Merge tag 'io_uring-5.16-2021-11-13' of git://git.kernel.dk/linux-block
[linux-2.6-microblaze.git] / net / core / dev.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *      Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:        Ross Biro
7  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *      Additional Authors:
11  *              Florian la Roche <rzsfl@rz.uni-sb.de>
12  *              Alan Cox <gw4pts@gw4pts.ampr.org>
13  *              David Hinds <dahinds@users.sourceforge.net>
14  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *              Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *      Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *              Alan Cox        :       device private ioctl copies fields back.
24  *              Alan Cox        :       Transmit queue code does relevant
25  *                                      stunts to keep the queue safe.
26  *              Alan Cox        :       Fixed double lock.
27  *              Alan Cox        :       Fixed promisc NULL pointer trap
28  *              ????????        :       Support the full private ioctl range
29  *              Alan Cox        :       Moved ioctl permission check into
30  *                                      drivers
31  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
32  *              Alan Cox        :       100 backlog just doesn't cut it when
33  *                                      you start doing multicast video 8)
34  *              Alan Cox        :       Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *              Alan Cox        :       Took out transmit every packet pass
37  *                                      Saved a few bytes in the ioctl handler
38  *              Alan Cox        :       Network driver sets packet type before
39  *                                      calling netif_rx. Saves a function
40  *                                      call a packet.
41  *              Alan Cox        :       Hashed net_bh()
42  *              Richard Kooijman:       Timestamp fixes.
43  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
44  *              Alan Cox        :       Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *                                      changes.
47  *              Rudi Cilibrasi  :       Pass the right thing to
48  *                                      set_mac_address()
49  *              Dave Miller     :       32bit quantity for the device lock to
50  *                                      make it work out on a Sparc.
51  *              Bjorn Ekwall    :       Added KERNELD hack.
52  *              Alan Cox        :       Cleaned up the backlog initialise.
53  *              Craig Metz      :       SIOCGIFCONF fix if space for under
54  *                                      1 device.
55  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
56  *                                      is no device open function.
57  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
58  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
59  *              Cyrus Durgin    :       Cleaned for KMOD
60  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
61  *                                      A network device unload needs to purge
62  *                                      the backlog queue.
63  *      Paul Rusty Russell      :       SIOCSIFNAME
64  *              Pekka Riikonen  :       Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *                                      - netif_rx() feedback
69  */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <trace/events/qdisc.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_netdev.h>
144 #include <linux/crash_dump.h>
145 #include <linux/sctp.h>
146 #include <net/udp_tunnel.h>
147 #include <linux/net_namespace.h>
148 #include <linux/indirect_call_wrapper.h>
149 #include <net/devlink.h>
150 #include <linux/pm_runtime.h>
151 #include <linux/prandom.h>
152 #include <linux/once_lite.h>
153
154 #include "net-sysfs.h"
155
156 #define MAX_GRO_SKBS 8
157
158 /* This should be increased if a protocol with a bigger head is added. */
159 #define GRO_MAX_HEAD (MAX_HEADER + 128)
160
161 static DEFINE_SPINLOCK(ptype_lock);
162 static DEFINE_SPINLOCK(offload_lock);
163 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
164 struct list_head ptype_all __read_mostly;       /* Taps */
165 static struct list_head offload_base __read_mostly;
166
167 static int netif_rx_internal(struct sk_buff *skb);
168 static int call_netdevice_notifiers_info(unsigned long val,
169                                          struct netdev_notifier_info *info);
170 static int call_netdevice_notifiers_extack(unsigned long val,
171                                            struct net_device *dev,
172                                            struct netlink_ext_ack *extack);
173 static struct napi_struct *napi_by_id(unsigned int napi_id);
174
175 /*
176  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
177  * semaphore.
178  *
179  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
180  *
181  * Writers must hold the rtnl semaphore while they loop through the
182  * dev_base_head list, and hold dev_base_lock for writing when they do the
183  * actual updates.  This allows pure readers to access the list even
184  * while a writer is preparing to update it.
185  *
186  * To put it another way, dev_base_lock is held for writing only to
187  * protect against pure readers; the rtnl semaphore provides the
188  * protection against other writers.
189  *
190  * See, for example usages, register_netdevice() and
191  * unregister_netdevice(), which must be called with the rtnl
192  * semaphore held.
193  */
194 DEFINE_RWLOCK(dev_base_lock);
195 EXPORT_SYMBOL(dev_base_lock);
196
197 static DEFINE_MUTEX(ifalias_mutex);
198
199 /* protects napi_hash addition/deletion and napi_gen_id */
200 static DEFINE_SPINLOCK(napi_hash_lock);
201
202 static unsigned int napi_gen_id = NR_CPUS;
203 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
204
205 static DECLARE_RWSEM(devnet_rename_sem);
206
207 static inline void dev_base_seq_inc(struct net *net)
208 {
209         while (++net->dev_base_seq == 0)
210                 ;
211 }
212
213 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
214 {
215         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
216
217         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
218 }
219
220 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
221 {
222         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
223 }
224
225 static inline void rps_lock(struct softnet_data *sd)
226 {
227 #ifdef CONFIG_RPS
228         spin_lock(&sd->input_pkt_queue.lock);
229 #endif
230 }
231
232 static inline void rps_unlock(struct softnet_data *sd)
233 {
234 #ifdef CONFIG_RPS
235         spin_unlock(&sd->input_pkt_queue.lock);
236 #endif
237 }
238
239 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
240                                                        const char *name)
241 {
242         struct netdev_name_node *name_node;
243
244         name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
245         if (!name_node)
246                 return NULL;
247         INIT_HLIST_NODE(&name_node->hlist);
248         name_node->dev = dev;
249         name_node->name = name;
250         return name_node;
251 }
252
253 static struct netdev_name_node *
254 netdev_name_node_head_alloc(struct net_device *dev)
255 {
256         struct netdev_name_node *name_node;
257
258         name_node = netdev_name_node_alloc(dev, dev->name);
259         if (!name_node)
260                 return NULL;
261         INIT_LIST_HEAD(&name_node->list);
262         return name_node;
263 }
264
265 static void netdev_name_node_free(struct netdev_name_node *name_node)
266 {
267         kfree(name_node);
268 }
269
270 static void netdev_name_node_add(struct net *net,
271                                  struct netdev_name_node *name_node)
272 {
273         hlist_add_head_rcu(&name_node->hlist,
274                            dev_name_hash(net, name_node->name));
275 }
276
277 static void netdev_name_node_del(struct netdev_name_node *name_node)
278 {
279         hlist_del_rcu(&name_node->hlist);
280 }
281
282 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
283                                                         const char *name)
284 {
285         struct hlist_head *head = dev_name_hash(net, name);
286         struct netdev_name_node *name_node;
287
288         hlist_for_each_entry(name_node, head, hlist)
289                 if (!strcmp(name_node->name, name))
290                         return name_node;
291         return NULL;
292 }
293
294 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
295                                                             const char *name)
296 {
297         struct hlist_head *head = dev_name_hash(net, name);
298         struct netdev_name_node *name_node;
299
300         hlist_for_each_entry_rcu(name_node, head, hlist)
301                 if (!strcmp(name_node->name, name))
302                         return name_node;
303         return NULL;
304 }
305
306 bool netdev_name_in_use(struct net *net, const char *name)
307 {
308         return netdev_name_node_lookup(net, name);
309 }
310 EXPORT_SYMBOL(netdev_name_in_use);
311
312 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
313 {
314         struct netdev_name_node *name_node;
315         struct net *net = dev_net(dev);
316
317         name_node = netdev_name_node_lookup(net, name);
318         if (name_node)
319                 return -EEXIST;
320         name_node = netdev_name_node_alloc(dev, name);
321         if (!name_node)
322                 return -ENOMEM;
323         netdev_name_node_add(net, name_node);
324         /* The node that holds dev->name acts as a head of per-device list. */
325         list_add_tail(&name_node->list, &dev->name_node->list);
326
327         return 0;
328 }
329 EXPORT_SYMBOL(netdev_name_node_alt_create);
330
331 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
332 {
333         list_del(&name_node->list);
334         netdev_name_node_del(name_node);
335         kfree(name_node->name);
336         netdev_name_node_free(name_node);
337 }
338
339 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
340 {
341         struct netdev_name_node *name_node;
342         struct net *net = dev_net(dev);
343
344         name_node = netdev_name_node_lookup(net, name);
345         if (!name_node)
346                 return -ENOENT;
347         /* lookup might have found our primary name or a name belonging
348          * to another device.
349          */
350         if (name_node == dev->name_node || name_node->dev != dev)
351                 return -EINVAL;
352
353         __netdev_name_node_alt_destroy(name_node);
354
355         return 0;
356 }
357 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
358
359 static void netdev_name_node_alt_flush(struct net_device *dev)
360 {
361         struct netdev_name_node *name_node, *tmp;
362
363         list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
364                 __netdev_name_node_alt_destroy(name_node);
365 }
366
367 /* Device list insertion */
368 static void list_netdevice(struct net_device *dev)
369 {
370         struct net *net = dev_net(dev);
371
372         ASSERT_RTNL();
373
374         write_lock_bh(&dev_base_lock);
375         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
376         netdev_name_node_add(net, dev->name_node);
377         hlist_add_head_rcu(&dev->index_hlist,
378                            dev_index_hash(net, dev->ifindex));
379         write_unlock_bh(&dev_base_lock);
380
381         dev_base_seq_inc(net);
382 }
383
384 /* Device list removal
385  * caller must respect a RCU grace period before freeing/reusing dev
386  */
387 static void unlist_netdevice(struct net_device *dev)
388 {
389         ASSERT_RTNL();
390
391         /* Unlink dev from the device chain */
392         write_lock_bh(&dev_base_lock);
393         list_del_rcu(&dev->dev_list);
394         netdev_name_node_del(dev->name_node);
395         hlist_del_rcu(&dev->index_hlist);
396         write_unlock_bh(&dev_base_lock);
397
398         dev_base_seq_inc(dev_net(dev));
399 }
400
401 /*
402  *      Our notifier list
403  */
404
405 static RAW_NOTIFIER_HEAD(netdev_chain);
406
407 /*
408  *      Device drivers call our routines to queue packets here. We empty the
409  *      queue in the local softnet handler.
410  */
411
412 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
413 EXPORT_PER_CPU_SYMBOL(softnet_data);
414
415 #ifdef CONFIG_LOCKDEP
416 /*
417  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
418  * according to dev->type
419  */
420 static const unsigned short netdev_lock_type[] = {
421          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
422          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
423          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
424          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
425          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
426          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
427          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
428          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
429          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
430          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
431          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
432          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
433          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
434          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
435          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
436
437 static const char *const netdev_lock_name[] = {
438         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
439         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
440         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
441         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
442         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
443         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
444         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
445         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
446         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
447         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
448         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
449         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
450         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
451         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
452         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
453
454 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
455 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
456
457 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
458 {
459         int i;
460
461         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
462                 if (netdev_lock_type[i] == dev_type)
463                         return i;
464         /* the last key is used by default */
465         return ARRAY_SIZE(netdev_lock_type) - 1;
466 }
467
468 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
469                                                  unsigned short dev_type)
470 {
471         int i;
472
473         i = netdev_lock_pos(dev_type);
474         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
475                                    netdev_lock_name[i]);
476 }
477
478 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
479 {
480         int i;
481
482         i = netdev_lock_pos(dev->type);
483         lockdep_set_class_and_name(&dev->addr_list_lock,
484                                    &netdev_addr_lock_key[i],
485                                    netdev_lock_name[i]);
486 }
487 #else
488 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
489                                                  unsigned short dev_type)
490 {
491 }
492
493 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
494 {
495 }
496 #endif
497
498 /*******************************************************************************
499  *
500  *              Protocol management and registration routines
501  *
502  *******************************************************************************/
503
504
505 /*
506  *      Add a protocol ID to the list. Now that the input handler is
507  *      smarter we can dispense with all the messy stuff that used to be
508  *      here.
509  *
510  *      BEWARE!!! Protocol handlers, mangling input packets,
511  *      MUST BE last in hash buckets and checking protocol handlers
512  *      MUST start from promiscuous ptype_all chain in net_bh.
513  *      It is true now, do not change it.
514  *      Explanation follows: if protocol handler, mangling packet, will
515  *      be the first on list, it is not able to sense, that packet
516  *      is cloned and should be copied-on-write, so that it will
517  *      change it and subsequent readers will get broken packet.
518  *                                                      --ANK (980803)
519  */
520
521 static inline struct list_head *ptype_head(const struct packet_type *pt)
522 {
523         if (pt->type == htons(ETH_P_ALL))
524                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
525         else
526                 return pt->dev ? &pt->dev->ptype_specific :
527                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
528 }
529
530 /**
531  *      dev_add_pack - add packet handler
532  *      @pt: packet type declaration
533  *
534  *      Add a protocol handler to the networking stack. The passed &packet_type
535  *      is linked into kernel lists and may not be freed until it has been
536  *      removed from the kernel lists.
537  *
538  *      This call does not sleep therefore it can not
539  *      guarantee all CPU's that are in middle of receiving packets
540  *      will see the new packet type (until the next received packet).
541  */
542
543 void dev_add_pack(struct packet_type *pt)
544 {
545         struct list_head *head = ptype_head(pt);
546
547         spin_lock(&ptype_lock);
548         list_add_rcu(&pt->list, head);
549         spin_unlock(&ptype_lock);
550 }
551 EXPORT_SYMBOL(dev_add_pack);
552
553 /**
554  *      __dev_remove_pack        - remove packet handler
555  *      @pt: packet type declaration
556  *
557  *      Remove a protocol handler that was previously added to the kernel
558  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
559  *      from the kernel lists and can be freed or reused once this function
560  *      returns.
561  *
562  *      The packet type might still be in use by receivers
563  *      and must not be freed until after all the CPU's have gone
564  *      through a quiescent state.
565  */
566 void __dev_remove_pack(struct packet_type *pt)
567 {
568         struct list_head *head = ptype_head(pt);
569         struct packet_type *pt1;
570
571         spin_lock(&ptype_lock);
572
573         list_for_each_entry(pt1, head, list) {
574                 if (pt == pt1) {
575                         list_del_rcu(&pt->list);
576                         goto out;
577                 }
578         }
579
580         pr_warn("dev_remove_pack: %p not found\n", pt);
581 out:
582         spin_unlock(&ptype_lock);
583 }
584 EXPORT_SYMBOL(__dev_remove_pack);
585
586 /**
587  *      dev_remove_pack  - remove packet handler
588  *      @pt: packet type declaration
589  *
590  *      Remove a protocol handler that was previously added to the kernel
591  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
592  *      from the kernel lists and can be freed or reused once this function
593  *      returns.
594  *
595  *      This call sleeps to guarantee that no CPU is looking at the packet
596  *      type after return.
597  */
598 void dev_remove_pack(struct packet_type *pt)
599 {
600         __dev_remove_pack(pt);
601
602         synchronize_net();
603 }
604 EXPORT_SYMBOL(dev_remove_pack);
605
606
607 /**
608  *      dev_add_offload - register offload handlers
609  *      @po: protocol offload declaration
610  *
611  *      Add protocol offload handlers to the networking stack. The passed
612  *      &proto_offload is linked into kernel lists and may not be freed until
613  *      it has been removed from the kernel lists.
614  *
615  *      This call does not sleep therefore it can not
616  *      guarantee all CPU's that are in middle of receiving packets
617  *      will see the new offload handlers (until the next received packet).
618  */
619 void dev_add_offload(struct packet_offload *po)
620 {
621         struct packet_offload *elem;
622
623         spin_lock(&offload_lock);
624         list_for_each_entry(elem, &offload_base, list) {
625                 if (po->priority < elem->priority)
626                         break;
627         }
628         list_add_rcu(&po->list, elem->list.prev);
629         spin_unlock(&offload_lock);
630 }
631 EXPORT_SYMBOL(dev_add_offload);
632
633 /**
634  *      __dev_remove_offload     - remove offload handler
635  *      @po: packet offload declaration
636  *
637  *      Remove a protocol offload handler that was previously added to the
638  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
639  *      is removed from the kernel lists and can be freed or reused once this
640  *      function returns.
641  *
642  *      The packet type might still be in use by receivers
643  *      and must not be freed until after all the CPU's have gone
644  *      through a quiescent state.
645  */
646 static void __dev_remove_offload(struct packet_offload *po)
647 {
648         struct list_head *head = &offload_base;
649         struct packet_offload *po1;
650
651         spin_lock(&offload_lock);
652
653         list_for_each_entry(po1, head, list) {
654                 if (po == po1) {
655                         list_del_rcu(&po->list);
656                         goto out;
657                 }
658         }
659
660         pr_warn("dev_remove_offload: %p not found\n", po);
661 out:
662         spin_unlock(&offload_lock);
663 }
664
665 /**
666  *      dev_remove_offload       - remove packet offload handler
667  *      @po: packet offload declaration
668  *
669  *      Remove a packet offload handler that was previously added to the kernel
670  *      offload handlers by dev_add_offload(). The passed &offload_type is
671  *      removed from the kernel lists and can be freed or reused once this
672  *      function returns.
673  *
674  *      This call sleeps to guarantee that no CPU is looking at the packet
675  *      type after return.
676  */
677 void dev_remove_offload(struct packet_offload *po)
678 {
679         __dev_remove_offload(po);
680
681         synchronize_net();
682 }
683 EXPORT_SYMBOL(dev_remove_offload);
684
685 /*******************************************************************************
686  *
687  *                          Device Interface Subroutines
688  *
689  *******************************************************************************/
690
691 /**
692  *      dev_get_iflink  - get 'iflink' value of a interface
693  *      @dev: targeted interface
694  *
695  *      Indicates the ifindex the interface is linked to.
696  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
697  */
698
699 int dev_get_iflink(const struct net_device *dev)
700 {
701         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
702                 return dev->netdev_ops->ndo_get_iflink(dev);
703
704         return dev->ifindex;
705 }
706 EXPORT_SYMBOL(dev_get_iflink);
707
708 /**
709  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
710  *      @dev: targeted interface
711  *      @skb: The packet.
712  *
713  *      For better visibility of tunnel traffic OVS needs to retrieve
714  *      egress tunnel information for a packet. Following API allows
715  *      user to get this info.
716  */
717 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
718 {
719         struct ip_tunnel_info *info;
720
721         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
722                 return -EINVAL;
723
724         info = skb_tunnel_info_unclone(skb);
725         if (!info)
726                 return -ENOMEM;
727         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
728                 return -EINVAL;
729
730         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
731 }
732 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
733
734 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
735 {
736         int k = stack->num_paths++;
737
738         if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
739                 return NULL;
740
741         return &stack->path[k];
742 }
743
744 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
745                           struct net_device_path_stack *stack)
746 {
747         const struct net_device *last_dev;
748         struct net_device_path_ctx ctx = {
749                 .dev    = dev,
750                 .daddr  = daddr,
751         };
752         struct net_device_path *path;
753         int ret = 0;
754
755         stack->num_paths = 0;
756         while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
757                 last_dev = ctx.dev;
758                 path = dev_fwd_path(stack);
759                 if (!path)
760                         return -1;
761
762                 memset(path, 0, sizeof(struct net_device_path));
763                 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
764                 if (ret < 0)
765                         return -1;
766
767                 if (WARN_ON_ONCE(last_dev == ctx.dev))
768                         return -1;
769         }
770         path = dev_fwd_path(stack);
771         if (!path)
772                 return -1;
773         path->type = DEV_PATH_ETHERNET;
774         path->dev = ctx.dev;
775
776         return ret;
777 }
778 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
779
780 /**
781  *      __dev_get_by_name       - find a device by its name
782  *      @net: the applicable net namespace
783  *      @name: name to find
784  *
785  *      Find an interface by name. Must be called under RTNL semaphore
786  *      or @dev_base_lock. If the name is found a pointer to the device
787  *      is returned. If the name is not found then %NULL is returned. The
788  *      reference counters are not incremented so the caller must be
789  *      careful with locks.
790  */
791
792 struct net_device *__dev_get_by_name(struct net *net, const char *name)
793 {
794         struct netdev_name_node *node_name;
795
796         node_name = netdev_name_node_lookup(net, name);
797         return node_name ? node_name->dev : NULL;
798 }
799 EXPORT_SYMBOL(__dev_get_by_name);
800
801 /**
802  * dev_get_by_name_rcu  - find a device by its name
803  * @net: the applicable net namespace
804  * @name: name to find
805  *
806  * Find an interface by name.
807  * If the name is found a pointer to the device is returned.
808  * If the name is not found then %NULL is returned.
809  * The reference counters are not incremented so the caller must be
810  * careful with locks. The caller must hold RCU lock.
811  */
812
813 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
814 {
815         struct netdev_name_node *node_name;
816
817         node_name = netdev_name_node_lookup_rcu(net, name);
818         return node_name ? node_name->dev : NULL;
819 }
820 EXPORT_SYMBOL(dev_get_by_name_rcu);
821
822 /**
823  *      dev_get_by_name         - find a device by its name
824  *      @net: the applicable net namespace
825  *      @name: name to find
826  *
827  *      Find an interface by name. This can be called from any
828  *      context and does its own locking. The returned handle has
829  *      the usage count incremented and the caller must use dev_put() to
830  *      release it when it is no longer needed. %NULL is returned if no
831  *      matching device is found.
832  */
833
834 struct net_device *dev_get_by_name(struct net *net, const char *name)
835 {
836         struct net_device *dev;
837
838         rcu_read_lock();
839         dev = dev_get_by_name_rcu(net, name);
840         dev_hold(dev);
841         rcu_read_unlock();
842         return dev;
843 }
844 EXPORT_SYMBOL(dev_get_by_name);
845
846 /**
847  *      __dev_get_by_index - find a device by its ifindex
848  *      @net: the applicable net namespace
849  *      @ifindex: index of device
850  *
851  *      Search for an interface by index. Returns %NULL if the device
852  *      is not found or a pointer to the device. The device has not
853  *      had its reference counter increased so the caller must be careful
854  *      about locking. The caller must hold either the RTNL semaphore
855  *      or @dev_base_lock.
856  */
857
858 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
859 {
860         struct net_device *dev;
861         struct hlist_head *head = dev_index_hash(net, ifindex);
862
863         hlist_for_each_entry(dev, head, index_hlist)
864                 if (dev->ifindex == ifindex)
865                         return dev;
866
867         return NULL;
868 }
869 EXPORT_SYMBOL(__dev_get_by_index);
870
871 /**
872  *      dev_get_by_index_rcu - find a device by its ifindex
873  *      @net: the applicable net namespace
874  *      @ifindex: index of device
875  *
876  *      Search for an interface by index. Returns %NULL if the device
877  *      is not found or a pointer to the device. The device has not
878  *      had its reference counter increased so the caller must be careful
879  *      about locking. The caller must hold RCU lock.
880  */
881
882 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
883 {
884         struct net_device *dev;
885         struct hlist_head *head = dev_index_hash(net, ifindex);
886
887         hlist_for_each_entry_rcu(dev, head, index_hlist)
888                 if (dev->ifindex == ifindex)
889                         return dev;
890
891         return NULL;
892 }
893 EXPORT_SYMBOL(dev_get_by_index_rcu);
894
895
896 /**
897  *      dev_get_by_index - find a device by its ifindex
898  *      @net: the applicable net namespace
899  *      @ifindex: index of device
900  *
901  *      Search for an interface by index. Returns NULL if the device
902  *      is not found or a pointer to the device. The device returned has
903  *      had a reference added and the pointer is safe until the user calls
904  *      dev_put to indicate they have finished with it.
905  */
906
907 struct net_device *dev_get_by_index(struct net *net, int ifindex)
908 {
909         struct net_device *dev;
910
911         rcu_read_lock();
912         dev = dev_get_by_index_rcu(net, ifindex);
913         dev_hold(dev);
914         rcu_read_unlock();
915         return dev;
916 }
917 EXPORT_SYMBOL(dev_get_by_index);
918
919 /**
920  *      dev_get_by_napi_id - find a device by napi_id
921  *      @napi_id: ID of the NAPI struct
922  *
923  *      Search for an interface by NAPI ID. Returns %NULL if the device
924  *      is not found or a pointer to the device. The device has not had
925  *      its reference counter increased so the caller must be careful
926  *      about locking. The caller must hold RCU lock.
927  */
928
929 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
930 {
931         struct napi_struct *napi;
932
933         WARN_ON_ONCE(!rcu_read_lock_held());
934
935         if (napi_id < MIN_NAPI_ID)
936                 return NULL;
937
938         napi = napi_by_id(napi_id);
939
940         return napi ? napi->dev : NULL;
941 }
942 EXPORT_SYMBOL(dev_get_by_napi_id);
943
944 /**
945  *      netdev_get_name - get a netdevice name, knowing its ifindex.
946  *      @net: network namespace
947  *      @name: a pointer to the buffer where the name will be stored.
948  *      @ifindex: the ifindex of the interface to get the name from.
949  */
950 int netdev_get_name(struct net *net, char *name, int ifindex)
951 {
952         struct net_device *dev;
953         int ret;
954
955         down_read(&devnet_rename_sem);
956         rcu_read_lock();
957
958         dev = dev_get_by_index_rcu(net, ifindex);
959         if (!dev) {
960                 ret = -ENODEV;
961                 goto out;
962         }
963
964         strcpy(name, dev->name);
965
966         ret = 0;
967 out:
968         rcu_read_unlock();
969         up_read(&devnet_rename_sem);
970         return ret;
971 }
972
973 /**
974  *      dev_getbyhwaddr_rcu - find a device by its hardware address
975  *      @net: the applicable net namespace
976  *      @type: media type of device
977  *      @ha: hardware address
978  *
979  *      Search for an interface by MAC address. Returns NULL if the device
980  *      is not found or a pointer to the device.
981  *      The caller must hold RCU or RTNL.
982  *      The returned device has not had its ref count increased
983  *      and the caller must therefore be careful about locking
984  *
985  */
986
987 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
988                                        const char *ha)
989 {
990         struct net_device *dev;
991
992         for_each_netdev_rcu(net, dev)
993                 if (dev->type == type &&
994                     !memcmp(dev->dev_addr, ha, dev->addr_len))
995                         return dev;
996
997         return NULL;
998 }
999 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1000
1001 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1002 {
1003         struct net_device *dev, *ret = NULL;
1004
1005         rcu_read_lock();
1006         for_each_netdev_rcu(net, dev)
1007                 if (dev->type == type) {
1008                         dev_hold(dev);
1009                         ret = dev;
1010                         break;
1011                 }
1012         rcu_read_unlock();
1013         return ret;
1014 }
1015 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1016
1017 /**
1018  *      __dev_get_by_flags - find any device with given flags
1019  *      @net: the applicable net namespace
1020  *      @if_flags: IFF_* values
1021  *      @mask: bitmask of bits in if_flags to check
1022  *
1023  *      Search for any interface with the given flags. Returns NULL if a device
1024  *      is not found or a pointer to the device. Must be called inside
1025  *      rtnl_lock(), and result refcount is unchanged.
1026  */
1027
1028 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1029                                       unsigned short mask)
1030 {
1031         struct net_device *dev, *ret;
1032
1033         ASSERT_RTNL();
1034
1035         ret = NULL;
1036         for_each_netdev(net, dev) {
1037                 if (((dev->flags ^ if_flags) & mask) == 0) {
1038                         ret = dev;
1039                         break;
1040                 }
1041         }
1042         return ret;
1043 }
1044 EXPORT_SYMBOL(__dev_get_by_flags);
1045
1046 /**
1047  *      dev_valid_name - check if name is okay for network device
1048  *      @name: name string
1049  *
1050  *      Network device names need to be valid file names to
1051  *      allow sysfs to work.  We also disallow any kind of
1052  *      whitespace.
1053  */
1054 bool dev_valid_name(const char *name)
1055 {
1056         if (*name == '\0')
1057                 return false;
1058         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1059                 return false;
1060         if (!strcmp(name, ".") || !strcmp(name, ".."))
1061                 return false;
1062
1063         while (*name) {
1064                 if (*name == '/' || *name == ':' || isspace(*name))
1065                         return false;
1066                 name++;
1067         }
1068         return true;
1069 }
1070 EXPORT_SYMBOL(dev_valid_name);
1071
1072 /**
1073  *      __dev_alloc_name - allocate a name for a device
1074  *      @net: network namespace to allocate the device name in
1075  *      @name: name format string
1076  *      @buf:  scratch buffer and result name string
1077  *
1078  *      Passed a format string - eg "lt%d" it will try and find a suitable
1079  *      id. It scans list of devices to build up a free map, then chooses
1080  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1081  *      while allocating the name and adding the device in order to avoid
1082  *      duplicates.
1083  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1084  *      Returns the number of the unit assigned or a negative errno code.
1085  */
1086
1087 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1088 {
1089         int i = 0;
1090         const char *p;
1091         const int max_netdevices = 8*PAGE_SIZE;
1092         unsigned long *inuse;
1093         struct net_device *d;
1094
1095         if (!dev_valid_name(name))
1096                 return -EINVAL;
1097
1098         p = strchr(name, '%');
1099         if (p) {
1100                 /*
1101                  * Verify the string as this thing may have come from
1102                  * the user.  There must be either one "%d" and no other "%"
1103                  * characters.
1104                  */
1105                 if (p[1] != 'd' || strchr(p + 2, '%'))
1106                         return -EINVAL;
1107
1108                 /* Use one page as a bit array of possible slots */
1109                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1110                 if (!inuse)
1111                         return -ENOMEM;
1112
1113                 for_each_netdev(net, d) {
1114                         struct netdev_name_node *name_node;
1115                         list_for_each_entry(name_node, &d->name_node->list, list) {
1116                                 if (!sscanf(name_node->name, name, &i))
1117                                         continue;
1118                                 if (i < 0 || i >= max_netdevices)
1119                                         continue;
1120
1121                                 /*  avoid cases where sscanf is not exact inverse of printf */
1122                                 snprintf(buf, IFNAMSIZ, name, i);
1123                                 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1124                                         set_bit(i, inuse);
1125                         }
1126                         if (!sscanf(d->name, name, &i))
1127                                 continue;
1128                         if (i < 0 || i >= max_netdevices)
1129                                 continue;
1130
1131                         /*  avoid cases where sscanf is not exact inverse of printf */
1132                         snprintf(buf, IFNAMSIZ, name, i);
1133                         if (!strncmp(buf, d->name, IFNAMSIZ))
1134                                 set_bit(i, inuse);
1135                 }
1136
1137                 i = find_first_zero_bit(inuse, max_netdevices);
1138                 free_page((unsigned long) inuse);
1139         }
1140
1141         snprintf(buf, IFNAMSIZ, name, i);
1142         if (!netdev_name_in_use(net, buf))
1143                 return i;
1144
1145         /* It is possible to run out of possible slots
1146          * when the name is long and there isn't enough space left
1147          * for the digits, or if all bits are used.
1148          */
1149         return -ENFILE;
1150 }
1151
1152 static int dev_alloc_name_ns(struct net *net,
1153                              struct net_device *dev,
1154                              const char *name)
1155 {
1156         char buf[IFNAMSIZ];
1157         int ret;
1158
1159         BUG_ON(!net);
1160         ret = __dev_alloc_name(net, name, buf);
1161         if (ret >= 0)
1162                 strlcpy(dev->name, buf, IFNAMSIZ);
1163         return ret;
1164 }
1165
1166 /**
1167  *      dev_alloc_name - allocate a name for a device
1168  *      @dev: device
1169  *      @name: name format string
1170  *
1171  *      Passed a format string - eg "lt%d" it will try and find a suitable
1172  *      id. It scans list of devices to build up a free map, then chooses
1173  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1174  *      while allocating the name and adding the device in order to avoid
1175  *      duplicates.
1176  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1177  *      Returns the number of the unit assigned or a negative errno code.
1178  */
1179
1180 int dev_alloc_name(struct net_device *dev, const char *name)
1181 {
1182         return dev_alloc_name_ns(dev_net(dev), dev, name);
1183 }
1184 EXPORT_SYMBOL(dev_alloc_name);
1185
1186 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1187                               const char *name)
1188 {
1189         BUG_ON(!net);
1190
1191         if (!dev_valid_name(name))
1192                 return -EINVAL;
1193
1194         if (strchr(name, '%'))
1195                 return dev_alloc_name_ns(net, dev, name);
1196         else if (netdev_name_in_use(net, name))
1197                 return -EEXIST;
1198         else if (dev->name != name)
1199                 strlcpy(dev->name, name, IFNAMSIZ);
1200
1201         return 0;
1202 }
1203
1204 /**
1205  *      dev_change_name - change name of a device
1206  *      @dev: device
1207  *      @newname: name (or format string) must be at least IFNAMSIZ
1208  *
1209  *      Change name of a device, can pass format strings "eth%d".
1210  *      for wildcarding.
1211  */
1212 int dev_change_name(struct net_device *dev, const char *newname)
1213 {
1214         unsigned char old_assign_type;
1215         char oldname[IFNAMSIZ];
1216         int err = 0;
1217         int ret;
1218         struct net *net;
1219
1220         ASSERT_RTNL();
1221         BUG_ON(!dev_net(dev));
1222
1223         net = dev_net(dev);
1224
1225         /* Some auto-enslaved devices e.g. failover slaves are
1226          * special, as userspace might rename the device after
1227          * the interface had been brought up and running since
1228          * the point kernel initiated auto-enslavement. Allow
1229          * live name change even when these slave devices are
1230          * up and running.
1231          *
1232          * Typically, users of these auto-enslaving devices
1233          * don't actually care about slave name change, as
1234          * they are supposed to operate on master interface
1235          * directly.
1236          */
1237         if (dev->flags & IFF_UP &&
1238             likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1239                 return -EBUSY;
1240
1241         down_write(&devnet_rename_sem);
1242
1243         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1244                 up_write(&devnet_rename_sem);
1245                 return 0;
1246         }
1247
1248         memcpy(oldname, dev->name, IFNAMSIZ);
1249
1250         err = dev_get_valid_name(net, dev, newname);
1251         if (err < 0) {
1252                 up_write(&devnet_rename_sem);
1253                 return err;
1254         }
1255
1256         if (oldname[0] && !strchr(oldname, '%'))
1257                 netdev_info(dev, "renamed from %s\n", oldname);
1258
1259         old_assign_type = dev->name_assign_type;
1260         dev->name_assign_type = NET_NAME_RENAMED;
1261
1262 rollback:
1263         ret = device_rename(&dev->dev, dev->name);
1264         if (ret) {
1265                 memcpy(dev->name, oldname, IFNAMSIZ);
1266                 dev->name_assign_type = old_assign_type;
1267                 up_write(&devnet_rename_sem);
1268                 return ret;
1269         }
1270
1271         up_write(&devnet_rename_sem);
1272
1273         netdev_adjacent_rename_links(dev, oldname);
1274
1275         write_lock_bh(&dev_base_lock);
1276         netdev_name_node_del(dev->name_node);
1277         write_unlock_bh(&dev_base_lock);
1278
1279         synchronize_rcu();
1280
1281         write_lock_bh(&dev_base_lock);
1282         netdev_name_node_add(net, dev->name_node);
1283         write_unlock_bh(&dev_base_lock);
1284
1285         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1286         ret = notifier_to_errno(ret);
1287
1288         if (ret) {
1289                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1290                 if (err >= 0) {
1291                         err = ret;
1292                         down_write(&devnet_rename_sem);
1293                         memcpy(dev->name, oldname, IFNAMSIZ);
1294                         memcpy(oldname, newname, IFNAMSIZ);
1295                         dev->name_assign_type = old_assign_type;
1296                         old_assign_type = NET_NAME_RENAMED;
1297                         goto rollback;
1298                 } else {
1299                         netdev_err(dev, "name change rollback failed: %d\n",
1300                                    ret);
1301                 }
1302         }
1303
1304         return err;
1305 }
1306
1307 /**
1308  *      dev_set_alias - change ifalias of a device
1309  *      @dev: device
1310  *      @alias: name up to IFALIASZ
1311  *      @len: limit of bytes to copy from info
1312  *
1313  *      Set ifalias for a device,
1314  */
1315 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1316 {
1317         struct dev_ifalias *new_alias = NULL;
1318
1319         if (len >= IFALIASZ)
1320                 return -EINVAL;
1321
1322         if (len) {
1323                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1324                 if (!new_alias)
1325                         return -ENOMEM;
1326
1327                 memcpy(new_alias->ifalias, alias, len);
1328                 new_alias->ifalias[len] = 0;
1329         }
1330
1331         mutex_lock(&ifalias_mutex);
1332         new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1333                                         mutex_is_locked(&ifalias_mutex));
1334         mutex_unlock(&ifalias_mutex);
1335
1336         if (new_alias)
1337                 kfree_rcu(new_alias, rcuhead);
1338
1339         return len;
1340 }
1341 EXPORT_SYMBOL(dev_set_alias);
1342
1343 /**
1344  *      dev_get_alias - get ifalias of a device
1345  *      @dev: device
1346  *      @name: buffer to store name of ifalias
1347  *      @len: size of buffer
1348  *
1349  *      get ifalias for a device.  Caller must make sure dev cannot go
1350  *      away,  e.g. rcu read lock or own a reference count to device.
1351  */
1352 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1353 {
1354         const struct dev_ifalias *alias;
1355         int ret = 0;
1356
1357         rcu_read_lock();
1358         alias = rcu_dereference(dev->ifalias);
1359         if (alias)
1360                 ret = snprintf(name, len, "%s", alias->ifalias);
1361         rcu_read_unlock();
1362
1363         return ret;
1364 }
1365
1366 /**
1367  *      netdev_features_change - device changes features
1368  *      @dev: device to cause notification
1369  *
1370  *      Called to indicate a device has changed features.
1371  */
1372 void netdev_features_change(struct net_device *dev)
1373 {
1374         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1375 }
1376 EXPORT_SYMBOL(netdev_features_change);
1377
1378 /**
1379  *      netdev_state_change - device changes state
1380  *      @dev: device to cause notification
1381  *
1382  *      Called to indicate a device has changed state. This function calls
1383  *      the notifier chains for netdev_chain and sends a NEWLINK message
1384  *      to the routing socket.
1385  */
1386 void netdev_state_change(struct net_device *dev)
1387 {
1388         if (dev->flags & IFF_UP) {
1389                 struct netdev_notifier_change_info change_info = {
1390                         .info.dev = dev,
1391                 };
1392
1393                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1394                                               &change_info.info);
1395                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1396         }
1397 }
1398 EXPORT_SYMBOL(netdev_state_change);
1399
1400 /**
1401  * __netdev_notify_peers - notify network peers about existence of @dev,
1402  * to be called when rtnl lock is already held.
1403  * @dev: network device
1404  *
1405  * Generate traffic such that interested network peers are aware of
1406  * @dev, such as by generating a gratuitous ARP. This may be used when
1407  * a device wants to inform the rest of the network about some sort of
1408  * reconfiguration such as a failover event or virtual machine
1409  * migration.
1410  */
1411 void __netdev_notify_peers(struct net_device *dev)
1412 {
1413         ASSERT_RTNL();
1414         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1415         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1416 }
1417 EXPORT_SYMBOL(__netdev_notify_peers);
1418
1419 /**
1420  * netdev_notify_peers - notify network peers about existence of @dev
1421  * @dev: network device
1422  *
1423  * Generate traffic such that interested network peers are aware of
1424  * @dev, such as by generating a gratuitous ARP. This may be used when
1425  * a device wants to inform the rest of the network about some sort of
1426  * reconfiguration such as a failover event or virtual machine
1427  * migration.
1428  */
1429 void netdev_notify_peers(struct net_device *dev)
1430 {
1431         rtnl_lock();
1432         __netdev_notify_peers(dev);
1433         rtnl_unlock();
1434 }
1435 EXPORT_SYMBOL(netdev_notify_peers);
1436
1437 static int napi_threaded_poll(void *data);
1438
1439 static int napi_kthread_create(struct napi_struct *n)
1440 {
1441         int err = 0;
1442
1443         /* Create and wake up the kthread once to put it in
1444          * TASK_INTERRUPTIBLE mode to avoid the blocked task
1445          * warning and work with loadavg.
1446          */
1447         n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1448                                 n->dev->name, n->napi_id);
1449         if (IS_ERR(n->thread)) {
1450                 err = PTR_ERR(n->thread);
1451                 pr_err("kthread_run failed with err %d\n", err);
1452                 n->thread = NULL;
1453         }
1454
1455         return err;
1456 }
1457
1458 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1459 {
1460         const struct net_device_ops *ops = dev->netdev_ops;
1461         int ret;
1462
1463         ASSERT_RTNL();
1464
1465         if (!netif_device_present(dev)) {
1466                 /* may be detached because parent is runtime-suspended */
1467                 if (dev->dev.parent)
1468                         pm_runtime_resume(dev->dev.parent);
1469                 if (!netif_device_present(dev))
1470                         return -ENODEV;
1471         }
1472
1473         /* Block netpoll from trying to do any rx path servicing.
1474          * If we don't do this there is a chance ndo_poll_controller
1475          * or ndo_poll may be running while we open the device
1476          */
1477         netpoll_poll_disable(dev);
1478
1479         ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1480         ret = notifier_to_errno(ret);
1481         if (ret)
1482                 return ret;
1483
1484         set_bit(__LINK_STATE_START, &dev->state);
1485
1486         if (ops->ndo_validate_addr)
1487                 ret = ops->ndo_validate_addr(dev);
1488
1489         if (!ret && ops->ndo_open)
1490                 ret = ops->ndo_open(dev);
1491
1492         netpoll_poll_enable(dev);
1493
1494         if (ret)
1495                 clear_bit(__LINK_STATE_START, &dev->state);
1496         else {
1497                 dev->flags |= IFF_UP;
1498                 dev_set_rx_mode(dev);
1499                 dev_activate(dev);
1500                 add_device_randomness(dev->dev_addr, dev->addr_len);
1501         }
1502
1503         return ret;
1504 }
1505
1506 /**
1507  *      dev_open        - prepare an interface for use.
1508  *      @dev: device to open
1509  *      @extack: netlink extended ack
1510  *
1511  *      Takes a device from down to up state. The device's private open
1512  *      function is invoked and then the multicast lists are loaded. Finally
1513  *      the device is moved into the up state and a %NETDEV_UP message is
1514  *      sent to the netdev notifier chain.
1515  *
1516  *      Calling this function on an active interface is a nop. On a failure
1517  *      a negative errno code is returned.
1518  */
1519 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1520 {
1521         int ret;
1522
1523         if (dev->flags & IFF_UP)
1524                 return 0;
1525
1526         ret = __dev_open(dev, extack);
1527         if (ret < 0)
1528                 return ret;
1529
1530         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1531         call_netdevice_notifiers(NETDEV_UP, dev);
1532
1533         return ret;
1534 }
1535 EXPORT_SYMBOL(dev_open);
1536
1537 static void __dev_close_many(struct list_head *head)
1538 {
1539         struct net_device *dev;
1540
1541         ASSERT_RTNL();
1542         might_sleep();
1543
1544         list_for_each_entry(dev, head, close_list) {
1545                 /* Temporarily disable netpoll until the interface is down */
1546                 netpoll_poll_disable(dev);
1547
1548                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1549
1550                 clear_bit(__LINK_STATE_START, &dev->state);
1551
1552                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1553                  * can be even on different cpu. So just clear netif_running().
1554                  *
1555                  * dev->stop() will invoke napi_disable() on all of it's
1556                  * napi_struct instances on this device.
