Merge tag 'platform-drivers-x86-v5.6-1' of git://git.infradead.org/linux-platform...
[linux-2.6-microblaze.git] / net / core / dev.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *      Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:        Ross Biro
7  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *      Additional Authors:
11  *              Florian la Roche <rzsfl@rz.uni-sb.de>
12  *              Alan Cox <gw4pts@gw4pts.ampr.org>
13  *              David Hinds <dahinds@users.sourceforge.net>
14  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *              Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *      Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *              Alan Cox        :       device private ioctl copies fields back.
24  *              Alan Cox        :       Transmit queue code does relevant
25  *                                      stunts to keep the queue safe.
26  *              Alan Cox        :       Fixed double lock.
27  *              Alan Cox        :       Fixed promisc NULL pointer trap
28  *              ????????        :       Support the full private ioctl range
29  *              Alan Cox        :       Moved ioctl permission check into
30  *                                      drivers
31  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
32  *              Alan Cox        :       100 backlog just doesn't cut it when
33  *                                      you start doing multicast video 8)
34  *              Alan Cox        :       Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *              Alan Cox        :       Took out transmit every packet pass
37  *                                      Saved a few bytes in the ioctl handler
38  *              Alan Cox        :       Network driver sets packet type before
39  *                                      calling netif_rx. Saves a function
40  *                                      call a packet.
41  *              Alan Cox        :       Hashed net_bh()
42  *              Richard Kooijman:       Timestamp fixes.
43  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
44  *              Alan Cox        :       Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *                                      changes.
47  *              Rudi Cilibrasi  :       Pass the right thing to
48  *                                      set_mac_address()
49  *              Dave Miller     :       32bit quantity for the device lock to
50  *                                      make it work out on a Sparc.
51  *              Bjorn Ekwall    :       Added KERNELD hack.
52  *              Alan Cox        :       Cleaned up the backlog initialise.
53  *              Craig Metz      :       SIOCGIFCONF fix if space for under
54  *                                      1 device.
55  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
56  *                                      is no device open function.
57  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
58  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
59  *              Cyrus Durgin    :       Cleaned for KMOD
60  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
61  *                                      A network device unload needs to purge
62  *                                      the backlog queue.
63  *      Paul Rusty Russell      :       SIOCSIFNAME
64  *              Pekka Riikonen  :       Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *                                      - netif_rx() feedback
69  */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/string.h>
83 #include <linux/mm.h>
84 #include <linux/socket.h>
85 #include <linux/sockios.h>
86 #include <linux/errno.h>
87 #include <linux/interrupt.h>
88 #include <linux/if_ether.h>
89 #include <linux/netdevice.h>
90 #include <linux/etherdevice.h>
91 #include <linux/ethtool.h>
92 #include <linux/skbuff.h>
93 #include <linux/bpf.h>
94 #include <linux/bpf_trace.h>
95 #include <net/net_namespace.h>
96 #include <net/sock.h>
97 #include <net/busy_poll.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/stat.h>
100 #include <net/dst.h>
101 #include <net/dst_metadata.h>
102 #include <net/pkt_sched.h>
103 #include <net/pkt_cls.h>
104 #include <net/checksum.h>
105 #include <net/xfrm.h>
106 #include <linux/highmem.h>
107 #include <linux/init.h>
108 #include <linux/module.h>
109 #include <linux/netpoll.h>
110 #include <linux/rcupdate.h>
111 #include <linux/delay.h>
112 #include <net/iw_handler.h>
113 #include <asm/current.h>
114 #include <linux/audit.h>
115 #include <linux/dmaengine.h>
116 #include <linux/err.h>
117 #include <linux/ctype.h>
118 #include <linux/if_arp.h>
119 #include <linux/if_vlan.h>
120 #include <linux/ip.h>
121 #include <net/ip.h>
122 #include <net/mpls.h>
123 #include <linux/ipv6.h>
124 #include <linux/in.h>
125 #include <linux/jhash.h>
126 #include <linux/random.h>
127 #include <trace/events/napi.h>
128 #include <trace/events/net.h>
129 #include <trace/events/skb.h>
130 #include <linux/inetdevice.h>
131 #include <linux/cpu_rmap.h>
132 #include <linux/static_key.h>
133 #include <linux/hashtable.h>
134 #include <linux/vmalloc.h>
135 #include <linux/if_macvlan.h>
136 #include <linux/errqueue.h>
137 #include <linux/hrtimer.h>
138 #include <linux/netfilter_ingress.h>
139 #include <linux/crash_dump.h>
140 #include <linux/sctp.h>
141 #include <net/udp_tunnel.h>
142 #include <linux/net_namespace.h>
143 #include <linux/indirect_call_wrapper.h>
144 #include <net/devlink.h>
145
146 #include "net-sysfs.h"
147
148 #define MAX_GRO_SKBS 8
149 #define MAX_NEST_DEV 8
150
151 /* This should be increased if a protocol with a bigger head is added. */
152 #define GRO_MAX_HEAD (MAX_HEADER + 128)
153
154 static DEFINE_SPINLOCK(ptype_lock);
155 static DEFINE_SPINLOCK(offload_lock);
156 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
157 struct list_head ptype_all __read_mostly;       /* Taps */
158 static struct list_head offload_base __read_mostly;
159
160 static int netif_rx_internal(struct sk_buff *skb);
161 static int call_netdevice_notifiers_info(unsigned long val,
162                                          struct netdev_notifier_info *info);
163 static int call_netdevice_notifiers_extack(unsigned long val,
164                                            struct net_device *dev,
165                                            struct netlink_ext_ack *extack);
166 static struct napi_struct *napi_by_id(unsigned int napi_id);
167
168 /*
169  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
170  * semaphore.
171  *
172  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
173  *
174  * Writers must hold the rtnl semaphore while they loop through the
175  * dev_base_head list, and hold dev_base_lock for writing when they do the
176  * actual updates.  This allows pure readers to access the list even
177  * while a writer is preparing to update it.
178  *
179  * To put it another way, dev_base_lock is held for writing only to
180  * protect against pure readers; the rtnl semaphore provides the
181  * protection against other writers.
182  *
183  * See, for example usages, register_netdevice() and
184  * unregister_netdevice(), which must be called with the rtnl
185  * semaphore held.
186  */
187 DEFINE_RWLOCK(dev_base_lock);
188 EXPORT_SYMBOL(dev_base_lock);
189
190 static DEFINE_MUTEX(ifalias_mutex);
191
192 /* protects napi_hash addition/deletion and napi_gen_id */
193 static DEFINE_SPINLOCK(napi_hash_lock);
194
195 static unsigned int napi_gen_id = NR_CPUS;
196 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
197
198 static seqcount_t devnet_rename_seq;
199
200 static inline void dev_base_seq_inc(struct net *net)
201 {
202         while (++net->dev_base_seq == 0)
203                 ;
204 }
205
206 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
207 {
208         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
209
210         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
211 }
212
213 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
214 {
215         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
216 }
217
218 static inline void rps_lock(struct softnet_data *sd)
219 {
220 #ifdef CONFIG_RPS
221         spin_lock(&sd->input_pkt_queue.lock);
222 #endif
223 }
224
225 static inline void rps_unlock(struct softnet_data *sd)
226 {
227 #ifdef CONFIG_RPS
228         spin_unlock(&sd->input_pkt_queue.lock);
229 #endif
230 }
231
232 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
233                                                        const char *name)
234 {
235         struct netdev_name_node *name_node;
236
237         name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
238         if (!name_node)
239                 return NULL;
240         INIT_HLIST_NODE(&name_node->hlist);
241         name_node->dev = dev;
242         name_node->name = name;
243         return name_node;
244 }
245
246 static struct netdev_name_node *
247 netdev_name_node_head_alloc(struct net_device *dev)
248 {
249         struct netdev_name_node *name_node;
250
251         name_node = netdev_name_node_alloc(dev, dev->name);
252         if (!name_node)
253                 return NULL;
254         INIT_LIST_HEAD(&name_node->list);
255         return name_node;
256 }
257
258 static void netdev_name_node_free(struct netdev_name_node *name_node)
259 {
260         kfree(name_node);
261 }
262
263 static void netdev_name_node_add(struct net *net,
264                                  struct netdev_name_node *name_node)
265 {
266         hlist_add_head_rcu(&name_node->hlist,
267                            dev_name_hash(net, name_node->name));
268 }
269
270 static void netdev_name_node_del(struct netdev_name_node *name_node)
271 {
272         hlist_del_rcu(&name_node->hlist);
273 }
274
275 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
276                                                         const char *name)
277 {
278         struct hlist_head *head = dev_name_hash(net, name);
279         struct netdev_name_node *name_node;
280
281         hlist_for_each_entry(name_node, head, hlist)
282                 if (!strcmp(name_node->name, name))
283                         return name_node;
284         return NULL;
285 }
286
287 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
288                                                             const char *name)
289 {
290         struct hlist_head *head = dev_name_hash(net, name);
291         struct netdev_name_node *name_node;
292
293         hlist_for_each_entry_rcu(name_node, head, hlist)
294                 if (!strcmp(name_node->name, name))
295                         return name_node;
296         return NULL;
297 }
298
299 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
300 {
301         struct netdev_name_node *name_node;
302         struct net *net = dev_net(dev);
303
304         name_node = netdev_name_node_lookup(net, name);
305         if (name_node)
306                 return -EEXIST;
307         name_node = netdev_name_node_alloc(dev, name);
308         if (!name_node)
309                 return -ENOMEM;
310         netdev_name_node_add(net, name_node);
311         /* The node that holds dev->name acts as a head of per-device list. */
312         list_add_tail(&name_node->list, &dev->name_node->list);
313
314         return 0;
315 }
316 EXPORT_SYMBOL(netdev_name_node_alt_create);
317
318 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
319 {
320         list_del(&name_node->list);
321         netdev_name_node_del(name_node);
322         kfree(name_node->name);
323         netdev_name_node_free(name_node);
324 }
325
326 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
327 {
328         struct netdev_name_node *name_node;
329         struct net *net = dev_net(dev);
330
331         name_node = netdev_name_node_lookup(net, name);
332         if (!name_node)
333                 return -ENOENT;
334         __netdev_name_node_alt_destroy(name_node);
335
336         return 0;
337 }
338 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
339
340 static void netdev_name_node_alt_flush(struct net_device *dev)
341 {
342         struct netdev_name_node *name_node, *tmp;
343
344         list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
345                 __netdev_name_node_alt_destroy(name_node);
346 }
347
348 /* Device list insertion */
349 static void list_netdevice(struct net_device *dev)
350 {
351         struct net *net = dev_net(dev);
352
353         ASSERT_RTNL();
354
355         write_lock_bh(&dev_base_lock);
356         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
357         netdev_name_node_add(net, dev->name_node);
358         hlist_add_head_rcu(&dev->index_hlist,
359                            dev_index_hash(net, dev->ifindex));
360         write_unlock_bh(&dev_base_lock);
361
362         dev_base_seq_inc(net);
363 }
364
365 /* Device list removal
366  * caller must respect a RCU grace period before freeing/reusing dev
367  */
368 static void unlist_netdevice(struct net_device *dev)
369 {
370         ASSERT_RTNL();
371
372         /* Unlink dev from the device chain */
373         write_lock_bh(&dev_base_lock);
374         list_del_rcu(&dev->dev_list);
375         netdev_name_node_del(dev->name_node);
376         hlist_del_rcu(&dev->index_hlist);
377         write_unlock_bh(&dev_base_lock);
378
379         dev_base_seq_inc(dev_net(dev));
380 }
381
382 /*
383  *      Our notifier list
384  */
385
386 static RAW_NOTIFIER_HEAD(netdev_chain);
387
388 /*
389  *      Device drivers call our routines to queue packets here. We empty the
390  *      queue in the local softnet handler.
