Merge tag 'platform-drivers-x86-v5.16-3' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / net / core / dev.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *      Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:        Ross Biro
7  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *      Additional Authors:
11  *              Florian la Roche <rzsfl@rz.uni-sb.de>
12  *              Alan Cox <gw4pts@gw4pts.ampr.org>
13  *              David Hinds <dahinds@users.sourceforge.net>
14  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *              Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *      Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *              Alan Cox        :       device private ioctl copies fields back.
24  *              Alan Cox        :       Transmit queue code does relevant
25  *                                      stunts to keep the queue safe.
26  *              Alan Cox        :       Fixed double lock.
27  *              Alan Cox        :       Fixed promisc NULL pointer trap
28  *              ????????        :       Support the full private ioctl range
29  *              Alan Cox        :       Moved ioctl permission check into
30  *                                      drivers
31  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
32  *              Alan Cox        :       100 backlog just doesn't cut it when
33  *                                      you start doing multicast video 8)
34  *              Alan Cox        :       Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *              Alan Cox        :       Took out transmit every packet pass
37  *                                      Saved a few bytes in the ioctl handler
38  *              Alan Cox        :       Network driver sets packet type before
39  *                                      calling netif_rx. Saves a function
40  *                                      call a packet.
41  *              Alan Cox        :       Hashed net_bh()
42  *              Richard Kooijman:       Timestamp fixes.
43  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
44  *              Alan Cox        :       Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *                                      changes.
47  *              Rudi Cilibrasi  :       Pass the right thing to
48  *                                      set_mac_address()
49  *              Dave Miller     :       32bit quantity for the device lock to
50  *                                      make it work out on a Sparc.
51  *              Bjorn Ekwall    :       Added KERNELD hack.
52  *              Alan Cox        :       Cleaned up the backlog initialise.
53  *              Craig Metz      :       SIOCGIFCONF fix if space for under
54  *                                      1 device.
55  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
56  *                                      is no device open function.
57  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
58  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
59  *              Cyrus Durgin    :       Cleaned for KMOD
60  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
61  *                                      A network device unload needs to purge
62  *                                      the backlog queue.
63  *      Paul Rusty Russell      :       SIOCSIFNAME
64  *              Pekka Riikonen  :       Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *                                      - netif_rx() feedback
69  */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <trace/events/qdisc.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_netdev.h>
144 #include <linux/crash_dump.h>
145 #include <linux/sctp.h>
146 #include <net/udp_tunnel.h>
147 #include <linux/net_namespace.h>
148 #include <linux/indirect_call_wrapper.h>
149 #include <net/devlink.h>
150 #include <linux/pm_runtime.h>
151 #include <linux/prandom.h>
152 #include <linux/once_lite.h>
153
154 #include "net-sysfs.h"
155
156 #define MAX_GRO_SKBS 8
157
158 /* This should be increased if a protocol with a bigger head is added. */
159 #define GRO_MAX_HEAD (MAX_HEADER + 128)
160
161 static DEFINE_SPINLOCK(ptype_lock);
162 static DEFINE_SPINLOCK(offload_lock);
163 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
164 struct list_head ptype_all __read_mostly;       /* Taps */
165 static struct list_head offload_base __read_mostly;
166
167 static int netif_rx_internal(struct sk_buff *skb);
168 static int call_netdevice_notifiers_info(unsigned long val,
169                                          struct netdev_notifier_info *info);
170 static int call_netdevice_notifiers_extack(unsigned long val,
171                                            struct net_device *dev,
172                                            struct netlink_ext_ack *extack);
173 static struct napi_struct *napi_by_id(unsigned int napi_id);
174
175 /*
176  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
177  * semaphore.
178  *
179  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
180  *
181  * Writers must hold the rtnl semaphore while they loop through the
182  * dev_base_head list, and hold dev_base_lock for writing when they do the
183  * actual updates.  This allows pure readers to access the list even
184  * while a writer is preparing to update it.
185  *
186  * To put it another way, dev_base_lock is held for writing only to
187  * protect against pure readers; the rtnl semaphore provides the
188  * protection against other writers.
189  *
190  * See, for example usages, register_netdevice() and
191  * unregister_netdevice(), which must be called with the rtnl
192  * semaphore held.
193  */
194 DEFINE_RWLOCK(dev_base_lock);
195 EXPORT_SYMBOL(dev_base_lock);
196
197 static DEFINE_MUTEX(ifalias_mutex);
198
199 /* protects napi_hash addition/deletion and napi_gen_id */
200 static DEFINE_SPINLOCK(napi_hash_lock);
201
202 static unsigned int napi_gen_id = NR_CPUS;
203 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
204
205 static DECLARE_RWSEM(devnet_rename_sem);
206
207 static inline void dev_base_seq_inc(struct net *net)
208 {
209         while (++net->dev_base_seq == 0)
210                 ;
211 }
212
213 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
214 {
215         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
216
217         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
218 }
219
220 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
221 {
222         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
223 }
224
225 static inline void rps_lock(struct softnet_data *sd)
226 {
227 #ifdef CONFIG_RPS
228         spin_lock(&sd->input_pkt_queue.lock);
229 #endif
230 }
231
232 static inline void rps_unlock(struct softnet_data *sd)
233 {
234 #ifdef CONFIG_RPS
235         spin_unlock(&sd->input_pkt_queue.lock);
236 #endif
237 }
238
239 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
240                                                        const char *name)
241 {
242         struct netdev_name_node *name_node;
243
244         name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
245         if (!name_node)
246                 return NULL;
247         INIT_HLIST_NODE(&name_node->hlist);
248         name_node->dev = dev;
249         name_node->name = name;
250         return name_node;
251 }
252
253 static struct netdev_name_node *
254 netdev_name_node_head_alloc(struct net_device *dev)
255 {
256         struct netdev_name_node *name_node;
257
258         name_node = netdev_name_node_alloc(dev, dev->name);
259         if (!name_node)
260                 return NULL;
261         INIT_LIST_HEAD(&name_node->list);
262         return name_node;
263 }
264
265 static void netdev_name_node_free(struct netdev_name_node *name_node)
266 {
267         kfree(name_node);
268 }
269
270 static void netdev_name_node_add(struct net *net,
271                                  struct netdev_name_node *name_node)
272 {
273         hlist_add_head_rcu(&name_node->hlist,
274                            dev_name_hash(net, name_node->name));
275 }
276
277 static void netdev_name_node_del(struct netdev_name_node *name_node)
278 {
279         hlist_del_rcu(&name_node->hlist);
280 }
281
282 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
283                                                         const char *name)
284 {
285         struct hlist_head *head = dev_name_hash(net, name);
286         struct netdev_name_node *name_node;
287
288         hlist_for_each_entry(name_node, head, hlist)
289                 if (!strcmp(name_node->name, name))
290                         return name_node;
291         return NULL;
292 }
293
294 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
295                                                             const char *name)
296 {
297         struct hlist_head *head = dev_name_hash(net, name);
298         struct netdev_name_node *name_node;
299
300         hlist_for_each_entry_rcu(name_node, head, hlist)
301                 if (!strcmp(name_node->name, name))
302                         return name_node;
303         return NULL;
304 }
305
306 bool netdev_name_in_use(struct net *net, const char *name)
307 {
308         return netdev_name_node_lookup(net, name);
309 }
310 EXPORT_SYMBOL(netdev_name_in_use);
311
312 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
313 {
314         struct netdev_name_node *name_node;
315         struct net *net = dev_net(dev);
316
317         name_node = netdev_name_node_lookup(net, name);
318         if (name_node)
319                 return -EEXIST;
320         name_node = netdev_name_node_alloc(dev, name);
321         if (!name_node)
322                 return -ENOMEM;
323         netdev_name_node_add(net, name_node);
324         /* The node that holds dev->name acts as a head of per-device list. */
325         list_add_tail(&name_node->list, &dev->name_node->list);
326
327         return 0;
328 }
329 EXPORT_SYMBOL(netdev_name_node_alt_create);
330
331 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
332 {
333         list_del(&name_node->list);
334         netdev_name_node_del(name_node);
335         kfree(name_node->name);
336         netdev_name_node_free(name_node);
337 }
338
339 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
340 {
341         struct netdev_name_node *name_node;
342         struct net *net = dev_net(dev);
343
344         name_node = netdev_name_node_lookup(net, name);
345         if (!name_node)
346                 return -ENOENT;
347         /* lookup might have found our primary name or a name belonging
348          * to another device.
349          */
350         if (name_node == dev->name_node || name_node->dev != dev)
351                 return -EINVAL;
352
353         __netdev_name_node_alt_destroy(name_node);
354
355         return 0;
356 }
357 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
358
359 static void netdev_name_node_alt_flush(struct net_device *dev)
360 {
361         struct netdev_name_node *name_node, *tmp;
362
363         list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
364                 __netdev_name_node_alt_destroy(name_node);
365 }
366
367 /* Device list insertion */
368 static void list_netdevice(struct net_device *dev)
369 {
370         struct net *net = dev_net(dev);
371
372         ASSERT_RTNL();
373
374         write_lock_bh(&dev_base_lock);
375         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
376         netdev_name_node_add(net, dev->name_node);
377         hlist_add_head_rcu(&dev->index_hlist,
378                            dev_index_hash(net, dev->ifindex));
379         write_unlock_bh(&dev_base_lock);
380
381         dev_base_seq_inc(net);
382 }
383
384 /* Device list removal
385  * caller must respect a RCU grace period before freeing/reusing dev
386  */
387 static void unlist_netdevice(struct net_device *dev)
388 {
389         ASSERT_RTNL();
390
391         /* Unlink dev from the device chain */
392         write_lock_bh(&dev_base_lock);
393         list_del_rcu(&dev->dev_list);
394         netdev_name_node_del(dev->name_node);
395         hlist_del_rcu(&dev->index_hlist);
396         write_unlock_bh(&dev_base_lock);
397
398         dev_base_seq_inc(dev_net(dev));
399 }
400
401 /*
402  *      Our notifier list
403  */
404
405 static RAW_NOTIFIER_HEAD(netdev_chain);
406
407 /*
408  *      Device drivers call our routines to queue packets here. We empty the
409  *      queue in the local softnet handler.
410  */
411
412 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
413 EXPORT_PER_CPU_SYMBOL(softnet_data);
414
415 #ifdef CONFIG_LOCKDEP
416 /*
417  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
418  * according to dev->type
419  */
420 static const unsigned short netdev_lock_type[] = {
421          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
422          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
423          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
424          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
425          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
426          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
427          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
428          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
429          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
430          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
431          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
432          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
433          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
434          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
435          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
436
437 static const char *const netdev_lock_name[] = {
438         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
439         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
440         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
441         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
442         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
443         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
444         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
445         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
446         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
447         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
448         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
449         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
450         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
451         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
452         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
453
454 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
455 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
456
457 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
458 {
459         int i;
460
461         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
462                 if (netdev_lock_type[i] == dev_type)
463                         return i;
464         /* the last key is used by default */
465         return ARRAY_SIZE(netdev_lock_type) - 1;
466 }
467
468 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
469                                                  unsigned short dev_type)
470 {
471         int i;
472
473         i = netdev_lock_pos(dev_type);
474         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
475                                    netdev_lock_name[i]);
476 }
477
478 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
479 {
480         int i;
481
482         i = netdev_lock_pos(dev->type);
483         lockdep_set_class_and_name(&dev->addr_list_lock,
484                                    &netdev_addr_lock_key[i],
485                                    netdev_lock_name[i]);
486 }
487 #else
488 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
489                                                  unsigned short dev_type)
490 {
491 }
492
493 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
494 {
495 }
496 #endif
497
498 /*******************************************************************************
499  *
500  *              Protocol management and registration routines
501  *
502  *******************************************************************************/
503
504
505 /*
506  *      Add a protocol ID to the list. Now that the input handler is
507  *      smarter we can dispense with all the messy stuff that used to be
508  *      here.
509  *
510  *      BEWARE!!! Protocol handlers, mangling input packets,
511  *      MUST BE last in hash buckets and checking protocol handlers
512  *      MUST start from promiscuous ptype_all chain in net_bh.
513  *      It is true now, do not change it.
514  *      Explanation follows: if protocol handler, mangling packet, will
515  *      be the first on list, it is not able to sense, that packet
516  *      is cloned and should be copied-on-write, so that it will
517  *      change it and subsequent readers will get broken packet.
518  *                                                      --ANK (980803)
519  */
520
521 static inline struct list_head *ptype_head(const struct packet_type *pt)
522 {
523         if (pt->type == htons(ETH_P_ALL))
524                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
525         else
526                 return pt->dev ? &pt->dev->ptype_specific :
527                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
528 }
529
530 /**
531  *      dev_add_pack - add packet handler
532  *      @pt: packet type declaration
533  *
534  *      Add a protocol handler to the networking stack. The passed &packet_type
535  *      is linked into kernel lists and may not be freed until it has been
536  *      removed from the kernel lists.
537  *
538  *      This call does not sleep therefore it can not
539  *      guarantee all CPU's that are in middle of receiving packets
540  *      will see the new packet type (until the next received packet).
541  */
542
543 void dev_add_pack(struct packet_type *pt)
544 {
545         struct list_head *head = ptype_head(pt);
546
547         spin_lock(&ptype_lock);
548         list_add_rcu(&pt->list, head);
549         spin_unlock(&ptype_lock);
550 }
551 EXPORT_SYMBOL(dev_add_pack);
552
553 /**
554  *      __dev_remove_pack        - remove packet handler
555  *      @pt: packet type declaration
556  *
557  *      Remove a protocol handler that was previously added to the kernel
558  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
559  *      from the kernel lists and can be freed or reused once this function
560  *      returns.
561  *
562  *      The packet type might still be in use by receivers
563  *      and must not be freed until after all the CPU's have gone
564  *      through a quiescent state.
565  */
566 void __dev_remove_pack(struct packet_type *pt)
567 {
568         struct list_head *head = ptype_head(pt);
569         struct packet_type *pt1;
570
571         spin_lock(&ptype_lock);
572
573         list_for_each_entry(pt1, head, list) {
574                 if (pt == pt1) {
575                         list_del_rcu(&pt->list);
576                         goto out;
577                 }
578         }
579
580         pr_warn("dev_remove_pack: %p not found\n", pt);
581 out:
582         spin_unlock(&ptype_lock);
583 }
584 EXPORT_SYMBOL(__dev_remove_pack);
585
586 /**
587  *      dev_remove_pack  - remove packet handler
588  *      @pt: packet type declaration
589  *
590  *      Remove a protocol handler that was previously added to the kernel
591  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
592  *      from the kernel lists and can be freed or reused once this function
593  *      returns.
594  *
595  *      This call sleeps to guarantee that no CPU is looking at the packet
596  *      type after return.
597  */
598 void dev_remove_pack(struct packet_type *pt)
599 {
600         __dev_remove_pack(pt);
601
602         synchronize_net();
603 }
604 EXPORT_SYMBOL(dev_remove_pack);
605
606
607 /**
608  *      dev_add_offload - register offload handlers
609  *      @po: protocol offload declaration
610  *
611  *      Add protocol offload handlers to the networking stack. The passed
612  *      &proto_offload is linked into kernel lists and may not be freed until
613  *      it has been removed from the kernel lists.
614  *
615  *      This call does not sleep therefore it can not
616  *      guarantee all CPU's that are in middle of receiving packets
617  *      will see the new offload handlers (until the next received packet).
618  */
619 void dev_add_offload(struct packet_offload *po)
620 {
621         struct packet_offload *elem;
622
623         spin_lock(&offload_lock);
624         list_for_each_entry(elem, &offload_base, list) {
625                 if (po->priority < elem->priority)
626                         break;
627         }
628         list_add_rcu(&po->list, elem->list.prev);
629         spin_unlock(&offload_lock);
630 }
631 EXPORT_SYMBOL(dev_add_offload);
632
633 /**
634  *      __dev_remove_offload     - remove offload handler
635  *      @po: packet offload declaration
636  *
637  *      Remove a protocol offload handler that was previously added to the
638  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
639  *      is removed from the kernel lists and can be freed or reused once this
640  *      function returns.
641  *
642  *      The packet type might still be in use by receivers
643  *      and must not be freed until after all the CPU's have gone
644  *      through a quiescent state.
645  */
646 static void __dev_remove_offload(struct packet_offload *po)
647 {
648         struct list_head *head = &offload_base;
649         struct packet_offload *po1;
650
651         spin_lock(&offload_lock);
652
653         list_for_each_entry(po1, head, list) {
654                 if (po == po1) {
655                         list_del_rcu(&po->list);
656                         goto out;
657                 }
658         }
659
660         pr_warn("dev_remove_offload: %p not found\n", po);
661 out:
662         spin_unlock(&offload_lock);
663 }
664
665 /**
666  *      dev_remove_offload       - remove packet offload handler
667  *      @po: packet offload declaration
668  *
669  *      Remove a packet offload handler that was previously added to the kernel
670  *      offload handlers by dev_add_offload(). The passed &offload_type is
671  *      removed from the kernel lists and can be freed or reused once this
672  *      function returns.
673  *
674  *      This call sleeps to guarantee that no CPU is looking at the packet
675  *      type after return.
676  */
677 void dev_remove_offload(struct packet_offload *po)
678 {
679         __dev_remove_offload(po);
680
681         synchronize_net();
682 }
683 EXPORT_SYMBOL(dev_remove_offload);
684
685 /*******************************************************************************
686  *
687  *                          Device Interface Subroutines
688  *
689  *******************************************************************************/
690
691 /**
692  *      dev_get_iflink  - get 'iflink' value of a interface
693  *      @dev: targeted interface
694  *
695  *      Indicates the ifindex the interface is linked to.
696  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
697  */
698
699 int dev_get_iflink(const struct net_device *dev)
700 {
701         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
702                 return dev->netdev_ops->ndo_get_iflink(dev);
703
704         return dev->ifindex;
705 }
706 EXPORT_SYMBOL(dev_get_iflink);
707
708 /**
709  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
710  *      @dev: targeted interface
711  *      @skb: The packet.
712  *
713  *      For better visibility of tunnel traffic OVS needs to retrieve
714  *      egress tunnel information for a packet. Following API allows
715  *      user to get this info.
716  */
717 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
718 {
719         struct ip_tunnel_info *info;
720
721         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
722                 return -EINVAL;
723
724         info = skb_tunnel_info_unclone(skb);
725         if (!info)
726                 return -ENOMEM;
727         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
728                 return -EINVAL;
729
730         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
731 }
732 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
733
734 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
735 {
736         int k = stack->num_paths++;
737
738         if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
739                 return NULL;
740
741         return &stack->path[k];
742 }
743
744 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
745                           struct net_device_path_stack *stack)
746 {
747         const struct net_device *last_dev;
748         struct net_device_path_ctx ctx = {
749                 .dev    = dev,
750                 .daddr  = daddr,
751         };
752         struct net_device_path *path;
753         int ret = 0;
754
755         stack->num_paths = 0;
756         while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
757                 last_dev = ctx.dev;
758                 path = dev_fwd_path(stack);
759                 if (!path)
760                         return -1;
761
762                 memset(path, 0, sizeof(struct net_device_path));
763                 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
764                 if (ret < 0)
765                         return -1;
766
767                 if (WARN_ON_ONCE(last_dev == ctx.dev))
768                         return -1;
769         }
770         path = dev_fwd_path(stack);
771         if (!path)
772                 return -1;
773         path->type = DEV_PATH_ETHERNET;
774         path->dev = ctx.dev;
775
776         return ret;
777 }
778 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
779
780 /**
781  *      __dev_get_by_name       - find a device by its name
782  *      @net: the applicable net namespace
783  *      @name: name to find
784  *
785  *      Find an interface by name. Must be called under RTNL semaphore
786  *      or @dev_base_lock. If the name is found a pointer to the device
787  *      is returned. If the name is not found then %NULL is returned. The
788  *      reference counters are not incremented so the caller must be
789  *      careful with locks.
790  */
791
792 struct net_device *__dev_get_by_name(struct net *net, const char *name)
793 {
794         struct netdev_name_node *node_name;
795
796         node_name = netdev_name_node_lookup(net, name);
797         return node_name ? node_name->dev : NULL;
798 }
799 EXPORT_SYMBOL(__dev_get_by_name);
800
801 /**
802  * dev_get_by_name_rcu  - find a device by its name
803  * @net: the applicable net namespace
804  * @name: name to find
805  *
806  * Find an interface by name.
807  * If the name is found a pointer to the device is returned.
808  * If the name is not found then %NULL is returned.
809  * The reference counters are not incremented so the caller must be
810  * careful with locks. The caller must hold RCU lock.
811  */
812
813 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
814 {
815         struct netdev_name_node *node_name;
816
817         node_name = netdev_name_node_lookup_rcu(net, name);
818         return node_name ? node_name->dev : NULL;
819 }
820 EXPORT_SYMBOL(dev_get_by_name_rcu);
821
822 /**
823  *      dev_get_by_name         - find a device by its name
824  *      @net: the applicable net namespace
825  *      @name: name to find
826  *
827  *      Find an interface by name. This can be called from any
828  *      context and does its own locking. The returned handle has
829  *      the usage count incremented and the caller must use dev_put() to
830  *      release it when it is no longer needed. %NULL is returned if no
831  *      matching device is found.
832  */
833
834 struct net_device *dev_get_by_name(struct net *net, const char *name)
835 {
836         struct net_device *dev;
837
838         rcu_read_lock();
839         dev = dev_get_by_name_rcu(net, name);
840         dev_hold(dev);
841         rcu_read_unlock();
842         return dev;
843 }
844 EXPORT_SYMBOL(dev_get_by_name);
845
846 /**
847  *      __dev_get_by_index - find a device by its ifindex
848  *      @net: the applicable net namespace
849  *      @ifindex: index of device
850  *
851  *      Search for an interface by index. Returns %NULL if the device
852  *      is not found or a pointer to the device. The device has not
853  *      had its reference counter increased so the caller must be careful
854  *      about locking. The caller must hold either the RTNL semaphore
855  *      or @dev_base_lock.
856  */
857
858 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
859 {
860         struct net_device *dev;
861         struct hlist_head *head = dev_index_hash(net, ifindex);
862
863         hlist_for_each_entry(dev, head, index_hlist)
864                 if (dev->ifindex == ifindex)
865                         return dev;
866
867         return NULL;
868 }
869 EXPORT_SYMBOL(__dev_get_by_index);
870
871 /**
872  *      dev_get_by_index_rcu - find a device by its ifindex
873  *      @net: the applicable net namespace
874  *      @ifindex: index of device
875  *
876  *      Search for an interface by index. Returns %NULL if the device
877  *      is not found or a pointer to the device. The device has not
878  *      had its reference counter increased so the caller must be careful
879  *      about locking. The caller must hold RCU lock.
880  */
881
882 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
883 {
884         struct net_device *dev;
885         struct hlist_head *head = dev_index_hash(net, ifindex);
886
887         hlist_for_each_entry_rcu(dev, head, index_hlist)
888                 if (dev->ifindex == ifindex)
889                         return dev;
890
891         return NULL;
892 }
893 EXPORT_SYMBOL(dev_get_by_index_rcu);
894
895
896 /**
897  *      dev_get_by_index - find a device by its ifindex
898  *      @net: the applicable net namespace
899  *      @ifindex: index of device
900  *
901  *      Search for an interface by index. Returns NULL if the device
902  *      is not found or a pointer to the device. The device returned has
903  *      had a reference added and the pointer is safe until the user calls
904  *      dev_put to indicate they have finished with it.
905  */
906
907 struct net_device *dev_get_by_index(struct net *net, int ifindex)
908 {
909         struct net_device *dev;
910
911         rcu_read_lock();
912         dev = dev_get_by_index_rcu(net, ifindex);
913         dev_hold(dev);
914         rcu_read_unlock();
915         return dev;
916 }
917 EXPORT_SYMBOL(dev_get_by_index);
918
919 /**
920  *      dev_get_by_napi_id - find a device by napi_id
921  *      @napi_id: ID of the NAPI struct
922  *
923  *      Search for an interface by NAPI ID. Returns %NULL if the device
924  *      is not found or a pointer to the device. The device has not had
925  *      its reference counter increased so the caller must be careful
926  *      about locking. The caller must hold RCU lock.
927  */
928
929 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
930 {
931         struct napi_struct *napi;
932
933         WARN_ON_ONCE(!rcu_read_lock_held());
934
935         if (napi_id < MIN_NAPI_ID)
936                 return NULL;
937
938         napi = napi_by_id(napi_id);
939
940         return napi ? napi->dev : NULL;
941 }
942 EXPORT_SYMBOL(dev_get_by_napi_id);
943
944 /**
945  *      netdev_get_name - get a netdevice name, knowing its ifindex.
946  *      @net: network namespace
947  *      @name: a pointer to the buffer where the name will be stored.
948  *      @ifindex: the ifindex of the interface to get the name from.
949  */
950 int netdev_get_name(struct net *net, char *name, int ifindex)
951 {
952         struct net_device *dev;
953         int ret;
954
955         down_read(&devnet_rename_sem);
956         rcu_read_lock();
957
958         dev = dev_get_by_index_rcu(net, ifindex);
959         if (!dev) {
960                 ret = -ENODEV;
961                 goto out;
962         }
963
964         strcpy(name, dev->name);
965
966         ret = 0;
967 out:
968         rcu_read_unlock();
969         up_read(&devnet_rename_sem);
970         return ret;
971 }
972
973 /**
974  *      dev_getbyhwaddr_rcu - find a device by its hardware address
975  *      @net: the applicable net namespace
976  *      @type: media type of device
977  *      @ha: hardware address
978  *
979  *      Search for an interface by MAC address. Returns NULL if the device
980  *      is not found or a pointer to the device.
981  *      The caller must hold RCU or RTNL.
982  *      The returned device has not had its ref count increased
983  *      and the caller must therefore be careful about locking
984  *
985  */
986
987 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
988                                        const char *ha)
989 {
990         struct net_device *dev;
991
992         for_each_netdev_rcu(net, dev)
993                 if (dev->type == type &&
994                     !memcmp(dev->dev_addr, ha, dev->addr_len))
995                         return dev;
996
997         return NULL;
998 }
999 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1000
1001 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1002 {
1003         struct net_device *dev, *ret = NULL;
1004
1005         rcu_read_lock();
1006         for_each_netdev_rcu(net, dev)
1007                 if (dev->type == type) {
1008                         dev_hold(dev);
1009                         ret = dev;
1010                         break;
1011                 }
1012         rcu_read_unlock();
1013         return ret;
1014 }
1015 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1016
1017 /**
1018  *      __dev_get_by_flags - find any device with given flags
1019  *      @net: the applicable net namespace
1020  *      @if_flags: IFF_* values
1021  *      @mask: bitmask of bits in if_flags to check
1022  *
1023  *      Search for any interface with the given flags. Returns NULL if a device
1024  *      is not found or a pointer to the device. Must be called inside
1025  *      rtnl_lock(), and result refcount is unchanged.
1026  */
1027
1028 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1029                                       unsigned short mask)
1030 {
1031         struct net_device *dev, *ret;
1032
1033         ASSERT_RTNL();
1034
1035         ret = NULL;
1036         for_each_netdev(net, dev) {
1037                 if (((dev->flags ^ if_flags) & mask) == 0) {
1038                         ret = dev;
1039                         break;
1040                 }
1041         }
1042         return ret;
1043 }
1044 EXPORT_SYMBOL(__dev_get_by_flags);
1045
1046 /**
1047  *      dev_valid_name - check if name is okay for network device
1048  *      @name: name string
1049  *
1050  *      Network device names need to be valid file names to
1051  *      allow sysfs to work.  We also disallow any kind of
1052  *      whitespace.
1053  */
1054 bool dev_valid_name(const char *name)
1055 {
1056         if (*name == '\0')
1057                 return false;
1058         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1059                 return false;
1060         if (!strcmp(name, ".") || !strcmp(name, ".."))
1061                 return false;
1062
1063         while (*name) {
1064                 if (*name == '/' || *name == ':' || isspace(*name))
1065                         return false;
1066                 name++;
1067         }
1068         return true;
1069 }
1070 EXPORT_SYMBOL(dev_valid_name);
1071
1072 /**
1073  *      __dev_alloc_name - allocate a name for a device
1074  *      @net: network namespace to allocate the device name in
1075  *      @name: name format string
1076  *      @buf:  scratch buffer and result name string
1077  *
1078  *      Passed a format string - eg "lt%d" it will try and find a suitable
1079  *      id. It scans list of devices to build up a free map, then chooses
1080  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1081  *      while allocating the name and adding the device in order to avoid
1082  *      duplicates.
1083  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1084  *      Returns the number of the unit assigned or a negative errno code.
1085  */
1086
1087 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1088 {
1089         int i = 0;
1090         const char *p;
1091         const int max_netdevices = 8*PAGE_SIZE;
1092         unsigned long *inuse;
1093         struct net_device *d;
1094
1095         if (!dev_valid_name(name))
1096                 return -EINVAL;
1097
1098         p = strchr(name, '%');
1099         if (p) {
1100                 /*
1101                  * Verify the string as this thing may have come from
1102                  * the user.  There must be either one "%d" and no other "%"
1103                  * characters.
1104                  */
1105                 if (p[1] != 'd' || strchr(p + 2, '%'))
1106                         return -EINVAL;
1107
1108                 /* Use one page as a bit array of possible slots */
1109                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1110                 if (!inuse)
1111                         return -ENOMEM;
1112
1113                 for_each_netdev(net, d) {
1114                         struct netdev_name_node *name_node;
1115                         list_for_each_entry(name_node, &d->name_node->list, list) {
1116                                 if (!sscanf(name_node->name, name, &i))
1117                                         continue;
1118                                 if (i < 0 || i >= max_netdevices)
1119                                         continue;
1120
1121                                 /*  avoid cases where sscanf is not exact inverse of printf */
1122                                 snprintf(buf, IFNAMSIZ, name, i);
1123                                 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1124                                         set_bit(i, inuse);
1125                         }
1126                         if (!sscanf(d->name, name, &i))
1127                                 continue;
1128                         if (i < 0 || i >= max_netdevices)
1129                                 continue;
1130
1131                         /*  avoid cases where sscanf is not exact inverse of printf */
1132                         snprintf(buf, IFNAMSIZ, name, i);
1133                         if (!strncmp(buf, d->name, IFNAMSIZ))
1134                                 set_bit(i, inuse);
1135                 }
1136
1137                 i = find_first_zero_bit(inuse, max_netdevices);
1138                 free_page((unsigned long) inuse);
1139         }
1140
1141         snprintf(buf, IFNAMSIZ, name, i);
1142         if (!netdev_name_in_use(net, buf))
1143                 return i;
1144
1145         /* It is possible to run out of possible slots
1146          * when the name is long and there isn't enough space left
1147          * for the digits, or if all bits are used.
1148          */
1149         return -ENFILE;
1150 }
1151
1152 static int dev_alloc_name_ns(struct net *net,
1153                              struct net_device *dev,
1154                              const char *name)
1155 {
1156         char buf[IFNAMSIZ];
1157         int ret;
1158
1159         BUG_ON(!net);
1160         ret = __dev_alloc_name(net, name, buf);
1161         if (ret >= 0)
1162                 strlcpy(dev->name, buf, IFNAMSIZ);
1163         return ret;
1164 }
1165
1166 /**
1167  *      dev_alloc_name - allocate a name for a device
1168  *      @dev: device
1169  *      @name: name format string
1170  *
1171  *      Passed a format string - eg "lt%d" it will try and find a suitable
1172  *      id. It scans list of devices to build up a free map, then chooses
1173  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1174  *      while allocating the name and adding the device in order to avoid
1175  *      duplicates.
1176  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1177  *      Returns the number of the unit assigned or a negative errno code.
1178  */
1179
1180 int dev_alloc_name(struct net_device *dev, const char *name)
1181 {
1182         return dev_alloc_name_ns(dev_net(dev), dev, name);
1183 }
1184 EXPORT_SYMBOL(dev_alloc_name);
1185
1186 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1187                               const char *name)
1188 {
1189         BUG_ON(!net);
1190
1191         if (!dev_valid_name(name))
1192                 return -EINVAL;
1193
1194         if (strchr(name, '%'))
1195                 return dev_alloc_name_ns(net, dev, name);
1196         else if (netdev_name_in_use(net, name))
1197                 return -EEXIST;
1198         else if (dev->name != name)
1199                 strlcpy(dev->name, name, IFNAMSIZ);
1200
1201         return 0;
1202 }
1203
1204 /**
1205  *      dev_change_name - change name of a device
1206  *      @dev: device
1207  *      @newname: name (or format string) must be at least IFNAMSIZ
1208  *
1209  *      Change name of a device, can pass format strings "eth%d".
1210  *      for wildcarding.
1211  */
1212 int dev_change_name(struct net_device *dev, const char *newname)
1213 {
1214         unsigned char old_assign_type;
1215         char oldname[IFNAMSIZ];
1216         int err = 0;
1217         int ret;
1218         struct net *net;
1219
1220         ASSERT_RTNL();
1221         BUG_ON(!dev_net(dev));
1222
1223         net = dev_net(dev);
1224
1225         /* Some auto-enslaved devices e.g. failover slaves are
1226          * special, as userspace might rename the device after
1227          * the interface had been brought up and running since
1228          * the point kernel initiated auto-enslavement. Allow
1229          * live name change even when these slave devices are
1230          * up and running.
1231          *
1232          * Typically, users of these auto-enslaving devices
1233          * don't actually care about slave name change, as
1234          * they are supposed to operate on master interface
1235          * directly.
1236          */
1237         if (dev->flags & IFF_UP &&
1238             likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1239                 return -EBUSY;
1240
1241         down_write(&devnet_rename_sem);
1242
1243         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1244                 up_write(&devnet_rename_sem);
1245                 return 0;
1246         }
1247
1248         memcpy(oldname, dev->name, IFNAMSIZ);
1249
1250         err = dev_get_valid_name(net, dev, newname);
1251         if (err < 0) {
1252                 up_write(&devnet_rename_sem);
1253                 return err;
1254         }
1255
1256         if (oldname[0] && !strchr(oldname, '%'))
1257                 netdev_info(dev, "renamed from %s\n", oldname);
1258
1259         old_assign_type = dev->name_assign_type;
1260         dev->name_assign_type = NET_NAME_RENAMED;
1261
1262 rollback:
1263         ret = device_rename(&dev->dev, dev->name);
1264         if (ret) {
1265                 memcpy(dev->name, oldname, IFNAMSIZ);
1266                 dev->name_assign_type = old_assign_type;
1267                 up_write(&devnet_rename_sem);
1268                 return ret;
1269         }
1270
1271         up_write(&devnet_rename_sem);
1272
1273         netdev_adjacent_rename_links(dev, oldname);
1274
1275         write_lock_bh(&dev_base_lock);
1276         netdev_name_node_del(dev->name_node);
1277         write_unlock_bh(&dev_base_lock);
1278
1279         synchronize_rcu();
1280
1281         write_lock_bh(&dev_base_lock);
1282         netdev_name_node_add(net, dev->name_node);
1283         write_unlock_bh(&dev_base_lock);
1284
1285         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1286         ret = notifier_to_errno(ret);
1287
1288         if (ret) {
1289                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1290                 if (err >= 0) {
1291                         err = ret;
1292                         down_write(&devnet_rename_sem);
1293                         memcpy(dev->name, oldname, IFNAMSIZ);
1294                         memcpy(oldname, newname, IFNAMSIZ);
1295                         dev->name_assign_type = old_assign_type;
1296                         old_assign_type = NET_NAME_RENAMED;
1297                         goto rollback;
1298                 } else {
1299                         netdev_err(dev, "name change rollback failed: %d\n",
1300                                    ret);
1301                 }
1302         }
1303
1304         return err;
1305 }
1306
1307 /**
1308  *      dev_set_alias - change ifalias of a device
1309  *      @dev: device
1310  *      @alias: name up to IFALIASZ
1311  *      @len: limit of bytes to copy from info
1312  *
1313  *      Set ifalias for a device,
1314  */
1315 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1316 {
1317         struct dev_ifalias *new_alias = NULL;
1318
1319         if (len >= IFALIASZ)
1320                 return -EINVAL;
1321
1322         if (len) {
1323                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1324                 if (!new_alias)
1325                         return -ENOMEM;
1326
1327                 memcpy(new_alias->ifalias, alias, len);
1328                 new_alias->ifalias[len] = 0;
1329         }
1330
1331         mutex_lock(&ifalias_mutex);
1332         new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1333                                         mutex_is_locked(&ifalias_mutex));
1334         mutex_unlock(&ifalias_mutex);
1335
1336         if (new_alias)
1337                 kfree_rcu(new_alias, rcuhead);
1338
1339         return len;
1340 }
1341 EXPORT_SYMBOL(dev_set_alias);
1342
1343 /**
1344  *      dev_get_alias - get ifalias of a device
1345  *      @dev: device
1346  *      @name: buffer to store name of ifalias
1347  *      @len: size of buffer
1348  *
1349  *      get ifalias for a device.  Caller must make sure dev cannot go
1350  *      away,  e.g. rcu read lock or own a reference count to device.
1351  */
1352 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1353 {
1354         const struct dev_ifalias *alias;
1355         int ret = 0;
1356
1357         rcu_read_lock();
1358         alias = rcu_dereference(dev->ifalias);
1359         if (alias)
1360                 ret = snprintf(name, len, "%s", alias->ifalias);
1361         rcu_read_unlock();
1362
1363         return ret;
1364 }
1365
1366 /**
1367  *      netdev_features_change - device changes features
1368  *      @dev: device to cause notification
1369  *
1370  *      Called to indicate a device has changed features.
1371  */
1372 void netdev_features_change(struct net_device *dev)
1373 {
1374         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1375 }
1376 EXPORT_SYMBOL(netdev_features_change);
1377
1378 /**
1379  *      netdev_state_change - device changes state
1380  *      @dev: device to cause notification
1381  *
1382  *      Called to indicate a device has changed state. This function calls
1383  *      the notifier chains for netdev_chain and sends a NEWLINK message
1384  *      to the routing socket.
1385  */
1386 void netdev_state_change(struct net_device *dev)
1387 {
1388         if (dev->flags & IFF_UP) {
1389                 struct netdev_notifier_change_info change_info = {
1390                         .info.dev = dev,
1391                 };
1392
1393                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1394                                               &change_info.info);
1395                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1396         }
1397 }
1398 EXPORT_SYMBOL(netdev_state_change);
1399
1400 /**
1401  * __netdev_notify_peers - notify network peers about existence of @dev,
1402  * to be called when rtnl lock is already held.
1403  * @dev: network device
1404  *
1405  * Generate traffic such that interested network peers are aware of
1406  * @dev, such as by generating a gratuitous ARP. This may be used when
1407  * a device wants to inform the rest of the network about some sort of
1408  * reconfiguration such as a failover event or virtual machine
1409  * migration.
1410  */
1411 void __netdev_notify_peers(struct net_device *dev)
1412 {
1413         ASSERT_RTNL();
1414         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1415         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1416 }
1417 EXPORT_SYMBOL(__netdev_notify_peers);
1418
1419 /**
1420  * netdev_notify_peers - notify network peers about existence of @dev
1421  * @dev: network device
1422  *
1423  * Generate traffic such that interested network peers are aware of
1424  * @dev, such as by generating a gratuitous ARP. This may be used when
1425  * a device wants to inform the rest of the network about some sort of
1426  * reconfiguration such as a failover event or virtual machine
1427  * migration.
1428  */
1429 void netdev_notify_peers(struct net_device *dev)
1430 {
1431         rtnl_lock();
1432         __netdev_notify_peers(dev);
1433         rtnl_unlock();
1434 }
1435 EXPORT_SYMBOL(netdev_notify_peers);
1436
1437 static int napi_threaded_poll(void *data);
1438
1439 static int napi_kthread_create(struct napi_struct *n)
1440 {
1441         int err = 0;
1442
1443         /* Create and wake up the kthread once to put it in
1444          * TASK_INTERRUPTIBLE mode to avoid the blocked task
1445          * warning and work with loadavg.
1446          */
1447         n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1448                                 n->dev->name, n->napi_id);
1449         if (IS_ERR(n->thread)) {
1450                 err = PTR_ERR(n->thread);
1451                 pr_err("kthread_run failed with err %d\n", err);
1452                 n->thread = NULL;
1453         }
1454
1455         return err;
1456 }
1457
1458 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1459 {
1460         const struct net_device_ops *ops = dev->netdev_ops;
1461         int ret;
1462
1463         ASSERT_RTNL();
1464
1465         if (!netif_device_present(dev)) {
1466                 /* may be detached because parent is runtime-suspended */
1467                 if (dev->dev.parent)
1468                         pm_runtime_resume(dev->dev.parent);
1469                 if (!netif_device_present(dev))
1470                         return -ENODEV;
1471         }
1472
1473         /* Block netpoll from trying to do any rx path servicing.
1474          * If we don't do this there is a chance ndo_poll_controller
1475          * or ndo_poll may be running while we open the device
1476          */
1477         netpoll_poll_disable(dev);
1478
1479         ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1480         ret = notifier_to_errno(ret);
1481         if (ret)
1482                 return ret;
1483
1484         set_bit(__LINK_STATE_START, &dev->state);
1485
1486         if (ops->ndo_validate_addr)
1487                 ret = ops->ndo_validate_addr(dev);
1488
1489         if (!ret && ops->ndo_open)
1490                 ret = ops->ndo_open(dev);
1491
1492         netpoll_poll_enable(dev);
1493
1494         if (ret)
1495                 clear_bit(__LINK_STATE_START, &dev->state);
1496         else {
1497                 dev->flags |= IFF_UP;
1498                 dev_set_rx_mode(dev);
1499                 dev_activate(dev);
1500                 add_device_randomness(dev->dev_addr, dev->addr_len);
1501         }
1502
1503         return ret;
1504 }
1505
1506 /**
1507  *      dev_open        - prepare an interface for use.
1508  *      @dev: device to open
1509  *      @extack: netlink extended ack
1510  *
1511  *      Takes a device from down to up state. The device's private open
1512  *      function is invoked and then the multicast lists are loaded. Finally
1513  *      the device is moved into the up state and a %NETDEV_UP message is
1514  *      sent to the netdev notifier chain.
1515  *
1516  *      Calling this function on an active interface is a nop. On a failure
1517  *      a negative errno code is returned.
1518  */
1519 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1520 {
1521         int ret;
1522
1523         if (dev->flags & IFF_UP)
1524                 return 0;
1525
1526         ret = __dev_open(dev, extack);
1527         if (ret < 0)
1528                 return ret;
1529
1530         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1531         call_netdevice_notifiers(NETDEV_UP, dev);
1532
1533         return ret;
1534 }
1535 EXPORT_SYMBOL(dev_open);
1536
1537 static void __dev_close_many(struct list_head *head)
1538 {
1539         struct net_device *dev;
1540
1541         ASSERT_RTNL();
1542         might_sleep();
1543
1544         list_for_each_entry(dev, head, close_list) {
1545                 /* Temporarily disable netpoll until the interface is down */
1546                 netpoll_poll_disable(dev);
1547
1548                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1549
1550                 clear_bit(__LINK_STATE_START, &dev->state);
1551
1552                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1553                  * can be even on different cpu. So just clear netif_running().
1554                  *
1555                  * dev->stop() will invoke napi_disable() on all of it's
1556                  * napi_struct instances on this device.