1557                  */
1558                 smp_mb__after_atomic(); /* Commit netif_running(). */
1559         }
1560
1561         dev_deactivate_many(head);
1562
1563         list_for_each_entry(dev, head, close_list) {
1564                 const struct net_device_ops *ops = dev->netdev_ops;
1565
1566                 /*
1567                  *      Call the device specific close. This cannot fail.
1568                  *      Only if device is UP
1569                  *
1570                  *      We allow it to be called even after a DETACH hot-plug
1571                  *      event.
1572                  */
1573                 if (ops->ndo_stop)
1574                         ops->ndo_stop(dev);
1575
1576                 dev->flags &= ~IFF_UP;
1577                 netpoll_poll_enable(dev);
1578         }
1579 }
1580
1581 static void __dev_close(struct net_device *dev)
1582 {
1583         LIST_HEAD(single);
1584
1585         list_add(&dev->close_list, &single);
1586         __dev_close_many(&single);
1587         list_del(&single);
1588 }
1589
1590 void dev_close_many(struct list_head *head, bool unlink)
1591 {
1592         struct net_device *dev, *tmp;
1593
1594         /* Remove the devices that don't need to be closed */
1595         list_for_each_entry_safe(dev, tmp, head, close_list)
1596                 if (!(dev->flags & IFF_UP))
1597                         list_del_init(&dev->close_list);
1598
1599         __dev_close_many(head);
1600
1601         list_for_each_entry_safe(dev, tmp, head, close_list) {
1602                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1603                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1604                 if (unlink)
1605                         list_del_init(&dev->close_list);
1606         }
1607 }
1608 EXPORT_SYMBOL(dev_close_many);
1609
1610 /**
1611  *      dev_close - shutdown an interface.
1612  *      @dev: device to shutdown
1613  *
1614  *      This function moves an active device into down state. A
1615  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1616  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1617  *      chain.
1618  */
1619 void dev_close(struct net_device *dev)
1620 {
1621         if (dev->flags & IFF_UP) {
1622                 LIST_HEAD(single);
1623
1624                 list_add(&dev->close_list, &single);
1625                 dev_close_many(&single, true);
1626                 list_del(&single);
1627         }
1628 }
1629 EXPORT_SYMBOL(dev_close);
1630
1631
1632 /**
1633  *      dev_disable_lro - disable Large Receive Offload on a device
1634  *      @dev: device
1635  *
1636  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1637  *      called under RTNL.  This is needed if received packets may be
1638  *      forwarded to another interface.
1639  */
1640 void dev_disable_lro(struct net_device *dev)
1641 {
1642         struct net_device *lower_dev;
1643         struct list_head *iter;
1644
1645         dev->wanted_features &= ~NETIF_F_LRO;
1646         netdev_update_features(dev);
1647
1648         if (unlikely(dev->features & NETIF_F_LRO))
1649                 netdev_WARN(dev, "failed to disable LRO!\n");
1650
1651         netdev_for_each_lower_dev(dev, lower_dev, iter)
1652                 dev_disable_lro(lower_dev);
1653 }
1654 EXPORT_SYMBOL(dev_disable_lro);
1655
1656 /**
1657  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1658  *      @dev: device
1659  *
1660  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1661  *      called under RTNL.  This is needed if Generic XDP is installed on
1662  *      the device.
1663  */
1664 static void dev_disable_gro_hw(struct net_device *dev)
1665 {
1666         dev->wanted_features &= ~NETIF_F_GRO_HW;
1667         netdev_update_features(dev);
1668
1669         if (unlikely(dev->features & NETIF_F_GRO_HW))
1670                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1671 }
1672
1673 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1674 {
1675 #define N(val)                                          \
1676         case NETDEV_##val:                              \
1677                 return "NETDEV_" __stringify(val);
1678         switch (cmd) {
1679         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1680         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1681         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1682         N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1683         N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1684         N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1685         N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1686         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1687         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1688         N(PRE_CHANGEADDR)
1689         }
1690 #undef N
1691         return "UNKNOWN_NETDEV_EVENT";
1692 }
1693 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1694
1695 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1696                                    struct net_device *dev)
1697 {
1698         struct netdev_notifier_info info = {
1699                 .dev = dev,
1700         };
1701
1702         return nb->notifier_call(nb, val, &info);
1703 }
1704
1705 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1706                                              struct net_device *dev)
1707 {
1708         int err;
1709
1710         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1711         err = notifier_to_errno(err);
1712         if (err)
1713                 return err;
1714
1715         if (!(dev->flags & IFF_UP))
1716                 return 0;
1717
1718         call_netdevice_notifier(nb, NETDEV_UP, dev);
1719         return 0;
1720 }
1721
1722 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1723                                                 struct net_device *dev)
1724 {
1725         if (dev->flags & IFF_UP) {
1726                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1727                                         dev);
1728                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1729         }
1730         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1731 }
1732
1733 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1734                                                  struct net *net)
1735 {
1736         struct net_device *dev;
1737         int err;
1738
1739         for_each_netdev(net, dev) {
1740                 err = call_netdevice_register_notifiers(nb, dev);
1741                 if (err)
1742                         goto rollback;
1743         }
1744         return 0;
1745
1746 rollback:
1747         for_each_netdev_continue_reverse(net, dev)
1748                 call_netdevice_unregister_notifiers(nb, dev);
1749         return err;
1750 }
1751
1752 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1753                                                     struct net *net)
1754 {
1755         struct net_device *dev;
1756
1757         for_each_netdev(net, dev)
1758                 call_netdevice_unregister_notifiers(nb, dev);
1759 }
1760
1761 static int dev_boot_phase = 1;
1762
1763 /**
1764  * register_netdevice_notifier - register a network notifier block
1765  * @nb: notifier
1766  *
1767  * Register a notifier to be called when network device events occur.
1768  * The notifier passed is linked into the kernel structures and must
1769  * not be reused until it has been unregistered. A negative errno code
1770  * is returned on a failure.
1771  *
1772  * When registered all registration and up events are replayed
1773  * to the new notifier to allow device to have a race free
1774  * view of the network device list.
1775  */
1776
1777 int register_netdevice_notifier(struct notifier_block *nb)
1778 {
1779         struct net *net;
1780         int err;
1781
1782         /* Close race with setup_net() and cleanup_net() */
1783         down_write(&pernet_ops_rwsem);
1784         rtnl_lock();
1785         err = raw_notifier_chain_register(&netdev_chain, nb);
1786         if (err)
1787                 goto unlock;
1788         if (dev_boot_phase)
1789                 goto unlock;
1790         for_each_net(net) {
1791                 err = call_netdevice_register_net_notifiers(nb, net);
1792                 if (err)
1793                         goto rollback;
1794         }
1795
1796 unlock:
1797         rtnl_unlock();
1798         up_write(&pernet_ops_rwsem);
1799         return err;
1800
1801 rollback:
1802         for_each_net_continue_reverse(net)
1803                 call_netdevice_unregister_net_notifiers(nb, net);
1804
1805         raw_notifier_chain_unregister(&netdev_chain, nb);
1806         goto unlock;
1807 }
1808 EXPORT_SYMBOL(register_netdevice_notifier);
1809
1810 /**
1811  * unregister_netdevice_notifier - unregister a network notifier block
1812  * @nb: notifier
1813  *
1814  * Unregister a notifier previously registered by
1815  * register_netdevice_notifier(). The notifier is unlinked into the
1816  * kernel structures and may then be reused. A negative errno code
1817  * is returned on a failure.
1818  *
1819  * After unregistering unregister and down device events are synthesized
1820  * for all devices on the device list to the removed notifier to remove
1821  * the need for special case cleanup code.
1822  */
1823
1824 int unregister_netdevice_notifier(struct notifier_block *nb)
1825 {
1826         struct net *net;
1827         int err;
1828
1829         /* Close race with setup_net() and cleanup_net() */
1830         down_write(&pernet_ops_rwsem);
1831         rtnl_lock();
1832         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1833         if (err)
1834                 goto unlock;
1835
1836         for_each_net(net)
1837                 call_netdevice_unregister_net_notifiers(nb, net);
1838
1839 unlock:
1840         rtnl_unlock();
1841         up_write(&pernet_ops_rwsem);
1842         return err;
1843 }
1844 EXPORT_SYMBOL(unregister_netdevice_notifier);
1845
1846 static int __register_netdevice_notifier_net(struct net *net,
1847                                              struct notifier_block *nb,
1848                                              bool ignore_call_fail)
1849 {
1850         int err;
1851
1852         err = raw_notifier_chain_register(&net->netdev_chain, nb);
1853         if (err)
1854                 return err;
1855         if (dev_boot_phase)
1856                 return 0;
1857
1858         err = call_netdevice_register_net_notifiers(nb, net);
1859         if (err && !ignore_call_fail)
1860                 goto chain_unregister;
1861
1862         return 0;
1863
1864 chain_unregister:
1865         raw_notifier_chain_unregister(&net->netdev_chain, nb);
1866         return err;
1867 }
1868
1869 static int __unregister_netdevice_notifier_net(struct net *net,
1870                                                struct notifier_block *nb)
1871 {
1872         int err;
1873
1874         err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1875         if (err)
1876                 return err;
1877
1878         call_netdevice_unregister_net_notifiers(nb, net);
1879         return 0;
1880 }
1881
1882 /**
1883  * register_netdevice_notifier_net - register a per-netns network notifier block
1884  * @net: network namespace
1885  * @nb: notifier
1886  *
1887  * Register a notifier to be called when network device events occur.
1888  * The notifier passed is linked into the kernel structures and must
1889  * not be reused until it has been unregistered. A negative errno code
1890  * is returned on a failure.
1891  *
1892  * When registered all registration and up events are replayed
1893  * to the new notifier to allow device to have a race free
1894  * view of the network device list.
1895  */
1896
1897 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1898 {
1899         int err;
1900
1901         rtnl_lock();
1902         err = __register_netdevice_notifier_net(net, nb, false);
1903         rtnl_unlock();
1904         return err;
1905 }
1906 EXPORT_SYMBOL(register_netdevice_notifier_net);
1907
1908 /**
1909  * unregister_netdevice_notifier_net - unregister a per-netns
1910  *                                     network notifier block
1911  * @net: network namespace
1912  * @nb: notifier
1913  *
1914  * Unregister a notifier previously registered by
1915  * register_netdevice_notifier(). The notifier is unlinked into the
1916  * kernel structures and may then be reused. A negative errno code
1917  * is returned on a failure.
1918  *
1919  * After unregistering unregister and down device events are synthesized
1920  * for all devices on the device list to the removed notifier to remove
1921  * the need for special case cleanup code.
1922  */
1923
1924 int unregister_netdevice_notifier_net(struct net *net,
1925                                       struct notifier_block *nb)
1926 {
1927         int err;
1928
1929         rtnl_lock();
1930         err = __unregister_netdevice_notifier_net(net, nb);
1931         rtnl_unlock();
1932         return err;
1933 }
1934 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1935
1936 int register_netdevice_notifier_dev_net(struct net_device *dev,
1937                                         struct notifier_block *nb,
1938                                         struct netdev_net_notifier *nn)
1939 {
1940         int err;
1941
1942         rtnl_lock();
1943         err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1944         if (!err) {
1945                 nn->nb = nb;
1946                 list_add(&nn->list, &dev->net_notifier_list);
1947         }
1948         rtnl_unlock();
1949         return err;
1950 }
1951 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1952
1953 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1954                                           struct notifier_block *nb,
1955                                           struct netdev_net_notifier *nn)
1956 {
1957         int err;
1958
1959         rtnl_lock();
1960         list_del(&nn->list);
1961         err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1962         rtnl_unlock();
1963         return err;
1964 }
1965 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1966
1967 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1968                                              struct net *net)
1969 {
1970         struct netdev_net_notifier *nn;
1971
1972         list_for_each_entry(nn, &dev->net_notifier_list, list) {
1973                 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
1974                 __register_netdevice_notifier_net(net, nn->nb, true);
1975         }
1976 }
1977
1978 /**
1979  *      call_netdevice_notifiers_info - call all network notifier blocks
1980  *      @val: value passed unmodified to notifier function
1981  *      @info: notifier information data
1982  *
1983  *      Call all network notifier blocks.  Parameters and return value
1984  *      are as for raw_notifier_call_chain().
1985  */
1986
1987 static int call_netdevice_notifiers_info(unsigned long val,
1988                                          struct netdev_notifier_info *info)
1989 {
1990         struct net *net = dev_net(info->dev);
1991         int ret;
1992
1993         ASSERT_RTNL();
1994
1995         /* Run per-netns notifier block chain first, then run the global one.
1996          * Hopefully, one day, the global one is going to be removed after
1997          * all notifier block registrators get converted to be per-netns.
1998          */
1999         ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2000         if (ret & NOTIFY_STOP_MASK)
2001                 return ret;
2002         return raw_notifier_call_chain(&netdev_chain, val, info);
2003 }
2004
2005 static int call_netdevice_notifiers_extack(unsigned long val,
2006                                            struct net_device *dev,
2007                                            struct netlink_ext_ack *extack)
2008 {
2009         struct netdev_notifier_info info = {
2010                 .dev = dev,
2011                 .extack = extack,
2012         };
2013
2014         return call_netdevice_notifiers_info(val, &info);
2015 }
2016
2017 /**
2018  *      call_netdevice_notifiers - call all network notifier blocks
2019  *      @val: value passed unmodified to notifier function
2020  *      @dev: net_device pointer passed unmodified to notifier function
2021  *
2022  *      Call all network notifier blocks.  Parameters and return value
2023  *      are as for raw_notifier_call_chain().
2024  */
2025
2026 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2027 {
2028         return call_netdevice_notifiers_extack(val, dev, NULL);
2029 }
2030 EXPORT_SYMBOL(call_netdevice_notifiers);
2031
2032 /**
2033  *      call_netdevice_notifiers_mtu - call all network notifier blocks
2034  *      @val: value passed unmodified to notifier function
2035  *      @dev: net_device pointer passed unmodified to notifier function
2036  *      @arg: additional u32 argument passed to the notifier function
2037  *
2038  *      Call all network notifier blocks.  Parameters and return value
2039  *      are as for raw_notifier_call_chain().
2040  */
2041 static int call_netdevice_notifiers_mtu(unsigned long val,
2042                                         struct net_device *dev, u32 arg)
2043 {
2044         struct netdev_notifier_info_ext info = {
2045                 .info.dev = dev,
2046                 .ext.mtu = arg,
2047         };
2048
2049         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2050
2051         return call_netdevice_notifiers_info(val, &info.info);
2052 }
2053
2054 #ifdef CONFIG_NET_INGRESS
2055 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2056
2057 void net_inc_ingress_queue(void)
2058 {
2059         static_branch_inc(&ingress_needed_key);
2060 }
2061 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2062
2063 void net_dec_ingress_queue(void)
2064 {
2065         static_branch_dec(&ingress_needed_key);
2066 }
2067 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2068 #endif
2069
2070 #ifdef CONFIG_NET_EGRESS
2071 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2072
2073 void net_inc_egress_queue(void)
2074 {
2075         static_branch_inc(&egress_needed_key);
2076 }
2077 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2078
2079 void net_dec_egress_queue(void)
2080 {
2081         static_branch_dec(&egress_needed_key);
2082 }
2083 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2084 #endif
2085
2086 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2087 #ifdef CONFIG_JUMP_LABEL
2088 static atomic_t netstamp_needed_deferred;
2089 static atomic_t netstamp_wanted;
2090 static void netstamp_clear(struct work_struct *work)
2091 {
2092         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2093         int wanted;
2094
2095         wanted = atomic_add_return(deferred, &netstamp_wanted);
2096         if (wanted > 0)
2097                 static_branch_enable(&netstamp_needed_key);
2098         else
2099                 static_branch_disable(&netstamp_needed_key);
2100 }
2101 static DECLARE_WORK(netstamp_work, netstamp_clear);
2102 #endif
2103
2104 void net_enable_timestamp(void)
2105 {
2106 #ifdef CONFIG_JUMP_LABEL
2107         int wanted;
2108
2109         while (1) {
2110                 wanted = atomic_read(&netstamp_wanted);
2111                 if (wanted <= 0)
2112                         break;
2113                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2114                         return;
2115         }
2116         atomic_inc(&netstamp_needed_deferred);
2117         schedule_work(&netstamp_work);
2118 #else
2119         static_branch_inc(&netstamp_needed_key);
2120 #endif
2121 }
2122 EXPORT_SYMBOL(net_enable_timestamp);
2123
2124 void net_disable_timestamp(void)
2125 {
2126 #ifdef CONFIG_JUMP_LABEL
2127         int wanted;
2128
2129         while (1) {
2130                 wanted = atomic_read(&netstamp_wanted);
2131                 if (wanted <= 1)
2132                         break;
2133                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2134                         return;
2135         }
2136         atomic_dec(&netstamp_needed_deferred);
2137         schedule_work(&netstamp_work);
2138 #else
2139         static_branch_dec(&netstamp_needed_key);
2140 #endif
2141 }
2142 EXPORT_SYMBOL(net_disable_timestamp);
2143
2144 static inline void net_timestamp_set(struct sk_buff *skb)
2145 {
2146         skb->tstamp = 0;
2147         if (static_branch_unlikely(&netstamp_needed_key))
2148                 __net_timestamp(skb);
2149 }
2150
2151 #define net_timestamp_check(COND, SKB)                          \
2152         if (static_branch_unlikely(&netstamp_needed_key)) {     \
2153                 if ((COND) && !(SKB)->tstamp)                   \
2154                         __net_timestamp(SKB);                   \
2155         }                                                       \
2156
2157 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2158 {
2159         return __is_skb_forwardable(dev, skb, true);
2160 }
2161 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2162
2163 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2164                               bool check_mtu)
2165 {
2166         int ret = ____dev_forward_skb(dev, skb, check_mtu);
2167
2168         if (likely(!ret)) {
2169                 skb->protocol = eth_type_trans(skb, dev);
2170                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2171         }
2172
2173         return ret;
2174 }
2175
2176 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2177 {
2178         return __dev_forward_skb2(dev, skb, true);
2179 }
2180 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2181
2182 /**
2183  * dev_forward_skb - loopback an skb to another netif
2184  *
2185  * @dev: destination network device
2186  * @skb: buffer to forward
2187  *
2188  * return values:
2189  *      NET_RX_SUCCESS  (no congestion)
2190  *      NET_RX_DROP     (packet was dropped, but freed)
2191  *
2192  * dev_forward_skb can be used for injecting an skb from the
2193  * start_xmit function of one device into the receive queue
2194  * of another device.
2195  *
2196  * The receiving device may be in another namespace, so
2197  * we have to clear all information in the skb that could
2198  * impact namespace isolation.
2199  */
2200 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2201 {
2202         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2203 }
2204 EXPORT_SYMBOL_GPL(dev_forward_skb);
2205
2206 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2207 {
2208         return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2209 }
2210
2211 static inline int deliver_skb(struct sk_buff *skb,
2212                               struct packet_type *pt_prev,
2213                               struct net_device *orig_dev)
2214 {
2215         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2216                 return -ENOMEM;
2217         refcount_inc(&skb->users);
2218         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2219 }
2220
2221 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2222                                           struct packet_type **pt,
2223                                           struct net_device *orig_dev,
2224                                           __be16 type,
2225                                           struct list_head *ptype_list)
2226 {
2227         struct packet_type *ptype, *pt_prev = *pt;
2228
2229         list_for_each_entry_rcu(ptype, ptype_list, list) {
2230                 if (ptype->type != type)
2231                         continue;
2232                 if (pt_prev)
2233                         deliver_skb(skb, pt_prev, orig_dev);
2234                 pt_prev = ptype;
2235         }
2236         *pt = pt_prev;
2237 }
2238
2239 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2240 {
2241         if (!ptype->af_packet_priv || !skb->sk)
2242                 return false;
2243
2244         if (ptype->id_match)
2245                 return ptype->id_match(ptype, skb->sk);
2246         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2247                 return true;
2248
2249         return false;
2250 }
2251
2252 /**
2253  * dev_nit_active - return true if any network interface taps are in use
2254  *
2255  * @dev: network device to check for the presence of taps
2256  */
2257 bool dev_nit_active(struct net_device *dev)
2258 {
2259         return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2260 }
2261 EXPORT_SYMBOL_GPL(dev_nit_active);
2262
2263 /*
2264  *      Support routine. Sends outgoing frames to any network
2265  *      taps currently in use.
2266  */
2267
2268 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2269 {
2270         struct packet_type *ptype;
2271         struct sk_buff *skb2 = NULL;
2272         struct packet_type *pt_prev = NULL;
2273         struct list_head *ptype_list = &ptype_all;
2274
2275         rcu_read_lock();
2276 again:
2277         list_for_each_entry_rcu(ptype, ptype_list, list) {
2278                 if (ptype->ignore_outgoing)
2279                         continue;
2280
2281                 /* Never send packets back to the socket
2282                  * they originated from - MvS (miquels@drinkel.ow.org)
2283                  */
2284                 if (skb_loop_sk(ptype, skb))
2285                         continue;
2286
2287                 if (pt_prev) {
2288                         deliver_skb(skb2, pt_prev, skb->dev);
2289                         pt_prev = ptype;
2290                         continue;
2291                 }
2292
2293                 /* need to clone skb, done only once */
2294                 skb2 = skb_clone(skb, GFP_ATOMIC);
2295                 if (!skb2)
2296                         goto out_unlock;
2297
2298                 net_timestamp_set(skb2);
2299
2300                 /* skb->nh should be correctly
2301                  * set by sender, so that the second statement is
2302                  * just protection against buggy protocols.
2303                  */
2304                 skb_reset_mac_header(skb2);
2305
2306                 if (skb_network_header(skb2) < skb2->data ||
2307                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2308                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2309                                              ntohs(skb2->protocol),
2310                                              dev->name);
2311                         skb_reset_network_header(skb2);
2312                 }
2313
2314                 skb2->transport_header = skb2->network_header;
2315                 skb2->pkt_type = PACKET_OUTGOING;
2316                 pt_prev = ptype;
2317         }
2318
2319         if (ptype_list == &ptype_all) {
2320                 ptype_list = &dev->ptype_all;
2321                 goto again;
2322         }
2323 out_unlock:
2324         if (pt_prev) {
2325                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2326                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2327                 else
2328                         kfree_skb(skb2);
2329         }
2330         rcu_read_unlock();
2331 }
2332 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2333
2334 /**
2335  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2336  * @dev: Network device
2337  * @txq: number of queues available
2338  *
2339  * If real_num_tx_queues is changed the tc mappings may no longer be
2340  * valid. To resolve this verify the tc mapping remains valid and if
2341  * not NULL the mapping. With no priorities mapping to this
2342  * offset/count pair it will no longer be used. In the worst case TC0
2343  * is invalid nothing can be done so disable priority mappings. If is
2344  * expected that drivers will fix this mapping if they can before
2345  * calling netif_set_real_num_tx_queues.
2346  */
2347 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2348 {
2349         int i;
2350         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2351
2352         /* If TC0 is invalidated disable TC mapping */
2353         if (tc->offset + tc->count > txq) {
2354                 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2355                 dev->num_tc = 0;
2356                 return;
2357         }
2358
2359         /* Invalidated prio to tc mappings set to TC0 */
2360         for (i = 1; i < TC_BITMASK + 1; i++) {
2361                 int q = netdev_get_prio_tc_map(dev, i);
2362
2363                 tc = &dev->tc_to_txq[q];
2364                 if (tc->offset + tc->count > txq) {
2365                         netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2366                                     i, q);
2367                         netdev_set_prio_tc_map(dev, i, 0);
2368                 }
2369         }
2370 }
2371
2372 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2373 {
2374         if (dev->num_tc) {
2375                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2376                 int i;
2377
2378                 /* walk through the TCs and see if it falls into any of them */
2379                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2380                         if ((txq - tc->offset) < tc->count)
2381                                 return i;
2382                 }
2383
2384                 /* didn't find it, just return -1 to indicate no match */
2385                 return -1;
2386         }
2387
2388         return 0;
2389 }
2390 EXPORT_SYMBOL(netdev_txq_to_tc);
2391
2392 #ifdef CONFIG_XPS
2393 static struct static_key xps_needed __read_mostly;
2394 static struct static_key xps_rxqs_needed __read_mostly;
2395 static DEFINE_MUTEX(xps_map_mutex);
2396 #define xmap_dereference(P)             \
2397         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2398
2399 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2400                              struct xps_dev_maps *old_maps, int tci, u16 index)
2401 {
2402         struct xps_map *map = NULL;
2403         int pos;
2404
2405         if (dev_maps)
2406                 map = xmap_dereference(dev_maps->attr_map[tci]);
2407         if (!map)
2408                 return false;
2409
2410         for (pos = map->len; pos--;) {
2411                 if (map->queues[pos] != index)
2412                         continue;
2413
2414                 if (map->len > 1) {
2415                         map->queues[pos] = map->queues[--map->len];
2416                         break;
2417                 }
2418
2419                 if (old_maps)
2420                         RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2421                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2422                 kfree_rcu(map, rcu);
2423                 return false;
2424         }
2425
2426         return true;
2427 }
2428
2429 static bool remove_xps_queue_cpu(struct net_device *dev,
2430                                  struct xps_dev_maps *dev_maps,
2431                                  int cpu, u16 offset, u16 count)
2432 {
2433         int num_tc = dev_maps->num_tc;
2434         bool active = false;
2435         int tci;
2436
2437         for (tci = cpu * num_tc; num_tc--; tci++) {
2438                 int i, j;
2439
2440                 for (i = count, j = offset; i--; j++) {
2441                         if (!remove_xps_queue(dev_maps, NULL, tci, j))
2442                                 break;
2443                 }
2444
2445                 active |= i < 0;
2446         }
2447
2448         return active;
2449 }
2450
2451 static void reset_xps_maps(struct net_device *dev,
2452                            struct xps_dev_maps *dev_maps,
2453                            enum xps_map_type type)
2454 {
2455         static_key_slow_dec_cpuslocked(&xps_needed);
2456         if (type == XPS_RXQS)
2457                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2458
2459         RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2460
2461         kfree_rcu(dev_maps, rcu);
2462 }
2463
2464 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2465                            u16 offset, u16 count)
2466 {
2467         struct xps_dev_maps *dev_maps;
2468         bool active = false;
2469         int i, j;
2470
2471         dev_maps = xmap_dereference(dev->xps_maps[type]);
2472         if (!dev_maps)
2473                 return;
2474
2475         for (j = 0; j < dev_maps->nr_ids; j++)
2476                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2477         if (!active)
2478                 reset_xps_maps(dev, dev_maps, type);
2479
2480         if (type == XPS_CPUS) {
2481                 for (i = offset + (count - 1); count--; i--)
2482                         netdev_queue_numa_node_write(
2483                                 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2484         }
2485 }
2486
2487 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2488                                    u16 count)
2489 {
2490         if (!static_key_false(&xps_needed))
2491                 return;
2492
2493         cpus_read_lock();
2494         mutex_lock(&xps_map_mutex);
2495
2496         if (static_key_false(&xps_rxqs_needed))
2497                 clean_xps_maps(dev, XPS_RXQS, offset, count);
2498
2499         clean_xps_maps(dev, XPS_CPUS, offset, count);
2500
2501         mutex_unlock(&xps_map_mutex);
2502         cpus_read_unlock();
2503 }
2504
2505 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2506 {
2507         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2508 }
2509
2510 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2511                                       u16 index, bool is_rxqs_map)
2512 {
2513         struct xps_map *new_map;
2514         int alloc_len = XPS_MIN_MAP_ALLOC;
2515         int i, pos;
2516
2517         for (pos = 0; map && pos < map->len; pos++) {
2518                 if (map->queues[pos] != index)
2519                         continue;
2520                 return map;
2521         }
2522
2523         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2524         if (map) {
2525                 if (pos < map->alloc_len)
2526                         return map;
2527
2528                 alloc_len = map->alloc_len * 2;
2529         }
2530
2531         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2532          *  map
2533          */
2534         if (is_rxqs_map)
2535                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2536         else
2537                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2538                                        cpu_to_node(attr_index));
2539         if (!new_map)
2540                 return NULL;
2541
2542         for (i = 0; i < pos; i++)
2543                 new_map->queues[i] = map->queues[i];
2544         new_map->alloc_len = alloc_len;
2545         new_map->len = pos;
2546
2547         return new_map;
2548 }
2549
2550 /* Copy xps maps at a given index */
2551 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2552                               struct xps_dev_maps *new_dev_maps, int index,
2553                               int tc, bool skip_tc)
2554 {
2555         int i, tci = index * dev_maps->num_tc;
2556         struct xps_map *map;
2557
2558         /* copy maps belonging to foreign traffic classes */
2559         for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2560                 if (i == tc && skip_tc)
2561                         continue;
2562
2563                 /* fill in the new device map from the old device map */
2564                 map = xmap_dereference(dev_maps->attr_map[tci]);
2565                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2566         }
2567 }
2568
2569 /* Must be called under cpus_read_lock */
2570 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2571                           u16 index, enum xps_map_type type)
2572 {
2573         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2574         const unsigned long *online_mask = NULL;
2575         bool active = false, copy = false;
2576         int i, j, tci, numa_node_id = -2;
2577         int maps_sz, num_tc = 1, tc = 0;
2578         struct xps_map *map, *new_map;
2579         unsigned int nr_ids;
2580
2581         if (dev->num_tc) {
2582                 /* Do not allow XPS on subordinate device directly */
2583                 num_tc = dev->num_tc;
2584                 if (num_tc < 0)
2585                         return -EINVAL;
2586
2587                 /* If queue belongs to subordinate dev use its map */
2588                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2589
2590                 tc = netdev_txq_to_tc(dev, index);
2591                 if (tc < 0)
2592                         return -EINVAL;
2593         }
2594
2595         mutex_lock(&xps_map_mutex);
2596
2597         dev_maps = xmap_dereference(dev->xps_maps[type]);
2598         if (type == XPS_RXQS) {
2599                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2600                 nr_ids = dev->num_rx_queues;
2601         } else {
2602                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2603                 if (num_possible_cpus() > 1)
2604                         online_mask = cpumask_bits(cpu_online_mask);
2605                 nr_ids = nr_cpu_ids;
2606         }
2607
2608         if (maps_sz < L1_CACHE_BYTES)
2609                 maps_sz = L1_CACHE_BYTES;
2610
2611         /* The old dev_maps could be larger or smaller than the one we're
2612          * setting up now, as dev->num_tc or nr_ids could have been updated in
2613          * between. We could try to be smart, but let's be safe instead and only
2614          * copy foreign traffic classes if the two map sizes match.
2615          */
2616         if (dev_maps &&
2617             dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2618                 copy = true;
2619
2620         /* allocate memory for queue storage */
2621         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2622              j < nr_ids;) {
2623                 if (!new_dev_maps) {
2624                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2625                         if (!new_dev_maps) {
2626                                 mutex_unlock(&xps_map_mutex);
2627                                 return -ENOMEM;
2628                         }
2629
2630                         new_dev_maps->nr_ids = nr_ids;
2631                         new_dev_maps->num_tc = num_tc;
2632                 }
2633
2634                 tci = j * num_tc + tc;
2635                 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2636
2637                 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2638                 if (!map)
2639                         goto error;
2640
2641                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2642         }
2643
2644         if (!new_dev_maps)
2645                 goto out_no_new_maps;
2646
2647         if (!dev_maps) {
2648                 /* Increment static keys at most once per type */
2649                 static_key_slow_inc_cpuslocked(&xps_needed);
2650                 if (type == XPS_RXQS)
2651                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2652         }
2653
2654         for (j = 0; j < nr_ids; j++) {
2655                 bool skip_tc = false;
2656
2657                 tci = j * num_tc + tc;
2658                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2659                     netif_attr_test_online(j, online_mask, nr_ids)) {
2660                         /* add tx-queue to CPU/rx-queue maps */
2661                         int pos = 0;
2662
2663                         skip_tc = true;
2664
2665                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2666                         while ((pos < map->len) && (map->queues[pos] != index))
2667                                 pos++;
2668
2669                         if (pos == map->len)
2670                                 map->queues[map->len++] = index;
2671 #ifdef CONFIG_NUMA
2672                         if (type == XPS_CPUS) {
2673                                 if (numa_node_id == -2)
2674                                         numa_node_id = cpu_to_node(j);
2675                                 else if (numa_node_id != cpu_to_node(j))
2676                                         numa_node_id = -1;
2677                         }
2678 #endif
2679                 }
2680
2681                 if (copy)
2682                         xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2683                                           skip_tc);
2684         }
2685
2686         rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2687
2688         /* Cleanup old maps */
2689         if (!dev_maps)
2690                 goto out_no_old_maps;
2691
2692         for (j = 0; j < dev_maps->nr_ids; j++) {
2693                 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2694                         map = xmap_dereference(dev_maps->attr_map[tci]);
2695                         if (!map)
2696                                 continue;
2697
2698                         if (copy) {
2699                                 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2700                                 if (map == new_map)
2701                                         continue;
2702                         }
2703
2704                         RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2705                         kfree_rcu(map, rcu);
2706                 }
2707         }
2708
2709         old_dev_maps = dev_maps;
2710
2711 out_no_old_maps:
2712         dev_maps = new_dev_maps;
2713         active = true;
2714
2715 out_no_new_maps:
2716         if (type == XPS_CPUS)
2717                 /* update Tx queue numa node */
2718                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2719                                              (numa_node_id >= 0) ?
2720                                              numa_node_id : NUMA_NO_NODE);
2721
2722         if (!dev_maps)
2723                 goto out_no_maps;
2724
2725         /* removes tx-queue from unused CPUs/rx-queues */
2726         for (j = 0; j < dev_maps->nr_ids; j++) {
2727                 tci = j * dev_maps->num_tc;
2728
2729                 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2730                         if (i == tc &&
2731                             netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2732                             netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2733                                 continue;
2734
2735                         active |= remove_xps_queue(dev_maps,
2736                                                    copy ? old_dev_maps : NULL,
2737                                                    tci, index);
2738                 }
2739         }
2740
2741         if (old_dev_maps)
2742                 kfree_rcu(old_dev_maps, rcu);
2743
2744         /* free map if not active */
2745         if (!active)
2746                 reset_xps_maps(dev, dev_maps, type);
2747
2748 out_no_maps:
2749         mutex_unlock(&xps_map_mutex);
2750
2751         return 0;
2752 error:
2753         /* remove any maps that we added */
2754         for (j = 0; j < nr_ids; j++) {
2755                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2756                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2757                         map = copy ?
2758                               xmap_dereference(dev_maps->attr_map[tci]) :
2759                               NULL;
2760                         if (new_map && new_map != map)
2761                                 kfree(new_map);
2762                 }
2763         }
2764
2765         mutex_unlock(&xps_map_mutex);
2766
2767         kfree(new_dev_maps);
2768         return -ENOMEM;
2769 }
2770 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2771
2772 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2773                         u16 index)
2774 {
2775         int ret;
2776
2777         cpus_read_lock();
2778         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2779         cpus_read_unlock();
2780
2781         return ret;
2782 }
2783 EXPORT_SYMBOL(netif_set_xps_queue);
2784
2785 #endif
2786 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2787 {
2788         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2789
2790         /* Unbind any subordinate channels */
2791         while (txq-- != &dev->_tx[0]) {
2792                 if (txq->sb_dev)
2793                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2794         }
2795 }
2796
2797 void netdev_reset_tc(struct net_device *dev)
2798 {
2799 #ifdef CONFIG_XPS
2800         netif_reset_xps_queues_gt(dev, 0);
2801 #endif
2802         netdev_unbind_all_sb_channels(dev);
2803
2804         /* Reset TC configuration of device */
2805         dev->num_tc = 0;
2806         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2807         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2808 }
2809 EXPORT_SYMBOL(netdev_reset_tc);
2810
2811 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2812 {
2813         if (tc >= dev->num_tc)
2814                 return -EINVAL;
2815
2816 #ifdef CONFIG_XPS
2817         netif_reset_xps_queues(dev, offset, count);
2818 #endif
2819         dev->tc_to_txq[tc].count = count;
2820         dev->tc_to_txq[tc].offset = offset;
2821         return 0;
2822 }
2823 EXPORT_SYMBOL(netdev_set_tc_queue);
2824
2825 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2826 {
2827         if (num_tc > TC_MAX_QUEUE)
2828                 return -EINVAL;
2829
2830 #ifdef CONFIG_XPS
2831         netif_reset_xps_queues_gt(dev, 0);
2832 #endif
2833         netdev_unbind_all_sb_channels(dev);
2834
2835         dev->num_tc = num_tc;
2836         return 0;
2837 }
2838 EXPORT_SYMBOL(netdev_set_num_tc);
2839
2840 void netdev_unbind_sb_channel(struct net_device *dev,
2841                               struct net_device *sb_dev)
2842 {
2843         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2844
2845 #ifdef CONFIG_XPS
2846         netif_reset_xps_queues_gt(sb_dev, 0);
2847 #endif
2848         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2849         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2850
2851         while (txq-- != &dev->_tx[0]) {
2852                 if (txq->sb_dev == sb_dev)
2853                         txq->sb_dev = NULL;
2854         }
2855 }
2856 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2857
2858 int netdev_bind_sb_channel_queue(struct net_device *dev,
2859                                  struct net_device *sb_dev,
2860                                  u8 tc, u16 count, u16 offset)
2861 {
2862         /* Make certain the sb_dev and dev are already configured */
2863         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2864                 return -EINVAL;
2865
2866         /* We cannot hand out queues we don't have */
2867         if ((offset + count) > dev->real_num_tx_queues)
2868                 return -EINVAL;
2869
2870         /* Record the mapping */
2871         sb_dev->tc_to_txq[tc].count = count;
2872         sb_dev->tc_to_txq[tc].offset = offset;
2873
2874         /* Provide a way for Tx queue to find the tc_to_txq map or
2875          * XPS map for itself.
2876          */
2877         while (count--)
2878                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2879
2880         return 0;
2881 }
2882 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2883
2884 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2885 {
2886         /* Do not use a multiqueue device to represent a subordinate channel */
2887         if (netif_is_multiqueue(dev))
2888                 return -ENODEV;
2889
2890         /* We allow channels 1 - 32767 to be used for subordinate channels.
2891          * Channel 0 is meant to be "native" mode and used only to represent
2892          * the main root device. We allow writing 0 to reset the device back
2893          * to normal mode after being used as a subordinate channel.
2894          */
2895         if (channel > S16_MAX)
2896                 return -EINVAL;
2897
2898         dev->num_tc = -channel;
2899
2900         return 0;
2901 }
2902 EXPORT_SYMBOL(netdev_set_sb_channel);
2903
2904 /*
2905  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2906  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2907  */
2908 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2909 {
2910         bool disabling;
2911         int rc;
2912
2913         disabling = txq < dev->real_num_tx_queues;
2914
2915         if (txq < 1 || txq > dev->num_tx_queues)
2916                 return -EINVAL;
2917
2918         if (dev->reg_state == NETREG_REGISTERED ||
2919             dev->reg_state == NETREG_UNREGISTERING) {
2920                 ASSERT_RTNL();
2921
2922                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2923                                                   txq);
2924                 if (rc)
2925                         return rc;
2926
2927                 if (dev->num_tc)
2928                         netif_setup_tc(dev, txq);
2929
2930                 dev_qdisc_change_real_num_tx(dev, txq);
2931
2932                 dev->real_num_tx_queues = txq;
2933
2934                 if (disabling) {
2935                         synchronize_net();
2936                         qdisc_reset_all_tx_gt(dev, txq);
2937 #ifdef CONFIG_XPS
2938                         netif_reset_xps_queues_gt(dev, txq);
2939 #endif
2940                 }
2941         } else {
2942                 dev->real_num_tx_queues = txq;
2943         }
2944
2945         return 0;
2946 }
2947 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2948
2949 #ifdef CONFIG_SYSFS
2950 /**
2951  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2952  *      @dev: Network device
2953  *      @rxq: Actual number of RX queues
2954  *
2955  *      This must be called either with the rtnl_lock held or before
2956  *      registration of the net device.  Returns 0 on success, or a
2957  *      negative error code.  If called before registration, it always
2958  *      succeeds.
2959  */
2960 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2961 {
2962         int rc;
2963
2964         if (rxq < 1 || rxq > dev->num_rx_queues)
2965                 return -EINVAL;
2966
2967         if (dev->reg_state == NETREG_REGISTERED) {
2968                 ASSERT_RTNL();
2969
2970                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2971                                                   rxq);
2972                 if (rc)
2973                         return rc;
2974         }
2975
2976         dev->real_num_rx_queues = rxq;
2977         return 0;
2978 }
2979 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2980 #endif
2981
2982 /**
2983  *      netif_set_real_num_queues - set actual number of RX and TX queues used
2984  *      @dev: Network device
2985  *      @txq: Actual number of TX queues
2986  *      @rxq: Actual number of RX queues
2987  *
2988  *      Set the real number of both TX and RX queues.
2989  *      Does nothing if the number of queues is already correct.
2990  */
2991 int netif_set_real_num_queues(struct net_device *dev,
2992                               unsigned int txq, unsigned int rxq)
2993 {
2994         unsigned int old_rxq = dev->real_num_rx_queues;
2995         int err;
2996
2997         if (txq < 1 || txq > dev->num_tx_queues ||
2998             rxq < 1 || rxq > dev->num_rx_queues)
2999                 return -EINVAL;
3000
3001         /* Start from increases, so the error path only does decreases -
3002          * decreases can't fail.
3003          */
3004         if (rxq > dev->real_num_rx_queues) {
3005                 err = netif_set_real_num_rx_queues(dev, rxq);
3006                 if (err)
3007                         return err;
3008         }
3009         if (txq > dev->real_num_tx_queues) {
3010                 err = netif_set_real_num_tx_queues(dev, txq);
3011                 if (err)
3012                         goto undo_rx;
3013         }
3014         if (rxq < dev->real_num_rx_queues)
3015                 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3016         if (txq < dev->real_num_tx_queues)
3017                 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3018
3019         return 0;
3020 undo_rx:
3021         WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3022         return err;
3023 }
3024 EXPORT_SYMBOL(netif_set_real_num_queues);
3025
3026 /**
3027  * netif_get_num_default_rss_queues - default number of RSS queues
3028  *
3029  * This routine should set an upper limit on the number of RSS queues
3030  * used by default by multiqueue devices.
3031  */
3032 int netif_get_num_default_rss_queues(void)
3033 {
3034         return is_kdump_kernel() ?
