Merge tag 'for-linus' of git://github.com/openrisc/linux
[linux-2.6-microblaze.git] / net / core / dev.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *      Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:        Ross Biro
7  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *      Additional Authors:
11  *              Florian la Roche <rzsfl@rz.uni-sb.de>
12  *              Alan Cox <gw4pts@gw4pts.ampr.org>
13  *              David Hinds <dahinds@users.sourceforge.net>
14  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *              Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *      Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *              Alan Cox        :       device private ioctl copies fields back.
24  *              Alan Cox        :       Transmit queue code does relevant
25  *                                      stunts to keep the queue safe.
26  *              Alan Cox        :       Fixed double lock.
27  *              Alan Cox        :       Fixed promisc NULL pointer trap
28  *              ????????        :       Support the full private ioctl range
29  *              Alan Cox        :       Moved ioctl permission check into
30  *                                      drivers
31  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
32  *              Alan Cox        :       100 backlog just doesn't cut it when
33  *                                      you start doing multicast video 8)
34  *              Alan Cox        :       Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *              Alan Cox        :       Took out transmit every packet pass
37  *                                      Saved a few bytes in the ioctl handler
38  *              Alan Cox        :       Network driver sets packet type before
39  *                                      calling netif_rx. Saves a function
40  *                                      call a packet.
41  *              Alan Cox        :       Hashed net_bh()
42  *              Richard Kooijman:       Timestamp fixes.
43  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
44  *              Alan Cox        :       Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *                                      changes.
47  *              Rudi Cilibrasi  :       Pass the right thing to
48  *                                      set_mac_address()
49  *              Dave Miller     :       32bit quantity for the device lock to
50  *                                      make it work out on a Sparc.
51  *              Bjorn Ekwall    :       Added KERNELD hack.
52  *              Alan Cox        :       Cleaned up the backlog initialise.
53  *              Craig Metz      :       SIOCGIFCONF fix if space for under
54  *                                      1 device.
55  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
56  *                                      is no device open function.
57  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
58  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
59  *              Cyrus Durgin    :       Cleaned for KMOD
60  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
61  *                                      A network device unload needs to purge
62  *                                      the backlog queue.
63  *      Paul Rusty Russell      :       SIOCSIFNAME
64  *              Pekka Riikonen  :       Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *                                      - netif_rx() feedback
69  */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/bpf.h>
95 #include <linux/bpf_trace.h>
96 #include <net/net_namespace.h>
97 #include <net/sock.h>
98 #include <net/busy_poll.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dsa.h>
102 #include <net/dst.h>
103 #include <net/dst_metadata.h>
104 #include <net/pkt_sched.h>
105 #include <net/pkt_cls.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/iw_handler.h>
115 #include <asm/current.h>
116 #include <linux/audit.h>
117 #include <linux/dmaengine.h>
118 #include <linux/err.h>
119 #include <linux/ctype.h>
120 #include <linux/if_arp.h>
121 #include <linux/if_vlan.h>
122 #include <linux/ip.h>
123 #include <net/ip.h>
124 #include <net/mpls.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/inetdevice.h>
133 #include <linux/cpu_rmap.h>
134 #include <linux/static_key.h>
135 #include <linux/hashtable.h>
136 #include <linux/vmalloc.h>
137 #include <linux/if_macvlan.h>
138 #include <linux/errqueue.h>
139 #include <linux/hrtimer.h>
140 #include <linux/netfilter_ingress.h>
141 #include <linux/crash_dump.h>
142 #include <linux/sctp.h>
143 #include <net/udp_tunnel.h>
144 #include <linux/net_namespace.h>
145 #include <linux/indirect_call_wrapper.h>
146 #include <net/devlink.h>
147 #include <linux/pm_runtime.h>
148 #include <linux/prandom.h>
149
150 #include "net-sysfs.h"
151
152 #define MAX_GRO_SKBS 8
153
154 /* This should be increased if a protocol with a bigger head is added. */
155 #define GRO_MAX_HEAD (MAX_HEADER + 128)
156
157 static DEFINE_SPINLOCK(ptype_lock);
158 static DEFINE_SPINLOCK(offload_lock);
159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160 struct list_head ptype_all __read_mostly;       /* Taps */
161 static struct list_head offload_base __read_mostly;
162
163 static int netif_rx_internal(struct sk_buff *skb);
164 static int call_netdevice_notifiers_info(unsigned long val,
165                                          struct netdev_notifier_info *info);
166 static int call_netdevice_notifiers_extack(unsigned long val,
167                                            struct net_device *dev,
168                                            struct netlink_ext_ack *extack);
169 static struct napi_struct *napi_by_id(unsigned int napi_id);
170
171 /*
172  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
173  * semaphore.
174  *
175  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
176  *
177  * Writers must hold the rtnl semaphore while they loop through the
178  * dev_base_head list, and hold dev_base_lock for writing when they do the
179  * actual updates.  This allows pure readers to access the list even
180  * while a writer is preparing to update it.
181  *
182  * To put it another way, dev_base_lock is held for writing only to
183  * protect against pure readers; the rtnl semaphore provides the
184  * protection against other writers.
185  *
186  * See, for example usages, register_netdevice() and
187  * unregister_netdevice(), which must be called with the rtnl
188  * semaphore held.
189  */
190 DEFINE_RWLOCK(dev_base_lock);
191 EXPORT_SYMBOL(dev_base_lock);
192
193 static DEFINE_MUTEX(ifalias_mutex);
194
195 /* protects napi_hash addition/deletion and napi_gen_id */
196 static DEFINE_SPINLOCK(napi_hash_lock);
197
198 static unsigned int napi_gen_id = NR_CPUS;
199 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
200
201 static DECLARE_RWSEM(devnet_rename_sem);
202
203 static inline void dev_base_seq_inc(struct net *net)
204 {
205         while (++net->dev_base_seq == 0)
206                 ;
207 }
208
209 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
210 {
211         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
212
213         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
214 }
215
216 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
217 {
218         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
219 }
220
221 static inline void rps_lock(struct softnet_data *sd)
222 {
223 #ifdef CONFIG_RPS
224         spin_lock(&sd->input_pkt_queue.lock);
225 #endif
226 }
227
228 static inline void rps_unlock(struct softnet_data *sd)
229 {
230 #ifdef CONFIG_RPS
231         spin_unlock(&sd->input_pkt_queue.lock);
232 #endif
233 }
234
235 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
236                                                        const char *name)
237 {
238         struct netdev_name_node *name_node;
239
240         name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
241         if (!name_node)
242                 return NULL;
243         INIT_HLIST_NODE(&name_node->hlist);
244         name_node->dev = dev;
245         name_node->name = name;
246         return name_node;
247 }
248
249 static struct netdev_name_node *
250 netdev_name_node_head_alloc(struct net_device *dev)
251 {
252         struct netdev_name_node *name_node;
253
254         name_node = netdev_name_node_alloc(dev, dev->name);
255         if (!name_node)
256                 return NULL;
257         INIT_LIST_HEAD(&name_node->list);
258         return name_node;
259 }
260
261 static void netdev_name_node_free(struct netdev_name_node *name_node)
262 {
263         kfree(name_node);
264 }
265
266 static void netdev_name_node_add(struct net *net,
267                                  struct netdev_name_node *name_node)
268 {
269         hlist_add_head_rcu(&name_node->hlist,
270                            dev_name_hash(net, name_node->name));
271 }
272
273 static void netdev_name_node_del(struct netdev_name_node *name_node)
274 {
275         hlist_del_rcu(&name_node->hlist);
276 }
277
278 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
279                                                         const char *name)
280 {
281         struct hlist_head *head = dev_name_hash(net, name);
282         struct netdev_name_node *name_node;
283
284         hlist_for_each_entry(name_node, head, hlist)
285                 if (!strcmp(name_node->name, name))
286                         return name_node;
287         return NULL;
288 }
289
290 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
291                                                             const char *name)
292 {
293         struct hlist_head *head = dev_name_hash(net, name);
294         struct netdev_name_node *name_node;
295
296         hlist_for_each_entry_rcu(name_node, head, hlist)
297                 if (!strcmp(name_node->name, name))
298                         return name_node;
299         return NULL;
300 }
301
302 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
303 {
304         struct netdev_name_node *name_node;
305         struct net *net = dev_net(dev);
306
307         name_node = netdev_name_node_lookup(net, name);
308         if (name_node)
309                 return -EEXIST;
310         name_node = netdev_name_node_alloc(dev, name);
311         if (!name_node)
312                 return -ENOMEM;
313         netdev_name_node_add(net, name_node);
314         /* The node that holds dev->name acts as a head of per-device list. */
315         list_add_tail(&name_node->list, &dev->name_node->list);
316
317         return 0;
318 }
319 EXPORT_SYMBOL(netdev_name_node_alt_create);
320
321 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
322 {
323         list_del(&name_node->list);
324         netdev_name_node_del(name_node);
325         kfree(name_node->name);
326         netdev_name_node_free(name_node);
327 }
328
329 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
330 {
331         struct netdev_name_node *name_node;
332         struct net *net = dev_net(dev);
333
334         name_node = netdev_name_node_lookup(net, name);
335         if (!name_node)
336                 return -ENOENT;
337         /* lookup might have found our primary name or a name belonging
338          * to another device.
339          */
340         if (name_node == dev->name_node || name_node->dev != dev)
341                 return -EINVAL;
342
343         __netdev_name_node_alt_destroy(name_node);
344
345         return 0;
346 }
347 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
348
349 static void netdev_name_node_alt_flush(struct net_device *dev)
350 {
351         struct netdev_name_node *name_node, *tmp;
352
353         list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
354                 __netdev_name_node_alt_destroy(name_node);
355 }
356
357 /* Device list insertion */
358 static void list_netdevice(struct net_device *dev)
359 {
360         struct net *net = dev_net(dev);
361
362         ASSERT_RTNL();
363
364         write_lock_bh(&dev_base_lock);
365         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
366         netdev_name_node_add(net, dev->name_node);
367         hlist_add_head_rcu(&dev->index_hlist,
368                            dev_index_hash(net, dev->ifindex));
369         write_unlock_bh(&dev_base_lock);
370
371         dev_base_seq_inc(net);
372 }
373
374 /* Device list removal
375  * caller must respect a RCU grace period before freeing/reusing dev
376  */
377 static void unlist_netdevice(struct net_device *dev)
378 {
379         ASSERT_RTNL();
380
381         /* Unlink dev from the device chain */
382         write_lock_bh(&dev_base_lock);
383         list_del_rcu(&dev->dev_list);
384         netdev_name_node_del(dev->name_node);
385         hlist_del_rcu(&dev->index_hlist);
386         write_unlock_bh(&dev_base_lock);
387
388         dev_base_seq_inc(dev_net(dev));
389 }
390
391 /*
392  *      Our notifier list
393  */
394
395 static RAW_NOTIFIER_HEAD(netdev_chain);
396
397 /*
398  *      Device drivers call our routines to queue packets here. We empty the
399  *      queue in the local softnet handler.
400  */
401
402 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
403 EXPORT_PER_CPU_SYMBOL(softnet_data);
404
405 #ifdef CONFIG_LOCKDEP
406 /*
407  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
408  * according to dev->type
409  */
410 static const unsigned short netdev_lock_type[] = {
411          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
412          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
413          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
414          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
415          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
416          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
417          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
418          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
419          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
420          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
421          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
422          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
423          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
424          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
425          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
426
427 static const char *const netdev_lock_name[] = {
428         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
429         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
430         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
431         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
432         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
433         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
434         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
435         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
436         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
437         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
438         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
439         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
440         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
441         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
442         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
443
444 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
445 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
446
447 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
448 {
449         int i;
450
451         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
452                 if (netdev_lock_type[i] == dev_type)
453                         return i;
454         /* the last key is used by default */
455         return ARRAY_SIZE(netdev_lock_type) - 1;
456 }
457
458 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
459                                                  unsigned short dev_type)
460 {
461         int i;
462
463         i = netdev_lock_pos(dev_type);
464         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
465                                    netdev_lock_name[i]);
466 }
467
468 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
469 {
470         int i;
471
472         i = netdev_lock_pos(dev->type);
473         lockdep_set_class_and_name(&dev->addr_list_lock,
474                                    &netdev_addr_lock_key[i],
475                                    netdev_lock_name[i]);
476 }
477 #else
478 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
479                                                  unsigned short dev_type)
480 {
481 }
482
483 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
484 {
485 }
486 #endif
487
488 /*******************************************************************************
489  *
490  *              Protocol management and registration routines
491  *
492  *******************************************************************************/
493
494
495 /*
496  *      Add a protocol ID to the list. Now that the input handler is
497  *      smarter we can dispense with all the messy stuff that used to be
498  *      here.
499  *
500  *      BEWARE!!! Protocol handlers, mangling input packets,
501  *      MUST BE last in hash buckets and checking protocol handlers
502  *      MUST start from promiscuous ptype_all chain in net_bh.
503  *      It is true now, do not change it.
504  *      Explanation follows: if protocol handler, mangling packet, will
505  *      be the first on list, it is not able to sense, that packet
506  *      is cloned and should be copied-on-write, so that it will
507  *      change it and subsequent readers will get broken packet.
508  *                                                      --ANK (980803)
509  */
510
511 static inline struct list_head *ptype_head(const struct packet_type *pt)
512 {
513         if (pt->type == htons(ETH_P_ALL))
514                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
515         else
516                 return pt->dev ? &pt->dev->ptype_specific :
517                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
518 }
519
520 /**
521  *      dev_add_pack - add packet handler
522  *      @pt: packet type declaration
523  *
524  *      Add a protocol handler to the networking stack. The passed &packet_type
525  *      is linked into kernel lists and may not be freed until it has been
526  *      removed from the kernel lists.
527  *
528  *      This call does not sleep therefore it can not
529  *      guarantee all CPU's that are in middle of receiving packets
530  *      will see the new packet type (until the next received packet).
531  */
532
533 void dev_add_pack(struct packet_type *pt)
534 {
535         struct list_head *head = ptype_head(pt);
536
537         spin_lock(&ptype_lock);
538         list_add_rcu(&pt->list, head);
539         spin_unlock(&ptype_lock);
540 }
541 EXPORT_SYMBOL(dev_add_pack);
542
543 /**
544  *      __dev_remove_pack        - remove packet handler
545  *      @pt: packet type declaration
546  *
547  *      Remove a protocol handler that was previously added to the kernel
548  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
549  *      from the kernel lists and can be freed or reused once this function
550  *      returns.
551  *
552  *      The packet type might still be in use by receivers
553  *      and must not be freed until after all the CPU's have gone
554  *      through a quiescent state.
555  */
556 void __dev_remove_pack(struct packet_type *pt)
557 {
558         struct list_head *head = ptype_head(pt);
559         struct packet_type *pt1;
560
561         spin_lock(&ptype_lock);
562
563         list_for_each_entry(pt1, head, list) {
564                 if (pt == pt1) {
565                         list_del_rcu(&pt->list);
566                         goto out;
567                 }
568         }
569
570         pr_warn("dev_remove_pack: %p not found\n", pt);
571 out:
572         spin_unlock(&ptype_lock);
573 }
574 EXPORT_SYMBOL(__dev_remove_pack);
575
576 /**
577  *      dev_remove_pack  - remove packet handler
578  *      @pt: packet type declaration
579  *
580  *      Remove a protocol handler that was previously added to the kernel
581  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
582  *      from the kernel lists and can be freed or reused once this function
583  *      returns.
584  *
585  *      This call sleeps to guarantee that no CPU is looking at the packet
586  *      type after return.
587  */
588 void dev_remove_pack(struct packet_type *pt)
589 {
590         __dev_remove_pack(pt);
591
592         synchronize_net();
593 }
594 EXPORT_SYMBOL(dev_remove_pack);
595
596
597 /**
598  *      dev_add_offload - register offload handlers
599  *      @po: protocol offload declaration
600  *
601  *      Add protocol offload handlers to the networking stack. The passed
602  *      &proto_offload is linked into kernel lists and may not be freed until
603  *      it has been removed from the kernel lists.
604  *
605  *      This call does not sleep therefore it can not
606  *      guarantee all CPU's that are in middle of receiving packets
607  *      will see the new offload handlers (until the next received packet).
608  */
609 void dev_add_offload(struct packet_offload *po)
610 {
611         struct packet_offload *elem;
612
613         spin_lock(&offload_lock);
614         list_for_each_entry(elem, &offload_base, list) {
615                 if (po->priority < elem->priority)
616                         break;
617         }
618         list_add_rcu(&po->list, elem->list.prev);
619         spin_unlock(&offload_lock);
620 }
621 EXPORT_SYMBOL(dev_add_offload);
622
623 /**
624  *      __dev_remove_offload     - remove offload handler
625  *      @po: packet offload declaration
626  *
627  *      Remove a protocol offload handler that was previously added to the
628  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
629  *      is removed from the kernel lists and can be freed or reused once this
630  *      function returns.
631  *
632  *      The packet type might still be in use by receivers
633  *      and must not be freed until after all the CPU's have gone
634  *      through a quiescent state.
635  */
636 static void __dev_remove_offload(struct packet_offload *po)
637 {
638         struct list_head *head = &offload_base;
639         struct packet_offload *po1;
640
641         spin_lock(&offload_lock);
642
643         list_for_each_entry(po1, head, list) {
644                 if (po == po1) {
645                         list_del_rcu(&po->list);
646                         goto out;
647                 }
648         }
649
650         pr_warn("dev_remove_offload: %p not found\n", po);
651 out:
652         spin_unlock(&offload_lock);
653 }
654
655 /**
656  *      dev_remove_offload       - remove packet offload handler
657  *      @po: packet offload declaration
658  *
659  *      Remove a packet offload handler that was previously added to the kernel
660  *      offload handlers by dev_add_offload(). The passed &offload_type is
661  *      removed from the kernel lists and can be freed or reused once this
662  *      function returns.
663  *
664  *      This call sleeps to guarantee that no CPU is looking at the packet
665  *      type after return.
666  */
667 void dev_remove_offload(struct packet_offload *po)
668 {
669         __dev_remove_offload(po);
670
671         synchronize_net();
672 }
673 EXPORT_SYMBOL(dev_remove_offload);
674
675 /******************************************************************************
676  *
677  *                    Device Boot-time Settings Routines
678  *
679  ******************************************************************************/
680
681 /* Boot time configuration table */
682 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
683
684 /**
685  *      netdev_boot_setup_add   - add new setup entry
686  *      @name: name of the device
687  *      @map: configured settings for the device
688  *
689  *      Adds new setup entry to the dev_boot_setup list.  The function
690  *      returns 0 on error and 1 on success.  This is a generic routine to
691  *      all netdevices.
692  */
693 static int netdev_boot_setup_add(char *name, struct ifmap *map)
694 {
695         struct netdev_boot_setup *s;
696         int i;
697
698         s = dev_boot_setup;
699         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
700                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
701                         memset(s[i].name, 0, sizeof(s[i].name));
702                         strlcpy(s[i].name, name, IFNAMSIZ);
703                         memcpy(&s[i].map, map, sizeof(s[i].map));
704                         break;
705                 }
706         }
707
708         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
709 }
710
711 /**
712  * netdev_boot_setup_check      - check boot time settings
713  * @dev: the netdevice
714  *
715  * Check boot time settings for the device.
716  * The found settings are set for the device to be used
717  * later in the device probing.
718  * Returns 0 if no settings found, 1 if they are.
719  */
720 int netdev_boot_setup_check(struct net_device *dev)
721 {
722         struct netdev_boot_setup *s = dev_boot_setup;
723         int i;
724
725         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
726                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
727                     !strcmp(dev->name, s[i].name)) {
728                         dev->irq = s[i].map.irq;
729                         dev->base_addr = s[i].map.base_addr;
730                         dev->mem_start = s[i].map.mem_start;
731                         dev->mem_end = s[i].map.mem_end;
732                         return 1;
733                 }
734         }
735         return 0;
736 }
737 EXPORT_SYMBOL(netdev_boot_setup_check);
738
739
740 /**
741  * netdev_boot_base     - get address from boot time settings
742  * @prefix: prefix for network device
743  * @unit: id for network device
744  *
745  * Check boot time settings for the base address of device.
746  * The found settings are set for the device to be used
747  * later in the device probing.
748  * Returns 0 if no settings found.
749  */
750 unsigned long netdev_boot_base(const char *prefix, int unit)
751 {
752         const struct netdev_boot_setup *s = dev_boot_setup;
753         char name[IFNAMSIZ];
754         int i;
755
756         sprintf(name, "%s%d", prefix, unit);
757
758         /*
759          * If device already registered then return base of 1
760          * to indicate not to probe for this interface
761          */
762         if (__dev_get_by_name(&init_net, name))
763                 return 1;
764
765         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
766                 if (!strcmp(name, s[i].name))
767                         return s[i].map.base_addr;
768         return 0;
769 }
770
771 /*
772  * Saves at boot time configured settings for any netdevice.
773  */
774 int __init netdev_boot_setup(char *str)
775 {
776         int ints[5];
777         struct ifmap map;
778
779         str = get_options(str, ARRAY_SIZE(ints), ints);
780         if (!str || !*str)
781                 return 0;
782
783         /* Save settings */
784         memset(&map, 0, sizeof(map));
785         if (ints[0] > 0)
786                 map.irq = ints[1];
787         if (ints[0] > 1)
788                 map.base_addr = ints[2];
789         if (ints[0] > 2)
790                 map.mem_start = ints[3];
791         if (ints[0] > 3)
792                 map.mem_end = ints[4];
793
794         /* Add new entry to the list */
795         return netdev_boot_setup_add(str, &map);
796 }
797
798 __setup("netdev=", netdev_boot_setup);
799
800 /*******************************************************************************
801  *
802  *                          Device Interface Subroutines
803  *
804  *******************************************************************************/
805
806 /**
807  *      dev_get_iflink  - get 'iflink' value of a interface
808  *      @dev: targeted interface
809  *
810  *      Indicates the ifindex the interface is linked to.
811  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
812  */
813
814 int dev_get_iflink(const struct net_device *dev)
815 {
816         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
817                 return dev->netdev_ops->ndo_get_iflink(dev);
818
819         return dev->ifindex;
820 }
821 EXPORT_SYMBOL(dev_get_iflink);
822
823 /**
824  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
825  *      @dev: targeted interface
826  *      @skb: The packet.
827  *
828  *      For better visibility of tunnel traffic OVS needs to retrieve
829  *      egress tunnel information for a packet. Following API allows
830  *      user to get this info.
831  */
832 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
833 {
834         struct ip_tunnel_info *info;
835
836         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
837                 return -EINVAL;
838
839         info = skb_tunnel_info_unclone(skb);
840         if (!info)
841                 return -ENOMEM;
842         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
843                 return -EINVAL;
844
845         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
846 }
847 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
848
849 /**
850  *      __dev_get_by_name       - find a device by its name
851  *      @net: the applicable net namespace
852  *      @name: name to find
853  *
854  *      Find an interface by name. Must be called under RTNL semaphore
855  *      or @dev_base_lock. If the name is found a pointer to the device
856  *      is returned. If the name is not found then %NULL is returned. The
857  *      reference counters are not incremented so the caller must be
858  *      careful with locks.
859  */
860
861 struct net_device *__dev_get_by_name(struct net *net, const char *name)
862 {
863         struct netdev_name_node *node_name;
864
865         node_name = netdev_name_node_lookup(net, name);
866         return node_name ? node_name->dev : NULL;
867 }
868 EXPORT_SYMBOL(__dev_get_by_name);
869
870 /**
871  * dev_get_by_name_rcu  - find a device by its name
872  * @net: the applicable net namespace
873  * @name: name to find
874  *
875  * Find an interface by name.
876  * If the name is found a pointer to the device is returned.
877  * If the name is not found then %NULL is returned.
878  * The reference counters are not incremented so the caller must be
879  * careful with locks. The caller must hold RCU lock.
880  */
881
882 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
883 {
884         struct netdev_name_node *node_name;
885
886         node_name = netdev_name_node_lookup_rcu(net, name);
887         return node_name ? node_name->dev : NULL;
888 }
889 EXPORT_SYMBOL(dev_get_by_name_rcu);
890
891 /**
892  *      dev_get_by_name         - find a device by its name
893  *      @net: the applicable net namespace
894  *      @name: name to find
895  *
896  *      Find an interface by name. This can be called from any
897  *      context and does its own locking. The returned handle has
898  *      the usage count incremented and the caller must use dev_put() to
899  *      release it when it is no longer needed. %NULL is returned if no
900  *      matching device is found.
901  */
902
903 struct net_device *dev_get_by_name(struct net *net, const char *name)
904 {
905         struct net_device *dev;
906
907         rcu_read_lock();
908         dev = dev_get_by_name_rcu(net, name);
909         if (dev)
910                 dev_hold(dev);
911         rcu_read_unlock();
912         return dev;
913 }
914 EXPORT_SYMBOL(dev_get_by_name);
915
916 /**
917  *      __dev_get_by_index - find a device by its ifindex
918  *      @net: the applicable net namespace
919  *      @ifindex: index of device
920  *
921  *      Search for an interface by index. Returns %NULL if the device
922  *      is not found or a pointer to the device. The device has not
923  *      had its reference counter increased so the caller must be careful
924  *      about locking. The caller must hold either the RTNL semaphore
925  *      or @dev_base_lock.
926  */
927
928 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
929 {
930         struct net_device *dev;
931         struct hlist_head *head = dev_index_hash(net, ifindex);
932
933         hlist_for_each_entry(dev, head, index_hlist)
934                 if (dev->ifindex == ifindex)
935                         return dev;
936
937         return NULL;
938 }
939 EXPORT_SYMBOL(__dev_get_by_index);
940
941 /**
942  *      dev_get_by_index_rcu - find a device by its ifindex
943  *      @net: the applicable net namespace
944  *      @ifindex: index of device
945  *
946  *      Search for an interface by index. Returns %NULL if the device
947  *      is not found or a pointer to the device. The device has not
948  *      had its reference counter increased so the caller must be careful
949  *      about locking. The caller must hold RCU lock.
950  */
951
952 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
953 {
954         struct net_device *dev;
955         struct hlist_head *head = dev_index_hash(net, ifindex);
956
957         hlist_for_each_entry_rcu(dev, head, index_hlist)
958                 if (dev->ifindex == ifindex)
959                         return dev;
960
961         return NULL;
962 }
963 EXPORT_SYMBOL(dev_get_by_index_rcu);
964
965
966 /**
967  *      dev_get_by_index - find a device by its ifindex
968  *      @net: the applicable net namespace
969  *      @ifindex: index of device
970  *
971  *      Search for an interface by index. Returns NULL if the device
972  *      is not found or a pointer to the device. The device returned has
973  *      had a reference added and the pointer is safe until the user calls
974  *      dev_put to indicate they have finished with it.
975  */
976
977 struct net_device *dev_get_by_index(struct net *net, int ifindex)
978 {
979         struct net_device *dev;
980
981         rcu_read_lock();
982         dev = dev_get_by_index_rcu(net, ifindex);
983         if (dev)
984                 dev_hold(dev);
985         rcu_read_unlock();
986         return dev;
987 }
988 EXPORT_SYMBOL(dev_get_by_index);
989
990 /**
991  *      dev_get_by_napi_id - find a device by napi_id
992  *      @napi_id: ID of the NAPI struct
993  *
994  *      Search for an interface by NAPI ID. Returns %NULL if the device
995  *      is not found or a pointer to the device. The device has not had
996  *      its reference counter increased so the caller must be careful
997  *      about locking. The caller must hold RCU lock.
998  */
999
1000 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1001 {
1002         struct napi_struct *napi;
1003
1004         WARN_ON_ONCE(!rcu_read_lock_held());
1005
1006         if (napi_id < MIN_NAPI_ID)
1007                 return NULL;
1008
1009         napi = napi_by_id(napi_id);
1010
1011         return napi ? napi->dev : NULL;
1012 }
1013 EXPORT_SYMBOL(dev_get_by_napi_id);
1014
1015 /**
1016  *      netdev_get_name - get a netdevice name, knowing its ifindex.
1017  *      @net: network namespace
1018  *      @name: a pointer to the buffer where the name will be stored.
1019  *      @ifindex: the ifindex of the interface to get the name from.
1020  */
1021 int netdev_get_name(struct net *net, char *name, int ifindex)
1022 {
1023         struct net_device *dev;
1024         int ret;
1025
1026         down_read(&devnet_rename_sem);
1027         rcu_read_lock();
1028
1029         dev = dev_get_by_index_rcu(net, ifindex);
1030         if (!dev) {
1031                 ret = -ENODEV;
1032                 goto out;
1033         }
1034
1035         strcpy(name, dev->name);
1036
1037         ret = 0;
1038 out:
1039         rcu_read_unlock();
1040         up_read(&devnet_rename_sem);
1041         return ret;
1042 }
1043
1044 /**
1045  *      dev_getbyhwaddr_rcu - find a device by its hardware address
1046  *      @net: the applicable net namespace
1047  *      @type: media type of device
1048  *      @ha: hardware address
1049  *
1050  *      Search for an interface by MAC address. Returns NULL if the device
1051  *      is not found or a pointer to the device.
1052  *      The caller must hold RCU or RTNL.
1053  *      The returned device has not had its ref count increased
1054  *      and the caller must therefore be careful about locking
1055  *
1056  */
1057
1058 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1059                                        const char *ha)
1060 {
1061         struct net_device *dev;
1062
1063         for_each_netdev_rcu(net, dev)
1064                 if (dev->type == type &&
1065                     !memcmp(dev->dev_addr, ha, dev->addr_len))
1066                         return dev;
1067
1068         return NULL;
1069 }
1070 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1071
1072 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1073 {
1074         struct net_device *dev, *ret = NULL;
1075
1076         rcu_read_lock();
1077         for_each_netdev_rcu(net, dev)
1078                 if (dev->type == type) {
1079                         dev_hold(dev);
1080                         ret = dev;
1081                         break;
1082                 }
1083         rcu_read_unlock();
1084         return ret;
1085 }
1086 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1087
1088 /**
1089  *      __dev_get_by_flags - find any device with given flags
1090  *      @net: the applicable net namespace
1091  *      @if_flags: IFF_* values
1092  *      @mask: bitmask of bits in if_flags to check
1093  *
1094  *      Search for any interface with the given flags. Returns NULL if a device
1095  *      is not found or a pointer to the device. Must be called inside
1096  *      rtnl_lock(), and result refcount is unchanged.
1097  */
1098
1099 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1100                                       unsigned short mask)
1101 {
1102         struct net_device *dev, *ret;
1103
1104         ASSERT_RTNL();
1105
1106         ret = NULL;
1107         for_each_netdev(net, dev) {
1108                 if (((dev->flags ^ if_flags) & mask) == 0) {
1109                         ret = dev;
1110                         break;
1111                 }
1112         }
1113         return ret;
1114 }
1115 EXPORT_SYMBOL(__dev_get_by_flags);
1116
1117 /**
1118  *      dev_valid_name - check if name is okay for network device
1119  *      @name: name string
1120  *
1121  *      Network device names need to be valid file names to
1122  *      allow sysfs to work.  We also disallow any kind of
1123  *      whitespace.
1124  */
1125 bool dev_valid_name(const char *name)
1126 {
1127         if (*name == '\0')
1128                 return false;
1129         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1130                 return false;
1131         if (!strcmp(name, ".") || !strcmp(name, ".."))
1132                 return false;
1133
1134         while (*name) {
1135                 if (*name == '/' || *name == ':' || isspace(*name))
1136                         return false;
1137                 name++;
1138         }
1139         return true;
1140 }
1141 EXPORT_SYMBOL(dev_valid_name);
1142
1143 /**
1144  *      __dev_alloc_name - allocate a name for a device
1145  *      @net: network namespace to allocate the device name in
1146  *      @name: name format string
1147  *      @buf:  scratch buffer and result name string
1148  *
1149  *      Passed a format string - eg "lt%d" it will try and find a suitable
1150  *      id. It scans list of devices to build up a free map, then chooses
1151  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1152  *      while allocating the name and adding the device in order to avoid
1153  *      duplicates.
1154  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1155  *      Returns the number of the unit assigned or a negative errno code.
1156  */
1157
1158 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1159 {
1160         int i = 0;
1161         const char *p;
1162         const int max_netdevices = 8*PAGE_SIZE;
1163         unsigned long *inuse;
1164         struct net_device *d;
1165
1166         if (!dev_valid_name(name))
1167                 return -EINVAL;
1168
1169         p = strchr(name, '%');
1170         if (p) {
1171                 /*
1172                  * Verify the string as this thing may have come from
1173                  * the user.  There must be either one "%d" and no other "%"
1174                  * characters.
1175                  */
1176                 if (p[1] != 'd' || strchr(p + 2, '%'))
1177                         return -EINVAL;
1178
1179                 /* Use one page as a bit array of possible slots */
1180                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1181                 if (!inuse)
1182                         return -ENOMEM;
1183
1184                 for_each_netdev(net, d) {
1185                         if (!sscanf(d->name, name, &i))
1186                                 continue;
1187                         if (i < 0 || i >= max_netdevices)
1188                                 continue;
1189
1190                         /*  avoid cases where sscanf is not exact inverse of printf */
1191                         snprintf(buf, IFNAMSIZ, name, i);
1192                         if (!strncmp(buf, d->name, IFNAMSIZ))
1193                                 set_bit(i, inuse);
1194                 }
1195
1196                 i = find_first_zero_bit(inuse, max_netdevices);
1197                 free_page((unsigned long) inuse);
1198         }
1199
1200         snprintf(buf, IFNAMSIZ, name, i);
1201         if (!__dev_get_by_name(net, buf))
1202                 return i;
1203
1204         /* It is possible to run out of possible slots
1205          * when the name is long and there isn't enough space left
1206          * for the digits, or if all bits are used.
1207          */
1208         return -ENFILE;
1209 }
1210
1211 static int dev_alloc_name_ns(struct net *net,
1212                              struct net_device *dev,
1213                              const char *name)
1214 {
1215         char buf[IFNAMSIZ];
1216         int ret;
1217
1218         BUG_ON(!net);
1219         ret = __dev_alloc_name(net, name, buf);
1220         if (ret >= 0)
1221                 strlcpy(dev->name, buf, IFNAMSIZ);
1222         return ret;
1223 }
1224
1225 /**
1226  *      dev_alloc_name - allocate a name for a device
1227  *      @dev: device
1228  *      @name: name format string
1229  *
1230  *      Passed a format string - eg "lt%d" it will try and find a suitable
1231  *      id. It scans list of devices to build up a free map, then chooses
1232  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1233  *      while allocating the name and adding the device in order to avoid
1234  *      duplicates.
1235  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1236  *      Returns the number of the unit assigned or a negative errno code.
1237  */
1238
1239 int dev_alloc_name(struct net_device *dev, const char *name)
1240 {
1241         return dev_alloc_name_ns(dev_net(dev), dev, name);
1242 }
1243 EXPORT_SYMBOL(dev_alloc_name);
1244
1245 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1246                               const char *name)
1247 {
1248         BUG_ON(!net);
1249
1250         if (!dev_valid_name(name))
1251                 return -EINVAL;
1252
1253         if (strchr(name, '%'))
1254                 return dev_alloc_name_ns(net, dev, name);
1255         else if (__dev_get_by_name(net, name))
1256                 return -EEXIST;
1257         else if (dev->name != name)
1258                 strlcpy(dev->name, name, IFNAMSIZ);
1259
1260         return 0;
1261 }
1262
1263 /**
1264  *      dev_change_name - change name of a device
1265  *      @dev: device
1266  *      @newname: name (or format string) must be at least IFNAMSIZ
1267  *
1268  *      Change name of a device, can pass format strings "eth%d".
1269  *      for wildcarding.
1270  */
1271 int dev_change_name(struct net_device *dev, const char *newname)
1272 {
1273         unsigned char old_assign_type;
1274         char oldname[IFNAMSIZ];
1275         int err = 0;
1276         int ret;
1277         struct net *net;
1278
1279         ASSERT_RTNL();
1280         BUG_ON(!dev_net(dev));
1281
1282         net = dev_net(dev);
1283
1284         /* Some auto-enslaved devices e.g. failover slaves are
1285          * special, as userspace might rename the device after
1286          * the interface had been brought up and running since
1287          * the point kernel initiated auto-enslavement. Allow
1288          * live name change even when these slave devices are
1289          * up and running.
1290          *
1291          * Typically, users of these auto-enslaving devices
1292          * don't actually care about slave name change, as
1293          * they are supposed to operate on master interface
1294          * directly.
1295          */
1296         if (dev->flags & IFF_UP &&
1297             likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1298                 return -EBUSY;
1299
1300         down_write(&devnet_rename_sem);
1301
1302         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1303                 up_write(&devnet_rename_sem);
1304                 return 0;
1305         }
1306
1307         memcpy(oldname, dev->name, IFNAMSIZ);
1308
1309         err = dev_get_valid_name(net, dev, newname);
1310         if (err < 0) {
1311                 up_write(&devnet_rename_sem);
1312                 return err;
1313         }
1314
1315         if (oldname[0] && !strchr(oldname, '%'))
1316                 netdev_info(dev, "renamed from %s\n", oldname);
1317
1318         old_assign_type = dev->name_assign_type;
1319         dev->name_assign_type = NET_NAME_RENAMED;
1320
1321 rollback:
1322         ret = device_rename(&dev->dev, dev->name);
1323         if (ret) {
1324                 memcpy(dev->name, oldname, IFNAMSIZ);
1325                 dev->name_assign_type = old_assign_type;
1326                 up_write(&devnet_rename_sem);
1327                 return ret;
1328         }
1329
1330         up_write(&devnet_rename_sem);
1331
1332         netdev_adjacent_rename_links(dev, oldname);
1333
1334         write_lock_bh(&dev_base_lock);
1335         netdev_name_node_del(dev->name_node);
1336         write_unlock_bh(&dev_base_lock);
1337
1338         synchronize_rcu();
1339
1340         write_lock_bh(&dev_base_lock);
1341         netdev_name_node_add(net, dev->name_node);
1342         write_unlock_bh(&dev_base_lock);
1343
1344         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1345         ret = notifier_to_errno(ret);
1346
1347         if (ret) {
1348                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1349                 if (err >= 0) {
1350                         err = ret;
1351                         down_write(&devnet_rename_sem);
1352                         memcpy(dev->name, oldname, IFNAMSIZ);
1353                         memcpy(oldname, newname, IFNAMSIZ);
1354                         dev->name_assign_type = old_assign_type;
1355                         old_assign_type = NET_NAME_RENAMED;
1356                         goto rollback;
1357                 } else {
1358                         pr_err("%s: name change rollback failed: %d\n",
1359                                dev->name, ret);
1360                 }
1361         }
1362
1363         return err;
1364 }
1365
1366 /**
1367  *      dev_set_alias - change ifalias of a device
1368  *      @dev: device
1369  *      @alias: name up to IFALIASZ
1370  *      @len: limit of bytes to copy from info
1371  *
1372  *      Set ifalias for a device,
1373  */
1374 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1375 {
1376         struct dev_ifalias *new_alias = NULL;
1377
1378         if (len >= IFALIASZ)
1379                 return -EINVAL;
1380
1381         if (len) {
1382                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1383                 if (!new_alias)
1384                         return -ENOMEM;
1385
1386                 memcpy(new_alias->ifalias, alias, len);
1387                 new_alias->ifalias[len] = 0;
1388         }
1389
1390         mutex_lock(&ifalias_mutex);
1391         new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1392                                         mutex_is_locked(&ifalias_mutex));
1393         mutex_unlock(&ifalias_mutex);
1394
1395         if (new_alias)
1396                 kfree_rcu(new_alias, rcuhead);
1397
1398         return len;
1399 }
1400 EXPORT_SYMBOL(dev_set_alias);
1401
1402 /**
1403  *      dev_get_alias - get ifalias of a device
1404  *      @dev: device
1405  *      @name: buffer to store name of ifalias
1406  *      @len: size of buffer
1407  *
1408  *      get ifalias for a device.  Caller must make sure dev cannot go
1409  *      away,  e.g. rcu read lock or own a reference count to device.
1410  */
1411 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1412 {
1413         const struct dev_ifalias *alias;
1414         int ret = 0;
1415
1416         rcu_read_lock();
1417         alias = rcu_dereference(dev->ifalias);
1418         if (alias)
1419                 ret = snprintf(name, len, "%s", alias->ifalias);
1420         rcu_read_unlock();
1421
1422         return ret;
1423 }
1424
1425 /**
1426  *      netdev_features_change - device changes features
1427  *      @dev: device to cause notification
1428  *
1429  *      Called to indicate a device has changed features.
1430  */
1431 void netdev_features_change(struct net_device *dev)
1432 {
1433         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1434 }
1435 EXPORT_SYMBOL(netdev_features_change);
1436
1437 /**
1438  *      netdev_state_change - device changes state
1439  *      @dev: device to cause notification
1440  *
1441  *      Called to indicate a device has changed state. This function calls
1442  *      the notifier chains for netdev_chain and sends a NEWLINK message
1443  *      to the routing socket.
1444  */
1445 void netdev_state_change(struct net_device *dev)
1446 {
1447         if (dev->flags & IFF_UP) {
1448                 struct netdev_notifier_change_info change_info = {
1449                         .info.dev = dev,
1450                 };
1451
1452                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1453                                               &change_info.info);
1454                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1455         }
1456 }
1457 EXPORT_SYMBOL(netdev_state_change);
1458
1459 /**
1460  * netdev_notify_peers - notify network peers about existence of @dev
1461  * @dev: network device
1462  *
1463  * Generate traffic such that interested network peers are aware of
1464  * @dev, such as by generating a gratuitous ARP. This may be used when
1465  * a device wants to inform the rest of the network about some sort of
1466  * reconfiguration such as a failover event or virtual machine
1467  * migration.