391  */
392
393 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
394 EXPORT_PER_CPU_SYMBOL(softnet_data);
395
396 /*******************************************************************************
397  *
398  *              Protocol management and registration routines
399  *
400  *******************************************************************************/
401
402
403 /*
404  *      Add a protocol ID to the list. Now that the input handler is
405  *      smarter we can dispense with all the messy stuff that used to be
406  *      here.
407  *
408  *      BEWARE!!! Protocol handlers, mangling input packets,
409  *      MUST BE last in hash buckets and checking protocol handlers
410  *      MUST start from promiscuous ptype_all chain in net_bh.
411  *      It is true now, do not change it.
412  *      Explanation follows: if protocol handler, mangling packet, will
413  *      be the first on list, it is not able to sense, that packet
414  *      is cloned and should be copied-on-write, so that it will
415  *      change it and subsequent readers will get broken packet.
416  *                                                      --ANK (980803)
417  */
418
419 static inline struct list_head *ptype_head(const struct packet_type *pt)
420 {
421         if (pt->type == htons(ETH_P_ALL))
422                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
423         else
424                 return pt->dev ? &pt->dev->ptype_specific :
425                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
426 }
427
428 /**
429  *      dev_add_pack - add packet handler
430  *      @pt: packet type declaration
431  *
432  *      Add a protocol handler to the networking stack. The passed &packet_type
433  *      is linked into kernel lists and may not be freed until it has been
434  *      removed from the kernel lists.
435  *
436  *      This call does not sleep therefore it can not
437  *      guarantee all CPU's that are in middle of receiving packets
438  *      will see the new packet type (until the next received packet).
439  */
440
441 void dev_add_pack(struct packet_type *pt)
442 {
443         struct list_head *head = ptype_head(pt);
444
445         spin_lock(&ptype_lock);
446         list_add_rcu(&pt->list, head);
447         spin_unlock(&ptype_lock);
448 }
449 EXPORT_SYMBOL(dev_add_pack);
450
451 /**
452  *      __dev_remove_pack        - remove packet handler
453  *      @pt: packet type declaration
454  *
455  *      Remove a protocol handler that was previously added to the kernel
456  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
457  *      from the kernel lists and can be freed or reused once this function
458  *      returns.
459  *
460  *      The packet type might still be in use by receivers
461  *      and must not be freed until after all the CPU's have gone
462  *      through a quiescent state.
463  */
464 void __dev_remove_pack(struct packet_type *pt)
465 {
466         struct list_head *head = ptype_head(pt);
467         struct packet_type *pt1;
468
469         spin_lock(&ptype_lock);
470
471         list_for_each_entry(pt1, head, list) {
472                 if (pt == pt1) {
473                         list_del_rcu(&pt->list);
474                         goto out;
475                 }
476         }
477
478         pr_warn("dev_remove_pack: %p not found\n", pt);
479 out:
480         spin_unlock(&ptype_lock);
481 }
482 EXPORT_SYMBOL(__dev_remove_pack);
483
484 /**
485  *      dev_remove_pack  - remove packet handler
486  *      @pt: packet type declaration
487  *
488  *      Remove a protocol handler that was previously added to the kernel
489  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
490  *      from the kernel lists and can be freed or reused once this function
491  *      returns.
492  *
493  *      This call sleeps to guarantee that no CPU is looking at the packet
494  *      type after return.
495  */
496 void dev_remove_pack(struct packet_type *pt)
497 {
498         __dev_remove_pack(pt);
499
500         synchronize_net();
501 }
502 EXPORT_SYMBOL(dev_remove_pack);
503
504
505 /**
506  *      dev_add_offload - register offload handlers
507  *      @po: protocol offload declaration
508  *
509  *      Add protocol offload handlers to the networking stack. The passed
510  *      &proto_offload is linked into kernel lists and may not be freed until
511  *      it has been removed from the kernel lists.
512  *
513  *      This call does not sleep therefore it can not
514  *      guarantee all CPU's that are in middle of receiving packets
515  *      will see the new offload handlers (until the next received packet).
516  */
517 void dev_add_offload(struct packet_offload *po)
518 {
519         struct packet_offload *elem;
520
521         spin_lock(&offload_lock);
522         list_for_each_entry(elem, &offload_base, list) {
523                 if (po->priority < elem->priority)
524                         break;
525         }
526         list_add_rcu(&po->list, elem->list.prev);
527         spin_unlock(&offload_lock);
528 }
529 EXPORT_SYMBOL(dev_add_offload);
530
531 /**
532  *      __dev_remove_offload     - remove offload handler
533  *      @po: packet offload declaration
534  *
535  *      Remove a protocol offload handler that was previously added to the
536  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
537  *      is removed from the kernel lists and can be freed or reused once this
538  *      function returns.
539  *
540  *      The packet type might still be in use by receivers
541  *      and must not be freed until after all the CPU's have gone
542  *      through a quiescent state.
543  */
544 static void __dev_remove_offload(struct packet_offload *po)
545 {
546         struct list_head *head = &offload_base;
547         struct packet_offload *po1;
548
549         spin_lock(&offload_lock);
550
551         list_for_each_entry(po1, head, list) {
552                 if (po == po1) {
553                         list_del_rcu(&po->list);
554                         goto out;
555                 }
556         }
557
558         pr_warn("dev_remove_offload: %p not found\n", po);
559 out:
560         spin_unlock(&offload_lock);
561 }
562
563 /**
564  *      dev_remove_offload       - remove packet offload handler
565  *      @po: packet offload declaration
566  *
567  *      Remove a packet offload handler that was previously added to the kernel
568  *      offload handlers by dev_add_offload(). The passed &offload_type is
569  *      removed from the kernel lists and can be freed or reused once this
570  *      function returns.
571  *
572  *      This call sleeps to guarantee that no CPU is looking at the packet
573  *      type after return.
574  */
575 void dev_remove_offload(struct packet_offload *po)
576 {
577         __dev_remove_offload(po);
578
579         synchronize_net();
580 }
581 EXPORT_SYMBOL(dev_remove_offload);
582
583 /******************************************************************************
584  *
585  *                    Device Boot-time Settings Routines
586  *
587  ******************************************************************************/
588
589 /* Boot time configuration table */
590 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
591
592 /**
593  *      netdev_boot_setup_add   - add new setup entry
594  *      @name: name of the device
595  *      @map: configured settings for the device
596  *
597  *      Adds new setup entry to the dev_boot_setup list.  The function
598  *      returns 0 on error and 1 on success.  This is a generic routine to
599  *      all netdevices.
600  */
601 static int netdev_boot_setup_add(char *name, struct ifmap *map)
602 {
603         struct netdev_boot_setup *s;
604         int i;
605
606         s = dev_boot_setup;
607         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
608                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
609                         memset(s[i].name, 0, sizeof(s[i].name));
610                         strlcpy(s[i].name, name, IFNAMSIZ);
611                         memcpy(&s[i].map, map, sizeof(s[i].map));
612                         break;
613                 }
614         }
615
616         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
617 }
618
619 /**
620  * netdev_boot_setup_check      - check boot time settings
621  * @dev: the netdevice
622  *
623  * Check boot time settings for the device.
624  * The found settings are set for the device to be used
625  * later in the device probing.
626  * Returns 0 if no settings found, 1 if they are.
627  */
628 int netdev_boot_setup_check(struct net_device *dev)
629 {
630         struct netdev_boot_setup *s = dev_boot_setup;
631         int i;
632
633         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
634                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
635                     !strcmp(dev->name, s[i].name)) {
636                         dev->irq = s[i].map.irq;
637                         dev->base_addr = s[i].map.base_addr;
638                         dev->mem_start = s[i].map.mem_start;
639                         dev->mem_end = s[i].map.mem_end;
640                         return 1;
641                 }
642         }
643         return 0;
644 }
645 EXPORT_SYMBOL(netdev_boot_setup_check);
646
647
648 /**
649  * netdev_boot_base     - get address from boot time settings
650  * @prefix: prefix for network device
651  * @unit: id for network device
652  *
653  * Check boot time settings for the base address of device.
654  * The found settings are set for the device to be used
655  * later in the device probing.
656  * Returns 0 if no settings found.
657  */
658 unsigned long netdev_boot_base(const char *prefix, int unit)
659 {
660         const struct netdev_boot_setup *s = dev_boot_setup;
661         char name[IFNAMSIZ];
662         int i;
663
664         sprintf(name, "%s%d", prefix, unit);
665
666         /*
667          * If device already registered then return base of 1
668          * to indicate not to probe for this interface
669          */
670         if (__dev_get_by_name(&init_net, name))
671                 return 1;
672
673         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
674                 if (!strcmp(name, s[i].name))
675                         return s[i].map.base_addr;
676         return 0;
677 }
678
679 /*
680  * Saves at boot time configured settings for any netdevice.
681  */
682 int __init netdev_boot_setup(char *str)
683 {
684         int ints[5];
685         struct ifmap map;
686
687         str = get_options(str, ARRAY_SIZE(ints), ints);
688         if (!str || !*str)
689                 return 0;
690
691         /* Save settings */
692         memset(&map, 0, sizeof(map));
693         if (ints[0] > 0)
694                 map.irq = ints[1];
695         if (ints[0] > 1)
696                 map.base_addr = ints[2];
697         if (ints[0] > 2)
698                 map.mem_start = ints[3];
699         if (ints[0] > 3)
700                 map.mem_end = ints[4];
701
702         /* Add new entry to the list */
703         return netdev_boot_setup_add(str, &map);
704 }
705
706 __setup("netdev=", netdev_boot_setup);
707
708 /*******************************************************************************
709  *
710  *                          Device Interface Subroutines
711  *
712  *******************************************************************************/
713
714 /**
715  *      dev_get_iflink  - get 'iflink' value of a interface
716  *      @dev: targeted interface
717  *
718  *      Indicates the ifindex the interface is linked to.
719  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
720  */
721
722 int dev_get_iflink(const struct net_device *dev)
723 {
724         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
725                 return dev->netdev_ops->ndo_get_iflink(dev);
726
727         return dev->ifindex;
728 }
729 EXPORT_SYMBOL(dev_get_iflink);
730
731 /**
732  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
733  *      @dev: targeted interface
734  *      @skb: The packet.
735  *
736  *      For better visibility of tunnel traffic OVS needs to retrieve
737  *      egress tunnel information for a packet. Following API allows
738  *      user to get this info.
739  */
740 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
741 {
742         struct ip_tunnel_info *info;
743
744         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
745                 return -EINVAL;
746
747         info = skb_tunnel_info_unclone(skb);
748         if (!info)
749                 return -ENOMEM;
750         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
751                 return -EINVAL;
752
753         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
754 }
755 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
756
757 /**
758  *      __dev_get_by_name       - find a device by its name
759  *      @net: the applicable net namespace
760  *      @name: name to find
761  *
762  *      Find an interface by name. Must be called under RTNL semaphore
763  *      or @dev_base_lock. If the name is found a pointer to the device
764  *      is returned. If the name is not found then %NULL is returned. The
765  *      reference counters are not incremented so the caller must be
766  *      careful with locks.
767  */
768
769 struct net_device *__dev_get_by_name(struct net *net, const char *name)
770 {
771         struct netdev_name_node *node_name;
772
773         node_name = netdev_name_node_lookup(net, name);
774         return node_name ? node_name->dev : NULL;
775 }
776 EXPORT_SYMBOL(__dev_get_by_name);
777
778 /**
779  * dev_get_by_name_rcu  - find a device by its name
780  * @net: the applicable net namespace
781  * @name: name to find
782  *
783  * Find an interface by name.
784  * If the name is found a pointer to the device is returned.
785  * If the name is not found then %NULL is returned.
786  * The reference counters are not incremented so the caller must be
787  * careful with locks. The caller must hold RCU lock.