3035                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3036 }
3037 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3038
3039 static void __netif_reschedule(struct Qdisc *q)
3040 {
3041         struct softnet_data *sd;
3042         unsigned long flags;
3043
3044         local_irq_save(flags);
3045         sd = this_cpu_ptr(&softnet_data);
3046         q->next_sched = NULL;
3047         *sd->output_queue_tailp = q;
3048         sd->output_queue_tailp = &q->next_sched;
3049         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3050         local_irq_restore(flags);
3051 }
3052
3053 void __netif_schedule(struct Qdisc *q)
3054 {
3055         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3056                 __netif_reschedule(q);
3057 }
3058 EXPORT_SYMBOL(__netif_schedule);
3059
3060 struct dev_kfree_skb_cb {
3061         enum skb_free_reason reason;
3062 };
3063
3064 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3065 {
3066         return (struct dev_kfree_skb_cb *)skb->cb;
3067 }
3068
3069 void netif_schedule_queue(struct netdev_queue *txq)
3070 {
3071         rcu_read_lock();
3072         if (!netif_xmit_stopped(txq)) {
3073                 struct Qdisc *q = rcu_dereference(txq->qdisc);
3074
3075                 __netif_schedule(q);
3076         }
3077         rcu_read_unlock();
3078 }
3079 EXPORT_SYMBOL(netif_schedule_queue);
3080
3081 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3082 {
3083         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3084                 struct Qdisc *q;
3085
3086                 rcu_read_lock();
3087                 q = rcu_dereference(dev_queue->qdisc);
3088                 __netif_schedule(q);
3089                 rcu_read_unlock();
3090         }
3091 }
3092 EXPORT_SYMBOL(netif_tx_wake_queue);
3093
3094 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3095 {
3096         unsigned long flags;
3097
3098         if (unlikely(!skb))
3099                 return;
3100
3101         if (likely(refcount_read(&skb->users) == 1)) {
3102                 smp_rmb();
3103                 refcount_set(&skb->users, 0);
3104         } else if (likely(!refcount_dec_and_test(&skb->users))) {
3105                 return;
3106         }
3107         get_kfree_skb_cb(skb)->reason = reason;
3108         local_irq_save(flags);
3109         skb->next = __this_cpu_read(softnet_data.completion_queue);
3110         __this_cpu_write(softnet_data.completion_queue, skb);
3111         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3112         local_irq_restore(flags);
3113 }
3114 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3115
3116 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3117 {
3118         if (in_hardirq() || irqs_disabled())
3119                 __dev_kfree_skb_irq(skb, reason);
3120         else
3121                 dev_kfree_skb(skb);
3122 }
3123 EXPORT_SYMBOL(__dev_kfree_skb_any);
3124
3125
3126 /**
3127  * netif_device_detach - mark device as removed
3128  * @dev: network device
3129  *
3130  * Mark device as removed from system and therefore no longer available.
3131  */
3132 void netif_device_detach(struct net_device *dev)
3133 {
3134         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3135             netif_running(dev)) {
3136                 netif_tx_stop_all_queues(dev);
3137         }
3138 }
3139 EXPORT_SYMBOL(netif_device_detach);
3140
3141 /**
3142  * netif_device_attach - mark device as attached
3143  * @dev: network device
3144  *
3145  * Mark device as attached from system and restart if needed.
3146  */
3147 void netif_device_attach(struct net_device *dev)
3148 {
3149         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3150             netif_running(dev)) {
3151                 netif_tx_wake_all_queues(dev);
3152                 __netdev_watchdog_up(dev);
3153         }
3154 }
3155 EXPORT_SYMBOL(netif_device_attach);
3156
3157 /*
3158  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3159  * to be used as a distribution range.
3160  */
3161 static u16 skb_tx_hash(const struct net_device *dev,
3162                        const struct net_device *sb_dev,
3163                        struct sk_buff *skb)
3164 {
3165         u32 hash;
3166         u16 qoffset = 0;
3167         u16 qcount = dev->real_num_tx_queues;
3168
3169         if (dev->num_tc) {
3170                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3171
3172                 qoffset = sb_dev->tc_to_txq[tc].offset;
3173                 qcount = sb_dev->tc_to_txq[tc].count;
3174                 if (unlikely(!qcount)) {
3175                         net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3176                                              sb_dev->name, qoffset, tc);
3177                         qoffset = 0;
3178                         qcount = dev->real_num_tx_queues;
3179                 }
3180         }
3181
3182         if (skb_rx_queue_recorded(skb)) {
3183                 hash = skb_get_rx_queue(skb);
3184                 if (hash >= qoffset)
3185                         hash -= qoffset;
3186                 while (unlikely(hash >= qcount))
3187                         hash -= qcount;
3188                 return hash + qoffset;
3189         }
3190
3191         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3192 }
3193
3194 static void skb_warn_bad_offload(const struct sk_buff *skb)
3195 {
3196         static const netdev_features_t null_features;
3197         struct net_device *dev = skb->dev;
3198         const char *name = "";
3199
3200         if (!net_ratelimit())
3201                 return;
3202
3203         if (dev) {
3204                 if (dev->dev.parent)
3205                         name = dev_driver_string(dev->dev.parent);
3206                 else
3207                         name = netdev_name(dev);
3208         }
3209         skb_dump(KERN_WARNING, skb, false);
3210         WARN(1, "%s: caps=(%pNF, %pNF)\n",
3211              name, dev ? &dev->features : &null_features,
3212              skb->sk ? &skb->sk->sk_route_caps : &null_features);
3213 }
3214
3215 /*
3216  * Invalidate hardware checksum when packet is to be mangled, and
3217  * complete checksum manually on outgoing path.
3218  */
3219 int skb_checksum_help(struct sk_buff *skb)
3220 {
3221         __wsum csum;
3222         int ret = 0, offset;
3223
3224         if (skb->ip_summed == CHECKSUM_COMPLETE)
3225                 goto out_set_summed;
3226
3227         if (unlikely(skb_is_gso(skb))) {
3228                 skb_warn_bad_offload(skb);
3229                 return -EINVAL;
3230         }
3231
3232         /* Before computing a checksum, we should make sure no frag could
3233          * be modified by an external entity : checksum could be wrong.
3234          */
3235         if (skb_has_shared_frag(skb)) {
3236                 ret = __skb_linearize(skb);
3237                 if (ret)
3238                         goto out;
3239         }
3240
3241         offset = skb_checksum_start_offset(skb);
3242         BUG_ON(offset >= skb_headlen(skb));
3243         csum = skb_checksum(skb, offset, skb->len - offset, 0);
3244
3245         offset += skb->csum_offset;
3246         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3247
3248         ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3249         if (ret)
3250                 goto out;
3251
3252         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3253 out_set_summed:
3254         skb->ip_summed = CHECKSUM_NONE;
3255 out:
3256         return ret;
3257 }
3258 EXPORT_SYMBOL(skb_checksum_help);
3259
3260 int skb_crc32c_csum_help(struct sk_buff *skb)
3261 {
3262         __le32 crc32c_csum;
3263         int ret = 0, offset, start;
3264
3265         if (skb->ip_summed != CHECKSUM_PARTIAL)
3266                 goto out;
3267
3268         if (unlikely(skb_is_gso(skb)))
3269                 goto out;
3270
3271         /* Before computing a checksum, we should make sure no frag could
3272          * be modified by an external entity : checksum could be wrong.
3273          */
3274         if (unlikely(skb_has_shared_frag(skb))) {
3275                 ret = __skb_linearize(skb);
3276                 if (ret)
3277                         goto out;
3278         }
3279         start = skb_checksum_start_offset(skb);
3280         offset = start + offsetof(struct sctphdr, checksum);
3281         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3282                 ret = -EINVAL;
3283                 goto out;
3284         }
3285
3286         ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3287         if (ret)
3288                 goto out;
3289
3290         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3291                                                   skb->len - start, ~(__u32)0,
3292                                                   crc32c_csum_stub));
3293         *(__le32 *)(skb->data + offset) = crc32c_csum;
3294         skb->ip_summed = CHECKSUM_NONE;
3295         skb->csum_not_inet = 0;
3296 out:
3297         return ret;
3298 }
3299
3300 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3301 {
3302         __be16 type = skb->protocol;
3303
3304         /* Tunnel gso handlers can set protocol to ethernet. */
3305         if (type == htons(ETH_P_TEB)) {
3306                 struct ethhdr *eth;
3307
3308                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3309                         return 0;
3310
3311                 eth = (struct ethhdr *)skb->data;
3312                 type = eth->h_proto;
3313         }
3314
3315         return __vlan_get_protocol(skb, type, depth);
3316 }
3317
3318 /**
3319  *      skb_mac_gso_segment - mac layer segmentation handler.
3320  *      @skb: buffer to segment
3321  *      @features: features for the output path (see dev->features)
3322  */
3323 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3324                                     netdev_features_t features)
3325 {
3326         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3327         struct packet_offload *ptype;
3328         int vlan_depth = skb->mac_len;
3329         __be16 type = skb_network_protocol(skb, &vlan_depth);
3330
3331         if (unlikely(!type))
3332                 return ERR_PTR(-EINVAL);
3333
3334         __skb_pull(skb, vlan_depth);
3335
3336         rcu_read_lock();
3337         list_for_each_entry_rcu(ptype, &offload_base, list) {
3338                 if (ptype->type == type && ptype->callbacks.gso_segment) {
3339                         segs = ptype->callbacks.gso_segment(skb, features);
3340                         break;
3341                 }
3342         }
3343         rcu_read_unlock();
3344
3345         __skb_push(skb, skb->data - skb_mac_header(skb));
3346
3347         return segs;
3348 }
3349 EXPORT_SYMBOL(skb_mac_gso_segment);
3350
3351
3352 /* openvswitch calls this on rx path, so we need a different check.
3353  */
3354 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3355 {
3356         if (tx_path)
3357                 return skb->ip_summed != CHECKSUM_PARTIAL &&
3358                        skb->ip_summed != CHECKSUM_UNNECESSARY;
3359
3360         return skb->ip_summed == CHECKSUM_NONE;
3361 }
3362
3363 /**
3364  *      __skb_gso_segment - Perform segmentation on skb.
3365  *      @skb: buffer to segment
3366  *      @features: features for the output path (see dev->features)
3367  *      @tx_path: whether it is called in TX path
3368  *
3369  *      This function segments the given skb and returns a list of segments.
3370  *
3371  *      It may return NULL if the skb requires no segmentation.  This is
3372  *      only possible when GSO is used for verifying header integrity.
3373  *
3374  *      Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3375  */
3376 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3377                                   netdev_features_t features, bool tx_path)
3378 {
3379         struct sk_buff *segs;
3380
3381         if (unlikely(skb_needs_check(skb, tx_path))) {
3382                 int err;
3383
3384                 /* We're going to init ->check field in TCP or UDP header */
3385                 err = skb_cow_head(skb, 0);
3386                 if (err < 0)
3387                         return ERR_PTR(err);
3388         }
3389
3390         /* Only report GSO partial support if it will enable us to
3391          * support segmentation on this frame without needing additional
3392          * work.
3393          */
3394         if (features & NETIF_F_GSO_PARTIAL) {
3395                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3396                 struct net_device *dev = skb->dev;
3397
3398                 partial_features |= dev->features & dev->gso_partial_features;
3399                 if (!skb_gso_ok(skb, features | partial_features))
3400                         features &= ~NETIF_F_GSO_PARTIAL;
3401         }
3402
3403         BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3404                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3405
3406         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3407         SKB_GSO_CB(skb)->encap_level = 0;
3408
3409         skb_reset_mac_header(skb);
3410         skb_reset_mac_len(skb);
3411
3412         segs = skb_mac_gso_segment(skb, features);
3413
3414         if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3415                 skb_warn_bad_offload(skb);
3416
3417         return segs;
3418 }
3419 EXPORT_SYMBOL(__skb_gso_segment);
3420
3421 /* Take action when hardware reception checksum errors are detected. */
3422 #ifdef CONFIG_BUG
3423 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3424 {
3425         netdev_err(dev, "hw csum failure\n");
3426         skb_dump(KERN_ERR, skb, true);
3427         dump_stack();
3428 }
3429
3430 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3431 {
3432         DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3433 }
3434 EXPORT_SYMBOL(netdev_rx_csum_fault);
3435 #endif
3436
3437 /* XXX: check that highmem exists at all on the given machine. */
3438 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3439 {
3440 #ifdef CONFIG_HIGHMEM
3441         int i;
3442
3443         if (!(dev->features & NETIF_F_HIGHDMA)) {
3444                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3445                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3446
3447                         if (PageHighMem(skb_frag_page(frag)))
3448                                 return 1;
3449                 }
3450         }
3451 #endif
3452         return 0;
3453 }
3454
3455 /* If MPLS offload request, verify we are testing hardware MPLS features
3456  * instead of standard features for the netdev.
3457  */
3458 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3459 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3460                                            netdev_features_t features,
3461                                            __be16 type)
3462 {
3463         if (eth_p_mpls(type))
3464                 features &= skb->dev->mpls_features;
3465
3466         return features;
3467 }
3468 #else
3469 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3470                                            netdev_features_t features,
3471                                            __be16 type)
3472 {
3473         return features;
3474 }
3475 #endif
3476
3477 static netdev_features_t harmonize_features(struct sk_buff *skb,
3478         netdev_features_t features)
3479 {
3480         __be16 type;
3481
3482         type = skb_network_protocol(skb, NULL);
3483         features = net_mpls_features(skb, features, type);
3484
3485         if (skb->ip_summed != CHECKSUM_NONE &&
3486             !can_checksum_protocol(features, type)) {
3487                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3488         }
3489         if (illegal_highdma(skb->dev, skb))
3490                 features &= ~NETIF_F_SG;
3491
3492         return features;
3493 }
3494
3495 netdev_features_t passthru_features_check(struct sk_buff *skb,
3496                                           struct net_device *dev,
3497                                           netdev_features_t features)
3498 {
3499         return features;
3500 }
3501 EXPORT_SYMBOL(passthru_features_check);
3502
3503 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3504                                              struct net_device *dev,
3505                                              netdev_features_t features)
3506 {
3507         return vlan_features_check(skb, features);
3508 }
3509
3510 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3511                                             struct net_device *dev,
3512                                             netdev_features_t features)
3513 {
3514         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3515
3516         if (gso_segs > dev->gso_max_segs)
3517                 return features & ~NETIF_F_GSO_MASK;
3518
3519         if (!skb_shinfo(skb)->gso_type) {
3520                 skb_warn_bad_offload(skb);
3521                 return features & ~NETIF_F_GSO_MASK;
3522         }
3523
3524         /* Support for GSO partial features requires software
3525          * intervention before we can actually process the packets
3526          * so we need to strip support for any partial features now
3527          * and we can pull them back in after we have partially
3528          * segmented the frame.
3529          */
3530         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3531                 features &= ~dev->gso_partial_features;
3532
3533         /* Make sure to clear the IPv4 ID mangling feature if the
3534          * IPv4 header has the potential to be fragmented.
3535          */
3536         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3537                 struct iphdr *iph = skb->encapsulation ?
3538                                     inner_ip_hdr(skb) : ip_hdr(skb);
3539
3540                 if (!(iph->frag_off & htons(IP_DF)))
3541                         features &= ~NETIF_F_TSO_MANGLEID;
3542         }
3543
3544         return features;
3545 }
3546
3547 netdev_features_t netif_skb_features(struct sk_buff *skb)
3548 {
3549         struct net_device *dev = skb->dev;
3550         netdev_features_t features = dev->features;
3551
3552         if (skb_is_gso(skb))
3553                 features = gso_features_check(skb, dev, features);
3554
3555         /* If encapsulation offload request, verify we are testing
3556          * hardware encapsulation features instead of standard
3557          * features for the netdev
3558          */
3559         if (skb->encapsulation)
3560                 features &= dev->hw_enc_features;
3561
3562         if (skb_vlan_tagged(skb))
3563                 features = netdev_intersect_features(features,
3564                                                      dev->vlan_features |
3565                                                      NETIF_F_HW_VLAN_CTAG_TX |
3566                                                      NETIF_F_HW_VLAN_STAG_TX);
3567
3568         if (dev->netdev_ops->ndo_features_check)
3569                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3570                                                                 features);
3571         else
3572                 features &= dflt_features_check(skb, dev, features);
3573
3574         return harmonize_features(skb, features);
3575 }
3576 EXPORT_SYMBOL(netif_skb_features);
3577
3578 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3579                     struct netdev_queue *txq, bool more)
3580 {
3581         unsigned int len;
3582         int rc;
3583
3584         if (dev_nit_active(dev))
3585                 dev_queue_xmit_nit(skb, dev);
3586
3587         len = skb->len;
3588         PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3589         trace_net_dev_start_xmit(skb, dev);
3590         rc = netdev_start_xmit(skb, dev, txq, more);
3591         trace_net_dev_xmit(skb, rc, dev, len);
3592
3593         return rc;
3594 }
3595
3596 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3597                                     struct netdev_queue *txq, int *ret)
3598 {
3599         struct sk_buff *skb = first;
3600         int rc = NETDEV_TX_OK;
3601
3602         while (skb) {
3603                 struct sk_buff *next = skb->next;
3604
3605                 skb_mark_not_on_list(skb);
3606                 rc = xmit_one(skb, dev, txq, next != NULL);
3607                 if (unlikely(!dev_xmit_complete(rc))) {
3608                         skb->next = next;
3609                         goto out;
3610                 }
3611
3612                 skb = next;
3613                 if (netif_tx_queue_stopped(txq) && skb) {
3614                         rc = NETDEV_TX_BUSY;
3615                         break;
3616                 }
3617         }
3618
3619 out:
3620         *ret = rc;
3621         return skb;
3622 }
3623
3624 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3625                                           netdev_features_t features)
3626 {
3627         if (skb_vlan_tag_present(skb) &&
3628             !vlan_hw_offload_capable(features, skb->vlan_proto))
3629                 skb = __vlan_hwaccel_push_inside(skb);
3630         return skb;
3631 }
3632
3633 int skb_csum_hwoffload_help(struct sk_buff *skb,
3634                             const netdev_features_t features)
3635 {
3636         if (unlikely(skb_csum_is_sctp(skb)))
3637                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3638                         skb_crc32c_csum_help(skb);
3639
3640         if (features & NETIF_F_HW_CSUM)
3641                 return 0;
3642
3643         if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3644                 switch (skb->csum_offset) {
3645                 case offsetof(struct tcphdr, check):
3646                 case offsetof(struct udphdr, check):
3647                         return 0;
3648                 }
3649         }
3650
3651         return skb_checksum_help(skb);
3652 }
3653 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3654
3655 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3656 {
3657         netdev_features_t features;
3658
3659         features = netif_skb_features(skb);
3660         skb = validate_xmit_vlan(skb, features);
3661         if (unlikely(!skb))
3662                 goto out_null;
3663
3664         skb = sk_validate_xmit_skb(skb, dev);
3665         if (unlikely(!skb))
3666                 goto out_null;
3667
3668         if (netif_needs_gso(skb, features)) {
3669                 struct sk_buff *segs;
3670
3671                 segs = skb_gso_segment(skb, features);
3672                 if (IS_ERR(segs)) {
3673                         goto out_kfree_skb;
3674                 } else if (segs) {
3675                         consume_skb(skb);
3676                         skb = segs;
3677                 }
3678         } else {
3679                 if (skb_needs_linearize(skb, features) &&
3680                     __skb_linearize(skb))
3681                         goto out_kfree_skb;
3682
3683                 /* If packet is not checksummed and device does not
3684                  * support checksumming for this protocol, complete
3685                  * checksumming here.
3686                  */
3687                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3688                         if (skb->encapsulation)
3689                                 skb_set_inner_transport_header(skb,
3690                                                                skb_checksum_start_offset(skb));
3691                         else
3692                                 skb_set_transport_header(skb,
3693                                                          skb_checksum_start_offset(skb));
3694                         if (skb_csum_hwoffload_help(skb, features))
3695                                 goto out_kfree_skb;
3696                 }
3697         }
3698
3699         skb = validate_xmit_xfrm(skb, features, again);
3700
3701         return skb;
3702
3703 out_kfree_skb:
3704         kfree_skb(skb);
3705 out_null:
3706         atomic_long_inc(&dev->tx_dropped);
3707         return NULL;
3708 }
3709
3710 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3711 {
3712         struct sk_buff *next, *head = NULL, *tail;
3713
3714         for (; skb != NULL; skb = next) {
3715                 next = skb->next;
3716                 skb_mark_not_on_list(skb);
3717
3718                 /* in case skb wont be segmented, point to itself */
3719                 skb->prev = skb;
3720
3721                 skb = validate_xmit_skb(skb, dev, again);
3722                 if (!skb)
3723                         continue;
3724
3725                 if (!head)
3726                         head = skb;
3727                 else
3728                         tail->next = skb;
3729                 /* If skb was segmented, skb->prev points to
3730                  * the last segment. If not, it still contains skb.
3731                  */
3732                 tail = skb->prev;
3733         }
3734         return head;
3735 }
3736 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3737
3738 static void qdisc_pkt_len_init(struct sk_buff *skb)
3739 {
3740         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3741
3742         qdisc_skb_cb(skb)->pkt_len = skb->len;
3743
3744         /* To get more precise estimation of bytes sent on wire,
3745          * we add to pkt_len the headers size of all segments
3746          */
3747         if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3748                 unsigned int hdr_len;
3749                 u16 gso_segs = shinfo->gso_segs;
3750
3751                 /* mac layer + network layer */
3752                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3753
3754                 /* + transport layer */
3755                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3756                         const struct tcphdr *th;
3757                         struct tcphdr _tcphdr;
3758
3759                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3760                                                 sizeof(_tcphdr), &_tcphdr);
3761                         if (likely(th))
3762                                 hdr_len += __tcp_hdrlen(th);
3763                 } else {
3764                         struct udphdr _udphdr;
3765
3766                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3767                                                sizeof(_udphdr), &_udphdr))
3768                                 hdr_len += sizeof(struct udphdr);
3769                 }
3770
3771                 if (shinfo->gso_type & SKB_GSO_DODGY)
3772                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3773                                                 shinfo->gso_size);
3774
3775                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3776         }
3777 }
3778
3779 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3780                              struct sk_buff **to_free,
3781                              struct netdev_queue *txq)
3782 {
3783         int rc;
3784
3785         rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3786         if (rc == NET_XMIT_SUCCESS)
3787                 trace_qdisc_enqueue(q, txq, skb);
3788         return rc;
3789 }
3790
3791 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3792                                  struct net_device *dev,
3793                                  struct netdev_queue *txq)
3794 {
3795         spinlock_t *root_lock = qdisc_lock(q);
3796         struct sk_buff *to_free = NULL;
3797         bool contended;
3798         int rc;
3799
3800         qdisc_calculate_pkt_len(skb, q);
3801
3802         if (q->flags & TCQ_F_NOLOCK) {
3803                 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3804                     qdisc_run_begin(q)) {
3805                         /* Retest nolock_qdisc_is_empty() within the protection
3806                          * of q->seqlock to protect from racing with requeuing.
3807                          */
3808                         if (unlikely(!nolock_qdisc_is_empty(q))) {
3809                                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3810                                 __qdisc_run(q);
3811                                 qdisc_run_end(q);
3812
3813                                 goto no_lock_out;
3814                         }
3815
3816                         qdisc_bstats_cpu_update(q, skb);
3817                         if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3818                             !nolock_qdisc_is_empty(q))
3819                                 __qdisc_run(q);
3820
3821                         qdisc_run_end(q);
3822                         return NET_XMIT_SUCCESS;
3823                 }
3824
3825                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3826                 qdisc_run(q);
3827
3828 no_lock_out:
3829                 if (unlikely(to_free))
3830                         kfree_skb_list(to_free);
3831                 return rc;
3832         }
3833
3834         /*
3835          * Heuristic to force contended enqueues to serialize on a
3836          * separate lock before trying to get qdisc main lock.
3837          * This permits qdisc->running owner to get the lock more
3838          * often and dequeue packets faster.
3839          */
3840         contended = qdisc_is_running(q);
3841         if (unlikely(contended))
3842                 spin_lock(&q->busylock);
3843
3844         spin_lock(root_lock);
3845         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3846                 __qdisc_drop(skb, &to_free);
3847                 rc = NET_XMIT_DROP;
3848         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3849                    qdisc_run_begin(q)) {
3850                 /*
3851                  * This is a work-conserving queue; there are no old skbs
3852                  * waiting to be sent out; and the qdisc is not running -
3853                  * xmit the skb directly.
3854                  */
3855
3856                 qdisc_bstats_update(q, skb);
3857
3858                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3859                         if (unlikely(contended)) {
3860                                 spin_unlock(&q->busylock);
3861                                 contended = false;
3862                         }
3863                         __qdisc_run(q);
3864                 }
3865
3866                 qdisc_run_end(q);
3867                 rc = NET_XMIT_SUCCESS;
3868         } else {
3869                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3870                 if (qdisc_run_begin(q)) {
3871                         if (unlikely(contended)) {
3872                                 spin_unlock(&q->busylock);
3873                                 contended = false;
3874                         }
3875                         __qdisc_run(q);
3876                         qdisc_run_end(q);
3877                 }
3878         }
3879         spin_unlock(root_lock);
3880         if (unlikely(to_free))
3881                 kfree_skb_list(to_free);
3882         if (unlikely(contended))
3883                 spin_unlock(&q->busylock);
3884         return rc;
3885 }
3886
3887 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3888 static void skb_update_prio(struct sk_buff *skb)
3889 {
3890         const struct netprio_map *map;
3891         const struct sock *sk;
3892         unsigned int prioidx;
3893
3894         if (skb->priority)
3895                 return;
3896         map = rcu_dereference_bh(skb->dev->priomap);
3897         if (!map)
3898                 return;
3899         sk = skb_to_full_sk(skb);
3900         if (!sk)
3901                 return;
3902
3903         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3904
3905         if (prioidx < map->priomap_len)
3906                 skb->priority = map->priomap[prioidx];
3907 }
3908 #else
3909 #define skb_update_prio(skb)
3910 #endif
3911
3912 /**
3913  *      dev_loopback_xmit - loop back @skb
3914  *      @net: network namespace this loopback is happening in
3915  *      @sk:  sk needed to be a netfilter okfn
3916  *      @skb: buffer to transmit
3917  */
3918 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3919 {
3920         skb_reset_mac_header(skb);
3921         __skb_pull(skb, skb_network_offset(skb));
3922         skb->pkt_type = PACKET_LOOPBACK;
3923         if (skb->ip_summed == CHECKSUM_NONE)
3924                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3925         WARN_ON(!skb_dst(skb));
3926         skb_dst_force(skb);
3927         netif_rx_ni(skb);
3928         return 0;
3929 }
3930 EXPORT_SYMBOL(dev_loopback_xmit);
3931
3932 #ifdef CONFIG_NET_EGRESS
3933 static struct sk_buff *
3934 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3935 {
3936 #ifdef CONFIG_NET_CLS_ACT
3937         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3938         struct tcf_result cl_res;
3939
3940         if (!miniq)
3941                 return skb;
3942
3943         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3944         qdisc_skb_cb(skb)->mru = 0;
3945         qdisc_skb_cb(skb)->post_ct = false;
3946         mini_qdisc_bstats_cpu_update(miniq, skb);
3947
3948         switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
3949         case TC_ACT_OK:
3950         case TC_ACT_RECLASSIFY:
3951                 skb->tc_index = TC_H_MIN(cl_res.classid);
3952                 break;
3953         case TC_ACT_SHOT:
3954                 mini_qdisc_qstats_cpu_drop(miniq);
3955                 *ret = NET_XMIT_DROP;
3956                 kfree_skb(skb);
3957                 return NULL;
3958         case TC_ACT_STOLEN:
3959         case TC_ACT_QUEUED:
3960         case TC_ACT_TRAP:
3961                 *ret = NET_XMIT_SUCCESS;
3962                 consume_skb(skb);
3963                 return NULL;
3964         case TC_ACT_REDIRECT:
3965                 /* No need to push/pop skb's mac_header here on egress! */
3966                 skb_do_redirect(skb);
3967                 *ret = NET_XMIT_SUCCESS;
3968                 return NULL;
3969         default:
3970                 break;
3971         }
3972 #endif /* CONFIG_NET_CLS_ACT */
3973
3974         return skb;
3975 }
3976 #endif /* CONFIG_NET_EGRESS */
3977
3978 #ifdef CONFIG_XPS
3979 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3980                                struct xps_dev_maps *dev_maps, unsigned int tci)
3981 {
3982         int tc = netdev_get_prio_tc_map(dev, skb->priority);
3983         struct xps_map *map;
3984         int queue_index = -1;
3985
3986         if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
3987                 return queue_index;
3988
3989         tci *= dev_maps->num_tc;
3990         tci += tc;
3991
3992         map = rcu_dereference(dev_maps->attr_map[tci]);
3993         if (map) {
3994                 if (map->len == 1)
3995                         queue_index = map->queues[0];
3996                 else
3997                         queue_index = map->queues[reciprocal_scale(
3998                                                 skb_get_hash(skb), map->len)];
3999                 if (unlikely(queue_index >= dev->real_num_tx_queues))
4000                         queue_index = -1;
4001         }
4002         return queue_index;
4003 }
4004 #endif
4005
4006 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4007                          struct sk_buff *skb)
4008 {
4009 #ifdef CONFIG_XPS
4010         struct xps_dev_maps *dev_maps;
4011         struct sock *sk = skb->sk;
4012         int queue_index = -1;
4013
4014         if (!static_key_false(&xps_needed))
4015                 return -1;
4016
4017         rcu_read_lock();
4018         if (!static_key_false(&xps_rxqs_needed))
4019                 goto get_cpus_map;
4020
4021         dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4022         if (dev_maps) {
4023                 int tci = sk_rx_queue_get(sk);
4024
4025                 if (tci >= 0)
4026                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4027                                                           tci);
4028         }
4029
4030 get_cpus_map:
4031         if (queue_index < 0) {
4032                 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4033                 if (dev_maps) {
4034                         unsigned int tci = skb->sender_cpu - 1;
4035
4036                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4037                                                           tci);
4038                 }
4039         }
4040         rcu_read_unlock();
4041
4042         return queue_index;
4043 #else
4044         return -1;
4045 #endif
4046 }
4047
4048 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4049                      struct net_device *sb_dev)
4050 {
4051         return 0;
4052 }
4053 EXPORT_SYMBOL(dev_pick_tx_zero);
4054
4055 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4056                        struct net_device *sb_dev)
4057 {
4058         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4059 }
4060 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4061
4062 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4063                      struct net_device *sb_dev)
4064 {
4065         struct sock *sk = skb->sk;
4066         int queue_index = sk_tx_queue_get(sk);
4067
4068         sb_dev = sb_dev ? : dev;
4069
4070         if (queue_index < 0 || skb->ooo_okay ||
4071             queue_index >= dev->real_num_tx_queues) {
4072                 int new_index = get_xps_queue(dev, sb_dev, skb);
4073
4074                 if (new_index < 0)
4075                         new_index = skb_tx_hash(dev, sb_dev, skb);
4076
4077                 if (queue_index != new_index && sk &&
4078                     sk_fullsock(sk) &&
4079                     rcu_access_pointer(sk->sk_dst_cache))
4080                         sk_tx_queue_set(sk, new_index);
4081
4082                 queue_index = new_index;
4083         }
4084
4085         return queue_index;
4086 }
4087 EXPORT_SYMBOL(netdev_pick_tx);
4088
4089 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4090                                          struct sk_buff *skb,
4091                                          struct net_device *sb_dev)
4092 {
4093         int queue_index = 0;
4094
4095 #ifdef CONFIG_XPS
4096         u32 sender_cpu = skb->sender_cpu - 1;
4097
4098         if (sender_cpu >= (u32)NR_CPUS)
4099                 skb->sender_cpu = raw_smp_processor_id() + 1;
4100 #endif
4101
4102         if (dev->real_num_tx_queues != 1) {
4103                 const struct net_device_ops *ops = dev->netdev_ops;
4104
4105                 if (ops->ndo_select_queue)
4106                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4107                 else
4108                         queue_index = netdev_pick_tx(dev, skb, sb_dev);
4109
4110                 queue_index = netdev_cap_txqueue(dev, queue_index);
4111         }
4112
4113         skb_set_queue_mapping(skb, queue_index);
4114         return netdev_get_tx_queue(dev, queue_index);
4115 }
4116
4117 /**
4118  *      __dev_queue_xmit - transmit a buffer
4119  *      @skb: buffer to transmit
4120  *      @sb_dev: suboordinate device used for L2 forwarding offload
4121  *
4122  *      Queue a buffer for transmission to a network device. The caller must
4123  *      have set the device and priority and built the buffer before calling
4124  *      this function. The function can be called from an interrupt.
4125  *
4126  *      A negative errno code is returned on a failure. A success does not
4127  *      guarantee the frame will be transmitted as it may be dropped due
4128  *      to congestion or traffic shaping.
4129  *
4130  * -----------------------------------------------------------------------------------
4131  *      I notice this method can also return errors from the queue disciplines,
4132  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4133  *      be positive.
4134  *
4135  *      Regardless of the return value, the skb is consumed, so it is currently
4136  *      difficult to retry a send to this method.  (You can bump the ref count
4137  *      before sending to hold a reference for retry if you are careful.)
4138  *
4139  *      When calling this method, interrupts MUST be enabled.  This is because
4140  *      the BH enable code must have IRQs enabled so that it will not deadlock.
4141  *          --BLG
4142  */
4143 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4144 {
4145         struct net_device *dev = skb->dev;
4146         struct netdev_queue *txq;
4147         struct Qdisc *q;
4148         int rc = -ENOMEM;
4149         bool again = false;
4150
4151         skb_reset_mac_header(skb);
4152
4153         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4154                 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4155
4156         /* Disable soft irqs for various locks below. Also
4157          * stops preemption for RCU.
4158          */
4159         rcu_read_lock_bh();
4160
4161         skb_update_prio(skb);
4162
4163         qdisc_pkt_len_init(skb);
4164 #ifdef CONFIG_NET_CLS_ACT
4165         skb->tc_at_ingress = 0;
4166 #endif
4167 #ifdef CONFIG_NET_EGRESS
4168         if (static_branch_unlikely(&egress_needed_key)) {
4169                 if (nf_hook_egress_active()) {
4170                         skb = nf_hook_egress(skb, &rc, dev);
4171                         if (!skb)
4172                                 goto out;
4173                 }
4174                 nf_skip_egress(skb, true);
4175                 skb = sch_handle_egress(skb, &rc, dev);
4176                 if (!skb)
4177                         goto out;
4178                 nf_skip_egress(skb, false);
4179         }
4180 #endif
4181         /* If device/qdisc don't need skb->dst, release it right now while
4182          * its hot in this cpu cache.
4183          */
4184         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4185                 skb_dst_drop(skb);
4186         else
4187                 skb_dst_force(skb);
4188
4189         txq = netdev_core_pick_tx(dev, skb, sb_dev);
4190         q = rcu_dereference_bh(txq->qdisc);
4191
4192         trace_net_dev_queue(skb);
4193         if (q->enqueue) {
4194                 rc = __dev_xmit_skb(skb, q, dev, txq);
4195                 goto out;
4196         }
4197
4198         /* The device has no queue. Common case for software devices:
4199          * loopback, all the sorts of tunnels...
4200
4201          * Really, it is unlikely that netif_tx_lock protection is necessary
4202          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4203          * counters.)
4204          * However, it is possible, that they rely on protection
4205          * made by us here.
4206
4207          * Check this and shot the lock. It is not prone from deadlocks.
4208          *Either shot noqueue qdisc, it is even simpler 8)
4209          */
4210         if (dev->flags & IFF_UP) {
4211                 int cpu = smp_processor_id(); /* ok because BHs are off */
4212
4213                 if (txq->xmit_lock_owner != cpu) {
4214                         if (dev_xmit_recursion())
4215                                 goto recursion_alert;
4216
4217                         skb = validate_xmit_skb(skb, dev, &again);
4218                         if (!skb)
4219                                 goto out;
4220
4221                         PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4222                         HARD_TX_LOCK(dev, txq, cpu);
4223
4224                         if (!netif_xmit_stopped(txq)) {
4225                                 dev_xmit_recursion_inc();
4226                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4227                                 dev_xmit_recursion_dec();
4228                                 if (dev_xmit_complete(rc)) {
4229                                         HARD_TX_UNLOCK(dev, txq);
4230                                         goto out;
4231                                 }
4232                         }
4233                         HARD_TX_UNLOCK(dev, txq);
4234                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4235                                              dev->name);
4236                 } else {
4237                         /* Recursion is detected! It is possible,
4238                          * unfortunately
4239                          */
4240 recursion_alert:
4241                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4242                                              dev->name);
4243                 }
4244         }
4245
4246         rc = -ENETDOWN;
4247         rcu_read_unlock_bh();
4248
4249         atomic_long_inc(&dev->tx_dropped);
4250         kfree_skb_list(skb);
4251         return rc;
4252 out:
4253         rcu_read_unlock_bh();
4254         return rc;
4255 }
4256
4257 int dev_queue_xmit(struct sk_buff *skb)
4258 {
4259         return __dev_queue_xmit(skb, NULL);
4260 }
4261 EXPORT_SYMBOL(dev_queue_xmit);
4262
4263 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4264 {
4265         return __dev_queue_xmit(skb, sb_dev);
4266 }
4267 EXPORT_SYMBOL(dev_queue_xmit_accel);
4268
4269 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4270 {
4271         struct net_device *dev = skb->dev;
4272         struct sk_buff *orig_skb = skb;
4273         struct netdev_queue *txq;
4274         int ret = NETDEV_TX_BUSY;
4275         bool again = false;
4276
4277         if (unlikely(!netif_running(dev) ||
4278                      !netif_carrier_ok(dev)))
4279                 goto drop;
4280
4281         skb = validate_xmit_skb_list(skb, dev, &again);
4282         if (skb != orig_skb)
4283                 goto drop;
4284
4285         skb_set_queue_mapping(skb, queue_id);
4286         txq = skb_get_tx_queue(dev, skb);
4287         PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4288
4289         local_bh_disable();
4290
4291         dev_xmit_recursion_inc();
4292         HARD_TX_LOCK(dev, txq, smp_processor_id());
4293         if (!netif_xmit_frozen_or_drv_stopped(txq))
4294                 ret = netdev_start_xmit(skb, dev, txq, false);
4295         HARD_TX_UNLOCK(dev, txq);
4296         dev_xmit_recursion_dec();
4297
4298         local_bh_enable();
4299         return ret;
4300 drop:
4301         atomic_long_inc(&dev->tx_dropped);
4302         kfree_skb_list(skb);
4303         return NET_XMIT_DROP;
4304 }
4305 EXPORT_SYMBOL(__dev_direct_xmit);
4306
4307 /*************************************************************************
4308  *                      Receiver routines
4309  *************************************************************************/
4310
4311 int netdev_max_backlog __read_mostly = 1000;
4312 EXPORT_SYMBOL(netdev_max_backlog);
4313
4314 int netdev_tstamp_prequeue __read_mostly = 1;
4315 int netdev_budget __read_mostly = 300;
4316 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4317 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4318 int weight_p __read_mostly = 64;           /* old backlog weight */
4319 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4320 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4321 int dev_rx_weight __read_mostly = 64;
4322 int dev_tx_weight __read_mostly = 64;
4323 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4324 int gro_normal_batch __read_mostly = 8;
4325
4326 /* Called with irq disabled */
4327 static inline void ____napi_schedule(struct softnet_data *sd,
4328                                      struct napi_struct *napi)
4329 {
4330         struct task_struct *thread;
4331
4332         if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4333                 /* Paired with smp_mb__before_atomic() in
4334                  * napi_enable()/dev_set_threaded().
4335                  * Use READ_ONCE() to guarantee a complete
4336                  * read on napi->thread. Only call
4337                  * wake_up_process() when it's not NULL.
4338                  */
4339                 thread = READ_ONCE(napi->thread);
4340                 if (thread) {
4341                         /* Avoid doing set_bit() if the thread is in
4342                          * INTERRUPTIBLE state, cause napi_thread_wait()
4343                          * makes sure to proceed with napi polling
4344                          * if the thread is explicitly woken from here.
4345                          */
4346                         if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4347                                 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4348                         wake_up_process(thread);
4349                         return;
4350                 }
4351         }
4352
4353         list_add_tail(&napi->poll_list, &sd->poll_list);
4354         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4355 }
4356
4357 #ifdef CONFIG_RPS
4358
4359 /* One global table that all flow-based protocols share. */
4360 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4361 EXPORT_SYMBOL(rps_sock_flow_table);
4362 u32 rps_cpu_mask __read_mostly;
4363 EXPORT_SYMBOL(rps_cpu_mask);
4364
4365 struct static_key_false rps_needed __read_mostly;
4366 EXPORT_SYMBOL(rps_needed);
4367 struct static_key_false rfs_needed __read_mostly;
4368 EXPORT_SYMBOL(rfs_needed);
4369
4370 static struct rps_dev_flow *
4371 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4372             struct rps_dev_flow *rflow, u16 next_cpu)
4373 {
4374         if (next_cpu < nr_cpu_ids) {
4375 #ifdef CONFIG_RFS_ACCEL
4376                 struct netdev_rx_queue *rxqueue;
4377                 struct rps_dev_flow_table *flow_table;
4378                 struct rps_dev_flow *old_rflow;
4379                 u32 flow_id;
4380                 u16 rxq_index;
4381                 int rc;
4382
4383                 /* Should we steer this flow to a different hardware queue? */
4384                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4385                     !(dev->features & NETIF_F_NTUPLE))
4386                         goto out;
4387                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4388                 if (rxq_index == skb_get_rx_queue(skb))
4389                         goto out;
4390
4391                 rxqueue = dev->_rx + rxq_index;
4392                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4393                 if (!flow_table)
4394                         goto out;
4395                 flow_id = skb_get_hash(skb) & flow_table->mask;
4396                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4397                                                         rxq_index, flow_id);
4398                 if (rc < 0)
4399                         goto out;
4400                 old_rflow = rflow;
4401                 rflow = &flow_table->flows[flow_id];
4402                 rflow->filter = rc;
4403                 if (old_rflow->filter == rflow->filter)
4404                         old_rflow->filter = RPS_NO_FILTER;
4405         out:
4406 #endif
4407                 rflow->last_qtail =
4408                         per_cpu(softnet_data, next_cpu).input_queue_head;
4409         }
4410
4411         rflow->cpu = next_cpu;
4412         return rflow;
4413 }
4414
4415 /*
4416  * get_rps_cpu is called from netif_receive_skb and returns the target
4417  * CPU from the RPS map of the receiving queue for a given skb.
4418  * rcu_read_lock must be held on entry.
4419  */
4420 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4421                        struct rps_dev_flow **rflowp)
4422 {
4423         const struct rps_sock_flow_table *sock_flow_table;
4424         struct netdev_rx_queue *rxqueue = dev->_rx;
4425         struct rps_dev_flow_table *flow_table;
4426         struct rps_map *map;
4427         int cpu = -1;
4428         u32 tcpu;
4429         u32 hash;
4430
4431         if (skb_rx_queue_recorded(skb)) {
4432                 u16 index = skb_get_rx_queue(skb);
4433
4434                 if (unlikely(index >= dev->real_num_rx_queues)) {
4435                         WARN_ONCE(dev->real_num_rx_queues > 1,
4436                                   "%s received packet on queue %u, but number "
4437                                   "of RX queues is %u\n",
4438                                   dev->name, index, dev->real_num_rx_queues);
4439                         goto done;
4440                 }
4441                 rxqueue += index;
4442         }
4443
4444         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4445
4446         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4447         map = rcu_dereference(rxqueue->rps_map);
4448         if (!flow_table && !map)
4449                 goto done;
4450
4451         skb_reset_network_header(skb);
4452         hash = skb_get_hash(skb);
4453         if (!hash)
4454                 goto done;
4455
4456         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4457         if (flow_table && sock_flow_table) {
4458                 struct rps_dev_flow *rflow;
4459                 u32 next_cpu;
4460                 u32 ident;
4461
4462                 /* First check into global flow table if there is a match */
4463                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4464                 if ((ident ^ hash) & ~rps_cpu_mask)
4465                         goto try_rps;
4466
4467                 next_cpu = ident & rps_cpu_mask;
4468
4469                 /* OK, now we know there is a match,
4470                  * we can look at the local (per receive queue) flow table
4471                  */
4472                 rflow = &flow_table->flows[hash & flow_table->mask];
4473                 tcpu = rflow->cpu;
4474
4475                 /*
4476                  * If the desired CPU (where last recvmsg was done) is
4477                  * different from current CPU (one in the rx-queue flow
4478                  * table entry), switch if one of the following holds:
4479                  *   - Current CPU is unset (>= nr_cpu_ids).