1557                  */
1558                 smp_mb__after_atomic(); /* Commit netif_running(). */
1559         }
1560
1561         dev_deactivate_many(head);
1562
1563         list_for_each_entry(dev, head, close_list) {
1564                 const struct net_device_ops *ops = dev->netdev_ops;
1565
1566                 /*
1567                  *      Call the device specific close. This cannot fail.
1568                  *      Only if device is UP
1569                  *
1570                  *      We allow it to be called even after a DETACH hot-plug
1571                  *      event.
1572                  */
1573                 if (ops->ndo_stop)
1574                         ops->ndo_stop(dev);
1575
1576                 dev->flags &= ~IFF_UP;
1577                 netpoll_poll_enable(dev);
1578         }
1579 }
1580
1581 static void __dev_close(struct net_device *dev)
1582 {
1583         LIST_HEAD(single);
1584
1585         list_add(&dev->close_list, &single);
1586         __dev_close_many(&single);
1587         list_del(&single);
1588 }
1589
1590 void dev_close_many(struct list_head *head, bool unlink)
1591 {
1592         struct net_device *dev, *tmp;
1593
1594         /* Remove the devices that don't need to be closed */
1595         list_for_each_entry_safe(dev, tmp, head, close_list)
1596                 if (!(dev->flags & IFF_UP))
1597                         list_del_init(&dev->close_list);
1598
1599         __dev_close_many(head);
1600
1601         list_for_each_entry_safe(dev, tmp, head, close_list) {
1602                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1603                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1604                 if (unlink)
1605                         list_del_init(&dev->close_list);
1606         }
1607 }
1608 EXPORT_SYMBOL(dev_close_many);
1609
1610 /**
1611  *      dev_close - shutdown an interface.
1612  *      @dev: device to shutdown
1613  *
1614  *      This function moves an active device into down state. A
1615  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1616  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1617  *      chain.
1618  */
1619 void dev_close(struct net_device *dev)
1620 {
1621         if (dev->flags & IFF_UP) {
1622                 LIST_HEAD(single);
1623
1624                 list_add(&dev->close_list, &single);
1625                 dev_close_many(&single, true);
1626                 list_del(&single);
1627         }
1628 }
1629 EXPORT_SYMBOL(dev_close);
1630
1631
1632 /**
1633  *      dev_disable_lro - disable Large Receive Offload on a device
1634  *      @dev: device
1635  *
1636  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1637  *      called under RTNL.  This is needed if received packets may be
1638  *      forwarded to another interface.
1639  */
1640 void dev_disable_lro(struct net_device *dev)
1641 {
1642         struct net_device *lower_dev;
1643         struct list_head *iter;
1644
1645         dev->wanted_features &= ~NETIF_F_LRO;
1646         netdev_update_features(dev);
1647
1648         if (unlikely(dev->features & NETIF_F_LRO))
1649                 netdev_WARN(dev, "failed to disable LRO!\n");
1650
1651         netdev_for_each_lower_dev(dev, lower_dev, iter)
1652                 dev_disable_lro(lower_dev);
1653 }
1654 EXPORT_SYMBOL(dev_disable_lro);
1655
1656 /**
1657  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1658  *      @dev: device
1659  *
1660  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1661  *      called under RTNL.  This is needed if Generic XDP is installed on
1662  *      the device.
1663  */
1664 static void dev_disable_gro_hw(struct net_device *dev)
1665 {
1666         dev->wanted_features &= ~NETIF_F_GRO_HW;
1667         netdev_update_features(dev);
1668
1669         if (unlikely(dev->features & NETIF_F_GRO_HW))
1670                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1671 }
1672
1673 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1674 {
1675 #define N(val)                                          \
1676         case NETDEV_##val:                              \
1677                 return "NETDEV_" __stringify(val);
1678         switch (cmd) {
1679         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1680         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1681         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1682         N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1683         N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1684         N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1685         N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1686         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1687         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1688         N(PRE_CHANGEADDR)
1689         }
1690 #undef N
1691         return "UNKNOWN_NETDEV_EVENT";
1692 }
1693 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1694
1695 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1696                                    struct net_device *dev)
1697 {
1698         struct netdev_notifier_info info = {
1699                 .dev = dev,
1700         };
1701
1702         return nb->notifier_call(nb, val, &info);
1703 }
1704
1705 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1706                                              struct net_device *dev)
1707 {
1708         int err;
1709
1710         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1711         err = notifier_to_errno(err);
1712         if (err)
1713                 return err;
1714
1715         if (!(dev->flags & IFF_UP))
1716                 return 0;
1717
1718         call_netdevice_notifier(nb, NETDEV_UP, dev);
1719         return 0;
1720 }
1721
1722 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1723                                                 struct net_device *dev)
1724 {
1725         if (dev->flags & IFF_UP) {
1726                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1727                                         dev);
1728                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1729         }
1730         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1731 }
1732
1733 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1734                                                  struct net *net)
1735 {
1736         struct net_device *dev;
1737         int err;
1738
1739         for_each_netdev(net, dev) {
1740                 err = call_netdevice_register_notifiers(nb, dev);
1741                 if (err)
1742                         goto rollback;
1743         }
1744         return 0;
1745
1746 rollback:
1747         for_each_netdev_continue_reverse(net, dev)
1748                 call_netdevice_unregister_notifiers(nb, dev);
1749         return err;
1750 }
1751
1752 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1753                                                     struct net *net)
1754 {
1755         struct net_device *dev;
1756
1757         for_each_netdev(net, dev)
1758                 call_netdevice_unregister_notifiers(nb, dev);
1759 }
1760
1761 static int dev_boot_phase = 1;
1762
1763 /**
1764  * register_netdevice_notifier - register a network notifier block
1765  * @nb: notifier
1766  *
1767  * Register a notifier to be called when network device events occur.
1768  * The notifier passed is linked into the kernel structures and must
1769  * not be reused until it has been unregistered. A negative errno code
1770  * is returned on a failure.
1771  *
1772  * When registered all registration and up events are replayed
1773  * to the new notifier to allow device to have a race free
1774  * view of the network device list.
1775  */
1776
1777 int register_netdevice_notifier(struct notifier_block *nb)
1778 {
1779         struct net *net;
1780         int err;
1781
1782         /* Close race with setup_net() and cleanup_net() */
1783         down_write(&pernet_ops_rwsem);
1784         rtnl_lock();
1785         err = raw_notifier_chain_register(&netdev_chain, nb);
1786         if (err)
1787                 goto unlock;
1788         if (dev_boot_phase)
1789                 goto unlock;
1790         for_each_net(net) {
1791                 err = call_netdevice_register_net_notifiers(nb, net);
1792                 if (err)
1793                         goto rollback;
1794         }
1795
1796 unlock:
1797         rtnl_unlock();
1798         up_write(&pernet_ops_rwsem);
1799         return err;
1800
1801 rollback:
1802         for_each_net_continue_reverse(net)
1803                 call_netdevice_unregister_net_notifiers(nb, net);
1804
1805         raw_notifier_chain_unregister(&netdev_chain, nb);
1806         goto unlock;
1807 }
1808 EXPORT_SYMBOL(register_netdevice_notifier);
1809
1810 /**
1811  * unregister_netdevice_notifier - unregister a network notifier block
1812  * @nb: notifier
1813  *
1814  * Unregister a notifier previously registered by
1815  * register_netdevice_notifier(). The notifier is unlinked into the
1816  * kernel structures and may then be reused. A negative errno code
1817  * is returned on a failure.
1818  *
1819  * After unregistering unregister and down device events are synthesized
1820  * for all devices on the device list to the removed notifier to remove
1821  * the need for special case cleanup code.
1822  */
1823
1824 int unregister_netdevice_notifier(struct notifier_block *nb)
1825 {
1826         struct net *net;
1827         int err;
1828
1829         /* Close race with setup_net() and cleanup_net() */
1830         down_write(&pernet_ops_rwsem);
1831         rtnl_lock();
1832         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1833         if (err)
1834                 goto unlock;
1835
1836         for_each_net(net)
1837                 call_netdevice_unregister_net_notifiers(nb, net);
1838
1839 unlock:
1840         rtnl_unlock();
1841         up_write(&pernet_ops_rwsem);
1842         return err;
1843 }
1844 EXPORT_SYMBOL(unregister_netdevice_notifier);
1845
1846 static int __register_netdevice_notifier_net(struct net *net,
1847                                              struct notifier_block *nb,
1848                                              bool ignore_call_fail)
1849 {
1850         int err;
1851
1852         err = raw_notifier_chain_register(&net->netdev_chain, nb);
1853         if (err)
1854                 return err;
1855         if (dev_boot_phase)
1856                 return 0;
1857
1858         err = call_netdevice_register_net_notifiers(nb, net);
1859         if (err && !ignore_call_fail)
1860                 goto chain_unregister;
1861
1862         return 0;
1863
1864 chain_unregister:
1865         raw_notifier_chain_unregister(&net->netdev_chain, nb);
1866         return err;
1867 }
1868
1869 static int __unregister_netdevice_notifier_net(struct net *net,
1870                                                struct notifier_block *nb)
1871 {
1872         int err;
1873
1874         err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1875         if (err)
1876                 return err;
1877
1878         call_netdevice_unregister_net_notifiers(nb, net);
1879         return 0;
1880 }
1881
1882 /**
1883  * register_netdevice_notifier_net - register a per-netns network notifier block
1884  * @net: network namespace
1885  * @nb: notifier
1886  *
1887  * Register a notifier to be called when network device events occur.
1888  * The notifier passed is linked into the kernel structures and must
1889  * not be reused until it has been unregistered. A negative errno code
1890  * is returned on a failure.
1891  *
1892  * When registered all registration and up events are replayed
1893  * to the new notifier to allow device to have a race free
1894  * view of the network device list.
1895  */
1896
1897 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1898 {
1899         int err;
1900
1901         rtnl_lock();
1902         err = __register_netdevice_notifier_net(net, nb, false);
1903         rtnl_unlock();
1904         return err;
1905 }
1906 EXPORT_SYMBOL(register_netdevice_notifier_net);
1907
1908 /**
1909  * unregister_netdevice_notifier_net - unregister a per-netns
1910  *                                     network notifier block
1911  * @net: network namespace
1912  * @nb: notifier
1913  *
1914  * Unregister a notifier previously registered by
1915  * register_netdevice_notifier(). The notifier is unlinked into the
1916  * kernel structures and may then be reused. A negative errno code
1917  * is returned on a failure.
1918  *
1919  * After unregistering unregister and down device events are synthesized
1920  * for all devices on the device list to the removed notifier to remove
1921  * the need for special case cleanup code.
1922  */
1923
1924 int unregister_netdevice_notifier_net(struct net *net,
1925                                       struct notifier_block *nb)
1926 {
1927         int err;
1928
1929         rtnl_lock();
1930         err = __unregister_netdevice_notifier_net(net, nb);
1931         rtnl_unlock();
1932         return err;
1933 }
1934 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1935
1936 int register_netdevice_notifier_dev_net(struct net_device *dev,
1937                                         struct notifier_block *nb,
1938                                         struct netdev_net_notifier *nn)
1939 {
1940         int err;
1941
1942         rtnl_lock();
1943         err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1944         if (!err) {
1945                 nn->nb = nb;
1946                 list_add(&nn->list, &dev->net_notifier_list);
1947         }
1948         rtnl_unlock();
1949         return err;
1950 }
1951 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1952
1953 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1954                                           struct notifier_block *nb,
1955                                           struct netdev_net_notifier *nn)
1956 {
1957         int err;
1958
1959         rtnl_lock();
1960         list_del(&nn->list);
1961         err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1962         rtnl_unlock();
1963         return err;
1964 }
1965 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1966
1967 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1968                                              struct net *net)
1969 {
1970         struct netdev_net_notifier *nn;
1971
1972         list_for_each_entry(nn, &dev->net_notifier_list, list) {
1973                 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
1974                 __register_netdevice_notifier_net(net, nn->nb, true);
1975         }
1976 }
1977
1978 /**
1979  *      call_netdevice_notifiers_info - call all network notifier blocks
1980  *      @val: value passed unmodified to notifier function
1981  *      @info: notifier information data
1982  *
1983  *      Call all network notifier blocks.  Parameters and return value
1984  *      are as for raw_notifier_call_chain().
1985  */
1986
1987 static int call_netdevice_notifiers_info(unsigned long val,
1988                                          struct netdev_notifier_info *info)
1989 {
1990         struct net *net = dev_net(info->dev);
1991         int ret;
1992
1993         ASSERT_RTNL();
1994
1995         /* Run per-netns notifier block chain first, then run the global one.
1996          * Hopefully, one day, the global one is going to be removed after
1997          * all notifier block registrators get converted to be per-netns.
1998          */
1999         ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2000         if (ret & NOTIFY_STOP_MASK)
2001                 return ret;
2002         return raw_notifier_call_chain(&netdev_chain, val, info);
2003 }
2004
2005 static int call_netdevice_notifiers_extack(unsigned long val,
2006                                            struct net_device *dev,
2007                                            struct netlink_ext_ack *extack)
2008 {
2009         struct netdev_notifier_info info = {
2010                 .dev = dev,
2011                 .extack = extack,
2012         };
2013
2014         return call_netdevice_notifiers_info(val, &info);
2015 }
2016
2017 /**
2018  *      call_netdevice_notifiers - call all network notifier blocks
2019  *      @val: value passed unmodified to notifier function
2020  *      @dev: net_device pointer passed unmodified to notifier function
2021  *
2022  *      Call all network notifier blocks.  Parameters and return value
2023  *      are as for raw_notifier_call_chain().
2024  */
2025
2026 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2027 {
2028         return call_netdevice_notifiers_extack(val, dev, NULL);
2029 }
2030 EXPORT_SYMBOL(call_netdevice_notifiers);
2031
2032 /**
2033  *      call_netdevice_notifiers_mtu - call all network notifier blocks
2034  *      @val: value passed unmodified to notifier function
2035  *      @dev: net_device pointer passed unmodified to notifier function
2036  *      @arg: additional u32 argument passed to the notifier function
2037  *
2038  *      Call all network notifier blocks.  Parameters and return value
2039  *      are as for raw_notifier_call_chain().
2040  */
2041 static int call_netdevice_notifiers_mtu(unsigned long val,
2042                                         struct net_device *dev, u32 arg)
2043 {
2044         struct netdev_notifier_info_ext info = {
2045                 .info.dev = dev,
2046                 .ext.mtu = arg,
2047         };
2048
2049         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2050
2051         return call_netdevice_notifiers_info(val, &info.info);
2052 }
2053
2054 #ifdef CONFIG_NET_INGRESS
2055 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2056
2057 void net_inc_ingress_queue(void)
2058 {
2059         static_branch_inc(&ingress_needed_key);
2060 }
2061 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2062
2063 void net_dec_ingress_queue(void)
2064 {
2065         static_branch_dec(&ingress_needed_key);
2066 }
2067 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2068 #endif
2069
2070 #ifdef CONFIG_NET_EGRESS
2071 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2072
2073 void net_inc_egress_queue(void)
2074 {
2075         static_branch_inc(&egress_needed_key);
2076 }
2077 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2078
2079 void net_dec_egress_queue(void)
2080 {
2081         static_branch_dec(&egress_needed_key);
2082 }
2083 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2084 #endif
2085
2086 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2087 #ifdef CONFIG_JUMP_LABEL
2088 static atomic_t netstamp_needed_deferred;
2089 static atomic_t netstamp_wanted;
2090 static void netstamp_clear(struct work_struct *work)
2091 {
2092         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2093         int wanted;
2094
2095         wanted = atomic_add_return(deferred, &netstamp_wanted);
2096         if (wanted > 0)
2097                 static_branch_enable(&netstamp_needed_key);
2098         else
2099                 static_branch_disable(&netstamp_needed_key);
2100 }
2101 static DECLARE_WORK(netstamp_work, netstamp_clear);
2102 #endif
2103
2104 void net_enable_timestamp(void)
2105 {
2106 #ifdef CONFIG_JUMP_LABEL
2107         int wanted;
2108
2109         while (1) {
2110                 wanted = atomic_read(&netstamp_wanted);
2111                 if (wanted <= 0)
2112                         break;
2113                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2114                         return;
2115         }
2116         atomic_inc(&netstamp_needed_deferred);
2117         schedule_work(&netstamp_work);
2118 #else
2119         static_branch_inc(&netstamp_needed_key);
2120 #endif
2121 }
2122 EXPORT_SYMBOL(net_enable_timestamp);
2123
2124 void net_disable_timestamp(void)
2125 {
2126 #ifdef CONFIG_JUMP_LABEL
2127         int wanted;
2128
2129         while (1) {
2130                 wanted = atomic_read(&netstamp_wanted);
2131                 if (wanted <= 1)
2132                         break;
2133                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2134                         return;
2135         }
2136         atomic_dec(&netstamp_needed_deferred);
2137         schedule_work(&netstamp_work);
2138 #else
2139         static_branch_dec(&netstamp_needed_key);
2140 #endif
2141 }
2142 EXPORT_SYMBOL(net_disable_timestamp);
2143
2144 static inline void net_timestamp_set(struct sk_buff *skb)
2145 {
2146         skb->tstamp = 0;
2147         if (static_branch_unlikely(&netstamp_needed_key))
2148                 __net_timestamp(skb);
2149 }
2150
2151 #define net_timestamp_check(COND, SKB)                          \
2152         if (static_branch_unlikely(&netstamp_needed_key)) {     \
2153                 if ((COND) && !(SKB)->tstamp)                   \
2154                         __net_timestamp(SKB);                   \
2155         }                                                       \
2156
2157 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2158 {
2159         return __is_skb_forwardable(dev, skb, true);
2160 }
2161 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2162
2163 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2164                               bool check_mtu)
2165 {
2166         int ret = ____dev_forward_skb(dev, skb, check_mtu);
2167
2168         if (likely(!ret)) {
2169                 skb->protocol = eth_type_trans(skb, dev);
2170                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2171         }
2172
2173         return ret;
2174 }
2175
2176 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2177 {
2178         return __dev_forward_skb2(dev, skb, true);
2179 }
2180 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2181
2182 /**
2183  * dev_forward_skb - loopback an skb to another netif
2184  *
2185  * @dev: destination network device
2186  * @skb: buffer to forward
2187  *
2188  * return values:
2189  *      NET_RX_SUCCESS  (no congestion)
2190  *      NET_RX_DROP     (packet was dropped, but freed)
2191  *
2192  * dev_forward_skb can be used for injecting an skb from the
2193  * start_xmit function of one device into the receive queue
2194  * of another device.
2195  *
2196  * The receiving device may be in another namespace, so
2197  * we have to clear all information in the skb that could
2198  * impact namespace isolation.
2199  */
2200 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2201 {
2202         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2203 }
2204 EXPORT_SYMBOL_GPL(dev_forward_skb);
2205
2206 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2207 {
2208         return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2209 }
2210
2211 static inline int deliver_skb(struct sk_buff *skb,
2212                               struct packet_type *pt_prev,
2213                               struct net_device *orig_dev)
2214 {
2215         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2216                 return -ENOMEM;
2217         refcount_inc(&skb->users);
2218         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2219 }
2220
2221 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2222                                           struct packet_type **pt,
2223                                           struct net_device *orig_dev,
2224                                           __be16 type,
2225                                           struct list_head *ptype_list)
2226 {
2227         struct packet_type *ptype, *pt_prev = *pt;
2228
2229         list_for_each_entry_rcu(ptype, ptype_list, list) {
2230                 if (ptype->type != type)
2231                         continue;
2232                 if (pt_prev)
2233                         deliver_skb(skb, pt_prev, orig_dev);
2234                 pt_prev = ptype;
2235         }
2236         *pt = pt_prev;
2237 }
2238
2239 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2240 {
2241         if (!ptype->af_packet_priv || !skb->sk)
2242                 return false;
2243
2244         if (ptype->id_match)
2245                 return ptype->id_match(ptype, skb->sk);
2246         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2247                 return true;
2248
2249         return false;
2250 }
2251
2252 /**
2253  * dev_nit_active - return true if any network interface taps are in use
2254  *
2255  * @dev: network device to check for the presence of taps
2256  */
2257 bool dev_nit_active(struct net_device *dev)
2258 {
2259         return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2260 }
2261 EXPORT_SYMBOL_GPL(dev_nit_active);
2262
2263 /*
2264  *      Support routine. Sends outgoing frames to any network
2265  *      taps currently in use.
2266  */
2267
2268 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2269 {
2270         struct packet_type *ptype;
2271         struct sk_buff *skb2 = NULL;
2272         struct packet_type *pt_prev = NULL;
2273         struct list_head *ptype_list = &ptype_all;
2274
2275         rcu_read_lock();
2276 again:
2277         list_for_each_entry_rcu(ptype, ptype_list, list) {
2278                 if (ptype->ignore_outgoing)
2279                         continue;
2280
2281                 /* Never send packets back to the socket
2282                  * they originated from - MvS (miquels@drinkel.ow.org)
2283                  */
2284                 if (skb_loop_sk(ptype, skb))
2285                         continue;
2286
2287                 if (pt_prev) {
2288                         deliver_skb(skb2, pt_prev, skb->dev);
2289                         pt_prev = ptype;
2290                         continue;
2291                 }
2292
2293                 /* need to clone skb, done only once */
2294                 skb2 = skb_clone(skb, GFP_ATOMIC);
2295                 if (!skb2)
2296                         goto out_unlock;
2297
2298                 net_timestamp_set(skb2);
2299
2300                 /* skb->nh should be correctly
2301                  * set by sender, so that the second statement is
2302                  * just protection against buggy protocols.
2303                  */
2304                 skb_reset_mac_header(skb2);
2305
2306                 if (skb_network_header(skb2) < skb2->data ||
2307                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2308                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2309                                              ntohs(skb2->protocol),
2310                                              dev->name);
2311                         skb_reset_network_header(skb2);
2312                 }
2313
2314                 skb2->transport_header = skb2->network_header;
2315                 skb2->pkt_type = PACKET_OUTGOING;
2316                 pt_prev = ptype;
2317         }
2318
2319         if (ptype_list == &ptype_all) {
2320                 ptype_list = &dev->ptype_all;
2321                 goto again;
2322         }
2323 out_unlock:
2324         if (pt_prev) {
2325                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2326                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2327                 else
2328                         kfree_skb(skb2);
2329         }
2330         rcu_read_unlock();
2331 }
2332 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2333
2334 /**
2335  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2336  * @dev: Network device
2337  * @txq: number of queues available
2338  *
2339  * If real_num_tx_queues is changed the tc mappings may no longer be
2340  * valid. To resolve this verify the tc mapping remains valid and if
2341  * not NULL the mapping. With no priorities mapping to this
2342  * offset/count pair it will no longer be used. In the worst case TC0
2343  * is invalid nothing can be done so disable priority mappings. If is
2344  * expected that drivers will fix this mapping if they can before
2345  * calling netif_set_real_num_tx_queues.
2346  */
2347 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2348 {
2349         int i;
2350         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2351
2352         /* If TC0 is invalidated disable TC mapping */
2353         if (tc->offset + tc->count > txq) {
2354                 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2355                 dev->num_tc = 0;
2356                 return;
2357         }
2358
2359         /* Invalidated prio to tc mappings set to TC0 */
2360         for (i = 1; i < TC_BITMASK + 1; i++) {
2361                 int q = netdev_get_prio_tc_map(dev, i);
2362
2363                 tc = &dev->tc_to_txq[q];
2364                 if (tc->offset + tc->count > txq) {
2365                         netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2366                                     i, q);
2367                         netdev_set_prio_tc_map(dev, i, 0);
2368                 }
2369         }
2370 }
2371
2372 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2373 {
2374         if (dev->num_tc) {
2375                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2376                 int i;
2377
2378                 /* walk through the TCs and see if it falls into any of them */
2379                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2380                         if ((txq - tc->offset) < tc->count)
2381                                 return i;
2382                 }
2383
2384                 /* didn't find it, just return -1 to indicate no match */
2385                 return -1;
2386         }
2387
2388         return 0;
2389 }
2390 EXPORT_SYMBOL(netdev_txq_to_tc);
2391
2392 #ifdef CONFIG_XPS
2393 static struct static_key xps_needed __read_mostly;
2394 static struct static_key xps_rxqs_needed __read_mostly;
2395 static DEFINE_MUTEX(xps_map_mutex);
2396 #define xmap_dereference(P)             \
2397         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2398
2399 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2400                              struct xps_dev_maps *old_maps, int tci, u16 index)
2401 {
2402         struct xps_map *map = NULL;
2403         int pos;
2404
2405         if (dev_maps)
2406                 map = xmap_dereference(dev_maps->attr_map[tci]);
2407         if (!map)
2408                 return false;
2409
2410         for (pos = map->len; pos--;) {
2411                 if (map->queues[pos] != index)
2412                         continue;
2413
2414                 if (map->len > 1) {
2415                         map->queues[pos] = map->queues[--map->len];
2416                         break;
2417                 }
2418
2419                 if (old_maps)
2420                         RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2421                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2422                 kfree_rcu(map, rcu);
2423                 return false;
2424         }
2425
2426         return true;
2427 }
2428
2429 static bool remove_xps_queue_cpu(struct net_device *dev,
2430                                  struct xps_dev_maps *dev_maps,
2431                                  int cpu, u16 offset, u16 count)
2432 {
2433         int num_tc = dev_maps->num_tc;
2434         bool active = false;
2435         int tci;
2436
2437         for (tci = cpu * num_tc; num_tc--; tci++) {
2438                 int i, j;
2439
2440                 for (i = count, j = offset; i--; j++) {
2441                         if (!remove_xps_queue(dev_maps, NULL, tci, j))
2442                                 break;
2443                 }
2444
2445                 active |= i < 0;
2446         }
2447
2448         return active;
2449 }
2450
2451 static void reset_xps_maps(struct net_device *dev,
2452                            struct xps_dev_maps *dev_maps,
2453                            enum xps_map_type type)
2454 {
2455         static_key_slow_dec_cpuslocked(&xps_needed);
2456         if (type == XPS_RXQS)
2457                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2458
2459         RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2460
2461         kfree_rcu(dev_maps, rcu);
2462 }
2463
2464 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2465                            u16 offset, u16 count)
2466 {
2467         struct xps_dev_maps *dev_maps;
2468         bool active = false;
2469         int i, j;
2470
2471         dev_maps = xmap_dereference(dev->xps_maps[type]);
2472         if (!dev_maps)
2473                 return;
2474
2475         for (j = 0; j < dev_maps->nr_ids; j++)
2476                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2477         if (!active)
2478                 reset_xps_maps(dev, dev_maps, type);
2479
2480         if (type == XPS_CPUS) {
2481                 for (i = offset + (count - 1); count--; i--)
2482                         netdev_queue_numa_node_write(
2483                                 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2484         }
2485 }
2486
2487 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2488                                    u16 count)
2489 {
2490         if (!static_key_false(&xps_needed))
2491                 return;
2492
2493         cpus_read_lock();
2494         mutex_lock(&xps_map_mutex);
2495
2496         if (static_key_false(&xps_rxqs_needed))
2497                 clean_xps_maps(dev, XPS_RXQS, offset, count);
2498
2499         clean_xps_maps(dev, XPS_CPUS, offset, count);
2500
2501         mutex_unlock(&xps_map_mutex);
2502         cpus_read_unlock();
2503 }
2504
2505 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2506 {
2507         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2508 }
2509
2510 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2511                                       u16 index, bool is_rxqs_map)
2512 {
2513         struct xps_map *new_map;
2514         int alloc_len = XPS_MIN_MAP_ALLOC;
2515         int i, pos;
2516
2517         for (pos = 0; map && pos < map->len; pos++) {
2518                 if (map->queues[pos] != index)
2519                         continue;
2520                 return map;
2521         }
2522
2523         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2524         if (map) {
2525                 if (pos < map->alloc_len)
2526                         return map;
2527
2528                 alloc_len = map->alloc_len * 2;
2529         }
2530
2531         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2532          *  map
2533          */
2534         if (is_rxqs_map)
2535                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2536         else
2537                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2538                                        cpu_to_node(attr_index));
2539         if (!new_map)
2540                 return NULL;
2541
2542         for (i = 0; i < pos; i++)
2543                 new_map->queues[i] = map->queues[i];
2544         new_map->alloc_len = alloc_len;
2545         new_map->len = pos;
2546
2547         return new_map;
2548 }
2549
2550 /* Copy xps maps at a given index */
2551 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2552                               struct xps_dev_maps *new_dev_maps, int index,
2553                               int tc, bool skip_tc)
2554 {
2555         int i, tci = index * dev_maps->num_tc;
2556         struct xps_map *map;
2557
2558         /* copy maps belonging to foreign traffic classes */
2559         for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2560                 if (i == tc && skip_tc)
2561                         continue;
2562
2563                 /* fill in the new device map from the old device map */
2564                 map = xmap_dereference(dev_maps->attr_map[tci]);
2565                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2566         }
2567 }
2568
2569 /* Must be called under cpus_read_lock */
2570 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2571                           u16 index, enum xps_map_type type)
2572 {
2573         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2574         const unsigned long *online_mask = NULL;
2575         bool active = false, copy = false;
2576         int i, j, tci, numa_node_id = -2;
2577         int maps_sz, num_tc = 1, tc = 0;
2578         struct xps_map *map, *new_map;
2579         unsigned int nr_ids;
2580
2581         if (dev->num_tc) {
2582                 /* Do not allow XPS on subordinate device directly */
2583                 num_tc = dev->num_tc;
2584                 if (num_tc < 0)
2585                         return -EINVAL;
2586
2587                 /* If queue belongs to subordinate dev use its map */
2588                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2589
2590                 tc = netdev_txq_to_tc(dev, index);
2591                 if (tc < 0)
2592                         return -EINVAL;
2593         }
2594
2595         mutex_lock(&xps_map_mutex);
2596
2597         dev_maps = xmap_dereference(dev->xps_maps[type]);
2598         if (type == XPS_RXQS) {
2599                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2600                 nr_ids = dev->num_rx_queues;
2601         } else {
2602                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2603                 if (num_possible_cpus() > 1)
2604                         online_mask = cpumask_bits(cpu_online_mask);
2605                 nr_ids = nr_cpu_ids;
2606         }
2607
2608         if (maps_sz < L1_CACHE_BYTES)
2609                 maps_sz = L1_CACHE_BYTES;
2610
2611         /* The old dev_maps could be larger or smaller than the one we're
2612          * setting up now, as dev->num_tc or nr_ids could have been updated in
2613          * between. We could try to be smart, but let's be safe instead and only
2614          * copy foreign traffic classes if the two map sizes match.
2615          */
2616         if (dev_maps &&
2617             dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2618                 copy = true;
2619
2620         /* allocate memory for queue storage */
2621         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2622              j < nr_ids;) {
2623                 if (!new_dev_maps) {
2624                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2625                         if (!new_dev_maps) {
2626                                 mutex_unlock(&xps_map_mutex);
2627                                 return -ENOMEM;
2628                         }
2629
2630                         new_dev_maps->nr_ids = nr_ids;
2631                         new_dev_maps->num_tc = num_tc;
2632                 }
2633
2634                 tci = j * num_tc + tc;
2635                 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2636
2637                 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2638                 if (!map)
2639                         goto error;
2640
2641                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2642         }
2643
2644         if (!new_dev_maps)
2645                 goto out_no_new_maps;
2646
2647         if (!dev_maps) {
2648                 /* Increment static keys at most once per type */
2649                 static_key_slow_inc_cpuslocked(&xps_needed);
2650                 if (type == XPS_RXQS)
2651                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2652         }
2653
2654         for (j = 0; j < nr_ids; j++) {
2655                 bool skip_tc = false;
2656
2657                 tci = j * num_tc + tc;
2658                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2659                     netif_attr_test_online(j, online_mask, nr_ids)) {
2660                         /* add tx-queue to CPU/rx-queue maps */
2661                         int pos = 0;
2662
2663                         skip_tc = true;
2664
2665                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2666                         while ((pos < map->len) && (map->queues[pos] != index))
2667                                 pos++;
2668
2669                         if (pos == map->len)
2670                                 map->queues[map->len++] = index;
2671 #ifdef CONFIG_NUMA
2672                         if (type == XPS_CPUS) {
2673                                 if (numa_node_id == -2)
2674                                         numa_node_id = cpu_to_node(j);
2675                                 else if (numa_node_id != cpu_to_node(j))
2676                                         numa_node_id = -1;
2677                         }
2678 #endif
2679                 }
2680
2681                 if (copy)
2682                         xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2683                                           skip_tc);
2684         }
2685
2686         rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2687
2688         /* Cleanup old maps */
2689         if (!dev_maps)
2690                 goto out_no_old_maps;
2691
2692         for (j = 0; j < dev_maps->nr_ids; j++) {
2693                 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2694                         map = xmap_dereference(dev_maps->attr_map[tci]);
2695                         if (!map)
2696                                 continue;
2697
2698                         if (copy) {
2699                                 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2700                                 if (map == new_map)
2701                                         continue;
2702                         }
2703
2704                         RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2705                         kfree_rcu(map, rcu);
2706                 }
2707         }
2708
2709         old_dev_maps = dev_maps;
2710
2711 out_no_old_maps:
2712         dev_maps = new_dev_maps;
2713         active = true;
2714
2715 out_no_new_maps:
2716         if (type == XPS_CPUS)
2717                 /* update Tx queue numa node */
2718                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2719                                              (numa_node_id >= 0) ?
2720                                              numa_node_id : NUMA_NO_NODE);
2721
2722         if (!dev_maps)
2723                 goto out_no_maps;
2724
2725         /* removes tx-queue from unused CPUs/rx-queues */
2726         for (j = 0; j < dev_maps->nr_ids; j++) {
2727                 tci = j * dev_maps->num_tc;
2728
2729                 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2730                         if (i == tc &&
2731                             netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2732                             netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2733                                 continue;
2734
2735                         active |= remove_xps_queue(dev_maps,
2736                                                    copy ? old_dev_maps : NULL,
2737                                                    tci, index);
2738                 }
2739         }
2740
2741         if (old_dev_maps)
2742                 kfree_rcu(old_dev_maps, rcu);
2743
2744         /* free map if not active */
2745         if (!active)
2746                 reset_xps_maps(dev, dev_maps, type);
2747
2748 out_no_maps:
2749         mutex_unlock(&xps_map_mutex);
2750
2751         return 0;
2752 error:
2753         /* remove any maps that we added */
2754         for (j = 0; j < nr_ids; j++) {
2755                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2756                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2757                         map = copy ?
2758                               xmap_dereference(dev_maps->attr_map[tci]) :
2759                               NULL;
2760                         if (new_map && new_map != map)
2761                                 kfree(new_map);
2762                 }
2763         }
2764
2765         mutex_unlock(&xps_map_mutex);
2766
2767         kfree(new_dev_maps);
2768         return -ENOMEM;
2769 }
2770 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2771
2772 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2773                         u16 index)
2774 {
2775         int ret;
2776
2777         cpus_read_lock();
2778         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2779         cpus_read_unlock();
2780
2781         return ret;
2782 }
2783 EXPORT_SYMBOL(netif_set_xps_queue);
2784
2785 #endif
2786 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2787 {
2788         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2789
2790         /* Unbind any subordinate channels */
2791         while (txq-- != &dev->_tx[0]) {
2792                 if (txq->sb_dev)
2793                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2794         }
2795 }
2796
2797 void netdev_reset_tc(struct net_device *dev)
2798 {
2799 #ifdef CONFIG_XPS
2800         netif_reset_xps_queues_gt(dev, 0);
2801 #endif
2802         netdev_unbind_all_sb_channels(dev);
2803
2804         /* Reset TC configuration of device */
2805         dev->num_tc = 0;
2806         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2807         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2808 }
2809 EXPORT_SYMBOL(netdev_reset_tc);
2810
2811 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2812 {
2813         if (tc >= dev->num_tc)
2814                 return -EINVAL;
2815
2816 #ifdef CONFIG_XPS
2817         netif_reset_xps_queues(dev, offset, count);
2818 #endif
2819         dev->tc_to_txq[tc].count = count;
2820         dev->tc_to_txq[tc].offset = offset;
2821         return 0;
2822 }
2823 EXPORT_SYMBOL(netdev_set_tc_queue);
2824
2825 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2826 {
2827         if (num_tc > TC_MAX_QUEUE)
2828                 return -EINVAL;
2829
2830 #ifdef CONFIG_XPS
2831         netif_reset_xps_queues_gt(dev, 0);
2832 #endif
2833         netdev_unbind_all_sb_channels(dev);
2834
2835         dev->num_tc = num_tc;
2836         return 0;
2837 }
2838 EXPORT_SYMBOL(netdev_set_num_tc);
2839
2840 void netdev_unbind_sb_channel(struct net_device *dev,
2841                               struct net_device *sb_dev)
2842 {
2843         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2844
2845 #ifdef CONFIG_XPS
2846         netif_reset_xps_queues_gt(sb_dev, 0);
2847 #endif
2848         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2849         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2850
2851         while (txq-- != &dev->_tx[0]) {
2852                 if (txq->sb_dev == sb_dev)
2853                         txq->sb_dev = NULL;
2854         }
2855 }
2856 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2857
2858 int netdev_bind_sb_channel_queue(struct net_device *dev,
2859                                  struct net_device *sb_dev,
2860                                  u8 tc, u16 count, u16 offset)
2861 {
2862         /* Make certain the sb_dev and dev are already configured */
2863         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2864                 return -EINVAL;
2865
2866         /* We cannot hand out queues we don't have */
2867         if ((offset + count) > dev->real_num_tx_queues)
2868                 return -EINVAL;
2869
2870         /* Record the mapping */
2871         sb_dev->tc_to_txq[tc].count = count;
2872         sb_dev->tc_to_txq[tc].offset = offset;
2873
2874         /* Provide a way for Tx queue to find the tc_to_txq map or
2875          * XPS map for itself.
2876          */
2877         while (count--)
2878                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2879
2880         return 0;
2881 }
2882 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2883
2884 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2885 {
2886         /* Do not use a multiqueue device to represent a subordinate channel */
2887         if (netif_is_multiqueue(dev))
2888                 return -ENODEV;
2889
2890         /* We allow channels 1 - 32767 to be used for subordinate channels.
2891          * Channel 0 is meant to be "native" mode and used only to represent
2892          * the main root device. We allow writing 0 to reset the device back
2893          * to normal mode after being used as a subordinate channel.
2894          */
2895         if (channel > S16_MAX)
2896                 return -EINVAL;
2897
2898         dev->num_tc = -channel;
2899
2900         return 0;
2901 }
2902 EXPORT_SYMBOL(netdev_set_sb_channel);
2903
2904 /*
2905  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2906  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2907  */
2908 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2909 {
2910         bool disabling;
2911         int rc;
2912
2913         disabling = txq < dev->real_num_tx_queues;
2914
2915         if (txq < 1 || txq > dev->num_tx_queues)
2916                 return -EINVAL;
2917
2918         if (dev->reg_state == NETREG_REGISTERED ||
2919             dev->reg_state == NETREG_UNREGISTERING) {
2920                 ASSERT_RTNL();
2921
2922                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2923                                                   txq);
2924                 if (rc)
2925                         return rc;
2926
2927                 if (dev->num_tc)
2928                         netif_setup_tc(dev, txq);
2929
2930                 dev_qdisc_change_real_num_tx(dev, txq);
2931
2932                 dev->real_num_tx_queues = txq;
2933
2934                 if (disabling) {
2935                         synchronize_net();
2936                         qdisc_reset_all_tx_gt(dev, txq);
2937 #ifdef CONFIG_XPS
2938                         netif_reset_xps_queues_gt(dev, txq);
2939 #endif
2940                 }
2941         } else {
2942                 dev->real_num_tx_queues = txq;
2943         }
2944
2945         return 0;
2946 }
2947 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2948
2949 #ifdef CONFIG_SYSFS
2950 /**
2951  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2952  *      @dev: Network device
2953  *      @rxq: Actual number of RX queues
2954  *
2955  *      This must be called either with the rtnl_lock held or before
2956  *      registration of the net device.  Returns 0 on success, or a
2957  *      negative error code.  If called before registration, it always
2958  *      succeeds.
2959  */
2960 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2961 {
2962         int rc;
2963
2964         if (rxq < 1 || rxq > dev->num_rx_queues)
2965                 return -EINVAL;
2966
2967         if (dev->reg_state == NETREG_REGISTERED) {
2968                 ASSERT_RTNL();
2969
2970                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2971                                                   rxq);
2972                 if (rc)
2973                         return rc;
2974         }
2975
2976         dev->real_num_rx_queues = rxq;
2977         return 0;
2978 }
2979 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2980 #endif
2981
2982 /**
2983  *      netif_set_real_num_queues - set actual number of RX and TX queues used
2984  *      @dev: Network device
2985  *      @txq: Actual number of TX queues
2986  *      @rxq: Actual number of RX queues
2987  *
2988  *      Set the real number of both TX and RX queues.
2989  *      Does nothing if the number of queues is already correct.
2990  */
2991 int netif_set_real_num_queues(struct net_device *dev,
2992                               unsigned int txq, unsigned int rxq)
2993 {
2994         unsigned int old_rxq = dev->real_num_rx_queues;
2995         int err;
2996
2997         if (txq < 1 || txq > dev->num_tx_queues ||
2998             rxq < 1 || rxq > dev->num_rx_queues)
2999                 return -EINVAL;
3000
3001         /* Start from increases, so the error path only does decreases -
3002          * decreases can't fail.
3003          */
3004         if (rxq > dev->real_num_rx_queues) {
3005                 err = netif_set_real_num_rx_queues(dev, rxq);
3006                 if (err)
3007                         return err;
3008         }
3009         if (txq > dev->real_num_tx_queues) {
3010                 err = netif_set_real_num_tx_queues(dev, txq);
3011                 if (err)
3012                         goto undo_rx;
3013         }
3014         if (rxq < dev->real_num_rx_queues)
3015                 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3016         if (txq < dev->real_num_tx_queues)
3017                 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3018
3019         return 0;
3020 undo_rx:
3021         WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3022         return err;
3023 }
3024 EXPORT_SYMBOL(netif_set_real_num_queues);
3025
3026 /**
3027  * netif_get_num_default_rss_queues - default number of RSS queues
3028  *
3029  * This routine should set an upper limit on the number of RSS queues
3030  * used by default by multiqueue devices.
3031  */
3032 int netif_get_num_default_rss_queues(void)
3033 {
3034         return is_kdump_kernel() ?
