struct hlist_head *head = dev_index_hash(net, ifindex);
932
933         hlist_for_each_entry(dev, head, index_hlist)
934                 if (dev->ifindex == ifindex)
935                         return dev;
936
937         return NULL;
938 }
939 EXPORT_SYMBOL(__dev_get_by_index);
940
941 /**
942  *      dev_get_by_index_rcu - find a device by its ifindex
943  *      @net: the applicable net namespace
944  *      @ifindex: index of device
945  *
946  *      Search for an interface by index. Returns %NULL if the device
947  *      is not found or a pointer to the device. The device has not
948  *      had its reference counter increased so the caller must be careful
949  *      about locking. The caller must hold RCU lock.
950  */
951
952 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
953 {
954         struct net_device *dev;
955         struct hlist_head *head = dev_index_hash(net, ifindex);
956
957         hlist_for_each_entry_rcu(dev, head, index_hlist)
958                 if (dev->ifindex == ifindex)
959                         return dev;
960
961         return NULL;
962 }
963 EXPORT_SYMBOL(dev_get_by_index_rcu);
964
965
966 /**
967  *      dev_get_by_index - find a device by its ifindex
968  *      @net: the applicable net namespace
969  *      @ifindex: index of device
970  *
971  *      Search for an interface by index. Returns NULL if the device
972  *      is not found or a pointer to the device. The device returned has
973  *      had a reference added and the pointer is safe until the user calls
974  *      dev_put to indicate they have finished with it.
975  */
976
977 struct net_device *dev_get_by_index(struct net *net, int ifindex)
978 {
979         struct net_device *dev;
980
981         rcu_read_lock();
982         dev = dev_get_by_index_rcu(net, ifindex);
983         if (dev)
984                 dev_hold(dev);
985         rcu_read_unlock();
986         return dev;
987 }
988 EXPORT_SYMBOL(dev_get_by_index);
989
990 /**
991  *      dev_get_by_napi_id - find a device by napi_id
992  *      @napi_id: ID of the NAPI struct
993  *
994  *      Search for an interface by NAPI ID. Returns %NULL if the device
995  *      is not found or a pointer to the device. The device has not had
996  *      its reference counter increased so the caller must be careful
997  *      about locking. The caller must hold RCU lock.
998  */
999
1000 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1001 {
1002         struct napi_struct *napi;
1003
1004         WARN_ON_ONCE(!rcu_read_lock_held());
1005
1006         if (napi_id < MIN_NAPI_ID)
1007                 return NULL;
1008
1009         napi = napi_by_id(napi_id);
1010
1011         return napi ? napi->dev : NULL;
1012 }
1013 EXPORT_SYMBOL(dev_get_by_napi_id);
1014
1015 /**
1016  *      netdev_get_name - get a netdevice name, knowing its ifindex.
1017  *      @net: network namespace
1018  *      @name: a pointer to the buffer where the name will be stored.
1019  *      @ifindex: the ifindex of the interface to get the name from.
1020  */
1021 int netdev_get_name(struct net *net, char *name, int ifindex)
1022 {
1023         struct net_device *dev;
1024         int ret;
1025
1026         down_read(&devnet_rename_sem);
1027         rcu_read_lock();
1028
1029         dev = dev_get_by_index_rcu(net, ifindex);
1030         if (!dev) {
1031                 ret = -ENODEV;
1032                 goto out;
1033         }
1034
1035         strcpy(name, dev->name);
1036
1037         ret = 0;
1038 out:
1039         rcu_read_unlock();
1040         up_read(&devnet_rename_sem);
1041         return ret;
1042 }
1043
1044 /**
1045  *      dev_getbyhwaddr_rcu - find a device by its hardware address
1046  *      @net: the applicable net namespace
1047  *      @type: media type of device
1048  *      @ha: hardware address
1049  *
1050  *      Search for an interface by MAC address. Returns NULL if the device
1051  *      is not found or a pointer to the device.
1052  *      The caller must hold RCU or RTNL.
1053  *      The returned device has not had its ref count increased
1054  *      and the caller must therefore be careful about locking
1055  *
1056  */
1057
1058 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1059                                        const char *ha)
1060 {
1061         struct net_device *dev;
1062
1063         for_each_netdev_rcu(net, dev)
1064                 if (dev->type == type &&
1065                     !memcmp(dev->dev_addr, ha, dev->addr_len))
1066                         return dev;
1067
1068         return NULL;
1069 }
1070 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1071
1072 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1073 {
1074         struct net_device *dev;
1075
1076         ASSERT_RTNL();
1077         for_each_netdev(net, dev)
1078                 if (dev->type == type)
1079                         return dev;
1080
1081         return NULL;
1082 }
1083 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
1084
1085 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1086 {
1087         struct net_device *dev, *ret = NULL;
1088
1089         rcu_read_lock();
1090         for_each_netdev_rcu(net, dev)
1091                 if (dev->type == type) {
1092                         dev_hold(dev);
1093                         ret = dev;
1094                         break;
1095                 }
1096         rcu_read_unlock();
1097         return ret;
1098 }
1099 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1100
1101 /**
1102  *      __dev_get_by_flags - find any device with given flags
1103  *      @net: the applicable net namespace
1104  *      @if_flags: IFF_* values
1105  *      @mask: bitmask of bits in if_flags to check
1106  *
1107  *      Search for any interface with the given flags. Returns NULL if a device
1108  *      is not found or a pointer to the device. Must be called inside
1109  *      rtnl_lock(), and result refcount is unchanged.
1110  */
1111
1112 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1113                                       unsigned short mask)
1114 {
1115         struct net_device *dev, *ret;
1116
1117         ASSERT_RTNL();
1118
1119         ret = NULL;
1120         for_each_netdev(net, dev) {
1121                 if (((dev->flags ^ if_flags) & mask) == 0) {
1122                         ret = dev;
1123                         break;
1124                 }
1125         }
1126         return ret;
1127 }
1128 EXPORT_SYMBOL(__dev_get_by_flags);
1129
1130 /**
1131  *      dev_valid_name - check if name is okay for network device
1132  *      @name: name string
1133  *
1134  *      Network device names need to be valid file names to
1135  *      allow sysfs to work.  We also disallow any kind of
1136  *      whitespace.
1137  */
1138 bool dev_valid_name(const char *name)
1139 {
1140         if (*name == '\0')
1141                 return false;
1142         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1143                 return false;
1144         if (!strcmp(name, ".") || !strcmp(name, ".."))
1145                 return false;
1146
1147         while (*name) {
1148                 if (*name == '/' || *name == ':' || isspace(*name))
1149                         return false;
1150                 name++;
1151         }
1152         return true;
1153 }
1154 EXPORT_SYMBOL(dev_valid_name);
1155
1156 /**
1157  *      __dev_alloc_name - allocate a name for a device
1158  *      @net: network namespace to allocate the device name in
1159  *      @name: name format string
1160  *      @buf:  scratch buffer and result name string
1161  *
1162  *      Passed a format string - eg "lt%d" it will try and find a suitable
1163  *      id. It scans list of devices to build up a free map, then chooses
1164  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1165  *      while allocating the name and adding the device in order to avoid
1166  *      duplicates.
1167  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1168  *      Returns the number of the unit assigned or a negative errno code.
1169  */
1170
1171 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1172 {
1173         int i = 0;
1174         const char *p;
1175         const int max_netdevices = 8*PAGE_SIZE;
1176         unsigned long *inuse;
1177         struct net_device *d;
1178
1179         if (!dev_valid_name(name))
1180                 return -EINVAL;
1181
1182         p = strchr(name, '%');
1183         if (p) {
1184                 /*
1185                  * Verify the string as this thing may have come from
1186                  * the user.  There must be either one "%d" and no other "%"
1187                  * characters.
1188                  */
1189                 if (p[1] != 'd' || strchr(p + 2, '%'))
1190                         return -EINVAL;
1191
1192                 /* Use one page as a bit array of possible slots */
1193                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1194                 if (!inuse)
1195                         return -ENOMEM;
1196
1197                 for_each_netdev(net, d) {
1198                         if (!sscanf(d->name, name, &i))
1199                                 continue;
1200                         if (i < 0 || i >= max_netdevices)
1201                                 continue;
1202
1203                         /*  avoid cases where sscanf is not exact inverse of printf */
1204                         snprintf(buf, IFNAMSIZ, name, i);
1205                         if (!strncmp(buf, d->name, IFNAMSIZ))
1206                                 set_bit(i, inuse);
1207                 }
1208
1209                 i = find_first_zero_bit(inuse, max_netdevices);
1210                 free_page((unsigned long) inuse);
1211         }
1212
1213         snprintf(buf, IFNAMSIZ, name, i);
1214         if (!__dev_get_by_name(net, buf))
1215                 return i;
1216
1217         /* It is possible to run out of possible slots
1218          * when the name is long and there isn't enough space left
1219          * for the digits, or if all bits are used.
1220          */
1221         return -ENFILE;
1222 }
1223
1224 static int dev_alloc_name_ns(struct net *net,
1225                              struct net_device *dev,
1226                              const char *name)
1227 {
1228         char buf[IFNAMSIZ];
1229         int ret;
1230
1231         BUG_ON(!net);
1232         ret = __dev_alloc_name(net, name, buf);
1233         if (ret >= 0)
1234                 strlcpy(dev->name, buf, IFNAMSIZ);
1235         return ret;
1236 }
1237
1238 /**
1239  *      dev_alloc_name - allocate a name for a device
1240  *      @dev: device
1241  *      @name: name format string
1242  *
1243  *      Passed a format string - eg "lt%d" it will try and find a suitable
1244  *      id. It scans list of devices to build up a free map, then chooses
1245  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1246  *      while allocating the name and adding the device in order to avoid
1247  *      duplicates.
1248  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1249  *      Returns the number of the unit assigned or a negative errno code.
1250  */
1251
1252 int dev_alloc_name(struct net_device *dev, const char *name)
1253 {
1254         return dev_alloc_name_ns(dev_net(dev), dev, name);
1255 }
1256 EXPORT_SYMBOL(dev_alloc_name);
1257
1258 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1259                               const char *name)
1260 {
1261         BUG_ON(!net);
1262
1263         if (!dev_valid_name(name))
1264                 return -EINVAL;
1265
1266         if (strchr(name, '%'))
1267                 return dev_alloc_name_ns(net, dev, name);
1268         else if (__dev_get_by_name(net, name))
1269                 return -EEXIST;
1270         else if (dev->name != name)
1271                 strlcpy(dev->name, name, IFNAMSIZ);
1272
1273         return 0;
1274 }
1275
1276 /**
1277  *      dev_change_name - change name of a device
1278  *      @dev: device
1279  *      @newname: name (or format string) must be at least IFNAMSIZ
1280  *
1281  *      Change name of a device, can pass format strings "eth%d".
1282  *      for wildcarding.
1283  */
1284 int dev_change_name(struct net_device *dev, const char *newname)
1285 {
1286         unsigned char old_assign_type;
1287         char oldname[IFNAMSIZ];
1288         int err = 0;
1289         int ret;
1290         struct net *net;
1291
1292         ASSERT_RTNL();
1293         BUG_ON(!dev_net(dev));
1294
1295         net = dev_net(dev);
1296
1297         /* Some auto-enslaved devices e.g. failover slaves are
1298          * special, as userspace might rename the device after
1299          * the interface had been brought up and running since
1300          * the point kernel initiated auto-enslavement. Allow
1301          * live name change even when these slave devices are
1302          * up and running.
1303          *
1304          * Typically, users of these auto-enslaving devices
1305          * don't actually care about slave name change, as
1306          * they are supposed to operate on master interface
1307          * directly.
1308          */
1309         if (dev->flags & IFF_UP &&
1310             likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1311                 return -EBUSY;
1312
1313         down_write(&devnet_rename_sem);
1314
1315         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1316                 up_write(&devnet_rename_sem);
1317                 return 0;
1318         }
1319
1320         memcpy(oldname, dev->name, IFNAMSIZ);
1321
1322         err = dev_get_valid_name(net, dev, newname);
1323         if (err < 0) {
1324                 up_write(&devnet_rename_sem);
1325                 return err;
1326         }
1327
1328         if (oldname[0] && !strchr(oldname, '%'))
1329                 netdev_info(dev, "renamed from %s\n", oldname);
1330
1331         old_assign_type = dev->name_assign_type;
1332         dev->name_assign_type = NET_NAME_RENAMED;
1333
1334 rollback:
1335         ret = device_rename(&dev->dev, dev->name);
1336         if (ret) {
1337                 memcpy(dev->name, oldname, IFNAMSIZ);
1338                 dev->name_assign_type = old_assign_type;
1339                 up_write(&devnet_rename_sem);
1340                 return ret;
1341         }
1342
1343         up_write(&devnet_rename_sem);
1344
1345         netdev_adjacent_rename_links(dev, oldname);
1346
1347         write_lock_bh(&dev_base_lock);
1348         netdev_name_node_del(dev->name_node);
1349         write_unlock_bh(&dev_base_lock);
1350
1351         synchronize_rcu();
1352
1353         write_lock_bh(&dev_base_lock);
1354         netdev_name_node_add(net, dev->name_node);
1355         write_unlock_bh(&dev_base_lock);
1356
1357         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1358         ret = notifier_to_errno(ret);
1359
1360         if (ret) {
1361                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1362                 if (err >= 0) {
1363                         err = ret;
1364                         down_write(&devnet_rename_sem);
1365                         memcpy(dev->name, oldname, IFNAMSIZ);
1366                         memcpy(oldname, newname, IFNAMSIZ);
1367                         dev->name_assign_type = old_assign_type;
1368                         old_assign_type = NET_NAME_RENAMED;
1369                         goto rollback;
1370                 } else {
1371                         pr_err("%s: name change rollback failed: %d\n",
1372                                dev->name, ret);
1373                 }
1374         }
1375
1376         return err;
1377 }
1378
1379 /**
1380  *      dev_set_alias - change ifalias of a device
1381  *      @dev: device
1382  *      @alias: name up to IFALIASZ
1383  *      @len: limit of bytes to copy from info
1384  *
1385  *      Set ifalias for a device,
1386  */
1387 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1388 {
1389         struct dev_ifalias *new_alias = NULL;
1390
1391         if (len >= IFALIASZ)
1392                 return -EINVAL;
1393
1394         if (len) {
1395                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1396                 if (!new_alias)
1397                         return -ENOMEM;
1398
1399                 memcpy(new_alias->ifalias, alias, len);
1400                 new_alias->ifalias[len] = 0;
1401         }
1402
1403         mutex_lock(&ifalias_mutex);
1404         new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1405                                         mutex_is_locked(&ifalias_mutex));
1406         mutex_unlock(&ifalias_mutex);
1407
1408         if (new_alias)
1409                 kfree_rcu(new_alias, rcuhead);
1410
1411         return len;
1412 }
1413 EXPORT_SYMBOL(dev_set_alias);
1414
1415 /**
1416  *      dev_get_alias - get ifalias of a device
1417  *      @dev: device
1418  *      @name: buffer to store name of ifalias
1419  *      @len: size of buffer
1420  *
1421  *      get ifalias for a device.  Caller must make sure dev cannot go
1422  *      away,  e.g. rcu read lock or own a reference count to device.
1423  */
1424 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1425 {
1426         const struct dev_ifalias *alias;
1427         int ret = 0;
1428
1429         rcu_read_lock();
1430         alias = rcu_dereference(dev->ifalias);
1431         if (alias)
1432                 ret = snprintf(name, len, "%s", alias->ifalias);
1433         rcu_read_unlock();
1434
1435         return ret;
1436 }
1437
1438 /**
1439  *      netdev_features_change - device changes features
1440  *      @dev: device to cause notification
1441  *
1442  *      Called to indicate a device has changed features.
1443  */
1444 void netdev_features_change(struct net_device *dev)
1445 {
1446         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1447 }
1448 EXPORT_SYMBOL(netdev_features_change);
1449
1450 /**
1451  *      netdev_state_change - device changes state
1452  *      @dev: device to cause notification
1453  *
1454  *      Called to indicate a device has changed state. This function calls
1455  *      the notifier chains for netdev_chain and sends a NEWLINK message
1456  *      to the routing socket.
1457  */
1458 void netdev_state_change(struct net_device *dev)
1459 {
1460         if (dev->flags & IFF_UP) {
1461                 struct netdev_notifier_change_info change_info = {
1462                         .info.dev = dev,
1463                 };
1464
1465                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1466                                               &change_info.info);
1467                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1468         }
1469 }
1470 EXPORT_SYMBOL(netdev_state_change);
1471
1472 /**
1473  * netdev_notify_peers - notify network peers about existence of @dev
1474  * @dev: network device
1475  *
1476  * Generate traffic such that interested network peers are aware of
1477  * @dev, such as by generating a gratuitous ARP. This may be used when
1478  * a device wants to inform the rest of the network about some sort of
1479  * reconfiguration such as a failover event or virtual machine
1480  * migration.
1481  */
1482 void netdev_notify_peers(struct net_device *dev)
1483 {
1484         rtnl_lock();
1485         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1486         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1487         rtnl_unlock();
1488 }
1489 EXPORT_SYMBOL(netdev_notify_peers);
1490
1491 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1492 {
1493         const struct net_device_ops *ops = dev->netdev_ops;
1494         int ret;
1495
1496         ASSERT_RTNL();
1497
1498         if (!netif_device_present(dev)) {
1499                 /* may be detached because parent is runtime-suspended */
1500                 if (dev->dev.parent)
1501                         pm_runtime_resume(dev->dev.parent);
1502                 if (!netif_device_present(dev))
1503                         return -ENODEV;
1504         }
1505
1506         /* Block netpoll from trying to do any rx path servicing.
1507          * If we don't do this there is a chance ndo_poll_controller
1508          * or ndo_poll may be running while we open the device
1509          */
1510         netpoll_poll_disable(dev);
1511
1512         ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1513         ret = notifier_to_errno(ret);
1514         if (ret)
1515                 return ret;
1516
1517         set_bit(__LINK_STATE_START, &dev->state);
1518
1519         if (ops->ndo_validate_addr)
1520                 ret = ops->ndo_validate_addr(dev);
1521
1522         if (!ret && ops->ndo_open)
1523                 ret = ops->ndo_open(dev);
1524
1525         netpoll_poll_enable(dev);
1526
1527         if (ret)
1528                 clear_bit(__LINK_STATE_START, &dev->state);
1529         else {
1530                 dev->flags |= IFF_UP;
1531                 dev_set_rx_mode(dev);
1532                 dev_activate(dev);
1533                 add_device_randomness(dev->dev_addr, dev->addr_len);
1534         }
1535
1536         return ret;
1537 }
1538
1539 /**
1540  *      dev_open        - prepare an interface for use.
1541  *      @dev: device to open
1542  *      @extack: netlink extended ack
1543  *
1544  *      Takes a device from down to up state. The device's private open
1545  *      function is invoked and then the multicast lists are loaded. Finally
1546  *      the device is moved into the up state and a %NETDEV_UP message is
1547  *      sent to the netdev notifier chain.
1548  *
1549  *      Calling this function on an active interface is a nop. On a failure
1550  *      a negative errno code is returned.
1551  */
1552 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1553 {
1554         int ret;
1555
1556         if (dev->flags & IFF_UP)
1557                 return 0;
1558
1559         ret = __dev_open(dev, extack);
1560         if (ret < 0)
1561                 return ret;
1562
1563         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1564         call_netdevice_notifiers(NETDEV_UP, dev);
1565
1566         return ret;
1567 }
1568 EXPORT_SYMBOL(dev_open);
1569
1570 static void __dev_close_many(struct list_head *head)
1571 {
1572         struct net_device *dev;
1573
1574         ASSERT_RTNL();
1575         might_sleep();
1576
1577         list_for_each_entry(dev, head, close_list) {
1578                 /* Temporarily disable netpoll until the interface is down */
1579                 netpoll_poll_disable(dev);
1580
1581                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1582
1583                 clear_bit(__LINK_STATE_START, &dev->state);
1584
1585                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1586                  * can be even on different cpu. So just clear netif_running().
1587                  *
1588                  * dev->stop() will invoke napi_disable() on all of it's
1589                  * napi_struct instances on this device.
1590                  */
1591                 smp_mb__after_atomic(); /* Commit netif_running(). */
1592         }
1593
1594         dev_deactivate_many(head);
1595
1596         list_for_each_entry(dev, head, close_list) {
1597                 const struct net_device_ops *ops = dev->netdev_ops;
1598
1599                 /*
1600                  *      Call the device specific close. This cannot fail.
1601                  *      Only if device is UP
1602                  *
1603                  *      We allow it to be called even after a DETACH hot-plug
1604                  *      event.
1605                  */
1606                 if (ops->ndo_stop)
1607                         ops->ndo_stop(dev);
1608
1609                 dev->flags &= ~IFF_UP;
1610                 netpoll_poll_enable(dev);
1611         }
1612 }
1613
1614 static void __dev_close(struct net_device *dev)
1615 {
1616         LIST_HEAD(single);
1617
1618         list_add(&dev->close_list, &single);
1619         __dev_close_many(&single);
1620         list_del(&single);
1621 }
1622
1623 void dev_close_many(struct list_head *head, bool unlink)
1624 {
1625         struct net_device *dev, *tmp;
1626
1627         /* Remove the devices that don't need to be closed */
1628         list_for_each_entry_safe(dev, tmp, head, close_list)
1629                 if (!(dev->flags & IFF_UP))
1630                         list_del_init(&dev->close_list);
1631
1632         __dev_close_many(head);
1633
1634         list_for_each_entry_safe(dev, tmp, head, close_list) {
1635                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1636                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1637                 if (unlink)
1638                         list_del_init(&dev->close_list);
1639         }
1640 }
1641 EXPORT_SYMBOL(dev_close_many);
1642
1643 /**
1644  *      dev_close - shutdown an interface.
1645  *      @dev: device to shutdown
1646  *
1647  *      This function moves an active device into down state. A
1648  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1649  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1650  *      chain.
1651  */
1652 void dev_close(struct net_device *dev)
1653 {
1654         if (dev->flags & IFF_UP) {
1655                 LIST_HEAD(single);
1656
1657                 list_add(&dev->close_list, &single);
1658                 dev_close_many(&single, true);
1659                 list_del(&single);
1660         }
1661 }
1662 EXPORT_SYMBOL(dev_close);
1663
1664
1665 /**
1666  *      dev_disable_lro - disable Large Receive Offload on a device
1667  *      @dev: device
1668  *
1669  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1670  *      called under RTNL.  This is needed if received packets may be
1671  *      forwarded to another interface.
1672  */
1673 void dev_disable_lro(struct net_device *dev)
1674 {
1675         struct net_device *lower_dev;
1676         struct list_head *iter;
1677
1678         dev->wanted_features &= ~NETIF_F_LRO;
1679         netdev_update_features(dev);
1680
1681         if (unlikely(dev->features & NETIF_F_LRO))
1682                 netdev_WARN(dev, "failed to disable LRO!\n");
1683
1684         netdev_for_each_lower_dev(dev, lower_dev, iter)
1685                 dev_disable_lro(lower_dev);
1686 }
1687 EXPORT_SYMBOL(dev_disable_lro);
1688
1689 /**
1690  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1691  *      @dev: device
1692  *
1693  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1694  *      called under RTNL.  This is needed if Generic XDP is installed on
1695  *      the device.
1696  */
1697 static void dev_disable_gro_hw(struct net_device *dev)
1698 {
1699         dev->wanted_features &= ~NETIF_F_GRO_HW;
1700         netdev_update_features(dev);
1701
1702         if (unlikely(dev->features & NETIF_F_GRO_HW))
1703                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1704 }
1705
1706 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1707 {
1708 #define N(val)                                          \
1709         case NETDEV_##val:                              \
1710                 return "NETDEV_" __stringify(val);
1711         switch (cmd) {
1712         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1713         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1714         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1715         N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1716         N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1717         N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1718         N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1719         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1720         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1721         N(PRE_CHANGEADDR)
1722         }
1723 #undef N
1724         return "UNKNOWN_NETDEV_EVENT";
1725 }
1726 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1727
1728 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1729                                    struct net_device *dev)
1730 {
1731         struct netdev_notifier_info info = {
1732                 .dev = dev,
1733         };
1734
1735         return nb->notifier_call(nb, val, &info);
1736 }
1737
1738 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1739                                              struct net_device *dev)
1740 {
1741         int err;
1742
1743         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1744         err = notifier_to_errno(err);
1745         if (err)
1746                 return err;
1747
1748         if (!(dev->flags & IFF_UP))
1749                 return 0;
1750
1751         call_netdevice_notifier(nb, NETDEV_UP, dev);
1752         return 0;
1753 }
1754
1755 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1756                                                 struct net_device *dev)
1757 {
1758         if (dev->flags & IFF_UP) {
1759                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1760                                         dev);
1761                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1762         }
1763         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1764 }
1765
1766 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1767                                                  struct net *net)
1768 {
1769         struct net_device *dev;
1770         int err;
1771
1772         for_each_netdev(net, dev) {
1773                 err = call_netdevice_register_notifiers(nb, dev);
1774                 if (err)
1775                         goto rollback;
1776         }
1777         return 0;
1778
1779 rollback:
1780         for_each_netdev_continue_reverse(net, dev)
1781                 call_netdevice_unregister_notifiers(nb, dev);
1782         return err;
1783 }
1784
1785 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1786                                                     struct net *net)
1787 {
1788         struct net_device *dev;
1789
1790         for_each_netdev(net, dev)
1791                 call_netdevice_unregister_notifiers(nb, dev);
1792 }
1793
1794 static int dev_boot_phase = 1;
1795
1796 /**
1797  * register_netdevice_notifier - register a network notifier block
1798  * @nb: notifier
1799  *
1800  * Register a notifier to be called when network device events occur.
1801  * The notifier passed is linked into the kernel structures and must
1802  * not be reused until it has been unregistered. A negative errno code
1803  * is returned on a failure.
1804  *
1805  * When registered all registration and up events are replayed
1806  * to the new notifier to allow device to have a race free
1807  * view of the network device list.
1808  */
1809
1810 int register_netdevice_notifier(struct notifier_block *nb)
1811 {
1812         struct net *net;
1813         int err;
1814
1815         /* Close race with setup_net() and cleanup_net() */
1816         down_write(&pernet_ops_rwsem);
1817         rtnl_lock();
1818         err = raw_notifier_chain_register(&netdev_chain, nb);
1819         if (err)
1820                 goto unlock;
1821         if (dev_boot_phase)
1822                 goto unlock;
1823         for_each_net(net) {
1824                 err = call_netdevice_register_net_notifiers(nb, net);
1825                 if (err)
1826                         goto rollback;
1827         }
1828
1829 unlock:
1830         rtnl_unlock();
1831         up_write(&pernet_ops_rwsem);
1832         return err;
1833
1834 rollback:
1835         for_each_net_continue_reverse(net)
1836                 call_netdevice_unregister_net_notifiers(nb, net);
1837
1838         raw_notifier_chain_unregister(&netdev_chain, nb);
1839         goto unlock;
1840 }
1841 EXPORT_SYMBOL(register_netdevice_notifier);
1842
1843 /**
1844  * unregister_netdevice_notifier - unregister a network notifier block
1845  * @nb: notifier
1846  *
1847  * Unregister a notifier previously registered by
1848  * register_netdevice_notifier(). The notifier is unlinked into the
1849  * kernel structures and may then be reused. A negative errno code
1850  * is returned on a failure.
1851  *
1852  * After unregistering unregister and down device events are synthesized
1853  * for all devices on the device list to the removed notifier to remove
1854  * the need for special case cleanup code.
1855  */
1856
1857 int unregister_netdevice_notifier(struct notifier_block *nb)
1858 {
1859         struct net *net;
1860         int err;
1861
1862         /* Close race with setup_net() and cleanup_net() */
1863         down_write(&pernet_ops_rwsem);
1864         rtnl_lock();
1865         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1866         if (err)
1867                 goto unlock;
1868
1869         for_each_net(net)
1870                 call_netdevice_unregister_net_notifiers(nb, net);
1871
1872 unlock:
1873         rtnl_unlock();
1874         up_write(&pernet_ops_rwsem);
1875         return err;
1876 }
1877 EXPORT_SYMBOL(unregister_netdevice_notifier);
1878
1879 static int __register_netdevice_notifier_net(struct net *net,
1880                                              struct notifier_block *nb,
1881                                              bool ignore_call_fail)
1882 {
1883         int err;
1884
1885         err = raw_notifier_chain_register(&net->netdev_chain, nb);
1886         if (err)
1887                 return err;
1888         if (dev_boot_phase)
1889                 return 0;
1890
1891         err = call_netdevice_register_net_notifiers(nb, net);
1892         if (err && !ignore_call_fail)
1893                 goto chain_unregister;
1894
1895         return 0;
1896
1897 chain_unregister:
1898         raw_notifier_chain_unregister(&net->netdev_chain, nb);
1899         return err;
1900 }
1901
1902 static int __unregister_netdevice_notifier_net(struct net *net,
1903                                                struct notifier_block *nb)
1904 {
1905         int err;
1906
1907         err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1908         if (err)
1909                 return err;
1910
1911         call_netdevice_unregister_net_notifiers(nb, net);
1912         return 0;
1913 }
1914
1915 /**
1916  * register_netdevice_notifier_net - register a per-netns network notifier block
1917  * @net: network namespace
1918  * @nb: notifier
1919  *
1920  * Register a notifier to be called when network device events occur.
1921  * The notifier passed is linked into the kernel structures and must
1922  * not be reused until it has been unregistered. A negative errno code
1923  * is returned on a failure.
1924  *
1925  * When registered all registration and up events are replayed
1926  * to the new notifier to allow device to have a race free
1927  * view of the network device list.
1928  */
1929
1930 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1931 {
1932         int err;
1933
1934         rtnl_lock();
1935         err = __register_netdevice_notifier_net(net, nb, false);
1936         rtnl_unlock();
1937         return err;
1938 }
1939 EXPORT_SYMBOL(register_netdevice_notifier_net);
1940
1941 /**
1942  * unregister_netdevice_notifier_net - unregister a per-netns
1943  *                                     network notifier block
1944  * @net: network namespace
1945  * @nb: notifier
1946  *
1947  * Unregister a notifier previously registered by
1948  * register_netdevice_notifier(). The notifier is unlinked into the
1949  * kernel structures and may then be reused. A negative errno code
1950  * is returned on a failure.
1951  *
1952  * After unregistering unregister and down device events are synthesized
1953  * for all devices on the device list to the removed notifier to remove
1954  * the need for special case cleanup code.
1955  */
1956
1957 int unregister_netdevice_notifier_net(struct net *net,
1958                                       struct notifier_block *nb)
1959 {
1960         int err;
1961
1962         rtnl_lock();
1963         err = __unregister_netdevice_notifier_net(net, nb);
1964         rtnl_unlock();
1965         return err;
1966 }
1967 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1968
1969 int register_netdevice_notifier_dev_net(struct net_device *dev,
1970                                         struct notifier_block *nb,
1971                                         struct netdev_net_notifier *nn)
1972 {
1973         int err;
1974
1975         rtnl_lock();
1976         err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1977         if (!err) {
1978                 nn->nb = nb;
1979                 list_add(&nn->list, &dev->net_notifier_list);
1980         }
1981         rtnl_unlock();
1982         return err;
1983 }
1984 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1985
1986 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1987                                           struct notifier_block *nb,
1988                                           struct netdev_net_notifier *nn)
1989 {
1990         int err;
1991
1992         rtnl_lock();
1993         list_del(&nn->list);
1994         err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1995         rtnl_unlock();
1996         return err;
1997 }
1998 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1999
2000 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2001                                              struct net *net)
2002 {
2003         struct netdev_net_notifier *nn;
2004
2005         list_for_each_entry(nn, &dev->net_notifier_list, list) {
2006                 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
2007                 __register_netdevice_notifier_net(net, nn->nb, true);
2008         }
2009 }
2010
2011 /**
2012  *      call_netdevice_notifiers_info - call all network notifier blocks
2013  *      @val: value passed unmodified to notifier function
2014  *      @info: notifier information data
2015  *
2016  *      Call all network notifier blocks.  Parameters and return value
2017  *      are as for raw_notifier_call_chain().
2018  */
2019
2020 static int call_netdevice_notifiers_info(unsigned long val,
2021                                          struct netdev_notifier_info *info)
2022 {
2023         struct net *net = dev_net(info->dev);
2024         int ret;
2025
2026         ASSERT_RTNL();
2027
2028         /* Run per-netns notifier block chain first, then run the global one.
2029          * Hopefully, one day, the global one is going to be removed after
2030          * all notifier block registrators get converted to be per-netns.
2031          */
2032         ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2033         if (ret & NOTIFY_STOP_MASK)
2034                 return ret;
2035         return raw_notifier_call_chain(&netdev_chain, val, info);
2036 }
2037
2038 static int call_netdevice_notifiers_extack(unsigned long val,
2039                                            struct net_device *dev,
2040                                            struct netlink_ext_ack *extack)
2041 {
2042         struct netdev_notifier_info info = {
2043                 .dev = dev,
2044                 .extack = extack,
2045         };
2046
2047         return call_netdevice_notifiers_info(val, &info);
2048 }
2049
2050 /**
2051  *      call_netdevice_notifiers - call all network notifier blocks
2052  *      @val: value passed unmodified to notifier function
2053  *      @dev: net_device pointer passed unmodified to notifier function
2054  *
2055  *      Call all network notifier blocks.  Parameters and return value
2056  *      are as for raw_notifier_call_chain().
2057  */
2058
2059 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2060 {
2061         return call_netdevice_notifiers_extack(val, dev, NULL);
2062 }
2063 EXPORT_SYMBOL(call_netdevice_notifiers);
2064
2065 /**
2066  *      call_netdevice_notifiers_mtu - call all network notifier blocks
2067  *      @val: value passed unmodified to notifier function
2068  *      @dev: net_device pointer passed unmodified to notifier function
2069  *      @arg: additional u32 argument passed to the notifier function
2070  *
2071  *      Call all network notifier blocks.  Parameters and return value
2072  *      are as for raw_notifier_call_chain().
2073  */
2074 static int call_netdevice_notifiers_mtu(unsigned long val,
2075                                         struct net_device *dev, u32 arg)
2076 {
2077         struct netdev_notifier_info_ext info = {
2078                 .info.dev = dev,
2079                 .ext.mtu = arg,
2080         };
2081
2082         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2083
2084         return call_netdevice_notifiers_info(val, &info.info);
2085 }
2086
2087 #ifdef CONFIG_NET_INGRESS
2088 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2089
2090 void net_inc_ingress_queue(void)
2091 {
2092         static_branch_inc(&ingress_needed_key);
2093 }
2094 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2095
2096 void net_dec_ingress_queue(void)
2097 {
2098         static_branch_dec(&ingress_needed_key);
2099 }
2100 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2101 #endif
2102
2103 #ifdef CONFIG_NET_EGRESS
2104 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2105
2106 void net_inc_egress_queue(void)
2107 {
2108         static_branch_inc(&egress_needed_key);
2109 }
2110 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2111
2112 void net_dec_egress_queue(void)
2113 {
2114         static_branch_dec(&egress_needed_key);
2115 }
2116 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2117 #endif
2118
2119 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2120 #ifdef CONFIG_JUMP_LABEL
2121 static atomic_t netstamp_needed_deferred;
2122 static atomic_t netstamp_wanted;
2123 static void netstamp_clear(struct work_struct *work)
2124 {
2125         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2126         int wanted;
2127
2128         wanted = atomic_add_return(deferred, &netstamp_wanted);
2129         if (wanted > 0)
2130                 static_branch_enable(&netstamp_needed_key);
2131         else
2132                 static_branch_disable(&netstamp_needed_key);
2133 }
2134 static DECLARE_WORK(netstamp_work, netstamp_clear);
2135 #endif
2136
2137 void net_enable_timestamp(void)
2138 {
2139 #ifdef CONFIG_JUMP_LABEL
2140         int wanted;
2141
2142         while (1) {
2143                 wanted = atomic_read(&netstamp_wanted);
2144                 if (wanted <= 0)
2145                         break;
2146                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2147                         return;
2148         }
2149         atomic_inc(&netstamp_needed_deferred);
2150         schedule_work(&netstamp_work);
2151 #else
2152         static_branch_inc(&netstamp_needed_key);
2153 #endif
2154 }
2155 EXPORT_SYMBOL(net_enable_timestamp);
2156
2157 void net_disable_timestamp(void)
2158 {
2159 #ifdef CONFIG_JUMP_LABEL
2160         int wanted;
2161
2162         while (1) {
2163                 wanted = atomic_read(&netstamp_wanted);
2164                 if (wanted <= 1)
2165                         break;
2166                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2167                         return;
2168         }
2169         atomic_dec(&netstamp_needed_deferred);
2170         schedule_work(&netstamp_work);
2171 #else
2172         static_branch_dec(&netstamp_needed_key);
2173 #endif
2174 }
2175 EXPORT_SYMBOL(net_disable_timestamp);
2176
2177 static inline void net_timestamp_set(struct sk_buff *skb)
2178 {
2179         skb->tstamp = 0;
2180         if (static_branch_unlikely(&netstamp_needed_key))
2181                 __net_timestamp(skb);
2182 }
2183
2184 #define net_timestamp_check(COND, SKB)                          \
2185         if (static_branch_unlikely(&netstamp_needed_key)) {     \
2186                 if ((COND) && !(SKB)->tstamp)                   \
2187                         __net_timestamp(SKB);                   \
2188         }                                                       \
2189
2190 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2191 {
2192         unsigned int len;
2193
2194         if (!(dev->flags & IFF_UP))
2195                 return false;
2196
2197         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
2198         if (skb->len <= len)
2199                 return true;
2200
2201         /* if TSO is enabled, we don't care about the length as the packet
2202          * could be forwarded without being segmented before
2203          */
2204         if (skb_is_gso(skb))
2205                 return true;
2206
2207         return false;
2208 }
2209 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2210
2211 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2212 {
2213         int ret = ____dev_forward_skb(dev, skb);
2214
2215         if (likely(!ret)) {
2216                 skb->protocol = eth_type_trans(skb, dev);
2217                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2218         }
2219
2220         return ret;
2221 }
2222 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2223
2224 /**
2225  * dev_forward_skb - loopback an skb to another netif
2226  *
2227  * @dev: destination network device
2228  * @skb: buffer to forward
2229  *
2230  * return values:
2231  *      NET_RX_SUCCESS  (no congestion)
2232  *      NET_RX_DROP     (packet was dropped, but freed)
2233  *
2234  * dev_forward_skb can be used for injecting an skb from the
2235  * start_xmit function of one device into the receive queue
2236  * of another device.