4480                  *   - Current CPU is offline.
4481                  *   - The current CPU's queue tail has advanced beyond the
4482                  *     last packet that was enqueued using this table entry.
4483                  *     This guarantees that all previous packets for the flow
4484                  *     have been dequeued, thus preserving in order delivery.
4485                  */
4486                 if (unlikely(tcpu != next_cpu) &&
4487                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4488                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4489                       rflow->last_qtail)) >= 0)) {
4490                         tcpu = next_cpu;
4491                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4492                 }
4493
4494                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4495                         *rflowp = rflow;
4496                         cpu = tcpu;
4497                         goto done;
4498                 }
4499         }
4500
4501 try_rps:
4502
4503         if (map) {
4504                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4505                 if (cpu_online(tcpu)) {
4506                         cpu = tcpu;
4507                         goto done;
4508                 }
4509         }
4510
4511 done:
4512         return cpu;
4513 }
4514
4515 #ifdef CONFIG_RFS_ACCEL
4516
4517 /**
4518  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4519  * @dev: Device on which the filter was set
4520  * @rxq_index: RX queue index
4521  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4522  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4523  *
4524  * Drivers that implement ndo_rx_flow_steer() should periodically call
4525  * this function for each installed filter and remove the filters for
4526  * which it returns %true.
4527  */
4528 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4529                          u32 flow_id, u16 filter_id)
4530 {
4531         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4532         struct rps_dev_flow_table *flow_table;
4533         struct rps_dev_flow *rflow;
4534         bool expire = true;
4535         unsigned int cpu;
4536
4537         rcu_read_lock();
4538         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4539         if (flow_table && flow_id <= flow_table->mask) {
4540                 rflow = &flow_table->flows[flow_id];
4541                 cpu = READ_ONCE(rflow->cpu);
4542                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4543                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4544                            rflow->last_qtail) <
4545                      (int)(10 * flow_table->mask)))
4546                         expire = false;
4547         }
4548         rcu_read_unlock();
4549         return expire;
4550 }
4551 EXPORT_SYMBOL(rps_may_expire_flow);
4552
4553 #endif /* CONFIG_RFS_ACCEL */
4554
4555 /* Called from hardirq (IPI) context */
4556 static void rps_trigger_softirq(void *data)
4557 {
4558         struct softnet_data *sd = data;
4559
4560         ____napi_schedule(sd, &sd->backlog);
4561         sd->received_rps++;
4562 }
4563
4564 #endif /* CONFIG_RPS */
4565
4566 /*
4567  * Check if this softnet_data structure is another cpu one
4568  * If yes, queue it to our IPI list and return 1
4569  * If no, return 0
4570  */
4571 static int rps_ipi_queued(struct softnet_data *sd)
4572 {
4573 #ifdef CONFIG_RPS
4574         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4575
4576         if (sd != mysd) {
4577                 sd->rps_ipi_next = mysd->rps_ipi_list;
4578                 mysd->rps_ipi_list = sd;
4579
4580                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4581                 return 1;
4582         }
4583 #endif /* CONFIG_RPS */
4584         return 0;
4585 }
4586
4587 #ifdef CONFIG_NET_FLOW_LIMIT
4588 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4589 #endif
4590
4591 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4592 {
4593 #ifdef CONFIG_NET_FLOW_LIMIT
4594         struct sd_flow_limit *fl;
4595         struct softnet_data *sd;
4596         unsigned int old_flow, new_flow;
4597
4598         if (qlen < (netdev_max_backlog >> 1))
4599                 return false;
4600
4601         sd = this_cpu_ptr(&softnet_data);
4602
4603         rcu_read_lock();
4604         fl = rcu_dereference(sd->flow_limit);
4605         if (fl) {
4606                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4607                 old_flow = fl->history[fl->history_head];
4608                 fl->history[fl->history_head] = new_flow;
4609
4610                 fl->history_head++;
4611                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4612
4613                 if (likely(fl->buckets[old_flow]))
4614                         fl->buckets[old_flow]--;
4615
4616                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4617                         fl->count++;
4618                         rcu_read_unlock();
4619                         return true;
4620                 }
4621         }
4622         rcu_read_unlock();
4623 #endif
4624         return false;
4625 }
4626
4627 /*
4628  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4629  * queue (may be a remote CPU queue).
4630  */
4631 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4632                               unsigned int *qtail)
4633 {
4634         struct softnet_data *sd;
4635         unsigned long flags;
4636         unsigned int qlen;
4637
4638         sd = &per_cpu(softnet_data, cpu);
4639
4640         local_irq_save(flags);
4641
4642         rps_lock(sd);
4643         if (!netif_running(skb->dev))
4644                 goto drop;
4645         qlen = skb_queue_len(&sd->input_pkt_queue);
4646         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4647                 if (qlen) {
4648 enqueue:
4649                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4650                         input_queue_tail_incr_save(sd, qtail);
4651                         rps_unlock(sd);
4652                         local_irq_restore(flags);
4653                         return NET_RX_SUCCESS;
4654                 }
4655
4656                 /* Schedule NAPI for backlog device
4657                  * We can use non atomic operation since we own the queue lock
4658                  */
4659                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4660                         if (!rps_ipi_queued(sd))
4661                                 ____napi_schedule(sd, &sd->backlog);
4662                 }
4663                 goto enqueue;
4664         }
4665
4666 drop:
4667         sd->dropped++;
4668         rps_unlock(sd);
4669
4670         local_irq_restore(flags);
4671
4672         atomic_long_inc(&skb->dev->rx_dropped);
4673         kfree_skb(skb);
4674         return NET_RX_DROP;
4675 }
4676
4677 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4678 {
4679         struct net_device *dev = skb->dev;
4680         struct netdev_rx_queue *rxqueue;
4681
4682         rxqueue = dev->_rx;
4683
4684         if (skb_rx_queue_recorded(skb)) {
4685                 u16 index = skb_get_rx_queue(skb);
4686
4687                 if (unlikely(index >= dev->real_num_rx_queues)) {
4688                         WARN_ONCE(dev->real_num_rx_queues > 1,
4689                                   "%s received packet on queue %u, but number "
4690                                   "of RX queues is %u\n",
4691                                   dev->name, index, dev->real_num_rx_queues);
4692
4693                         return rxqueue; /* Return first rxqueue */
4694                 }
4695                 rxqueue += index;
4696         }
4697         return rxqueue;
4698 }
4699
4700 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4701                              struct bpf_prog *xdp_prog)
4702 {
4703         void *orig_data, *orig_data_end, *hard_start;
4704         struct netdev_rx_queue *rxqueue;
4705         bool orig_bcast, orig_host;
4706         u32 mac_len, frame_sz;
4707         __be16 orig_eth_type;
4708         struct ethhdr *eth;
4709         u32 metalen, act;
4710         int off;
4711
4712         /* The XDP program wants to see the packet starting at the MAC
4713          * header.
4714          */
4715         mac_len = skb->data - skb_mac_header(skb);
4716         hard_start = skb->data - skb_headroom(skb);
4717
4718         /* SKB "head" area always have tailroom for skb_shared_info */
4719         frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4720         frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4721
4722         rxqueue = netif_get_rxqueue(skb);
4723         xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4724         xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4725                          skb_headlen(skb) + mac_len, true);
4726
4727         orig_data_end = xdp->data_end;
4728         orig_data = xdp->data;
4729         eth = (struct ethhdr *)xdp->data;
4730         orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4731         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4732         orig_eth_type = eth->h_proto;
4733
4734         act = bpf_prog_run_xdp(xdp_prog, xdp);
4735
4736         /* check if bpf_xdp_adjust_head was used */
4737         off = xdp->data - orig_data;
4738         if (off) {
4739                 if (off > 0)
4740                         __skb_pull(skb, off);
4741                 else if (off < 0)
4742                         __skb_push(skb, -off);
4743
4744                 skb->mac_header += off;
4745                 skb_reset_network_header(skb);
4746         }
4747
4748         /* check if bpf_xdp_adjust_tail was used */
4749         off = xdp->data_end - orig_data_end;
4750         if (off != 0) {
4751                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4752                 skb->len += off; /* positive on grow, negative on shrink */
4753         }
4754
4755         /* check if XDP changed eth hdr such SKB needs update */
4756         eth = (struct ethhdr *)xdp->data;
4757         if ((orig_eth_type != eth->h_proto) ||
4758             (orig_host != ether_addr_equal_64bits(eth->h_dest,
4759                                                   skb->dev->dev_addr)) ||
4760             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4761                 __skb_push(skb, ETH_HLEN);
4762                 skb->pkt_type = PACKET_HOST;
4763                 skb->protocol = eth_type_trans(skb, skb->dev);
4764         }
4765
4766         /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4767          * before calling us again on redirect path. We do not call do_redirect
4768          * as we leave that up to the caller.
4769          *
4770          * Caller is responsible for managing lifetime of skb (i.e. calling
4771          * kfree_skb in response to actions it cannot handle/XDP_DROP).
4772          */
4773         switch (act) {
4774         case XDP_REDIRECT:
4775         case XDP_TX:
4776                 __skb_push(skb, mac_len);
4777                 break;
4778         case XDP_PASS:
4779                 metalen = xdp->data - xdp->data_meta;
4780                 if (metalen)
4781                         skb_metadata_set(skb, metalen);
4782                 break;
4783         }
4784
4785         return act;
4786 }
4787
4788 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4789                                      struct xdp_buff *xdp,
4790                                      struct bpf_prog *xdp_prog)
4791 {
4792         u32 act = XDP_DROP;
4793
4794         /* Reinjected packets coming from act_mirred or similar should
4795          * not get XDP generic processing.
4796          */
4797         if (skb_is_redirected(skb))
4798                 return XDP_PASS;
4799
4800         /* XDP packets must be linear and must have sufficient headroom
4801          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4802          * native XDP provides, thus we need to do it here as well.
4803          */
4804         if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4805             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4806                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4807                 int troom = skb->tail + skb->data_len - skb->end;
4808
4809                 /* In case we have to go down the path and also linearize,
4810                  * then lets do the pskb_expand_head() work just once here.
4811                  */
4812                 if (pskb_expand_head(skb,
4813                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4814                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4815                         goto do_drop;
4816                 if (skb_linearize(skb))
4817                         goto do_drop;
4818         }
4819
4820         act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4821         switch (act) {
4822         case XDP_REDIRECT:
4823         case XDP_TX:
4824         case XDP_PASS:
4825                 break;
4826         default:
4827                 bpf_warn_invalid_xdp_action(act);
4828                 fallthrough;
4829         case XDP_ABORTED:
4830                 trace_xdp_exception(skb->dev, xdp_prog, act);
4831                 fallthrough;
4832         case XDP_DROP:
4833         do_drop:
4834                 kfree_skb(skb);
4835                 break;
4836         }
4837
4838         return act;
4839 }
4840
4841 /* When doing generic XDP we have to bypass the qdisc layer and the
4842  * network taps in order to match in-driver-XDP behavior.
4843  */
4844 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4845 {
4846         struct net_device *dev = skb->dev;
4847         struct netdev_queue *txq;
4848         bool free_skb = true;
4849         int cpu, rc;
4850
4851         txq = netdev_core_pick_tx(dev, skb, NULL);
4852         cpu = smp_processor_id();
4853         HARD_TX_LOCK(dev, txq, cpu);
4854         if (!netif_xmit_stopped(txq)) {
4855                 rc = netdev_start_xmit(skb, dev, txq, 0);
4856                 if (dev_xmit_complete(rc))
4857                         free_skb = false;
4858         }
4859         HARD_TX_UNLOCK(dev, txq);
4860         if (free_skb) {
4861                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4862                 kfree_skb(skb);
4863         }
4864 }
4865
4866 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4867
4868 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4869 {
4870         if (xdp_prog) {
4871                 struct xdp_buff xdp;
4872                 u32 act;
4873                 int err;
4874
4875                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4876                 if (act != XDP_PASS) {
4877                         switch (act) {
4878                         case XDP_REDIRECT:
4879                                 err = xdp_do_generic_redirect(skb->dev, skb,
4880                                                               &xdp, xdp_prog);
4881                                 if (err)
4882                                         goto out_redir;
4883                                 break;
4884                         case XDP_TX:
4885                                 generic_xdp_tx(skb, xdp_prog);
4886                                 break;
4887                         }
4888                         return XDP_DROP;
4889                 }
4890         }
4891         return XDP_PASS;
4892 out_redir:
4893         kfree_skb(skb);
4894         return XDP_DROP;
4895 }
4896 EXPORT_SYMBOL_GPL(do_xdp_generic);
4897
4898 static int netif_rx_internal(struct sk_buff *skb)
4899 {
4900         int ret;
4901
4902         net_timestamp_check(netdev_tstamp_prequeue, skb);
4903
4904         trace_netif_rx(skb);
4905
4906 #ifdef CONFIG_RPS
4907         if (static_branch_unlikely(&rps_needed)) {
4908                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4909                 int cpu;
4910
4911                 preempt_disable();
4912                 rcu_read_lock();
4913
4914                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4915                 if (cpu < 0)
4916                         cpu = smp_processor_id();
4917
4918                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4919
4920                 rcu_read_unlock();
4921                 preempt_enable();
4922         } else
4923 #endif
4924         {
4925                 unsigned int qtail;
4926
4927                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4928                 put_cpu();
4929         }
4930         return ret;
4931 }
4932
4933 /**
4934  *      netif_rx        -       post buffer to the network code
4935  *      @skb: buffer to post
4936  *
4937  *      This function receives a packet from a device driver and queues it for
4938  *      the upper (protocol) levels to process.  It always succeeds. The buffer
4939  *      may be dropped during processing for congestion control or by the
4940  *      protocol layers.
4941  *
4942  *      return values:
4943  *      NET_RX_SUCCESS  (no congestion)
4944  *      NET_RX_DROP     (packet was dropped)
4945  *
4946  */
4947
4948 int netif_rx(struct sk_buff *skb)
4949 {
4950         int ret;
4951
4952         trace_netif_rx_entry(skb);
4953
4954         ret = netif_rx_internal(skb);
4955         trace_netif_rx_exit(ret);
4956
4957         return ret;
4958 }
4959 EXPORT_SYMBOL(netif_rx);
4960
4961 int netif_rx_ni(struct sk_buff *skb)
4962 {
4963         int err;
4964
4965         trace_netif_rx_ni_entry(skb);
4966
4967         preempt_disable();
4968         err = netif_rx_internal(skb);
4969         if (local_softirq_pending())
4970                 do_softirq();
4971         preempt_enable();
4972         trace_netif_rx_ni_exit(err);
4973
4974         return err;
4975 }
4976 EXPORT_SYMBOL(netif_rx_ni);
4977
4978 int netif_rx_any_context(struct sk_buff *skb)
4979 {
4980         /*
4981          * If invoked from contexts which do not invoke bottom half
4982          * processing either at return from interrupt or when softrqs are
4983          * reenabled, use netif_rx_ni() which invokes bottomhalf processing
4984          * directly.
4985          */
4986         if (in_interrupt())
4987                 return netif_rx(skb);
4988         else
4989                 return netif_rx_ni(skb);
4990 }
4991 EXPORT_SYMBOL(netif_rx_any_context);
4992
4993 static __latent_entropy void net_tx_action(struct softirq_action *h)
4994 {
4995         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4996
4997         if (sd->completion_queue) {
4998                 struct sk_buff *clist;
4999
5000                 local_irq_disable();
5001                 clist = sd->completion_queue;
5002                 sd->completion_queue = NULL;
5003                 local_irq_enable();
5004
5005                 while (clist) {
5006                         struct sk_buff *skb = clist;
5007
5008                         clist = clist->next;
5009
5010                         WARN_ON(refcount_read(&skb->users));
5011                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
5012                                 trace_consume_skb(skb);
5013                         else
5014                                 trace_kfree_skb(skb, net_tx_action);
5015
5016                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5017                                 __kfree_skb(skb);
5018                         else
5019                                 __kfree_skb_defer(skb);
5020                 }
5021         }
5022
5023         if (sd->output_queue) {
5024                 struct Qdisc *head;
5025
5026                 local_irq_disable();
5027                 head = sd->output_queue;
5028                 sd->output_queue = NULL;
5029                 sd->output_queue_tailp = &sd->output_queue;
5030                 local_irq_enable();
5031
5032                 rcu_read_lock();
5033
5034                 while (head) {
5035                         struct Qdisc *q = head;
5036                         spinlock_t *root_lock = NULL;
5037
5038                         head = head->next_sched;
5039
5040                         /* We need to make sure head->next_sched is read
5041                          * before clearing __QDISC_STATE_SCHED
5042                          */
5043                         smp_mb__before_atomic();
5044
5045                         if (!(q->flags & TCQ_F_NOLOCK)) {
5046                                 root_lock = qdisc_lock(q);
5047                                 spin_lock(root_lock);
5048                         } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5049                                                      &q->state))) {
5050                                 /* There is a synchronize_net() between
5051                                  * STATE_DEACTIVATED flag being set and
5052                                  * qdisc_reset()/some_qdisc_is_busy() in
5053                                  * dev_deactivate(), so we can safely bail out
5054                                  * early here to avoid data race between
5055                                  * qdisc_deactivate() and some_qdisc_is_busy()
5056                                  * for lockless qdisc.
5057                                  */
5058                                 clear_bit(__QDISC_STATE_SCHED, &q->state);
5059                                 continue;
5060                         }
5061
5062                         clear_bit(__QDISC_STATE_SCHED, &q->state);
5063                         qdisc_run(q);
5064                         if (root_lock)
5065                                 spin_unlock(root_lock);
5066                 }
5067
5068                 rcu_read_unlock();
5069         }
5070
5071         xfrm_dev_backlog(sd);
5072 }
5073
5074 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5075 /* This hook is defined here for ATM LANE */
5076 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5077                              unsigned char *addr) __read_mostly;
5078 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5079 #endif
5080
5081 static inline struct sk_buff *
5082 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5083                    struct net_device *orig_dev, bool *another)
5084 {
5085 #ifdef CONFIG_NET_CLS_ACT
5086         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5087         struct tcf_result cl_res;
5088
5089         /* If there's at least one ingress present somewhere (so
5090          * we get here via enabled static key), remaining devices
5091          * that are not configured with an ingress qdisc will bail
5092          * out here.
5093          */
5094         if (!miniq)
5095                 return skb;
5096
5097         if (*pt_prev) {
5098                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5099                 *pt_prev = NULL;
5100         }
5101
5102         qdisc_skb_cb(skb)->pkt_len = skb->len;
5103         qdisc_skb_cb(skb)->mru = 0;
5104         qdisc_skb_cb(skb)->post_ct = false;
5105         skb->tc_at_ingress = 1;
5106         mini_qdisc_bstats_cpu_update(miniq, skb);
5107
5108         switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
5109         case TC_ACT_OK:
5110         case TC_ACT_RECLASSIFY:
5111                 skb->tc_index = TC_H_MIN(cl_res.classid);
5112                 break;
5113         case TC_ACT_SHOT:
5114                 mini_qdisc_qstats_cpu_drop(miniq);
5115                 kfree_skb(skb);
5116                 return NULL;
5117         case TC_ACT_STOLEN:
5118         case TC_ACT_QUEUED:
5119         case TC_ACT_TRAP:
5120                 consume_skb(skb);
5121                 return NULL;
5122         case TC_ACT_REDIRECT:
5123                 /* skb_mac_header check was done by cls/act_bpf, so
5124                  * we can safely push the L2 header back before
5125                  * redirecting to another netdev
5126                  */
5127                 __skb_push(skb, skb->mac_len);
5128                 if (skb_do_redirect(skb) == -EAGAIN) {
5129                         __skb_pull(skb, skb->mac_len);
5130                         *another = true;
5131                         break;
5132                 }
5133                 return NULL;
5134         case TC_ACT_CONSUMED:
5135                 return NULL;
5136         default:
5137                 break;
5138         }
5139 #endif /* CONFIG_NET_CLS_ACT */
5140         return skb;
5141 }
5142
5143 /**
5144  *      netdev_is_rx_handler_busy - check if receive handler is registered
5145  *      @dev: device to check
5146  *
5147  *      Check if a receive handler is already registered for a given device.
5148  *      Return true if there one.
5149  *
5150  *      The caller must hold the rtnl_mutex.
5151  */
5152 bool netdev_is_rx_handler_busy(struct net_device *dev)
5153 {
5154         ASSERT_RTNL();
5155         return dev && rtnl_dereference(dev->rx_handler);
5156 }
5157 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5158
5159 /**
5160  *      netdev_rx_handler_register - register receive handler
5161  *      @dev: device to register a handler for
5162  *      @rx_handler: receive handler to register
5163  *      @rx_handler_data: data pointer that is used by rx handler
5164  *
5165  *      Register a receive handler for a device. This handler will then be
5166  *      called from __netif_receive_skb. A negative errno code is returned
5167  *      on a failure.
5168  *
5169  *      The caller must hold the rtnl_mutex.
5170  *
5171  *      For a general description of rx_handler, see enum rx_handler_result.
5172  */
5173 int netdev_rx_handler_register(struct net_device *dev,
5174                                rx_handler_func_t *rx_handler,
5175                                void *rx_handler_data)
5176 {
5177         if (netdev_is_rx_handler_busy(dev))
5178                 return -EBUSY;
5179
5180         if (dev->priv_flags & IFF_NO_RX_HANDLER)
5181                 return -EINVAL;
5182
5183         /* Note: rx_handler_data must be set before rx_handler */
5184         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5185         rcu_assign_pointer(dev->rx_handler, rx_handler);
5186
5187         return 0;
5188 }
5189 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5190
5191 /**
5192  *      netdev_rx_handler_unregister - unregister receive handler
5193  *      @dev: device to unregister a handler from
5194  *
5195  *      Unregister a receive handler from a device.
5196  *
5197  *      The caller must hold the rtnl_mutex.
5198  */
5199 void netdev_rx_handler_unregister(struct net_device *dev)
5200 {
5201
5202         ASSERT_RTNL();
5203         RCU_INIT_POINTER(dev->rx_handler, NULL);
5204         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5205          * section has a guarantee to see a non NULL rx_handler_data
5206          * as well.
5207          */
5208         synchronize_net();
5209         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5210 }
5211 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5212
5213 /*
5214  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5215  * the special handling of PFMEMALLOC skbs.
5216  */
5217 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5218 {
5219         switch (skb->protocol) {
5220         case htons(ETH_P_ARP):
5221         case htons(ETH_P_IP):
5222         case htons(ETH_P_IPV6):
5223         case htons(ETH_P_8021Q):
5224         case htons(ETH_P_8021AD):
5225                 return true;
5226         default:
5227                 return false;
5228         }
5229 }
5230
5231 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5232                              int *ret, struct net_device *orig_dev)
5233 {
5234         if (nf_hook_ingress_active(skb)) {
5235                 int ingress_retval;
5236
5237                 if (*pt_prev) {
5238                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
5239                         *pt_prev = NULL;
5240                 }
5241
5242                 rcu_read_lock();
5243                 ingress_retval = nf_hook_ingress(skb);
5244                 rcu_read_unlock();
5245                 return ingress_retval;
5246         }
5247         return 0;
5248 }
5249
5250 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5251                                     struct packet_type **ppt_prev)
5252 {
5253         struct packet_type *ptype, *pt_prev;
5254         rx_handler_func_t *rx_handler;
5255         struct sk_buff *skb = *pskb;
5256         struct net_device *orig_dev;
5257         bool deliver_exact = false;
5258         int ret = NET_RX_DROP;
5259         __be16 type;
5260
5261         net_timestamp_check(!netdev_tstamp_prequeue, skb);
5262
5263         trace_netif_receive_skb(skb);
5264
5265         orig_dev = skb->dev;
5266
5267         skb_reset_network_header(skb);
5268         if (!skb_transport_header_was_set(skb))
5269                 skb_reset_transport_header(skb);
5270         skb_reset_mac_len(skb);
5271
5272         pt_prev = NULL;
5273
5274 another_round:
5275         skb->skb_iif = skb->dev->ifindex;
5276
5277         __this_cpu_inc(softnet_data.processed);
5278
5279         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5280                 int ret2;
5281
5282                 migrate_disable();
5283                 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5284                 migrate_enable();
5285
5286                 if (ret2 != XDP_PASS) {
5287                         ret = NET_RX_DROP;
5288                         goto out;
5289                 }
5290         }
5291
5292         if (eth_type_vlan(skb->protocol)) {
5293                 skb = skb_vlan_untag(skb);
5294                 if (unlikely(!skb))
5295                         goto out;
5296         }
5297
5298         if (skb_skip_tc_classify(skb))
5299                 goto skip_classify;
5300
5301         if (pfmemalloc)
5302                 goto skip_taps;
5303
5304         list_for_each_entry_rcu(ptype, &ptype_all, list) {
5305                 if (pt_prev)
5306                         ret = deliver_skb(skb, pt_prev, orig_dev);
5307                 pt_prev = ptype;
5308         }
5309
5310         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5311                 if (pt_prev)
5312                         ret = deliver_skb(skb, pt_prev, orig_dev);
5313                 pt_prev = ptype;
5314         }
5315
5316 skip_taps:
5317 #ifdef CONFIG_NET_INGRESS
5318         if (static_branch_unlikely(&ingress_needed_key)) {
5319                 bool another = false;
5320
5321                 nf_skip_egress(skb, true);
5322                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5323                                          &another);
5324                 if (another)
5325                         goto another_round;
5326                 if (!skb)
5327                         goto out;
5328
5329                 nf_skip_egress(skb, false);
5330                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5331                         goto out;
5332         }
5333 #endif
5334         skb_reset_redirect(skb);
5335 skip_classify:
5336         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5337                 goto drop;
5338
5339         if (skb_vlan_tag_present(skb)) {
5340                 if (pt_prev) {
5341                         ret = deliver_skb(skb, pt_prev, orig_dev);
5342                         pt_prev = NULL;
5343                 }
5344                 if (vlan_do_receive(&skb))
5345                         goto another_round;
5346                 else if (unlikely(!skb))
5347                         goto out;
5348         }
5349
5350         rx_handler = rcu_dereference(skb->dev->rx_handler);
5351         if (rx_handler) {
5352                 if (pt_prev) {
5353                         ret = deliver_skb(skb, pt_prev, orig_dev);
5354                         pt_prev = NULL;
5355                 }
5356                 switch (rx_handler(&skb)) {
5357                 case RX_HANDLER_CONSUMED:
5358                         ret = NET_RX_SUCCESS;
5359                         goto out;
5360                 case RX_HANDLER_ANOTHER:
5361                         goto another_round;
5362                 case RX_HANDLER_EXACT:
5363                         deliver_exact = true;
5364                         break;
5365                 case RX_HANDLER_PASS:
5366                         break;
5367                 default:
5368                         BUG();
5369                 }
5370         }
5371
5372         if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5373 check_vlan_id:
5374                 if (skb_vlan_tag_get_id(skb)) {
5375                         /* Vlan id is non 0 and vlan_do_receive() above couldn't
5376                          * find vlan device.
5377                          */
5378                         skb->pkt_type = PACKET_OTHERHOST;
5379                 } else if (eth_type_vlan(skb->protocol)) {
5380                         /* Outer header is 802.1P with vlan 0, inner header is
5381                          * 802.1Q or 802.1AD and vlan_do_receive() above could
5382                          * not find vlan dev for vlan id 0.
5383                          */
5384                         __vlan_hwaccel_clear_tag(skb);
5385                         skb = skb_vlan_untag(skb);
5386                         if (unlikely(!skb))
5387                                 goto out;
5388                         if (vlan_do_receive(&skb))
5389                                 /* After stripping off 802.1P header with vlan 0
5390                                  * vlan dev is found for inner header.
5391                                  */
5392                                 goto another_round;
5393                         else if (unlikely(!skb))
5394                                 goto out;
5395                         else
5396                                 /* We have stripped outer 802.1P vlan 0 header.
5397                                  * But could not find vlan dev.
5398                                  * check again for vlan id to set OTHERHOST.
5399                                  */
5400                                 goto check_vlan_id;
5401                 }
5402                 /* Note: we might in the future use prio bits
5403                  * and set skb->priority like in vlan_do_receive()
5404                  * For the time being, just ignore Priority Code Point
5405                  */
5406                 __vlan_hwaccel_clear_tag(skb);
5407         }
5408
5409         type = skb->protocol;
5410
5411         /* deliver only exact match when indicated */
5412         if (likely(!deliver_exact)) {
5413                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5414                                        &ptype_base[ntohs(type) &
5415                                                    PTYPE_HASH_MASK]);
5416         }
5417
5418         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5419                                &orig_dev->ptype_specific);
5420
5421         if (unlikely(skb->dev != orig_dev)) {
5422                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5423                                        &skb->dev->ptype_specific);
5424         }
5425
5426         if (pt_prev) {
5427                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5428                         goto drop;
5429                 *ppt_prev = pt_prev;
5430         } else {
5431 drop:
5432                 if (!deliver_exact)
5433                         atomic_long_inc(&skb->dev->rx_dropped);
5434                 else
5435                         atomic_long_inc(&skb->dev->rx_nohandler);
5436                 kfree_skb(skb);
5437                 /* Jamal, now you will not able to escape explaining
5438                  * me how you were going to use this. :-)
5439                  */
5440                 ret = NET_RX_DROP;
5441         }
5442
5443 out:
5444         /* The invariant here is that if *ppt_prev is not NULL
5445          * then skb should also be non-NULL.
5446          *
5447          * Apparently *ppt_prev assignment above holds this invariant due to
5448          * skb dereferencing near it.
5449          */
5450         *pskb = skb;
5451         return ret;
5452 }
5453
5454 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5455 {
5456         struct net_device *orig_dev = skb->dev;
5457         struct packet_type *pt_prev = NULL;
5458         int ret;
5459
5460         ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5461         if (pt_prev)
5462                 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5463                                          skb->dev, pt_prev, orig_dev);
5464         return ret;
5465 }
5466
5467 /**
5468  *      netif_receive_skb_core - special purpose version of netif_receive_skb
5469  *      @skb: buffer to process
5470  *
5471  *      More direct receive version of netif_receive_skb().  It should
5472  *      only be used by callers that have a need to skip RPS and Generic XDP.
5473  *      Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5474  *
5475  *      This function may only be called from softirq context and interrupts
5476  *      should be enabled.
5477  *
5478  *      Return values (usually ignored):
5479  *      NET_RX_SUCCESS: no congestion
5480  *      NET_RX_DROP: packet was dropped
5481  */
5482 int netif_receive_skb_core(struct sk_buff *skb)
5483 {
5484         int ret;
5485
5486         rcu_read_lock();
5487         ret = __netif_receive_skb_one_core(skb, false);
5488         rcu_read_unlock();
5489
5490         return ret;
5491 }
5492 EXPORT_SYMBOL(netif_receive_skb_core);
5493
5494 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5495                                                   struct packet_type *pt_prev,
5496                                                   struct net_device *orig_dev)
5497 {
5498         struct sk_buff *skb, *next;
5499
5500         if (!pt_prev)
5501                 return;
5502         if (list_empty(head))
5503                 return;
5504         if (pt_prev->list_func != NULL)
5505                 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5506                                    ip_list_rcv, head, pt_prev, orig_dev);
5507         else
5508                 list_for_each_entry_safe(skb, next, head, list) {
5509                         skb_list_del_init(skb);
5510                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5511                 }
5512 }
5513
5514 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5515 {
5516         /* Fast-path assumptions:
5517          * - There is no RX handler.
5518          * - Only one packet_type matches.
5519          * If either of these fails, we will end up doing some per-packet
5520          * processing in-line, then handling the 'last ptype' for the whole
5521          * sublist.  This can't cause out-of-order delivery to any single ptype,
5522          * because the 'last ptype' must be constant across the sublist, and all
5523          * other ptypes are handled per-packet.
5524          */
5525         /* Current (common) ptype of sublist */
5526         struct packet_type *pt_curr = NULL;
5527         /* Current (common) orig_dev of sublist */
5528         struct net_device *od_curr = NULL;
5529         struct list_head sublist;
5530         struct sk_buff *skb, *next;
5531
5532         INIT_LIST_HEAD(&sublist);
5533         list_for_each_entry_safe(skb, next, head, list) {
5534                 struct net_device *orig_dev = skb->dev;
5535                 struct packet_type *pt_prev = NULL;
5536
5537                 skb_list_del_init(skb);
5538                 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5539                 if (!pt_prev)
5540                         continue;
5541                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5542                         /* dispatch old sublist */
5543                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5544                         /* start new sublist */
5545                         INIT_LIST_HEAD(&sublist);
5546                         pt_curr = pt_prev;
5547                         od_curr = orig_dev;
5548                 }
5549                 list_add_tail(&skb->list, &sublist);
5550         }
5551
5552         /* dispatch final sublist */
5553         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5554 }
5555
5556 static int __netif_receive_skb(struct sk_buff *skb)
5557 {
5558         int ret;
5559
5560         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5561                 unsigned int noreclaim_flag;
5562
5563                 /*
5564                  * PFMEMALLOC skbs are special, they should
5565                  * - be delivered to SOCK_MEMALLOC sockets only
5566                  * - stay away from userspace
5567                  * - have bounded memory usage
5568                  *
5569                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5570                  * context down to all allocation sites.
5571                  */
5572                 noreclaim_flag = memalloc_noreclaim_save();
5573                 ret = __netif_receive_skb_one_core(skb, true);
5574                 memalloc_noreclaim_restore(noreclaim_flag);
5575         } else
5576                 ret = __netif_receive_skb_one_core(skb, false);
5577
5578         return ret;
5579 }
5580
5581 static void __netif_receive_skb_list(struct list_head *head)
5582 {
5583         unsigned long noreclaim_flag = 0;
5584         struct sk_buff *skb, *next;
5585         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5586
5587         list_for_each_entry_safe(skb, next, head, list) {
5588                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5589                         struct list_head sublist;
5590
5591                         /* Handle the previous sublist */
5592                         list_cut_before(&sublist, head, &skb->list);
5593                         if (!list_empty(&sublist))
5594                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5595                         pfmemalloc = !pfmemalloc;
5596                         /* See comments in __netif_receive_skb */
5597                         if (pfmemalloc)
5598                                 noreclaim_flag = memalloc_noreclaim_save();
5599                         else
5600                                 memalloc_noreclaim_restore(noreclaim_flag);
5601                 }
5602         }
5603         /* Handle the remaining sublist */
5604         if (!list_empty(head))
5605                 __netif_receive_skb_list_core(head, pfmemalloc);
5606         /* Restore pflags */
5607         if (pfmemalloc)
5608                 memalloc_noreclaim_restore(noreclaim_flag);
5609 }
5610
5611 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5612 {
5613         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5614         struct bpf_prog *new = xdp->prog;
5615         int ret = 0;
5616
5617         switch (xdp->command) {
5618         case XDP_SETUP_PROG:
5619                 rcu_assign_pointer(dev->xdp_prog, new);
5620                 if (old)
5621                         bpf_prog_put(old);
5622
5623                 if (old && !new) {
5624                         static_branch_dec(&generic_xdp_needed_key);
5625                 } else if (new && !old) {
5626                         static_branch_inc(&generic_xdp_needed_key);
5627                         dev_disable_lro(dev);
5628                         dev_disable_gro_hw(dev);
5629                 }
5630                 break;
5631
5632         default:
5633                 ret = -EINVAL;
5634                 break;
5635         }
5636
5637         return ret;
5638 }
5639
5640 static int netif_receive_skb_internal(struct sk_buff *skb)
5641 {
5642         int ret;
5643
5644         net_timestamp_check(netdev_tstamp_prequeue, skb);
5645
5646         if (skb_defer_rx_timestamp(skb))
5647                 return NET_RX_SUCCESS;
5648
5649         rcu_read_lock();
5650 #ifdef CONFIG_RPS
5651         if (static_branch_unlikely(&rps_needed)) {
5652                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5653                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5654
5655                 if (cpu >= 0) {
5656                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5657                         rcu_read_unlock();
5658                         return ret;
5659                 }
5660         }
5661 #endif
5662         ret = __netif_receive_skb(skb);
5663         rcu_read_unlock();
5664         return ret;
5665 }
5666
5667 static void netif_receive_skb_list_internal(struct list_head *head)
5668 {
5669         struct sk_buff *skb, *next;
5670         struct list_head sublist;
5671
5672         INIT_LIST_HEAD(&sublist);
5673         list_for_each_entry_safe(skb, next, head, list) {
5674                 net_timestamp_check(netdev_tstamp_prequeue, skb);
5675                 skb_list_del_init(skb);
5676                 if (!skb_defer_rx_timestamp(skb))
5677                         list_add_tail(&skb->list, &sublist);
5678         }
5679         list_splice_init(&sublist, head);
5680
5681         rcu_read_lock();
5682 #ifdef CONFIG_RPS
5683         if (static_branch_unlikely(&rps_needed)) {
5684                 list_for_each_entry_safe(skb, next, head, list) {
5685                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5686                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5687
5688                         if (cpu >= 0) {
5689                                 /* Will be handled, remove from list */
5690                                 skb_list_del_init(skb);
5691                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5692                         }
5693                 }
5694         }
5695 #endif
5696         __netif_receive_skb_list(head);
5697         rcu_read_unlock();
5698 }
5699
5700 /**
5701  *      netif_receive_skb - process receive buffer from network
5702  *      @skb: buffer to process
5703  *
5704  *      netif_receive_skb() is the main receive data processing function.
5705  *      It always succeeds. The buffer may be dropped during processing
5706  *      for congestion control or by the protocol layers.
5707  *
5708  *      This function may only be called from softirq context and interrupts
5709  *      should be enabled.
5710  *
5711  *      Return values (usually ignored):
5712  *      NET_RX_SUCCESS: no congestion
5713  *      NET_RX_DROP: packet was dropped
5714  */
5715 int netif_receive_skb(struct sk_buff *skb)
5716 {
5717         int ret;
5718
5719         trace_netif_receive_skb_entry(skb);
5720
5721         ret = netif_receive_skb_internal(skb);
5722         trace_netif_receive_skb_exit(ret);
5723
5724         return ret;
5725 }
5726 EXPORT_SYMBOL(netif_receive_skb);
5727
5728 /**
5729  *      netif_receive_skb_list - process many receive buffers from network
5730  *      @head: list of skbs to process.
5731  *
5732  *      Since return value of netif_receive_skb() is normally ignored, and
5733  *      wouldn't be meaningful for a list, this function returns void.
5734  *
5735  *      This function may only be called from softirq context and interrupts
5736  *      should be enabled.
5737  */
5738 void netif_receive_skb_list(struct list_head *head)
5739 {
5740         struct sk_buff *skb;
5741
5742         if (list_empty(head))
5743                 return;
5744         if (trace_netif_receive_skb_list_entry_enabled()) {
5745                 list_for_each_entry(skb, head, list)
5746                         trace_netif_receive_skb_list_entry(skb);
5747         }
5748         netif_receive_skb_list_internal(head);
5749         trace_netif_receive_skb_list_exit(0);
5750 }
5751 EXPORT_SYMBOL(netif_receive_skb_list);
5752
5753 static DEFINE_PER_CPU(struct work_struct, flush_works);
5754
5755 /* Network device is going away, flush any packets still pending */
5756 static void flush_backlog(struct work_struct *work)
5757 {
5758         struct sk_buff *skb, *tmp;
5759         struct softnet_data *sd;
5760
5761         local_bh_disable();
5762         sd = this_cpu_ptr(&softnet_data);
5763
5764         local_irq_disable();
5765         rps_lock(sd);
5766         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5767                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5768                         __skb_unlink(skb, &sd->input_pkt_queue);
5769                         dev_kfree_skb_irq(skb);
5770                         input_queue_head_incr(sd);
5771                 }
5772         }
5773         rps_unlock(sd);
5774         local_irq_enable();
5775
5776         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5777                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5778                         __skb_unlink(skb, &sd->process_queue);
5779                         kfree_skb(skb);
5780                         input_queue_head_incr(sd);
5781                 }
5782         }
5783         local_bh_enable();
5784 }
5785
5786 static bool flush_required(int cpu)
5787 {
5788 #if IS_ENABLED(CONFIG_RPS)
5789         struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5790         bool do_flush;
5791
5792         local_irq_disable();
5793         rps_lock(sd);
5794
5795         /* as insertion into process_queue happens with the rps lock held,
5796          * process_queue access may race only with dequeue
5797          */
5798         do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5799                    !skb_queue_empty_lockless(&sd->process_queue);
5800         rps_unlock(sd);
5801         local_irq_enable();
5802
5803         return do_flush;
5804 #endif
5805         /* without RPS we can't safely check input_pkt_queue: during a
5806          * concurrent remote skb_queue_splice() we can detect as empty both
5807          * input_pkt_queue and process_queue even if the latter could end-up
5808          * containing a lot of packets.
5809          */
5810         return true;
5811 }
5812
5813 static void flush_all_backlogs(void)
5814 {
5815         static cpumask_t flush_cpus;
5816         unsigned int cpu;
5817
5818         /* since we are under rtnl lock protection we can use static data
5819          * for the cpumask and avoid allocating on stack the possibly
5820          * large mask
5821          */
5822         ASSERT_RTNL();
5823
5824         cpus_read_lock();
5825
5826         cpumask_clear(&flush_cpus);
5827         for_each_online_cpu(cpu) {
5828                 if (flush_required(cpu)) {
5829                         queue_work_on(cpu, system_highpri_wq,
5830                                       per_cpu_ptr(&flush_works, cpu));
5831                         cpumask_set_cpu(cpu, &flush_cpus);
5832                 }
5833         }
5834
5835         /* we can have in flight packet[s] on the cpus we are not flushing,
5836          * synchronize_net() in unregister_netdevice_many() will take care of
5837          * them
5838          */
5839         for_each_cpu(cpu, &flush_cpus)
5840                 flush_work(per_cpu_ptr(&flush_works, cpu));
5841
5842         cpus_read_unlock();
5843 }
5844
5845 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5846 static void gro_normal_list(struct napi_struct *napi)
5847 {
5848         if (!napi->rx_count)
5849                 return;
5850         netif_receive_skb_list_internal(&napi->rx_list);
5851         INIT_LIST_HEAD(&napi->rx_list);
5852         napi->rx_count = 0;
5853 }
5854
5855 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5856  * pass the whole batch up to the stack.
5857  */
5858 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb, int segs)
5859 {
5860         list_add_tail(&skb->list, &napi->rx_list);
5861         napi->rx_count += segs;
5862         if (napi->rx_count >= gro_normal_batch)
5863                 gro_normal_list(napi);
5864 }
5865
5866 static void napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5867 {
5868         struct packet_offload *ptype;
5869         __be16 type = skb->protocol;
5870         struct list_head *head = &offload_base;
5871         int err = -ENOENT;
5872
5873         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5874
5875         if (NAPI_GRO_CB(skb)->count == 1) {
5876                 skb_shinfo(skb)->gso_size = 0;
5877                 goto out;
5878         }
5879
5880         rcu_read_lock();
5881         list_for_each_entry_rcu(ptype, head, list) {
5882                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5883                         continue;
5884
5885                 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5886                                          ipv6_gro_complete, inet_gro_complete,
5887                                          skb, 0);
5888                 break;
5889         }
5890         rcu_read_unlock();
5891
5892         if (err) {
5893                 WARN_ON(&ptype->list == head);
5894                 kfree_skb(skb);
5895                 return;
5896         }
5897
5898 out:
5899         gro_normal_one(napi, skb, NAPI_GRO_CB(skb)->count);
5900 }
5901
5902 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5903                                    bool flush_old)
5904 {
5905         struct list_head *head = &napi->gro_hash[index].list;
5906         struct sk_buff *skb, *p;
5907
5908         list_for_each_entry_safe_reverse(skb, p, head, list) {
5909                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5910                         return;
5911                 skb_list_del_init(skb);
5912                 napi_gro_complete(napi, skb);
5913                 napi->gro_hash[index].count--;
5914         }
5915
5916         if (!napi->gro_hash[index].count)
5917                 __clear_bit(index, &napi->gro_bitmask);
5918 }
5919
5920 /* napi->gro_hash[].list contains packets ordered by age.