3035                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3036 }
3037 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3038
3039 static void __netif_reschedule(struct Qdisc *q)
3040 {
3041         struct softnet_data *sd;
3042         unsigned long flags;
3043
3044         local_irq_save(flags);
3045         sd = this_cpu_ptr(&softnet_data);
3046         q->next_sched = NULL;
3047         *sd->output_queue_tailp = q;
3048         sd->output_queue_tailp = &q->next_sched;
3049         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3050         local_irq_restore(flags);
3051 }
3052
3053 void __netif_schedule(struct Qdisc *q)
3054 {
3055         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3056                 __netif_reschedule(q);
3057 }
3058 EXPORT_SYMBOL(__netif_schedule);
3059
3060 struct dev_kfree_skb_cb {
3061         enum skb_free_reason reason;
3062 };
3063
3064 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3065 {
3066         return (struct dev_kfree_skb_cb *)skb->cb;
3067 }
3068
3069 void netif_schedule_queue(struct netdev_queue *txq)
3070 {
3071         rcu_read_lock();
3072         if (!netif_xmit_stopped(txq)) {
3073                 struct Qdisc *q = rcu_dereference(txq->qdisc);
3074
3075                 __netif_schedule(q);
3076         }
3077         rcu_read_unlock();
3078 }
3079 EXPORT_SYMBOL(netif_schedule_queue);
3080
3081 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3082 {
3083         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3084                 struct Qdisc *q;
3085
3086                 rcu_read_lock();
3087                 q = rcu_dereference(dev_queue->qdisc);
3088                 __netif_schedule(q);
3089                 rcu_read_unlock();
3090         }
3091 }
3092 EXPORT_SYMBOL(netif_tx_wake_queue);
3093
3094 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3095 {
3096         unsigned long flags;
3097
3098         if (unlikely(!skb))
3099                 return;
3100
3101         if (likely(refcount_read(&skb->users) == 1)) {
3102                 smp_rmb();
3103                 refcount_set(&skb->users, 0);
3104         } else if (likely(!refcount_dec_and_test(&skb->users))) {
3105                 return;
3106         }
3107         get_kfree_skb_cb(skb)->reason = reason;
3108         local_irq_save(flags);
3109         skb->next = __this_cpu_read(softnet_data.completion_queue);
3110         __this_cpu_write(softnet_data.completion_queue, skb);
3111         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3112         local_irq_restore(flags);
3113 }
3114 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3115
3116 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3117 {
3118         if (in_hardirq() || irqs_disabled())
3119                 __dev_kfree_skb_irq(skb, reason);
3120         else
3121                 dev_kfree_skb(skb);
3122 }
3123 EXPORT_SYMBOL(__dev_kfree_skb_any);
3124
3125
3126 /**
3127  * netif_device_detach - mark device as removed
3128  * @dev: network device
3129  *
3130  * Mark device as removed from system and therefore no longer available.
3131  */
3132 void netif_device_detach(struct net_device *dev)
3133 {
3134         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3135             netif_running(dev)) {
3136                 netif_tx_stop_all_queues(dev);
3137         }
3138 }
3139 EXPORT_SYMBOL(netif_device_detach);
3140
3141 /**
3142  * netif_device_attach - mark device as attached
3143  * @dev: network device
3144  *
3145  * Mark device as attached from system and restart if needed.
3146  */
3147 void netif_device_attach(struct net_device *dev)
3148 {
3149         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3150             netif_running(dev)) {
3151                 netif_tx_wake_all_queues(dev);
3152                 __netdev_watchdog_up(dev);
3153         }
3154 }
3155 EXPORT_SYMBOL(netif_device_attach);
3156
3157 /*
3158  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3159  * to be used as a distribution range.
3160  */
3161 static u16 skb_tx_hash(const struct net_device *dev,
3162                        const struct net_device *sb_dev,
3163                        struct sk_buff *skb)
3164 {
3165         u32 hash;
3166         u16 qoffset = 0;
3167         u16 qcount = dev->real_num_tx_queues;
3168
3169         if (dev->num_tc) {
3170                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3171
3172                 qoffset = sb_dev->tc_to_txq[tc].offset;
3173                 qcount = sb_dev->tc_to_txq[tc].count;
3174                 if (unlikely(!qcount)) {
3175                         net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3176                                              sb_dev->name, qoffset, tc);
3177                         qoffset = 0;
3178                         qcount = dev->real_num_tx_queues;
3179                 }
3180         }
3181
3182         if (skb_rx_queue_recorded(skb)) {
3183                 hash = skb_get_rx_queue(skb);
3184                 if (hash >= qoffset)
3185                         hash -= qoffset;
3186                 while (unlikely(hash >= qcount))
3187                         hash -= qcount;
3188                 return hash + qoffset;
3189         }
3190
3191         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3192 }
3193
3194 static void skb_warn_bad_offload(const struct sk_buff *skb)
3195 {
3196         static const netdev_features_t null_features;
3197         struct net_device *dev = skb->dev;
3198         const char *name = "";
3199
3200         if (!net_ratelimit())
3201                 return;
3202
3203         if (dev) {
3204                 if (dev->dev.parent)
3205                         name = dev_driver_string(dev->dev.parent);
3206                 else
3207                         name = netdev_name(dev);
3208         }
3209         skb_dump(KERN_WARNING, skb, false);
3210         WARN(1, "%s: caps=(%pNF, %pNF)\n",
3211              name, dev ? &dev->features : &null_features,
3212              skb->sk ? &skb->sk->sk_route_caps : &null_features);
3213 }
3214
3215 /*
3216  * Invalidate hardware checksum when packet is to be mangled, and
3217  * complete checksum manually on outgoing path.
3218  */
3219 int skb_checksum_help(struct sk_buff *skb)
3220 {
3221         __wsum csum;
3222         int ret = 0, offset;
3223
3224         if (skb->ip_summed == CHECKSUM_COMPLETE)
3225                 goto out_set_summed;
3226
3227         if (unlikely(skb_is_gso(skb))) {
3228                 skb_warn_bad_offload(skb);
3229                 return -EINVAL;
3230         }
3231
3232         /* Before computing a checksum, we should make sure no frag could
3233          * be modified by an external entity : checksum could be wrong.
3234          */
3235         if (skb_has_shared_frag(skb)) {
3236                 ret = __skb_linearize(skb);
3237                 if (ret)
3238                         goto out;
3239         }
3240
3241         offset = skb_checksum_start_offset(skb);
3242         BUG_ON(offset >= skb_headlen(skb));
3243         csum = skb_checksum(skb, offset, skb->len - offset, 0);
3244
3245         offset += skb->csum_offset;
3246         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3247
3248         ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3249         if (ret)
3250                 goto out;
3251
3252         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3253 out_set_summed:
3254         skb->ip_summed = CHECKSUM_NONE;
3255 out:
3256         return ret;
3257 }
3258 EXPORT_SYMBOL(skb_checksum_help);
3259
3260 int skb_crc32c_csum_help(struct sk_buff *skb)
3261 {
3262         __le32 crc32c_csum;
3263         int ret = 0, offset, start;
3264
3265         if (skb->ip_summed != CHECKSUM_PARTIAL)
3266                 goto out;
3267
3268         if (unlikely(skb_is_gso(skb)))
3269                 goto out;
3270
3271         /* Before computing a checksum, we should make sure no frag could
3272          * be modified by an external entity : checksum could be wrong.
3273          */
3274         if (unlikely(skb_has_shared_frag(skb))) {
3275                 ret = __skb_linearize(skb);
3276                 if (ret)
3277                         goto out;
3278         }
3279         start = skb_checksum_start_offset(skb);
3280         offset = start + offsetof(struct sctphdr, checksum);
3281         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3282                 ret = -EINVAL;
3283                 goto out;
3284         }
3285
3286         ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3287         if (ret)
3288                 goto out;
3289
3290         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3291                                                   skb->len - start, ~(__u32)0,
3292                                                   crc32c_csum_stub));
3293         *(__le32 *)(skb->data + offset) = crc32c_csum;
3294         skb->ip_summed = CHECKSUM_NONE;
3295         skb->csum_not_inet = 0;
3296 out:
3297         return ret;
3298 }
3299
3300 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3301 {
3302         __be16 type = skb->protocol;
3303
3304         /* Tunnel gso handlers can set protocol to ethernet. */
3305         if (type == htons(ETH_P_TEB)) {
3306                 struct ethhdr *eth;
3307
3308                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3309                         return 0;
3310
3311                 eth = (struct ethhdr *)skb->data;
3312                 type = eth->h_proto;
3313         }
3314
3315         return __vlan_get_protocol(skb, type, depth);
3316 }
3317
3318 /**
3319  *      skb_mac_gso_segment - mac layer segmentation handler.
3320  *      @skb: buffer to segment
3321  *      @features: features for the output path (see dev->features)
3322  */
3323 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3324                                     netdev_features_t features)
3325 {
3326         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3327         struct packet_offload *ptype;
3328         int vlan_depth = skb->mac_len;
3329         __be16 type = skb_network_protocol(skb, &vlan_depth);
3330
3331         if (unlikely(!type))
3332                 return ERR_PTR(-EINVAL);
3333
3334         __skb_pull(skb, vlan_depth);
3335
3336         rcu_read_lock();
3337         list_for_each_entry_rcu(ptype, &offload_base, list) {
3338                 if (ptype->type == type && ptype->callbacks.gso_segment) {
3339                         segs = ptype->callbacks.gso_segment(skb, features);
3340                         break;
3341                 }
3342         }
3343         rcu_read_unlock();
3344
3345         __skb_push(skb, skb->data - skb_mac_header(skb));
3346
3347         return segs;
3348 }
3349 EXPORT_SYMBOL(skb_mac_gso_segment);
3350
3351
3352 /* openvswitch calls this on rx path, so we need a different check.
3353  */
3354 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3355 {
3356         if (tx_path)
3357                 return skb->ip_summed != CHECKSUM_PARTIAL &&
3358                        skb->ip_summed != CHECKSUM_UNNECESSARY;
3359
3360         return skb->ip_summed == CHECKSUM_NONE;
3361 }
3362
3363 /**
3364  *      __skb_gso_segment - Perform segmentation on skb.
3365  *      @skb: buffer to segment
3366  *      @features: features for the output path (see dev->features)
3367  *      @tx_path: whether it is called in TX path
3368  *
3369  *      This function segments the given skb and returns a list of segments.
3370  *
3371  *      It may return NULL if the skb requires no segmentation.  This is
3372  *      only possible when GSO is used for verifying header integrity.
3373  *
3374  *      Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3375  */
3376 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3377                                   netdev_features_t features, bool tx_path)
3378 {
3379         struct sk_buff *segs;
3380
3381         if (unlikely(skb_needs_check(skb, tx_path))) {
3382                 int err;
3383
3384                 /* We're going to init ->check field in TCP or UDP header */
3385                 err = skb_cow_head(skb, 0);
3386                 if (err < 0)
3387                         return ERR_PTR(err);
3388         }
3389
3390         /* Only report GSO partial support if it will enable us to
3391          * support segmentation on this frame without needing additional
3392          * work.
3393          */
3394         if (features & NETIF_F_GSO_PARTIAL) {
3395                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3396                 struct net_device *dev = skb->dev;
3397
3398                 partial_features |= dev->features & dev->gso_partial_features;
3399                 if (!skb_gso_ok(skb, features | partial_features))
3400                         features &= ~NETIF_F_GSO_PARTIAL;
3401         }
3402
3403         BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3404                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3405
3406         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3407         SKB_GSO_CB(skb)->encap_level = 0;
3408
3409         skb_reset_mac_header(skb);
3410         skb_reset_mac_len(skb);
3411
3412         segs = skb_mac_gso_segment(skb, features);
3413
3414         if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3415                 skb_warn_bad_offload(skb);
3416
3417         return segs;
3418 }
3419 EXPORT_SYMBOL(__skb_gso_segment);
3420
3421 /* Take action when hardware reception checksum errors are detected. */
3422 #ifdef CONFIG_BUG
3423 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3424 {
3425         netdev_err(dev, "hw csum failure\n");
3426         skb_dump(KERN_ERR, skb, true);
3427         dump_stack();
3428 }
3429
3430 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3431 {
3432         DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3433 }
3434 EXPORT_SYMBOL(netdev_rx_csum_fault);
3435 #endif
3436
3437 /* XXX: check that highmem exists at all on the given machine. */
3438 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3439 {
3440 #ifdef CONFIG_HIGHMEM
3441         int i;
3442
3443         if (!(dev->features & NETIF_F_HIGHDMA)) {
3444                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3445                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3446
3447                         if (PageHighMem(skb_frag_page(frag)))
3448                                 return 1;
3449                 }
3450         }
3451 #endif
3452         return 0;
3453 }
3454
3455 /* If MPLS offload request, verify we are testing hardware MPLS features
3456  * instead of standard features for the netdev.
3457  */
3458 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3459 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3460                                            netdev_features_t features,
3461                                            __be16 type)
3462 {
3463         if (eth_p_mpls(type))
3464                 features &= skb->dev->mpls_features;
3465
3466         return features;
3467 }
3468 #else
3469 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3470                                            netdev_features_t features,
3471                                            __be16 type)
3472 {
3473         return features;
3474 }
3475 #endif
3476
3477 static netdev_features_t harmonize_features(struct sk_buff *skb,
3478         netdev_features_t features)
3479 {
3480         __be16 type;
3481
3482         type = skb_network_protocol(skb, NULL);
3483         features = net_mpls_features(skb, features, type);
3484
3485         if (skb->ip_summed != CHECKSUM_NONE &&
3486             !can_checksum_protocol(features, type)) {
3487                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3488         }
3489         if (illegal_highdma(skb->dev, skb))
3490                 features &= ~NETIF_F_SG;
3491
3492         return features;
3493 }
3494
3495 netdev_features_t passthru_features_check(struct sk_buff *skb,
3496                                           struct net_device *dev,
3497                                           netdev_features_t features)
3498 {
3499         return features;
3500 }
3501 EXPORT_SYMBOL(passthru_features_check);
3502
3503 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3504                                              struct net_device *dev,
3505                                              netdev_features_t features)
3506 {
3507         return vlan_features_check(skb, features);
3508 }
3509
3510 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3511                                             struct net_device *dev,
3512                                             netdev_features_t features)
3513 {
3514         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3515
3516         if (gso_segs > dev->gso_max_segs)
3517                 return features & ~NETIF_F_GSO_MASK;
3518
3519         if (!skb_shinfo(skb)->gso_type) {
3520                 skb_warn_bad_offload(skb);
3521                 return features & ~NETIF_F_GSO_MASK;
3522         }
3523
3524         /* Support for GSO partial features requires software
3525          * intervention before we can actually process the packets
3526          * so we need to strip support for any partial features now
3527          * and we can pull them back in after we have partially
3528          * segmented the frame.
3529          */
3530         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3531                 features &= ~dev->gso_partial_features;
3532
3533         /* Make sure to clear the IPv4 ID mangling feature if the
3534          * IPv4 header has the potential to be fragmented.
3535          */
3536         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3537                 struct iphdr *iph = skb->encapsulation ?
3538                                     inner_ip_hdr(skb) : ip_hdr(skb);
3539
3540                 if (!(iph->frag_off & htons(IP_DF)))
3541                         features &= ~NETIF_F_TSO_MANGLEID;
3542         }
3543
3544         return features;
3545 }
3546
3547 netdev_features_t netif_skb_features(struct sk_buff *skb)
3548 {
3549         struct net_device *dev = skb->dev;
3550         netdev_features_t features = dev->features;
3551
3552         if (skb_is_gso(skb))
3553                 features = gso_features_check(skb, dev, features);
3554
3555         /* If encapsulation offload request, verify we are testing
3556          * hardware encapsulation features instead of standard
3557          * features for the netdev
3558          */
3559         if (skb->encapsulation)
3560                 features &= dev->hw_enc_features;
3561
3562         if (skb_vlan_tagged(skb))
3563                 features = netdev_intersect_features(features,
3564                                                      dev->vlan_features |
3565                                                      NETIF_F_HW_VLAN_CTAG_TX |
3566                                                      NETIF_F_HW_VLAN_STAG_TX);
3567
3568         if (dev->netdev_ops->ndo_features_check)
3569                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3570                                                                 features);
3571         else
3572                 features &= dflt_features_check(skb, dev, features);
3573
3574         return harmonize_features(skb, features);
3575 }
3576 EXPORT_SYMBOL(netif_skb_features);
3577
3578 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3579                     struct netdev_queue *txq, bool more)
3580 {
3581         unsigned int len;
3582         int rc;
3583
3584         if (dev_nit_active(dev))
3585                 dev_queue_xmit_nit(skb, dev);
3586
3587         len = skb->len;
3588         PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3589         trace_net_dev_start_xmit(skb, dev);
3590         rc = netdev_start_xmit(skb, dev, txq, more);
3591         trace_net_dev_xmit(skb, rc, dev, len);
3592
3593         return rc;
3594 }
3595
3596 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3597                                     struct netdev_queue *txq, int *ret)
3598 {
3599         struct sk_buff *skb = first;
3600         int rc = NETDEV_TX_OK;
3601
3602         while (skb) {
3603                 struct sk_buff *next = skb->next;
3604
3605                 skb_mark_not_on_list(skb);
3606                 rc = xmit_one(skb, dev, txq, next != NULL);
3607                 if (unlikely(!dev_xmit_complete(rc))) {
3608                         skb->next = next;
3609                         goto out;
3610                 }
3611
3612                 skb = next;
3613                 if (netif_tx_queue_stopped(txq) && skb) {
3614                         rc = NETDEV_TX_BUSY;
3615                         break;
3616                 }
3617         }
3618
3619 out:
3620         *ret = rc;
3621         return skb;
3622 }
3623
3624 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3625                                           netdev_features_t features)
3626 {
3627         if (skb_vlan_tag_present(skb) &&
3628             !vlan_hw_offload_capable(features, skb->vlan_proto))
3629                 skb = __vlan_hwaccel_push_inside(skb);
3630         return skb;
3631 }
3632
3633 int skb_csum_hwoffload_help(struct sk_buff *skb,
3634                             const netdev_features_t features)
3635 {
3636         if (unlikely(skb_csum_is_sctp(skb)))
3637                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3638                         skb_crc32c_csum_help(skb);
3639
3640         if (features & NETIF_F_HW_CSUM)
3641                 return 0;
3642
3643         if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3644                 switch (skb->csum_offset) {
3645                 case offsetof(struct tcphdr, check):
3646                 case offsetof(struct udphdr, check):
3647                         return 0;
3648                 }
3649         }
3650
3651         return skb_checksum_help(skb);
3652 }
3653 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3654
3655 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3656 {
3657         netdev_features_t features;
3658
3659         features = netif_skb_features(skb);
3660         skb = validate_xmit_vlan(skb, features);
3661         if (unlikely(!skb))
3662                 goto out_null;
3663
3664         skb = sk_validate_xmit_skb(skb, dev);
3665         if (unlikely(!skb))
3666                 goto out_null;
3667
3668         if (netif_needs_gso(skb, features)) {
3669                 struct sk_buff *segs;
3670
3671                 segs = skb_gso_segment(skb, features);
3672                 if (IS_ERR(segs)) {
3673                         goto out_kfree_skb;
3674                 } else if (segs) {
3675                         consume_skb(skb);
3676                         skb = segs;
3677                 }
3678         } else {
3679                 if (skb_needs_linearize(skb, features) &&
3680                     __skb_linearize(skb))
3681                         goto out_kfree_skb;
3682
3683                 /* If packet is not checksummed and device does not
3684                  * support checksumming for this protocol, complete
3685                  * checksumming here.
3686                  */
3687                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3688                         if (skb->encapsulation)
3689                                 skb_set_inner_transport_header(skb,
3690                                                                skb_checksum_start_offset(skb));
3691                         else
3692                                 skb_set_transport_header(skb,
3693                                                          skb_checksum_start_offset(skb));
3694                         if (skb_csum_hwoffload_help(skb, features))
3695                                 goto out_kfree_skb;
3696                 }
3697         }
3698
3699         skb = validate_xmit_xfrm(skb, features, again);
3700
3701         return skb;
3702
3703 out_kfree_skb:
3704         kfree_skb(skb);
3705 out_null:
3706         atomic_long_inc(&dev->tx_dropped);
3707         return NULL;
3708 }
3709
3710 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3711 {
3712         struct sk_buff *next, *head = NULL, *tail;
3713
3714         for (; skb != NULL; skb = next) {
3715                 next = skb->next;
3716                 skb_mark_not_on_list(skb);
3717
3718                 /* in case skb wont be segmented, point to itself */
3719                 skb->prev = skb;
3720
3721                 skb = validate_xmit_skb(skb, dev, again);
3722                 if (!skb)
3723                         continue;
3724
3725                 if (!head)
3726                         head = skb;
3727                 else
3728                         tail->next = skb;
3729                 /* If skb was segmented, skb->prev points to
3730                  * the last segment. If not, it still contains skb.
3731                  */
3732                 tail = skb->prev;
3733         }
3734         return head;
3735 }
3736 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3737
3738 static void qdisc_pkt_len_init(struct sk_buff *skb)
3739 {
3740         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3741
3742         qdisc_skb_cb(skb)->pkt_len = skb->len;
3743
3744         /* To get more precise estimation of bytes sent on wire,
3745          * we add to pkt_len the headers size of all segments
3746          */
3747         if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3748                 unsigned int hdr_len;
3749                 u16 gso_segs = shinfo->gso_segs;
3750
3751                 /* mac layer + network layer */
3752                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3753
3754                 /* + transport layer */
3755                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3756                         const struct tcphdr *th;
3757                         struct tcphdr _tcphdr;
3758
3759                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3760                                                 sizeof(_tcphdr), &_tcphdr);
3761                         if (likely(th))
3762                                 hdr_len += __tcp_hdrlen(th);
3763                 } else {
3764                         struct udphdr _udphdr;
3765
3766                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3767                                                sizeof(_udphdr), &_udphdr))
3768                                 hdr_len += sizeof(struct udphdr);
3769                 }
3770
3771                 if (shinfo->gso_type & SKB_GSO_DODGY)
3772                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3773                                                 shinfo->gso_size);
3774
3775                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3776         }
3777 }
3778
3779 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3780                              struct sk_buff **to_free,
3781                              struct netdev_queue *txq)
3782 {
3783         int rc;
3784
3785         rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3786         if (rc == NET_XMIT_SUCCESS)
3787                 trace_qdisc_enqueue(q, txq, skb);
3788         return rc;
3789 }
3790
3791 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3792                                  struct net_device *dev,
3793                                  struct netdev_queue *txq)
3794 {
3795         spinlock_t *root_lock = qdisc_lock(q);
3796         struct sk_buff *to_free = NULL;
3797         bool contended;
3798         int rc;
3799
3800         qdisc_calculate_pkt_len(skb, q);
3801
3802         if (q->flags & TCQ_F_NOLOCK) {
3803                 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3804                     qdisc_run_begin(q)) {
3805                         /* Retest nolock_qdisc_is_empty() within the protection
3806                          * of q->seqlock to protect from racing with requeuing.
3807                          */
3808                         if (unlikely(!nolock_qdisc_is_empty(q))) {
3809                                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3810                                 __qdisc_run(q);
3811                                 qdisc_run_end(q);
3812
3813                                 goto no_lock_out;
3814                         }
3815
3816                         qdisc_bstats_cpu_update(q, skb);
3817                         if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3818                             !nolock_qdisc_is_empty(q))
3819                                 __qdisc_run(q);
3820
3821                         qdisc_run_end(q);
3822                         return NET_XMIT_SUCCESS;
3823                 }
3824
3825                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3826                 qdisc_run(q);
3827
3828 no_lock_out:
3829                 if (unlikely(to_free))
3830                         kfree_skb_list(to_free);
3831                 return rc;
3832         }
3833
3834         /*
3835          * Heuristic to force contended enqueues to serialize on a
3836          * separate lock before trying to get qdisc main lock.
3837          * This permits qdisc->running owner to get the lock more
3838          * often and dequeue packets faster.
3839          */
3840         contended = qdisc_is_running(q);
3841         if (unlikely(contended))
3842                 spin_lock(&q->busylock);
3843
3844         spin_lock(root_lock);
3845         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3846                 __qdisc_drop(skb, &to_free);
3847                 rc = NET_XMIT_DROP;
3848         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3849                    qdisc_run_begin(q)) {
3850                 /*
3851                  * This is a work-conserving queue; there are no old skbs
3852                  * waiting to be sent out; and the qdisc is not running -
3853                  * xmit the skb directly.
3854                  */
3855
3856                 qdisc_bstats_update(q, skb);
3857
3858                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3859                         if (unlikely(contended)) {
3860                                 spin_unlock(&q->busylock);
3861                                 contended = false;
3862                         }
3863                         __qdisc_run(q);
3864                 }
3865
3866                 qdisc_run_end(q);
3867                 rc = NET_XMIT_SUCCESS;
3868         } else {
3869                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3870                 if (qdisc_run_begin(q)) {
3871                         if (unlikely(contended)) {
3872                                 spin_unlock(&q->busylock);
3873                                 contended = false;
3874                         }
3875                         __qdisc_run(q);
3876                         qdisc_run_end(q);
3877                 }
3878         }
3879         spin_unlock(root_lock);
3880         if (unlikely(to_free))
3881                 kfree_skb_list(to_free);
3882         if (unlikely(contended))
3883                 spin_unlock(&q->busylock);
3884         return rc;
3885 }
3886
3887 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3888 static void skb_update_prio(struct sk_buff *skb)
3889 {
3890         const struct netprio_map *map;
3891         const struct sock *sk;
3892         unsigned int prioidx;
3893
3894         if (skb->priority)
3895                 return;
3896         map = rcu_dereference_bh(skb->dev->priomap);
3897         if (!map)
3898                 return;
3899         sk = skb_to_full_sk(skb);
3900         if (!sk)
3901                 return;
3902
3903         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3904
3905         if (prioidx < map->priomap_len)
3906                 skb->priority = map->priomap[prioidx];
3907 }
3908 #else
3909 #define skb_update_prio(skb)
3910 #endif
3911
3912 /**
3913  *      dev_loopback_xmit - loop back @skb
3914  *      @net: network namespace this loopback is happening in
3915  *      @sk:  sk needed to be a netfilter okfn
3916  *      @skb: buffer to transmit
3917  */
3918 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3919 {
3920         skb_reset_mac_header(skb);
3921         __skb_pull(skb, skb_network_offset(skb));
3922         skb->pkt_type = PACKET_LOOPBACK;
3923         if (skb->ip_summed == CHECKSUM_NONE)
3924                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3925         WARN_ON(!skb_dst(skb));
3926         skb_dst_force(skb);
3927         netif_rx_ni(skb);
3928         return 0;
3929 }
3930 EXPORT_SYMBOL(dev_loopback_xmit);
3931
3932 #ifdef CONFIG_NET_EGRESS
3933 static struct sk_buff *
3934 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3935 {
3936 #ifdef CONFIG_NET_CLS_ACT
3937         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3938         struct tcf_result cl_res;
3939
3940         if (!miniq)
3941                 return skb;
3942
3943         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3944         qdisc_skb_cb(skb)->mru = 0;
3945         qdisc_skb_cb(skb)->post_ct = false;
3946         mini_qdisc_bstats_cpu_update(miniq, skb);
3947
3948         switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
3949         case TC_ACT_OK:
3950         case TC_ACT_RECLASSIFY:
3951                 skb->tc_index = TC_H_MIN(cl_res.classid);
3952                 break;
3953         case TC_ACT_SHOT:
3954                 mini_qdisc_qstats_cpu_drop(miniq);
3955                 *ret = NET_XMIT_DROP;
3956                 kfree_skb(skb);
3957                 return NULL;
3958         case TC_ACT_STOLEN:
3959         case TC_ACT_QUEUED:
3960         case TC_ACT_TRAP:
3961                 *ret = NET_XMIT_SUCCESS;
3962                 consume_skb(skb);
3963                 return NULL;
3964         case TC_ACT_REDIRECT:
3965                 /* No need to push/pop skb's mac_header here on egress! */
3966                 skb_do_redirect(skb);
3967                 *ret = NET_XMIT_SUCCESS;
3968                 return NULL;
3969         default:
3970                 break;
3971         }
3972 #endif /* CONFIG_NET_CLS_ACT */
3973
3974         return skb;
3975 }
3976 #endif /* CONFIG_NET_EGRESS */
3977
3978 #ifdef CONFIG_XPS
3979 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3980                                struct xps_dev_maps *dev_maps, unsigned int tci)
3981 {
3982         int tc = netdev_get_prio_tc_map(dev, skb->priority);
3983         struct xps_map *map;
3984         int queue_index = -1;
3985
3986         if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
3987                 return queue_index;
3988
3989         tci *= dev_maps->num_tc;
3990         tci += tc;
3991
3992         map = rcu_dereference(dev_maps->attr_map[tci]);
3993         if (map) {
3994                 if (map->len == 1)
3995                         queue_index = map->queues[0];
3996                 else
3997                         queue_index = map->queues[reciprocal_scale(
3998                                                 skb_get_hash(skb), map->len)];
3999                 if (unlikely(queue_index >= dev->real_num_tx_queues))
4000                         queue_index = -1;
4001         }
4002         return queue_index;
4003 }
4004 #endif
4005
4006 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4007                          struct sk_buff *skb)
4008 {
4009 #ifdef CONFIG_XPS
4010         struct xps_dev_maps *dev_maps;
4011         struct sock *sk = skb->sk;
4012         int queue_index = -1;
4013
4014         if (!static_key_false(&xps_needed))
4015                 return -1;
4016
4017         rcu_read_lock();
4018         if (!static_key_false(&xps_rxqs_needed))
4019                 goto get_cpus_map;
4020
4021         dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4022         if (dev_maps) {
4023                 int tci = sk_rx_queue_get(sk);
4024
4025                 if (tci >= 0)
4026                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4027                                                           tci);
4028         }
4029
4030 get_cpus_map:
4031         if (queue_index < 0) {
4032                 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4033                 if (dev_maps) {
4034                         unsigned int tci = skb->sender_cpu - 1;
4035
4036                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4037                                                           tci);
4038                 }
4039         }
4040         rcu_read_unlock();
4041
4042         return queue_index;
4043 #else
4044         return -1;
4045 #endif
4046 }
4047
4048 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4049                      struct net_device *sb_dev)
4050 {
4051         return 0;
4052 }
4053 EXPORT_SYMBOL(dev_pick_tx_zero);
4054
4055 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4056                        struct net_device *sb_dev)
4057 {
4058         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4059 }
4060 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4061
4062 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4063                      struct net_device *sb_dev)
4064 {
4065         struct sock *sk = skb->sk;
4066         int queue_index = sk_tx_queue_get(sk);
4067
4068         sb_dev = sb_dev ? : dev;
4069
4070         if (queue_index < 0 || skb->ooo_okay ||
4071             queue_index >= dev->real_num_tx_queues) {
4072                 int new_index = get_xps_queue(dev, sb_dev, skb);
4073
4074                 if (new_index < 0)
4075                         new_index = skb_tx_hash(dev, sb_dev, skb);
4076
4077                 if (queue_index != new_index && sk &&
4078                     sk_fullsock(sk) &&
4079                     rcu_access_pointer(sk->sk_dst_cache))
4080                         sk_tx_queue_set(sk, new_index);
4081
4082                 queue_index = new_index;
4083         }
4084
4085         return queue_index;
4086 }
4087 EXPORT_SYMBOL(netdev_pick_tx);
4088
4089 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4090                                          struct sk_buff *skb,
4091                                          struct net_device *sb_dev)
4092 {
4093         int queue_index = 0;
4094
4095 #ifdef CONFIG_XPS
4096         u32 sender_cpu = skb->sender_cpu - 1;
4097
4098         if (sender_cpu >= (u32)NR_CPUS)
4099                 skb->sender_cpu = raw_smp_processor_id() + 1;
4100 #endif
4101
4102         if (dev->real_num_tx_queues != 1) {
4103                 const struct net_device_ops *ops = dev->netdev_ops;
4104
4105                 if (ops->ndo_select_queue)
4106                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4107                 else
4108                         queue_index = netdev_pick_tx(dev, skb, sb_dev);
4109
4110                 queue_index = netdev_cap_txqueue(dev, queue_index);
4111         }
4112
4113         skb_set_queue_mapping(skb, queue_index);
4114         return netdev_get_tx_queue(dev, queue_index);
4115 }
4116
4117 /**
4118  *      __dev_queue_xmit - transmit a buffer
4119  *      @skb: buffer to transmit
4120  *      @sb_dev: suboordinate device used for L2 forwarding offload
4121  *
4122  *      Queue a buffer for transmission to a network device. The caller must
4123  *      have set the device and priority and built the buffer before calling
4124  *      this function. The function can be called from an interrupt.
4125  *
4126  *      A negative errno code is returned on a failure. A success does not
4127  *      guarantee the frame will be transmitted as it may be dropped due
4128  *      to congestion or traffic shaping.
4129  *
4130  * -----------------------------------------------------------------------------------
4131  *      I notice this method can also return errors from the queue disciplines,
4132  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4133  *      be positive.
4134  *
4135  *      Regardless of the return value, the skb is consumed, so it is currently
4136  *      difficult to retry a send to this method.  (You can bump the ref count
4137  *      before sending to hold a reference for retry if you are careful.)
4138  *
4139  *      When calling this method, interrupts MUST be enabled.  This is because
4140  *      the BH enable code must have IRQs enabled so that it will not deadlock.
4141  *          --BLG
4142  */
4143 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4144 {
4145         struct net_device *dev = skb->dev;
4146         struct netdev_queue *txq;
4147         struct Qdisc *q;
4148         int rc = -ENOMEM;
4149         bool again = false;
4150
4151         skb_reset_mac_header(skb);
4152
4153         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4154                 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4155
4156         /* Disable soft irqs for various locks below. Also
4157          * stops preemption for RCU.
4158          */
4159         rcu_read_lock_bh();
4160
4161         skb_update_prio(skb);
4162
4163         qdisc_pkt_len_init(skb);
4164 #ifdef CONFIG_NET_CLS_ACT
4165         skb->tc_at_ingress = 0;
4166 #endif
4167 #ifdef CONFIG_NET_EGRESS
4168         if (static_branch_unlikely(&egress_needed_key)) {
4169                 if (nf_hook_egress_active()) {
4170                         skb = nf_hook_egress(skb, &rc, dev);
4171                         if (!skb)
4172                                 goto out;
4173                 }
4174                 nf_skip_egress(skb, true);
4175                 skb = sch_handle_egress(skb, &rc, dev);
4176                 if (!skb)
4177                         goto out;
4178                 nf_skip_egress(skb, false);
4179         }
4180 #endif
4181         /* If device/qdisc don't need skb->dst, release it right now while
4182          * its hot in this cpu cache.
4183          */
4184         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4185                 skb_dst_drop(skb);
4186         else
4187                 skb_dst_force(skb);
4188
4189         txq = netdev_core_pick_tx(dev, skb, sb_dev);
4190         q = rcu_dereference_bh(txq->qdisc);
4191
4192         trace_net_dev_queue(skb);
4193         if (q->enqueue) {
4194                 rc = __dev_xmit_skb(skb, q, dev, txq);
4195                 goto out;
4196         }
4197
4198         /* The device has no queue. Common case for software devices:
4199          * loopback, all the sorts of tunnels...
4200
4201          * Really, it is unlikely that netif_tx_lock protection is necessary
4202          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4203          * counters.)
4204          * However, it is possible, that they rely on protection
4205          * made by us here.
4206
4207          * Check this and shot the lock. It is not prone from deadlocks.
4208          *Either shot noqueue qdisc, it is even simpler 8)
4209          */
4210         if (dev->flags & IFF_UP) {
4211                 int cpu = smp_processor_id(); /* ok because BHs are off */
4212
4213                 /* Other cpus might concurrently change txq->xmit_lock_owner
4214                  * to -1 or to their cpu id, but not to our id.
4215                  */
4216                 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4217                         if (dev_xmit_recursion())
4218                                 goto recursion_alert;
4219
4220                         skb = validate_xmit_skb(skb, dev, &again);
4221                         if (!skb)
4222                                 goto out;
4223
4224                         PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4225                         HARD_TX_LOCK(dev, txq, cpu);
4226
4227                         if (!netif_xmit_stopped(txq)) {
4228                                 dev_xmit_recursion_inc();
4229                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4230                                 dev_xmit_recursion_dec();
4231                                 if (dev_xmit_complete(rc)) {
4232                                         HARD_TX_UNLOCK(dev, txq);
4233                                         goto out;
4234                                 }
4235                         }
4236                         HARD_TX_UNLOCK(dev, txq);
4237                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4238                                              dev->name);
4239                 } else {
4240                         /* Recursion is detected! It is possible,
4241                          * unfortunately
4242                          */
4243 recursion_alert:
4244                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4245                                              dev->name);
4246                 }
4247         }
4248
4249         rc = -ENETDOWN;
4250         rcu_read_unlock_bh();
4251
4252         atomic_long_inc(&dev->tx_dropped);
4253         kfree_skb_list(skb);
4254         return rc;
4255 out:
4256         rcu_read_unlock_bh();
4257         return rc;
4258 }
4259
4260 int dev_queue_xmit(struct sk_buff *skb)
4261 {
4262         return __dev_queue_xmit(skb, NULL);
4263 }
4264 EXPORT_SYMBOL(dev_queue_xmit);
4265
4266 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4267 {
4268         return __dev_queue_xmit(skb, sb_dev);
4269 }
4270 EXPORT_SYMBOL(dev_queue_xmit_accel);
4271
4272 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4273 {
4274         struct net_device *dev = skb->dev;
4275         struct sk_buff *orig_skb = skb;
4276         struct netdev_queue *txq;
4277         int ret = NETDEV_TX_BUSY;
4278         bool again = false;
4279
4280         if (unlikely(!netif_running(dev) ||
4281                      !netif_carrier_ok(dev)))
4282                 goto drop;
4283
4284         skb = validate_xmit_skb_list(skb, dev, &again);
4285         if (skb != orig_skb)
4286                 goto drop;
4287
4288         skb_set_queue_mapping(skb, queue_id);
4289         txq = skb_get_tx_queue(dev, skb);
4290         PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4291
4292         local_bh_disable();
4293
4294         dev_xmit_recursion_inc();
4295         HARD_TX_LOCK(dev, txq, smp_processor_id());
4296         if (!netif_xmit_frozen_or_drv_stopped(txq))
4297                 ret = netdev_start_xmit(skb, dev, txq, false);
4298         HARD_TX_UNLOCK(dev, txq);
4299         dev_xmit_recursion_dec();
4300
4301         local_bh_enable();
4302         return ret;
4303 drop:
4304         atomic_long_inc(&dev->tx_dropped);
4305         kfree_skb_list(skb);
4306         return NET_XMIT_DROP;
4307 }
4308 EXPORT_SYMBOL(__dev_direct_xmit);
4309
4310 /*************************************************************************
4311  *                      Receiver routines
4312  *************************************************************************/
4313
4314 int netdev_max_backlog __read_mostly = 1000;
4315 EXPORT_SYMBOL(netdev_max_backlog);
4316
4317 int netdev_tstamp_prequeue __read_mostly = 1;
4318 int netdev_budget __read_mostly = 300;
4319 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4320 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4321 int weight_p __read_mostly = 64;           /* old backlog weight */
4322 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4323 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4324 int dev_rx_weight __read_mostly = 64;
4325 int dev_tx_weight __read_mostly = 64;
4326 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4327 int gro_normal_batch __read_mostly = 8;
4328
4329 /* Called with irq disabled */
4330 static inline void ____napi_schedule(struct softnet_data *sd,
4331                                      struct napi_struct *napi)
4332 {
4333         struct task_struct *thread;
4334
4335         if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4336                 /* Paired with smp_mb__before_atomic() in
4337                  * napi_enable()/dev_set_threaded().
4338                  * Use READ_ONCE() to guarantee a complete
4339                  * read on napi->thread. Only call
4340                  * wake_up_process() when it's not NULL.
4341                  */
4342                 thread = READ_ONCE(napi->thread);
4343                 if (thread) {
4344                         /* Avoid doing set_bit() if the thread is in
4345                          * INTERRUPTIBLE state, cause napi_thread_wait()
4346                          * makes sure to proceed with napi polling
4347                          * if the thread is explicitly woken from here.
4348                          */
4349                         if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4350                                 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4351                         wake_up_process(thread);
4352                         return;
4353                 }
4354         }
4355
4356         list_add_tail(&napi->poll_list, &sd->poll_list);
4357         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4358 }
4359
4360 #ifdef CONFIG_RPS
4361
4362 /* One global table that all flow-based protocols share. */
4363 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4364 EXPORT_SYMBOL(rps_sock_flow_table);
4365 u32 rps_cpu_mask __read_mostly;
4366 EXPORT_SYMBOL(rps_cpu_mask);
4367
4368 struct static_key_false rps_needed __read_mostly;
4369 EXPORT_SYMBOL(rps_needed);
4370 struct static_key_false rfs_needed __read_mostly;
4371 EXPORT_SYMBOL(rfs_needed);
4372
4373 static struct rps_dev_flow *
4374 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4375             struct rps_dev_flow *rflow, u16 next_cpu)
4376 {
4377         if (next_cpu < nr_cpu_ids) {
4378 #ifdef CONFIG_RFS_ACCEL
4379                 struct netdev_rx_queue *rxqueue;
4380                 struct rps_dev_flow_table *flow_table;
4381                 struct rps_dev_flow *old_rflow;
4382                 u32 flow_id;
4383                 u16 rxq_index;
4384                 int rc;
4385
4386                 /* Should we steer this flow to a different hardware queue? */
4387                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4388                     !(dev->features & NETIF_F_NTUPLE))
4389                         goto out;
4390                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4391                 if (rxq_index == skb_get_rx_queue(skb))
4392                         goto out;
4393
4394                 rxqueue = dev->_rx + rxq_index;
4395                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4396                 if (!flow_table)
4397                         goto out;
4398                 flow_id = skb_get_hash(skb) & flow_table->mask;
4399                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4400                                                         rxq_index, flow_id);
4401                 if (rc < 0)
4402                         goto out;
4403                 old_rflow = rflow;
4404                 rflow = &flow_table->flows[flow_id];
4405                 rflow->filter = rc;
4406                 if (old_rflow->filter == rflow->filter)
4407                         old_rflow->filter = RPS_NO_FILTER;
4408         out:
4409 #endif
4410                 rflow->last_qtail =
4411                         per_cpu(softnet_data, next_cpu).input_queue_head;
4412         }
4413
4414         rflow->cpu = next_cpu;
4415         return rflow;
4416 }
4417
4418 /*
4419  * get_rps_cpu is called from netif_receive_skb and returns the target
4420  * CPU from the RPS map of the receiving queue for a given skb.
4421  * rcu_read_lock must be held on entry.
4422  */
4423 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4424                        struct rps_dev_flow **rflowp)
4425 {
4426         const struct rps_sock_flow_table *sock_flow_table;
4427         struct netdev_rx_queue *rxqueue = dev->_rx;
4428         struct rps_dev_flow_table *flow_table;
4429         struct rps_map *map;
4430         int cpu = -1;
4431         u32 tcpu;
4432         u32 hash;
4433
4434         if (skb_rx_queue_recorded(skb)) {
4435                 u16 index = skb_get_rx_queue(skb);
4436
4437                 if (unlikely(index >= dev->real_num_rx_queues)) {
4438                         WARN_ONCE(dev->real_num_rx_queues > 1,
4439                                   "%s received packet on queue %u, but number "
4440                                   "of RX queues is %u\n",
4441                                   dev->name, index, dev->real_num_rx_queues);
4442                         goto done;
4443                 }
4444                 rxqueue += index;
4445         }
4446
4447         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4448
4449         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4450         map = rcu_dereference(rxqueue->rps_map);
4451         if (!flow_table && !map)
4452                 goto done;
4453
4454         skb_reset_network_header(skb);
4455         hash = skb_get_hash(skb);
4456         if (!hash)
4457                 goto done;
4458
4459         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4460         if (flow_table && sock_flow_table) {
4461                 struct rps_dev_flow *rflow;
4462                 u32 next_cpu;
4463                 u32 ident;
4464
4465                 /* First check into global flow table if there is a match */
4466                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4467                 if ((ident ^ hash) & ~rps_cpu_mask)
4468                         goto try_rps;
4469
4470                 next_cpu = ident & rps_cpu_mask;
4471
4472                 /* OK, now we know there is a match,
4473                  * we can look at the local (per receive queue) flow table
4474                  */
4475                 rflow = &flow_table->flows[hash & flow_table->mask];
4476                 tcpu = rflow->cpu;
4477
4478                 /*
4479                  * If the desired CPU (where last recvmsg was done) is
4480                  * different from current CPU (one in the rx-queue flow
4481                  * table entry), switch if one of the following holds:
4482                  *   - Current CPU is unset (>= nr_cpu_ids).