2237  *
2238  * The receiving device may be in another namespace, so
2239  * we have to clear all information in the skb that could
2240  * impact namespace isolation.
2241  */
2242 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2243 {
2244         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2245 }
2246 EXPORT_SYMBOL_GPL(dev_forward_skb);
2247
2248 static inline int deliver_skb(struct sk_buff *skb,
2249                               struct packet_type *pt_prev,
2250                               struct net_device *orig_dev)
2251 {
2252         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2253                 return -ENOMEM;
2254         refcount_inc(&skb->users);
2255         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2256 }
2257
2258 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2259                                           struct packet_type **pt,
2260                                           struct net_device *orig_dev,
2261                                           __be16 type,
2262                                           struct list_head *ptype_list)
2263 {
2264         struct packet_type *ptype, *pt_prev = *pt;
2265
2266         list_for_each_entry_rcu(ptype, ptype_list, list) {
2267                 if (ptype->type != type)
2268                         continue;
2269                 if (pt_prev)
2270                         deliver_skb(skb, pt_prev, orig_dev);
2271                 pt_prev = ptype;
2272         }
2273         *pt = pt_prev;
2274 }
2275
2276 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2277 {
2278         if (!ptype->af_packet_priv || !skb->sk)
2279                 return false;
2280
2281         if (ptype->id_match)
2282                 return ptype->id_match(ptype, skb->sk);
2283         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2284                 return true;
2285
2286         return false;
2287 }
2288
2289 /**
2290  * dev_nit_active - return true if any network interface taps are in use
2291  *
2292  * @dev: network device to check for the presence of taps
2293  */
2294 bool dev_nit_active(struct net_device *dev)
2295 {
2296         return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2297 }
2298 EXPORT_SYMBOL_GPL(dev_nit_active);
2299
2300 /*
2301  *      Support routine. Sends outgoing frames to any network
2302  *      taps currently in use.
2303  */
2304
2305 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2306 {
2307         struct packet_type *ptype;
2308         struct sk_buff *skb2 = NULL;
2309         struct packet_type *pt_prev = NULL;
2310         struct list_head *ptype_list = &ptype_all;
2311
2312         rcu_read_lock();
2313 again:
2314         list_for_each_entry_rcu(ptype, ptype_list, list) {
2315                 if (ptype->ignore_outgoing)
2316                         continue;
2317
2318                 /* Never send packets back to the socket
2319                  * they originated from - MvS (miquels@drinkel.ow.org)
2320                  */
2321                 if (skb_loop_sk(ptype, skb))
2322                         continue;
2323
2324                 if (pt_prev) {
2325                         deliver_skb(skb2, pt_prev, skb->dev);
2326                         pt_prev = ptype;
2327                         continue;
2328                 }
2329
2330                 /* need to clone skb, done only once */
2331                 skb2 = skb_clone(skb, GFP_ATOMIC);
2332                 if (!skb2)
2333                         goto out_unlock;
2334
2335                 net_timestamp_set(skb2);
2336
2337                 /* skb->nh should be correctly
2338                  * set by sender, so that the second statement is
2339                  * just protection against buggy protocols.
2340                  */
2341                 skb_reset_mac_header(skb2);
2342
2343                 if (skb_network_header(skb2) < skb2->data ||
2344                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2345                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2346                                              ntohs(skb2->protocol),
2347                                              dev->name);
2348                         skb_reset_network_header(skb2);
2349                 }
2350
2351                 skb2->transport_header = skb2->network_header;
2352                 skb2->pkt_type = PACKET_OUTGOING;
2353                 pt_prev = ptype;
2354         }
2355
2356         if (ptype_list == &ptype_all) {
2357                 ptype_list = &dev->ptype_all;
2358                 goto again;
2359         }
2360 out_unlock:
2361         if (pt_prev) {
2362                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2363                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2364                 else
2365                         kfree_skb(skb2);
2366         }
2367         rcu_read_unlock();
2368 }
2369 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2370
2371 /**
2372  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2373  * @dev: Network device
2374  * @txq: number of queues available
2375  *
2376  * If real_num_tx_queues is changed the tc mappings may no longer be
2377  * valid. To resolve this verify the tc mapping remains valid and if
2378  * not NULL the mapping. With no priorities mapping to this
2379  * offset/count pair it will no longer be used. In the worst case TC0
2380  * is invalid nothing can be done so disable priority mappings. If is
2381  * expected that drivers will fix this mapping if they can before
2382  * calling netif_set_real_num_tx_queues.
2383  */
2384 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2385 {
2386         int i;
2387         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2388
2389         /* If TC0 is invalidated disable TC mapping */
2390         if (tc->offset + tc->count > txq) {
2391                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2392                 dev->num_tc = 0;
2393                 return;
2394         }
2395
2396         /* Invalidated prio to tc mappings set to TC0 */
2397         for (i = 1; i < TC_BITMASK + 1; i++) {
2398                 int q = netdev_get_prio_tc_map(dev, i);
2399
2400                 tc = &dev->tc_to_txq[q];
2401                 if (tc->offset + tc->count > txq) {
2402                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2403                                 i, q);
2404                         netdev_set_prio_tc_map(dev, i, 0);
2405                 }
2406         }
2407 }
2408
2409 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2410 {
2411         if (dev->num_tc) {
2412                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2413                 int i;
2414
2415                 /* walk through the TCs and see if it falls into any of them */
2416                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2417                         if ((txq - tc->offset) < tc->count)
2418                                 return i;
2419                 }
2420
2421                 /* didn't find it, just return -1 to indicate no match */
2422                 return -1;
2423         }
2424
2425         return 0;
2426 }
2427 EXPORT_SYMBOL(netdev_txq_to_tc);
2428
2429 #ifdef CONFIG_XPS
2430 struct static_key xps_needed __read_mostly;
2431 EXPORT_SYMBOL(xps_needed);
2432 struct static_key xps_rxqs_needed __read_mostly;
2433 EXPORT_SYMBOL(xps_rxqs_needed);
2434 static DEFINE_MUTEX(xps_map_mutex);
2435 #define xmap_dereference(P)             \
2436         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2437
2438 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2439                              int tci, u16 index)
2440 {
2441         struct xps_map *map = NULL;
2442         int pos;
2443
2444         if (dev_maps)
2445                 map = xmap_dereference(dev_maps->attr_map[tci]);
2446         if (!map)
2447                 return false;
2448
2449         for (pos = map->len; pos--;) {
2450                 if (map->queues[pos] != index)
2451                         continue;
2452
2453                 if (map->len > 1) {
2454                         map->queues[pos] = map->queues[--map->len];
2455                         break;
2456                 }
2457
2458                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2459                 kfree_rcu(map, rcu);
2460                 return false;
2461         }
2462
2463         return true;
2464 }
2465
2466 static bool remove_xps_queue_cpu(struct net_device *dev,
2467                                  struct xps_dev_maps *dev_maps,
2468                                  int cpu, u16 offset, u16 count)
2469 {
2470         int num_tc = dev->num_tc ? : 1;
2471         bool active = false;
2472         int tci;
2473
2474         for (tci = cpu * num_tc; num_tc--; tci++) {
2475                 int i, j;
2476
2477                 for (i = count, j = offset; i--; j++) {
2478                         if (!remove_xps_queue(dev_maps, tci, j))
2479                                 break;
2480                 }
2481
2482                 active |= i < 0;
2483         }
2484
2485         return active;
2486 }
2487
2488 static void reset_xps_maps(struct net_device *dev,
2489                            struct xps_dev_maps *dev_maps,
2490                            bool is_rxqs_map)
2491 {
2492         if (is_rxqs_map) {
2493                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2494                 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2495         } else {
2496                 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2497         }
2498         static_key_slow_dec_cpuslocked(&xps_needed);
2499         kfree_rcu(dev_maps, rcu);
2500 }
2501
2502 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2503                            struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2504                            u16 offset, u16 count, bool is_rxqs_map)
2505 {
2506         bool active = false;
2507         int i, j;
2508
2509         for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2510              j < nr_ids;)
2511                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2512                                                count);
2513         if (!active)
2514                 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2515
2516         if (!is_rxqs_map) {
2517                 for (i = offset + (count - 1); count--; i--) {
2518                         netdev_queue_numa_node_write(
2519                                 netdev_get_tx_queue(dev, i),
2520                                 NUMA_NO_NODE);
2521                 }
2522         }
2523 }
2524
2525 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2526                                    u16 count)
2527 {
2528         const unsigned long *possible_mask = NULL;
2529         struct xps_dev_maps *dev_maps;
2530         unsigned int nr_ids;
2531
2532         if (!static_key_false(&xps_needed))
2533                 return;
2534
2535         cpus_read_lock();
2536         mutex_lock(&xps_map_mutex);
2537
2538         if (static_key_false(&xps_rxqs_needed)) {
2539                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2540                 if (dev_maps) {
2541                         nr_ids = dev->num_rx_queues;
2542                         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2543                                        offset, count, true);
2544                 }
2545         }
2546
2547         dev_maps = xmap_dereference(dev->xps_cpus_map);
2548         if (!dev_maps)
2549                 goto out_no_maps;
2550
2551         if (num_possible_cpus() > 1)
2552                 possible_mask = cpumask_bits(cpu_possible_mask);
2553         nr_ids = nr_cpu_ids;
2554         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2555                        false);
2556
2557 out_no_maps:
2558         mutex_unlock(&xps_map_mutex);
2559         cpus_read_unlock();
2560 }
2561
2562 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2563 {
2564         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2565 }
2566
2567 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2568                                       u16 index, bool is_rxqs_map)
2569 {
2570         struct xps_map *new_map;
2571         int alloc_len = XPS_MIN_MAP_ALLOC;
2572         int i, pos;
2573
2574         for (pos = 0; map && pos < map->len; pos++) {
2575                 if (map->queues[pos] != index)
2576                         continue;
2577                 return map;
2578         }
2579
2580         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2581         if (map) {
2582                 if (pos < map->alloc_len)
2583                         return map;
2584
2585                 alloc_len = map->alloc_len * 2;
2586         }
2587
2588         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2589          *  map
2590          */
2591         if (is_rxqs_map)
2592                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2593         else
2594                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2595                                        cpu_to_node(attr_index));
2596         if (!new_map)
2597                 return NULL;
2598
2599         for (i = 0; i < pos; i++)
2600                 new_map->queues[i] = map->queues[i];
2601         new_map->alloc_len = alloc_len;
2602         new_map->len = pos;
2603
2604         return new_map;
2605 }
2606
2607 /* Must be called under cpus_read_lock */
2608 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2609                           u16 index, bool is_rxqs_map)
2610 {
2611         const unsigned long *online_mask = NULL, *possible_mask = NULL;
2612         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2613         int i, j, tci, numa_node_id = -2;
2614         int maps_sz, num_tc = 1, tc = 0;
2615         struct xps_map *map, *new_map;
2616         bool active = false;
2617         unsigned int nr_ids;
2618
2619         if (dev->num_tc) {
2620                 /* Do not allow XPS on subordinate device directly */
2621                 num_tc = dev->num_tc;
2622                 if (num_tc < 0)
2623                         return -EINVAL;
2624
2625                 /* If queue belongs to subordinate dev use its map */
2626                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2627
2628                 tc = netdev_txq_to_tc(dev, index);
2629                 if (tc < 0)
2630                         return -EINVAL;
2631         }
2632
2633         mutex_lock(&xps_map_mutex);
2634         if (is_rxqs_map) {
2635                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2636                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2637                 nr_ids = dev->num_rx_queues;
2638         } else {
2639                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2640                 if (num_possible_cpus() > 1) {
2641                         online_mask = cpumask_bits(cpu_online_mask);
2642                         possible_mask = cpumask_bits(cpu_possible_mask);
2643                 }
2644                 dev_maps = xmap_dereference(dev->xps_cpus_map);
2645                 nr_ids = nr_cpu_ids;
2646         }
2647
2648         if (maps_sz < L1_CACHE_BYTES)
2649                 maps_sz = L1_CACHE_BYTES;
2650
2651         /* allocate memory for queue storage */
2652         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2653              j < nr_ids;) {
2654                 if (!new_dev_maps)
2655                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2656                 if (!new_dev_maps) {
2657                         mutex_unlock(&xps_map_mutex);
2658                         return -ENOMEM;
2659                 }
2660
2661                 tci = j * num_tc + tc;
2662                 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2663                                  NULL;
2664
2665                 map = expand_xps_map(map, j, index, is_rxqs_map);
2666                 if (!map)
2667                         goto error;
2668
2669                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2670         }
2671
2672         if (!new_dev_maps)
2673                 goto out_no_new_maps;
2674
2675         if (!dev_maps) {
2676                 /* Increment static keys at most once per type */
2677                 static_key_slow_inc_cpuslocked(&xps_needed);
2678                 if (is_rxqs_map)
2679                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2680         }
2681
2682         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2683              j < nr_ids;) {
2684                 /* copy maps belonging to foreign traffic classes */
2685                 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2686                         /* fill in the new device map from the old device map */
2687                         map = xmap_dereference(dev_maps->attr_map[tci]);
2688                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2689                 }
2690
2691                 /* We need to explicitly update tci as prevous loop
2692                  * could break out early if dev_maps is NULL.
2693                  */
2694                 tci = j * num_tc + tc;
2695
2696                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2697                     netif_attr_test_online(j, online_mask, nr_ids)) {
2698                         /* add tx-queue to CPU/rx-queue maps */
2699                         int pos = 0;
2700
2701                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2702                         while ((pos < map->len) && (map->queues[pos] != index))
2703                                 pos++;
2704
2705                         if (pos == map->len)
2706                                 map->queues[map->len++] = index;
2707 #ifdef CONFIG_NUMA
2708                         if (!is_rxqs_map) {
2709                                 if (numa_node_id == -2)
2710                                         numa_node_id = cpu_to_node(j);
2711                                 else if (numa_node_id != cpu_to_node(j))
2712                                         numa_node_id = -1;
2713                         }
2714 #endif
2715                 } else if (dev_maps) {
2716                         /* fill in the new device map from the old device map */
2717                         map = xmap_dereference(dev_maps->attr_map[tci]);
2718                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2719                 }
2720
2721                 /* copy maps belonging to foreign traffic classes */
2722                 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2723                         /* fill in the new device map from the old device map */
2724                         map = xmap_dereference(dev_maps->attr_map[tci]);
2725                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2726                 }
2727         }
2728
2729         if (is_rxqs_map)
2730                 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2731         else
2732                 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2733
2734         /* Cleanup old maps */
2735         if (!dev_maps)
2736                 goto out_no_old_maps;
2737
2738         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2739              j < nr_ids;) {
2740                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2741                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2742                         map = xmap_dereference(dev_maps->attr_map[tci]);
2743                         if (map && map != new_map)
2744                                 kfree_rcu(map, rcu);
2745                 }
2746         }
2747
2748         kfree_rcu(dev_maps, rcu);
2749
2750 out_no_old_maps:
2751         dev_maps = new_dev_maps;
2752         active = true;
2753
2754 out_no_new_maps:
2755         if (!is_rxqs_map) {
2756                 /* update Tx queue numa node */
2757                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2758                                              (numa_node_id >= 0) ?
2759                                              numa_node_id : NUMA_NO_NODE);
2760         }
2761
2762         if (!dev_maps)
2763                 goto out_no_maps;
2764
2765         /* removes tx-queue from unused CPUs/rx-queues */
2766         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2767              j < nr_ids;) {
2768                 for (i = tc, tci = j * num_tc; i--; tci++)
2769                         active |= remove_xps_queue(dev_maps, tci, index);
2770                 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2771                     !netif_attr_test_online(j, online_mask, nr_ids))
2772                         active |= remove_xps_queue(dev_maps, tci, index);
2773                 for (i = num_tc - tc, tci++; --i; tci++)
2774                         active |= remove_xps_queue(dev_maps, tci, index);
2775         }
2776
2777         /* free map if not active */
2778         if (!active)
2779                 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2780
2781 out_no_maps:
2782         mutex_unlock(&xps_map_mutex);
2783
2784         return 0;
2785 error:
2786         /* remove any maps that we added */
2787         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2788              j < nr_ids;) {
2789                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2790                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2791                         map = dev_maps ?
2792                               xmap_dereference(dev_maps->attr_map[tci]) :
2793                               NULL;
2794                         if (new_map && new_map != map)
2795                                 kfree(new_map);
2796                 }
2797         }
2798
2799         mutex_unlock(&xps_map_mutex);
2800
2801         kfree(new_dev_maps);
2802         return -ENOMEM;
2803 }
2804 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2805
2806 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2807                         u16 index)
2808 {
2809         int ret;
2810
2811         cpus_read_lock();
2812         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2813         cpus_read_unlock();
2814
2815         return ret;
2816 }
2817 EXPORT_SYMBOL(netif_set_xps_queue);
2818
2819 #endif
2820 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2821 {
2822         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2823
2824         /* Unbind any subordinate channels */
2825         while (txq-- != &dev->_tx[0]) {
2826                 if (txq->sb_dev)
2827                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2828         }
2829 }
2830
2831 void netdev_reset_tc(struct net_device *dev)
2832 {
2833 #ifdef CONFIG_XPS
2834         netif_reset_xps_queues_gt(dev, 0);
2835 #endif
2836         netdev_unbind_all_sb_channels(dev);
2837
2838         /* Reset TC configuration of device */
2839         dev->num_tc = 0;
2840         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2841         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2842 }
2843 EXPORT_SYMBOL(netdev_reset_tc);
2844
2845 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2846 {
2847         if (tc >= dev->num_tc)
2848                 return -EINVAL;
2849
2850 #ifdef CONFIG_XPS
2851         netif_reset_xps_queues(dev, offset, count);
2852 #endif
2853         dev->tc_to_txq[tc].count = count;
2854         dev->tc_to_txq[tc].offset = offset;
2855         return 0;
2856 }
2857 EXPORT_SYMBOL(netdev_set_tc_queue);
2858
2859 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2860 {
2861         if (num_tc > TC_MAX_QUEUE)
2862                 return -EINVAL;
2863
2864 #ifdef CONFIG_XPS
2865         netif_reset_xps_queues_gt(dev, 0);
2866 #endif
2867         netdev_unbind_all_sb_channels(dev);
2868
2869         dev->num_tc = num_tc;
2870         return 0;
2871 }
2872 EXPORT_SYMBOL(netdev_set_num_tc);
2873
2874 void netdev_unbind_sb_channel(struct net_device *dev,
2875                               struct net_device *sb_dev)
2876 {
2877         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2878
2879 #ifdef CONFIG_XPS
2880         netif_reset_xps_queues_gt(sb_dev, 0);
2881 #endif
2882         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2883         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2884
2885         while (txq-- != &dev->_tx[0]) {
2886                 if (txq->sb_dev == sb_dev)
2887                         txq->sb_dev = NULL;
2888         }
2889 }
2890 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2891
2892 int netdev_bind_sb_channel_queue(struct net_device *dev,
2893                                  struct net_device *sb_dev,
2894                                  u8 tc, u16 count, u16 offset)
2895 {
2896         /* Make certain the sb_dev and dev are already configured */
2897         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2898                 return -EINVAL;
2899
2900         /* We cannot hand out queues we don't have */
2901         if ((offset + count) > dev->real_num_tx_queues)
2902                 return -EINVAL;
2903
2904         /* Record the mapping */
2905         sb_dev->tc_to_txq[tc].count = count;
2906         sb_dev->tc_to_txq[tc].offset = offset;
2907
2908         /* Provide a way for Tx queue to find the tc_to_txq map or
2909          * XPS map for itself.
2910          */
2911         while (count--)
2912                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2913
2914         return 0;
2915 }
2916 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2917
2918 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2919 {
2920         /* Do not use a multiqueue device to represent a subordinate channel */
2921         if (netif_is_multiqueue(dev))
2922                 return -ENODEV;
2923
2924         /* We allow channels 1 - 32767 to be used for subordinate channels.
2925          * Channel 0 is meant to be "native" mode and used only to represent
2926          * the main root device. We allow writing 0 to reset the device back
2927          * to normal mode after being used as a subordinate channel.
2928          */
2929         if (channel > S16_MAX)
2930                 return -EINVAL;
2931
2932         dev->num_tc = -channel;
2933
2934         return 0;
2935 }
2936 EXPORT_SYMBOL(netdev_set_sb_channel);
2937
2938 /*
2939  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2940  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2941  */
2942 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2943 {
2944         bool disabling;
2945         int rc;
2946
2947         disabling = txq < dev->real_num_tx_queues;
2948
2949         if (txq < 1 || txq > dev->num_tx_queues)
2950                 return -EINVAL;
2951
2952         if (dev->reg_state == NETREG_REGISTERED ||
2953             dev->reg_state == NETREG_UNREGISTERING) {
2954                 ASSERT_RTNL();
2955
2956                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2957                                                   txq);
2958                 if (rc)
2959                         return rc;
2960
2961                 if (dev->num_tc)
2962                         netif_setup_tc(dev, txq);
2963
2964                 dev->real_num_tx_queues = txq;
2965
2966                 if (disabling) {
2967                         synchronize_net();
2968                         qdisc_reset_all_tx_gt(dev, txq);
2969 #ifdef CONFIG_XPS
2970                         netif_reset_xps_queues_gt(dev, txq);
2971 #endif
2972                 }
2973         } else {
2974                 dev->real_num_tx_queues = txq;
2975         }
2976
2977         return 0;
2978 }
2979 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2980
2981 #ifdef CONFIG_SYSFS
2982 /**
2983  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2984  *      @dev: Network device
2985  *      @rxq: Actual number of RX queues
2986  *
2987  *      This must be called either with the rtnl_lock held or before
2988  *      registration of the net device.  Returns 0 on success, or a
2989  *      negative error code.  If called before registration, it always
2990  *      succeeds.
2991  */
2992 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2993 {
2994         int rc;
2995
2996         if (rxq < 1 || rxq > dev->num_rx_queues)
2997                 return -EINVAL;
2998
2999         if (dev->reg_state == NETREG_REGISTERED) {
3000                 ASSERT_RTNL();
3001
3002                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3003                                                   rxq);
3004                 if (rc)
3005                         return rc;
3006         }
3007
3008         dev->real_num_rx_queues = rxq;
3009         return 0;
3010 }
3011 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3012 #endif
3013
3014 /**
3015  * netif_get_num_default_rss_queues - default number of RSS queues
3016  *
3017  * This routine should set an upper limit on the number of RSS queues
3018  * used by default by multiqueue devices.
3019  */
3020 int netif_get_num_default_rss_queues(void)
3021 {
3022         return is_kdump_kernel() ?
3023                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3024 }
3025 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3026
3027 static void __netif_reschedule(struct Qdisc *q)
3028 {
3029         struct softnet_data *sd;
3030         unsigned long flags;
3031
3032         local_irq_save(flags);
3033         sd = this_cpu_ptr(&softnet_data);
3034         q->next_sched = NULL;
3035         *sd->output_queue_tailp = q;
3036         sd->output_queue_tailp = &q->next_sched;
3037         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3038         local_irq_restore(flags);
3039 }
3040
3041 void __netif_schedule(struct Qdisc *q)
3042 {
3043         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3044                 __netif_reschedule(q);
3045 }
3046 EXPORT_SYMBOL(__netif_schedule);
3047
3048 struct dev_kfree_skb_cb {
3049         enum skb_free_reason reason;
3050 };
3051
3052 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3053 {
3054         return (struct dev_kfree_skb_cb *)skb->cb;
3055 }
3056
3057 void netif_schedule_queue(struct netdev_queue *txq)
3058 {
3059         rcu_read_lock();
3060         if (!netif_xmit_stopped(txq)) {
3061                 struct Qdisc *q = rcu_dereference(txq->qdisc);
3062
3063                 __netif_schedule(q);
3064         }
3065         rcu_read_unlock();
3066 }
3067 EXPORT_SYMBOL(netif_schedule_queue);
3068
3069 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3070 {
3071         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3072                 struct Qdisc *q;
3073
3074                 rcu_read_lock();
3075                 q = rcu_dereference(dev_queue->qdisc);
3076                 __netif_schedule(q);
3077                 rcu_read_unlock();
3078         }
3079 }
3080 EXPORT_SYMBOL(netif_tx_wake_queue);
3081
3082 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3083 {
3084         unsigned long flags;
3085
3086         if (unlikely(!skb))
3087                 return;
3088
3089         if (likely(refcount_read(&skb->users) == 1)) {
3090                 smp_rmb();
3091                 refcount_set(&skb->users, 0);
3092         } else if (likely(!refcount_dec_and_test(&skb->users))) {
3093                 return;
3094         }
3095         get_kfree_skb_cb(skb)->reason = reason;
3096         local_irq_save(flags);
3097         skb->next = __this_cpu_read(softnet_data.completion_queue);
3098         __this_cpu_write(softnet_data.completion_queue, skb);
3099         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3100         local_irq_restore(flags);
3101 }
3102 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3103
3104 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3105 {
3106         if (in_irq() || irqs_disabled())
3107                 __dev_kfree_skb_irq(skb, reason);
3108         else
3109                 dev_kfree_skb(skb);
3110 }
3111 EXPORT_SYMBOL(__dev_kfree_skb_any);
3112
3113
3114 /**
3115  * netif_device_detach - mark device as removed
3116  * @dev: network device
3117  *
3118  * Mark device as removed from system and therefore no longer available.
3119  */
3120 void netif_device_detach(struct net_device *dev)
3121 {
3122         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3123             netif_running(dev)) {
3124                 netif_tx_stop_all_queues(dev);
3125         }
3126 }
3127 EXPORT_SYMBOL(netif_device_detach);
3128
3129 /**
3130  * netif_device_attach - mark device as attached
3131  * @dev: network device
3132  *
3133  * Mark device as attached from system and restart if needed.
3134  */
3135 void netif_device_attach(struct net_device *dev)
3136 {
3137         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3138             netif_running(dev)) {
3139                 netif_tx_wake_all_queues(dev);
3140                 __netdev_watchdog_up(dev);
3141         }
3142 }
3143 EXPORT_SYMBOL(netif_device_attach);
3144
3145 /*
3146  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3147  * to be used as a distribution range.
3148  */
3149 static u16 skb_tx_hash(const struct net_device *dev,
3150                        const struct net_device *sb_dev,
3151                        struct sk_buff *skb)
3152 {
3153         u32 hash;
3154         u16 qoffset = 0;
3155         u16 qcount = dev->real_num_tx_queues;
3156
3157         if (dev->num_tc) {
3158                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3159
3160                 qoffset = sb_dev->tc_to_txq[tc].offset;
3161                 qcount = sb_dev->tc_to_txq[tc].count;
3162         }
3163
3164         if (skb_rx_queue_recorded(skb)) {
3165                 hash = skb_get_rx_queue(skb);
3166                 if (hash >= qoffset)
3167                         hash -= qoffset;
3168                 while (unlikely(hash >= qcount))
3169                         hash -= qcount;
3170                 return hash + qoffset;
3171         }
3172
3173         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3174 }
3175
3176 static void skb_warn_bad_offload(const struct sk_buff *skb)
3177 {
3178         static const netdev_features_t null_features;
3179         struct net_device *dev = skb->dev;
3180         const char *name = "";
3181
3182         if (!net_ratelimit())
3183                 return;
3184
3185         if (dev) {
3186                 if (dev->dev.parent)
3187                         name = dev_driver_string(dev->dev.parent);
3188                 else
3189                         name = netdev_name(dev);
3190         }
3191         skb_dump(KERN_WARNING, skb, false);
3192         WARN(1, "%s: caps=(%pNF, %pNF)\n",
3193              name, dev ? &dev->features : &null_features,
3194              skb->sk ? &skb->sk->sk_route_caps : &null_features);
3195 }
3196
3197 /*
3198  * Invalidate hardware checksum when packet is to be mangled, and
3199  * complete checksum manually on outgoing path.
3200  */
3201 int skb_checksum_help(struct sk_buff *skb)
3202 {
3203         __wsum csum;
3204         int ret = 0, offset;
3205
3206         if (skb->ip_summed == CHECKSUM_COMPLETE)
3207                 goto out_set_summed;
3208
3209         if (unlikely(skb_shinfo(skb)->gso_size)) {
3210                 skb_warn_bad_offload(skb);
3211                 return -EINVAL;
3212         }
3213
3214         /* Before computing a checksum, we should make sure no frag could
3215          * be modified by an external entity : checksum could be wrong.
3216          */
3217         if (skb_has_shared_frag(skb)) {
3218                 ret = __skb_linearize(skb);
3219                 if (ret)
3220                         goto out;
3221         }
3222
3223         offset = skb_checksum_start_offset(skb);
3224         BUG_ON(offset >= skb_headlen(skb));
3225         csum = skb_checksum(skb, offset, skb->len - offset, 0);
3226
3227         offset += skb->csum_offset;
3228         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3229
3230         ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3231         if (ret)
3232                 goto out;
3233
3234         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3235 out_set_summed:
3236         skb->ip_summed = CHECKSUM_NONE;
3237 out:
3238         return ret;
3239 }
3240 EXPORT_SYMBOL(skb_checksum_help);
3241
3242 int skb_crc32c_csum_help(struct sk_buff *skb)
3243 {
3244         __le32 crc32c_csum;
3245         int ret = 0, offset, start;
3246
3247         if (skb->ip_summed != CHECKSUM_PARTIAL)
3248                 goto out;
3249
3250         if (unlikely(skb_is_gso(skb)))
3251                 goto out;
3252
3253         /* Before computing a checksum, we should make sure no frag could
3254          * be modified by an external entity : checksum could be wrong.
3255          */
3256         if (unlikely(skb_has_shared_frag(skb))) {
3257                 ret = __skb_linearize(skb);
3258                 if (ret)
3259                         goto out;
3260         }
3261         start = skb_checksum_start_offset(skb);
3262         offset = start + offsetof(struct sctphdr, checksum);
3263         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3264                 ret = -EINVAL;
3265                 goto out;
3266         }
3267
3268         ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3269         if (ret)
3270                 goto out;
3271
3272         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3273                                                   skb->len - start, ~(__u32)0,
3274                                                   crc32c_csum_stub));
3275         *(__le32 *)(skb->data + offset) = crc32c_csum;
3276         skb->ip_summed = CHECKSUM_NONE;
3277         skb->csum_not_inet = 0;
3278 out:
3279         return ret;
3280 }
3281
3282 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3283 {
3284         __be16 type = skb->protocol;
3285
3286         /* Tunnel gso handlers can set protocol to ethernet. */
3287         if (type == htons(ETH_P_TEB)) {
3288                 struct ethhdr *eth;
3289
3290                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3291                         return 0;
3292
3293                 eth = (struct ethhdr *)skb->data;
3294                 type = eth->h_proto;
3295         }
3296
3297         return __vlan_get_protocol(skb, type, depth);
3298 }
3299
3300 /**
3301  *      skb_mac_gso_segment - mac layer segmentation handler.
3302  *      @skb: buffer to segment
3303  *      @features: features for the output path (see dev->features)
3304  */
3305 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3306                                     netdev_features_t features)
3307 {
3308         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3309         struct packet_offload *ptype;
3310         int vlan_depth = skb->mac_len;
3311         __be16 type = skb_network_protocol(skb, &vlan_depth);
3312
3313         if (unlikely(!type))
3314                 return ERR_PTR(-EINVAL);
3315
3316         __skb_pull(skb, vlan_depth);
3317
3318         rcu_read_lock();
3319         list_for_each_entry_rcu(ptype, &offload_base, list) {
3320                 if (ptype->type == type && ptype->callbacks.gso_segment) {
3321                         segs = ptype->callbacks.gso_segment(skb, features);
3322                         break;
3323                 }
3324         }
3325         rcu_read_unlock();
3326
3327         __skb_push(skb, skb->data - skb_mac_header(skb));
3328
3329         return segs;
3330 }
3331 EXPORT_SYMBOL(skb_mac_gso_segment);
3332
3333
3334 /* openvswitch calls this on rx path, so we need a different check.
3335  */
3336 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3337 {
3338         if (tx_path)
3339                 return skb->ip_summed != CHECKSUM_PARTIAL &&
3340                        skb->ip_summed != CHECKSUM_UNNECESSARY;
3341
3342         return skb->ip_summed == CHECKSUM_NONE;
3343 }
3344
3345 /**
3346  *      __skb_gso_segment - Perform segmentation on skb.
3347  *      @skb: buffer to segment
3348  *      @features: features for the output path (see dev->features)
3349  *      @tx_path: whether it is called in TX path
3350  *
3351  *      This function segments the given skb and returns a list of segments.
3352  *
3353  *      It may return NULL if the skb requires no segmentation.  This is
3354  *      only possible when GSO is used for verifying header integrity.
3355  *
3356  *      Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3357  */
3358 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3359                                   netdev_features_t features, bool tx_path)
3360 {
3361         struct sk_buff *segs;
3362
3363         if (unlikely(skb_needs_check(skb, tx_path))) {
3364                 int err;
3365
3366                 /* We're going to init ->check field in TCP or UDP header */
3367                 err = skb_cow_head(skb, 0);
3368                 if (err < 0)
3369                         return ERR_PTR(err);
3370         }
3371
3372         /* Only report GSO partial support if it will enable us to
3373          * support segmentation on this frame without needing additional
3374          * work.
3375          */
3376         if (features & NETIF_F_GSO_PARTIAL) {
3377                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3378                 struct net_device *dev = skb->dev;
3379
3380                 partial_features |= dev->features & dev->gso_partial_features;
3381                 if (!skb_gso_ok(skb, features | partial_features))
3382                         features &= ~NETIF_F_GSO_PARTIAL;
3383         }
3384
3385         BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3386                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3387
3388         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3389         SKB_GSO_CB(skb)->encap_level = 0;
3390
3391         skb_reset_mac_header(skb);
3392         skb_reset_mac_len(skb);
3393
3394         segs = skb_mac_gso_segment(skb, features);
3395
3396         if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3397                 skb_warn_bad_offload(skb);
3398
3399         return segs;
3400 }
3401 EXPORT_SYMBOL(__skb_gso_segment);
3402
3403 /* Take action when hardware reception checksum errors are detected. */
3404 #ifdef CONFIG_BUG
3405 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3406 {
3407         if (net_ratelimit()) {
3408                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3409                 skb_dump(KERN_ERR, skb, true);
3410                 dump_stack();
3411         }
3412 }
3413 EXPORT_SYMBOL(netdev_rx_csum_fault);
3414 #endif
3415
3416 /* XXX: check that highmem exists at all on the given machine. */
3417 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3418 {
3419 #ifdef CONFIG_HIGHMEM
3420         int i;
3421
3422         if (!(dev->features & NETIF_F_HIGHDMA)) {
3423                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3424                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3425
3426                         if (PageHighMem(skb_frag_page(frag)))
3427                                 return 1;
3428                 }
3429         }
3430 #endif
3431         return 0;
3432 }
3433
3434 /* If MPLS offload request, verify we are testing hardware MPLS features
3435  * instead of standard features for the netdev.
3436  */
3437 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3438 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3439                                            netdev_features_t features,
3440                                            __be16 type)
3441 {
3442         if (eth_p_mpls(type))
3443                 features &= skb->dev->mpls_features;
3444
3445         return features;
3446 }
3447 #else
3448 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3449                                            netdev_features_t features,
3450                                            __be16 type)
3451 {
3452         return features;
3453 }
3454 #endif
3455
3456 static netdev_features_t harmonize_features(struct sk_buff *skb,
3457         netdev_features_t features)
3458 {
3459         __be16 type;
3460
3461         type = skb_network_protocol(skb, NULL);
3462         features = net_mpls_features(skb, features, type);
3463
3464         if (skb->ip_summed != CHECKSUM_NONE &&
3465             !can_checksum_protocol(features, type)) {
3466                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3467         }
3468         if (illegal_highdma(skb->dev, skb))
3469                 features &= ~NETIF_F_SG;
3470
3471         return features;
3472 }
3473
3474 netdev_features_t passthru_features_check(struct sk_buff *skb,
3475                                           struct net_device *dev,
3476                                           netdev_features_t features)
3477 {
3478         return features;
3479 }
3480 EXPORT_SYMBOL(passthru_features_check);
3481
3482 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3483                                              struct net_device *dev,
3484                                              netdev_features_t features)
3485 {
3486         return vlan_features_check(skb, features);
3487 }
3488
3489 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3490                                             struct net_device *dev,
3491                                             netdev_features_t features)
3492 {
3493         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3494
3495         if (gso_segs > dev->gso_max_segs)
3496                 return features & ~NETIF_F_GSO_MASK;
3497
3498         /* Support for GSO partial features requires software
3499          * intervention before we can actually process the packets
3500          * so we need to strip support for any partial features now
3501          * and we can pull them back in after we have partially
3502          * segmented the frame.
3503          */
3504         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3505                 features &= ~dev->gso_partial_features;
3506
3507         /* Make sure to clear the IPv4 ID mangling feature if the
3508          * IPv4 header has the potential to be fragmented.
3509          */
3510         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3511                 struct iphdr *iph = skb->encapsulation ?