5921  * youngest packets at the head of it.
5922  * Complete skbs in reverse order to reduce latencies.
5923  */
5924 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5925 {
5926         unsigned long bitmask = napi->gro_bitmask;
5927         unsigned int i, base = ~0U;
5928
5929         while ((i = ffs(bitmask)) != 0) {
5930                 bitmask >>= i;
5931                 base += i;
5932                 __napi_gro_flush_chain(napi, base, flush_old);
5933         }
5934 }
5935 EXPORT_SYMBOL(napi_gro_flush);
5936
5937 static void gro_list_prepare(const struct list_head *head,
5938                              const struct sk_buff *skb)
5939 {
5940         unsigned int maclen = skb->dev->hard_header_len;
5941         u32 hash = skb_get_hash_raw(skb);
5942         struct sk_buff *p;
5943
5944         list_for_each_entry(p, head, list) {
5945                 unsigned long diffs;
5946
5947                 NAPI_GRO_CB(p)->flush = 0;
5948
5949                 if (hash != skb_get_hash_raw(p)) {
5950                         NAPI_GRO_CB(p)->same_flow = 0;
5951                         continue;
5952                 }
5953
5954                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5955                 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5956                 if (skb_vlan_tag_present(p))
5957                         diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5958                 diffs |= skb_metadata_differs(p, skb);
5959                 if (maclen == ETH_HLEN)
5960                         diffs |= compare_ether_header(skb_mac_header(p),
5961                                                       skb_mac_header(skb));
5962                 else if (!diffs)
5963                         diffs = memcmp(skb_mac_header(p),
5964                                        skb_mac_header(skb),
5965                                        maclen);
5966
5967                 /* in most common scenarions 'slow_gro' is 0
5968                  * otherwise we are already on some slower paths
5969                  * either skip all the infrequent tests altogether or
5970                  * avoid trying too hard to skip each of them individually
5971                  */
5972                 if (!diffs && unlikely(skb->slow_gro | p->slow_gro)) {
5973 #if IS_ENABLED(CONFIG_SKB_EXTENSIONS) && IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
5974                         struct tc_skb_ext *skb_ext;
5975                         struct tc_skb_ext *p_ext;
5976 #endif
5977
5978                         diffs |= p->sk != skb->sk;
5979                         diffs |= skb_metadata_dst_cmp(p, skb);
5980                         diffs |= skb_get_nfct(p) ^ skb_get_nfct(skb);
5981
5982 #if IS_ENABLED(CONFIG_SKB_EXTENSIONS) && IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
5983                         skb_ext = skb_ext_find(skb, TC_SKB_EXT);
5984                         p_ext = skb_ext_find(p, TC_SKB_EXT);
5985
5986                         diffs |= (!!p_ext) ^ (!!skb_ext);
5987                         if (!diffs && unlikely(skb_ext))
5988                                 diffs |= p_ext->chain ^ skb_ext->chain;
5989 #endif
5990                 }
5991
5992                 NAPI_GRO_CB(p)->same_flow = !diffs;
5993         }
5994 }
5995
5996 static inline void skb_gro_reset_offset(struct sk_buff *skb, u32 nhoff)
5997 {
5998         const struct skb_shared_info *pinfo = skb_shinfo(skb);
5999         const skb_frag_t *frag0 = &pinfo->frags[0];
6000
6001         NAPI_GRO_CB(skb)->data_offset = 0;
6002         NAPI_GRO_CB(skb)->frag0 = NULL;
6003         NAPI_GRO_CB(skb)->frag0_len = 0;
6004
6005         if (!skb_headlen(skb) && pinfo->nr_frags &&
6006             !PageHighMem(skb_frag_page(frag0)) &&
6007             (!NET_IP_ALIGN || !((skb_frag_off(frag0) + nhoff) & 3))) {
6008                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
6009                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
6010                                                     skb_frag_size(frag0),
6011                                                     skb->end - skb->tail);
6012         }
6013 }
6014
6015 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
6016 {
6017         struct skb_shared_info *pinfo = skb_shinfo(skb);
6018
6019         BUG_ON(skb->end - skb->tail < grow);
6020
6021         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
6022
6023         skb->data_len -= grow;
6024         skb->tail += grow;
6025
6026         skb_frag_off_add(&pinfo->frags[0], grow);
6027         skb_frag_size_sub(&pinfo->frags[0], grow);
6028
6029         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
6030                 skb_frag_unref(skb, 0);
6031                 memmove(pinfo->frags, pinfo->frags + 1,
6032                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
6033         }
6034 }
6035
6036 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
6037 {
6038         struct sk_buff *oldest;
6039
6040         oldest = list_last_entry(head, struct sk_buff, list);
6041
6042         /* We are called with head length >= MAX_GRO_SKBS, so this is
6043          * impossible.
6044          */
6045         if (WARN_ON_ONCE(!oldest))
6046                 return;
6047
6048         /* Do not adjust napi->gro_hash[].count, caller is adding a new
6049          * SKB to the chain.
6050          */
6051         skb_list_del_init(oldest);
6052         napi_gro_complete(napi, oldest);
6053 }
6054
6055 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6056 {
6057         u32 bucket = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
6058         struct gro_list *gro_list = &napi->gro_hash[bucket];
6059         struct list_head *head = &offload_base;
6060         struct packet_offload *ptype;
6061         __be16 type = skb->protocol;
6062         struct sk_buff *pp = NULL;
6063         enum gro_result ret;
6064         int same_flow;
6065         int grow;
6066
6067         if (netif_elide_gro(skb->dev))
6068                 goto normal;
6069
6070         gro_list_prepare(&gro_list->list, skb);
6071
6072         rcu_read_lock();
6073         list_for_each_entry_rcu(ptype, head, list) {
6074                 if (ptype->type != type || !ptype->callbacks.gro_receive)
6075                         continue;
6076
6077                 skb_set_network_header(skb, skb_gro_offset(skb));
6078                 skb_reset_mac_len(skb);
6079                 NAPI_GRO_CB(skb)->same_flow = 0;
6080                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
6081                 NAPI_GRO_CB(skb)->free = 0;
6082                 NAPI_GRO_CB(skb)->encap_mark = 0;
6083                 NAPI_GRO_CB(skb)->recursion_counter = 0;
6084                 NAPI_GRO_CB(skb)->is_fou = 0;
6085                 NAPI_GRO_CB(skb)->is_atomic = 1;
6086                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
6087
6088                 /* Setup for GRO checksum validation */
6089                 switch (skb->ip_summed) {
6090                 case CHECKSUM_COMPLETE:
6091                         NAPI_GRO_CB(skb)->csum = skb->csum;
6092                         NAPI_GRO_CB(skb)->csum_valid = 1;
6093                         NAPI_GRO_CB(skb)->csum_cnt = 0;
6094                         break;
6095                 case CHECKSUM_UNNECESSARY:
6096                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
6097                         NAPI_GRO_CB(skb)->csum_valid = 0;
6098                         break;
6099                 default:
6100                         NAPI_GRO_CB(skb)->csum_cnt = 0;
6101                         NAPI_GRO_CB(skb)->csum_valid = 0;
6102                 }
6103
6104                 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
6105                                         ipv6_gro_receive, inet_gro_receive,
6106                                         &gro_list->list, skb);
6107                 break;
6108         }
6109         rcu_read_unlock();
6110
6111         if (&ptype->list == head)
6112                 goto normal;
6113
6114         if (PTR_ERR(pp) == -EINPROGRESS) {
6115                 ret = GRO_CONSUMED;
6116                 goto ok;
6117         }
6118
6119         same_flow = NAPI_GRO_CB(skb)->same_flow;
6120         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
6121
6122         if (pp) {
6123                 skb_list_del_init(pp);
6124                 napi_gro_complete(napi, pp);
6125                 gro_list->count--;
6126         }
6127
6128         if (same_flow)
6129                 goto ok;
6130
6131         if (NAPI_GRO_CB(skb)->flush)
6132                 goto normal;
6133
6134         if (unlikely(gro_list->count >= MAX_GRO_SKBS))
6135                 gro_flush_oldest(napi, &gro_list->list);
6136         else
6137                 gro_list->count++;
6138
6139         NAPI_GRO_CB(skb)->count = 1;
6140         NAPI_GRO_CB(skb)->age = jiffies;
6141         NAPI_GRO_CB(skb)->last = skb;
6142         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
6143         list_add(&skb->list, &gro_list->list);
6144         ret = GRO_HELD;
6145
6146 pull:
6147         grow = skb_gro_offset(skb) - skb_headlen(skb);
6148         if (grow > 0)
6149                 gro_pull_from_frag0(skb, grow);
6150 ok:
6151         if (gro_list->count) {
6152                 if (!test_bit(bucket, &napi->gro_bitmask))
6153                         __set_bit(bucket, &napi->gro_bitmask);
6154         } else if (test_bit(bucket, &napi->gro_bitmask)) {
6155                 __clear_bit(bucket, &napi->gro_bitmask);
6156         }
6157
6158         return ret;
6159
6160 normal:
6161         ret = GRO_NORMAL;
6162         goto pull;
6163 }
6164
6165 struct packet_offload *gro_find_receive_by_type(__be16 type)
6166 {
6167         struct list_head *offload_head = &offload_base;
6168         struct packet_offload *ptype;
6169
6170         list_for_each_entry_rcu(ptype, offload_head, list) {
6171                 if (ptype->type != type || !ptype->callbacks.gro_receive)
6172                         continue;
6173                 return ptype;
6174         }
6175         return NULL;
6176 }
6177 EXPORT_SYMBOL(gro_find_receive_by_type);
6178
6179 struct packet_offload *gro_find_complete_by_type(__be16 type)
6180 {
6181         struct list_head *offload_head = &offload_base;
6182         struct packet_offload *ptype;
6183
6184         list_for_each_entry_rcu(ptype, offload_head, list) {
6185                 if (ptype->type != type || !ptype->callbacks.gro_complete)
6186                         continue;
6187                 return ptype;
6188         }
6189         return NULL;
6190 }
6191 EXPORT_SYMBOL(gro_find_complete_by_type);
6192
6193 static gro_result_t napi_skb_finish(struct napi_struct *napi,
6194                                     struct sk_buff *skb,
6195                                     gro_result_t ret)
6196 {
6197         switch (ret) {
6198         case GRO_NORMAL:
6199                 gro_normal_one(napi, skb, 1);
6200                 break;
6201
6202         case GRO_MERGED_FREE:
6203                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6204                         napi_skb_free_stolen_head(skb);
6205                 else if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
6206                         __kfree_skb(skb);
6207                 else
6208                         __kfree_skb_defer(skb);
6209                 break;
6210
6211         case GRO_HELD:
6212         case GRO_MERGED:
6213         case GRO_CONSUMED:
6214                 break;
6215         }
6216
6217         return ret;
6218 }
6219
6220 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6221 {
6222         gro_result_t ret;
6223
6224         skb_mark_napi_id(skb, napi);
6225         trace_napi_gro_receive_entry(skb);
6226
6227         skb_gro_reset_offset(skb, 0);
6228
6229         ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6230         trace_napi_gro_receive_exit(ret);
6231
6232         return ret;
6233 }
6234 EXPORT_SYMBOL(napi_gro_receive);
6235
6236 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6237 {
6238         if (unlikely(skb->pfmemalloc)) {
6239                 consume_skb(skb);
6240                 return;
6241         }
6242         __skb_pull(skb, skb_headlen(skb));
6243         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
6244         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6245         __vlan_hwaccel_clear_tag(skb);
6246         skb->dev = napi->dev;
6247         skb->skb_iif = 0;
6248
6249         /* eth_type_trans() assumes pkt_type is PACKET_HOST */
6250         skb->pkt_type = PACKET_HOST;
6251
6252         skb->encapsulation = 0;
6253         skb_shinfo(skb)->gso_type = 0;
6254         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6255         if (unlikely(skb->slow_gro)) {
6256                 skb_orphan(skb);
6257                 skb_ext_reset(skb);
6258                 nf_reset_ct(skb);
6259                 skb->slow_gro = 0;
6260         }
6261
6262         napi->skb = skb;
6263 }
6264
6265 struct sk_buff *napi_get_frags(struct napi_struct *napi)
6266 {
6267         struct sk_buff *skb = napi->skb;
6268
6269         if (!skb) {
6270                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6271                 if (skb) {
6272                         napi->skb = skb;
6273                         skb_mark_napi_id(skb, napi);
6274                 }
6275         }
6276         return skb;
6277 }
6278 EXPORT_SYMBOL(napi_get_frags);
6279
6280 static gro_result_t napi_frags_finish(struct napi_struct *napi,
6281                                       struct sk_buff *skb,
6282                                       gro_result_t ret)
6283 {
6284         switch (ret) {
6285         case GRO_NORMAL:
6286         case GRO_HELD:
6287                 __skb_push(skb, ETH_HLEN);
6288                 skb->protocol = eth_type_trans(skb, skb->dev);
6289                 if (ret == GRO_NORMAL)
6290                         gro_normal_one(napi, skb, 1);
6291                 break;
6292
6293         case GRO_MERGED_FREE:
6294                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6295                         napi_skb_free_stolen_head(skb);
6296                 else
6297                         napi_reuse_skb(napi, skb);
6298                 break;
6299
6300         case GRO_MERGED:
6301         case GRO_CONSUMED:
6302                 break;
6303         }
6304
6305         return ret;
6306 }
6307
6308 /* Upper GRO stack assumes network header starts at gro_offset=0
6309  * Drivers could call both napi_gro_frags() and napi_gro_receive()
6310  * We copy ethernet header into skb->data to have a common layout.
6311  */
6312 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6313 {
6314         struct sk_buff *skb = napi->skb;
6315         const struct ethhdr *eth;
6316         unsigned int hlen = sizeof(*eth);
6317
6318         napi->skb = NULL;
6319
6320         skb_reset_mac_header(skb);
6321         skb_gro_reset_offset(skb, hlen);
6322
6323         if (unlikely(skb_gro_header_hard(skb, hlen))) {
6324                 eth = skb_gro_header_slow(skb, hlen, 0);
6325                 if (unlikely(!eth)) {
6326                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6327                                              __func__, napi->dev->name);
6328                         napi_reuse_skb(napi, skb);
6329                         return NULL;
6330                 }
6331         } else {
6332                 eth = (const struct ethhdr *)skb->data;
6333                 gro_pull_from_frag0(skb, hlen);
6334                 NAPI_GRO_CB(skb)->frag0 += hlen;
6335                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
6336         }
6337         __skb_pull(skb, hlen);
6338
6339         /*
6340          * This works because the only protocols we care about don't require
6341          * special handling.
6342          * We'll fix it up properly in napi_frags_finish()
6343          */
6344         skb->protocol = eth->h_proto;
6345
6346         return skb;
6347 }
6348
6349 gro_result_t napi_gro_frags(struct napi_struct *napi)
6350 {
6351         gro_result_t ret;
6352         struct sk_buff *skb = napi_frags_skb(napi);
6353
6354         trace_napi_gro_frags_entry(skb);
6355
6356         ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6357         trace_napi_gro_frags_exit(ret);
6358
6359         return ret;
6360 }
6361 EXPORT_SYMBOL(napi_gro_frags);
6362
6363 /* Compute the checksum from gro_offset and return the folded value
6364  * after adding in any pseudo checksum.
6365  */
6366 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6367 {
6368         __wsum wsum;
6369         __sum16 sum;
6370
6371         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6372
6373         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6374         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6375         /* See comments in __skb_checksum_complete(). */
6376         if (likely(!sum)) {
6377                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6378                     !skb->csum_complete_sw)
6379                         netdev_rx_csum_fault(skb->dev, skb);
6380         }
6381
6382         NAPI_GRO_CB(skb)->csum = wsum;
6383         NAPI_GRO_CB(skb)->csum_valid = 1;
6384
6385         return sum;
6386 }
6387 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6388
6389 static void net_rps_send_ipi(struct softnet_data *remsd)
6390 {
6391 #ifdef CONFIG_RPS
6392         while (remsd) {
6393                 struct softnet_data *next = remsd->rps_ipi_next;
6394
6395                 if (cpu_online(remsd->cpu))
6396                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
6397                 remsd = next;
6398         }
6399 #endif
6400 }
6401
6402 /*
6403  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6404  * Note: called with local irq disabled, but exits with local irq enabled.
6405  */
6406 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6407 {
6408 #ifdef CONFIG_RPS
6409         struct softnet_data *remsd = sd->rps_ipi_list;
6410
6411         if (remsd) {
6412                 sd->rps_ipi_list = NULL;
6413
6414                 local_irq_enable();
6415
6416                 /* Send pending IPI's to kick RPS processing on remote cpus. */
6417                 net_rps_send_ipi(remsd);
6418         } else
6419 #endif
6420                 local_irq_enable();
6421 }
6422
6423 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6424 {
6425 #ifdef CONFIG_RPS
6426         return sd->rps_ipi_list != NULL;
6427 #else
6428         return false;
6429 #endif
6430 }
6431
6432 static int process_backlog(struct napi_struct *napi, int quota)
6433 {
6434         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6435         bool again = true;
6436         int work = 0;
6437
6438         /* Check if we have pending ipi, its better to send them now,
6439          * not waiting net_rx_action() end.
6440          */
6441         if (sd_has_rps_ipi_waiting(sd)) {
6442                 local_irq_disable();
6443                 net_rps_action_and_irq_enable(sd);
6444         }
6445
6446         napi->weight = dev_rx_weight;
6447         while (again) {
6448                 struct sk_buff *skb;
6449
6450                 while ((skb = __skb_dequeue(&sd->process_queue))) {
6451                         rcu_read_lock();
6452                         __netif_receive_skb(skb);
6453                         rcu_read_unlock();
6454                         input_queue_head_incr(sd);
6455                         if (++work >= quota)
6456                                 return work;
6457
6458                 }
6459
6460                 local_irq_disable();
6461                 rps_lock(sd);
6462                 if (skb_queue_empty(&sd->input_pkt_queue)) {
6463                         /*
6464                          * Inline a custom version of __napi_complete().
6465                          * only current cpu owns and manipulates this napi,
6466                          * and NAPI_STATE_SCHED is the only possible flag set
6467                          * on backlog.
6468                          * We can use a plain write instead of clear_bit(),
6469                          * and we dont need an smp_mb() memory barrier.
6470                          */
6471                         napi->state = 0;
6472                         again = false;
6473                 } else {
6474                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
6475                                                    &sd->process_queue);
6476                 }
6477                 rps_unlock(sd);
6478                 local_irq_enable();
6479         }
6480
6481         return work;
6482 }
6483
6484 /**
6485  * __napi_schedule - schedule for receive
6486  * @n: entry to schedule
6487  *
6488  * The entry's receive function will be scheduled to run.
6489  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6490  */
6491 void __napi_schedule(struct napi_struct *n)
6492 {
6493         unsigned long flags;
6494
6495         local_irq_save(flags);
6496         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6497         local_irq_restore(flags);
6498 }
6499 EXPORT_SYMBOL(__napi_schedule);
6500
6501 /**
6502  *      napi_schedule_prep - check if napi can be scheduled
6503  *      @n: napi context
6504  *
6505  * Test if NAPI routine is already running, and if not mark
6506  * it as running.  This is used as a condition variable to
6507  * insure only one NAPI poll instance runs.  We also make
6508  * sure there is no pending NAPI disable.
6509  */
6510 bool napi_schedule_prep(struct napi_struct *n)
6511 {
6512         unsigned long val, new;
6513
6514         do {
6515                 val = READ_ONCE(n->state);
6516                 if (unlikely(val & NAPIF_STATE_DISABLE))
6517                         return false;
6518                 new = val | NAPIF_STATE_SCHED;
6519
6520                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6521                  * This was suggested by Alexander Duyck, as compiler
6522                  * emits better code than :
6523                  * if (val & NAPIF_STATE_SCHED)
6524                  *     new |= NAPIF_STATE_MISSED;
6525                  */
6526                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6527                                                    NAPIF_STATE_MISSED;
6528         } while (cmpxchg(&n->state, val, new) != val);
6529
6530         return !(val & NAPIF_STATE_SCHED);
6531 }
6532 EXPORT_SYMBOL(napi_schedule_prep);
6533
6534 /**
6535  * __napi_schedule_irqoff - schedule for receive
6536  * @n: entry to schedule
6537  *
6538  * Variant of __napi_schedule() assuming hard irqs are masked.
6539  *
6540  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6541  * because the interrupt disabled assumption might not be true
6542  * due to force-threaded interrupts and spinlock substitution.
6543  */
6544 void __napi_schedule_irqoff(struct napi_struct *n)
6545 {
6546         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6547                 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6548         else
6549                 __napi_schedule(n);
6550 }
6551 EXPORT_SYMBOL(__napi_schedule_irqoff);
6552
6553 bool napi_complete_done(struct napi_struct *n, int work_done)
6554 {
6555         unsigned long flags, val, new, timeout = 0;
6556         bool ret = true;
6557
6558         /*
6559          * 1) Don't let napi dequeue from the cpu poll list
6560          *    just in case its running on a different cpu.
6561          * 2) If we are busy polling, do nothing here, we have
6562          *    the guarantee we will be called later.
6563          */
6564         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6565                                  NAPIF_STATE_IN_BUSY_POLL)))
6566                 return false;
6567
6568         if (work_done) {
6569                 if (n->gro_bitmask)
6570                         timeout = READ_ONCE(n->dev->gro_flush_timeout);
6571                 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6572         }
6573         if (n->defer_hard_irqs_count > 0) {
6574                 n->defer_hard_irqs_count--;
6575                 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6576                 if (timeout)
6577                         ret = false;
6578         }
6579         if (n->gro_bitmask) {
6580                 /* When the NAPI instance uses a timeout and keeps postponing
6581                  * it, we need to bound somehow the time packets are kept in
6582                  * the GRO layer
6583                  */
6584                 napi_gro_flush(n, !!timeout);
6585         }
6586
6587         gro_normal_list(n);
6588
6589         if (unlikely(!list_empty(&n->poll_list))) {
6590                 /* If n->poll_list is not empty, we need to mask irqs */
6591                 local_irq_save(flags);
6592                 list_del_init(&n->poll_list);
6593                 local_irq_restore(flags);
6594         }
6595
6596         do {
6597                 val = READ_ONCE(n->state);
6598
6599                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6600
6601                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6602                               NAPIF_STATE_SCHED_THREADED |
6603                               NAPIF_STATE_PREFER_BUSY_POLL);
6604
6605                 /* If STATE_MISSED was set, leave STATE_SCHED set,
6606                  * because we will call napi->poll() one more time.
6607                  * This C code was suggested by Alexander Duyck to help gcc.
6608                  */
6609                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6610                                                     NAPIF_STATE_SCHED;
6611         } while (cmpxchg(&n->state, val, new) != val);
6612
6613         if (unlikely(val & NAPIF_STATE_MISSED)) {
6614                 __napi_schedule(n);
6615                 return false;
6616         }
6617
6618         if (timeout)
6619                 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6620                               HRTIMER_MODE_REL_PINNED);
6621         return ret;
6622 }
6623 EXPORT_SYMBOL(napi_complete_done);
6624
6625 /* must be called under rcu_read_lock(), as we dont take a reference */
6626 static struct napi_struct *napi_by_id(unsigned int napi_id)
6627 {
6628         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6629         struct napi_struct *napi;
6630
6631         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6632                 if (napi->napi_id == napi_id)
6633                         return napi;
6634
6635         return NULL;
6636 }
6637
6638 #if defined(CONFIG_NET_RX_BUSY_POLL)
6639
6640 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6641 {
6642         if (!skip_schedule) {
6643                 gro_normal_list(napi);
6644                 __napi_schedule(napi);
6645                 return;
6646         }
6647
6648         if (napi->gro_bitmask) {
6649                 /* flush too old packets
6650                  * If HZ < 1000, flush all packets.
6651                  */
6652                 napi_gro_flush(napi, HZ >= 1000);
6653         }
6654
6655         gro_normal_list(napi);
6656         clear_bit(NAPI_STATE_SCHED, &napi->state);
6657 }
6658
6659 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6660                            u16 budget)
6661 {
6662         bool skip_schedule = false;
6663         unsigned long timeout;
6664         int rc;
6665
6666         /* Busy polling means there is a high chance device driver hard irq
6667          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6668          * set in napi_schedule_prep().
6669          * Since we are about to call napi->poll() once more, we can safely
6670          * clear NAPI_STATE_MISSED.
6671          *
6672          * Note: x86 could use a single "lock and ..." instruction
6673          * to perform these two clear_bit()
6674          */
6675         clear_bit(NAPI_STATE_MISSED, &napi->state);
6676         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6677
6678         local_bh_disable();
6679
6680         if (prefer_busy_poll) {
6681                 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6682                 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6683                 if (napi->defer_hard_irqs_count && timeout) {
6684                         hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6685                         skip_schedule = true;
6686                 }
6687         }
6688
6689         /* All we really want here is to re-enable device interrupts.
6690          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6691          */
6692         rc = napi->poll(napi, budget);
6693         /* We can't gro_normal_list() here, because napi->poll() might have
6694          * rearmed the napi (napi_complete_done()) in which case it could
6695          * already be running on another CPU.
6696          */
6697         trace_napi_poll(napi, rc, budget);
6698         netpoll_poll_unlock(have_poll_lock);
6699         if (rc == budget)
6700                 __busy_poll_stop(napi, skip_schedule);
6701         local_bh_enable();
6702 }
6703
6704 void napi_busy_loop(unsigned int napi_id,
6705                     bool (*loop_end)(void *, unsigned long),
6706                     void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6707 {
6708         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6709         int (*napi_poll)(struct napi_struct *napi, int budget);
6710         void *have_poll_lock = NULL;
6711         struct napi_struct *napi;
6712
6713 restart:
6714         napi_poll = NULL;
6715
6716         rcu_read_lock();
6717
6718         napi = napi_by_id(napi_id);
6719         if (!napi)
6720                 goto out;
6721
6722         preempt_disable();
6723         for (;;) {
6724                 int work = 0;
6725
6726                 local_bh_disable();
6727                 if (!napi_poll) {
6728                         unsigned long val = READ_ONCE(napi->state);
6729
6730                         /* If multiple threads are competing for this napi,
6731                          * we avoid dirtying napi->state as much as we can.
6732                          */
6733                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6734                                    NAPIF_STATE_IN_BUSY_POLL)) {
6735                                 if (prefer_busy_poll)
6736                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6737                                 goto count;
6738                         }
6739                         if (cmpxchg(&napi->state, val,
6740                                     val | NAPIF_STATE_IN_BUSY_POLL |
6741                                           NAPIF_STATE_SCHED) != val) {
6742                                 if (prefer_busy_poll)
6743                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6744                                 goto count;
6745                         }
6746                         have_poll_lock = netpoll_poll_lock(napi);
6747                         napi_poll = napi->poll;
6748                 }
6749                 work = napi_poll(napi, budget);
6750                 trace_napi_poll(napi, work, budget);
6751                 gro_normal_list(napi);
6752 count:
6753                 if (work > 0)
6754                         __NET_ADD_STATS(dev_net(napi->dev),
6755                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6756                 local_bh_enable();
6757
6758                 if (!loop_end || loop_end(loop_end_arg, start_time))
6759                         break;
6760
6761                 if (unlikely(need_resched())) {
6762                         if (napi_poll)
6763                                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6764                         preempt_enable();
6765                         rcu_read_unlock();
6766                         cond_resched();
6767                         if (loop_end(loop_end_arg, start_time))
6768                                 return;
6769                         goto restart;
6770                 }
6771                 cpu_relax();
6772         }
6773         if (napi_poll)
6774                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6775         preempt_enable();
6776 out:
6777         rcu_read_unlock();
6778 }
6779 EXPORT_SYMBOL(napi_busy_loop);
6780
6781 #endif /* CONFIG_NET_RX_BUSY_POLL */
6782
6783 static void napi_hash_add(struct napi_struct *napi)
6784 {
6785         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6786                 return;
6787
6788         spin_lock(&napi_hash_lock);
6789
6790         /* 0..NR_CPUS range is reserved for sender_cpu use */
6791         do {
6792                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6793                         napi_gen_id = MIN_NAPI_ID;
6794         } while (napi_by_id(napi_gen_id));
6795         napi->napi_id = napi_gen_id;
6796
6797         hlist_add_head_rcu(&napi->napi_hash_node,
6798                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6799
6800         spin_unlock(&napi_hash_lock);
6801 }
6802
6803 /* Warning : caller is responsible to make sure rcu grace period
6804  * is respected before freeing memory containing @napi
6805  */
6806 static void napi_hash_del(struct napi_struct *napi)
6807 {
6808         spin_lock(&napi_hash_lock);
6809
6810         hlist_del_init_rcu(&napi->napi_hash_node);
6811
6812         spin_unlock(&napi_hash_lock);
6813 }
6814
6815 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6816 {
6817         struct napi_struct *napi;
6818
6819         napi = container_of(timer, struct napi_struct, timer);
6820
6821         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6822          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6823          */
6824         if (!napi_disable_pending(napi) &&
6825             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6826                 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6827                 __napi_schedule_irqoff(napi);
6828         }
6829
6830         return HRTIMER_NORESTART;
6831 }
6832
6833 static void init_gro_hash(struct napi_struct *napi)
6834 {
6835         int i;
6836
6837         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6838                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6839                 napi->gro_hash[i].count = 0;
6840         }
6841         napi->gro_bitmask = 0;
6842 }
6843
6844 int dev_set_threaded(struct net_device *dev, bool threaded)
6845 {
6846         struct napi_struct *napi;
6847         int err = 0;
6848
6849         if (dev->threaded == threaded)
6850                 return 0;
6851
6852         if (threaded) {
6853                 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6854                         if (!napi->thread) {
6855                                 err = napi_kthread_create(napi);
6856                                 if (err) {
6857                                         threaded = false;
6858                                         break;
6859                                 }
6860                         }
6861                 }
6862         }
6863
6864         dev->threaded = threaded;
6865
6866         /* Make sure kthread is created before THREADED bit
6867          * is set.
6868          */
6869         smp_mb__before_atomic();
6870
6871         /* Setting/unsetting threaded mode on a napi might not immediately
6872          * take effect, if the current napi instance is actively being
6873          * polled. In this case, the switch between threaded mode and
6874          * softirq mode will happen in the next round of napi_schedule().
6875          * This should not cause hiccups/stalls to the live traffic.
6876          */
6877         list_for_each_entry(napi, &dev->napi_list, dev_list) {
6878                 if (threaded)
6879                         set_bit(NAPI_STATE_THREADED, &napi->state);
6880                 else
6881                         clear_bit(NAPI_STATE_THREADED, &napi->state);
6882         }
6883
6884         return err;
6885 }
6886 EXPORT_SYMBOL(dev_set_threaded);
6887
6888 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6889                     int (*poll)(struct napi_struct *, int), int weight)
6890 {
6891         if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6892                 return;
6893
6894         INIT_LIST_HEAD(&napi->poll_list);
6895         INIT_HLIST_NODE(&napi->napi_hash_node);
6896         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6897         napi->timer.function = napi_watchdog;
6898         init_gro_hash(napi);
6899         napi->skb = NULL;
6900         INIT_LIST_HEAD(&napi->rx_list);
6901         napi->rx_count = 0;
6902         napi->poll = poll;
6903         if (weight > NAPI_POLL_WEIGHT)
6904                 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6905                                 weight);
6906         napi->weight = weight;
6907         napi->dev = dev;
6908 #ifdef CONFIG_NETPOLL
6909         napi->poll_owner = -1;
6910 #endif
6911         set_bit(NAPI_STATE_SCHED, &napi->state);
6912         set_bit(NAPI_STATE_NPSVC, &napi->state);
6913         list_add_rcu(&napi->dev_list, &dev->napi_list);
6914         napi_hash_add(napi);
6915         /* Create kthread for this napi if dev->threaded is set.
6916          * Clear dev->threaded if kthread creation failed so that
6917          * threaded mode will not be enabled in napi_enable().
6918          */
6919         if (dev->threaded && napi_kthread_create(napi))
6920                 dev->threaded = 0;
6921 }
6922 EXPORT_SYMBOL(netif_napi_add);
6923
6924 void napi_disable(struct napi_struct *n)
6925 {
6926         unsigned long val, new;
6927
6928         might_sleep();
6929         set_bit(NAPI_STATE_DISABLE, &n->state);
6930
6931         for ( ; ; ) {
6932                 val = READ_ONCE(n->state);
6933                 if (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6934                         usleep_range(20, 200);
6935                         continue;
6936                 }
6937
6938                 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6939                 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6940
6941                 if (cmpxchg(&n->state, val, new) == val)
6942                         break;
6943         }
6944
6945         hrtimer_cancel(&n->timer);
6946
6947         clear_bit(NAPI_STATE_DISABLE, &n->state);
6948 }
6949 EXPORT_SYMBOL(napi_disable);
6950
6951 /**
6952  *      napi_enable - enable NAPI scheduling
6953  *      @n: NAPI context
6954  *
6955  * Resume NAPI from being scheduled on this context.
6956  * Must be paired with napi_disable.
6957  */
6958 void napi_enable(struct napi_struct *n)
6959 {
6960         unsigned long val, new;
6961
6962         do {
6963                 val = READ_ONCE(n->state);
6964                 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6965
6966                 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6967                 if (n->dev->threaded && n->thread)
6968                         new |= NAPIF_STATE_THREADED;
6969         } while (cmpxchg(&n->state, val, new) != val);
6970 }
6971 EXPORT_SYMBOL(napi_enable);
6972
6973 static void flush_gro_hash(struct napi_struct *napi)
6974 {
6975         int i;
6976
6977         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6978                 struct sk_buff *skb, *n;
6979
6980                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6981                         kfree_skb(skb);
6982                 napi->gro_hash[i].count = 0;
6983         }
6984 }
6985
6986 /* Must be called in process context */
6987 void __netif_napi_del(struct napi_struct *napi)
6988 {
6989         if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6990                 return;
6991
6992         napi_hash_del(napi);
6993         list_del_rcu(&napi->dev_list);
6994         napi_free_frags(napi);
6995
6996         flush_gro_hash(napi);
6997         napi->gro_bitmask = 0;
6998
6999         if (napi->thread) {
7000                 kthread_stop(napi->thread);
7001                 napi->thread = NULL;
7002         }
7003 }
7004 EXPORT_SYMBOL(__netif_napi_del);
7005
7006 static int __napi_poll(struct napi_struct *n, bool *repoll)
7007 {
7008         int work, weight;
7009
7010         weight = n->weight;
7011
7012         /* This NAPI_STATE_SCHED test is for avoiding a race
7013          * with netpoll's poll_napi().  Only the entity which
7014          * obtains the lock and sees NAPI_STATE_SCHED set will
7015          * actually make the ->poll() call.  Therefore we avoid
7016          * accidentally calling ->poll() when NAPI is not scheduled.
7017          */
7018         work = 0;
7019         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
7020                 work = n->poll(n, weight);
7021                 trace_napi_poll(n, work, weight);
7022         }
7023
7024         if (unlikely(work > weight))
7025                 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
7026                                 n->poll, work, weight);
7027
7028         if (likely(work < weight))
7029                 return work;
7030
7031         /* Drivers must not modify the NAPI state if they
7032          * consume the entire weight.  In such cases this code
7033          * still "owns" the NAPI instance and therefore can
7034          * move the instance around on the list at-will.
7035          */
7036         if (unlikely(napi_disable_pending(n))) {
7037                 napi_complete(n);
7038                 return work;
7039         }
7040
7041         /* The NAPI context has more processing work, but busy-polling
7042          * is preferred. Exit early.
7043          */
7044         if (napi_prefer_busy_poll(n)) {
7045                 if (napi_complete_done(n, work)) {
7046                         /* If timeout is not set, we need to make sure
7047                          * that the NAPI is re-scheduled.
7048                          */
7049                         napi_schedule(n);
7050                 }
7051                 return work;
7052         }
7053
7054         if (n->gro_bitmask) {
7055                 /* flush too old packets
7056                  * If HZ < 1000, flush all packets.
7057                  */
7058                 napi_gro_flush(n, HZ >= 1000);
7059         }
7060
7061         gro_normal_list(n);
7062
7063         /* Some drivers may have called napi_schedule
7064          * prior to exhausting their budget.
7065          */
7066         if (unlikely(!list_empty(&n->poll_list))) {
7067                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7068                              n->dev ? n->dev->name : "backlog");
7069                 return work;
7070         }
7071
7072         *repoll = true;
7073
7074         return work;
7075 }
7076
7077 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7078 {
7079         bool do_repoll = false;
7080         void *have;
7081         int work;
7082
7083         list_del_init(&n->poll_list);
7084
7085         have = netpoll_poll_lock(n);
7086
7087         work = __napi_poll(n, &do_repoll);
7088
7089         if (do_repoll)
7090                 list_add_tail(&n->poll_list, repoll);
7091
7092         netpoll_poll_unlock(have);
7093
7094         return work;
7095 }
7096
7097 static int napi_thread_wait(struct napi_struct *napi)
7098 {
7099         bool woken = false;
7100
7101         set_current_state(TASK_INTERRUPTIBLE);
7102
7103         while (!kthread_should_stop()) {
7104                 /* Testing SCHED_THREADED bit here to make sure the current
7105                  * kthread owns this napi and could poll on this napi.
7106                  * Testing SCHED bit is not enough because SCHED bit might be
7107                  * set by some other busy poll thread or by napi_disable().
7108                  */
7109                 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
7110                         WARN_ON(!list_empty(&napi->poll_list));
7111                         __set_current_state(TASK_RUNNING);
7112                         return 0;
7113                 }
7114
7115                 schedule();
7116                 /* woken being true indicates this thread owns this napi. */
7117                 woken = true;
7118                 set_current_state(TASK_INTERRUPTIBLE);
7119         }
7120         __set_current_state(TASK_RUNNING);
7121
7122         return -1;
7123 }
7124
7125 static int napi_threaded_poll(void *data)
7126 {
7127         struct napi_struct *napi = data;
7128         void *have;
7129
7130         while (!napi_thread_wait(napi)) {
7131                 for (;;) {
7132                         bool repoll = false;
7133
7134                         local_bh_disable();
7135
7136                         have = netpoll_poll_lock(napi);
7137                         __napi_poll(napi, &repoll);
7138                         netpoll_poll_unlock(have);
7139
7140                         local_bh_enable();
7141
7142                         if (!repoll)
7143                                 break;
7144
7145                         cond_resched();
7146                 }
7147         }
7148         return 0;
7149 }
7150
7151 static __latent_entropy void net_rx_action(struct softirq_action *h)
7152 {
7153         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7154         unsigned long time_limit = jiffies +
7155                 usecs_to_jiffies(netdev_budget_usecs);
7156         int budget = netdev_budget;
7157         LIST_HEAD(list);
7158         LIST_HEAD(repoll);
7159
7160         local_irq_disable();
7161         list_splice_init(&sd->poll_list, &list);
7162         local_irq_enable();
7163
7164         for (;;) {
7165                 struct napi_struct *n;
7166
7167                 if (list_empty(&list)) {
7168                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
7169                                 return;
7170                         break;
7171                 }
7172
7173                 n = list_first_entry(&list, struct napi_struct, poll_list);
7174                 budget -= napi_poll(n, &repoll);
7175
7176                 /* If softirq window is exhausted then punt.
7177                  * Allow this to run for 2 jiffies since which will allow
7178                  * an average latency of 1.5/HZ.
7179                  */
7180                 if (unlikely(budget <= 0 ||
7181                              time_after_eq(jiffies, time_limit))) {
7182                         sd->time_squeeze++;
7183                         break;
7184                 }
7185         }
7186
7187         local_irq_disable();
7188
7189         list_splice_tail_init(&sd->poll_list, &list);
7190         list_splice_tail(&repoll, &list);
7191         list_splice(&list, &sd->poll_list);
7192         if (!list_empty(&sd->poll_list))
7193                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
7194
7195         net_rps_action_and_irq_enable(sd);
7196 }
7197
7198 struct netdev_adjacent {
7199         struct net_device *dev;
7200
7201         /* upper master flag, there can only be one master device per list */
7202         bool master;
7203
7204         /* lookup ignore flag */
7205         bool ignore;
7206
7207         /* counter for the number of times this device was added to us */
7208         u16 ref_nr;
7209
7210         /* private field for the users */
7211         void *private;
7212
7213         struct list_head list;
7214         struct rcu_head rcu;
7215 };
7216
7217 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7218                                                  struct list_head *adj_list)
7219 {
7220         struct netdev_adjacent *adj;
7221
7222         list_for_each_entry(adj, adj_list, list) {
7223                 if (adj->dev == adj_dev)
7224                         return adj;
7225         }
7226         return NULL;
7227 }
7228
7229 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7230                                     struct netdev_nested_priv *priv)
7231 {
7232         struct net_device *dev = (struct net_device *)priv->data;
7233
7234         return upper_dev == dev;
7235 }
7236
7237 /**
7238  * netdev_has_upper_dev - Check if device is linked to an upper device
7239  * @dev: device
7240  * @upper_dev: upper device to check
7241  *
7242  * Find out if a device is linked to specified upper device and return true
7243  * in case it is. Note that this checks only immediate upper device,
7244  * not through a complete stack of devices. The caller must hold the RTNL lock.
7245  */
7246 bool netdev_has_upper_dev(struct net_device *dev,
7247                           struct net_device *upper_dev)
7248 {
7249         struct netdev_nested_priv priv = {
7250                 .data = (void *)upper_dev,
7251         };
7252
7253         ASSERT_RTNL();
7254
7255         return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7256                                              &priv);
7257 }
7258 EXPORT_SYMBOL(netdev_has_upper_dev);
7259
7260 /**
7261  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7262  * @dev: device
7263  * @upper_dev: upper device to check
7264  *
7265  * Find out if a device is linked to specified upper device and return true
7266  * in case it is. Note that this checks the entire upper device chain.
7267  * The caller must hold rcu lock.
7268  */
7269
7270 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7271                                   struct net_device *upper_dev)
7272 {
7273         struct netdev_nested_priv priv = {
7274                 .data = (void *)upper_dev,
7275         };
7276
7277         return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7278                                                &priv);
7279 }
7280 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7281
7282 /**
7283  * netdev_has_any_upper_dev - Check if device is linked to some device
7284  * @dev: device
7285  *
7286  * Find out if a device is linked to an upper device and return true in case
7287  * it is. The caller must hold the RTNL lock.