1468  */
1469 void netdev_notify_peers(struct net_device *dev)
1470 {
1471         rtnl_lock();
1472         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1473         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1474         rtnl_unlock();
1475 }
1476 EXPORT_SYMBOL(netdev_notify_peers);
1477
1478 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1479 {
1480         const struct net_device_ops *ops = dev->netdev_ops;
1481         int ret;
1482
1483         ASSERT_RTNL();
1484
1485         if (!netif_device_present(dev)) {
1486                 /* may be detached because parent is runtime-suspended */
1487                 if (dev->dev.parent)
1488                         pm_runtime_resume(dev->dev.parent);
1489                 if (!netif_device_present(dev))
1490                         return -ENODEV;
1491         }
1492
1493         /* Block netpoll from trying to do any rx path servicing.
1494          * If we don't do this there is a chance ndo_poll_controller
1495          * or ndo_poll may be running while we open the device
1496          */
1497         netpoll_poll_disable(dev);
1498
1499         ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1500         ret = notifier_to_errno(ret);
1501         if (ret)
1502                 return ret;
1503
1504         set_bit(__LINK_STATE_START, &dev->state);
1505
1506         if (ops->ndo_validate_addr)
1507                 ret = ops->ndo_validate_addr(dev);
1508
1509         if (!ret && ops->ndo_open)
1510                 ret = ops->ndo_open(dev);
1511
1512         netpoll_poll_enable(dev);
1513
1514         if (ret)
1515                 clear_bit(__LINK_STATE_START, &dev->state);
1516         else {
1517                 dev->flags |= IFF_UP;
1518                 dev_set_rx_mode(dev);
1519                 dev_activate(dev);
1520                 add_device_randomness(dev->dev_addr, dev->addr_len);
1521         }
1522
1523         return ret;
1524 }
1525
1526 /**
1527  *      dev_open        - prepare an interface for use.
1528  *      @dev: device to open
1529  *      @extack: netlink extended ack
1530  *
1531  *      Takes a device from down to up state. The device's private open
1532  *      function is invoked and then the multicast lists are loaded. Finally
1533  *      the device is moved into the up state and a %NETDEV_UP message is
1534  *      sent to the netdev notifier chain.
1535  *
1536  *      Calling this function on an active interface is a nop. On a failure
1537  *      a negative errno code is returned.
1538  */
1539 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1540 {
1541         int ret;
1542
1543         if (dev->flags & IFF_UP)
1544                 return 0;
1545
1546         ret = __dev_open(dev, extack);
1547         if (ret < 0)
1548                 return ret;
1549
1550         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1551         call_netdevice_notifiers(NETDEV_UP, dev);
1552
1553         return ret;
1554 }
1555 EXPORT_SYMBOL(dev_open);
1556
1557 static void __dev_close_many(struct list_head *head)
1558 {
1559         struct net_device *dev;
1560
1561         ASSERT_RTNL();
1562         might_sleep();
1563
1564         list_for_each_entry(dev, head, close_list) {
1565                 /* Temporarily disable netpoll until the interface is down */
1566                 netpoll_poll_disable(dev);
1567
1568                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1569
1570                 clear_bit(__LINK_STATE_START, &dev->state);
1571
1572                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1573                  * can be even on different cpu. So just clear netif_running().
1574                  *
1575                  * dev->stop() will invoke napi_disable() on all of it's
1576                  * napi_struct instances on this device.
1577                  */
1578                 smp_mb__after_atomic(); /* Commit netif_running(). */
1579         }
1580
1581         dev_deactivate_many(head);
1582
1583         list_for_each_entry(dev, head, close_list) {
1584                 const struct net_device_ops *ops = dev->netdev_ops;
1585
1586                 /*
1587                  *      Call the device specific close. This cannot fail.
1588                  *      Only if device is UP
1589                  *
1590                  *      We allow it to be called even after a DETACH hot-plug
1591                  *      event.
1592                  */
1593                 if (ops->ndo_stop)
1594                         ops->ndo_stop(dev);
1595
1596                 dev->flags &= ~IFF_UP;
1597                 netpoll_poll_enable(dev);
1598         }
1599 }
1600
1601 static void __dev_close(struct net_device *dev)
1602 {
1603         LIST_HEAD(single);
1604
1605         list_add(&dev->close_list, &single);
1606         __dev_close_many(&single);
1607         list_del(&single);
1608 }
1609
1610 void dev_close_many(struct list_head *head, bool unlink)
1611 {
1612         struct net_device *dev, *tmp;
1613
1614         /* Remove the devices that don't need to be closed */
1615         list_for_each_entry_safe(dev, tmp, head, close_list)
1616                 if (!(dev->flags & IFF_UP))
1617                         list_del_init(&dev->close_list);
1618
1619         __dev_close_many(head);
1620
1621         list_for_each_entry_safe(dev, tmp, head, close_list) {
1622                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1623                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1624                 if (unlink)
1625                         list_del_init(&dev->close_list);
1626         }
1627 }
1628 EXPORT_SYMBOL(dev_close_many);
1629
1630 /**
1631  *      dev_close - shutdown an interface.
1632  *      @dev: device to shutdown
1633  *
1634  *      This function moves an active device into down state. A
1635  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1636  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1637  *      chain.
1638  */
1639 void dev_close(struct net_device *dev)
1640 {
1641         if (dev->flags & IFF_UP) {
1642                 LIST_HEAD(single);
1643
1644                 list_add(&dev->close_list, &single);
1645                 dev_close_many(&single, true);
1646                 list_del(&single);
1647         }
1648 }
1649 EXPORT_SYMBOL(dev_close);
1650
1651
1652 /**
1653  *      dev_disable_lro - disable Large Receive Offload on a device
1654  *      @dev: device
1655  *
1656  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1657  *      called under RTNL.  This is needed if received packets may be
1658  *      forwarded to another interface.
1659  */
1660 void dev_disable_lro(struct net_device *dev)
1661 {
1662         struct net_device *lower_dev;
1663         struct list_head *iter;
1664
1665         dev->wanted_features &= ~NETIF_F_LRO;
1666         netdev_update_features(dev);
1667
1668         if (unlikely(dev->features & NETIF_F_LRO))
1669                 netdev_WARN(dev, "failed to disable LRO!\n");
1670
1671         netdev_for_each_lower_dev(dev, lower_dev, iter)
1672                 dev_disable_lro(lower_dev);
1673 }
1674 EXPORT_SYMBOL(dev_disable_lro);
1675
1676 /**
1677  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1678  *      @dev: device
1679  *
1680  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1681  *      called under RTNL.  This is needed if Generic XDP is installed on
1682  *      the device.
1683  */
1684 static void dev_disable_gro_hw(struct net_device *dev)
1685 {
1686         dev->wanted_features &= ~NETIF_F_GRO_HW;
1687         netdev_update_features(dev);
1688
1689         if (unlikely(dev->features & NETIF_F_GRO_HW))
1690                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1691 }
1692
1693 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1694 {
1695 #define N(val)                                          \
1696         case NETDEV_##val:                              \
1697                 return "NETDEV_" __stringify(val);
1698         switch (cmd) {
1699         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1700         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1701         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1702         N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1703         N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1704         N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1705         N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1706         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1707         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1708         N(PRE_CHANGEADDR)
1709         }
1710 #undef N
1711         return "UNKNOWN_NETDEV_EVENT";
1712 }
1713 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1714
1715 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1716                                    struct net_device *dev)
1717 {
1718         struct netdev_notifier_info info = {
1719                 .dev = dev,
1720         };
1721
1722         return nb->notifier_call(nb, val, &info);
1723 }
1724
1725 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1726                                              struct net_device *dev)
1727 {
1728         int err;
1729
1730         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1731         err = notifier_to_errno(err);
1732         if (err)
1733                 return err;
1734
1735         if (!(dev->flags & IFF_UP))
1736                 return 0;
1737
1738         call_netdevice_notifier(nb, NETDEV_UP, dev);
1739         return 0;
1740 }
1741
1742 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1743                                                 struct net_device *dev)
1744 {
1745         if (dev->flags & IFF_UP) {
1746                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1747                                         dev);
1748                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1749         }
1750         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1751 }
1752
1753 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1754                                                  struct net *net)
1755 {
1756         struct net_device *dev;
1757         int err;
1758
1759         for_each_netdev(net, dev) {
1760                 err = call_netdevice_register_notifiers(nb, dev);
1761                 if (err)
1762                         goto rollback;
1763         }
1764         return 0;
1765
1766 rollback:
1767         for_each_netdev_continue_reverse(net, dev)
1768                 call_netdevice_unregister_notifiers(nb, dev);
1769         return err;
1770 }
1771
1772 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1773                                                     struct net *net)
1774 {
1775         struct net_device *dev;
1776
1777         for_each_netdev(net, dev)
1778                 call_netdevice_unregister_notifiers(nb, dev);
1779 }
1780
1781 static int dev_boot_phase = 1;
1782
1783 /**
1784  * register_netdevice_notifier - register a network notifier block
1785  * @nb: notifier
1786  *
1787  * Register a notifier to be called when network device events occur.
1788  * The notifier passed is linked into the kernel structures and must
1789  * not be reused until it has been unregistered. A negative errno code
1790  * is returned on a failure.
1791  *
1792  * When registered all registration and up events are replayed
1793  * to the new notifier to allow device to have a race free
1794  * view of the network device list.
1795  */
1796
1797 int register_netdevice_notifier(struct notifier_block *nb)
1798 {
1799         struct net *net;
1800         int err;
1801
1802         /* Close race with setup_net() and cleanup_net() */
1803         down_write(&pernet_ops_rwsem);
1804         rtnl_lock();
1805         err = raw_notifier_chain_register(&netdev_chain, nb);
1806         if (err)
1807                 goto unlock;
1808         if (dev_boot_phase)
1809                 goto unlock;
1810         for_each_net(net) {
1811                 err = call_netdevice_register_net_notifiers(nb, net);
1812                 if (err)
1813                         goto rollback;
1814         }
1815
1816 unlock:
1817         rtnl_unlock();
1818         up_write(&pernet_ops_rwsem);
1819         return err;
1820
1821 rollback:
1822         for_each_net_continue_reverse(net)
1823                 call_netdevice_unregister_net_notifiers(nb, net);
1824
1825         raw_notifier_chain_unregister(&netdev_chain, nb);
1826         goto unlock;
1827 }
1828 EXPORT_SYMBOL(register_netdevice_notifier);
1829
1830 /**
1831  * unregister_netdevice_notifier - unregister a network notifier block
1832  * @nb: notifier
1833  *
1834  * Unregister a notifier previously registered by
1835  * register_netdevice_notifier(). The notifier is unlinked into the
1836  * kernel structures and may then be reused. A negative errno code
1837  * is returned on a failure.
1838  *
1839  * After unregistering unregister and down device events are synthesized
1840  * for all devices on the device list to the removed notifier to remove
1841  * the need for special case cleanup code.
1842  */
1843
1844 int unregister_netdevice_notifier(struct notifier_block *nb)
1845 {
1846         struct net *net;
1847         int err;
1848
1849         /* Close race with setup_net() and cleanup_net() */
1850         down_write(&pernet_ops_rwsem);
1851         rtnl_lock();
1852         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1853         if (err)
1854                 goto unlock;
1855
1856         for_each_net(net)
1857                 call_netdevice_unregister_net_notifiers(nb, net);
1858
1859 unlock:
1860         rtnl_unlock();
1861         up_write(&pernet_ops_rwsem);
1862         return err;
1863 }
1864 EXPORT_SYMBOL(unregister_netdevice_notifier);
1865
1866 static int __register_netdevice_notifier_net(struct net *net,
1867                                              struct notifier_block *nb,
1868                                              bool ignore_call_fail)
1869 {
1870         int err;
1871
1872         err = raw_notifier_chain_register(&net->netdev_chain, nb);
1873         if (err)
1874                 return err;
1875         if (dev_boot_phase)
1876                 return 0;
1877
1878         err = call_netdevice_register_net_notifiers(nb, net);
1879         if (err && !ignore_call_fail)
1880                 goto chain_unregister;
1881
1882         return 0;
1883
1884 chain_unregister:
1885         raw_notifier_chain_unregister(&net->netdev_chain, nb);
1886         return err;
1887 }
1888
1889 static int __unregister_netdevice_notifier_net(struct net *net,
1890                                                struct notifier_block *nb)
1891 {
1892         int err;
1893
1894         err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1895         if (err)
1896                 return err;
1897
1898         call_netdevice_unregister_net_notifiers(nb, net);
1899         return 0;
1900 }
1901
1902 /**
1903  * register_netdevice_notifier_net - register a per-netns network notifier block
1904  * @net: network namespace
1905  * @nb: notifier
1906  *
1907  * Register a notifier to be called when network device events occur.
1908  * The notifier passed is linked into the kernel structures and must
1909  * not be reused until it has been unregistered. A negative errno code
1910  * is returned on a failure.
1911  *
1912  * When registered all registration and up events are replayed
1913  * to the new notifier to allow device to have a race free
1914  * view of the network device list.
1915  */
1916
1917 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1918 {
1919         int err;
1920
1921         rtnl_lock();
1922         err = __register_netdevice_notifier_net(net, nb, false);
1923         rtnl_unlock();
1924         return err;
1925 }
1926 EXPORT_SYMBOL(register_netdevice_notifier_net);
1927
1928 /**
1929  * unregister_netdevice_notifier_net - unregister a per-netns
1930  *                                     network notifier block
1931  * @net: network namespace
1932  * @nb: notifier
1933  *
1934  * Unregister a notifier previously registered by
1935  * register_netdevice_notifier(). The notifier is unlinked into the
1936  * kernel structures and may then be reused. A negative errno code
1937  * is returned on a failure.
1938  *
1939  * After unregistering unregister and down device events are synthesized
1940  * for all devices on the device list to the removed notifier to remove
1941  * the need for special case cleanup code.
1942  */
1943
1944 int unregister_netdevice_notifier_net(struct net *net,
1945                                       struct notifier_block *nb)
1946 {
1947         int err;
1948
1949         rtnl_lock();
1950         err = __unregister_netdevice_notifier_net(net, nb);
1951         rtnl_unlock();
1952         return err;
1953 }
1954 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1955
1956 int register_netdevice_notifier_dev_net(struct net_device *dev,
1957                                         struct notifier_block *nb,
1958                                         struct netdev_net_notifier *nn)
1959 {
1960         int err;
1961
1962         rtnl_lock();
1963         err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1964         if (!err) {
1965                 nn->nb = nb;
1966                 list_add(&nn->list, &dev->net_notifier_list);
1967         }
1968         rtnl_unlock();
1969         return err;
1970 }
1971 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1972
1973 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1974                                           struct notifier_block *nb,
1975                                           struct netdev_net_notifier *nn)
1976 {
1977         int err;
1978
1979         rtnl_lock();
1980         list_del(&nn->list);
1981         err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1982         rtnl_unlock();
1983         return err;
1984 }
1985 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1986
1987 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1988                                              struct net *net)
1989 {
1990         struct netdev_net_notifier *nn;
1991
1992         list_for_each_entry(nn, &dev->net_notifier_list, list) {
1993                 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
1994                 __register_netdevice_notifier_net(net, nn->nb, true);
1995         }
1996 }
1997
1998 /**
1999  *      call_netdevice_notifiers_info - call all network notifier blocks
2000  *      @val: value passed unmodified to notifier function
2001  *      @info: notifier information data
2002  *
2003  *      Call all network notifier blocks.  Parameters and return value
2004  *      are as for raw_notifier_call_chain().
2005  */
2006
2007 static int call_netdevice_notifiers_info(unsigned long val,
2008                                          struct netdev_notifier_info *info)
2009 {
2010         struct net *net = dev_net(info->dev);
2011         int ret;
2012
2013         ASSERT_RTNL();
2014
2015         /* Run per-netns notifier block chain first, then run the global one.
2016          * Hopefully, one day, the global one is going to be removed after
2017          * all notifier block registrators get converted to be per-netns.
2018          */
2019         ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2020         if (ret & NOTIFY_STOP_MASK)
2021                 return ret;
2022         return raw_notifier_call_chain(&netdev_chain, val, info);
2023 }
2024
2025 static int call_netdevice_notifiers_extack(unsigned long val,
2026                                            struct net_device *dev,
2027                                            struct netlink_ext_ack *extack)
2028 {
2029         struct netdev_notifier_info info = {
2030                 .dev = dev,
2031                 .extack = extack,
2032         };
2033
2034         return call_netdevice_notifiers_info(val, &info);
2035 }
2036
2037 /**
2038  *      call_netdevice_notifiers - call all network notifier blocks
2039  *      @val: value passed unmodified to notifier function
2040  *      @dev: net_device pointer passed unmodified to notifier function
2041  *
2042  *      Call all network notifier blocks.  Parameters and return value
2043  *      are as for raw_notifier_call_chain().
2044  */
2045
2046 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2047 {
2048         return call_netdevice_notifiers_extack(val, dev, NULL);
2049 }
2050 EXPORT_SYMBOL(call_netdevice_notifiers);
2051
2052 /**
2053  *      call_netdevice_notifiers_mtu - call all network notifier blocks
2054  *      @val: value passed unmodified to notifier function
2055  *      @dev: net_device pointer passed unmodified to notifier function
2056  *      @arg: additional u32 argument passed to the notifier function
2057  *
2058  *      Call all network notifier blocks.  Parameters and return value
2059  *      are as for raw_notifier_call_chain().
2060  */
2061 static int call_netdevice_notifiers_mtu(unsigned long val,
2062                                         struct net_device *dev, u32 arg)
2063 {
2064         struct netdev_notifier_info_ext info = {
2065                 .info.dev = dev,
2066                 .ext.mtu = arg,
2067         };
2068
2069         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2070
2071         return call_netdevice_notifiers_info(val, &info.info);
2072 }
2073
2074 #ifdef CONFIG_NET_INGRESS
2075 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2076
2077 void net_inc_ingress_queue(void)
2078 {
2079         static_branch_inc(&ingress_needed_key);
2080 }
2081 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2082
2083 void net_dec_ingress_queue(void)
2084 {
2085         static_branch_dec(&ingress_needed_key);
2086 }
2087 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2088 #endif
2089
2090 #ifdef CONFIG_NET_EGRESS
2091 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2092
2093 void net_inc_egress_queue(void)
2094 {
2095         static_branch_inc(&egress_needed_key);
2096 }
2097 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2098
2099 void net_dec_egress_queue(void)
2100 {
2101         static_branch_dec(&egress_needed_key);
2102 }
2103 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2104 #endif
2105
2106 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2107 #ifdef CONFIG_JUMP_LABEL
2108 static atomic_t netstamp_needed_deferred;
2109 static atomic_t netstamp_wanted;
2110 static void netstamp_clear(struct work_struct *work)
2111 {
2112         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2113         int wanted;
2114
2115         wanted = atomic_add_return(deferred, &netstamp_wanted);
2116         if (wanted > 0)
2117                 static_branch_enable(&netstamp_needed_key);
2118         else
2119                 static_branch_disable(&netstamp_needed_key);
2120 }
2121 static DECLARE_WORK(netstamp_work, netstamp_clear);
2122 #endif
2123
2124 void net_enable_timestamp(void)
2125 {
2126 #ifdef CONFIG_JUMP_LABEL
2127         int wanted;
2128
2129         while (1) {
2130                 wanted = atomic_read(&netstamp_wanted);
2131                 if (wanted <= 0)
2132                         break;
2133                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2134                         return;
2135         }
2136         atomic_inc(&netstamp_needed_deferred);
2137         schedule_work(&netstamp_work);
2138 #else
2139         static_branch_inc(&netstamp_needed_key);
2140 #endif
2141 }
2142 EXPORT_SYMBOL(net_enable_timestamp);
2143
2144 void net_disable_timestamp(void)
2145 {
2146 #ifdef CONFIG_JUMP_LABEL
2147         int wanted;
2148
2149         while (1) {
2150                 wanted = atomic_read(&netstamp_wanted);
2151                 if (wanted <= 1)
2152                         break;
2153                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2154                         return;
2155         }
2156         atomic_dec(&netstamp_needed_deferred);
2157         schedule_work(&netstamp_work);
2158 #else
2159         static_branch_dec(&netstamp_needed_key);
2160 #endif
2161 }
2162 EXPORT_SYMBOL(net_disable_timestamp);
2163
2164 static inline void net_timestamp_set(struct sk_buff *skb)
2165 {
2166         skb->tstamp = 0;
2167         if (static_branch_unlikely(&netstamp_needed_key))
2168                 __net_timestamp(skb);
2169 }
2170
2171 #define net_timestamp_check(COND, SKB)                          \
2172         if (static_branch_unlikely(&netstamp_needed_key)) {     \
2173                 if ((COND) && !(SKB)->tstamp)                   \
2174                         __net_timestamp(SKB);                   \
2175         }                                                       \
2176
2177 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2178 {
2179         unsigned int len;
2180
2181         if (!(dev->flags & IFF_UP))
2182                 return false;
2183
2184         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
2185         if (skb->len <= len)
2186                 return true;
2187
2188         /* if TSO is enabled, we don't care about the length as the packet
2189          * could be forwarded without being segmented before
2190          */
2191         if (skb_is_gso(skb))
2192                 return true;
2193
2194         return false;
2195 }
2196 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2197
2198 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2199 {
2200         int ret = ____dev_forward_skb(dev, skb);
2201
2202         if (likely(!ret)) {
2203                 skb->protocol = eth_type_trans(skb, dev);
2204                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2205         }
2206
2207         return ret;
2208 }
2209 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2210
2211 /**
2212  * dev_forward_skb - loopback an skb to another netif
2213  *
2214  * @dev: destination network device
2215  * @skb: buffer to forward
2216  *
2217  * return values:
2218  *      NET_RX_SUCCESS  (no congestion)
2219  *      NET_RX_DROP     (packet was dropped, but freed)
2220  *
2221  * dev_forward_skb can be used for injecting an skb from the
2222  * start_xmit function of one device into the receive queue
2223  * of another device.
2224  *
2225  * The receiving device may be in another namespace, so
2226  * we have to clear all information in the skb that could
2227  * impact namespace isolation.
2228  */
2229 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2230 {
2231         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2232 }
2233 EXPORT_SYMBOL_GPL(dev_forward_skb);
2234
2235 static inline int deliver_skb(struct sk_buff *skb,
2236                               struct packet_type *pt_prev,
2237                               struct net_device *orig_dev)
2238 {
2239         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2240                 return -ENOMEM;
2241         refcount_inc(&skb->users);
2242         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2243 }
2244
2245 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2246                                           struct packet_type **pt,
2247                                           struct net_device *orig_dev,
2248                                           __be16 type,
2249                                           struct list_head *ptype_list)
2250 {
2251         struct packet_type *ptype, *pt_prev = *pt;
2252
2253         list_for_each_entry_rcu(ptype, ptype_list, list) {
2254                 if (ptype->type != type)
2255                         continue;
2256                 if (pt_prev)
2257                         deliver_skb(skb, pt_prev, orig_dev);
2258                 pt_prev = ptype;
2259         }
2260         *pt = pt_prev;
2261 }
2262
2263 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2264 {
2265         if (!ptype->af_packet_priv || !skb->sk)
2266                 return false;
2267
2268         if (ptype->id_match)
2269                 return ptype->id_match(ptype, skb->sk);
2270         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2271                 return true;
2272
2273         return false;
2274 }
2275
2276 /**
2277  * dev_nit_active - return true if any network interface taps are in use
2278  *
2279  * @dev: network device to check for the presence of taps
2280  */
2281 bool dev_nit_active(struct net_device *dev)
2282 {
2283         return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2284 }
2285 EXPORT_SYMBOL_GPL(dev_nit_active);
2286
2287 /*
2288  *      Support routine. Sends outgoing frames to any network
2289  *      taps currently in use.
2290  */
2291
2292 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2293 {
2294         struct packet_type *ptype;
2295         struct sk_buff *skb2 = NULL;
2296         struct packet_type *pt_prev = NULL;
2297         struct list_head *ptype_list = &ptype_all;
2298
2299         rcu_read_lock();
2300 again:
2301         list_for_each_entry_rcu(ptype, ptype_list, list) {
2302                 if (ptype->ignore_outgoing)
2303                         continue;
2304
2305                 /* Never send packets back to the socket
2306                  * they originated from - MvS (miquels@drinkel.ow.org)
2307                  */
2308                 if (skb_loop_sk(ptype, skb))
2309                         continue;
2310
2311                 if (pt_prev) {
2312                         deliver_skb(skb2, pt_prev, skb->dev);
2313                         pt_prev = ptype;
2314                         continue;
2315                 }
2316
2317                 /* need to clone skb, done only once */
2318                 skb2 = skb_clone(skb, GFP_ATOMIC);
2319                 if (!skb2)
2320                         goto out_unlock;
2321
2322                 net_timestamp_set(skb2);
2323
2324                 /* skb->nh should be correctly
2325                  * set by sender, so that the second statement is
2326                  * just protection against buggy protocols.
2327                  */
2328                 skb_reset_mac_header(skb2);
2329
2330                 if (skb_network_header(skb2) < skb2->data ||
2331                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2332                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2333                                              ntohs(skb2->protocol),
2334                                              dev->name);
2335                         skb_reset_network_header(skb2);
2336                 }
2337
2338                 skb2->transport_header = skb2->network_header;
2339                 skb2->pkt_type = PACKET_OUTGOING;
2340                 pt_prev = ptype;
2341         }
2342
2343         if (ptype_list == &ptype_all) {
2344                 ptype_list = &dev->ptype_all;
2345                 goto again;
2346         }
2347 out_unlock:
2348         if (pt_prev) {
2349                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2350                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2351                 else
2352                         kfree_skb(skb2);
2353         }
2354         rcu_read_unlock();
2355 }
2356 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2357
2358 /**
2359  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2360  * @dev: Network device
2361  * @txq: number of queues available
2362  *
2363  * If real_num_tx_queues is changed the tc mappings may no longer be
2364  * valid. To resolve this verify the tc mapping remains valid and if
2365  * not NULL the mapping. With no priorities mapping to this
2366  * offset/count pair it will no longer be used. In the worst case TC0
2367  * is invalid nothing can be done so disable priority mappings. If is
2368  * expected that drivers will fix this mapping if they can before
2369  * calling netif_set_real_num_tx_queues.
2370  */
2371 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2372 {
2373         int i;
2374         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2375
2376         /* If TC0 is invalidated disable TC mapping */
2377         if (tc->offset + tc->count > txq) {
2378                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2379                 dev->num_tc = 0;
2380                 return;
2381         }
2382
2383         /* Invalidated prio to tc mappings set to TC0 */
2384         for (i = 1; i < TC_BITMASK + 1; i++) {
2385                 int q = netdev_get_prio_tc_map(dev, i);
2386
2387                 tc = &dev->tc_to_txq[q];
2388                 if (tc->offset + tc->count > txq) {
2389                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2390                                 i, q);
2391                         netdev_set_prio_tc_map(dev, i, 0);
2392                 }
2393         }
2394 }
2395
2396 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2397 {
2398         if (dev->num_tc) {
2399                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2400                 int i;
2401
2402                 /* walk through the TCs and see if it falls into any of them */
2403                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2404                         if ((txq - tc->offset) < tc->count)
2405                                 return i;
2406                 }
2407
2408                 /* didn't find it, just return -1 to indicate no match */
2409                 return -1;
2410         }
2411
2412         return 0;
2413 }
2414 EXPORT_SYMBOL(netdev_txq_to_tc);
2415
2416 #ifdef CONFIG_XPS
2417 struct static_key xps_needed __read_mostly;
2418 EXPORT_SYMBOL(xps_needed);
2419 struct static_key xps_rxqs_needed __read_mostly;
2420 EXPORT_SYMBOL(xps_rxqs_needed);
2421 static DEFINE_MUTEX(xps_map_mutex);
2422 #define xmap_dereference(P)             \
2423         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2424
2425 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2426                              int tci, u16 index)
2427 {
2428         struct xps_map *map = NULL;
2429         int pos;
2430
2431         if (dev_maps)
2432                 map = xmap_dereference(dev_maps->attr_map[tci]);
2433         if (!map)
2434                 return false;
2435
2436         for (pos = map->len; pos--;) {
2437                 if (map->queues[pos] != index)
2438                         continue;
2439
2440                 if (map->len > 1) {
2441                         map->queues[pos] = map->queues[--map->len];
2442                         break;
2443                 }
2444
2445                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2446                 kfree_rcu(map, rcu);
2447                 return false;
2448         }
2449
2450         return true;
2451 }
2452
2453 static bool remove_xps_queue_cpu(struct net_device *dev,
2454                                  struct xps_dev_maps *dev_maps,
2455                                  int cpu, u16 offset, u16 count)
2456 {
2457         int num_tc = dev->num_tc ? : 1;
2458         bool active = false;
2459         int tci;
2460
2461         for (tci = cpu * num_tc; num_tc--; tci++) {
2462                 int i, j;
2463
2464                 for (i = count, j = offset; i--; j++) {
2465                         if (!remove_xps_queue(dev_maps, tci, j))
2466                                 break;
2467                 }
2468
2469                 active |= i < 0;
2470         }
2471
2472         return active;
2473 }
2474
2475 static void reset_xps_maps(struct net_device *dev,
2476                            struct xps_dev_maps *dev_maps,
2477                            bool is_rxqs_map)
2478 {
2479         if (is_rxqs_map) {
2480                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2481                 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2482         } else {
2483                 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2484         }
2485         static_key_slow_dec_cpuslocked(&xps_needed);
2486         kfree_rcu(dev_maps, rcu);
2487 }
2488
2489 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2490                            struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2491                            u16 offset, u16 count, bool is_rxqs_map)
2492 {
2493         bool active = false;
2494         int i, j;
2495
2496         for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2497              j < nr_ids;)
2498                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2499                                                count);
2500         if (!active)
2501                 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2502
2503         if (!is_rxqs_map) {
2504                 for (i = offset + (count - 1); count--; i--) {
2505                         netdev_queue_numa_node_write(
2506                                 netdev_get_tx_queue(dev, i),
2507                                 NUMA_NO_NODE);
2508                 }
2509         }
2510 }
2511
2512 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2513                                    u16 count)
2514 {
2515         const unsigned long *possible_mask = NULL;
2516         struct xps_dev_maps *dev_maps;
2517         unsigned int nr_ids;
2518
2519         if (!static_key_false(&xps_needed))
2520                 return;
2521
2522         cpus_read_lock();
2523         mutex_lock(&xps_map_mutex);
2524
2525         if (static_key_false(&xps_rxqs_needed)) {
2526                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2527                 if (dev_maps) {
2528                         nr_ids = dev->num_rx_queues;
2529                         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2530                                        offset, count, true);
2531                 }
2532         }
2533
2534         dev_maps = xmap_dereference(dev->xps_cpus_map);
2535         if (!dev_maps)
2536                 goto out_no_maps;
2537
2538         if (num_possible_cpus() > 1)
2539                 possible_mask = cpumask_bits(cpu_possible_mask);
2540         nr_ids = nr_cpu_ids;
2541         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2542                        false);
2543
2544 out_no_maps:
2545         mutex_unlock(&xps_map_mutex);
2546         cpus_read_unlock();
2547 }
2548
2549 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2550 {
2551         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2552 }
2553
2554 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2555                                       u16 index, bool is_rxqs_map)
2556 {
2557         struct xps_map *new_map;
2558         int alloc_len = XPS_MIN_MAP_ALLOC;
2559         int i, pos;
2560
2561         for (pos = 0; map && pos < map->len; pos++) {
2562                 if (map->queues[pos] != index)
2563                         continue;
2564                 return map;
2565         }
2566
2567         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2568         if (map) {
2569                 if (pos < map->alloc_len)
2570                         return map;
2571
2572                 alloc_len = map->alloc_len * 2;
2573         }
2574
2575         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2576          *  map
2577          */
2578         if (is_rxqs_map)
2579                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2580         else
2581                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2582                                        cpu_to_node(attr_index));
2583         if (!new_map)
2584                 return NULL;
2585
2586         for (i = 0; i < pos; i++)
2587                 new_map->queues[i] = map->queues[i];
2588         new_map->alloc_len = alloc_len;
2589         new_map->len = pos;
2590
2591         return new_map;
2592 }
2593
2594 /* Must be called under cpus_read_lock */
2595 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2596                           u16 index, bool is_rxqs_map)
2597 {
2598         const unsigned long *online_mask = NULL, *possible_mask = NULL;
2599         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2600         int i, j, tci, numa_node_id = -2;
2601         int maps_sz, num_tc = 1, tc = 0;
2602         struct xps_map *map, *new_map;
2603         bool active = false;
2604         unsigned int nr_ids;
2605
2606         if (dev->num_tc) {
2607                 /* Do not allow XPS on subordinate device directly */
2608                 num_tc = dev->num_tc;
2609                 if (num_tc < 0)
2610                         return -EINVAL;
2611
2612                 /* If queue belongs to subordinate dev use its map */
2613                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2614
2615                 tc = netdev_txq_to_tc(dev, index);
2616                 if (tc < 0)
2617                         return -EINVAL;
2618         }
2619
2620         mutex_lock(&xps_map_mutex);
2621         if (is_rxqs_map) {
2622                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2623                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2624                 nr_ids = dev->num_rx_queues;
2625         } else {
2626                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2627                 if (num_possible_cpus() > 1) {
2628                         online_mask = cpumask_bits(cpu_online_mask);
2629                         possible_mask = cpumask_bits(cpu_possible_mask);
2630                 }
2631                 dev_maps = xmap_dereference(dev->xps_cpus_map);
2632                 nr_ids = nr_cpu_ids;
2633         }
2634
2635         if (maps_sz < L1_CACHE_BYTES)
2636                 maps_sz = L1_CACHE_BYTES;
2637
2638         /* allocate memory for queue storage */
2639         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2640              j < nr_ids;) {
2641                 if (!new_dev_maps)
2642                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2643                 if (!new_dev_maps) {
2644                         mutex_unlock(&xps_map_mutex);
2645                         return -ENOMEM;
2646                 }
2647
2648                 tci = j * num_tc + tc;
2649                 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2650                                  NULL;
2651
2652                 map = expand_xps_map(map, j, index, is_rxqs_map);
2653                 if (!map)
2654                         goto error;
2655
2656                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2657         }
2658
2659         if (!new_dev_maps)
2660                 goto out_no_new_maps;
2661
2662         if (!dev_maps) {
2663                 /* Increment static keys at most once per type */
2664                 static_key_slow_inc_cpuslocked(&xps_needed);
2665                 if (is_rxqs_map)
2666                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2667         }
2668
2669         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2670              j < nr_ids;) {
2671                 /* copy maps belonging to foreign traffic classes */
2672                 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2673                         /* fill in the new device map from the old device map */
2674                         map = xmap_dereference(dev_maps->attr_map[tci]);
2675                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2676                 }
2677
2678                 /* We need to explicitly update tci as prevous loop
2679                  * could break out early if dev_maps is NULL.
2680                  */
2681                 tci = j * num_tc + tc;
2682
2683                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2684                     netif_attr_test_online(j, online_mask, nr_ids)) {
2685                         /* add tx-queue to CPU/rx-queue maps */
2686                         int pos = 0;
2687
2688                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2689                         while ((pos < map->len) && (map->queues[pos] != index))
2690                                 pos++;
2691
2692                         if (pos == map->len)
2693                                 map->queues[map->len++] = index;
2694 #ifdef CONFIG_NUMA
2695                         if (!is_rxqs_map) {
2696                                 if (numa_node_id == -2)
2697                                         numa_node_id = cpu_to_node(j);
2698                                 else if (numa_node_id != cpu_to_node(j))
2699                                         numa_node_id = -1;
2700                         }
2701 #endif
2702                 } else if (dev_maps) {
2703                         /* fill in the new device map from the old device map */
2704                         map = xmap_dereference(dev_maps->attr_map[tci]);
2705                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2706                 }
2707
2708                 /* copy maps belonging to foreign traffic classes */
2709                 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2710                         /* fill in the new device map from the old device map */
2711                         map = xmap_dereference(dev_maps->attr_map[tci]);
2712                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2713                 }
2714         }
2715
2716         if (is_rxqs_map)
2717                 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2718         else
2719                 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2720
2721         /* Cleanup old maps */
2722         if (!dev_maps)
2723                 goto out_no_old_maps;
2724
2725         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2726              j < nr_ids;) {
2727                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2728                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2729                         map = xmap_dereference(dev_maps->attr_map[tci]);
2730                         if (map && map != new_map)
2731                                 kfree_rcu(map, rcu);
2732                 }
2733         }
2734
2735         kfree_rcu(dev_maps, rcu);
2736
2737 out_no_old_maps:
2738         dev_maps = new_dev_maps;
2739         active = true;
2740
2741 out_no_new_maps:
2742         if (!is_rxqs_map) {
2743                 /* update Tx queue numa node */
2744                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2745                                              (numa_node_id >= 0) ?
2746                                              numa_node_id : NUMA_NO_NODE);
2747         }
2748
2749         if (!dev_maps)
2750                 goto out_no_maps;
2751
2752         /* removes tx-queue from unused CPUs/rx-queues */
2753         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2754              j < nr_ids;) {
2755                 for (i = tc, tci = j * num_tc; i--; tci++)
2756                         active |= remove_xps_queue(dev_maps, tci, index);
2757                 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2758                     !netif_attr_test_online(j, online_mask, nr_ids))
2759                         active |= remove_xps_queue(dev_maps, tci, index);
2760                 for (i = num_tc - tc, tci++; --i; tci++)
2761                         active |= remove_xps_queue(dev_maps, tci, index);
2762         }
2763
2764         /* free map if not active */
2765         if (!active)
2766                 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2767
2768 out_no_maps:
2769         mutex_unlock(&xps_map_mutex);
2770
2771         return 0;
2772 error:
2773         /* remove any maps that we added */
2774         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2775              j < nr_ids;) {
2776                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2777                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2778                         map = dev_maps ?
2779                               xmap_dereference(dev_maps->attr_map[tci]) :
2780                               NULL;
2781                         if (new_map && new_map != map)
2782                                 kfree(new_map);
2783                 }
2784         }
2785
2786         mutex_unlock(&xps_map_mutex);
2787
2788         kfree(new_dev_maps);
2789         return -ENOMEM;
2790 }
2791 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2792
2793 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2794                         u16 index)
2795 {
2796         int ret;
2797
2798         cpus_read_lock();
2799         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2800         cpus_read_unlock();
2801
2802         return ret;
2803 }
2804 EXPORT_SYMBOL(netif_set_xps_queue);
2805
2806 #endif
2807 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2808 {
2809         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2810
2811         /* Unbind any subordinate channels */
2812         while (txq-- != &dev->_tx[0]) {
2813                 if (txq->sb_dev)
2814                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2815         }
2816 }
2817
2818 void netdev_reset_tc(struct net_device *dev)
2819 {
2820 #ifdef CONFIG_XPS
2821         netif_reset_xps_queues_gt(dev, 0);
2822 #endif
2823         netdev_unbind_all_sb_channels(dev);
2824
2825         /* Reset TC configuration of device */
2826         dev->num_tc = 0;
2827         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2828         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2829 }
2830 EXPORT_SYMBOL(netdev_reset_tc);
2831
2832 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2833 {
2834         if (tc >= dev->num_tc)
2835                 return -EINVAL;
2836
2837 #ifdef CONFIG_XPS
2838         netif_reset_xps_queues(dev, offset, count);
2839 #endif
2840         dev->tc_to_txq[tc].count = count;
2841         dev->tc_to_txq[tc].offset = offset;
2842         return 0;
2843 }
2844 EXPORT_SYMBOL(netdev_set_tc_queue);
2845
2846 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2847 {
2848         if (num_tc > TC_MAX_QUEUE)
2849                 return -EINVAL;
2850
2851 #ifdef CONFIG_XPS
2852         netif_reset_xps_queues_gt(dev, 0);
2853 #endif
2854         netdev_unbind_all_sb_channels(dev);
2855
2856         dev->num_tc = num_tc;
2857         return 0;
2858 }
2859 EXPORT_SYMBOL(netdev_set_num_tc);
2860
2861 void netdev_unbind_sb_channel(struct net_device *dev,
2862                               struct net_device *sb_dev)
2863 {
2864         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2865
2866 #ifdef CONFIG_XPS
2867         netif_reset_xps_queues_gt(sb_dev, 0);
2868 #endif
2869         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2870         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2871
2872         while (txq-- != &dev->_tx[0]) {
2873                 if (txq->sb_dev == sb_dev)
2874                         txq->sb_dev = NULL;
2875         }
2876 }
2877 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2878
2879 int netdev_bind_sb_channel_queue(struct net_device *dev,
2880                                  struct net_device *sb_dev,
2881                                  u8 tc, u16 count, u16 offset)
2882 {
2883         /* Make certain the sb_dev and dev are already configured */
2884         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2885                 return -EINVAL;
2886
2887         /* We cannot hand out queues we don't have */
2888         if ((offset + count) > dev->real_num_tx_queues)
2889                 return -EINVAL;
2890
2891         /* Record the mapping */
2892         sb_dev->tc_to_txq[tc].count = count;
2893         sb_dev->tc_to_txq[tc].offset = offset;
2894
2895         /* Provide a way for Tx queue to find the tc_to_txq map or
2896          * XPS map for itself.
2897          */
2898         while (count--)
2899                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2900
2901         return 0;
2902 }
2903 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2904
2905 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2906 {
2907         /* Do not use a multiqueue device to represent a subordinate channel */
2908         if (netif_is_multiqueue(dev))
2909                 return -ENODEV;
2910
2911         /* We allow channels 1 - 32767 to be used for subordinate channels.
2912          * Channel 0 is meant to be "native" mode and used only to represent
2913          * the main root device. We allow writing 0 to reset the device back
2914          * to normal mode after being used as a subordinate channel.