3512                                     inner_ip_hdr(skb) : ip_hdr(skb);
3513
3514                 if (!(iph->frag_off & htons(IP_DF)))
3515                         features &= ~NETIF_F_TSO_MANGLEID;
3516         }
3517
3518         return features;
3519 }
3520
3521 netdev_features_t netif_skb_features(struct sk_buff *skb)
3522 {
3523         struct net_device *dev = skb->dev;
3524         netdev_features_t features = dev->features;
3525
3526         if (skb_is_gso(skb))
3527                 features = gso_features_check(skb, dev, features);
3528
3529         /* If encapsulation offload request, verify we are testing
3530          * hardware encapsulation features instead of standard
3531          * features for the netdev
3532          */
3533         if (skb->encapsulation)
3534                 features &= dev->hw_enc_features;
3535
3536         if (skb_vlan_tagged(skb))
3537                 features = netdev_intersect_features(features,
3538                                                      dev->vlan_features |
3539                                                      NETIF_F_HW_VLAN_CTAG_TX |
3540                                                      NETIF_F_HW_VLAN_STAG_TX);
3541
3542         if (dev->netdev_ops->ndo_features_check)
3543                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3544                                                                 features);
3545         else
3546                 features &= dflt_features_check(skb, dev, features);
3547
3548         return harmonize_features(skb, features);
3549 }
3550 EXPORT_SYMBOL(netif_skb_features);
3551
3552 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3553                     struct netdev_queue *txq, bool more)
3554 {
3555         unsigned int len;
3556         int rc;
3557
3558         if (dev_nit_active(dev))
3559                 dev_queue_xmit_nit(skb, dev);
3560
3561         len = skb->len;
3562         PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3563         trace_net_dev_start_xmit(skb, dev);
3564         rc = netdev_start_xmit(skb, dev, txq, more);
3565         trace_net_dev_xmit(skb, rc, dev, len);
3566
3567         return rc;
3568 }
3569
3570 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3571                                     struct netdev_queue *txq, int *ret)
3572 {
3573         struct sk_buff *skb = first;
3574         int rc = NETDEV_TX_OK;
3575
3576         while (skb) {
3577                 struct sk_buff *next = skb->next;
3578
3579                 skb_mark_not_on_list(skb);
3580                 rc = xmit_one(skb, dev, txq, next != NULL);
3581                 if (unlikely(!dev_xmit_complete(rc))) {
3582                         skb->next = next;
3583                         goto out;
3584                 }
3585
3586                 skb = next;
3587                 if (netif_tx_queue_stopped(txq) && skb) {
3588                         rc = NETDEV_TX_BUSY;
3589                         break;
3590                 }
3591         }
3592
3593 out:
3594         *ret = rc;
3595         return skb;
3596 }
3597
3598 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3599                                           netdev_features_t features)
3600 {
3601         if (skb_vlan_tag_present(skb) &&
3602             !vlan_hw_offload_capable(features, skb->vlan_proto))
3603                 skb = __vlan_hwaccel_push_inside(skb);
3604         return skb;
3605 }
3606
3607 int skb_csum_hwoffload_help(struct sk_buff *skb,
3608                             const netdev_features_t features)
3609 {
3610         if (unlikely(skb->csum_not_inet))
3611                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3612                         skb_crc32c_csum_help(skb);
3613
3614         return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3615 }
3616 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3617
3618 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3619 {
3620         netdev_features_t features;
3621
3622         features = netif_skb_features(skb);
3623         skb = validate_xmit_vlan(skb, features);
3624         if (unlikely(!skb))
3625                 goto out_null;
3626
3627         skb = sk_validate_xmit_skb(skb, dev);
3628         if (unlikely(!skb))
3629                 goto out_null;
3630
3631         if (netif_needs_gso(skb, features)) {
3632                 struct sk_buff *segs;
3633
3634                 segs = skb_gso_segment(skb, features);
3635                 if (IS_ERR(segs)) {
3636                         goto out_kfree_skb;
3637                 } else if (segs) {
3638                         consume_skb(skb);
3639                         skb = segs;
3640                 }
3641         } else {
3642                 if (skb_needs_linearize(skb, features) &&
3643                     __skb_linearize(skb))
3644                         goto out_kfree_skb;
3645
3646                 /* If packet is not checksummed and device does not
3647                  * support checksumming for this protocol, complete
3648                  * checksumming here.
3649                  */
3650                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3651                         if (skb->encapsulation)
3652                                 skb_set_inner_transport_header(skb,
3653                                                                skb_checksum_start_offset(skb));
3654                         else
3655                                 skb_set_transport_header(skb,
3656                                                          skb_checksum_start_offset(skb));
3657                         if (skb_csum_hwoffload_help(skb, features))
3658                                 goto out_kfree_skb;
3659                 }
3660         }
3661
3662         skb = validate_xmit_xfrm(skb, features, again);
3663
3664         return skb;
3665
3666 out_kfree_skb:
3667         kfree_skb(skb);
3668 out_null:
3669         atomic_long_inc(&dev->tx_dropped);
3670         return NULL;
3671 }
3672
3673 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3674 {
3675         struct sk_buff *next, *head = NULL, *tail;
3676
3677         for (; skb != NULL; skb = next) {
3678                 next = skb->next;
3679                 skb_mark_not_on_list(skb);
3680
3681                 /* in case skb wont be segmented, point to itself */
3682                 skb->prev = skb;
3683
3684                 skb = validate_xmit_skb(skb, dev, again);
3685                 if (!skb)
3686                         continue;
3687
3688                 if (!head)
3689                         head = skb;
3690                 else
3691                         tail->next = skb;
3692                 /* If skb was segmented, skb->prev points to
3693                  * the last segment. If not, it still contains skb.
3694                  */
3695                 tail = skb->prev;
3696         }
3697         return head;
3698 }
3699 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3700
3701 static void qdisc_pkt_len_init(struct sk_buff *skb)
3702 {
3703         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3704
3705         qdisc_skb_cb(skb)->pkt_len = skb->len;
3706
3707         /* To get more precise estimation of bytes sent on wire,
3708          * we add to pkt_len the headers size of all segments
3709          */
3710         if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3711                 unsigned int hdr_len;
3712                 u16 gso_segs = shinfo->gso_segs;
3713
3714                 /* mac layer + network layer */
3715                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3716
3717                 /* + transport layer */
3718                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3719                         const struct tcphdr *th;
3720                         struct tcphdr _tcphdr;
3721
3722                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3723                                                 sizeof(_tcphdr), &_tcphdr);
3724                         if (likely(th))
3725                                 hdr_len += __tcp_hdrlen(th);
3726                 } else {
3727                         struct udphdr _udphdr;
3728
3729                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3730                                                sizeof(_udphdr), &_udphdr))
3731                                 hdr_len += sizeof(struct udphdr);
3732                 }
3733
3734                 if (shinfo->gso_type & SKB_GSO_DODGY)
3735                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3736                                                 shinfo->gso_size);
3737
3738                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3739         }
3740 }
3741
3742 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3743                                  struct net_device *dev,
3744                                  struct netdev_queue *txq)
3745 {
3746         spinlock_t *root_lock = qdisc_lock(q);
3747         struct sk_buff *to_free = NULL;
3748         bool contended;
3749         int rc;
3750
3751         qdisc_calculate_pkt_len(skb, q);
3752
3753         if (q->flags & TCQ_F_NOLOCK) {
3754                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3755                 qdisc_run(q);
3756
3757                 if (unlikely(to_free))
3758                         kfree_skb_list(to_free);
3759                 return rc;
3760         }
3761
3762         /*
3763          * Heuristic to force contended enqueues to serialize on a
3764          * separate lock before trying to get qdisc main lock.
3765          * This permits qdisc->running owner to get the lock more
3766          * often and dequeue packets faster.
3767          */
3768         contended = qdisc_is_running(q);
3769         if (unlikely(contended))
3770                 spin_lock(&q->busylock);
3771
3772         spin_lock(root_lock);
3773         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3774                 __qdisc_drop(skb, &to_free);
3775                 rc = NET_XMIT_DROP;
3776         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3777                    qdisc_run_begin(q)) {
3778                 /*
3779                  * This is a work-conserving queue; there are no old skbs
3780                  * waiting to be sent out; and the qdisc is not running -
3781                  * xmit the skb directly.
3782                  */
3783
3784                 qdisc_bstats_update(q, skb);
3785
3786                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3787                         if (unlikely(contended)) {
3788                                 spin_unlock(&q->busylock);
3789                                 contended = false;
3790                         }
3791                         __qdisc_run(q);
3792                 }
3793
3794                 qdisc_run_end(q);
3795                 rc = NET_XMIT_SUCCESS;
3796         } else {
3797                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3798                 if (qdisc_run_begin(q)) {
3799                         if (unlikely(contended)) {
3800                                 spin_unlock(&q->busylock);
3801                                 contended = false;
3802                         }
3803                         __qdisc_run(q);
3804                         qdisc_run_end(q);
3805                 }
3806         }
3807         spin_unlock(root_lock);
3808         if (unlikely(to_free))
3809                 kfree_skb_list(to_free);
3810         if (unlikely(contended))
3811                 spin_unlock(&q->busylock);
3812         return rc;
3813 }
3814
3815 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3816 static void skb_update_prio(struct sk_buff *skb)
3817 {
3818         const struct netprio_map *map;
3819         const struct sock *sk;
3820         unsigned int prioidx;
3821
3822         if (skb->priority)
3823                 return;
3824         map = rcu_dereference_bh(skb->dev->priomap);
3825         if (!map)
3826                 return;
3827         sk = skb_to_full_sk(skb);
3828         if (!sk)
3829                 return;
3830
3831         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3832
3833         if (prioidx < map->priomap_len)
3834                 skb->priority = map->priomap[prioidx];
3835 }
3836 #else
3837 #define skb_update_prio(skb)
3838 #endif
3839
3840 /**
3841  *      dev_loopback_xmit - loop back @skb
3842  *      @net: network namespace this loopback is happening in
3843  *      @sk:  sk needed to be a netfilter okfn
3844  *      @skb: buffer to transmit
3845  */
3846 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3847 {
3848         skb_reset_mac_header(skb);
3849         __skb_pull(skb, skb_network_offset(skb));
3850         skb->pkt_type = PACKET_LOOPBACK;
3851         skb->ip_summed = CHECKSUM_UNNECESSARY;
3852         WARN_ON(!skb_dst(skb));
3853         skb_dst_force(skb);
3854         netif_rx_ni(skb);
3855         return 0;
3856 }
3857 EXPORT_SYMBOL(dev_loopback_xmit);
3858
3859 #ifdef CONFIG_NET_EGRESS
3860 static struct sk_buff *
3861 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3862 {
3863         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3864         struct tcf_result cl_res;
3865
3866         if (!miniq)
3867                 return skb;
3868
3869         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3870         mini_qdisc_bstats_cpu_update(miniq, skb);
3871
3872         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3873         case TC_ACT_OK:
3874         case TC_ACT_RECLASSIFY:
3875                 skb->tc_index = TC_H_MIN(cl_res.classid);
3876                 break;
3877         case TC_ACT_SHOT:
3878                 mini_qdisc_qstats_cpu_drop(miniq);
3879                 *ret = NET_XMIT_DROP;
3880                 kfree_skb(skb);
3881                 return NULL;
3882         case TC_ACT_STOLEN:
3883         case TC_ACT_QUEUED:
3884         case TC_ACT_TRAP:
3885                 *ret = NET_XMIT_SUCCESS;
3886                 consume_skb(skb);
3887                 return NULL;
3888         case TC_ACT_REDIRECT:
3889                 /* No need to push/pop skb's mac_header here on egress! */
3890                 skb_do_redirect(skb);
3891                 *ret = NET_XMIT_SUCCESS;
3892                 return NULL;
3893         default:
3894                 break;
3895         }
3896
3897         return skb;
3898 }
3899 #endif /* CONFIG_NET_EGRESS */
3900
3901 #ifdef CONFIG_XPS
3902 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3903                                struct xps_dev_maps *dev_maps, unsigned int tci)
3904 {
3905         struct xps_map *map;
3906         int queue_index = -1;
3907
3908         if (dev->num_tc) {
3909                 tci *= dev->num_tc;
3910                 tci += netdev_get_prio_tc_map(dev, skb->priority);
3911         }
3912
3913         map = rcu_dereference(dev_maps->attr_map[tci]);
3914         if (map) {
3915                 if (map->len == 1)
3916                         queue_index = map->queues[0];
3917                 else
3918                         queue_index = map->queues[reciprocal_scale(
3919                                                 skb_get_hash(skb), map->len)];
3920                 if (unlikely(queue_index >= dev->real_num_tx_queues))
3921                         queue_index = -1;
3922         }
3923         return queue_index;
3924 }
3925 #endif
3926
3927 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3928                          struct sk_buff *skb)
3929 {
3930 #ifdef CONFIG_XPS
3931         struct xps_dev_maps *dev_maps;
3932         struct sock *sk = skb->sk;
3933         int queue_index = -1;
3934
3935         if (!static_key_false(&xps_needed))
3936                 return -1;
3937
3938         rcu_read_lock();
3939         if (!static_key_false(&xps_rxqs_needed))
3940                 goto get_cpus_map;
3941
3942         dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3943         if (dev_maps) {
3944                 int tci = sk_rx_queue_get(sk);
3945
3946                 if (tci >= 0 && tci < dev->num_rx_queues)
3947                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3948                                                           tci);
3949         }
3950
3951 get_cpus_map:
3952         if (queue_index < 0) {
3953                 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3954                 if (dev_maps) {
3955                         unsigned int tci = skb->sender_cpu - 1;
3956
3957                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3958                                                           tci);
3959                 }
3960         }
3961         rcu_read_unlock();
3962
3963         return queue_index;
3964 #else
3965         return -1;
3966 #endif
3967 }
3968
3969 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3970                      struct net_device *sb_dev)
3971 {
3972         return 0;
3973 }
3974 EXPORT_SYMBOL(dev_pick_tx_zero);
3975
3976 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3977                        struct net_device *sb_dev)
3978 {
3979         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3980 }
3981 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3982
3983 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3984                      struct net_device *sb_dev)
3985 {
3986         struct sock *sk = skb->sk;
3987         int queue_index = sk_tx_queue_get(sk);
3988
3989         sb_dev = sb_dev ? : dev;
3990
3991         if (queue_index < 0 || skb->ooo_okay ||
3992             queue_index >= dev->real_num_tx_queues) {
3993                 int new_index = get_xps_queue(dev, sb_dev, skb);
3994
3995                 if (new_index < 0)
3996                         new_index = skb_tx_hash(dev, sb_dev, skb);
3997
3998                 if (queue_index != new_index && sk &&
3999                     sk_fullsock(sk) &&
4000                     rcu_access_pointer(sk->sk_dst_cache))
4001                         sk_tx_queue_set(sk, new_index);
4002
4003                 queue_index = new_index;
4004         }
4005
4006         return queue_index;
4007 }
4008 EXPORT_SYMBOL(netdev_pick_tx);
4009
4010 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4011                                          struct sk_buff *skb,
4012                                          struct net_device *sb_dev)
4013 {
4014         int queue_index = 0;
4015
4016 #ifdef CONFIG_XPS
4017         u32 sender_cpu = skb->sender_cpu - 1;
4018
4019         if (sender_cpu >= (u32)NR_CPUS)
4020                 skb->sender_cpu = raw_smp_processor_id() + 1;
4021 #endif
4022
4023         if (dev->real_num_tx_queues != 1) {
4024                 const struct net_device_ops *ops = dev->netdev_ops;
4025
4026                 if (ops->ndo_select_queue)
4027                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4028                 else
4029                         queue_index = netdev_pick_tx(dev, skb, sb_dev);
4030
4031                 queue_index = netdev_cap_txqueue(dev, queue_index);
4032         }
4033
4034         skb_set_queue_mapping(skb, queue_index);
4035         return netdev_get_tx_queue(dev, queue_index);
4036 }
4037
4038 /**
4039  *      __dev_queue_xmit - transmit a buffer
4040  *      @skb: buffer to transmit
4041  *      @sb_dev: suboordinate device used for L2 forwarding offload
4042  *
4043  *      Queue a buffer for transmission to a network device. The caller must
4044  *      have set the device and priority and built the buffer before calling
4045  *      this function. The function can be called from an interrupt.
4046  *
4047  *      A negative errno code is returned on a failure. A success does not
4048  *      guarantee the frame will be transmitted as it may be dropped due
4049  *      to congestion or traffic shaping.
4050  *
4051  * -----------------------------------------------------------------------------------
4052  *      I notice this method can also return errors from the queue disciplines,
4053  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4054  *      be positive.
4055  *
4056  *      Regardless of the return value, the skb is consumed, so it is currently
4057  *      difficult to retry a send to this method.  (You can bump the ref count
4058  *      before sending to hold a reference for retry if you are careful.)
4059  *
4060  *      When calling this method, interrupts MUST be enabled.  This is because
4061  *      the BH enable code must have IRQs enabled so that it will not deadlock.
4062  *          --BLG
4063  */
4064 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4065 {
4066         struct net_device *dev = skb->dev;
4067         struct netdev_queue *txq;
4068         struct Qdisc *q;
4069         int rc = -ENOMEM;
4070         bool again = false;
4071
4072         skb_reset_mac_header(skb);
4073
4074         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4075                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
4076
4077         /* Disable soft irqs for various locks below. Also
4078          * stops preemption for RCU.
4079          */
4080         rcu_read_lock_bh();
4081
4082         skb_update_prio(skb);
4083
4084         qdisc_pkt_len_init(skb);
4085 #ifdef CONFIG_NET_CLS_ACT
4086         skb->tc_at_ingress = 0;
4087 # ifdef CONFIG_NET_EGRESS
4088         if (static_branch_unlikely(&egress_needed_key)) {
4089                 skb = sch_handle_egress(skb, &rc, dev);
4090                 if (!skb)
4091                         goto out;
4092         }
4093 # endif
4094 #endif
4095         /* If device/qdisc don't need skb->dst, release it right now while
4096          * its hot in this cpu cache.
4097          */
4098         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4099                 skb_dst_drop(skb);
4100         else
4101                 skb_dst_force(skb);
4102
4103         txq = netdev_core_pick_tx(dev, skb, sb_dev);
4104         q = rcu_dereference_bh(txq->qdisc);
4105
4106         trace_net_dev_queue(skb);
4107         if (q->enqueue) {
4108                 rc = __dev_xmit_skb(skb, q, dev, txq);
4109                 goto out;
4110         }
4111
4112         /* The device has no queue. Common case for software devices:
4113          * loopback, all the sorts of tunnels...
4114
4115          * Really, it is unlikely that netif_tx_lock protection is necessary
4116          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4117          * counters.)
4118          * However, it is possible, that they rely on protection
4119          * made by us here.
4120
4121          * Check this and shot the lock. It is not prone from deadlocks.
4122          *Either shot noqueue qdisc, it is even simpler 8)
4123          */
4124         if (dev->flags & IFF_UP) {
4125                 int cpu = smp_processor_id(); /* ok because BHs are off */
4126
4127                 if (txq->xmit_lock_owner != cpu) {
4128                         if (dev_xmit_recursion())
4129                                 goto recursion_alert;
4130
4131                         skb = validate_xmit_skb(skb, dev, &again);
4132                         if (!skb)
4133                                 goto out;
4134
4135                         PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4136                         HARD_TX_LOCK(dev, txq, cpu);
4137
4138                         if (!netif_xmit_stopped(txq)) {
4139                                 dev_xmit_recursion_inc();
4140                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4141                                 dev_xmit_recursion_dec();
4142                                 if (dev_xmit_complete(rc)) {
4143                                         HARD_TX_UNLOCK(dev, txq);
4144                                         goto out;
4145                                 }
4146                         }
4147                         HARD_TX_UNLOCK(dev, txq);
4148                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4149                                              dev->name);
4150                 } else {
4151                         /* Recursion is detected! It is possible,
4152                          * unfortunately
4153                          */
4154 recursion_alert:
4155                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4156                                              dev->name);
4157                 }
4158         }
4159
4160         rc = -ENETDOWN;
4161         rcu_read_unlock_bh();
4162
4163         atomic_long_inc(&dev->tx_dropped);
4164         kfree_skb_list(skb);
4165         return rc;
4166 out:
4167         rcu_read_unlock_bh();
4168         return rc;
4169 }
4170
4171 int dev_queue_xmit(struct sk_buff *skb)
4172 {
4173         return __dev_queue_xmit(skb, NULL);
4174 }
4175 EXPORT_SYMBOL(dev_queue_xmit);
4176
4177 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4178 {
4179         return __dev_queue_xmit(skb, sb_dev);
4180 }
4181 EXPORT_SYMBOL(dev_queue_xmit_accel);
4182
4183 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4184 {
4185         struct net_device *dev = skb->dev;
4186         struct sk_buff *orig_skb = skb;
4187         struct netdev_queue *txq;
4188         int ret = NETDEV_TX_BUSY;
4189         bool again = false;
4190
4191         if (unlikely(!netif_running(dev) ||
4192                      !netif_carrier_ok(dev)))
4193                 goto drop;
4194
4195         skb = validate_xmit_skb_list(skb, dev, &again);
4196         if (skb != orig_skb)
4197                 goto drop;
4198
4199         skb_set_queue_mapping(skb, queue_id);
4200         txq = skb_get_tx_queue(dev, skb);
4201         PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4202
4203         local_bh_disable();
4204
4205         dev_xmit_recursion_inc();
4206         HARD_TX_LOCK(dev, txq, smp_processor_id());
4207         if (!netif_xmit_frozen_or_drv_stopped(txq))
4208                 ret = netdev_start_xmit(skb, dev, txq, false);
4209         HARD_TX_UNLOCK(dev, txq);
4210         dev_xmit_recursion_dec();
4211
4212         local_bh_enable();
4213         return ret;
4214 drop:
4215         atomic_long_inc(&dev->tx_dropped);
4216         kfree_skb_list(skb);
4217         return NET_XMIT_DROP;
4218 }
4219 EXPORT_SYMBOL(__dev_direct_xmit);
4220
4221 /*************************************************************************
4222  *                      Receiver routines
4223  *************************************************************************/
4224
4225 int netdev_max_backlog __read_mostly = 1000;
4226 EXPORT_SYMBOL(netdev_max_backlog);
4227
4228 int netdev_tstamp_prequeue __read_mostly = 1;
4229 int netdev_budget __read_mostly = 300;
4230 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4231 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4232 int weight_p __read_mostly = 64;           /* old backlog weight */
4233 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4234 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4235 int dev_rx_weight __read_mostly = 64;
4236 int dev_tx_weight __read_mostly = 64;
4237 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4238 int gro_normal_batch __read_mostly = 8;
4239
4240 /* Called with irq disabled */
4241 static inline void ____napi_schedule(struct softnet_data *sd,
4242                                      struct napi_struct *napi)
4243 {
4244         list_add_tail(&napi->poll_list, &sd->poll_list);
4245         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4246 }
4247
4248 #ifdef CONFIG_RPS
4249
4250 /* One global table that all flow-based protocols share. */
4251 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4252 EXPORT_SYMBOL(rps_sock_flow_table);
4253 u32 rps_cpu_mask __read_mostly;
4254 EXPORT_SYMBOL(rps_cpu_mask);
4255
4256 struct static_key_false rps_needed __read_mostly;
4257 EXPORT_SYMBOL(rps_needed);
4258 struct static_key_false rfs_needed __read_mostly;
4259 EXPORT_SYMBOL(rfs_needed);
4260
4261 static struct rps_dev_flow *
4262 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4263             struct rps_dev_flow *rflow, u16 next_cpu)
4264 {
4265         if (next_cpu < nr_cpu_ids) {
4266 #ifdef CONFIG_RFS_ACCEL
4267                 struct netdev_rx_queue *rxqueue;
4268                 struct rps_dev_flow_table *flow_table;
4269                 struct rps_dev_flow *old_rflow;
4270                 u32 flow_id;
4271                 u16 rxq_index;
4272                 int rc;
4273
4274                 /* Should we steer this flow to a different hardware queue? */
4275                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4276                     !(dev->features & NETIF_F_NTUPLE))
4277                         goto out;
4278                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4279                 if (rxq_index == skb_get_rx_queue(skb))
4280                         goto out;
4281
4282                 rxqueue = dev->_rx + rxq_index;
4283                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4284                 if (!flow_table)
4285                         goto out;
4286                 flow_id = skb_get_hash(skb) & flow_table->mask;
4287                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4288                                                         rxq_index, flow_id);
4289                 if (rc < 0)
4290                         goto out;
4291                 old_rflow = rflow;
4292                 rflow = &flow_table->flows[flow_id];
4293                 rflow->filter = rc;
4294                 if (old_rflow->filter == rflow->filter)
4295                         old_rflow->filter = RPS_NO_FILTER;
4296         out:
4297 #endif
4298                 rflow->last_qtail =
4299                         per_cpu(softnet_data, next_cpu).input_queue_head;
4300         }
4301
4302         rflow->cpu = next_cpu;
4303         return rflow;
4304 }
4305
4306 /*
4307  * get_rps_cpu is called from netif_receive_skb and returns the target
4308  * CPU from the RPS map of the receiving queue for a given skb.
4309  * rcu_read_lock must be held on entry.
4310  */
4311 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4312                        struct rps_dev_flow **rflowp)
4313 {
4314         const struct rps_sock_flow_table *sock_flow_table;
4315         struct netdev_rx_queue *rxqueue = dev->_rx;
4316         struct rps_dev_flow_table *flow_table;
4317         struct rps_map *map;
4318         int cpu = -1;
4319         u32 tcpu;
4320         u32 hash;
4321
4322         if (skb_rx_queue_recorded(skb)) {
4323                 u16 index = skb_get_rx_queue(skb);
4324
4325                 if (unlikely(index >= dev->real_num_rx_queues)) {
4326                         WARN_ONCE(dev->real_num_rx_queues > 1,
4327                                   "%s received packet on queue %u, but number "
4328                                   "of RX queues is %u\n",
4329                                   dev->name, index, dev->real_num_rx_queues);
4330                         goto done;
4331                 }
4332                 rxqueue += index;
4333         }
4334
4335         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4336
4337         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4338         map = rcu_dereference(rxqueue->rps_map);
4339         if (!flow_table && !map)
4340                 goto done;
4341
4342         skb_reset_network_header(skb);
4343         hash = skb_get_hash(skb);
4344         if (!hash)
4345                 goto done;
4346
4347         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4348         if (flow_table && sock_flow_table) {
4349                 struct rps_dev_flow *rflow;
4350                 u32 next_cpu;
4351                 u32 ident;
4352
4353                 /* First check into global flow table if there is a match */
4354                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4355                 if ((ident ^ hash) & ~rps_cpu_mask)
4356                         goto try_rps;
4357
4358                 next_cpu = ident & rps_cpu_mask;
4359
4360                 /* OK, now we know there is a match,
4361                  * we can look at the local (per receive queue) flow table
4362                  */
4363                 rflow = &flow_table->flows[hash & flow_table->mask];
4364                 tcpu = rflow->cpu;
4365
4366                 /*
4367                  * If the desired CPU (where last recvmsg was done) is
4368                  * different from current CPU (one in the rx-queue flow
4369                  * table entry), switch if one of the following holds:
4370                  *   - Current CPU is unset (>= nr_cpu_ids).
4371                  *   - Current CPU is offline.
4372                  *   - The current CPU's queue tail has advanced beyond the
4373                  *     last packet that was enqueued using this table entry.
4374                  *     This guarantees that all previous packets for the flow
4375                  *     have been dequeued, thus preserving in order delivery.
4376                  */
4377                 if (unlikely(tcpu != next_cpu) &&
4378                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4379                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4380                       rflow->last_qtail)) >= 0)) {
4381                         tcpu = next_cpu;
4382                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4383                 }
4384
4385                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4386                         *rflowp = rflow;
4387                         cpu = tcpu;
4388                         goto done;
4389                 }
4390         }
4391
4392 try_rps:
4393
4394         if (map) {
4395                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4396                 if (cpu_online(tcpu)) {
4397                         cpu = tcpu;
4398                         goto done;
4399                 }
4400         }
4401
4402 done:
4403         return cpu;
4404 }
4405
4406 #ifdef CONFIG_RFS_ACCEL
4407
4408 /**
4409  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4410  * @dev: Device on which the filter was set
4411  * @rxq_index: RX queue index
4412  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4413  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4414  *
4415  * Drivers that implement ndo_rx_flow_steer() should periodically call
4416  * this function for each installed filter and remove the filters for
4417  * which it returns %true.
4418  */
4419 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4420                          u32 flow_id, u16 filter_id)
4421 {
4422         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4423         struct rps_dev_flow_table *flow_table;
4424         struct rps_dev_flow *rflow;
4425         bool expire = true;
4426         unsigned int cpu;
4427
4428         rcu_read_lock();
4429         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4430         if (flow_table && flow_id <= flow_table->mask) {
4431                 rflow = &flow_table->flows[flow_id];
4432                 cpu = READ_ONCE(rflow->cpu);
4433                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4434                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4435                            rflow->last_qtail) <
4436                      (int)(10 * flow_table->mask)))
4437                         expire = false;
4438         }
4439         rcu_read_unlock();
4440         return expire;
4441 }
4442 EXPORT_SYMBOL(rps_may_expire_flow);
4443
4444 #endif /* CONFIG_RFS_ACCEL */
4445
4446 /* Called from hardirq (IPI) context */
4447 static void rps_trigger_softirq(void *data)
4448 {
4449         struct softnet_data *sd = data;
4450
4451         ____napi_schedule(sd, &sd->backlog);
4452         sd->received_rps++;
4453 }
4454
4455 #endif /* CONFIG_RPS */
4456
4457 /*
4458  * Check if this softnet_data structure is another cpu one
4459  * If yes, queue it to our IPI list and return 1
4460  * If no, return 0
4461  */
4462 static int rps_ipi_queued(struct softnet_data *sd)
4463 {
4464 #ifdef CONFIG_RPS
4465         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4466
4467         if (sd != mysd) {
4468                 sd->rps_ipi_next = mysd->rps_ipi_list;
4469                 mysd->rps_ipi_list = sd;
4470
4471                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4472                 return 1;
4473         }
4474 #endif /* CONFIG_RPS */
4475         return 0;
4476 }
4477
4478 #ifdef CONFIG_NET_FLOW_LIMIT
4479 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4480 #endif
4481
4482 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4483 {
4484 #ifdef CONFIG_NET_FLOW_LIMIT
4485         struct sd_flow_limit *fl;
4486         struct softnet_data *sd;
4487         unsigned int old_flow, new_flow;
4488
4489         if (qlen < (netdev_max_backlog >> 1))
4490                 return false;
4491
4492         sd = this_cpu_ptr(&softnet_data);
4493
4494         rcu_read_lock();
4495         fl = rcu_dereference(sd->flow_limit);
4496         if (fl) {
4497                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4498                 old_flow = fl->history[fl->history_head];
4499                 fl->history[fl->history_head] = new_flow;
4500
4501                 fl->history_head++;
4502                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4503
4504                 if (likely(fl->buckets[old_flow]))
4505                         fl->buckets[old_flow]--;
4506
4507                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4508                         fl->count++;
4509                         rcu_read_unlock();
4510                         return true;
4511                 }
4512         }
4513         rcu_read_unlock();
4514 #endif
4515         return false;
4516 }
4517
4518 /*
4519  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4520  * queue (may be a remote CPU queue).
4521  */
4522 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4523                               unsigned int *qtail)
4524 {
4525         struct softnet_data *sd;
4526         unsigned long flags;
4527         unsigned int qlen;
4528
4529         sd = &per_cpu(softnet_data, cpu);
4530
4531         local_irq_save(flags);
4532
4533         rps_lock(sd);
4534         if (!netif_running(skb->dev))
4535                 goto drop;
4536         qlen = skb_queue_len(&sd->input_pkt_queue);
4537         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4538                 if (qlen) {
4539 enqueue:
4540                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4541                         input_queue_tail_incr_save(sd, qtail);
4542                         rps_unlock(sd);
4543                         local_irq_restore(flags);
4544                         return NET_RX_SUCCESS;
4545                 }
4546
4547                 /* Schedule NAPI for backlog device
4548                  * We can use non atomic operation since we own the queue lock
4549                  */
4550                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4551                         if (!rps_ipi_queued(sd))
4552                                 ____napi_schedule(sd, &sd->backlog);
4553                 }
4554                 goto enqueue;
4555         }
4556
4557 drop:
4558         sd->dropped++;
4559         rps_unlock(sd);
4560
4561         local_irq_restore(flags);
4562
4563         atomic_long_inc(&skb->dev->rx_dropped);
4564         kfree_skb(skb);
4565         return NET_RX_DROP;
4566 }
4567
4568 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4569 {
4570         struct net_device *dev = skb->dev;
4571         struct netdev_rx_queue *rxqueue;
4572
4573         rxqueue = dev->_rx;
4574
4575         if (skb_rx_queue_recorded(skb)) {
4576                 u16 index = skb_get_rx_queue(skb);
4577
4578                 if (unlikely(index >= dev->real_num_rx_queues)) {
4579                         WARN_ONCE(dev->real_num_rx_queues > 1,
4580                                   "%s received packet on queue %u, but number "
4581                                   "of RX queues is %u\n",
4582                                   dev->name, index, dev->real_num_rx_queues);
4583
4584                         return rxqueue; /* Return first rxqueue */
4585                 }
4586                 rxqueue += index;
4587         }
4588         return rxqueue;
4589 }
4590
4591 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4592                                      struct xdp_buff *xdp,
4593                                      struct bpf_prog *xdp_prog)
4594 {
4595         struct netdev_rx_queue *rxqueue;
4596         void *orig_data, *orig_data_end;
4597         u32 metalen, act = XDP_DROP;
4598         __be16 orig_eth_type;
4599         struct ethhdr *eth;
4600         bool orig_bcast;
4601         int hlen, off;
4602         u32 mac_len;
4603
4604         /* Reinjected packets coming from act_mirred or similar should
4605          * not get XDP generic processing.
4606          */
4607         if (skb_is_redirected(skb))
4608                 return XDP_PASS;
4609
4610         /* XDP packets must be linear and must have sufficient headroom
4611          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4612          * native XDP provides, thus we need to do it here as well.
4613          */
4614         if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4615             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4616                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4617                 int troom = skb->tail + skb->data_len - skb->end;
4618
4619                 /* In case we have to go down the path and also linearize,
4620                  * then lets do the pskb_expand_head() work just once here.
4621                  */
4622                 if (pskb_expand_head(skb,
4623                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4624                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4625                         goto do_drop;
4626                 if (skb_linearize(skb))
4627                         goto do_drop;
4628         }
4629
4630         /* The XDP program wants to see the packet starting at the MAC
4631          * header.
4632          */
4633         mac_len = skb->data - skb_mac_header(skb);
4634         hlen = skb_headlen(skb) + mac_len;
4635         xdp->data = skb->data - mac_len;
4636         xdp->data_meta = xdp->data;
4637         xdp->data_end = xdp->data + hlen;
4638         xdp->data_hard_start = skb->data - skb_headroom(skb);
4639
4640         /* SKB "head" area always have tailroom for skb_shared_info */
4641         xdp->frame_sz  = (void *)skb_end_pointer(skb) - xdp->data_hard_start;
4642         xdp->frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4643
4644         orig_data_end = xdp->data_end;
4645         orig_data = xdp->data;
4646         eth = (struct ethhdr *)xdp->data;
4647         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4648         orig_eth_type = eth->h_proto;
4649
4650         rxqueue = netif_get_rxqueue(skb);
4651         xdp->rxq = &rxqueue->xdp_rxq;
4652
4653         act = bpf_prog_run_xdp(xdp_prog, xdp);
4654
4655         /* check if bpf_xdp_adjust_head was used */
4656         off = xdp->data - orig_data;
4657         if (off) {
4658                 if (off > 0)
4659                         __skb_pull(skb, off);
4660                 else if (off < 0)
4661                         __skb_push(skb, -off);
4662
4663                 skb->mac_header += off;
4664                 skb_reset_network_header(skb);
4665         }
4666
4667         /* check if bpf_xdp_adjust_tail was used */
4668         off = xdp->data_end - orig_data_end;
4669         if (off != 0) {
4670                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4671                 skb->len += off; /* positive on grow, negative on shrink */
4672         }
4673
4674         /* check if XDP changed eth hdr such SKB needs update */
4675         eth = (struct ethhdr *)xdp->data;
4676         if ((orig_eth_type != eth->h_proto) ||
4677             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4678                 __skb_push(skb, ETH_HLEN);
4679                 skb->protocol = eth_type_trans(skb, skb->dev);
4680         }
4681
4682         switch (act) {
4683         case XDP_REDIRECT:
4684         case XDP_TX:
4685                 __skb_push(skb, mac_len);
4686                 break;
4687         case XDP_PASS:
4688                 metalen = xdp->data - xdp->data_meta;
4689                 if (metalen)
4690                         skb_metadata_set(skb, metalen);
4691                 break;
4692         default:
4693                 bpf_warn_invalid_xdp_action(act);
4694                 fallthrough;
4695         case XDP_ABORTED:
4696                 trace_xdp_exception(skb->dev, xdp_prog, act);
4697                 fallthrough;
4698         case XDP_DROP:
4699         do_drop:
4700                 kfree_skb(skb);
4701                 break;
4702         }
4703
4704         return act;
4705 }
4706
4707 /* When doing generic XDP we have to bypass the qdisc layer and the
4708  * network taps in order to match in-driver-XDP behavior.
4709  */
4710 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4711 {
4712         struct net_device *dev = skb->dev;
4713         struct netdev_queue *txq;
4714         bool free_skb = true;
4715         int cpu, rc;
4716
4717         txq = netdev_core_pick_tx(dev, skb, NULL);
4718         cpu = smp_processor_id();
4719         HARD_TX_LOCK(dev, txq, cpu);
4720         if (!netif_xmit_stopped(txq)) {
4721                 rc = netdev_start_xmit(skb, dev, txq, 0);
4722                 if (dev_xmit_complete(rc))
4723                         free_skb = false;
4724         }
4725         HARD_TX_UNLOCK(dev, txq);
4726         if (free_skb) {
4727                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4728                 kfree_skb(skb);
4729         }
4730 }
4731
4732 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4733
4734 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4735 {
4736         if (xdp_prog) {
4737                 struct xdp_buff xdp;
4738                 u32 act;
4739                 int err;
4740
4741                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4742                 if (act != XDP_PASS) {
4743                         switch (act) {
4744                         case XDP_REDIRECT:
4745                                 err = xdp_do_generic_redirect(skb->dev, skb,
4746                                                               &xdp, xdp_prog);
4747                                 if (err)
4748                                         goto out_redir;
4749                                 break;
4750                         case XDP_TX:
4751                                 generic_xdp_tx(skb, xdp_prog);
4752                                 break;
4753                         }
4754                         return XDP_DROP;
4755                 }
4756         }
4757         return XDP_PASS;
4758 out_redir:
4759         kfree_skb(skb);
4760         return XDP_DROP;
4761 }
4762 EXPORT_SYMBOL_GPL(do_xdp_generic);
4763
4764 static int netif_rx_internal(struct sk_buff *skb)
4765 {
4766         int ret;
4767
4768         net_timestamp_check(netdev_tstamp_prequeue, skb);
4769
4770         trace_netif_rx(skb);
4771
4772 #ifdef CONFIG_RPS
4773         if (static_branch_unlikely(&rps_needed)) {
4774                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4775                 int cpu;
4776
4777                 preempt_disable();
4778                 rcu_read_lock();
4779
4780                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4781                 if (cpu < 0)
4782                         cpu = smp_processor_id();
4783
4784                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4785
4786                 rcu_read_unlock();
4787                 preempt_enable();
4788         } else
4789 #endif
4790         {
4791                 unsigned int qtail;
4792
4793                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4794                 put_cpu();
4795         }
4796         return ret;
4797 }
4798
4799 /**
4800  *      netif_rx        -       post buffer to the network code
4801  *      @skb: buffer to post
4802  *
4803  *      This function receives a packet from a device driver and queues it for
4804  *      the upper (protocol) levels to process.  It always succeeds. The buffer
4805  *      may be dropped during processing for congestion control or by the
4806  *      protocol layers.