4483                  *   - Current CPU is offline.
4484                  *   - The current CPU's queue tail has advanced beyond the
4485                  *     last packet that was enqueued using this table entry.
4486                  *     This guarantees that all previous packets for the flow
4487                  *     have been dequeued, thus preserving in order delivery.
4488                  */
4489                 if (unlikely(tcpu != next_cpu) &&
4490                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4491                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4492                       rflow->last_qtail)) >= 0)) {
4493                         tcpu = next_cpu;
4494                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4495                 }
4496
4497                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4498                         *rflowp = rflow;
4499                         cpu = tcpu;
4500                         goto done;
4501                 }
4502         }
4503
4504 try_rps:
4505
4506         if (map) {
4507                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4508                 if (cpu_online(tcpu)) {
4509                         cpu = tcpu;
4510                         goto done;
4511                 }
4512         }
4513
4514 done:
4515         return cpu;
4516 }
4517
4518 #ifdef CONFIG_RFS_ACCEL
4519
4520 /**
4521  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4522  * @dev: Device on which the filter was set
4523  * @rxq_index: RX queue index
4524  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4525  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4526  *
4527  * Drivers that implement ndo_rx_flow_steer() should periodically call
4528  * this function for each installed filter and remove the filters for
4529  * which it returns %true.
4530  */
4531 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4532                          u32 flow_id, u16 filter_id)
4533 {
4534         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4535         struct rps_dev_flow_table *flow_table;
4536         struct rps_dev_flow *rflow;
4537         bool expire = true;
4538         unsigned int cpu;
4539
4540         rcu_read_lock();
4541         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4542         if (flow_table && flow_id <= flow_table->mask) {
4543                 rflow = &flow_table->flows[flow_id];
4544                 cpu = READ_ONCE(rflow->cpu);
4545                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4546                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4547                            rflow->last_qtail) <
4548                      (int)(10 * flow_table->mask)))
4549                         expire = false;
4550         }
4551         rcu_read_unlock();
4552         return expire;
4553 }
4554 EXPORT_SYMBOL(rps_may_expire_flow);
4555
4556 #endif /* CONFIG_RFS_ACCEL */
4557
4558 /* Called from hardirq (IPI) context */
4559 static void rps_trigger_softirq(void *data)
4560 {
4561         struct softnet_data *sd = data;
4562
4563         ____napi_schedule(sd, &sd->backlog);
4564         sd->received_rps++;
4565 }
4566
4567 #endif /* CONFIG_RPS */
4568
4569 /*
4570  * Check if this softnet_data structure is another cpu one
4571  * If yes, queue it to our IPI list and return 1
4572  * If no, return 0
4573  */
4574 static int rps_ipi_queued(struct softnet_data *sd)
4575 {
4576 #ifdef CONFIG_RPS
4577         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4578
4579         if (sd != mysd) {
4580                 sd->rps_ipi_next = mysd->rps_ipi_list;
4581                 mysd->rps_ipi_list = sd;
4582
4583                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4584                 return 1;
4585         }
4586 #endif /* CONFIG_RPS */
4587         return 0;
4588 }
4589
4590 #ifdef CONFIG_NET_FLOW_LIMIT
4591 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4592 #endif
4593
4594 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4595 {
4596 #ifdef CONFIG_NET_FLOW_LIMIT
4597         struct sd_flow_limit *fl;
4598         struct softnet_data *sd;
4599         unsigned int old_flow, new_flow;
4600
4601         if (qlen < (netdev_max_backlog >> 1))
4602                 return false;
4603
4604         sd = this_cpu_ptr(&softnet_data);
4605
4606         rcu_read_lock();
4607         fl = rcu_dereference(sd->flow_limit);
4608         if (fl) {
4609                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4610                 old_flow = fl->history[fl->history_head];
4611                 fl->history[fl->history_head] = new_flow;
4612
4613                 fl->history_head++;
4614                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4615
4616                 if (likely(fl->buckets[old_flow]))
4617                         fl->buckets[old_flow]--;
4618
4619                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4620                         fl->count++;
4621                         rcu_read_unlock();
4622                         return true;
4623                 }
4624         }
4625         rcu_read_unlock();
4626 #endif
4627         return false;
4628 }
4629
4630 /*
4631  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4632  * queue (may be a remote CPU queue).
4633  */
4634 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4635                               unsigned int *qtail)
4636 {
4637         struct softnet_data *sd;
4638         unsigned long flags;
4639         unsigned int qlen;
4640
4641         sd = &per_cpu(softnet_data, cpu);
4642
4643         local_irq_save(flags);
4644
4645         rps_lock(sd);
4646         if (!netif_running(skb->dev))
4647                 goto drop;
4648         qlen = skb_queue_len(&sd->input_pkt_queue);
4649         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4650                 if (qlen) {
4651 enqueue:
4652                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4653                         input_queue_tail_incr_save(sd, qtail);
4654                         rps_unlock(sd);
4655                         local_irq_restore(flags);
4656                         return NET_RX_SUCCESS;
4657                 }
4658
4659                 /* Schedule NAPI for backlog device
4660                  * We can use non atomic operation since we own the queue lock
4661                  */
4662                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4663                         if (!rps_ipi_queued(sd))
4664                                 ____napi_schedule(sd, &sd->backlog);
4665                 }
4666                 goto enqueue;
4667         }
4668
4669 drop:
4670         sd->dropped++;
4671         rps_unlock(sd);
4672
4673         local_irq_restore(flags);
4674
4675         atomic_long_inc(&skb->dev->rx_dropped);
4676         kfree_skb(skb);
4677         return NET_RX_DROP;
4678 }
4679
4680 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4681 {
4682         struct net_device *dev = skb->dev;
4683         struct netdev_rx_queue *rxqueue;
4684
4685         rxqueue = dev->_rx;
4686
4687         if (skb_rx_queue_recorded(skb)) {
4688                 u16 index = skb_get_rx_queue(skb);
4689
4690                 if (unlikely(index >= dev->real_num_rx_queues)) {
4691                         WARN_ONCE(dev->real_num_rx_queues > 1,
4692                                   "%s received packet on queue %u, but number "
4693                                   "of RX queues is %u\n",
4694                                   dev->name, index, dev->real_num_rx_queues);
4695
4696                         return rxqueue; /* Return first rxqueue */
4697                 }
4698                 rxqueue += index;
4699         }
4700         return rxqueue;
4701 }
4702
4703 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4704                              struct bpf_prog *xdp_prog)
4705 {
4706         void *orig_data, *orig_data_end, *hard_start;
4707         struct netdev_rx_queue *rxqueue;
4708         bool orig_bcast, orig_host;
4709         u32 mac_len, frame_sz;
4710         __be16 orig_eth_type;
4711         struct ethhdr *eth;
4712         u32 metalen, act;
4713         int off;
4714
4715         /* The XDP program wants to see the packet starting at the MAC
4716          * header.
4717          */
4718         mac_len = skb->data - skb_mac_header(skb);
4719         hard_start = skb->data - skb_headroom(skb);
4720
4721         /* SKB "head" area always have tailroom for skb_shared_info */
4722         frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4723         frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4724
4725         rxqueue = netif_get_rxqueue(skb);
4726         xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4727         xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4728                          skb_headlen(skb) + mac_len, true);
4729
4730         orig_data_end = xdp->data_end;
4731         orig_data = xdp->data;
4732         eth = (struct ethhdr *)xdp->data;
4733         orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4734         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4735         orig_eth_type = eth->h_proto;
4736
4737         act = bpf_prog_run_xdp(xdp_prog, xdp);
4738
4739         /* check if bpf_xdp_adjust_head was used */
4740         off = xdp->data - orig_data;
4741         if (off) {
4742                 if (off > 0)
4743                         __skb_pull(skb, off);
4744                 else if (off < 0)
4745                         __skb_push(skb, -off);
4746
4747                 skb->mac_header += off;
4748                 skb_reset_network_header(skb);
4749         }
4750
4751         /* check if bpf_xdp_adjust_tail was used */
4752         off = xdp->data_end - orig_data_end;
4753         if (off != 0) {
4754                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4755                 skb->len += off; /* positive on grow, negative on shrink */
4756         }
4757
4758         /* check if XDP changed eth hdr such SKB needs update */
4759         eth = (struct ethhdr *)xdp->data;
4760         if ((orig_eth_type != eth->h_proto) ||
4761             (orig_host != ether_addr_equal_64bits(eth->h_dest,
4762                                                   skb->dev->dev_addr)) ||
4763             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4764                 __skb_push(skb, ETH_HLEN);
4765                 skb->pkt_type = PACKET_HOST;
4766                 skb->protocol = eth_type_trans(skb, skb->dev);
4767         }
4768
4769         /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4770          * before calling us again on redirect path. We do not call do_redirect
4771          * as we leave that up to the caller.
4772          *
4773          * Caller is responsible for managing lifetime of skb (i.e. calling
4774          * kfree_skb in response to actions it cannot handle/XDP_DROP).
4775          */
4776         switch (act) {
4777         case XDP_REDIRECT:
4778         case XDP_TX:
4779                 __skb_push(skb, mac_len);
4780                 break;
4781         case XDP_PASS:
4782                 metalen = xdp->data - xdp->data_meta;
4783                 if (metalen)
4784                         skb_metadata_set(skb, metalen);
4785                 break;
4786         }
4787
4788         return act;
4789 }
4790
4791 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4792                                      struct xdp_buff *xdp,
4793                                      struct bpf_prog *xdp_prog)
4794 {
4795         u32 act = XDP_DROP;
4796
4797         /* Reinjected packets coming from act_mirred or similar should
4798          * not get XDP generic processing.
4799          */
4800         if (skb_is_redirected(skb))
4801                 return XDP_PASS;
4802
4803         /* XDP packets must be linear and must have sufficient headroom
4804          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4805          * native XDP provides, thus we need to do it here as well.
4806          */
4807         if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4808             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4809                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4810                 int troom = skb->tail + skb->data_len - skb->end;
4811
4812                 /* In case we have to go down the path and also linearize,
4813                  * then lets do the pskb_expand_head() work just once here.
4814                  */
4815                 if (pskb_expand_head(skb,
4816                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4817                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4818                         goto do_drop;
4819                 if (skb_linearize(skb))
4820                         goto do_drop;
4821         }
4822
4823         act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4824         switch (act) {
4825         case XDP_REDIRECT:
4826         case XDP_TX:
4827         case XDP_PASS:
4828                 break;
4829         default:
4830                 bpf_warn_invalid_xdp_action(act);
4831                 fallthrough;
4832         case XDP_ABORTED:
4833                 trace_xdp_exception(skb->dev, xdp_prog, act);
4834                 fallthrough;
4835         case XDP_DROP:
4836         do_drop:
4837                 kfree_skb(skb);
4838                 break;
4839         }
4840
4841         return act;
4842 }
4843
4844 /* When doing generic XDP we have to bypass the qdisc layer and the
4845  * network taps in order to match in-driver-XDP behavior.
4846  */
4847 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4848 {
4849         struct net_device *dev = skb->dev;
4850         struct netdev_queue *txq;
4851         bool free_skb = true;
4852         int cpu, rc;
4853
4854         txq = netdev_core_pick_tx(dev, skb, NULL);
4855         cpu = smp_processor_id();
4856         HARD_TX_LOCK(dev, txq, cpu);
4857         if (!netif_xmit_stopped(txq)) {
4858                 rc = netdev_start_xmit(skb, dev, txq, 0);
4859                 if (dev_xmit_complete(rc))
4860                         free_skb = false;
4861         }
4862         HARD_TX_UNLOCK(dev, txq);
4863         if (free_skb) {
4864                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4865                 kfree_skb(skb);
4866         }
4867 }
4868
4869 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4870
4871 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4872 {
4873         if (xdp_prog) {
4874                 struct xdp_buff xdp;
4875                 u32 act;
4876                 int err;
4877
4878                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4879                 if (act != XDP_PASS) {
4880                         switch (act) {
4881                         case XDP_REDIRECT:
4882                                 err = xdp_do_generic_redirect(skb->dev, skb,
4883                                                               &xdp, xdp_prog);
4884                                 if (err)
4885                                         goto out_redir;
4886                                 break;
4887                         case XDP_TX:
4888                                 generic_xdp_tx(skb, xdp_prog);
4889                                 break;
4890                         }
4891                         return XDP_DROP;
4892                 }
4893         }
4894         return XDP_PASS;
4895 out_redir:
4896         kfree_skb(skb);
4897         return XDP_DROP;
4898 }
4899 EXPORT_SYMBOL_GPL(do_xdp_generic);
4900
4901 static int netif_rx_internal(struct sk_buff *skb)
4902 {
4903         int ret;
4904
4905         net_timestamp_check(netdev_tstamp_prequeue, skb);
4906
4907         trace_netif_rx(skb);
4908
4909 #ifdef CONFIG_RPS
4910         if (static_branch_unlikely(&rps_needed)) {
4911                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4912                 int cpu;
4913
4914                 preempt_disable();
4915                 rcu_read_lock();
4916
4917                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4918                 if (cpu < 0)
4919                         cpu = smp_processor_id();
4920
4921                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4922
4923                 rcu_read_unlock();
4924                 preempt_enable();
4925         } else
4926 #endif
4927         {
4928                 unsigned int qtail;
4929
4930                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4931                 put_cpu();
4932         }
4933         return ret;
4934 }
4935
4936 /**
4937  *      netif_rx        -       post buffer to the network code
4938  *      @skb: buffer to post
4939  *
4940  *      This function receives a packet from a device driver and queues it for
4941  *      the upper (protocol) levels to process.  It always succeeds. The buffer
4942  *      may be dropped during processing for congestion control or by the
4943  *      protocol layers.
4944  *
4945  *      return values:
4946  *      NET_RX_SUCCESS  (no congestion)
4947  *      NET_RX_DROP     (packet was dropped)
4948  *
4949  */
4950
4951 int netif_rx(struct sk_buff *skb)
4952 {
4953         int ret;
4954
4955         trace_netif_rx_entry(skb);
4956
4957         ret = netif_rx_internal(skb);
4958         trace_netif_rx_exit(ret);
4959
4960         return ret;
4961 }
4962 EXPORT_SYMBOL(netif_rx);
4963
4964 int netif_rx_ni(struct sk_buff *skb)
4965 {
4966         int err;
4967
4968         trace_netif_rx_ni_entry(skb);
4969
4970         preempt_disable();
4971         err = netif_rx_internal(skb);
4972         if (local_softirq_pending())
4973                 do_softirq();
4974         preempt_enable();
4975         trace_netif_rx_ni_exit(err);
4976
4977         return err;
4978 }
4979 EXPORT_SYMBOL(netif_rx_ni);
4980
4981 int netif_rx_any_context(struct sk_buff *skb)
4982 {
4983         /*
4984          * If invoked from contexts which do not invoke bottom half
4985          * processing either at return from interrupt or when softrqs are
4986          * reenabled, use netif_rx_ni() which invokes bottomhalf processing
4987          * directly.
4988          */
4989         if (in_interrupt())
4990                 return netif_rx(skb);
4991         else
4992                 return netif_rx_ni(skb);
4993 }
4994 EXPORT_SYMBOL(netif_rx_any_context);
4995
4996 static __latent_entropy void net_tx_action(struct softirq_action *h)
4997 {
4998         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4999
5000         if (sd->completion_queue) {
5001                 struct sk_buff *clist;
5002
5003                 local_irq_disable();
5004                 clist = sd->completion_queue;
5005                 sd->completion_queue = NULL;
5006                 local_irq_enable();
5007
5008                 while (clist) {
5009                         struct sk_buff *skb = clist;
5010
5011                         clist = clist->next;
5012
5013                         WARN_ON(refcount_read(&skb->users));
5014                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
5015                                 trace_consume_skb(skb);
5016                         else
5017                                 trace_kfree_skb(skb, net_tx_action);
5018
5019                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5020                                 __kfree_skb(skb);
5021                         else
5022                                 __kfree_skb_defer(skb);
5023                 }
5024         }
5025
5026         if (sd->output_queue) {
5027                 struct Qdisc *head;
5028
5029                 local_irq_disable();
5030                 head = sd->output_queue;
5031                 sd->output_queue = NULL;
5032                 sd->output_queue_tailp = &sd->output_queue;
5033                 local_irq_enable();
5034
5035                 rcu_read_lock();
5036
5037                 while (head) {
5038                         struct Qdisc *q = head;
5039                         spinlock_t *root_lock = NULL;
5040
5041                         head = head->next_sched;
5042
5043                         /* We need to make sure head->next_sched is read
5044                          * before clearing __QDISC_STATE_SCHED
5045                          */
5046                         smp_mb__before_atomic();
5047
5048                         if (!(q->flags & TCQ_F_NOLOCK)) {
5049                                 root_lock = qdisc_lock(q);
5050                                 spin_lock(root_lock);
5051                         } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5052                                                      &q->state))) {
5053                                 /* There is a synchronize_net() between
5054                                  * STATE_DEACTIVATED flag being set and
5055                                  * qdisc_reset()/some_qdisc_is_busy() in
5056                                  * dev_deactivate(), so we can safely bail out
5057                                  * early here to avoid data race between
5058                                  * qdisc_deactivate() and some_qdisc_is_busy()
5059                                  * for lockless qdisc.
5060                                  */
5061                                 clear_bit(__QDISC_STATE_SCHED, &q->state);
5062                                 continue;
5063                         }
5064
5065                         clear_bit(__QDISC_STATE_SCHED, &q->state);
5066                         qdisc_run(q);
5067                         if (root_lock)
5068                                 spin_unlock(root_lock);
5069                 }
5070
5071                 rcu_read_unlock();
5072         }
5073
5074         xfrm_dev_backlog(sd);
5075 }
5076
5077 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5078 /* This hook is defined here for ATM LANE */
5079 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5080                              unsigned char *addr) __read_mostly;
5081 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5082 #endif
5083
5084 static inline struct sk_buff *
5085 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5086                    struct net_device *orig_dev, bool *another)
5087 {
5088 #ifdef CONFIG_NET_CLS_ACT
5089         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5090         struct tcf_result cl_res;
5091
5092         /* If there's at least one ingress present somewhere (so
5093          * we get here via enabled static key), remaining devices
5094          * that are not configured with an ingress qdisc will bail
5095          * out here.
5096          */
5097         if (!miniq)
5098                 return skb;
5099
5100         if (*pt_prev) {
5101                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5102                 *pt_prev = NULL;
5103         }
5104
5105         qdisc_skb_cb(skb)->pkt_len = skb->len;
5106         qdisc_skb_cb(skb)->mru = 0;
5107         qdisc_skb_cb(skb)->post_ct = false;
5108         skb->tc_at_ingress = 1;
5109         mini_qdisc_bstats_cpu_update(miniq, skb);
5110
5111         switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
5112         case TC_ACT_OK:
5113         case TC_ACT_RECLASSIFY:
5114                 skb->tc_index = TC_H_MIN(cl_res.classid);
5115                 break;
5116         case TC_ACT_SHOT:
5117                 mini_qdisc_qstats_cpu_drop(miniq);
5118                 kfree_skb(skb);
5119                 return NULL;
5120         case TC_ACT_STOLEN:
5121         case TC_ACT_QUEUED:
5122         case TC_ACT_TRAP:
5123                 consume_skb(skb);
5124                 return NULL;
5125         case TC_ACT_REDIRECT:
5126                 /* skb_mac_header check was done by cls/act_bpf, so
5127                  * we can safely push the L2 header back before
5128                  * redirecting to another netdev
5129                  */
5130                 __skb_push(skb, skb->mac_len);
5131                 if (skb_do_redirect(skb) == -EAGAIN) {
5132                         __skb_pull(skb, skb->mac_len);
5133                         *another = true;
5134                         break;
5135                 }
5136                 return NULL;
5137         case TC_ACT_CONSUMED:
5138                 return NULL;
5139         default:
5140                 break;
5141         }
5142 #endif /* CONFIG_NET_CLS_ACT */
5143         return skb;
5144 }
5145
5146 /**
5147  *      netdev_is_rx_handler_busy - check if receive handler is registered
5148  *      @dev: device to check
5149  *
5150  *      Check if a receive handler is already registered for a given device.
5151  *      Return true if there one.
5152  *
5153  *      The caller must hold the rtnl_mutex.
5154  */
5155 bool netdev_is_rx_handler_busy(struct net_device *dev)
5156 {
5157         ASSERT_RTNL();
5158         return dev && rtnl_dereference(dev->rx_handler);
5159 }
5160 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5161
5162 /**
5163  *      netdev_rx_handler_register - register receive handler
5164  *      @dev: device to register a handler for
5165  *      @rx_handler: receive handler to register
5166  *      @rx_handler_data: data pointer that is used by rx handler
5167  *
5168  *      Register a receive handler for a device. This handler will then be
5169  *      called from __netif_receive_skb. A negative errno code is returned
5170  *      on a failure.
5171  *
5172  *      The caller must hold the rtnl_mutex.
5173  *
5174  *      For a general description of rx_handler, see enum rx_handler_result.
5175  */
5176 int netdev_rx_handler_register(struct net_device *dev,
5177                                rx_handler_func_t *rx_handler,
5178                                void *rx_handler_data)
5179 {
5180         if (netdev_is_rx_handler_busy(dev))
5181                 return -EBUSY;
5182
5183         if (dev->priv_flags & IFF_NO_RX_HANDLER)
5184                 return -EINVAL;
5185
5186         /* Note: rx_handler_data must be set before rx_handler */
5187         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5188         rcu_assign_pointer(dev->rx_handler, rx_handler);
5189
5190         return 0;
5191 }
5192 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5193
5194 /**
5195  *      netdev_rx_handler_unregister - unregister receive handler
5196  *      @dev: device to unregister a handler from
5197  *
5198  *      Unregister a receive handler from a device.
5199  *
5200  *      The caller must hold the rtnl_mutex.
5201  */
5202 void netdev_rx_handler_unregister(struct net_device *dev)
5203 {
5204
5205         ASSERT_RTNL();
5206         RCU_INIT_POINTER(dev->rx_handler, NULL);
5207         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5208          * section has a guarantee to see a non NULL rx_handler_data
5209          * as well.
5210          */
5211         synchronize_net();
5212         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5213 }
5214 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5215
5216 /*
5217  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5218  * the special handling of PFMEMALLOC skbs.
5219  */
5220 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5221 {
5222         switch (skb->protocol) {
5223         case htons(ETH_P_ARP):
5224         case htons(ETH_P_IP):
5225         case htons(ETH_P_IPV6):
5226         case htons(ETH_P_8021Q):
5227         case htons(ETH_P_8021AD):
5228                 return true;
5229         default:
5230                 return false;
5231         }
5232 }
5233
5234 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5235                              int *ret, struct net_device *orig_dev)
5236 {
5237         if (nf_hook_ingress_active(skb)) {
5238                 int ingress_retval;
5239
5240                 if (*pt_prev) {
5241                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
5242                         *pt_prev = NULL;
5243                 }
5244
5245                 rcu_read_lock();
5246                 ingress_retval = nf_hook_ingress(skb);
5247                 rcu_read_unlock();
5248                 return ingress_retval;
5249         }
5250         return 0;
5251 }
5252
5253 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5254                                     struct packet_type **ppt_prev)
5255 {
5256         struct packet_type *ptype, *pt_prev;
5257         rx_handler_func_t *rx_handler;
5258         struct sk_buff *skb = *pskb;
5259         struct net_device *orig_dev;
5260         bool deliver_exact = false;
5261         int ret = NET_RX_DROP;
5262         __be16 type;
5263
5264         net_timestamp_check(!netdev_tstamp_prequeue, skb);
5265
5266         trace_netif_receive_skb(skb);
5267
5268         orig_dev = skb->dev;
5269
5270         skb_reset_network_header(skb);
5271         if (!skb_transport_header_was_set(skb))
5272                 skb_reset_transport_header(skb);
5273         skb_reset_mac_len(skb);
5274
5275         pt_prev = NULL;
5276
5277 another_round:
5278         skb->skb_iif = skb->dev->ifindex;
5279
5280         __this_cpu_inc(softnet_data.processed);
5281
5282         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5283                 int ret2;
5284
5285                 migrate_disable();
5286                 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5287                 migrate_enable();
5288
5289                 if (ret2 != XDP_PASS) {
5290                         ret = NET_RX_DROP;
5291                         goto out;
5292                 }
5293         }
5294
5295         if (eth_type_vlan(skb->protocol)) {
5296                 skb = skb_vlan_untag(skb);
5297                 if (unlikely(!skb))
5298                         goto out;
5299         }
5300
5301         if (skb_skip_tc_classify(skb))
5302                 goto skip_classify;
5303
5304         if (pfmemalloc)
5305                 goto skip_taps;
5306
5307         list_for_each_entry_rcu(ptype, &ptype_all, list) {
5308                 if (pt_prev)
5309                         ret = deliver_skb(skb, pt_prev, orig_dev);
5310                 pt_prev = ptype;
5311         }
5312
5313         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5314                 if (pt_prev)
5315                         ret = deliver_skb(skb, pt_prev, orig_dev);
5316                 pt_prev = ptype;
5317         }
5318
5319 skip_taps:
5320 #ifdef CONFIG_NET_INGRESS
5321         if (static_branch_unlikely(&ingress_needed_key)) {
5322                 bool another = false;
5323
5324                 nf_skip_egress(skb, true);
5325                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5326                                          &another);
5327                 if (another)
5328                         goto another_round;
5329                 if (!skb)
5330                         goto out;
5331
5332                 nf_skip_egress(skb, false);
5333                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5334                         goto out;
5335         }
5336 #endif
5337         skb_reset_redirect(skb);
5338 skip_classify:
5339         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5340                 goto drop;
5341
5342         if (skb_vlan_tag_present(skb)) {
5343                 if (pt_prev) {
5344                         ret = deliver_skb(skb, pt_prev, orig_dev);
5345                         pt_prev = NULL;
5346                 }
5347                 if (vlan_do_receive(&skb))
5348                         goto another_round;
5349                 else if (unlikely(!skb))
5350                         goto out;
5351         }
5352
5353         rx_handler = rcu_dereference(skb->dev->rx_handler);
5354         if (rx_handler) {
5355                 if (pt_prev) {
5356                         ret = deliver_skb(skb, pt_prev, orig_dev);
5357                         pt_prev = NULL;
5358                 }
5359                 switch (rx_handler(&skb)) {
5360                 case RX_HANDLER_CONSUMED:
5361                         ret = NET_RX_SUCCESS;
5362                         goto out;
5363                 case RX_HANDLER_ANOTHER:
5364                         goto another_round;
5365                 case RX_HANDLER_EXACT:
5366                         deliver_exact = true;
5367                         break;
5368                 case RX_HANDLER_PASS:
5369                         break;
5370                 default:
5371                         BUG();
5372                 }
5373         }
5374
5375         if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5376 check_vlan_id:
5377                 if (skb_vlan_tag_get_id(skb)) {
5378                         /* Vlan id is non 0 and vlan_do_receive() above couldn't
5379                          * find vlan device.
5380                          */
5381                         skb->pkt_type = PACKET_OTHERHOST;
5382                 } else if (eth_type_vlan(skb->protocol)) {
5383                         /* Outer header is 802.1P with vlan 0, inner header is
5384                          * 802.1Q or 802.1AD and vlan_do_receive() above could
5385                          * not find vlan dev for vlan id 0.
5386                          */
5387                         __vlan_hwaccel_clear_tag(skb);
5388                         skb = skb_vlan_untag(skb);
5389                         if (unlikely(!skb))
5390                                 goto out;
5391                         if (vlan_do_receive(&skb))
5392                                 /* After stripping off 802.1P header with vlan 0
5393                                  * vlan dev is found for inner header.
5394                                  */
5395                                 goto another_round;
5396                         else if (unlikely(!skb))
5397                                 goto out;
5398                         else
5399                                 /* We have stripped outer 802.1P vlan 0 header.
5400                                  * But could not find vlan dev.
5401                                  * check again for vlan id to set OTHERHOST.
5402                                  */
5403                                 goto check_vlan_id;
5404                 }
5405                 /* Note: we might in the future use prio bits
5406                  * and set skb->priority like in vlan_do_receive()
5407                  * For the time being, just ignore Priority Code Point
5408                  */
5409                 __vlan_hwaccel_clear_tag(skb);
5410         }
5411
5412         type = skb->protocol;
5413
5414         /* deliver only exact match when indicated */
5415         if (likely(!deliver_exact)) {
5416                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5417                                        &ptype_base[ntohs(type) &
5418                                                    PTYPE_HASH_MASK]);
5419         }
5420
5421         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5422                                &orig_dev->ptype_specific);
5423
5424         if (unlikely(skb->dev != orig_dev)) {
5425                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5426                                        &skb->dev->ptype_specific);
5427         }
5428
5429         if (pt_prev) {
5430                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5431                         goto drop;
5432                 *ppt_prev = pt_prev;
5433         } else {
5434 drop:
5435                 if (!deliver_exact)
5436                         atomic_long_inc(&skb->dev->rx_dropped);
5437                 else
5438                         atomic_long_inc(&skb->dev->rx_nohandler);
5439                 kfree_skb(skb);
5440                 /* Jamal, now you will not able to escape explaining
5441                  * me how you were going to use this. :-)
5442                  */
5443                 ret = NET_RX_DROP;
5444         }
5445
5446 out:
5447         /* The invariant here is that if *ppt_prev is not NULL
5448          * then skb should also be non-NULL.
5449          *
5450          * Apparently *ppt_prev assignment above holds this invariant due to
5451          * skb dereferencing near it.
5452          */
5453         *pskb = skb;
5454         return ret;
5455 }
5456
5457 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5458 {
5459         struct net_device *orig_dev = skb->dev;
5460         struct packet_type *pt_prev = NULL;
5461         int ret;
5462
5463         ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5464         if (pt_prev)
5465                 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5466                                          skb->dev, pt_prev, orig_dev);
5467         return ret;
5468 }
5469
5470 /**
5471  *      netif_receive_skb_core - special purpose version of netif_receive_skb
5472  *      @skb: buffer to process
5473  *
5474  *      More direct receive version of netif_receive_skb().  It should
5475  *      only be used by callers that have a need to skip RPS and Generic XDP.
5476  *      Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5477  *
5478  *      This function may only be called from softirq context and interrupts
5479  *      should be enabled.
5480  *
5481  *      Return values (usually ignored):
5482  *      NET_RX_SUCCESS: no congestion
5483  *      NET_RX_DROP: packet was dropped
5484  */
5485 int netif_receive_skb_core(struct sk_buff *skb)
5486 {
5487         int ret;
5488
5489         rcu_read_lock();
5490         ret = __netif_receive_skb_one_core(skb, false);
5491         rcu_read_unlock();
5492
5493         return ret;
5494 }
5495 EXPORT_SYMBOL(netif_receive_skb_core);
5496
5497 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5498                                                   struct packet_type *pt_prev,
5499                                                   struct net_device *orig_dev)
5500 {
5501         struct sk_buff *skb, *next;
5502
5503         if (!pt_prev)
5504                 return;
5505         if (list_empty(head))
5506                 return;
5507         if (pt_prev->list_func != NULL)
5508                 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5509                                    ip_list_rcv, head, pt_prev, orig_dev);
5510         else
5511                 list_for_each_entry_safe(skb, next, head, list) {
5512                         skb_list_del_init(skb);
5513                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5514                 }
5515 }
5516
5517 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5518 {
5519         /* Fast-path assumptions:
5520          * - There is no RX handler.
5521          * - Only one packet_type matches.
5522          * If either of these fails, we will end up doing some per-packet
5523          * processing in-line, then handling the 'last ptype' for the whole
5524          * sublist.  This can't cause out-of-order delivery to any single ptype,
5525          * because the 'last ptype' must be constant across the sublist, and all
5526          * other ptypes are handled per-packet.
5527          */
5528         /* Current (common) ptype of sublist */
5529         struct packet_type *pt_curr = NULL;
5530         /* Current (common) orig_dev of sublist */
5531         struct net_device *od_curr = NULL;
5532         struct list_head sublist;
5533         struct sk_buff *skb, *next;
5534
5535         INIT_LIST_HEAD(&sublist);
5536         list_for_each_entry_safe(skb, next, head, list) {
5537                 struct net_device *orig_dev = skb->dev;
5538                 struct packet_type *pt_prev = NULL;
5539
5540                 skb_list_del_init(skb);
5541                 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5542                 if (!pt_prev)
5543                         continue;
5544                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5545                         /* dispatch old sublist */
5546                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5547                         /* start new sublist */
5548                         INIT_LIST_HEAD(&sublist);
5549                         pt_curr = pt_prev;
5550                         od_curr = orig_dev;
5551                 }
5552                 list_add_tail(&skb->list, &sublist);
5553         }
5554
5555         /* dispatch final sublist */
5556         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5557 }
5558
5559 static int __netif_receive_skb(struct sk_buff *skb)
5560 {
5561         int ret;
5562
5563         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5564                 unsigned int noreclaim_flag;
5565
5566                 /*
5567                  * PFMEMALLOC skbs are special, they should
5568                  * - be delivered to SOCK_MEMALLOC sockets only
5569                  * - stay away from userspace
5570                  * - have bounded memory usage
5571                  *
5572                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5573                  * context down to all allocation sites.
5574                  */
5575                 noreclaim_flag = memalloc_noreclaim_save();
5576                 ret = __netif_receive_skb_one_core(skb, true);
5577                 memalloc_noreclaim_restore(noreclaim_flag);
5578         } else
5579                 ret = __netif_receive_skb_one_core(skb, false);
5580
5581         return ret;
5582 }
5583
5584 static void __netif_receive_skb_list(struct list_head *head)
5585 {
5586         unsigned long noreclaim_flag = 0;
5587         struct sk_buff *skb, *next;
5588         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5589
5590         list_for_each_entry_safe(skb, next, head, list) {
5591                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5592                         struct list_head sublist;
5593
5594                         /* Handle the previous sublist */
5595                         list_cut_before(&sublist, head, &skb->list);
5596                         if (!list_empty(&sublist))
5597                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5598                         pfmemalloc = !pfmemalloc;
5599                         /* See comments in __netif_receive_skb */
5600                         if (pfmemalloc)
5601                                 noreclaim_flag = memalloc_noreclaim_save();
5602                         else
5603                                 memalloc_noreclaim_restore(noreclaim_flag);
5604                 }
5605         }
5606         /* Handle the remaining sublist */
5607         if (!list_empty(head))
5608                 __netif_receive_skb_list_core(head, pfmemalloc);
5609         /* Restore pflags */
5610         if (pfmemalloc)
5611                 memalloc_noreclaim_restore(noreclaim_flag);
5612 }
5613
5614 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5615 {
5616         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5617         struct bpf_prog *new = xdp->prog;
5618         int ret = 0;
5619
5620         switch (xdp->command) {
5621         case XDP_SETUP_PROG:
5622                 rcu_assign_pointer(dev->xdp_prog, new);
5623                 if (old)
5624                         bpf_prog_put(old);
5625
5626                 if (old && !new) {
5627                         static_branch_dec(&generic_xdp_needed_key);
5628                 } else if (new && !old) {
5629                         static_branch_inc(&generic_xdp_needed_key);
5630                         dev_disable_lro(dev);
5631                         dev_disable_gro_hw(dev);
5632                 }
5633                 break;
5634
5635         default:
5636                 ret = -EINVAL;
5637                 break;
5638         }
5639
5640         return ret;
5641 }
5642
5643 static int netif_receive_skb_internal(struct sk_buff *skb)
5644 {
5645         int ret;
5646
5647         net_timestamp_check(netdev_tstamp_prequeue, skb);
5648
5649         if (skb_defer_rx_timestamp(skb))
5650                 return NET_RX_SUCCESS;
5651
5652         rcu_read_lock();
5653 #ifdef CONFIG_RPS
5654         if (static_branch_unlikely(&rps_needed)) {
5655                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5656                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5657
5658                 if (cpu >= 0) {
5659                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5660                         rcu_read_unlock();
5661                         return ret;
5662                 }
5663         }
5664 #endif
5665         ret = __netif_receive_skb(skb);
5666         rcu_read_unlock();
5667         return ret;
5668 }
5669
5670 static void netif_receive_skb_list_internal(struct list_head *head)
5671 {
5672         struct sk_buff *skb, *next;
5673         struct list_head sublist;
5674
5675         INIT_LIST_HEAD(&sublist);
5676         list_for_each_entry_safe(skb, next, head, list) {
5677                 net_timestamp_check(netdev_tstamp_prequeue, skb);
5678                 skb_list_del_init(skb);
5679                 if (!skb_defer_rx_timestamp(skb))
5680                         list_add_tail(&skb->list, &sublist);
5681         }
5682         list_splice_init(&sublist, head);
5683
5684         rcu_read_lock();
5685 #ifdef CONFIG_RPS
5686         if (static_branch_unlikely(&rps_needed)) {
5687                 list_for_each_entry_safe(skb, next, head, list) {
5688                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5689                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5690
5691                         if (cpu >= 0) {
5692                                 /* Will be handled, remove from list */
5693                                 skb_list_del_init(skb);
5694                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5695                         }
5696                 }
5697         }
5698 #endif
5699         __netif_receive_skb_list(head);
5700         rcu_read_unlock();
5701 }
5702
5703 /**
5704  *      netif_receive_skb - process receive buffer from network
5705  *      @skb: buffer to process
5706  *
5707  *      netif_receive_skb() is the main receive data processing function.
5708  *      It always succeeds. The buffer may be dropped during processing
5709  *      for congestion control or by the protocol layers.
5710  *
5711  *      This function may only be called from softirq context and interrupts
5712  *      should be enabled.
5713  *
5714  *      Return values (usually ignored):
5715  *      NET_RX_SUCCESS: no congestion
5716  *      NET_RX_DROP: packet was dropped
5717  */
5718 int netif_receive_skb(struct sk_buff *skb)
5719 {
5720         int ret;
5721
5722         trace_netif_receive_skb_entry(skb);
5723
5724         ret = netif_receive_skb_internal(skb);
5725         trace_netif_receive_skb_exit(ret);
5726
5727         return ret;
5728 }
5729 EXPORT_SYMBOL(netif_receive_skb);
5730
5731 /**
5732  *      netif_receive_skb_list - process many receive buffers from network
5733  *      @head: list of skbs to process.
5734  *
5735  *      Since return value of netif_receive_skb() is normally ignored, and
5736  *      wouldn't be meaningful for a list, this function returns void.
5737  *
5738  *      This function may only be called from softirq context and interrupts
5739  *      should be enabled.
5740  */
5741 void netif_receive_skb_list(struct list_head *head)
5742 {
5743         struct sk_buff *skb;
5744
5745         if (list_empty(head))
5746                 return;
5747         if (trace_netif_receive_skb_list_entry_enabled()) {
5748                 list_for_each_entry(skb, head, list)
5749                         trace_netif_receive_skb_list_entry(skb);
5750         }
5751         netif_receive_skb_list_internal(head);
5752         trace_netif_receive_skb_list_exit(0);
5753 }
5754 EXPORT_SYMBOL(netif_receive_skb_list);
5755
5756 static DEFINE_PER_CPU(struct work_struct, flush_works);
5757
5758 /* Network device is going away, flush any packets still pending */
5759 static void flush_backlog(struct work_struct *work)
5760 {
5761         struct sk_buff *skb, *tmp;
5762         struct softnet_data *sd;
5763
5764         local_bh_disable();
5765         sd = this_cpu_ptr(&softnet_data);
5766
5767         local_irq_disable();
5768         rps_lock(sd);
5769         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5770                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5771                         __skb_unlink(skb, &sd->input_pkt_queue);
5772                         dev_kfree_skb_irq(skb);
5773                         input_queue_head_incr(sd);
5774                 }
5775         }
5776         rps_unlock(sd);
5777         local_irq_enable();
5778
5779         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5780                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5781                         __skb_unlink(skb, &sd->process_queue);
5782                         kfree_skb(skb);
5783                         input_queue_head_incr(sd);
5784                 }
5785         }
5786         local_bh_enable();
5787 }
5788
5789 static bool flush_required(int cpu)
5790 {
5791 #if IS_ENABLED(CONFIG_RPS)
5792         struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5793         bool do_flush;
5794
5795         local_irq_disable();
5796         rps_lock(sd);
5797
5798         /* as insertion into process_queue happens with the rps lock held,
5799          * process_queue access may race only with dequeue
5800          */
5801         do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5802                    !skb_queue_empty_lockless(&sd->process_queue);
5803         rps_unlock(sd);
5804         local_irq_enable();
5805
5806         return do_flush;
5807 #endif
5808         /* without RPS we can't safely check input_pkt_queue: during a
5809          * concurrent remote skb_queue_splice() we can detect as empty both
5810          * input_pkt_queue and process_queue even if the latter could end-up
5811          * containing a lot of packets.
5812          */
5813         return true;
5814 }
5815
5816 static void flush_all_backlogs(void)
5817 {
5818         static cpumask_t flush_cpus;
5819         unsigned int cpu;
5820
5821         /* since we are under rtnl lock protection we can use static data
5822          * for the cpumask and avoid allocating on stack the possibly
5823          * large mask
5824          */
5825         ASSERT_RTNL();
5826
5827         cpus_read_lock();
5828
5829         cpumask_clear(&flush_cpus);
5830         for_each_online_cpu(cpu) {
5831                 if (flush_required(cpu)) {
5832                         queue_work_on(cpu, system_highpri_wq,
5833                                       per_cpu_ptr(&flush_works, cpu));
5834                         cpumask_set_cpu(cpu, &flush_cpus);
5835                 }
5836         }
5837
5838         /* we can have in flight packet[s] on the cpus we are not flushing,
5839          * synchronize_net() in unregister_netdevice_many() will take care of
5840          * them
5841          */
5842         for_each_cpu(cpu, &flush_cpus)
5843                 flush_work(per_cpu_ptr(&flush_works, cpu));
5844
5845         cpus_read_unlock();
5846 }
5847
5848 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5849 static void gro_normal_list(struct napi_struct *napi)
5850 {
5851         if (!napi->rx_count)
5852                 return;
5853         netif_receive_skb_list_internal(&napi->rx_list);
5854         INIT_LIST_HEAD(&napi->rx_list);
5855         napi->rx_count = 0;
5856 }
5857
5858 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5859  * pass the whole batch up to the stack.
5860  */
5861 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb, int segs)
5862 {
5863         list_add_tail(&skb->list, &napi->rx_list);
5864         napi->rx_count += segs;
5865         if (napi->rx_count >= gro_normal_batch)
5866                 gro_normal_list(napi);
5867 }
5868
5869 static void napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5870 {
5871         struct packet_offload *ptype;
5872         __be16 type = skb->protocol;
5873         struct list_head *head = &offload_base;
5874         int err = -ENOENT;
5875
5876         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5877
5878         if (NAPI_GRO_CB(skb)->count == 1) {
5879                 skb_shinfo(skb)->gso_size = 0;
5880                 goto out;
5881         }
5882
5883         rcu_read_lock();
5884         list_for_each_entry_rcu(ptype, head, list) {
5885                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5886                         continue;
5887
5888                 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5889                                          ipv6_gro_complete, inet_gro_complete,
5890                                          skb, 0);
5891                 break;
5892         }
5893         rcu_read_unlock();
5894
5895         if (err) {
5896                 WARN_ON(&ptype->list == head);
5897                 kfree_skb(skb);
5898                 return;
5899         }
5900
5901 out:
5902         gro_normal_one(napi, skb, NAPI_GRO_CB(skb)->count);
5903 }
5904
5905 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5906                                    bool flush_old)
5907 {
5908         struct list_head *head = &napi->gro_hash[index].list;
5909         struct sk_buff *skb, *p;
5910
5911         list_for_each_entry_safe_reverse(skb, p, head, list) {
5912                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5913                         return;
5914                 skb_list_del_init(skb);
5915                 napi_gro_complete(napi, skb);
5916                 napi->gro_hash[index].count--;
5917         }
5918
5919         if (!napi->gro_hash[index].count)
5920                 __clear_bit(index, &napi->gro_bitmask);
5921 }
5922
5923 /* napi->gro_hash[].list contains packets ordered by age.