2915          */
2916         if (channel > S16_MAX)
2917                 return -EINVAL;
2918
2919         dev->num_tc = -channel;
2920
2921         return 0;
2922 }
2923 EXPORT_SYMBOL(netdev_set_sb_channel);
2924
2925 /*
2926  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2927  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2928  */
2929 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2930 {
2931         bool disabling;
2932         int rc;
2933
2934         disabling = txq < dev->real_num_tx_queues;
2935
2936         if (txq < 1 || txq > dev->num_tx_queues)
2937                 return -EINVAL;
2938
2939         if (dev->reg_state == NETREG_REGISTERED ||
2940             dev->reg_state == NETREG_UNREGISTERING) {
2941                 ASSERT_RTNL();
2942
2943                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2944                                                   txq);
2945                 if (rc)
2946                         return rc;
2947
2948                 if (dev->num_tc)
2949                         netif_setup_tc(dev, txq);
2950
2951                 dev->real_num_tx_queues = txq;
2952
2953                 if (disabling) {
2954                         synchronize_net();
2955                         qdisc_reset_all_tx_gt(dev, txq);
2956 #ifdef CONFIG_XPS
2957                         netif_reset_xps_queues_gt(dev, txq);
2958 #endif
2959                 }
2960         } else {
2961                 dev->real_num_tx_queues = txq;
2962         }
2963
2964         return 0;
2965 }
2966 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2967
2968 #ifdef CONFIG_SYSFS
2969 /**
2970  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2971  *      @dev: Network device
2972  *      @rxq: Actual number of RX queues
2973  *
2974  *      This must be called either with the rtnl_lock held or before
2975  *      registration of the net device.  Returns 0 on success, or a
2976  *      negative error code.  If called before registration, it always
2977  *      succeeds.
2978  */
2979 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2980 {
2981         int rc;
2982
2983         if (rxq < 1 || rxq > dev->num_rx_queues)
2984                 return -EINVAL;
2985
2986         if (dev->reg_state == NETREG_REGISTERED) {
2987                 ASSERT_RTNL();
2988
2989                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2990                                                   rxq);
2991                 if (rc)
2992                         return rc;
2993         }
2994
2995         dev->real_num_rx_queues = rxq;
2996         return 0;
2997 }
2998 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2999 #endif
3000
3001 /**
3002  * netif_get_num_default_rss_queues - default number of RSS queues
3003  *
3004  * This routine should set an upper limit on the number of RSS queues
3005  * used by default by multiqueue devices.
3006  */
3007 int netif_get_num_default_rss_queues(void)
3008 {
3009         return is_kdump_kernel() ?
3010                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3011 }
3012 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3013
3014 static void __netif_reschedule(struct Qdisc *q)
3015 {
3016         struct softnet_data *sd;
3017         unsigned long flags;
3018
3019         local_irq_save(flags);
3020         sd = this_cpu_ptr(&softnet_data);
3021         q->next_sched = NULL;
3022         *sd->output_queue_tailp = q;
3023         sd->output_queue_tailp = &q->next_sched;
3024         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3025         local_irq_restore(flags);
3026 }
3027
3028 void __netif_schedule(struct Qdisc *q)
3029 {
3030         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3031                 __netif_reschedule(q);
3032 }
3033 EXPORT_SYMBOL(__netif_schedule);
3034
3035 struct dev_kfree_skb_cb {
3036         enum skb_free_reason reason;
3037 };
3038
3039 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3040 {
3041         return (struct dev_kfree_skb_cb *)skb->cb;
3042 }
3043
3044 void netif_schedule_queue(struct netdev_queue *txq)
3045 {
3046         rcu_read_lock();
3047         if (!netif_xmit_stopped(txq)) {
3048                 struct Qdisc *q = rcu_dereference(txq->qdisc);
3049
3050                 __netif_schedule(q);
3051         }
3052         rcu_read_unlock();
3053 }
3054 EXPORT_SYMBOL(netif_schedule_queue);
3055
3056 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3057 {
3058         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3059                 struct Qdisc *q;
3060
3061                 rcu_read_lock();
3062                 q = rcu_dereference(dev_queue->qdisc);
3063                 __netif_schedule(q);
3064                 rcu_read_unlock();
3065         }
3066 }
3067 EXPORT_SYMBOL(netif_tx_wake_queue);
3068
3069 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3070 {
3071         unsigned long flags;
3072
3073         if (unlikely(!skb))
3074                 return;
3075
3076         if (likely(refcount_read(&skb->users) == 1)) {
3077                 smp_rmb();
3078                 refcount_set(&skb->users, 0);
3079         } else if (likely(!refcount_dec_and_test(&skb->users))) {
3080                 return;
3081         }
3082         get_kfree_skb_cb(skb)->reason = reason;
3083         local_irq_save(flags);
3084         skb->next = __this_cpu_read(softnet_data.completion_queue);
3085         __this_cpu_write(softnet_data.completion_queue, skb);
3086         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3087         local_irq_restore(flags);
3088 }
3089 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3090
3091 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3092 {
3093         if (in_irq() || irqs_disabled())
3094                 __dev_kfree_skb_irq(skb, reason);
3095         else
3096                 dev_kfree_skb(skb);
3097 }
3098 EXPORT_SYMBOL(__dev_kfree_skb_any);
3099
3100
3101 /**
3102  * netif_device_detach - mark device as removed
3103  * @dev: network device
3104  *
3105  * Mark device as removed from system and therefore no longer available.
3106  */
3107 void netif_device_detach(struct net_device *dev)
3108 {
3109         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3110             netif_running(dev)) {
3111                 netif_tx_stop_all_queues(dev);
3112         }
3113 }
3114 EXPORT_SYMBOL(netif_device_detach);
3115
3116 /**
3117  * netif_device_attach - mark device as attached
3118  * @dev: network device
3119  *
3120  * Mark device as attached from system and restart if needed.
3121  */
3122 void netif_device_attach(struct net_device *dev)
3123 {
3124         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3125             netif_running(dev)) {
3126                 netif_tx_wake_all_queues(dev);
3127                 __netdev_watchdog_up(dev);
3128         }
3129 }
3130 EXPORT_SYMBOL(netif_device_attach);
3131
3132 /*
3133  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3134  * to be used as a distribution range.
3135  */
3136 static u16 skb_tx_hash(const struct net_device *dev,
3137                        const struct net_device *sb_dev,
3138                        struct sk_buff *skb)
3139 {
3140         u32 hash;
3141         u16 qoffset = 0;
3142         u16 qcount = dev->real_num_tx_queues;
3143
3144         if (dev->num_tc) {
3145                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3146
3147                 qoffset = sb_dev->tc_to_txq[tc].offset;
3148                 qcount = sb_dev->tc_to_txq[tc].count;
3149         }
3150
3151         if (skb_rx_queue_recorded(skb)) {
3152                 hash = skb_get_rx_queue(skb);
3153                 if (hash >= qoffset)
3154                         hash -= qoffset;
3155                 while (unlikely(hash >= qcount))
3156                         hash -= qcount;
3157                 return hash + qoffset;
3158         }
3159
3160         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3161 }
3162
3163 static void skb_warn_bad_offload(const struct sk_buff *skb)
3164 {
3165         static const netdev_features_t null_features;
3166         struct net_device *dev = skb->dev;
3167         const char *name = "";
3168
3169         if (!net_ratelimit())
3170                 return;
3171
3172         if (dev) {
3173                 if (dev->dev.parent)
3174                         name = dev_driver_string(dev->dev.parent);
3175                 else
3176                         name = netdev_name(dev);
3177         }
3178         skb_dump(KERN_WARNING, skb, false);
3179         WARN(1, "%s: caps=(%pNF, %pNF)\n",
3180              name, dev ? &dev->features : &null_features,
3181              skb->sk ? &skb->sk->sk_route_caps : &null_features);
3182 }
3183
3184 /*
3185  * Invalidate hardware checksum when packet is to be mangled, and
3186  * complete checksum manually on outgoing path.
3187  */
3188 int skb_checksum_help(struct sk_buff *skb)
3189 {
3190         __wsum csum;
3191         int ret = 0, offset;
3192
3193         if (skb->ip_summed == CHECKSUM_COMPLETE)
3194                 goto out_set_summed;
3195
3196         if (unlikely(skb_is_gso(skb))) {
3197                 skb_warn_bad_offload(skb);
3198                 return -EINVAL;
3199         }
3200
3201         /* Before computing a checksum, we should make sure no frag could
3202          * be modified by an external entity : checksum could be wrong.
3203          */
3204         if (skb_has_shared_frag(skb)) {
3205                 ret = __skb_linearize(skb);
3206                 if (ret)
3207                         goto out;
3208         }
3209
3210         offset = skb_checksum_start_offset(skb);
3211         BUG_ON(offset >= skb_headlen(skb));
3212         csum = skb_checksum(skb, offset, skb->len - offset, 0);
3213
3214         offset += skb->csum_offset;
3215         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3216
3217         ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3218         if (ret)
3219                 goto out;
3220
3221         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3222 out_set_summed:
3223         skb->ip_summed = CHECKSUM_NONE;
3224 out:
3225         return ret;
3226 }
3227 EXPORT_SYMBOL(skb_checksum_help);
3228
3229 int skb_crc32c_csum_help(struct sk_buff *skb)
3230 {
3231         __le32 crc32c_csum;
3232         int ret = 0, offset, start;
3233
3234         if (skb->ip_summed != CHECKSUM_PARTIAL)
3235                 goto out;
3236
3237         if (unlikely(skb_is_gso(skb)))
3238                 goto out;
3239
3240         /* Before computing a checksum, we should make sure no frag could
3241          * be modified by an external entity : checksum could be wrong.
3242          */
3243         if (unlikely(skb_has_shared_frag(skb))) {
3244                 ret = __skb_linearize(skb);
3245                 if (ret)
3246                         goto out;
3247         }
3248         start = skb_checksum_start_offset(skb);
3249         offset = start + offsetof(struct sctphdr, checksum);
3250         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3251                 ret = -EINVAL;
3252                 goto out;
3253         }
3254
3255         ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3256         if (ret)
3257                 goto out;
3258
3259         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3260                                                   skb->len - start, ~(__u32)0,
3261                                                   crc32c_csum_stub));
3262         *(__le32 *)(skb->data + offset) = crc32c_csum;
3263         skb->ip_summed = CHECKSUM_NONE;
3264         skb->csum_not_inet = 0;
3265 out:
3266         return ret;
3267 }
3268
3269 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3270 {
3271         __be16 type = skb->protocol;
3272
3273         /* Tunnel gso handlers can set protocol to ethernet. */
3274         if (type == htons(ETH_P_TEB)) {
3275                 struct ethhdr *eth;
3276
3277                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3278                         return 0;
3279
3280                 eth = (struct ethhdr *)skb->data;
3281                 type = eth->h_proto;
3282         }
3283
3284         return __vlan_get_protocol(skb, type, depth);
3285 }
3286
3287 /**
3288  *      skb_mac_gso_segment - mac layer segmentation handler.
3289  *      @skb: buffer to segment
3290  *      @features: features for the output path (see dev->features)
3291  */
3292 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3293                                     netdev_features_t features)
3294 {
3295         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3296         struct packet_offload *ptype;
3297         int vlan_depth = skb->mac_len;
3298         __be16 type = skb_network_protocol(skb, &vlan_depth);
3299
3300         if (unlikely(!type))
3301                 return ERR_PTR(-EINVAL);
3302
3303         __skb_pull(skb, vlan_depth);
3304
3305         rcu_read_lock();
3306         list_for_each_entry_rcu(ptype, &offload_base, list) {
3307                 if (ptype->type == type && ptype->callbacks.gso_segment) {
3308                         segs = ptype->callbacks.gso_segment(skb, features);
3309                         break;
3310                 }
3311         }
3312         rcu_read_unlock();
3313
3314         __skb_push(skb, skb->data - skb_mac_header(skb));
3315
3316         return segs;
3317 }
3318 EXPORT_SYMBOL(skb_mac_gso_segment);
3319
3320
3321 /* openvswitch calls this on rx path, so we need a different check.
3322  */
3323 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3324 {
3325         if (tx_path)
3326                 return skb->ip_summed != CHECKSUM_PARTIAL &&
3327                        skb->ip_summed != CHECKSUM_UNNECESSARY;
3328
3329         return skb->ip_summed == CHECKSUM_NONE;
3330 }
3331
3332 /**
3333  *      __skb_gso_segment - Perform segmentation on skb.
3334  *      @skb: buffer to segment
3335  *      @features: features for the output path (see dev->features)
3336  *      @tx_path: whether it is called in TX path
3337  *
3338  *      This function segments the given skb and returns a list of segments.
3339  *
3340  *      It may return NULL if the skb requires no segmentation.  This is
3341  *      only possible when GSO is used for verifying header integrity.
3342  *
3343  *      Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3344  */
3345 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3346                                   netdev_features_t features, bool tx_path)
3347 {
3348         struct sk_buff *segs;
3349
3350         if (unlikely(skb_needs_check(skb, tx_path))) {
3351                 int err;
3352
3353                 /* We're going to init ->check field in TCP or UDP header */
3354                 err = skb_cow_head(skb, 0);
3355                 if (err < 0)
3356                         return ERR_PTR(err);
3357         }
3358
3359         /* Only report GSO partial support if it will enable us to
3360          * support segmentation on this frame without needing additional
3361          * work.
3362          */
3363         if (features & NETIF_F_GSO_PARTIAL) {
3364                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3365                 struct net_device *dev = skb->dev;
3366
3367                 partial_features |= dev->features & dev->gso_partial_features;
3368                 if (!skb_gso_ok(skb, features | partial_features))
3369                         features &= ~NETIF_F_GSO_PARTIAL;
3370         }
3371
3372         BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3373                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3374
3375         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3376         SKB_GSO_CB(skb)->encap_level = 0;
3377
3378         skb_reset_mac_header(skb);
3379         skb_reset_mac_len(skb);
3380
3381         segs = skb_mac_gso_segment(skb, features);
3382
3383         if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3384                 skb_warn_bad_offload(skb);
3385
3386         return segs;
3387 }
3388 EXPORT_SYMBOL(__skb_gso_segment);
3389
3390 /* Take action when hardware reception checksum errors are detected. */
3391 #ifdef CONFIG_BUG
3392 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3393 {
3394         if (net_ratelimit()) {
3395                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3396                 skb_dump(KERN_ERR, skb, true);
3397                 dump_stack();
3398         }
3399 }
3400 EXPORT_SYMBOL(netdev_rx_csum_fault);
3401 #endif
3402
3403 /* XXX: check that highmem exists at all on the given machine. */
3404 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3405 {
3406 #ifdef CONFIG_HIGHMEM
3407         int i;
3408
3409         if (!(dev->features & NETIF_F_HIGHDMA)) {
3410                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3411                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3412
3413                         if (PageHighMem(skb_frag_page(frag)))
3414                                 return 1;
3415                 }
3416         }
3417 #endif
3418         return 0;
3419 }
3420
3421 /* If MPLS offload request, verify we are testing hardware MPLS features
3422  * instead of standard features for the netdev.
3423  */
3424 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3425 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3426                                            netdev_features_t features,
3427                                            __be16 type)
3428 {
3429         if (eth_p_mpls(type))
3430                 features &= skb->dev->mpls_features;
3431
3432         return features;
3433 }
3434 #else
3435 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3436                                            netdev_features_t features,
3437                                            __be16 type)
3438 {
3439         return features;
3440 }
3441 #endif
3442
3443 static netdev_features_t harmonize_features(struct sk_buff *skb,
3444         netdev_features_t features)
3445 {
3446         __be16 type;
3447
3448         type = skb_network_protocol(skb, NULL);
3449         features = net_mpls_features(skb, features, type);
3450
3451         if (skb->ip_summed != CHECKSUM_NONE &&
3452             !can_checksum_protocol(features, type)) {
3453                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3454         }
3455         if (illegal_highdma(skb->dev, skb))
3456                 features &= ~NETIF_F_SG;
3457
3458         return features;
3459 }
3460
3461 netdev_features_t passthru_features_check(struct sk_buff *skb,
3462                                           struct net_device *dev,
3463                                           netdev_features_t features)
3464 {
3465         return features;
3466 }
3467 EXPORT_SYMBOL(passthru_features_check);
3468
3469 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3470                                              struct net_device *dev,
3471                                              netdev_features_t features)
3472 {
3473         return vlan_features_check(skb, features);
3474 }
3475
3476 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3477                                             struct net_device *dev,
3478                                             netdev_features_t features)
3479 {
3480         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3481
3482         if (gso_segs > dev->gso_max_segs)
3483                 return features & ~NETIF_F_GSO_MASK;
3484
3485         if (!skb_shinfo(skb)->gso_type) {
3486                 skb_warn_bad_offload(skb);
3487                 return features & ~NETIF_F_GSO_MASK;
3488         }
3489
3490         /* Support for GSO partial features requires software
3491          * intervention before we can actually process the packets
3492          * so we need to strip support for any partial features now
3493          * and we can pull them back in after we have partially
3494          * segmented the frame.
3495          */
3496         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3497                 features &= ~dev->gso_partial_features;
3498
3499         /* Make sure to clear the IPv4 ID mangling feature if the
3500          * IPv4 header has the potential to be fragmented.
3501          */
3502         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3503                 struct iphdr *iph = skb->encapsulation ?
3504                                     inner_ip_hdr(skb) : ip_hdr(skb);
3505
3506                 if (!(iph->frag_off & htons(IP_DF)))
3507                         features &= ~NETIF_F_TSO_MANGLEID;
3508         }
3509
3510         return features;
3511 }
3512
3513 netdev_features_t netif_skb_features(struct sk_buff *skb)
3514 {
3515         struct net_device *dev = skb->dev;
3516         netdev_features_t features = dev->features;
3517
3518         if (skb_is_gso(skb))
3519                 features = gso_features_check(skb, dev, features);
3520
3521         /* If encapsulation offload request, verify we are testing
3522          * hardware encapsulation features instead of standard
3523          * features for the netdev
3524          */
3525         if (skb->encapsulation)
3526                 features &= dev->hw_enc_features;
3527
3528         if (skb_vlan_tagged(skb))
3529                 features = netdev_intersect_features(features,
3530                                                      dev->vlan_features |
3531                                                      NETIF_F_HW_VLAN_CTAG_TX |
3532                                                      NETIF_F_HW_VLAN_STAG_TX);
3533
3534         if (dev->netdev_ops->ndo_features_check)
3535                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3536                                                                 features);
3537         else
3538                 features &= dflt_features_check(skb, dev, features);
3539
3540         return harmonize_features(skb, features);
3541 }
3542 EXPORT_SYMBOL(netif_skb_features);
3543
3544 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3545                     struct netdev_queue *txq, bool more)
3546 {
3547         unsigned int len;
3548         int rc;
3549
3550         if (dev_nit_active(dev))
3551                 dev_queue_xmit_nit(skb, dev);
3552
3553         len = skb->len;
3554         PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3555         trace_net_dev_start_xmit(skb, dev);
3556         rc = netdev_start_xmit(skb, dev, txq, more);
3557         trace_net_dev_xmit(skb, rc, dev, len);
3558
3559         return rc;
3560 }
3561
3562 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3563                                     struct netdev_queue *txq, int *ret)
3564 {
3565         struct sk_buff *skb = first;
3566         int rc = NETDEV_TX_OK;
3567
3568         while (skb) {
3569                 struct sk_buff *next = skb->next;
3570
3571                 skb_mark_not_on_list(skb);
3572                 rc = xmit_one(skb, dev, txq, next != NULL);
3573                 if (unlikely(!dev_xmit_complete(rc))) {
3574                         skb->next = next;
3575                         goto out;
3576                 }
3577
3578                 skb = next;
3579                 if (netif_tx_queue_stopped(txq) && skb) {
3580                         rc = NETDEV_TX_BUSY;
3581                         break;
3582                 }
3583         }
3584
3585 out:
3586         *ret = rc;
3587         return skb;
3588 }
3589
3590 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3591                                           netdev_features_t features)
3592 {
3593         if (skb_vlan_tag_present(skb) &&
3594             !vlan_hw_offload_capable(features, skb->vlan_proto))
3595                 skb = __vlan_hwaccel_push_inside(skb);
3596         return skb;
3597 }
3598
3599 int skb_csum_hwoffload_help(struct sk_buff *skb,
3600                             const netdev_features_t features)
3601 {
3602         if (unlikely(skb->csum_not_inet))
3603                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3604                         skb_crc32c_csum_help(skb);
3605
3606         return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3607 }
3608 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3609
3610 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3611 {
3612         netdev_features_t features;
3613
3614         features = netif_skb_features(skb);
3615         skb = validate_xmit_vlan(skb, features);
3616         if (unlikely(!skb))
3617                 goto out_null;
3618
3619         skb = sk_validate_xmit_skb(skb, dev);
3620         if (unlikely(!skb))
3621                 goto out_null;
3622
3623         if (netif_needs_gso(skb, features)) {
3624                 struct sk_buff *segs;
3625
3626                 segs = skb_gso_segment(skb, features);
3627                 if (IS_ERR(segs)) {
3628                         goto out_kfree_skb;
3629                 } else if (segs) {
3630                         consume_skb(skb);
3631                         skb = segs;
3632                 }
3633         } else {
3634                 if (skb_needs_linearize(skb, features) &&
3635                     __skb_linearize(skb))
3636                         goto out_kfree_skb;
3637
3638                 /* If packet is not checksummed and device does not
3639                  * support checksumming for this protocol, complete
3640                  * checksumming here.
3641                  */
3642                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3643                         if (skb->encapsulation)
3644                                 skb_set_inner_transport_header(skb,
3645                                                                skb_checksum_start_offset(skb));
3646                         else
3647                                 skb_set_transport_header(skb,
3648                                                          skb_checksum_start_offset(skb));
3649                         if (skb_csum_hwoffload_help(skb, features))
3650                                 goto out_kfree_skb;
3651                 }
3652         }
3653
3654         skb = validate_xmit_xfrm(skb, features, again);
3655
3656         return skb;
3657
3658 out_kfree_skb:
3659         kfree_skb(skb);
3660 out_null:
3661         atomic_long_inc(&dev->tx_dropped);
3662         return NULL;
3663 }
3664
3665 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3666 {
3667         struct sk_buff *next, *head = NULL, *tail;
3668
3669         for (; skb != NULL; skb = next) {
3670                 next = skb->next;
3671                 skb_mark_not_on_list(skb);
3672
3673                 /* in case skb wont be segmented, point to itself */
3674                 skb->prev = skb;
3675
3676                 skb = validate_xmit_skb(skb, dev, again);
3677                 if (!skb)
3678                         continue;
3679
3680                 if (!head)
3681                         head = skb;
3682                 else
3683                         tail->next = skb;
3684                 /* If skb was segmented, skb->prev points to
3685                  * the last segment. If not, it still contains skb.
3686                  */
3687                 tail = skb->prev;
3688         }
3689         return head;
3690 }
3691 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3692
3693 static void qdisc_pkt_len_init(struct sk_buff *skb)
3694 {
3695         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3696
3697         qdisc_skb_cb(skb)->pkt_len = skb->len;
3698
3699         /* To get more precise estimation of bytes sent on wire,
3700          * we add to pkt_len the headers size of all segments
3701          */
3702         if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3703                 unsigned int hdr_len;
3704                 u16 gso_segs = shinfo->gso_segs;
3705
3706                 /* mac layer + network layer */
3707                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3708
3709                 /* + transport layer */
3710                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3711                         const struct tcphdr *th;
3712                         struct tcphdr _tcphdr;
3713
3714                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3715                                                 sizeof(_tcphdr), &_tcphdr);
3716                         if (likely(th))
3717                                 hdr_len += __tcp_hdrlen(th);
3718                 } else {
3719                         struct udphdr _udphdr;
3720
3721                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3722                                                sizeof(_udphdr), &_udphdr))
3723                                 hdr_len += sizeof(struct udphdr);
3724                 }
3725
3726                 if (shinfo->gso_type & SKB_GSO_DODGY)
3727                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3728                                                 shinfo->gso_size);
3729
3730                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3731         }
3732 }
3733
3734 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3735                                  struct net_device *dev,
3736                                  struct netdev_queue *txq)
3737 {
3738         spinlock_t *root_lock = qdisc_lock(q);
3739         struct sk_buff *to_free = NULL;
3740         bool contended;
3741         int rc;
3742
3743         qdisc_calculate_pkt_len(skb, q);
3744
3745         if (q->flags & TCQ_F_NOLOCK) {
3746                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3747                 qdisc_run(q);
3748
3749                 if (unlikely(to_free))
3750                         kfree_skb_list(to_free);
3751                 return rc;
3752         }
3753
3754         /*
3755          * Heuristic to force contended enqueues to serialize on a
3756          * separate lock before trying to get qdisc main lock.
3757          * This permits qdisc->running owner to get the lock more
3758          * often and dequeue packets faster.
3759          */
3760         contended = qdisc_is_running(q);
3761         if (unlikely(contended))
3762                 spin_lock(&q->busylock);
3763
3764         spin_lock(root_lock);
3765         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3766                 __qdisc_drop(skb, &to_free);
3767                 rc = NET_XMIT_DROP;
3768         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3769                    qdisc_run_begin(q)) {
3770                 /*
3771                  * This is a work-conserving queue; there are no old skbs
3772                  * waiting to be sent out; and the qdisc is not running -
3773                  * xmit the skb directly.
3774                  */
3775
3776                 qdisc_bstats_update(q, skb);
3777
3778                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3779                         if (unlikely(contended)) {
3780                                 spin_unlock(&q->busylock);
3781                                 contended = false;
3782                         }
3783                         __qdisc_run(q);
3784                 }
3785
3786                 qdisc_run_end(q);
3787                 rc = NET_XMIT_SUCCESS;
3788         } else {
3789                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3790                 if (qdisc_run_begin(q)) {
3791                         if (unlikely(contended)) {
3792                                 spin_unlock(&q->busylock);
3793                                 contended = false;
3794                         }
3795                         __qdisc_run(q);
3796                         qdisc_run_end(q);
3797                 }
3798         }
3799         spin_unlock(root_lock);
3800         if (unlikely(to_free))
3801                 kfree_skb_list(to_free);
3802         if (unlikely(contended))
3803                 spin_unlock(&q->busylock);
3804         return rc;
3805 }
3806
3807 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3808 static void skb_update_prio(struct sk_buff *skb)
3809 {
3810         const struct netprio_map *map;
3811         const struct sock *sk;
3812         unsigned int prioidx;
3813
3814         if (skb->priority)
3815                 return;
3816         map = rcu_dereference_bh(skb->dev->priomap);
3817         if (!map)
3818                 return;
3819         sk = skb_to_full_sk(skb);
3820         if (!sk)
3821                 return;
3822
3823         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3824
3825         if (prioidx < map->priomap_len)
3826                 skb->priority = map->priomap[prioidx];
3827 }
3828 #else
3829 #define skb_update_prio(skb)
3830 #endif
3831
3832 /**
3833  *      dev_loopback_xmit - loop back @skb
3834  *      @net: network namespace this loopback is happening in
3835  *      @sk:  sk needed to be a netfilter okfn
3836  *      @skb: buffer to transmit
3837  */
3838 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3839 {
3840         skb_reset_mac_header(skb);
3841         __skb_pull(skb, skb_network_offset(skb));
3842         skb->pkt_type = PACKET_LOOPBACK;
3843         skb->ip_summed = CHECKSUM_UNNECESSARY;
3844         WARN_ON(!skb_dst(skb));
3845         skb_dst_force(skb);
3846         netif_rx_ni(skb);
3847         return 0;
3848 }
3849 EXPORT_SYMBOL(dev_loopback_xmit);
3850
3851 #ifdef CONFIG_NET_EGRESS
3852 static struct sk_buff *
3853 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3854 {
3855         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3856         struct tcf_result cl_res;
3857
3858         if (!miniq)
3859                 return skb;
3860
3861         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3862         qdisc_skb_cb(skb)->mru = 0;
3863         mini_qdisc_bstats_cpu_update(miniq, skb);
3864
3865         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3866         case TC_ACT_OK:
3867         case TC_ACT_RECLASSIFY:
3868                 skb->tc_index = TC_H_MIN(cl_res.classid);
3869                 break;
3870         case TC_ACT_SHOT:
3871                 mini_qdisc_qstats_cpu_drop(miniq);
3872                 *ret = NET_XMIT_DROP;
3873                 kfree_skb(skb);
3874                 return NULL;
3875         case TC_ACT_STOLEN:
3876         case TC_ACT_QUEUED:
3877         case TC_ACT_TRAP:
3878                 *ret = NET_XMIT_SUCCESS;
3879                 consume_skb(skb);
3880                 return NULL;
3881         case TC_ACT_REDIRECT:
3882                 /* No need to push/pop skb's mac_header here on egress! */
3883                 skb_do_redirect(skb);
3884                 *ret = NET_XMIT_SUCCESS;
3885                 return NULL;
3886         default:
3887                 break;
3888         }
3889
3890         return skb;
3891 }
3892 #endif /* CONFIG_NET_EGRESS */
3893
3894 #ifdef CONFIG_XPS
3895 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3896                                struct xps_dev_maps *dev_maps, unsigned int tci)
3897 {
3898         struct xps_map *map;
3899         int queue_index = -1;
3900
3901         if (dev->num_tc) {
3902                 tci *= dev->num_tc;
3903                 tci += netdev_get_prio_tc_map(dev, skb->priority);
3904         }
3905
3906         map = rcu_dereference(dev_maps->attr_map[tci]);
3907         if (map) {
3908                 if (map->len == 1)
3909                         queue_index = map->queues[0];
3910                 else
3911                         queue_index = map->queues[reciprocal_scale(
3912                                                 skb_get_hash(skb), map->len)];
3913                 if (unlikely(queue_index >= dev->real_num_tx_queues))
3914                         queue_index = -1;
3915         }
3916         return queue_index;
3917 }
3918 #endif
3919
3920 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3921                          struct sk_buff *skb)
3922 {
3923 #ifdef CONFIG_XPS
3924         struct xps_dev_maps *dev_maps;
3925         struct sock *sk = skb->sk;
3926         int queue_index = -1;
3927
3928         if (!static_key_false(&xps_needed))
3929                 return -1;
3930
3931         rcu_read_lock();
3932         if (!static_key_false(&xps_rxqs_needed))
3933                 goto get_cpus_map;
3934
3935         dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3936         if (dev_maps) {
3937                 int tci = sk_rx_queue_get(sk);
3938
3939                 if (tci >= 0 && tci < dev->num_rx_queues)
3940                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3941                                                           tci);
3942         }
3943
3944 get_cpus_map:
3945         if (queue_index < 0) {
3946                 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3947                 if (dev_maps) {
3948                         unsigned int tci = skb->sender_cpu - 1;
3949
3950                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3951                                                           tci);
3952                 }
3953         }
3954         rcu_read_unlock();
3955
3956         return queue_index;
3957 #else
3958         return -1;
3959 #endif
3960 }
3961
3962 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3963                      struct net_device *sb_dev)
3964 {
3965         return 0;
3966 }
3967 EXPORT_SYMBOL(dev_pick_tx_zero);
3968
3969 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3970                        struct net_device *sb_dev)
3971 {
3972         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3973 }
3974 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3975
3976 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3977                      struct net_device *sb_dev)
3978 {
3979         struct sock *sk = skb->sk;
3980         int queue_index = sk_tx_queue_get(sk);
3981
3982         sb_dev = sb_dev ? : dev;
3983
3984         if (queue_index < 0 || skb->ooo_okay ||
3985             queue_index >= dev->real_num_tx_queues) {
3986                 int new_index = get_xps_queue(dev, sb_dev, skb);
3987
3988                 if (new_index < 0)
3989                         new_index = skb_tx_hash(dev, sb_dev, skb);
3990
3991                 if (queue_index != new_index && sk &&
3992                     sk_fullsock(sk) &&
3993                     rcu_access_pointer(sk->sk_dst_cache))
3994                         sk_tx_queue_set(sk, new_index);
3995
3996                 queue_index = new_index;
3997         }
3998
3999         return queue_index;
4000 }
4001 EXPORT_SYMBOL(netdev_pick_tx);
4002
4003 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4004                                          struct sk_buff *skb,
4005                                          struct net_device *sb_dev)
4006 {
4007         int queue_index = 0;
4008
4009 #ifdef CONFIG_XPS
4010         u32 sender_cpu = skb->sender_cpu - 1;
4011
4012         if (sender_cpu >= (u32)NR_CPUS)
4013                 skb->sender_cpu = raw_smp_processor_id() + 1;
4014 #endif
4015
4016         if (dev->real_num_tx_queues != 1) {
4017                 const struct net_device_ops *ops = dev->netdev_ops;
4018
4019                 if (ops->ndo_select_queue)
4020                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4021                 else
4022                         queue_index = netdev_pick_tx(dev, skb, sb_dev);
4023
4024                 queue_index = netdev_cap_txqueue(dev, queue_index);
4025         }
4026
4027         skb_set_queue_mapping(skb, queue_index);
4028         return netdev_get_tx_queue(dev, queue_index);
4029 }
4030
4031 /**
4032  *      __dev_queue_xmit - transmit a buffer
4033  *      @skb: buffer to transmit
4034  *      @sb_dev: suboordinate device used for L2 forwarding offload
4035  *
4036  *      Queue a buffer for transmission to a network device. The caller must
4037  *      have set the device and priority and built the buffer before calling
4038  *      this function. The function can be called from an interrupt.
4039  *
4040  *      A negative errno code is returned on a failure. A success does not
4041  *      guarantee the frame will be transmitted as it may be dropped due
4042  *      to congestion or traffic shaping.
4043  *
4044  * -----------------------------------------------------------------------------------
4045  *      I notice this method can also return errors from the queue disciplines,
4046  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4047  *      be positive.
4048  *
4049  *      Regardless of the return value, the skb is consumed, so it is currently
4050  *      difficult to retry a send to this method.  (You can bump the ref count
4051  *      before sending to hold a reference for retry if you are careful.)
4052  *
4053  *      When calling this method, interrupts MUST be enabled.  This is because
4054  *      the BH enable code must have IRQs enabled so that it will not deadlock.
4055  *          --BLG
4056  */
4057 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4058 {
4059         struct net_device *dev = skb->dev;
4060         struct netdev_queue *txq;
4061         struct Qdisc *q;
4062         int rc = -ENOMEM;
4063         bool again = false;
4064
4065         skb_reset_mac_header(skb);
4066
4067         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4068                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
4069
4070         /* Disable soft irqs for various locks below. Also
4071          * stops preemption for RCU.
4072          */
4073         rcu_read_lock_bh();
4074
4075         skb_update_prio(skb);
4076
4077         qdisc_pkt_len_init(skb);
4078 #ifdef CONFIG_NET_CLS_ACT
4079         skb->tc_at_ingress = 0;
4080 # ifdef CONFIG_NET_EGRESS
4081         if (static_branch_unlikely(&egress_needed_key)) {
4082                 skb = sch_handle_egress(skb, &rc, dev);
4083                 if (!skb)
4084                         goto out;
4085         }
4086 # endif
4087 #endif
4088         /* If device/qdisc don't need skb->dst, release it right now while
4089          * its hot in this cpu cache.
4090          */
4091         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4092                 skb_dst_drop(skb);
4093         else
4094                 skb_dst_force(skb);
4095
4096         txq = netdev_core_pick_tx(dev, skb, sb_dev);
4097         q = rcu_dereference_bh(txq->qdisc);
4098
4099         trace_net_dev_queue(skb);
4100         if (q->enqueue) {
4101                 rc = __dev_xmit_skb(skb, q, dev, txq);
4102                 goto out;
4103         }
4104
4105         /* The device has no queue. Common case for software devices:
4106          * loopback, all the sorts of tunnels...
4107
4108          * Really, it is unlikely that netif_tx_lock protection is necessary
4109          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4110          * counters.)
4111          * However, it is possible, that they rely on protection
4112          * made by us here.
4113
4114          * Check this and shot the lock. It is not prone from deadlocks.
4115          *Either shot noqueue qdisc, it is even simpler 8)
4116          */
4117         if (dev->flags & IFF_UP) {
4118                 int cpu = smp_processor_id(); /* ok because BHs are off */
4119
4120                 if (txq->xmit_lock_owner != cpu) {
4121                         if (dev_xmit_recursion())
4122                                 goto recursion_alert;
4123
4124                         skb = validate_xmit_skb(skb, dev, &again);
4125                         if (!skb)
4126                                 goto out;
4127
4128                         PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4129                         HARD_TX_LOCK(dev, txq, cpu);
4130
4131                         if (!netif_xmit_stopped(txq)) {
4132                                 dev_xmit_recursion_inc();
4133                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4134                                 dev_xmit_recursion_dec();
4135                                 if (dev_xmit_complete(rc)) {
4136                                         HARD_TX_UNLOCK(dev, txq);
4137                                         goto out;
4138                                 }
4139                         }
4140                         HARD_TX_UNLOCK(dev, txq);
4141                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4142                                              dev->name);
4143                 } else {
4144                         /* Recursion is detected! It is possible,
4145                          * unfortunately
4146                          */
4147 recursion_alert:
4148                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4149                                              dev->name);
4150                 }
4151         }
4152
4153         rc = -ENETDOWN;
4154         rcu_read_unlock_bh();
4155
4156         atomic_long_inc(&dev->tx_dropped);
4157         kfree_skb_list(skb);
4158         return rc;
4159 out:
4160         rcu_read_unlock_bh();
4161         return rc;
4162 }
4163
4164 int dev_queue_xmit(struct sk_buff *skb)
4165 {
4166         return __dev_queue_xmit(skb, NULL);
4167 }
4168 EXPORT_SYMBOL(dev_queue_xmit);
4169
4170 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4171 {
4172         return __dev_queue_xmit(skb, sb_dev);
4173 }
4174 EXPORT_SYMBOL(dev_queue_xmit_accel);
4175
4176 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4177 {
4178         struct net_device *dev = skb->dev;
4179         struct sk_buff *orig_skb = skb;
4180         struct netdev_queue *txq;
4181         int ret = NETDEV_TX_BUSY;
4182         bool again = false;
4183
4184         if (unlikely(!netif_running(dev) ||
4185                      !netif_carrier_ok(dev)))
4186                 goto drop;
4187
4188         skb = validate_xmit_skb_list(skb, dev, &again);
4189         if (skb != orig_skb)
4190                 goto drop;
4191
4192         skb_set_queue_mapping(skb, queue_id);
4193         txq = skb_get_tx_queue(dev, skb);
4194         PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4195
4196         local_bh_disable();
4197
4198         dev_xmit_recursion_inc();
4199         HARD_TX_LOCK(dev, txq, smp_processor_id());
4200         if (!netif_xmit_frozen_or_drv_stopped(txq))
4201                 ret = netdev_start_xmit(skb, dev, txq, false);
4202         HARD_TX_UNLOCK(dev, txq);
4203         dev_xmit_recursion_dec();
4204
4205         local_bh_enable();
4206         return ret;
4207 drop:
4208         atomic_long_inc(&dev->tx_dropped);
4209         kfree_skb_list(skb);
4210         return NET_XMIT_DROP;
4211 }
4212 EXPORT_SYMBOL(__dev_direct_xmit);
4213
4214 /*************************************************************************
4215  *                      Receiver routines
4216  *************************************************************************/
4217
4218 int netdev_max_backlog __read_mostly = 1000;
4219 EXPORT_SYMBOL(netdev_max_backlog);
4220
4221 int netdev_tstamp_prequeue __read_mostly = 1;
4222 int netdev_budget __read_mostly = 300;
4223 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4224 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4225 int weight_p __read_mostly = 64;           /* old backlog weight */
4226 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4227 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4228 int dev_rx_weight __read_mostly = 64;
4229 int dev_tx_weight __read_mostly = 64;
4230 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4231 int gro_normal_batch __read_mostly = 8;
4232
4233 /* Called with irq disabled */
4234 static inline void ____napi_schedule(struct softnet_data *sd,
4235                                      struct napi_struct *napi)
4236 {
4237         list_add_tail(&napi->poll_list, &sd->poll_list);
4238         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4239 }
4240
4241 #ifdef CONFIG_RPS
4242
4243 /* One global table that all flow-based protocols share. */
4244 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4245 EXPORT_SYMBOL(rps_sock_flow_table);
4246 u32 rps_cpu_mask __read_mostly;
4247 EXPORT_SYMBOL(rps_cpu_mask);
4248
4249 struct static_key_false rps_needed __read_mostly;
4250 EXPORT_SYMBOL(rps_needed);
4251 struct static_key_false rfs_needed __read_mostly;
4252 EXPORT_SYMBOL(rfs_needed);
4253
4254 static struct rps_dev_flow *
4255 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4256             struct rps_dev_flow *rflow, u16 next_cpu)
4257 {
4258         if (next_cpu < nr_cpu_ids) {
4259 #ifdef CONFIG_RFS_ACCEL
4260                 struct netdev_rx_queue *rxqueue;
4261                 struct rps_dev_flow_table *flow_table;
4262                 struct rps_dev_flow *old_rflow;
4263                 u32 flow_id;
4264                 u16 rxq_index;
4265                 int rc;
4266
4267                 /* Should we steer this flow to a different hardware queue? */
4268                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4269                     !(dev->features & NETIF_F_NTUPLE))
4270                         goto out;
4271                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4272                 if (rxq_index == skb_get_rx_queue(skb))
4273                         goto out;
4274
4275                 rxqueue = dev->_rx + rxq_index;
4276                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4277                 if (!flow_table)
4278                         goto out;
4279                 flow_id = skb_get_hash(skb) & flow_table->mask;
4280                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4281                                                         rxq_index, flow_id);
4282                 if (rc < 0)
4283                         goto out;
4284                 old_rflow = rflow;
4285                 rflow = &flow_table->flows[flow_id];
4286                 rflow->filter = rc;
4287                 if (old_rflow->filter == rflow->filter)
4288                         old_rflow->filter = RPS_NO_FILTER;
4289         out:
4290 #endif
4291                 rflow->last_qtail =
4292                         per_cpu(softnet_data, next_cpu).input_queue_head;
4293         }
4294
4295         rflow->cpu = next_cpu;
4296         return rflow;
4297 }
4298
4299 /*
4300  * get_rps_cpu is called from netif_receive_skb and returns the target
4301  * CPU from the RPS map of the receiving queue for a given skb.