4807  *
4808  *      return values:
4809  *      NET_RX_SUCCESS  (no congestion)
4810  *      NET_RX_DROP     (packet was dropped)
4811  *
4812  */
4813
4814 int netif_rx(struct sk_buff *skb)
4815 {
4816         int ret;
4817
4818         trace_netif_rx_entry(skb);
4819
4820         ret = netif_rx_internal(skb);
4821         trace_netif_rx_exit(ret);
4822
4823         return ret;
4824 }
4825 EXPORT_SYMBOL(netif_rx);
4826
4827 int netif_rx_ni(struct sk_buff *skb)
4828 {
4829         int err;
4830
4831         trace_netif_rx_ni_entry(skb);
4832
4833         preempt_disable();
4834         err = netif_rx_internal(skb);
4835         if (local_softirq_pending())
4836                 do_softirq();
4837         preempt_enable();
4838         trace_netif_rx_ni_exit(err);
4839
4840         return err;
4841 }
4842 EXPORT_SYMBOL(netif_rx_ni);
4843
4844 int netif_rx_any_context(struct sk_buff *skb)
4845 {
4846         /*
4847          * If invoked from contexts which do not invoke bottom half
4848          * processing either at return from interrupt or when softrqs are
4849          * reenabled, use netif_rx_ni() which invokes bottomhalf processing
4850          * directly.
4851          */
4852         if (in_interrupt())
4853                 return netif_rx(skb);
4854         else
4855                 return netif_rx_ni(skb);
4856 }
4857 EXPORT_SYMBOL(netif_rx_any_context);
4858
4859 static __latent_entropy void net_tx_action(struct softirq_action *h)
4860 {
4861         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4862
4863         if (sd->completion_queue) {
4864                 struct sk_buff *clist;
4865
4866                 local_irq_disable();
4867                 clist = sd->completion_queue;
4868                 sd->completion_queue = NULL;
4869                 local_irq_enable();
4870
4871                 while (clist) {
4872                         struct sk_buff *skb = clist;
4873
4874                         clist = clist->next;
4875
4876                         WARN_ON(refcount_read(&skb->users));
4877                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4878                                 trace_consume_skb(skb);
4879                         else
4880                                 trace_kfree_skb(skb, net_tx_action);
4881
4882                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4883                                 __kfree_skb(skb);
4884                         else
4885                                 __kfree_skb_defer(skb);
4886                 }
4887
4888                 __kfree_skb_flush();
4889         }
4890
4891         if (sd->output_queue) {
4892                 struct Qdisc *head;
4893
4894                 local_irq_disable();
4895                 head = sd->output_queue;
4896                 sd->output_queue = NULL;
4897                 sd->output_queue_tailp = &sd->output_queue;
4898                 local_irq_enable();
4899
4900                 while (head) {
4901                         struct Qdisc *q = head;
4902                         spinlock_t *root_lock = NULL;
4903
4904                         head = head->next_sched;
4905
4906                         if (!(q->flags & TCQ_F_NOLOCK)) {
4907                                 root_lock = qdisc_lock(q);
4908                                 spin_lock(root_lock);
4909                         }
4910                         /* We need to make sure head->next_sched is read
4911                          * before clearing __QDISC_STATE_SCHED
4912                          */
4913                         smp_mb__before_atomic();
4914                         clear_bit(__QDISC_STATE_SCHED, &q->state);
4915                         qdisc_run(q);
4916                         if (root_lock)
4917                                 spin_unlock(root_lock);
4918                 }
4919         }
4920
4921         xfrm_dev_backlog(sd);
4922 }
4923
4924 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4925 /* This hook is defined here for ATM LANE */
4926 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4927                              unsigned char *addr) __read_mostly;
4928 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4929 #endif
4930
4931 static inline struct sk_buff *
4932 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4933                    struct net_device *orig_dev, bool *another)
4934 {
4935 #ifdef CONFIG_NET_CLS_ACT
4936         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4937         struct tcf_result cl_res;
4938
4939         /* If there's at least one ingress present somewhere (so
4940          * we get here via enabled static key), remaining devices
4941          * that are not configured with an ingress qdisc will bail
4942          * out here.
4943          */
4944         if (!miniq)
4945                 return skb;
4946
4947         if (*pt_prev) {
4948                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4949                 *pt_prev = NULL;
4950         }
4951
4952         qdisc_skb_cb(skb)->pkt_len = skb->len;
4953         skb->tc_at_ingress = 1;
4954         mini_qdisc_bstats_cpu_update(miniq, skb);
4955
4956         switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
4957                                      &cl_res, false)) {
4958         case TC_ACT_OK:
4959         case TC_ACT_RECLASSIFY:
4960                 skb->tc_index = TC_H_MIN(cl_res.classid);
4961                 break;
4962         case TC_ACT_SHOT:
4963                 mini_qdisc_qstats_cpu_drop(miniq);
4964                 kfree_skb(skb);
4965                 return NULL;
4966         case TC_ACT_STOLEN:
4967         case TC_ACT_QUEUED:
4968         case TC_ACT_TRAP:
4969                 consume_skb(skb);
4970                 return NULL;
4971         case TC_ACT_REDIRECT:
4972                 /* skb_mac_header check was done by cls/act_bpf, so
4973                  * we can safely push the L2 header back before
4974                  * redirecting to another netdev
4975                  */
4976                 __skb_push(skb, skb->mac_len);
4977                 if (skb_do_redirect(skb) == -EAGAIN) {
4978                         __skb_pull(skb, skb->mac_len);
4979                         *another = true;
4980                         break;
4981                 }
4982                 return NULL;
4983         case TC_ACT_CONSUMED:
4984                 return NULL;
4985         default:
4986                 break;
4987         }
4988 #endif /* CONFIG_NET_CLS_ACT */
4989         return skb;
4990 }
4991
4992 /**
4993  *      netdev_is_rx_handler_busy - check if receive handler is registered
4994  *      @dev: device to check
4995  *
4996  *      Check if a receive handler is already registered for a given device.
4997  *      Return true if there one.
4998  *
4999  *      The caller must hold the rtnl_mutex.
5000  */
5001 bool netdev_is_rx_handler_busy(struct net_device *dev)
5002 {
5003         ASSERT_RTNL();
5004         return dev && rtnl_dereference(dev->rx_handler);
5005 }
5006 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5007
5008 /**
5009  *      netdev_rx_handler_register - register receive handler
5010  *      @dev: device to register a handler for
5011  *      @rx_handler: receive handler to register
5012  *      @rx_handler_data: data pointer that is used by rx handler
5013  *
5014  *      Register a receive handler for a device. This handler will then be
5015  *      called from __netif_receive_skb. A negative errno code is returned
5016  *      on a failure.
5017  *
5018  *      The caller must hold the rtnl_mutex.
5019  *
5020  *      For a general description of rx_handler, see enum rx_handler_result.
5021  */
5022 int netdev_rx_handler_register(struct net_device *dev,
5023                                rx_handler_func_t *rx_handler,
5024                                void *rx_handler_data)
5025 {
5026         if (netdev_is_rx_handler_busy(dev))
5027                 return -EBUSY;
5028
5029         if (dev->priv_flags & IFF_NO_RX_HANDLER)
5030                 return -EINVAL;
5031
5032         /* Note: rx_handler_data must be set before rx_handler */
5033         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5034         rcu_assign_pointer(dev->rx_handler, rx_handler);
5035
5036         return 0;
5037 }
5038 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5039
5040 /**
5041  *      netdev_rx_handler_unregister - unregister receive handler
5042  *      @dev: device to unregister a handler from
5043  *
5044  *      Unregister a receive handler from a device.
5045  *
5046  *      The caller must hold the rtnl_mutex.
5047  */
5048 void netdev_rx_handler_unregister(struct net_device *dev)
5049 {
5050
5051         ASSERT_RTNL();
5052         RCU_INIT_POINTER(dev->rx_handler, NULL);
5053         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5054          * section has a guarantee to see a non NULL rx_handler_data
5055          * as well.
5056          */
5057         synchronize_net();
5058         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5059 }
5060 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5061
5062 /*
5063  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5064  * the special handling of PFMEMALLOC skbs.
5065  */
5066 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5067 {
5068         switch (skb->protocol) {
5069         case htons(ETH_P_ARP):
5070         case htons(ETH_P_IP):
5071         case htons(ETH_P_IPV6):
5072         case htons(ETH_P_8021Q):
5073         case htons(ETH_P_8021AD):
5074                 return true;
5075         default:
5076                 return false;
5077         }
5078 }
5079
5080 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5081                              int *ret, struct net_device *orig_dev)
5082 {
5083         if (nf_hook_ingress_active(skb)) {
5084                 int ingress_retval;
5085
5086                 if (*pt_prev) {
5087                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
5088                         *pt_prev = NULL;
5089                 }
5090
5091                 rcu_read_lock();
5092                 ingress_retval = nf_hook_ingress(skb);
5093                 rcu_read_unlock();
5094                 return ingress_retval;
5095         }
5096         return 0;
5097 }
5098
5099 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5100                                     struct packet_type **ppt_prev)
5101 {
5102         struct packet_type *ptype, *pt_prev;
5103         rx_handler_func_t *rx_handler;
5104         struct sk_buff *skb = *pskb;
5105         struct net_device *orig_dev;
5106         bool deliver_exact = false;
5107         int ret = NET_RX_DROP;
5108         __be16 type;
5109
5110         net_timestamp_check(!netdev_tstamp_prequeue, skb);
5111
5112         trace_netif_receive_skb(skb);
5113
5114         orig_dev = skb->dev;
5115
5116         skb_reset_network_header(skb);
5117         if (!skb_transport_header_was_set(skb))
5118                 skb_reset_transport_header(skb);
5119         skb_reset_mac_len(skb);
5120
5121         pt_prev = NULL;
5122
5123 another_round:
5124         skb->skb_iif = skb->dev->ifindex;
5125
5126         __this_cpu_inc(softnet_data.processed);
5127
5128         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5129                 int ret2;
5130
5131                 preempt_disable();
5132                 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5133                 preempt_enable();
5134
5135                 if (ret2 != XDP_PASS) {
5136                         ret = NET_RX_DROP;
5137                         goto out;
5138                 }
5139                 skb_reset_mac_len(skb);
5140         }
5141
5142         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5143             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5144                 skb = skb_vlan_untag(skb);
5145                 if (unlikely(!skb))
5146                         goto out;
5147         }
5148
5149         if (skb_skip_tc_classify(skb))
5150                 goto skip_classify;
5151
5152         if (pfmemalloc)
5153                 goto skip_taps;
5154
5155         list_for_each_entry_rcu(ptype, &ptype_all, list) {
5156                 if (pt_prev)
5157                         ret = deliver_skb(skb, pt_prev, orig_dev);
5158                 pt_prev = ptype;
5159         }
5160
5161         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5162                 if (pt_prev)
5163                         ret = deliver_skb(skb, pt_prev, orig_dev);
5164                 pt_prev = ptype;
5165         }
5166
5167 skip_taps:
5168 #ifdef CONFIG_NET_INGRESS
5169         if (static_branch_unlikely(&ingress_needed_key)) {
5170                 bool another = false;
5171
5172                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5173                                          &another);
5174                 if (another)
5175                         goto another_round;
5176                 if (!skb)
5177                         goto out;
5178
5179                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5180                         goto out;
5181         }
5182 #endif
5183         skb_reset_redirect(skb);
5184 skip_classify:
5185         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5186                 goto drop;
5187
5188         if (skb_vlan_tag_present(skb)) {
5189                 if (pt_prev) {
5190                         ret = deliver_skb(skb, pt_prev, orig_dev);
5191                         pt_prev = NULL;
5192                 }
5193                 if (vlan_do_receive(&skb))
5194                         goto another_round;
5195                 else if (unlikely(!skb))
5196                         goto out;
5197         }
5198
5199         rx_handler = rcu_dereference(skb->dev->rx_handler);
5200         if (rx_handler) {
5201                 if (pt_prev) {
5202                         ret = deliver_skb(skb, pt_prev, orig_dev);
5203                         pt_prev = NULL;
5204                 }
5205                 switch (rx_handler(&skb)) {
5206                 case RX_HANDLER_CONSUMED:
5207                         ret = NET_RX_SUCCESS;
5208                         goto out;
5209                 case RX_HANDLER_ANOTHER:
5210                         goto another_round;
5211                 case RX_HANDLER_EXACT:
5212                         deliver_exact = true;
5213                 case RX_HANDLER_PASS:
5214                         break;
5215                 default:
5216                         BUG();
5217                 }
5218         }
5219
5220         if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5221 check_vlan_id:
5222                 if (skb_vlan_tag_get_id(skb)) {
5223                         /* Vlan id is non 0 and vlan_do_receive() above couldn't
5224                          * find vlan device.
5225                          */
5226                         skb->pkt_type = PACKET_OTHERHOST;
5227                 } else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5228                            skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5229                         /* Outer header is 802.1P with vlan 0, inner header is
5230                          * 802.1Q or 802.1AD and vlan_do_receive() above could
5231                          * not find vlan dev for vlan id 0.
5232                          */
5233                         __vlan_hwaccel_clear_tag(skb);
5234                         skb = skb_vlan_untag(skb);
5235                         if (unlikely(!skb))
5236                                 goto out;
5237                         if (vlan_do_receive(&skb))
5238                                 /* After stripping off 802.1P header with vlan 0
5239                                  * vlan dev is found for inner header.
5240                                  */
5241                                 goto another_round;
5242                         else if (unlikely(!skb))
5243                                 goto out;
5244                         else
5245                                 /* We have stripped outer 802.1P vlan 0 header.
5246                                  * But could not find vlan dev.
5247                                  * check again for vlan id to set OTHERHOST.
5248                                  */
5249                                 goto check_vlan_id;
5250                 }
5251                 /* Note: we might in the future use prio bits
5252                  * and set skb->priority like in vlan_do_receive()
5253                  * For the time being, just ignore Priority Code Point
5254                  */
5255                 __vlan_hwaccel_clear_tag(skb);
5256         }
5257
5258         type = skb->protocol;
5259
5260         /* deliver only exact match when indicated */
5261         if (likely(!deliver_exact)) {
5262                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5263                                        &ptype_base[ntohs(type) &
5264                                                    PTYPE_HASH_MASK]);
5265         }
5266
5267         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5268                                &orig_dev->ptype_specific);
5269
5270         if (unlikely(skb->dev != orig_dev)) {
5271                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5272                                        &skb->dev->ptype_specific);
5273         }
5274
5275         if (pt_prev) {
5276                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5277                         goto drop;
5278                 *ppt_prev = pt_prev;
5279         } else {
5280 drop:
5281                 if (!deliver_exact)
5282                         atomic_long_inc(&skb->dev->rx_dropped);
5283                 else
5284                         atomic_long_inc(&skb->dev->rx_nohandler);
5285                 kfree_skb(skb);
5286                 /* Jamal, now you will not able to escape explaining
5287                  * me how you were going to use this. :-)
5288                  */
5289                 ret = NET_RX_DROP;
5290         }
5291
5292 out:
5293         /* The invariant here is that if *ppt_prev is not NULL
5294          * then skb should also be non-NULL.
5295          *
5296          * Apparently *ppt_prev assignment above holds this invariant due to
5297          * skb dereferencing near it.
5298          */
5299         *pskb = skb;
5300         return ret;
5301 }
5302
5303 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5304 {
5305         struct net_device *orig_dev = skb->dev;
5306         struct packet_type *pt_prev = NULL;
5307         int ret;
5308
5309         ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5310         if (pt_prev)
5311                 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5312                                          skb->dev, pt_prev, orig_dev);
5313         return ret;
5314 }
5315
5316 /**
5317  *      netif_receive_skb_core - special purpose version of netif_receive_skb
5318  *      @skb: buffer to process
5319  *
5320  *      More direct receive version of netif_receive_skb().  It should
5321  *      only be used by callers that have a need to skip RPS and Generic XDP.
5322  *      Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5323  *
5324  *      This function may only be called from softirq context and interrupts
5325  *      should be enabled.
5326  *
5327  *      Return values (usually ignored):
5328  *      NET_RX_SUCCESS: no congestion
5329  *      NET_RX_DROP: packet was dropped
5330  */
5331 int netif_receive_skb_core(struct sk_buff *skb)
5332 {
5333         int ret;
5334
5335         rcu_read_lock();
5336         ret = __netif_receive_skb_one_core(skb, false);
5337         rcu_read_unlock();
5338
5339         return ret;
5340 }
5341 EXPORT_SYMBOL(netif_receive_skb_core);
5342
5343 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5344                                                   struct packet_type *pt_prev,
5345                                                   struct net_device *orig_dev)
5346 {
5347         struct sk_buff *skb, *next;
5348
5349         if (!pt_prev)
5350                 return;
5351         if (list_empty(head))
5352                 return;
5353         if (pt_prev->list_func != NULL)
5354                 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5355                                    ip_list_rcv, head, pt_prev, orig_dev);
5356         else
5357                 list_for_each_entry_safe(skb, next, head, list) {
5358                         skb_list_del_init(skb);
5359                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5360                 }
5361 }
5362
5363 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5364 {
5365         /* Fast-path assumptions:
5366          * - There is no RX handler.
5367          * - Only one packet_type matches.
5368          * If either of these fails, we will end up doing some per-packet
5369          * processing in-line, then handling the 'last ptype' for the whole
5370          * sublist.  This can't cause out-of-order delivery to any single ptype,
5371          * because the 'last ptype' must be constant across the sublist, and all
5372          * other ptypes are handled per-packet.
5373          */
5374         /* Current (common) ptype of sublist */
5375         struct packet_type *pt_curr = NULL;
5376         /* Current (common) orig_dev of sublist */
5377         struct net_device *od_curr = NULL;
5378         struct list_head sublist;
5379         struct sk_buff *skb, *next;
5380
5381         INIT_LIST_HEAD(&sublist);
5382         list_for_each_entry_safe(skb, next, head, list) {
5383                 struct net_device *orig_dev = skb->dev;
5384                 struct packet_type *pt_prev = NULL;
5385
5386                 skb_list_del_init(skb);
5387                 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5388                 if (!pt_prev)
5389                         continue;
5390                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5391                         /* dispatch old sublist */
5392                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5393                         /* start new sublist */
5394                         INIT_LIST_HEAD(&sublist);
5395                         pt_curr = pt_prev;
5396                         od_curr = orig_dev;
5397                 }
5398                 list_add_tail(&skb->list, &sublist);
5399         }
5400
5401         /* dispatch final sublist */
5402         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5403 }
5404
5405 static int __netif_receive_skb(struct sk_buff *skb)
5406 {
5407         int ret;
5408
5409         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5410                 unsigned int noreclaim_flag;
5411
5412                 /*
5413                  * PFMEMALLOC skbs are special, they should
5414                  * - be delivered to SOCK_MEMALLOC sockets only
5415                  * - stay away from userspace
5416                  * - have bounded memory usage
5417                  *
5418                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5419                  * context down to all allocation sites.
5420                  */
5421                 noreclaim_flag = memalloc_noreclaim_save();
5422                 ret = __netif_receive_skb_one_core(skb, true);
5423                 memalloc_noreclaim_restore(noreclaim_flag);
5424         } else
5425                 ret = __netif_receive_skb_one_core(skb, false);
5426
5427         return ret;
5428 }
5429
5430 static void __netif_receive_skb_list(struct list_head *head)
5431 {
5432         unsigned long noreclaim_flag = 0;
5433         struct sk_buff *skb, *next;
5434         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5435
5436         list_for_each_entry_safe(skb, next, head, list) {
5437                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5438                         struct list_head sublist;
5439
5440                         /* Handle the previous sublist */
5441                         list_cut_before(&sublist, head, &skb->list);
5442                         if (!list_empty(&sublist))
5443                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5444                         pfmemalloc = !pfmemalloc;
5445                         /* See comments in __netif_receive_skb */
5446                         if (pfmemalloc)
5447                                 noreclaim_flag = memalloc_noreclaim_save();
5448                         else
5449                                 memalloc_noreclaim_restore(noreclaim_flag);
5450                 }
5451         }
5452         /* Handle the remaining sublist */
5453         if (!list_empty(head))
5454                 __netif_receive_skb_list_core(head, pfmemalloc);
5455         /* Restore pflags */
5456         if (pfmemalloc)
5457                 memalloc_noreclaim_restore(noreclaim_flag);
5458 }
5459
5460 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5461 {
5462         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5463         struct bpf_prog *new = xdp->prog;
5464         int ret = 0;
5465
5466         if (new) {
5467                 u32 i;
5468
5469                 mutex_lock(&new->aux->used_maps_mutex);
5470
5471                 /* generic XDP does not work with DEVMAPs that can
5472                  * have a bpf_prog installed on an entry
5473                  */
5474                 for (i = 0; i < new->aux->used_map_cnt; i++) {
5475                         if (dev_map_can_have_prog(new->aux->used_maps[i]) ||
5476                             cpu_map_prog_allowed(new->aux->used_maps[i])) {
5477                                 mutex_unlock(&new->aux->used_maps_mutex);
5478                                 return -EINVAL;
5479                         }
5480                 }
5481
5482                 mutex_unlock(&new->aux->used_maps_mutex);
5483         }
5484
5485         switch (xdp->command) {
5486         case XDP_SETUP_PROG:
5487                 rcu_assign_pointer(dev->xdp_prog, new);
5488                 if (old)
5489                         bpf_prog_put(old);
5490
5491                 if (old && !new) {
5492                         static_branch_dec(&generic_xdp_needed_key);
5493                 } else if (new && !old) {
5494                         static_branch_inc(&generic_xdp_needed_key);
5495                         dev_disable_lro(dev);
5496                         dev_disable_gro_hw(dev);
5497                 }
5498                 break;
5499
5500         default:
5501                 ret = -EINVAL;
5502                 break;
5503         }
5504
5505         return ret;
5506 }
5507
5508 static int netif_receive_skb_internal(struct sk_buff *skb)
5509 {
5510         int ret;
5511
5512         net_timestamp_check(netdev_tstamp_prequeue, skb);
5513
5514         if (skb_defer_rx_timestamp(skb))
5515                 return NET_RX_SUCCESS;
5516
5517         rcu_read_lock();
5518 #ifdef CONFIG_RPS
5519         if (static_branch_unlikely(&rps_needed)) {
5520                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5521                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5522
5523                 if (cpu >= 0) {
5524                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5525                         rcu_read_unlock();
5526                         return ret;
5527                 }
5528         }
5529 #endif
5530         ret = __netif_receive_skb(skb);
5531         rcu_read_unlock();
5532         return ret;
5533 }
5534
5535 static void netif_receive_skb_list_internal(struct list_head *head)
5536 {
5537         struct sk_buff *skb, *next;
5538         struct list_head sublist;
5539
5540         INIT_LIST_HEAD(&sublist);
5541         list_for_each_entry_safe(skb, next, head, list) {
5542                 net_timestamp_check(netdev_tstamp_prequeue, skb);
5543                 skb_list_del_init(skb);
5544                 if (!skb_defer_rx_timestamp(skb))
5545                         list_add_tail(&skb->list, &sublist);
5546         }
5547         list_splice_init(&sublist, head);
5548
5549         rcu_read_lock();
5550 #ifdef CONFIG_RPS
5551         if (static_branch_unlikely(&rps_needed)) {
5552                 list_for_each_entry_safe(skb, next, head, list) {
5553                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5554                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5555
5556                         if (cpu >= 0) {
5557                                 /* Will be handled, remove from list */
5558                                 skb_list_del_init(skb);
5559                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5560                         }
5561                 }
5562         }
5563 #endif
5564         __netif_receive_skb_list(head);
5565         rcu_read_unlock();
5566 }
5567
5568 /**
5569  *      netif_receive_skb - process receive buffer from network
5570  *      @skb: buffer to process
5571  *
5572  *      netif_receive_skb() is the main receive data processing function.
5573  *      It always succeeds. The buffer may be dropped during processing
5574  *      for congestion control or by the protocol layers.
5575  *
5576  *      This function may only be called from softirq context and interrupts
5577  *      should be enabled.
5578  *
5579  *      Return values (usually ignored):
5580  *      NET_RX_SUCCESS: no congestion
5581  *      NET_RX_DROP: packet was dropped
5582  */
5583 int netif_receive_skb(struct sk_buff *skb)
5584 {
5585         int ret;
5586
5587         trace_netif_receive_skb_entry(skb);
5588
5589         ret = netif_receive_skb_internal(skb);
5590         trace_netif_receive_skb_exit(ret);
5591
5592         return ret;
5593 }
5594 EXPORT_SYMBOL(netif_receive_skb);
5595
5596 /**
5597  *      netif_receive_skb_list - process many receive buffers from network
5598  *      @head: list of skbs to process.
5599  *
5600  *      Since return value of netif_receive_skb() is normally ignored, and
5601  *      wouldn't be meaningful for a list, this function returns void.
5602  *
5603  *      This function may only be called from softirq context and interrupts
5604  *      should be enabled.
5605  */
5606 void netif_receive_skb_list(struct list_head *head)
5607 {
5608         struct sk_buff *skb;
5609
5610         if (list_empty(head))
5611                 return;
5612         if (trace_netif_receive_skb_list_entry_enabled()) {
5613                 list_for_each_entry(skb, head, list)
5614                         trace_netif_receive_skb_list_entry(skb);
5615         }
5616         netif_receive_skb_list_internal(head);
5617         trace_netif_receive_skb_list_exit(0);
5618 }
5619 EXPORT_SYMBOL(netif_receive_skb_list);
5620
5621 static DEFINE_PER_CPU(struct work_struct, flush_works);
5622
5623 /* Network device is going away, flush any packets still pending */
5624 static void flush_backlog(struct work_struct *work)
5625 {
5626         struct sk_buff *skb, *tmp;
5627         struct softnet_data *sd;
5628
5629         local_bh_disable();
5630         sd = this_cpu_ptr(&softnet_data);
5631
5632         local_irq_disable();
5633         rps_lock(sd);
5634         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5635                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5636                         __skb_unlink(skb, &sd->input_pkt_queue);
5637                         dev_kfree_skb_irq(skb);
5638                         input_queue_head_incr(sd);
5639                 }
5640         }
5641         rps_unlock(sd);
5642         local_irq_enable();
5643
5644         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5645                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5646                         __skb_unlink(skb, &sd->process_queue);
5647                         kfree_skb(skb);
5648                         input_queue_head_incr(sd);
5649                 }
5650         }
5651         local_bh_enable();
5652 }
5653
5654 static bool flush_required(int cpu)
5655 {
5656 #if IS_ENABLED(CONFIG_RPS)
5657         struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5658         bool do_flush;
5659
5660         local_irq_disable();
5661         rps_lock(sd);
5662
5663         /* as insertion into process_queue happens with the rps lock held,
5664          * process_queue access may race only with dequeue
5665          */
5666         do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5667                    !skb_queue_empty_lockless(&sd->process_queue);
5668         rps_unlock(sd);
5669         local_irq_enable();
5670
5671         return do_flush;
5672 #endif
5673         /* without RPS we can't safely check input_pkt_queue: during a
5674          * concurrent remote skb_queue_splice() we can detect as empty both
5675          * input_pkt_queue and process_queue even if the latter could end-up
5676          * containing a lot of packets.
5677          */
5678         return true;
5679 }
5680
5681 static void flush_all_backlogs(void)
5682 {
5683         static cpumask_t flush_cpus;
5684         unsigned int cpu;
5685
5686         /* since we are under rtnl lock protection we can use static data
5687          * for the cpumask and avoid allocating on stack the possibly
5688          * large mask
5689          */
5690         ASSERT_RTNL();
5691
5692         get_online_cpus();
5693
5694         cpumask_clear(&flush_cpus);
5695         for_each_online_cpu(cpu) {
5696                 if (flush_required(cpu)) {
5697                         queue_work_on(cpu, system_highpri_wq,
5698                                       per_cpu_ptr(&flush_works, cpu));
5699                         cpumask_set_cpu(cpu, &flush_cpus);
5700                 }
5701         }
5702
5703         /* we can have in flight packet[s] on the cpus we are not flushing,
5704          * synchronize_net() in rollback_registered_many() will take care of
5705          * them
5706          */
5707         for_each_cpu(cpu, &flush_cpus)
5708                 flush_work(per_cpu_ptr(&flush_works, cpu));
5709
5710         put_online_cpus();
5711 }
5712
5713 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5714 static void gro_normal_list(struct napi_struct *napi)
5715 {
5716         if (!napi->rx_count)
5717                 return;
5718         netif_receive_skb_list_internal(&napi->rx_list);
5719         INIT_LIST_HEAD(&napi->rx_list);
5720         napi->rx_count = 0;
5721 }
5722
5723 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5724  * pass the whole batch up to the stack.
5725  */
5726 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb)
5727 {
5728         list_add_tail(&skb->list, &napi->rx_list);
5729         if (++napi->rx_count >= gro_normal_batch)
5730                 gro_normal_list(napi);
5731 }
5732
5733 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5734 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
5735 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5736 {
5737         struct packet_offload *ptype;
5738         __be16 type = skb->protocol;
5739         struct list_head *head = &offload_base;
5740         int err = -ENOENT;
5741
5742         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5743
5744         if (NAPI_GRO_CB(skb)->count == 1) {
5745                 skb_shinfo(skb)->gso_size = 0;
5746                 goto out;
5747         }
5748
5749         rcu_read_lock();
5750         list_for_each_entry_rcu(ptype, head, list) {
5751                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5752                         continue;
5753
5754                 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5755                                          ipv6_gro_complete, inet_gro_complete,
5756                                          skb, 0);
5757                 break;
5758         }
5759         rcu_read_unlock();
5760
5761         if (err) {
5762                 WARN_ON(&ptype->list == head);
5763                 kfree_skb(skb);
5764                 return NET_RX_SUCCESS;
5765         }
5766
5767 out:
5768         gro_normal_one(napi, skb);
5769         return NET_RX_SUCCESS;
5770 }
5771
5772 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5773                                    bool flush_old)
5774 {
5775         struct list_head *head = &napi->gro_hash[index].list;
5776         struct sk_buff *skb, *p;
5777
5778         list_for_each_entry_safe_reverse(skb, p, head, list) {
5779                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5780                         return;
5781                 skb_list_del_init(skb);
5782                 napi_gro_complete(napi, skb);
5783                 napi->gro_hash[index].count--;
5784         }
5785
5786         if (!napi->gro_hash[index].count)
5787                 __clear_bit(index, &napi->gro_bitmask);
5788 }
5789
5790 /* napi->gro_hash[].list contains packets ordered by age.
5791  * youngest packets at the head of it.
5792  * Complete skbs in reverse order to reduce latencies.
5793  */
5794 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5795 {
5796         unsigned long bitmask = napi->gro_bitmask;
5797         unsigned int i, base = ~0U;
5798
5799         while ((i = ffs(bitmask)) != 0) {
5800                 bitmask >>= i;
5801                 base += i;
5802                 __napi_gro_flush_chain(napi, base, flush_old);
5803         }
5804 }
5805 EXPORT_SYMBOL(napi_gro_flush);
5806
5807 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5808                                           struct sk_buff *skb)
5809 {
5810         unsigned int maclen = skb->dev->hard_header_len;
5811         u32 hash = skb_get_hash_raw(skb);
5812         struct list_head *head;
5813         struct sk_buff *p;
5814
5815         head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5816         list_for_each_entry(p, head, list) {
5817                 unsigned long diffs;
5818
5819                 NAPI_GRO_CB(p)->flush = 0;
5820
5821                 if (hash != skb_get_hash_raw(p)) {
5822                         NAPI_GRO_CB(p)->same_flow = 0;
5823                         continue;
5824                 }
5825
5826                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5827                 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5828                 if (skb_vlan_tag_present(p))
5829                         diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5830                 diffs |= skb_metadata_dst_cmp(p, skb);
5831                 diffs |= skb_metadata_differs(p, skb);
5832                 if (maclen == ETH_HLEN)
5833                         diffs |= compare_ether_header(skb_mac_header(p),
5834                                                       skb_mac_header(skb));
5835                 else if (!diffs)
5836                         diffs = memcmp(skb_mac_header(p),
5837                                        skb_mac_header(skb),
5838                                        maclen);
5839                 NAPI_GRO_CB(p)->same_flow = !diffs;
5840         }
5841
5842         return head;
5843 }
5844
5845 static void skb_gro_reset_offset(struct sk_buff *skb)
5846 {
5847         const struct skb_shared_info *pinfo = skb_shinfo(skb);
5848         const skb_frag_t *frag0 = &pinfo->frags[0];
5849
5850         NAPI_GRO_CB(skb)->data_offset = 0;
5851         NAPI_GRO_CB(skb)->frag0 = NULL;
5852         NAPI_GRO_CB(skb)->frag0_len = 0;
5853
5854         if (!skb_headlen(skb) && pinfo->nr_frags &&
5855             !PageHighMem(skb_frag_page(frag0))) {
5856                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5857                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5858                                                     skb_frag_size(frag0),
5859                                                     skb->end - skb->tail);
5860         }
5861 }
5862
5863 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5864 {
5865         struct skb_shared_info *pinfo = skb_shinfo(skb);
5866
5867         BUG_ON(skb->end - skb->tail < grow);
5868
5869         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5870
5871         skb->data_len -= grow;
5872         skb->tail += grow;
5873
5874         skb_frag_off_add(&pinfo->frags[0], grow);
5875         skb_frag_size_sub(&pinfo->frags[0], grow);
5876
5877         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5878                 skb_frag_unref(skb, 0);
5879                 memmove(pinfo->frags, pinfo->frags + 1,
5880                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5881         }
5882 }
5883
5884 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
5885 {
5886         struct sk_buff *oldest;
5887
5888         oldest = list_last_entry(head, struct sk_buff, list);
5889
5890         /* We are called with head length >= MAX_GRO_SKBS, so this is
5891          * impossible.
5892          */
5893         if (WARN_ON_ONCE(!oldest))
5894                 return;
5895
5896         /* Do not adjust napi->gro_hash[].count, caller is adding a new
5897          * SKB to the chain.