788  */
789
790 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
791 {
792         struct netdev_name_node *node_name;
793
794         node_name = netdev_name_node_lookup_rcu(net, name);
795         return node_name ? node_name->dev : NULL;
796 }
797 EXPORT_SYMBOL(dev_get_by_name_rcu);
798
799 /**
800  *      dev_get_by_name         - find a device by its name
801  *      @net: the applicable net namespace
802  *      @name: name to find
803  *
804  *      Find an interface by name. This can be called from any
805  *      context and does its own locking. The returned handle has
806  *      the usage count incremented and the caller must use dev_put() to
807  *      release it when it is no longer needed. %NULL is returned if no
808  *      matching device is found.
809  */
810
811 struct net_device *dev_get_by_name(struct net *net, const char *name)
812 {
813         struct net_device *dev;
814
815         rcu_read_lock();
816         dev = dev_get_by_name_rcu(net, name);
817         if (dev)
818                 dev_hold(dev);
819         rcu_read_unlock();
820         return dev;
821 }
822 EXPORT_SYMBOL(dev_get_by_name);
823
824 /**
825  *      __dev_get_by_index - find a device by its ifindex
826  *      @net: the applicable net namespace
827  *      @ifindex: index of device
828  *
829  *      Search for an interface by index. Returns %NULL if the device
830  *      is not found or a pointer to the device. The device has not
831  *      had its reference counter increased so the caller must be careful
832  *      about locking. The caller must hold either the RTNL semaphore
833  *      or @dev_base_lock.
834  */
835
836 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
837 {
838         struct net_device *dev;
839         struct hlist_head *head = dev_index_hash(net, ifindex);
840
841         hlist_for_each_entry(dev, head, index_hlist)
842                 if (dev->ifindex == ifindex)
843                         return dev;
844
845         return NULL;
846 }
847 EXPORT_SYMBOL(__dev_get_by_index);
848
849 /**
850  *      dev_get_by_index_rcu - find a device by its ifindex
851  *      @net: the applicable net namespace
852  *      @ifindex: index of device
853  *
854  *      Search for an interface by index. Returns %NULL if the device
855  *      is not found or a pointer to the device. The device has not
856  *      had its reference counter increased so the caller must be careful
857  *      about locking. The caller must hold RCU lock.
858  */
859
860 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
861 {
862         struct net_device *dev;
863         struct hlist_head *head = dev_index_hash(net, ifindex);
864
865         hlist_for_each_entry_rcu(dev, head, index_hlist)
866                 if (dev->ifindex == ifindex)
867                         return dev;
868
869         return NULL;
870 }
871 EXPORT_SYMBOL(dev_get_by_index_rcu);
872
873
874 /**
875  *      dev_get_by_index - find a device by its ifindex
876  *      @net: the applicable net namespace
877  *      @ifindex: index of device
878  *
879  *      Search for an interface by index. Returns NULL if the device
880  *      is not found or a pointer to the device. The device returned has
881  *      had a reference added and the pointer is safe until the user calls
882  *      dev_put to indicate they have finished with it.
883  */
884
885 struct net_device *dev_get_by_index(struct net *net, int ifindex)
886 {
887         struct net_device *dev;
888
889         rcu_read_lock();
890         dev = dev_get_by_index_rcu(net, ifindex);
891         if (dev)
892                 dev_hold(dev);
893         rcu_read_unlock();
894         return dev;
895 }
896 EXPORT_SYMBOL(dev_get_by_index);
897
898 /**
899  *      dev_get_by_napi_id - find a device by napi_id
900  *      @napi_id: ID of the NAPI struct
901  *
902  *      Search for an interface by NAPI ID. Returns %NULL if the device
903  *      is not found or a pointer to the device. The device has not had
904  *      its reference counter increased so the caller must be careful
905  *      about locking. The caller must hold RCU lock.
906  */
907
908 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
909 {
910         struct napi_struct *napi;
911
912         WARN_ON_ONCE(!rcu_read_lock_held());
913
914         if (napi_id < MIN_NAPI_ID)
915                 return NULL;
916
917         napi = napi_by_id(napi_id);
918
919         return napi ? napi->dev : NULL;
920 }
921 EXPORT_SYMBOL(dev_get_by_napi_id);
922
923 /**
924  *      netdev_get_name - get a netdevice name, knowing its ifindex.
925  *      @net: network namespace
926  *      @name: a pointer to the buffer where the name will be stored.
927  *      @ifindex: the ifindex of the interface to get the name from.
928  *
929  *      The use of raw_seqcount_begin() and cond_resched() before
930  *      retrying is required as we want to give the writers a chance
931  *      to complete when CONFIG_PREEMPT is not set.
932  */
933 int netdev_get_name(struct net *net, char *name, int ifindex)
934 {
935         struct net_device *dev;
936         unsigned int seq;
937
938 retry:
939         seq = raw_seqcount_begin(&devnet_rename_seq);
940         rcu_read_lock();
941         dev = dev_get_by_index_rcu(net, ifindex);
942         if (!dev) {
943                 rcu_read_unlock();
944                 return -ENODEV;
945         }
946
947         strcpy(name, dev->name);
948         rcu_read_unlock();
949         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
950                 cond_resched();
951                 goto retry;
952         }
953
954         return 0;
955 }
956
957 /**
958  *      dev_getbyhwaddr_rcu - find a device by its hardware address
959  *      @net: the applicable net namespace
960  *      @type: media type of device
961  *      @ha: hardware address
962  *
963  *      Search for an interface by MAC address. Returns NULL if the device
964  *      is not found or a pointer to the device.
965  *      The caller must hold RCU or RTNL.
966  *      The returned device has not had its ref count increased
967  *      and the caller must therefore be careful about locking
968  *
969  */
970
971 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
972                                        const char *ha)
973 {
974         struct net_device *dev;
975
976         for_each_netdev_rcu(net, dev)
977                 if (dev->type == type &&
978                     !memcmp(dev->dev_addr, ha, dev->addr_len))
979                         return dev;
980
981         return NULL;
982 }
983 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
984
985 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
986 {
987         struct net_device *dev;
988
989         ASSERT_RTNL();
990         for_each_netdev(net, dev)
991                 if (dev->type == type)
992                         return dev;
993
994         return NULL;
995 }
996 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
997
998 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
999 {
1000         struct net_device *dev, *ret = NULL;
1001
1002         rcu_read_lock();
1003         for_each_netdev_rcu(net, dev)
1004                 if (dev->type == type) {
1005                         dev_hold(dev);
1006                         ret = dev;
1007                         break;
1008                 }
1009         rcu_read_unlock();
1010         return ret;
1011 }
1012 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1013
1014 /**
1015  *      __dev_get_by_flags - find any device with given flags
1016  *      @net: the applicable net namespace
1017  *      @if_flags: IFF_* values
1018  *      @mask: bitmask of bits in if_flags to check
1019  *
1020  *      Search for any interface with the given flags. Returns NULL if a device
1021  *      is not found or a pointer to the device. Must be called inside
1022  *      rtnl_lock(), and result refcount is unchanged.
1023  */
1024
1025 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1026                                       unsigned short mask)
1027 {
1028         struct net_device *dev, *ret;
1029
1030         ASSERT_RTNL();
1031
1032         ret = NULL;
1033         for_each_netdev(net, dev) {
1034                 if (((dev->flags ^ if_flags) & mask) == 0) {
1035                         ret = dev;
1036                         break;
1037                 }
1038         }
1039         return ret;
1040 }
1041 EXPORT_SYMBOL(__dev_get_by_flags);
1042
1043 /**
1044  *      dev_valid_name - check if name is okay for network device
1045  *      @name: name string
1046  *
1047  *      Network device names need to be valid file names to
1048  *      to allow sysfs to work.  We also disallow any kind of
1049  *      whitespace.
1050  */
1051 bool dev_valid_name(const char *name)
1052 {
1053         if (*name == '\0')
1054                 return false;
1055         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1056                 return false;
1057         if (!strcmp(name, ".") || !strcmp(name, ".."))
1058                 return false;
1059
1060         while (*name) {
1061                 if (*name == '/' || *name == ':' || isspace(*name))
1062                         return false;
1063                 name++;
1064         }
1065         return true;
1066 }
1067 EXPORT_SYMBOL(dev_valid_name);
1068
1069 /**
1070  *      __dev_alloc_name - allocate a name for a device
1071  *      @net: network namespace to allocate the device name in
1072  *      @name: name format string
1073  *      @buf:  scratch buffer and result name string
1074  *
1075  *      Passed a format string - eg "lt%d" it will try and find a suitable
1076  *      id. It scans list of devices to build up a free map, then chooses
1077  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1078  *      while allocating the name and adding the device in order to avoid
1079  *      duplicates.
1080  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1081  *      Returns the number of the unit assigned or a negative errno code.
1082  */
1083
1084 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1085 {
1086         int i = 0;
1087         const char *p;
1088         const int max_netdevices = 8*PAGE_SIZE;
1089         unsigned long *inuse;
1090         struct net_device *d;
1091
1092         if (!dev_valid_name(name))
1093                 return -EINVAL;
1094
1095         p = strchr(name, '%');
1096         if (p) {
1097                 /*
1098                  * Verify the string as this thing may have come from
1099                  * the user.  There must be either one "%d" and no other "%"
1100                  * characters.
1101                  */
1102                 if (p[1] != 'd' || strchr(p + 2, '%'))
1103                         return -EINVAL;
1104
1105                 /* Use one page as a bit array of possible slots */
1106                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1107                 if (!inuse)
1108                         return -ENOMEM;
1109
1110                 for_each_netdev(net, d) {
1111                         if (!sscanf(d->name, name, &i))
1112                                 continue;
1113                         if (i < 0 || i >= max_netdevices)
1114                                 continue;
1115
1116                         /*  avoid cases where sscanf is not exact inverse of printf */
1117                         snprintf(buf, IFNAMSIZ, name, i);
1118                         if (!strncmp(buf, d->name, IFNAMSIZ))
1119                                 set_bit(i, inuse);
1120                 }
1121
1122                 i = find_first_zero_bit(inuse, max_netdevices);
1123                 free_page((unsigned long) inuse);
1124         }
1125
1126         snprintf(buf, IFNAMSIZ, name, i);
1127         if (!__dev_get_by_name(net, buf))
1128                 return i;
1129
1130         /* It is possible to run out of possible slots
1131          * when the name is long and there isn't enough space left
1132          * for the digits, or if all bits are used.
1133          */
1134         return -ENFILE;
1135 }
1136
1137 static int dev_alloc_name_ns(struct net *net,
1138                              struct net_device *dev,
1139                              const char *name)
1140 {
1141         char buf[IFNAMSIZ];
1142         int ret;
1143
1144         BUG_ON(!net);
1145         ret = __dev_alloc_name(net, name, buf);
1146         if (ret >= 0)
1147                 strlcpy(dev->name, buf, IFNAMSIZ);
1148         return ret;
1149 }
1150
1151 /**
1152  *      dev_alloc_name - allocate a name for a device
1153  *      @dev: device
1154  *      @name: name format string
1155  *
1156  *      Passed a format string - eg "lt%d" it will try and find a suitable
1157  *      id. It scans list of devices to build up a free map, then chooses
1158  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1159  *      while allocating the name and adding the device in order to avoid
1160  *      duplicates.
1161  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1162  *      Returns the number of the unit assigned or a negative errno code.
1163  */
1164
1165 int dev_alloc_name(struct net_device *dev, const char *name)
1166 {
1167         return dev_alloc_name_ns(dev_net(dev), dev, name);
1168 }
1169 EXPORT_SYMBOL(dev_alloc_name);
1170
1171 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1172                               const char *name)
1173 {
1174         BUG_ON(!net);
1175
1176         if (!dev_valid_name(name))
1177                 return -EINVAL;
1178
1179         if (strchr(name, '%'))
1180                 return dev_alloc_name_ns(net, dev, name);
1181         else if (__dev_get_by_name(net, name))
1182                 return -EEXIST;
1183         else if (dev->name != name)
1184                 strlcpy(dev->name, name, IFNAMSIZ);
1185
1186         return 0;
1187 }
1188
1189 /**
1190  *      dev_change_name - change name of a device
1191  *      @dev: device
1192  *      @newname: name (or format string) must be at least IFNAMSIZ
1193  *
1194  *      Change name of a device, can pass format strings "eth%d".