4302  * rcu_read_lock must be held on entry.
4303  */
4304 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4305                        struct rps_dev_flow **rflowp)
4306 {
4307         const struct rps_sock_flow_table *sock_flow_table;
4308         struct netdev_rx_queue *rxqueue = dev->_rx;
4309         struct rps_dev_flow_table *flow_table;
4310         struct rps_map *map;
4311         int cpu = -1;
4312         u32 tcpu;
4313         u32 hash;
4314
4315         if (skb_rx_queue_recorded(skb)) {
4316                 u16 index = skb_get_rx_queue(skb);
4317
4318                 if (unlikely(index >= dev->real_num_rx_queues)) {
4319                         WARN_ONCE(dev->real_num_rx_queues > 1,
4320                                   "%s received packet on queue %u, but number "
4321                                   "of RX queues is %u\n",
4322                                   dev->name, index, dev->real_num_rx_queues);
4323                         goto done;
4324                 }
4325                 rxqueue += index;
4326         }
4327
4328         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4329
4330         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4331         map = rcu_dereference(rxqueue->rps_map);
4332         if (!flow_table && !map)
4333                 goto done;
4334
4335         skb_reset_network_header(skb);
4336         hash = skb_get_hash(skb);
4337         if (!hash)
4338                 goto done;
4339
4340         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4341         if (flow_table && sock_flow_table) {
4342                 struct rps_dev_flow *rflow;
4343                 u32 next_cpu;
4344                 u32 ident;
4345
4346                 /* First check into global flow table if there is a match */
4347                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4348                 if ((ident ^ hash) & ~rps_cpu_mask)
4349                         goto try_rps;
4350
4351                 next_cpu = ident & rps_cpu_mask;
4352
4353                 /* OK, now we know there is a match,
4354                  * we can look at the local (per receive queue) flow table
4355                  */
4356                 rflow = &flow_table->flows[hash & flow_table->mask];
4357                 tcpu = rflow->cpu;
4358
4359                 /*
4360                  * If the desired CPU (where last recvmsg was done) is
4361                  * different from current CPU (one in the rx-queue flow
4362                  * table entry), switch if one of the following holds:
4363                  *   - Current CPU is unset (>= nr_cpu_ids).
4364                  *   - Current CPU is offline.
4365                  *   - The current CPU's queue tail has advanced beyond the
4366                  *     last packet that was enqueued using this table entry.
4367                  *     This guarantees that all previous packets for the flow
4368                  *     have been dequeued, thus preserving in order delivery.
4369                  */
4370                 if (unlikely(tcpu != next_cpu) &&
4371                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4372                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4373                       rflow->last_qtail)) >= 0)) {
4374                         tcpu = next_cpu;
4375                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4376                 }
4377
4378                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4379                         *rflowp = rflow;
4380                         cpu = tcpu;
4381                         goto done;
4382                 }
4383         }
4384
4385 try_rps:
4386
4387         if (map) {
4388                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4389                 if (cpu_online(tcpu)) {
4390                         cpu = tcpu;
4391                         goto done;
4392                 }
4393         }
4394
4395 done:
4396         return cpu;
4397 }
4398
4399 #ifdef CONFIG_RFS_ACCEL
4400
4401 /**
4402  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4403  * @dev: Device on which the filter was set
4404  * @rxq_index: RX queue index
4405  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4406  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4407  *
4408  * Drivers that implement ndo_rx_flow_steer() should periodically call
4409  * this function for each installed filter and remove the filters for
4410  * which it returns %true.
4411  */
4412 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4413                          u32 flow_id, u16 filter_id)
4414 {
4415         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4416         struct rps_dev_flow_table *flow_table;
4417         struct rps_dev_flow *rflow;
4418         bool expire = true;
4419         unsigned int cpu;
4420
4421         rcu_read_lock();
4422         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4423         if (flow_table && flow_id <= flow_table->mask) {
4424                 rflow = &flow_table->flows[flow_id];
4425                 cpu = READ_ONCE(rflow->cpu);
4426                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4427                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4428                            rflow->last_qtail) <
4429                      (int)(10 * flow_table->mask)))
4430                         expire = false;
4431         }
4432         rcu_read_unlock();
4433         return expire;
4434 }
4435 EXPORT_SYMBOL(rps_may_expire_flow);
4436
4437 #endif /* CONFIG_RFS_ACCEL */
4438
4439 /* Called from hardirq (IPI) context */
4440 static void rps_trigger_softirq(void *data)
4441 {
4442         struct softnet_data *sd = data;
4443
4444         ____napi_schedule(sd, &sd->backlog);
4445         sd->received_rps++;
4446 }
4447
4448 #endif /* CONFIG_RPS */
4449
4450 /*
4451  * Check if this softnet_data structure is another cpu one
4452  * If yes, queue it to our IPI list and return 1
4453  * If no, return 0
4454  */
4455 static int rps_ipi_queued(struct softnet_data *sd)
4456 {
4457 #ifdef CONFIG_RPS
4458         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4459
4460         if (sd != mysd) {
4461                 sd->rps_ipi_next = mysd->rps_ipi_list;
4462                 mysd->rps_ipi_list = sd;
4463
4464                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4465                 return 1;
4466         }
4467 #endif /* CONFIG_RPS */
4468         return 0;
4469 }
4470
4471 #ifdef CONFIG_NET_FLOW_LIMIT
4472 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4473 #endif
4474
4475 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4476 {
4477 #ifdef CONFIG_NET_FLOW_LIMIT
4478         struct sd_flow_limit *fl;
4479         struct softnet_data *sd;
4480         unsigned int old_flow, new_flow;
4481
4482         if (qlen < (netdev_max_backlog >> 1))
4483                 return false;
4484
4485         sd = this_cpu_ptr(&softnet_data);
4486
4487         rcu_read_lock();
4488         fl = rcu_dereference(sd->flow_limit);
4489         if (fl) {
4490                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4491                 old_flow = fl->history[fl->history_head];
4492                 fl->history[fl->history_head] = new_flow;
4493
4494                 fl->history_head++;
4495                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4496
4497                 if (likely(fl->buckets[old_flow]))
4498                         fl->buckets[old_flow]--;
4499
4500                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4501                         fl->count++;
4502                         rcu_read_unlock();
4503                         return true;
4504                 }
4505         }
4506         rcu_read_unlock();
4507 #endif
4508         return false;
4509 }
4510
4511 /*
4512  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4513  * queue (may be a remote CPU queue).
4514  */
4515 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4516                               unsigned int *qtail)
4517 {
4518         struct softnet_data *sd;
4519         unsigned long flags;
4520         unsigned int qlen;
4521
4522         sd = &per_cpu(softnet_data, cpu);
4523
4524         local_irq_save(flags);
4525
4526         rps_lock(sd);
4527         if (!netif_running(skb->dev))
4528                 goto drop;
4529         qlen = skb_queue_len(&sd->input_pkt_queue);
4530         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4531                 if (qlen) {
4532 enqueue:
4533                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4534                         input_queue_tail_incr_save(sd, qtail);
4535                         rps_unlock(sd);
4536                         local_irq_restore(flags);
4537                         return NET_RX_SUCCESS;
4538                 }
4539
4540                 /* Schedule NAPI for backlog device
4541                  * We can use non atomic operation since we own the queue lock
4542                  */
4543                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4544                         if (!rps_ipi_queued(sd))
4545                                 ____napi_schedule(sd, &sd->backlog);
4546                 }
4547                 goto enqueue;
4548         }
4549
4550 drop:
4551         sd->dropped++;
4552         rps_unlock(sd);
4553
4554         local_irq_restore(flags);
4555
4556         atomic_long_inc(&skb->dev->rx_dropped);
4557         kfree_skb(skb);
4558         return NET_RX_DROP;
4559 }
4560
4561 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4562 {
4563         struct net_device *dev = skb->dev;
4564         struct netdev_rx_queue *rxqueue;
4565
4566         rxqueue = dev->_rx;
4567
4568         if (skb_rx_queue_recorded(skb)) {
4569                 u16 index = skb_get_rx_queue(skb);
4570
4571                 if (unlikely(index >= dev->real_num_rx_queues)) {
4572                         WARN_ONCE(dev->real_num_rx_queues > 1,
4573                                   "%s received packet on queue %u, but number "
4574                                   "of RX queues is %u\n",
4575                                   dev->name, index, dev->real_num_rx_queues);
4576
4577                         return rxqueue; /* Return first rxqueue */
4578                 }
4579                 rxqueue += index;
4580         }
4581         return rxqueue;
4582 }
4583
4584 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4585                                      struct xdp_buff *xdp,
4586                                      struct bpf_prog *xdp_prog)
4587 {
4588         struct netdev_rx_queue *rxqueue;
4589         void *orig_data, *orig_data_end;
4590         u32 metalen, act = XDP_DROP;
4591         __be16 orig_eth_type;
4592         struct ethhdr *eth;
4593         bool orig_bcast;
4594         int hlen, off;
4595         u32 mac_len;
4596
4597         /* Reinjected packets coming from act_mirred or similar should
4598          * not get XDP generic processing.
4599          */
4600         if (skb_is_redirected(skb))
4601                 return XDP_PASS;
4602
4603         /* XDP packets must be linear and must have sufficient headroom
4604          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4605          * native XDP provides, thus we need to do it here as well.
4606          */
4607         if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4608             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4609                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4610                 int troom = skb->tail + skb->data_len - skb->end;
4611
4612                 /* In case we have to go down the path and also linearize,
4613                  * then lets do the pskb_expand_head() work just once here.
4614                  */
4615                 if (pskb_expand_head(skb,
4616                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4617                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4618                         goto do_drop;
4619                 if (skb_linearize(skb))
4620                         goto do_drop;
4621         }
4622
4623         /* The XDP program wants to see the packet starting at the MAC
4624          * header.
4625          */
4626         mac_len = skb->data - skb_mac_header(skb);
4627         hlen = skb_headlen(skb) + mac_len;
4628         xdp->data = skb->data - mac_len;
4629         xdp->data_meta = xdp->data;
4630         xdp->data_end = xdp->data + hlen;
4631         xdp->data_hard_start = skb->data - skb_headroom(skb);
4632
4633         /* SKB "head" area always have tailroom for skb_shared_info */
4634         xdp->frame_sz  = (void *)skb_end_pointer(skb) - xdp->data_hard_start;
4635         xdp->frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4636
4637         orig_data_end = xdp->data_end;
4638         orig_data = xdp->data;
4639         eth = (struct ethhdr *)xdp->data;
4640         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4641         orig_eth_type = eth->h_proto;
4642
4643         rxqueue = netif_get_rxqueue(skb);
4644         xdp->rxq = &rxqueue->xdp_rxq;
4645
4646         act = bpf_prog_run_xdp(xdp_prog, xdp);
4647
4648         /* check if bpf_xdp_adjust_head was used */
4649         off = xdp->data - orig_data;
4650         if (off) {
4651                 if (off > 0)
4652                         __skb_pull(skb, off);
4653                 else if (off < 0)
4654                         __skb_push(skb, -off);
4655
4656                 skb->mac_header += off;
4657                 skb_reset_network_header(skb);
4658         }
4659
4660         /* check if bpf_xdp_adjust_tail was used */
4661         off = xdp->data_end - orig_data_end;
4662         if (off != 0) {
4663                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4664                 skb->len += off; /* positive on grow, negative on shrink */
4665         }
4666
4667         /* check if XDP changed eth hdr such SKB needs update */
4668         eth = (struct ethhdr *)xdp->data;
4669         if ((orig_eth_type != eth->h_proto) ||
4670             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4671                 __skb_push(skb, ETH_HLEN);
4672                 skb->protocol = eth_type_trans(skb, skb->dev);
4673         }
4674
4675         switch (act) {
4676         case XDP_REDIRECT:
4677         case XDP_TX:
4678                 __skb_push(skb, mac_len);
4679                 break;
4680         case XDP_PASS:
4681                 metalen = xdp->data - xdp->data_meta;
4682                 if (metalen)
4683                         skb_metadata_set(skb, metalen);
4684                 break;
4685         default:
4686                 bpf_warn_invalid_xdp_action(act);
4687                 fallthrough;
4688         case XDP_ABORTED:
4689                 trace_xdp_exception(skb->dev, xdp_prog, act);
4690                 fallthrough;
4691         case XDP_DROP:
4692         do_drop:
4693                 kfree_skb(skb);
4694                 break;
4695         }
4696
4697         return act;
4698 }
4699
4700 /* When doing generic XDP we have to bypass the qdisc layer and the
4701  * network taps in order to match in-driver-XDP behavior.
4702  */
4703 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4704 {
4705         struct net_device *dev = skb->dev;
4706         struct netdev_queue *txq;
4707         bool free_skb = true;
4708         int cpu, rc;
4709
4710         txq = netdev_core_pick_tx(dev, skb, NULL);
4711         cpu = smp_processor_id();
4712         HARD_TX_LOCK(dev, txq, cpu);
4713         if (!netif_xmit_stopped(txq)) {
4714                 rc = netdev_start_xmit(skb, dev, txq, 0);
4715                 if (dev_xmit_complete(rc))
4716                         free_skb = false;
4717         }
4718         HARD_TX_UNLOCK(dev, txq);
4719         if (free_skb) {
4720                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4721                 kfree_skb(skb);
4722         }
4723 }
4724
4725 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4726
4727 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4728 {
4729         if (xdp_prog) {
4730                 struct xdp_buff xdp;
4731                 u32 act;
4732                 int err;
4733
4734                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4735                 if (act != XDP_PASS) {
4736                         switch (act) {
4737                         case XDP_REDIRECT:
4738                                 err = xdp_do_generic_redirect(skb->dev, skb,
4739                                                               &xdp, xdp_prog);
4740                                 if (err)
4741                                         goto out_redir;
4742                                 break;
4743                         case XDP_TX:
4744                                 generic_xdp_tx(skb, xdp_prog);
4745                                 break;
4746                         }
4747                         return XDP_DROP;
4748                 }
4749         }
4750         return XDP_PASS;
4751 out_redir:
4752         kfree_skb(skb);
4753         return XDP_DROP;
4754 }
4755 EXPORT_SYMBOL_GPL(do_xdp_generic);
4756
4757 static int netif_rx_internal(struct sk_buff *skb)
4758 {
4759         int ret;
4760
4761         net_timestamp_check(netdev_tstamp_prequeue, skb);
4762
4763         trace_netif_rx(skb);
4764
4765 #ifdef CONFIG_RPS
4766         if (static_branch_unlikely(&rps_needed)) {
4767                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4768                 int cpu;
4769
4770                 preempt_disable();
4771                 rcu_read_lock();
4772
4773                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4774                 if (cpu < 0)
4775                         cpu = smp_processor_id();
4776
4777                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4778
4779                 rcu_read_unlock();
4780                 preempt_enable();
4781         } else
4782 #endif
4783         {
4784                 unsigned int qtail;
4785
4786                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4787                 put_cpu();
4788         }
4789         return ret;
4790 }
4791
4792 /**
4793  *      netif_rx        -       post buffer to the network code
4794  *      @skb: buffer to post
4795  *
4796  *      This function receives a packet from a device driver and queues it for
4797  *      the upper (protocol) levels to process.  It always succeeds. The buffer
4798  *      may be dropped during processing for congestion control or by the
4799  *      protocol layers.
4800  *
4801  *      return values:
4802  *      NET_RX_SUCCESS  (no congestion)
4803  *      NET_RX_DROP     (packet was dropped)
4804  *
4805  */
4806
4807 int netif_rx(struct sk_buff *skb)
4808 {
4809         int ret;
4810
4811         trace_netif_rx_entry(skb);
4812
4813         ret = netif_rx_internal(skb);
4814         trace_netif_rx_exit(ret);
4815
4816         return ret;
4817 }
4818 EXPORT_SYMBOL(netif_rx);
4819
4820 int netif_rx_ni(struct sk_buff *skb)
4821 {
4822         int err;
4823
4824         trace_netif_rx_ni_entry(skb);
4825
4826         preempt_disable();
4827         err = netif_rx_internal(skb);
4828         if (local_softirq_pending())
4829                 do_softirq();
4830         preempt_enable();
4831         trace_netif_rx_ni_exit(err);
4832
4833         return err;
4834 }
4835 EXPORT_SYMBOL(netif_rx_ni);
4836
4837 int netif_rx_any_context(struct sk_buff *skb)
4838 {
4839         /*
4840          * If invoked from contexts which do not invoke bottom half
4841          * processing either at return from interrupt or when softrqs are
4842          * reenabled, use netif_rx_ni() which invokes bottomhalf processing
4843          * directly.
4844          */
4845         if (in_interrupt())
4846                 return netif_rx(skb);
4847         else
4848                 return netif_rx_ni(skb);
4849 }
4850 EXPORT_SYMBOL(netif_rx_any_context);
4851
4852 static __latent_entropy void net_tx_action(struct softirq_action *h)
4853 {
4854         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4855
4856         if (sd->completion_queue) {
4857                 struct sk_buff *clist;
4858
4859                 local_irq_disable();
4860                 clist = sd->completion_queue;
4861                 sd->completion_queue = NULL;
4862                 local_irq_enable();
4863
4864                 while (clist) {
4865                         struct sk_buff *skb = clist;
4866
4867                         clist = clist->next;
4868
4869                         WARN_ON(refcount_read(&skb->users));
4870                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4871                                 trace_consume_skb(skb);
4872                         else
4873                                 trace_kfree_skb(skb, net_tx_action);
4874
4875                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4876                                 __kfree_skb(skb);
4877                         else
4878                                 __kfree_skb_defer(skb);
4879                 }
4880
4881                 __kfree_skb_flush();
4882         }
4883
4884         if (sd->output_queue) {
4885                 struct Qdisc *head;
4886
4887                 local_irq_disable();
4888                 head = sd->output_queue;
4889                 sd->output_queue = NULL;
4890                 sd->output_queue_tailp = &sd->output_queue;
4891                 local_irq_enable();
4892
4893                 while (head) {
4894                         struct Qdisc *q = head;
4895                         spinlock_t *root_lock = NULL;
4896
4897                         head = head->next_sched;
4898
4899                         if (!(q->flags & TCQ_F_NOLOCK)) {
4900                                 root_lock = qdisc_lock(q);
4901                                 spin_lock(root_lock);
4902                         }
4903                         /* We need to make sure head->next_sched is read
4904                          * before clearing __QDISC_STATE_SCHED
4905                          */
4906                         smp_mb__before_atomic();
4907                         clear_bit(__QDISC_STATE_SCHED, &q->state);
4908                         qdisc_run(q);
4909                         if (root_lock)
4910                                 spin_unlock(root_lock);
4911                 }
4912         }
4913
4914         xfrm_dev_backlog(sd);
4915 }
4916
4917 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4918 /* This hook is defined here for ATM LANE */
4919 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4920                              unsigned char *addr) __read_mostly;
4921 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4922 #endif
4923
4924 static inline struct sk_buff *
4925 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4926                    struct net_device *orig_dev, bool *another)
4927 {
4928 #ifdef CONFIG_NET_CLS_ACT
4929         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4930         struct tcf_result cl_res;
4931
4932         /* If there's at least one ingress present somewhere (so
4933          * we get here via enabled static key), remaining devices
4934          * that are not configured with an ingress qdisc will bail
4935          * out here.
4936          */
4937         if (!miniq)
4938                 return skb;
4939
4940         if (*pt_prev) {
4941                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4942                 *pt_prev = NULL;
4943         }
4944
4945         qdisc_skb_cb(skb)->pkt_len = skb->len;
4946         qdisc_skb_cb(skb)->mru = 0;
4947         skb->tc_at_ingress = 1;
4948         mini_qdisc_bstats_cpu_update(miniq, skb);
4949
4950         switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
4951                                      &cl_res, false)) {
4952         case TC_ACT_OK:
4953         case TC_ACT_RECLASSIFY:
4954                 skb->tc_index = TC_H_MIN(cl_res.classid);
4955                 break;
4956         case TC_ACT_SHOT:
4957                 mini_qdisc_qstats_cpu_drop(miniq);
4958                 kfree_skb(skb);
4959                 return NULL;
4960         case TC_ACT_STOLEN:
4961         case TC_ACT_QUEUED:
4962         case TC_ACT_TRAP:
4963                 consume_skb(skb);
4964                 return NULL;
4965         case TC_ACT_REDIRECT:
4966                 /* skb_mac_header check was done by cls/act_bpf, so
4967                  * we can safely push the L2 header back before
4968                  * redirecting to another netdev
4969                  */
4970                 __skb_push(skb, skb->mac_len);
4971                 if (skb_do_redirect(skb) == -EAGAIN) {
4972                         __skb_pull(skb, skb->mac_len);
4973                         *another = true;
4974                         break;
4975                 }
4976                 return NULL;
4977         case TC_ACT_CONSUMED:
4978                 return NULL;
4979         default:
4980                 break;
4981         }
4982 #endif /* CONFIG_NET_CLS_ACT */
4983         return skb;
4984 }
4985
4986 /**
4987  *      netdev_is_rx_handler_busy - check if receive handler is registered
4988  *      @dev: device to check
4989  *
4990  *      Check if a receive handler is already registered for a given device.
4991  *      Return true if there one.
4992  *
4993  *      The caller must hold the rtnl_mutex.
4994  */
4995 bool netdev_is_rx_handler_busy(struct net_device *dev)
4996 {
4997         ASSERT_RTNL();
4998         return dev && rtnl_dereference(dev->rx_handler);
4999 }
5000 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5001
5002 /**
5003  *      netdev_rx_handler_register - register receive handler
5004  *      @dev: device to register a handler for
5005  *      @rx_handler: receive handler to register
5006  *      @rx_handler_data: data pointer that is used by rx handler
5007  *
5008  *      Register a receive handler for a device. This handler will then be
5009  *      called from __netif_receive_skb. A negative errno code is returned
5010  *      on a failure.
5011  *
5012  *      The caller must hold the rtnl_mutex.
5013  *
5014  *      For a general description of rx_handler, see enum rx_handler_result.
5015  */
5016 int netdev_rx_handler_register(struct net_device *dev,
5017                                rx_handler_func_t *rx_handler,
5018                                void *rx_handler_data)
5019 {
5020         if (netdev_is_rx_handler_busy(dev))
5021                 return -EBUSY;
5022
5023         if (dev->priv_flags & IFF_NO_RX_HANDLER)
5024                 return -EINVAL;
5025
5026         /* Note: rx_handler_data must be set before rx_handler */
5027         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5028         rcu_assign_pointer(dev->rx_handler, rx_handler);
5029
5030         return 0;
5031 }
5032 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5033
5034 /**
5035  *      netdev_rx_handler_unregister - unregister receive handler
5036  *      @dev: device to unregister a handler from
5037  *
5038  *      Unregister a receive handler from a device.
5039  *
5040  *      The caller must hold the rtnl_mutex.
5041  */
5042 void netdev_rx_handler_unregister(struct net_device *dev)
5043 {
5044
5045         ASSERT_RTNL();
5046         RCU_INIT_POINTER(dev->rx_handler, NULL);
5047         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5048          * section has a guarantee to see a non NULL rx_handler_data
5049          * as well.
5050          */
5051         synchronize_net();
5052         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5053 }
5054 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5055
5056 /*
5057  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5058  * the special handling of PFMEMALLOC skbs.
5059  */
5060 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5061 {
5062         switch (skb->protocol) {
5063         case htons(ETH_P_ARP):
5064         case htons(ETH_P_IP):
5065         case htons(ETH_P_IPV6):
5066         case htons(ETH_P_8021Q):
5067         case htons(ETH_P_8021AD):
5068                 return true;
5069         default:
5070                 return false;
5071         }
5072 }
5073
5074 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5075                              int *ret, struct net_device *orig_dev)
5076 {
5077         if (nf_hook_ingress_active(skb)) {
5078                 int ingress_retval;
5079
5080                 if (*pt_prev) {
5081                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
5082                         *pt_prev = NULL;
5083                 }
5084
5085                 rcu_read_lock();
5086                 ingress_retval = nf_hook_ingress(skb);
5087                 rcu_read_unlock();
5088                 return ingress_retval;
5089         }
5090         return 0;
5091 }
5092
5093 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5094                                     struct packet_type **ppt_prev)
5095 {
5096         struct packet_type *ptype, *pt_prev;
5097         rx_handler_func_t *rx_handler;
5098         struct sk_buff *skb = *pskb;
5099         struct net_device *orig_dev;
5100         bool deliver_exact = false;
5101         int ret = NET_RX_DROP;
5102         __be16 type;
5103
5104         net_timestamp_check(!netdev_tstamp_prequeue, skb);
5105
5106         trace_netif_receive_skb(skb);
5107
5108         orig_dev = skb->dev;
5109
5110         skb_reset_network_header(skb);
5111         if (!skb_transport_header_was_set(skb))
5112                 skb_reset_transport_header(skb);
5113         skb_reset_mac_len(skb);
5114
5115         pt_prev = NULL;
5116
5117 another_round:
5118         skb->skb_iif = skb->dev->ifindex;
5119
5120         __this_cpu_inc(softnet_data.processed);
5121
5122         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5123                 int ret2;
5124
5125                 preempt_disable();
5126                 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5127                 preempt_enable();
5128
5129                 if (ret2 != XDP_PASS) {
5130                         ret = NET_RX_DROP;
5131                         goto out;
5132                 }
5133                 skb_reset_mac_len(skb);
5134         }
5135
5136         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5137             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5138                 skb = skb_vlan_untag(skb);
5139                 if (unlikely(!skb))
5140                         goto out;
5141         }
5142
5143         if (skb_skip_tc_classify(skb))
5144                 goto skip_classify;
5145
5146         if (pfmemalloc)
5147                 goto skip_taps;
5148
5149         list_for_each_entry_rcu(ptype, &ptype_all, list) {
5150                 if (pt_prev)
5151                         ret = deliver_skb(skb, pt_prev, orig_dev);
5152                 pt_prev = ptype;
5153         }
5154
5155         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5156                 if (pt_prev)
5157                         ret = deliver_skb(skb, pt_prev, orig_dev);
5158                 pt_prev = ptype;
5159         }
5160
5161 skip_taps:
5162 #ifdef CONFIG_NET_INGRESS
5163         if (static_branch_unlikely(&ingress_needed_key)) {
5164                 bool another = false;
5165
5166                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5167                                          &another);
5168                 if (another)
5169                         goto another_round;
5170                 if (!skb)
5171                         goto out;
5172
5173                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5174                         goto out;
5175         }
5176 #endif
5177         skb_reset_redirect(skb);
5178 skip_classify:
5179         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5180                 goto drop;
5181
5182         if (skb_vlan_tag_present(skb)) {
5183                 if (pt_prev) {
5184                         ret = deliver_skb(skb, pt_prev, orig_dev);
5185                         pt_prev = NULL;
5186                 }
5187                 if (vlan_do_receive(&skb))
5188                         goto another_round;
5189                 else if (unlikely(!skb))
5190                         goto out;
5191         }
5192
5193         rx_handler = rcu_dereference(skb->dev->rx_handler);
5194         if (rx_handler) {
5195                 if (pt_prev) {
5196                         ret = deliver_skb(skb, pt_prev, orig_dev);
5197                         pt_prev = NULL;
5198                 }
5199                 switch (rx_handler(&skb)) {
5200                 case RX_HANDLER_CONSUMED:
5201                         ret = NET_RX_SUCCESS;
5202                         goto out;
5203                 case RX_HANDLER_ANOTHER:
5204                         goto another_round;
5205                 case RX_HANDLER_EXACT:
5206                         deliver_exact = true;
5207                 case RX_HANDLER_PASS:
5208                         break;
5209                 default:
5210                         BUG();
5211                 }
5212         }
5213
5214         if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5215 check_vlan_id:
5216                 if (skb_vlan_tag_get_id(skb)) {
5217                         /* Vlan id is non 0 and vlan_do_receive() above couldn't
5218                          * find vlan device.
5219                          */
5220                         skb->pkt_type = PACKET_OTHERHOST;
5221                 } else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5222                            skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5223                         /* Outer header is 802.1P with vlan 0, inner header is
5224                          * 802.1Q or 802.1AD and vlan_do_receive() above could
5225                          * not find vlan dev for vlan id 0.
5226                          */
5227                         __vlan_hwaccel_clear_tag(skb);
5228                         skb = skb_vlan_untag(skb);
5229                         if (unlikely(!skb))
5230                                 goto out;
5231                         if (vlan_do_receive(&skb))
5232                                 /* After stripping off 802.1P header with vlan 0
5233                                  * vlan dev is found for inner header.
5234                                  */
5235                                 goto another_round;
5236                         else if (unlikely(!skb))
5237                                 goto out;
5238                         else
5239                                 /* We have stripped outer 802.1P vlan 0 header.
5240                                  * But could not find vlan dev.
5241                                  * check again for vlan id to set OTHERHOST.
5242                                  */
5243                                 goto check_vlan_id;
5244                 }
5245                 /* Note: we might in the future use prio bits
5246                  * and set skb->priority like in vlan_do_receive()
5247                  * For the time being, just ignore Priority Code Point
5248                  */
5249                 __vlan_hwaccel_clear_tag(skb);
5250         }
5251
5252         type = skb->protocol;
5253
5254         /* deliver only exact match when indicated */
5255         if (likely(!deliver_exact)) {
5256                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5257                                        &ptype_base[ntohs(type) &
5258                                                    PTYPE_HASH_MASK]);
5259         }
5260
5261         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5262                                &orig_dev->ptype_specific);
5263
5264         if (unlikely(skb->dev != orig_dev)) {
5265                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5266                                        &skb->dev->ptype_specific);
5267         }
5268
5269         if (pt_prev) {
5270                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5271                         goto drop;
5272                 *ppt_prev = pt_prev;
5273         } else {
5274 drop:
5275                 if (!deliver_exact)
5276                         atomic_long_inc(&skb->dev->rx_dropped);
5277                 else
5278                         atomic_long_inc(&skb->dev->rx_nohandler);
5279                 kfree_skb(skb);
5280                 /* Jamal, now you will not able to escape explaining
5281                  * me how you were going to use this. :-)
5282                  */
5283                 ret = NET_RX_DROP;
5284         }
5285
5286 out:
5287         /* The invariant here is that if *ppt_prev is not NULL
5288          * then skb should also be non-NULL.
5289          *
5290          * Apparently *ppt_prev assignment above holds this invariant due to
5291          * skb dereferencing near it.
5292          */
5293         *pskb = skb;
5294         return ret;
5295 }
5296
5297 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5298 {
5299         struct net_device *orig_dev = skb->dev;
5300         struct packet_type *pt_prev = NULL;
5301         int ret;
5302
5303         ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5304         if (pt_prev)
5305                 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5306                                          skb->dev, pt_prev, orig_dev);
5307         return ret;
5308 }
5309
5310 /**
5311  *      netif_receive_skb_core - special purpose version of netif_receive_skb
5312  *      @skb: buffer to process
5313  *
5314  *      More direct receive version of netif_receive_skb().  It should
5315  *      only be used by callers that have a need to skip RPS and Generic XDP.
5316  *      Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5317  *
5318  *      This function may only be called from softirq context and interrupts
5319  *      should be enabled.
5320  *
5321  *      Return values (usually ignored):
5322  *      NET_RX_SUCCESS: no congestion
5323  *      NET_RX_DROP: packet was dropped
5324  */
5325 int netif_receive_skb_core(struct sk_buff *skb)
5326 {
5327         int ret;
5328
5329         rcu_read_lock();
5330         ret = __netif_receive_skb_one_core(skb, false);
5331         rcu_read_unlock();
5332
5333         return ret;
5334 }
5335 EXPORT_SYMBOL(netif_receive_skb_core);
5336
5337 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5338                                                   struct packet_type *pt_prev,
5339                                                   struct net_device *orig_dev)
5340 {
5341         struct sk_buff *skb, *next;
5342
5343         if (!pt_prev)
5344                 return;
5345         if (list_empty(head))
5346                 return;
5347         if (pt_prev->list_func != NULL)
5348                 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5349                                    ip_list_rcv, head, pt_prev, orig_dev);
5350         else
5351                 list_for_each_entry_safe(skb, next, head, list) {
5352                         skb_list_del_init(skb);
5353                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5354                 }
5355 }
5356
5357 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5358 {
5359         /* Fast-path assumptions:
5360          * - There is no RX handler.
5361          * - Only one packet_type matches.
5362          * If either of these fails, we will end up doing some per-packet
5363          * processing in-line, then handling the 'last ptype' for the whole
5364          * sublist.  This can't cause out-of-order delivery to any single ptype,
5365          * because the 'last ptype' must be constant across the sublist, and all
5366          * other ptypes are handled per-packet.
5367          */
5368         /* Current (common) ptype of sublist */
5369         struct packet_type *pt_curr = NULL;
5370         /* Current (common) orig_dev of sublist */
5371         struct net_device *od_curr = NULL;
5372         struct list_head sublist;
5373         struct sk_buff *skb, *next;
5374
5375         INIT_LIST_HEAD(&sublist);
5376         list_for_each_entry_safe(skb, next, head, list) {
5377                 struct net_device *orig_dev = skb->dev;
5378                 struct packet_type *pt_prev = NULL;
5379
5380                 skb_list_del_init(skb);
5381                 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5382                 if (!pt_prev)
5383                         continue;
5384                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5385                         /* dispatch old sublist */
5386                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5387                         /* start new sublist */
5388                         INIT_LIST_HEAD(&sublist);
5389                         pt_curr = pt_prev;
5390                         od_curr = orig_dev;
5391                 }
5392                 list_add_tail(&skb->list, &sublist);
5393         }
5394
5395         /* dispatch final sublist */
5396         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5397 }
5398
5399 static int __netif_receive_skb(struct sk_buff *skb)
5400 {
5401         int ret;
5402
5403         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5404                 unsigned int noreclaim_flag;
5405
5406                 /*
5407                  * PFMEMALLOC skbs are special, they should
5408                  * - be delivered to SOCK_MEMALLOC sockets only
5409                  * - stay away from userspace
5410                  * - have bounded memory usage
5411                  *
5412                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5413                  * context down to all allocation sites.
5414                  */
5415                 noreclaim_flag = memalloc_noreclaim_save();
5416                 ret = __netif_receive_skb_one_core(skb, true);
5417                 memalloc_noreclaim_restore(noreclaim_flag);
5418         } else
5419                 ret = __netif_receive_skb_one_core(skb, false);
5420
5421         return ret;
5422 }
5423
5424 static void __netif_receive_skb_list(struct list_head *head)
5425 {
5426         unsigned long noreclaim_flag = 0;
5427         struct sk_buff *skb, *next;
5428         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5429
5430         list_for_each_entry_safe(skb, next, head, list) {
5431                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5432                         struct list_head sublist;
5433
5434                         /* Handle the previous sublist */
5435                         list_cut_before(&sublist, head, &skb->list);
5436                         if (!list_empty(&sublist))
5437                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5438                         pfmemalloc = !pfmemalloc;
5439                         /* See comments in __netif_receive_skb */
5440                         if (pfmemalloc)
5441                                 noreclaim_flag = memalloc_noreclaim_save();
5442                         else
5443                                 memalloc_noreclaim_restore(noreclaim_flag);
5444                 }
5445         }
5446         /* Handle the remaining sublist */
5447         if (!list_empty(head))
5448                 __netif_receive_skb_list_core(head, pfmemalloc);
5449         /* Restore pflags */
5450         if (pfmemalloc)
5451                 memalloc_noreclaim_restore(noreclaim_flag);
5452 }
5453
5454 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5455 {
5456         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5457         struct bpf_prog *new = xdp->prog;
5458         int ret = 0;
5459
5460         if (new) {
5461                 u32 i;
5462
5463                 mutex_lock(&new->aux->used_maps_mutex);
5464
5465                 /* generic XDP does not work with DEVMAPs that can
5466                  * have a bpf_prog installed on an entry
5467                  */
5468                 for (i = 0; i < new->aux->used_map_cnt; i++) {
5469                         if (dev_map_can_have_prog(new->aux->used_maps[i]) ||
5470                             cpu_map_prog_allowed(new->aux->used_maps[i])) {
5471                                 mutex_unlock(&new->aux->used_maps_mutex);
5472                                 return -EINVAL;
5473                         }
5474                 }
5475
5476                 mutex_unlock(&new->aux->used_maps_mutex);
5477         }
5478
5479         switch (xdp->command) {
5480         case XDP_SETUP_PROG:
5481                 rcu_assign_pointer(dev->xdp_prog, new);
5482                 if (old)
5483                         bpf_prog_put(old);
5484
5485                 if (old && !new) {
5486                         static_branch_dec(&generic_xdp_needed_key);
5487                 } else if (new && !old) {
5488                         static_branch_inc(&generic_xdp_needed_key);
5489                         dev_disable_lro(dev);
5490                         dev_disable_gro_hw(dev);
5491                 }
5492                 break;
5493
5494         default:
5495                 ret = -EINVAL;
5496                 break;
5497         }
5498
5499         return ret;
5500 }
5501
5502 static int netif_receive_skb_internal(struct sk_buff *skb)
5503 {
5504         int ret;
5505
5506         net_timestamp_check(netdev_tstamp_prequeue, skb);
5507
5508         if (skb_defer_rx_timestamp(skb))
5509                 return NET_RX_SUCCESS;
5510
5511         rcu_read_lock();
5512 #ifdef CONFIG_RPS
5513         if (static_branch_unlikely(&rps_needed)) {
5514                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5515                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5516
5517                 if (cpu >= 0) {
5518                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5519                         rcu_read_unlock();
5520                         return ret;
5521                 }
5522         }
5523 #endif
5524         ret = __netif_receive_skb(skb);
5525         rcu_read_unlock();
5526         return ret;
5527 }
5528
5529 static void netif_receive_skb_list_internal(struct list_head *head)
5530 {
5531         struct sk_buff *skb, *next;
5532         struct list_head sublist;
5533
5534         INIT_LIST_HEAD(&sublist);
5535         list_for_each_entry_safe(skb, next, head, list) {
5536                 net_timestamp_check(netdev_tstamp_prequeue, skb);
5537                 skb_list_del_init(skb);
5538                 if (!skb_defer_rx_timestamp(skb))
5539                         list_add_tail(&skb->list, &sublist);
5540         }
5541         list_splice_init(&sublist, head);
5542
5543         rcu_read_lock();
5544 #ifdef CONFIG_RPS
5545         if (static_branch_unlikely(&rps_needed)) {
5546                 list_for_each_entry_safe(skb, next, head, list) {
5547                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5548                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5549
5550                         if (cpu >= 0) {
5551                                 /* Will be handled, remove from list */
5552                                 skb_list_del_init(skb);
5553                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5554                         }
5555                 }
5556         }
5557 #endif
5558         __netif_receive_skb_list(head);
5559         rcu_read_unlock();
5560 }
5561
5562 /**
5563  *      netif_receive_skb - process receive buffer from network
5564  *      @skb: buffer to process
5565  *
5566  *      netif_receive_skb() is the main receive data processing function.
5567  *      It always succeeds. The buffer may be dropped during processing
5568  *      for congestion control or by the protocol layers.
5569  *
5570  *      This function may only be called from softirq context and interrupts
5571  *      should be enabled.
5572  *
5573  *      Return values (usually ignored):
5574  *      NET_RX_SUCCESS: no congestion
5575  *      NET_RX_DROP: packet was dropped
5576  */
5577 int netif_receive_skb(struct sk_buff *skb)
5578 {
5579         int ret;
5580
5581         trace_netif_receive_skb_entry(skb);
5582
5583         ret = netif_receive_skb_internal(skb);
5584         trace_netif_receive_skb_exit(ret);
5585
5586         return ret;
5587 }
5588 EXPORT_SYMBOL(netif_receive_skb);
5589
5590 /**
5591  *      netif_receive_skb_list - process many receive buffers from network
5592  *      @head: list of skbs to process.
5593  *
5594  *      Since return value of netif_receive_skb() is normally ignored, and
5595  *      wouldn't be meaningful for a list, this function returns void.
5596  *
5597  *      This function may only be called from softirq context and interrupts
5598  *      should be enabled.
5599  */
5600 void netif_receive_skb_list(struct list_head *head)
5601 {
5602         struct sk_buff *skb;
5603
5604         if (list_empty(head))
5605                 return;
5606         if (trace_netif_receive_skb_list_entry_enabled()) {
5607                 list_for_each_entry(skb, head, list)
5608                         trace_netif_receive_skb_list_entry(skb);
5609         }
5610         netif_receive_skb_list_internal(head);
5611         trace_netif_receive_skb_list_exit(0);
5612 }
5613 EXPORT_SYMBOL(netif_receive_skb_list);
5614
5615 static DEFINE_PER_CPU(struct work_struct, flush_works);
5616
5617 /* Network device is going away, flush any packets still pending */
5618 static void flush_backlog(struct work_struct *work)
5619 {
5620         struct sk_buff *skb, *tmp;
5621         struct softnet_data *sd;
5622
5623         local_bh_disable();
5624         sd = this_cpu_ptr(&softnet_data);
5625
5626         local_irq_disable();
5627         rps_lock(sd);
5628         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5629                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5630                         __skb_unlink(skb, &sd->input_pkt_queue);
5631                         dev_kfree_skb_irq(skb);
5632                         input_queue_head_incr(sd);
5633                 }
5634         }
5635         rps_unlock(sd);
5636         local_irq_enable();
5637
5638         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5639                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5640                         __skb_unlink(skb, &sd->process_queue);
5641                         kfree_skb(skb);
5642                         input_queue_head_incr(sd);
5643                 }
5644         }
5645         local_bh_enable();
5646 }
5647
5648 static bool flush_required(int cpu)
5649 {
5650 #if IS_ENABLED(CONFIG_RPS)
5651         struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5652         bool do_flush;
5653
5654         local_irq_disable();
5655         rps_lock(sd);
5656
5657         /* as insertion into process_queue happens with the rps lock held,
5658          * process_queue access may race only with dequeue
5659          */
5660         do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5661                    !skb_queue_empty_lockless(&sd->process_queue);
5662         rps_unlock(sd);
5663         local_irq_enable();
5664
5665         return do_flush;
5666 #endif
5667         /* without RPS we can't safely check input_pkt_queue: during a
5668          * concurrent remote skb_queue_splice() we can detect as empty both
5669          * input_pkt_queue and process_queue even if the latter could end-up
5670          * containing a lot of packets.