5898          */
5899         skb_list_del_init(oldest);
5900         napi_gro_complete(napi, oldest);
5901 }
5902
5903 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5904                                                            struct sk_buff *));
5905 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5906                                                            struct sk_buff *));
5907 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5908 {
5909         u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5910         struct list_head *head = &offload_base;
5911         struct packet_offload *ptype;
5912         __be16 type = skb->protocol;
5913         struct list_head *gro_head;
5914         struct sk_buff *pp = NULL;
5915         enum gro_result ret;
5916         int same_flow;
5917         int grow;
5918
5919         if (netif_elide_gro(skb->dev))
5920                 goto normal;
5921
5922         gro_head = gro_list_prepare(napi, skb);
5923
5924         rcu_read_lock();
5925         list_for_each_entry_rcu(ptype, head, list) {
5926                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5927                         continue;
5928
5929                 skb_set_network_header(skb, skb_gro_offset(skb));
5930                 skb_reset_mac_len(skb);
5931                 NAPI_GRO_CB(skb)->same_flow = 0;
5932                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5933                 NAPI_GRO_CB(skb)->free = 0;
5934                 NAPI_GRO_CB(skb)->encap_mark = 0;
5935                 NAPI_GRO_CB(skb)->recursion_counter = 0;
5936                 NAPI_GRO_CB(skb)->is_fou = 0;
5937                 NAPI_GRO_CB(skb)->is_atomic = 1;
5938                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5939
5940                 /* Setup for GRO checksum validation */
5941                 switch (skb->ip_summed) {
5942                 case CHECKSUM_COMPLETE:
5943                         NAPI_GRO_CB(skb)->csum = skb->csum;
5944                         NAPI_GRO_CB(skb)->csum_valid = 1;
5945                         NAPI_GRO_CB(skb)->csum_cnt = 0;
5946                         break;
5947                 case CHECKSUM_UNNECESSARY:
5948                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5949                         NAPI_GRO_CB(skb)->csum_valid = 0;
5950                         break;
5951                 default:
5952                         NAPI_GRO_CB(skb)->csum_cnt = 0;
5953                         NAPI_GRO_CB(skb)->csum_valid = 0;
5954                 }
5955
5956                 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5957                                         ipv6_gro_receive, inet_gro_receive,
5958                                         gro_head, skb);
5959                 break;
5960         }
5961         rcu_read_unlock();
5962
5963         if (&ptype->list == head)
5964                 goto normal;
5965
5966         if (PTR_ERR(pp) == -EINPROGRESS) {
5967                 ret = GRO_CONSUMED;
5968                 goto ok;
5969         }
5970
5971         same_flow = NAPI_GRO_CB(skb)->same_flow;
5972         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5973
5974         if (pp) {
5975                 skb_list_del_init(pp);
5976                 napi_gro_complete(napi, pp);
5977                 napi->gro_hash[hash].count--;
5978         }
5979
5980         if (same_flow)
5981                 goto ok;
5982
5983         if (NAPI_GRO_CB(skb)->flush)
5984                 goto normal;
5985
5986         if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5987                 gro_flush_oldest(napi, gro_head);
5988         } else {
5989                 napi->gro_hash[hash].count++;
5990         }
5991         NAPI_GRO_CB(skb)->count = 1;
5992         NAPI_GRO_CB(skb)->age = jiffies;
5993         NAPI_GRO_CB(skb)->last = skb;
5994         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5995         list_add(&skb->list, gro_head);
5996         ret = GRO_HELD;
5997
5998 pull:
5999         grow = skb_gro_offset(skb) - skb_headlen(skb);
6000         if (grow > 0)
6001                 gro_pull_from_frag0(skb, grow);
6002 ok:
6003         if (napi->gro_hash[hash].count) {
6004                 if (!test_bit(hash, &napi->gro_bitmask))
6005                         __set_bit(hash, &napi->gro_bitmask);
6006         } else if (test_bit(hash, &napi->gro_bitmask)) {
6007                 __clear_bit(hash, &napi->gro_bitmask);
6008         }
6009
6010         return ret;
6011
6012 normal:
6013         ret = GRO_NORMAL;
6014         goto pull;
6015 }
6016
6017 struct packet_offload *gro_find_receive_by_type(__be16 type)
6018 {
6019         struct list_head *offload_head = &offload_base;
6020         struct packet_offload *ptype;
6021
6022         list_for_each_entry_rcu(ptype, offload_head, list) {
6023                 if (ptype->type != type || !ptype->callbacks.gro_receive)
6024                         continue;
6025                 return ptype;
6026         }
6027         return NULL;
6028 }
6029 EXPORT_SYMBOL(gro_find_receive_by_type);
6030
6031 struct packet_offload *gro_find_complete_by_type(__be16 type)
6032 {
6033         struct list_head *offload_head = &offload_base;
6034         struct packet_offload *ptype;
6035
6036         list_for_each_entry_rcu(ptype, offload_head, list) {
6037                 if (ptype->type != type || !ptype->callbacks.gro_complete)
6038                         continue;
6039                 return ptype;
6040         }
6041         return NULL;
6042 }
6043 EXPORT_SYMBOL(gro_find_complete_by_type);
6044
6045 static void napi_skb_free_stolen_head(struct sk_buff *skb)
6046 {
6047         skb_dst_drop(skb);
6048         skb_ext_put(skb);
6049         kmem_cache_free(skbuff_head_cache, skb);
6050 }
6051
6052 static gro_result_t napi_skb_finish(struct napi_struct *napi,
6053                                     struct sk_buff *skb,
6054                                     gro_result_t ret)
6055 {
6056         switch (ret) {
6057         case GRO_NORMAL:
6058                 gro_normal_one(napi, skb);
6059                 break;
6060
6061         case GRO_DROP:
6062                 kfree_skb(skb);
6063                 break;
6064
6065         case GRO_MERGED_FREE:
6066                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6067                         napi_skb_free_stolen_head(skb);
6068                 else
6069                         __kfree_skb(skb);
6070                 break;
6071
6072         case GRO_HELD:
6073         case GRO_MERGED:
6074         case GRO_CONSUMED:
6075                 break;
6076         }
6077
6078         return ret;
6079 }
6080
6081 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6082 {
6083         gro_result_t ret;
6084
6085         skb_mark_napi_id(skb, napi);
6086         trace_napi_gro_receive_entry(skb);
6087
6088         skb_gro_reset_offset(skb);
6089
6090         ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6091         trace_napi_gro_receive_exit(ret);
6092
6093         return ret;
6094 }
6095 EXPORT_SYMBOL(napi_gro_receive);
6096
6097 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6098 {
6099         if (unlikely(skb->pfmemalloc)) {
6100                 consume_skb(skb);
6101                 return;
6102         }
6103         __skb_pull(skb, skb_headlen(skb));
6104         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
6105         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6106         __vlan_hwaccel_clear_tag(skb);
6107         skb->dev = napi->dev;
6108         skb->skb_iif = 0;
6109
6110         /* eth_type_trans() assumes pkt_type is PACKET_HOST */
6111         skb->pkt_type = PACKET_HOST;
6112
6113         skb->encapsulation = 0;
6114         skb_shinfo(skb)->gso_type = 0;
6115         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6116         skb_ext_reset(skb);
6117
6118         napi->skb = skb;
6119 }
6120
6121 struct sk_buff *napi_get_frags(struct napi_struct *napi)
6122 {
6123         struct sk_buff *skb = napi->skb;
6124
6125         if (!skb) {
6126                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6127                 if (skb) {
6128                         napi->skb = skb;
6129                         skb_mark_napi_id(skb, napi);
6130                 }
6131         }
6132         return skb;
6133 }
6134 EXPORT_SYMBOL(napi_get_frags);
6135
6136 static gro_result_t napi_frags_finish(struct napi_struct *napi,
6137                                       struct sk_buff *skb,
6138                                       gro_result_t ret)
6139 {
6140         switch (ret) {
6141         case GRO_NORMAL:
6142         case GRO_HELD:
6143                 __skb_push(skb, ETH_HLEN);
6144                 skb->protocol = eth_type_trans(skb, skb->dev);
6145                 if (ret == GRO_NORMAL)
6146                         gro_normal_one(napi, skb);
6147                 break;
6148
6149         case GRO_DROP:
6150                 napi_reuse_skb(napi, skb);
6151                 break;
6152
6153         case GRO_MERGED_FREE:
6154                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6155                         napi_skb_free_stolen_head(skb);
6156                 else
6157                         napi_reuse_skb(napi, skb);
6158                 break;
6159
6160         case GRO_MERGED:
6161         case GRO_CONSUMED:
6162                 break;
6163         }
6164
6165         return ret;
6166 }
6167
6168 /* Upper GRO stack assumes network header starts at gro_offset=0
6169  * Drivers could call both napi_gro_frags() and napi_gro_receive()
6170  * We copy ethernet header into skb->data to have a common layout.
6171  */
6172 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6173 {
6174         struct sk_buff *skb = napi->skb;
6175         const struct ethhdr *eth;
6176         unsigned int hlen = sizeof(*eth);
6177
6178         napi->skb = NULL;
6179
6180         skb_reset_mac_header(skb);
6181         skb_gro_reset_offset(skb);
6182
6183         if (unlikely(skb_gro_header_hard(skb, hlen))) {
6184                 eth = skb_gro_header_slow(skb, hlen, 0);
6185                 if (unlikely(!eth)) {
6186                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6187                                              __func__, napi->dev->name);
6188                         napi_reuse_skb(napi, skb);
6189                         return NULL;
6190                 }
6191         } else {
6192                 eth = (const struct ethhdr *)skb->data;
6193                 gro_pull_from_frag0(skb, hlen);
6194                 NAPI_GRO_CB(skb)->frag0 += hlen;
6195                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
6196         }
6197         __skb_pull(skb, hlen);
6198
6199         /*
6200          * This works because the only protocols we care about don't require
6201          * special handling.
6202          * We'll fix it up properly in napi_frags_finish()
6203          */
6204         skb->protocol = eth->h_proto;
6205
6206         return skb;
6207 }
6208
6209 gro_result_t napi_gro_frags(struct napi_struct *napi)
6210 {
6211         gro_result_t ret;
6212         struct sk_buff *skb = napi_frags_skb(napi);
6213
6214         if (!skb)
6215                 return GRO_DROP;
6216
6217         trace_napi_gro_frags_entry(skb);
6218
6219         ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6220         trace_napi_gro_frags_exit(ret);
6221
6222         return ret;
6223 }
6224 EXPORT_SYMBOL(napi_gro_frags);
6225
6226 /* Compute the checksum from gro_offset and return the folded value
6227  * after adding in any pseudo checksum.
6228  */
6229 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6230 {
6231         __wsum wsum;
6232         __sum16 sum;
6233
6234         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6235
6236         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6237         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6238         /* See comments in __skb_checksum_complete(). */
6239         if (likely(!sum)) {
6240                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6241                     !skb->csum_complete_sw)
6242                         netdev_rx_csum_fault(skb->dev, skb);
6243         }
6244
6245         NAPI_GRO_CB(skb)->csum = wsum;
6246         NAPI_GRO_CB(skb)->csum_valid = 1;
6247
6248         return sum;
6249 }
6250 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6251
6252 static void net_rps_send_ipi(struct softnet_data *remsd)
6253 {
6254 #ifdef CONFIG_RPS
6255         while (remsd) {
6256                 struct softnet_data *next = remsd->rps_ipi_next;
6257
6258                 if (cpu_online(remsd->cpu))
6259                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
6260                 remsd = next;
6261         }
6262 #endif
6263 }
6264
6265 /*
6266  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6267  * Note: called with local irq disabled, but exits with local irq enabled.
6268  */
6269 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6270 {
6271 #ifdef CONFIG_RPS
6272         struct softnet_data *remsd = sd->rps_ipi_list;
6273
6274         if (remsd) {
6275                 sd->rps_ipi_list = NULL;
6276
6277                 local_irq_enable();
6278
6279                 /* Send pending IPI's to kick RPS processing on remote cpus. */
6280                 net_rps_send_ipi(remsd);
6281         } else
6282 #endif
6283                 local_irq_enable();
6284 }
6285
6286 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6287 {
6288 #ifdef CONFIG_RPS
6289         return sd->rps_ipi_list != NULL;
6290 #else
6291         return false;
6292 #endif
6293 }
6294
6295 static int process_backlog(struct napi_struct *napi, int quota)
6296 {
6297         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6298         bool again = true;
6299         int work = 0;
6300
6301         /* Check if we have pending ipi, its better to send them now,
6302          * not waiting net_rx_action() end.
6303          */
6304         if (sd_has_rps_ipi_waiting(sd)) {
6305                 local_irq_disable();
6306                 net_rps_action_and_irq_enable(sd);
6307         }
6308
6309         napi->weight = dev_rx_weight;
6310         while (again) {
6311                 struct sk_buff *skb;
6312
6313                 while ((skb = __skb_dequeue(&sd->process_queue))) {
6314                         rcu_read_lock();
6315                         __netif_receive_skb(skb);
6316                         rcu_read_unlock();
6317                         input_queue_head_incr(sd);
6318                         if (++work >= quota)
6319                                 return work;
6320
6321                 }
6322
6323                 local_irq_disable();
6324                 rps_lock(sd);
6325                 if (skb_queue_empty(&sd->input_pkt_queue)) {
6326                         /*
6327                          * Inline a custom version of __napi_complete().
6328                          * only current cpu owns and manipulates this napi,
6329                          * and NAPI_STATE_SCHED is the only possible flag set
6330                          * on backlog.
6331                          * We can use a plain write instead of clear_bit(),
6332                          * and we dont need an smp_mb() memory barrier.
6333                          */
6334                         napi->state = 0;
6335                         again = false;
6336                 } else {
6337                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
6338                                                    &sd->process_queue);
6339                 }
6340                 rps_unlock(sd);
6341                 local_irq_enable();
6342         }
6343
6344         return work;
6345 }
6346
6347 /**
6348  * __napi_schedule - schedule for receive
6349  * @n: entry to schedule
6350  *
6351  * The entry's receive function will be scheduled to run.
6352  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6353  */
6354 void __napi_schedule(struct napi_struct *n)
6355 {
6356         unsigned long flags;
6357
6358         local_irq_save(flags);
6359         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6360         local_irq_restore(flags);
6361 }
6362 EXPORT_SYMBOL(__napi_schedule);
6363
6364 /**
6365  *      napi_schedule_prep - check if napi can be scheduled
6366  *      @n: napi context
6367  *
6368  * Test if NAPI routine is already running, and if not mark
6369  * it as running.  This is used as a condition variable to
6370  * insure only one NAPI poll instance runs.  We also make
6371  * sure there is no pending NAPI disable.
6372  */
6373 bool napi_schedule_prep(struct napi_struct *n)
6374 {
6375         unsigned long val, new;
6376
6377         do {
6378                 val = READ_ONCE(n->state);
6379                 if (unlikely(val & NAPIF_STATE_DISABLE))
6380                         return false;
6381                 new = val | NAPIF_STATE_SCHED;
6382
6383                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6384                  * This was suggested by Alexander Duyck, as compiler
6385                  * emits better code than :
6386                  * if (val & NAPIF_STATE_SCHED)
6387                  *     new |= NAPIF_STATE_MISSED;
6388                  */
6389                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6390                                                    NAPIF_STATE_MISSED;
6391         } while (cmpxchg(&n->state, val, new) != val);
6392
6393         return !(val & NAPIF_STATE_SCHED);
6394 }
6395 EXPORT_SYMBOL(napi_schedule_prep);
6396
6397 /**
6398  * __napi_schedule_irqoff - schedule for receive
6399  * @n: entry to schedule
6400  *
6401  * Variant of __napi_schedule() assuming hard irqs are masked
6402  */
6403 void __napi_schedule_irqoff(struct napi_struct *n)
6404 {
6405         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6406 }
6407 EXPORT_SYMBOL(__napi_schedule_irqoff);
6408
6409 bool napi_complete_done(struct napi_struct *n, int work_done)
6410 {
6411         unsigned long flags, val, new, timeout = 0;
6412         bool ret = true;
6413
6414         /*
6415          * 1) Don't let napi dequeue from the cpu poll list
6416          *    just in case its running on a different cpu.
6417          * 2) If we are busy polling, do nothing here, we have
6418          *    the guarantee we will be called later.
6419          */
6420         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6421                                  NAPIF_STATE_IN_BUSY_POLL)))
6422                 return false;
6423
6424         if (work_done) {
6425                 if (n->gro_bitmask)
6426                         timeout = READ_ONCE(n->dev->gro_flush_timeout);
6427                 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6428         }
6429         if (n->defer_hard_irqs_count > 0) {
6430                 n->defer_hard_irqs_count--;
6431                 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6432                 if (timeout)
6433                         ret = false;
6434         }
6435         if (n->gro_bitmask) {
6436                 /* When the NAPI instance uses a timeout and keeps postponing
6437                  * it, we need to bound somehow the time packets are kept in
6438                  * the GRO layer
6439                  */
6440                 napi_gro_flush(n, !!timeout);
6441         }
6442
6443         gro_normal_list(n);
6444
6445         if (unlikely(!list_empty(&n->poll_list))) {
6446                 /* If n->poll_list is not empty, we need to mask irqs */
6447                 local_irq_save(flags);
6448                 list_del_init(&n->poll_list);
6449                 local_irq_restore(flags);
6450         }
6451
6452         do {
6453                 val = READ_ONCE(n->state);
6454
6455                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6456
6457                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6458
6459                 /* If STATE_MISSED was set, leave STATE_SCHED set,
6460                  * because we will call napi->poll() one more time.
6461                  * This C code was suggested by Alexander Duyck to help gcc.
6462                  */
6463                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6464                                                     NAPIF_STATE_SCHED;
6465         } while (cmpxchg(&n->state, val, new) != val);
6466
6467         if (unlikely(val & NAPIF_STATE_MISSED)) {
6468                 __napi_schedule(n);
6469                 return false;
6470         }
6471
6472         if (timeout)
6473                 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6474                               HRTIMER_MODE_REL_PINNED);
6475         return ret;
6476 }
6477 EXPORT_SYMBOL(napi_complete_done);
6478
6479 /* must be called under rcu_read_lock(), as we dont take a reference */
6480 static struct napi_struct *napi_by_id(unsigned int napi_id)
6481 {
6482         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6483         struct napi_struct *napi;
6484
6485         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6486                 if (napi->napi_id == napi_id)
6487                         return napi;
6488
6489         return NULL;
6490 }
6491
6492 #if defined(CONFIG_NET_RX_BUSY_POLL)
6493
6494 #define BUSY_POLL_BUDGET 8
6495
6496 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6497 {
6498         int rc;
6499
6500         /* Busy polling means there is a high chance device driver hard irq
6501          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6502          * set in napi_schedule_prep().
6503          * Since we are about to call napi->poll() once more, we can safely
6504          * clear NAPI_STATE_MISSED.
6505          *
6506          * Note: x86 could use a single "lock and ..." instruction
6507          * to perform these two clear_bit()
6508          */
6509         clear_bit(NAPI_STATE_MISSED, &napi->state);
6510         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6511
6512         local_bh_disable();
6513
6514         /* All we really want here is to re-enable device interrupts.
6515          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6516          */
6517         rc = napi->poll(napi, BUSY_POLL_BUDGET);
6518         /* We can't gro_normal_list() here, because napi->poll() might have
6519          * rearmed the napi (napi_complete_done()) in which case it could
6520          * already be running on another CPU.
6521          */
6522         trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6523         netpoll_poll_unlock(have_poll_lock);
6524         if (rc == BUSY_POLL_BUDGET) {
6525                 /* As the whole budget was spent, we still own the napi so can
6526                  * safely handle the rx_list.
6527                  */
6528                 gro_normal_list(napi);
6529                 __napi_schedule(napi);
6530         }
6531         local_bh_enable();
6532 }
6533
6534 void napi_busy_loop(unsigned int napi_id,
6535                     bool (*loop_end)(void *, unsigned long),
6536                     void *loop_end_arg)
6537 {
6538         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6539         int (*napi_poll)(struct napi_struct *napi, int budget);
6540         void *have_poll_lock = NULL;
6541         struct napi_struct *napi;
6542
6543 restart:
6544         napi_poll = NULL;
6545
6546         rcu_read_lock();
6547
6548         napi = napi_by_id(napi_id);
6549         if (!napi)
6550                 goto out;
6551
6552         preempt_disable();
6553         for (;;) {
6554                 int work = 0;
6555
6556                 local_bh_disable();
6557                 if (!napi_poll) {
6558                         unsigned long val = READ_ONCE(napi->state);
6559
6560                         /* If multiple threads are competing for this napi,
6561                          * we avoid dirtying napi->state as much as we can.
6562                          */
6563                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6564                                    NAPIF_STATE_IN_BUSY_POLL))
6565                                 goto count;
6566                         if (cmpxchg(&napi->state, val,
6567                                     val | NAPIF_STATE_IN_BUSY_POLL |
6568                                           NAPIF_STATE_SCHED) != val)
6569                                 goto count;
6570                         have_poll_lock = netpoll_poll_lock(napi);
6571                         napi_poll = napi->poll;
6572                 }
6573                 work = napi_poll(napi, BUSY_POLL_BUDGET);
6574                 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6575                 gro_normal_list(napi);
6576 count:
6577                 if (work > 0)
6578                         __NET_ADD_STATS(dev_net(napi->dev),
6579                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6580                 local_bh_enable();
6581
6582                 if (!loop_end || loop_end(loop_end_arg, start_time))
6583                         break;
6584
6585                 if (unlikely(need_resched())) {
6586                         if (napi_poll)
6587                                 busy_poll_stop(napi, have_poll_lock);
6588                         preempt_enable();
6589                         rcu_read_unlock();
6590                         cond_resched();
6591                         if (loop_end(loop_end_arg, start_time))
6592                                 return;
6593                         goto restart;
6594                 }
6595                 cpu_relax();
6596         }
6597         if (napi_poll)
6598                 busy_poll_stop(napi, have_poll_lock);
6599         preempt_enable();
6600 out:
6601         rcu_read_unlock();
6602 }
6603 EXPORT_SYMBOL(napi_busy_loop);
6604
6605 #endif /* CONFIG_NET_RX_BUSY_POLL */
6606
6607 static void napi_hash_add(struct napi_struct *napi)
6608 {
6609         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6610                 return;
6611
6612         spin_lock(&napi_hash_lock);
6613
6614         /* 0..NR_CPUS range is reserved for sender_cpu use */
6615         do {
6616                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6617                         napi_gen_id = MIN_NAPI_ID;
6618         } while (napi_by_id(napi_gen_id));
6619         napi->napi_id = napi_gen_id;
6620
6621         hlist_add_head_rcu(&napi->napi_hash_node,
6622                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6623
6624         spin_unlock(&napi_hash_lock);
6625 }
6626
6627 /* Warning : caller is responsible to make sure rcu grace period
6628  * is respected before freeing memory containing @napi
6629  */
6630 static void napi_hash_del(struct napi_struct *napi)
6631 {
6632         spin_lock(&napi_hash_lock);
6633
6634         hlist_del_init_rcu(&napi->napi_hash_node);
6635
6636         spin_unlock(&napi_hash_lock);
6637 }
6638
6639 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6640 {
6641         struct napi_struct *napi;
6642
6643         napi = container_of(timer, struct napi_struct, timer);
6644
6645         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6646          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6647          */
6648         if (!napi_disable_pending(napi) &&
6649             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6650                 __napi_schedule_irqoff(napi);
6651
6652         return HRTIMER_NORESTART;
6653 }
6654
6655 static void init_gro_hash(struct napi_struct *napi)
6656 {
6657         int i;
6658
6659         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6660                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6661                 napi->gro_hash[i].count = 0;
6662         }
6663         napi->gro_bitmask = 0;
6664 }
6665
6666 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6667                     int (*poll)(struct napi_struct *, int), int weight)
6668 {
6669         if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6670                 return;
6671
6672         INIT_LIST_HEAD(&napi->poll_list);
6673         INIT_HLIST_NODE(&napi->napi_hash_node);
6674         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6675         napi->timer.function = napi_watchdog;
6676         init_gro_hash(napi);
6677         napi->skb = NULL;
6678         INIT_LIST_HEAD(&napi->rx_list);
6679         napi->rx_count = 0;
6680         napi->poll = poll;
6681         if (weight > NAPI_POLL_WEIGHT)
6682                 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6683                                 weight);
6684         napi->weight = weight;
6685         napi->dev = dev;
6686 #ifdef CONFIG_NETPOLL
6687         napi->poll_owner = -1;
6688 #endif
6689         set_bit(NAPI_STATE_SCHED, &napi->state);
6690         set_bit(NAPI_STATE_NPSVC, &napi->state);
6691         list_add_rcu(&napi->dev_list, &dev->napi_list);
6692         napi_hash_add(napi);
6693 }
6694 EXPORT_SYMBOL(netif_napi_add);
6695
6696 void napi_disable(struct napi_struct *n)
6697 {
6698         might_sleep();
6699         set_bit(NAPI_STATE_DISABLE, &n->state);
6700
6701         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6702                 msleep(1);
6703         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6704                 msleep(1);
6705
6706         hrtimer_cancel(&n->timer);
6707
6708         clear_bit(NAPI_STATE_DISABLE, &n->state);
6709 }
6710 EXPORT_SYMBOL(napi_disable);
6711
6712 static void flush_gro_hash(struct napi_struct *napi)
6713 {
6714         int i;
6715
6716         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6717                 struct sk_buff *skb, *n;
6718
6719                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6720                         kfree_skb(skb);
6721                 napi->gro_hash[i].count = 0;
6722         }
6723 }
6724
6725 /* Must be called in process context */
6726 void __netif_napi_del(struct napi_struct *napi)
6727 {
6728         if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6729                 return;
6730
6731         napi_hash_del(napi);
6732         list_del_rcu(&napi->dev_list);
6733         napi_free_frags(napi);
6734
6735         flush_gro_hash(napi);
6736         napi->gro_bitmask = 0;
6737 }
6738 EXPORT_SYMBOL(__netif_napi_del);
6739
6740 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6741 {
6742         void *have;
6743         int work, weight;
6744
6745         list_del_init(&n->poll_list);
6746
6747         have = netpoll_poll_lock(n);
6748
6749         weight = n->weight;
6750
6751         /* This NAPI_STATE_SCHED test is for avoiding a race
6752          * with netpoll's poll_napi().  Only the entity which
6753          * obtains the lock and sees NAPI_STATE_SCHED set will
6754          * actually make the ->poll() call.  Therefore we avoid
6755          * accidentally calling ->poll() when NAPI is not scheduled.
6756          */
6757         work = 0;
6758         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6759                 work = n->poll(n, weight);
6760                 trace_napi_poll(n, work, weight);
6761         }
6762
6763         if (unlikely(work > weight))
6764                 pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6765                             n->poll, work, weight);
6766
6767         if (likely(work < weight))
6768                 goto out_unlock;
6769
6770         /* Drivers must not modify the NAPI state if they
6771          * consume the entire weight.  In such cases this code
6772          * still "owns" the NAPI instance and therefore can
6773          * move the instance around on the list at-will.
6774          */
6775         if (unlikely(napi_disable_pending(n))) {
6776                 napi_complete(n);
6777                 goto out_unlock;
6778         }
6779
6780         if (n->gro_bitmask) {
6781                 /* flush too old packets
6782                  * If HZ < 1000, flush all packets.
6783                  */
6784                 napi_gro_flush(n, HZ >= 1000);
6785         }
6786
6787         gro_normal_list(n);
6788
6789         /* Some drivers may have called napi_schedule
6790          * prior to exhausting their budget.
6791          */
6792         if (unlikely(!list_empty(&n->poll_list))) {
6793                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6794                              n->dev ? n->dev->name : "backlog");
6795                 goto out_unlock;
6796         }
6797
6798         list_add_tail(&n->poll_list, repoll);
6799
6800 out_unlock:
6801         netpoll_poll_unlock(have);
6802
6803         return work;
6804 }
6805
6806 static __latent_entropy void net_rx_action(struct softirq_action *h)
6807 {
6808         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6809         unsigned long time_limit = jiffies +
6810                 usecs_to_jiffies(netdev_budget_usecs);
6811         int budget = netdev_budget;
6812         LIST_HEAD(list);
6813         LIST_HEAD(repoll);
6814
6815         local_irq_disable();
6816         list_splice_init(&sd->poll_list, &list);
6817         local_irq_enable();
6818
6819         for (;;) {
6820                 struct napi_struct *n;
6821
6822                 if (list_empty(&list)) {
6823                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6824                                 goto out;
6825                         break;
6826                 }
6827
6828                 n = list_first_entry(&list, struct napi_struct, poll_list);
6829                 budget -= napi_poll(n, &repoll);
6830
6831                 /* If softirq window is exhausted then punt.
6832                  * Allow this to run for 2 jiffies since which will allow
6833                  * an average latency of 1.5/HZ.
6834                  */
6835                 if (unlikely(budget <= 0 ||
6836                              time_after_eq(jiffies, time_limit))) {
6837                         sd->time_squeeze++;
6838                         break;
6839                 }
6840         }
6841
6842         local_irq_disable();
6843
6844         list_splice_tail_init(&sd->poll_list, &list);
6845         list_splice_tail(&repoll, &list);
6846         list_splice(&list, &sd->poll_list);
6847         if (!list_empty(&sd->poll_list))
6848                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6849
6850         net_rps_action_and_irq_enable(sd);
6851 out:
6852         __kfree_skb_flush();
6853 }
6854
6855 struct netdev_adjacent {
6856         struct net_device *dev;
6857
6858         /* upper master flag, there can only be one master device per list */
6859         bool master;
6860
6861         /* lookup ignore flag */
6862         bool ignore;
6863
6864         /* counter for the number of times this device was added to us */
6865         u16 ref_nr;
6866
6867         /* private field for the users */
6868         void *private;
6869
6870         struct list_head list;
6871         struct rcu_head rcu;
6872 };
6873
6874 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6875                                                  struct list_head *adj_list)
6876 {
6877         struct netdev_adjacent *adj;
6878
6879         list_for_each_entry(adj, adj_list, list) {
6880                 if (adj->dev == adj_dev)
6881                         return adj;
6882         }
6883         return NULL;
6884 }
6885
6886 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6887                                     struct netdev_nested_priv *priv)
6888 {
6889         struct net_device *dev = (struct net_device *)priv->data;
6890
6891         return upper_dev == dev;
6892 }
6893
6894 /**
6895  * netdev_has_upper_dev - Check if device is linked to an upper device
6896  * @dev: device
6897  * @upper_dev: upper device to check
6898  *
6899  * Find out if a device is linked to specified upper device and return true
6900  * in case it is. Note that this checks only immediate upper device,
6901  * not through a complete stack of devices. The caller must hold the RTNL lock.
6902  */
6903 bool netdev_has_upper_dev(struct net_device *dev,
6904                           struct net_device *upper_dev)
6905 {
6906         struct netdev_nested_priv priv = {
6907                 .data = (void *)upper_dev,
6908         };
6909
6910         ASSERT_RTNL();
6911
6912         return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6913                                              &priv);
6914 }
6915 EXPORT_SYMBOL(netdev_has_upper_dev);
6916
6917 /**
6918  * netdev_has_upper_dev_all - Check if device is linked to an upper device
6919  * @dev: device
6920  * @upper_dev: upper device to check
6921  *
6922  * Find out if a device is linked to specified upper device and return true
6923  * in case it is. Note that this checks the entire upper device chain.
6924  * The caller must hold rcu lock.
6925  */
6926
6927 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6928                                   struct net_device *upper_dev)
6929 {
6930         struct netdev_nested_priv priv = {
6931                 .data = (void *)upper_dev,
6932         };
6933
6934         return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6935                                                &priv);
6936 }
6937 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6938
6939 /**
6940  * netdev_has_any_upper_dev - Check if device is linked to some device
6941  * @dev: device
6942  *
6943  * Find out if a device is linked to an upper device and return true in case
6944  * it is. The caller must hold the RTNL lock.
6945  */
6946 bool netdev_has_any_upper_dev(struct net_device *dev)
6947 {
6948         ASSERT_RTNL();
6949
6950         return !list_empty(&dev->adj_list.upper);
6951 }
6952 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6953
6954 /**
6955  * netdev_master_upper_dev_get - Get master upper device
6956  * @dev: device
6957  *
6958  * Find a master upper device and return pointer to it or NULL in case
6959  * it's not there. The caller must hold the RTNL lock.
6960  */
6961 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6962 {
6963         struct netdev_adjacent *upper;
6964
6965         ASSERT_RTNL();
6966
6967         if (list_empty(&dev->adj_list.upper))
6968                 return NULL;
6969
6970         upper = list_first_entry(&dev->adj_list.upper,
6971                                  struct netdev_adjacent, list);
6972         if (likely(upper->master))
6973                 return upper->dev;
6974         return NULL;
6975 }
6976 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6977
6978 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6979 {
6980         struct netdev_adjacent *upper;
6981
6982         ASSERT_RTNL();
6983
6984         if (list_empty(&dev->adj_list.upper))
6985                 return NULL;
6986
6987         upper = list_first_entry(&dev->adj_list.upper,
6988                                  struct netdev_adjacent, list);
6989         if (likely(upper->master) && !upper->ignore)
6990                 return upper->dev;
6991         return NULL;
6992 }
6993
6994 /**
6995  * netdev_has_any_lower_dev - Check if device is linked to some device
6996  * @dev: device
6997  *
6998  * Find out if a device is linked to a lower device and return true in case
6999  * it is. The caller must hold the RTNL lock.
7000  */
7001 static bool netdev_has_any_lower_dev(struct net_device *dev)
7002 {
7003         ASSERT_RTNL();
7004
7005         return !list_empty(&dev->adj_list.lower);
7006 }
7007
7008 void *netdev_adjacent_get_private(struct list_head *adj_list)
7009 {
7010         struct netdev_adjacent *adj;
7011
7012         adj = list_entry(adj_list, struct netdev_adjacent, list);
7013
7014         return adj->private;
7015 }
7016 EXPORT_SYMBOL(netdev_adjacent_get_private);
7017
7018 /**
7019  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7020  * @dev: device
7021  * @iter: list_head ** of the current position
7022  *
7023  * Gets the next device from the dev's upper list, starting from iter
7024  * position. The caller must hold RCU read lock.
7025  */
7026 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7027                                                  struct list_head **iter)
7028 {
7029         struct netdev_adjacent *upper;
7030
7031         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7032
7033         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7034
7035         if (&upper->list == &dev->adj_list.upper)
7036                 return NULL;
7037
7038         *iter = &upper->list;
7039
7040         return upper->dev;
7041 }
7042 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7043
7044 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7045                                                   struct list_head **iter,
7046                                                   bool *ignore)
7047 {
7048         struct netdev_adjacent *upper;
7049
7050         upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7051
7052         if (&upper->list == &dev->adj_list.upper)
7053                 return NULL;
7054
7055         *iter = &upper->list;
7056         *ignore = upper->ignore;
7057
7058         return upper->dev;
7059 }
7060
7061 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7062                                                     struct list_head **iter)
7063 {
7064         struct netdev_adjacent *upper;
7065
7066         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7067
7068         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7069
7070         if (&upper->list == &dev->adj_list.upper)
7071                 return NULL;
7072
7073         *iter = &upper->list;
7074
7075         return upper->dev;
7076 }
7077
7078 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7079                                        int (*fn)(struct net_device *dev,
7080                                          struct netdev_nested_priv *priv),
7081                                        struct netdev_nested_priv *priv)
7082 {
7083         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7084         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7085         int ret, cur = 0;
7086         bool ignore;
7087
7088         now = dev;
7089         iter = &dev->adj_list.upper;
7090
7091         while (1) {
7092                 if (now != dev) {
7093                         ret = fn(now, priv);
7094                         if (ret)
7095                                 return ret;
7096                 }
7097
7098                 next = NULL;
7099                 while (1) {
7100                         udev = __netdev_next_upper_dev(now, &iter, &ignore);
7101                         if (!udev)
7102                                 break;
7103                         if (ignore)
7104                                 continue;
7105
7106                         next = udev;
7107                         niter = &udev->adj_list.upper;
7108                         dev_stack[cur] = now;
7109                         iter_stack[cur++] = iter;
7110                         break;
7111                 }
7112
7113                 if (!next) {
7114                         if (!cur)
7115                                 return 0;
7116                         next = dev_stack[--cur];
7117                         niter = iter_stack[cur];
7118                 }
7119
7120                 now = next;
7121                 iter = niter;
7122         }
7123
7124         return 0;
7125 }
7126
7127 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7128                                   int (*fn)(struct net_device *dev,
7129                                             struct netdev_nested_priv *priv),
7130                                   struct netdev_nested_priv *priv)
7131 {
7132         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7133         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7134         int ret, cur = 0;
7135
7136         now = dev;
7137         iter = &dev->adj_list.upper;
7138
7139         while (1) {
7140                 if (now != dev) {
7141                         ret = fn(now, priv);
7142                         if (ret)
7143                                 return ret;
7144                 }
7145
7146                 next = NULL;
7147                 while (1) {
7148                         udev = netdev_next_upper_dev_rcu(now, &iter);
7149                         if (!udev)
7150                                 break;
7151
7152                         next = udev;
7153                         niter = &udev->adj_list.upper;
7154                         dev_stack[cur] = now;
7155                         iter_stack[cur++] = iter;
7156                         break;
7157                 }
7158
7159                 if (!next) {
7160                         if (!cur)
7161                                 return 0;
7162                         next = dev_stack[--cur];
7163                         niter = iter_stack[cur];
7164                 }
7165
7166                 now = next;
7167                 iter = niter;
7168         }
7169
7170         return 0;
7171 }
7172 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7173
7174 static bool __netdev_has_upper_dev(struct net_device *dev,
7175                                    struct net_device *upper_dev)
7176 {
7177         struct netdev_nested_priv priv = {
7178                 .flags = 0,
7179                 .data = (void *)upper_dev,
7180         };
7181
7182         ASSERT_RTNL();
7183
7184         return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7185                                            &priv);
7186 }
7187
7188 /**
7189  * netdev_lower_get_next_private - Get the next ->private from the
7190  *                                 lower neighbour list
7191  * @dev: device
7192  * @iter: list_head ** of the current position
7193  *
7194  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7195  * list, starting from iter position. The caller must hold either hold the
7196  * RTNL lock or its own locking that guarantees that the neighbour lower
7197  * list will remain unchanged.
7198  */
7199 void *netdev_lower_get_next_private(struct net_device *dev,
7200                                     struct list_head **iter)
7201 {
7202         struct netdev_adjacent *lower;
7203
7204         lower = list_entry(*iter, struct netdev_adjacent, list);
7205
7206         if (&lower->list == &dev->adj_list.lower)
7207                 return NULL;
7208
7209         *iter = lower->list.next;
7210
7211         return lower->private;
7212 }
7213 EXPORT_SYMBOL(netdev_lower_get_next_private);
7214
7215 /**
7216  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7217  *                                     lower neighbour list, RCU
7218  *                                     variant
7219  * @dev: device
7220  * @iter: list_head ** of the current position
7221  *
7222  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7223  * list, starting from iter position. The caller must hold RCU read lock.
7224  */
7225 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7226                                         struct list_head **iter)
7227 {
7228         struct netdev_adjacent *lower;
7229
7230         WARN_ON_ONCE(!rcu_read_lock_held());
7231
7232         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7233
7234         if (&lower->list == &dev->adj_list.lower)
7235                 return NULL;
7236
7237         *iter = &lower->list;
7238
7239         return lower->private;
7240 }
7241 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7242
7243 /**
7244  * netdev_lower_get_next - Get the next device from the lower neighbour
7245  *                         list
7246  * @dev: device
7247  * @iter: list_head ** of the current position
7248  *
7249  * Gets the next netdev_adjacent from the dev's lower neighbour
7250  * list, starting from iter position. The caller must hold RTNL lock or
7251  * its own locking that guarantees that the neighbour lower
7252  * list will remain unchanged.