1195  *      for wildcarding.
1196  */
1197 int dev_change_name(struct net_device *dev, const char *newname)
1198 {
1199         unsigned char old_assign_type;
1200         char oldname[IFNAMSIZ];
1201         int err = 0;
1202         int ret;
1203         struct net *net;
1204
1205         ASSERT_RTNL();
1206         BUG_ON(!dev_net(dev));
1207
1208         net = dev_net(dev);
1209
1210         /* Some auto-enslaved devices e.g. failover slaves are
1211          * special, as userspace might rename the device after
1212          * the interface had been brought up and running since
1213          * the point kernel initiated auto-enslavement. Allow
1214          * live name change even when these slave devices are
1215          * up and running.
1216          *
1217          * Typically, users of these auto-enslaving devices
1218          * don't actually care about slave name change, as
1219          * they are supposed to operate on master interface
1220          * directly.
1221          */
1222         if (dev->flags & IFF_UP &&
1223             likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1224                 return -EBUSY;
1225
1226         write_seqcount_begin(&devnet_rename_seq);
1227
1228         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1229                 write_seqcount_end(&devnet_rename_seq);
1230                 return 0;
1231         }
1232
1233         memcpy(oldname, dev->name, IFNAMSIZ);
1234
1235         err = dev_get_valid_name(net, dev, newname);
1236         if (err < 0) {
1237                 write_seqcount_end(&devnet_rename_seq);
1238                 return err;
1239         }
1240
1241         if (oldname[0] && !strchr(oldname, '%'))
1242                 netdev_info(dev, "renamed from %s\n", oldname);
1243
1244         old_assign_type = dev->name_assign_type;
1245         dev->name_assign_type = NET_NAME_RENAMED;
1246
1247 rollback:
1248         ret = device_rename(&dev->dev, dev->name);
1249         if (ret) {
1250                 memcpy(dev->name, oldname, IFNAMSIZ);
1251                 dev->name_assign_type = old_assign_type;
1252                 write_seqcount_end(&devnet_rename_seq);
1253                 return ret;
1254         }
1255
1256         write_seqcount_end(&devnet_rename_seq);
1257
1258         netdev_adjacent_rename_links(dev, oldname);
1259
1260         write_lock_bh(&dev_base_lock);
1261         netdev_name_node_del(dev->name_node);
1262         write_unlock_bh(&dev_base_lock);
1263
1264         synchronize_rcu();
1265
1266         write_lock_bh(&dev_base_lock);
1267         netdev_name_node_add(net, dev->name_node);
1268         write_unlock_bh(&dev_base_lock);
1269
1270         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1271         ret = notifier_to_errno(ret);
1272
1273         if (ret) {
1274                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1275                 if (err >= 0) {
1276                         err = ret;
1277                         write_seqcount_begin(&devnet_rename_seq);
1278                         memcpy(dev->name, oldname, IFNAMSIZ);
1279                         memcpy(oldname, newname, IFNAMSIZ);
1280                         dev->name_assign_type = old_assign_type;
1281                         old_assign_type = NET_NAME_RENAMED;
1282                         goto rollback;
1283                 } else {
1284                         pr_err("%s: name change rollback failed: %d\n",
1285                                dev->name, ret);
1286                 }
1287         }
1288
1289         return err;
1290 }
1291
1292 /**
1293  *      dev_set_alias - change ifalias of a device
1294  *      @dev: device
1295  *      @alias: name up to IFALIASZ
1296  *      @len: limit of bytes to copy from info
1297  *
1298  *      Set ifalias for a device,
1299  */
1300 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1301 {
1302         struct dev_ifalias *new_alias = NULL;
1303
1304         if (len >= IFALIASZ)
1305                 return -EINVAL;
1306
1307         if (len) {
1308                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1309                 if (!new_alias)
1310                         return -ENOMEM;
1311
1312                 memcpy(new_alias->ifalias, alias, len);
1313                 new_alias->ifalias[len] = 0;
1314         }
1315
1316         mutex_lock(&ifalias_mutex);
1317         new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1318                                         mutex_is_locked(&ifalias_mutex));
1319         mutex_unlock(&ifalias_mutex);
1320
1321         if (new_alias)
1322                 kfree_rcu(new_alias, rcuhead);
1323
1324         return len;
1325 }
1326 EXPORT_SYMBOL(dev_set_alias);
1327
1328 /**
1329  *      dev_get_alias - get ifalias of a device
1330  *      @dev: device
1331  *      @name: buffer to store name of ifalias
1332  *      @len: size of buffer
1333  *
1334  *      get ifalias for a device.  Caller must make sure dev cannot go
1335  *      away,  e.g. rcu read lock or own a reference count to device.
1336  */
1337 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1338 {
1339         const struct dev_ifalias *alias;
1340         int ret = 0;
1341
1342         rcu_read_lock();
1343         alias = rcu_dereference(dev->ifalias);
1344         if (alias)
1345                 ret = snprintf(name, len, "%s", alias->ifalias);
1346         rcu_read_unlock();
1347
1348         return ret;
1349 }
1350
1351 /**
1352  *      netdev_features_change - device changes features
1353  *      @dev: device to cause notification
1354  *
1355  *      Called to indicate a device has changed features.
1356  */
1357 void netdev_features_change(struct net_device *dev)
1358 {
1359         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1360 }
1361 EXPORT_SYMBOL(netdev_features_change);
1362
1363 /**
1364  *      netdev_state_change - device changes state
1365  *      @dev: device to cause notification
1366  *
1367  *      Called to indicate a device has changed state. This function calls
1368  *      the notifier chains for netdev_chain and sends a NEWLINK message
1369  *      to the routing socket.
1370  */
1371 void netdev_state_change(struct net_device *dev)
1372 {
1373         if (dev->flags & IFF_UP) {
1374                 struct netdev_notifier_change_info change_info = {
1375                         .info.dev = dev,
1376                 };
1377
1378                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1379                                               &change_info.info);
1380                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1381         }
1382 }
1383 EXPORT_SYMBOL(netdev_state_change);
1384
1385 /**
1386  * netdev_notify_peers - notify network peers about existence of @dev
1387  * @dev: network device
1388  *
1389  * Generate traffic such that interested network peers are aware of
1390  * @dev, such as by generating a gratuitous ARP. This may be used when
1391  * a device wants to inform the rest of the network about some sort of
1392  * reconfiguration such as a failover event or virtual machine
1393  * migration.
1394  */
1395 void netdev_notify_peers(struct net_device *dev)
1396 {
1397         rtnl_lock();
1398         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1399         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1400         rtnl_unlock();
1401 }
1402 EXPORT_SYMBOL(netdev_notify_peers);
1403
1404 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1405 {
1406         const struct net_device_ops *ops = dev->netdev_ops;
1407         int ret;
1408
1409         ASSERT_RTNL();
1410
1411         if (!netif_device_present(dev))
1412                 return -ENODEV;
1413
1414         /* Block netpoll from trying to do any rx path servicing.
1415          * If we don't do this there is a chance ndo_poll_controller
1416          * or ndo_poll may be running while we open the device
1417          */
1418         netpoll_poll_disable(dev);
1419
1420         ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1421         ret = notifier_to_errno(ret);
1422         if (ret)
1423                 return ret;
1424
1425         set_bit(__LINK_STATE_START, &dev->state);
1426
1427         if (ops->ndo_validate_addr)
1428                 ret = ops->ndo_validate_addr(dev);
1429
1430         if (!ret && ops->ndo_open)
1431                 ret = ops->ndo_open(dev);
1432
1433         netpoll_poll_enable(dev);
1434
1435         if (ret)
1436                 clear_bit(__LINK_STATE_START, &dev->state);
1437         else {
1438                 dev->flags |= IFF_UP;
1439                 dev_set_rx_mode(dev);
1440                 dev_activate(dev);
1441                 add_device_randomness(dev->dev_addr, dev->addr_len);
1442         }
1443
1444         return ret;
1445 }
1446
1447 /**
1448  *      dev_open        - prepare an interface for use.
1449  *      @dev: device to open
1450  *      @extack: netlink extended ack
1451  *
1452  *      Takes a device from down to up state. The device's private open
1453  *      function is invoked and then the multicast lists are loaded. Finally
1454  *      the device is moved into the up state and a %NETDEV_UP message is
1455  *      sent to the netdev notifier chain.
1456  *
1457  *      Calling this function on an active interface is a nop. On a failure
1458  *      a negative errno code is returned.
1459  */
1460 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1461 {
1462         int ret;
1463
1464         if (dev->flags & IFF_UP)
1465                 return 0;
1466
1467         ret = __dev_open(dev, extack);
1468         if (ret < 0)
1469                 return ret;
1470
1471         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1472         call_netdevice_notifiers(NETDEV_UP, dev);
1473
1474         return ret;
1475 }
1476 EXPORT_SYMBOL(dev_open);
1477
1478 static void __dev_close_many(struct list_head *head)
1479 {
1480         struct net_device *dev;
1481
1482         ASSERT_RTNL();
1483         might_sleep();
1484
1485         list_for_each_entry(dev, head, close_list) {
1486                 /* Temporarily disable netpoll until the interface is down */
1487                 netpoll_poll_disable(dev);
1488
1489                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1490
1491                 clear_bit(__LINK_STATE_START, &dev->state);
1492
1493                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1494                  * can be even on different cpu. So just clear netif_running().
1495                  *
1496                  * dev->stop() will invoke napi_disable() on all of it's
1497                  * napi_struct instances on this device.
1498                  */
1499                 smp_mb__after_atomic(); /* Commit netif_running(). */
1500         }
1501
1502         dev_deactivate_many(head);
1503
1504         list_for_each_entry(dev, head, close_list) {
1505                 const struct net_device_ops *ops = dev->netdev_ops;
1506
1507                 /*
1508                  *      Call the device specific close. This cannot fail.
1509                  *      Only if device is UP
1510                  *
1511                  *      We allow it to be called even after a DETACH hot-plug
1512                  *      event.
1513                  */
1514                 if (ops->ndo_stop)
1515                         ops->ndo_stop(dev);
1516
1517                 dev->flags &= ~IFF_UP;
1518                 netpoll_poll_enable(dev);
1519         }
1520 }
1521
1522 static void __dev_close(struct net_device *dev)
1523 {
1524         LIST_HEAD(single);
1525
1526         list_add(&dev->close_list, &single);
1527         __dev_close_many(&single);
1528         list_del(&single);
1529 }
1530
1531 void dev_close_many(struct list_head *head, bool unlink)
1532 {
1533         struct net_device *dev, *tmp;
1534
1535         /* Remove the devices that don't need to be closed */
1536         list_for_each_entry_safe(dev, tmp, head, close_list)
1537                 if (!(dev->flags & IFF_UP))
1538                         list_del_init(&dev->close_list);
1539
1540         __dev_close_many(head);
1541
1542         list_for_each_entry_safe(dev, tmp, head, close_list) {
1543                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1544                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1545                 if (unlink)
1546                         list_del_init(&dev->close_list);
1547         }
1548 }
1549 EXPORT_SYMBOL(dev_close_many);
1550
1551 /**
1552  *      dev_close - shutdown an interface.
1553  *      @dev: device to shutdown
1554  *
1555  *      This function moves an active device into down state. A
1556  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1557  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1558  *      chain.