5924  * youngest packets at the head of it.
5925  * Complete skbs in reverse order to reduce latencies.
5926  */
5927 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5928 {
5929         unsigned long bitmask = napi->gro_bitmask;
5930         unsigned int i, base = ~0U;
5931
5932         while ((i = ffs(bitmask)) != 0) {
5933                 bitmask >>= i;
5934                 base += i;
5935                 __napi_gro_flush_chain(napi, base, flush_old);
5936         }
5937 }
5938 EXPORT_SYMBOL(napi_gro_flush);
5939
5940 static void gro_list_prepare(const struct list_head *head,
5941                              const struct sk_buff *skb)
5942 {
5943         unsigned int maclen = skb->dev->hard_header_len;
5944         u32 hash = skb_get_hash_raw(skb);
5945         struct sk_buff *p;
5946
5947         list_for_each_entry(p, head, list) {
5948                 unsigned long diffs;
5949
5950                 NAPI_GRO_CB(p)->flush = 0;
5951
5952                 if (hash != skb_get_hash_raw(p)) {
5953                         NAPI_GRO_CB(p)->same_flow = 0;
5954                         continue;
5955                 }
5956
5957                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5958                 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5959                 if (skb_vlan_tag_present(p))
5960                         diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5961                 diffs |= skb_metadata_differs(p, skb);
5962                 if (maclen == ETH_HLEN)
5963                         diffs |= compare_ether_header(skb_mac_header(p),
5964                                                       skb_mac_header(skb));
5965                 else if (!diffs)
5966                         diffs = memcmp(skb_mac_header(p),
5967                                        skb_mac_header(skb),
5968                                        maclen);
5969
5970                 /* in most common scenarions 'slow_gro' is 0
5971                  * otherwise we are already on some slower paths
5972                  * either skip all the infrequent tests altogether or
5973                  * avoid trying too hard to skip each of them individually
5974                  */
5975                 if (!diffs && unlikely(skb->slow_gro | p->slow_gro)) {
5976 #if IS_ENABLED(CONFIG_SKB_EXTENSIONS) && IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
5977                         struct tc_skb_ext *skb_ext;
5978                         struct tc_skb_ext *p_ext;
5979 #endif
5980
5981                         diffs |= p->sk != skb->sk;
5982                         diffs |= skb_metadata_dst_cmp(p, skb);
5983                         diffs |= skb_get_nfct(p) ^ skb_get_nfct(skb);
5984
5985 #if IS_ENABLED(CONFIG_SKB_EXTENSIONS) && IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
5986                         skb_ext = skb_ext_find(skb, TC_SKB_EXT);
5987                         p_ext = skb_ext_find(p, TC_SKB_EXT);
5988
5989                         diffs |= (!!p_ext) ^ (!!skb_ext);
5990                         if (!diffs && unlikely(skb_ext))
5991                                 diffs |= p_ext->chain ^ skb_ext->chain;
5992 #endif
5993                 }
5994
5995                 NAPI_GRO_CB(p)->same_flow = !diffs;
5996         }
5997 }
5998
5999 static inline void skb_gro_reset_offset(struct sk_buff *skb, u32 nhoff)
6000 {
6001         const struct skb_shared_info *pinfo = skb_shinfo(skb);
6002         const skb_frag_t *frag0 = &pinfo->frags[0];
6003
6004         NAPI_GRO_CB(skb)->data_offset = 0;
6005         NAPI_GRO_CB(skb)->frag0 = NULL;
6006         NAPI_GRO_CB(skb)->frag0_len = 0;
6007
6008         if (!skb_headlen(skb) && pinfo->nr_frags &&
6009             !PageHighMem(skb_frag_page(frag0)) &&
6010             (!NET_IP_ALIGN || !((skb_frag_off(frag0) + nhoff) & 3))) {
6011                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
6012                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
6013                                                     skb_frag_size(frag0),
6014                                                     skb->end - skb->tail);
6015         }
6016 }
6017
6018 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
6019 {
6020         struct skb_shared_info *pinfo = skb_shinfo(skb);
6021
6022         BUG_ON(skb->end - skb->tail < grow);
6023
6024         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
6025
6026         skb->data_len -= grow;
6027         skb->tail += grow;
6028
6029         skb_frag_off_add(&pinfo->frags[0], grow);
6030         skb_frag_size_sub(&pinfo->frags[0], grow);
6031
6032         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
6033                 skb_frag_unref(skb, 0);
6034                 memmove(pinfo->frags, pinfo->frags + 1,
6035                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
6036         }
6037 }
6038
6039 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
6040 {
6041         struct sk_buff *oldest;
6042
6043         oldest = list_last_entry(head, struct sk_buff, list);
6044
6045         /* We are called with head length >= MAX_GRO_SKBS, so this is
6046          * impossible.
6047          */
6048         if (WARN_ON_ONCE(!oldest))
6049                 return;
6050
6051         /* Do not adjust napi->gro_hash[].count, caller is adding a new
6052          * SKB to the chain.
6053          */
6054         skb_list_del_init(oldest);
6055         napi_gro_complete(napi, oldest);
6056 }
6057
6058 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6059 {
6060         u32 bucket = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
6061         struct gro_list *gro_list = &napi->gro_hash[bucket];
6062         struct list_head *head = &offload_base;
6063         struct packet_offload *ptype;
6064         __be16 type = skb->protocol;
6065         struct sk_buff *pp = NULL;
6066         enum gro_result ret;
6067         int same_flow;
6068         int grow;
6069
6070         if (netif_elide_gro(skb->dev))
6071                 goto normal;
6072
6073         gro_list_prepare(&gro_list->list, skb);
6074
6075         rcu_read_lock();
6076         list_for_each_entry_rcu(ptype, head, list) {
6077                 if (ptype->type != type || !ptype->callbacks.gro_receive)
6078                         continue;
6079
6080                 skb_set_network_header(skb, skb_gro_offset(skb));
6081                 skb_reset_mac_len(skb);
6082                 NAPI_GRO_CB(skb)->same_flow = 0;
6083                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
6084                 NAPI_GRO_CB(skb)->free = 0;
6085                 NAPI_GRO_CB(skb)->encap_mark = 0;
6086                 NAPI_GRO_CB(skb)->recursion_counter = 0;
6087                 NAPI_GRO_CB(skb)->is_fou = 0;
6088                 NAPI_GRO_CB(skb)->is_atomic = 1;
6089                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
6090
6091                 /* Setup for GRO checksum validation */
6092                 switch (skb->ip_summed) {
6093                 case CHECKSUM_COMPLETE:
6094                         NAPI_GRO_CB(skb)->csum = skb->csum;
6095                         NAPI_GRO_CB(skb)->csum_valid = 1;
6096                         NAPI_GRO_CB(skb)->csum_cnt = 0;
6097                         break;
6098                 case CHECKSUM_UNNECESSARY:
6099                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
6100                         NAPI_GRO_CB(skb)->csum_valid = 0;
6101                         break;
6102                 default:
6103                         NAPI_GRO_CB(skb)->csum_cnt = 0;
6104                         NAPI_GRO_CB(skb)->csum_valid = 0;
6105                 }
6106
6107                 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
6108                                         ipv6_gro_receive, inet_gro_receive,
6109                                         &gro_list->list, skb);
6110                 break;
6111         }
6112         rcu_read_unlock();
6113
6114         if (&ptype->list == head)
6115                 goto normal;
6116
6117         if (PTR_ERR(pp) == -EINPROGRESS) {
6118                 ret = GRO_CONSUMED;
6119                 goto ok;
6120         }
6121
6122         same_flow = NAPI_GRO_CB(skb)->same_flow;
6123         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
6124
6125         if (pp) {
6126                 skb_list_del_init(pp);
6127                 napi_gro_complete(napi, pp);
6128                 gro_list->count--;
6129         }
6130
6131         if (same_flow)
6132                 goto ok;
6133
6134         if (NAPI_GRO_CB(skb)->flush)
6135                 goto normal;
6136
6137         if (unlikely(gro_list->count >= MAX_GRO_SKBS))
6138                 gro_flush_oldest(napi, &gro_list->list);
6139         else
6140                 gro_list->count++;
6141
6142         NAPI_GRO_CB(skb)->count = 1;
6143         NAPI_GRO_CB(skb)->age = jiffies;
6144         NAPI_GRO_CB(skb)->last = skb;
6145         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
6146         list_add(&skb->list, &gro_list->list);
6147         ret = GRO_HELD;
6148
6149 pull:
6150         grow = skb_gro_offset(skb) - skb_headlen(skb);
6151         if (grow > 0)
6152                 gro_pull_from_frag0(skb, grow);
6153 ok:
6154         if (gro_list->count) {
6155                 if (!test_bit(bucket, &napi->gro_bitmask))
6156                         __set_bit(bucket, &napi->gro_bitmask);
6157         } else if (test_bit(bucket, &napi->gro_bitmask)) {
6158                 __clear_bit(bucket, &napi->gro_bitmask);
6159         }
6160
6161         return ret;
6162
6163 normal:
6164         ret = GRO_NORMAL;
6165         goto pull;
6166 }
6167
6168 struct packet_offload *gro_find_receive_by_type(__be16 type)
6169 {
6170         struct list_head *offload_head = &offload_base;
6171         struct packet_offload *ptype;
6172
6173         list_for_each_entry_rcu(ptype, offload_head, list) {
6174                 if (ptype->type != type || !ptype->callbacks.gro_receive)
6175                         continue;
6176                 return ptype;
6177         }
6178         return NULL;
6179 }
6180 EXPORT_SYMBOL(gro_find_receive_by_type);
6181
6182 struct packet_offload *gro_find_complete_by_type(__be16 type)
6183 {
6184         struct list_head *offload_head = &offload_base;
6185         struct packet_offload *ptype;
6186
6187         list_for_each_entry_rcu(ptype, offload_head, list) {
6188                 if (ptype->type != type || !ptype->callbacks.gro_complete)
6189                         continue;
6190                 return ptype;
6191         }
6192         return NULL;
6193 }
6194 EXPORT_SYMBOL(gro_find_complete_by_type);
6195
6196 static gro_result_t napi_skb_finish(struct napi_struct *napi,
6197                                     struct sk_buff *skb,
6198                                     gro_result_t ret)
6199 {
6200         switch (ret) {
6201         case GRO_NORMAL:
6202                 gro_normal_one(napi, skb, 1);
6203                 break;
6204
6205         case GRO_MERGED_FREE:
6206                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6207                         napi_skb_free_stolen_head(skb);
6208                 else if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
6209                         __kfree_skb(skb);
6210                 else
6211                         __kfree_skb_defer(skb);
6212                 break;
6213
6214         case GRO_HELD:
6215         case GRO_MERGED:
6216         case GRO_CONSUMED:
6217                 break;
6218         }
6219
6220         return ret;
6221 }
6222
6223 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6224 {
6225         gro_result_t ret;
6226
6227         skb_mark_napi_id(skb, napi);
6228         trace_napi_gro_receive_entry(skb);
6229
6230         skb_gro_reset_offset(skb, 0);
6231
6232         ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6233         trace_napi_gro_receive_exit(ret);
6234
6235         return ret;
6236 }
6237 EXPORT_SYMBOL(napi_gro_receive);
6238
6239 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6240 {
6241         if (unlikely(skb->pfmemalloc)) {
6242                 consume_skb(skb);
6243                 return;
6244         }
6245         __skb_pull(skb, skb_headlen(skb));
6246         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
6247         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6248         __vlan_hwaccel_clear_tag(skb);
6249         skb->dev = napi->dev;
6250         skb->skb_iif = 0;
6251
6252         /* eth_type_trans() assumes pkt_type is PACKET_HOST */
6253         skb->pkt_type = PACKET_HOST;
6254
6255         skb->encapsulation = 0;
6256         skb_shinfo(skb)->gso_type = 0;
6257         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6258         if (unlikely(skb->slow_gro)) {
6259                 skb_orphan(skb);
6260                 skb_ext_reset(skb);
6261                 nf_reset_ct(skb);
6262                 skb->slow_gro = 0;
6263         }
6264
6265         napi->skb = skb;
6266 }
6267
6268 struct sk_buff *napi_get_frags(struct napi_struct *napi)
6269 {
6270         struct sk_buff *skb = napi->skb;
6271
6272         if (!skb) {
6273                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6274                 if (skb) {
6275                         napi->skb = skb;
6276                         skb_mark_napi_id(skb, napi);
6277                 }
6278         }
6279         return skb;
6280 }
6281 EXPORT_SYMBOL(napi_get_frags);
6282
6283 static gro_result_t napi_frags_finish(struct napi_struct *napi,
6284                                       struct sk_buff *skb,
6285                                       gro_result_t ret)
6286 {
6287         switch (ret) {
6288         case GRO_NORMAL:
6289         case GRO_HELD:
6290                 __skb_push(skb, ETH_HLEN);
6291                 skb->protocol = eth_type_trans(skb, skb->dev);
6292                 if (ret == GRO_NORMAL)
6293                         gro_normal_one(napi, skb, 1);
6294                 break;
6295
6296         case GRO_MERGED_FREE:
6297                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6298                         napi_skb_free_stolen_head(skb);
6299                 else
6300                         napi_reuse_skb(napi, skb);
6301                 break;
6302
6303         case GRO_MERGED:
6304         case GRO_CONSUMED:
6305                 break;
6306         }
6307
6308         return ret;
6309 }
6310
6311 /* Upper GRO stack assumes network header starts at gro_offset=0
6312  * Drivers could call both napi_gro_frags() and napi_gro_receive()
6313  * We copy ethernet header into skb->data to have a common layout.
6314  */
6315 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6316 {
6317         struct sk_buff *skb = napi->skb;
6318         const struct ethhdr *eth;
6319         unsigned int hlen = sizeof(*eth);
6320
6321         napi->skb = NULL;
6322
6323         skb_reset_mac_header(skb);
6324         skb_gro_reset_offset(skb, hlen);
6325
6326         if (unlikely(skb_gro_header_hard(skb, hlen))) {
6327                 eth = skb_gro_header_slow(skb, hlen, 0);
6328                 if (unlikely(!eth)) {
6329                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6330                                              __func__, napi->dev->name);
6331                         napi_reuse_skb(napi, skb);
6332                         return NULL;
6333                 }
6334         } else {
6335                 eth = (const struct ethhdr *)skb->data;
6336                 gro_pull_from_frag0(skb, hlen);
6337                 NAPI_GRO_CB(skb)->frag0 += hlen;
6338                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
6339         }
6340         __skb_pull(skb, hlen);
6341
6342         /*
6343          * This works because the only protocols we care about don't require
6344          * special handling.
6345          * We'll fix it up properly in napi_frags_finish()
6346          */
6347         skb->protocol = eth->h_proto;
6348
6349         return skb;
6350 }
6351
6352 gro_result_t napi_gro_frags(struct napi_struct *napi)
6353 {
6354         gro_result_t ret;
6355         struct sk_buff *skb = napi_frags_skb(napi);
6356
6357         trace_napi_gro_frags_entry(skb);
6358
6359         ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6360         trace_napi_gro_frags_exit(ret);
6361
6362         return ret;
6363 }
6364 EXPORT_SYMBOL(napi_gro_frags);
6365
6366 /* Compute the checksum from gro_offset and return the folded value
6367  * after adding in any pseudo checksum.
6368  */
6369 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6370 {
6371         __wsum wsum;
6372         __sum16 sum;
6373
6374         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6375
6376         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6377         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6378         /* See comments in __skb_checksum_complete(). */
6379         if (likely(!sum)) {
6380                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6381                     !skb->csum_complete_sw)
6382                         netdev_rx_csum_fault(skb->dev, skb);
6383         }
6384
6385         NAPI_GRO_CB(skb)->csum = wsum;
6386         NAPI_GRO_CB(skb)->csum_valid = 1;
6387
6388         return sum;
6389 }
6390 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6391
6392 static void net_rps_send_ipi(struct softnet_data *remsd)
6393 {
6394 #ifdef CONFIG_RPS
6395         while (remsd) {
6396                 struct softnet_data *next = remsd->rps_ipi_next;
6397
6398                 if (cpu_online(remsd->cpu))
6399                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
6400                 remsd = next;
6401         }
6402 #endif
6403 }
6404
6405 /*
6406  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6407  * Note: called with local irq disabled, but exits with local irq enabled.
6408  */
6409 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6410 {
6411 #ifdef CONFIG_RPS
6412         struct softnet_data *remsd = sd->rps_ipi_list;
6413
6414         if (remsd) {
6415                 sd->rps_ipi_list = NULL;
6416
6417                 local_irq_enable();
6418
6419                 /* Send pending IPI's to kick RPS processing on remote cpus. */
6420                 net_rps_send_ipi(remsd);
6421         } else
6422 #endif
6423                 local_irq_enable();
6424 }
6425
6426 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6427 {
6428 #ifdef CONFIG_RPS
6429         return sd->rps_ipi_list != NULL;
6430 #else
6431         return false;
6432 #endif
6433 }
6434
6435 static int process_backlog(struct napi_struct *napi, int quota)
6436 {
6437         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6438         bool again = true;
6439         int work = 0;
6440
6441         /* Check if we have pending ipi, its better to send them now,
6442          * not waiting net_rx_action() end.
6443          */
6444         if (sd_has_rps_ipi_waiting(sd)) {
6445                 local_irq_disable();
6446                 net_rps_action_and_irq_enable(sd);
6447         }
6448
6449         napi->weight = dev_rx_weight;
6450         while (again) {
6451                 struct sk_buff *skb;
6452
6453                 while ((skb = __skb_dequeue(&sd->process_queue))) {
6454                         rcu_read_lock();
6455                         __netif_receive_skb(skb);
6456                         rcu_read_unlock();
6457                         input_queue_head_incr(sd);
6458                         if (++work >= quota)
6459                                 return work;
6460
6461                 }
6462
6463                 local_irq_disable();
6464                 rps_lock(sd);
6465                 if (skb_queue_empty(&sd->input_pkt_queue)) {
6466                         /*
6467                          * Inline a custom version of __napi_complete().
6468                          * only current cpu owns and manipulates this napi,
6469                          * and NAPI_STATE_SCHED is the only possible flag set
6470                          * on backlog.
6471                          * We can use a plain write instead of clear_bit(),
6472                          * and we dont need an smp_mb() memory barrier.
6473                          */
6474                         napi->state = 0;
6475                         again = false;
6476                 } else {
6477                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
6478                                                    &sd->process_queue);
6479                 }
6480                 rps_unlock(sd);
6481                 local_irq_enable();
6482         }
6483
6484         return work;
6485 }
6486
6487 /**
6488  * __napi_schedule - schedule for receive
6489  * @n: entry to schedule
6490  *
6491  * The entry's receive function will be scheduled to run.
6492  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6493  */
6494 void __napi_schedule(struct napi_struct *n)
6495 {
6496         unsigned long flags;
6497
6498         local_irq_save(flags);
6499         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6500         local_irq_restore(flags);
6501 }
6502 EXPORT_SYMBOL(__napi_schedule);
6503
6504 /**
6505  *      napi_schedule_prep - check if napi can be scheduled
6506  *      @n: napi context
6507  *
6508  * Test if NAPI routine is already running, and if not mark
6509  * it as running.  This is used as a condition variable to
6510  * insure only one NAPI poll instance runs.  We also make
6511  * sure there is no pending NAPI disable.
6512  */
6513 bool napi_schedule_prep(struct napi_struct *n)
6514 {
6515         unsigned long val, new;
6516
6517         do {
6518                 val = READ_ONCE(n->state);
6519                 if (unlikely(val & NAPIF_STATE_DISABLE))
6520                         return false;
6521                 new = val | NAPIF_STATE_SCHED;
6522
6523                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6524                  * This was suggested by Alexander Duyck, as compiler
6525                  * emits better code than :
6526                  * if (val & NAPIF_STATE_SCHED)
6527                  *     new |= NAPIF_STATE_MISSED;
6528                  */
6529                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6530                                                    NAPIF_STATE_MISSED;
6531         } while (cmpxchg(&n->state, val, new) != val);
6532
6533         return !(val & NAPIF_STATE_SCHED);
6534 }
6535 EXPORT_SYMBOL(napi_schedule_prep);
6536
6537 /**
6538  * __napi_schedule_irqoff - schedule for receive
6539  * @n: entry to schedule
6540  *
6541  * Variant of __napi_schedule() assuming hard irqs are masked.
6542  *
6543  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6544  * because the interrupt disabled assumption might not be true
6545  * due to force-threaded interrupts and spinlock substitution.
6546  */
6547 void __napi_schedule_irqoff(struct napi_struct *n)
6548 {
6549         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6550                 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6551         else
6552                 __napi_schedule(n);
6553 }
6554 EXPORT_SYMBOL(__napi_schedule_irqoff);
6555
6556 bool napi_complete_done(struct napi_struct *n, int work_done)
6557 {
6558         unsigned long flags, val, new, timeout = 0;
6559         bool ret = true;
6560
6561         /*
6562          * 1) Don't let napi dequeue from the cpu poll list
6563          *    just in case its running on a different cpu.
6564          * 2) If we are busy polling, do nothing here, we have
6565          *    the guarantee we will be called later.
6566          */
6567         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6568                                  NAPIF_STATE_IN_BUSY_POLL)))
6569                 return false;
6570
6571         if (work_done) {
6572                 if (n->gro_bitmask)
6573                         timeout = READ_ONCE(n->dev->gro_flush_timeout);
6574                 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6575         }
6576         if (n->defer_hard_irqs_count > 0) {
6577                 n->defer_hard_irqs_count--;
6578                 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6579                 if (timeout)
6580                         ret = false;
6581         }
6582         if (n->gro_bitmask) {
6583                 /* When the NAPI instance uses a timeout and keeps postponing
6584                  * it, we need to bound somehow the time packets are kept in
6585                  * the GRO layer
6586                  */
6587                 napi_gro_flush(n, !!timeout);
6588         }
6589
6590         gro_normal_list(n);
6591
6592         if (unlikely(!list_empty(&n->poll_list))) {
6593                 /* If n->poll_list is not empty, we need to mask irqs */
6594                 local_irq_save(flags);
6595                 list_del_init(&n->poll_list);
6596                 local_irq_restore(flags);
6597         }
6598
6599         do {
6600                 val = READ_ONCE(n->state);
6601
6602                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6603
6604                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6605                               NAPIF_STATE_SCHED_THREADED |
6606                               NAPIF_STATE_PREFER_BUSY_POLL);
6607
6608                 /* If STATE_MISSED was set, leave STATE_SCHED set,
6609                  * because we will call napi->poll() one more time.
6610                  * This C code was suggested by Alexander Duyck to help gcc.
6611                  */
6612                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6613                                                     NAPIF_STATE_SCHED;
6614         } while (cmpxchg(&n->state, val, new) != val);
6615
6616         if (unlikely(val & NAPIF_STATE_MISSED)) {
6617                 __napi_schedule(n);
6618                 return false;
6619         }
6620
6621         if (timeout)
6622                 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6623                               HRTIMER_MODE_REL_PINNED);
6624         return ret;
6625 }
6626 EXPORT_SYMBOL(napi_complete_done);
6627
6628 /* must be called under rcu_read_lock(), as we dont take a reference */
6629 static struct napi_struct *napi_by_id(unsigned int napi_id)
6630 {
6631         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6632         struct napi_struct *napi;
6633
6634         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6635                 if (napi->napi_id == napi_id)
6636                         return napi;
6637
6638         return NULL;
6639 }
6640
6641 #if defined(CONFIG_NET_RX_BUSY_POLL)
6642
6643 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6644 {
6645         if (!skip_schedule) {
6646                 gro_normal_list(napi);
6647                 __napi_schedule(napi);
6648                 return;
6649         }
6650
6651         if (napi->gro_bitmask) {
6652                 /* flush too old packets
6653                  * If HZ < 1000, flush all packets.
6654                  */
6655                 napi_gro_flush(napi, HZ >= 1000);
6656         }
6657
6658         gro_normal_list(napi);
6659         clear_bit(NAPI_STATE_SCHED, &napi->state);
6660 }
6661
6662 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6663                            u16 budget)
6664 {
6665         bool skip_schedule = false;
6666         unsigned long timeout;
6667         int rc;
6668
6669         /* Busy polling means there is a high chance device driver hard irq
6670          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6671          * set in napi_schedule_prep().
6672          * Since we are about to call napi->poll() once more, we can safely
6673          * clear NAPI_STATE_MISSED.
6674          *
6675          * Note: x86 could use a single "lock and ..." instruction
6676          * to perform these two clear_bit()
6677          */
6678         clear_bit(NAPI_STATE_MISSED, &napi->state);
6679         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6680
6681         local_bh_disable();
6682
6683         if (prefer_busy_poll) {
6684                 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6685                 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6686                 if (napi->defer_hard_irqs_count && timeout) {
6687                         hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6688                         skip_schedule = true;
6689                 }
6690         }
6691
6692         /* All we really want here is to re-enable device interrupts.
6693          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6694          */
6695         rc = napi->poll(napi, budget);
6696         /* We can't gro_normal_list() here, because napi->poll() might have
6697          * rearmed the napi (napi_complete_done()) in which case it could
6698          * already be running on another CPU.
6699          */
6700         trace_napi_poll(napi, rc, budget);
6701         netpoll_poll_unlock(have_poll_lock);
6702         if (rc == budget)
6703                 __busy_poll_stop(napi, skip_schedule);
6704         local_bh_enable();
6705 }
6706
6707 void napi_busy_loop(unsigned int napi_id,
6708                     bool (*loop_end)(void *, unsigned long),
6709                     void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6710 {
6711         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6712         int (*napi_poll)(struct napi_struct *napi, int budget);
6713         void *have_poll_lock = NULL;
6714         struct napi_struct *napi;
6715
6716 restart:
6717         napi_poll = NULL;
6718
6719         rcu_read_lock();
6720
6721         napi = napi_by_id(napi_id);
6722         if (!napi)
6723                 goto out;
6724
6725         preempt_disable();
6726         for (;;) {
6727                 int work = 0;
6728
6729                 local_bh_disable();
6730                 if (!napi_poll) {
6731                         unsigned long val = READ_ONCE(napi->state);
6732
6733                         /* If multiple threads are competing for this napi,
6734                          * we avoid dirtying napi->state as much as we can.
6735                          */
6736                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6737                                    NAPIF_STATE_IN_BUSY_POLL)) {
6738                                 if (prefer_busy_poll)
6739                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6740                                 goto count;
6741                         }
6742                         if (cmpxchg(&napi->state, val,
6743                                     val | NAPIF_STATE_IN_BUSY_POLL |
6744                                           NAPIF_STATE_SCHED) != val) {
6745                                 if (prefer_busy_poll)
6746                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6747                                 goto count;
6748                         }
6749                         have_poll_lock = netpoll_poll_lock(napi);
6750                         napi_poll = napi->poll;
6751                 }
6752                 work = napi_poll(napi, budget);
6753                 trace_napi_poll(napi, work, budget);
6754                 gro_normal_list(napi);
6755 count:
6756                 if (work > 0)
6757                         __NET_ADD_STATS(dev_net(napi->dev),
6758                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6759                 local_bh_enable();
6760
6761                 if (!loop_end || loop_end(loop_end_arg, start_time))
6762                         break;
6763
6764                 if (unlikely(need_resched())) {
6765                         if (napi_poll)
6766                                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6767                         preempt_enable();
6768                         rcu_read_unlock();
6769                         cond_resched();
6770                         if (loop_end(loop_end_arg, start_time))
6771                                 return;
6772                         goto restart;
6773                 }
6774                 cpu_relax();
6775         }
6776         if (napi_poll)
6777                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6778         preempt_enable();
6779 out:
6780         rcu_read_unlock();
6781 }
6782 EXPORT_SYMBOL(napi_busy_loop);
6783
6784 #endif /* CONFIG_NET_RX_BUSY_POLL */
6785
6786 static void napi_hash_add(struct napi_struct *napi)
6787 {
6788         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6789                 return;
6790
6791         spin_lock(&napi_hash_lock);
6792
6793         /* 0..NR_CPUS range is reserved for sender_cpu use */
6794         do {
6795                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6796                         napi_gen_id = MIN_NAPI_ID;
6797         } while (napi_by_id(napi_gen_id));
6798         napi->napi_id = napi_gen_id;
6799
6800         hlist_add_head_rcu(&napi->napi_hash_node,
6801                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6802
6803         spin_unlock(&napi_hash_lock);
6804 }
6805
6806 /* Warning : caller is responsible to make sure rcu grace period
6807  * is respected before freeing memory containing @napi
6808  */
6809 static void napi_hash_del(struct napi_struct *napi)
6810 {
6811         spin_lock(&napi_hash_lock);
6812
6813         hlist_del_init_rcu(&napi->napi_hash_node);
6814
6815         spin_unlock(&napi_hash_lock);
6816 }
6817
6818 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6819 {
6820         struct napi_struct *napi;
6821
6822         napi = container_of(timer, struct napi_struct, timer);
6823
6824         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6825          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6826          */
6827         if (!napi_disable_pending(napi) &&
6828             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6829                 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6830                 __napi_schedule_irqoff(napi);
6831         }
6832
6833         return HRTIMER_NORESTART;
6834 }
6835
6836 static void init_gro_hash(struct napi_struct *napi)
6837 {
6838         int i;
6839
6840         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6841                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6842                 napi->gro_hash[i].count = 0;
6843         }
6844         napi->gro_bitmask = 0;
6845 }
6846
6847 int dev_set_threaded(struct net_device *dev, bool threaded)
6848 {
6849         struct napi_struct *napi;
6850         int err = 0;
6851
6852         if (dev->threaded == threaded)
6853                 return 0;
6854
6855         if (threaded) {
6856                 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6857                         if (!napi->thread) {
6858                                 err = napi_kthread_create(napi);
6859                                 if (err) {
6860                                         threaded = false;
6861                                         break;
6862                                 }
6863                         }
6864                 }
6865         }
6866
6867         dev->threaded = threaded;
6868
6869         /* Make sure kthread is created before THREADED bit
6870          * is set.
6871          */
6872         smp_mb__before_atomic();
6873
6874         /* Setting/unsetting threaded mode on a napi might not immediately
6875          * take effect, if the current napi instance is actively being
6876          * polled. In this case, the switch between threaded mode and
6877          * softirq mode will happen in the next round of napi_schedule().
6878          * This should not cause hiccups/stalls to the live traffic.
6879          */
6880         list_for_each_entry(napi, &dev->napi_list, dev_list) {
6881                 if (threaded)
6882                         set_bit(NAPI_STATE_THREADED, &napi->state);
6883                 else
6884                         clear_bit(NAPI_STATE_THREADED, &napi->state);
6885         }
6886
6887         return err;
6888 }
6889 EXPORT_SYMBOL(dev_set_threaded);
6890
6891 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6892                     int (*poll)(struct napi_struct *, int), int weight)
6893 {
6894         if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6895                 return;
6896
6897         INIT_LIST_HEAD(&napi->poll_list);
6898         INIT_HLIST_NODE(&napi->napi_hash_node);
6899         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6900         napi->timer.function = napi_watchdog;
6901         init_gro_hash(napi);
6902         napi->skb = NULL;
6903         INIT_LIST_HEAD(&napi->rx_list);
6904         napi->rx_count = 0;
6905         napi->poll = poll;
6906         if (weight > NAPI_POLL_WEIGHT)
6907                 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6908                                 weight);
6909         napi->weight = weight;
6910         napi->dev = dev;
6911 #ifdef CONFIG_NETPOLL
6912         napi->poll_owner = -1;
6913 #endif
6914         set_bit(NAPI_STATE_SCHED, &napi->state);
6915         set_bit(NAPI_STATE_NPSVC, &napi->state);
6916         list_add_rcu(&napi->dev_list, &dev->napi_list);
6917         napi_hash_add(napi);
6918         /* Create kthread for this napi if dev->threaded is set.
6919          * Clear dev->threaded if kthread creation failed so that
6920          * threaded mode will not be enabled in napi_enable().
6921          */
6922         if (dev->threaded && napi_kthread_create(napi))
6923                 dev->threaded = 0;
6924 }
6925 EXPORT_SYMBOL(netif_napi_add);
6926
6927 void napi_disable(struct napi_struct *n)
6928 {
6929         unsigned long val, new;
6930
6931         might_sleep();
6932         set_bit(NAPI_STATE_DISABLE, &n->state);
6933
6934         for ( ; ; ) {
6935                 val = READ_ONCE(n->state);
6936                 if (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6937                         usleep_range(20, 200);
6938                         continue;
6939                 }
6940
6941                 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6942                 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6943
6944                 if (cmpxchg(&n->state, val, new) == val)
6945                         break;
6946         }
6947
6948         hrtimer_cancel(&n->timer);
6949
6950         clear_bit(NAPI_STATE_DISABLE, &n->state);
6951 }
6952 EXPORT_SYMBOL(napi_disable);
6953
6954 /**
6955  *      napi_enable - enable NAPI scheduling
6956  *      @n: NAPI context
6957  *
6958  * Resume NAPI from being scheduled on this context.
6959  * Must be paired with napi_disable.
6960  */
6961 void napi_enable(struct napi_struct *n)
6962 {
6963         unsigned long val, new;
6964
6965         do {
6966                 val = READ_ONCE(n->state);
6967                 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6968
6969                 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6970                 if (n->dev->threaded && n->thread)
6971                         new |= NAPIF_STATE_THREADED;
6972         } while (cmpxchg(&n->state, val, new) != val);
6973 }
6974 EXPORT_SYMBOL(napi_enable);
6975
6976 static void flush_gro_hash(struct napi_struct *napi)
6977 {
6978         int i;
6979
6980         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6981                 struct sk_buff *skb, *n;
6982
6983                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6984                         kfree_skb(skb);
6985                 napi->gro_hash[i].count = 0;
6986         }
6987 }
6988
6989 /* Must be called in process context */
6990 void __netif_napi_del(struct napi_struct *napi)
6991 {
6992         if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6993                 return;
6994
6995         napi_hash_del(napi);
6996         list_del_rcu(&napi->dev_list);
6997         napi_free_frags(napi);
6998
6999         flush_gro_hash(napi);
7000         napi->gro_bitmask = 0;
7001
7002         if (napi->thread) {
7003                 kthread_stop(napi->thread);
7004                 napi->thread = NULL;
7005         }
7006 }
7007 EXPORT_SYMBOL(__netif_napi_del);
7008
7009 static int __napi_poll(struct napi_struct *n, bool *repoll)
7010 {
7011         int work, weight;
7012
7013         weight = n->weight;
7014
7015         /* This NAPI_STATE_SCHED test is for avoiding a race
7016          * with netpoll's poll_napi().  Only the entity which
7017          * obtains the lock and sees NAPI_STATE_SCHED set will
7018          * actually make the ->poll() call.  Therefore we avoid
7019          * accidentally calling ->poll() when NAPI is not scheduled.
7020          */
7021         work = 0;
7022         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
7023                 work = n->poll(n, weight);
7024                 trace_napi_poll(n, work, weight);
7025         }
7026
7027         if (unlikely(work > weight))
7028                 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
7029                                 n->poll, work, weight);
7030
7031         if (likely(work < weight))
7032                 return work;
7033
7034         /* Drivers must not modify the NAPI state if they
7035          * consume the entire weight.  In such cases this code
7036          * still "owns" the NAPI instance and therefore can
7037          * move the instance around on the list at-will.
7038          */
7039         if (unlikely(napi_disable_pending(n))) {
7040                 napi_complete(n);
7041                 return work;
7042         }
7043
7044         /* The NAPI context has more processing work, but busy-polling
7045          * is preferred. Exit early.
7046          */
7047         if (napi_prefer_busy_poll(n)) {
7048                 if (napi_complete_done(n, work)) {
7049                         /* If timeout is not set, we need to make sure
7050                          * that the NAPI is re-scheduled.
7051                          */
7052                         napi_schedule(n);
7053                 }
7054                 return work;
7055         }
7056
7057         if (n->gro_bitmask) {
7058                 /* flush too old packets
7059                  * If HZ < 1000, flush all packets.
7060                  */
7061                 napi_gro_flush(n, HZ >= 1000);
7062         }
7063
7064         gro_normal_list(n);
7065
7066         /* Some drivers may have called napi_schedule
7067          * prior to exhausting their budget.
7068          */
7069         if (unlikely(!list_empty(&n->poll_list))) {
7070                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7071                              n->dev ? n->dev->name : "backlog");
7072                 return work;
7073         }
7074
7075         *repoll = true;
7076
7077         return work;
7078 }
7079
7080 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7081 {
7082         bool do_repoll = false;
7083         void *have;
7084         int work;
7085
7086         list_del_init(&n->poll_list);
7087
7088         have = netpoll_poll_lock(n);
7089
7090         work = __napi_poll(n, &do_repoll);
7091
7092         if (do_repoll)
7093                 list_add_tail(&n->poll_list, repoll);
7094
7095         netpoll_poll_unlock(have);
7096
7097         return work;
7098 }
7099
7100 static int napi_thread_wait(struct napi_struct *napi)
7101 {
7102         bool woken = false;
7103
7104         set_current_state(TASK_INTERRUPTIBLE);
7105
7106         while (!kthread_should_stop()) {
7107                 /* Testing SCHED_THREADED bit here to make sure the current
7108                  * kthread owns this napi and could poll on this napi.
7109                  * Testing SCHED bit is not enough because SCHED bit might be
7110                  * set by some other busy poll thread or by napi_disable().
7111                  */
7112                 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
7113                         WARN_ON(!list_empty(&napi->poll_list));
7114                         __set_current_state(TASK_RUNNING);
7115                         return 0;
7116                 }
7117
7118                 schedule();
7119                 /* woken being true indicates this thread owns this napi. */
7120                 woken = true;
7121                 set_current_state(TASK_INTERRUPTIBLE);
7122         }
7123         __set_current_state(TASK_RUNNING);
7124
7125         return -1;
7126 }
7127
7128 static int napi_threaded_poll(void *data)
7129 {
7130         struct napi_struct *napi = data;
7131         void *have;
7132
7133         while (!napi_thread_wait(napi)) {
7134                 for (;;) {
7135                         bool repoll = false;
7136
7137                         local_bh_disable();
7138
7139                         have = netpoll_poll_lock(napi);
7140                         __napi_poll(napi, &repoll);
7141                         netpoll_poll_unlock(have);
7142
7143                         local_bh_enable();
7144
7145                         if (!repoll)
7146                                 break;
7147
7148                         cond_resched();
7149                 }
7150         }
7151         return 0;
7152 }
7153
7154 static __latent_entropy void net_rx_action(struct softirq_action *h)
7155 {
7156         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7157         unsigned long time_limit = jiffies +
7158                 usecs_to_jiffies(netdev_budget_usecs);
7159         int budget = netdev_budget;
7160         LIST_HEAD(list);
7161         LIST_HEAD(repoll);
7162
7163         local_irq_disable();
7164         list_splice_init(&sd->poll_list, &list);
7165         local_irq_enable();
7166
7167         for (;;) {
7168                 struct napi_struct *n;
7169
7170                 if (list_empty(&list)) {
7171                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
7172                                 return;
7173                         break;
7174                 }
7175
7176                 n = list_first_entry(&list, struct napi_struct, poll_list);
7177                 budget -= napi_poll(n, &repoll);
7178
7179                 /* If softirq window is exhausted then punt.
7180                  * Allow this to run for 2 jiffies since which will allow
7181                  * an average latency of 1.5/HZ.
7182                  */
7183                 if (unlikely(budget <= 0 ||
7184                              time_after_eq(jiffies, time_limit))) {
7185                         sd->time_squeeze++;
7186                         break;
7187                 }
7188         }
7189
7190         local_irq_disable();
7191
7192         list_splice_tail_init(&sd->poll_list, &list);
7193         list_splice_tail(&repoll, &list);
7194         list_splice(&list, &sd->poll_list);
7195         if (!list_empty(&sd->poll_list))
7196                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
7197
7198         net_rps_action_and_irq_enable(sd);
7199 }
7200
7201 struct netdev_adjacent {
7202         struct net_device *dev;
7203
7204         /* upper master flag, there can only be one master device per list */
7205         bool master;
7206
7207         /* lookup ignore flag */
7208         bool ignore;
7209
7210         /* counter for the number of times this device was added to us */
7211         u16 ref_nr;
7212
7213         /* private field for the users */
7214         void *private;
7215
7216         struct list_head list;
7217         struct rcu_head rcu;
7218 };
7219
7220 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7221                                                  struct list_head *adj_list)
7222 {
7223         struct netdev_adjacent *adj;
7224
7225         list_for_each_entry(adj, adj_list, list) {
7226                 if (adj->dev == adj_dev)
7227                         return adj;
7228         }
7229         return NULL;
7230 }
7231
7232 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7233                                     struct netdev_nested_priv *priv)
7234 {
7235         struct net_device *dev = (struct net_device *)priv->data;
7236
7237         return upper_dev == dev;
7238 }
7239
7240 /**
7241  * netdev_has_upper_dev - Check if device is linked to an upper device
7242  * @dev: device
7243  * @upper_dev: upper device to check
7244  *
7245  * Find out if a device is linked to specified upper device and return true
7246  * in case it is. Note that this checks only immediate upper device,
7247  * not through a complete stack of devices. The caller must hold the RTNL lock.
7248  */
7249 bool netdev_has_upper_dev(struct net_device *dev,
7250                           struct net_device *upper_dev)
7251 {
7252         struct netdev_nested_priv priv = {
7253                 .data = (void *)upper_dev,
7254         };
7255
7256         ASSERT_RTNL();
7257
7258         return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7259                                              &priv);
7260 }
7261 EXPORT_SYMBOL(netdev_has_upper_dev);
7262
7263 /**
7264  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7265  * @dev: device
7266  * @upper_dev: upper device to check
7267  *
7268  * Find out if a device is linked to specified upper device and return true
7269  * in case it is. Note that this checks the entire upper device chain.
7270  * The caller must hold rcu lock.
7271  */
7272
7273 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7274                                   struct net_device *upper_dev)
7275 {
7276         struct netdev_nested_priv priv = {
7277                 .data = (void *)upper_dev,
7278         };
7279
7280         return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7281                                                &priv);
7282 }
7283 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7284
7285 /**
7286  * netdev_has_any_upper_dev - Check if device is linked to some device
7287  * @dev: device
7288  *
7289  * Find out if a device is linked to an upper device and return true in case
7290  * it is. The caller must hold the RTNL lock.