5671          */
5672         return true;
5673 }
5674
5675 static void flush_all_backlogs(void)
5676 {
5677         static cpumask_t flush_cpus;
5678         unsigned int cpu;
5679
5680         /* since we are under rtnl lock protection we can use static data
5681          * for the cpumask and avoid allocating on stack the possibly
5682          * large mask
5683          */
5684         ASSERT_RTNL();
5685
5686         get_online_cpus();
5687
5688         cpumask_clear(&flush_cpus);
5689         for_each_online_cpu(cpu) {
5690                 if (flush_required(cpu)) {
5691                         queue_work_on(cpu, system_highpri_wq,
5692                                       per_cpu_ptr(&flush_works, cpu));
5693                         cpumask_set_cpu(cpu, &flush_cpus);
5694                 }
5695         }
5696
5697         /* we can have in flight packet[s] on the cpus we are not flushing,
5698          * synchronize_net() in rollback_registered_many() will take care of
5699          * them
5700          */
5701         for_each_cpu(cpu, &flush_cpus)
5702                 flush_work(per_cpu_ptr(&flush_works, cpu));
5703
5704         put_online_cpus();
5705 }
5706
5707 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5708 static void gro_normal_list(struct napi_struct *napi)
5709 {
5710         if (!napi->rx_count)
5711                 return;
5712         netif_receive_skb_list_internal(&napi->rx_list);
5713         INIT_LIST_HEAD(&napi->rx_list);
5714         napi->rx_count = 0;
5715 }
5716
5717 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5718  * pass the whole batch up to the stack.
5719  */
5720 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb)
5721 {
5722         list_add_tail(&skb->list, &napi->rx_list);
5723         if (++napi->rx_count >= gro_normal_batch)
5724                 gro_normal_list(napi);
5725 }
5726
5727 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5728 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
5729 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5730 {
5731         struct packet_offload *ptype;
5732         __be16 type = skb->protocol;
5733         struct list_head *head = &offload_base;
5734         int err = -ENOENT;
5735
5736         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5737
5738         if (NAPI_GRO_CB(skb)->count == 1) {
5739                 skb_shinfo(skb)->gso_size = 0;
5740                 goto out;
5741         }
5742
5743         rcu_read_lock();
5744         list_for_each_entry_rcu(ptype, head, list) {
5745                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5746                         continue;
5747
5748                 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5749                                          ipv6_gro_complete, inet_gro_complete,
5750                                          skb, 0);
5751                 break;
5752         }
5753         rcu_read_unlock();
5754
5755         if (err) {
5756                 WARN_ON(&ptype->list == head);
5757                 kfree_skb(skb);
5758                 return NET_RX_SUCCESS;
5759         }
5760
5761 out:
5762         gro_normal_one(napi, skb);
5763         return NET_RX_SUCCESS;
5764 }
5765
5766 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5767                                    bool flush_old)
5768 {
5769         struct list_head *head = &napi->gro_hash[index].list;
5770         struct sk_buff *skb, *p;
5771
5772         list_for_each_entry_safe_reverse(skb, p, head, list) {
5773                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5774                         return;
5775                 skb_list_del_init(skb);
5776                 napi_gro_complete(napi, skb);
5777                 napi->gro_hash[index].count--;
5778         }
5779
5780         if (!napi->gro_hash[index].count)
5781                 __clear_bit(index, &napi->gro_bitmask);
5782 }
5783
5784 /* napi->gro_hash[].list contains packets ordered by age.
5785  * youngest packets at the head of it.
5786  * Complete skbs in reverse order to reduce latencies.
5787  */
5788 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5789 {
5790         unsigned long bitmask = napi->gro_bitmask;
5791         unsigned int i, base = ~0U;
5792
5793         while ((i = ffs(bitmask)) != 0) {
5794                 bitmask >>= i;
5795                 base += i;
5796                 __napi_gro_flush_chain(napi, base, flush_old);
5797         }
5798 }
5799 EXPORT_SYMBOL(napi_gro_flush);
5800
5801 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5802                                           struct sk_buff *skb)
5803 {
5804         unsigned int maclen = skb->dev->hard_header_len;
5805         u32 hash = skb_get_hash_raw(skb);
5806         struct list_head *head;
5807         struct sk_buff *p;
5808
5809         head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5810         list_for_each_entry(p, head, list) {
5811                 unsigned long diffs;
5812
5813                 NAPI_GRO_CB(p)->flush = 0;
5814
5815                 if (hash != skb_get_hash_raw(p)) {
5816                         NAPI_GRO_CB(p)->same_flow = 0;
5817                         continue;
5818                 }
5819
5820                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5821                 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5822                 if (skb_vlan_tag_present(p))
5823                         diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5824                 diffs |= skb_metadata_dst_cmp(p, skb);
5825                 diffs |= skb_metadata_differs(p, skb);
5826                 if (maclen == ETH_HLEN)
5827                         diffs |= compare_ether_header(skb_mac_header(p),
5828                                                       skb_mac_header(skb));
5829                 else if (!diffs)
5830                         diffs = memcmp(skb_mac_header(p),
5831                                        skb_mac_header(skb),
5832                                        maclen);
5833                 NAPI_GRO_CB(p)->same_flow = !diffs;
5834         }
5835
5836         return head;
5837 }
5838
5839 static void skb_gro_reset_offset(struct sk_buff *skb)
5840 {
5841         const struct skb_shared_info *pinfo = skb_shinfo(skb);
5842         const skb_frag_t *frag0 = &pinfo->frags[0];
5843
5844         NAPI_GRO_CB(skb)->data_offset = 0;
5845         NAPI_GRO_CB(skb)->frag0 = NULL;
5846         NAPI_GRO_CB(skb)->frag0_len = 0;
5847
5848         if (!skb_headlen(skb) && pinfo->nr_frags &&
5849             !PageHighMem(skb_frag_page(frag0))) {
5850                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5851                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5852                                                     skb_frag_size(frag0),
5853                                                     skb->end - skb->tail);
5854         }
5855 }
5856
5857 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5858 {
5859         struct skb_shared_info *pinfo = skb_shinfo(skb);
5860
5861         BUG_ON(skb->end - skb->tail < grow);
5862
5863         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5864
5865         skb->data_len -= grow;
5866         skb->tail += grow;
5867
5868         skb_frag_off_add(&pinfo->frags[0], grow);
5869         skb_frag_size_sub(&pinfo->frags[0], grow);
5870
5871         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5872                 skb_frag_unref(skb, 0);
5873                 memmove(pinfo->frags, pinfo->frags + 1,
5874                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5875         }
5876 }
5877
5878 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
5879 {
5880         struct sk_buff *oldest;
5881
5882         oldest = list_last_entry(head, struct sk_buff, list);
5883
5884         /* We are called with head length >= MAX_GRO_SKBS, so this is
5885          * impossible.
5886          */
5887         if (WARN_ON_ONCE(!oldest))
5888                 return;
5889
5890         /* Do not adjust napi->gro_hash[].count, caller is adding a new
5891          * SKB to the chain.
5892          */
5893         skb_list_del_init(oldest);
5894         napi_gro_complete(napi, oldest);
5895 }
5896
5897 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5898                                                            struct sk_buff *));
5899 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5900                                                            struct sk_buff *));
5901 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5902 {
5903         u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5904         struct list_head *head = &offload_base;
5905         struct packet_offload *ptype;
5906         __be16 type = skb->protocol;
5907         struct list_head *gro_head;
5908         struct sk_buff *pp = NULL;
5909         enum gro_result ret;
5910         int same_flow;
5911         int grow;
5912
5913         if (netif_elide_gro(skb->dev))
5914                 goto normal;
5915
5916         gro_head = gro_list_prepare(napi, skb);
5917
5918         rcu_read_lock();
5919         list_for_each_entry_rcu(ptype, head, list) {
5920                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5921                         continue;
5922
5923                 skb_set_network_header(skb, skb_gro_offset(skb));
5924                 skb_reset_mac_len(skb);
5925                 NAPI_GRO_CB(skb)->same_flow = 0;
5926                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5927                 NAPI_GRO_CB(skb)->free = 0;
5928                 NAPI_GRO_CB(skb)->encap_mark = 0;
5929                 NAPI_GRO_CB(skb)->recursion_counter = 0;
5930                 NAPI_GRO_CB(skb)->is_fou = 0;
5931                 NAPI_GRO_CB(skb)->is_atomic = 1;
5932                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5933
5934                 /* Setup for GRO checksum validation */
5935                 switch (skb->ip_summed) {
5936                 case CHECKSUM_COMPLETE:
5937                         NAPI_GRO_CB(skb)->csum = skb->csum;
5938                         NAPI_GRO_CB(skb)->csum_valid = 1;
5939                         NAPI_GRO_CB(skb)->csum_cnt = 0;
5940                         break;
5941                 case CHECKSUM_UNNECESSARY:
5942                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5943                         NAPI_GRO_CB(skb)->csum_valid = 0;
5944                         break;
5945                 default:
5946                         NAPI_GRO_CB(skb)->csum_cnt = 0;
5947                         NAPI_GRO_CB(skb)->csum_valid = 0;
5948                 }
5949
5950                 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5951                                         ipv6_gro_receive, inet_gro_receive,
5952                                         gro_head, skb);
5953                 break;
5954         }
5955         rcu_read_unlock();
5956
5957         if (&ptype->list == head)
5958                 goto normal;
5959
5960         if (PTR_ERR(pp) == -EINPROGRESS) {
5961                 ret = GRO_CONSUMED;
5962                 goto ok;
5963         }
5964
5965         same_flow = NAPI_GRO_CB(skb)->same_flow;
5966         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5967
5968         if (pp) {
5969                 skb_list_del_init(pp);
5970                 napi_gro_complete(napi, pp);
5971                 napi->gro_hash[hash].count--;
5972         }
5973
5974         if (same_flow)
5975                 goto ok;
5976
5977         if (NAPI_GRO_CB(skb)->flush)
5978                 goto normal;
5979
5980         if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5981                 gro_flush_oldest(napi, gro_head);
5982         } else {
5983                 napi->gro_hash[hash].count++;
5984         }
5985         NAPI_GRO_CB(skb)->count = 1;
5986         NAPI_GRO_CB(skb)->age = jiffies;
5987         NAPI_GRO_CB(skb)->last = skb;
5988         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5989         list_add(&skb->list, gro_head);
5990         ret = GRO_HELD;
5991
5992 pull:
5993         grow = skb_gro_offset(skb) - skb_headlen(skb);
5994         if (grow > 0)
5995                 gro_pull_from_frag0(skb, grow);
5996 ok:
5997         if (napi->gro_hash[hash].count) {
5998                 if (!test_bit(hash, &napi->gro_bitmask))
5999                         __set_bit(hash, &napi->gro_bitmask);
6000         } else if (test_bit(hash, &napi->gro_bitmask)) {
6001                 __clear_bit(hash, &napi->gro_bitmask);
6002         }
6003
6004         return ret;
6005
6006 normal:
6007         ret = GRO_NORMAL;
6008         goto pull;
6009 }
6010
6011 struct packet_offload *gro_find_receive_by_type(__be16 type)
6012 {
6013         struct list_head *offload_head = &offload_base;
6014         struct packet_offload *ptype;
6015
6016         list_for_each_entry_rcu(ptype, offload_head, list) {
6017                 if (ptype->type != type || !ptype->callbacks.gro_receive)
6018                         continue;
6019                 return ptype;
6020         }
6021         return NULL;
6022 }
6023 EXPORT_SYMBOL(gro_find_receive_by_type);
6024
6025 struct packet_offload *gro_find_complete_by_type(__be16 type)
6026 {
6027         struct list_head *offload_head = &offload_base;
6028         struct packet_offload *ptype;
6029
6030         list_for_each_entry_rcu(ptype, offload_head, list) {
6031                 if (ptype->type != type || !ptype->callbacks.gro_complete)
6032                         continue;
6033                 return ptype;
6034         }
6035         return NULL;
6036 }
6037 EXPORT_SYMBOL(gro_find_complete_by_type);
6038
6039 static void napi_skb_free_stolen_head(struct sk_buff *skb)
6040 {
6041         skb_dst_drop(skb);
6042         skb_ext_put(skb);
6043         kmem_cache_free(skbuff_head_cache, skb);
6044 }
6045
6046 static gro_result_t napi_skb_finish(struct napi_struct *napi,
6047                                     struct sk_buff *skb,
6048                                     gro_result_t ret)
6049 {
6050         switch (ret) {
6051         case GRO_NORMAL:
6052                 gro_normal_one(napi, skb);
6053                 break;
6054
6055         case GRO_DROP:
6056                 kfree_skb(skb);
6057                 break;
6058
6059         case GRO_MERGED_FREE:
6060                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6061                         napi_skb_free_stolen_head(skb);
6062                 else
6063                         __kfree_skb(skb);
6064                 break;
6065
6066         case GRO_HELD:
6067         case GRO_MERGED:
6068         case GRO_CONSUMED:
6069                 break;
6070         }
6071
6072         return ret;
6073 }
6074
6075 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6076 {
6077         gro_result_t ret;
6078
6079         skb_mark_napi_id(skb, napi);
6080         trace_napi_gro_receive_entry(skb);
6081
6082         skb_gro_reset_offset(skb);
6083
6084         ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6085         trace_napi_gro_receive_exit(ret);
6086
6087         return ret;
6088 }
6089 EXPORT_SYMBOL(napi_gro_receive);
6090
6091 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6092 {
6093         if (unlikely(skb->pfmemalloc)) {
6094                 consume_skb(skb);
6095                 return;
6096         }
6097         __skb_pull(skb, skb_headlen(skb));
6098         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
6099         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6100         __vlan_hwaccel_clear_tag(skb);
6101         skb->dev = napi->dev;
6102         skb->skb_iif = 0;
6103
6104         /* eth_type_trans() assumes pkt_type is PACKET_HOST */
6105         skb->pkt_type = PACKET_HOST;
6106
6107         skb->encapsulation = 0;
6108         skb_shinfo(skb)->gso_type = 0;
6109         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6110         skb_ext_reset(skb);
6111
6112         napi->skb = skb;
6113 }
6114
6115 struct sk_buff *napi_get_frags(struct napi_struct *napi)
6116 {
6117         struct sk_buff *skb = napi->skb;
6118
6119         if (!skb) {
6120                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6121                 if (skb) {
6122                         napi->skb = skb;
6123                         skb_mark_napi_id(skb, napi);
6124                 }
6125         }
6126         return skb;
6127 }
6128 EXPORT_SYMBOL(napi_get_frags);
6129
6130 static gro_result_t napi_frags_finish(struct napi_struct *napi,
6131                                       struct sk_buff *skb,
6132                                       gro_result_t ret)
6133 {
6134         switch (ret) {
6135         case GRO_NORMAL:
6136         case GRO_HELD:
6137                 __skb_push(skb, ETH_HLEN);
6138                 skb->protocol = eth_type_trans(skb, skb->dev);
6139                 if (ret == GRO_NORMAL)
6140                         gro_normal_one(napi, skb);
6141                 break;
6142
6143         case GRO_DROP:
6144                 napi_reuse_skb(napi, skb);
6145                 break;
6146
6147         case GRO_MERGED_FREE:
6148                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6149                         napi_skb_free_stolen_head(skb);
6150                 else
6151                         napi_reuse_skb(napi, skb);
6152                 break;
6153
6154         case GRO_MERGED:
6155         case GRO_CONSUMED:
6156                 break;
6157         }
6158
6159         return ret;
6160 }
6161
6162 /* Upper GRO stack assumes network header starts at gro_offset=0
6163  * Drivers could call both napi_gro_frags() and napi_gro_receive()
6164  * We copy ethernet header into skb->data to have a common layout.
6165  */
6166 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6167 {
6168         struct sk_buff *skb = napi->skb;
6169         const struct ethhdr *eth;
6170         unsigned int hlen = sizeof(*eth);
6171
6172         napi->skb = NULL;
6173
6174         skb_reset_mac_header(skb);
6175         skb_gro_reset_offset(skb);
6176
6177         if (unlikely(skb_gro_header_hard(skb, hlen))) {
6178                 eth = skb_gro_header_slow(skb, hlen, 0);
6179                 if (unlikely(!eth)) {
6180                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6181                                              __func__, napi->dev->name);
6182                         napi_reuse_skb(napi, skb);
6183                         return NULL;
6184                 }
6185         } else {
6186                 eth = (const struct ethhdr *)skb->data;
6187                 gro_pull_from_frag0(skb, hlen);
6188                 NAPI_GRO_CB(skb)->frag0 += hlen;
6189                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
6190         }
6191         __skb_pull(skb, hlen);
6192
6193         /*
6194          * This works because the only protocols we care about don't require
6195          * special handling.
6196          * We'll fix it up properly in napi_frags_finish()
6197          */
6198         skb->protocol = eth->h_proto;
6199
6200         return skb;
6201 }
6202
6203 gro_result_t napi_gro_frags(struct napi_struct *napi)
6204 {
6205         gro_result_t ret;
6206         struct sk_buff *skb = napi_frags_skb(napi);
6207
6208         if (!skb)
6209                 return GRO_DROP;
6210
6211         trace_napi_gro_frags_entry(skb);
6212
6213         ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6214         trace_napi_gro_frags_exit(ret);
6215
6216         return ret;
6217 }
6218 EXPORT_SYMBOL(napi_gro_frags);
6219
6220 /* Compute the checksum from gro_offset and return the folded value
6221  * after adding in any pseudo checksum.
6222  */
6223 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6224 {
6225         __wsum wsum;
6226         __sum16 sum;
6227
6228         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6229
6230         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6231         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6232         /* See comments in __skb_checksum_complete(). */
6233         if (likely(!sum)) {
6234                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6235                     !skb->csum_complete_sw)
6236                         netdev_rx_csum_fault(skb->dev, skb);
6237         }
6238
6239         NAPI_GRO_CB(skb)->csum = wsum;
6240         NAPI_GRO_CB(skb)->csum_valid = 1;
6241
6242         return sum;
6243 }
6244 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6245
6246 static void net_rps_send_ipi(struct softnet_data *remsd)
6247 {
6248 #ifdef CONFIG_RPS
6249         while (remsd) {
6250                 struct softnet_data *next = remsd->rps_ipi_next;
6251
6252                 if (cpu_online(remsd->cpu))
6253                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
6254                 remsd = next;
6255         }
6256 #endif
6257 }
6258
6259 /*
6260  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6261  * Note: called with local irq disabled, but exits with local irq enabled.
6262  */
6263 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6264 {
6265 #ifdef CONFIG_RPS
6266         struct softnet_data *remsd = sd->rps_ipi_list;
6267
6268         if (remsd) {
6269                 sd->rps_ipi_list = NULL;
6270
6271                 local_irq_enable();
6272
6273                 /* Send pending IPI's to kick RPS processing on remote cpus. */
6274                 net_rps_send_ipi(remsd);
6275         } else
6276 #endif
6277                 local_irq_enable();
6278 }
6279
6280 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6281 {
6282 #ifdef CONFIG_RPS
6283         return sd->rps_ipi_list != NULL;
6284 #else
6285         return false;
6286 #endif
6287 }
6288
6289 static int process_backlog(struct napi_struct *napi, int quota)
6290 {
6291         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6292         bool again = true;
6293         int work = 0;
6294
6295         /* Check if we have pending ipi, its better to send them now,
6296          * not waiting net_rx_action() end.
6297          */
6298         if (sd_has_rps_ipi_waiting(sd)) {
6299                 local_irq_disable();
6300                 net_rps_action_and_irq_enable(sd);
6301         }
6302
6303         napi->weight = dev_rx_weight;
6304         while (again) {
6305                 struct sk_buff *skb;
6306
6307                 while ((skb = __skb_dequeue(&sd->process_queue))) {
6308                         rcu_read_lock();
6309                         __netif_receive_skb(skb);
6310                         rcu_read_unlock();
6311                         input_queue_head_incr(sd);
6312                         if (++work >= quota)
6313                                 return work;
6314
6315                 }
6316
6317                 local_irq_disable();
6318                 rps_lock(sd);
6319                 if (skb_queue_empty(&sd->input_pkt_queue)) {
6320                         /*
6321                          * Inline a custom version of __napi_complete().
6322                          * only current cpu owns and manipulates this napi,
6323                          * and NAPI_STATE_SCHED is the only possible flag set
6324                          * on backlog.
6325                          * We can use a plain write instead of clear_bit(),
6326                          * and we dont need an smp_mb() memory barrier.
6327                          */
6328                         napi->state = 0;
6329                         again = false;
6330                 } else {
6331                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
6332                                                    &sd->process_queue);
6333                 }
6334                 rps_unlock(sd);
6335                 local_irq_enable();
6336         }
6337
6338         return work;
6339 }
6340
6341 /**
6342  * __napi_schedule - schedule for receive
6343  * @n: entry to schedule
6344  *
6345  * The entry's receive function will be scheduled to run.
6346  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6347  */
6348 void __napi_schedule(struct napi_struct *n)
6349 {
6350         unsigned long flags;
6351
6352         local_irq_save(flags);
6353         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6354         local_irq_restore(flags);
6355 }
6356 EXPORT_SYMBOL(__napi_schedule);
6357
6358 /**
6359  *      napi_schedule_prep - check if napi can be scheduled
6360  *      @n: napi context
6361  *
6362  * Test if NAPI routine is already running, and if not mark
6363  * it as running.  This is used as a condition variable to
6364  * insure only one NAPI poll instance runs.  We also make
6365  * sure there is no pending NAPI disable.
6366  */
6367 bool napi_schedule_prep(struct napi_struct *n)
6368 {
6369         unsigned long val, new;
6370
6371         do {
6372                 val = READ_ONCE(n->state);
6373                 if (unlikely(val & NAPIF_STATE_DISABLE))
6374                         return false;
6375                 new = val | NAPIF_STATE_SCHED;
6376
6377                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6378                  * This was suggested by Alexander Duyck, as compiler
6379                  * emits better code than :
6380                  * if (val & NAPIF_STATE_SCHED)
6381                  *     new |= NAPIF_STATE_MISSED;
6382                  */
6383                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6384                                                    NAPIF_STATE_MISSED;
6385         } while (cmpxchg(&n->state, val, new) != val);
6386
6387         return !(val & NAPIF_STATE_SCHED);
6388 }
6389 EXPORT_SYMBOL(napi_schedule_prep);
6390
6391 /**
6392  * __napi_schedule_irqoff - schedule for receive
6393  * @n: entry to schedule
6394  *
6395  * Variant of __napi_schedule() assuming hard irqs are masked
6396  */
6397 void __napi_schedule_irqoff(struct napi_struct *n)
6398 {
6399         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6400 }
6401 EXPORT_SYMBOL(__napi_schedule_irqoff);
6402
6403 bool napi_complete_done(struct napi_struct *n, int work_done)
6404 {
6405         unsigned long flags, val, new, timeout = 0;
6406         bool ret = true;
6407
6408         /*
6409          * 1) Don't let napi dequeue from the cpu poll list
6410          *    just in case its running on a different cpu.
6411          * 2) If we are busy polling, do nothing here, we have
6412          *    the guarantee we will be called later.
6413          */
6414         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6415                                  NAPIF_STATE_IN_BUSY_POLL)))
6416                 return false;
6417
6418         if (work_done) {
6419                 if (n->gro_bitmask)
6420                         timeout = READ_ONCE(n->dev->gro_flush_timeout);
6421                 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6422         }
6423         if (n->defer_hard_irqs_count > 0) {
6424                 n->defer_hard_irqs_count--;
6425                 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6426                 if (timeout)
6427                         ret = false;
6428         }
6429         if (n->gro_bitmask) {
6430                 /* When the NAPI instance uses a timeout and keeps postponing
6431                  * it, we need to bound somehow the time packets are kept in
6432                  * the GRO layer
6433                  */
6434                 napi_gro_flush(n, !!timeout);
6435         }
6436
6437         gro_normal_list(n);
6438
6439         if (unlikely(!list_empty(&n->poll_list))) {
6440                 /* If n->poll_list is not empty, we need to mask irqs */
6441                 local_irq_save(flags);
6442                 list_del_init(&n->poll_list);
6443                 local_irq_restore(flags);
6444         }
6445
6446         do {
6447                 val = READ_ONCE(n->state);
6448
6449                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6450
6451                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6452                               NAPIF_STATE_PREFER_BUSY_POLL);
6453
6454                 /* If STATE_MISSED was set, leave STATE_SCHED set,
6455                  * because we will call napi->poll() one more time.
6456                  * This C code was suggested by Alexander Duyck to help gcc.
6457                  */
6458                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6459                                                     NAPIF_STATE_SCHED;
6460         } while (cmpxchg(&n->state, val, new) != val);
6461
6462         if (unlikely(val & NAPIF_STATE_MISSED)) {
6463                 __napi_schedule(n);
6464                 return false;
6465         }
6466
6467         if (timeout)
6468                 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6469                               HRTIMER_MODE_REL_PINNED);
6470         return ret;
6471 }
6472 EXPORT_SYMBOL(napi_complete_done);
6473
6474 /* must be called under rcu_read_lock(), as we dont take a reference */
6475 static struct napi_struct *napi_by_id(unsigned int napi_id)
6476 {
6477         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6478         struct napi_struct *napi;
6479
6480         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6481                 if (napi->napi_id == napi_id)
6482                         return napi;
6483
6484         return NULL;
6485 }
6486
6487 #if defined(CONFIG_NET_RX_BUSY_POLL)
6488
6489 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6490 {
6491         if (!skip_schedule) {
6492                 gro_normal_list(napi);
6493                 __napi_schedule(napi);
6494                 return;
6495         }
6496
6497         if (napi->gro_bitmask) {
6498                 /* flush too old packets
6499                  * If HZ < 1000, flush all packets.
6500                  */
6501                 napi_gro_flush(napi, HZ >= 1000);
6502         }
6503
6504         gro_normal_list(napi);
6505         clear_bit(NAPI_STATE_SCHED, &napi->state);
6506 }
6507
6508 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6509                            u16 budget)
6510 {
6511         bool skip_schedule = false;
6512         unsigned long timeout;
6513         int rc;
6514
6515         /* Busy polling means there is a high chance device driver hard irq
6516          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6517          * set in napi_schedule_prep().
6518          * Since we are about to call napi->poll() once more, we can safely
6519          * clear NAPI_STATE_MISSED.
6520          *
6521          * Note: x86 could use a single "lock and ..." instruction
6522          * to perform these two clear_bit()
6523          */
6524         clear_bit(NAPI_STATE_MISSED, &napi->state);
6525         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6526
6527         local_bh_disable();
6528
6529         if (prefer_busy_poll) {
6530                 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6531                 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6532                 if (napi->defer_hard_irqs_count && timeout) {
6533                         hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6534                         skip_schedule = true;
6535                 }
6536         }
6537
6538         /* All we really want here is to re-enable device interrupts.
6539          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6540          */
6541         rc = napi->poll(napi, budget);
6542         /* We can't gro_normal_list() here, because napi->poll() might have
6543          * rearmed the napi (napi_complete_done()) in which case it could
6544          * already be running on another CPU.
6545          */
6546         trace_napi_poll(napi, rc, budget);
6547         netpoll_poll_unlock(have_poll_lock);
6548         if (rc == budget)
6549                 __busy_poll_stop(napi, skip_schedule);
6550         local_bh_enable();
6551 }
6552
6553 void napi_busy_loop(unsigned int napi_id,
6554                     bool (*loop_end)(void *, unsigned long),
6555                     void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6556 {
6557         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6558         int (*napi_poll)(struct napi_struct *napi, int budget);
6559         void *have_poll_lock = NULL;
6560         struct napi_struct *napi;
6561
6562 restart:
6563         napi_poll = NULL;
6564
6565         rcu_read_lock();
6566
6567         napi = napi_by_id(napi_id);
6568         if (!napi)
6569                 goto out;
6570
6571         preempt_disable();
6572         for (;;) {
6573                 int work = 0;
6574
6575                 local_bh_disable();
6576                 if (!napi_poll) {
6577                         unsigned long val = READ_ONCE(napi->state);
6578
6579                         /* If multiple threads are competing for this napi,
6580                          * we avoid dirtying napi->state as much as we can.
6581                          */
6582                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6583                                    NAPIF_STATE_IN_BUSY_POLL)) {
6584                                 if (prefer_busy_poll)
6585                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6586                                 goto count;
6587                         }
6588                         if (cmpxchg(&napi->state, val,
6589                                     val | NAPIF_STATE_IN_BUSY_POLL |
6590                                           NAPIF_STATE_SCHED) != val) {
6591                                 if (prefer_busy_poll)
6592                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6593                                 goto count;
6594                         }
6595                         have_poll_lock = netpoll_poll_lock(napi);
6596                         napi_poll = napi->poll;
6597                 }
6598                 work = napi_poll(napi, budget);
6599                 trace_napi_poll(napi, work, budget);
6600                 gro_normal_list(napi);
6601 count:
6602                 if (work > 0)
6603                         __NET_ADD_STATS(dev_net(napi->dev),
6604                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6605                 local_bh_enable();
6606
6607                 if (!loop_end || loop_end(loop_end_arg, start_time))
6608                         break;
6609
6610                 if (unlikely(need_resched())) {
6611                         if (napi_poll)
6612                                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6613                         preempt_enable();
6614                         rcu_read_unlock();
6615                         cond_resched();
6616                         if (loop_end(loop_end_arg, start_time))
6617                                 return;
6618                         goto restart;
6619                 }
6620                 cpu_relax();
6621         }
6622         if (napi_poll)
6623                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6624         preempt_enable();
6625 out:
6626         rcu_read_unlock();
6627 }
6628 EXPORT_SYMBOL(napi_busy_loop);
6629
6630 #endif /* CONFIG_NET_RX_BUSY_POLL */
6631
6632 static void napi_hash_add(struct napi_struct *napi)
6633 {
6634         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6635                 return;
6636
6637         spin_lock(&napi_hash_lock);
6638
6639         /* 0..NR_CPUS range is reserved for sender_cpu use */
6640         do {
6641                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6642                         napi_gen_id = MIN_NAPI_ID;
6643         } while (napi_by_id(napi_gen_id));
6644         napi->napi_id = napi_gen_id;
6645
6646         hlist_add_head_rcu(&napi->napi_hash_node,
6647                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6648
6649         spin_unlock(&napi_hash_lock);
6650 }
6651
6652 /* Warning : caller is responsible to make sure rcu grace period
6653  * is respected before freeing memory containing @napi
6654  */
6655 static void napi_hash_del(struct napi_struct *napi)
6656 {
6657         spin_lock(&napi_hash_lock);
6658
6659         hlist_del_init_rcu(&napi->napi_hash_node);
6660
6661         spin_unlock(&napi_hash_lock);
6662 }
6663
6664 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6665 {
6666         struct napi_struct *napi;
6667
6668         napi = container_of(timer, struct napi_struct, timer);
6669
6670         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6671          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6672          */
6673         if (!napi_disable_pending(napi) &&
6674             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6675                 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6676                 __napi_schedule_irqoff(napi);
6677         }
6678
6679         return HRTIMER_NORESTART;
6680 }
6681
6682 static void init_gro_hash(struct napi_struct *napi)
6683 {
6684         int i;
6685
6686         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6687                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6688                 napi->gro_hash[i].count = 0;
6689         }
6690         napi->gro_bitmask = 0;
6691 }
6692
6693 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6694                     int (*poll)(struct napi_struct *, int), int weight)
6695 {
6696         if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6697                 return;
6698
6699         INIT_LIST_HEAD(&napi->poll_list);
6700         INIT_HLIST_NODE(&napi->napi_hash_node);
6701         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6702         napi->timer.function = napi_watchdog;
6703         init_gro_hash(napi);
6704         napi->skb = NULL;
6705         INIT_LIST_HEAD(&napi->rx_list);
6706         napi->rx_count = 0;
6707         napi->poll = poll;
6708         if (weight > NAPI_POLL_WEIGHT)
6709                 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6710                                 weight);
6711         napi->weight = weight;
6712         napi->dev = dev;
6713 #ifdef CONFIG_NETPOLL
6714         napi->poll_owner = -1;
6715 #endif
6716         set_bit(NAPI_STATE_SCHED, &napi->state);
6717         set_bit(NAPI_STATE_NPSVC, &napi->state);
6718         list_add_rcu(&napi->dev_list, &dev->napi_list);
6719         napi_hash_add(napi);
6720 }
6721 EXPORT_SYMBOL(netif_napi_add);
6722
6723 void napi_disable(struct napi_struct *n)
6724 {
6725         might_sleep();
6726         set_bit(NAPI_STATE_DISABLE, &n->state);
6727
6728         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6729                 msleep(1);
6730         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6731                 msleep(1);
6732
6733         hrtimer_cancel(&n->timer);
6734
6735         clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
6736         clear_bit(NAPI_STATE_DISABLE, &n->state);
6737 }
6738 EXPORT_SYMBOL(napi_disable);
6739
6740 static void flush_gro_hash(struct napi_struct *napi)
6741 {
6742         int i;
6743
6744         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6745                 struct sk_buff *skb, *n;
6746
6747                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6748                         kfree_skb(skb);
6749                 napi->gro_hash[i].count = 0;
6750         }
6751 }
6752
6753 /* Must be called in process context */
6754 void __netif_napi_del(struct napi_struct *napi)
6755 {
6756         if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6757                 return;
6758
6759         napi_hash_del(napi);
6760         list_del_rcu(&napi->dev_list);
6761         napi_free_frags(napi);
6762
6763         flush_gro_hash(napi);
6764         napi->gro_bitmask = 0;
6765 }
6766 EXPORT_SYMBOL(__netif_napi_del);
6767
6768 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6769 {
6770         void *have;
6771         int work, weight;
6772
6773         list_del_init(&n->poll_list);
6774
6775         have = netpoll_poll_lock(n);
6776
6777         weight = n->weight;
6778
6779         /* This NAPI_STATE_SCHED test is for avoiding a race
6780          * with netpoll's poll_napi().  Only the entity which
6781          * obtains the lock and sees NAPI_STATE_SCHED set will
6782          * actually make the ->poll() call.  Therefore we avoid
6783          * accidentally calling ->poll() when NAPI is not scheduled.
6784          */
6785         work = 0;
6786         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6787                 work = n->poll(n, weight);
6788                 trace_napi_poll(n, work, weight);
6789         }
6790
6791         if (unlikely(work > weight))
6792                 pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6793                             n->poll, work, weight);
6794
6795         if (likely(work < weight))
6796                 goto out_unlock;
6797
6798         /* Drivers must not modify the NAPI state if they
6799          * consume the entire weight.  In such cases this code
6800          * still "owns" the NAPI instance and therefore can
6801          * move the instance around on the list at-will.
6802          */
6803         if (unlikely(napi_disable_pending(n))) {
6804                 napi_complete(n);
6805                 goto out_unlock;
6806         }
6807
6808         /* The NAPI context has more processing work, but busy-polling
6809          * is preferred. Exit early.
6810          */
6811         if (napi_prefer_busy_poll(n)) {
6812                 if (napi_complete_done(n, work)) {
6813                         /* If timeout is not set, we need to make sure
6814                          * that the NAPI is re-scheduled.
6815                          */
6816                         napi_schedule(n);
6817                 }
6818                 goto out_unlock;
6819         }
6820
6821         if (n->gro_bitmask) {
6822                 /* flush too old packets
6823                  * If HZ < 1000, flush all packets.
6824                  */
6825                 napi_gro_flush(n, HZ >= 1000);
6826         }
6827
6828         gro_normal_list(n);
6829
6830         /* Some drivers may have called napi_schedule
6831          * prior to exhausting their budget.
6832          */
6833         if (unlikely(!list_empty(&n->poll_list))) {
6834                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6835                              n->dev ? n->dev->name : "backlog");
6836                 goto out_unlock;
6837         }
6838
6839         list_add_tail(&n->poll_list, repoll);
6840
6841 out_unlock:
6842         netpoll_poll_unlock(have);
6843
6844         return work;
6845 }
6846
6847 static __latent_entropy void net_rx_action(struct softirq_action *h)
6848 {
6849         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6850         unsigned long time_limit = jiffies +
6851                 usecs_to_jiffies(netdev_budget_usecs);
6852         int budget = netdev_budget;
6853         LIST_HEAD(list);
6854         LIST_HEAD(repoll);
6855
6856         local_irq_disable();
6857         list_splice_init(&sd->poll_list, &list);
6858         local_irq_enable();
6859
6860         for (;;) {
6861                 struct napi_struct *n;
6862
6863                 if (list_empty(&list)) {
6864                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6865                                 goto out;
6866                         break;
6867                 }
6868
6869                 n = list_first_entry(&list, struct napi_struct, poll_list);
6870                 budget -= napi_poll(n, &repoll);
6871
6872                 /* If softirq window is exhausted then punt.
6873                  * Allow this to run for 2 jiffies since which will allow
6874                  * an average latency of 1.5/HZ.
6875                  */
6876                 if (unlikely(budget <= 0 ||
6877                              time_after_eq(jiffies, time_limit))) {
6878                         sd->time_squeeze++;
6879                         break;
6880                 }
6881         }
6882
6883         local_irq_disable();
6884
6885         list_splice_tail_init(&sd->poll_list, &list);
6886         list_splice_tail(&repoll, &list);
6887         list_splice(&list, &sd->poll_list);
6888         if (!list_empty(&sd->poll_list))
6889                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6890
6891         net_rps_action_and_irq_enable(sd);
6892 out:
6893         __kfree_skb_flush();
6894 }
6895
6896 struct netdev_adjacent {
6897         struct net_device *dev;
6898
6899         /* upper master flag, there can only be one master device per list */
6900         bool master;
6901
6902         /* lookup ignore flag */
6903         bool ignore;
6904
6905         /* counter for the number of times this device was added to us */
6906         u16 ref_nr;
6907
6908         /* private field for the users */
6909         void *private;
6910
6911         struct list_head list;
6912         struct rcu_head rcu;
6913 };
6914
6915 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6916                                                  struct list_head *adj_list)
6917 {
6918         struct netdev_adjacent *adj;
6919
6920         list_for_each_entry(adj, adj_list, list) {
6921                 if (adj->dev == adj_dev)
6922                         return adj;
6923         }
6924         return NULL;
6925 }
6926
6927 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6928                                     struct netdev_nested_priv *priv)
6929 {
6930         struct net_device *dev = (struct net_device *)priv->data;
6931
6932         return upper_dev == dev;
6933 }
6934
6935 /**
6936  * netdev_has_upper_dev - Check if device is linked to an upper device
6937  * @dev: device
6938  * @upper_dev: upper device to check
6939  *
6940  * Find out if a device is linked to specified upper device and return true
6941  * in case it is. Note that this checks only immediate upper device,
6942  * not through a complete stack of devices. The caller must hold the RTNL lock.
6943  */
6944 bool netdev_has_upper_dev(struct net_device *dev,
6945                           struct net_device *upper_dev)
6946 {
6947         struct netdev_nested_priv priv = {
6948                 .data = (void *)upper_dev,
6949         };
6950
6951         ASSERT_RTNL();
6952
6953         return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6954                                              &priv);
6955 }
6956 EXPORT_SYMBOL(netdev_has_upper_dev);
6957
6958 /**
6959  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6960  * @dev: device
6961  * @upper_dev: upper device to check
6962  *
6963  * Find out if a device is linked to specified upper device and return true
6964  * in case it is. Note that this checks the entire upper device chain.
6965  * The caller must hold rcu lock.
6966  */
6967
6968 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6969                                   struct net_device *upper_dev)
6970 {
6971         struct netdev_nested_priv priv = {
6972                 .data = (void *)upper_dev,
6973         };
6974
6975         return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6976                                                &priv);
6977 }
6978 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6979
6980 /**
6981  * netdev_has_any_upper_dev - Check if device is linked to some device
6982  * @dev: device
6983  *
6984  * Find out if a device is linked to an upper device and return true in case
6985  * it is. The caller must hold the RTNL lock.
6986  */
6987 bool netdev_has_any_upper_dev(struct net_device *dev)
6988 {
6989         ASSERT_RTNL();
6990
6991         return !list_empty(&dev->adj_list.upper);
6992 }
6993 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6994
6995 /**
6996  * netdev_master_upper_dev_get - Get master upper device
6997  * @dev: device
6998  *
6999  * Find a master upper device and return pointer to it or NULL in case
7000  * it's not there. The caller must hold the RTNL lock.
7001  */
7002 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7003 {
7004         struct netdev_adjacent *upper;
7005
7006         ASSERT_RTNL();
7007
7008         if (list_empty(&dev->adj_list.upper))
7009                 return NULL;
7010
7011         upper = list_first_entry(&dev->adj_list.upper,
7012                                  struct netdev_adjacent, list);
7013         if (likely(upper->master))
7014                 return upper->dev;
7015         return NULL;
7016 }
7017 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7018
7019 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7020 {
7021         struct netdev_adjacent *upper;
7022
7023         ASSERT_RTNL();
7024
7025         if (list_empty(&dev->adj_list.upper))
7026                 return NULL;
7027
7028         upper = list_first_entry(&dev->adj_list.upper,
7029                                  struct netdev_adjacent, list);
7030         if (likely(upper->master) && !upper->ignore)
7031                 return upper->dev;
7032         return NULL;
7033 }
7034
7035 /**
7036  * netdev_has_any_lower_dev - Check if device is linked to some device
7037  * @dev: device
7038  *
7039  * Find out if a device is linked to a lower device and return true in case
7040  * it is. The caller must hold the RTNL lock.