1559  */
1560 void dev_close(struct net_device *dev)
1561 {
1562         if (dev->flags & IFF_UP) {
1563                 LIST_HEAD(single);
1564
1565                 list_add(&dev->close_list, &single);
1566                 dev_close_many(&single, true);
1567                 list_del(&single);
1568         }
1569 }
1570 EXPORT_SYMBOL(dev_close);
1571
1572
1573 /**
1574  *      dev_disable_lro - disable Large Receive Offload on a device
1575  *      @dev: device
1576  *
1577  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1578  *      called under RTNL.  This is needed if received packets may be
1579  *      forwarded to another interface.
1580  */
1581 void dev_disable_lro(struct net_device *dev)
1582 {
1583         struct net_device *lower_dev;
1584         struct list_head *iter;
1585
1586         dev->wanted_features &= ~NETIF_F_LRO;
1587         netdev_update_features(dev);
1588
1589         if (unlikely(dev->features & NETIF_F_LRO))
1590                 netdev_WARN(dev, "failed to disable LRO!\n");
1591
1592         netdev_for_each_lower_dev(dev, lower_dev, iter)
1593                 dev_disable_lro(lower_dev);
1594 }
1595 EXPORT_SYMBOL(dev_disable_lro);
1596
1597 /**
1598  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1599  *      @dev: device
1600  *
1601  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1602  *      called under RTNL.  This is needed if Generic XDP is installed on
1603  *      the device.
1604  */
1605 static void dev_disable_gro_hw(struct net_device *dev)
1606 {
1607         dev->wanted_features &= ~NETIF_F_GRO_HW;
1608         netdev_update_features(dev);
1609
1610         if (unlikely(dev->features & NETIF_F_GRO_HW))
1611                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1612 }
1613
1614 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1615 {
1616 #define N(val)                                          \
1617         case NETDEV_##val:                              \
1618                 return "NETDEV_" __stringify(val);
1619         switch (cmd) {
1620         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1621         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1622         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1623         N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1624         N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1625         N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1626         N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1627         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1628         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1629         N(PRE_CHANGEADDR)
1630         }
1631 #undef N
1632         return "UNKNOWN_NETDEV_EVENT";
1633 }
1634 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1635
1636 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1637                                    struct net_device *dev)
1638 {
1639         struct netdev_notifier_info info = {
1640                 .dev = dev,
1641         };
1642
1643         return nb->notifier_call(nb, val, &info);
1644 }
1645
1646 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1647                                              struct net_device *dev)
1648 {
1649         int err;
1650
1651         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1652         err = notifier_to_errno(err);
1653         if (err)
1654                 return err;
1655
1656         if (!(dev->flags & IFF_UP))
1657                 return 0;
1658
1659         call_netdevice_notifier(nb, NETDEV_UP, dev);
1660         return 0;
1661 }
1662
1663 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1664                                                 struct net_device *dev)
1665 {
1666         if (dev->flags & IFF_UP) {
1667                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1668                                         dev);
1669                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1670         }
1671         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1672 }
1673
1674 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1675                                                  struct net *net)
1676 {
1677         struct net_device *dev;
1678         int err;
1679
1680         for_each_netdev(net, dev) {
1681                 err = call_netdevice_register_notifiers(nb, dev);
1682                 if (err)
1683                         goto rollback;
1684         }
1685         return 0;
1686
1687 rollback:
1688         for_each_netdev_continue_reverse(net, dev)
1689                 call_netdevice_unregister_notifiers(nb, dev);
1690         return err;
1691 }
1692
1693 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1694                                                     struct net *net)
1695 {
1696         struct net_device *dev;
1697
1698         for_each_netdev(net, dev)
1699                 call_netdevice_unregister_notifiers(nb, dev);
1700 }
1701
1702 static int dev_boot_phase = 1;
1703
1704 /**
1705  * register_netdevice_notifier - register a network notifier block
1706  * @nb: notifier
1707  *
1708  * Register a notifier to be called when network device events occur.
1709  * The notifier passed is linked into the kernel structures and must
1710  * not be reused until it has been unregistered. A negative errno code
1711  * is returned on a failure.
1712  *
1713  * When registered all registration and up events are replayed
1714  * to the new notifier to allow device to have a race free
1715  * view of the network device list.
1716  */
1717
1718 int register_netdevice_notifier(struct notifier_block *nb)
1719 {
1720         struct net *net;
1721         int err;
1722
1723         /* Close race with setup_net() and cleanup_net() */
1724         down_write(&pernet_ops_rwsem);
1725         rtnl_lock();
1726         err = raw_notifier_chain_register(&netdev_chain, nb);
1727         if (err)
1728                 goto unlock;
1729         if (dev_boot_phase)
1730                 goto unlock;
1731         for_each_net(net) {
1732                 err = call_netdevice_register_net_notifiers(nb, net);
1733                 if (err)
1734                         goto rollback;
1735         }
1736
1737 unlock:
1738         rtnl_unlock();
1739         up_write(&pernet_ops_rwsem);
1740         return err;
1741
1742 rollback:
1743         for_each_net_continue_reverse(net)
1744                 call_netdevice_unregister_net_notifiers(nb, net);
1745
1746         raw_notifier_chain_unregister(&netdev_chain, nb);
1747         goto unlock;
1748 }
1749 EXPORT_SYMBOL(register_netdevice_notifier);
1750
1751 /**
1752  * unregister_netdevice_notifier - unregister a network notifier block
1753  * @nb: notifier
1754  *
1755  * Unregister a notifier previously registered by
1756  * register_netdevice_notifier(). The notifier is unlinked into the
1757  * kernel structures and may then be reused. A negative errno code
1758  * is returned on a failure.
1759  *
1760  * After unregistering unregister and down device events are synthesized
1761  * for all devices on the device list to the removed notifier to remove
1762  * the need for special case cleanup code.
1763  */
1764
1765 int unregister_netdevice_notifier(struct notifier_block *nb)
1766 {
1767         struct net_device *dev;
1768         struct net *net;
1769         int err;
1770
1771         /* Close race with setup_net() and cleanup_net() */
1772         down_write(&pernet_ops_rwsem);
1773         rtnl_lock();
1774         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1775         if (err)
1776                 goto unlock;
1777
1778         for_each_net(net) {
1779                 for_each_netdev(net, dev) {
1780                         if (dev->flags & IFF_UP) {
1781                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1782                                                         dev);
1783                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1784                         }
1785                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1786                 }
1787         }
1788 unlock:
1789         rtnl_unlock();
1790         up_write(&pernet_ops_rwsem);
1791         return err;
1792 }
1793 EXPORT_SYMBOL(unregister_netdevice_notifier);
1794
1795 /**
1796  * register_netdevice_notifier_net - register a per-netns network notifier block
1797  * @net: network namespace
1798  * @nb: notifier
1799  *
1800  * Register a notifier to be called when network device events occur.
1801  * The notifier passed is linked into the kernel structures and must
1802  * not be reused until it has been unregistered. A negative errno code
1803  * is returned on a failure.
1804  *
1805  * When registered all registration and up events are replayed
1806  * to the new notifier to allow device to have a race free
1807  * view of the network device list.
1808  */
1809
1810 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1811 {
1812         int err;
1813
1814         rtnl_lock();
1815         err = raw_notifier_chain_register(&net->netdev_chain, nb);
1816         if (err)
1817                 goto unlock;
1818         if (dev_boot_phase)
1819                 goto unlock;
1820
1821         err = call_netdevice_register_net_notifiers(nb, net);
1822         if (err)
1823                 goto chain_unregister;
1824
1825 unlock:
1826         rtnl_unlock();
1827         return err;
1828
1829 chain_unregister:
1830         raw_notifier_chain_unregister(&netdev_chain, nb);
1831         goto unlock;
1832 }
1833 EXPORT_SYMBOL(register_netdevice_notifier_net);
1834
1835 /**
1836  * unregister_netdevice_notifier_net - unregister a per-netns
1837  *                                     network notifier block
1838  * @net: network namespace
1839  * @nb: notifier
1840  *
1841  * Unregister a notifier previously registered by
1842  * register_netdevice_notifier(). The notifier is unlinked into the
1843  * kernel structures and may then be reused. A negative errno code
1844  * is returned on a failure.
1845  *
1846  * After unregistering unregister and down device events are synthesized
1847  * for all devices on the device list to the removed notifier to remove
1848  * the need for special case cleanup code.
1849  */
1850
1851 int unregister_netdevice_notifier_net(struct net *net,
1852                                       struct notifier_block *nb)
1853 {
1854         int err;
1855
1856         rtnl_lock();
1857         err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1858         if (err)
1859                 goto unlock;
1860
1861         call_netdevice_unregister_net_notifiers(nb, net);
1862
1863 unlock:
1864         rtnl_unlock();
1865         return err;
1866 }
1867 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1868
1869 /**
1870  *      call_netdevice_notifiers_info - call all network notifier blocks
1871  *      @val: value passed unmodified to notifier function
1872  *      @info: notifier information data
1873  *
1874  *      Call all network notifier blocks.  Parameters and return value
1875  *      are as for raw_notifier_call_chain().
1876  */
1877
1878 static int call_netdevice_notifiers_info(unsigned long val,
1879                                          struct netdev_notifier_info *info)
1880 {
1881         struct net *net = dev_net(info->dev);
1882         int ret;
1883
1884         ASSERT_RTNL();
1885
1886         /* Run per-netns notifier block chain first, then run the global one.
1887          * Hopefully, one day, the global one is going to be removed after
1888          * all notifier block registrators get converted to be per-netns.
1889          */
1890         ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1891         if (ret & NOTIFY_STOP_MASK)
1892                 return ret;
1893         return raw_notifier_call_chain(&netdev_chain, val, info);
1894 }
1895
1896 static int call_netdevice_notifiers_extack(unsigned long val,
1897                                            struct net_device *dev,
1898                                            struct netlink_ext_ack *extack)
1899 {
1900         struct netdev_notifier_info info = {
1901                 .dev = dev,
1902                 .extack = extack,
1903         };
1904
1905         return call_netdevice_notifiers_info(val, &info);
1906 }
1907
1908 /**
1909  *      call_netdevice_notifiers - call all network notifier blocks
1910  *      @val: value passed unmodified to notifier function
1911  *      @dev: net_device pointer passed unmodified to notifier function
1912  *
1913  *      Call all network notifier blocks.  Parameters and return value
1914  *      are as for raw_notifier_call_chain().
1915  */
1916
1917 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1918 {
1919         return call_netdevice_notifiers_extack(val, dev, NULL);
1920 }
1921 EXPORT_SYMBOL(call_netdevice_notifiers);
1922
1923 /**
1924  *      call_netdevice_notifiers_mtu - call all network notifier blocks
1925  *      @val: value passed unmodified to notifier function
1926  *      @dev: net_device pointer passed unmodified to notifier function
1927  *      @arg: additional u32 argument passed to the notifier function
1928  *
1929  *      Call all network notifier blocks.  Parameters and return value
1930  *      are as for raw_notifier_call_chain().