7291  */
7292 bool netdev_has_any_upper_dev(struct net_device *dev)
7293 {
7294         ASSERT_RTNL();
7295
7296         return !list_empty(&dev->adj_list.upper);
7297 }
7298 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7299
7300 /**
7301  * netdev_master_upper_dev_get - Get master upper device
7302  * @dev: device
7303  *
7304  * Find a master upper device and return pointer to it or NULL in case
7305  * it's not there. The caller must hold the RTNL lock.
7306  */
7307 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7308 {
7309         struct netdev_adjacent *upper;
7310
7311         ASSERT_RTNL();
7312
7313         if (list_empty(&dev->adj_list.upper))
7314                 return NULL;
7315
7316         upper = list_first_entry(&dev->adj_list.upper,
7317                                  struct netdev_adjacent, list);
7318         if (likely(upper->master))
7319                 return upper->dev;
7320         return NULL;
7321 }
7322 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7323
7324 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7325 {
7326         struct netdev_adjacent *upper;
7327
7328         ASSERT_RTNL();
7329
7330         if (list_empty(&dev->adj_list.upper))
7331                 return NULL;
7332
7333         upper = list_first_entry(&dev->adj_list.upper,
7334                                  struct netdev_adjacent, list);
7335         if (likely(upper->master) && !upper->ignore)
7336                 return upper->dev;
7337         return NULL;
7338 }
7339
7340 /**
7341  * netdev_has_any_lower_dev - Check if device is linked to some device
7342  * @dev: device
7343  *
7344  * Find out if a device is linked to a lower device and return true in case
7345  * it is. The caller must hold the RTNL lock.
7346  */
7347 static bool netdev_has_any_lower_dev(struct net_device *dev)
7348 {
7349         ASSERT_RTNL();
7350
7351         return !list_empty(&dev->adj_list.lower);
7352 }
7353
7354 void *netdev_adjacent_get_private(struct list_head *adj_list)
7355 {
7356         struct netdev_adjacent *adj;
7357
7358         adj = list_entry(adj_list, struct netdev_adjacent, list);
7359
7360         return adj->private;
7361 }
7362 EXPORT_SYMBOL(netdev_adjacent_get_private);
7363
7364 /**
7365  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7366  * @dev: device
7367  * @iter: list_head ** of the current position
7368  *
7369  * Gets the next device from the dev's upper list, starting from iter
7370  * position. The caller must hold RCU read lock.
7371  */
7372 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7373                                                  struct list_head **iter)
7374 {
7375         struct netdev_adjacent *upper;
7376
7377         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7378
7379         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7380
7381         if (&upper->list == &dev->adj_list.upper)
7382                 return NULL;
7383
7384         *iter = &upper->list;
7385
7386         return upper->dev;
7387 }
7388 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7389
7390 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7391                                                   struct list_head **iter,
7392                                                   bool *ignore)
7393 {
7394         struct netdev_adjacent *upper;
7395
7396         upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7397
7398         if (&upper->list == &dev->adj_list.upper)
7399                 return NULL;
7400
7401         *iter = &upper->list;
7402         *ignore = upper->ignore;
7403
7404         return upper->dev;
7405 }
7406
7407 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7408                                                     struct list_head **iter)
7409 {
7410         struct netdev_adjacent *upper;
7411
7412         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7413
7414         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7415
7416         if (&upper->list == &dev->adj_list.upper)
7417                 return NULL;
7418
7419         *iter = &upper->list;
7420
7421         return upper->dev;
7422 }
7423
7424 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7425                                        int (*fn)(struct net_device *dev,
7426                                          struct netdev_nested_priv *priv),
7427                                        struct netdev_nested_priv *priv)
7428 {
7429         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7430         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7431         int ret, cur = 0;
7432         bool ignore;
7433
7434         now = dev;
7435         iter = &dev->adj_list.upper;
7436
7437         while (1) {
7438                 if (now != dev) {
7439                         ret = fn(now, priv);
7440                         if (ret)
7441                                 return ret;
7442                 }
7443
7444                 next = NULL;
7445                 while (1) {
7446                         udev = __netdev_next_upper_dev(now, &iter, &ignore);
7447                         if (!udev)
7448                                 break;
7449                         if (ignore)
7450                                 continue;
7451
7452                         next = udev;
7453                         niter = &udev->adj_list.upper;
7454                         dev_stack[cur] = now;
7455                         iter_stack[cur++] = iter;
7456                         break;
7457                 }
7458
7459                 if (!next) {
7460                         if (!cur)
7461                                 return 0;
7462                         next = dev_stack[--cur];
7463                         niter = iter_stack[cur];
7464                 }
7465
7466                 now = next;
7467                 iter = niter;
7468         }
7469
7470         return 0;
7471 }
7472
7473 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7474                                   int (*fn)(struct net_device *dev,
7475                                             struct netdev_nested_priv *priv),
7476                                   struct netdev_nested_priv *priv)
7477 {
7478         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7479         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7480         int ret, cur = 0;
7481
7482         now = dev;
7483         iter = &dev->adj_list.upper;
7484
7485         while (1) {
7486                 if (now != dev) {
7487                         ret = fn(now, priv);
7488                         if (ret)
7489                                 return ret;
7490                 }
7491
7492                 next = NULL;
7493                 while (1) {
7494                         udev = netdev_next_upper_dev_rcu(now, &iter);
7495                         if (!udev)
7496                                 break;
7497
7498                         next = udev;
7499                         niter = &udev->adj_list.upper;
7500                         dev_stack[cur] = now;
7501                         iter_stack[cur++] = iter;
7502                         break;
7503                 }
7504
7505                 if (!next) {
7506                         if (!cur)
7507                                 return 0;
7508                         next = dev_stack[--cur];
7509                         niter = iter_stack[cur];
7510                 }
7511
7512                 now = next;
7513                 iter = niter;
7514         }
7515
7516         return 0;
7517 }
7518 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7519
7520 static bool __netdev_has_upper_dev(struct net_device *dev,
7521                                    struct net_device *upper_dev)
7522 {
7523         struct netdev_nested_priv priv = {
7524                 .flags = 0,
7525                 .data = (void *)upper_dev,
7526         };
7527
7528         ASSERT_RTNL();
7529
7530         return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7531                                            &priv);
7532 }
7533
7534 /**
7535  * netdev_lower_get_next_private - Get the next ->private from the
7536  *                                 lower neighbour list
7537  * @dev: device
7538  * @iter: list_head ** of the current position
7539  *
7540  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7541  * list, starting from iter position. The caller must hold either hold the
7542  * RTNL lock or its own locking that guarantees that the neighbour lower
7543  * list will remain unchanged.
7544  */
7545 void *netdev_lower_get_next_private(struct net_device *dev,
7546                                     struct list_head **iter)
7547 {
7548         struct netdev_adjacent *lower;
7549
7550         lower = list_entry(*iter, struct netdev_adjacent, list);
7551
7552         if (&lower->list == &dev->adj_list.lower)
7553                 return NULL;
7554
7555         *iter = lower->list.next;
7556
7557         return lower->private;
7558 }
7559 EXPORT_SYMBOL(netdev_lower_get_next_private);
7560
7561 /**
7562  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7563  *                                     lower neighbour list, RCU
7564  *                                     variant
7565  * @dev: device
7566  * @iter: list_head ** of the current position
7567  *
7568  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7569  * list, starting from iter position. The caller must hold RCU read lock.
7570  */
7571 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7572                                         struct list_head **iter)
7573 {
7574         struct netdev_adjacent *lower;
7575
7576         WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7577
7578         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7579
7580         if (&lower->list == &dev->adj_list.lower)
7581                 return NULL;
7582
7583         *iter = &lower->list;
7584
7585         return lower->private;
7586 }
7587 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7588
7589 /**
7590  * netdev_lower_get_next - Get the next device from the lower neighbour
7591  *                         list
7592  * @dev: device
7593  * @iter: list_head ** of the current position
7594  *
7595  * Gets the next netdev_adjacent from the dev's lower neighbour
7596  * list, starting from iter position. The caller must hold RTNL lock or
7597  * its own locking that guarantees that the neighbour lower
7598  * list will remain unchanged.
7599  */
7600 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7601 {
7602         struct netdev_adjacent *lower;
7603
7604         lower = list_entry(*iter, struct netdev_adjacent, list);
7605
7606         if (&lower->list == &dev->adj_list.lower)
7607                 return NULL;
7608
7609         *iter = lower->list.next;
7610
7611         return lower->dev;
7612 }
7613 EXPORT_SYMBOL(netdev_lower_get_next);
7614
7615 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7616                                                 struct list_head **iter)
7617 {
7618         struct netdev_adjacent *lower;
7619
7620         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7621
7622         if (&lower->list == &dev->adj_list.lower)
7623                 return NULL;
7624
7625         *iter = &lower->list;
7626
7627         return lower->dev;
7628 }
7629
7630 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7631                                                   struct list_head **iter,
7632                                                   bool *ignore)
7633 {
7634         struct netdev_adjacent *lower;
7635
7636         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7637
7638         if (&lower->list == &dev->adj_list.lower)
7639                 return NULL;
7640
7641         *iter = &lower->list;
7642         *ignore = lower->ignore;
7643
7644         return lower->dev;
7645 }
7646
7647 int netdev_walk_all_lower_dev(struct net_device *dev,
7648                               int (*fn)(struct net_device *dev,
7649                                         struct netdev_nested_priv *priv),
7650                               struct netdev_nested_priv *priv)
7651 {
7652         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7653         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7654         int ret, cur = 0;
7655
7656         now = dev;
7657         iter = &dev->adj_list.lower;
7658
7659         while (1) {
7660                 if (now != dev) {
7661                         ret = fn(now, priv);
7662                         if (ret)
7663                                 return ret;
7664                 }
7665
7666                 next = NULL;
7667                 while (1) {
7668                         ldev = netdev_next_lower_dev(now, &iter);
7669                         if (!ldev)
7670                                 break;
7671
7672                         next = ldev;
7673                         niter = &ldev->adj_list.lower;
7674                         dev_stack[cur] = now;
7675                         iter_stack[cur++] = iter;
7676                         break;
7677                 }
7678
7679                 if (!next) {
7680                         if (!cur)
7681                                 return 0;
7682                         next = dev_stack[--cur];
7683                         niter = iter_stack[cur];
7684                 }
7685
7686                 now = next;
7687                 iter = niter;
7688         }
7689
7690         return 0;
7691 }
7692 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7693
7694 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7695                                        int (*fn)(struct net_device *dev,
7696                                          struct netdev_nested_priv *priv),
7697                                        struct netdev_nested_priv *priv)
7698 {
7699         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7700         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7701         int ret, cur = 0;
7702         bool ignore;
7703
7704         now = dev;
7705         iter = &dev->adj_list.lower;
7706
7707         while (1) {
7708                 if (now != dev) {
7709                         ret = fn(now, priv);
7710                         if (ret)
7711                                 return ret;
7712                 }
7713
7714                 next = NULL;
7715                 while (1) {
7716                         ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7717                         if (!ldev)
7718                                 break;
7719                         if (ignore)
7720                                 continue;
7721
7722                         next = ldev;
7723                         niter = &ldev->adj_list.lower;
7724                         dev_stack[cur] = now;
7725                         iter_stack[cur++] = iter;
7726                         break;
7727                 }
7728
7729                 if (!next) {
7730                         if (!cur)
7731                                 return 0;
7732                         next = dev_stack[--cur];
7733                         niter = iter_stack[cur];
7734                 }
7735
7736                 now = next;
7737                 iter = niter;
7738         }
7739
7740         return 0;
7741 }
7742
7743 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7744                                              struct list_head **iter)
7745 {
7746         struct netdev_adjacent *lower;
7747
7748         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7749         if (&lower->list == &dev->adj_list.lower)
7750                 return NULL;
7751
7752         *iter = &lower->list;
7753
7754         return lower->dev;
7755 }
7756 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7757
7758 static u8 __netdev_upper_depth(struct net_device *dev)
7759 {
7760         struct net_device *udev;
7761         struct list_head *iter;
7762         u8 max_depth = 0;
7763         bool ignore;
7764
7765         for (iter = &dev->adj_list.upper,
7766              udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7767              udev;
7768              udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7769                 if (ignore)
7770                         continue;
7771                 if (max_depth < udev->upper_level)
7772                         max_depth = udev->upper_level;
7773         }
7774
7775         return max_depth;
7776 }
7777
7778 static u8 __netdev_lower_depth(struct net_device *dev)
7779 {
7780         struct net_device *ldev;
7781         struct list_head *iter;
7782         u8 max_depth = 0;
7783         bool ignore;
7784
7785         for (iter = &dev->adj_list.lower,
7786              ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7787              ldev;
7788              ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7789                 if (ignore)
7790                         continue;
7791                 if (max_depth < ldev->lower_level)
7792                         max_depth = ldev->lower_level;
7793         }
7794
7795         return max_depth;
7796 }
7797
7798 static int __netdev_update_upper_level(struct net_device *dev,
7799                                        struct netdev_nested_priv *__unused)
7800 {
7801         dev->upper_level = __netdev_upper_depth(dev) + 1;
7802         return 0;
7803 }
7804
7805 static int __netdev_update_lower_level(struct net_device *dev,
7806                                        struct netdev_nested_priv *priv)
7807 {
7808         dev->lower_level = __netdev_lower_depth(dev) + 1;
7809
7810 #ifdef CONFIG_LOCKDEP
7811         if (!priv)
7812                 return 0;
7813
7814         if (priv->flags & NESTED_SYNC_IMM)
7815                 dev->nested_level = dev->lower_level - 1;
7816         if (priv->flags & NESTED_SYNC_TODO)
7817                 net_unlink_todo(dev);
7818 #endif
7819         return 0;
7820 }
7821
7822 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7823                                   int (*fn)(struct net_device *dev,
7824                                             struct netdev_nested_priv *priv),
7825                                   struct netdev_nested_priv *priv)
7826 {
7827         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7828         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7829         int ret, cur = 0;
7830
7831         now = dev;
7832         iter = &dev->adj_list.lower;
7833
7834         while (1) {
7835                 if (now != dev) {
7836                         ret = fn(now, priv);
7837                         if (ret)
7838                                 return ret;
7839                 }
7840
7841                 next = NULL;
7842                 while (1) {
7843                         ldev = netdev_next_lower_dev_rcu(now, &iter);
7844                         if (!ldev)
7845                                 break;
7846
7847                         next = ldev;
7848                         niter = &ldev->adj_list.lower;
7849                         dev_stack[cur] = now;
7850                         iter_stack[cur++] = iter;
7851                         break;
7852                 }
7853
7854                 if (!next) {
7855                         if (!cur)
7856                                 return 0;
7857                         next = dev_stack[--cur];
7858                         niter = iter_stack[cur];
7859                 }
7860
7861                 now = next;
7862                 iter = niter;
7863         }
7864
7865         return 0;
7866 }
7867 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7868
7869 /**
7870  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7871  *                                     lower neighbour list, RCU
7872  *                                     variant
7873  * @dev: device
7874  *
7875  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7876  * list. The caller must hold RCU read lock.
7877  */
7878 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7879 {
7880         struct netdev_adjacent *lower;
7881
7882         lower = list_first_or_null_rcu(&dev->adj_list.lower,
7883                         struct netdev_adjacent, list);
7884         if (lower)
7885                 return lower->private;
7886         return NULL;
7887 }
7888 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7889
7890 /**
7891  * netdev_master_upper_dev_get_rcu - Get master upper device
7892  * @dev: device
7893  *
7894  * Find a master upper device and return pointer to it or NULL in case
7895  * it's not there. The caller must hold the RCU read lock.
7896  */
7897 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7898 {
7899         struct netdev_adjacent *upper;
7900
7901         upper = list_first_or_null_rcu(&dev->adj_list.upper,
7902                                        struct netdev_adjacent, list);
7903         if (upper && likely(upper->master))
7904                 return upper->dev;
7905         return NULL;
7906 }
7907 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7908
7909 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7910                               struct net_device *adj_dev,
7911                               struct list_head *dev_list)
7912 {
7913         char linkname[IFNAMSIZ+7];
7914
7915         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7916                 "upper_%s" : "lower_%s", adj_dev->name);
7917         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7918                                  linkname);
7919 }
7920 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7921                                char *name,
7922                                struct list_head *dev_list)
7923 {
7924         char linkname[IFNAMSIZ+7];
7925
7926         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7927                 "upper_%s" : "lower_%s", name);
7928         sysfs_remove_link(&(dev->dev.kobj), linkname);
7929 }
7930
7931 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7932                                                  struct net_device *adj_dev,
7933                                                  struct list_head *dev_list)
7934 {
7935         return (dev_list == &dev->adj_list.upper ||
7936                 dev_list == &dev->adj_list.lower) &&
7937                 net_eq(dev_net(dev), dev_net(adj_dev));
7938 }
7939
7940 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7941                                         struct net_device *adj_dev,
7942                                         struct list_head *dev_list,
7943                                         void *private, bool master)
7944 {
7945         struct netdev_adjacent *adj;
7946         int ret;
7947
7948         adj = __netdev_find_adj(adj_dev, dev_list);
7949
7950         if (adj) {
7951                 adj->ref_nr += 1;
7952                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7953                          dev->name, adj_dev->name, adj->ref_nr);
7954
7955                 return 0;
7956         }
7957
7958         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7959         if (!adj)
7960                 return -ENOMEM;
7961
7962         adj->dev = adj_dev;
7963         adj->master = master;
7964         adj->ref_nr = 1;
7965         adj->private = private;
7966         adj->ignore = false;
7967         dev_hold(adj_dev);
7968
7969         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7970                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7971
7972         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7973                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7974                 if (ret)
7975                         goto free_adj;
7976         }
7977
7978         /* Ensure that master link is always the first item in list. */
7979         if (master) {
7980                 ret = sysfs_create_link(&(dev->dev.kobj),
7981                                         &(adj_dev->dev.kobj), "master");
7982                 if (ret)
7983                         goto remove_symlinks;
7984
7985                 list_add_rcu(&adj->list, dev_list);
7986         } else {
7987                 list_add_tail_rcu(&adj->list, dev_list);
7988         }
7989
7990         return 0;
7991
7992 remove_symlinks:
7993         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7994                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7995 free_adj:
7996         kfree(adj);
7997         dev_put(adj_dev);
7998
7999         return ret;
8000 }
8001
8002 static void __netdev_adjacent_dev_remove(struct net_device *dev,
8003                                          struct net_device *adj_dev,
8004                                          u16 ref_nr,
8005                                          struct list_head *dev_list)
8006 {
8007         struct netdev_adjacent *adj;
8008
8009         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
8010                  dev->name, adj_dev->name, ref_nr);
8011
8012         adj = __netdev_find_adj(adj_dev, dev_list);
8013
8014         if (!adj) {
8015                 pr_err("Adjacency does not exist for device %s from %s\n",
8016                        dev->name, adj_dev->name);
8017                 WARN_ON(1);
8018                 return;
8019         }
8020
8021         if (adj->ref_nr > ref_nr) {
8022                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
8023                          dev->name, adj_dev->name, ref_nr,
8024                          adj->ref_nr - ref_nr);
8025                 adj->ref_nr -= ref_nr;
8026                 return;
8027         }
8028
8029         if (adj->master)
8030                 sysfs_remove_link(&(dev->dev.kobj), "master");
8031
8032         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8033                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8034
8035         list_del_rcu(&adj->list);
8036         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
8037                  adj_dev->name, dev->name, adj_dev->name);
8038         dev_put(adj_dev);
8039         kfree_rcu(adj, rcu);
8040 }
8041
8042 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
8043                                             struct net_device *upper_dev,
8044                                             struct list_head *up_list,
8045                                             struct list_head *down_list,
8046                                             void *private, bool master)
8047 {
8048         int ret;
8049
8050         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
8051                                            private, master);
8052         if (ret)
8053                 return ret;
8054
8055         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
8056                                            private, false);
8057         if (ret) {
8058                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
8059                 return ret;
8060         }
8061
8062         return 0;
8063 }
8064
8065 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8066                                                struct net_device *upper_dev,
8067                                                u16 ref_nr,
8068                                                struct list_head *up_list,
8069                                                struct list_head *down_list)
8070 {
8071         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8072         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8073 }
8074
8075 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8076                                                 struct net_device *upper_dev,
8077                                                 void *private, bool master)
8078 {
8079         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8080                                                 &dev->adj_list.upper,
8081                                                 &upper_dev->adj_list.lower,
8082                                                 private, master);
8083 }
8084
8085 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8086                                                    struct net_device *upper_dev)
8087 {
8088         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8089                                            &dev->adj_list.upper,
8090                                            &upper_dev->adj_list.lower);
8091 }
8092
8093 static int __netdev_upper_dev_link(struct net_device *dev,
8094                                    struct net_device *upper_dev, bool master,
8095                                    void *upper_priv, void *upper_info,
8096                                    struct netdev_nested_priv *priv,
8097                                    struct netlink_ext_ack *extack)
8098 {
8099         struct netdev_notifier_changeupper_info changeupper_info = {
8100                 .info = {
8101                         .dev = dev,
8102                         .extack = extack,
8103                 },
8104                 .upper_dev = upper_dev,
8105                 .master = master,
8106                 .linking = true,
8107                 .upper_info = upper_info,
8108         };
8109         struct net_device *master_dev;
8110         int ret = 0;
8111
8112         ASSERT_RTNL();
8113
8114         if (dev == upper_dev)
8115                 return -EBUSY;
8116
8117         /* To prevent loops, check if dev is not upper device to upper_dev. */
8118         if (__netdev_has_upper_dev(upper_dev, dev))
8119                 return -EBUSY;
8120
8121         if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8122                 return -EMLINK;
8123
8124         if (!master) {
8125                 if (__netdev_has_upper_dev(dev, upper_dev))
8126                         return -EEXIST;
8127         } else {
8128                 master_dev = __netdev_master_upper_dev_get(dev);
8129                 if (master_dev)
8130                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
8131         }
8132
8133         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8134                                             &changeupper_info.info);
8135         ret = notifier_to_errno(ret);
8136         if (ret)
8137                 return ret;
8138
8139         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8140                                                    master);
8141         if (ret)
8142                 return ret;
8143
8144         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8145                                             &changeupper_info.info);
8146         ret = notifier_to_errno(ret);
8147         if (ret)
8148                 goto rollback;
8149
8150         __netdev_update_upper_level(dev, NULL);
8151         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8152
8153         __netdev_update_lower_level(upper_dev, priv);
8154         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8155                                     priv);
8156
8157         return 0;
8158
8159 rollback:
8160         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8161
8162         return ret;
8163 }
8164
8165 /**
8166  * netdev_upper_dev_link - Add a link to the upper device
8167  * @dev: device
8168  * @upper_dev: new upper device
8169  * @extack: netlink extended ack
8170  *
8171  * Adds a link to device which is upper to this one. The caller must hold
8172  * the RTNL lock. On a failure a negative errno code is returned.
8173  * On success the reference counts are adjusted and the function
8174  * returns zero.
8175  */
8176 int netdev_upper_dev_link(struct net_device *dev,
8177                           struct net_device *upper_dev,
8178                           struct netlink_ext_ack *extack)
8179 {
8180         struct netdev_nested_priv priv = {
8181                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8182                 .data = NULL,
8183         };
8184
8185         return __netdev_upper_dev_link(dev, upper_dev, false,
8186                                        NULL, NULL, &priv, extack);
8187 }
8188 EXPORT_SYMBOL(netdev_upper_dev_link);
8189
8190 /**
8191  * netdev_master_upper_dev_link - Add a master link to the upper device
8192  * @dev: device
8193  * @upper_dev: new upper device
8194  * @upper_priv: upper device private
8195  * @upper_info: upper info to be passed down via notifier
8196  * @extack: netlink extended ack
8197  *
8198  * Adds a link to device which is upper to this one. In this case, only
8199  * one master upper device can be linked, although other non-master devices
8200  * might be linked as well. The caller must hold the RTNL lock.
8201  * On a failure a negative errno code is returned. On success the reference
8202  * counts are adjusted and the function returns zero.
8203  */
8204 int netdev_master_upper_dev_link(struct net_device *dev,
8205                                  struct net_device *upper_dev,
8206                                  void *upper_priv, void *upper_info,
8207                                  struct netlink_ext_ack *extack)
8208 {
8209         struct netdev_nested_priv priv = {
8210                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8211                 .data = NULL,
8212         };
8213
8214         return __netdev_upper_dev_link(dev, upper_dev, true,
8215                                        upper_priv, upper_info, &priv, extack);
8216 }
8217 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8218
8219 static void __netdev_upper_dev_unlink(struct net_device *dev,
8220                                       struct net_device *upper_dev,
8221                                       struct netdev_nested_priv *priv)
8222 {
8223         struct netdev_notifier_changeupper_info changeupper_info = {
8224                 .info = {
8225                         .dev = dev,
8226                 },
8227                 .upper_dev = upper_dev,
8228                 .linking = false,
8229         };
8230
8231         ASSERT_RTNL();
8232
8233         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8234
8235         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8236                                       &changeupper_info.info);
8237
8238         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8239
8240         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8241                                       &changeupper_info.info);
8242
8243         __netdev_update_upper_level(dev, NULL);
8244         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8245
8246         __netdev_update_lower_level(upper_dev, priv);
8247         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8248                                     priv);
8249 }
8250
8251 /**
8252  * netdev_upper_dev_unlink - Removes a link to upper device
8253  * @dev: device
8254  * @upper_dev: new upper device
8255  *
8256  * Removes a link to device which is upper to this one. The caller must hold
8257  * the RTNL lock.
8258  */
8259 void netdev_upper_dev_unlink(struct net_device *dev,
8260                              struct net_device *upper_dev)
8261 {
8262         struct netdev_nested_priv priv = {
8263                 .flags = NESTED_SYNC_TODO,
8264                 .data = NULL,
8265         };
8266
8267         __netdev_upper_dev_unlink(dev, upper_dev, &priv);
8268 }
8269 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8270
8271 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8272                                       struct net_device *lower_dev,
8273                                       bool val)
8274 {
8275         struct netdev_adjacent *adj;
8276
8277         adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8278         if (adj)
8279                 adj->ignore = val;
8280
8281         adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8282         if (adj)
8283                 adj->ignore = val;
8284 }
8285
8286 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8287                                         struct net_device *lower_dev)
8288 {
8289         __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8290 }
8291
8292 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8293                                        struct net_device *lower_dev)
8294 {
8295         __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8296 }
8297
8298 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8299                                    struct net_device *new_dev,
8300                                    struct net_device *dev,
8301                                    struct netlink_ext_ack *extack)
8302 {
8303         struct netdev_nested_priv priv = {
8304                 .flags = 0,
8305                 .data = NULL,
8306         };
8307         int err;
8308
8309         if (!new_dev)
8310                 return 0;
8311
8312         if (old_dev && new_dev != old_dev)
8313                 netdev_adjacent_dev_disable(dev, old_dev);
8314         err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8315                                       extack);
8316         if (err) {
8317                 if (old_dev && new_dev != old_dev)
8318                         netdev_adjacent_dev_enable(dev, old_dev);
8319                 return err;
8320         }
8321
8322         return 0;
8323 }
8324 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8325
8326 void netdev_adjacent_change_commit(struct net_device *old_dev,
8327                                    struct net_device *new_dev,
8328                                    struct net_device *dev)
8329 {
8330         struct netdev_nested_priv priv = {
8331                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8332                 .data = NULL,
8333         };
8334
8335         if (!new_dev || !old_dev)
8336                 return;
8337
8338         if (new_dev == old_dev)
8339                 return;
8340
8341         netdev_adjacent_dev_enable(dev, old_dev);
8342         __netdev_upper_dev_unlink(old_dev, dev, &priv);
8343 }
8344 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8345
8346 void netdev_adjacent_change_abort(struct net_device *old_dev,
8347                                   struct net_device *new_dev,
8348                                   struct net_device *dev)
8349 {
8350         struct netdev_nested_priv priv = {
8351                 .flags = 0,
8352                 .data = NULL,
8353         };
8354
8355         if (!new_dev)
8356                 return;
8357
8358         if (old_dev && new_dev != old_dev)
8359                 netdev_adjacent_dev_enable(dev, old_dev);
8360
8361         __netdev_upper_dev_unlink(new_dev, dev, &priv);
8362 }
8363 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8364
8365 /**
8366  * netdev_bonding_info_change - Dispatch event about slave change
8367  * @dev: device
8368  * @bonding_info: info to dispatch
8369  *
8370  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8371  * The caller must hold the RTNL lock.
8372  */
8373 void netdev_bonding_info_change(struct net_device *dev,
8374                                 struct netdev_bonding_info *bonding_info)
8375 {
8376         struct netdev_notifier_bonding_info info = {
8377                 .info.dev = dev,
8378         };
8379
8380         memcpy(&info.bonding_info, bonding_info,
8381                sizeof(struct netdev_bonding_info));
8382         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8383                                       &info.info);
8384 }
8385 EXPORT_SYMBOL(netdev_bonding_info_change);
8386
8387 /**
8388  * netdev_get_xmit_slave - Get the xmit slave of master device
8389  * @dev: device
8390  * @skb: The packet
8391  * @all_slaves: assume all the slaves are active
8392  *
8393  * The reference counters are not incremented so the caller must be
8394  * careful with locks. The caller must hold RCU lock.
8395  * %NULL is returned if no slave is found.
8396  */
8397
8398 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8399                                          struct sk_buff *skb,
8400                                          bool all_slaves)
8401 {
8402         const struct net_device_ops *ops = dev->netdev_ops;
8403
8404         if (!ops->ndo_get_xmit_slave)
8405                 return NULL;
8406         return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8407 }
8408 EXPORT_SYMBOL(netdev_get_xmit_slave);
8409
8410 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8411                                                   struct sock *sk)
8412 {
8413         const struct net_device_ops *ops = dev->netdev_ops;
8414
8415         if (!ops->ndo_sk_get_lower_dev)
8416                 return NULL;
8417         return ops->ndo_sk_get_lower_dev(dev, sk);
8418 }
8419
8420 /**
8421  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8422  * @dev: device
8423  * @sk: the socket
8424  *
8425  * %NULL is returned if no lower device is found.
8426  */
8427
8428 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8429                                             struct sock *sk)
8430 {
8431         struct net_device *lower;
8432
8433         lower = netdev_sk_get_lower_dev(dev, sk);
8434         while (lower) {
8435                 dev = lower;
8436                 lower = netdev_sk_get_lower_dev(dev, sk);
8437         }
8438
8439         return dev;
8440 }
8441 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8442
8443 static void netdev_adjacent_add_links(struct net_device *dev)
8444 {
8445         struct netdev_adjacent *iter;
8446
8447         struct net *net = dev_net(dev);
8448
8449         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8450                 if (!net_eq(net, dev_net(iter->dev)))
8451                         continue;
8452                 netdev_adjacent_sysfs_add(iter->dev, dev,
8453                                           &iter->dev->adj_list.lower);
8454                 netdev_adjacent_sysfs_add(dev, iter->dev,
8455                                           &dev->adj_list.upper);
8456         }
8457
8458         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8459                 if (!net_eq(net, dev_net(iter->dev)))
8460                         continue;
8461                 netdev_adjacent_sysfs_add(iter->dev, dev,
8462                                           &iter->dev->adj_list.upper);
8463                 netdev_adjacent_sysfs_add(dev, iter->dev,
8464                                           &dev->adj_list.lower);
8465         }
8466 }
8467
8468 static void netdev_adjacent_del_links(struct net_device *dev)
8469 {
8470         struct netdev_adjacent *iter;
8471
8472         struct net *net = dev_net(dev);
8473
8474         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8475                 if (!net_eq(net, dev_net(iter->dev)))
8476                         continue;
8477                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8478                                           &iter->dev->adj_list.lower);
8479                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8480                                           &dev->adj_list.upper);
8481         }
8482
8483         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8484                 if (!net_eq(net, dev_net(iter->dev)))
8485                         continue;
8486                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8487                                           &iter->dev->adj_list.upper);
8488                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8489                                           &dev->adj_list.lower);
8490         }
8491 }
8492
8493 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8494 {
8495         struct netdev_adjacent *iter;
8496
8497         struct net *net = dev_net(dev);
8498
8499         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8500                 if (!net_eq(net, dev_net(iter->dev)))
8501                         continue;
8502                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8503                                           &iter->dev->adj_list.lower);
8504                 netdev_adjacent_sysfs_add(iter->dev, dev,
8505                                           &iter->dev->adj_list.lower);
8506         }
8507
8508         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8509                 if (!net_eq(net, dev_net(iter->dev)))
8510                         continue;
8511                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8512                                           &iter->dev->adj_list.upper);
8513                 netdev_adjacent_sysfs_add(iter->dev, dev,
8514                                           &iter->dev->adj_list.upper);
8515         }
8516 }
8517
8518 void *netdev_lower_dev_get_private(struct net_device *dev,
8519                                    struct net_device *lower_dev)
8520 {
8521         struct netdev_adjacent *lower;
8522
8523         if (!lower_dev)
8524                 return NULL;
8525         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8526         if (!lower)
8527                 return NULL;
8528
8529         return lower->private;
8530 }
8531 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8532
8533
8534 /**
8535  * netdev_lower_state_changed - Dispatch event about lower device state change
8536  * @lower_dev: device
8537  * @lower_state_info: state to dispatch
8538  *
8539  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8540  * The caller must hold the RTNL lock.
8541  */
8542 void netdev_lower_state_changed(struct net_device *lower_dev,
8543                                 void *lower_state_info)
8544 {
8545         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8546                 .info.dev = lower_dev,
8547         };
8548
8549         ASSERT_RTNL();
8550         changelowerstate_info.lower_state_info = lower_state_info;
8551         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8552                                       &changelowerstate_info.info);
8553 }
8554 EXPORT_SYMBOL(netdev_lower_state_changed);
8555
8556 static void dev_change_rx_flags(struct net_device *dev, int flags)
8557 {
8558         const struct net_device_ops *ops = dev->netdev_ops;
8559
8560         if (ops->ndo_change_rx_flags)
8561                 ops->ndo_change_rx_flags(dev, flags);
8562 }
8563
8564 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8565 {
8566         unsigned int old_flags = dev->flags;
8567         kuid_t uid;
8568         kgid_t gid;
8569
8570         ASSERT_RTNL();
8571
8572         dev->flags |= IFF_PROMISC;
8573         dev->promiscuity += inc;
8574         if (dev->promiscuity == 0) {
8575                 /*
8576                  * Avoid overflow.
8577                  * If inc causes overflow, untouch promisc and return error.
8578                  */
8579                 if (inc < 0)
8580                         dev->flags &= ~IFF_PROMISC;
8581                 else {
8582                         dev->promiscuity -= inc;
8583                         netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8584                         return -EOVERFLOW;
8585                 }
8586         }
8587         if (dev->flags != old_flags) {
8588                 pr_info("device %s %s promiscuous mode\n",
8589                         dev->name,
8590                         dev->flags & IFF_PROMISC ? "entered" : "left");
8591                 if (audit_enabled) {
8592                         current_uid_gid(&uid, &gid);
8593                         audit_log(audit_context(), GFP_ATOMIC,
8594                                   AUDIT_ANOM_PROMISCUOUS,
8595                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8596                                   dev->name, (dev->flags & IFF_PROMISC),
8597                                   (old_flags & IFF_PROMISC),
8598                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
8599                                   from_kuid(&init_user_ns, uid),
8600                                   from_kgid(&init_user_ns, gid),
8601                                   audit_get_sessionid(current));
8602                 }
8603
8604                 dev_change_rx_flags(dev, IFF_PROMISC);
8605         }
8606         if (notify)
8607                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
8608         return 0;
8609 }
8610
8611 /**
8612  *      dev_set_promiscuity     - update promiscuity count on a device
8613  *      @dev: device
8614  *      @inc: modifier
8615  *
8616  *      Add or remove promiscuity from a device. While the count in the device
8617  *      remains above zero the interface remains promiscuous. Once it hits zero
8618  *      the device reverts back to normal filtering operation. A negative inc
8619  *      value is used to drop promiscuity on the device.
8620  *      Return 0 if successful or a negative errno code on error.
8621  */
8622 int dev_set_promiscuity(struct net_device *dev, int inc)
8623 {
8624         unsigned int old_flags = dev->flags;
8625         int err;
8626
8627         err = __dev_set_promiscuity(dev, inc, true);
8628         if (err < 0)
8629                 return err;
8630         if (dev->flags != old_flags)
8631                 dev_set_rx_mode(dev);
8632         return err;
8633 }
8634 EXPORT_SYMBOL(dev_set_promiscuity);
8635
8636 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8637 {
8638         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8639
8640         ASSERT_RTNL();
8641
8642         dev->flags |= IFF_ALLMULTI;
8643         dev->allmulti += inc;
8644         if (dev->allmulti == 0) {
8645                 /*
8646                  * Avoid overflow.
8647                  * If inc causes overflow, untouch allmulti and return error.
8648                  */
8649                 if (inc < 0)
8650                         dev->flags &= ~IFF_ALLMULTI;
8651                 else {
8652                         dev->allmulti -= inc;
8653                         netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8654                         return -EOVERFLOW;
8655                 }
8656         }
8657         if (dev->flags ^ old_flags) {
8658                 dev_change_rx_flags(dev, IFF_ALLMULTI);
8659                 dev_set_rx_mode(dev);
8660                 if (notify)
8661                         __dev_notify_flags(dev, old_flags,
8662                                            dev->gflags ^ old_gflags);
8663         }
8664         return 0;
8665 }
8666
8667 /**
8668  *      dev_set_allmulti        - update allmulti count on a device
8669  *      @dev: device
8670  *      @inc: modifier
8671  *
8672  *      Add or remove reception of all multicast frames to a device. While the
8673  *      count in the device remains above zero the interface remains listening
8674  *      to all interfaces. Once it hits zero the device reverts back to normal
8675  *      filtering operation. A negative @inc value is used to drop the counter
8676  *      when releasing a resource needing all multicasts.
8677  *      Return 0 if successful or a negative errno code on error.
8678  */
8679
8680 int dev_set_allmulti(struct net_device *dev, int inc)
8681 {
8682         return __dev_set_allmulti(dev, inc, true);
8683 }
8684 EXPORT_SYMBOL(dev_set_allmulti);
8685
8686 /*
8687  *      Upload unicast and multicast address lists to device and
8688  *      configure RX filtering. When the device doesn't support unicast
8689  *      filtering it is put in promiscuous mode while unicast addresses
8690  *      are present.
8691  */
8692 void __dev_set_rx_mode(struct net_device *dev)
8693 {
8694         const struct net_device_ops *ops = dev->netdev_ops;
8695
8696         /* dev_open will call this function so the list will stay sane. */
8697         if (!(dev->flags&IFF_UP))
8698                 return;
8699
8700         if (!netif_device_present(dev))
8701                 return;
8702
8703         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8704                 /* Unicast addresses changes may only happen under the rtnl,
8705                  * therefore calling __dev_set_promiscuity here is safe.
8706                  */
8707                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8708                         __dev_set_promiscuity(dev, 1, false);
8709                         dev->uc_promisc = true;
8710                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8711                         __dev_set_promiscuity(dev, -1, false);
8712                         dev->uc_promisc = false;
8713                 }
8714         }
8715
8716         if (ops->ndo_set_rx_mode)
8717                 ops->ndo_set_rx_mode(dev);
8718 }
8719
8720 void dev_set_rx_mode(struct net_device *dev)
8721 {
8722         netif_addr_lock_bh(dev);
8723         __dev_set_rx_mode(dev);
8724         netif_addr_unlock_bh(dev);
8725 }
8726
8727 /**
8728  *      dev_get_flags - get flags reported to userspace
8729  *      @dev: device
8730  *
8731  *      Get the combination of flag bits exported through APIs to userspace.
8732  */
8733 unsigned int dev_get_flags(const struct net_device *dev)
8734 {
8735         unsigned int flags;
8736
8737         flags = (dev->flags & ~(IFF_PROMISC |
8738                                 IFF_ALLMULTI |
8739                                 IFF_RUNNING |
8740                                 IFF_LOWER_UP |
8741                                 IFF_DORMANT)) |
8742                 (dev->gflags & (IFF_PROMISC |
8743                                 IFF_ALLMULTI));
8744
8745         if (netif_running(dev)) {
8746                 if (netif_oper_up(dev))
8747                         flags |= IFF_RUNNING;
8748                 if (netif_carrier_ok(dev))
8749                         flags |= IFF_LOWER_UP;
8750                 if (netif_dormant(dev))
8751                         flags |= IFF_DORMANT;
8752         }
8753
8754         return flags;
8755 }
8756 EXPORT_SYMBOL(dev_get_flags);
8757
8758 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8759                        struct netlink_ext_ack *extack)
8760 {
8761         unsigned int old_flags = dev->flags;
8762         int ret;
8763
8764         ASSERT_RTNL();
8765
8766         /*
8767          *      Set the flags on our device.
8768          */
8769
8770         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8771                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8772                                IFF_AUTOMEDIA)) |
8773                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8774                                     IFF_ALLMULTI));
8775
8776         /*
8777          *      Load in the correct multicast list now the flags have changed.
8778          */
8779
8780         if ((old_flags ^ flags) & IFF_MULTICAST)
8781                 dev_change_rx_flags(dev, IFF_MULTICAST);
8782
8783         dev_set_rx_mode(dev);
8784
8785         /*
8786          *      Have we downed the interface. We handle IFF_UP ourselves
8787          *      according to user attempts to set it, rather than blindly
8788          *      setting it.
8789          */
8790
8791         ret = 0;
8792         if ((old_flags ^ flags) & IFF_UP) {
8793                 if (old_flags & IFF_UP)
8794                         __dev_close(dev);
8795                 else
8796                         ret = __dev_open(dev, extack);
8797         }
8798
8799         if ((flags ^ dev->gflags) & IFF_PROMISC) {
8800                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8801                 unsigned int old_flags = dev->flags;
8802
8803                 dev->gflags ^= IFF_PROMISC;
8804
8805                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8806                         if (dev->flags != old_flags)
8807                                 dev_set_rx_mode(dev);
8808         }
8809
8810         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8811          * is important. Some (broken) drivers set IFF_PROMISC, when
8812          * IFF_ALLMULTI is requested not asking us and not reporting.
8813          */
8814         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8815                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8816
8817                 dev->gflags ^= IFF_ALLMULTI;
8818                 __dev_set_allmulti(dev, inc, false);
8819         }
8820
8821         return ret;
8822 }
8823
8824 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8825                         unsigned int gchanges)
8826 {
8827         unsigned int changes = dev->flags ^ old_flags;
8828
8829         if (gchanges)
8830                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8831
8832         if (changes & IFF_UP) {
8833                 if (dev->flags & IFF_UP)
8834                         call_netdevice_notifiers(NETDEV_UP, dev);
8835                 else
8836                         call_netdevice_notifiers(NETDEV_DOWN, dev);
8837         }
8838
8839         if (dev->flags & IFF_UP &&
8840             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8841                 struct netdev_notifier_change_info change_info = {
8842                         .info = {
8843                                 .dev = dev,
8844                         },
8845                         .flags_changed = changes,
8846                 };
8847
8848                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8849         }
8850 }
8851
8852 /**
8853  *      dev_change_flags - change device settings
8854  *      @dev: device
8855  *      @flags: device state flags
8856  *      @extack: netlink extended ack
8857  *
8858  *      Change settings on device based state flags. The flags are
8859  *      in the userspace exported format.