7041  */
7042 static bool netdev_has_any_lower_dev(struct net_device *dev)
7043 {
7044         ASSERT_RTNL();
7045
7046         return !list_empty(&dev->adj_list.lower);
7047 }
7048
7049 void *netdev_adjacent_get_private(struct list_head *adj_list)
7050 {
7051         struct netdev_adjacent *adj;
7052
7053         adj = list_entry(adj_list, struct netdev_adjacent, list);
7054
7055         return adj->private;
7056 }
7057 EXPORT_SYMBOL(netdev_adjacent_get_private);
7058
7059 /**
7060  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7061  * @dev: device
7062  * @iter: list_head ** of the current position
7063  *
7064  * Gets the next device from the dev's upper list, starting from iter
7065  * position. The caller must hold RCU read lock.
7066  */
7067 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7068                                                  struct list_head **iter)
7069 {
7070         struct netdev_adjacent *upper;
7071
7072         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7073
7074         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7075
7076         if (&upper->list == &dev->adj_list.upper)
7077                 return NULL;
7078
7079         *iter = &upper->list;
7080
7081         return upper->dev;
7082 }
7083 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7084
7085 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7086                                                   struct list_head **iter,
7087                                                   bool *ignore)
7088 {
7089         struct netdev_adjacent *upper;
7090
7091         upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7092
7093         if (&upper->list == &dev->adj_list.upper)
7094                 return NULL;
7095
7096         *iter = &upper->list;
7097         *ignore = upper->ignore;
7098
7099         return upper->dev;
7100 }
7101
7102 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7103                                                     struct list_head **iter)
7104 {
7105         struct netdev_adjacent *upper;
7106
7107         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7108
7109         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7110
7111         if (&upper->list == &dev->adj_list.upper)
7112                 return NULL;
7113
7114         *iter = &upper->list;
7115
7116         return upper->dev;
7117 }
7118
7119 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7120                                        int (*fn)(struct net_device *dev,
7121                                          struct netdev_nested_priv *priv),
7122                                        struct netdev_nested_priv *priv)
7123 {
7124         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7125         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7126         int ret, cur = 0;
7127         bool ignore;
7128
7129         now = dev;
7130         iter = &dev->adj_list.upper;
7131
7132         while (1) {
7133                 if (now != dev) {
7134                         ret = fn(now, priv);
7135                         if (ret)
7136                                 return ret;
7137                 }
7138
7139                 next = NULL;
7140                 while (1) {
7141                         udev = __netdev_next_upper_dev(now, &iter, &ignore);
7142                         if (!udev)
7143                                 break;
7144                         if (ignore)
7145                                 continue;
7146
7147                         next = udev;
7148                         niter = &udev->adj_list.upper;
7149                         dev_stack[cur] = now;
7150                         iter_stack[cur++] = iter;
7151                         break;
7152                 }
7153
7154                 if (!next) {
7155                         if (!cur)
7156                                 return 0;
7157                         next = dev_stack[--cur];
7158                         niter = iter_stack[cur];
7159                 }
7160
7161                 now = next;
7162                 iter = niter;
7163         }
7164
7165         return 0;
7166 }
7167
7168 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7169                                   int (*fn)(struct net_device *dev,
7170                                             struct netdev_nested_priv *priv),
7171                                   struct netdev_nested_priv *priv)
7172 {
7173         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7174         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7175         int ret, cur = 0;
7176
7177         now = dev;
7178         iter = &dev->adj_list.upper;
7179
7180         while (1) {
7181                 if (now != dev) {
7182                         ret = fn(now, priv);
7183                         if (ret)
7184                                 return ret;
7185                 }
7186
7187                 next = NULL;
7188                 while (1) {
7189                         udev = netdev_next_upper_dev_rcu(now, &iter);
7190                         if (!udev)
7191                                 break;
7192
7193                         next = udev;
7194                         niter = &udev->adj_list.upper;
7195                         dev_stack[cur] = now;
7196                         iter_stack[cur++] = iter;
7197                         break;
7198                 }
7199
7200                 if (!next) {
7201                         if (!cur)
7202                                 return 0;
7203                         next = dev_stack[--cur];
7204                         niter = iter_stack[cur];
7205                 }
7206
7207                 now = next;
7208                 iter = niter;
7209         }
7210
7211         return 0;
7212 }
7213 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7214
7215 static bool __netdev_has_upper_dev(struct net_device *dev,
7216                                    struct net_device *upper_dev)
7217 {
7218         struct netdev_nested_priv priv = {
7219                 .flags = 0,
7220                 .data = (void *)upper_dev,
7221         };
7222
7223         ASSERT_RTNL();
7224
7225         return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7226                                            &priv);
7227 }
7228
7229 /**
7230  * netdev_lower_get_next_private - Get the next ->private from the
7231  *                                 lower neighbour list
7232  * @dev: device
7233  * @iter: list_head ** of the current position
7234  *
7235  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7236  * list, starting from iter position. The caller must hold either hold the
7237  * RTNL lock or its own locking that guarantees that the neighbour lower
7238  * list will remain unchanged.
7239  */
7240 void *netdev_lower_get_next_private(struct net_device *dev,
7241                                     struct list_head **iter)
7242 {
7243         struct netdev_adjacent *lower;
7244
7245         lower = list_entry(*iter, struct netdev_adjacent, list);
7246
7247         if (&lower->list == &dev->adj_list.lower)
7248                 return NULL;
7249
7250         *iter = lower->list.next;
7251
7252         return lower->private;
7253 }
7254 EXPORT_SYMBOL(netdev_lower_get_next_private);
7255
7256 /**
7257  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7258  *                                     lower neighbour list, RCU
7259  *                                     variant
7260  * @dev: device
7261  * @iter: list_head ** of the current position
7262  *
7263  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7264  * list, starting from iter position. The caller must hold RCU read lock.
7265  */
7266 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7267                                         struct list_head **iter)
7268 {
7269         struct netdev_adjacent *lower;
7270
7271         WARN_ON_ONCE(!rcu_read_lock_held());
7272
7273         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7274
7275         if (&lower->list == &dev->adj_list.lower)
7276                 return NULL;
7277
7278         *iter = &lower->list;
7279
7280         return lower->private;
7281 }
7282 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7283
7284 /**
7285  * netdev_lower_get_next - Get the next device from the lower neighbour
7286  *                         list
7287  * @dev: device
7288  * @iter: list_head ** of the current position
7289  *
7290  * Gets the next netdev_adjacent from the dev's lower neighbour
7291  * list, starting from iter position. The caller must hold RTNL lock or
7292  * its own locking that guarantees that the neighbour lower
7293  * list will remain unchanged.
7294  */
7295 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7296 {
7297         struct netdev_adjacent *lower;
7298
7299         lower = list_entry(*iter, struct netdev_adjacent, list);
7300
7301         if (&lower->list == &dev->adj_list.lower)
7302                 return NULL;
7303
7304         *iter = lower->list.next;
7305
7306         return lower->dev;
7307 }
7308 EXPORT_SYMBOL(netdev_lower_get_next);
7309
7310 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7311                                                 struct list_head **iter)
7312 {
7313         struct netdev_adjacent *lower;
7314
7315         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7316
7317         if (&lower->list == &dev->adj_list.lower)
7318                 return NULL;
7319
7320         *iter = &lower->list;
7321
7322         return lower->dev;
7323 }
7324
7325 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7326                                                   struct list_head **iter,
7327                                                   bool *ignore)
7328 {
7329         struct netdev_adjacent *lower;
7330
7331         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7332
7333         if (&lower->list == &dev->adj_list.lower)
7334                 return NULL;
7335
7336         *iter = &lower->list;
7337         *ignore = lower->ignore;
7338
7339         return lower->dev;
7340 }
7341
7342 int netdev_walk_all_lower_dev(struct net_device *dev,
7343                               int (*fn)(struct net_device *dev,
7344                                         struct netdev_nested_priv *priv),
7345                               struct netdev_nested_priv *priv)
7346 {
7347         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7348         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7349         int ret, cur = 0;
7350
7351         now = dev;
7352         iter = &dev->adj_list.lower;
7353
7354         while (1) {
7355                 if (now != dev) {
7356                         ret = fn(now, priv);
7357                         if (ret)
7358                                 return ret;
7359                 }
7360
7361                 next = NULL;
7362                 while (1) {
7363                         ldev = netdev_next_lower_dev(now, &iter);
7364                         if (!ldev)
7365                                 break;
7366
7367                         next = ldev;
7368                         niter = &ldev->adj_list.lower;
7369                         dev_stack[cur] = now;
7370                         iter_stack[cur++] = iter;
7371                         break;
7372                 }
7373
7374                 if (!next) {
7375                         if (!cur)
7376                                 return 0;
7377                         next = dev_stack[--cur];
7378                         niter = iter_stack[cur];
7379                 }
7380
7381                 now = next;
7382                 iter = niter;
7383         }
7384
7385         return 0;
7386 }
7387 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7388
7389 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7390                                        int (*fn)(struct net_device *dev,
7391                                          struct netdev_nested_priv *priv),
7392                                        struct netdev_nested_priv *priv)
7393 {
7394         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7395         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7396         int ret, cur = 0;
7397         bool ignore;
7398
7399         now = dev;
7400         iter = &dev->adj_list.lower;
7401
7402         while (1) {
7403                 if (now != dev) {
7404                         ret = fn(now, priv);
7405                         if (ret)
7406                                 return ret;
7407                 }
7408
7409                 next = NULL;
7410                 while (1) {
7411                         ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7412                         if (!ldev)
7413                                 break;
7414                         if (ignore)
7415                                 continue;
7416
7417                         next = ldev;
7418                         niter = &ldev->adj_list.lower;
7419                         dev_stack[cur] = now;
7420                         iter_stack[cur++] = iter;
7421                         break;
7422                 }
7423
7424                 if (!next) {
7425                         if (!cur)
7426                                 return 0;
7427                         next = dev_stack[--cur];
7428                         niter = iter_stack[cur];
7429                 }
7430
7431                 now = next;
7432                 iter = niter;
7433         }
7434
7435         return 0;
7436 }
7437
7438 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7439                                              struct list_head **iter)
7440 {
7441         struct netdev_adjacent *lower;
7442
7443         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7444         if (&lower->list == &dev->adj_list.lower)
7445                 return NULL;
7446
7447         *iter = &lower->list;
7448
7449         return lower->dev;
7450 }
7451 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7452
7453 static u8 __netdev_upper_depth(struct net_device *dev)
7454 {
7455         struct net_device *udev;
7456         struct list_head *iter;
7457         u8 max_depth = 0;
7458         bool ignore;
7459
7460         for (iter = &dev->adj_list.upper,
7461              udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7462              udev;
7463              udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7464                 if (ignore)
7465                         continue;
7466                 if (max_depth < udev->upper_level)
7467                         max_depth = udev->upper_level;
7468         }
7469
7470         return max_depth;
7471 }
7472
7473 static u8 __netdev_lower_depth(struct net_device *dev)
7474 {
7475         struct net_device *ldev;
7476         struct list_head *iter;
7477         u8 max_depth = 0;
7478         bool ignore;
7479
7480         for (iter = &dev->adj_list.lower,
7481              ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7482              ldev;
7483              ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7484                 if (ignore)
7485                         continue;
7486                 if (max_depth < ldev->lower_level)
7487                         max_depth = ldev->lower_level;
7488         }
7489
7490         return max_depth;
7491 }
7492
7493 static int __netdev_update_upper_level(struct net_device *dev,
7494                                        struct netdev_nested_priv *__unused)
7495 {
7496         dev->upper_level = __netdev_upper_depth(dev) + 1;
7497         return 0;
7498 }
7499
7500 static int __netdev_update_lower_level(struct net_device *dev,
7501                                        struct netdev_nested_priv *priv)
7502 {
7503         dev->lower_level = __netdev_lower_depth(dev) + 1;
7504
7505 #ifdef CONFIG_LOCKDEP
7506         if (!priv)
7507                 return 0;
7508
7509         if (priv->flags & NESTED_SYNC_IMM)
7510                 dev->nested_level = dev->lower_level - 1;
7511         if (priv->flags & NESTED_SYNC_TODO)
7512                 net_unlink_todo(dev);
7513 #endif
7514         return 0;
7515 }
7516
7517 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7518                                   int (*fn)(struct net_device *dev,
7519                                             struct netdev_nested_priv *priv),
7520                                   struct netdev_nested_priv *priv)
7521 {
7522         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7523         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7524         int ret, cur = 0;
7525
7526         now = dev;
7527         iter = &dev->adj_list.lower;
7528
7529         while (1) {
7530                 if (now != dev) {
7531                         ret = fn(now, priv);
7532                         if (ret)
7533                                 return ret;
7534                 }
7535
7536                 next = NULL;
7537                 while (1) {
7538                         ldev = netdev_next_lower_dev_rcu(now, &iter);
7539                         if (!ldev)
7540                                 break;
7541
7542                         next = ldev;
7543                         niter = &ldev->adj_list.lower;
7544                         dev_stack[cur] = now;
7545                         iter_stack[cur++] = iter;
7546                         break;
7547                 }
7548
7549                 if (!next) {
7550                         if (!cur)
7551                                 return 0;
7552                         next = dev_stack[--cur];
7553                         niter = iter_stack[cur];
7554                 }
7555
7556                 now = next;
7557                 iter = niter;
7558         }
7559
7560         return 0;
7561 }
7562 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7563
7564 /**
7565  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7566  *                                     lower neighbour list, RCU
7567  *                                     variant
7568  * @dev: device
7569  *
7570  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7571  * list. The caller must hold RCU read lock.
7572  */
7573 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7574 {
7575         struct netdev_adjacent *lower;
7576
7577         lower = list_first_or_null_rcu(&dev->adj_list.lower,
7578                         struct netdev_adjacent, list);
7579         if (lower)
7580                 return lower->private;
7581         return NULL;
7582 }
7583 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7584
7585 /**
7586  * netdev_master_upper_dev_get_rcu - Get master upper device
7587  * @dev: device
7588  *
7589  * Find a master upper device and return pointer to it or NULL in case
7590  * it's not there. The caller must hold the RCU read lock.
7591  */
7592 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7593 {
7594         struct netdev_adjacent *upper;
7595
7596         upper = list_first_or_null_rcu(&dev->adj_list.upper,
7597                                        struct netdev_adjacent, list);
7598         if (upper && likely(upper->master))
7599                 return upper->dev;
7600         return NULL;
7601 }
7602 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7603
7604 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7605                               struct net_device *adj_dev,
7606                               struct list_head *dev_list)
7607 {
7608         char linkname[IFNAMSIZ+7];
7609
7610         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7611                 "upper_%s" : "lower_%s", adj_dev->name);
7612         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7613                                  linkname);
7614 }
7615 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7616                                char *name,
7617                                struct list_head *dev_list)
7618 {
7619         char linkname[IFNAMSIZ+7];
7620
7621         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7622                 "upper_%s" : "lower_%s", name);
7623         sysfs_remove_link(&(dev->dev.kobj), linkname);
7624 }
7625
7626 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7627                                                  struct net_device *adj_dev,
7628                                                  struct list_head *dev_list)
7629 {
7630         return (dev_list == &dev->adj_list.upper ||
7631                 dev_list == &dev->adj_list.lower) &&
7632                 net_eq(dev_net(dev), dev_net(adj_dev));
7633 }
7634
7635 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7636                                         struct net_device *adj_dev,
7637                                         struct list_head *dev_list,
7638                                         void *private, bool master)
7639 {
7640         struct netdev_adjacent *adj;
7641         int ret;
7642
7643         adj = __netdev_find_adj(adj_dev, dev_list);
7644
7645         if (adj) {
7646                 adj->ref_nr += 1;
7647                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7648                          dev->name, adj_dev->name, adj->ref_nr);
7649
7650                 return 0;
7651         }
7652
7653         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7654         if (!adj)
7655                 return -ENOMEM;
7656
7657         adj->dev = adj_dev;
7658         adj->master = master;
7659         adj->ref_nr = 1;
7660         adj->private = private;
7661         adj->ignore = false;
7662         dev_hold(adj_dev);
7663
7664         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7665                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7666
7667         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7668                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7669                 if (ret)
7670                         goto free_adj;
7671         }
7672
7673         /* Ensure that master link is always the first item in list. */
7674         if (master) {
7675                 ret = sysfs_create_link(&(dev->dev.kobj),
7676                                         &(adj_dev->dev.kobj), "master");
7677                 if (ret)
7678                         goto remove_symlinks;
7679
7680                 list_add_rcu(&adj->list, dev_list);
7681         } else {
7682                 list_add_tail_rcu(&adj->list, dev_list);
7683         }
7684
7685         return 0;
7686
7687 remove_symlinks:
7688         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7689                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7690 free_adj:
7691         kfree(adj);
7692         dev_put(adj_dev);
7693
7694         return ret;
7695 }
7696
7697 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7698                                          struct net_device *adj_dev,
7699                                          u16 ref_nr,
7700                                          struct list_head *dev_list)
7701 {
7702         struct netdev_adjacent *adj;
7703
7704         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7705                  dev->name, adj_dev->name, ref_nr);
7706
7707         adj = __netdev_find_adj(adj_dev, dev_list);
7708
7709         if (!adj) {
7710                 pr_err("Adjacency does not exist for device %s from %s\n",
7711                        dev->name, adj_dev->name);
7712                 WARN_ON(1);
7713                 return;
7714         }
7715
7716         if (adj->ref_nr > ref_nr) {
7717                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7718                          dev->name, adj_dev->name, ref_nr,
7719                          adj->ref_nr - ref_nr);
7720                 adj->ref_nr -= ref_nr;
7721                 return;
7722         }
7723
7724         if (adj->master)
7725                 sysfs_remove_link(&(dev->dev.kobj), "master");
7726
7727         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7728                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7729
7730         list_del_rcu(&adj->list);
7731         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7732                  adj_dev->name, dev->name, adj_dev->name);
7733         dev_put(adj_dev);
7734         kfree_rcu(adj, rcu);
7735 }
7736
7737 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7738                                             struct net_device *upper_dev,
7739                                             struct list_head *up_list,
7740                                             struct list_head *down_list,
7741                                             void *private, bool master)
7742 {
7743         int ret;
7744
7745         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7746                                            private, master);
7747         if (ret)
7748                 return ret;
7749
7750         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7751                                            private, false);
7752         if (ret) {
7753                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7754                 return ret;
7755         }
7756
7757         return 0;
7758 }
7759
7760 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7761                                                struct net_device *upper_dev,
7762                                                u16 ref_nr,
7763                                                struct list_head *up_list,
7764                                                struct list_head *down_list)
7765 {
7766         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7767         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7768 }
7769
7770 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7771                                                 struct net_device *upper_dev,
7772                                                 void *private, bool master)
7773 {
7774         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7775                                                 &dev->adj_list.upper,
7776                                                 &upper_dev->adj_list.lower,
7777                                                 private, master);
7778 }
7779
7780 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7781                                                    struct net_device *upper_dev)
7782 {
7783         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7784                                            &dev->adj_list.upper,
7785                                            &upper_dev->adj_list.lower);
7786 }
7787
7788 static int __netdev_upper_dev_link(struct net_device *dev,
7789                                    struct net_device *upper_dev, bool master,
7790                                    void *upper_priv, void *upper_info,
7791                                    struct netdev_nested_priv *priv,
7792                                    struct netlink_ext_ack *extack)
7793 {
7794         struct netdev_notifier_changeupper_info changeupper_info = {
7795                 .info = {
7796                         .dev = dev,
7797                         .extack = extack,
7798                 },
7799                 .upper_dev = upper_dev,
7800                 .master = master,
7801                 .linking = true,
7802                 .upper_info = upper_info,
7803         };
7804         struct net_device *master_dev;
7805         int ret = 0;
7806
7807         ASSERT_RTNL();
7808
7809         if (dev == upper_dev)
7810                 return -EBUSY;
7811
7812         /* To prevent loops, check if dev is not upper device to upper_dev. */
7813         if (__netdev_has_upper_dev(upper_dev, dev))
7814                 return -EBUSY;
7815
7816         if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7817                 return -EMLINK;
7818
7819         if (!master) {
7820                 if (__netdev_has_upper_dev(dev, upper_dev))
7821                         return -EEXIST;
7822         } else {
7823                 master_dev = __netdev_master_upper_dev_get(dev);
7824                 if (master_dev)
7825                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
7826         }
7827
7828         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7829                                             &changeupper_info.info);
7830         ret = notifier_to_errno(ret);
7831         if (ret)
7832                 return ret;
7833
7834         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7835                                                    master);
7836         if (ret)
7837                 return ret;
7838
7839         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7840                                             &changeupper_info.info);
7841         ret = notifier_to_errno(ret);
7842         if (ret)
7843                 goto rollback;
7844
7845         __netdev_update_upper_level(dev, NULL);
7846         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7847
7848         __netdev_update_lower_level(upper_dev, priv);
7849         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7850                                     priv);
7851
7852         return 0;
7853
7854 rollback:
7855         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7856
7857         return ret;
7858 }
7859
7860 /**
7861  * netdev_upper_dev_link - Add a link to the upper device
7862  * @dev: device
7863  * @upper_dev: new upper device
7864  * @extack: netlink extended ack
7865  *
7866  * Adds a link to device which is upper to this one. The caller must hold
7867  * the RTNL lock. On a failure a negative errno code is returned.
7868  * On success the reference counts are adjusted and the function
7869  * returns zero.
7870  */
7871 int netdev_upper_dev_link(struct net_device *dev,
7872                           struct net_device *upper_dev,
7873                           struct netlink_ext_ack *extack)
7874 {
7875         struct netdev_nested_priv priv = {
7876                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7877                 .data = NULL,
7878         };
7879
7880         return __netdev_upper_dev_link(dev, upper_dev, false,
7881                                        NULL, NULL, &priv, extack);
7882 }
7883 EXPORT_SYMBOL(netdev_upper_dev_link);
7884
7885 /**
7886  * netdev_master_upper_dev_link - Add a master link to the upper device
7887  * @dev: device
7888  * @upper_dev: new upper device
7889  * @upper_priv: upper device private
7890  * @upper_info: upper info to be passed down via notifier
7891  * @extack: netlink extended ack
7892  *
7893  * Adds a link to device which is upper to this one. In this case, only
7894  * one master upper device can be linked, although other non-master devices
7895  * might be linked as well. The caller must hold the RTNL lock.
7896  * On a failure a negative errno code is returned. On success the reference
7897  * counts are adjusted and the function returns zero.
7898  */
7899 int netdev_master_upper_dev_link(struct net_device *dev,
7900                                  struct net_device *upper_dev,
7901                                  void *upper_priv, void *upper_info,
7902                                  struct netlink_ext_ack *extack)
7903 {
7904         struct netdev_nested_priv priv = {
7905                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7906                 .data = NULL,
7907         };
7908
7909         return __netdev_upper_dev_link(dev, upper_dev, true,
7910                                        upper_priv, upper_info, &priv, extack);
7911 }
7912 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7913
7914 static void __netdev_upper_dev_unlink(struct net_device *dev,
7915                                       struct net_device *upper_dev,
7916                                       struct netdev_nested_priv *priv)
7917 {
7918         struct netdev_notifier_changeupper_info changeupper_info = {
7919                 .info = {
7920                         .dev = dev,
7921                 },
7922                 .upper_dev = upper_dev,
7923                 .linking = false,
7924         };
7925
7926         ASSERT_RTNL();
7927
7928         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7929
7930         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7931                                       &changeupper_info.info);
7932
7933         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7934
7935         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7936                                       &changeupper_info.info);
7937
7938         __netdev_update_upper_level(dev, NULL);
7939         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7940
7941         __netdev_update_lower_level(upper_dev, priv);
7942         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7943                                     priv);
7944 }
7945
7946 /**
7947  * netdev_upper_dev_unlink - Removes a link to upper device
7948  * @dev: device
7949  * @upper_dev: new upper device
7950  *
7951  * Removes a link to device which is upper to this one. The caller must hold
7952  * the RTNL lock.
7953  */
7954 void netdev_upper_dev_unlink(struct net_device *dev,
7955                              struct net_device *upper_dev)
7956 {
7957         struct netdev_nested_priv priv = {
7958                 .flags = NESTED_SYNC_TODO,
7959                 .data = NULL,
7960         };
7961
7962         __netdev_upper_dev_unlink(dev, upper_dev, &priv);
7963 }
7964 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7965
7966 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7967                                       struct net_device *lower_dev,
7968                                       bool val)
7969 {
7970         struct netdev_adjacent *adj;
7971
7972         adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7973         if (adj)
7974                 adj->ignore = val;
7975
7976         adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7977         if (adj)
7978                 adj->ignore = val;
7979 }
7980
7981 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7982                                         struct net_device *lower_dev)
7983 {
7984         __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7985 }
7986
7987 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7988                                        struct net_device *lower_dev)
7989 {
7990         __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7991 }
7992
7993 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7994                                    struct net_device *new_dev,
7995                                    struct net_device *dev,
7996                                    struct netlink_ext_ack *extack)
7997 {
7998         struct netdev_nested_priv priv = {
7999                 .flags = 0,
8000                 .data = NULL,
8001         };
8002         int err;
8003
8004         if (!new_dev)
8005                 return 0;
8006
8007         if (old_dev && new_dev != old_dev)
8008                 netdev_adjacent_dev_disable(dev, old_dev);
8009         err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8010                                       extack);
8011         if (err) {
8012                 if (old_dev && new_dev != old_dev)
8013                         netdev_adjacent_dev_enable(dev, old_dev);
8014                 return err;
8015         }
8016
8017         return 0;
8018 }
8019 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8020
8021 void netdev_adjacent_change_commit(struct net_device *old_dev,
8022                                    struct net_device *new_dev,
8023                                    struct net_device *dev)
8024 {
8025         struct netdev_nested_priv priv = {
8026                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8027                 .data = NULL,
8028         };
8029
8030         if (!new_dev || !old_dev)
8031                 return;
8032
8033         if (new_dev == old_dev)
8034                 return;
8035
8036         netdev_adjacent_dev_enable(dev, old_dev);
8037         __netdev_upper_dev_unlink(old_dev, dev, &priv);
8038 }
8039 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8040
8041 void netdev_adjacent_change_abort(struct net_device *old_dev,
8042                                   struct net_device *new_dev,
8043                                   struct net_device *dev)
8044 {
8045         struct netdev_nested_priv priv = {
8046                 .flags = 0,
8047                 .data = NULL,
8048         };
8049
8050         if (!new_dev)
8051                 return;
8052
8053         if (old_dev && new_dev != old_dev)
8054                 netdev_adjacent_dev_enable(dev, old_dev);
8055
8056         __netdev_upper_dev_unlink(new_dev, dev, &priv);
8057 }
8058 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8059
8060 /**
8061  * netdev_bonding_info_change - Dispatch event about slave change
8062  * @dev: device
8063  * @bonding_info: info to dispatch
8064  *
8065  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8066  * The caller must hold the RTNL lock.
8067  */
8068 void netdev_bonding_info_change(struct net_device *dev,
8069                                 struct netdev_bonding_info *bonding_info)
8070 {
8071         struct netdev_notifier_bonding_info info = {
8072                 .info.dev = dev,
8073         };
8074
8075         memcpy(&info.bonding_info, bonding_info,
8076                sizeof(struct netdev_bonding_info));
8077         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8078                                       &info.info);
8079 }
8080 EXPORT_SYMBOL(netdev_bonding_info_change);
8081
8082 /**
8083  * netdev_get_xmit_slave - Get the xmit slave of master device
8084  * @dev: device
8085  * @skb: The packet
8086  * @all_slaves: assume all the slaves are active
8087  *
8088  * The reference counters are not incremented so the caller must be
8089  * careful with locks. The caller must hold RCU lock.
8090  * %NULL is returned if no slave is found.
8091  */
8092
8093 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8094                                          struct sk_buff *skb,
8095                                          bool all_slaves)
8096 {
8097         const struct net_device_ops *ops = dev->netdev_ops;
8098
8099         if (!ops->ndo_get_xmit_slave)
8100                 return NULL;
8101         return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8102 }
8103 EXPORT_SYMBOL(netdev_get_xmit_slave);
8104
8105 static void netdev_adjacent_add_links(struct net_device *dev)
8106 {
8107         struct netdev_adjacent *iter;
8108
8109         struct net *net = dev_net(dev);
8110
8111         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8112                 if (!net_eq(net, dev_net(iter->dev)))
8113                         continue;
8114                 netdev_adjacent_sysfs_add(iter->dev, dev,
8115                                           &iter->dev->adj_list.lower);
8116                 netdev_adjacent_sysfs_add(dev, iter->dev,
8117                                           &dev->adj_list.upper);
8118         }
8119
8120         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8121                 if (!net_eq(net, dev_net(iter->dev)))
8122                         continue;
8123                 netdev_adjacent_sysfs_add(iter->dev, dev,
8124                                           &iter->dev->adj_list.upper);
8125                 netdev_adjacent_sysfs_add(dev, iter->dev,
8126                                           &dev->adj_list.lower);
8127         }
8128 }
8129
8130 static void netdev_adjacent_del_links(struct net_device *dev)
8131 {
8132         struct netdev_adjacent *iter;
8133
8134         struct net *net = dev_net(dev);
8135
8136         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8137                 if (!net_eq(net, dev_net(iter->dev)))
8138                         continue;
8139                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8140                                           &iter->dev->adj_list.lower);
8141                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8142                                           &dev->adj_list.upper);
8143         }
8144
8145         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8146                 if (!net_eq(net, dev_net(iter->dev)))
8147                         continue;
8148                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8149                                           &iter->dev->adj_list.upper);
8150                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8151                                           &dev->adj_list.lower);
8152         }
8153 }
8154
8155 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8156 {
8157         struct netdev_adjacent *iter;
8158
8159         struct net *net = dev_net(dev);
8160
8161         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8162                 if (!net_eq(net, dev_net(iter->dev)))
8163                         continue;
8164                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8165                                           &iter->dev->adj_list.lower);
8166                 netdev_adjacent_sysfs_add(iter->dev, dev,
8167                                           &iter->dev->adj_list.lower);
8168         }
8169
8170         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8171                 if (!net_eq(net, dev_net(iter->dev)))
8172                         continue;
8173                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8174                                           &iter->dev->adj_list.upper);
8175                 netdev_adjacent_sysfs_add(iter->dev, dev,
8176                                           &iter->dev->adj_list.upper);
8177         }
8178 }
8179
8180 void *netdev_lower_dev_get_private(struct net_device *dev,
8181                                    struct net_device *lower_dev)
8182 {
8183         struct netdev_adjacent *lower;
8184
8185         if (!lower_dev)
8186                 return NULL;
8187         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8188         if (!lower)
8189                 return NULL;
8190
8191         return lower->private;
8192 }
8193 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8194
8195
8196 /**
8197  * netdev_lower_state_changed - Dispatch event about lower device state change
8198  * @lower_dev: device
8199  * @lower_state_info: state to dispatch
8200  *
8201  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8202  * The caller must hold the RTNL lock.
8203  */
8204 void netdev_lower_state_changed(struct net_device *lower_dev,
8205                                 void *lower_state_info)
8206 {
8207         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8208                 .info.dev = lower_dev,
8209         };
8210
8211         ASSERT_RTNL();
8212         changelowerstate_info.lower_state_info = lower_state_info;
8213         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8214                                       &changelowerstate_info.info);
8215 }
8216 EXPORT_SYMBOL(netdev_lower_state_changed);
8217
8218 static void dev_change_rx_flags(struct net_device *dev, int flags)
8219 {
8220         const struct net_device_ops *ops = dev->netdev_ops;
8221
8222         if (ops->ndo_change_rx_flags)
8223                 ops->ndo_change_rx_flags(dev, flags);
8224 }
8225
8226 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8227 {
8228         unsigned int old_flags = dev->flags;
8229         kuid_t uid;
8230         kgid_t gid;
8231
8232         ASSERT_RTNL();
8233
8234         dev->flags |= IFF_PROMISC;
8235         dev->promiscuity += inc;
8236         if (dev->promiscuity == 0) {
8237                 /*
8238                  * Avoid overflow.
8239                  * If inc causes overflow, untouch promisc and return error.
8240                  */
8241                 if (inc < 0)
8242                         dev->flags &= ~IFF_PROMISC;
8243                 else {
8244                         dev->promiscuity -= inc;
8245                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8246                                 dev->name);
8247                         return -EOVERFLOW;
8248                 }
8249         }
8250         if (dev->flags != old_flags) {
8251                 pr_info("device %s %s promiscuous mode\n",
8252                         dev->name,
8253                         dev->flags & IFF_PROMISC ? "entered" : "left");
8254                 if (audit_enabled) {
8255                         current_uid_gid(&uid, &gid);
8256                         audit_log(audit_context(), GFP_ATOMIC,
8257                                   AUDIT_ANOM_PROMISCUOUS,
8258                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8259                                   dev->name, (dev->flags & IFF_PROMISC),
8260                                   (old_flags & IFF_PROMISC),
8261                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
8262                                   from_kuid(&init_user_ns, uid),
8263                                   from_kgid(&init_user_ns, gid),
8264                                   audit_get_sessionid(current));
8265                 }
8266
8267                 dev_change_rx_flags(dev, IFF_PROMISC);
8268         }
8269         if (notify)
8270                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
8271         return 0;
8272 }
8273
8274 /**
8275  *      dev_set_promiscuity     - update promiscuity count on a device
8276  *      @dev: device
8277  *      @inc: modifier
8278  *
8279  *      Add or remove promiscuity from a device. While the count in the device
8280  *      remains above zero the interface remains promiscuous. Once it hits zero
8281  *      the device reverts back to normal filtering operation. A negative inc
8282  *      value is used to drop promiscuity on the device.
8283  *      Return 0 if successful or a negative errno code on error.
8284  */
8285 int dev_set_promiscuity(struct net_device *dev, int inc)
8286 {
8287         unsigned int old_flags = dev->flags;
8288         int err;
8289
8290         err = __dev_set_promiscuity(dev, inc, true);
8291         if (err < 0)
8292                 return err;
8293         if (dev->flags != old_flags)
8294                 dev_set_rx_mode(dev);
8295         return err;
8296 }
8297 EXPORT_SYMBOL(dev_set_promiscuity);
8298
8299 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8300 {
8301         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8302
8303         ASSERT_RTNL();
8304
8305         dev->flags |= IFF_ALLMULTI;
8306         dev->allmulti += inc;
8307         if (dev->allmulti == 0) {
8308                 /*
8309                  * Avoid overflow.
8310                  * If inc causes overflow, untouch allmulti and return error.
8311                  */
8312                 if (inc < 0)
8313                         dev->flags &= ~IFF_ALLMULTI;
8314                 else {
8315                         dev->allmulti -= inc;
8316                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8317                                 dev->name);
8318                         return -EOVERFLOW;
8319                 }
8320         }
8321         if (dev->flags ^ old_flags) {
8322                 dev_change_rx_flags(dev, IFF_ALLMULTI);
8323                 dev_set_rx_mode(dev);
8324                 if (notify)
8325                         __dev_notify_flags(dev, old_flags,
8326                                            dev->gflags ^ old_gflags);
8327         }
8328         return 0;
8329 }
8330
8331 /**
8332  *      dev_set_allmulti        - update allmulti count on a device
8333  *      @dev: device
8334  *      @inc: modifier
8335  *
8336  *      Add or remove reception of all multicast frames to a device. While the
8337  *      count in the device remains above zero the interface remains listening
8338  *      to all interfaces. Once it hits zero the device reverts back to normal
8339  *      filtering operation. A negative @inc value is used to drop the counter
8340  *      when releasing a resource needing all multicasts.
8341  *      Return 0 if successful or a negative errno code on error.
8342  */
8343
8344 int dev_set_allmulti(struct net_device *dev, int inc)
8345 {
8346         return __dev_set_allmulti(dev, inc, true);
8347 }
8348 EXPORT_SYMBOL(dev_set_allmulti);
8349
8350 /*
8351  *      Upload unicast and multicast address lists to device and
8352  *      configure RX filtering. When the device doesn't support unicast
8353  *      filtering it is put in promiscuous mode while unicast addresses
8354  *      are present.
8355  */
8356 void __dev_set_rx_mode(struct net_device *dev)
8357 {
8358         const struct net_device_ops *ops = dev->netdev_ops;
8359
8360         /* dev_open will call this function so the list will stay sane. */
8361         if (!(dev->flags&IFF_UP))
8362                 return;
8363
8364         if (!netif_device_present(dev))
8365                 return;
8366
8367         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8368                 /* Unicast addresses changes may only happen under the rtnl,
8369                  * therefore calling __dev_set_promiscuity here is safe.
8370                  */
8371                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8372                         __dev_set_promiscuity(dev, 1, false);
8373                         dev->uc_promisc = true;
8374                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8375                         __dev_set_promiscuity(dev, -1, false);
8376                         dev->uc_promisc = false;
8377                 }
8378         }
8379
8380         if (ops->ndo_set_rx_mode)
8381                 ops->ndo_set_rx_mode(dev);
8382 }
8383
8384 void dev_set_rx_mode(struct net_device *dev)
8385 {
8386         netif_addr_lock_bh(dev);
8387         __dev_set_rx_mode(dev);
8388         netif_addr_unlock_bh(dev);
8389 }
8390
8391 /**
8392  *      dev_get_flags - get flags reported to userspace
8393  *      @dev: device
8394  *
8395  *      Get the combination of flag bits exported through APIs to userspace.
8396  */
8397 unsigned int dev_get_flags(const struct net_device *dev)
8398 {
8399         unsigned int flags;
8400
8401         flags = (dev->flags & ~(IFF_PROMISC |
8402                                 IFF_ALLMULTI |
8403                                 IFF_RUNNING |
8404                                 IFF_LOWER_UP |
8405                                 IFF_DORMANT)) |
8406                 (dev->gflags & (IFF_PROMISC |
8407                                 IFF_ALLMULTI));
8408
8409         if (netif_running(dev)) {
8410                 if (netif_oper_up(dev))
8411                         flags |= IFF_RUNNING;
8412                 if (netif_carrier_ok(dev))
8413                         flags |= IFF_LOWER_UP;
8414                 if (netif_dormant(dev))
8415                         flags |= IFF_DORMANT;
8416         }
8417
8418         return flags;
8419 }
8420 EXPORT_SYMBOL(dev_get_flags);
8421
8422 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8423                        struct netlink_ext_ack *extack)
8424 {
8425         unsigned int old_flags = dev->flags;
8426         int ret;
8427
8428         ASSERT_RTNL();
8429
8430         /*
8431          *      Set the flags on our device.
8432          */
8433
8434         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8435                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8436                                IFF_AUTOMEDIA)) |
8437                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8438                                     IFF_ALLMULTI));
8439
8440         /*
8441          *      Load in the correct multicast list now the flags have changed.
8442          */
8443
8444         if ((old_flags ^ flags) & IFF_MULTICAST)
8445                 dev_change_rx_flags(dev, IFF_MULTICAST);
8446
8447         dev_set_rx_mode(dev);
8448
8449         /*
8450          *      Have we downed the interface. We handle IFF_UP ourselves
8451          *      according to user attempts to set it, rather than blindly
8452          *      setting it.
8453          */
8454
8455         ret = 0;
8456         if ((old_flags ^ flags) & IFF_UP) {
8457                 if (old_flags & IFF_UP)
8458                         __dev_close(dev);
8459                 else
8460                         ret = __dev_open(dev, extack);
8461         }
8462
8463         if ((flags ^ dev->gflags) & IFF_PROMISC) {
8464                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8465                 unsigned int old_flags = dev->flags;
8466
8467                 dev->gflags ^= IFF_PROMISC;
8468
8469                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8470                         if (dev->flags != old_flags)
8471                                 dev_set_rx_mode(dev);
8472         }
8473
8474         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8475          * is important. Some (broken) drivers set IFF_PROMISC, when
8476          * IFF_ALLMULTI is requested not asking us and not reporting.
8477          */
8478         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8479                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8480
8481                 dev->gflags ^= IFF_ALLMULTI;
8482                 __dev_set_allmulti(dev, inc, false);
8483         }
8484
8485         return ret;
8486 }
8487
8488 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8489                         unsigned int gchanges)
8490 {
8491         unsigned int changes = dev->flags ^ old_flags;
8492
8493         if (gchanges)
8494                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8495
8496         if (changes & IFF_UP) {
8497                 if (dev->flags & IFF_UP)
8498                         call_netdevice_notifiers(NETDEV_UP, dev);
8499                 else
8500                         call_netdevice_notifiers(NETDEV_DOWN, dev);
8501         }
8502
8503         if (dev->flags & IFF_UP &&
8504             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8505                 struct netdev_notifier_change_info change_info = {
8506                         .info = {
8507                                 .dev = dev,
8508                         },
8509                         .flags_changed = changes,
8510                 };
8511
8512                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8513         }
8514 }
8515
8516 /**
8517  *      dev_change_flags - change device settings
8518  *      @dev: device
8519  *      @flags: device state flags
8520  *      @extack: netlink extended ack
8521  *
8522  *      Change settings on device based state flags. The flags are
8523  *      in the userspace exported format.