1931  */
1932 static int call_netdevice_notifiers_mtu(unsigned long val,
1933                                         struct net_device *dev, u32 arg)
1934 {
1935         struct netdev_notifier_info_ext info = {
1936                 .info.dev = dev,
1937                 .ext.mtu = arg,
1938         };
1939
1940         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1941
1942         return call_netdevice_notifiers_info(val, &info.info);
1943 }
1944
1945 #ifdef CONFIG_NET_INGRESS
1946 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
1947
1948 void net_inc_ingress_queue(void)
1949 {
1950         static_branch_inc(&ingress_needed_key);
1951 }
1952 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1953
1954 void net_dec_ingress_queue(void)
1955 {
1956         static_branch_dec(&ingress_needed_key);
1957 }
1958 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1959 #endif
1960
1961 #ifdef CONFIG_NET_EGRESS
1962 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1963
1964 void net_inc_egress_queue(void)
1965 {
1966         static_branch_inc(&egress_needed_key);
1967 }
1968 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1969
1970 void net_dec_egress_queue(void)
1971 {
1972         static_branch_dec(&egress_needed_key);
1973 }
1974 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1975 #endif
1976
1977 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
1978 #ifdef CONFIG_JUMP_LABEL
1979 static atomic_t netstamp_needed_deferred;
1980 static atomic_t netstamp_wanted;
1981 static void netstamp_clear(struct work_struct *work)
1982 {
1983         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1984         int wanted;
1985
1986         wanted = atomic_add_return(deferred, &netstamp_wanted);
1987         if (wanted > 0)
1988                 static_branch_enable(&netstamp_needed_key);
1989         else
1990                 static_branch_disable(&netstamp_needed_key);
1991 }
1992 static DECLARE_WORK(netstamp_work, netstamp_clear);
1993 #endif
1994
1995 void net_enable_timestamp(void)
1996 {
1997 #ifdef CONFIG_JUMP_LABEL
1998         int wanted;
1999
2000         while (1) {
2001                 wanted = atomic_read(&netstamp_wanted);
2002                 if (wanted <= 0)
2003                         break;
2004                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2005                         return;
2006         }
2007         atomic_inc(&netstamp_needed_deferred);
2008         schedule_work(&netstamp_work);
2009 #else
2010         static_branch_inc(&netstamp_needed_key);
2011 #endif
2012 }
2013 EXPORT_SYMBOL(net_enable_timestamp);
2014
2015 void net_disable_timestamp(void)
2016 {
2017 #ifdef CONFIG_JUMP_LABEL
2018         int wanted;
2019
2020         while (1) {
2021                 wanted = atomic_read(&netstamp_wanted);
2022                 if (wanted <= 1)
2023                         break;
2024                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2025                         return;
2026         }
2027         atomic_dec(&netstamp_needed_deferred);
2028         schedule_work(&netstamp_work);
2029 #else
2030         static_branch_dec(&netstamp_needed_key);
2031 #endif
2032 }
2033 EXPORT_SYMBOL(net_disable_timestamp);
2034
2035 static inline void net_timestamp_set(struct sk_buff *skb)
2036 {
2037         skb->tstamp = 0;
2038         if (static_branch_unlikely(&netstamp_needed_key))
2039                 __net_timestamp(skb);
2040 }
2041
2042 #define net_timestamp_check(COND, SKB)                          \
2043         if (static_branch_unlikely(&netstamp_needed_key)) {     \
2044                 if ((COND) && !(SKB)->tstamp)                   \
2045                         __net_timestamp(SKB);                   \
2046         }                                                       \
2047
2048 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2049 {
2050         unsigned int len;
2051
2052         if (!(dev->flags & IFF_UP))
2053                 return false;
2054
2055         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
2056         if (skb->len <= len)
2057                 return true;
2058
2059         /* if TSO is enabled, we don't care about the length as the packet
2060          * could be forwarded without being segmented before
2061          */
2062         if (skb_is_gso(skb))
2063                 return true;
2064
2065         return false;
2066 }
2067 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2068
2069 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2070 {
2071         int ret = ____dev_forward_skb(dev, skb);
2072
2073         if (likely(!ret)) {
2074                 skb->protocol = eth_type_trans(skb, dev);
2075                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2076         }
2077
2078         return ret;
2079 }
2080 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2081
2082 /**
2083  * dev_forward_skb - loopback an skb to another netif
2084  *
2085  * @dev: destination network device
2086  * @skb: buffer to forward
2087  *
2088  * return values:
2089  *      NET_RX_SUCCESS  (no congestion)
2090  *      NET_RX_DROP     (packet was dropped, but freed)
2091  *
2092  * dev_forward_skb can be used for injecting an skb from the
2093  * start_xmit function of one device into the receive queue
2094  * of another device.
2095  *
2096  * The receiving device may be in another namespace, so
2097  * we have to clear all information in the skb that could
2098  * impact namespace isolation.
2099  */
2100 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2101 {
2102         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2103 }
2104 EXPORT_SYMBOL_GPL(dev_forward_skb);
2105
2106 static inline int deliver_skb(struct sk_buff *skb,
2107                               struct packet_type *pt_prev,
2108                               struct net_device *orig_dev)
2109 {
2110         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2111                 return -ENOMEM;
2112         refcount_inc(&skb->users);
2113         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2114 }
2115
2116 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2117                                           struct packet_type **pt,
2118                                           struct net_device *orig_dev,
2119                                           __be16 type,
2120                                           struct list_head *ptype_list)
2121 {
2122         struct packet_type *ptype, *pt_prev = *pt;
2123
2124         list_for_each_entry_rcu(ptype, ptype_list, list) {
2125                 if (ptype->type != type)
2126                         continue;
2127                 if (pt_prev)
2128                         deliver_skb(skb, pt_prev, orig_dev);
2129                 pt_prev = ptype;
2130         }
2131         *pt = pt_prev;
2132 }
2133
2134 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2135 {
2136         if (!ptype->af_packet_priv || !skb->sk)
2137                 return false;
2138
2139         if (ptype->id_match)
2140                 return ptype->id_match(ptype, skb->sk);
2141         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2142                 return true;
2143
2144         return false;
2145 }
2146
2147 /**
2148  * dev_nit_active - return true if any network interface taps are in use
2149  *
2150  * @dev: network device to check for the presence of taps
2151  */
2152 bool dev_nit_active(struct net_device *dev)
2153 {
2154         return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2155 }
2156 EXPORT_SYMBOL_GPL(dev_nit_active);
2157
2158 /*
2159  *      Support routine. Sends outgoing frames to any network
2160  *      taps currently in use.
2161  */
2162
2163 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2164 {
2165         struct packet_type *ptype;
2166         struct sk_buff *skb2 = NULL;
2167         struct packet_type *pt_prev = NULL;
2168         struct list_head *ptype_list = &ptype_all;
2169
2170         rcu_read_lock();
2171 again:
2172         list_for_each_entry_rcu(ptype, ptype_list, list) {
2173                 if (ptype->ignore_outgoing)
2174                         continue;
2175
2176                 /* Never send packets back to the socket
2177                  * they originated from - MvS (miquels@drinkel.ow.org)
2178                  */
2179                 if (skb_loop_sk(ptype, skb))
2180                         continue;
2181
2182                 if (pt_prev) {
2183                         deliver_skb(skb2, pt_prev, skb->dev);
2184                         pt_prev = ptype;
2185                         continue;
2186                 }
2187
2188                 /* need to clone skb, done only once */
2189                 skb2 = skb_clone(skb, GFP_ATOMIC);
2190                 if (!skb2)
2191                         goto out_unlock;
2192
2193                 net_timestamp_set(skb2);
2194
2195                 /* skb->nh should be correctly
2196                  * set by sender, so that the second statement is
2197                  * just protection against buggy protocols.
2198                  */
2199                 skb_reset_mac_header(skb2);
2200
2201                 if (skb_network_header(skb2) < skb2->data ||
2202                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2203                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2204                                              ntohs(skb2->protocol),
2205                                              dev->name);
2206                         skb_reset_network_header(skb2);
2207                 }
2208
2209                 skb2->transport_header = skb2->network_header;
2210                 skb2->pkt_type = PACKET_OUTGOING;
2211                 pt_prev = ptype;
2212         }
2213
2214         if (ptype_list == &ptype_all) {
2215                 ptype_list = &dev->ptype_all;
2216                 goto again;
2217         }
2218 out_unlock:
2219         if (pt_prev) {
2220                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2221                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2222                 else
2223                         kfree_skb(skb2);
2224         }
2225         rcu_read_unlock();
2226 }
2227 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2228
2229 /**
2230  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2231  * @dev: Network device
2232  * @txq: number of queues available
2233  *
2234  * If real_num_tx_queues is changed the tc mappings may no longer be
2235  * valid. To resolve this verify the tc mapping remains valid and if
2236  * not NULL the mapping. With no priorities mapping to this
2237  * offset/count pair it will no longer be used. In the worst case TC0
2238  * is invalid nothing can be done so disable priority mappings. If is
2239  * expected that drivers will fix this mapping if they can before
2240  * calling netif_set_real_num_tx_queues.
2241  */
2242 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2243 {
2244         int i;
2245         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2246
2247         /* If TC0 is invalidated disable TC mapping */
2248         if (tc->offset + tc->count > txq) {
2249                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2250                 dev->num_tc = 0;
2251                 return;
2252         }
2253
2254         /* Invalidated prio to tc mappings set to TC0 */
2255         for (i = 1; i < TC_BITMASK + 1; i++) {
2256                 int q = netdev_get_prio_tc_map(dev, i);
2257
2258                 tc = &dev->tc_to_txq[q];
2259                 if (tc->offset + tc->count > txq) {
2260                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2261                                 i, q);
2262                         netdev_set_prio_tc_map(dev, i, 0);
2263                 }
2264         }
2265 }
2266
2267 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2268 {
2269         if (dev->num_tc) {
2270                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2271                 int i;
2272
2273                 /* walk through the TCs and see if it falls into any of them */
2274                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2275                         if ((txq - tc->offset) < tc->count)
2276                                 return i;
2277                 }
2278
2279                 /* didn't find it, just return -1 to indicate no match */
2280                 return -1;
2281         }
2282
2283         return 0;
2284 }
2285 EXPORT_SYMBOL(netdev_txq_to_tc);
2286
2287 #ifdef CONFIG_XPS
2288 struct static_key xps_needed __read_mostly;
2289 EXPORT_SYMBOL(xps_needed);
2290 struct static_key xps_rxqs_needed __read_mostly;
2291 EXPORT_SYMBOL(xps_rxqs_needed);
2292 static DEFINE_MUTEX(xps_map_mutex);
2293 #define xmap_dereference(P)             \
2294         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2295
2296 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2297                              int tci, u16 index)
2298 {
2299         struct xps_map *map = NULL;
2300         int pos;
2301
2302         if (dev_maps)
2303                 map = xmap_dereference(dev_maps->attr_map[tci]);
2304         if (!map)
2305                 return false;
2306
2307         for (pos = map->len; pos--;) {
2308                 if (map->queues[pos] != index)
2309                         continue;
2310
2311                 if (map->len > 1) {
2312                         map->queues[pos] = map->queues[--map->len];
2313                         break;
2314                 }
2315
2316                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2317                 kfree_rcu(map, rcu);
2318                 return false;
2319         }
2320
2321         return true;
2322 }
2323
2324 static bool remove_xps_queue_cpu(struct net_device *dev,
2325                                  struct xps_dev_maps *dev_maps,
2326                                  int cpu, u16 offset, u16 count)
2327 {
2328         int num_tc = dev->num_tc ? : 1;
2329         bool active = false;
2330         int tci;
2331
2332         for (tci = cpu * num_tc; num_tc--; tci++) {
2333                 int i, j;
2334
2335                 for (i = count, j = offset; i--; j++) {
2336                         if (!remove_xps_queue(dev_maps, tci, j))
2337                                 break;
2338                 }
2339
2340                 active |= i < 0;
2341         }
2342
2343         return active;
2344 }
2345
2346 static void reset_xps_maps(struct net_device *dev,
2347                            struct xps_dev_maps *dev_maps,
2348                            bool is_rxqs_map)
2349 {
2350         if (is_rxqs_map) {
2351                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2352                 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2353         } else {
2354                 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2355         }
2356         static_key_slow_dec_cpuslocked(&xps_needed);
2357         kfree_rcu(dev_maps, rcu);
2358 }
2359
2360 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2361                            struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2362                            u16 offset, u16 count, bool is_rxqs_map)
2363 {
2364         bool active = false;
2365         int i, j;
2366
2367         for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2368              j < nr_ids;)
2369                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2370                                                count);
2371         if (!active)
2372                 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2373
2374         if (!is_rxqs_map) {