7253  */
7254 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7255 {
7256         struct netdev_adjacent *lower;
7257
7258         lower = list_entry(*iter, struct netdev_adjacent, list);
7259
7260         if (&lower->list == &dev->adj_list.lower)
7261                 return NULL;
7262
7263         *iter = lower->list.next;
7264
7265         return lower->dev;
7266 }
7267 EXPORT_SYMBOL(netdev_lower_get_next);
7268
7269 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7270                                                 struct list_head **iter)
7271 {
7272         struct netdev_adjacent *lower;
7273
7274         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7275
7276         if (&lower->list == &dev->adj_list.lower)
7277                 return NULL;
7278
7279         *iter = &lower->list;
7280
7281         return lower->dev;
7282 }
7283
7284 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7285                                                   struct list_head **iter,
7286                                                   bool *ignore)
7287 {
7288         struct netdev_adjacent *lower;
7289
7290         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7291
7292         if (&lower->list == &dev->adj_list.lower)
7293                 return NULL;
7294
7295         *iter = &lower->list;
7296         *ignore = lower->ignore;
7297
7298         return lower->dev;
7299 }
7300
7301 int netdev_walk_all_lower_dev(struct net_device *dev,
7302                               int (*fn)(struct net_device *dev,
7303                                         struct netdev_nested_priv *priv),
7304                               struct netdev_nested_priv *priv)
7305 {
7306         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7307         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7308         int ret, cur = 0;
7309
7310         now = dev;
7311         iter = &dev->adj_list.lower;
7312
7313         while (1) {
7314                 if (now != dev) {
7315                         ret = fn(now, priv);
7316                         if (ret)
7317                                 return ret;
7318                 }
7319
7320                 next = NULL;
7321                 while (1) {
7322                         ldev = netdev_next_lower_dev(now, &iter);
7323                         if (!ldev)
7324                                 break;
7325
7326                         next = ldev;
7327                         niter = &ldev->adj_list.lower;
7328                         dev_stack[cur] = now;
7329                         iter_stack[cur++] = iter;
7330                         break;
7331                 }
7332
7333                 if (!next) {
7334                         if (!cur)
7335                                 return 0;
7336                         next = dev_stack[--cur];
7337                         niter = iter_stack[cur];
7338                 }
7339
7340                 now = next;
7341                 iter = niter;
7342         }
7343
7344         return 0;
7345 }
7346 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7347
7348 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7349                                        int (*fn)(struct net_device *dev,
7350                                          struct netdev_nested_priv *priv),
7351                                        struct netdev_nested_priv *priv)
7352 {
7353         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7354         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7355         int ret, cur = 0;
7356         bool ignore;
7357
7358         now = dev;
7359         iter = &dev->adj_list.lower;
7360
7361         while (1) {
7362                 if (now != dev) {
7363                         ret = fn(now, priv);
7364                         if (ret)
7365                                 return ret;
7366                 }
7367
7368                 next = NULL;
7369                 while (1) {
7370                         ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7371                         if (!ldev)
7372                                 break;
7373                         if (ignore)
7374                                 continue;
7375
7376                         next = ldev;
7377                         niter = &ldev->adj_list.lower;
7378                         dev_stack[cur] = now;
7379                         iter_stack[cur++] = iter;
7380                         break;
7381                 }
7382
7383                 if (!next) {
7384                         if (!cur)
7385                                 return 0;
7386                         next = dev_stack[--cur];
7387                         niter = iter_stack[cur];
7388                 }
7389
7390                 now = next;
7391                 iter = niter;
7392         }
7393
7394         return 0;
7395 }
7396
7397 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7398                                              struct list_head **iter)
7399 {
7400         struct netdev_adjacent *lower;
7401
7402         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7403         if (&lower->list == &dev->adj_list.lower)
7404                 return NULL;
7405
7406         *iter = &lower->list;
7407
7408         return lower->dev;
7409 }
7410 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7411
7412 static u8 __netdev_upper_depth(struct net_device *dev)
7413 {
7414         struct net_device *udev;
7415         struct list_head *iter;
7416         u8 max_depth = 0;
7417         bool ignore;
7418
7419         for (iter = &dev->adj_list.upper,
7420              udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7421              udev;
7422              udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7423                 if (ignore)
7424                         continue;
7425                 if (max_depth < udev->upper_level)
7426                         max_depth = udev->upper_level;
7427         }
7428
7429         return max_depth;
7430 }
7431
7432 static u8 __netdev_lower_depth(struct net_device *dev)
7433 {
7434         struct net_device *ldev;
7435         struct list_head *iter;
7436         u8 max_depth = 0;
7437         bool ignore;
7438
7439         for (iter = &dev->adj_list.lower,
7440              ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7441              ldev;
7442              ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7443                 if (ignore)
7444                         continue;
7445                 if (max_depth < ldev->lower_level)
7446                         max_depth = ldev->lower_level;
7447         }
7448
7449         return max_depth;
7450 }
7451
7452 static int __netdev_update_upper_level(struct net_device *dev,
7453                                        struct netdev_nested_priv *__unused)
7454 {
7455         dev->upper_level = __netdev_upper_depth(dev) + 1;
7456         return 0;
7457 }
7458
7459 static int __netdev_update_lower_level(struct net_device *dev,
7460                                        struct netdev_nested_priv *priv)
7461 {
7462         dev->lower_level = __netdev_lower_depth(dev) + 1;
7463
7464 #ifdef CONFIG_LOCKDEP
7465         if (!priv)
7466                 return 0;
7467
7468         if (priv->flags & NESTED_SYNC_IMM)
7469                 dev->nested_level = dev->lower_level - 1;
7470         if (priv->flags & NESTED_SYNC_TODO)
7471                 net_unlink_todo(dev);
7472 #endif
7473         return 0;
7474 }
7475
7476 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7477                                   int (*fn)(struct net_device *dev,
7478                                             struct netdev_nested_priv *priv),
7479                                   struct netdev_nested_priv *priv)
7480 {
7481         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7482         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7483         int ret, cur = 0;
7484
7485         now = dev;
7486         iter = &dev->adj_list.lower;
7487
7488         while (1) {
7489                 if (now != dev) {
7490                         ret = fn(now, priv);
7491                         if (ret)
7492                                 return ret;
7493                 }
7494
7495                 next = NULL;
7496                 while (1) {
7497                         ldev = netdev_next_lower_dev_rcu(now, &iter);
7498                         if (!ldev)
7499                                 break;
7500
7501                         next = ldev;
7502                         niter = &ldev->adj_list.lower;
7503                         dev_stack[cur] = now;
7504                         iter_stack[cur++] = iter;
7505                         break;
7506                 }
7507
7508                 if (!next) {
7509                         if (!cur)
7510                                 return 0;
7511                         next = dev_stack[--cur];
7512                         niter = iter_stack[cur];
7513                 }
7514
7515                 now = next;
7516                 iter = niter;
7517         }
7518
7519         return 0;
7520 }
7521 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7522
7523 /**
7524  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7525  *                                     lower neighbour list, RCU
7526  *                                     variant
7527  * @dev: device
7528  *
7529  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7530  * list. The caller must hold RCU read lock.
7531  */
7532 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7533 {
7534         struct netdev_adjacent *lower;
7535
7536         lower = list_first_or_null_rcu(&dev->adj_list.lower,
7537                         struct netdev_adjacent, list);
7538         if (lower)
7539                 return lower->private;
7540         return NULL;
7541 }
7542 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7543
7544 /**
7545  * netdev_master_upper_dev_get_rcu - Get master upper device
7546  * @dev: device
7547  *
7548  * Find a master upper device and return pointer to it or NULL in case
7549  * it's not there. The caller must hold the RCU read lock.
7550  */
7551 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7552 {
7553         struct netdev_adjacent *upper;
7554
7555         upper = list_first_or_null_rcu(&dev->adj_list.upper,
7556                                        struct netdev_adjacent, list);
7557         if (upper && likely(upper->master))
7558                 return upper->dev;
7559         return NULL;
7560 }
7561 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7562
7563 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7564                               struct net_device *adj_dev,
7565                               struct list_head *dev_list)
7566 {
7567         char linkname[IFNAMSIZ+7];
7568
7569         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7570                 "upper_%s" : "lower_%s", adj_dev->name);
7571         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7572                                  linkname);
7573 }
7574 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7575                                char *name,
7576                                struct list_head *dev_list)
7577 {
7578         char linkname[IFNAMSIZ+7];
7579
7580         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7581                 "upper_%s" : "lower_%s", name);
7582         sysfs_remove_link(&(dev->dev.kobj), linkname);
7583 }
7584
7585 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7586                                                  struct net_device *adj_dev,
7587                                                  struct list_head *dev_list)
7588 {
7589         return (dev_list == &dev->adj_list.upper ||
7590                 dev_list == &dev->adj_list.lower) &&
7591                 net_eq(dev_net(dev), dev_net(adj_dev));
7592 }
7593
7594 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7595                                         struct net_device *adj_dev,
7596                                         struct list_head *dev_list,
7597                                         void *private, bool master)
7598 {
7599         struct netdev_adjacent *adj;
7600         int ret;
7601
7602         adj = __netdev_find_adj(adj_dev, dev_list);
7603
7604         if (adj) {
7605                 adj->ref_nr += 1;
7606                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7607                          dev->name, adj_dev->name, adj->ref_nr);
7608
7609                 return 0;
7610         }
7611
7612         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7613         if (!adj)
7614                 return -ENOMEM;
7615
7616         adj->dev = adj_dev;
7617         adj->master = master;
7618         adj->ref_nr = 1;
7619         adj->private = private;
7620         adj->ignore = false;
7621         dev_hold(adj_dev);
7622
7623         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7624                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7625
7626         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7627                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7628                 if (ret)
7629                         goto free_adj;
7630         }
7631
7632         /* Ensure that master link is always the first item in list. */
7633         if (master) {
7634                 ret = sysfs_create_link(&(dev->dev.kobj),
7635                                         &(adj_dev->dev.kobj), "master");
7636                 if (ret)
7637                         goto remove_symlinks;
7638
7639                 list_add_rcu(&adj->list, dev_list);
7640         } else {
7641                 list_add_tail_rcu(&adj->list, dev_list);
7642         }
7643
7644         return 0;
7645
7646 remove_symlinks:
7647         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7648                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7649 free_adj:
7650         kfree(adj);
7651         dev_put(adj_dev);
7652
7653         return ret;
7654 }
7655
7656 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7657                                          struct net_device *adj_dev,
7658                                          u16 ref_nr,
7659                                          struct list_head *dev_list)
7660 {
7661         struct netdev_adjacent *adj;
7662
7663         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7664                  dev->name, adj_dev->name, ref_nr);
7665
7666         adj = __netdev_find_adj(adj_dev, dev_list);
7667
7668         if (!adj) {
7669                 pr_err("Adjacency does not exist for device %s from %s\n",
7670                        dev->name, adj_dev->name);
7671                 WARN_ON(1);
7672                 return;
7673         }
7674
7675         if (adj->ref_nr > ref_nr) {
7676                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7677                          dev->name, adj_dev->name, ref_nr,
7678                          adj->ref_nr - ref_nr);
7679                 adj->ref_nr -= ref_nr;
7680                 return;
7681         }
7682
7683         if (adj->master)
7684                 sysfs_remove_link(&(dev->dev.kobj), "master");
7685
7686         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7687                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7688
7689         list_del_rcu(&adj->list);
7690         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7691                  adj_dev->name, dev->name, adj_dev->name);
7692         dev_put(adj_dev);
7693         kfree_rcu(adj, rcu);
7694 }
7695
7696 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7697                                             struct net_device *upper_dev,
7698                                             struct list_head *up_list,
7699                                             struct list_head *down_list,
7700                                             void *private, bool master)
7701 {
7702         int ret;
7703
7704         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7705                                            private, master);
7706         if (ret)
7707                 return ret;
7708
7709         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7710                                            private, false);
7711         if (ret) {
7712                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7713                 return ret;
7714         }
7715
7716         return 0;
7717 }
7718
7719 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7720                                                struct net_device *upper_dev,
7721                                                u16 ref_nr,
7722                                                struct list_head *up_list,
7723                                                struct list_head *down_list)
7724 {
7725         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7726         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7727 }
7728
7729 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7730                                                 struct net_device *upper_dev,
7731                                                 void *private, bool master)
7732 {
7733         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7734                                                 &dev->adj_list.upper,
7735                                                 &upper_dev->adj_list.lower,
7736                                                 private, master);
7737 }
7738
7739 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7740                                                    struct net_device *upper_dev)
7741 {
7742         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7743                                            &dev->adj_list.upper,
7744                                            &upper_dev->adj_list.lower);
7745 }
7746
7747 static int __netdev_upper_dev_link(struct net_device *dev,
7748                                    struct net_device *upper_dev, bool master,
7749                                    void *upper_priv, void *upper_info,
7750                                    struct netdev_nested_priv *priv,
7751                                    struct netlink_ext_ack *extack)
7752 {
7753         struct netdev_notifier_changeupper_info changeupper_info = {
7754                 .info = {
7755                         .dev = dev,
7756                         .extack = extack,
7757                 },
7758                 .upper_dev = upper_dev,
7759                 .master = master,
7760                 .linking = true,
7761                 .upper_info = upper_info,
7762         };
7763         struct net_device *master_dev;
7764         int ret = 0;
7765
7766         ASSERT_RTNL();
7767
7768         if (dev == upper_dev)
7769                 return -EBUSY;
7770
7771         /* To prevent loops, check if dev is not upper device to upper_dev. */
7772         if (__netdev_has_upper_dev(upper_dev, dev))
7773                 return -EBUSY;
7774
7775         if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7776                 return -EMLINK;
7777
7778         if (!master) {
7779                 if (__netdev_has_upper_dev(dev, upper_dev))
7780                         return -EEXIST;
7781         } else {
7782                 master_dev = __netdev_master_upper_dev_get(dev);
7783                 if (master_dev)
7784                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
7785         }
7786
7787         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7788                                             &changeupper_info.info);
7789         ret = notifier_to_errno(ret);
7790         if (ret)
7791                 return ret;
7792
7793         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7794                                                    master);
7795         if (ret)
7796                 return ret;
7797
7798         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7799                                             &changeupper_info.info);
7800         ret = notifier_to_errno(ret);
7801         if (ret)
7802                 goto rollback;
7803
7804         __netdev_update_upper_level(dev, NULL);
7805         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7806
7807         __netdev_update_lower_level(upper_dev, priv);
7808         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7809                                     priv);
7810
7811         return 0;
7812
7813 rollback:
7814         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7815
7816         return ret;
7817 }
7818
7819 /**
7820  * netdev_upper_dev_link - Add a link to the upper device
7821  * @dev: device
7822  * @upper_dev: new upper device
7823  * @extack: netlink extended ack
7824  *
7825  * Adds a link to device which is upper to this one. The caller must hold
7826  * the RTNL lock. On a failure a negative errno code is returned.
7827  * On success the reference counts are adjusted and the function
7828  * returns zero.
7829  */
7830 int netdev_upper_dev_link(struct net_device *dev,
7831                           struct net_device *upper_dev,
7832                           struct netlink_ext_ack *extack)
7833 {
7834         struct netdev_nested_priv priv = {
7835                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7836                 .data = NULL,
7837         };
7838
7839         return __netdev_upper_dev_link(dev, upper_dev, false,
7840                                        NULL, NULL, &priv, extack);
7841 }
7842 EXPORT_SYMBOL(netdev_upper_dev_link);
7843
7844 /**
7845  * netdev_master_upper_dev_link - Add a master link to the upper device
7846  * @dev: device
7847  * @upper_dev: new upper device
7848  * @upper_priv: upper device private
7849  * @upper_info: upper info to be passed down via notifier
7850  * @extack: netlink extended ack
7851  *
7852  * Adds a link to device which is upper to this one. In this case, only
7853  * one master upper device can be linked, although other non-master devices
7854  * might be linked as well. The caller must hold the RTNL lock.
7855  * On a failure a negative errno code is returned. On success the reference
7856  * counts are adjusted and the function returns zero.
7857  */
7858 int netdev_master_upper_dev_link(struct net_device *dev,
7859                                  struct net_device *upper_dev,
7860                                  void *upper_priv, void *upper_info,
7861                                  struct netlink_ext_ack *extack)
7862 {
7863         struct netdev_nested_priv priv = {
7864                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7865                 .data = NULL,
7866         };
7867
7868         return __netdev_upper_dev_link(dev, upper_dev, true,
7869                                        upper_priv, upper_info, &priv, extack);
7870 }
7871 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7872
7873 static void __netdev_upper_dev_unlink(struct net_device *dev,
7874                                       struct net_device *upper_dev,
7875                                       struct netdev_nested_priv *priv)
7876 {
7877         struct netdev_notifier_changeupper_info changeupper_info = {
7878                 .info = {
7879                         .dev = dev,
7880                 },
7881                 .upper_dev = upper_dev,
7882                 .linking = false,
7883         };
7884
7885         ASSERT_RTNL();
7886
7887         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7888
7889         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7890                                       &changeupper_info.info);
7891
7892         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7893
7894         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7895                                       &changeupper_info.info);
7896
7897         __netdev_update_upper_level(dev, NULL);
7898         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7899
7900         __netdev_update_lower_level(upper_dev, priv);
7901         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7902                                     priv);
7903 }
7904
7905 /**
7906  * netdev_upper_dev_unlink - Removes a link to upper device
7907  * @dev: device
7908  * @upper_dev: new upper device
7909  *
7910  * Removes a link to device which is upper to this one. The caller must hold
7911  * the RTNL lock.
7912  */
7913 void netdev_upper_dev_unlink(struct net_device *dev,
7914                              struct net_device *upper_dev)
7915 {
7916         struct netdev_nested_priv priv = {
7917                 .flags = NESTED_SYNC_TODO,
7918                 .data = NULL,
7919         };
7920
7921         __netdev_upper_dev_unlink(dev, upper_dev, &priv);
7922 }
7923 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7924
7925 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7926                                       struct net_device *lower_dev,
7927                                       bool val)
7928 {
7929         struct netdev_adjacent *adj;
7930
7931         adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7932         if (adj)
7933                 adj->ignore = val;
7934
7935         adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7936         if (adj)
7937                 adj->ignore = val;
7938 }
7939
7940 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7941                                         struct net_device *lower_dev)
7942 {
7943         __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7944 }
7945
7946 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7947                                        struct net_device *lower_dev)
7948 {
7949         __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7950 }
7951
7952 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7953                                    struct net_device *new_dev,
7954                                    struct net_device *dev,
7955                                    struct netlink_ext_ack *extack)
7956 {
7957         struct netdev_nested_priv priv = {
7958                 .flags = 0,
7959                 .data = NULL,
7960         };
7961         int err;
7962
7963         if (!new_dev)
7964                 return 0;
7965
7966         if (old_dev && new_dev != old_dev)
7967                 netdev_adjacent_dev_disable(dev, old_dev);
7968         err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7969                                       extack);
7970         if (err) {
7971                 if (old_dev && new_dev != old_dev)
7972                         netdev_adjacent_dev_enable(dev, old_dev);
7973                 return err;
7974         }
7975
7976         return 0;
7977 }
7978 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7979
7980 void netdev_adjacent_change_commit(struct net_device *old_dev,
7981                                    struct net_device *new_dev,
7982                                    struct net_device *dev)
7983 {
7984         struct netdev_nested_priv priv = {
7985                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7986                 .data = NULL,
7987         };
7988
7989         if (!new_dev || !old_dev)
7990                 return;
7991
7992         if (new_dev == old_dev)
7993                 return;
7994
7995         netdev_adjacent_dev_enable(dev, old_dev);
7996         __netdev_upper_dev_unlink(old_dev, dev, &priv);
7997 }
7998 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7999
8000 void netdev_adjacent_change_abort(struct net_device *old_dev,
8001                                   struct net_device *new_dev,
8002                                   struct net_device *dev)
8003 {
8004         struct netdev_nested_priv priv = {
8005                 .flags = 0,
8006                 .data = NULL,
8007         };
8008
8009         if (!new_dev)
8010                 return;
8011
8012         if (old_dev && new_dev != old_dev)
8013                 netdev_adjacent_dev_enable(dev, old_dev);
8014
8015         __netdev_upper_dev_unlink(new_dev, dev, &priv);
8016 }
8017 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8018
8019 /**
8020  * netdev_bonding_info_change - Dispatch event about slave change
8021  * @dev: device
8022  * @bonding_info: info to dispatch
8023  *
8024  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8025  * The caller must hold the RTNL lock.
8026  */
8027 void netdev_bonding_info_change(struct net_device *dev,
8028                                 struct netdev_bonding_info *bonding_info)
8029 {
8030         struct netdev_notifier_bonding_info info = {
8031                 .info.dev = dev,
8032         };
8033
8034         memcpy(&info.bonding_info, bonding_info,
8035                sizeof(struct netdev_bonding_info));
8036         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8037                                       &info.info);
8038 }
8039 EXPORT_SYMBOL(netdev_bonding_info_change);
8040
8041 /**
8042  * netdev_get_xmit_slave - Get the xmit slave of master device
8043  * @dev: device
8044  * @skb: The packet
8045  * @all_slaves: assume all the slaves are active
8046  *
8047  * The reference counters are not incremented so the caller must be
8048  * careful with locks. The caller must hold RCU lock.
8049  * %NULL is returned if no slave is found.
8050  */
8051
8052 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8053                                          struct sk_buff *skb,
8054                                          bool all_slaves)
8055 {
8056         const struct net_device_ops *ops = dev->netdev_ops;
8057
8058         if (!ops->ndo_get_xmit_slave)
8059                 return NULL;
8060         return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8061 }
8062 EXPORT_SYMBOL(netdev_get_xmit_slave);
8063
8064 static void netdev_adjacent_add_links(struct net_device *dev)
8065 {
8066         struct netdev_adjacent *iter;
8067
8068         struct net *net = dev_net(dev);
8069
8070         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8071                 if (!net_eq(net, dev_net(iter->dev)))
8072                         continue;
8073                 netdev_adjacent_sysfs_add(iter->dev, dev,
8074                                           &iter->dev->adj_list.lower);
8075                 netdev_adjacent_sysfs_add(dev, iter->dev,
8076                                           &dev->adj_list.upper);
8077         }
8078
8079         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8080                 if (!net_eq(net, dev_net(iter->dev)))
8081                         continue;
8082                 netdev_adjacent_sysfs_add(iter->dev, dev,
8083                                           &iter->dev->adj_list.upper);
8084                 netdev_adjacent_sysfs_add(dev, iter->dev,
8085                                           &dev->adj_list.lower);
8086         }
8087 }
8088
8089 static void netdev_adjacent_del_links(struct net_device *dev)
8090 {
8091         struct netdev_adjacent *iter;
8092
8093         struct net *net = dev_net(dev);
8094
8095         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8096                 if (!net_eq(net, dev_net(iter->dev)))
8097                         continue;
8098                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8099                                           &iter->dev->adj_list.lower);
8100                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8101                                           &dev->adj_list.upper);
8102         }
8103
8104         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8105                 if (!net_eq(net, dev_net(iter->dev)))
8106                         continue;
8107                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8108                                           &iter->dev->adj_list.upper);
8109                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8110                                           &dev->adj_list.lower);
8111         }
8112 }
8113
8114 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8115 {
8116         struct netdev_adjacent *iter;
8117
8118         struct net *net = dev_net(dev);
8119
8120         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8121                 if (!net_eq(net, dev_net(iter->dev)))
8122                         continue;
8123                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8124                                           &iter->dev->adj_list.lower);
8125                 netdev_adjacent_sysfs_add(iter->dev, dev,
8126                                           &iter->dev->adj_list.lower);
8127         }
8128
8129         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8130                 if (!net_eq(net, dev_net(iter->dev)))
8131                         continue;
8132                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8133                                           &iter->dev->adj_list.upper);
8134                 netdev_adjacent_sysfs_add(iter->dev, dev,
8135                                           &iter->dev->adj_list.upper);
8136         }
8137 }
8138
8139 void *netdev_lower_dev_get_private(struct net_device *dev,
8140                                    struct net_device *lower_dev)
8141 {
8142         struct netdev_adjacent *lower;
8143
8144         if (!lower_dev)
8145                 return NULL;
8146         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8147         if (!lower)
8148                 return NULL;
8149
8150         return lower->private;
8151 }
8152 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8153
8154
8155 /**
8156  * netdev_lower_change - Dispatch event about lower device state change
8157  * @lower_dev: device
8158  * @lower_state_info: state to dispatch
8159  *
8160  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8161  * The caller must hold the RTNL lock.
8162  */
8163 void netdev_lower_state_changed(struct net_device *lower_dev,
8164                                 void *lower_state_info)
8165 {
8166         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8167                 .info.dev = lower_dev,
8168         };
8169
8170         ASSERT_RTNL();
8171         changelowerstate_info.lower_state_info = lower_state_info;
8172         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8173                                       &changelowerstate_info.info);
8174 }
8175 EXPORT_SYMBOL(netdev_lower_state_changed);
8176
8177 static void dev_change_rx_flags(struct net_device *dev, int flags)
8178 {
8179         const struct net_device_ops *ops = dev->netdev_ops;
8180
8181         if (ops->ndo_change_rx_flags)
8182                 ops->ndo_change_rx_flags(dev, flags);
8183 }
8184
8185 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8186 {
8187         unsigned int old_flags = dev->flags;
8188         kuid_t uid;
8189         kgid_t gid;
8190
8191         ASSERT_RTNL();
8192
8193         dev->flags |= IFF_PROMISC;
8194         dev->promiscuity += inc;
8195         if (dev->promiscuity == 0) {
8196                 /*
8197                  * Avoid overflow.
8198                  * If inc causes overflow, untouch promisc and return error.
8199                  */
8200                 if (inc < 0)
8201                         dev->flags &= ~IFF_PROMISC;
8202                 else {
8203                         dev->promiscuity -= inc;
8204                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8205                                 dev->name);
8206                         return -EOVERFLOW;
8207                 }
8208         }
8209         if (dev->flags != old_flags) {
8210                 pr_info("device %s %s promiscuous mode\n",
8211                         dev->name,
8212                         dev->flags & IFF_PROMISC ? "entered" : "left");
8213                 if (audit_enabled) {
8214                         current_uid_gid(&uid, &gid);
8215                         audit_log(audit_context(), GFP_ATOMIC,
8216                                   AUDIT_ANOM_PROMISCUOUS,
8217                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8218                                   dev->name, (dev->flags & IFF_PROMISC),
8219                                   (old_flags & IFF_PROMISC),
8220                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
8221                                   from_kuid(&init_user_ns, uid),
8222                                   from_kgid(&init_user_ns, gid),
8223                                   audit_get_sessionid(current));
8224                 }
8225
8226                 dev_change_rx_flags(dev, IFF_PROMISC);
8227         }
8228         if (notify)
8229                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
8230         return 0;
8231 }
8232
8233 /**
8234  *      dev_set_promiscuity     - update promiscuity count on a device
8235  *      @dev: device
8236  *      @inc: modifier
8237  *
8238  *      Add or remove promiscuity from a device. While the count in the device
8239  *      remains above zero the interface remains promiscuous. Once it hits zero
8240  *      the device reverts back to normal filtering operation. A negative inc
8241  *      value is used to drop promiscuity on the device.
8242  *      Return 0 if successful or a negative errno code on error.
8243  */
8244 int dev_set_promiscuity(struct net_device *dev, int inc)
8245 {
8246         unsigned int old_flags = dev->flags;
8247         int err;
8248
8249         err = __dev_set_promiscuity(dev, inc, true);
8250         if (err < 0)
8251                 return err;
8252         if (dev->flags != old_flags)
8253                 dev_set_rx_mode(dev);
8254         return err;
8255 }
8256 EXPORT_SYMBOL(dev_set_promiscuity);
8257
8258 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8259 {
8260         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8261
8262         ASSERT_RTNL();
8263
8264         dev->flags |= IFF_ALLMULTI;
8265         dev->allmulti += inc;
8266         if (dev->allmulti == 0) {
8267                 /*
8268                  * Avoid overflow.
8269                  * If inc causes overflow, untouch allmulti and return error.
8270                  */
8271                 if (inc < 0)
8272                         dev->flags &= ~IFF_ALLMULTI;
8273                 else {
8274                         dev->allmulti -= inc;
8275                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8276                                 dev->name);
8277                         return -EOVERFLOW;
8278                 }
8279         }
8280         if (dev->flags ^ old_flags) {
8281                 dev_change_rx_flags(dev, IFF_ALLMULTI);
8282                 dev_set_rx_mode(dev);
8283                 if (notify)
8284                         __dev_notify_flags(dev, old_flags,
8285                                            dev->gflags ^ old_gflags);
8286         }
8287         return 0;
8288 }
8289
8290 /**
8291  *      dev_set_allmulti        - update allmulti count on a device
8292  *      @dev: device
8293  *      @inc: modifier
8294  *
8295  *      Add or remove reception of all multicast frames to a device. While the
8296  *      count in the device remains above zero the interface remains listening
8297  *      to all interfaces. Once it hits zero the device reverts back to normal
8298  *      filtering operation. A negative @inc value is used to drop the counter
8299  *      when releasing a resource needing all multicasts.
8300  *      Return 0 if successful or a negative errno code on error.
8301  */
8302
8303 int dev_set_allmulti(struct net_device *dev, int inc)
8304 {
8305         return __dev_set_allmulti(dev, inc, true);
8306 }
8307 EXPORT_SYMBOL(dev_set_allmulti);
8308
8309 /*
8310  *      Upload unicast and multicast address lists to device and
8311  *      configure RX filtering. When the device doesn't support unicast
8312  *      filtering it is put in promiscuous mode while unicast addresses
8313  *      are present.
8314  */
8315 void __dev_set_rx_mode(struct net_device *dev)
8316 {
8317         const struct net_device_ops *ops = dev->netdev_ops;
8318
8319         /* dev_open will call this function so the list will stay sane. */
8320         if (!(dev->flags&IFF_UP))
8321                 return;
8322
8323         if (!netif_device_present(dev))
8324                 return;
8325
8326         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8327                 /* Unicast addresses changes may only happen under the rtnl,
8328                  * therefore calling __dev_set_promiscuity here is safe.
8329                  */
8330                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8331                         __dev_set_promiscuity(dev, 1, false);
8332                         dev->uc_promisc = true;
8333                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8334                         __dev_set_promiscuity(dev, -1, false);
8335                         dev->uc_promisc = false;
8336                 }
8337         }
8338
8339         if (ops->ndo_set_rx_mode)
8340                 ops->ndo_set_rx_mode(dev);
8341 }
8342
8343 void dev_set_rx_mode(struct net_device *dev)
8344 {
8345         netif_addr_lock_bh(dev);
8346         __dev_set_rx_mode(dev);
8347         netif_addr_unlock_bh(dev);
8348 }
8349
8350 /**
8351  *      dev_get_flags - get flags reported to userspace
8352  *      @dev: device
8353  *
8354  *      Get the combination of flag bits exported through APIs to userspace.
8355  */
8356 unsigned int dev_get_flags(const struct net_device *dev)
8357 {
8358         unsigned int flags;
8359
8360         flags = (dev->flags & ~(IFF_PROMISC |
8361                                 IFF_ALLMULTI |
8362                                 IFF_RUNNING |
8363                                 IFF_LOWER_UP |
8364                                 IFF_DORMANT)) |
8365                 (dev->gflags & (IFF_PROMISC |
8366                                 IFF_ALLMULTI));
8367
8368         if (netif_running(dev)) {
8369                 if (netif_oper_up(dev))
8370                         flags |= IFF_RUNNING;
8371                 if (netif_carrier_ok(dev))
8372                         flags |= IFF_LOWER_UP;
8373                 if (netif_dormant(dev))
8374                         flags |= IFF_DORMANT;
8375         }
8376
8377         return flags;
8378 }
8379 EXPORT_SYMBOL(dev_get_flags);
8380
8381 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8382                        struct netlink_ext_ack *extack)
8383 {
8384         unsigned int old_flags = dev->flags;
8385         int ret;
8386
8387         ASSERT_RTNL();
8388
8389         /*
8390          *      Set the flags on our device.
8391          */
8392
8393         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8394                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8395                                IFF_AUTOMEDIA)) |
8396                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8397                                     IFF_ALLMULTI));
8398
8399         /*
8400          *      Load in the correct multicast list now the flags have changed.
8401          */
8402
8403         if ((old_flags ^ flags) & IFF_MULTICAST)
8404                 dev_change_rx_flags(dev, IFF_MULTICAST);
8405
8406         dev_set_rx_mode(dev);
8407
8408         /*
8409          *      Have we downed the interface. We handle IFF_UP ourselves
8410          *      according to user attempts to set it, rather than blindly
8411          *      setting it.
8412          */
8413
8414         ret = 0;
8415         if ((old_flags ^ flags) & IFF_UP) {
8416                 if (old_flags & IFF_UP)
8417                         __dev_close(dev);
8418                 else
8419                         ret = __dev_open(dev, extack);
8420         }
8421
8422         if ((flags ^ dev->gflags) & IFF_PROMISC) {
8423                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8424                 unsigned int old_flags = dev->flags;
8425
8426                 dev->gflags ^= IFF_PROMISC;
8427
8428                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8429                         if (dev->flags != old_flags)
8430                                 dev_set_rx_mode(dev);
8431         }
8432
8433         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8434          * is important. Some (broken) drivers set IFF_PROMISC, when
8435          * IFF_ALLMULTI is requested not asking us and not reporting.
8436          */
8437         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8438                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8439
8440                 dev->gflags ^= IFF_ALLMULTI;
8441                 __dev_set_allmulti(dev, inc, false);
8442         }
8443
8444         return ret;
8445 }
8446
8447 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8448                         unsigned int gchanges)
8449 {
8450         unsigned int changes = dev->flags ^ old_flags;
8451
8452         if (gchanges)
8453                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8454
8455         if (changes & IFF_UP) {
8456                 if (dev->flags & IFF_UP)
8457                         call_netdevice_notifiers(NETDEV_UP, dev);
8458                 else
8459                         call_netdevice_notifiers(NETDEV_DOWN, dev);
8460         }
8461
8462         if (dev->flags & IFF_UP &&
8463             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8464                 struct netdev_notifier_change_info change_info = {
8465                         .info = {
8466                                 .dev = dev,
8467                         },
8468                         .flags_changed = changes,
8469                 };
8470
8471                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8472         }
8473 }
8474
8475 /**
8476  *      dev_change_flags - change device settings
8477  *      @dev: device
8478  *      @flags: device state flags
8479  *      @extack: netlink extended ack
8480  *
8481  *      Change settings on device based state flags. The flags are
8482  *      in the userspace exported format.
8483  */
8484 int dev_change_flags(struct net_device *dev, unsigned int flags,
8485                      struct netlink_ext_ack *extack)
8486 {
8487         int ret;
8488         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8489
8490         ret = __dev_change_flags(dev, flags, extack);
8491         if (ret < 0)
8492                 return ret;
8493
8494         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8495         __dev_notify_flags(dev, old_flags, changes);
8496         return ret;
8497 }
8498 EXPORT_SYMBOL(dev_change_flags);
8499
8500 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8501 {
8502         const struct net_device_ops *ops = dev->netdev_ops;
8503
8504         if (ops->ndo_change_mtu)
8505                 return ops->ndo_change_mtu(dev, new_mtu);
8506
8507         /* Pairs with all the lockless reads of dev->mtu in the stack */
8508         WRITE_ONCE(dev->mtu, new_mtu);
8509         return 0;
8510 }
8511 EXPORT_SYMBOL(__dev_set_mtu);
8512
8513 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8514                      struct netlink_ext_ack *extack)
8515 {
8516         /* MTU must be positive, and in range */
8517         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8518                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8519                 return -EINVAL;
8520         }
8521
8522         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8523                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8524                 return -EINVAL;
8525         }
8526         return 0;
8527 }
8528
8529 /**
8530  *      dev_set_mtu_ext - Change maximum transfer unit
8531  *      @dev: device
8532  *      @new_mtu: new transfer unit
8533  *      @extack: netlink extended ack
8534  *
8535  *      Change the maximum transfer size of the network device.
8536  */
8537 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8538                     struct netlink_ext_ack *extack)
8539 {
8540         int err, orig_mtu;
8541
8542         if (new_mtu == dev->mtu)
8543                 return 0;
8544
8545         err = dev_validate_mtu(dev, new_mtu, extack);
8546         if (err)
8547                 return err;
8548
8549         if (!netif_device_present(dev))
8550                 return -ENODEV;
8551
8552         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8553         err = notifier_to_errno(err);
8554         if (err)
8555                 return err;
8556
8557         orig_mtu = dev->mtu;
8558         err = __dev_set_mtu(dev, new_mtu);
8559
8560         if (!err) {
8561                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8562                                                    orig_mtu);
8563                 err = notifier_to_errno(err);
8564                 if (err) {
8565                         /* setting mtu back and notifying everyone again,
8566                          * so that they have a chance to revert changes.
8567                          */
8568                         __dev_set_mtu(dev, orig_mtu);
8569                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8570                                                      new_mtu);
8571                 }
8572         }
8573         return err;
8574 }
8575
8576 int dev_set_mtu(struct net_device *dev, int new_mtu)
8577 {
8578         struct netlink_ext_ack extack;
8579         int err;
8580
8581         memset(&extack, 0, sizeof(extack));
8582         err = dev_set_mtu_ext(dev, new_mtu, &extack);
8583         if (err && extack._msg)
8584                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8585         return err;
8586 }
8587 EXPORT_SYMBOL(dev_set_mtu);
8588
8589 /**
8590  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
8591  *      @dev: device
8592  *      @new_len: new tx queue length
8593  */
8594 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8595 {
8596         unsigned int orig_len = dev->tx_queue_len;
8597         int res;
8598
8599         if (new_len != (unsigned int)new_len)
8600                 return -ERANGE;
8601
8602         if (new_len != orig_len) {
8603                 dev->tx_queue_len = new_len;
8604                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8605                 res = notifier_to_errno(res);
8606                 if (res)
8607                         goto err_rollback;
8608                 res = dev_qdisc_change_tx_queue_len(dev);
8609                 if (res)
8610                         goto err_rollback;
8611         }
8612
8613         return 0;
8614
8615 err_rollback:
8616         netdev_err(dev, "refused to change device tx_queue_len\n");
8617         dev->tx_queue_len = orig_len;
8618         return res;
8619 }
8620
8621 /**
8622  *      dev_set_group - Change group this device belongs to
8623  *      @dev: device
8624  *      @new_group: group this device should belong to
8625  */
8626 void dev_set_group(struct net_device *dev, int new_group)
8627 {
8628         dev->group = new_group;
8629 }
8630 EXPORT_SYMBOL(dev_set_group);
8631
8632 /**
8633  *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8634  *      @dev: device
8635  *      @addr: new address
8636  *      @extack: netlink extended ack
8637  */
8638 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8639                               struct netlink_ext_ack *extack)
8640 {
8641         struct netdev_notifier_pre_changeaddr_info info = {
8642                 .info.dev = dev,
8643                 .info.extack = extack,
8644                 .dev_addr = addr,
8645         };
8646         int rc;
8647
8648         rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8649         return notifier_to_errno(rc);
8650 }
8651 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8652
8653 /**
8654  *      dev_set_mac_address - Change Media Access Control Address
8655  *      @dev: device
8656  *      @sa: new address
8657  *      @extack: netlink extended ack
8658  *
8659  *      Change the hardware (MAC) address of the device
8660  */
8661 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8662                         struct netlink_ext_ack *extack)
8663 {
8664         const struct net_device_ops *ops = dev->netdev_ops;
8665         int err;
8666
8667         if (!ops->ndo_set_mac_address)
8668                 return -EOPNOTSUPP;
8669         if (sa->sa_family != dev->type)
8670                 return -EINVAL;
8671         if (!netif_device_present(dev))
8672                 return -ENODEV;
8673         err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8674         if (err)
8675                 return err;
8676         err = ops->ndo_set_mac_address(dev, sa);
8677         if (err)
8678                 return err;
8679         dev->addr_assign_type = NET_ADDR_SET;
8680         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8681         add_device_randomness(dev->dev_addr, dev->addr_len);
8682         return 0;
8683 }
8684 EXPORT_SYMBOL(dev_set_mac_address);
8685
8686 /**
8687  *      dev_change_carrier - Change device carrier
8688  *      @dev: device
8689  *      @new_carrier: new value
8690  *
8691  *      Change device carrier
8692  */
8693 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8694 {
8695         const struct net_device_ops *ops = dev->netdev_ops;
8696
8697         if (!ops->ndo_change_carrier)
8698                 return -EOPNOTSUPP;
8699         if (!netif_device_present(dev))
8700                 return -ENODEV;
8701         return ops->ndo_change_carrier(dev, new_carrier);
8702 }
8703 EXPORT_SYMBOL(dev_change_carrier);
8704
8705 /**
8706  *      dev_get_phys_port_id - Get device physical port ID
8707  *      @dev: device
8708  *      @ppid: port ID
8709  *
8710  *      Get device physical port ID
8711  */
8712 int dev_get_phys_port_id(struct net_device *dev,
8713                          struct netdev_phys_item_id *ppid)
8714 {
8715         const struct net_device_ops *ops = dev->netdev_ops;
8716
8717         if (!ops->ndo_get_phys_port_id)
8718                 return -EOPNOTSUPP;
8719         return ops->ndo_get_phys_port_id(dev, ppid);
8720 }
8721 EXPORT_SYMBOL(dev_get_phys_port_id);
8722
8723 /**
8724  *      dev_get_phys_port_name - Get device physical port name
8725  *      @dev: device
8726  *      @name: port name
8727  *      @len: limit of bytes to copy to name
8728  *
8729  *      Get device physical port name
8730  */
8731 int dev_get_phys_port_name(struct net_device *dev,
8732                            char *name, size_t len)
8733 {
8734         const struct net_device_ops *ops = dev->netdev_ops;
8735         int err;
8736
8737         if (ops->ndo_get_phys_port_name) {
8738                 err = ops->ndo_get_phys_port_name(dev, name, len);
8739                 if (err != -EOPNOTSUPP)
8740                         return err;
8741         }
8742         return devlink_compat_phys_port_name_get(dev, name, len);
8743 }
8744 EXPORT_SYMBOL(dev_get_phys_port_name);
8745
8746 /**
8747  *      dev_get_port_parent_id - Get the device's port parent identifier
8748  *      @dev: network device
8749  *      @ppid: pointer to a storage for the port's parent identifier
8750  *      @recurse: allow/disallow recursion to lower devices
8751  *
8752  *      Get the devices's port parent identifier
8753  */
8754 int dev_get_port_parent_id(struct net_device *dev,
8755                            struct netdev_phys_item_id *ppid,
8756                            bool recurse)
8757 {
8758         const struct net_device_ops *ops = dev->netdev_ops;
8759         struct netdev_phys_item_id first = { };
8760         struct net_device *lower_dev;
8761         struct list_head *iter;
8762         int err;
8763
8764         if (ops->ndo_get_port_parent_id) {
8765                 err = ops->ndo_get_port_parent_id(dev, ppid);
8766                 if (err != -EOPNOTSUPP)
8767                         return err;
8768         }
8769
8770         err = devlink_compat_switch_id_get(dev, ppid);
8771         if (!err || err != -EOPNOTSUPP)
8772                 return err;
8773
8774         if (!recurse)
8775                 return -EOPNOTSUPP;
8776
8777         netdev_for_each_lower_dev(dev, lower_dev, iter) {
8778                 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
8779                 if (err)
8780                         break;
8781                 if (!first.id_len)
8782                         first = *ppid;
8783                 else if (memcmp(&first, ppid, sizeof(*ppid)))
8784                         return -EOPNOTSUPP;
8785         }
8786
8787         return err;
8788 }
8789 EXPORT_SYMBOL(dev_get_port_parent_id);
8790
8791 /**
8792  *      netdev_port_same_parent_id - Indicate if two network devices have
8793  *      the same port parent identifier
8794  *      @a: first network device
8795  *      @b: second network device
8796  */
8797 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8798 {
8799         struct netdev_phys_item_id a_id = { };
8800         struct netdev_phys_item_id b_id = { };
8801
8802         if (dev_get_port_parent_id(a, &a_id, true) ||
8803             dev_get_port_parent_id(b, &b_id, true))
8804                 return false;
8805
8806         return netdev_phys_item_id_same(&a_id, &b_id);
8807 }
8808 EXPORT_SYMBOL(netdev_port_same_parent_id);
8809
8810 /**
8811  *      dev_change_proto_down - update protocol port state information
8812  *      @dev: device
8813  *      @proto_down: new value
8814  *
8815  *      This info can be used by switch drivers to set the phys state of the
8816  *      port.