7288  */
7289 bool netdev_has_any_upper_dev(struct net_device *dev)
7290 {
7291         ASSERT_RTNL();
7292
7293         return !list_empty(&dev->adj_list.upper);
7294 }
7295 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7296
7297 /**
7298  * netdev_master_upper_dev_get - Get master upper device
7299  * @dev: device
7300  *
7301  * Find a master upper device and return pointer to it or NULL in case
7302  * it's not there. The caller must hold the RTNL lock.
7303  */
7304 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7305 {
7306         struct netdev_adjacent *upper;
7307
7308         ASSERT_RTNL();
7309
7310         if (list_empty(&dev->adj_list.upper))
7311                 return NULL;
7312
7313         upper = list_first_entry(&dev->adj_list.upper,
7314                                  struct netdev_adjacent, list);
7315         if (likely(upper->master))
7316                 return upper->dev;
7317         return NULL;
7318 }
7319 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7320
7321 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7322 {
7323         struct netdev_adjacent *upper;
7324
7325         ASSERT_RTNL();
7326
7327         if (list_empty(&dev->adj_list.upper))
7328                 return NULL;
7329
7330         upper = list_first_entry(&dev->adj_list.upper,
7331                                  struct netdev_adjacent, list);
7332         if (likely(upper->master) && !upper->ignore)
7333                 return upper->dev;
7334         return NULL;
7335 }
7336
7337 /**
7338  * netdev_has_any_lower_dev - Check if device is linked to some device
7339  * @dev: device
7340  *
7341  * Find out if a device is linked to a lower device and return true in case
7342  * it is. The caller must hold the RTNL lock.
7343  */
7344 static bool netdev_has_any_lower_dev(struct net_device *dev)
7345 {
7346         ASSERT_RTNL();
7347
7348         return !list_empty(&dev->adj_list.lower);
7349 }
7350
7351 void *netdev_adjacent_get_private(struct list_head *adj_list)
7352 {
7353         struct netdev_adjacent *adj;
7354
7355         adj = list_entry(adj_list, struct netdev_adjacent, list);
7356
7357         return adj->private;
7358 }
7359 EXPORT_SYMBOL(netdev_adjacent_get_private);
7360
7361 /**
7362  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7363  * @dev: device
7364  * @iter: list_head ** of the current position
7365  *
7366  * Gets the next device from the dev's upper list, starting from iter
7367  * position. The caller must hold RCU read lock.
7368  */
7369 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7370                                                  struct list_head **iter)
7371 {
7372         struct netdev_adjacent *upper;
7373
7374         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7375
7376         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7377
7378         if (&upper->list == &dev->adj_list.upper)
7379                 return NULL;
7380
7381         *iter = &upper->list;
7382
7383         return upper->dev;
7384 }
7385 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7386
7387 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7388                                                   struct list_head **iter,
7389                                                   bool *ignore)
7390 {
7391         struct netdev_adjacent *upper;
7392
7393         upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7394
7395         if (&upper->list == &dev->adj_list.upper)
7396                 return NULL;
7397
7398         *iter = &upper->list;
7399         *ignore = upper->ignore;
7400
7401         return upper->dev;
7402 }
7403
7404 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7405                                                     struct list_head **iter)
7406 {
7407         struct netdev_adjacent *upper;
7408
7409         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7410
7411         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7412
7413         if (&upper->list == &dev->adj_list.upper)
7414                 return NULL;
7415
7416         *iter = &upper->list;
7417
7418         return upper->dev;
7419 }
7420
7421 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7422                                        int (*fn)(struct net_device *dev,
7423                                          struct netdev_nested_priv *priv),
7424                                        struct netdev_nested_priv *priv)
7425 {
7426         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7427         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7428         int ret, cur = 0;
7429         bool ignore;
7430
7431         now = dev;
7432         iter = &dev->adj_list.upper;
7433
7434         while (1) {
7435                 if (now != dev) {
7436                         ret = fn(now, priv);
7437                         if (ret)
7438                                 return ret;
7439                 }
7440
7441                 next = NULL;
7442                 while (1) {
7443                         udev = __netdev_next_upper_dev(now, &iter, &ignore);
7444                         if (!udev)
7445                                 break;
7446                         if (ignore)
7447                                 continue;
7448
7449                         next = udev;
7450                         niter = &udev->adj_list.upper;
7451                         dev_stack[cur] = now;
7452                         iter_stack[cur++] = iter;
7453                         break;
7454                 }
7455
7456                 if (!next) {
7457                         if (!cur)
7458                                 return 0;
7459                         next = dev_stack[--cur];
7460                         niter = iter_stack[cur];
7461                 }
7462
7463                 now = next;
7464                 iter = niter;
7465         }
7466
7467         return 0;
7468 }
7469
7470 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7471                                   int (*fn)(struct net_device *dev,
7472                                             struct netdev_nested_priv *priv),
7473                                   struct netdev_nested_priv *priv)
7474 {
7475         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7476         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7477         int ret, cur = 0;
7478
7479         now = dev;
7480         iter = &dev->adj_list.upper;
7481
7482         while (1) {
7483                 if (now != dev) {
7484                         ret = fn(now, priv);
7485                         if (ret)
7486                                 return ret;
7487                 }
7488
7489                 next = NULL;
7490                 while (1) {
7491                         udev = netdev_next_upper_dev_rcu(now, &iter);
7492                         if (!udev)
7493                                 break;
7494
7495                         next = udev;
7496                         niter = &udev->adj_list.upper;
7497                         dev_stack[cur] = now;
7498                         iter_stack[cur++] = iter;
7499                         break;
7500                 }
7501
7502                 if (!next) {
7503                         if (!cur)
7504                                 return 0;
7505                         next = dev_stack[--cur];
7506                         niter = iter_stack[cur];
7507                 }
7508
7509                 now = next;
7510                 iter = niter;
7511         }
7512
7513         return 0;
7514 }
7515 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7516
7517 static bool __netdev_has_upper_dev(struct net_device *dev,
7518                                    struct net_device *upper_dev)
7519 {
7520         struct netdev_nested_priv priv = {
7521                 .flags = 0,
7522                 .data = (void *)upper_dev,
7523         };
7524
7525         ASSERT_RTNL();
7526
7527         return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7528                                            &priv);
7529 }
7530
7531 /**
7532  * netdev_lower_get_next_private - Get the next ->private from the
7533  *                                 lower neighbour list
7534  * @dev: device
7535  * @iter: list_head ** of the current position
7536  *
7537  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7538  * list, starting from iter position. The caller must hold either hold the
7539  * RTNL lock or its own locking that guarantees that the neighbour lower
7540  * list will remain unchanged.
7541  */
7542 void *netdev_lower_get_next_private(struct net_device *dev,
7543                                     struct list_head **iter)
7544 {
7545         struct netdev_adjacent *lower;
7546
7547         lower = list_entry(*iter, struct netdev_adjacent, list);
7548
7549         if (&lower->list == &dev->adj_list.lower)
7550                 return NULL;
7551
7552         *iter = lower->list.next;
7553
7554         return lower->private;
7555 }
7556 EXPORT_SYMBOL(netdev_lower_get_next_private);
7557
7558 /**
7559  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7560  *                                     lower neighbour list, RCU
7561  *                                     variant
7562  * @dev: device
7563  * @iter: list_head ** of the current position
7564  *
7565  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7566  * list, starting from iter position. The caller must hold RCU read lock.
7567  */
7568 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7569                                         struct list_head **iter)
7570 {
7571         struct netdev_adjacent *lower;
7572
7573         WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7574
7575         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7576
7577         if (&lower->list == &dev->adj_list.lower)
7578                 return NULL;
7579
7580         *iter = &lower->list;
7581
7582         return lower->private;
7583 }
7584 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7585
7586 /**
7587  * netdev_lower_get_next - Get the next device from the lower neighbour
7588  *                         list
7589  * @dev: device
7590  * @iter: list_head ** of the current position
7591  *
7592  * Gets the next netdev_adjacent from the dev's lower neighbour
7593  * list, starting from iter position. The caller must hold RTNL lock or
7594  * its own locking that guarantees that the neighbour lower
7595  * list will remain unchanged.
7596  */
7597 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7598 {
7599         struct netdev_adjacent *lower;
7600
7601         lower = list_entry(*iter, struct netdev_adjacent, list);
7602
7603         if (&lower->list == &dev->adj_list.lower)
7604                 return NULL;
7605
7606         *iter = lower->list.next;
7607
7608         return lower->dev;
7609 }
7610 EXPORT_SYMBOL(netdev_lower_get_next);
7611
7612 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7613                                                 struct list_head **iter)
7614 {
7615         struct netdev_adjacent *lower;
7616
7617         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7618
7619         if (&lower->list == &dev->adj_list.lower)
7620                 return NULL;
7621
7622         *iter = &lower->list;
7623
7624         return lower->dev;
7625 }
7626
7627 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7628                                                   struct list_head **iter,
7629                                                   bool *ignore)
7630 {
7631         struct netdev_adjacent *lower;
7632
7633         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7634
7635         if (&lower->list == &dev->adj_list.lower)
7636                 return NULL;
7637
7638         *iter = &lower->list;
7639         *ignore = lower->ignore;
7640
7641         return lower->dev;
7642 }
7643
7644 int netdev_walk_all_lower_dev(struct net_device *dev,
7645                               int (*fn)(struct net_device *dev,
7646                                         struct netdev_nested_priv *priv),
7647                               struct netdev_nested_priv *priv)
7648 {
7649         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7650         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7651         int ret, cur = 0;
7652
7653         now = dev;
7654         iter = &dev->adj_list.lower;
7655
7656         while (1) {
7657                 if (now != dev) {
7658                         ret = fn(now, priv);
7659                         if (ret)
7660                                 return ret;
7661                 }
7662
7663                 next = NULL;
7664                 while (1) {
7665                         ldev = netdev_next_lower_dev(now, &iter);
7666                         if (!ldev)
7667                                 break;
7668
7669                         next = ldev;
7670                         niter = &ldev->adj_list.lower;
7671                         dev_stack[cur] = now;
7672                         iter_stack[cur++] = iter;
7673                         break;
7674                 }
7675
7676                 if (!next) {
7677                         if (!cur)
7678                                 return 0;
7679                         next = dev_stack[--cur];
7680                         niter = iter_stack[cur];
7681                 }
7682
7683                 now = next;
7684                 iter = niter;
7685         }
7686
7687         return 0;
7688 }
7689 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7690
7691 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7692                                        int (*fn)(struct net_device *dev,
7693                                          struct netdev_nested_priv *priv),
7694                                        struct netdev_nested_priv *priv)
7695 {
7696         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7697         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7698         int ret, cur = 0;
7699         bool ignore;
7700
7701         now = dev;
7702         iter = &dev->adj_list.lower;
7703
7704         while (1) {
7705                 if (now != dev) {
7706                         ret = fn(now, priv);
7707                         if (ret)
7708                                 return ret;
7709                 }
7710
7711                 next = NULL;
7712                 while (1) {
7713                         ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7714                         if (!ldev)
7715                                 break;
7716                         if (ignore)
7717                                 continue;
7718
7719                         next = ldev;
7720                         niter = &ldev->adj_list.lower;
7721                         dev_stack[cur] = now;
7722                         iter_stack[cur++] = iter;
7723                         break;
7724                 }
7725
7726                 if (!next) {
7727                         if (!cur)
7728                                 return 0;
7729                         next = dev_stack[--cur];
7730                         niter = iter_stack[cur];
7731                 }
7732
7733                 now = next;
7734                 iter = niter;
7735         }
7736
7737         return 0;
7738 }
7739
7740 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7741                                              struct list_head **iter)
7742 {
7743         struct netdev_adjacent *lower;
7744
7745         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7746         if (&lower->list == &dev->adj_list.lower)
7747                 return NULL;
7748
7749         *iter = &lower->list;
7750
7751         return lower->dev;
7752 }
7753 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7754
7755 static u8 __netdev_upper_depth(struct net_device *dev)
7756 {
7757         struct net_device *udev;
7758         struct list_head *iter;
7759         u8 max_depth = 0;
7760         bool ignore;
7761
7762         for (iter = &dev->adj_list.upper,
7763              udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7764              udev;
7765              udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7766                 if (ignore)
7767                         continue;
7768                 if (max_depth < udev->upper_level)
7769                         max_depth = udev->upper_level;
7770         }
7771
7772         return max_depth;
7773 }
7774
7775 static u8 __netdev_lower_depth(struct net_device *dev)
7776 {
7777         struct net_device *ldev;
7778         struct list_head *iter;
7779         u8 max_depth = 0;
7780         bool ignore;
7781
7782         for (iter = &dev->adj_list.lower,
7783              ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7784              ldev;
7785              ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7786                 if (ignore)
7787                         continue;
7788                 if (max_depth < ldev->lower_level)
7789                         max_depth = ldev->lower_level;
7790         }
7791
7792         return max_depth;
7793 }
7794
7795 static int __netdev_update_upper_level(struct net_device *dev,
7796                                        struct netdev_nested_priv *__unused)
7797 {
7798         dev->upper_level = __netdev_upper_depth(dev) + 1;
7799         return 0;
7800 }
7801
7802 static int __netdev_update_lower_level(struct net_device *dev,
7803                                        struct netdev_nested_priv *priv)
7804 {
7805         dev->lower_level = __netdev_lower_depth(dev) + 1;
7806
7807 #ifdef CONFIG_LOCKDEP
7808         if (!priv)
7809                 return 0;
7810
7811         if (priv->flags & NESTED_SYNC_IMM)
7812                 dev->nested_level = dev->lower_level - 1;
7813         if (priv->flags & NESTED_SYNC_TODO)
7814                 net_unlink_todo(dev);
7815 #endif
7816         return 0;
7817 }
7818
7819 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7820                                   int (*fn)(struct net_device *dev,
7821                                             struct netdev_nested_priv *priv),
7822                                   struct netdev_nested_priv *priv)
7823 {
7824         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7825         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7826         int ret, cur = 0;
7827
7828         now = dev;
7829         iter = &dev->adj_list.lower;
7830
7831         while (1) {
7832                 if (now != dev) {
7833                         ret = fn(now, priv);
7834                         if (ret)
7835                                 return ret;
7836                 }
7837
7838                 next = NULL;
7839                 while (1) {
7840                         ldev = netdev_next_lower_dev_rcu(now, &iter);
7841                         if (!ldev)
7842                                 break;
7843
7844                         next = ldev;
7845                         niter = &ldev->adj_list.lower;
7846                         dev_stack[cur] = now;
7847                         iter_stack[cur++] = iter;
7848                         break;
7849                 }
7850
7851                 if (!next) {
7852                         if (!cur)
7853                                 return 0;
7854                         next = dev_stack[--cur];
7855                         niter = iter_stack[cur];
7856                 }
7857
7858                 now = next;
7859                 iter = niter;
7860         }
7861
7862         return 0;
7863 }
7864 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7865
7866 /**
7867  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7868  *                                     lower neighbour list, RCU
7869  *                                     variant
7870  * @dev: device
7871  *
7872  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7873  * list. The caller must hold RCU read lock.
7874  */
7875 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7876 {
7877         struct netdev_adjacent *lower;
7878
7879         lower = list_first_or_null_rcu(&dev->adj_list.lower,
7880                         struct netdev_adjacent, list);
7881         if (lower)
7882                 return lower->private;
7883         return NULL;
7884 }
7885 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7886
7887 /**
7888  * netdev_master_upper_dev_get_rcu - Get master upper device
7889  * @dev: device
7890  *
7891  * Find a master upper device and return pointer to it or NULL in case
7892  * it's not there. The caller must hold the RCU read lock.
7893  */
7894 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7895 {
7896         struct netdev_adjacent *upper;
7897
7898         upper = list_first_or_null_rcu(&dev->adj_list.upper,
7899                                        struct netdev_adjacent, list);
7900         if (upper && likely(upper->master))
7901                 return upper->dev;
7902         return NULL;
7903 }
7904 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7905
7906 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7907                               struct net_device *adj_dev,
7908                               struct list_head *dev_list)
7909 {
7910         char linkname[IFNAMSIZ+7];
7911
7912         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7913                 "upper_%s" : "lower_%s", adj_dev->name);
7914         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7915                                  linkname);
7916 }
7917 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7918                                char *name,
7919                                struct list_head *dev_list)
7920 {
7921         char linkname[IFNAMSIZ+7];
7922
7923         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7924                 "upper_%s" : "lower_%s", name);
7925         sysfs_remove_link(&(dev->dev.kobj), linkname);
7926 }
7927
7928 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7929                                                  struct net_device *adj_dev,
7930                                                  struct list_head *dev_list)
7931 {
7932         return (dev_list == &dev->adj_list.upper ||
7933                 dev_list == &dev->adj_list.lower) &&
7934                 net_eq(dev_net(dev), dev_net(adj_dev));
7935 }
7936
7937 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7938                                         struct net_device *adj_dev,
7939                                         struct list_head *dev_list,
7940                                         void *private, bool master)
7941 {
7942         struct netdev_adjacent *adj;
7943         int ret;
7944
7945         adj = __netdev_find_adj(adj_dev, dev_list);
7946
7947         if (adj) {
7948                 adj->ref_nr += 1;
7949                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7950                          dev->name, adj_dev->name, adj->ref_nr);
7951
7952                 return 0;
7953         }
7954
7955         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7956         if (!adj)
7957                 return -ENOMEM;
7958
7959         adj->dev = adj_dev;
7960         adj->master = master;
7961         adj->ref_nr = 1;
7962         adj->private = private;
7963         adj->ignore = false;
7964         dev_hold(adj_dev);
7965
7966         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7967                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7968
7969         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7970                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7971                 if (ret)
7972                         goto free_adj;
7973         }
7974
7975         /* Ensure that master link is always the first item in list. */
7976         if (master) {
7977                 ret = sysfs_create_link(&(dev->dev.kobj),
7978                                         &(adj_dev->dev.kobj), "master");
7979                 if (ret)
7980                         goto remove_symlinks;
7981
7982                 list_add_rcu(&adj->list, dev_list);
7983         } else {
7984                 list_add_tail_rcu(&adj->list, dev_list);
7985         }
7986
7987         return 0;
7988
7989 remove_symlinks:
7990         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7991                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7992 free_adj:
7993         kfree(adj);
7994         dev_put(adj_dev);
7995
7996         return ret;
7997 }
7998
7999 static void __netdev_adjacent_dev_remove(struct net_device *dev,
8000                                          struct net_device *adj_dev,
8001                                          u16 ref_nr,
8002                                          struct list_head *dev_list)
8003 {
8004         struct netdev_adjacent *adj;
8005
8006         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
8007                  dev->name, adj_dev->name, ref_nr);
8008
8009         adj = __netdev_find_adj(adj_dev, dev_list);
8010
8011         if (!adj) {
8012                 pr_err("Adjacency does not exist for device %s from %s\n",
8013                        dev->name, adj_dev->name);
8014                 WARN_ON(1);
8015                 return;
8016         }
8017
8018         if (adj->ref_nr > ref_nr) {
8019                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
8020                          dev->name, adj_dev->name, ref_nr,
8021                          adj->ref_nr - ref_nr);
8022                 adj->ref_nr -= ref_nr;
8023                 return;
8024         }
8025
8026         if (adj->master)
8027                 sysfs_remove_link(&(dev->dev.kobj), "master");
8028
8029         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8030                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8031
8032         list_del_rcu(&adj->list);
8033         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
8034                  adj_dev->name, dev->name, adj_dev->name);
8035         dev_put(adj_dev);
8036         kfree_rcu(adj, rcu);
8037 }
8038
8039 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
8040                                             struct net_device *upper_dev,
8041                                             struct list_head *up_list,
8042                                             struct list_head *down_list,
8043                                             void *private, bool master)
8044 {
8045         int ret;
8046
8047         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
8048                                            private, master);
8049         if (ret)
8050                 return ret;
8051
8052         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
8053                                            private, false);
8054         if (ret) {
8055                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
8056                 return ret;
8057         }
8058
8059         return 0;
8060 }
8061
8062 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8063                                                struct net_device *upper_dev,
8064                                                u16 ref_nr,
8065                                                struct list_head *up_list,
8066                                                struct list_head *down_list)
8067 {
8068         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8069         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8070 }
8071
8072 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8073                                                 struct net_device *upper_dev,
8074                                                 void *private, bool master)
8075 {
8076         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8077                                                 &dev->adj_list.upper,
8078                                                 &upper_dev->adj_list.lower,
8079                                                 private, master);
8080 }
8081
8082 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8083                                                    struct net_device *upper_dev)
8084 {
8085         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8086                                            &dev->adj_list.upper,
8087                                            &upper_dev->adj_list.lower);
8088 }
8089
8090 static int __netdev_upper_dev_link(struct net_device *dev,
8091                                    struct net_device *upper_dev, bool master,
8092                                    void *upper_priv, void *upper_info,
8093                                    struct netdev_nested_priv *priv,
8094                                    struct netlink_ext_ack *extack)
8095 {
8096         struct netdev_notifier_changeupper_info changeupper_info = {
8097                 .info = {
8098                         .dev = dev,
8099                         .extack = extack,
8100                 },
8101                 .upper_dev = upper_dev,
8102                 .master = master,
8103                 .linking = true,
8104                 .upper_info = upper_info,
8105         };
8106         struct net_device *master_dev;
8107         int ret = 0;
8108
8109         ASSERT_RTNL();
8110
8111         if (dev == upper_dev)
8112                 return -EBUSY;
8113
8114         /* To prevent loops, check if dev is not upper device to upper_dev. */
8115         if (__netdev_has_upper_dev(upper_dev, dev))
8116                 return -EBUSY;
8117
8118         if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8119                 return -EMLINK;
8120
8121         if (!master) {
8122                 if (__netdev_has_upper_dev(dev, upper_dev))
8123                         return -EEXIST;
8124         } else {
8125                 master_dev = __netdev_master_upper_dev_get(dev);
8126                 if (master_dev)
8127                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
8128         }
8129
8130         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8131                                             &changeupper_info.info);
8132         ret = notifier_to_errno(ret);
8133         if (ret)
8134                 return ret;
8135
8136         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8137                                                    master);
8138         if (ret)
8139                 return ret;
8140
8141         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8142                                             &changeupper_info.info);
8143         ret = notifier_to_errno(ret);
8144         if (ret)
8145                 goto rollback;
8146
8147         __netdev_update_upper_level(dev, NULL);
8148         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8149
8150         __netdev_update_lower_level(upper_dev, priv);
8151         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8152                                     priv);
8153
8154         return 0;
8155
8156 rollback:
8157         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8158
8159         return ret;
8160 }
8161
8162 /**
8163  * netdev_upper_dev_link - Add a link to the upper device
8164  * @dev: device
8165  * @upper_dev: new upper device
8166  * @extack: netlink extended ack
8167  *
8168  * Adds a link to device which is upper to this one. The caller must hold
8169  * the RTNL lock. On a failure a negative errno code is returned.
8170  * On success the reference counts are adjusted and the function
8171  * returns zero.
8172  */
8173 int netdev_upper_dev_link(struct net_device *dev,
8174                           struct net_device *upper_dev,
8175                           struct netlink_ext_ack *extack)
8176 {
8177         struct netdev_nested_priv priv = {
8178                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8179                 .data = NULL,
8180         };
8181
8182         return __netdev_upper_dev_link(dev, upper_dev, false,
8183                                        NULL, NULL, &priv, extack);
8184 }
8185 EXPORT_SYMBOL(netdev_upper_dev_link);
8186
8187 /**
8188  * netdev_master_upper_dev_link - Add a master link to the upper device
8189  * @dev: device
8190  * @upper_dev: new upper device
8191  * @upper_priv: upper device private
8192  * @upper_info: upper info to be passed down via notifier
8193  * @extack: netlink extended ack
8194  *
8195  * Adds a link to device which is upper to this one. In this case, only
8196  * one master upper device can be linked, although other non-master devices
8197  * might be linked as well. The caller must hold the RTNL lock.
8198  * On a failure a negative errno code is returned. On success the reference
8199  * counts are adjusted and the function returns zero.
8200  */
8201 int netdev_master_upper_dev_link(struct net_device *dev,
8202                                  struct net_device *upper_dev,
8203                                  void *upper_priv, void *upper_info,
8204                                  struct netlink_ext_ack *extack)
8205 {
8206         struct netdev_nested_priv priv = {
8207                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8208                 .data = NULL,
8209         };
8210
8211         return __netdev_upper_dev_link(dev, upper_dev, true,
8212                                        upper_priv, upper_info, &priv, extack);
8213 }
8214 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8215
8216 static void __netdev_upper_dev_unlink(struct net_device *dev,
8217                                       struct net_device *upper_dev,
8218                                       struct netdev_nested_priv *priv)
8219 {
8220         struct netdev_notifier_changeupper_info changeupper_info = {
8221                 .info = {
8222                         .dev = dev,
8223                 },
8224                 .upper_dev = upper_dev,
8225                 .linking = false,
8226         };
8227
8228         ASSERT_RTNL();
8229
8230         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8231
8232         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8233                                       &changeupper_info.info);
8234
8235         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8236
8237         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8238                                       &changeupper_info.info);
8239
8240         __netdev_update_upper_level(dev, NULL);
8241         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8242
8243         __netdev_update_lower_level(upper_dev, priv);
8244         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8245                                     priv);
8246 }
8247
8248 /**
8249  * netdev_upper_dev_unlink - Removes a link to upper device
8250  * @dev: device
8251  * @upper_dev: new upper device
8252  *
8253  * Removes a link to device which is upper to this one. The caller must hold
8254  * the RTNL lock.
8255  */
8256 void netdev_upper_dev_unlink(struct net_device *dev,
8257                              struct net_device *upper_dev)
8258 {
8259         struct netdev_nested_priv priv = {
8260                 .flags = NESTED_SYNC_TODO,
8261                 .data = NULL,
8262         };
8263
8264         __netdev_upper_dev_unlink(dev, upper_dev, &priv);
8265 }
8266 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8267
8268 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8269                                       struct net_device *lower_dev,
8270                                       bool val)
8271 {
8272         struct netdev_adjacent *adj;
8273
8274         adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8275         if (adj)
8276                 adj->ignore = val;
8277
8278         adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8279         if (adj)
8280                 adj->ignore = val;
8281 }
8282
8283 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8284                                         struct net_device *lower_dev)
8285 {
8286         __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8287 }
8288
8289 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8290                                        struct net_device *lower_dev)
8291 {
8292         __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8293 }
8294
8295 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8296                                    struct net_device *new_dev,
8297                                    struct net_device *dev,
8298                                    struct netlink_ext_ack *extack)
8299 {
8300         struct netdev_nested_priv priv = {
8301                 .flags = 0,
8302                 .data = NULL,
8303         };
8304         int err;
8305
8306         if (!new_dev)
8307                 return 0;
8308
8309         if (old_dev && new_dev != old_dev)
8310                 netdev_adjacent_dev_disable(dev, old_dev);
8311         err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8312                                       extack);
8313         if (err) {
8314                 if (old_dev && new_dev != old_dev)
8315                         netdev_adjacent_dev_enable(dev, old_dev);
8316                 return err;
8317         }
8318
8319         return 0;
8320 }
8321 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8322
8323 void netdev_adjacent_change_commit(struct net_device *old_dev,
8324                                    struct net_device *new_dev,
8325                                    struct net_device *dev)
8326 {
8327         struct netdev_nested_priv priv = {
8328                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8329                 .data = NULL,
8330         };
8331
8332         if (!new_dev || !old_dev)
8333                 return;
8334
8335         if (new_dev == old_dev)
8336                 return;
8337
8338         netdev_adjacent_dev_enable(dev, old_dev);
8339         __netdev_upper_dev_unlink(old_dev, dev, &priv);
8340 }
8341 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8342
8343 void netdev_adjacent_change_abort(struct net_device *old_dev,
8344                                   struct net_device *new_dev,
8345                                   struct net_device *dev)
8346 {
8347         struct netdev_nested_priv priv = {
8348                 .flags = 0,
8349                 .data = NULL,
8350         };
8351
8352         if (!new_dev)
8353                 return;
8354
8355         if (old_dev && new_dev != old_dev)
8356                 netdev_adjacent_dev_enable(dev, old_dev);
8357
8358         __netdev_upper_dev_unlink(new_dev, dev, &priv);
8359 }
8360 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8361
8362 /**
8363  * netdev_bonding_info_change - Dispatch event about slave change
8364  * @dev: device
8365  * @bonding_info: info to dispatch
8366  *
8367  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8368  * The caller must hold the RTNL lock.
8369  */
8370 void netdev_bonding_info_change(struct net_device *dev,
8371                                 struct netdev_bonding_info *bonding_info)
8372 {
8373         struct netdev_notifier_bonding_info info = {
8374                 .info.dev = dev,
8375         };
8376
8377         memcpy(&info.bonding_info, bonding_info,
8378                sizeof(struct netdev_bonding_info));
8379         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8380                                       &info.info);
8381 }
8382 EXPORT_SYMBOL(netdev_bonding_info_change);
8383
8384 /**
8385  * netdev_get_xmit_slave - Get the xmit slave of master device
8386  * @dev: device
8387  * @skb: The packet
8388  * @all_slaves: assume all the slaves are active
8389  *
8390  * The reference counters are not incremented so the caller must be
8391  * careful with locks. The caller must hold RCU lock.
8392  * %NULL is returned if no slave is found.
8393  */
8394
8395 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8396                                          struct sk_buff *skb,
8397                                          bool all_slaves)
8398 {
8399         const struct net_device_ops *ops = dev->netdev_ops;
8400
8401         if (!ops->ndo_get_xmit_slave)
8402                 return NULL;
8403         return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8404 }
8405 EXPORT_SYMBOL(netdev_get_xmit_slave);
8406
8407 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8408                                                   struct sock *sk)
8409 {
8410         const struct net_device_ops *ops = dev->netdev_ops;
8411
8412         if (!ops->ndo_sk_get_lower_dev)
8413                 return NULL;
8414         return ops->ndo_sk_get_lower_dev(dev, sk);
8415 }
8416
8417 /**
8418  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8419  * @dev: device
8420  * @sk: the socket
8421  *
8422  * %NULL is returned if no lower device is found.
8423  */
8424
8425 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8426                                             struct sock *sk)
8427 {
8428         struct net_device *lower;
8429
8430         lower = netdev_sk_get_lower_dev(dev, sk);
8431         while (lower) {
8432                 dev = lower;
8433                 lower = netdev_sk_get_lower_dev(dev, sk);
8434         }
8435
8436         return dev;
8437 }
8438 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8439
8440 static void netdev_adjacent_add_links(struct net_device *dev)
8441 {
8442         struct netdev_adjacent *iter;
8443
8444         struct net *net = dev_net(dev);
8445
8446         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8447                 if (!net_eq(net, dev_net(iter->dev)))
8448                         continue;
8449                 netdev_adjacent_sysfs_add(iter->dev, dev,
8450                                           &iter->dev->adj_list.lower);
8451                 netdev_adjacent_sysfs_add(dev, iter->dev,
8452                                           &dev->adj_list.upper);
8453         }
8454
8455         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8456                 if (!net_eq(net, dev_net(iter->dev)))
8457                         continue;
8458                 netdev_adjacent_sysfs_add(iter->dev, dev,
8459                                           &iter->dev->adj_list.upper);
8460                 netdev_adjacent_sysfs_add(dev, iter->dev,
8461                                           &dev->adj_list.lower);
8462         }
8463 }
8464
8465 static void netdev_adjacent_del_links(struct net_device *dev)
8466 {
8467         struct netdev_adjacent *iter;
8468
8469         struct net *net = dev_net(dev);
8470
8471         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8472                 if (!net_eq(net, dev_net(iter->dev)))
8473                         continue;
8474                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8475                                           &iter->dev->adj_list.lower);
8476                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8477                                           &dev->adj_list.upper);
8478         }
8479
8480         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8481                 if (!net_eq(net, dev_net(iter->dev)))
8482                         continue;
8483                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8484                                           &iter->dev->adj_list.upper);
8485                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8486                                           &dev->adj_list.lower);
8487         }
8488 }
8489
8490 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8491 {
8492         struct netdev_adjacent *iter;
8493
8494         struct net *net = dev_net(dev);
8495
8496         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8497                 if (!net_eq(net, dev_net(iter->dev)))
8498                         continue;
8499                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8500                                           &iter->dev->adj_list.lower);
8501                 netdev_adjacent_sysfs_add(iter->dev, dev,
8502                                           &iter->dev->adj_list.lower);
8503         }
8504
8505         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8506                 if (!net_eq(net, dev_net(iter->dev)))
8507                         continue;
8508                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8509                                           &iter->dev->adj_list.upper);
8510                 netdev_adjacent_sysfs_add(iter->dev, dev,
8511                                           &iter->dev->adj_list.upper);
8512         }
8513 }
8514
8515 void *netdev_lower_dev_get_private(struct net_device *dev,
8516                                    struct net_device *lower_dev)
8517 {
8518         struct netdev_adjacent *lower;
8519
8520         if (!lower_dev)
8521                 return NULL;
8522         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8523         if (!lower)
8524                 return NULL;
8525
8526         return lower->private;
8527 }
8528 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8529
8530
8531 /**
8532  * netdev_lower_state_changed - Dispatch event about lower device state change
8533  * @lower_dev: device
8534  * @lower_state_info: state to dispatch
8535  *
8536  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8537  * The caller must hold the RTNL lock.
8538  */
8539 void netdev_lower_state_changed(struct net_device *lower_dev,
8540                                 void *lower_state_info)
8541 {
8542         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8543                 .info.dev = lower_dev,
8544         };
8545
8546         ASSERT_RTNL();
8547         changelowerstate_info.lower_state_info = lower_state_info;
8548         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8549                                       &changelowerstate_info.info);
8550 }
8551 EXPORT_SYMBOL(netdev_lower_state_changed);
8552
8553 static void dev_change_rx_flags(struct net_device *dev, int flags)
8554 {
8555         const struct net_device_ops *ops = dev->netdev_ops;
8556
8557         if (ops->ndo_change_rx_flags)
8558                 ops->ndo_change_rx_flags(dev, flags);
8559 }
8560
8561 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8562 {
8563         unsigned int old_flags = dev->flags;
8564         kuid_t uid;
8565         kgid_t gid;
8566
8567         ASSERT_RTNL();
8568
8569         dev->flags |= IFF_PROMISC;
8570         dev->promiscuity += inc;
8571         if (dev->promiscuity == 0) {
8572                 /*
8573                  * Avoid overflow.
8574                  * If inc causes overflow, untouch promisc and return error.
8575                  */
8576                 if (inc < 0)
8577                         dev->flags &= ~IFF_PROMISC;
8578                 else {
8579                         dev->promiscuity -= inc;
8580                         netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8581                         return -EOVERFLOW;
8582                 }
8583         }
8584         if (dev->flags != old_flags) {
8585                 pr_info("device %s %s promiscuous mode\n",
8586                         dev->name,
8587                         dev->flags & IFF_PROMISC ? "entered" : "left");
8588                 if (audit_enabled) {
8589                         current_uid_gid(&uid, &gid);
8590                         audit_log(audit_context(), GFP_ATOMIC,
8591                                   AUDIT_ANOM_PROMISCUOUS,
8592                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8593                                   dev->name, (dev->flags & IFF_PROMISC),
8594                                   (old_flags & IFF_PROMISC),
8595                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
8596                                   from_kuid(&init_user_ns, uid),
8597                                   from_kgid(&init_user_ns, gid),
8598                                   audit_get_sessionid(current));
8599                 }
8600
8601                 dev_change_rx_flags(dev, IFF_PROMISC);
8602         }
8603         if (notify)
8604                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
8605         return 0;
8606 }
8607
8608 /**
8609  *      dev_set_promiscuity     - update promiscuity count on a device
8610  *      @dev: device
8611  *      @inc: modifier
8612  *
8613  *      Add or remove promiscuity from a device. While the count in the device
8614  *      remains above zero the interface remains promiscuous. Once it hits zero
8615  *      the device reverts back to normal filtering operation. A negative inc
8616  *      value is used to drop promiscuity on the device.
8617  *      Return 0 if successful or a negative errno code on error.
8618  */
8619 int dev_set_promiscuity(struct net_device *dev, int inc)
8620 {
8621         unsigned int old_flags = dev->flags;
8622         int err;
8623
8624         err = __dev_set_promiscuity(dev, inc, true);
8625         if (err < 0)
8626                 return err;
8627         if (dev->flags != old_flags)
8628                 dev_set_rx_mode(dev);
8629         return err;
8630 }
8631 EXPORT_SYMBOL(dev_set_promiscuity);
8632
8633 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8634 {
8635         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8636
8637         ASSERT_RTNL();
8638
8639         dev->flags |= IFF_ALLMULTI;
8640         dev->allmulti += inc;
8641         if (dev->allmulti == 0) {
8642                 /*
8643                  * Avoid overflow.
8644                  * If inc causes overflow, untouch allmulti and return error.
8645                  */
8646                 if (inc < 0)
8647                         dev->flags &= ~IFF_ALLMULTI;
8648                 else {
8649                         dev->allmulti -= inc;
8650                         netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8651                         return -EOVERFLOW;
8652                 }
8653         }
8654         if (dev->flags ^ old_flags) {
8655                 dev_change_rx_flags(dev, IFF_ALLMULTI);
8656                 dev_set_rx_mode(dev);
8657                 if (notify)
8658                         __dev_notify_flags(dev, old_flags,
8659                                            dev->gflags ^ old_gflags);
8660         }
8661         return 0;
8662 }
8663
8664 /**
8665  *      dev_set_allmulti        - update allmulti count on a device
8666  *      @dev: device
8667  *      @inc: modifier
8668  *
8669  *      Add or remove reception of all multicast frames to a device. While the
8670  *      count in the device remains above zero the interface remains listening
8671  *      to all interfaces. Once it hits zero the device reverts back to normal
8672  *      filtering operation. A negative @inc value is used to drop the counter
8673  *      when releasing a resource needing all multicasts.
8674  *      Return 0 if successful or a negative errno code on error.
8675  */
8676
8677 int dev_set_allmulti(struct net_device *dev, int inc)
8678 {
8679         return __dev_set_allmulti(dev, inc, true);
8680 }
8681 EXPORT_SYMBOL(dev_set_allmulti);
8682
8683 /*
8684  *      Upload unicast and multicast address lists to device and
8685  *      configure RX filtering. When the device doesn't support unicast
8686  *      filtering it is put in promiscuous mode while unicast addresses
8687  *      are present.
8688  */
8689 void __dev_set_rx_mode(struct net_device *dev)
8690 {
8691         const struct net_device_ops *ops = dev->netdev_ops;
8692
8693         /* dev_open will call this function so the list will stay sane. */
8694         if (!(dev->flags&IFF_UP))
8695                 return;
8696
8697         if (!netif_device_present(dev))
8698                 return;
8699
8700         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8701                 /* Unicast addresses changes may only happen under the rtnl,
8702                  * therefore calling __dev_set_promiscuity here is safe.
8703                  */
8704                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8705                         __dev_set_promiscuity(dev, 1, false);
8706                         dev->uc_promisc = true;
8707                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8708                         __dev_set_promiscuity(dev, -1, false);
8709                         dev->uc_promisc = false;
8710                 }
8711         }
8712
8713         if (ops->ndo_set_rx_mode)
8714                 ops->ndo_set_rx_mode(dev);
8715 }
8716
8717 void dev_set_rx_mode(struct net_device *dev)
8718 {
8719         netif_addr_lock_bh(dev);
8720         __dev_set_rx_mode(dev);
8721         netif_addr_unlock_bh(dev);
8722 }
8723
8724 /**
8725  *      dev_get_flags - get flags reported to userspace
8726  *      @dev: device
8727  *
8728  *      Get the combination of flag bits exported through APIs to userspace.
8729  */
8730 unsigned int dev_get_flags(const struct net_device *dev)
8731 {
8732         unsigned int flags;
8733
8734         flags = (dev->flags & ~(IFF_PROMISC |
8735                                 IFF_ALLMULTI |
8736                                 IFF_RUNNING |
8737                                 IFF_LOWER_UP |
8738                                 IFF_DORMANT)) |
8739                 (dev->gflags & (IFF_PROMISC |
8740                                 IFF_ALLMULTI));
8741
8742         if (netif_running(dev)) {
8743                 if (netif_oper_up(dev))
8744                         flags |= IFF_RUNNING;
8745                 if (netif_carrier_ok(dev))
8746                         flags |= IFF_LOWER_UP;
8747                 if (netif_dormant(dev))
8748                         flags |= IFF_DORMANT;
8749         }
8750
8751         return flags;
8752 }
8753 EXPORT_SYMBOL(dev_get_flags);
8754
8755 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8756                        struct netlink_ext_ack *extack)
8757 {
8758         unsigned int old_flags = dev->flags;
8759         int ret;
8760
8761         ASSERT_RTNL();
8762
8763         /*
8764          *      Set the flags on our device.
8765          */
8766
8767         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8768                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8769                                IFF_AUTOMEDIA)) |
8770                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8771                                     IFF_ALLMULTI));
8772
8773         /*
8774          *      Load in the correct multicast list now the flags have changed.
8775          */
8776
8777         if ((old_flags ^ flags) & IFF_MULTICAST)
8778                 dev_change_rx_flags(dev, IFF_MULTICAST);
8779
8780         dev_set_rx_mode(dev);
8781
8782         /*
8783          *      Have we downed the interface. We handle IFF_UP ourselves
8784          *      according to user attempts to set it, rather than blindly
8785          *      setting it.
8786          */
8787
8788         ret = 0;
8789         if ((old_flags ^ flags) & IFF_UP) {
8790                 if (old_flags & IFF_UP)
8791                         __dev_close(dev);
8792                 else
8793                         ret = __dev_open(dev, extack);
8794         }
8795
8796         if ((flags ^ dev->gflags) & IFF_PROMISC) {
8797                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8798                 unsigned int old_flags = dev->flags;
8799
8800                 dev->gflags ^= IFF_PROMISC;
8801
8802                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8803                         if (dev->flags != old_flags)
8804                                 dev_set_rx_mode(dev);
8805         }
8806
8807         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8808          * is important. Some (broken) drivers set IFF_PROMISC, when
8809          * IFF_ALLMULTI is requested not asking us and not reporting.
8810          */
8811         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8812                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8813
8814                 dev->gflags ^= IFF_ALLMULTI;
8815                 __dev_set_allmulti(dev, inc, false);
8816         }
8817
8818         return ret;
8819 }
8820
8821 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8822                         unsigned int gchanges)
8823 {
8824         unsigned int changes = dev->flags ^ old_flags;
8825
8826         if (gchanges)
8827                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8828
8829         if (changes & IFF_UP) {
8830                 if (dev->flags & IFF_UP)
8831                         call_netdevice_notifiers(NETDEV_UP, dev);
8832                 else
8833                         call_netdevice_notifiers(NETDEV_DOWN, dev);
8834         }
8835
8836         if (dev->flags & IFF_UP &&
8837             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8838                 struct netdev_notifier_change_info change_info = {
8839                         .info = {
8840                                 .dev = dev,
8841                         },
8842                         .flags_changed = changes,
8843                 };
8844
8845                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8846         }
8847 }
8848
8849 /**
8850  *      dev_change_flags - change device settings
8851  *      @dev: device
8852  *      @flags: device state flags
8853  *      @extack: netlink extended ack
8854  *
8855  *      Change settings on device based state flags. The flags are
8856  *      in the userspace exported format.