2375                 for (i = offset + (count - 1); count--; i--) {
2376                         netdev_queue_numa_node_write(
2377                                 netdev_get_tx_queue(dev, i),
2378                                 NUMA_NO_NODE);
2379                 }
2380         }
2381 }
2382
2383 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2384                                    u16 count)
2385 {
2386         const unsigned long *possible_mask = NULL;
2387         struct xps_dev_maps *dev_maps;
2388         unsigned int nr_ids;
2389
2390         if (!static_key_false(&xps_needed))
2391                 return;
2392
2393         cpus_read_lock();
2394         mutex_lock(&xps_map_mutex);
2395
2396         if (static_key_false(&xps_rxqs_needed)) {
2397                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2398                 if (dev_maps) {
2399                         nr_ids = dev->num_rx_queues;
2400                         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2401                                        offset, count, true);
2402                 }
2403         }
2404
2405         dev_maps = xmap_dereference(dev->xps_cpus_map);
2406         if (!dev_maps)
2407                 goto out_no_maps;
2408
2409         if (num_possible_cpus() > 1)
2410                 possible_mask = cpumask_bits(cpu_possible_mask);
2411         nr_ids = nr_cpu_ids;
2412         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2413                        false);
2414
2415 out_no_maps:
2416         mutex_unlock(&xps_map_mutex);
2417         cpus_read_unlock();
2418 }
2419
2420 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2421 {
2422         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2423 }
2424
2425 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2426                                       u16 index, bool is_rxqs_map)
2427 {
2428         struct xps_map *new_map;
2429         int alloc_len = XPS_MIN_MAP_ALLOC;
2430         int i, pos;
2431
2432         for (pos = 0; map && pos < map->len; pos++) {
2433                 if (map->queues[pos] != index)
2434                         continue;
2435                 return map;
2436         }
2437
2438         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2439         if (map) {
2440                 if (pos < map->alloc_len)
2441                         return map;
2442
2443                 alloc_len = map->alloc_len * 2;
2444         }
2445
2446         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2447          *  map
2448          */
2449         if (is_rxqs_map)
2450                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2451         else
2452                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2453                                        cpu_to_node(attr_index));
2454         if (!new_map)
2455                 return NULL;
2456
2457         for (i = 0; i < pos; i++)
2458                 new_map->queues[i] = map->queues[i];
2459         new_map->alloc_len = alloc_len;
2460         new_map->len = pos;
2461
2462         return new_map;
2463 }
2464
2465 /* Must be called under cpus_read_lock */
2466 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2467                           u16 index, bool is_rxqs_map)
2468 {
2469         const unsigned long *online_mask = NULL, *possible_mask = NULL;
2470         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2471         int i, j, tci, numa_node_id = -2;
2472         int maps_sz, num_tc = 1, tc = 0;
2473         struct xps_map *map, *new_map;
2474         bool active = false;
2475         unsigned int nr_ids;
2476
2477         if (dev->num_tc) {
2478                 /* Do not allow XPS on subordinate device directly */
2479                 num_tc = dev->num_tc;
2480                 if (num_tc < 0)
2481                         return -EINVAL;
2482
2483                 /* If queue belongs to subordinate dev use its map */
2484                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2485
2486                 tc = netdev_txq_to_tc(dev, index);
2487                 if (tc < 0)
2488                         return -EINVAL;
2489         }
2490
2491         mutex_lock(&xps_map_mutex);
2492         if (is_rxqs_map) {
2493                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2494                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2495                 nr_ids = dev->num_rx_queues;
2496         } else {
2497                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2498                 if (num_possible_cpus() > 1) {
2499                         online_mask = cpumask_bits(cpu_online_mask);
2500                         possible_mask = cpumask_bits(cpu_possible_mask);
2501                 }
2502                 dev_maps = xmap_dereference(dev->xps_cpus_map);
2503                 nr_ids = nr_cpu_ids;
2504         }
2505
2506         if (maps_sz < L1_CACHE_BYTES)
2507                 maps_sz = L1_CACHE_BYTES;
2508
2509         /* allocate memory for queue storage */
2510         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2511              j < nr_ids;) {
2512                 if (!new_dev_maps)
2513                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2514                 if (!new_dev_maps) {
2515                         mutex_unlock(&xps_map_mutex);
2516                         return -ENOMEM;
2517                 }
2518
2519                 tci = j * num_tc + tc;
2520                 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2521                                  NULL;
2522
2523                 map = expand_xps_map(map, j, index, is_rxqs_map);
2524                 if (!map)
2525                         goto error;
2526
2527                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2528         }
2529
2530         if (!new_dev_maps)
2531                 goto out_no_new_maps;
2532
2533         if (!dev_maps) {
2534                 /* Increment static keys at most once per type */
2535                 static_key_slow_inc_cpuslocked(&xps_needed);
2536                 if (is_rxqs_map)
2537                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2538         }
2539
2540         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2541              j < nr_ids;) {
2542                 /* copy maps belonging to foreign traffic classes */
2543                 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2544                         /* fill in the new device map from the old device map */
2545                         map = xmap_dereference(dev_maps->attr_map[tci]);
2546                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2547                 }
2548
2549                 /* We need to explicitly update tci as prevous loop
2550                  * could break out early if dev_maps is NULL.
2551                  */
2552                 tci = j * num_tc + tc;
2553
2554                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2555                     netif_attr_test_online(j, online_mask, nr_ids)) {
2556                         /* add tx-queue to CPU/rx-queue maps */
2557                         int pos = 0;
2558
2559                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2560                         while ((pos < map->len) && (map->queues[pos] != index))
2561                                 pos++;
2562
2563                         if (pos == map->len)
2564                                 map->queues[map->len++] = index;
2565 #ifdef CONFIG_NUMA
2566                         if (!is_rxqs_map) {
2567                                 if (numa_node_id == -2)
2568                                         numa_node_id = cpu_to_node(j);
2569                                 else if (numa_node_id != cpu_to_node(j))
2570                                         numa_node_id = -1;
2571                         }
2572 #endif
2573                 } else if (dev_maps) {
2574                         /* fill in the new device map from the old device map */
2575                         map = xmap_dereference(dev_maps->attr_map[tci]);
2576                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2577                 }
2578
2579                 /* copy maps belonging to foreign traffic classes */
2580                 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2581                         /* fill in the new device map from the old device map */
2582                         map = xmap_dereference(dev_maps->attr_map[tci]);
2583                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2584                 }
2585         }
2586
2587         if (is_rxqs_map)
2588                 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2589         else
2590                 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2591
2592         /* Cleanup old maps */
2593         if (!dev_maps)
2594                 goto out_no_old_maps;
2595
2596         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2597              j < nr_ids;) {
2598                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2599                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2600                         map = xmap_dereference(dev_maps->attr_map[tci]);
2601                         if (map && map != new_map)
2602                                 kfree_rcu(map, rcu);
2603                 }
2604         }
2605
2606         kfree_rcu(dev_maps, rcu);
2607
2608 out_no_old_maps:
2609         dev_maps = new_dev_maps;
2610         active = true;
2611
2612 out_no_new_maps:
2613         if (!is_rxqs_map) {
2614                 /* update Tx queue numa node */
2615                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2616                                              (numa_node_id >= 0) ?
2617                                              numa_node_id : NUMA_NO_NODE);
2618         }
2619
2620         if (!dev_maps)
2621                 goto out_no_maps;
2622
2623         /* removes tx-queue from unused CPUs/rx-queues */
2624         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2625              j < nr_ids;) {
2626                 for (i = tc, tci = j * num_tc; i--; tci++)
2627                         active |= remove_xps_queue(dev_maps, tci, index);
2628                 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2629                     !netif_attr_test_online(j, online_mask, nr_ids))
2630                         active |= remove_xps_queue(dev_maps, tci, index);
2631                 for (i = num_tc - tc, tci++; --i; tci++)
2632                         active |= remove_xps_queue(dev_maps, tci, index);
2633         }
2634
2635         /* free map if not active */
2636         if (!active)
2637                 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2638
2639 out_no_maps:
2640         mutex_unlock(&xps_map_mutex);
2641
2642         return 0;
2643 error:
2644         /* remove any maps that we added */
2645         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2646              j < nr_ids;) {
2647                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2648                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2649                         map = dev_maps ?
2650                               xmap_dereference(dev_maps->attr_map[tci]) :
2651                               NULL;
2652                         if (new_map && new_map != map)
2653                                 kfree(new_map);
2654                 }
2655         }
2656
2657         mutex_unlock(&xps_map_mutex);
2658
2659         kfree(new_dev_maps);
2660         return -ENOMEM;
2661 }
2662 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2663
2664 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2665                         u16 index)
2666 {
2667         int ret;
2668
2669         cpus_read_lock();
2670         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2671         cpus_read_unlock();
2672
2673         return ret;
2674 }
2675 EXPORT_SYMBOL(netif_set_xps_queue);
2676
2677 #endif
2678 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2679 {
2680         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2681
2682         /* Unbind any subordinate channels */
2683         while (txq-- != &dev->_tx[0]) {
2684                 if (txq->sb_dev)
2685                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2686         }
2687 }
2688
2689 void netdev_reset_tc(struct net_device *dev)
2690 {
2691 #ifdef CONFIG_XPS
2692         netif_reset_xps_queues_gt(dev, 0);
2693 #endif
2694         netdev_unbind_all_sb_channels(dev);
2695
2696         /* Reset TC configuration of device */
2697         dev->num_tc = 0;
2698         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2699         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2700 }
2701 EXPORT_SYMBOL(netdev_reset_tc);
2702
2703 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2704 {
2705         if (tc >= dev->num_tc)
2706                 return -EINVAL;
2707
2708 #ifdef CONFIG_XPS
2709         netif_reset_xps_queues(dev, offset, count);
2710 #endif
2711         dev->tc_to_txq[tc].count = count;
2712         dev->tc_to_txq[tc].offset = offset;
2713         return 0;
2714 }
2715 EXPORT_SYMBOL(netdev_set_tc_queue);
2716
2717 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2718 {
2719         if (num_tc > TC_MAX_QUEUE)
2720                 return -EINVAL;
2721
2722 #ifdef CONFIG_XPS
2723         netif_reset_xps_queues_gt(dev, 0);
2724 #endif
2725         netdev_unbind_all_sb_channels(dev);
2726
2727         dev->num_tc = num_tc;
2728         return 0;
2729 }
2730 EXPORT_SYMBOL(netdev_set_num_tc);
2731
2732 void netdev_unbind_sb_channel(struct net_device *dev,
2733                               struct net_device *sb_dev)
2734 {
2735         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2736
2737 #ifdef CONFIG_XPS
2738         netif_reset_xps_queues_gt(sb_dev, 0);
2739 #endif
2740         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2741         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2742
2743         while (txq-- != &dev->_tx[0]) {
2744                 if (txq->sb_dev == sb_dev)
2745                         txq->sb_dev = NULL;
2746         }
2747 }
2748 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2749
2750 int netdev_bind_sb_channel_queue(struct net_device *dev,
2751                                  struct net_device *sb_dev,
2752                                  u8 tc, u16 count, u16 offset)
2753 {
2754         /* Make certain the sb_dev and dev are already configured */
2755         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2756                 return -EINVAL;
2757
2758         /* We cannot hand out queues we don't have */
2759         if ((offset + count) > dev->real_num_tx_queues)
2760                 return -EINVAL;
2761
2762         /* Record the mapping */
2763         sb_dev->tc_to_txq[tc].count = count;
2764         sb_dev->tc_to_txq[tc].offset = offset;
2765
2766         /* Provide a way for Tx queue to find the tc_to_txq map or
2767          * XPS map for itself.
2768          */
2769         while (count--)
2770                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2771
2772         return 0;
2773 }
2774 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2775
2776 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2777 {
2778         /* Do not use a multiqueue device to represent a subordinate channel */
2779         if (netif_is_multiqueue(dev))
2780                 return -ENODEV;
2781
2782         /* We allow channels 1 - 32767 to be used for subordinate channels.