8817  */
8818 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8819 {
8820         const struct net_device_ops *ops = dev->netdev_ops;
8821
8822         if (!ops->ndo_change_proto_down)
8823                 return -EOPNOTSUPP;
8824         if (!netif_device_present(dev))
8825                 return -ENODEV;
8826         return ops->ndo_change_proto_down(dev, proto_down);
8827 }
8828 EXPORT_SYMBOL(dev_change_proto_down);
8829
8830 /**
8831  *      dev_change_proto_down_generic - generic implementation for
8832  *      ndo_change_proto_down that sets carrier according to
8833  *      proto_down.
8834  *
8835  *      @dev: device
8836  *      @proto_down: new value
8837  */
8838 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8839 {
8840         if (proto_down)
8841                 netif_carrier_off(dev);
8842         else
8843                 netif_carrier_on(dev);
8844         dev->proto_down = proto_down;
8845         return 0;
8846 }
8847 EXPORT_SYMBOL(dev_change_proto_down_generic);
8848
8849 /**
8850  *      dev_change_proto_down_reason - proto down reason
8851  *
8852  *      @dev: device
8853  *      @mask: proto down mask
8854  *      @value: proto down value
8855  */
8856 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
8857                                   u32 value)
8858 {
8859         int b;
8860
8861         if (!mask) {
8862                 dev->proto_down_reason = value;
8863         } else {
8864                 for_each_set_bit(b, &mask, 32) {
8865                         if (value & (1 << b))
8866                                 dev->proto_down_reason |= BIT(b);
8867                         else
8868                                 dev->proto_down_reason &= ~BIT(b);
8869                 }
8870         }
8871 }
8872 EXPORT_SYMBOL(dev_change_proto_down_reason);
8873
8874 struct bpf_xdp_link {
8875         struct bpf_link link;
8876         struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
8877         int flags;
8878 };
8879
8880 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
8881 {
8882         if (flags & XDP_FLAGS_HW_MODE)
8883                 return XDP_MODE_HW;
8884         if (flags & XDP_FLAGS_DRV_MODE)
8885                 return XDP_MODE_DRV;
8886         if (flags & XDP_FLAGS_SKB_MODE)
8887                 return XDP_MODE_SKB;
8888         return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
8889 }
8890
8891 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
8892 {
8893         switch (mode) {
8894         case XDP_MODE_SKB:
8895                 return generic_xdp_install;
8896         case XDP_MODE_DRV:
8897         case XDP_MODE_HW:
8898                 return dev->netdev_ops->ndo_bpf;
8899         default:
8900                 return NULL;
8901         };
8902 }
8903
8904 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
8905                                          enum bpf_xdp_mode mode)
8906 {
8907         return dev->xdp_state[mode].link;
8908 }
8909
8910 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
8911                                      enum bpf_xdp_mode mode)
8912 {
8913         struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
8914
8915         if (link)
8916                 return link->link.prog;
8917         return dev->xdp_state[mode].prog;
8918 }
8919
8920 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
8921 {
8922         struct bpf_prog *prog = dev_xdp_prog(dev, mode);
8923
8924         return prog ? prog->aux->id : 0;
8925 }
8926
8927 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
8928                              struct bpf_xdp_link *link)
8929 {
8930         dev->xdp_state[mode].link = link;
8931         dev->xdp_state[mode].prog = NULL;
8932 }
8933
8934 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
8935                              struct bpf_prog *prog)
8936 {
8937         dev->xdp_state[mode].link = NULL;
8938         dev->xdp_state[mode].prog = prog;
8939 }
8940
8941 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
8942                            bpf_op_t bpf_op, struct netlink_ext_ack *extack,
8943                            u32 flags, struct bpf_prog *prog)
8944 {
8945         struct netdev_bpf xdp;
8946         int err;
8947
8948         memset(&xdp, 0, sizeof(xdp));
8949         xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
8950         xdp.extack = extack;
8951         xdp.flags = flags;
8952         xdp.prog = prog;
8953
8954         /* Drivers assume refcnt is already incremented (i.e, prog pointer is
8955          * "moved" into driver), so they don't increment it on their own, but
8956          * they do decrement refcnt when program is detached or replaced.
8957          * Given net_device also owns link/prog, we need to bump refcnt here
8958          * to prevent drivers from underflowing it.
8959          */
8960         if (prog)
8961                 bpf_prog_inc(prog);
8962         err = bpf_op(dev, &xdp);
8963         if (err) {
8964                 if (prog)
8965                         bpf_prog_put(prog);
8966                 return err;
8967         }
8968
8969         if (mode != XDP_MODE_HW)
8970                 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
8971
8972         return 0;
8973 }
8974
8975 static void dev_xdp_uninstall(struct net_device *dev)
8976 {
8977         struct bpf_xdp_link *link;
8978         struct bpf_prog *prog;
8979         enum bpf_xdp_mode mode;
8980         bpf_op_t bpf_op;
8981
8982         ASSERT_RTNL();
8983
8984         for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
8985                 prog = dev_xdp_prog(dev, mode);
8986                 if (!prog)
8987                         continue;
8988
8989                 bpf_op = dev_xdp_bpf_op(dev, mode);
8990                 if (!bpf_op)
8991                         continue;
8992
8993                 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
8994
8995                 /* auto-detach link from net device */
8996                 link = dev_xdp_link(dev, mode);
8997                 if (link)
8998                         link->dev = NULL;
8999                 else
9000                         bpf_prog_put(prog);
9001
9002                 dev_xdp_set_link(dev, mode, NULL);
9003         }
9004 }
9005
9006 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9007                           struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9008                           struct bpf_prog *old_prog, u32 flags)
9009 {
9010         struct bpf_prog *cur_prog;
9011         enum bpf_xdp_mode mode;
9012         bpf_op_t bpf_op;
9013         int err;
9014
9015         ASSERT_RTNL();
9016
9017         /* either link or prog attachment, never both */
9018         if (link && (new_prog || old_prog))
9019                 return -EINVAL;
9020         /* link supports only XDP mode flags */
9021         if (link && (flags & ~XDP_FLAGS_MODES)) {
9022                 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9023                 return -EINVAL;
9024         }
9025         /* just one XDP mode bit should be set, zero defaults to SKB mode */
9026         if (hweight32(flags & XDP_FLAGS_MODES) > 1) {
9027                 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9028                 return -EINVAL;
9029         }
9030         /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9031         if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9032                 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9033                 return -EINVAL;
9034         }
9035
9036         mode = dev_xdp_mode(dev, flags);
9037         /* can't replace attached link */
9038         if (dev_xdp_link(dev, mode)) {
9039                 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9040                 return -EBUSY;
9041         }
9042
9043         cur_prog = dev_xdp_prog(dev, mode);
9044         /* can't replace attached prog with link */
9045         if (link && cur_prog) {
9046                 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9047                 return -EBUSY;
9048         }
9049         if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9050                 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9051                 return -EEXIST;
9052         }
9053
9054         /* put effective new program into new_prog */
9055         if (link)
9056                 new_prog = link->link.prog;
9057
9058         if (new_prog) {
9059                 bool offload = mode == XDP_MODE_HW;
9060                 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9061                                                ? XDP_MODE_DRV : XDP_MODE_SKB;
9062
9063                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9064                         NL_SET_ERR_MSG(extack, "XDP program already attached");
9065                         return -EBUSY;
9066                 }
9067                 if (!offload && dev_xdp_prog(dev, other_mode)) {
9068                         NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9069                         return -EEXIST;
9070                 }
9071                 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9072                         NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9073                         return -EINVAL;
9074                 }
9075                 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9076                         NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9077                         return -EINVAL;
9078                 }
9079                 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9080                         NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9081                         return -EINVAL;
9082                 }
9083         }
9084
9085         /* don't call drivers if the effective program didn't change */
9086         if (new_prog != cur_prog) {
9087                 bpf_op = dev_xdp_bpf_op(dev, mode);
9088                 if (!bpf_op) {
9089                         NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9090                         return -EOPNOTSUPP;
9091                 }
9092
9093                 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9094                 if (err)
9095                         return err;
9096         }
9097
9098         if (link)
9099                 dev_xdp_set_link(dev, mode, link);
9100         else
9101                 dev_xdp_set_prog(dev, mode, new_prog);
9102         if (cur_prog)
9103                 bpf_prog_put(cur_prog);
9104
9105         return 0;
9106 }
9107
9108 static int dev_xdp_attach_link(struct net_device *dev,
9109                                struct netlink_ext_ack *extack,
9110                                struct bpf_xdp_link *link)
9111 {
9112         return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9113 }
9114
9115 static int dev_xdp_detach_link(struct net_device *dev,
9116                                struct netlink_ext_ack *extack,
9117                                struct bpf_xdp_link *link)
9118 {
9119         enum bpf_xdp_mode mode;
9120         bpf_op_t bpf_op;
9121
9122         ASSERT_RTNL();
9123
9124         mode = dev_xdp_mode(dev, link->flags);
9125         if (dev_xdp_link(dev, mode) != link)
9126                 return -EINVAL;
9127
9128         bpf_op = dev_xdp_bpf_op(dev, mode);
9129         WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9130         dev_xdp_set_link(dev, mode, NULL);
9131         return 0;
9132 }
9133
9134 static void bpf_xdp_link_release(struct bpf_link *link)
9135 {
9136         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9137
9138         rtnl_lock();
9139
9140         /* if racing with net_device's tear down, xdp_link->dev might be
9141          * already NULL, in which case link was already auto-detached
9142          */
9143         if (xdp_link->dev) {
9144                 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9145                 xdp_link->dev = NULL;
9146         }
9147
9148         rtnl_unlock();
9149 }
9150
9151 static int bpf_xdp_link_detach(struct bpf_link *link)
9152 {
9153         bpf_xdp_link_release(link);
9154         return 0;
9155 }
9156
9157 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9158 {
9159         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9160
9161         kfree(xdp_link);
9162 }
9163
9164 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9165                                      struct seq_file *seq)
9166 {
9167         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9168         u32 ifindex = 0;
9169
9170         rtnl_lock();
9171         if (xdp_link->dev)
9172                 ifindex = xdp_link->dev->ifindex;
9173         rtnl_unlock();
9174
9175         seq_printf(seq, "ifindex:\t%u\n", ifindex);
9176 }
9177
9178 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9179                                        struct bpf_link_info *info)
9180 {
9181         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9182         u32 ifindex = 0;
9183
9184         rtnl_lock();
9185         if (xdp_link->dev)
9186                 ifindex = xdp_link->dev->ifindex;
9187         rtnl_unlock();
9188
9189         info->xdp.ifindex = ifindex;
9190         return 0;
9191 }
9192
9193 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9194                                struct bpf_prog *old_prog)
9195 {
9196         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9197         enum bpf_xdp_mode mode;
9198         bpf_op_t bpf_op;
9199         int err = 0;
9200
9201         rtnl_lock();
9202
9203         /* link might have been auto-released already, so fail */
9204         if (!xdp_link->dev) {
9205                 err = -ENOLINK;
9206                 goto out_unlock;
9207         }
9208
9209         if (old_prog && link->prog != old_prog) {
9210                 err = -EPERM;
9211                 goto out_unlock;
9212         }
9213         old_prog = link->prog;
9214         if (old_prog == new_prog) {
9215                 /* no-op, don't disturb drivers */
9216                 bpf_prog_put(new_prog);
9217                 goto out_unlock;
9218         }
9219
9220         mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9221         bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9222         err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9223                               xdp_link->flags, new_prog);
9224         if (err)
9225                 goto out_unlock;
9226
9227         old_prog = xchg(&link->prog, new_prog);
9228         bpf_prog_put(old_prog);
9229
9230 out_unlock:
9231         rtnl_unlock();
9232         return err;
9233 }
9234
9235 static const struct bpf_link_ops bpf_xdp_link_lops = {
9236         .release = bpf_xdp_link_release,
9237         .dealloc = bpf_xdp_link_dealloc,
9238         .detach = bpf_xdp_link_detach,
9239         .show_fdinfo = bpf_xdp_link_show_fdinfo,
9240         .fill_link_info = bpf_xdp_link_fill_link_info,
9241         .update_prog = bpf_xdp_link_update,
9242 };
9243
9244 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9245 {
9246         struct net *net = current->nsproxy->net_ns;
9247         struct bpf_link_primer link_primer;
9248         struct bpf_xdp_link *link;
9249         struct net_device *dev;
9250         int err, fd;
9251
9252         dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9253         if (!dev)
9254                 return -EINVAL;
9255
9256         link = kzalloc(sizeof(*link), GFP_USER);
9257         if (!link) {
9258                 err = -ENOMEM;
9259                 goto out_put_dev;
9260         }
9261
9262         bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9263         link->dev = dev;
9264         link->flags = attr->link_create.flags;
9265
9266         err = bpf_link_prime(&link->link, &link_primer);
9267         if (err) {
9268                 kfree(link);
9269                 goto out_put_dev;
9270         }
9271
9272         rtnl_lock();
9273         err = dev_xdp_attach_link(dev, NULL, link);
9274         rtnl_unlock();
9275
9276         if (err) {
9277                 bpf_link_cleanup(&link_primer);
9278                 goto out_put_dev;
9279         }
9280
9281         fd = bpf_link_settle(&link_primer);
9282         /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9283         dev_put(dev);
9284         return fd;
9285
9286 out_put_dev:
9287         dev_put(dev);
9288         return err;
9289 }
9290
9291 /**
9292  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
9293  *      @dev: device
9294  *      @extack: netlink extended ack
9295  *      @fd: new program fd or negative value to clear
9296  *      @expected_fd: old program fd that userspace expects to replace or clear
9297  *      @flags: xdp-related flags
9298  *
9299  *      Set or clear a bpf program for a device
9300  */
9301 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9302                       int fd, int expected_fd, u32 flags)
9303 {
9304         enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9305         struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9306         int err;
9307
9308         ASSERT_RTNL();
9309
9310         if (fd >= 0) {
9311                 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9312                                                  mode != XDP_MODE_SKB);
9313                 if (IS_ERR(new_prog))
9314                         return PTR_ERR(new_prog);
9315         }
9316
9317         if (expected_fd >= 0) {
9318                 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9319                                                  mode != XDP_MODE_SKB);
9320                 if (IS_ERR(old_prog)) {
9321                         err = PTR_ERR(old_prog);
9322                         old_prog = NULL;
9323                         goto err_out;
9324                 }
9325         }
9326
9327         err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9328
9329 err_out:
9330         if (err && new_prog)
9331                 bpf_prog_put(new_prog);
9332         if (old_prog)
9333                 bpf_prog_put(old_prog);
9334         return err;
9335 }
9336
9337 /**
9338  *      dev_new_index   -       allocate an ifindex
9339  *      @net: the applicable net namespace
9340  *
9341  *      Returns a suitable unique value for a new device interface
9342  *      number.  The caller must hold the rtnl semaphore or the
9343  *      dev_base_lock to be sure it remains unique.
9344  */
9345 static int dev_new_index(struct net *net)
9346 {
9347         int ifindex = net->ifindex;
9348
9349         for (;;) {
9350                 if (++ifindex <= 0)
9351                         ifindex = 1;
9352                 if (!__dev_get_by_index(net, ifindex))
9353                         return net->ifindex = ifindex;
9354         }
9355 }
9356
9357 /* Delayed registration/unregisteration */
9358 static LIST_HEAD(net_todo_list);
9359 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9360
9361 static void net_set_todo(struct net_device *dev)
9362 {
9363         list_add_tail(&dev->todo_list, &net_todo_list);
9364         dev_net(dev)->dev_unreg_count++;
9365 }
9366
9367 static void rollback_registered_many(struct list_head *head)
9368 {
9369         struct net_device *dev, *tmp;
9370         LIST_HEAD(close_head);
9371
9372         BUG_ON(dev_boot_phase);
9373         ASSERT_RTNL();
9374
9375         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9376                 /* Some devices call without registering
9377                  * for initialization unwind. Remove those
9378                  * devices and proceed with the remaining.
9379                  */
9380                 if (dev->reg_state == NETREG_UNINITIALIZED) {
9381                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
9382                                  dev->name, dev);
9383
9384                         WARN_ON(1);
9385                         list_del(&dev->unreg_list);
9386                         continue;
9387                 }
9388                 dev->dismantle = true;
9389                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
9390         }
9391
9392         /* If device is running, close it first. */
9393         list_for_each_entry(dev, head, unreg_list)
9394                 list_add_tail(&dev->close_list, &close_head);
9395         dev_close_many(&close_head, true);
9396
9397         list_for_each_entry(dev, head, unreg_list) {
9398                 /* And unlink it from device chain. */
9399                 unlist_netdevice(dev);
9400
9401                 dev->reg_state = NETREG_UNREGISTERING;
9402         }
9403         flush_all_backlogs();
9404
9405         synchronize_net();
9406
9407         list_for_each_entry(dev, head, unreg_list) {
9408                 struct sk_buff *skb = NULL;
9409
9410                 /* Shutdown queueing discipline. */
9411                 dev_shutdown(dev);
9412
9413                 dev_xdp_uninstall(dev);
9414
9415                 /* Notify protocols, that we are about to destroy
9416                  * this device. They should clean all the things.
9417                  */
9418                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9419
9420                 if (!dev->rtnl_link_ops ||
9421                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
9422                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
9423                                                      GFP_KERNEL, NULL, 0);
9424
9425                 /*
9426                  *      Flush the unicast and multicast chains
9427                  */
9428                 dev_uc_flush(dev);
9429                 dev_mc_flush(dev);
9430
9431                 netdev_name_node_alt_flush(dev);
9432                 netdev_name_node_free(dev->name_node);
9433
9434                 if (dev->netdev_ops->ndo_uninit)
9435                         dev->netdev_ops->ndo_uninit(dev);
9436
9437                 if (skb)
9438                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
9439
9440                 /* Notifier chain MUST detach us all upper devices. */
9441                 WARN_ON(netdev_has_any_upper_dev(dev));
9442                 WARN_ON(netdev_has_any_lower_dev(dev));
9443
9444                 /* Remove entries from kobject tree */
9445                 netdev_unregister_kobject(dev);
9446 #ifdef CONFIG_XPS
9447                 /* Remove XPS queueing entries */
9448                 netif_reset_xps_queues_gt(dev, 0);
9449 #endif
9450         }
9451
9452         synchronize_net();
9453
9454         list_for_each_entry(dev, head, unreg_list)
9455                 dev_put(dev);
9456 }
9457
9458 static void rollback_registered(struct net_device *dev)
9459 {
9460         LIST_HEAD(single);
9461
9462         list_add(&dev->unreg_list, &single);
9463         rollback_registered_many(&single);
9464         list_del(&single);
9465 }
9466
9467 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9468         struct net_device *upper, netdev_features_t features)
9469 {
9470         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9471         netdev_features_t feature;
9472         int feature_bit;
9473
9474         for_each_netdev_feature(upper_disables, feature_bit) {
9475                 feature = __NETIF_F_BIT(feature_bit);
9476                 if (!(upper->wanted_features & feature)
9477                     && (features & feature)) {
9478                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9479                                    &feature, upper->name);
9480                         features &= ~feature;
9481                 }
9482         }
9483
9484         return features;
9485 }
9486
9487 static void netdev_sync_lower_features(struct net_device *upper,
9488         struct net_device *lower, netdev_features_t features)
9489 {
9490         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9491         netdev_features_t feature;
9492         int feature_bit;
9493
9494         for_each_netdev_feature(upper_disables, feature_bit) {
9495                 feature = __NETIF_F_BIT(feature_bit);
9496                 if (!(features & feature) && (lower->features & feature)) {
9497                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9498                                    &feature, lower->name);
9499                         lower->wanted_features &= ~feature;
9500                         __netdev_update_features(lower);
9501
9502                         if (unlikely(lower->features & feature))
9503                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9504                                             &feature, lower->name);
9505                         else
9506                                 netdev_features_change(lower);
9507                 }
9508         }
9509 }
9510
9511 static netdev_features_t netdev_fix_features(struct net_device *dev,
9512         netdev_features_t features)
9513 {
9514         /* Fix illegal checksum combinations */
9515         if ((features & NETIF_F_HW_CSUM) &&
9516             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9517                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9518                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9519         }
9520
9521         /* TSO requires that SG is present as well. */
9522         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9523                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9524                 features &= ~NETIF_F_ALL_TSO;
9525         }
9526
9527         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9528                                         !(features & NETIF_F_IP_CSUM)) {
9529                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9530                 features &= ~NETIF_F_TSO;
9531                 features &= ~NETIF_F_TSO_ECN;
9532         }
9533
9534         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9535                                          !(features & NETIF_F_IPV6_CSUM)) {
9536                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9537                 features &= ~NETIF_F_TSO6;
9538         }
9539
9540         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9541         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9542                 features &= ~NETIF_F_TSO_MANGLEID;
9543
9544         /* TSO ECN requires that TSO is present as well. */
9545         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9546                 features &= ~NETIF_F_TSO_ECN;
9547
9548         /* Software GSO depends on SG. */
9549         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9550                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9551                 features &= ~NETIF_F_GSO;
9552         }
9553
9554         /* GSO partial features require GSO partial be set */
9555         if ((features & dev->gso_partial_features) &&
9556             !(features & NETIF_F_GSO_PARTIAL)) {
9557                 netdev_dbg(dev,
9558                            "Dropping partially supported GSO features since no GSO partial.\n");
9559                 features &= ~dev->gso_partial_features;
9560         }
9561
9562         if (!(features & NETIF_F_RXCSUM)) {
9563                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9564                  * successfully merged by hardware must also have the
9565                  * checksum verified by hardware.  If the user does not
9566                  * want to enable RXCSUM, logically, we should disable GRO_HW.
9567                  */
9568                 if (features & NETIF_F_GRO_HW) {
9569                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9570                         features &= ~NETIF_F_GRO_HW;
9571                 }
9572         }
9573
9574         /* LRO/HW-GRO features cannot be combined with RX-FCS */
9575         if (features & NETIF_F_RXFCS) {
9576                 if (features & NETIF_F_LRO) {
9577                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9578                         features &= ~NETIF_F_LRO;
9579                 }
9580
9581                 if (features & NETIF_F_GRO_HW) {
9582                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9583                         features &= ~NETIF_F_GRO_HW;
9584                 }
9585         }
9586
9587         return features;
9588 }
9589
9590 int __netdev_update_features(struct net_device *dev)
9591 {
9592         struct net_device *upper, *lower;
9593         netdev_features_t features;
9594         struct list_head *iter;
9595         int err = -1;
9596
9597         ASSERT_RTNL();
9598
9599         features = netdev_get_wanted_features(dev);
9600
9601         if (dev->netdev_ops->ndo_fix_features)
9602                 features = dev->netdev_ops->ndo_fix_features(dev, features);
9603
9604         /* driver might be less strict about feature dependencies */
9605         features = netdev_fix_features(dev, features);
9606
9607         /* some features can't be enabled if they're off on an upper device */
9608         netdev_for_each_upper_dev_rcu(dev, upper, iter)
9609                 features = netdev_sync_upper_features(dev, upper, features);
9610
9611         if (dev->features == features)
9612                 goto sync_lower;
9613
9614         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9615                 &dev->features, &features);
9616
9617         if (dev->netdev_ops->ndo_set_features)
9618                 err = dev->netdev_ops->ndo_set_features(dev, features);
9619         else
9620                 err = 0;
9621
9622         if (unlikely(err < 0)) {
9623                 netdev_err(dev,
9624                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
9625                         err, &features, &dev->features);
9626                 /* return non-0 since some features might have changed and
9627                  * it's better to fire a spurious notification than miss it
9628                  */
9629                 return -1;
9630         }
9631
9632 sync_lower:
9633         /* some features must be disabled on lower devices when disabled
9634          * on an upper device (think: bonding master or bridge)
9635          */
9636         netdev_for_each_lower_dev(dev, lower, iter)
9637                 netdev_sync_lower_features(dev, lower, features);
9638
9639         if (!err) {
9640                 netdev_features_t diff = features ^ dev->features;
9641
9642                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9643                         /* udp_tunnel_{get,drop}_rx_info both need
9644                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9645                          * device, or they won't do anything.
9646                          * Thus we need to update dev->features
9647                          * *before* calling udp_tunnel_get_rx_info,
9648                          * but *after* calling udp_tunnel_drop_rx_info.
9649                          */
9650                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9651                                 dev->features = features;
9652                                 udp_tunnel_get_rx_info(dev);
9653                         } else {
9654                                 udp_tunnel_drop_rx_info(dev);
9655                         }
9656                 }
9657
9658                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9659                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9660                                 dev->features = features;
9661                                 err |= vlan_get_rx_ctag_filter_info(dev);
9662                         } else {
9663                                 vlan_drop_rx_ctag_filter_info(dev);
9664                         }
9665                 }
9666
9667                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9668                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9669                                 dev->features = features;
9670                                 err |= vlan_get_rx_stag_filter_info(dev);
9671                         } else {
9672                                 vlan_drop_rx_stag_filter_info(dev);
9673                         }
9674                 }
9675
9676                 dev->features = features;
9677         }
9678
9679         return err < 0 ? 0 : 1;
9680 }
9681
9682 /**
9683  *      netdev_update_features - recalculate device features
9684  *      @dev: the device to check
9685  *
9686  *      Recalculate dev->features set and send notifications if it
9687  *      has changed. Should be called after driver or hardware dependent
9688  *      conditions might have changed that influence the features.
9689  */
9690 void netdev_update_features(struct net_device *dev)
9691 {
9692         if (__netdev_update_features(dev))
9693                 netdev_features_change(dev);
9694 }
9695 EXPORT_SYMBOL(netdev_update_features);
9696
9697 /**
9698  *      netdev_change_features - recalculate device features
9699  *      @dev: the device to check
9700  *
9701  *      Recalculate dev->features set and send notifications even
9702  *      if they have not changed. Should be called instead of
9703  *      netdev_update_features() if also dev->vlan_features might
9704  *      have changed to allow the changes to be propagated to stacked
9705  *      VLAN devices.
9706  */
9707 void netdev_change_features(struct net_device *dev)
9708 {
9709         __netdev_update_features(dev);
9710         netdev_features_change(dev);
9711 }
9712 EXPORT_SYMBOL(netdev_change_features);
9713
9714 /**
9715  *      netif_stacked_transfer_operstate -      transfer operstate
9716  *      @rootdev: the root or lower level device to transfer state from
9717  *      @dev: the device to transfer operstate to
9718  *
9719  *      Transfer operational state from root to device. This is normally
9720  *      called when a stacking relationship exists between the root
9721  *      device and the device(a leaf device).
9722  */
9723 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9724                                         struct net_device *dev)
9725 {
9726         if (rootdev->operstate == IF_OPER_DORMANT)
9727                 netif_dormant_on(dev);
9728         else
9729                 netif_dormant_off(dev);
9730
9731         if (rootdev->operstate == IF_OPER_TESTING)
9732                 netif_testing_on(dev);
9733         else
9734                 netif_testing_off(dev);
9735
9736         if (netif_carrier_ok(rootdev))
9737                 netif_carrier_on(dev);
9738         else
9739                 netif_carrier_off(dev);
9740 }
9741 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9742
9743 static int netif_alloc_rx_queues(struct net_device *dev)
9744 {
9745         unsigned int i, count = dev->num_rx_queues;
9746         struct netdev_rx_queue *rx;
9747         size_t sz = count * sizeof(*rx);
9748         int err = 0;
9749
9750         BUG_ON(count < 1);
9751
9752         rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9753         if (!rx)
9754                 return -ENOMEM;
9755
9756         dev->_rx = rx;
9757
9758         for (i = 0; i < count; i++) {
9759                 rx[i].dev = dev;
9760
9761                 /* XDP RX-queue setup */
9762                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
9763                 if (err < 0)
9764                         goto err_rxq_info;
9765         }
9766         return 0;
9767
9768 err_rxq_info:
9769         /* Rollback successful reg's and free other resources */
9770         while (i--)
9771                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9772         kvfree(dev->_rx);
9773         dev->_rx = NULL;
9774         return err;
9775 }
9776
9777 static void netif_free_rx_queues(struct net_device *dev)
9778 {
9779         unsigned int i, count = dev->num_rx_queues;
9780
9781         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9782         if (!dev->_rx)
9783                 return;
9784
9785         for (i = 0; i < count; i++)
9786                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9787
9788         kvfree(dev->_rx);
9789 }
9790
9791 static void netdev_init_one_queue(struct net_device *dev,
9792                                   struct netdev_queue *queue, void *_unused)
9793 {
9794         /* Initialize queue lock */
9795         spin_lock_init(&queue->_xmit_lock);
9796         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9797         queue->xmit_lock_owner = -1;
9798         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9799         queue->dev = dev;
9800 #ifdef CONFIG_BQL
9801         dql_init(&queue->dql, HZ);
9802 #endif
9803 }
9804
9805 static void netif_free_tx_queues(struct net_device *dev)
9806 {
9807         kvfree(dev->_tx);
9808 }
9809
9810 static int netif_alloc_netdev_queues(struct net_device *dev)
9811 {
9812         unsigned int count = dev->num_tx_queues;
9813         struct netdev_queue *tx;
9814         size_t sz = count * sizeof(*tx);
9815
9816         if (count < 1 || count > 0xffff)
9817                 return -EINVAL;
9818
9819         tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9820         if (!tx)
9821                 return -ENOMEM;
9822
9823         dev->_tx = tx;
9824
9825         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9826         spin_lock_init(&dev->tx_global_lock);
9827
9828         return 0;
9829 }
9830
9831 void netif_tx_stop_all_queues(struct net_device *dev)
9832 {
9833         unsigned int i;
9834
9835         for (i = 0; i < dev->num_tx_queues; i++) {
9836                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9837
9838                 netif_tx_stop_queue(txq);
9839         }
9840 }
9841 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9842
9843 /**
9844  *      register_netdevice      - register a network device
9845  *      @dev: device to register
9846  *
9847  *      Take a completed network device structure and add it to the kernel
9848  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9849  *      chain. 0 is returned on success. A negative errno code is returned
9850  *      on a failure to set up the device, or if the name is a duplicate.
9851  *
9852  *      Callers must hold the rtnl semaphore. You may want
9853  *      register_netdev() instead of this.
9854  *
9855  *      BUGS:
9856  *      The locking appears insufficient to guarantee two parallel registers
9857  *      will not get the same name.
9858  */
9859
9860 int register_netdevice(struct net_device *dev)
9861 {
9862         int ret;
9863         struct net *net = dev_net(dev);
9864
9865         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9866                      NETDEV_FEATURE_COUNT);
9867         BUG_ON(dev_boot_phase);
9868         ASSERT_RTNL();
9869
9870         might_sleep();
9871
9872         /* When net_device's are persistent, this will be fatal. */
9873         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9874         BUG_ON(!net);
9875
9876         ret = ethtool_check_ops(dev->ethtool_ops);
9877         if (ret)
9878                 return ret;
9879
9880         spin_lock_init(&dev->addr_list_lock);
9881         netdev_set_addr_lockdep_class(dev);
9882
9883         ret = dev_get_valid_name(net, dev, dev->name);
9884         if (ret < 0)
9885                 goto out;
9886
9887         ret = -ENOMEM;
9888         dev->name_node = netdev_name_node_head_alloc(dev);
9889         if (!dev->name_node)
9890                 goto out;
9891
9892         /* Init, if this function is available */
9893         if (dev->netdev_ops->ndo_init) {
9894                 ret = dev->netdev_ops->ndo_init(dev);
9895                 if (ret) {
9896                         if (ret > 0)
9897                                 ret = -EIO;
9898                         goto err_free_name;
9899                 }
9900         }
9901
9902         if (((dev->hw_features | dev->features) &
9903              NETIF_F_HW_VLAN_CTAG_FILTER) &&
9904             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9905              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9906                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9907                 ret = -EINVAL;
9908                 goto err_uninit;
9909         }
9910
9911         ret = -EBUSY;
9912         if (!dev->ifindex)
9913                 dev->ifindex = dev_new_index(net);
9914         else if (__dev_get_by_index(net, dev->ifindex))
9915                 goto err_uninit;
9916
9917         /* Transfer changeable features to wanted_features and enable
9918          * software offloads (GSO and GRO).
9919          */
9920         dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
9921         dev->features |= NETIF_F_SOFT_FEATURES;
9922
9923         if (dev->netdev_ops->ndo_udp_tunnel_add) {
9924                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9925                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9926         }
9927
9928         dev->wanted_features = dev->features & dev->hw_features;
9929
9930         if (!(dev->flags & IFF_LOOPBACK))
9931                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
9932
9933         /* If IPv4 TCP segmentation offload is supported we should also
9934          * allow the device to enable segmenting the frame with the option
9935          * of ignoring a static IP ID value.  This doesn't enable the
9936          * feature itself but allows the user to enable it later.
9937          */
9938         if (dev->hw_features & NETIF_F_TSO)
9939                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
9940         if (dev->vlan_features & NETIF_F_TSO)
9941                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
9942         if (dev->mpls_features & NETIF_F_TSO)
9943                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
9944         if (dev->hw_enc_features & NETIF_F_TSO)
9945                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
9946
9947         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
9948          */
9949         dev->vlan_features |= NETIF_F_HIGHDMA;
9950
9951         /* Make NETIF_F_SG inheritable to tunnel devices.
9952          */
9953         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
9954
9955         /* Make NETIF_F_SG inheritable to MPLS.
9956          */
9957         dev->mpls_features |= NETIF_F_SG;
9958
9959         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
9960         ret = notifier_to_errno(ret);
9961         if (ret)
9962                 goto err_uninit;
9963
9964         ret = netdev_register_kobject(dev);
9965         if (ret) {
9966                 dev->reg_state = NETREG_UNREGISTERED;
9967                 goto err_uninit;
9968         }
9969         dev->reg_state = NETREG_REGISTERED;
9970
9971         __netdev_update_features(dev);
9972
9973         /*
9974          *      Default initial state at registry is that the
9975          *      device is present.
9976          */
9977
9978         set_bit(__LINK_STATE_PRESENT, &dev->state);
9979
9980         linkwatch_init_dev(dev);
9981
9982         dev_init_scheduler(dev);
9983         dev_hold(dev);
9984         list_netdevice(dev);
9985         add_device_randomness(dev->dev_addr, dev->addr_len);
9986
9987         /* If the device has permanent device address, driver should
9988          * set dev_addr and also addr_assign_type should be set to
9989          * NET_ADDR_PERM (default value).
9990          */
9991         if (dev->addr_assign_type == NET_ADDR_PERM)
9992                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
9993
9994         /* Notify protocols, that a new device appeared. */
9995         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
9996         ret = notifier_to_errno(ret);
9997         if (ret) {
9998                 rollback_registered(dev);
9999                 rcu_barrier();
10000
10001                 dev->reg_state = NETREG_UNREGISTERED;
10002                 /* We should put the kobject that hold in
10003                  * netdev_unregister_kobject(), otherwise
10004                  * the net device cannot be freed when
10005                  * driver calls free_netdev(), because the
10006                  * kobject is being hold.
10007                  */
10008                 kobject_put(&dev->dev.kobj);
10009         }
10010         /*
10011          *      Prevent userspace races by waiting until the network
10012          *      device is fully setup before sending notifications.