8860  */
8861 int dev_change_flags(struct net_device *dev, unsigned int flags,
8862                      struct netlink_ext_ack *extack)
8863 {
8864         int ret;
8865         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8866
8867         ret = __dev_change_flags(dev, flags, extack);
8868         if (ret < 0)
8869                 return ret;
8870
8871         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8872         __dev_notify_flags(dev, old_flags, changes);
8873         return ret;
8874 }
8875 EXPORT_SYMBOL(dev_change_flags);
8876
8877 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8878 {
8879         const struct net_device_ops *ops = dev->netdev_ops;
8880
8881         if (ops->ndo_change_mtu)
8882                 return ops->ndo_change_mtu(dev, new_mtu);
8883
8884         /* Pairs with all the lockless reads of dev->mtu in the stack */
8885         WRITE_ONCE(dev->mtu, new_mtu);
8886         return 0;
8887 }
8888 EXPORT_SYMBOL(__dev_set_mtu);
8889
8890 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8891                      struct netlink_ext_ack *extack)
8892 {
8893         /* MTU must be positive, and in range */
8894         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8895                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8896                 return -EINVAL;
8897         }
8898
8899         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8900                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8901                 return -EINVAL;
8902         }
8903         return 0;
8904 }
8905
8906 /**
8907  *      dev_set_mtu_ext - Change maximum transfer unit
8908  *      @dev: device
8909  *      @new_mtu: new transfer unit
8910  *      @extack: netlink extended ack
8911  *
8912  *      Change the maximum transfer size of the network device.
8913  */
8914 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8915                     struct netlink_ext_ack *extack)
8916 {
8917         int err, orig_mtu;
8918
8919         if (new_mtu == dev->mtu)
8920                 return 0;
8921
8922         err = dev_validate_mtu(dev, new_mtu, extack);
8923         if (err)
8924                 return err;
8925
8926         if (!netif_device_present(dev))
8927                 return -ENODEV;
8928
8929         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8930         err = notifier_to_errno(err);
8931         if (err)
8932                 return err;
8933
8934         orig_mtu = dev->mtu;
8935         err = __dev_set_mtu(dev, new_mtu);
8936
8937         if (!err) {
8938                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8939                                                    orig_mtu);
8940                 err = notifier_to_errno(err);
8941                 if (err) {
8942                         /* setting mtu back and notifying everyone again,
8943                          * so that they have a chance to revert changes.
8944                          */
8945                         __dev_set_mtu(dev, orig_mtu);
8946                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8947                                                      new_mtu);
8948                 }
8949         }
8950         return err;
8951 }
8952
8953 int dev_set_mtu(struct net_device *dev, int new_mtu)
8954 {
8955         struct netlink_ext_ack extack;
8956         int err;
8957
8958         memset(&extack, 0, sizeof(extack));
8959         err = dev_set_mtu_ext(dev, new_mtu, &extack);
8960         if (err && extack._msg)
8961                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8962         return err;
8963 }
8964 EXPORT_SYMBOL(dev_set_mtu);
8965
8966 /**
8967  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
8968  *      @dev: device
8969  *      @new_len: new tx queue length
8970  */
8971 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8972 {
8973         unsigned int orig_len = dev->tx_queue_len;
8974         int res;
8975
8976         if (new_len != (unsigned int)new_len)
8977                 return -ERANGE;
8978
8979         if (new_len != orig_len) {
8980                 dev->tx_queue_len = new_len;
8981                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8982                 res = notifier_to_errno(res);
8983                 if (res)
8984                         goto err_rollback;
8985                 res = dev_qdisc_change_tx_queue_len(dev);
8986                 if (res)
8987                         goto err_rollback;
8988         }
8989
8990         return 0;
8991
8992 err_rollback:
8993         netdev_err(dev, "refused to change device tx_queue_len\n");
8994         dev->tx_queue_len = orig_len;
8995         return res;
8996 }
8997
8998 /**
8999  *      dev_set_group - Change group this device belongs to
9000  *      @dev: device
9001  *      @new_group: group this device should belong to
9002  */
9003 void dev_set_group(struct net_device *dev, int new_group)
9004 {
9005         dev->group = new_group;
9006 }
9007 EXPORT_SYMBOL(dev_set_group);
9008
9009 /**
9010  *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
9011  *      @dev: device
9012  *      @addr: new address
9013  *      @extack: netlink extended ack
9014  */
9015 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
9016                               struct netlink_ext_ack *extack)
9017 {
9018         struct netdev_notifier_pre_changeaddr_info info = {
9019                 .info.dev = dev,
9020                 .info.extack = extack,
9021                 .dev_addr = addr,
9022         };
9023         int rc;
9024
9025         rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9026         return notifier_to_errno(rc);
9027 }
9028 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
9029
9030 /**
9031  *      dev_set_mac_address - Change Media Access Control Address
9032  *      @dev: device
9033  *      @sa: new address
9034  *      @extack: netlink extended ack
9035  *
9036  *      Change the hardware (MAC) address of the device
9037  */
9038 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
9039                         struct netlink_ext_ack *extack)
9040 {
9041         const struct net_device_ops *ops = dev->netdev_ops;
9042         int err;
9043
9044         if (!ops->ndo_set_mac_address)
9045                 return -EOPNOTSUPP;
9046         if (sa->sa_family != dev->type)
9047                 return -EINVAL;
9048         if (!netif_device_present(dev))
9049                 return -ENODEV;
9050         err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
9051         if (err)
9052                 return err;
9053         err = ops->ndo_set_mac_address(dev, sa);
9054         if (err)
9055                 return err;
9056         dev->addr_assign_type = NET_ADDR_SET;
9057         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9058         add_device_randomness(dev->dev_addr, dev->addr_len);
9059         return 0;
9060 }
9061 EXPORT_SYMBOL(dev_set_mac_address);
9062
9063 static DECLARE_RWSEM(dev_addr_sem);
9064
9065 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
9066                              struct netlink_ext_ack *extack)
9067 {
9068         int ret;
9069
9070         down_write(&dev_addr_sem);
9071         ret = dev_set_mac_address(dev, sa, extack);
9072         up_write(&dev_addr_sem);
9073         return ret;
9074 }
9075 EXPORT_SYMBOL(dev_set_mac_address_user);
9076
9077 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9078 {
9079         size_t size = sizeof(sa->sa_data);
9080         struct net_device *dev;
9081         int ret = 0;
9082
9083         down_read(&dev_addr_sem);
9084         rcu_read_lock();
9085
9086         dev = dev_get_by_name_rcu(net, dev_name);
9087         if (!dev) {
9088                 ret = -ENODEV;
9089                 goto unlock;
9090         }
9091         if (!dev->addr_len)
9092                 memset(sa->sa_data, 0, size);
9093         else
9094                 memcpy(sa->sa_data, dev->dev_addr,
9095                        min_t(size_t, size, dev->addr_len));
9096         sa->sa_family = dev->type;
9097
9098 unlock:
9099         rcu_read_unlock();
9100         up_read(&dev_addr_sem);
9101         return ret;
9102 }
9103 EXPORT_SYMBOL(dev_get_mac_address);
9104
9105 /**
9106  *      dev_change_carrier - Change device carrier
9107  *      @dev: device
9108  *      @new_carrier: new value
9109  *
9110  *      Change device carrier
9111  */
9112 int dev_change_carrier(struct net_device *dev, bool new_carrier)
9113 {
9114         const struct net_device_ops *ops = dev->netdev_ops;
9115
9116         if (!ops->ndo_change_carrier)
9117                 return -EOPNOTSUPP;
9118         if (!netif_device_present(dev))
9119                 return -ENODEV;
9120         return ops->ndo_change_carrier(dev, new_carrier);
9121 }
9122 EXPORT_SYMBOL(dev_change_carrier);
9123
9124 /**
9125  *      dev_get_phys_port_id - Get device physical port ID
9126  *      @dev: device
9127  *      @ppid: port ID
9128  *
9129  *      Get device physical port ID
9130  */
9131 int dev_get_phys_port_id(struct net_device *dev,
9132                          struct netdev_phys_item_id *ppid)
9133 {
9134         const struct net_device_ops *ops = dev->netdev_ops;
9135
9136         if (!ops->ndo_get_phys_port_id)
9137                 return -EOPNOTSUPP;
9138         return ops->ndo_get_phys_port_id(dev, ppid);
9139 }
9140 EXPORT_SYMBOL(dev_get_phys_port_id);
9141
9142 /**
9143  *      dev_get_phys_port_name - Get device physical port name
9144  *      @dev: device
9145  *      @name: port name
9146  *      @len: limit of bytes to copy to name
9147  *
9148  *      Get device physical port name
9149  */
9150 int dev_get_phys_port_name(struct net_device *dev,
9151                            char *name, size_t len)
9152 {
9153         const struct net_device_ops *ops = dev->netdev_ops;
9154         int err;
9155
9156         if (ops->ndo_get_phys_port_name) {
9157                 err = ops->ndo_get_phys_port_name(dev, name, len);
9158                 if (err != -EOPNOTSUPP)
9159                         return err;
9160         }
9161         return devlink_compat_phys_port_name_get(dev, name, len);
9162 }
9163 EXPORT_SYMBOL(dev_get_phys_port_name);
9164
9165 /**
9166  *      dev_get_port_parent_id - Get the device's port parent identifier
9167  *      @dev: network device
9168  *      @ppid: pointer to a storage for the port's parent identifier
9169  *      @recurse: allow/disallow recursion to lower devices
9170  *
9171  *      Get the devices's port parent identifier
9172  */
9173 int dev_get_port_parent_id(struct net_device *dev,
9174                            struct netdev_phys_item_id *ppid,
9175                            bool recurse)
9176 {
9177         const struct net_device_ops *ops = dev->netdev_ops;
9178         struct netdev_phys_item_id first = { };
9179         struct net_device *lower_dev;
9180         struct list_head *iter;
9181         int err;
9182
9183         if (ops->ndo_get_port_parent_id) {
9184                 err = ops->ndo_get_port_parent_id(dev, ppid);
9185                 if (err != -EOPNOTSUPP)
9186                         return err;
9187         }
9188
9189         err = devlink_compat_switch_id_get(dev, ppid);
9190         if (!recurse || err != -EOPNOTSUPP)
9191                 return err;
9192
9193         netdev_for_each_lower_dev(dev, lower_dev, iter) {
9194                 err = dev_get_port_parent_id(lower_dev, ppid, true);
9195                 if (err)
9196                         break;
9197                 if (!first.id_len)
9198                         first = *ppid;
9199                 else if (memcmp(&first, ppid, sizeof(*ppid)))
9200                         return -EOPNOTSUPP;
9201         }
9202
9203         return err;
9204 }
9205 EXPORT_SYMBOL(dev_get_port_parent_id);
9206
9207 /**
9208  *      netdev_port_same_parent_id - Indicate if two network devices have
9209  *      the same port parent identifier
9210  *      @a: first network device
9211  *      @b: second network device
9212  */
9213 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9214 {
9215         struct netdev_phys_item_id a_id = { };
9216         struct netdev_phys_item_id b_id = { };
9217
9218         if (dev_get_port_parent_id(a, &a_id, true) ||
9219             dev_get_port_parent_id(b, &b_id, true))
9220                 return false;
9221
9222         return netdev_phys_item_id_same(&a_id, &b_id);
9223 }
9224 EXPORT_SYMBOL(netdev_port_same_parent_id);
9225
9226 /**
9227  *      dev_change_proto_down - update protocol port state information
9228  *      @dev: device
9229  *      @proto_down: new value
9230  *
9231  *      This info can be used by switch drivers to set the phys state of the
9232  *      port.
9233  */
9234 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9235 {
9236         const struct net_device_ops *ops = dev->netdev_ops;
9237
9238         if (!ops->ndo_change_proto_down)
9239                 return -EOPNOTSUPP;
9240         if (!netif_device_present(dev))
9241                 return -ENODEV;
9242         return ops->ndo_change_proto_down(dev, proto_down);
9243 }
9244 EXPORT_SYMBOL(dev_change_proto_down);
9245
9246 /**
9247  *      dev_change_proto_down_generic - generic implementation for
9248  *      ndo_change_proto_down that sets carrier according to
9249  *      proto_down.
9250  *
9251  *      @dev: device
9252  *      @proto_down: new value
9253  */
9254 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
9255 {
9256         if (proto_down)
9257                 netif_carrier_off(dev);
9258         else
9259                 netif_carrier_on(dev);
9260         dev->proto_down = proto_down;
9261         return 0;
9262 }
9263 EXPORT_SYMBOL(dev_change_proto_down_generic);
9264
9265 /**
9266  *      dev_change_proto_down_reason - proto down reason
9267  *
9268  *      @dev: device
9269  *      @mask: proto down mask
9270  *      @value: proto down value
9271  */
9272 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9273                                   u32 value)
9274 {
9275         int b;
9276
9277         if (!mask) {
9278                 dev->proto_down_reason = value;
9279         } else {
9280                 for_each_set_bit(b, &mask, 32) {
9281                         if (value & (1 << b))
9282                                 dev->proto_down_reason |= BIT(b);
9283                         else
9284                                 dev->proto_down_reason &= ~BIT(b);
9285                 }
9286         }
9287 }
9288 EXPORT_SYMBOL(dev_change_proto_down_reason);
9289
9290 struct bpf_xdp_link {
9291         struct bpf_link link;
9292         struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9293         int flags;
9294 };
9295
9296 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9297 {
9298         if (flags & XDP_FLAGS_HW_MODE)
9299                 return XDP_MODE_HW;
9300         if (flags & XDP_FLAGS_DRV_MODE)
9301                 return XDP_MODE_DRV;
9302         if (flags & XDP_FLAGS_SKB_MODE)
9303                 return XDP_MODE_SKB;
9304         return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9305 }
9306
9307 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9308 {
9309         switch (mode) {
9310         case XDP_MODE_SKB:
9311                 return generic_xdp_install;
9312         case XDP_MODE_DRV:
9313         case XDP_MODE_HW:
9314                 return dev->netdev_ops->ndo_bpf;
9315         default:
9316                 return NULL;
9317         }
9318 }
9319
9320 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9321                                          enum bpf_xdp_mode mode)
9322 {
9323         return dev->xdp_state[mode].link;
9324 }
9325
9326 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9327                                      enum bpf_xdp_mode mode)
9328 {
9329         struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9330
9331         if (link)
9332                 return link->link.prog;
9333         return dev->xdp_state[mode].prog;
9334 }
9335
9336 u8 dev_xdp_prog_count(struct net_device *dev)
9337 {
9338         u8 count = 0;
9339         int i;
9340
9341         for (i = 0; i < __MAX_XDP_MODE; i++)
9342                 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9343                         count++;
9344         return count;
9345 }
9346 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9347
9348 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9349 {
9350         struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9351
9352         return prog ? prog->aux->id : 0;
9353 }
9354
9355 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9356                              struct bpf_xdp_link *link)
9357 {
9358         dev->xdp_state[mode].link = link;
9359         dev->xdp_state[mode].prog = NULL;
9360 }
9361
9362 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9363                              struct bpf_prog *prog)
9364 {
9365         dev->xdp_state[mode].link = NULL;
9366         dev->xdp_state[mode].prog = prog;
9367 }
9368
9369 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9370                            bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9371                            u32 flags, struct bpf_prog *prog)
9372 {
9373         struct netdev_bpf xdp;
9374         int err;
9375
9376         memset(&xdp, 0, sizeof(xdp));
9377         xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9378         xdp.extack = extack;
9379         xdp.flags = flags;
9380         xdp.prog = prog;
9381
9382         /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9383          * "moved" into driver), so they don't increment it on their own, but
9384          * they do decrement refcnt when program is detached or replaced.
9385          * Given net_device also owns link/prog, we need to bump refcnt here
9386          * to prevent drivers from underflowing it.
9387          */
9388         if (prog)
9389                 bpf_prog_inc(prog);
9390         err = bpf_op(dev, &xdp);
9391         if (err) {
9392                 if (prog)
9393                         bpf_prog_put(prog);
9394                 return err;
9395         }
9396
9397         if (mode != XDP_MODE_HW)
9398                 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9399
9400         return 0;
9401 }
9402
9403 static void dev_xdp_uninstall(struct net_device *dev)
9404 {
9405         struct bpf_xdp_link *link;
9406         struct bpf_prog *prog;
9407         enum bpf_xdp_mode mode;
9408         bpf_op_t bpf_op;
9409
9410         ASSERT_RTNL();
9411
9412         for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9413                 prog = dev_xdp_prog(dev, mode);
9414                 if (!prog)
9415                         continue;
9416
9417                 bpf_op = dev_xdp_bpf_op(dev, mode);
9418                 if (!bpf_op)
9419                         continue;
9420
9421                 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9422
9423                 /* auto-detach link from net device */
9424                 link = dev_xdp_link(dev, mode);
9425                 if (link)
9426                         link->dev = NULL;
9427                 else
9428                         bpf_prog_put(prog);
9429
9430                 dev_xdp_set_link(dev, mode, NULL);
9431         }
9432 }
9433
9434 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9435                           struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9436                           struct bpf_prog *old_prog, u32 flags)
9437 {
9438         unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9439         struct bpf_prog *cur_prog;
9440         struct net_device *upper;
9441         struct list_head *iter;
9442         enum bpf_xdp_mode mode;
9443         bpf_op_t bpf_op;
9444         int err;
9445
9446         ASSERT_RTNL();
9447
9448         /* either link or prog attachment, never both */
9449         if (link && (new_prog || old_prog))
9450                 return -EINVAL;
9451         /* link supports only XDP mode flags */
9452         if (link && (flags & ~XDP_FLAGS_MODES)) {
9453                 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9454                 return -EINVAL;
9455         }
9456         /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9457         if (num_modes > 1) {
9458                 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9459                 return -EINVAL;
9460         }
9461         /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9462         if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9463                 NL_SET_ERR_MSG(extack,
9464                                "More than one program loaded, unset mode is ambiguous");
9465                 return -EINVAL;
9466         }
9467         /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9468         if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9469                 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9470                 return -EINVAL;
9471         }
9472
9473         mode = dev_xdp_mode(dev, flags);
9474         /* can't replace attached link */
9475         if (dev_xdp_link(dev, mode)) {
9476                 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9477                 return -EBUSY;
9478         }
9479
9480         /* don't allow if an upper device already has a program */
9481         netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9482                 if (dev_xdp_prog_count(upper) > 0) {
9483                         NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9484                         return -EEXIST;
9485                 }
9486         }
9487
9488         cur_prog = dev_xdp_prog(dev, mode);
9489         /* can't replace attached prog with link */
9490         if (link && cur_prog) {
9491                 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9492                 return -EBUSY;
9493         }
9494         if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9495                 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9496                 return -EEXIST;
9497         }
9498
9499         /* put effective new program into new_prog */
9500         if (link)
9501                 new_prog = link->link.prog;
9502
9503         if (new_prog) {
9504                 bool offload = mode == XDP_MODE_HW;
9505                 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9506                                                ? XDP_MODE_DRV : XDP_MODE_SKB;
9507
9508                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9509                         NL_SET_ERR_MSG(extack, "XDP program already attached");
9510                         return -EBUSY;
9511                 }
9512                 if (!offload && dev_xdp_prog(dev, other_mode)) {
9513                         NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9514                         return -EEXIST;
9515                 }
9516                 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9517                         NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9518                         return -EINVAL;
9519                 }
9520                 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9521                         NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9522                         return -EINVAL;
9523                 }
9524                 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9525                         NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9526                         return -EINVAL;
9527                 }
9528         }
9529
9530         /* don't call drivers if the effective program didn't change */
9531         if (new_prog != cur_prog) {
9532                 bpf_op = dev_xdp_bpf_op(dev, mode);
9533                 if (!bpf_op) {
9534                         NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9535                         return -EOPNOTSUPP;
9536                 }
9537
9538                 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9539                 if (err)
9540                         return err;
9541         }
9542
9543         if (link)
9544                 dev_xdp_set_link(dev, mode, link);
9545         else
9546                 dev_xdp_set_prog(dev, mode, new_prog);
9547         if (cur_prog)
9548                 bpf_prog_put(cur_prog);
9549
9550         return 0;
9551 }
9552
9553 static int dev_xdp_attach_link(struct net_device *dev,
9554                                struct netlink_ext_ack *extack,
9555                                struct bpf_xdp_link *link)
9556 {
9557         return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9558 }
9559
9560 static int dev_xdp_detach_link(struct net_device *dev,
9561                                struct netlink_ext_ack *extack,
9562                                struct bpf_xdp_link *link)
9563 {
9564         enum bpf_xdp_mode mode;
9565         bpf_op_t bpf_op;
9566
9567         ASSERT_RTNL();
9568
9569         mode = dev_xdp_mode(dev, link->flags);
9570         if (dev_xdp_link(dev, mode) != link)
9571                 return -EINVAL;
9572
9573         bpf_op = dev_xdp_bpf_op(dev, mode);
9574         WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9575         dev_xdp_set_link(dev, mode, NULL);
9576         return 0;
9577 }
9578
9579 static void bpf_xdp_link_release(struct bpf_link *link)
9580 {
9581         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9582
9583         rtnl_lock();
9584
9585         /* if racing with net_device's tear down, xdp_link->dev might be
9586          * already NULL, in which case link was already auto-detached
9587          */
9588         if (xdp_link->dev) {
9589                 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9590                 xdp_link->dev = NULL;
9591         }
9592
9593         rtnl_unlock();
9594 }
9595
9596 static int bpf_xdp_link_detach(struct bpf_link *link)
9597 {
9598         bpf_xdp_link_release(link);
9599         return 0;
9600 }
9601
9602 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9603 {
9604         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9605
9606         kfree(xdp_link);
9607 }
9608
9609 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9610                                      struct seq_file *seq)
9611 {
9612         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9613         u32 ifindex = 0;
9614
9615         rtnl_lock();
9616         if (xdp_link->dev)
9617                 ifindex = xdp_link->dev->ifindex;
9618         rtnl_unlock();
9619
9620         seq_printf(seq, "ifindex:\t%u\n", ifindex);
9621 }
9622
9623 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9624                                        struct bpf_link_info *info)
9625 {
9626         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9627         u32 ifindex = 0;
9628
9629         rtnl_lock();
9630         if (xdp_link->dev)
9631                 ifindex = xdp_link->dev->ifindex;
9632         rtnl_unlock();
9633
9634         info->xdp.ifindex = ifindex;
9635         return 0;
9636 }
9637
9638 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9639                                struct bpf_prog *old_prog)
9640 {
9641         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9642         enum bpf_xdp_mode mode;
9643         bpf_op_t bpf_op;
9644         int err = 0;
9645
9646         rtnl_lock();
9647
9648         /* link might have been auto-released already, so fail */
9649         if (!xdp_link->dev) {
9650                 err = -ENOLINK;
9651                 goto out_unlock;
9652         }
9653
9654         if (old_prog && link->prog != old_prog) {
9655                 err = -EPERM;
9656                 goto out_unlock;
9657         }
9658         old_prog = link->prog;
9659         if (old_prog == new_prog) {
9660                 /* no-op, don't disturb drivers */
9661                 bpf_prog_put(new_prog);
9662                 goto out_unlock;
9663         }
9664
9665         mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9666         bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9667         err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9668                               xdp_link->flags, new_prog);
9669         if (err)
9670                 goto out_unlock;
9671
9672         old_prog = xchg(&link->prog, new_prog);
9673         bpf_prog_put(old_prog);
9674
9675 out_unlock:
9676         rtnl_unlock();
9677         return err;
9678 }
9679
9680 static const struct bpf_link_ops bpf_xdp_link_lops = {
9681         .release = bpf_xdp_link_release,
9682         .dealloc = bpf_xdp_link_dealloc,
9683         .detach = bpf_xdp_link_detach,
9684         .show_fdinfo = bpf_xdp_link_show_fdinfo,
9685         .fill_link_info = bpf_xdp_link_fill_link_info,
9686         .update_prog = bpf_xdp_link_update,
9687 };
9688
9689 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9690 {
9691         struct net *net = current->nsproxy->net_ns;
9692         struct bpf_link_primer link_primer;
9693         struct bpf_xdp_link *link;
9694         struct net_device *dev;
9695         int err, fd;
9696
9697         rtnl_lock();
9698         dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9699         if (!dev) {
9700                 rtnl_unlock();
9701                 return -EINVAL;
9702         }
9703
9704         link = kzalloc(sizeof(*link), GFP_USER);
9705         if (!link) {
9706                 err = -ENOMEM;
9707                 goto unlock;
9708         }
9709
9710         bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9711         link->dev = dev;
9712         link->flags = attr->link_create.flags;
9713
9714         err = bpf_link_prime(&link->link, &link_primer);
9715         if (err) {
9716                 kfree(link);
9717                 goto unlock;
9718         }
9719
9720         err = dev_xdp_attach_link(dev, NULL, link);
9721         rtnl_unlock();
9722
9723         if (err) {
9724                 link->dev = NULL;
9725                 bpf_link_cleanup(&link_primer);
9726                 goto out_put_dev;
9727         }
9728
9729         fd = bpf_link_settle(&link_primer);
9730         /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9731         dev_put(dev);
9732         return fd;
9733
9734 unlock:
9735         rtnl_unlock();
9736
9737 out_put_dev:
9738         dev_put(dev);
9739         return err;
9740 }
9741
9742 /**
9743  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
9744  *      @dev: device
9745  *      @extack: netlink extended ack
9746  *      @fd: new program fd or negative value to clear
9747  *      @expected_fd: old program fd that userspace expects to replace or clear
9748  *      @flags: xdp-related flags
9749  *
9750  *      Set or clear a bpf program for a device
9751  */
9752 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9753                       int fd, int expected_fd, u32 flags)
9754 {
9755         enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9756         struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9757         int err;
9758
9759         ASSERT_RTNL();
9760
9761         if (fd >= 0) {
9762                 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9763                                                  mode != XDP_MODE_SKB);
9764                 if (IS_ERR(new_prog))
9765                         return PTR_ERR(new_prog);
9766         }
9767
9768         if (expected_fd >= 0) {
9769                 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9770                                                  mode != XDP_MODE_SKB);
9771                 if (IS_ERR(old_prog)) {
9772                         err = PTR_ERR(old_prog);
9773                         old_prog = NULL;
9774                         goto err_out;
9775                 }
9776         }
9777
9778         err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9779
9780 err_out:
9781         if (err && new_prog)
9782                 bpf_prog_put(new_prog);
9783         if (old_prog)
9784                 bpf_prog_put(old_prog);
9785         return err;
9786 }
9787
9788 /**
9789  *      dev_new_index   -       allocate an ifindex
9790  *      @net: the applicable net namespace
9791  *
9792  *      Returns a suitable unique value for a new device interface
9793  *      number.  The caller must hold the rtnl semaphore or the
9794  *      dev_base_lock to be sure it remains unique.
9795  */
9796 static int dev_new_index(struct net *net)
9797 {
9798         int ifindex = net->ifindex;
9799
9800         for (;;) {
9801                 if (++ifindex <= 0)
9802                         ifindex = 1;
9803                 if (!__dev_get_by_index(net, ifindex))
9804                         return net->ifindex = ifindex;
9805         }
9806 }
9807
9808 /* Delayed registration/unregisteration */
9809 static LIST_HEAD(net_todo_list);
9810 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9811
9812 static void net_set_todo(struct net_device *dev)
9813 {
9814         list_add_tail(&dev->todo_list, &net_todo_list);
9815         dev_net(dev)->dev_unreg_count++;
9816 }
9817
9818 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9819         struct net_device *upper, netdev_features_t features)
9820 {
9821         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9822         netdev_features_t feature;
9823         int feature_bit;
9824
9825         for_each_netdev_feature(upper_disables, feature_bit) {
9826                 feature = __NETIF_F_BIT(feature_bit);
9827                 if (!(upper->wanted_features & feature)
9828                     && (features & feature)) {
9829                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9830                                    &feature, upper->name);
9831                         features &= ~feature;
9832                 }
9833         }
9834
9835         return features;
9836 }
9837
9838 static void netdev_sync_lower_features(struct net_device *upper,
9839         struct net_device *lower, netdev_features_t features)
9840 {
9841         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9842         netdev_features_t feature;
9843         int feature_bit;
9844
9845         for_each_netdev_feature(upper_disables, feature_bit) {
9846                 feature = __NETIF_F_BIT(feature_bit);
9847                 if (!(features & feature) && (lower->features & feature)) {
9848                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9849                                    &feature, lower->name);
9850                         lower->wanted_features &= ~feature;
9851                         __netdev_update_features(lower);
9852
9853                         if (unlikely(lower->features & feature))
9854                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9855                                             &feature, lower->name);
9856                         else
9857                                 netdev_features_change(lower);
9858                 }
9859         }
9860 }
9861
9862 static netdev_features_t netdev_fix_features(struct net_device *dev,
9863         netdev_features_t features)
9864 {
9865         /* Fix illegal checksum combinations */
9866         if ((features & NETIF_F_HW_CSUM) &&
9867             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9868                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9869                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9870         }
9871
9872         /* TSO requires that SG is present as well. */
9873         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9874                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9875                 features &= ~NETIF_F_ALL_TSO;
9876         }
9877
9878         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9879                                         !(features & NETIF_F_IP_CSUM)) {
9880                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9881                 features &= ~NETIF_F_TSO;
9882                 features &= ~NETIF_F_TSO_ECN;
9883         }
9884
9885         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9886                                          !(features & NETIF_F_IPV6_CSUM)) {
9887                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9888                 features &= ~NETIF_F_TSO6;
9889         }
9890
9891         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9892         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9893                 features &= ~NETIF_F_TSO_MANGLEID;
9894
9895         /* TSO ECN requires that TSO is present as well. */
9896         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9897                 features &= ~NETIF_F_TSO_ECN;
9898
9899         /* Software GSO depends on SG. */
9900         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9901                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9902                 features &= ~NETIF_F_GSO;
9903         }
9904
9905         /* GSO partial features require GSO partial be set */
9906         if ((features & dev->gso_partial_features) &&
9907             !(features & NETIF_F_GSO_PARTIAL)) {
9908                 netdev_dbg(dev,
9909                            "Dropping partially supported GSO features since no GSO partial.\n");
9910                 features &= ~dev->gso_partial_features;
9911         }
9912
9913         if (!(features & NETIF_F_RXCSUM)) {
9914                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9915                  * successfully merged by hardware must also have the
9916                  * checksum verified by hardware.  If the user does not
9917                  * want to enable RXCSUM, logically, we should disable GRO_HW.
9918                  */
9919                 if (features & NETIF_F_GRO_HW) {
9920                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9921                         features &= ~NETIF_F_GRO_HW;
9922                 }
9923         }
9924
9925         /* LRO/HW-GRO features cannot be combined with RX-FCS */
9926         if (features & NETIF_F_RXFCS) {
9927                 if (features & NETIF_F_LRO) {
9928                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9929                         features &= ~NETIF_F_LRO;
9930                 }
9931
9932                 if (features & NETIF_F_GRO_HW) {
9933                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9934                         features &= ~NETIF_F_GRO_HW;
9935                 }
9936         }
9937
9938         if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9939                 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9940                 features &= ~NETIF_F_LRO;
9941         }
9942
9943         if (features & NETIF_F_HW_TLS_TX) {
9944                 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9945                         (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9946                 bool hw_csum = features & NETIF_F_HW_CSUM;
9947
9948                 if (!ip_csum && !hw_csum) {
9949                         netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9950                         features &= ~NETIF_F_HW_TLS_TX;
9951                 }
9952         }
9953
9954         if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9955                 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9956                 features &= ~NETIF_F_HW_TLS_RX;
9957         }
9958
9959         return features;
9960 }
9961
9962 int __netdev_update_features(struct net_device *dev)
9963 {
9964         struct net_device *upper, *lower;
9965         netdev_features_t features;
9966         struct list_head *iter;
9967         int err = -1;
9968
9969         ASSERT_RTNL();
9970
9971         features = netdev_get_wanted_features(dev);
9972
9973         if (dev->netdev_ops->ndo_fix_features)
9974                 features = dev->netdev_ops->ndo_fix_features(dev, features);
9975
9976         /* driver might be less strict about feature dependencies */
9977         features = netdev_fix_features(dev, features);
9978
9979         /* some features can't be enabled if they're off on an upper device */
9980         netdev_for_each_upper_dev_rcu(dev, upper, iter)
9981                 features = netdev_sync_upper_features(dev, upper, features);
9982
9983         if (dev->features == features)
9984                 goto sync_lower;
9985
9986         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9987                 &dev->features, &features);
9988
9989         if (dev->netdev_ops->ndo_set_features)
9990                 err = dev->netdev_ops->ndo_set_features(dev, features);
9991         else
9992                 err = 0;
9993
9994         if (unlikely(err < 0)) {
9995                 netdev_err(dev,
9996                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
9997                         err, &features, &dev->features);
9998                 /* return non-0 since some features might have changed and
9999                  * it's better to fire a spurious notification than miss it
10000                  */
10001                 return -1;
10002         }
10003
10004 sync_lower:
10005         /* some features must be disabled on lower devices when disabled
10006          * on an upper device (think: bonding master or bridge)
10007          */
10008         netdev_for_each_lower_dev(dev, lower, iter)
10009                 netdev_sync_lower_features(dev, lower, features);
10010
10011         if (!err) {
10012                 netdev_features_t diff = features ^ dev->features;
10013
10014                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
10015                         /* udp_tunnel_{get,drop}_rx_info both need
10016                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
10017                          * device, or they won't do anything.
10018                          * Thus we need to update dev->features
10019                          * *before* calling udp_tunnel_get_rx_info,
10020                          * but *after* calling udp_tunnel_drop_rx_info.
10021                          */
10022                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
10023                                 dev->features = features;
10024                                 udp_tunnel_get_rx_info(dev);
10025                         } else {
10026                                 udp_tunnel_drop_rx_info(dev);
10027                         }
10028                 }
10029
10030                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
10031                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
10032                                 dev->features = features;
10033                                 err |= vlan_get_rx_ctag_filter_info(dev);
10034                         } else {
10035                                 vlan_drop_rx_ctag_filter_info(dev);
10036                         }
10037                 }
10038
10039                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10040                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10041                                 dev->features = features;
10042                                 err |= vlan_get_rx_stag_filter_info(dev);
10043                         } else {
10044                                 vlan_drop_rx_stag_filter_info(dev);
10045                         }
10046                 }
10047
10048                 dev->features = features;
10049         }
10050
10051         return err < 0 ? 0 : 1;
10052 }
10053
10054 /**
10055  *      netdev_update_features - recalculate device features
10056  *      @dev: the device to check
10057  *
10058  *      Recalculate dev->features set and send notifications if it
10059  *      has changed. Should be called after driver or hardware dependent
10060  *      conditions might have changed that influence the features.
10061  */
10062 void netdev_update_features(struct net_device *dev)
10063 {
10064         if (__netdev_update_features(dev))
10065                 netdev_features_change(dev);
10066 }
10067 EXPORT_SYMBOL(netdev_update_features);
10068
10069 /**
10070  *      netdev_change_features - recalculate device features
10071  *      @dev: the device to check
10072  *
10073  *      Recalculate dev->features set and send notifications even
10074  *      if they have not changed. Should be called instead of
10075  *      netdev_update_features() if also dev->vlan_features might
10076  *      have changed to allow the changes to be propagated to stacked
10077  *      VLAN devices.
10078  */
10079 void netdev_change_features(struct net_device *dev)
10080 {
10081         __netdev_update_features(dev);
10082         netdev_features_change(dev);
10083 }
10084 EXPORT_SYMBOL(netdev_change_features);
10085
10086 /**
10087  *      netif_stacked_transfer_operstate -      transfer operstate
10088  *      @rootdev: the root or lower level device to transfer state from
10089  *      @dev: the device to transfer operstate to
10090  *
10091  *      Transfer operational state from root to device. This is normally
10092  *      called when a stacking relationship exists between the root
10093  *      device and the device(a leaf device).
10094  */
10095 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10096                                         struct net_device *dev)
10097 {
10098         if (rootdev->operstate == IF_OPER_DORMANT)
10099                 netif_dormant_on(dev);
10100         else
10101                 netif_dormant_off(dev);
10102
10103         if (rootdev->operstate == IF_OPER_TESTING)
10104                 netif_testing_on(dev);
10105         else
10106                 netif_testing_off(dev);
10107
10108         if (netif_carrier_ok(rootdev))
10109                 netif_carrier_on(dev);
10110         else
10111                 netif_carrier_off(dev);
10112 }
10113 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10114
10115 static int netif_alloc_rx_queues(struct net_device *dev)
10116 {
10117         unsigned int i, count = dev->num_rx_queues;
10118         struct netdev_rx_queue *rx;
10119         size_t sz = count * sizeof(*rx);
10120         int err = 0;
10121
10122         BUG_ON(count < 1);
10123
10124         rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10125         if (!rx)
10126                 return -ENOMEM;
10127
10128         dev->_rx = rx;
10129
10130         for (i = 0; i < count; i++) {
10131                 rx[i].dev = dev;
10132
10133                 /* XDP RX-queue setup */
10134                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10135                 if (err < 0)
10136                         goto err_rxq_info;
10137         }
10138         return 0;
10139
10140 err_rxq_info:
10141         /* Rollback successful reg's and free other resources */
10142         while (i--)
10143                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10144         kvfree(dev->_rx);
10145         dev->_rx = NULL;
10146         return err;
10147 }
10148
10149 static void netif_free_rx_queues(struct net_device *dev)
10150 {
10151         unsigned int i, count = dev->num_rx_queues;
10152
10153         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10154         if (!dev->_rx)
10155                 return;
10156
10157         for (i = 0; i < count; i++)
10158                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10159
10160         kvfree(dev->_rx);
10161 }
10162
10163 static void netdev_init_one_queue(struct net_device *dev,
10164                                   struct netdev_queue *queue, void *_unused)
10165 {
10166         /* Initialize queue lock */
10167         spin_lock_init(&queue->_xmit_lock);
10168         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10169         queue->xmit_lock_owner = -1;
10170         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10171         queue->dev = dev;
10172 #ifdef CONFIG_BQL
10173         dql_init(&queue->dql, HZ);
10174 #endif
10175 }
10176
10177 static void netif_free_tx_queues(struct net_device *dev)
10178 {
10179         kvfree(dev->_tx);
10180 }
10181
10182 static int netif_alloc_netdev_queues(struct net_device *dev)
10183 {
10184         unsigned int count = dev->num_tx_queues;
10185         struct netdev_queue *tx;
10186         size_t sz = count * sizeof(*tx);
10187
10188         if (count < 1 || count > 0xffff)
10189                 return -EINVAL;
10190
10191         tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10192         if (!tx)
10193                 return -ENOMEM;
10194
10195         dev->_tx = tx;
10196
10197         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10198         spin_lock_init(&dev->tx_global_lock);
10199
10200         return 0;
10201 }
10202
10203 void netif_tx_stop_all_queues(struct net_device *dev)
10204 {
10205         unsigned int i;
10206
10207         for (i = 0; i < dev->num_tx_queues; i++) {
10208                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10209
10210                 netif_tx_stop_queue(txq);
10211         }
10212 }
10213 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10214
10215 /**
10216  *      register_netdevice      - register a network device
10217  *      @dev: device to register
10218  *
10219  *      Take a completed network device structure and add it to the kernel
10220  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10221  *      chain. 0 is returned on success. A negative errno code is returned
10222  *      on a failure to set up the device, or if the name is a duplicate.
10223  *
10224  *      Callers must hold the rtnl semaphore. You may want
10225  *      register_netdev() instead of this.
10226  *
10227  *      BUGS:
10228  *      The locking appears insufficient to guarantee two parallel registers
10229  *      will not get the same name.
10230  */
10231
10232 int register_netdevice(struct net_device *dev)
10233 {
10234         int ret;
10235         struct net *net = dev_net(dev);
10236
10237         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10238                      NETDEV_FEATURE_COUNT);
10239         BUG_ON(dev_boot_phase);
10240         ASSERT_RTNL();
10241
10242         might_sleep();
10243
10244         /* When net_device's are persistent, this will be fatal. */
10245         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10246         BUG_ON(!net);
10247
10248         ret = ethtool_check_ops(dev->ethtool_ops);
10249         if (ret)
10250                 return ret;
10251
10252         spin_lock_init(&dev->addr_list_lock);
10253         netdev_set_addr_lockdep_class(dev);
10254
10255         ret = dev_get_valid_name(net, dev, dev->name);
10256         if (ret < 0)
10257                 goto out;
10258
10259         ret = -ENOMEM;
10260         dev->name_node = netdev_name_node_head_alloc(dev);
10261         if (!dev->name_node)
10262                 goto out;
10263
10264         /* Init, if this function is available */
10265         if (dev->netdev_ops->ndo_init) {
10266                 ret = dev->netdev_ops->ndo_init(dev);
10267                 if (ret) {
10268                         if (ret > 0)
10269                                 ret = -EIO;
10270                         goto err_free_name;
10271                 }
10272         }
10273
10274         if (((dev->hw_features | dev->features) &
10275              NETIF_F_HW_VLAN_CTAG_FILTER) &&
10276             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10277              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10278                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10279                 ret = -EINVAL;
10280                 goto err_uninit;
10281         }
10282
10283         ret = -EBUSY;
10284         if (!dev->ifindex)
10285                 dev->ifindex = dev_new_index(net);
10286         else if (__dev_get_by_index(net, dev->ifindex))
10287                 goto err_uninit;
10288
10289         /* Transfer changeable features to wanted_features and enable
10290          * software offloads (GSO and GRO).
10291          */
10292         dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10293         dev->features |= NETIF_F_SOFT_FEATURES;
10294
10295         if (dev->udp_tunnel_nic_info) {
10296                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10297                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10298         }
10299
10300         dev->wanted_features = dev->features & dev->hw_features;
10301
10302         if (!(dev->flags & IFF_LOOPBACK))
10303                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10304
10305         /* If IPv4 TCP segmentation offload is supported we should also
10306          * allow the device to enable segmenting the frame with the option
10307          * of ignoring a static IP ID value.  This doesn't enable the
10308          * feature itself but allows the user to enable it later.
10309          */
10310         if (dev->hw_features & NETIF_F_TSO)
10311                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10312         if (dev->vlan_features & NETIF_F_TSO)
10313                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10314         if (dev->mpls_features & NETIF_F_TSO)
10315                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10316         if (dev->hw_enc_features & NETIF_F_TSO)
10317                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10318
10319         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10320          */
10321         dev->vlan_features |= NETIF_F_HIGHDMA;
10322
10323         /* Make NETIF_F_SG inheritable to tunnel devices.
10324          */
10325         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10326
10327         /* Make NETIF_F_SG inheritable to MPLS.
10328          */
10329         dev->mpls_features |= NETIF_F_SG;
10330
10331         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10332         ret = notifier_to_errno(ret);
10333         if (ret)
10334                 goto err_uninit;
10335
10336         ret = netdev_register_kobject(dev);
10337         if (ret) {
10338                 dev->reg_state = NETREG_UNREGISTERED;
10339                 goto err_uninit;
10340         }
10341         dev->reg_state = NETREG_REGISTERED;
10342
10343         __netdev_update_features(dev);
10344
10345         /*
10346          *      Default initial state at registry is that the
10347          *      device is present.
10348          */
10349
10350         set_bit(__LINK_STATE_PRESENT, &dev->state);
10351
10352         linkwatch_init_dev(dev);
10353
10354         dev_init_scheduler(dev);
10355         dev_hold(dev);
10356         list_netdevice(dev);
10357         add_device_randomness(dev->dev_addr, dev->addr_len);
10358
10359         /* If the device has permanent device address, driver should
10360          * set dev_addr and also addr_assign_type should be set to
10361          * NET_ADDR_PERM (default value).