8524  */
8525 int dev_change_flags(struct net_device *dev, unsigned int flags,
8526                      struct netlink_ext_ack *extack)
8527 {
8528         int ret;
8529         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8530
8531         ret = __dev_change_flags(dev, flags, extack);
8532         if (ret < 0)
8533                 return ret;
8534
8535         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8536         __dev_notify_flags(dev, old_flags, changes);
8537         return ret;
8538 }
8539 EXPORT_SYMBOL(dev_change_flags);
8540
8541 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8542 {
8543         const struct net_device_ops *ops = dev->netdev_ops;
8544
8545         if (ops->ndo_change_mtu)
8546                 return ops->ndo_change_mtu(dev, new_mtu);
8547
8548         /* Pairs with all the lockless reads of dev->mtu in the stack */
8549         WRITE_ONCE(dev->mtu, new_mtu);
8550         return 0;
8551 }
8552 EXPORT_SYMBOL(__dev_set_mtu);
8553
8554 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8555                      struct netlink_ext_ack *extack)
8556 {
8557         /* MTU must be positive, and in range */
8558         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8559                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8560                 return -EINVAL;
8561         }
8562
8563         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8564                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8565                 return -EINVAL;
8566         }
8567         return 0;
8568 }
8569
8570 /**
8571  *      dev_set_mtu_ext - Change maximum transfer unit
8572  *      @dev: device
8573  *      @new_mtu: new transfer unit
8574  *      @extack: netlink extended ack
8575  *
8576  *      Change the maximum transfer size of the network device.
8577  */
8578 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8579                     struct netlink_ext_ack *extack)
8580 {
8581         int err, orig_mtu;
8582
8583         if (new_mtu == dev->mtu)
8584                 return 0;
8585
8586         err = dev_validate_mtu(dev, new_mtu, extack);
8587         if (err)
8588                 return err;
8589
8590         if (!netif_device_present(dev))
8591                 return -ENODEV;
8592
8593         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8594         err = notifier_to_errno(err);
8595         if (err)
8596                 return err;
8597
8598         orig_mtu = dev->mtu;
8599         err = __dev_set_mtu(dev, new_mtu);
8600
8601         if (!err) {
8602                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8603                                                    orig_mtu);
8604                 err = notifier_to_errno(err);
8605                 if (err) {
8606                         /* setting mtu back and notifying everyone again,
8607                          * so that they have a chance to revert changes.
8608                          */
8609                         __dev_set_mtu(dev, orig_mtu);
8610                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8611                                                      new_mtu);
8612                 }
8613         }
8614         return err;
8615 }
8616
8617 int dev_set_mtu(struct net_device *dev, int new_mtu)
8618 {
8619         struct netlink_ext_ack extack;
8620         int err;
8621
8622         memset(&extack, 0, sizeof(extack));
8623         err = dev_set_mtu_ext(dev, new_mtu, &extack);
8624         if (err && extack._msg)
8625                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8626         return err;
8627 }
8628 EXPORT_SYMBOL(dev_set_mtu);
8629
8630 /**
8631  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
8632  *      @dev: device
8633  *      @new_len: new tx queue length
8634  */
8635 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8636 {
8637         unsigned int orig_len = dev->tx_queue_len;
8638         int res;
8639
8640         if (new_len != (unsigned int)new_len)
8641                 return -ERANGE;
8642
8643         if (new_len != orig_len) {
8644                 dev->tx_queue_len = new_len;
8645                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8646                 res = notifier_to_errno(res);
8647                 if (res)
8648                         goto err_rollback;
8649                 res = dev_qdisc_change_tx_queue_len(dev);
8650                 if (res)
8651                         goto err_rollback;
8652         }
8653
8654         return 0;
8655
8656 err_rollback:
8657         netdev_err(dev, "refused to change device tx_queue_len\n");
8658         dev->tx_queue_len = orig_len;
8659         return res;
8660 }
8661
8662 /**
8663  *      dev_set_group - Change group this device belongs to
8664  *      @dev: device
8665  *      @new_group: group this device should belong to
8666  */
8667 void dev_set_group(struct net_device *dev, int new_group)
8668 {
8669         dev->group = new_group;
8670 }
8671 EXPORT_SYMBOL(dev_set_group);
8672
8673 /**
8674  *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8675  *      @dev: device
8676  *      @addr: new address
8677  *      @extack: netlink extended ack
8678  */
8679 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8680                               struct netlink_ext_ack *extack)
8681 {
8682         struct netdev_notifier_pre_changeaddr_info info = {
8683                 .info.dev = dev,
8684                 .info.extack = extack,
8685                 .dev_addr = addr,
8686         };
8687         int rc;
8688
8689         rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8690         return notifier_to_errno(rc);
8691 }
8692 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8693
8694 /**
8695  *      dev_set_mac_address - Change Media Access Control Address
8696  *      @dev: device
8697  *      @sa: new address
8698  *      @extack: netlink extended ack
8699  *
8700  *      Change the hardware (MAC) address of the device
8701  */
8702 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8703                         struct netlink_ext_ack *extack)
8704 {
8705         const struct net_device_ops *ops = dev->netdev_ops;
8706         int err;
8707
8708         if (!ops->ndo_set_mac_address)
8709                 return -EOPNOTSUPP;
8710         if (sa->sa_family != dev->type)
8711                 return -EINVAL;
8712         if (!netif_device_present(dev))
8713                 return -ENODEV;
8714         err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8715         if (err)
8716                 return err;
8717         err = ops->ndo_set_mac_address(dev, sa);
8718         if (err)
8719                 return err;
8720         dev->addr_assign_type = NET_ADDR_SET;
8721         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8722         add_device_randomness(dev->dev_addr, dev->addr_len);
8723         return 0;
8724 }
8725 EXPORT_SYMBOL(dev_set_mac_address);
8726
8727 /**
8728  *      dev_change_carrier - Change device carrier
8729  *      @dev: device
8730  *      @new_carrier: new value
8731  *
8732  *      Change device carrier
8733  */
8734 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8735 {
8736         const struct net_device_ops *ops = dev->netdev_ops;
8737
8738         if (!ops->ndo_change_carrier)
8739                 return -EOPNOTSUPP;
8740         if (!netif_device_present(dev))
8741                 return -ENODEV;
8742         return ops->ndo_change_carrier(dev, new_carrier);
8743 }
8744 EXPORT_SYMBOL(dev_change_carrier);
8745
8746 /**
8747  *      dev_get_phys_port_id - Get device physical port ID
8748  *      @dev: device
8749  *      @ppid: port ID
8750  *
8751  *      Get device physical port ID
8752  */
8753 int dev_get_phys_port_id(struct net_device *dev,
8754                          struct netdev_phys_item_id *ppid)
8755 {
8756         const struct net_device_ops *ops = dev->netdev_ops;
8757
8758         if (!ops->ndo_get_phys_port_id)
8759                 return -EOPNOTSUPP;
8760         return ops->ndo_get_phys_port_id(dev, ppid);
8761 }
8762 EXPORT_SYMBOL(dev_get_phys_port_id);
8763
8764 /**
8765  *      dev_get_phys_port_name - Get device physical port name
8766  *      @dev: device
8767  *      @name: port name
8768  *      @len: limit of bytes to copy to name
8769  *
8770  *      Get device physical port name
8771  */
8772 int dev_get_phys_port_name(struct net_device *dev,
8773                            char *name, size_t len)
8774 {
8775         const struct net_device_ops *ops = dev->netdev_ops;
8776         int err;
8777
8778         if (ops->ndo_get_phys_port_name) {
8779                 err = ops->ndo_get_phys_port_name(dev, name, len);
8780                 if (err != -EOPNOTSUPP)
8781                         return err;
8782         }
8783         return devlink_compat_phys_port_name_get(dev, name, len);
8784 }
8785 EXPORT_SYMBOL(dev_get_phys_port_name);
8786
8787 /**
8788  *      dev_get_port_parent_id - Get the device's port parent identifier
8789  *      @dev: network device
8790  *      @ppid: pointer to a storage for the port's parent identifier
8791  *      @recurse: allow/disallow recursion to lower devices
8792  *
8793  *      Get the devices's port parent identifier
8794  */
8795 int dev_get_port_parent_id(struct net_device *dev,
8796                            struct netdev_phys_item_id *ppid,
8797                            bool recurse)
8798 {
8799         const struct net_device_ops *ops = dev->netdev_ops;
8800         struct netdev_phys_item_id first = { };
8801         struct net_device *lower_dev;
8802         struct list_head *iter;
8803         int err;
8804
8805         if (ops->ndo_get_port_parent_id) {
8806                 err = ops->ndo_get_port_parent_id(dev, ppid);
8807                 if (err != -EOPNOTSUPP)
8808                         return err;
8809         }
8810
8811         err = devlink_compat_switch_id_get(dev, ppid);
8812         if (!err || err != -EOPNOTSUPP)
8813                 return err;
8814
8815         if (!recurse)
8816                 return -EOPNOTSUPP;
8817
8818         netdev_for_each_lower_dev(dev, lower_dev, iter) {
8819                 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
8820                 if (err)
8821                         break;
8822                 if (!first.id_len)
8823                         first = *ppid;
8824                 else if (memcmp(&first, ppid, sizeof(*ppid)))
8825                         return -EOPNOTSUPP;
8826         }
8827
8828         return err;
8829 }
8830 EXPORT_SYMBOL(dev_get_port_parent_id);
8831
8832 /**
8833  *      netdev_port_same_parent_id - Indicate if two network devices have
8834  *      the same port parent identifier
8835  *      @a: first network device
8836  *      @b: second network device
8837  */
8838 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8839 {
8840         struct netdev_phys_item_id a_id = { };
8841         struct netdev_phys_item_id b_id = { };
8842
8843         if (dev_get_port_parent_id(a, &a_id, true) ||
8844             dev_get_port_parent_id(b, &b_id, true))
8845                 return false;
8846
8847         return netdev_phys_item_id_same(&a_id, &b_id);
8848 }
8849 EXPORT_SYMBOL(netdev_port_same_parent_id);
8850
8851 /**
8852  *      dev_change_proto_down - update protocol port state information
8853  *      @dev: device
8854  *      @proto_down: new value
8855  *
8856  *      This info can be used by switch drivers to set the phys state of the
8857  *      port.
8858  */
8859 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8860 {
8861         const struct net_device_ops *ops = dev->netdev_ops;
8862
8863         if (!ops->ndo_change_proto_down)
8864                 return -EOPNOTSUPP;
8865         if (!netif_device_present(dev))
8866                 return -ENODEV;
8867         return ops->ndo_change_proto_down(dev, proto_down);
8868 }
8869 EXPORT_SYMBOL(dev_change_proto_down);
8870
8871 /**
8872  *      dev_change_proto_down_generic - generic implementation for
8873  *      ndo_change_proto_down that sets carrier according to
8874  *      proto_down.
8875  *
8876  *      @dev: device
8877  *      @proto_down: new value
8878  */
8879 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8880 {
8881         if (proto_down)
8882                 netif_carrier_off(dev);
8883         else
8884                 netif_carrier_on(dev);
8885         dev->proto_down = proto_down;
8886         return 0;
8887 }
8888 EXPORT_SYMBOL(dev_change_proto_down_generic);
8889
8890 /**
8891  *      dev_change_proto_down_reason - proto down reason
8892  *
8893  *      @dev: device
8894  *      @mask: proto down mask
8895  *      @value: proto down value
8896  */
8897 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
8898                                   u32 value)
8899 {
8900         int b;
8901
8902         if (!mask) {
8903                 dev->proto_down_reason = value;
8904         } else {
8905                 for_each_set_bit(b, &mask, 32) {
8906                         if (value & (1 << b))
8907                                 dev->proto_down_reason |= BIT(b);
8908                         else
8909                                 dev->proto_down_reason &= ~BIT(b);
8910                 }
8911         }
8912 }
8913 EXPORT_SYMBOL(dev_change_proto_down_reason);
8914
8915 struct bpf_xdp_link {
8916         struct bpf_link link;
8917         struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
8918         int flags;
8919 };
8920
8921 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
8922 {
8923         if (flags & XDP_FLAGS_HW_MODE)
8924                 return XDP_MODE_HW;
8925         if (flags & XDP_FLAGS_DRV_MODE)
8926                 return XDP_MODE_DRV;
8927         if (flags & XDP_FLAGS_SKB_MODE)
8928                 return XDP_MODE_SKB;
8929         return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
8930 }
8931
8932 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
8933 {
8934         switch (mode) {
8935         case XDP_MODE_SKB:
8936                 return generic_xdp_install;
8937         case XDP_MODE_DRV:
8938         case XDP_MODE_HW:
8939                 return dev->netdev_ops->ndo_bpf;
8940         default:
8941                 return NULL;
8942         }
8943 }
8944
8945 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
8946                                          enum bpf_xdp_mode mode)
8947 {
8948         return dev->xdp_state[mode].link;
8949 }
8950
8951 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
8952                                      enum bpf_xdp_mode mode)
8953 {
8954         struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
8955
8956         if (link)
8957                 return link->link.prog;
8958         return dev->xdp_state[mode].prog;
8959 }
8960
8961 static u8 dev_xdp_prog_count(struct net_device *dev)
8962 {
8963         u8 count = 0;
8964         int i;
8965
8966         for (i = 0; i < __MAX_XDP_MODE; i++)
8967                 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
8968                         count++;
8969         return count;
8970 }
8971
8972 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
8973 {
8974         struct bpf_prog *prog = dev_xdp_prog(dev, mode);
8975
8976         return prog ? prog->aux->id : 0;
8977 }
8978
8979 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
8980                              struct bpf_xdp_link *link)
8981 {
8982         dev->xdp_state[mode].link = link;
8983         dev->xdp_state[mode].prog = NULL;
8984 }
8985
8986 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
8987                              struct bpf_prog *prog)
8988 {
8989         dev->xdp_state[mode].link = NULL;
8990         dev->xdp_state[mode].prog = prog;
8991 }
8992
8993 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
8994                            bpf_op_t bpf_op, struct netlink_ext_ack *extack,
8995                            u32 flags, struct bpf_prog *prog)
8996 {
8997         struct netdev_bpf xdp;
8998         int err;
8999
9000         memset(&xdp, 0, sizeof(xdp));
9001         xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9002         xdp.extack = extack;
9003         xdp.flags = flags;
9004         xdp.prog = prog;
9005
9006         /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9007          * "moved" into driver), so they don't increment it on their own, but
9008          * they do decrement refcnt when program is detached or replaced.
9009          * Given net_device also owns link/prog, we need to bump refcnt here
9010          * to prevent drivers from underflowing it.
9011          */
9012         if (prog)
9013                 bpf_prog_inc(prog);
9014         err = bpf_op(dev, &xdp);
9015         if (err) {
9016                 if (prog)
9017                         bpf_prog_put(prog);
9018                 return err;
9019         }
9020
9021         if (mode != XDP_MODE_HW)
9022                 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9023
9024         return 0;
9025 }
9026
9027 static void dev_xdp_uninstall(struct net_device *dev)
9028 {
9029         struct bpf_xdp_link *link;
9030         struct bpf_prog *prog;
9031         enum bpf_xdp_mode mode;
9032         bpf_op_t bpf_op;
9033
9034         ASSERT_RTNL();
9035
9036         for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9037                 prog = dev_xdp_prog(dev, mode);
9038                 if (!prog)
9039                         continue;
9040
9041                 bpf_op = dev_xdp_bpf_op(dev, mode);
9042                 if (!bpf_op)
9043                         continue;
9044
9045                 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9046
9047                 /* auto-detach link from net device */
9048                 link = dev_xdp_link(dev, mode);
9049                 if (link)
9050                         link->dev = NULL;
9051                 else
9052                         bpf_prog_put(prog);
9053
9054                 dev_xdp_set_link(dev, mode, NULL);
9055         }
9056 }
9057
9058 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9059                           struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9060                           struct bpf_prog *old_prog, u32 flags)
9061 {
9062         unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9063         struct bpf_prog *cur_prog;
9064         enum bpf_xdp_mode mode;
9065         bpf_op_t bpf_op;
9066         int err;
9067
9068         ASSERT_RTNL();
9069
9070         /* either link or prog attachment, never both */
9071         if (link && (new_prog || old_prog))
9072                 return -EINVAL;
9073         /* link supports only XDP mode flags */
9074         if (link && (flags & ~XDP_FLAGS_MODES)) {
9075                 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9076                 return -EINVAL;
9077         }
9078         /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9079         if (num_modes > 1) {
9080                 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9081                 return -EINVAL;
9082         }
9083         /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9084         if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9085                 NL_SET_ERR_MSG(extack,
9086                                "More than one program loaded, unset mode is ambiguous");
9087                 return -EINVAL;
9088         }
9089         /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9090         if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9091                 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9092                 return -EINVAL;
9093         }
9094
9095         mode = dev_xdp_mode(dev, flags);
9096         /* can't replace attached link */
9097         if (dev_xdp_link(dev, mode)) {
9098                 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9099                 return -EBUSY;
9100         }
9101
9102         cur_prog = dev_xdp_prog(dev, mode);
9103         /* can't replace attached prog with link */
9104         if (link && cur_prog) {
9105                 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9106                 return -EBUSY;
9107         }
9108         if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9109                 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9110                 return -EEXIST;
9111         }
9112
9113         /* put effective new program into new_prog */
9114         if (link)
9115                 new_prog = link->link.prog;
9116
9117         if (new_prog) {
9118                 bool offload = mode == XDP_MODE_HW;
9119                 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9120                                                ? XDP_MODE_DRV : XDP_MODE_SKB;
9121
9122                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9123                         NL_SET_ERR_MSG(extack, "XDP program already attached");
9124                         return -EBUSY;
9125                 }
9126                 if (!offload && dev_xdp_prog(dev, other_mode)) {
9127                         NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9128                         return -EEXIST;
9129                 }
9130                 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9131                         NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9132                         return -EINVAL;
9133                 }
9134                 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9135                         NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9136                         return -EINVAL;
9137                 }
9138                 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9139                         NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9140                         return -EINVAL;
9141                 }
9142         }
9143
9144         /* don't call drivers if the effective program didn't change */
9145         if (new_prog != cur_prog) {
9146                 bpf_op = dev_xdp_bpf_op(dev, mode);
9147                 if (!bpf_op) {
9148                         NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9149                         return -EOPNOTSUPP;
9150                 }
9151
9152                 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9153                 if (err)
9154                         return err;
9155         }
9156
9157         if (link)
9158                 dev_xdp_set_link(dev, mode, link);
9159         else
9160                 dev_xdp_set_prog(dev, mode, new_prog);
9161         if (cur_prog)
9162                 bpf_prog_put(cur_prog);
9163
9164         return 0;
9165 }
9166
9167 static int dev_xdp_attach_link(struct net_device *dev,
9168                                struct netlink_ext_ack *extack,
9169                                struct bpf_xdp_link *link)
9170 {
9171         return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9172 }
9173
9174 static int dev_xdp_detach_link(struct net_device *dev,
9175                                struct netlink_ext_ack *extack,
9176                                struct bpf_xdp_link *link)
9177 {
9178         enum bpf_xdp_mode mode;
9179         bpf_op_t bpf_op;
9180
9181         ASSERT_RTNL();
9182
9183         mode = dev_xdp_mode(dev, link->flags);
9184         if (dev_xdp_link(dev, mode) != link)
9185                 return -EINVAL;
9186
9187         bpf_op = dev_xdp_bpf_op(dev, mode);
9188         WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9189         dev_xdp_set_link(dev, mode, NULL);
9190         return 0;
9191 }
9192
9193 static void bpf_xdp_link_release(struct bpf_link *link)
9194 {
9195         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9196
9197         rtnl_lock();
9198
9199         /* if racing with net_device's tear down, xdp_link->dev might be
9200          * already NULL, in which case link was already auto-detached
9201          */
9202         if (xdp_link->dev) {
9203                 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9204                 xdp_link->dev = NULL;
9205         }
9206
9207         rtnl_unlock();
9208 }
9209
9210 static int bpf_xdp_link_detach(struct bpf_link *link)
9211 {
9212         bpf_xdp_link_release(link);
9213         return 0;
9214 }
9215
9216 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9217 {
9218         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9219
9220         kfree(xdp_link);
9221 }
9222
9223 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9224                                      struct seq_file *seq)
9225 {
9226         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9227         u32 ifindex = 0;
9228
9229         rtnl_lock();
9230         if (xdp_link->dev)
9231                 ifindex = xdp_link->dev->ifindex;
9232         rtnl_unlock();
9233
9234         seq_printf(seq, "ifindex:\t%u\n", ifindex);
9235 }
9236
9237 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9238                                        struct bpf_link_info *info)
9239 {
9240         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9241         u32 ifindex = 0;
9242
9243         rtnl_lock();
9244         if (xdp_link->dev)
9245                 ifindex = xdp_link->dev->ifindex;
9246         rtnl_unlock();
9247
9248         info->xdp.ifindex = ifindex;
9249         return 0;
9250 }
9251
9252 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9253                                struct bpf_prog *old_prog)
9254 {
9255         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9256         enum bpf_xdp_mode mode;
9257         bpf_op_t bpf_op;
9258         int err = 0;
9259
9260         rtnl_lock();
9261
9262         /* link might have been auto-released already, so fail */
9263         if (!xdp_link->dev) {
9264                 err = -ENOLINK;
9265                 goto out_unlock;
9266         }
9267
9268         if (old_prog && link->prog != old_prog) {
9269                 err = -EPERM;
9270                 goto out_unlock;
9271         }
9272         old_prog = link->prog;
9273         if (old_prog == new_prog) {
9274                 /* no-op, don't disturb drivers */
9275                 bpf_prog_put(new_prog);
9276                 goto out_unlock;
9277         }
9278
9279         mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9280         bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9281         err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9282                               xdp_link->flags, new_prog);
9283         if (err)
9284                 goto out_unlock;
9285
9286         old_prog = xchg(&link->prog, new_prog);
9287         bpf_prog_put(old_prog);
9288
9289 out_unlock:
9290         rtnl_unlock();
9291         return err;
9292 }
9293
9294 static const struct bpf_link_ops bpf_xdp_link_lops = {
9295         .release = bpf_xdp_link_release,
9296         .dealloc = bpf_xdp_link_dealloc,
9297         .detach = bpf_xdp_link_detach,
9298         .show_fdinfo = bpf_xdp_link_show_fdinfo,
9299         .fill_link_info = bpf_xdp_link_fill_link_info,
9300         .update_prog = bpf_xdp_link_update,
9301 };
9302
9303 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9304 {
9305         struct net *net = current->nsproxy->net_ns;
9306         struct bpf_link_primer link_primer;
9307         struct bpf_xdp_link *link;
9308         struct net_device *dev;
9309         int err, fd;
9310
9311         dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9312         if (!dev)
9313                 return -EINVAL;
9314
9315         link = kzalloc(sizeof(*link), GFP_USER);
9316         if (!link) {
9317                 err = -ENOMEM;
9318                 goto out_put_dev;
9319         }
9320
9321         bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9322         link->dev = dev;
9323         link->flags = attr->link_create.flags;
9324
9325         err = bpf_link_prime(&link->link, &link_primer);
9326         if (err) {
9327                 kfree(link);
9328                 goto out_put_dev;
9329         }
9330
9331         rtnl_lock();
9332         err = dev_xdp_attach_link(dev, NULL, link);
9333         rtnl_unlock();
9334
9335         if (err) {
9336                 bpf_link_cleanup(&link_primer);
9337                 goto out_put_dev;
9338         }
9339
9340         fd = bpf_link_settle(&link_primer);
9341         /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9342         dev_put(dev);
9343         return fd;
9344
9345 out_put_dev:
9346         dev_put(dev);
9347         return err;
9348 }
9349
9350 /**
9351  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
9352  *      @dev: device
9353  *      @extack: netlink extended ack
9354  *      @fd: new program fd or negative value to clear
9355  *      @expected_fd: old program fd that userspace expects to replace or clear
9356  *      @flags: xdp-related flags
9357  *
9358  *      Set or clear a bpf program for a device
9359  */
9360 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9361                       int fd, int expected_fd, u32 flags)
9362 {
9363         enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9364         struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9365         int err;
9366
9367         ASSERT_RTNL();
9368
9369         if (fd >= 0) {
9370                 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9371                                                  mode != XDP_MODE_SKB);
9372                 if (IS_ERR(new_prog))
9373                         return PTR_ERR(new_prog);
9374         }
9375
9376         if (expected_fd >= 0) {
9377                 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9378                                                  mode != XDP_MODE_SKB);
9379                 if (IS_ERR(old_prog)) {
9380                         err = PTR_ERR(old_prog);
9381                         old_prog = NULL;
9382                         goto err_out;
9383                 }
9384         }
9385
9386         err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9387
9388 err_out:
9389         if (err && new_prog)
9390                 bpf_prog_put(new_prog);
9391         if (old_prog)
9392                 bpf_prog_put(old_prog);
9393         return err;
9394 }
9395
9396 /**
9397  *      dev_new_index   -       allocate an ifindex
9398  *      @net: the applicable net namespace
9399  *
9400  *      Returns a suitable unique value for a new device interface
9401  *      number.  The caller must hold the rtnl semaphore or the
9402  *      dev_base_lock to be sure it remains unique.
9403  */
9404 static int dev_new_index(struct net *net)
9405 {
9406         int ifindex = net->ifindex;
9407
9408         for (;;) {
9409                 if (++ifindex <= 0)
9410                         ifindex = 1;
9411                 if (!__dev_get_by_index(net, ifindex))
9412                         return net->ifindex = ifindex;
9413         }
9414 }
9415
9416 /* Delayed registration/unregisteration */
9417 static LIST_HEAD(net_todo_list);
9418 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9419
9420 static void net_set_todo(struct net_device *dev)
9421 {
9422         list_add_tail(&dev->todo_list, &net_todo_list);
9423         dev_net(dev)->dev_unreg_count++;
9424 }
9425
9426 static void rollback_registered_many(struct list_head *head)
9427 {
9428         struct net_device *dev, *tmp;
9429         LIST_HEAD(close_head);
9430
9431         BUG_ON(dev_boot_phase);
9432         ASSERT_RTNL();
9433
9434         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9435                 /* Some devices call without registering
9436                  * for initialization unwind. Remove those
9437                  * devices and proceed with the remaining.
9438                  */
9439                 if (dev->reg_state == NETREG_UNINITIALIZED) {
9440                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
9441                                  dev->name, dev);
9442
9443                         WARN_ON(1);
9444                         list_del(&dev->unreg_list);
9445                         continue;
9446                 }
9447                 dev->dismantle = true;
9448                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
9449         }
9450
9451         /* If device is running, close it first. */
9452         list_for_each_entry(dev, head, unreg_list)
9453                 list_add_tail(&dev->close_list, &close_head);
9454         dev_close_many(&close_head, true);
9455
9456         list_for_each_entry(dev, head, unreg_list) {
9457                 /* And unlink it from device chain. */
9458                 unlist_netdevice(dev);
9459
9460                 dev->reg_state = NETREG_UNREGISTERING;
9461         }
9462         flush_all_backlogs();
9463
9464         synchronize_net();
9465
9466         list_for_each_entry(dev, head, unreg_list) {
9467                 struct sk_buff *skb = NULL;
9468
9469                 /* Shutdown queueing discipline. */
9470                 dev_shutdown(dev);
9471
9472                 dev_xdp_uninstall(dev);
9473
9474                 /* Notify protocols, that we are about to destroy
9475                  * this device. They should clean all the things.
9476                  */
9477                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9478
9479                 if (!dev->rtnl_link_ops ||
9480                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
9481                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
9482                                                      GFP_KERNEL, NULL, 0);
9483
9484                 /*
9485                  *      Flush the unicast and multicast chains
9486                  */
9487                 dev_uc_flush(dev);
9488                 dev_mc_flush(dev);
9489
9490                 netdev_name_node_alt_flush(dev);
9491                 netdev_name_node_free(dev->name_node);
9492
9493                 if (dev->netdev_ops->ndo_uninit)
9494                         dev->netdev_ops->ndo_uninit(dev);
9495
9496                 if (skb)
9497                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
9498
9499                 /* Notifier chain MUST detach us all upper devices. */
9500                 WARN_ON(netdev_has_any_upper_dev(dev));
9501                 WARN_ON(netdev_has_any_lower_dev(dev));
9502
9503                 /* Remove entries from kobject tree */
9504                 netdev_unregister_kobject(dev);
9505 #ifdef CONFIG_XPS
9506                 /* Remove XPS queueing entries */
9507                 netif_reset_xps_queues_gt(dev, 0);
9508 #endif
9509         }
9510
9511         synchronize_net();
9512
9513         list_for_each_entry(dev, head, unreg_list)
9514                 dev_put(dev);
9515 }
9516
9517 static void rollback_registered(struct net_device *dev)
9518 {
9519         LIST_HEAD(single);
9520
9521         list_add(&dev->unreg_list, &single);
9522         rollback_registered_many(&single);
9523         list_del(&single);
9524 }
9525
9526 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9527         struct net_device *upper, netdev_features_t features)
9528 {
9529         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9530         netdev_features_t feature;
9531         int feature_bit;
9532
9533         for_each_netdev_feature(upper_disables, feature_bit) {
9534                 feature = __NETIF_F_BIT(feature_bit);
9535                 if (!(upper->wanted_features & feature)
9536                     && (features & feature)) {
9537                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9538                                    &feature, upper->name);
9539                         features &= ~feature;
9540                 }
9541         }
9542
9543         return features;
9544 }
9545
9546 static void netdev_sync_lower_features(struct net_device *upper,
9547         struct net_device *lower, netdev_features_t features)
9548 {
9549         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9550         netdev_features_t feature;
9551         int feature_bit;
9552
9553         for_each_netdev_feature(upper_disables, feature_bit) {
9554                 feature = __NETIF_F_BIT(feature_bit);
9555                 if (!(features & feature) && (lower->features & feature)) {
9556                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9557                                    &feature, lower->name);
9558                         lower->wanted_features &= ~feature;
9559                         __netdev_update_features(lower);
9560
9561                         if (unlikely(lower->features & feature))
9562                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9563                                             &feature, lower->name);
9564                         else
9565                                 netdev_features_change(lower);
9566                 }
9567         }
9568 }
9569
9570 static netdev_features_t netdev_fix_features(struct net_device *dev,
9571         netdev_features_t features)
9572 {
9573         /* Fix illegal checksum combinations */
9574         if ((features & NETIF_F_HW_CSUM) &&
9575             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9576                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9577                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9578         }
9579
9580         /* TSO requires that SG is present as well. */
9581         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9582                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9583                 features &= ~NETIF_F_ALL_TSO;
9584         }
9585
9586         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9587                                         !(features & NETIF_F_IP_CSUM)) {
9588                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9589                 features &= ~NETIF_F_TSO;
9590                 features &= ~NETIF_F_TSO_ECN;
9591         }
9592
9593         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9594                                          !(features & NETIF_F_IPV6_CSUM)) {
9595                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9596                 features &= ~NETIF_F_TSO6;
9597         }
9598
9599         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9600         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9601                 features &= ~NETIF_F_TSO_MANGLEID;
9602
9603         /* TSO ECN requires that TSO is present as well. */
9604         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9605                 features &= ~NETIF_F_TSO_ECN;
9606
9607         /* Software GSO depends on SG. */
9608         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9609                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9610                 features &= ~NETIF_F_GSO;
9611         }
9612
9613         /* GSO partial features require GSO partial be set */
9614         if ((features & dev->gso_partial_features) &&
9615             !(features & NETIF_F_GSO_PARTIAL)) {
9616                 netdev_dbg(dev,
9617                            "Dropping partially supported GSO features since no GSO partial.\n");
9618                 features &= ~dev->gso_partial_features;
9619         }
9620
9621         if (!(features & NETIF_F_RXCSUM)) {
9622                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9623                  * successfully merged by hardware must also have the
9624                  * checksum verified by hardware.  If the user does not
9625                  * want to enable RXCSUM, logically, we should disable GRO_HW.
9626                  */
9627                 if (features & NETIF_F_GRO_HW) {
9628                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9629                         features &= ~NETIF_F_GRO_HW;
9630                 }
9631         }
9632
9633         /* LRO/HW-GRO features cannot be combined with RX-FCS */
9634         if (features & NETIF_F_RXFCS) {
9635                 if (features & NETIF_F_LRO) {
9636                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9637                         features &= ~NETIF_F_LRO;
9638                 }
9639
9640                 if (features & NETIF_F_GRO_HW) {
9641                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9642                         features &= ~NETIF_F_GRO_HW;
9643                 }
9644         }
9645
9646         if ((features & NETIF_F_HW_TLS_TX) && !(features & NETIF_F_HW_CSUM)) {
9647                 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9648                 features &= ~NETIF_F_HW_TLS_TX;
9649         }
9650
9651         return features;
9652 }
9653
9654 int __netdev_update_features(struct net_device *dev)
9655 {
9656         struct net_device *upper, *lower;
9657         netdev_features_t features;
9658         struct list_head *iter;
9659         int err = -1;
9660
9661         ASSERT_RTNL();
9662
9663         features = netdev_get_wanted_features(dev);
9664
9665         if (dev->netdev_ops->ndo_fix_features)
9666                 features = dev->netdev_ops->ndo_fix_features(dev, features);
9667
9668         /* driver might be less strict about feature dependencies */
9669         features = netdev_fix_features(dev, features);
9670
9671         /* some features can't be enabled if they're off on an upper device */
9672         netdev_for_each_upper_dev_rcu(dev, upper, iter)
9673                 features = netdev_sync_upper_features(dev, upper, features);
9674
9675         if (dev->features == features)
9676                 goto sync_lower;
9677
9678         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9679                 &dev->features, &features);
9680
9681         if (dev->netdev_ops->ndo_set_features)
9682                 err = dev->netdev_ops->ndo_set_features(dev, features);
9683         else
9684                 err = 0;
9685
9686         if (unlikely(err < 0)) {
9687                 netdev_err(dev,
9688                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
9689                         err, &features, &dev->features);
9690                 /* return non-0 since some features might have changed and
9691                  * it's better to fire a spurious notification than miss it
9692                  */
9693                 return -1;
9694         }
9695
9696 sync_lower:
9697         /* some features must be disabled on lower devices when disabled
9698          * on an upper device (think: bonding master or bridge)
9699          */
9700         netdev_for_each_lower_dev(dev, lower, iter)
9701                 netdev_sync_lower_features(dev, lower, features);
9702
9703         if (!err) {
9704                 netdev_features_t diff = features ^ dev->features;
9705
9706                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9707                         /* udp_tunnel_{get,drop}_rx_info both need
9708                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9709                          * device, or they won't do anything.
9710                          * Thus we need to update dev->features
9711                          * *before* calling udp_tunnel_get_rx_info,
9712                          * but *after* calling udp_tunnel_drop_rx_info.
9713                          */
9714                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9715                                 dev->features = features;
9716                                 udp_tunnel_get_rx_info(dev);
9717                         } else {
9718                                 udp_tunnel_drop_rx_info(dev);
9719                         }
9720                 }
9721
9722                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9723                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9724                                 dev->features = features;
9725                                 err |= vlan_get_rx_ctag_filter_info(dev);
9726                         } else {
9727                                 vlan_drop_rx_ctag_filter_info(dev);
9728                         }
9729                 }
9730
9731                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9732                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9733                                 dev->features = features;
9734                                 err |= vlan_get_rx_stag_filter_info(dev);
9735                         } else {
9736                                 vlan_drop_rx_stag_filter_info(dev);
9737                         }
9738                 }
9739
9740                 dev->features = features;
9741         }
9742
9743         return err < 0 ? 0 : 1;
9744 }
9745
9746 /**
9747  *      netdev_update_features - recalculate device features
9748  *      @dev: the device to check
9749  *
9750  *      Recalculate dev->features set and send notifications if it
9751  *      has changed. Should be called after driver or hardware dependent
9752  *      conditions might have changed that influence the features.
9753  */
9754 void netdev_update_features(struct net_device *dev)
9755 {
9756         if (__netdev_update_features(dev))
9757                 netdev_features_change(dev);
9758 }
9759 EXPORT_SYMBOL(netdev_update_features);
9760
9761 /**
9762  *      netdev_change_features - recalculate device features
9763  *      @dev: the device to check
9764  *
9765  *      Recalculate dev->features set and send notifications even
9766  *      if they have not changed. Should be called instead of
9767  *      netdev_update_features() if also dev->vlan_features might
9768  *      have changed to allow the changes to be propagated to stacked
9769  *      VLAN devices.
9770  */
9771 void netdev_change_features(struct net_device *dev)
9772 {
9773         __netdev_update_features(dev);
9774         netdev_features_change(dev);
9775 }
9776 EXPORT_SYMBOL(netdev_change_features);
9777
9778 /**
9779  *      netif_stacked_transfer_operstate -      transfer operstate
9780  *      @rootdev: the root or lower level device to transfer state from
9781  *      @dev: the device to transfer operstate to
9782  *
9783  *      Transfer operational state from root to device. This is normally
9784  *      called when a stacking relationship exists between the root
9785  *      device and the device(a leaf device).
9786  */
9787 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9788                                         struct net_device *dev)
9789 {
9790         if (rootdev->operstate == IF_OPER_DORMANT)
9791                 netif_dormant_on(dev);
9792         else
9793                 netif_dormant_off(dev);
9794
9795         if (rootdev->operstate == IF_OPER_TESTING)
9796                 netif_testing_on(dev);
9797         else
9798                 netif_testing_off(dev);
9799
9800         if (netif_carrier_ok(rootdev))
9801                 netif_carrier_on(dev);
9802         else
9803                 netif_carrier_off(dev);
9804 }
9805 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9806
9807 static int netif_alloc_rx_queues(struct net_device *dev)
9808 {
9809         unsigned int i, count = dev->num_rx_queues;
9810         struct netdev_rx_queue *rx;
9811         size_t sz = count * sizeof(*rx);
9812         int err = 0;
9813
9814         BUG_ON(count < 1);
9815
9816         rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9817         if (!rx)
9818                 return -ENOMEM;
9819
9820         dev->_rx = rx;
9821
9822         for (i = 0; i < count; i++) {
9823                 rx[i].dev = dev;
9824
9825                 /* XDP RX-queue setup */
9826                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9827                 if (err < 0)
9828                         goto err_rxq_info;
9829         }
9830         return 0;
9831
9832 err_rxq_info:
9833         /* Rollback successful reg's and free other resources */
9834         while (i--)
9835                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9836         kvfree(dev->_rx);
9837         dev->_rx = NULL;
9838         return err;
9839 }
9840
9841 static void netif_free_rx_queues(struct net_device *dev)
9842 {
9843         unsigned int i, count = dev->num_rx_queues;
9844
9845         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9846         if (!dev->_rx)
9847                 return;
9848
9849         for (i = 0; i < count; i++)
9850                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9851
9852         kvfree(dev->_rx);
9853 }
9854
9855 static void netdev_init_one_queue(struct net_device *dev,
9856                                   struct netdev_queue *queue, void *_unused)
9857 {
9858         /* Initialize queue lock */
9859         spin_lock_init(&queue->_xmit_lock);
9860         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9861         queue->xmit_lock_owner = -1;
9862         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9863         queue->dev = dev;
9864 #ifdef CONFIG_BQL
9865         dql_init(&queue->dql, HZ);
9866 #endif
9867 }
9868
9869 static void netif_free_tx_queues(struct net_device *dev)
9870 {
9871         kvfree(dev->_tx);
9872 }
9873
9874 static int netif_alloc_netdev_queues(struct net_device *dev)
9875 {
9876         unsigned int count = dev->num_tx_queues;
9877         struct netdev_queue *tx;
9878         size_t sz = count * sizeof(*tx);
9879
9880         if (count < 1 || count > 0xffff)
9881                 return -EINVAL;
9882
9883         tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9884         if (!tx)
9885                 return -ENOMEM;
9886
9887         dev->_tx = tx;
9888
9889         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9890         spin_lock_init(&dev->tx_global_lock);
9891
9892         return 0;
9893 }
9894
9895 void netif_tx_stop_all_queues(struct net_device *dev)
9896 {
9897         unsigned int i;
9898
9899         for (i = 0; i < dev->num_tx_queues; i++) {
9900                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9901
9902                 netif_tx_stop_queue(txq);
9903         }
9904 }
9905 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9906
9907 /**
9908  *      register_netdevice      - register a network device
9909  *      @dev: device to register
9910  *
9911  *      Take a completed network device structure and add it to the kernel
9912  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9913  *      chain. 0 is returned on success. A negative errno code is returned
9914  *      on a failure to set up the device, or if the name is a duplicate.
9915  *
9916  *      Callers must hold the rtnl semaphore. You may want
9917  *      register_netdev() instead of this.
9918  *
9919  *      BUGS:
9920  *      The locking appears insufficient to guarantee two parallel registers
9921  *      will not get the same name.
9922  */
9923
9924 int register_netdevice(struct net_device *dev)
9925 {
9926         int ret;
9927         struct net *net = dev_net(dev);
9928
9929         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9930                      NETDEV_FEATURE_COUNT);
9931         BUG_ON(dev_boot_phase);
9932         ASSERT_RTNL();
9933
9934         might_sleep();
9935
9936         /* When net_device's are persistent, this will be fatal. */
9937         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9938         BUG_ON(!net);
9939
9940         ret = ethtool_check_ops(dev->ethtool_ops);
9941         if (ret)
9942                 return ret;
9943
9944         spin_lock_init(&dev->addr_list_lock);
9945         netdev_set_addr_lockdep_class(dev);
9946
9947         ret = dev_get_valid_name(net, dev, dev->name);
9948         if (ret < 0)
9949                 goto out;
9950
9951         ret = -ENOMEM;
9952         dev->name_node = netdev_name_node_head_alloc(dev);
9953         if (!dev->name_node)
9954                 goto out;
9955
9956         /* Init, if this function is available */
9957         if (dev->netdev_ops->ndo_init) {
9958                 ret = dev->netdev_ops->ndo_init(dev);
9959                 if (ret) {
9960                         if (ret > 0)
9961                                 ret = -EIO;
9962                         goto err_free_name;
9963                 }
9964         }
9965
9966         if (((dev->hw_features | dev->features) &
9967              NETIF_F_HW_VLAN_CTAG_FILTER) &&
9968             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9969              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9970                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9971                 ret = -EINVAL;
9972                 goto err_uninit;
9973         }
9974
9975         ret = -EBUSY;
9976         if (!dev->ifindex)
9977                 dev->ifindex = dev_new_index(net);
9978         else if (__dev_get_by_index(net, dev->ifindex))
9979                 goto err_uninit;
9980
9981         /* Transfer changeable features to wanted_features and enable
9982          * software offloads (GSO and GRO).