8857  */
8858 int dev_change_flags(struct net_device *dev, unsigned int flags,
8859                      struct netlink_ext_ack *extack)
8860 {
8861         int ret;
8862         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8863
8864         ret = __dev_change_flags(dev, flags, extack);
8865         if (ret < 0)
8866                 return ret;
8867
8868         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8869         __dev_notify_flags(dev, old_flags, changes);
8870         return ret;
8871 }
8872 EXPORT_SYMBOL(dev_change_flags);
8873
8874 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8875 {
8876         const struct net_device_ops *ops = dev->netdev_ops;
8877
8878         if (ops->ndo_change_mtu)
8879                 return ops->ndo_change_mtu(dev, new_mtu);
8880
8881         /* Pairs with all the lockless reads of dev->mtu in the stack */
8882         WRITE_ONCE(dev->mtu, new_mtu);
8883         return 0;
8884 }
8885 EXPORT_SYMBOL(__dev_set_mtu);
8886
8887 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8888                      struct netlink_ext_ack *extack)
8889 {
8890         /* MTU must be positive, and in range */
8891         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8892                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8893                 return -EINVAL;
8894         }
8895
8896         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8897                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8898                 return -EINVAL;
8899         }
8900         return 0;
8901 }
8902
8903 /**
8904  *      dev_set_mtu_ext - Change maximum transfer unit
8905  *      @dev: device
8906  *      @new_mtu: new transfer unit
8907  *      @extack: netlink extended ack
8908  *
8909  *      Change the maximum transfer size of the network device.
8910  */
8911 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8912                     struct netlink_ext_ack *extack)
8913 {
8914         int err, orig_mtu;
8915
8916         if (new_mtu == dev->mtu)
8917                 return 0;
8918
8919         err = dev_validate_mtu(dev, new_mtu, extack);
8920         if (err)
8921                 return err;
8922
8923         if (!netif_device_present(dev))
8924                 return -ENODEV;
8925
8926         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8927         err = notifier_to_errno(err);
8928         if (err)
8929                 return err;
8930
8931         orig_mtu = dev->mtu;
8932         err = __dev_set_mtu(dev, new_mtu);
8933
8934         if (!err) {
8935                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8936                                                    orig_mtu);
8937                 err = notifier_to_errno(err);
8938                 if (err) {
8939                         /* setting mtu back and notifying everyone again,
8940                          * so that they have a chance to revert changes.
8941                          */
8942                         __dev_set_mtu(dev, orig_mtu);
8943                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8944                                                      new_mtu);
8945                 }
8946         }
8947         return err;
8948 }
8949
8950 int dev_set_mtu(struct net_device *dev, int new_mtu)
8951 {
8952         struct netlink_ext_ack extack;
8953         int err;
8954
8955         memset(&extack, 0, sizeof(extack));
8956         err = dev_set_mtu_ext(dev, new_mtu, &extack);
8957         if (err && extack._msg)
8958                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8959         return err;
8960 }
8961 EXPORT_SYMBOL(dev_set_mtu);
8962
8963 /**
8964  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
8965  *      @dev: device
8966  *      @new_len: new tx queue length
8967  */
8968 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8969 {
8970         unsigned int orig_len = dev->tx_queue_len;
8971         int res;
8972
8973         if (new_len != (unsigned int)new_len)
8974                 return -ERANGE;
8975
8976         if (new_len != orig_len) {
8977                 dev->tx_queue_len = new_len;
8978                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8979                 res = notifier_to_errno(res);
8980                 if (res)
8981                         goto err_rollback;
8982                 res = dev_qdisc_change_tx_queue_len(dev);
8983                 if (res)
8984                         goto err_rollback;
8985         }
8986
8987         return 0;
8988
8989 err_rollback:
8990         netdev_err(dev, "refused to change device tx_queue_len\n");
8991         dev->tx_queue_len = orig_len;
8992         return res;
8993 }
8994
8995 /**
8996  *      dev_set_group - Change group this device belongs to
8997  *      @dev: device
8998  *      @new_group: group this device should belong to
8999  */
9000 void dev_set_group(struct net_device *dev, int new_group)
9001 {
9002         dev->group = new_group;
9003 }
9004 EXPORT_SYMBOL(dev_set_group);
9005
9006 /**
9007  *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
9008  *      @dev: device
9009  *      @addr: new address
9010  *      @extack: netlink extended ack
9011  */
9012 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
9013                               struct netlink_ext_ack *extack)
9014 {
9015         struct netdev_notifier_pre_changeaddr_info info = {
9016                 .info.dev = dev,
9017                 .info.extack = extack,
9018                 .dev_addr = addr,
9019         };
9020         int rc;
9021
9022         rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9023         return notifier_to_errno(rc);
9024 }
9025 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
9026
9027 /**
9028  *      dev_set_mac_address - Change Media Access Control Address
9029  *      @dev: device
9030  *      @sa: new address
9031  *      @extack: netlink extended ack
9032  *
9033  *      Change the hardware (MAC) address of the device
9034  */
9035 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
9036                         struct netlink_ext_ack *extack)
9037 {
9038         const struct net_device_ops *ops = dev->netdev_ops;
9039         int err;
9040
9041         if (!ops->ndo_set_mac_address)
9042                 return -EOPNOTSUPP;
9043         if (sa->sa_family != dev->type)
9044                 return -EINVAL;
9045         if (!netif_device_present(dev))
9046                 return -ENODEV;
9047         err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
9048         if (err)
9049                 return err;
9050         err = ops->ndo_set_mac_address(dev, sa);
9051         if (err)
9052                 return err;
9053         dev->addr_assign_type = NET_ADDR_SET;
9054         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9055         add_device_randomness(dev->dev_addr, dev->addr_len);
9056         return 0;
9057 }
9058 EXPORT_SYMBOL(dev_set_mac_address);
9059
9060 static DECLARE_RWSEM(dev_addr_sem);
9061
9062 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
9063                              struct netlink_ext_ack *extack)
9064 {
9065         int ret;
9066
9067         down_write(&dev_addr_sem);
9068         ret = dev_set_mac_address(dev, sa, extack);
9069         up_write(&dev_addr_sem);
9070         return ret;
9071 }
9072 EXPORT_SYMBOL(dev_set_mac_address_user);
9073
9074 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9075 {
9076         size_t size = sizeof(sa->sa_data);
9077         struct net_device *dev;
9078         int ret = 0;
9079
9080         down_read(&dev_addr_sem);
9081         rcu_read_lock();
9082
9083         dev = dev_get_by_name_rcu(net, dev_name);
9084         if (!dev) {
9085                 ret = -ENODEV;
9086                 goto unlock;
9087         }
9088         if (!dev->addr_len)
9089                 memset(sa->sa_data, 0, size);
9090         else
9091                 memcpy(sa->sa_data, dev->dev_addr,
9092                        min_t(size_t, size, dev->addr_len));
9093         sa->sa_family = dev->type;
9094
9095 unlock:
9096         rcu_read_unlock();
9097         up_read(&dev_addr_sem);
9098         return ret;
9099 }
9100 EXPORT_SYMBOL(dev_get_mac_address);
9101
9102 /**
9103  *      dev_change_carrier - Change device carrier
9104  *      @dev: device
9105  *      @new_carrier: new value
9106  *
9107  *      Change device carrier
9108  */
9109 int dev_change_carrier(struct net_device *dev, bool new_carrier)
9110 {
9111         const struct net_device_ops *ops = dev->netdev_ops;
9112
9113         if (!ops->ndo_change_carrier)
9114                 return -EOPNOTSUPP;
9115         if (!netif_device_present(dev))
9116                 return -ENODEV;
9117         return ops->ndo_change_carrier(dev, new_carrier);
9118 }
9119 EXPORT_SYMBOL(dev_change_carrier);
9120
9121 /**
9122  *      dev_get_phys_port_id - Get device physical port ID
9123  *      @dev: device
9124  *      @ppid: port ID
9125  *
9126  *      Get device physical port ID
9127  */
9128 int dev_get_phys_port_id(struct net_device *dev,
9129                          struct netdev_phys_item_id *ppid)
9130 {
9131         const struct net_device_ops *ops = dev->netdev_ops;
9132
9133         if (!ops->ndo_get_phys_port_id)
9134                 return -EOPNOTSUPP;
9135         return ops->ndo_get_phys_port_id(dev, ppid);
9136 }
9137 EXPORT_SYMBOL(dev_get_phys_port_id);
9138
9139 /**
9140  *      dev_get_phys_port_name - Get device physical port name
9141  *      @dev: device
9142  *      @name: port name
9143  *      @len: limit of bytes to copy to name
9144  *
9145  *      Get device physical port name
9146  */
9147 int dev_get_phys_port_name(struct net_device *dev,
9148                            char *name, size_t len)
9149 {
9150         const struct net_device_ops *ops = dev->netdev_ops;
9151         int err;
9152
9153         if (ops->ndo_get_phys_port_name) {
9154                 err = ops->ndo_get_phys_port_name(dev, name, len);
9155                 if (err != -EOPNOTSUPP)
9156                         return err;
9157         }
9158         return devlink_compat_phys_port_name_get(dev, name, len);
9159 }
9160 EXPORT_SYMBOL(dev_get_phys_port_name);
9161
9162 /**
9163  *      dev_get_port_parent_id - Get the device's port parent identifier
9164  *      @dev: network device
9165  *      @ppid: pointer to a storage for the port's parent identifier
9166  *      @recurse: allow/disallow recursion to lower devices
9167  *
9168  *      Get the devices's port parent identifier
9169  */
9170 int dev_get_port_parent_id(struct net_device *dev,
9171                            struct netdev_phys_item_id *ppid,
9172                            bool recurse)
9173 {
9174         const struct net_device_ops *ops = dev->netdev_ops;
9175         struct netdev_phys_item_id first = { };
9176         struct net_device *lower_dev;
9177         struct list_head *iter;
9178         int err;
9179
9180         if (ops->ndo_get_port_parent_id) {
9181                 err = ops->ndo_get_port_parent_id(dev, ppid);
9182                 if (err != -EOPNOTSUPP)
9183                         return err;
9184         }
9185
9186         err = devlink_compat_switch_id_get(dev, ppid);
9187         if (!recurse || err != -EOPNOTSUPP)
9188                 return err;
9189
9190         netdev_for_each_lower_dev(dev, lower_dev, iter) {
9191                 err = dev_get_port_parent_id(lower_dev, ppid, true);
9192                 if (err)
9193                         break;
9194                 if (!first.id_len)
9195                         first = *ppid;
9196                 else if (memcmp(&first, ppid, sizeof(*ppid)))
9197                         return -EOPNOTSUPP;
9198         }
9199
9200         return err;
9201 }
9202 EXPORT_SYMBOL(dev_get_port_parent_id);
9203
9204 /**
9205  *      netdev_port_same_parent_id - Indicate if two network devices have
9206  *      the same port parent identifier
9207  *      @a: first network device
9208  *      @b: second network device
9209  */
9210 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9211 {
9212         struct netdev_phys_item_id a_id = { };
9213         struct netdev_phys_item_id b_id = { };
9214
9215         if (dev_get_port_parent_id(a, &a_id, true) ||
9216             dev_get_port_parent_id(b, &b_id, true))
9217                 return false;
9218
9219         return netdev_phys_item_id_same(&a_id, &b_id);
9220 }
9221 EXPORT_SYMBOL(netdev_port_same_parent_id);
9222
9223 /**
9224  *      dev_change_proto_down - update protocol port state information
9225  *      @dev: device
9226  *      @proto_down: new value
9227  *
9228  *      This info can be used by switch drivers to set the phys state of the
9229  *      port.
9230  */
9231 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9232 {
9233         const struct net_device_ops *ops = dev->netdev_ops;
9234
9235         if (!ops->ndo_change_proto_down)
9236                 return -EOPNOTSUPP;
9237         if (!netif_device_present(dev))
9238                 return -ENODEV;
9239         return ops->ndo_change_proto_down(dev, proto_down);
9240 }
9241 EXPORT_SYMBOL(dev_change_proto_down);
9242
9243 /**
9244  *      dev_change_proto_down_generic - generic implementation for
9245  *      ndo_change_proto_down that sets carrier according to
9246  *      proto_down.
9247  *
9248  *      @dev: device
9249  *      @proto_down: new value
9250  */
9251 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
9252 {
9253         if (proto_down)
9254                 netif_carrier_off(dev);
9255         else
9256                 netif_carrier_on(dev);
9257         dev->proto_down = proto_down;
9258         return 0;
9259 }
9260 EXPORT_SYMBOL(dev_change_proto_down_generic);
9261
9262 /**
9263  *      dev_change_proto_down_reason - proto down reason
9264  *
9265  *      @dev: device
9266  *      @mask: proto down mask
9267  *      @value: proto down value
9268  */
9269 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9270                                   u32 value)
9271 {
9272         int b;
9273
9274         if (!mask) {
9275                 dev->proto_down_reason = value;
9276         } else {
9277                 for_each_set_bit(b, &mask, 32) {
9278                         if (value & (1 << b))
9279                                 dev->proto_down_reason |= BIT(b);
9280                         else
9281                                 dev->proto_down_reason &= ~BIT(b);
9282                 }
9283         }
9284 }
9285 EXPORT_SYMBOL(dev_change_proto_down_reason);
9286
9287 struct bpf_xdp_link {
9288         struct bpf_link link;
9289         struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9290         int flags;
9291 };
9292
9293 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9294 {
9295         if (flags & XDP_FLAGS_HW_MODE)
9296                 return XDP_MODE_HW;
9297         if (flags & XDP_FLAGS_DRV_MODE)
9298                 return XDP_MODE_DRV;
9299         if (flags & XDP_FLAGS_SKB_MODE)
9300                 return XDP_MODE_SKB;
9301         return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9302 }
9303
9304 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9305 {
9306         switch (mode) {
9307         case XDP_MODE_SKB:
9308                 return generic_xdp_install;
9309         case XDP_MODE_DRV:
9310         case XDP_MODE_HW:
9311                 return dev->netdev_ops->ndo_bpf;
9312         default:
9313                 return NULL;
9314         }
9315 }
9316
9317 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9318                                          enum bpf_xdp_mode mode)
9319 {
9320         return dev->xdp_state[mode].link;
9321 }
9322
9323 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9324                                      enum bpf_xdp_mode mode)
9325 {
9326         struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9327
9328         if (link)
9329                 return link->link.prog;
9330         return dev->xdp_state[mode].prog;
9331 }
9332
9333 u8 dev_xdp_prog_count(struct net_device *dev)
9334 {
9335         u8 count = 0;
9336         int i;
9337
9338         for (i = 0; i < __MAX_XDP_MODE; i++)
9339                 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9340                         count++;
9341         return count;
9342 }
9343 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9344
9345 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9346 {
9347         struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9348
9349         return prog ? prog->aux->id : 0;
9350 }
9351
9352 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9353                              struct bpf_xdp_link *link)
9354 {
9355         dev->xdp_state[mode].link = link;
9356         dev->xdp_state[mode].prog = NULL;
9357 }
9358
9359 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9360                              struct bpf_prog *prog)
9361 {
9362         dev->xdp_state[mode].link = NULL;
9363         dev->xdp_state[mode].prog = prog;
9364 }
9365
9366 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9367                            bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9368                            u32 flags, struct bpf_prog *prog)
9369 {
9370         struct netdev_bpf xdp;
9371         int err;
9372
9373         memset(&xdp, 0, sizeof(xdp));
9374         xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9375         xdp.extack = extack;
9376         xdp.flags = flags;
9377         xdp.prog = prog;
9378
9379         /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9380          * "moved" into driver), so they don't increment it on their own, but
9381          * they do decrement refcnt when program is detached or replaced.
9382          * Given net_device also owns link/prog, we need to bump refcnt here
9383          * to prevent drivers from underflowing it.
9384          */
9385         if (prog)
9386                 bpf_prog_inc(prog);
9387         err = bpf_op(dev, &xdp);
9388         if (err) {
9389                 if (prog)
9390                         bpf_prog_put(prog);
9391                 return err;
9392         }
9393
9394         if (mode != XDP_MODE_HW)
9395                 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9396
9397         return 0;
9398 }
9399
9400 static void dev_xdp_uninstall(struct net_device *dev)
9401 {
9402         struct bpf_xdp_link *link;
9403         struct bpf_prog *prog;
9404         enum bpf_xdp_mode mode;
9405         bpf_op_t bpf_op;
9406
9407         ASSERT_RTNL();
9408
9409         for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9410                 prog = dev_xdp_prog(dev, mode);
9411                 if (!prog)
9412                         continue;
9413
9414                 bpf_op = dev_xdp_bpf_op(dev, mode);
9415                 if (!bpf_op)
9416                         continue;
9417
9418                 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9419
9420                 /* auto-detach link from net device */
9421                 link = dev_xdp_link(dev, mode);
9422                 if (link)
9423                         link->dev = NULL;
9424                 else
9425                         bpf_prog_put(prog);
9426
9427                 dev_xdp_set_link(dev, mode, NULL);
9428         }
9429 }
9430
9431 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9432                           struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9433                           struct bpf_prog *old_prog, u32 flags)
9434 {
9435         unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9436         struct bpf_prog *cur_prog;
9437         struct net_device *upper;
9438         struct list_head *iter;
9439         enum bpf_xdp_mode mode;
9440         bpf_op_t bpf_op;
9441         int err;
9442
9443         ASSERT_RTNL();
9444
9445         /* either link or prog attachment, never both */
9446         if (link && (new_prog || old_prog))
9447                 return -EINVAL;
9448         /* link supports only XDP mode flags */
9449         if (link && (flags & ~XDP_FLAGS_MODES)) {
9450                 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9451                 return -EINVAL;
9452         }
9453         /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9454         if (num_modes > 1) {
9455                 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9456                 return -EINVAL;
9457         }
9458         /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9459         if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9460                 NL_SET_ERR_MSG(extack,
9461                                "More than one program loaded, unset mode is ambiguous");
9462                 return -EINVAL;
9463         }
9464         /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9465         if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9466                 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9467                 return -EINVAL;
9468         }
9469
9470         mode = dev_xdp_mode(dev, flags);
9471         /* can't replace attached link */
9472         if (dev_xdp_link(dev, mode)) {
9473                 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9474                 return -EBUSY;
9475         }
9476
9477         /* don't allow if an upper device already has a program */
9478         netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9479                 if (dev_xdp_prog_count(upper) > 0) {
9480                         NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9481                         return -EEXIST;
9482                 }
9483         }
9484
9485         cur_prog = dev_xdp_prog(dev, mode);
9486         /* can't replace attached prog with link */
9487         if (link && cur_prog) {
9488                 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9489                 return -EBUSY;
9490         }
9491         if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9492                 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9493                 return -EEXIST;
9494         }
9495
9496         /* put effective new program into new_prog */
9497         if (link)
9498                 new_prog = link->link.prog;
9499
9500         if (new_prog) {
9501                 bool offload = mode == XDP_MODE_HW;
9502                 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9503                                                ? XDP_MODE_DRV : XDP_MODE_SKB;
9504
9505                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9506                         NL_SET_ERR_MSG(extack, "XDP program already attached");
9507                         return -EBUSY;
9508                 }
9509                 if (!offload && dev_xdp_prog(dev, other_mode)) {
9510                         NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9511                         return -EEXIST;
9512                 }
9513                 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9514                         NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9515                         return -EINVAL;
9516                 }
9517                 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9518                         NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9519                         return -EINVAL;
9520                 }
9521                 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9522                         NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9523                         return -EINVAL;
9524                 }
9525         }
9526
9527         /* don't call drivers if the effective program didn't change */
9528         if (new_prog != cur_prog) {
9529                 bpf_op = dev_xdp_bpf_op(dev, mode);
9530                 if (!bpf_op) {
9531                         NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9532                         return -EOPNOTSUPP;
9533                 }
9534
9535                 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9536                 if (err)
9537                         return err;
9538         }
9539
9540         if (link)
9541                 dev_xdp_set_link(dev, mode, link);
9542         else
9543                 dev_xdp_set_prog(dev, mode, new_prog);
9544         if (cur_prog)
9545                 bpf_prog_put(cur_prog);
9546
9547         return 0;
9548 }
9549
9550 static int dev_xdp_attach_link(struct net_device *dev,
9551                                struct netlink_ext_ack *extack,
9552                                struct bpf_xdp_link *link)
9553 {
9554         return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9555 }
9556
9557 static int dev_xdp_detach_link(struct net_device *dev,
9558                                struct netlink_ext_ack *extack,
9559                                struct bpf_xdp_link *link)
9560 {
9561         enum bpf_xdp_mode mode;
9562         bpf_op_t bpf_op;
9563
9564         ASSERT_RTNL();
9565
9566         mode = dev_xdp_mode(dev, link->flags);
9567         if (dev_xdp_link(dev, mode) != link)
9568                 return -EINVAL;
9569
9570         bpf_op = dev_xdp_bpf_op(dev, mode);
9571         WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9572         dev_xdp_set_link(dev, mode, NULL);
9573         return 0;
9574 }
9575
9576 static void bpf_xdp_link_release(struct bpf_link *link)
9577 {
9578         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9579
9580         rtnl_lock();
9581
9582         /* if racing with net_device's tear down, xdp_link->dev might be
9583          * already NULL, in which case link was already auto-detached
9584          */
9585         if (xdp_link->dev) {
9586                 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9587                 xdp_link->dev = NULL;
9588         }
9589
9590         rtnl_unlock();
9591 }
9592
9593 static int bpf_xdp_link_detach(struct bpf_link *link)
9594 {
9595         bpf_xdp_link_release(link);
9596         return 0;
9597 }
9598
9599 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9600 {
9601         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9602
9603         kfree(xdp_link);
9604 }
9605
9606 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9607                                      struct seq_file *seq)
9608 {
9609         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9610         u32 ifindex = 0;
9611
9612         rtnl_lock();
9613         if (xdp_link->dev)
9614                 ifindex = xdp_link->dev->ifindex;
9615         rtnl_unlock();
9616
9617         seq_printf(seq, "ifindex:\t%u\n", ifindex);
9618 }
9619
9620 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9621                                        struct bpf_link_info *info)
9622 {
9623         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9624         u32 ifindex = 0;
9625
9626         rtnl_lock();
9627         if (xdp_link->dev)
9628                 ifindex = xdp_link->dev->ifindex;
9629         rtnl_unlock();
9630
9631         info->xdp.ifindex = ifindex;
9632         return 0;
9633 }
9634
9635 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9636                                struct bpf_prog *old_prog)
9637 {
9638         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9639         enum bpf_xdp_mode mode;
9640         bpf_op_t bpf_op;
9641         int err = 0;
9642
9643         rtnl_lock();
9644
9645         /* link might have been auto-released already, so fail */
9646         if (!xdp_link->dev) {
9647                 err = -ENOLINK;
9648                 goto out_unlock;
9649         }
9650
9651         if (old_prog && link->prog != old_prog) {
9652                 err = -EPERM;
9653                 goto out_unlock;
9654         }
9655         old_prog = link->prog;
9656         if (old_prog == new_prog) {
9657                 /* no-op, don't disturb drivers */
9658                 bpf_prog_put(new_prog);
9659                 goto out_unlock;
9660         }
9661
9662         mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9663         bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9664         err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9665                               xdp_link->flags, new_prog);
9666         if (err)
9667                 goto out_unlock;
9668
9669         old_prog = xchg(&link->prog, new_prog);
9670         bpf_prog_put(old_prog);
9671
9672 out_unlock:
9673         rtnl_unlock();
9674         return err;
9675 }
9676
9677 static const struct bpf_link_ops bpf_xdp_link_lops = {
9678         .release = bpf_xdp_link_release,
9679         .dealloc = bpf_xdp_link_dealloc,
9680         .detach = bpf_xdp_link_detach,
9681         .show_fdinfo = bpf_xdp_link_show_fdinfo,
9682         .fill_link_info = bpf_xdp_link_fill_link_info,
9683         .update_prog = bpf_xdp_link_update,
9684 };
9685
9686 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9687 {
9688         struct net *net = current->nsproxy->net_ns;
9689         struct bpf_link_primer link_primer;
9690         struct bpf_xdp_link *link;
9691         struct net_device *dev;
9692         int err, fd;
9693
9694         rtnl_lock();
9695         dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9696         if (!dev) {
9697                 rtnl_unlock();
9698                 return -EINVAL;
9699         }
9700
9701         link = kzalloc(sizeof(*link), GFP_USER);
9702         if (!link) {
9703                 err = -ENOMEM;
9704                 goto unlock;
9705         }
9706
9707         bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9708         link->dev = dev;
9709         link->flags = attr->link_create.flags;
9710
9711         err = bpf_link_prime(&link->link, &link_primer);
9712         if (err) {
9713                 kfree(link);
9714                 goto unlock;
9715         }
9716
9717         err = dev_xdp_attach_link(dev, NULL, link);
9718         rtnl_unlock();
9719
9720         if (err) {
9721                 link->dev = NULL;
9722                 bpf_link_cleanup(&link_primer);
9723                 goto out_put_dev;
9724         }
9725
9726         fd = bpf_link_settle(&link_primer);
9727         /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9728         dev_put(dev);
9729         return fd;
9730
9731 unlock:
9732         rtnl_unlock();
9733
9734 out_put_dev:
9735         dev_put(dev);
9736         return err;
9737 }
9738
9739 /**
9740  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
9741  *      @dev: device
9742  *      @extack: netlink extended ack
9743  *      @fd: new program fd or negative value to clear
9744  *      @expected_fd: old program fd that userspace expects to replace or clear
9745  *      @flags: xdp-related flags
9746  *
9747  *      Set or clear a bpf program for a device
9748  */
9749 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9750                       int fd, int expected_fd, u32 flags)
9751 {
9752         enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9753         struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9754         int err;
9755
9756         ASSERT_RTNL();
9757
9758         if (fd >= 0) {
9759                 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9760                                                  mode != XDP_MODE_SKB);
9761                 if (IS_ERR(new_prog))
9762                         return PTR_ERR(new_prog);
9763         }
9764
9765         if (expected_fd >= 0) {
9766                 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9767                                                  mode != XDP_MODE_SKB);
9768                 if (IS_ERR(old_prog)) {
9769                         err = PTR_ERR(old_prog);
9770                         old_prog = NULL;
9771                         goto err_out;
9772                 }
9773         }
9774
9775         err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9776
9777 err_out:
9778         if (err && new_prog)
9779                 bpf_prog_put(new_prog);
9780         if (old_prog)
9781                 bpf_prog_put(old_prog);
9782         return err;
9783 }
9784
9785 /**
9786  *      dev_new_index   -       allocate an ifindex
9787  *      @net: the applicable net namespace
9788  *
9789  *      Returns a suitable unique value for a new device interface
9790  *      number.  The caller must hold the rtnl semaphore or the
9791  *      dev_base_lock to be sure it remains unique.
9792  */
9793 static int dev_new_index(struct net *net)
9794 {
9795         int ifindex = net->ifindex;
9796
9797         for (;;) {
9798                 if (++ifindex <= 0)
9799                         ifindex = 1;
9800                 if (!__dev_get_by_index(net, ifindex))
9801                         return net->ifindex = ifindex;
9802         }
9803 }
9804
9805 /* Delayed registration/unregisteration */
9806 static LIST_HEAD(net_todo_list);
9807 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9808
9809 static void net_set_todo(struct net_device *dev)
9810 {
9811         list_add_tail(&dev->todo_list, &net_todo_list);
9812         dev_net(dev)->dev_unreg_count++;
9813 }
9814
9815 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9816         struct net_device *upper, netdev_features_t features)
9817 {
9818         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9819         netdev_features_t feature;
9820         int feature_bit;
9821
9822         for_each_netdev_feature(upper_disables, feature_bit) {
9823                 feature = __NETIF_F_BIT(feature_bit);
9824                 if (!(upper->wanted_features & feature)
9825                     && (features & feature)) {
9826                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9827                                    &feature, upper->name);
9828                         features &= ~feature;
9829                 }
9830         }
9831
9832         return features;
9833 }
9834
9835 static void netdev_sync_lower_features(struct net_device *upper,
9836         struct net_device *lower, netdev_features_t features)
9837 {
9838         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9839         netdev_features_t feature;
9840         int feature_bit;
9841
9842         for_each_netdev_feature(upper_disables, feature_bit) {
9843                 feature = __NETIF_F_BIT(feature_bit);
9844                 if (!(features & feature) && (lower->features & feature)) {
9845                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9846                                    &feature, lower->name);
9847                         lower->wanted_features &= ~feature;
9848                         __netdev_update_features(lower);
9849
9850                         if (unlikely(lower->features & feature))
9851                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9852                                             &feature, lower->name);
9853                         else
9854                                 netdev_features_change(lower);
9855                 }
9856         }
9857 }
9858
9859 static netdev_features_t netdev_fix_features(struct net_device *dev,
9860         netdev_features_t features)
9861 {
9862         /* Fix illegal checksum combinations */
9863         if ((features & NETIF_F_HW_CSUM) &&
9864             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9865                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9866                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9867         }
9868
9869         /* TSO requires that SG is present as well. */
9870         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9871                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9872                 features &= ~NETIF_F_ALL_TSO;
9873         }
9874
9875         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9876                                         !(features & NETIF_F_IP_CSUM)) {
9877                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9878                 features &= ~NETIF_F_TSO;
9879                 features &= ~NETIF_F_TSO_ECN;
9880         }
9881
9882         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9883                                          !(features & NETIF_F_IPV6_CSUM)) {
9884                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9885                 features &= ~NETIF_F_TSO6;
9886         }
9887
9888         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9889         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9890                 features &= ~NETIF_F_TSO_MANGLEID;
9891
9892         /* TSO ECN requires that TSO is present as well. */
9893         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9894                 features &= ~NETIF_F_TSO_ECN;
9895
9896         /* Software GSO depends on SG. */
9897         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9898                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9899                 features &= ~NETIF_F_GSO;
9900         }
9901
9902         /* GSO partial features require GSO partial be set */
9903         if ((features & dev->gso_partial_features) &&
9904             !(features & NETIF_F_GSO_PARTIAL)) {
9905                 netdev_dbg(dev,
9906                            "Dropping partially supported GSO features since no GSO partial.\n");
9907                 features &= ~dev->gso_partial_features;
9908         }
9909
9910         if (!(features & NETIF_F_RXCSUM)) {
9911                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9912                  * successfully merged by hardware must also have the
9913                  * checksum verified by hardware.  If the user does not
9914                  * want to enable RXCSUM, logically, we should disable GRO_HW.
9915                  */
9916                 if (features & NETIF_F_GRO_HW) {
9917                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9918                         features &= ~NETIF_F_GRO_HW;
9919                 }
9920         }
9921
9922         /* LRO/HW-GRO features cannot be combined with RX-FCS */
9923         if (features & NETIF_F_RXFCS) {
9924                 if (features & NETIF_F_LRO) {
9925                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9926                         features &= ~NETIF_F_LRO;
9927                 }
9928
9929                 if (features & NETIF_F_GRO_HW) {
9930                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9931                         features &= ~NETIF_F_GRO_HW;
9932                 }
9933         }
9934
9935         if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9936                 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9937                 features &= ~NETIF_F_LRO;
9938         }
9939
9940         if (features & NETIF_F_HW_TLS_TX) {
9941                 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9942                         (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9943                 bool hw_csum = features & NETIF_F_HW_CSUM;
9944
9945                 if (!ip_csum && !hw_csum) {
9946                         netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9947                         features &= ~NETIF_F_HW_TLS_TX;
9948                 }
9949         }
9950
9951         if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9952                 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9953                 features &= ~NETIF_F_HW_TLS_RX;
9954         }
9955
9956         return features;
9957 }
9958
9959 int __netdev_update_features(struct net_device *dev)
9960 {
9961         struct net_device *upper, *lower;
9962         netdev_features_t features;
9963         struct list_head *iter;
9964         int err = -1;
9965
9966         ASSERT_RTNL();
9967
9968         features = netdev_get_wanted_features(dev);
9969
9970         if (dev->netdev_ops->ndo_fix_features)
9971                 features = dev->netdev_ops->ndo_fix_features(dev, features);
9972
9973         /* driver might be less strict about feature dependencies */
9974         features = netdev_fix_features(dev, features);
9975
9976         /* some features can't be enabled if they're off on an upper device */
9977         netdev_for_each_upper_dev_rcu(dev, upper, iter)
9978                 features = netdev_sync_upper_features(dev, upper, features);
9979
9980         if (dev->features == features)
9981                 goto sync_lower;
9982
9983         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9984                 &dev->features, &features);
9985
9986         if (dev->netdev_ops->ndo_set_features)
9987                 err = dev->netdev_ops->ndo_set_features(dev, features);
9988         else
9989                 err = 0;
9990
9991         if (unlikely(err < 0)) {
9992                 netdev_err(dev,
9993                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
9994                         err, &features, &dev->features);
9995                 /* return non-0 since some features might have changed and
9996                  * it's better to fire a spurious notification than miss it
9997                  */
9998                 return -1;
9999         }
10000
10001 sync_lower:
10002         /* some features must be disabled on lower devices when disabled
10003          * on an upper device (think: bonding master or bridge)
10004          */
10005         netdev_for_each_lower_dev(dev, lower, iter)
10006                 netdev_sync_lower_features(dev, lower, features);
10007
10008         if (!err) {
10009                 netdev_features_t diff = features ^ dev->features;
10010
10011                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
10012                         /* udp_tunnel_{get,drop}_rx_info both need
10013                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
10014                          * device, or they won't do anything.
10015                          * Thus we need to update dev->features
10016                          * *before* calling udp_tunnel_get_rx_info,
10017                          * but *after* calling udp_tunnel_drop_rx_info.
10018                          */
10019                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
10020                                 dev->features = features;
10021                                 udp_tunnel_get_rx_info(dev);
10022                         } else {
10023                                 udp_tunnel_drop_rx_info(dev);
10024                         }
10025                 }
10026
10027                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
10028                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
10029                                 dev->features = features;
10030                                 err |= vlan_get_rx_ctag_filter_info(dev);
10031                         } else {
10032                                 vlan_drop_rx_ctag_filter_info(dev);
10033                         }
10034                 }
10035
10036                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10037                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10038                                 dev->features = features;
10039                                 err |= vlan_get_rx_stag_filter_info(dev);
10040                         } else {
10041                                 vlan_drop_rx_stag_filter_info(dev);
10042                         }
10043                 }
10044
10045                 dev->features = features;
10046         }
10047
10048         return err < 0 ? 0 : 1;
10049 }
10050
10051 /**
10052  *      netdev_update_features - recalculate device features
10053  *      @dev: the device to check
10054  *
10055  *      Recalculate dev->features set and send notifications if it
10056  *      has changed. Should be called after driver or hardware dependent
10057  *      conditions might have changed that influence the features.
10058  */
10059 void netdev_update_features(struct net_device *dev)
10060 {
10061         if (__netdev_update_features(dev))
10062                 netdev_features_change(dev);
10063 }
10064 EXPORT_SYMBOL(netdev_update_features);
10065
10066 /**
10067  *      netdev_change_features - recalculate device features
10068  *      @dev: the device to check
10069  *
10070  *      Recalculate dev->features set and send notifications even
10071  *      if they have not changed. Should be called instead of
10072  *      netdev_update_features() if also dev->vlan_features might
10073  *      have changed to allow the changes to be propagated to stacked
10074  *      VLAN devices.
10075  */
10076 void netdev_change_features(struct net_device *dev)
10077 {
10078         __netdev_update_features(dev);
10079         netdev_features_change(dev);
10080 }
10081 EXPORT_SYMBOL(netdev_change_features);
10082
10083 /**
10084  *      netif_stacked_transfer_operstate -      transfer operstate
10085  *      @rootdev: the root or lower level device to transfer state from
10086  *      @dev: the device to transfer operstate to
10087  *
10088  *      Transfer operational state from root to device. This is normally
10089  *      called when a stacking relationship exists between the root
10090  *      device and the device(a leaf device).
10091  */
10092 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10093                                         struct net_device *dev)
10094 {
10095         if (rootdev->operstate == IF_OPER_DORMANT)
10096                 netif_dormant_on(dev);
10097         else
10098                 netif_dormant_off(dev);
10099
10100         if (rootdev->operstate == IF_OPER_TESTING)
10101                 netif_testing_on(dev);
10102         else
10103                 netif_testing_off(dev);
10104
10105         if (netif_carrier_ok(rootdev))
10106                 netif_carrier_on(dev);
10107         else
10108                 netif_carrier_off(dev);
10109 }
10110 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10111
10112 static int netif_alloc_rx_queues(struct net_device *dev)
10113 {
10114         unsigned int i, count = dev->num_rx_queues;
10115         struct netdev_rx_queue *rx;
10116         size_t sz = count * sizeof(*rx);
10117         int err = 0;
10118
10119         BUG_ON(count < 1);
10120
10121         rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10122         if (!rx)
10123                 return -ENOMEM;
10124
10125         dev->_rx = rx;
10126
10127         for (i = 0; i < count; i++) {
10128                 rx[i].dev = dev;
10129
10130                 /* XDP RX-queue setup */
10131                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10132                 if (err < 0)
10133                         goto err_rxq_info;
10134         }
10135         return 0;
10136
10137 err_rxq_info:
10138         /* Rollback successful reg's and free other resources */
10139         while (i--)
10140                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10141         kvfree(dev->_rx);
10142         dev->_rx = NULL;
10143         return err;
10144 }
10145
10146 static void netif_free_rx_queues(struct net_device *dev)
10147 {
10148         unsigned int i, count = dev->num_rx_queues;
10149
10150         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10151         if (!dev->_rx)
10152                 return;
10153
10154         for (i = 0; i < count; i++)
10155                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10156
10157         kvfree(dev->_rx);
10158 }
10159
10160 static void netdev_init_one_queue(struct net_device *dev,
10161                                   struct netdev_queue *queue, void *_unused)
10162 {
10163         /* Initialize queue lock */
10164         spin_lock_init(&queue->_xmit_lock);
10165         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10166         queue->xmit_lock_owner = -1;
10167         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10168         queue->dev = dev;
10169 #ifdef CONFIG_BQL
10170         dql_init(&queue->dql, HZ);
10171 #endif
10172 }
10173
10174 static void netif_free_tx_queues(struct net_device *dev)
10175 {
10176         kvfree(dev->_tx);
10177 }
10178
10179 static int netif_alloc_netdev_queues(struct net_device *dev)
10180 {
10181         unsigned int count = dev->num_tx_queues;
10182         struct netdev_queue *tx;
10183         size_t sz = count * sizeof(*tx);
10184
10185         if (count < 1 || count > 0xffff)
10186                 return -EINVAL;
10187
10188         tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10189         if (!tx)
10190                 return -ENOMEM;
10191
10192         dev->_tx = tx;
10193
10194         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10195         spin_lock_init(&dev->tx_global_lock);
10196
10197         return 0;
10198 }
10199
10200 void netif_tx_stop_all_queues(struct net_device *dev)
10201 {
10202         unsigned int i;
10203
10204         for (i = 0; i < dev->num_tx_queues; i++) {
10205                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10206
10207                 netif_tx_stop_queue(txq);
10208         }
10209 }
10210 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10211
10212 /**
10213  *      register_netdevice      - register a network device
10214  *      @dev: device to register
10215  *
10216  *      Take a completed network device structure and add it to the kernel
10217  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10218  *      chain. 0 is returned on success. A negative errno code is returned
10219  *      on a failure to set up the device, or if the name is a duplicate.
10220  *
10221  *      Callers must hold the rtnl semaphore. You may want
10222  *      register_netdev() instead of this.
10223  *
10224  *      BUGS:
10225  *      The locking appears insufficient to guarantee two parallel registers
10226  *      will not get the same name.
10227  */
10228
10229 int register_netdevice(struct net_device *dev)
10230 {
10231         int ret;
10232         struct net *net = dev_net(dev);
10233
10234         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10235                      NETDEV_FEATURE_COUNT);
10236         BUG_ON(dev_boot_phase);
10237         ASSERT_RTNL();
10238
10239         might_sleep();
10240
10241         /* When net_device's are persistent, this will be fatal. */
10242         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10243         BUG_ON(!net);
10244
10245         ret = ethtool_check_ops(dev->ethtool_ops);
10246         if (ret)
10247                 return ret;
10248
10249         spin_lock_init(&dev->addr_list_lock);
10250         netdev_set_addr_lockdep_class(dev);
10251
10252         ret = dev_get_valid_name(net, dev, dev->name);
10253         if (ret < 0)
10254                 goto out;
10255
10256         ret = -ENOMEM;
10257         dev->name_node = netdev_name_node_head_alloc(dev);
10258         if (!dev->name_node)
10259                 goto out;
10260
10261         /* Init, if this function is available */
10262         if (dev->netdev_ops->ndo_init) {
10263                 ret = dev->netdev_ops->ndo_init(dev);
10264                 if (ret) {
10265                         if (ret > 0)
10266                                 ret = -EIO;
10267                         goto err_free_name;
10268                 }
10269         }
10270
10271         if (((dev->hw_features | dev->features) &
10272              NETIF_F_HW_VLAN_CTAG_FILTER) &&
10273             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10274              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10275                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10276                 ret = -EINVAL;
10277                 goto err_uninit;
10278         }
10279
10280         ret = -EBUSY;
10281         if (!dev->ifindex)
10282                 dev->ifindex = dev_new_index(net);
10283         else if (__dev_get_by_index(net, dev->ifindex))
10284                 goto err_uninit;
10285
10286         /* Transfer changeable features to wanted_features and enable
10287          * software offloads (GSO and GRO).
10288          */
10289         dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10290         dev->features |= NETIF_F_SOFT_FEATURES;
10291
10292         if (dev->udp_tunnel_nic_info) {
10293                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10294                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10295         }
10296
10297         dev->wanted_features = dev->features & dev->hw_features;
10298
10299         if (!(dev->flags & IFF_LOOPBACK))
10300                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10301
10302         /* If IPv4 TCP segmentation offload is supported we should also
10303          * allow the device to enable segmenting the frame with the option
10304          * of ignoring a static IP ID value.  This doesn't enable the
10305          * feature itself but allows the user to enable it later.
10306          */
10307         if (dev->hw_features & NETIF_F_TSO)
10308                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10309         if (dev->vlan_features & NETIF_F_TSO)
10310                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10311         if (dev->mpls_features & NETIF_F_TSO)
10312                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10313         if (dev->hw_enc_features & NETIF_F_TSO)
10314                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10315
10316         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10317          */
10318         dev->vlan_features |= NETIF_F_HIGHDMA;
10319
10320         /* Make NETIF_F_SG inheritable to tunnel devices.
10321          */
10322         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10323
10324         /* Make NETIF_F_SG inheritable to MPLS.
10325          */
10326         dev->mpls_features |= NETIF_F_SG;
10327
10328         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10329         ret = notifier_to_errno(ret);
10330         if (ret)
10331                 goto err_uninit;
10332
10333         ret = netdev_register_kobject(dev);
10334         if (ret) {
10335                 dev->reg_state = NETREG_UNREGISTERED;
10336                 goto err_uninit;
10337         }
10338         dev->reg_state = NETREG_REGISTERED;
10339
10340         __netdev_update_features(dev);
10341
10342         /*
10343          *      Default initial state at registry is that the
10344          *      device is present.
10345          */
10346
10347         set_bit(__LINK_STATE_PRESENT, &dev->state);
10348
10349         linkwatch_init_dev(dev);
10350
10351         dev_init_scheduler(dev);
10352         dev_hold(dev);
10353         list_netdevice(dev);
10354         add_device_randomness(dev->dev_addr, dev->addr_len);
10355
10356         /* If the device has permanent device address, driver should
10357          * set dev_addr and also addr_assign_type should be set to
10358          * NET_ADDR_PERM (default value).