10013          */
10014         if (!dev->rtnl_link_ops ||
10015             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10016                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10017
10018 out:
10019         return ret;
10020
10021 err_uninit:
10022         if (dev->netdev_ops->ndo_uninit)
10023                 dev->netdev_ops->ndo_uninit(dev);
10024         if (dev->priv_destructor)
10025                 dev->priv_destructor(dev);
10026 err_free_name:
10027         netdev_name_node_free(dev->name_node);
10028         goto out;
10029 }
10030 EXPORT_SYMBOL(register_netdevice);
10031
10032 /**
10033  *      init_dummy_netdev       - init a dummy network device for NAPI
10034  *      @dev: device to init
10035  *
10036  *      This takes a network device structure and initialize the minimum
10037  *      amount of fields so it can be used to schedule NAPI polls without
10038  *      registering a full blown interface. This is to be used by drivers
10039  *      that need to tie several hardware interfaces to a single NAPI
10040  *      poll scheduler due to HW limitations.
10041  */
10042 int init_dummy_netdev(struct net_device *dev)
10043 {
10044         /* Clear everything. Note we don't initialize spinlocks
10045          * are they aren't supposed to be taken by any of the
10046          * NAPI code and this dummy netdev is supposed to be
10047          * only ever used for NAPI polls
10048          */
10049         memset(dev, 0, sizeof(struct net_device));
10050
10051         /* make sure we BUG if trying to hit standard
10052          * register/unregister code path
10053          */
10054         dev->reg_state = NETREG_DUMMY;
10055
10056         /* NAPI wants this */
10057         INIT_LIST_HEAD(&dev->napi_list);
10058
10059         /* a dummy interface is started by default */
10060         set_bit(__LINK_STATE_PRESENT, &dev->state);
10061         set_bit(__LINK_STATE_START, &dev->state);
10062
10063         /* napi_busy_loop stats accounting wants this */
10064         dev_net_set(dev, &init_net);
10065
10066         /* Note : We dont allocate pcpu_refcnt for dummy devices,
10067          * because users of this 'device' dont need to change
10068          * its refcount.
10069          */
10070
10071         return 0;
10072 }
10073 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10074
10075
10076 /**
10077  *      register_netdev - register a network device
10078  *      @dev: device to register
10079  *
10080  *      Take a completed network device structure and add it to the kernel
10081  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10082  *      chain. 0 is returned on success. A negative errno code is returned
10083  *      on a failure to set up the device, or if the name is a duplicate.
10084  *
10085  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
10086  *      and expands the device name if you passed a format string to
10087  *      alloc_netdev.
10088  */
10089 int register_netdev(struct net_device *dev)
10090 {
10091         int err;
10092
10093         if (rtnl_lock_killable())
10094                 return -EINTR;
10095         err = register_netdevice(dev);
10096         rtnl_unlock();
10097         return err;
10098 }
10099 EXPORT_SYMBOL(register_netdev);
10100
10101 int netdev_refcnt_read(const struct net_device *dev)
10102 {
10103         int i, refcnt = 0;
10104
10105         for_each_possible_cpu(i)
10106                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10107         return refcnt;
10108 }
10109 EXPORT_SYMBOL(netdev_refcnt_read);
10110
10111 #define WAIT_REFS_MIN_MSECS 1
10112 #define WAIT_REFS_MAX_MSECS 250
10113 /**
10114  * netdev_wait_allrefs - wait until all references are gone.
10115  * @dev: target net_device
10116  *
10117  * This is called when unregistering network devices.
10118  *
10119  * Any protocol or device that holds a reference should register
10120  * for netdevice notification, and cleanup and put back the
10121  * reference if they receive an UNREGISTER event.
10122  * We can get stuck here if buggy protocols don't correctly
10123  * call dev_put.
10124  */
10125 static void netdev_wait_allrefs(struct net_device *dev)
10126 {
10127         unsigned long rebroadcast_time, warning_time;
10128         int wait = 0, refcnt;
10129
10130         linkwatch_forget_dev(dev);
10131
10132         rebroadcast_time = warning_time = jiffies;
10133         refcnt = netdev_refcnt_read(dev);
10134
10135         while (refcnt != 0) {
10136                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10137                         rtnl_lock();
10138
10139                         /* Rebroadcast unregister notification */
10140                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10141
10142                         __rtnl_unlock();
10143                         rcu_barrier();
10144                         rtnl_lock();
10145
10146                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10147                                      &dev->state)) {
10148                                 /* We must not have linkwatch events
10149                                  * pending on unregister. If this
10150                                  * happens, we simply run the queue
10151                                  * unscheduled, resulting in a noop
10152                                  * for this device.
10153                                  */
10154                                 linkwatch_run_queue();
10155                         }
10156
10157                         __rtnl_unlock();
10158
10159                         rebroadcast_time = jiffies;
10160                 }
10161
10162                 if (!wait) {
10163                         rcu_barrier();
10164                         wait = WAIT_REFS_MIN_MSECS;
10165                 } else {
10166                         msleep(wait);
10167                         wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10168                 }
10169
10170                 refcnt = netdev_refcnt_read(dev);
10171
10172                 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
10173                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10174                                  dev->name, refcnt);
10175                         warning_time = jiffies;
10176                 }
10177         }
10178 }
10179
10180 /* The sequence is:
10181  *
10182  *      rtnl_lock();
10183  *      ...
10184  *      register_netdevice(x1);
10185  *      register_netdevice(x2);
10186  *      ...
10187  *      unregister_netdevice(y1);
10188  *      unregister_netdevice(y2);
10189  *      ...
10190  *      rtnl_unlock();
10191  *      free_netdev(y1);
10192  *      free_netdev(y2);
10193  *
10194  * We are invoked by rtnl_unlock().
10195  * This allows us to deal with problems:
10196  * 1) We can delete sysfs objects which invoke hotplug
10197  *    without deadlocking with linkwatch via keventd.
10198  * 2) Since we run with the RTNL semaphore not held, we can sleep
10199  *    safely in order to wait for the netdev refcnt to drop to zero.
10200  *
10201  * We must not return until all unregister events added during
10202  * the interval the lock was held have been completed.
10203  */
10204 void netdev_run_todo(void)
10205 {
10206         struct list_head list;
10207 #ifdef CONFIG_LOCKDEP
10208         struct list_head unlink_list;
10209
10210         list_replace_init(&net_unlink_list, &unlink_list);
10211
10212         while (!list_empty(&unlink_list)) {
10213                 struct net_device *dev = list_first_entry(&unlink_list,
10214                                                           struct net_device,
10215                                                           unlink_list);
10216                 list_del_init(&dev->unlink_list);
10217                 dev->nested_level = dev->lower_level - 1;
10218         }
10219 #endif
10220
10221         /* Snapshot list, allow later requests */
10222         list_replace_init(&net_todo_list, &list);
10223
10224         __rtnl_unlock();
10225
10226
10227         /* Wait for rcu callbacks to finish before next phase */
10228         if (!list_empty(&list))
10229                 rcu_barrier();
10230
10231         while (!list_empty(&list)) {
10232                 struct net_device *dev
10233                         = list_first_entry(&list, struct net_device, todo_list);
10234                 list_del(&dev->todo_list);
10235
10236                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10237                         pr_err("network todo '%s' but state %d\n",
10238                                dev->name, dev->reg_state);
10239                         dump_stack();
10240                         continue;
10241                 }
10242
10243                 dev->reg_state = NETREG_UNREGISTERED;
10244
10245                 netdev_wait_allrefs(dev);
10246
10247                 /* paranoia */
10248                 BUG_ON(netdev_refcnt_read(dev));
10249                 BUG_ON(!list_empty(&dev->ptype_all));
10250                 BUG_ON(!list_empty(&dev->ptype_specific));
10251                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10252                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10253 #if IS_ENABLED(CONFIG_DECNET)
10254                 WARN_ON(dev->dn_ptr);
10255 #endif
10256                 if (dev->priv_destructor)
10257                         dev->priv_destructor(dev);
10258                 if (dev->needs_free_netdev)
10259                         free_netdev(dev);
10260
10261                 /* Report a network device has been unregistered */
10262                 rtnl_lock();
10263                 dev_net(dev)->dev_unreg_count--;
10264                 __rtnl_unlock();
10265                 wake_up(&netdev_unregistering_wq);
10266
10267                 /* Free network device */
10268                 kobject_put(&dev->dev.kobj);
10269         }
10270 }
10271
10272 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10273  * all the same fields in the same order as net_device_stats, with only
10274  * the type differing, but rtnl_link_stats64 may have additional fields
10275  * at the end for newer counters.
10276  */
10277 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10278                              const struct net_device_stats *netdev_stats)
10279 {
10280 #if BITS_PER_LONG == 64
10281         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10282         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10283         /* zero out counters that only exist in rtnl_link_stats64 */
10284         memset((char *)stats64 + sizeof(*netdev_stats), 0,
10285                sizeof(*stats64) - sizeof(*netdev_stats));
10286 #else
10287         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10288         const unsigned long *src = (const unsigned long *)netdev_stats;
10289         u64 *dst = (u64 *)stats64;
10290
10291         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10292         for (i = 0; i < n; i++)
10293                 dst[i] = src[i];
10294         /* zero out counters that only exist in rtnl_link_stats64 */
10295         memset((char *)stats64 + n * sizeof(u64), 0,
10296                sizeof(*stats64) - n * sizeof(u64));
10297 #endif
10298 }
10299 EXPORT_SYMBOL(netdev_stats_to_stats64);
10300
10301 /**
10302  *      dev_get_stats   - get network device statistics
10303  *      @dev: device to get statistics from
10304  *      @storage: place to store stats
10305  *
10306  *      Get network statistics from device. Return @storage.
10307  *      The device driver may provide its own method by setting
10308  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10309  *      otherwise the internal statistics structure is used.
10310  */
10311 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10312                                         struct rtnl_link_stats64 *storage)
10313 {
10314         const struct net_device_ops *ops = dev->netdev_ops;
10315
10316         if (ops->ndo_get_stats64) {
10317                 memset(storage, 0, sizeof(*storage));
10318                 ops->ndo_get_stats64(dev, storage);
10319         } else if (ops->ndo_get_stats) {
10320                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10321         } else {
10322                 netdev_stats_to_stats64(storage, &dev->stats);
10323         }
10324         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10325         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10326         storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10327         return storage;
10328 }
10329 EXPORT_SYMBOL(dev_get_stats);
10330
10331 /**
10332  *      dev_fetch_sw_netstats - get per-cpu network device statistics
10333  *      @s: place to store stats
10334  *      @netstats: per-cpu network stats to read from
10335  *
10336  *      Read per-cpu network statistics and populate the related fields in @s.
10337  */
10338 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10339                            const struct pcpu_sw_netstats __percpu *netstats)
10340 {
10341         int cpu;
10342
10343         for_each_possible_cpu(cpu) {
10344                 const struct pcpu_sw_netstats *stats;
10345                 struct pcpu_sw_netstats tmp;
10346                 unsigned int start;
10347
10348                 stats = per_cpu_ptr(netstats, cpu);
10349                 do {
10350                         start = u64_stats_fetch_begin_irq(&stats->syncp);
10351                         tmp.rx_packets = stats->rx_packets;
10352                         tmp.rx_bytes   = stats->rx_bytes;
10353                         tmp.tx_packets = stats->tx_packets;
10354                         tmp.tx_bytes   = stats->tx_bytes;
10355                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10356
10357                 s->rx_packets += tmp.rx_packets;
10358                 s->rx_bytes   += tmp.rx_bytes;
10359                 s->tx_packets += tmp.tx_packets;
10360                 s->tx_bytes   += tmp.tx_bytes;
10361         }
10362 }
10363 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10364
10365 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10366 {
10367         struct netdev_queue *queue = dev_ingress_queue(dev);
10368
10369 #ifdef CONFIG_NET_CLS_ACT
10370         if (queue)
10371                 return queue;
10372         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10373         if (!queue)
10374                 return NULL;
10375         netdev_init_one_queue(dev, queue, NULL);
10376         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10377         queue->qdisc_sleeping = &noop_qdisc;
10378         rcu_assign_pointer(dev->ingress_queue, queue);
10379 #endif
10380         return queue;
10381 }
10382
10383 static const struct ethtool_ops default_ethtool_ops;
10384
10385 void netdev_set_default_ethtool_ops(struct net_device *dev,
10386                                     const struct ethtool_ops *ops)
10387 {
10388         if (dev->ethtool_ops == &default_ethtool_ops)
10389                 dev->ethtool_ops = ops;
10390 }
10391 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10392
10393 void netdev_freemem(struct net_device *dev)
10394 {
10395         char *addr = (char *)dev - dev->padded;
10396
10397         kvfree(addr);
10398 }
10399
10400 /**
10401  * alloc_netdev_mqs - allocate network device
10402  * @sizeof_priv: size of private data to allocate space for
10403  * @name: device name format string
10404  * @name_assign_type: origin of device name
10405  * @setup: callback to initialize device
10406  * @txqs: the number of TX subqueues to allocate
10407  * @rxqs: the number of RX subqueues to allocate
10408  *
10409  * Allocates a struct net_device with private data area for driver use
10410  * and performs basic initialization.  Also allocates subqueue structs
10411  * for each queue on the device.
10412  */
10413 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10414                 unsigned char name_assign_type,
10415                 void (*setup)(struct net_device *),
10416                 unsigned int txqs, unsigned int rxqs)
10417 {
10418         struct net_device *dev;
10419         unsigned int alloc_size;
10420         struct net_device *p;
10421
10422         BUG_ON(strlen(name) >= sizeof(dev->name));
10423
10424         if (txqs < 1) {
10425                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10426                 return NULL;
10427         }
10428
10429         if (rxqs < 1) {
10430                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10431                 return NULL;
10432         }
10433
10434         alloc_size = sizeof(struct net_device);
10435         if (sizeof_priv) {
10436                 /* ensure 32-byte alignment of private area */
10437                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10438                 alloc_size += sizeof_priv;
10439         }
10440         /* ensure 32-byte alignment of whole construct */
10441         alloc_size += NETDEV_ALIGN - 1;
10442
10443         p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10444         if (!p)
10445                 return NULL;
10446
10447         dev = PTR_ALIGN(p, NETDEV_ALIGN);
10448         dev->padded = (char *)dev - (char *)p;
10449
10450         dev->pcpu_refcnt = alloc_percpu(int);
10451         if (!dev->pcpu_refcnt)
10452                 goto free_dev;
10453
10454         if (dev_addr_init(dev))
10455                 goto free_pcpu;
10456
10457         dev_mc_init(dev);
10458         dev_uc_init(dev);
10459
10460         dev_net_set(dev, &init_net);
10461
10462         dev->gso_max_size = GSO_MAX_SIZE;
10463         dev->gso_max_segs = GSO_MAX_SEGS;
10464         dev->upper_level = 1;
10465         dev->lower_level = 1;
10466 #ifdef CONFIG_LOCKDEP
10467         dev->nested_level = 0;
10468         INIT_LIST_HEAD(&dev->unlink_list);
10469 #endif
10470
10471         INIT_LIST_HEAD(&dev->napi_list);
10472         INIT_LIST_HEAD(&dev->unreg_list);
10473         INIT_LIST_HEAD(&dev->close_list);
10474         INIT_LIST_HEAD(&dev->link_watch_list);
10475         INIT_LIST_HEAD(&dev->adj_list.upper);
10476         INIT_LIST_HEAD(&dev->adj_list.lower);
10477         INIT_LIST_HEAD(&dev->ptype_all);
10478         INIT_LIST_HEAD(&dev->ptype_specific);
10479         INIT_LIST_HEAD(&dev->net_notifier_list);
10480 #ifdef CONFIG_NET_SCHED
10481         hash_init(dev->qdisc_hash);
10482 #endif
10483         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10484         setup(dev);
10485
10486         if (!dev->tx_queue_len) {
10487                 dev->priv_flags |= IFF_NO_QUEUE;
10488                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10489         }
10490
10491         dev->num_tx_queues = txqs;
10492         dev->real_num_tx_queues = txqs;
10493         if (netif_alloc_netdev_queues(dev))
10494                 goto free_all;
10495
10496         dev->num_rx_queues = rxqs;
10497         dev->real_num_rx_queues = rxqs;
10498         if (netif_alloc_rx_queues(dev))
10499                 goto free_all;
10500
10501         strcpy(dev->name, name);
10502         dev->name_assign_type = name_assign_type;
10503         dev->group = INIT_NETDEV_GROUP;
10504         if (!dev->ethtool_ops)
10505                 dev->ethtool_ops = &default_ethtool_ops;
10506
10507         nf_hook_ingress_init(dev);
10508
10509         return dev;
10510
10511 free_all:
10512         free_netdev(dev);
10513         return NULL;
10514
10515 free_pcpu:
10516         free_percpu(dev->pcpu_refcnt);
10517 free_dev:
10518         netdev_freemem(dev);
10519         return NULL;
10520 }
10521 EXPORT_SYMBOL(alloc_netdev_mqs);
10522
10523 /**
10524  * free_netdev - free network device
10525  * @dev: device
10526  *
10527  * This function does the last stage of destroying an allocated device
10528  * interface. The reference to the device object is released. If this
10529  * is the last reference then it will be freed.Must be called in process
10530  * context.
10531  */
10532 void free_netdev(struct net_device *dev)
10533 {
10534         struct napi_struct *p, *n;
10535
10536         might_sleep();
10537         netif_free_tx_queues(dev);
10538         netif_free_rx_queues(dev);
10539
10540         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10541
10542         /* Flush device addresses */
10543         dev_addr_flush(dev);
10544
10545         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10546                 netif_napi_del(p);
10547
10548         free_percpu(dev->pcpu_refcnt);
10549         dev->pcpu_refcnt = NULL;
10550         free_percpu(dev->xdp_bulkq);
10551         dev->xdp_bulkq = NULL;
10552
10553         /*  Compatibility with error handling in drivers */
10554         if (dev->reg_state == NETREG_UNINITIALIZED) {
10555                 netdev_freemem(dev);
10556                 return;
10557         }
10558
10559         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10560         dev->reg_state = NETREG_RELEASED;
10561
10562         /* will free via device release */
10563         put_device(&dev->dev);
10564 }
10565 EXPORT_SYMBOL(free_netdev);
10566
10567 /**
10568  *      synchronize_net -  Synchronize with packet receive processing
10569  *
10570  *      Wait for packets currently being received to be done.
10571  *      Does not block later packets from starting.
10572  */
10573 void synchronize_net(void)
10574 {
10575         might_sleep();
10576         if (rtnl_is_locked())
10577                 synchronize_rcu_expedited();
10578         else
10579                 synchronize_rcu();
10580 }
10581 EXPORT_SYMBOL(synchronize_net);
10582
10583 /**
10584  *      unregister_netdevice_queue - remove device from the kernel
10585  *      @dev: device
10586  *      @head: list
10587  *
10588  *      This function shuts down a device interface and removes it
10589  *      from the kernel tables.
10590  *      If head not NULL, device is queued to be unregistered later.
10591  *
10592  *      Callers must hold the rtnl semaphore.  You may want
10593  *      unregister_netdev() instead of this.
10594  */
10595
10596 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10597 {
10598         ASSERT_RTNL();
10599
10600         if (head) {
10601                 list_move_tail(&dev->unreg_list, head);
10602         } else {
10603                 rollback_registered(dev);
10604                 /* Finish processing unregister after unlock */
10605                 net_set_todo(dev);
10606         }
10607 }
10608 EXPORT_SYMBOL(unregister_netdevice_queue);
10609
10610 /**
10611  *      unregister_netdevice_many - unregister many devices
10612  *      @head: list of devices
10613  *
10614  *  Note: As most callers use a stack allocated list_head,
10615  *  we force a list_del() to make sure stack wont be corrupted later.
10616  */
10617 void unregister_netdevice_many(struct list_head *head)
10618 {
10619         struct net_device *dev;
10620
10621         if (!list_empty(head)) {
10622                 rollback_registered_many(head);
10623                 list_for_each_entry(dev, head, unreg_list)
10624                         net_set_todo(dev);
10625                 list_del(head);
10626         }
10627 }
10628 EXPORT_SYMBOL(unregister_netdevice_many);
10629
10630 /**
10631  *      unregister_netdev - remove device from the kernel
10632  *      @dev: device
10633  *
10634  *      This function shuts down a device interface and removes it
10635  *      from the kernel tables.
10636  *
10637  *      This is just a wrapper for unregister_netdevice that takes
10638  *      the rtnl semaphore.  In general you want to use this and not
10639  *      unregister_netdevice.
10640  */
10641 void unregister_netdev(struct net_device *dev)
10642 {
10643         rtnl_lock();
10644         unregister_netdevice(dev);
10645         rtnl_unlock();
10646 }
10647 EXPORT_SYMBOL(unregister_netdev);
10648
10649 /**
10650  *      dev_change_net_namespace - move device to different nethost namespace
10651  *      @dev: device
10652  *      @net: network namespace
10653  *      @pat: If not NULL name pattern to try if the current device name
10654  *            is already taken in the destination network namespace.
10655  *
10656  *      This function shuts down a device interface and moves it
10657  *      to a new network namespace. On success 0 is returned, on
10658  *      a failure a netagive errno code is returned.
10659  *
10660  *      Callers must hold the rtnl semaphore.
10661  */
10662
10663 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
10664 {
10665         struct net *net_old = dev_net(dev);
10666         int err, new_nsid, new_ifindex;
10667
10668         ASSERT_RTNL();
10669
10670         /* Don't allow namespace local devices to be moved. */
10671         err = -EINVAL;
10672         if (dev->features & NETIF_F_NETNS_LOCAL)
10673                 goto out;
10674
10675         /* Ensure the device has been registrered */
10676         if (dev->reg_state != NETREG_REGISTERED)
10677                 goto out;
10678
10679         /* Get out if there is nothing todo */
10680         err = 0;
10681         if (net_eq(net_old, net))
10682                 goto out;
10683
10684         /* Pick the destination device name, and ensure
10685          * we can use it in the destination network namespace.
10686          */
10687         err = -EEXIST;
10688         if (__dev_get_by_name(net, dev->name)) {
10689                 /* We get here if we can't use the current device name */
10690                 if (!pat)
10691                         goto out;
10692                 err = dev_get_valid_name(net, dev, pat);
10693                 if (err < 0)
10694                         goto out;
10695         }
10696
10697         /*
10698          * And now a mini version of register_netdevice unregister_netdevice.
10699          */
10700
10701         /* If device is running close it first. */
10702         dev_close(dev);
10703
10704         /* And unlink it from device chain */
10705         unlist_netdevice(dev);
10706
10707         synchronize_net();
10708
10709         /* Shutdown queueing discipline. */
10710         dev_shutdown(dev);
10711
10712         /* Notify protocols, that we are about to destroy
10713          * this device. They should clean all the things.
10714          *
10715          * Note that dev->reg_state stays at NETREG_REGISTERED.
10716          * This is wanted because this way 8021q and macvlan know
10717          * the device is just moving and can keep their slaves up.
10718          */
10719         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10720         rcu_barrier();
10721
10722         new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10723         /* If there is an ifindex conflict assign a new one */
10724         if (__dev_get_by_index(net, dev->ifindex))
10725                 new_ifindex = dev_new_index(net);
10726         else
10727                 new_ifindex = dev->ifindex;
10728
10729         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10730                             new_ifindex);
10731
10732         /*
10733          *      Flush the unicast and multicast chains
10734          */
10735         dev_uc_flush(dev);
10736         dev_mc_flush(dev);
10737
10738         /* Send a netdev-removed uevent to the old namespace */
10739         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
10740         netdev_adjacent_del_links(dev);
10741
10742         /* Move per-net netdevice notifiers that are following the netdevice */
10743         move_netdevice_notifiers_dev_net(dev, net);
10744
10745         /* Actually switch the network namespace */
10746         dev_net_set(dev, net);
10747         dev->ifindex = new_ifindex;
10748
10749         /* Send a netdev-add uevent to the new namespace */
10750         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
10751         netdev_adjacent_add_links(dev);
10752
10753         /* Fixup kobjects */
10754         err = device_rename(&dev->dev, dev->name);
10755         WARN_ON(err);
10756
10757         /* Adapt owner in case owning user namespace of target network
10758          * namespace is different from the original one.
10759          */
10760         err = netdev_change_owner(dev, net_old, net);
10761         WARN_ON(err);
10762
10763         /* Add the device back in the hashes */
10764         list_netdevice(dev);
10765
10766         /* Notify protocols, that a new device appeared. */
10767         call_netdevice_notifiers(NETDEV_REGISTER, dev);
10768
10769         /*
10770          *      Prevent userspace races by waiting until the network
10771          *      device is fully setup before sending notifications.
10772          */
10773         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10774
10775         synchronize_net();
10776         err = 0;
10777 out:
10778         return err;
10779 }
10780 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
10781
10782 static int dev_cpu_dead(unsigned int oldcpu)
10783 {
10784         struct sk_buff **list_skb;
10785         struct sk_buff *skb;
10786         unsigned int cpu;
10787         struct softnet_data *sd, *oldsd, *remsd = NULL;
10788
10789         local_irq_disable();
10790         cpu = smp_processor_id();
10791         sd = &per_cpu(softnet_data, cpu);
10792         oldsd = &per_cpu(softnet_data, oldcpu);
10793
10794         /* Find end of our completion_queue. */
10795         list_skb = &sd->completion_queue;
10796         while (*list_skb)
10797                 list_skb = &(*list_skb)->next;
10798         /* Append completion queue from offline CPU. */
10799         *list_skb = oldsd->completion_queue;
10800         oldsd->completion_queue = NULL;
10801
10802         /* Append output queue from offline CPU. */
10803         if (oldsd->output_queue) {
10804                 *sd->output_queue_tailp = oldsd->output_queue;
10805                 sd->output_queue_tailp = oldsd->output_queue_tailp;
10806                 oldsd->output_queue = NULL;
10807                 oldsd->output_queue_tailp = &oldsd->output_queue;
10808         }
10809         /* Append NAPI poll list from offline CPU, with one exception :
10810          * process_backlog() must be called by cpu owning percpu backlog.
10811          * We properly handle process_queue & input_pkt_queue later.
10812          */
10813         while (!list_empty(&oldsd->poll_list)) {
10814                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10815                                                             struct napi_struct,
10816                                                             poll_list);
10817
10818                 list_del_init(&napi->poll_list);
10819                 if (napi->poll == process_backlog)
10820                         napi->state = 0;
10821                 else
10822                         ____napi_schedule(sd, napi);
10823         }
10824
10825         raise_softirq_irqoff(NET_TX_SOFTIRQ);
10826         local_irq_enable();
10827
10828 #ifdef CONFIG_RPS
10829         remsd = oldsd->rps_ipi_list;
10830         oldsd->rps_ipi_list = NULL;
10831 #endif
10832         /* send out pending IPI's on offline CPU */
10833         net_rps_send_ipi(remsd);
10834
10835         /* Process offline CPU's input_pkt_queue */
10836         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
10837                 netif_rx_ni(skb);
10838                 input_queue_head_incr(oldsd);
10839         }
10840         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
10841                 netif_rx_ni(skb);
10842                 input_queue_head_incr(oldsd);
10843         }
10844
10845         return 0;
10846 }
10847
10848 /**
10849  *      netdev_increment_features - increment feature set by one
10850  *      @all: current feature set
10851  *      @one: new feature set
10852  *      @mask: mask feature set
10853  *
10854  *      Computes a new feature set after adding a device with feature set
10855  *      @one to the master device with current feature set @all.  Will not
10856  *      enable anything that is off in @mask. Returns the new feature set.
10857  */
10858 netdev_features_t netdev_increment_features(netdev_features_t all,
10859         netdev_features_t one, netdev_features_t mask)
10860 {
10861         if (mask & NETIF_F_HW_CSUM)
10862                 mask |= NETIF_F_CSUM_MASK;
10863         mask |= NETIF_F_VLAN_CHALLENGED;
10864
10865         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
10866         all &= one | ~NETIF_F_ALL_FOR_ALL;
10867
10868         /* If one device supports hw checksumming, set for all. */
10869         if (all & NETIF_F_HW_CSUM)
10870                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
10871
10872         return all;
10873 }
10874 EXPORT_SYMBOL(netdev_increment_features);
10875
10876 static struct hlist_head * __net_init netdev_create_hash(void)
10877 {
10878         int i;
10879         struct hlist_head *hash;
10880
10881         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
10882         if (hash != NULL)
10883                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
10884                         INIT_HLIST_HEAD(&hash[i]);
10885
10886         return hash;
10887 }
10888
10889 /* Initialize per network namespace state */
10890 static int __net_init netdev_init(struct net *net)
10891 {
10892         BUILD_BUG_ON(GRO_HASH_BUCKETS >
10893                      8 * sizeof_field(struct napi_struct, gro_bitmask));
10894
10895         if (net != &init_net)
10896                 INIT_LIST_HEAD(&net->dev_base_head);
10897
10898         net->dev_name_head = netdev_create_hash();
10899         if (net->dev_name_head == NULL)
10900                 goto err_name;
10901
10902         net->dev_index_head = netdev_create_hash();
10903         if (net->dev_index_head == NULL)
10904                 goto err_idx;
10905
10906         RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
10907
10908         return 0;
10909
10910 err_idx:
10911         kfree(net->dev_name_head);
10912 err_name:
10913         return -ENOMEM;
10914 }
10915
10916 /**
10917  *      netdev_drivername - network driver for the device
10918  *      @dev: network device
10919  *
10920  *      Determine network driver for device.
10921  */
10922 const char *netdev_drivername(const struct net_device *dev)
10923 {
10924         const struct device_driver *driver;
10925         const struct device *parent;
10926         const char *empty = "";
10927
10928         parent = dev->dev.parent;
10929         if (!parent)
10930                 return empty;
10931
10932         driver = parent->driver;
10933         if (driver && driver->name)
10934                 return driver->name;
10935         return empty;
10936 }
10937
10938 static void __netdev_printk(const char *level, const struct net_device *dev,
10939                             struct va_format *vaf)
10940 {
10941         if (dev && dev->dev.parent) {
10942                 dev_printk_emit(level[1] - '0',
10943                                 dev->dev.parent,
10944                                 "%s %s %s%s: %pV",
10945                                 dev_driver_string(dev->dev.parent),
10946                                 dev_name(dev->dev.parent),
10947                                 netdev_name(dev), netdev_reg_state(dev),
10948                                 vaf);
10949         } else if (dev) {
10950                 printk("%s%s%s: %pV",
10951                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
10952         } else {
10953                 printk("%s(NULL net_device): %pV", level, vaf);
10954         }
10955 }
10956
10957 void netdev_printk(const char *level, const struct net_device *dev,
10958                    const char *format, ...)
10959 {
10960         struct va_format vaf;
10961         va_list args;
10962
10963         va_start(args, format);
10964
10965         vaf.fmt = format;
10966         vaf.va = &args;
10967
10968         __netdev_printk(level, dev, &vaf);
10969
10970         va_end(args);
10971 }
10972 EXPORT_SYMBOL(netdev_printk);
10973
10974 #define define_netdev_printk_level(func, level)                 \
10975 void func(const struct net_device *dev, const char *fmt, ...)   \
10976 {                                                               \
10977         struct va_format vaf;                                   \
10978         va_list args;                                           \
10979                                                                 \
10980         va_start(args, fmt);                                    \
10981                                                                 \
10982         vaf.fmt = fmt;                                          \
10983         vaf.va = &args;                                         \
10984                                                                 \
10985         __netdev_printk(level, dev, &vaf);                      \
10986                                                                 \
10987         va_end(args);                                           \
10988 }                                                               \
10989 EXPORT_SYMBOL(func);
10990
10991 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
10992 define_netdev_printk_level(netdev_alert, KERN_ALERT);
10993 define_netdev_printk_level(netdev_crit, KERN_CRIT);
10994 define_netdev_printk_level(netdev_err, KERN_ERR);
10995 define_netdev_printk_level(netdev_warn, KERN_WARNING);
10996 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
10997 define_netdev_printk_level(netdev_info, KERN_INFO);
10998
10999 static void __net_exit netdev_exit(struct net *net)
11000 {
11001         kfree(net->dev_name_head);
11002         kfree(net->dev_index_head);
11003         if (net != &init_net)
11004                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11005 }
11006
11007 static struct pernet_operations __net_initdata netdev_net_ops = {
11008         .init = netdev_init,
11009         .exit = netdev_exit,
11010 };
11011
11012 static void __net_exit default_device_exit(struct net *net)
11013 {
11014         struct net_device *dev, *aux;
11015         /*
11016          * Push all migratable network devices back to the
11017          * initial network namespace
11018          */
11019         rtnl_lock();
11020         for_each_netdev_safe(net, dev, aux) {
11021                 int err;
11022                 char fb_name[IFNAMSIZ];
11023
11024                 /* Ignore unmoveable devices (i.e. loopback) */
11025                 if (dev->features & NETIF_F_NETNS_LOCAL)
11026                         continue;
11027
11028                 /* Leave virtual devices for the generic cleanup */
11029                 if (dev->rtnl_link_ops)
11030                         continue;
11031
11032                 /* Push remaining network devices to init_net */
11033                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11034                 if (__dev_get_by_name(&init_net, fb_name))
11035                         snprintf(fb_name, IFNAMSIZ, "dev%%d");
11036                 err = dev_change_net_namespace(dev, &init_net, fb_name);
11037                 if (err) {
11038                         pr_emerg("%s: failed to move %s to init_net: %d\n",
11039                                  __func__, dev->name, err);
11040                         BUG();
11041                 }
11042         }
11043         rtnl_unlock();
11044 }
11045
11046 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11047 {
11048         /* Return with the rtnl_lock held when there are no network
11049          * devices unregistering in any network namespace in net_list.
11050          */
11051         struct net *net;
11052         bool unregistering;
11053         DEFINE_WAIT_FUNC(wait, woken_wake_function);
11054
11055         add_wait_queue(&netdev_unregistering_wq, &wait);
11056         for (;;) {
11057                 unregistering = false;
11058                 rtnl_lock();
11059                 list_for_each_entry(net, net_list, exit_list) {
11060                         if (net->dev_unreg_count > 0) {
11061                                 unregistering = true;
11062                                 break;
11063                         }
11064                 }
11065                 if (!unregistering)
11066                         break;
11067                 __rtnl_unlock();
11068
11069                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
11070         }
11071         remove_wait_queue(&netdev_unregistering_wq, &wait);
11072 }
11073
11074 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11075 {
11076         /* At exit all network devices most be removed from a network
11077          * namespace.  Do this in the reverse order of registration.
11078          * Do this across as many network namespaces as possible to
11079          * improve batching efficiency.
11080          */
11081         struct net_device *dev;
11082         struct net *net;
11083         LIST_HEAD(dev_kill_list);
11084
11085         /* To prevent network device cleanup code from dereferencing
11086          * loopback devices or network devices that have been freed
11087          * wait here for all pending unregistrations to complete,
11088          * before unregistring the loopback device and allowing the
11089          * network namespace be freed.
11090          *
11091          * The netdev todo list containing all network devices
11092          * unregistrations that happen in default_device_exit_batch
11093          * will run in the rtnl_unlock() at the end of
11094          * default_device_exit_batch.
11095          */
11096         rtnl_lock_unregistering(net_list);
11097         list_for_each_entry(net, net_list, exit_list) {
11098                 for_each_netdev_reverse(net, dev) {
11099                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11100                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11101                         else
11102                                 unregister_netdevice_queue(dev, &dev_kill_list);
11103                 }
11104         }
11105         unregister_netdevice_many(&dev_kill_list);
11106         rtnl_unlock();
11107 }
11108
11109 static struct pernet_operations __net_initdata default_device_ops = {
11110         .exit = default_device_exit,
11111         .exit_batch = default_device_exit_batch,
11112 };
11113
11114 /*
11115  *      Initialize the DEV module. At boot time this walks the device list and
11116  *      unhooks any devices that fail to initialise (normally hardware not
11117  *      present) and leaves us with a valid list of present and active devices.
11118  *
11119  */
11120
11121 /*
11122  *       This is called single threaded during boot, so no need
11123  *       to take the rtnl semaphore.
11124  */
11125 static int __init net_dev_init(void)
11126 {
11127         int i, rc = -ENOMEM;
11128
11129         BUG_ON(!dev_boot_phase);
11130
11131         if (dev_proc_init())
11132                 goto out;
11133
11134         if (netdev_kobject_init())
11135                 goto out;
11136
11137         INIT_LIST_HEAD(&ptype_all);
11138         for (i = 0; i < PTYPE_HASH_SIZE; i++)
11139                 INIT_LIST_HEAD(&ptype_base[i]);
11140
11141         INIT_LIST_HEAD(&offload_base);
11142
11143         if (register_pernet_subsys(&netdev_net_ops))
11144                 goto out;
11145
11146         /*
11147          *      Initialise the packet receive queues.
11148          */
11149
11150         for_each_possible_cpu(i) {
11151                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11152                 struct softnet_data *sd = &per_cpu(softnet_data, i);
11153
11154                 INIT_WORK(flush, flush_backlog);
11155
11156                 skb_queue_head_init(&sd->input_pkt_queue);
11157                 skb_queue_head_init(&sd->process_queue);
11158 #ifdef CONFIG_XFRM_OFFLOAD
11159                 skb_queue_head_init(&sd->xfrm_backlog);
11160 #endif
11161                 INIT_LIST_HEAD(&sd->poll_list);
11162                 sd->output_queue_tailp = &sd->output_queue;
11163 #ifdef CONFIG_RPS
11164                 sd->csd.func = rps_trigger_softirq;
11165                 sd->csd.info = sd;
11166                 sd->cpu = i;
11167 #endif
11168
11169                 init_gro_hash(&sd->backlog);
11170                 sd->backlog.poll = process_backlog;
11171                 sd->backlog.weight = weight_p;
11172         }
11173
11174         dev_boot_phase = 0;
11175
11176         /* The loopback device is special if any other network devices
11177          * is present in a network namespace the loopback device must
11178          * be present. Since we now dynamically allocate and free the
11179          * loopback device ensure this invariant is maintained by
11180          * keeping the loopback device as the first device on the
11181          * list of network devices.  Ensuring the loopback devices
11182          * is the first device that appears and the last network device
11183          * that disappears.
11184          */
11185         if (register_pernet_device(&loopback_net_ops))
11186                 goto out;
11187
11188         if (register_pernet_device(&default_device_ops))
11189                 goto out;
11190
11191         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11192         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11193
11194         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11195                                        NULL, dev_cpu_dead);
11196         WARN_ON(rc < 0);
11197         rc = 0;
11198 out:
11199         return rc;
11200 }
11201
11202 subsys_initcall(net_dev_init);