9983          */
9984         dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
9985         dev->features |= NETIF_F_SOFT_FEATURES;
9986
9987         if (dev->netdev_ops->ndo_udp_tunnel_add) {
9988                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9989                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9990         }
9991
9992         dev->wanted_features = dev->features & dev->hw_features;
9993
9994         if (!(dev->flags & IFF_LOOPBACK))
9995                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
9996
9997         /* If IPv4 TCP segmentation offload is supported we should also
9998          * allow the device to enable segmenting the frame with the option
9999          * of ignoring a static IP ID value.  This doesn't enable the
10000          * feature itself but allows the user to enable it later.
10001          */
10002         if (dev->hw_features & NETIF_F_TSO)
10003                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10004         if (dev->vlan_features & NETIF_F_TSO)
10005                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10006         if (dev->mpls_features & NETIF_F_TSO)
10007                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10008         if (dev->hw_enc_features & NETIF_F_TSO)
10009                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10010
10011         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10012          */
10013         dev->vlan_features |= NETIF_F_HIGHDMA;
10014
10015         /* Make NETIF_F_SG inheritable to tunnel devices.
10016          */
10017         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10018
10019         /* Make NETIF_F_SG inheritable to MPLS.
10020          */
10021         dev->mpls_features |= NETIF_F_SG;
10022
10023         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10024         ret = notifier_to_errno(ret);
10025         if (ret)
10026                 goto err_uninit;
10027
10028         ret = netdev_register_kobject(dev);
10029         if (ret) {
10030                 dev->reg_state = NETREG_UNREGISTERED;
10031                 goto err_uninit;
10032         }
10033         dev->reg_state = NETREG_REGISTERED;
10034
10035         __netdev_update_features(dev);
10036
10037         /*
10038          *      Default initial state at registry is that the
10039          *      device is present.
10040          */
10041
10042         set_bit(__LINK_STATE_PRESENT, &dev->state);
10043
10044         linkwatch_init_dev(dev);
10045
10046         dev_init_scheduler(dev);
10047         dev_hold(dev);
10048         list_netdevice(dev);
10049         add_device_randomness(dev->dev_addr, dev->addr_len);
10050
10051         /* If the device has permanent device address, driver should
10052          * set dev_addr and also addr_assign_type should be set to
10053          * NET_ADDR_PERM (default value).
10054          */
10055         if (dev->addr_assign_type == NET_ADDR_PERM)
10056                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10057
10058         /* Notify protocols, that a new device appeared. */
10059         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10060         ret = notifier_to_errno(ret);
10061         if (ret) {
10062                 rollback_registered(dev);
10063                 rcu_barrier();
10064
10065                 dev->reg_state = NETREG_UNREGISTERED;
10066                 /* We should put the kobject that hold in
10067                  * netdev_unregister_kobject(), otherwise
10068                  * the net device cannot be freed when
10069                  * driver calls free_netdev(), because the
10070                  * kobject is being hold.
10071                  */
10072                 kobject_put(&dev->dev.kobj);
10073         }
10074         /*
10075          *      Prevent userspace races by waiting until the network
10076          *      device is fully setup before sending notifications.
10077          */
10078         if (!dev->rtnl_link_ops ||
10079             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10080                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10081
10082 out:
10083         return ret;
10084
10085 err_uninit:
10086         if (dev->netdev_ops->ndo_uninit)
10087                 dev->netdev_ops->ndo_uninit(dev);
10088         if (dev->priv_destructor)
10089                 dev->priv_destructor(dev);
10090 err_free_name:
10091         netdev_name_node_free(dev->name_node);
10092         goto out;
10093 }
10094 EXPORT_SYMBOL(register_netdevice);
10095
10096 /**
10097  *      init_dummy_netdev       - init a dummy network device for NAPI
10098  *      @dev: device to init
10099  *
10100  *      This takes a network device structure and initialize the minimum
10101  *      amount of fields so it can be used to schedule NAPI polls without
10102  *      registering a full blown interface. This is to be used by drivers
10103  *      that need to tie several hardware interfaces to a single NAPI
10104  *      poll scheduler due to HW limitations.
10105  */
10106 int init_dummy_netdev(struct net_device *dev)
10107 {
10108         /* Clear everything. Note we don't initialize spinlocks
10109          * are they aren't supposed to be taken by any of the
10110          * NAPI code and this dummy netdev is supposed to be
10111          * only ever used for NAPI polls
10112          */
10113         memset(dev, 0, sizeof(struct net_device));
10114
10115         /* make sure we BUG if trying to hit standard
10116          * register/unregister code path
10117          */
10118         dev->reg_state = NETREG_DUMMY;
10119
10120         /* NAPI wants this */
10121         INIT_LIST_HEAD(&dev->napi_list);
10122
10123         /* a dummy interface is started by default */
10124         set_bit(__LINK_STATE_PRESENT, &dev->state);
10125         set_bit(__LINK_STATE_START, &dev->state);
10126
10127         /* napi_busy_loop stats accounting wants this */
10128         dev_net_set(dev, &init_net);
10129
10130         /* Note : We dont allocate pcpu_refcnt for dummy devices,
10131          * because users of this 'device' dont need to change
10132          * its refcount.
10133          */
10134
10135         return 0;
10136 }
10137 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10138
10139
10140 /**
10141  *      register_netdev - register a network device
10142  *      @dev: device to register
10143  *
10144  *      Take a completed network device structure and add it to the kernel
10145  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10146  *      chain. 0 is returned on success. A negative errno code is returned
10147  *      on a failure to set up the device, or if the name is a duplicate.
10148  *
10149  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
10150  *      and expands the device name if you passed a format string to
10151  *      alloc_netdev.
10152  */
10153 int register_netdev(struct net_device *dev)
10154 {
10155         int err;
10156
10157         if (rtnl_lock_killable())
10158                 return -EINTR;
10159         err = register_netdevice(dev);
10160         rtnl_unlock();
10161         return err;
10162 }
10163 EXPORT_SYMBOL(register_netdev);
10164
10165 int netdev_refcnt_read(const struct net_device *dev)
10166 {
10167         int i, refcnt = 0;
10168
10169         for_each_possible_cpu(i)
10170                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10171         return refcnt;
10172 }
10173 EXPORT_SYMBOL(netdev_refcnt_read);
10174
10175 #define WAIT_REFS_MIN_MSECS 1
10176 #define WAIT_REFS_MAX_MSECS 250
10177 /**
10178  * netdev_wait_allrefs - wait until all references are gone.
10179  * @dev: target net_device
10180  *
10181  * This is called when unregistering network devices.
10182  *
10183  * Any protocol or device that holds a reference should register
10184  * for netdevice notification, and cleanup and put back the
10185  * reference if they receive an UNREGISTER event.
10186  * We can get stuck here if buggy protocols don't correctly
10187  * call dev_put.
10188  */
10189 static void netdev_wait_allrefs(struct net_device *dev)
10190 {
10191         unsigned long rebroadcast_time, warning_time;
10192         int wait = 0, refcnt;
10193
10194         linkwatch_forget_dev(dev);
10195
10196         rebroadcast_time = warning_time = jiffies;
10197         refcnt = netdev_refcnt_read(dev);
10198
10199         while (refcnt != 0) {
10200                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10201                         rtnl_lock();
10202
10203                         /* Rebroadcast unregister notification */
10204                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10205
10206                         __rtnl_unlock();
10207                         rcu_barrier();
10208                         rtnl_lock();
10209
10210                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10211                                      &dev->state)) {
10212                                 /* We must not have linkwatch events
10213                                  * pending on unregister. If this
10214                                  * happens, we simply run the queue
10215                                  * unscheduled, resulting in a noop
10216                                  * for this device.
10217                                  */
10218                                 linkwatch_run_queue();
10219                         }
10220
10221                         __rtnl_unlock();
10222
10223                         rebroadcast_time = jiffies;
10224                 }
10225
10226                 if (!wait) {
10227                         rcu_barrier();
10228                         wait = WAIT_REFS_MIN_MSECS;
10229                 } else {
10230                         msleep(wait);
10231                         wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10232                 }
10233
10234                 refcnt = netdev_refcnt_read(dev);
10235
10236                 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
10237                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10238                                  dev->name, refcnt);
10239                         warning_time = jiffies;
10240                 }
10241         }
10242 }
10243
10244 /* The sequence is:
10245  *
10246  *      rtnl_lock();
10247  *      ...
10248  *      register_netdevice(x1);
10249  *      register_netdevice(x2);
10250  *      ...
10251  *      unregister_netdevice(y1);
10252  *      unregister_netdevice(y2);
10253  *      ...
10254  *      rtnl_unlock();
10255  *      free_netdev(y1);
10256  *      free_netdev(y2);
10257  *
10258  * We are invoked by rtnl_unlock().
10259  * This allows us to deal with problems:
10260  * 1) We can delete sysfs objects which invoke hotplug
10261  *    without deadlocking with linkwatch via keventd.
10262  * 2) Since we run with the RTNL semaphore not held, we can sleep
10263  *    safely in order to wait for the netdev refcnt to drop to zero.
10264  *
10265  * We must not return until all unregister events added during
10266  * the interval the lock was held have been completed.
10267  */
10268 void netdev_run_todo(void)
10269 {
10270         struct list_head list;
10271 #ifdef CONFIG_LOCKDEP
10272         struct list_head unlink_list;
10273
10274         list_replace_init(&net_unlink_list, &unlink_list);
10275
10276         while (!list_empty(&unlink_list)) {
10277                 struct net_device *dev = list_first_entry(&unlink_list,
10278                                                           struct net_device,
10279                                                           unlink_list);
10280                 list_del_init(&dev->unlink_list);
10281                 dev->nested_level = dev->lower_level - 1;
10282         }
10283 #endif
10284
10285         /* Snapshot list, allow later requests */
10286         list_replace_init(&net_todo_list, &list);
10287
10288         __rtnl_unlock();
10289
10290
10291         /* Wait for rcu callbacks to finish before next phase */
10292         if (!list_empty(&list))
10293                 rcu_barrier();
10294
10295         while (!list_empty(&list)) {
10296                 struct net_device *dev
10297                         = list_first_entry(&list, struct net_device, todo_list);
10298                 list_del(&dev->todo_list);
10299
10300                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10301                         pr_err("network todo '%s' but state %d\n",
10302                                dev->name, dev->reg_state);
10303                         dump_stack();
10304                         continue;
10305                 }
10306
10307                 dev->reg_state = NETREG_UNREGISTERED;
10308
10309                 netdev_wait_allrefs(dev);
10310
10311                 /* paranoia */
10312                 BUG_ON(netdev_refcnt_read(dev));
10313                 BUG_ON(!list_empty(&dev->ptype_all));
10314                 BUG_ON(!list_empty(&dev->ptype_specific));
10315                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10316                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10317 #if IS_ENABLED(CONFIG_DECNET)
10318                 WARN_ON(dev->dn_ptr);
10319 #endif
10320                 if (dev->priv_destructor)
10321                         dev->priv_destructor(dev);
10322                 if (dev->needs_free_netdev)
10323                         free_netdev(dev);
10324
10325                 /* Report a network device has been unregistered */
10326                 rtnl_lock();
10327                 dev_net(dev)->dev_unreg_count--;
10328                 __rtnl_unlock();
10329                 wake_up(&netdev_unregistering_wq);
10330
10331                 /* Free network device */
10332                 kobject_put(&dev->dev.kobj);
10333         }
10334 }
10335
10336 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10337  * all the same fields in the same order as net_device_stats, with only
10338  * the type differing, but rtnl_link_stats64 may have additional fields
10339  * at the end for newer counters.
10340  */
10341 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10342                              const struct net_device_stats *netdev_stats)
10343 {
10344 #if BITS_PER_LONG == 64
10345         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10346         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10347         /* zero out counters that only exist in rtnl_link_stats64 */
10348         memset((char *)stats64 + sizeof(*netdev_stats), 0,
10349                sizeof(*stats64) - sizeof(*netdev_stats));
10350 #else
10351         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10352         const unsigned long *src = (const unsigned long *)netdev_stats;
10353         u64 *dst = (u64 *)stats64;
10354
10355         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10356         for (i = 0; i < n; i++)
10357                 dst[i] = src[i];
10358         /* zero out counters that only exist in rtnl_link_stats64 */
10359         memset((char *)stats64 + n * sizeof(u64), 0,
10360                sizeof(*stats64) - n * sizeof(u64));
10361 #endif
10362 }
10363 EXPORT_SYMBOL(netdev_stats_to_stats64);
10364
10365 /**
10366  *      dev_get_stats   - get network device statistics
10367  *      @dev: device to get statistics from
10368  *      @storage: place to store stats
10369  *
10370  *      Get network statistics from device. Return @storage.
10371  *      The device driver may provide its own method by setting
10372  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10373  *      otherwise the internal statistics structure is used.
10374  */
10375 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10376                                         struct rtnl_link_stats64 *storage)
10377 {
10378         const struct net_device_ops *ops = dev->netdev_ops;
10379
10380         if (ops->ndo_get_stats64) {
10381                 memset(storage, 0, sizeof(*storage));
10382                 ops->ndo_get_stats64(dev, storage);
10383         } else if (ops->ndo_get_stats) {
10384                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10385         } else {
10386                 netdev_stats_to_stats64(storage, &dev->stats);
10387         }
10388         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10389         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10390         storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10391         return storage;
10392 }
10393 EXPORT_SYMBOL(dev_get_stats);
10394
10395 /**
10396  *      dev_fetch_sw_netstats - get per-cpu network device statistics
10397  *      @s: place to store stats
10398  *      @netstats: per-cpu network stats to read from
10399  *
10400  *      Read per-cpu network statistics and populate the related fields in @s.
10401  */
10402 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10403                            const struct pcpu_sw_netstats __percpu *netstats)
10404 {
10405         int cpu;
10406
10407         for_each_possible_cpu(cpu) {
10408                 const struct pcpu_sw_netstats *stats;
10409                 struct pcpu_sw_netstats tmp;
10410                 unsigned int start;
10411
10412                 stats = per_cpu_ptr(netstats, cpu);
10413                 do {
10414                         start = u64_stats_fetch_begin_irq(&stats->syncp);
10415                         tmp.rx_packets = stats->rx_packets;
10416                         tmp.rx_bytes   = stats->rx_bytes;
10417                         tmp.tx_packets = stats->tx_packets;
10418                         tmp.tx_bytes   = stats->tx_bytes;
10419                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10420
10421                 s->rx_packets += tmp.rx_packets;
10422                 s->rx_bytes   += tmp.rx_bytes;
10423                 s->tx_packets += tmp.tx_packets;
10424                 s->tx_bytes   += tmp.tx_bytes;
10425         }
10426 }
10427 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10428
10429 /**
10430  *      dev_get_tstats64 - ndo_get_stats64 implementation
10431  *      @dev: device to get statistics from
10432  *      @s: place to store stats
10433  *
10434  *      Populate @s from dev->stats and dev->tstats. Can be used as
10435  *      ndo_get_stats64() callback.
10436  */
10437 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10438 {
10439         netdev_stats_to_stats64(s, &dev->stats);
10440         dev_fetch_sw_netstats(s, dev->tstats);
10441 }
10442 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10443
10444 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10445 {
10446         struct netdev_queue *queue = dev_ingress_queue(dev);
10447
10448 #ifdef CONFIG_NET_CLS_ACT
10449         if (queue)
10450                 return queue;
10451         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10452         if (!queue)
10453                 return NULL;
10454         netdev_init_one_queue(dev, queue, NULL);
10455         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10456         queue->qdisc_sleeping = &noop_qdisc;
10457         rcu_assign_pointer(dev->ingress_queue, queue);
10458 #endif
10459         return queue;
10460 }
10461
10462 static const struct ethtool_ops default_ethtool_ops;
10463
10464 void netdev_set_default_ethtool_ops(struct net_device *dev,
10465                                     const struct ethtool_ops *ops)
10466 {
10467         if (dev->ethtool_ops == &default_ethtool_ops)
10468                 dev->ethtool_ops = ops;
10469 }
10470 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10471
10472 void netdev_freemem(struct net_device *dev)
10473 {
10474         char *addr = (char *)dev - dev->padded;
10475
10476         kvfree(addr);
10477 }
10478
10479 /**
10480  * alloc_netdev_mqs - allocate network device
10481  * @sizeof_priv: size of private data to allocate space for
10482  * @name: device name format string
10483  * @name_assign_type: origin of device name
10484  * @setup: callback to initialize device
10485  * @txqs: the number of TX subqueues to allocate
10486  * @rxqs: the number of RX subqueues to allocate
10487  *
10488  * Allocates a struct net_device with private data area for driver use
10489  * and performs basic initialization.  Also allocates subqueue structs
10490  * for each queue on the device.
10491  */
10492 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10493                 unsigned char name_assign_type,
10494                 void (*setup)(struct net_device *),
10495                 unsigned int txqs, unsigned int rxqs)
10496 {
10497         struct net_device *dev;
10498         unsigned int alloc_size;
10499         struct net_device *p;
10500
10501         BUG_ON(strlen(name) >= sizeof(dev->name));
10502
10503         if (txqs < 1) {
10504                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10505                 return NULL;
10506         }
10507
10508         if (rxqs < 1) {
10509                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10510                 return NULL;
10511         }
10512
10513         alloc_size = sizeof(struct net_device);
10514         if (sizeof_priv) {
10515                 /* ensure 32-byte alignment of private area */
10516                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10517                 alloc_size += sizeof_priv;
10518         }
10519         /* ensure 32-byte alignment of whole construct */
10520         alloc_size += NETDEV_ALIGN - 1;
10521
10522         p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10523         if (!p)
10524                 return NULL;
10525
10526         dev = PTR_ALIGN(p, NETDEV_ALIGN);
10527         dev->padded = (char *)dev - (char *)p;
10528
10529         dev->pcpu_refcnt = alloc_percpu(int);
10530         if (!dev->pcpu_refcnt)
10531                 goto free_dev;
10532
10533         if (dev_addr_init(dev))
10534                 goto free_pcpu;
10535
10536         dev_mc_init(dev);
10537         dev_uc_init(dev);
10538
10539         dev_net_set(dev, &init_net);
10540
10541         dev->gso_max_size = GSO_MAX_SIZE;
10542         dev->gso_max_segs = GSO_MAX_SEGS;
10543         dev->upper_level = 1;
10544         dev->lower_level = 1;
10545 #ifdef CONFIG_LOCKDEP
10546         dev->nested_level = 0;
10547         INIT_LIST_HEAD(&dev->unlink_list);
10548 #endif
10549
10550         INIT_LIST_HEAD(&dev->napi_list);
10551         INIT_LIST_HEAD(&dev->unreg_list);
10552         INIT_LIST_HEAD(&dev->close_list);
10553         INIT_LIST_HEAD(&dev->link_watch_list);
10554         INIT_LIST_HEAD(&dev->adj_list.upper);
10555         INIT_LIST_HEAD(&dev->adj_list.lower);
10556         INIT_LIST_HEAD(&dev->ptype_all);
10557         INIT_LIST_HEAD(&dev->ptype_specific);
10558         INIT_LIST_HEAD(&dev->net_notifier_list);
10559 #ifdef CONFIG_NET_SCHED
10560         hash_init(dev->qdisc_hash);
10561 #endif
10562         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10563         setup(dev);
10564
10565         if (!dev->tx_queue_len) {
10566                 dev->priv_flags |= IFF_NO_QUEUE;
10567                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10568         }
10569
10570         dev->num_tx_queues = txqs;
10571         dev->real_num_tx_queues = txqs;
10572         if (netif_alloc_netdev_queues(dev))
10573                 goto free_all;
10574
10575         dev->num_rx_queues = rxqs;
10576         dev->real_num_rx_queues = rxqs;
10577         if (netif_alloc_rx_queues(dev))
10578                 goto free_all;
10579
10580         strcpy(dev->name, name);
10581         dev->name_assign_type = name_assign_type;
10582         dev->group = INIT_NETDEV_GROUP;
10583         if (!dev->ethtool_ops)
10584                 dev->ethtool_ops = &default_ethtool_ops;
10585
10586         nf_hook_ingress_init(dev);
10587
10588         return dev;
10589
10590 free_all:
10591         free_netdev(dev);
10592         return NULL;
10593
10594 free_pcpu:
10595         free_percpu(dev->pcpu_refcnt);
10596 free_dev:
10597         netdev_freemem(dev);
10598         return NULL;
10599 }
10600 EXPORT_SYMBOL(alloc_netdev_mqs);
10601
10602 /**
10603  * free_netdev - free network device
10604  * @dev: device
10605  *
10606  * This function does the last stage of destroying an allocated device
10607  * interface. The reference to the device object is released. If this
10608  * is the last reference then it will be freed.Must be called in process
10609  * context.
10610  */
10611 void free_netdev(struct net_device *dev)
10612 {
10613         struct napi_struct *p, *n;
10614
10615         might_sleep();
10616         netif_free_tx_queues(dev);
10617         netif_free_rx_queues(dev);
10618
10619         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10620
10621         /* Flush device addresses */
10622         dev_addr_flush(dev);
10623
10624         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10625                 netif_napi_del(p);
10626
10627         free_percpu(dev->pcpu_refcnt);
10628         dev->pcpu_refcnt = NULL;
10629         free_percpu(dev->xdp_bulkq);
10630         dev->xdp_bulkq = NULL;
10631
10632         /*  Compatibility with error handling in drivers */
10633         if (dev->reg_state == NETREG_UNINITIALIZED) {
10634                 netdev_freemem(dev);
10635                 return;
10636         }
10637
10638         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10639         dev->reg_state = NETREG_RELEASED;
10640
10641         /* will free via device release */
10642         put_device(&dev->dev);
10643 }
10644 EXPORT_SYMBOL(free_netdev);
10645
10646 /**
10647  *      synchronize_net -  Synchronize with packet receive processing
10648  *
10649  *      Wait for packets currently being received to be done.
10650  *      Does not block later packets from starting.
10651  */
10652 void synchronize_net(void)
10653 {
10654         might_sleep();
10655         if (rtnl_is_locked())
10656                 synchronize_rcu_expedited();
10657         else
10658                 synchronize_rcu();
10659 }
10660 EXPORT_SYMBOL(synchronize_net);
10661
10662 /**
10663  *      unregister_netdevice_queue - remove device from the kernel
10664  *      @dev: device
10665  *      @head: list
10666  *
10667  *      This function shuts down a device interface and removes it
10668  *      from the kernel tables.
10669  *      If head not NULL, device is queued to be unregistered later.
10670  *
10671  *      Callers must hold the rtnl semaphore.  You may want
10672  *      unregister_netdev() instead of this.
10673  */
10674
10675 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10676 {
10677         ASSERT_RTNL();
10678
10679         if (head) {
10680                 list_move_tail(&dev->unreg_list, head);
10681         } else {
10682                 rollback_registered(dev);
10683                 /* Finish processing unregister after unlock */
10684                 net_set_todo(dev);
10685         }
10686 }
10687 EXPORT_SYMBOL(unregister_netdevice_queue);
10688
10689 /**
10690  *      unregister_netdevice_many - unregister many devices
10691  *      @head: list of devices
10692  *
10693  *  Note: As most callers use a stack allocated list_head,
10694  *  we force a list_del() to make sure stack wont be corrupted later.
10695  */
10696 void unregister_netdevice_many(struct list_head *head)
10697 {
10698         struct net_device *dev;
10699
10700         if (!list_empty(head)) {
10701                 rollback_registered_many(head);
10702                 list_for_each_entry(dev, head, unreg_list)
10703                         net_set_todo(dev);
10704                 list_del(head);
10705         }
10706 }
10707 EXPORT_SYMBOL(unregister_netdevice_many);
10708
10709 /**
10710  *      unregister_netdev - remove device from the kernel
10711  *      @dev: device
10712  *
10713  *      This function shuts down a device interface and removes it
10714  *      from the kernel tables.
10715  *
10716  *      This is just a wrapper for unregister_netdevice that takes
10717  *      the rtnl semaphore.  In general you want to use this and not
10718  *      unregister_netdevice.
10719  */
10720 void unregister_netdev(struct net_device *dev)
10721 {
10722         rtnl_lock();
10723         unregister_netdevice(dev);
10724         rtnl_unlock();
10725 }
10726 EXPORT_SYMBOL(unregister_netdev);
10727
10728 /**
10729  *      dev_change_net_namespace - move device to different nethost namespace
10730  *      @dev: device
10731  *      @net: network namespace
10732  *      @pat: If not NULL name pattern to try if the current device name
10733  *            is already taken in the destination network namespace.
10734  *
10735  *      This function shuts down a device interface and moves it
10736  *      to a new network namespace. On success 0 is returned, on
10737  *      a failure a netagive errno code is returned.
10738  *
10739  *      Callers must hold the rtnl semaphore.
10740  */
10741
10742 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
10743 {
10744         struct net *net_old = dev_net(dev);
10745         int err, new_nsid, new_ifindex;
10746
10747         ASSERT_RTNL();
10748
10749         /* Don't allow namespace local devices to be moved. */
10750         err = -EINVAL;
10751         if (dev->features & NETIF_F_NETNS_LOCAL)
10752                 goto out;
10753
10754         /* Ensure the device has been registrered */
10755         if (dev->reg_state != NETREG_REGISTERED)
10756                 goto out;
10757
10758         /* Get out if there is nothing todo */
10759         err = 0;
10760         if (net_eq(net_old, net))
10761                 goto out;
10762
10763         /* Pick the destination device name, and ensure
10764          * we can use it in the destination network namespace.
10765          */
10766         err = -EEXIST;
10767         if (__dev_get_by_name(net, dev->name)) {
10768                 /* We get here if we can't use the current device name */
10769                 if (!pat)
10770                         goto out;
10771                 err = dev_get_valid_name(net, dev, pat);
10772                 if (err < 0)
10773                         goto out;
10774         }
10775
10776         /*
10777          * And now a mini version of register_netdevice unregister_netdevice.
10778          */
10779
10780         /* If device is running close it first. */
10781         dev_close(dev);
10782
10783         /* And unlink it from device chain */
10784         unlist_netdevice(dev);
10785
10786         synchronize_net();
10787
10788         /* Shutdown queueing discipline. */
10789         dev_shutdown(dev);
10790
10791         /* Notify protocols, that we are about to destroy
10792          * this device. They should clean all the things.
10793          *
10794          * Note that dev->reg_state stays at NETREG_REGISTERED.
10795          * This is wanted because this way 8021q and macvlan know
10796          * the device is just moving and can keep their slaves up.
10797          */
10798         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10799         rcu_barrier();
10800
10801         new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10802         /* If there is an ifindex conflict assign a new one */
10803         if (__dev_get_by_index(net, dev->ifindex))
10804                 new_ifindex = dev_new_index(net);
10805         else
10806                 new_ifindex = dev->ifindex;
10807
10808         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10809                             new_ifindex);
10810
10811         /*
10812          *      Flush the unicast and multicast chains
10813          */
10814         dev_uc_flush(dev);
10815         dev_mc_flush(dev);
10816
10817         /* Send a netdev-removed uevent to the old namespace */
10818         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
10819         netdev_adjacent_del_links(dev);
10820
10821         /* Move per-net netdevice notifiers that are following the netdevice */
10822         move_netdevice_notifiers_dev_net(dev, net);
10823
10824         /* Actually switch the network namespace */
10825         dev_net_set(dev, net);
10826         dev->ifindex = new_ifindex;
10827
10828         /* Send a netdev-add uevent to the new namespace */
10829         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
10830         netdev_adjacent_add_links(dev);
10831
10832         /* Fixup kobjects */
10833         err = device_rename(&dev->dev, dev->name);
10834         WARN_ON(err);
10835
10836         /* Adapt owner in case owning user namespace of target network
10837          * namespace is different from the original one.
10838          */
10839         err = netdev_change_owner(dev, net_old, net);
10840         WARN_ON(err);
10841
10842         /* Add the device back in the hashes */
10843         list_netdevice(dev);
10844
10845         /* Notify protocols, that a new device appeared. */
10846         call_netdevice_notifiers(NETDEV_REGISTER, dev);
10847
10848         /*
10849          *      Prevent userspace races by waiting until the network
10850          *      device is fully setup before sending notifications.
10851          */
10852         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10853
10854         synchronize_net();
10855         err = 0;
10856 out:
10857         return err;
10858 }
10859 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
10860
10861 static int dev_cpu_dead(unsigned int oldcpu)
10862 {
10863         struct sk_buff **list_skb;
10864         struct sk_buff *skb;
10865         unsigned int cpu;
10866         struct softnet_data *sd, *oldsd, *remsd = NULL;
10867
10868         local_irq_disable();
10869         cpu = smp_processor_id();
10870         sd = &per_cpu(softnet_data, cpu);
10871         oldsd = &per_cpu(softnet_data, oldcpu);
10872
10873         /* Find end of our completion_queue. */
10874         list_skb = &sd->completion_queue;
10875         while (*list_skb)
10876                 list_skb = &(*list_skb)->next;
10877         /* Append completion queue from offline CPU. */
10878         *list_skb = oldsd->completion_queue;
10879         oldsd->completion_queue = NULL;
10880
10881         /* Append output queue from offline CPU. */
10882         if (oldsd->output_queue) {
10883                 *sd->output_queue_tailp = oldsd->output_queue;
10884                 sd->output_queue_tailp = oldsd->output_queue_tailp;
10885                 oldsd->output_queue = NULL;
10886                 oldsd->output_queue_tailp = &oldsd->output_queue;
10887         }
10888         /* Append NAPI poll list from offline CPU, with one exception :
10889          * process_backlog() must be called by cpu owning percpu backlog.
10890          * We properly handle process_queue & input_pkt_queue later.
10891          */
10892         while (!list_empty(&oldsd->poll_list)) {
10893                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10894                                                             struct napi_struct,
10895                                                             poll_list);
10896
10897                 list_del_init(&napi->poll_list);
10898                 if (napi->poll == process_backlog)
10899                         napi->state = 0;
10900                 else
10901                         ____napi_schedule(sd, napi);
10902         }
10903
10904         raise_softirq_irqoff(NET_TX_SOFTIRQ);
10905         local_irq_enable();
10906
10907 #ifdef CONFIG_RPS
10908         remsd = oldsd->rps_ipi_list;
10909         oldsd->rps_ipi_list = NULL;
10910 #endif
10911         /* send out pending IPI's on offline CPU */
10912         net_rps_send_ipi(remsd);
10913
10914         /* Process offline CPU's input_pkt_queue */
10915         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
10916                 netif_rx_ni(skb);
10917                 input_queue_head_incr(oldsd);
10918         }
10919         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
10920                 netif_rx_ni(skb);
10921                 input_queue_head_incr(oldsd);
10922         }
10923
10924         return 0;
10925 }
10926
10927 /**
10928  *      netdev_increment_features - increment feature set by one
10929  *      @all: current feature set
10930  *      @one: new feature set
10931  *      @mask: mask feature set
10932  *
10933  *      Computes a new feature set after adding a device with feature set
10934  *      @one to the master device with current feature set @all.  Will not
10935  *      enable anything that is off in @mask. Returns the new feature set.
10936  */
10937 netdev_features_t netdev_increment_features(netdev_features_t all,
10938         netdev_features_t one, netdev_features_t mask)
10939 {
10940         if (mask & NETIF_F_HW_CSUM)
10941                 mask |= NETIF_F_CSUM_MASK;
10942         mask |= NETIF_F_VLAN_CHALLENGED;
10943
10944         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
10945         all &= one | ~NETIF_F_ALL_FOR_ALL;
10946
10947         /* If one device supports hw checksumming, set for all. */
10948         if (all & NETIF_F_HW_CSUM)
10949                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
10950
10951         return all;
10952 }
10953 EXPORT_SYMBOL(netdev_increment_features);
10954
10955 static struct hlist_head * __net_init netdev_create_hash(void)
10956 {
10957         int i;
10958         struct hlist_head *hash;
10959
10960         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
10961         if (hash != NULL)
10962                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
10963                         INIT_HLIST_HEAD(&hash[i]);
10964
10965         return hash;
10966 }
10967
10968 /* Initialize per network namespace state */
10969 static int __net_init netdev_init(struct net *net)
10970 {
10971         BUILD_BUG_ON(GRO_HASH_BUCKETS >
10972                      8 * sizeof_field(struct napi_struct, gro_bitmask));
10973
10974         if (net != &init_net)
10975                 INIT_LIST_HEAD(&net->dev_base_head);
10976
10977         net->dev_name_head = netdev_create_hash();
10978         if (net->dev_name_head == NULL)
10979                 goto err_name;
10980
10981         net->dev_index_head = netdev_create_hash();
10982         if (net->dev_index_head == NULL)
10983                 goto err_idx;
10984
10985         RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
10986
10987         return 0;
10988
10989 err_idx:
10990         kfree(net->dev_name_head);
10991 err_name:
10992         return -ENOMEM;
10993 }
10994
10995 /**
10996  *      netdev_drivername - network driver for the device
10997  *      @dev: network device
10998  *
10999  *      Determine network driver for device.
11000  */
11001 const char *netdev_drivername(const struct net_device *dev)
11002 {
11003         const struct device_driver *driver;
11004         const struct device *parent;
11005         const char *empty = "";
11006
11007         parent = dev->dev.parent;
11008         if (!parent)
11009                 return empty;
11010
11011         driver = parent->driver;
11012         if (driver && driver->name)
11013                 return driver->name;
11014         return empty;
11015 }
11016
11017 static void __netdev_printk(const char *level, const struct net_device *dev,
11018                             struct va_format *vaf)
11019 {
11020         if (dev && dev->dev.parent) {
11021                 dev_printk_emit(level[1] - '0',
11022                                 dev->dev.parent,
11023                                 "%s %s %s%s: %pV",
11024                                 dev_driver_string(dev->dev.parent),
11025                                 dev_name(dev->dev.parent),
11026                                 netdev_name(dev), netdev_reg_state(dev),
11027                                 vaf);
11028         } else if (dev) {
11029                 printk("%s%s%s: %pV",
11030                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
11031         } else {
11032                 printk("%s(NULL net_device): %pV", level, vaf);
11033         }
11034 }
11035
11036 void netdev_printk(const char *level, const struct net_device *dev,
11037                    const char *format, ...)
11038 {
11039         struct va_format vaf;
11040         va_list args;
11041
11042         va_start(args, format);
11043
11044         vaf.fmt = format;
11045         vaf.va = &args;
11046
11047         __netdev_printk(level, dev, &vaf);
11048
11049         va_end(args);
11050 }
11051 EXPORT_SYMBOL(netdev_printk);
11052
11053 #define define_netdev_printk_level(func, level)                 \
11054 void func(const struct net_device *dev, const char *fmt, ...)   \
11055 {                                                               \
11056         struct va_format vaf;                                   \
11057         va_list args;                                           \
11058                                                                 \
11059         va_start(args, fmt);                                    \
11060                                                                 \
11061         vaf.fmt = fmt;                                          \
11062         vaf.va = &args;                                         \
11063                                                                 \
11064         __netdev_printk(level, dev, &vaf);                      \
11065                                                                 \
11066         va_end(args);                                           \
11067 }                                                               \
11068 EXPORT_SYMBOL(func);
11069
11070 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11071 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11072 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11073 define_netdev_printk_level(netdev_err, KERN_ERR);
11074 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11075 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11076 define_netdev_printk_level(netdev_info, KERN_INFO);
11077
11078 static void __net_exit netdev_exit(struct net *net)
11079 {
11080         kfree(net->dev_name_head);
11081         kfree(net->dev_index_head);
11082         if (net != &init_net)
11083                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11084 }
11085
11086 static struct pernet_operations __net_initdata netdev_net_ops = {
11087         .init = netdev_init,
11088         .exit = netdev_exit,
11089 };
11090
11091 static void __net_exit default_device_exit(struct net *net)
11092 {
11093         struct net_device *dev, *aux;
11094         /*
11095          * Push all migratable network devices back to the
11096          * initial network namespace
11097          */
11098         rtnl_lock();
11099         for_each_netdev_safe(net, dev, aux) {
11100                 int err;
11101                 char fb_name[IFNAMSIZ];
11102
11103                 /* Ignore unmoveable devices (i.e. loopback) */
11104                 if (dev->features & NETIF_F_NETNS_LOCAL)
11105                         continue;
11106
11107                 /* Leave virtual devices for the generic cleanup */
11108                 if (dev->rtnl_link_ops)
11109                         continue;
11110
11111                 /* Push remaining network devices to init_net */
11112                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11113                 if (__dev_get_by_name(&init_net, fb_name))
11114                         snprintf(fb_name, IFNAMSIZ, "dev%%d");
11115                 err = dev_change_net_namespace(dev, &init_net, fb_name);
11116                 if (err) {
11117                         pr_emerg("%s: failed to move %s to init_net: %d\n",
11118                                  __func__, dev->name, err);
11119                         BUG();
11120                 }
11121         }
11122         rtnl_unlock();
11123 }
11124
11125 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11126 {
11127         /* Return with the rtnl_lock held when there are no network
11128          * devices unregistering in any network namespace in net_list.
11129          */
11130         struct net *net;
11131         bool unregistering;
11132         DEFINE_WAIT_FUNC(wait, woken_wake_function);
11133
11134         add_wait_queue(&netdev_unregistering_wq, &wait);
11135         for (;;) {
11136                 unregistering = false;
11137                 rtnl_lock();
11138                 list_for_each_entry(net, net_list, exit_list) {
11139                         if (net->dev_unreg_count > 0) {
11140                                 unregistering = true;
11141                                 break;
11142                         }
11143                 }
11144                 if (!unregistering)
11145                         break;
11146                 __rtnl_unlock();
11147
11148                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
11149         }
11150         remove_wait_queue(&netdev_unregistering_wq, &wait);
11151 }
11152
11153 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11154 {
11155         /* At exit all network devices most be removed from a network
11156          * namespace.  Do this in the reverse order of registration.
11157          * Do this across as many network namespaces as possible to
11158          * improve batching efficiency.
11159          */
11160         struct net_device *dev;
11161         struct net *net;
11162         LIST_HEAD(dev_kill_list);
11163
11164         /* To prevent network device cleanup code from dereferencing
11165          * loopback devices or network devices that have been freed
11166          * wait here for all pending unregistrations to complete,
11167          * before unregistring the loopback device and allowing the
11168          * network namespace be freed.
11169          *
11170          * The netdev todo list containing all network devices
11171          * unregistrations that happen in default_device_exit_batch
11172          * will run in the rtnl_unlock() at the end of
11173          * default_device_exit_batch.
11174          */
11175         rtnl_lock_unregistering(net_list);
11176         list_for_each_entry(net, net_list, exit_list) {
11177                 for_each_netdev_reverse(net, dev) {
11178                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11179                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11180                         else
11181                                 unregister_netdevice_queue(dev, &dev_kill_list);
11182                 }
11183         }
11184         unregister_netdevice_many(&dev_kill_list);
11185         rtnl_unlock();
11186 }
11187
11188 static struct pernet_operations __net_initdata default_device_ops = {
11189         .exit = default_device_exit,
11190         .exit_batch = default_device_exit_batch,
11191 };
11192
11193 /*
11194  *      Initialize the DEV module. At boot time this walks the device list and
11195  *      unhooks any devices that fail to initialise (normally hardware not
11196  *      present) and leaves us with a valid list of present and active devices.
11197  *
11198  */
11199
11200 /*
11201  *       This is called single threaded during boot, so no need
11202  *       to take the rtnl semaphore.
11203  */
11204 static int __init net_dev_init(void)
11205 {
11206         int i, rc = -ENOMEM;
11207
11208         BUG_ON(!dev_boot_phase);
11209
11210         if (dev_proc_init())
11211                 goto out;
11212
11213         if (netdev_kobject_init())
11214                 goto out;
11215
11216         INIT_LIST_HEAD(&ptype_all);
11217         for (i = 0; i < PTYPE_HASH_SIZE; i++)
11218                 INIT_LIST_HEAD(&ptype_base[i]);
11219
11220         INIT_LIST_HEAD(&offload_base);
11221
11222         if (register_pernet_subsys(&netdev_net_ops))
11223                 goto out;
11224
11225         /*
11226          *      Initialise the packet receive queues.
11227          */
11228
11229         for_each_possible_cpu(i) {
11230                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11231                 struct softnet_data *sd = &per_cpu(softnet_data, i);
11232
11233                 INIT_WORK(flush, flush_backlog);
11234
11235                 skb_queue_head_init(&sd->input_pkt_queue);
11236                 skb_queue_head_init(&sd->process_queue);
11237 #ifdef CONFIG_XFRM_OFFLOAD
11238                 skb_queue_head_init(&sd->xfrm_backlog);
11239 #endif
11240                 INIT_LIST_HEAD(&sd->poll_list);
11241                 sd->output_queue_tailp = &sd->output_queue;
11242 #ifdef CONFIG_RPS
11243                 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11244                 sd->cpu = i;
11245 #endif
11246
11247                 init_gro_hash(&sd->backlog);
11248                 sd->backlog.poll = process_backlog;
11249                 sd->backlog.weight = weight_p;
11250         }
11251
11252         dev_boot_phase = 0;
11253
11254         /* The loopback device is special if any other network devices
11255          * is present in a network namespace the loopback device must
11256          * be present. Since we now dynamically allocate and free the
11257          * loopback device ensure this invariant is maintained by
11258          * keeping the loopback device as the first device on the
11259          * list of network devices.  Ensuring the loopback devices
11260          * is the first device that appears and the last network device
11261          * that disappears.
11262          */
11263         if (register_pernet_device(&loopback_net_ops))
11264                 goto out;
11265
11266         if (register_pernet_device(&default_device_ops))
11267                 goto out;
11268
11269         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11270         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11271
11272         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11273                                        NULL, dev_cpu_dead);
11274         WARN_ON(rc < 0);
11275         rc = 0;
11276 out:
11277         return rc;
11278 }
11279
11280 subsys_initcall(net_dev_init);