10362          */
10363         if (dev->addr_assign_type == NET_ADDR_PERM)
10364                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10365
10366         /* Notify protocols, that a new device appeared. */
10367         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10368         ret = notifier_to_errno(ret);
10369         if (ret) {
10370                 /* Expect explicit free_netdev() on failure */
10371                 dev->needs_free_netdev = false;
10372                 unregister_netdevice_queue(dev, NULL);
10373                 goto out;
10374         }
10375         /*
10376          *      Prevent userspace races by waiting until the network
10377          *      device is fully setup before sending notifications.
10378          */
10379         if (!dev->rtnl_link_ops ||
10380             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10381                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10382
10383 out:
10384         return ret;
10385
10386 err_uninit:
10387         if (dev->netdev_ops->ndo_uninit)
10388                 dev->netdev_ops->ndo_uninit(dev);
10389         if (dev->priv_destructor)
10390                 dev->priv_destructor(dev);
10391 err_free_name:
10392         netdev_name_node_free(dev->name_node);
10393         goto out;
10394 }
10395 EXPORT_SYMBOL(register_netdevice);
10396
10397 /**
10398  *      init_dummy_netdev       - init a dummy network device for NAPI
10399  *      @dev: device to init
10400  *
10401  *      This takes a network device structure and initialize the minimum
10402  *      amount of fields so it can be used to schedule NAPI polls without
10403  *      registering a full blown interface. This is to be used by drivers
10404  *      that need to tie several hardware interfaces to a single NAPI
10405  *      poll scheduler due to HW limitations.
10406  */
10407 int init_dummy_netdev(struct net_device *dev)
10408 {
10409         /* Clear everything. Note we don't initialize spinlocks
10410          * are they aren't supposed to be taken by any of the
10411          * NAPI code and this dummy netdev is supposed to be
10412          * only ever used for NAPI polls
10413          */
10414         memset(dev, 0, sizeof(struct net_device));
10415
10416         /* make sure we BUG if trying to hit standard
10417          * register/unregister code path
10418          */
10419         dev->reg_state = NETREG_DUMMY;
10420
10421         /* NAPI wants this */
10422         INIT_LIST_HEAD(&dev->napi_list);
10423
10424         /* a dummy interface is started by default */
10425         set_bit(__LINK_STATE_PRESENT, &dev->state);
10426         set_bit(__LINK_STATE_START, &dev->state);
10427
10428         /* napi_busy_loop stats accounting wants this */
10429         dev_net_set(dev, &init_net);
10430
10431         /* Note : We dont allocate pcpu_refcnt for dummy devices,
10432          * because users of this 'device' dont need to change
10433          * its refcount.
10434          */
10435
10436         return 0;
10437 }
10438 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10439
10440
10441 /**
10442  *      register_netdev - register a network device
10443  *      @dev: device to register
10444  *
10445  *      Take a completed network device structure and add it to the kernel
10446  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10447  *      chain. 0 is returned on success. A negative errno code is returned
10448  *      on a failure to set up the device, or if the name is a duplicate.
10449  *
10450  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
10451  *      and expands the device name if you passed a format string to
10452  *      alloc_netdev.
10453  */
10454 int register_netdev(struct net_device *dev)
10455 {
10456         int err;
10457
10458         if (rtnl_lock_killable())
10459                 return -EINTR;
10460         err = register_netdevice(dev);
10461         rtnl_unlock();
10462         return err;
10463 }
10464 EXPORT_SYMBOL(register_netdev);
10465
10466 int netdev_refcnt_read(const struct net_device *dev)
10467 {
10468 #ifdef CONFIG_PCPU_DEV_REFCNT
10469         int i, refcnt = 0;
10470
10471         for_each_possible_cpu(i)
10472                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10473         return refcnt;
10474 #else
10475         return refcount_read(&dev->dev_refcnt);
10476 #endif
10477 }
10478 EXPORT_SYMBOL(netdev_refcnt_read);
10479
10480 int netdev_unregister_timeout_secs __read_mostly = 10;
10481
10482 #define WAIT_REFS_MIN_MSECS 1
10483 #define WAIT_REFS_MAX_MSECS 250
10484 /**
10485  * netdev_wait_allrefs - wait until all references are gone.
10486  * @dev: target net_device
10487  *
10488  * This is called when unregistering network devices.
10489  *
10490  * Any protocol or device that holds a reference should register
10491  * for netdevice notification, and cleanup and put back the
10492  * reference if they receive an UNREGISTER event.
10493  * We can get stuck here if buggy protocols don't correctly
10494  * call dev_put.
10495  */
10496 static void netdev_wait_allrefs(struct net_device *dev)
10497 {
10498         unsigned long rebroadcast_time, warning_time;
10499         int wait = 0, refcnt;
10500
10501         linkwatch_forget_dev(dev);
10502
10503         rebroadcast_time = warning_time = jiffies;
10504         refcnt = netdev_refcnt_read(dev);
10505
10506         while (refcnt != 1) {
10507                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10508                         rtnl_lock();
10509
10510                         /* Rebroadcast unregister notification */
10511                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10512
10513                         __rtnl_unlock();
10514                         rcu_barrier();
10515                         rtnl_lock();
10516
10517                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10518                                      &dev->state)) {
10519                                 /* We must not have linkwatch events
10520                                  * pending on unregister. If this
10521                                  * happens, we simply run the queue
10522                                  * unscheduled, resulting in a noop
10523                                  * for this device.
10524                                  */
10525                                 linkwatch_run_queue();
10526                         }
10527
10528                         __rtnl_unlock();
10529
10530                         rebroadcast_time = jiffies;
10531                 }
10532
10533                 if (!wait) {
10534                         rcu_barrier();
10535                         wait = WAIT_REFS_MIN_MSECS;
10536                 } else {
10537                         msleep(wait);
10538                         wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10539                 }
10540
10541                 refcnt = netdev_refcnt_read(dev);
10542
10543                 if (refcnt != 1 &&
10544                     time_after(jiffies, warning_time +
10545                                netdev_unregister_timeout_secs * HZ)) {
10546                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10547                                  dev->name, refcnt);
10548                         warning_time = jiffies;
10549                 }
10550         }
10551 }
10552
10553 /* The sequence is:
10554  *
10555  *      rtnl_lock();
10556  *      ...
10557  *      register_netdevice(x1);
10558  *      register_netdevice(x2);
10559  *      ...
10560  *      unregister_netdevice(y1);
10561  *      unregister_netdevice(y2);
10562  *      ...
10563  *      rtnl_unlock();
10564  *      free_netdev(y1);
10565  *      free_netdev(y2);
10566  *
10567  * We are invoked by rtnl_unlock().
10568  * This allows us to deal with problems:
10569  * 1) We can delete sysfs objects which invoke hotplug
10570  *    without deadlocking with linkwatch via keventd.
10571  * 2) Since we run with the RTNL semaphore not held, we can sleep
10572  *    safely in order to wait for the netdev refcnt to drop to zero.
10573  *
10574  * We must not return until all unregister events added during
10575  * the interval the lock was held have been completed.
10576  */
10577 void netdev_run_todo(void)
10578 {
10579         struct list_head list;
10580 #ifdef CONFIG_LOCKDEP
10581         struct list_head unlink_list;
10582
10583         list_replace_init(&net_unlink_list, &unlink_list);
10584
10585         while (!list_empty(&unlink_list)) {
10586                 struct net_device *dev = list_first_entry(&unlink_list,
10587                                                           struct net_device,
10588                                                           unlink_list);
10589                 list_del_init(&dev->unlink_list);
10590                 dev->nested_level = dev->lower_level - 1;
10591         }
10592 #endif
10593
10594         /* Snapshot list, allow later requests */
10595         list_replace_init(&net_todo_list, &list);
10596
10597         __rtnl_unlock();
10598
10599
10600         /* Wait for rcu callbacks to finish before next phase */
10601         if (!list_empty(&list))
10602                 rcu_barrier();
10603
10604         while (!list_empty(&list)) {
10605                 struct net_device *dev
10606                         = list_first_entry(&list, struct net_device, todo_list);
10607                 list_del(&dev->todo_list);
10608
10609                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10610                         pr_err("network todo '%s' but state %d\n",
10611                                dev->name, dev->reg_state);
10612                         dump_stack();
10613                         continue;
10614                 }
10615
10616                 dev->reg_state = NETREG_UNREGISTERED;
10617
10618                 netdev_wait_allrefs(dev);
10619
10620                 /* paranoia */
10621                 BUG_ON(netdev_refcnt_read(dev) != 1);
10622                 BUG_ON(!list_empty(&dev->ptype_all));
10623                 BUG_ON(!list_empty(&dev->ptype_specific));
10624                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10625                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10626 #if IS_ENABLED(CONFIG_DECNET)
10627                 WARN_ON(dev->dn_ptr);
10628 #endif
10629                 if (dev->priv_destructor)
10630                         dev->priv_destructor(dev);
10631                 if (dev->needs_free_netdev)
10632                         free_netdev(dev);
10633
10634                 /* Report a network device has been unregistered */
10635                 rtnl_lock();
10636                 dev_net(dev)->dev_unreg_count--;
10637                 __rtnl_unlock();
10638                 wake_up(&netdev_unregistering_wq);
10639
10640                 /* Free network device */
10641                 kobject_put(&dev->dev.kobj);
10642         }
10643 }
10644
10645 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10646  * all the same fields in the same order as net_device_stats, with only
10647  * the type differing, but rtnl_link_stats64 may have additional fields
10648  * at the end for newer counters.
10649  */
10650 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10651                              const struct net_device_stats *netdev_stats)
10652 {
10653 #if BITS_PER_LONG == 64
10654         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10655         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10656         /* zero out counters that only exist in rtnl_link_stats64 */
10657         memset((char *)stats64 + sizeof(*netdev_stats), 0,
10658                sizeof(*stats64) - sizeof(*netdev_stats));
10659 #else
10660         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10661         const unsigned long *src = (const unsigned long *)netdev_stats;
10662         u64 *dst = (u64 *)stats64;
10663
10664         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10665         for (i = 0; i < n; i++)
10666                 dst[i] = src[i];
10667         /* zero out counters that only exist in rtnl_link_stats64 */
10668         memset((char *)stats64 + n * sizeof(u64), 0,
10669                sizeof(*stats64) - n * sizeof(u64));
10670 #endif
10671 }
10672 EXPORT_SYMBOL(netdev_stats_to_stats64);
10673
10674 /**
10675  *      dev_get_stats   - get network device statistics
10676  *      @dev: device to get statistics from
10677  *      @storage: place to store stats
10678  *
10679  *      Get network statistics from device. Return @storage.
10680  *      The device driver may provide its own method by setting
10681  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10682  *      otherwise the internal statistics structure is used.
10683  */
10684 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10685                                         struct rtnl_link_stats64 *storage)
10686 {
10687         const struct net_device_ops *ops = dev->netdev_ops;
10688
10689         if (ops->ndo_get_stats64) {
10690                 memset(storage, 0, sizeof(*storage));
10691                 ops->ndo_get_stats64(dev, storage);
10692         } else if (ops->ndo_get_stats) {
10693                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10694         } else {
10695                 netdev_stats_to_stats64(storage, &dev->stats);
10696         }
10697         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10698         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10699         storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10700         return storage;
10701 }
10702 EXPORT_SYMBOL(dev_get_stats);
10703
10704 /**
10705  *      dev_fetch_sw_netstats - get per-cpu network device statistics
10706  *      @s: place to store stats
10707  *      @netstats: per-cpu network stats to read from
10708  *
10709  *      Read per-cpu network statistics and populate the related fields in @s.
10710  */
10711 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10712                            const struct pcpu_sw_netstats __percpu *netstats)
10713 {
10714         int cpu;
10715
10716         for_each_possible_cpu(cpu) {
10717                 const struct pcpu_sw_netstats *stats;
10718                 struct pcpu_sw_netstats tmp;
10719                 unsigned int start;
10720
10721                 stats = per_cpu_ptr(netstats, cpu);
10722                 do {
10723                         start = u64_stats_fetch_begin_irq(&stats->syncp);
10724                         tmp.rx_packets = stats->rx_packets;
10725                         tmp.rx_bytes   = stats->rx_bytes;
10726                         tmp.tx_packets = stats->tx_packets;
10727                         tmp.tx_bytes   = stats->tx_bytes;
10728                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10729
10730                 s->rx_packets += tmp.rx_packets;
10731                 s->rx_bytes   += tmp.rx_bytes;
10732                 s->tx_packets += tmp.tx_packets;
10733                 s->tx_bytes   += tmp.tx_bytes;
10734         }
10735 }
10736 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10737
10738 /**
10739  *      dev_get_tstats64 - ndo_get_stats64 implementation
10740  *      @dev: device to get statistics from
10741  *      @s: place to store stats
10742  *
10743  *      Populate @s from dev->stats and dev->tstats. Can be used as
10744  *      ndo_get_stats64() callback.
10745  */
10746 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10747 {
10748         netdev_stats_to_stats64(s, &dev->stats);
10749         dev_fetch_sw_netstats(s, dev->tstats);
10750 }
10751 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10752
10753 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10754 {
10755         struct netdev_queue *queue = dev_ingress_queue(dev);
10756
10757 #ifdef CONFIG_NET_CLS_ACT
10758         if (queue)
10759                 return queue;
10760         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10761         if (!queue)
10762                 return NULL;
10763         netdev_init_one_queue(dev, queue, NULL);
10764         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10765         queue->qdisc_sleeping = &noop_qdisc;
10766         rcu_assign_pointer(dev->ingress_queue, queue);
10767 #endif
10768         return queue;
10769 }
10770
10771 static const struct ethtool_ops default_ethtool_ops;
10772
10773 void netdev_set_default_ethtool_ops(struct net_device *dev,
10774                                     const struct ethtool_ops *ops)
10775 {
10776         if (dev->ethtool_ops == &default_ethtool_ops)
10777                 dev->ethtool_ops = ops;
10778 }
10779 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10780
10781 void netdev_freemem(struct net_device *dev)
10782 {
10783         char *addr = (char *)dev - dev->padded;
10784
10785         kvfree(addr);
10786 }
10787
10788 /**
10789  * alloc_netdev_mqs - allocate network device
10790  * @sizeof_priv: size of private data to allocate space for
10791  * @name: device name format string
10792  * @name_assign_type: origin of device name
10793  * @setup: callback to initialize device
10794  * @txqs: the number of TX subqueues to allocate
10795  * @rxqs: the number of RX subqueues to allocate
10796  *
10797  * Allocates a struct net_device with private data area for driver use
10798  * and performs basic initialization.  Also allocates subqueue structs
10799  * for each queue on the device.
10800  */
10801 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10802                 unsigned char name_assign_type,
10803                 void (*setup)(struct net_device *),
10804                 unsigned int txqs, unsigned int rxqs)
10805 {
10806         struct net_device *dev;
10807         unsigned int alloc_size;
10808         struct net_device *p;
10809
10810         BUG_ON(strlen(name) >= sizeof(dev->name));
10811
10812         if (txqs < 1) {
10813                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10814                 return NULL;
10815         }
10816
10817         if (rxqs < 1) {
10818                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10819                 return NULL;
10820         }
10821
10822         alloc_size = sizeof(struct net_device);
10823         if (sizeof_priv) {
10824                 /* ensure 32-byte alignment of private area */
10825                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10826                 alloc_size += sizeof_priv;
10827         }
10828         /* ensure 32-byte alignment of whole construct */
10829         alloc_size += NETDEV_ALIGN - 1;
10830
10831         p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10832         if (!p)
10833                 return NULL;
10834
10835         dev = PTR_ALIGN(p, NETDEV_ALIGN);
10836         dev->padded = (char *)dev - (char *)p;
10837
10838 #ifdef CONFIG_PCPU_DEV_REFCNT
10839         dev->pcpu_refcnt = alloc_percpu(int);
10840         if (!dev->pcpu_refcnt)
10841                 goto free_dev;
10842         dev_hold(dev);
10843 #else
10844         refcount_set(&dev->dev_refcnt, 1);
10845 #endif
10846
10847         if (dev_addr_init(dev))
10848                 goto free_pcpu;
10849
10850         dev_mc_init(dev);
10851         dev_uc_init(dev);
10852
10853         dev_net_set(dev, &init_net);
10854
10855         dev->gso_max_size = GSO_MAX_SIZE;
10856         dev->gso_max_segs = GSO_MAX_SEGS;
10857         dev->upper_level = 1;
10858         dev->lower_level = 1;
10859 #ifdef CONFIG_LOCKDEP
10860         dev->nested_level = 0;
10861         INIT_LIST_HEAD(&dev->unlink_list);
10862 #endif
10863
10864         INIT_LIST_HEAD(&dev->napi_list);
10865         INIT_LIST_HEAD(&dev->unreg_list);
10866         INIT_LIST_HEAD(&dev->close_list);
10867         INIT_LIST_HEAD(&dev->link_watch_list);
10868         INIT_LIST_HEAD(&dev->adj_list.upper);
10869         INIT_LIST_HEAD(&dev->adj_list.lower);
10870         INIT_LIST_HEAD(&dev->ptype_all);
10871         INIT_LIST_HEAD(&dev->ptype_specific);
10872         INIT_LIST_HEAD(&dev->net_notifier_list);
10873 #ifdef CONFIG_NET_SCHED
10874         hash_init(dev->qdisc_hash);
10875 #endif
10876         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10877         setup(dev);
10878
10879         if (!dev->tx_queue_len) {
10880                 dev->priv_flags |= IFF_NO_QUEUE;
10881                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10882         }
10883
10884         dev->num_tx_queues = txqs;
10885         dev->real_num_tx_queues = txqs;
10886         if (netif_alloc_netdev_queues(dev))
10887                 goto free_all;
10888
10889         dev->num_rx_queues = rxqs;
10890         dev->real_num_rx_queues = rxqs;
10891         if (netif_alloc_rx_queues(dev))
10892                 goto free_all;
10893
10894         strcpy(dev->name, name);
10895         dev->name_assign_type = name_assign_type;
10896         dev->group = INIT_NETDEV_GROUP;
10897         if (!dev->ethtool_ops)
10898                 dev->ethtool_ops = &default_ethtool_ops;
10899
10900         nf_hook_netdev_init(dev);
10901
10902         return dev;
10903
10904 free_all:
10905         free_netdev(dev);
10906         return NULL;
10907
10908 free_pcpu:
10909 #ifdef CONFIG_PCPU_DEV_REFCNT
10910         free_percpu(dev->pcpu_refcnt);
10911 free_dev:
10912 #endif
10913         netdev_freemem(dev);
10914         return NULL;
10915 }
10916 EXPORT_SYMBOL(alloc_netdev_mqs);
10917
10918 /**
10919  * free_netdev - free network device
10920  * @dev: device
10921  *
10922  * This function does the last stage of destroying an allocated device
10923  * interface. The reference to the device object is released. If this
10924  * is the last reference then it will be freed.Must be called in process
10925  * context.
10926  */
10927 void free_netdev(struct net_device *dev)
10928 {
10929         struct napi_struct *p, *n;
10930
10931         might_sleep();
10932
10933         /* When called immediately after register_netdevice() failed the unwind
10934          * handling may still be dismantling the device. Handle that case by
10935          * deferring the free.
10936          */
10937         if (dev->reg_state == NETREG_UNREGISTERING) {
10938                 ASSERT_RTNL();
10939                 dev->needs_free_netdev = true;
10940                 return;
10941         }
10942
10943         netif_free_tx_queues(dev);
10944         netif_free_rx_queues(dev);
10945
10946         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10947
10948         /* Flush device addresses */
10949         dev_addr_flush(dev);
10950
10951         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10952                 netif_napi_del(p);
10953
10954 #ifdef CONFIG_PCPU_DEV_REFCNT
10955         free_percpu(dev->pcpu_refcnt);
10956         dev->pcpu_refcnt = NULL;
10957 #endif
10958         free_percpu(dev->xdp_bulkq);
10959         dev->xdp_bulkq = NULL;
10960
10961         /*  Compatibility with error handling in drivers */
10962         if (dev->reg_state == NETREG_UNINITIALIZED) {
10963                 netdev_freemem(dev);
10964                 return;
10965         }
10966
10967         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10968         dev->reg_state = NETREG_RELEASED;
10969
10970         /* will free via device release */
10971         put_device(&dev->dev);
10972 }
10973 EXPORT_SYMBOL(free_netdev);
10974
10975 /**
10976  *      synchronize_net -  Synchronize with packet receive processing
10977  *
10978  *      Wait for packets currently being received to be done.
10979  *      Does not block later packets from starting.
10980  */
10981 void synchronize_net(void)
10982 {
10983         might_sleep();
10984         if (rtnl_is_locked())
10985                 synchronize_rcu_expedited();
10986         else
10987                 synchronize_rcu();
10988 }
10989 EXPORT_SYMBOL(synchronize_net);
10990
10991 /**
10992  *      unregister_netdevice_queue - remove device from the kernel
10993  *      @dev: device
10994  *      @head: list
10995  *
10996  *      This function shuts down a device interface and removes it
10997  *      from the kernel tables.
10998  *      If head not NULL, device is queued to be unregistered later.
10999  *
11000  *      Callers must hold the rtnl semaphore.  You may want
11001  *      unregister_netdev() instead of this.
11002  */
11003
11004 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
11005 {
11006         ASSERT_RTNL();
11007
11008         if (head) {
11009                 list_move_tail(&dev->unreg_list, head);
11010         } else {
11011                 LIST_HEAD(single);
11012
11013                 list_add(&dev->unreg_list, &single);
11014                 unregister_netdevice_many(&single);
11015         }
11016 }
11017 EXPORT_SYMBOL(unregister_netdevice_queue);
11018
11019 /**
11020  *      unregister_netdevice_many - unregister many devices
11021  *      @head: list of devices
11022  *
11023  *  Note: As most callers use a stack allocated list_head,
11024  *  we force a list_del() to make sure stack wont be corrupted later.
11025  */
11026 void unregister_netdevice_many(struct list_head *head)
11027 {
11028         struct net_device *dev, *tmp;
11029         LIST_HEAD(close_head);
11030
11031         BUG_ON(dev_boot_phase);
11032         ASSERT_RTNL();
11033
11034         if (list_empty(head))
11035                 return;
11036
11037         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11038                 /* Some devices call without registering
11039                  * for initialization unwind. Remove those
11040                  * devices and proceed with the remaining.
11041                  */
11042                 if (dev->reg_state == NETREG_UNINITIALIZED) {
11043                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11044                                  dev->name, dev);
11045
11046                         WARN_ON(1);
11047                         list_del(&dev->unreg_list);
11048                         continue;
11049                 }
11050                 dev->dismantle = true;
11051                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
11052         }
11053
11054         /* If device is running, close it first. */
11055         list_for_each_entry(dev, head, unreg_list)
11056                 list_add_tail(&dev->close_list, &close_head);
11057         dev_close_many(&close_head, true);
11058
11059         list_for_each_entry(dev, head, unreg_list) {
11060                 /* And unlink it from device chain. */
11061                 unlist_netdevice(dev);
11062
11063                 dev->reg_state = NETREG_UNREGISTERING;
11064         }
11065         flush_all_backlogs();
11066
11067         synchronize_net();
11068
11069         list_for_each_entry(dev, head, unreg_list) {
11070                 struct sk_buff *skb = NULL;
11071
11072                 /* Shutdown queueing discipline. */
11073                 dev_shutdown(dev);
11074
11075                 dev_xdp_uninstall(dev);
11076
11077                 /* Notify protocols, that we are about to destroy
11078                  * this device. They should clean all the things.
11079                  */
11080                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11081
11082                 if (!dev->rtnl_link_ops ||
11083                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11084                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11085                                                      GFP_KERNEL, NULL, 0);
11086
11087                 /*
11088                  *      Flush the unicast and multicast chains
11089                  */
11090                 dev_uc_flush(dev);
11091                 dev_mc_flush(dev);
11092
11093                 netdev_name_node_alt_flush(dev);
11094                 netdev_name_node_free(dev->name_node);
11095
11096                 if (dev->netdev_ops->ndo_uninit)
11097                         dev->netdev_ops->ndo_uninit(dev);
11098
11099                 if (skb)
11100                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
11101
11102                 /* Notifier chain MUST detach us all upper devices. */
11103                 WARN_ON(netdev_has_any_upper_dev(dev));
11104                 WARN_ON(netdev_has_any_lower_dev(dev));
11105
11106                 /* Remove entries from kobject tree */
11107                 netdev_unregister_kobject(dev);
11108 #ifdef CONFIG_XPS
11109                 /* Remove XPS queueing entries */
11110                 netif_reset_xps_queues_gt(dev, 0);
11111 #endif
11112         }
11113
11114         synchronize_net();
11115
11116         list_for_each_entry(dev, head, unreg_list) {
11117                 dev_put(dev);
11118                 net_set_todo(dev);
11119         }
11120
11121         list_del(head);
11122 }
11123 EXPORT_SYMBOL(unregister_netdevice_many);
11124
11125 /**
11126  *      unregister_netdev - remove device from the kernel
11127  *      @dev: device
11128  *
11129  *      This function shuts down a device interface and removes it
11130  *      from the kernel tables.
11131  *
11132  *      This is just a wrapper for unregister_netdevice that takes
11133  *      the rtnl semaphore.  In general you want to use this and not
11134  *      unregister_netdevice.
11135  */
11136 void unregister_netdev(struct net_device *dev)
11137 {
11138         rtnl_lock();
11139         unregister_netdevice(dev);
11140         rtnl_unlock();
11141 }
11142 EXPORT_SYMBOL(unregister_netdev);
11143
11144 /**
11145  *      __dev_change_net_namespace - move device to different nethost namespace
11146  *      @dev: device
11147  *      @net: network namespace
11148  *      @pat: If not NULL name pattern to try if the current device name
11149  *            is already taken in the destination network namespace.
11150  *      @new_ifindex: If not zero, specifies device index in the target
11151  *                    namespace.
11152  *
11153  *      This function shuts down a device interface and moves it
11154  *      to a new network namespace. On success 0 is returned, on
11155  *      a failure a netagive errno code is returned.
11156  *
11157  *      Callers must hold the rtnl semaphore.
11158  */
11159
11160 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11161                                const char *pat, int new_ifindex)
11162 {
11163         struct net *net_old = dev_net(dev);
11164         int err, new_nsid;
11165
11166         ASSERT_RTNL();
11167
11168         /* Don't allow namespace local devices to be moved. */
11169         err = -EINVAL;
11170         if (dev->features & NETIF_F_NETNS_LOCAL)
11171                 goto out;
11172
11173         /* Ensure the device has been registrered */
11174         if (dev->reg_state != NETREG_REGISTERED)
11175                 goto out;
11176
11177         /* Get out if there is nothing todo */
11178         err = 0;
11179         if (net_eq(net_old, net))
11180                 goto out;
11181
11182         /* Pick the destination device name, and ensure
11183          * we can use it in the destination network namespace.
11184          */
11185         err = -EEXIST;
11186         if (netdev_name_in_use(net, dev->name)) {
11187                 /* We get here if we can't use the current device name */
11188                 if (!pat)
11189                         goto out;
11190                 err = dev_get_valid_name(net, dev, pat);
11191                 if (err < 0)
11192                         goto out;
11193         }
11194
11195         /* Check that new_ifindex isn't used yet. */
11196         err = -EBUSY;
11197         if (new_ifindex && __dev_get_by_index(net, new_ifindex))
11198                 goto out;
11199
11200         /*
11201          * And now a mini version of register_netdevice unregister_netdevice.
11202          */
11203
11204         /* If device is running close it first. */
11205         dev_close(dev);
11206
11207         /* And unlink it from device chain */
11208         unlist_netdevice(dev);
11209
11210         synchronize_net();
11211
11212         /* Shutdown queueing discipline. */
11213         dev_shutdown(dev);
11214
11215         /* Notify protocols, that we are about to destroy
11216          * this device. They should clean all the things.
11217          *
11218          * Note that dev->reg_state stays at NETREG_REGISTERED.
11219          * This is wanted because this way 8021q and macvlan know
11220          * the device is just moving and can keep their slaves up.
11221          */
11222         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11223         rcu_barrier();
11224
11225         new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11226         /* If there is an ifindex conflict assign a new one */
11227         if (!new_ifindex) {
11228                 if (__dev_get_by_index(net, dev->ifindex))
11229                         new_ifindex = dev_new_index(net);
11230                 else
11231                         new_ifindex = dev->ifindex;
11232         }
11233
11234         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11235                             new_ifindex);
11236
11237         /*
11238          *      Flush the unicast and multicast chains
11239          */
11240         dev_uc_flush(dev);
11241         dev_mc_flush(dev);
11242
11243         /* Send a netdev-removed uevent to the old namespace */
11244         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11245         netdev_adjacent_del_links(dev);
11246
11247         /* Move per-net netdevice notifiers that are following the netdevice */
11248         move_netdevice_notifiers_dev_net(dev, net);
11249
11250         /* Actually switch the network namespace */
11251         dev_net_set(dev, net);
11252         dev->ifindex = new_ifindex;
11253
11254         /* Send a netdev-add uevent to the new namespace */
11255         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11256         netdev_adjacent_add_links(dev);
11257
11258         /* Fixup kobjects */
11259         err = device_rename(&dev->dev, dev->name);
11260         WARN_ON(err);
11261
11262         /* Adapt owner in case owning user namespace of target network
11263          * namespace is different from the original one.
11264          */
11265         err = netdev_change_owner(dev, net_old, net);
11266         WARN_ON(err);
11267
11268         /* Add the device back in the hashes */
11269         list_netdevice(dev);
11270
11271         /* Notify protocols, that a new device appeared. */
11272         call_netdevice_notifiers(NETDEV_REGISTER, dev);
11273
11274         /*
11275          *      Prevent userspace races by waiting until the network
11276          *      device is fully setup before sending notifications.
11277          */
11278         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
11279
11280         synchronize_net();
11281         err = 0;
11282 out:
11283         return err;
11284 }
11285 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11286
11287 static int dev_cpu_dead(unsigned int oldcpu)
11288 {
11289         struct sk_buff **list_skb;
11290         struct sk_buff *skb;
11291         unsigned int cpu;
11292         struct softnet_data *sd, *oldsd, *remsd = NULL;
11293
11294         local_irq_disable();
11295         cpu = smp_processor_id();
11296         sd = &per_cpu(softnet_data, cpu);
11297         oldsd = &per_cpu(softnet_data, oldcpu);
11298
11299         /* Find end of our completion_queue. */
11300         list_skb = &sd->completion_queue;
11301         while (*list_skb)
11302                 list_skb = &(*list_skb)->next;
11303         /* Append completion queue from offline CPU. */
11304         *list_skb = oldsd->completion_queue;
11305         oldsd->completion_queue = NULL;
11306
11307         /* Append output queue from offline CPU. */
11308         if (oldsd->output_queue) {
11309                 *sd->output_queue_tailp = oldsd->output_queue;
11310                 sd->output_queue_tailp = oldsd->output_queue_tailp;
11311                 oldsd->output_queue = NULL;
11312                 oldsd->output_queue_tailp = &oldsd->output_queue;
11313         }
11314         /* Append NAPI poll list from offline CPU, with one exception :
11315          * process_backlog() must be called by cpu owning percpu backlog.
11316          * We properly handle process_queue & input_pkt_queue later.
11317          */
11318         while (!list_empty(&oldsd->poll_list)) {
11319                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11320                                                             struct napi_struct,
11321                                                             poll_list);
11322
11323                 list_del_init(&napi->poll_list);
11324                 if (napi->poll == process_backlog)
11325                         napi->state = 0;
11326                 else
11327                         ____napi_schedule(sd, napi);
11328         }
11329
11330         raise_softirq_irqoff(NET_TX_SOFTIRQ);
11331         local_irq_enable();
11332
11333 #ifdef CONFIG_RPS
11334         remsd = oldsd->rps_ipi_list;
11335         oldsd->rps_ipi_list = NULL;
11336 #endif
11337         /* send out pending IPI's on offline CPU */
11338         net_rps_send_ipi(remsd);
11339
11340         /* Process offline CPU's input_pkt_queue */
11341         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11342                 netif_rx_ni(skb);
11343                 input_queue_head_incr(oldsd);
11344         }
11345         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11346                 netif_rx_ni(skb);
11347                 input_queue_head_incr(oldsd);
11348         }
11349
11350         return 0;
11351 }
11352
11353 /**
11354  *      netdev_increment_features - increment feature set by one
11355  *      @all: current feature set
11356  *      @one: new feature set
11357  *      @mask: mask feature set
11358  *
11359  *      Computes a new feature set after adding a device with feature set
11360  *      @one to the master device with current feature set @all.  Will not
11361  *      enable anything that is off in @mask. Returns the new feature set.
11362  */
11363 netdev_features_t netdev_increment_features(netdev_features_t all,
11364         netdev_features_t one, netdev_features_t mask)
11365 {
11366         if (mask & NETIF_F_HW_CSUM)
11367                 mask |= NETIF_F_CSUM_MASK;
11368         mask |= NETIF_F_VLAN_CHALLENGED;
11369
11370         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11371         all &= one | ~NETIF_F_ALL_FOR_ALL;
11372
11373         /* If one device supports hw checksumming, set for all. */
11374         if (all & NETIF_F_HW_CSUM)
11375                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11376
11377         return all;
11378 }
11379 EXPORT_SYMBOL(netdev_increment_features);
11380
11381 static struct hlist_head * __net_init netdev_create_hash(void)
11382 {
11383         int i;
11384         struct hlist_head *hash;
11385
11386         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11387         if (hash != NULL)
11388                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11389                         INIT_HLIST_HEAD(&hash[i]);
11390
11391         return hash;
11392 }
11393
11394 /* Initialize per network namespace state */
11395 static int __net_init netdev_init(struct net *net)
11396 {
11397         BUILD_BUG_ON(GRO_HASH_BUCKETS >
11398                      8 * sizeof_field(struct napi_struct, gro_bitmask));
11399
11400         if (net != &init_net)
11401                 INIT_LIST_HEAD(&net->dev_base_head);
11402
11403         net->dev_name_head = netdev_create_hash();
11404         if (net->dev_name_head == NULL)
11405                 goto err_name;
11406
11407         net->dev_index_head = netdev_create_hash();
11408         if (net->dev_index_head == NULL)
11409                 goto err_idx;
11410
11411         RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11412
11413         return 0;
11414
11415 err_idx:
11416         kfree(net->dev_name_head);
11417 err_name:
11418         return -ENOMEM;
11419 }
11420
11421 /**
11422  *      netdev_drivername - network driver for the device
11423  *      @dev: network device
11424  *
11425  *      Determine network driver for device.
11426  */
11427 const char *netdev_drivername(const struct net_device *dev)
11428 {
11429         const struct device_driver *driver;
11430         const struct device *parent;
11431         const char *empty = "";
11432
11433         parent = dev->dev.parent;
11434         if (!parent)
11435                 return empty;
11436
11437         driver = parent->driver;
11438         if (driver && driver->name)
11439                 return driver->name;
11440         return empty;
11441 }
11442
11443 static void __netdev_printk(const char *level, const struct net_device *dev,
11444                             struct va_format *vaf)
11445 {
11446         if (dev && dev->dev.parent) {
11447                 dev_printk_emit(level[1] - '0',
11448                                 dev->dev.parent,
11449                                 "%s %s %s%s: %pV",
11450                                 dev_driver_string(dev->dev.parent),
11451                                 dev_name(dev->dev.parent),
11452                                 netdev_name(dev), netdev_reg_state(dev),
11453                                 vaf);
11454         } else if (dev) {
11455                 printk("%s%s%s: %pV",
11456                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
11457         } else {
11458                 printk("%s(NULL net_device): %pV", level, vaf);
11459         }
11460 }
11461
11462 void netdev_printk(const char *level, const struct net_device *dev,
11463                    const char *format, ...)
11464 {
11465         struct va_format vaf;
11466         va_list args;
11467
11468         va_start(args, format);
11469
11470         vaf.fmt = format;
11471         vaf.va = &args;
11472
11473         __netdev_printk(level, dev, &vaf);
11474
11475         va_end(args);
11476 }
11477 EXPORT_SYMBOL(netdev_printk);
11478
11479 #define define_netdev_printk_level(func, level)                 \
11480 void func(const struct net_device *dev, const char *fmt, ...)   \
11481 {                                                               \
11482         struct va_format vaf;                                   \
11483         va_list args;                                           \
11484                                                                 \
11485         va_start(args, fmt);                                    \
11486                                                                 \
11487         vaf.fmt = fmt;                                          \
11488         vaf.va = &args;                                         \
11489                                                                 \
11490         __netdev_printk(level, dev, &vaf);                      \
11491                                                                 \
11492         va_end(args);                                           \
11493 }                                                               \
11494 EXPORT_SYMBOL(func);
11495
11496 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11497 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11498 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11499 define_netdev_printk_level(netdev_err, KERN_ERR);
11500 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11501 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11502 define_netdev_printk_level(netdev_info, KERN_INFO);
11503
11504 static void __net_exit netdev_exit(struct net *net)
11505 {
11506         kfree(net->dev_name_head);
11507         kfree(net->dev_index_head);
11508         if (net != &init_net)
11509                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11510 }
11511
11512 static struct pernet_operations __net_initdata netdev_net_ops = {
11513         .init = netdev_init,
11514         .exit = netdev_exit,
11515 };
11516
11517 static void __net_exit default_device_exit(struct net *net)
11518 {
11519         struct net_device *dev, *aux;
11520         /*
11521          * Push all migratable network devices back to the
11522          * initial network namespace
11523          */
11524         rtnl_lock();
11525         for_each_netdev_safe(net, dev, aux) {
11526                 int err;
11527                 char fb_name[IFNAMSIZ];
11528
11529                 /* Ignore unmoveable devices (i.e. loopback) */
11530                 if (dev->features & NETIF_F_NETNS_LOCAL)
11531                         continue;
11532
11533                 /* Leave virtual devices for the generic cleanup */
11534                 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11535                         continue;
11536
11537                 /* Push remaining network devices to init_net */
11538                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11539                 if (netdev_name_in_use(&init_net, fb_name))
11540                         snprintf(fb_name, IFNAMSIZ, "dev%%d");
11541                 err = dev_change_net_namespace(dev, &init_net, fb_name);
11542                 if (err) {
11543                         pr_emerg("%s: failed to move %s to init_net: %d\n",
11544                                  __func__, dev->name, err);
11545                         BUG();
11546                 }
11547         }
11548         rtnl_unlock();
11549 }
11550
11551 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11552 {
11553         /* Return with the rtnl_lock held when there are no network
11554          * devices unregistering in any network namespace in net_list.
11555          */
11556         struct net *net;
11557         bool unregistering;
11558         DEFINE_WAIT_FUNC(wait, woken_wake_function);
11559
11560         add_wait_queue(&netdev_unregistering_wq, &wait);
11561         for (;;) {
11562                 unregistering = false;
11563                 rtnl_lock();
11564                 list_for_each_entry(net, net_list, exit_list) {
11565                         if (net->dev_unreg_count > 0) {
11566                                 unregistering = true;
11567                                 break;
11568                         }
11569                 }
11570                 if (!unregistering)
11571                         break;
11572                 __rtnl_unlock();
11573
11574                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
11575         }
11576         remove_wait_queue(&netdev_unregistering_wq, &wait);
11577 }
11578
11579 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11580 {
11581         /* At exit all network devices most be removed from a network
11582          * namespace.  Do this in the reverse order of registration.
11583          * Do this across as many network namespaces as possible to
11584          * improve batching efficiency.
11585          */
11586         struct net_device *dev;
11587         struct net *net;
11588         LIST_HEAD(dev_kill_list);
11589
11590         /* To prevent network device cleanup code from dereferencing
11591          * loopback devices or network devices that have been freed
11592          * wait here for all pending unregistrations to complete,
11593          * before unregistring the loopback device and allowing the
11594          * network namespace be freed.
11595          *
11596          * The netdev todo list containing all network devices
11597          * unregistrations that happen in default_device_exit_batch
11598          * will run in the rtnl_unlock() at the end of
11599          * default_device_exit_batch.
11600          */
11601         rtnl_lock_unregistering(net_list);
11602         list_for_each_entry(net, net_list, exit_list) {
11603                 for_each_netdev_reverse(net, dev) {
11604                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11605                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11606                         else
11607                                 unregister_netdevice_queue(dev, &dev_kill_list);
11608                 }
11609         }
11610         unregister_netdevice_many(&dev_kill_list);
11611         rtnl_unlock();
11612 }
11613
11614 static struct pernet_operations __net_initdata default_device_ops = {
11615         .exit = default_device_exit,
11616         .exit_batch = default_device_exit_batch,
11617 };
11618
11619 /*
11620  *      Initialize the DEV module. At boot time this walks the device list and
11621  *      unhooks any devices that fail to initialise (normally hardware not
11622  *      present) and leaves us with a valid list of present and active devices.
11623  *
11624  */
11625
11626 /*
11627  *       This is called single threaded during boot, so no need
11628  *       to take the rtnl semaphore.
11629  */
11630 static int __init net_dev_init(void)
11631 {
11632         int i, rc = -ENOMEM;
11633
11634         BUG_ON(!dev_boot_phase);
11635
11636         if (dev_proc_init())
11637                 goto out;
11638
11639         if (netdev_kobject_init())
11640                 goto out;
11641
11642         INIT_LIST_HEAD(&ptype_all);
11643         for (i = 0; i < PTYPE_HASH_SIZE; i++)
11644                 INIT_LIST_HEAD(&ptype_base[i]);
11645
11646         INIT_LIST_HEAD(&offload_base);
11647
11648         if (register_pernet_subsys(&netdev_net_ops))
11649                 goto out;
11650
11651         /*
11652          *      Initialise the packet receive queues.
11653          */
11654
11655         for_each_possible_cpu(i) {
11656                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11657                 struct softnet_data *sd = &per_cpu(softnet_data, i);
11658
11659                 INIT_WORK(flush, flush_backlog);
11660
11661                 skb_queue_head_init(&sd->input_pkt_queue);
11662                 skb_queue_head_init(&sd->process_queue);
11663 #ifdef CONFIG_XFRM_OFFLOAD
11664                 skb_queue_head_init(&sd->xfrm_backlog);
11665 #endif
11666                 INIT_LIST_HEAD(&sd->poll_list);
11667                 sd->output_queue_tailp = &sd->output_queue;
11668 #ifdef CONFIG_RPS
11669                 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11670                 sd->cpu = i;
11671 #endif
11672
11673                 init_gro_hash(&sd->backlog);
11674                 sd->backlog.poll = process_backlog;
11675                 sd->backlog.weight = weight_p;
11676         }
11677
11678         dev_boot_phase = 0;
11679
11680         /* The loopback device is special if any other network devices
11681          * is present in a network namespace the loopback device must
11682          * be present. Since we now dynamically allocate and free the
11683          * loopback device ensure this invariant is maintained by
11684          * keeping the loopback device as the first device on the
11685          * list of network devices.  Ensuring the loopback devices
11686          * is the first device that appears and the last network device
11687          * that disappears.
11688          */
11689         if (register_pernet_device(&loopback_net_ops))
11690                 goto out;
11691
11692         if (register_pernet_device(&default_device_ops))
11693                 goto out;
11694
11695         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11696         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11697
11698         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11699                                        NULL, dev_cpu_dead);
11700         WARN_ON(rc < 0);
11701         rc = 0;
11702 out:
11703         return rc;
11704 }
11705
11706 subsys_initcall(net_dev_init);