10359          */
10360         if (dev->addr_assign_type == NET_ADDR_PERM)
10361                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10362
10363         /* Notify protocols, that a new device appeared. */
10364         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10365         ret = notifier_to_errno(ret);
10366         if (ret) {
10367                 /* Expect explicit free_netdev() on failure */
10368                 dev->needs_free_netdev = false;
10369                 unregister_netdevice_queue(dev, NULL);
10370                 goto out;
10371         }
10372         /*
10373          *      Prevent userspace races by waiting until the network
10374          *      device is fully setup before sending notifications.
10375          */
10376         if (!dev->rtnl_link_ops ||
10377             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10378                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10379
10380 out:
10381         return ret;
10382
10383 err_uninit:
10384         if (dev->netdev_ops->ndo_uninit)
10385                 dev->netdev_ops->ndo_uninit(dev);
10386         if (dev->priv_destructor)
10387                 dev->priv_destructor(dev);
10388 err_free_name:
10389         netdev_name_node_free(dev->name_node);
10390         goto out;
10391 }
10392 EXPORT_SYMBOL(register_netdevice);
10393
10394 /**
10395  *      init_dummy_netdev       - init a dummy network device for NAPI
10396  *      @dev: device to init
10397  *
10398  *      This takes a network device structure and initialize the minimum
10399  *      amount of fields so it can be used to schedule NAPI polls without
10400  *      registering a full blown interface. This is to be used by drivers
10401  *      that need to tie several hardware interfaces to a single NAPI
10402  *      poll scheduler due to HW limitations.
10403  */
10404 int init_dummy_netdev(struct net_device *dev)
10405 {
10406         /* Clear everything. Note we don't initialize spinlocks
10407          * are they aren't supposed to be taken by any of the
10408          * NAPI code and this dummy netdev is supposed to be
10409          * only ever used for NAPI polls
10410          */
10411         memset(dev, 0, sizeof(struct net_device));
10412
10413         /* make sure we BUG if trying to hit standard
10414          * register/unregister code path
10415          */
10416         dev->reg_state = NETREG_DUMMY;
10417
10418         /* NAPI wants this */
10419         INIT_LIST_HEAD(&dev->napi_list);
10420
10421         /* a dummy interface is started by default */
10422         set_bit(__LINK_STATE_PRESENT, &dev->state);
10423         set_bit(__LINK_STATE_START, &dev->state);
10424
10425         /* napi_busy_loop stats accounting wants this */
10426         dev_net_set(dev, &init_net);
10427
10428         /* Note : We dont allocate pcpu_refcnt for dummy devices,
10429          * because users of this 'device' dont need to change
10430          * its refcount.
10431          */
10432
10433         return 0;
10434 }
10435 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10436
10437
10438 /**
10439  *      register_netdev - register a network device
10440  *      @dev: device to register
10441  *
10442  *      Take a completed network device structure and add it to the kernel
10443  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10444  *      chain. 0 is returned on success. A negative errno code is returned
10445  *      on a failure to set up the device, or if the name is a duplicate.
10446  *
10447  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
10448  *      and expands the device name if you passed a format string to
10449  *      alloc_netdev.
10450  */
10451 int register_netdev(struct net_device *dev)
10452 {
10453         int err;
10454
10455         if (rtnl_lock_killable())
10456                 return -EINTR;
10457         err = register_netdevice(dev);
10458         rtnl_unlock();
10459         return err;
10460 }
10461 EXPORT_SYMBOL(register_netdev);
10462
10463 int netdev_refcnt_read(const struct net_device *dev)
10464 {
10465 #ifdef CONFIG_PCPU_DEV_REFCNT
10466         int i, refcnt = 0;
10467
10468         for_each_possible_cpu(i)
10469                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10470         return refcnt;
10471 #else
10472         return refcount_read(&dev->dev_refcnt);
10473 #endif
10474 }
10475 EXPORT_SYMBOL(netdev_refcnt_read);
10476
10477 int netdev_unregister_timeout_secs __read_mostly = 10;
10478
10479 #define WAIT_REFS_MIN_MSECS 1
10480 #define WAIT_REFS_MAX_MSECS 250
10481 /**
10482  * netdev_wait_allrefs - wait until all references are gone.
10483  * @dev: target net_device
10484  *
10485  * This is called when unregistering network devices.
10486  *
10487  * Any protocol or device that holds a reference should register
10488  * for netdevice notification, and cleanup and put back the
10489  * reference if they receive an UNREGISTER event.
10490  * We can get stuck here if buggy protocols don't correctly
10491  * call dev_put.
10492  */
10493 static void netdev_wait_allrefs(struct net_device *dev)
10494 {
10495         unsigned long rebroadcast_time, warning_time;
10496         int wait = 0, refcnt;
10497
10498         linkwatch_forget_dev(dev);
10499
10500         rebroadcast_time = warning_time = jiffies;
10501         refcnt = netdev_refcnt_read(dev);
10502
10503         while (refcnt != 1) {
10504                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10505                         rtnl_lock();
10506
10507                         /* Rebroadcast unregister notification */
10508                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10509
10510                         __rtnl_unlock();
10511                         rcu_barrier();
10512                         rtnl_lock();
10513
10514                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10515                                      &dev->state)) {
10516                                 /* We must not have linkwatch events
10517                                  * pending on unregister. If this
10518                                  * happens, we simply run the queue
10519                                  * unscheduled, resulting in a noop
10520                                  * for this device.
10521                                  */
10522                                 linkwatch_run_queue();
10523                         }
10524
10525                         __rtnl_unlock();
10526
10527                         rebroadcast_time = jiffies;
10528                 }
10529
10530                 if (!wait) {
10531                         rcu_barrier();
10532                         wait = WAIT_REFS_MIN_MSECS;
10533                 } else {
10534                         msleep(wait);
10535                         wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10536                 }
10537
10538                 refcnt = netdev_refcnt_read(dev);
10539
10540                 if (refcnt != 1 &&
10541                     time_after(jiffies, warning_time +
10542                                netdev_unregister_timeout_secs * HZ)) {
10543                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10544                                  dev->name, refcnt);
10545                         warning_time = jiffies;
10546                 }
10547         }
10548 }
10549
10550 /* The sequence is:
10551  *
10552  *      rtnl_lock();
10553  *      ...
10554  *      register_netdevice(x1);
10555  *      register_netdevice(x2);
10556  *      ...
10557  *      unregister_netdevice(y1);
10558  *      unregister_netdevice(y2);
10559  *      ...
10560  *      rtnl_unlock();
10561  *      free_netdev(y1);
10562  *      free_netdev(y2);
10563  *
10564  * We are invoked by rtnl_unlock().
10565  * This allows us to deal with problems:
10566  * 1) We can delete sysfs objects which invoke hotplug
10567  *    without deadlocking with linkwatch via keventd.
10568  * 2) Since we run with the RTNL semaphore not held, we can sleep
10569  *    safely in order to wait for the netdev refcnt to drop to zero.
10570  *
10571  * We must not return until all unregister events added during
10572  * the interval the lock was held have been completed.
10573  */
10574 void netdev_run_todo(void)
10575 {
10576         struct list_head list;
10577 #ifdef CONFIG_LOCKDEP
10578         struct list_head unlink_list;
10579
10580         list_replace_init(&net_unlink_list, &unlink_list);
10581
10582         while (!list_empty(&unlink_list)) {
10583                 struct net_device *dev = list_first_entry(&unlink_list,
10584                                                           struct net_device,
10585                                                           unlink_list);
10586                 list_del_init(&dev->unlink_list);
10587                 dev->nested_level = dev->lower_level - 1;
10588         }
10589 #endif
10590
10591         /* Snapshot list, allow later requests */
10592         list_replace_init(&net_todo_list, &list);
10593
10594         __rtnl_unlock();
10595
10596
10597         /* Wait for rcu callbacks to finish before next phase */
10598         if (!list_empty(&list))
10599                 rcu_barrier();
10600
10601         while (!list_empty(&list)) {
10602                 struct net_device *dev
10603                         = list_first_entry(&list, struct net_device, todo_list);
10604                 list_del(&dev->todo_list);
10605
10606                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10607                         pr_err("network todo '%s' but state %d\n",
10608                                dev->name, dev->reg_state);
10609                         dump_stack();
10610                         continue;
10611                 }
10612
10613                 dev->reg_state = NETREG_UNREGISTERED;
10614
10615                 netdev_wait_allrefs(dev);
10616
10617                 /* paranoia */
10618                 BUG_ON(netdev_refcnt_read(dev) != 1);
10619                 BUG_ON(!list_empty(&dev->ptype_all));
10620                 BUG_ON(!list_empty(&dev->ptype_specific));
10621                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10622                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10623 #if IS_ENABLED(CONFIG_DECNET)
10624                 WARN_ON(dev->dn_ptr);
10625 #endif
10626                 if (dev->priv_destructor)
10627                         dev->priv_destructor(dev);
10628                 if (dev->needs_free_netdev)
10629                         free_netdev(dev);
10630
10631                 /* Report a network device has been unregistered */
10632                 rtnl_lock();
10633                 dev_net(dev)->dev_unreg_count--;
10634                 __rtnl_unlock();
10635                 wake_up(&netdev_unregistering_wq);
10636
10637                 /* Free network device */
10638                 kobject_put(&dev->dev.kobj);
10639         }
10640 }
10641
10642 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10643  * all the same fields in the same order as net_device_stats, with only
10644  * the type differing, but rtnl_link_stats64 may have additional fields
10645  * at the end for newer counters.
10646  */
10647 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10648                              const struct net_device_stats *netdev_stats)
10649 {
10650 #if BITS_PER_LONG == 64
10651         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10652         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10653         /* zero out counters that only exist in rtnl_link_stats64 */
10654         memset((char *)stats64 + sizeof(*netdev_stats), 0,
10655                sizeof(*stats64) - sizeof(*netdev_stats));
10656 #else
10657         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10658         const unsigned long *src = (const unsigned long *)netdev_stats;
10659         u64 *dst = (u64 *)stats64;
10660
10661         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10662         for (i = 0; i < n; i++)
10663                 dst[i] = src[i];
10664         /* zero out counters that only exist in rtnl_link_stats64 */
10665         memset((char *)stats64 + n * sizeof(u64), 0,
10666                sizeof(*stats64) - n * sizeof(u64));
10667 #endif
10668 }
10669 EXPORT_SYMBOL(netdev_stats_to_stats64);
10670
10671 /**
10672  *      dev_get_stats   - get network device statistics
10673  *      @dev: device to get statistics from
10674  *      @storage: place to store stats
10675  *
10676  *      Get network statistics from device. Return @storage.
10677  *      The device driver may provide its own method by setting
10678  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10679  *      otherwise the internal statistics structure is used.
10680  */
10681 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10682                                         struct rtnl_link_stats64 *storage)
10683 {
10684         const struct net_device_ops *ops = dev->netdev_ops;
10685
10686         if (ops->ndo_get_stats64) {
10687                 memset(storage, 0, sizeof(*storage));
10688                 ops->ndo_get_stats64(dev, storage);
10689         } else if (ops->ndo_get_stats) {
10690                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10691         } else {
10692                 netdev_stats_to_stats64(storage, &dev->stats);
10693         }
10694         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10695         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10696         storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10697         return storage;
10698 }
10699 EXPORT_SYMBOL(dev_get_stats);
10700
10701 /**
10702  *      dev_fetch_sw_netstats - get per-cpu network device statistics
10703  *      @s: place to store stats
10704  *      @netstats: per-cpu network stats to read from
10705  *
10706  *      Read per-cpu network statistics and populate the related fields in @s.
10707  */
10708 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10709                            const struct pcpu_sw_netstats __percpu *netstats)
10710 {
10711         int cpu;
10712
10713         for_each_possible_cpu(cpu) {
10714                 const struct pcpu_sw_netstats *stats;
10715                 struct pcpu_sw_netstats tmp;
10716                 unsigned int start;
10717
10718                 stats = per_cpu_ptr(netstats, cpu);
10719                 do {
10720                         start = u64_stats_fetch_begin_irq(&stats->syncp);
10721                         tmp.rx_packets = stats->rx_packets;
10722                         tmp.rx_bytes   = stats->rx_bytes;
10723                         tmp.tx_packets = stats->tx_packets;
10724                         tmp.tx_bytes   = stats->tx_bytes;
10725                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10726
10727                 s->rx_packets += tmp.rx_packets;
10728                 s->rx_bytes   += tmp.rx_bytes;
10729                 s->tx_packets += tmp.tx_packets;
10730                 s->tx_bytes   += tmp.tx_bytes;
10731         }
10732 }
10733 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10734
10735 /**
10736  *      dev_get_tstats64 - ndo_get_stats64 implementation
10737  *      @dev: device to get statistics from
10738  *      @s: place to store stats
10739  *
10740  *      Populate @s from dev->stats and dev->tstats. Can be used as
10741  *      ndo_get_stats64() callback.
10742  */
10743 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10744 {
10745         netdev_stats_to_stats64(s, &dev->stats);
10746         dev_fetch_sw_netstats(s, dev->tstats);
10747 }
10748 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10749
10750 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10751 {
10752         struct netdev_queue *queue = dev_ingress_queue(dev);
10753
10754 #ifdef CONFIG_NET_CLS_ACT
10755         if (queue)
10756                 return queue;
10757         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10758         if (!queue)
10759                 return NULL;
10760         netdev_init_one_queue(dev, queue, NULL);
10761         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10762         queue->qdisc_sleeping = &noop_qdisc;
10763         rcu_assign_pointer(dev->ingress_queue, queue);
10764 #endif
10765         return queue;
10766 }
10767
10768 static const struct ethtool_ops default_ethtool_ops;
10769
10770 void netdev_set_default_ethtool_ops(struct net_device *dev,
10771                                     const struct ethtool_ops *ops)
10772 {
10773         if (dev->ethtool_ops == &default_ethtool_ops)
10774                 dev->ethtool_ops = ops;
10775 }
10776 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10777
10778 void netdev_freemem(struct net_device *dev)
10779 {
10780         char *addr = (char *)dev - dev->padded;
10781
10782         kvfree(addr);
10783 }
10784
10785 /**
10786  * alloc_netdev_mqs - allocate network device
10787  * @sizeof_priv: size of private data to allocate space for
10788  * @name: device name format string
10789  * @name_assign_type: origin of device name
10790  * @setup: callback to initialize device
10791  * @txqs: the number of TX subqueues to allocate
10792  * @rxqs: the number of RX subqueues to allocate
10793  *
10794  * Allocates a struct net_device with private data area for driver use
10795  * and performs basic initialization.  Also allocates subqueue structs
10796  * for each queue on the device.
10797  */
10798 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10799                 unsigned char name_assign_type,
10800                 void (*setup)(struct net_device *),
10801                 unsigned int txqs, unsigned int rxqs)
10802 {
10803         struct net_device *dev;
10804         unsigned int alloc_size;
10805         struct net_device *p;
10806
10807         BUG_ON(strlen(name) >= sizeof(dev->name));
10808
10809         if (txqs < 1) {
10810                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10811                 return NULL;
10812         }
10813
10814         if (rxqs < 1) {
10815                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10816                 return NULL;
10817         }
10818
10819         alloc_size = sizeof(struct net_device);
10820         if (sizeof_priv) {
10821                 /* ensure 32-byte alignment of private area */
10822                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10823                 alloc_size += sizeof_priv;
10824         }
10825         /* ensure 32-byte alignment of whole construct */
10826         alloc_size += NETDEV_ALIGN - 1;
10827
10828         p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10829         if (!p)
10830                 return NULL;
10831
10832         dev = PTR_ALIGN(p, NETDEV_ALIGN);
10833         dev->padded = (char *)dev - (char *)p;
10834
10835 #ifdef CONFIG_PCPU_DEV_REFCNT
10836         dev->pcpu_refcnt = alloc_percpu(int);
10837         if (!dev->pcpu_refcnt)
10838                 goto free_dev;
10839         dev_hold(dev);
10840 #else
10841         refcount_set(&dev->dev_refcnt, 1);
10842 #endif
10843
10844         if (dev_addr_init(dev))
10845                 goto free_pcpu;
10846
10847         dev_mc_init(dev);
10848         dev_uc_init(dev);
10849
10850         dev_net_set(dev, &init_net);
10851
10852         dev->gso_max_size = GSO_MAX_SIZE;
10853         dev->gso_max_segs = GSO_MAX_SEGS;
10854         dev->upper_level = 1;
10855         dev->lower_level = 1;
10856 #ifdef CONFIG_LOCKDEP
10857         dev->nested_level = 0;
10858         INIT_LIST_HEAD(&dev->unlink_list);
10859 #endif
10860
10861         INIT_LIST_HEAD(&dev->napi_list);
10862         INIT_LIST_HEAD(&dev->unreg_list);
10863         INIT_LIST_HEAD(&dev->close_list);
10864         INIT_LIST_HEAD(&dev->link_watch_list);
10865         INIT_LIST_HEAD(&dev->adj_list.upper);
10866         INIT_LIST_HEAD(&dev->adj_list.lower);
10867         INIT_LIST_HEAD(&dev->ptype_all);
10868         INIT_LIST_HEAD(&dev->ptype_specific);
10869         INIT_LIST_HEAD(&dev->net_notifier_list);
10870 #ifdef CONFIG_NET_SCHED
10871         hash_init(dev->qdisc_hash);
10872 #endif
10873         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10874         setup(dev);
10875
10876         if (!dev->tx_queue_len) {
10877                 dev->priv_flags |= IFF_NO_QUEUE;
10878                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10879         }
10880
10881         dev->num_tx_queues = txqs;
10882         dev->real_num_tx_queues = txqs;
10883         if (netif_alloc_netdev_queues(dev))
10884                 goto free_all;
10885
10886         dev->num_rx_queues = rxqs;
10887         dev->real_num_rx_queues = rxqs;
10888         if (netif_alloc_rx_queues(dev))
10889                 goto free_all;
10890
10891         strcpy(dev->name, name);
10892         dev->name_assign_type = name_assign_type;
10893         dev->group = INIT_NETDEV_GROUP;
10894         if (!dev->ethtool_ops)
10895                 dev->ethtool_ops = &default_ethtool_ops;
10896
10897         nf_hook_netdev_init(dev);
10898
10899         return dev;
10900
10901 free_all:
10902         free_netdev(dev);
10903         return NULL;
10904
10905 free_pcpu:
10906 #ifdef CONFIG_PCPU_DEV_REFCNT
10907         free_percpu(dev->pcpu_refcnt);
10908 free_dev:
10909 #endif
10910         netdev_freemem(dev);
10911         return NULL;
10912 }
10913 EXPORT_SYMBOL(alloc_netdev_mqs);
10914
10915 /**
10916  * free_netdev - free network device
10917  * @dev: device
10918  *
10919  * This function does the last stage of destroying an allocated device
10920  * interface. The reference to the device object is released. If this
10921  * is the last reference then it will be freed.Must be called in process
10922  * context.
10923  */
10924 void free_netdev(struct net_device *dev)
10925 {
10926         struct napi_struct *p, *n;
10927
10928         might_sleep();
10929
10930         /* When called immediately after register_netdevice() failed the unwind
10931          * handling may still be dismantling the device. Handle that case by
10932          * deferring the free.
10933          */
10934         if (dev->reg_state == NETREG_UNREGISTERING) {
10935                 ASSERT_RTNL();
10936                 dev->needs_free_netdev = true;
10937                 return;
10938         }
10939
10940         netif_free_tx_queues(dev);
10941         netif_free_rx_queues(dev);
10942
10943         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10944
10945         /* Flush device addresses */
10946         dev_addr_flush(dev);
10947
10948         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10949                 netif_napi_del(p);
10950
10951 #ifdef CONFIG_PCPU_DEV_REFCNT
10952         free_percpu(dev->pcpu_refcnt);
10953         dev->pcpu_refcnt = NULL;
10954 #endif
10955         free_percpu(dev->xdp_bulkq);
10956         dev->xdp_bulkq = NULL;
10957
10958         /*  Compatibility with error handling in drivers */
10959         if (dev->reg_state == NETREG_UNINITIALIZED) {
10960                 netdev_freemem(dev);
10961                 return;
10962         }
10963
10964         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10965         dev->reg_state = NETREG_RELEASED;
10966
10967         /* will free via device release */
10968         put_device(&dev->dev);
10969 }
10970 EXPORT_SYMBOL(free_netdev);
10971
10972 /**
10973  *      synchronize_net -  Synchronize with packet receive processing
10974  *
10975  *      Wait for packets currently being received to be done.
10976  *      Does not block later packets from starting.
10977  */
10978 void synchronize_net(void)
10979 {
10980         might_sleep();
10981         if (rtnl_is_locked())
10982                 synchronize_rcu_expedited();
10983         else
10984                 synchronize_rcu();
10985 }
10986 EXPORT_SYMBOL(synchronize_net);
10987
10988 /**
10989  *      unregister_netdevice_queue - remove device from the kernel
10990  *      @dev: device
10991  *      @head: list
10992  *
10993  *      This function shuts down a device interface and removes it
10994  *      from the kernel tables.
10995  *      If head not NULL, device is queued to be unregistered later.
10996  *
10997  *      Callers must hold the rtnl semaphore.  You may want
10998  *      unregister_netdev() instead of this.
10999  */
11000
11001 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
11002 {
11003         ASSERT_RTNL();
11004
11005         if (head) {
11006                 list_move_tail(&dev->unreg_list, head);
11007         } else {
11008                 LIST_HEAD(single);
11009
11010                 list_add(&dev->unreg_list, &single);
11011                 unregister_netdevice_many(&single);
11012         }
11013 }
11014 EXPORT_SYMBOL(unregister_netdevice_queue);
11015
11016 /**
11017  *      unregister_netdevice_many - unregister many devices
11018  *      @head: list of devices
11019  *
11020  *  Note: As most callers use a stack allocated list_head,
11021  *  we force a list_del() to make sure stack wont be corrupted later.
11022  */
11023 void unregister_netdevice_many(struct list_head *head)
11024 {
11025         struct net_device *dev, *tmp;
11026         LIST_HEAD(close_head);
11027
11028         BUG_ON(dev_boot_phase);
11029         ASSERT_RTNL();
11030
11031         if (list_empty(head))
11032                 return;
11033
11034         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11035                 /* Some devices call without registering
11036                  * for initialization unwind. Remove those
11037                  * devices and proceed with the remaining.
11038                  */
11039                 if (dev->reg_state == NETREG_UNINITIALIZED) {
11040                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11041                                  dev->name, dev);
11042
11043                         WARN_ON(1);
11044                         list_del(&dev->unreg_list);
11045                         continue;
11046                 }
11047                 dev->dismantle = true;
11048                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
11049         }
11050
11051         /* If device is running, close it first. */
11052         list_for_each_entry(dev, head, unreg_list)
11053                 list_add_tail(&dev->close_list, &close_head);
11054         dev_close_many(&close_head, true);
11055
11056         list_for_each_entry(dev, head, unreg_list) {
11057                 /* And unlink it from device chain. */
11058                 unlist_netdevice(dev);
11059
11060                 dev->reg_state = NETREG_UNREGISTERING;
11061         }
11062         flush_all_backlogs();
11063
11064         synchronize_net();
11065
11066         list_for_each_entry(dev, head, unreg_list) {
11067                 struct sk_buff *skb = NULL;
11068
11069                 /* Shutdown queueing discipline. */
11070                 dev_shutdown(dev);
11071
11072                 dev_xdp_uninstall(dev);
11073
11074                 /* Notify protocols, that we are about to destroy
11075                  * this device. They should clean all the things.
11076                  */
11077                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11078
11079                 if (!dev->rtnl_link_ops ||
11080                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11081                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11082                                                      GFP_KERNEL, NULL, 0);
11083
11084                 /*
11085                  *      Flush the unicast and multicast chains
11086                  */
11087                 dev_uc_flush(dev);
11088                 dev_mc_flush(dev);
11089
11090                 netdev_name_node_alt_flush(dev);
11091                 netdev_name_node_free(dev->name_node);
11092
11093                 if (dev->netdev_ops->ndo_uninit)
11094                         dev->netdev_ops->ndo_uninit(dev);
11095
11096                 if (skb)
11097                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
11098
11099                 /* Notifier chain MUST detach us all upper devices. */
11100                 WARN_ON(netdev_has_any_upper_dev(dev));
11101                 WARN_ON(netdev_has_any_lower_dev(dev));
11102
11103                 /* Remove entries from kobject tree */
11104                 netdev_unregister_kobject(dev);
11105 #ifdef CONFIG_XPS
11106                 /* Remove XPS queueing entries */
11107                 netif_reset_xps_queues_gt(dev, 0);
11108 #endif
11109         }
11110
11111         synchronize_net();
11112
11113         list_for_each_entry(dev, head, unreg_list) {
11114                 dev_put(dev);
11115                 net_set_todo(dev);
11116         }
11117
11118         list_del(head);
11119 }
11120 EXPORT_SYMBOL(unregister_netdevice_many);
11121
11122 /**
11123  *      unregister_netdev - remove device from the kernel
11124  *      @dev: device
11125  *
11126  *      This function shuts down a device interface and removes it
11127  *      from the kernel tables.
11128  *
11129  *      This is just a wrapper for unregister_netdevice that takes
11130  *      the rtnl semaphore.  In general you want to use this and not
11131  *      unregister_netdevice.
11132  */
11133 void unregister_netdev(struct net_device *dev)
11134 {
11135         rtnl_lock();
11136         unregister_netdevice(dev);
11137         rtnl_unlock();
11138 }
11139 EXPORT_SYMBOL(unregister_netdev);
11140
11141 /**
11142  *      __dev_change_net_namespace - move device to different nethost namespace
11143  *      @dev: device
11144  *      @net: network namespace
11145  *      @pat: If not NULL name pattern to try if the current device name
11146  *            is already taken in the destination network namespace.
11147  *      @new_ifindex: If not zero, specifies device index in the target
11148  *                    namespace.
11149  *
11150  *      This function shuts down a device interface and moves it
11151  *      to a new network namespace. On success 0 is returned, on
11152  *      a failure a netagive errno code is returned.
11153  *
11154  *      Callers must hold the rtnl semaphore.
11155  */
11156
11157 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11158                                const char *pat, int new_ifindex)
11159 {
11160         struct net *net_old = dev_net(dev);
11161         int err, new_nsid;
11162
11163         ASSERT_RTNL();
11164
11165         /* Don't allow namespace local devices to be moved. */
11166         err = -EINVAL;
11167         if (dev->features & NETIF_F_NETNS_LOCAL)
11168                 goto out;
11169
11170         /* Ensure the device has been registrered */
11171         if (dev->reg_state != NETREG_REGISTERED)
11172                 goto out;
11173
11174         /* Get out if there is nothing todo */
11175         err = 0;
11176         if (net_eq(net_old, net))
11177                 goto out;
11178
11179         /* Pick the destination device name, and ensure
11180          * we can use it in the destination network namespace.
11181          */
11182         err = -EEXIST;
11183         if (netdev_name_in_use(net, dev->name)) {
11184                 /* We get here if we can't use the current device name */
11185                 if (!pat)
11186                         goto out;
11187                 err = dev_get_valid_name(net, dev, pat);
11188                 if (err < 0)
11189                         goto out;
11190         }
11191
11192         /* Check that new_ifindex isn't used yet. */
11193         err = -EBUSY;
11194         if (new_ifindex && __dev_get_by_index(net, new_ifindex))
11195                 goto out;
11196
11197         /*
11198          * And now a mini version of register_netdevice unregister_netdevice.
11199          */
11200
11201         /* If device is running close it first. */
11202         dev_close(dev);
11203
11204         /* And unlink it from device chain */
11205         unlist_netdevice(dev);
11206
11207         synchronize_net();
11208
11209         /* Shutdown queueing discipline. */
11210         dev_shutdown(dev);
11211
11212         /* Notify protocols, that we are about to destroy
11213          * this device. They should clean all the things.
11214          *
11215          * Note that dev->reg_state stays at NETREG_REGISTERED.
11216          * This is wanted because this way 8021q and macvlan know
11217          * the device is just moving and can keep their slaves up.
11218          */
11219         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11220         rcu_barrier();
11221
11222         new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11223         /* If there is an ifindex conflict assign a new one */
11224         if (!new_ifindex) {
11225                 if (__dev_get_by_index(net, dev->ifindex))
11226                         new_ifindex = dev_new_index(net);
11227                 else
11228                         new_ifindex = dev->ifindex;
11229         }
11230
11231         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11232                             new_ifindex);
11233
11234         /*
11235          *      Flush the unicast and multicast chains
11236          */
11237         dev_uc_flush(dev);
11238         dev_mc_flush(dev);
11239
11240         /* Send a netdev-removed uevent to the old namespace */
11241         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11242         netdev_adjacent_del_links(dev);
11243
11244         /* Move per-net netdevice notifiers that are following the netdevice */
11245         move_netdevice_notifiers_dev_net(dev, net);
11246
11247         /* Actually switch the network namespace */
11248         dev_net_set(dev, net);
11249         dev->ifindex = new_ifindex;
11250
11251         /* Send a netdev-add uevent to the new namespace */
11252         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11253         netdev_adjacent_add_links(dev);
11254
11255         /* Fixup kobjects */
11256         err = device_rename(&dev->dev, dev->name);
11257         WARN_ON(err);
11258
11259         /* Adapt owner in case owning user namespace of target network
11260          * namespace is different from the original one.
11261          */
11262         err = netdev_change_owner(dev, net_old, net);
11263         WARN_ON(err);
11264
11265         /* Add the device back in the hashes */
11266         list_netdevice(dev);
11267
11268         /* Notify protocols, that a new device appeared. */
11269         call_netdevice_notifiers(NETDEV_REGISTER, dev);
11270
11271         /*
11272          *      Prevent userspace races by waiting until the network
11273          *      device is fully setup before sending notifications.
11274          */
11275         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
11276
11277         synchronize_net();
11278         err = 0;
11279 out:
11280         return err;
11281 }
11282 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11283
11284 static int dev_cpu_dead(unsigned int oldcpu)
11285 {
11286         struct sk_buff **list_skb;
11287         struct sk_buff *skb;
11288         unsigned int cpu;
11289         struct softnet_data *sd, *oldsd, *remsd = NULL;
11290
11291         local_irq_disable();
11292         cpu = smp_processor_id();
11293         sd = &per_cpu(softnet_data, cpu);
11294         oldsd = &per_cpu(softnet_data, oldcpu);
11295
11296         /* Find end of our completion_queue. */
11297         list_skb = &sd->completion_queue;
11298         while (*list_skb)
11299                 list_skb = &(*list_skb)->next;
11300         /* Append completion queue from offline CPU. */
11301         *list_skb = oldsd->completion_queue;
11302         oldsd->completion_queue = NULL;
11303
11304         /* Append output queue from offline CPU. */
11305         if (oldsd->output_queue) {
11306                 *sd->output_queue_tailp = oldsd->output_queue;
11307                 sd->output_queue_tailp = oldsd->output_queue_tailp;
11308                 oldsd->output_queue = NULL;
11309                 oldsd->output_queue_tailp = &oldsd->output_queue;
11310         }
11311         /* Append NAPI poll list from offline CPU, with one exception :
11312          * process_backlog() must be called by cpu owning percpu backlog.
11313          * We properly handle process_queue & input_pkt_queue later.
11314          */
11315         while (!list_empty(&oldsd->poll_list)) {
11316                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11317                                                             struct napi_struct,
11318                                                             poll_list);
11319
11320                 list_del_init(&napi->poll_list);
11321                 if (napi->poll == process_backlog)
11322                         napi->state = 0;
11323                 else
11324                         ____napi_schedule(sd, napi);
11325         }
11326
11327         raise_softirq_irqoff(NET_TX_SOFTIRQ);
11328         local_irq_enable();
11329
11330 #ifdef CONFIG_RPS
11331         remsd = oldsd->rps_ipi_list;
11332         oldsd->rps_ipi_list = NULL;
11333 #endif
11334         /* send out pending IPI's on offline CPU */
11335         net_rps_send_ipi(remsd);
11336
11337         /* Process offline CPU's input_pkt_queue */
11338         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11339                 netif_rx_ni(skb);
11340                 input_queue_head_incr(oldsd);
11341         }
11342         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11343                 netif_rx_ni(skb);
11344                 input_queue_head_incr(oldsd);
11345         }
11346
11347         return 0;
11348 }
11349
11350 /**
11351  *      netdev_increment_features - increment feature set by one
11352  *      @all: current feature set
11353  *      @one: new feature set
11354  *      @mask: mask feature set
11355  *
11356  *      Computes a new feature set after adding a device with feature set
11357  *      @one to the master device with current feature set @all.  Will not
11358  *      enable anything that is off in @mask. Returns the new feature set.
11359  */
11360 netdev_features_t netdev_increment_features(netdev_features_t all,
11361         netdev_features_t one, netdev_features_t mask)
11362 {
11363         if (mask & NETIF_F_HW_CSUM)
11364                 mask |= NETIF_F_CSUM_MASK;
11365         mask |= NETIF_F_VLAN_CHALLENGED;
11366
11367         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11368         all &= one | ~NETIF_F_ALL_FOR_ALL;
11369
11370         /* If one device supports hw checksumming, set for all. */
11371         if (all & NETIF_F_HW_CSUM)
11372                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11373
11374         return all;
11375 }
11376 EXPORT_SYMBOL(netdev_increment_features);
11377
11378 static struct hlist_head * __net_init netdev_create_hash(void)
11379 {
11380         int i;
11381         struct hlist_head *hash;
11382
11383         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11384         if (hash != NULL)
11385                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11386                         INIT_HLIST_HEAD(&hash[i]);
11387
11388         return hash;
11389 }
11390
11391 /* Initialize per network namespace state */
11392 static int __net_init netdev_init(struct net *net)
11393 {
11394         BUILD_BUG_ON(GRO_HASH_BUCKETS >
11395                      8 * sizeof_field(struct napi_struct, gro_bitmask));
11396
11397         if (net != &init_net)
11398                 INIT_LIST_HEAD(&net->dev_base_head);
11399
11400         net->dev_name_head = netdev_create_hash();
11401         if (net->dev_name_head == NULL)
11402                 goto err_name;
11403
11404         net->dev_index_head = netdev_create_hash();
11405         if (net->dev_index_head == NULL)
11406                 goto err_idx;
11407
11408         RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11409
11410         return 0;
11411
11412 err_idx:
11413         kfree(net->dev_name_head);
11414 err_name:
11415         return -ENOMEM;
11416 }
11417
11418 /**
11419  *      netdev_drivername - network driver for the device
11420  *      @dev: network device
11421  *
11422  *      Determine network driver for device.
11423  */
11424 const char *netdev_drivername(const struct net_device *dev)
11425 {
11426         const struct device_driver *driver;
11427         const struct device *parent;
11428         const char *empty = "";
11429
11430         parent = dev->dev.parent;
11431         if (!parent)
11432                 return empty;
11433
11434         driver = parent->driver;
11435         if (driver && driver->name)
11436                 return driver->name;
11437         return empty;
11438 }
11439
11440 static void __netdev_printk(const char *level, const struct net_device *dev,
11441                             struct va_format *vaf)
11442 {
11443         if (dev && dev->dev.parent) {
11444                 dev_printk_emit(level[1] - '0',
11445                                 dev->dev.parent,
11446                                 "%s %s %s%s: %pV",
11447                                 dev_driver_string(dev->dev.parent),
11448                                 dev_name(dev->dev.parent),
11449                                 netdev_name(dev), netdev_reg_state(dev),
11450                                 vaf);
11451         } else if (dev) {
11452                 printk("%s%s%s: %pV",
11453                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
11454         } else {
11455                 printk("%s(NULL net_device): %pV", level, vaf);
11456         }
11457 }
11458
11459 void netdev_printk(const char *level, const struct net_device *dev,
11460                    const char *format, ...)
11461 {
11462         struct va_format vaf;
11463         va_list args;
11464
11465         va_start(args, format);
11466
11467         vaf.fmt = format;
11468         vaf.va = &args;
11469
11470         __netdev_printk(level, dev, &vaf);
11471
11472         va_end(args);
11473 }
11474 EXPORT_SYMBOL(netdev_printk);
11475
11476 #define define_netdev_printk_level(func, level)                 \
11477 void func(const struct net_device *dev, const char *fmt, ...)   \
11478 {                                                               \
11479         struct va_format vaf;                                   \
11480         va_list args;                                           \
11481                                                                 \
11482         va_start(args, fmt);                                    \
11483                                                                 \
11484         vaf.fmt = fmt;                                          \
11485         vaf.va = &args;                                         \
11486                                                                 \
11487         __netdev_printk(level, dev, &vaf);                      \
11488                                                                 \
11489         va_end(args);                                           \
11490 }                                                               \
11491 EXPORT_SYMBOL(func);
11492
11493 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11494 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11495 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11496 define_netdev_printk_level(netdev_err, KERN_ERR);
11497 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11498 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11499 define_netdev_printk_level(netdev_info, KERN_INFO);
11500
11501 static void __net_exit netdev_exit(struct net *net)
11502 {
11503         kfree(net->dev_name_head);
11504         kfree(net->dev_index_head);
11505         if (net != &init_net)
11506                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11507 }
11508
11509 static struct pernet_operations __net_initdata netdev_net_ops = {
11510         .init = netdev_init,
11511         .exit = netdev_exit,
11512 };
11513
11514 static void __net_exit default_device_exit(struct net *net)
11515 {
11516         struct net_device *dev, *aux;
11517         /*
11518          * Push all migratable network devices back to the
11519          * initial network namespace
11520          */
11521         rtnl_lock();
11522         for_each_netdev_safe(net, dev, aux) {
11523                 int err;
11524                 char fb_name[IFNAMSIZ];
11525
11526                 /* Ignore unmoveable devices (i.e. loopback) */
11527                 if (dev->features & NETIF_F_NETNS_LOCAL)
11528                         continue;
11529
11530                 /* Leave virtual devices for the generic cleanup */
11531                 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11532                         continue;
11533
11534                 /* Push remaining network devices to init_net */
11535                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11536                 if (netdev_name_in_use(&init_net, fb_name))
11537                         snprintf(fb_name, IFNAMSIZ, "dev%%d");
11538                 err = dev_change_net_namespace(dev, &init_net, fb_name);
11539                 if (err) {
11540                         pr_emerg("%s: failed to move %s to init_net: %d\n",
11541                                  __func__, dev->name, err);
11542                         BUG();
11543                 }
11544         }
11545         rtnl_unlock();
11546 }
11547
11548 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11549 {
11550         /* Return with the rtnl_lock held when there are no network
11551          * devices unregistering in any network namespace in net_list.
11552          */
11553         struct net *net;
11554         bool unregistering;
11555         DEFINE_WAIT_FUNC(wait, woken_wake_function);
11556
11557         add_wait_queue(&netdev_unregistering_wq, &wait);
11558         for (;;) {
11559                 unregistering = false;
11560                 rtnl_lock();
11561                 list_for_each_entry(net, net_list, exit_list) {
11562                         if (net->dev_unreg_count > 0) {
11563                                 unregistering = true;
11564                                 break;
11565                         }
11566                 }
11567                 if (!unregistering)
11568                         break;
11569                 __rtnl_unlock();
11570
11571                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
11572         }
11573         remove_wait_queue(&netdev_unregistering_wq, &wait);
11574 }
11575
11576 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11577 {
11578         /* At exit all network devices most be removed from a network
11579          * namespace.  Do this in the reverse order of registration.
11580          * Do this across as many network namespaces as possible to
11581          * improve batching efficiency.
11582          */
11583         struct net_device *dev;
11584         struct net *net;
11585         LIST_HEAD(dev_kill_list);
11586
11587         /* To prevent network device cleanup code from dereferencing
11588          * loopback devices or network devices that have been freed
11589          * wait here for all pending unregistrations to complete,
11590          * before unregistring the loopback device and allowing the
11591          * network namespace be freed.
11592          *
11593          * The netdev todo list containing all network devices
11594          * unregistrations that happen in default_device_exit_batch
11595          * will run in the rtnl_unlock() at the end of
11596          * default_device_exit_batch.
11597          */
11598         rtnl_lock_unregistering(net_list);
11599         list_for_each_entry(net, net_list, exit_list) {
11600                 for_each_netdev_reverse(net, dev) {
11601                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11602                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11603                         else
11604                                 unregister_netdevice_queue(dev, &dev_kill_list);
11605                 }
11606         }
11607         unregister_netdevice_many(&dev_kill_list);
11608         rtnl_unlock();
11609 }
11610
11611 static struct pernet_operations __net_initdata default_device_ops = {
11612         .exit = default_device_exit,
11613         .exit_batch = default_device_exit_batch,
11614 };
11615
11616 /*
11617  *      Initialize the DEV module. At boot time this walks the device list and
11618  *      unhooks any devices that fail to initialise (normally hardware not
11619  *      present) and leaves us with a valid list of present and active devices.
11620  *
11621  */
11622
11623 /*
11624  *       This is called single threaded during boot, so no need
11625  *       to take the rtnl semaphore.
11626  */
11627 static int __init net_dev_init(void)
11628 {
11629         int i, rc = -ENOMEM;
11630
11631         BUG_ON(!dev_boot_phase);
11632
11633         if (dev_proc_init())
11634                 goto out;
11635
11636         if (netdev_kobject_init())
11637                 goto out;
11638
11639         INIT_LIST_HEAD(&ptype_all);
11640         for (i = 0; i < PTYPE_HASH_SIZE; i++)
11641                 INIT_LIST_HEAD(&ptype_base[i]);
11642
11643         INIT_LIST_HEAD(&offload_base);
11644
11645         if (register_pernet_subsys(&netdev_net_ops))
11646                 goto out;
11647
11648         /*
11649          *      Initialise the packet receive queues.
11650          */
11651
11652         for_each_possible_cpu(i) {
11653                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11654                 struct softnet_data *sd = &per_cpu(softnet_data, i);
11655
11656                 INIT_WORK(flush, flush_backlog);
11657
11658                 skb_queue_head_init(&sd->input_pkt_queue);
11659                 skb_queue_head_init(&sd->process_queue);
11660 #ifdef CONFIG_XFRM_OFFLOAD
11661                 skb_queue_head_init(&sd->xfrm_backlog);
11662 #endif
11663                 INIT_LIST_HEAD(&sd->poll_list);
11664                 sd->output_queue_tailp = &sd->output_queue;
11665 #ifdef CONFIG_RPS
11666                 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11667                 sd->cpu = i;
11668 #endif
11669
11670                 init_gro_hash(&sd->backlog);
11671                 sd->backlog.poll = process_backlog;
11672                 sd->backlog.weight = weight_p;
11673         }
11674
11675         dev_boot_phase = 0;
11676
11677         /* The loopback device is special if any other network devices
11678          * is present in a network namespace the loopback device must
11679          * be present. Since we now dynamically allocate and free the
11680          * loopback device ensure this invariant is maintained by
11681          * keeping the loopback device as the first device on the
11682          * list of network devices.  Ensuring the loopback devices
11683          * is the first device that appears and the last network device
11684          * that disappears.
11685          */
11686         if (register_pernet_device(&loopback_net_ops))
11687                 goto out;
11688
11689         if (register_pernet_device(&default_device_ops))
11690                 goto out;
11691
11692         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11693         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11694
11695         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11696                                        NULL, dev_cpu_dead);
11697         WARN_ON(rc < 0);
11698         rc = 0;
11699 out:
11700         return rc;
11701 }
11702
11703 subsys_initcall(net_dev_init);