2783          * Channel 0 is meant to be "native" mode and used only to represent
2784          * the main root device. We allow writing 0 to reset the device back
2785          * to normal mode after being used as a subordinate channel.
2786          */
2787         if (channel > S16_MAX)
2788                 return -EINVAL;
2789
2790         dev->num_tc = -channel;
2791
2792         return 0;
2793 }
2794 EXPORT_SYMBOL(netdev_set_sb_channel);
2795
2796 /*
2797  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2798  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2799  */
2800 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2801 {
2802         bool disabling;
2803         int rc;
2804
2805         disabling = txq < dev->real_num_tx_queues;
2806
2807         if (txq < 1 || txq > dev->num_tx_queues)
2808                 return -EINVAL;
2809
2810         if (dev->reg_state == NETREG_REGISTERED ||
2811             dev->reg_state == NETREG_UNREGISTERING) {
2812                 ASSERT_RTNL();
2813
2814                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2815                                                   txq);
2816                 if (rc)
2817                         return rc;
2818
2819                 if (dev->num_tc)
2820                         netif_setup_tc(dev, txq);
2821
2822                 dev->real_num_tx_queues = txq;
2823
2824                 if (disabling) {
2825                         synchronize_net();
2826                         qdisc_reset_all_tx_gt(dev, txq);
2827 #ifdef CONFIG_XPS
2828                         netif_reset_xps_queues_gt(dev, txq);
2829 #endif
2830                 }
2831         } else {
2832                 dev->real_num_tx_queues = txq;
2833         }
2834
2835         return 0;
2836 }
2837 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2838
2839 #ifdef CONFIG_SYSFS
2840 /**
2841  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2842  *      @dev: Network device
2843  *      @rxq: Actual number of RX queues
2844  *
2845  *      This must be called either with the rtnl_lock held or before
2846  *      registration of the net device.  Returns 0 on success, or a
2847  *      negative error code.  If called before registration, it always
2848  *      succeeds.
2849  */
2850 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2851 {
2852         int rc;
2853
2854         if (rxq < 1 || rxq > dev->num_rx_queues)
2855                 return -EINVAL;
2856
2857         if (dev->reg_state == NETREG_REGISTERED) {
2858                 ASSERT_RTNL();
2859
2860                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2861                                                   rxq);
2862                 if (rc)
2863                         return rc;
2864         }
2865
2866         dev->real_num_rx_queues = rxq;
2867         return 0;
2868 }
2869 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2870 #endif
2871
2872 /**
2873  * netif_get_num_default_rss_queues - default number of RSS queues
2874  *
2875  * This routine should set an upper limit on the number of RSS queues
2876  * used by default by multiqueue devices.
2877  */
2878 int netif_get_num_default_rss_queues(void)
2879 {
2880         return is_kdump_kernel() ?
2881                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2882 }
2883 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2884
2885 static void __netif_reschedule(struct Qdisc *q)
2886 {
2887         struct softnet_data *sd;
2888         unsigned long flags;
2889
2890         local_irq_save(flags);
2891         sd = this_cpu_ptr(&softnet_data);
2892         q->next_sched = NULL;
2893         *sd->output_queue_tailp = q;
2894         sd->output_queue_tailp = &q->next_sched;
2895         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2896         local_irq_restore(flags);
2897 }
2898
2899 void __netif_schedule(struct Qdisc *q)
2900 {
2901         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2902                 __netif_reschedule(q);
2903 }
2904 EXPORT_SYMBOL(__netif_schedule);
2905
2906 struct dev_kfree_skb_cb {
2907         enum skb_free_reason reason;
2908 };
2909
2910 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2911 {
2912         return (struct dev_kfree_skb_cb *)skb->cb;
2913 }
2914
2915 void netif_schedule_queue(struct netdev_queue *txq)
2916 {
2917         rcu_read_lock();
2918         if (!netif_xmit_stopped(txq)) {
2919                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2920
2921                 __netif_schedule(q);
2922         }
2923         rcu_read_unlock();
2924 }
2925 EXPORT_SYMBOL(netif_schedule_queue);
2926
2927 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2928 {
2929         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2930                 struct Qdisc *q;
2931
2932                 rcu_read_lock();
2933                 q = rcu_dereference(dev_queue->qdisc);
2934                 __netif_schedule(q);
2935                 rcu_read_unlock();
2936         }
2937 }
2938 EXPORT_SYMBOL(netif_tx_wake_queue);
2939
2940 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2941 {
2942         unsigned long flags;
2943
2944         if (unlikely(!skb))
2945                 return;
2946
2947         if (likely(refcount_read(&skb->users) == 1)) {
2948                 smp_rmb();
2949                 refcount_set(&skb->users, 0);
2950         } else if (likely(!refcount_dec_and_test(&skb->users))) {
2951                 return;
2952         }
2953         get_kfree_skb_cb(skb)->reason = reason;
2954         local_irq_save(flags);
2955         skb->next = __this_cpu_read(softnet_data.completion_queue);
2956         __this_cpu_write(softnet_data.completion_queue, skb);
2957         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2958         local_irq_restore(flags);
2959 }
2960 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2961
2962 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2963 {
2964         if (in_irq() || irqs_disabled())
2965                 __dev_kfree_skb_irq(skb, reason);
2966         else
2967                 dev_kfree_skb(skb);
2968 }
2969 EXPORT_SYMBOL(__dev_kfree_skb_any);
2970
2971
2972 /**
2973  * netif_device_detach - mark device as removed
2974  * @dev: network device
2975  *
2976  * Mark device as removed from system and therefore no longer available.
2977  */
2978 void netif_device_detach(struct net_device *dev)
2979 {
2980         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2981             netif_running(dev)) {
2982                 netif_tx_stop_all_queues(dev);
2983         }
2984 }
2985 EXPORT_SYMBOL(netif_device_detach);
2986
2987 /**
2988  * netif_device_attach - mark device as attached
2989  * @dev: network device
2990  *
2991  * Mark device as attached from system and restart if needed.
2992  */
2993 void netif_device_attach(struct net_device *dev)
2994 {
2995         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2996             netif_running(dev)) {
2997                 netif_tx_wake_all_queues(dev);
2998                 __netdev_watchdog_up(dev);
2999         }
3000 }
3001 EXPORT_SYMBOL(netif_device_attach);
3002
3003 /*
3004  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3005  * to be used as a distribution range.
3006  */
3007 static u16 skb_tx_hash(const struct net_device *dev,
3008                        const struct net_device *sb_dev,
3009                        struct sk_buff *skb)
3010 {
3011         u32 hash;
3012         u16 qoffset = 0;
3013         u16 qcount = dev->real_num_tx_queues;
3014
3015         if (dev->num_tc) {
3016                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3017
3018                 qoffset = sb_dev->tc_to_txq[tc].offset;
3019                 qcount = sb_dev->tc_to_txq[tc].count;
3020         }
3021
3022         if (skb_rx_queue_recorded(skb)) {
3023                 hash = skb_get_rx_queue(skb);
3024                 while (unlikely(hash >= qcount))
3025                         hash -= qcount;
3026                 return hash + qoffset;
3027         }
3028
3029         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3030 }
3031
3032 static void skb_warn_bad_offload(const struct sk_buff *skb)
3033 {
3034         static const netdev_features_t null_features;
3035         struct net_device *dev = skb->dev;
3036         const char *name = "";
3037
3038         if (!net_ratelimit())
3039                 return;
3040
3041         if (dev) {
3042                 if (dev->dev.parent)
3043                         name = dev_driver_string(dev->dev.parent);
3044                 else
3045                         name = netdev_name(dev);
3046         }
3047         skb_dump(KERN_WARNING, skb, false);
3048         WARN(1, "%s: caps=(%pNF, %pNF)\n",
3049              name, dev ? &dev->features : &null_features,
3050              skb->sk ? &skb->sk->sk_route_caps : &null_features);
3051 }
3052
3053 /*
3054  * Invalidate hardware checksum when packet is to be mangled, and
3055  * complete checksum manually on outgoing path.
3056  */
3057 int skb_checksum_help(struct sk_buff *skb)
3058 {
3059         __wsum csum;
3060         int ret = 0, offset;
3061
3062         if (skb->ip_summed == CHECKSUM_COMPLETE)
3063                 goto out_set_summed;
3064
3065         if (unlikely(skb_shinfo(skb)->gso_size)) {
3066                 skb_warn_bad_offload(skb);
3067                 return -EINVAL;
3068         }
3069
3070         /* Before computing a checksum, we should make sure no frag could
3071          * be modified by an external entity : checksum could be wrong.
3072          */
3073         if (skb_has_shared_frag(skb)) {
3074                 ret = __skb_linearize(skb);
3075                 if (ret)
3076                         goto out;
3077         }
3078
3079         offset = skb_checksum_start_offset(skb);
3080         BUG_ON(offset >= skb_headlen(skb));
3081         csum = skb_checksum(skb, offset, skb->len - offset, 0);
3082
3083         offset += skb->csum_offset;
3084         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3085
3086         ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3087         if (ret)
3088                 goto out;
3089
3090         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3091 out_set_summed:
3092         skb->ip_summed = CHECKSUM_NONE;
3093 out:
3094         return ret;
3095 }
3096 EXPORT_SYMBOL(skb_checksum_help);
3097
3098 int skb_crc32c_csum_help(struct sk_buff *skb)
3099 {
3100         __le32 crc32c_csum;
3101         int ret = 0, offset, start;
3102
3103         if (skb->ip_summed != CHECKSUM_PARTIAL)
3104                 goto out;
3105
3106         if (unlikely(skb_is_gso(skb)))
3107                 goto out;
3108
3109         /* Before computing a checksum, we should make sure no frag could
3110          * be modified by an external entity : checksum could be wrong.
3111          */
3112         if (unlikely(skb_has_shared_frag(skb))) {
3113                 ret = __skb_linearize(skb);
3114                 if (ret)
3115                         goto out;
3116         }
3117         start = skb_checksum_start_offset(skb);
3118         offset = start + offsetof(struct sctphdr, checksum);
3119         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3120                 ret = -EINVAL;
3121                 goto out;
3122         }
3123
3124         ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3125         if (ret)
3126                 goto out;
3127
3128         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3129                                                   skb->len - start, ~(__u32)0,
3130                                                   crc32c_csum_stub));
3131         *(__le32 *)(skb->data + offset) = crc32c_csum;
3132         skb->ip_summed = CHECKSUM_NONE;
3133         skb->csum_not_inet = 0;
3134 out:
3135         return ret;
3136 }
3137
3138 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3139 {
3140         __be16 type = skb->protocol;
3141
3142         /* Tunnel gso handlers can set protocol to ethernet. */
3143         if (type == htons(ETH_P_TEB)) {
3144                 struct ethhdr *eth;
3145
3146                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3147                         return 0;
3148
3149                 eth = (struct ethhdr *)skb->data;
3150                 type = eth->h_proto;
3151         }
3152
3153         return __vlan_get_protocol(skb, type, depth);
3154 }
3155
3156 /**
3157  *      skb_mac_gso_segment - mac layer segmentation handler.
3158  *      @skb: buffer to segment
3159  *      @features: features for the output path (see dev->features)
3160  */
3161 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3162                                     netdev_features_t features)
3163 {
3164         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3165         struct packet_offload *ptype;
3166         int vlan_depth = skb->mac_len;
3167         __be16 type = skb_network_protocol(skb, &vlan_depth);
3168
3169         if (unlikely(!type))
3170                 return ERR_PTR(-EINVAL);
3171
3172         __skb_pull(skb, vlan_depth);
3173
3174         rcu_read_lock();
3175         list_for_each_entry_rcu(ptype, &offload_base, list) {
3176                 if (ptype->type == type && ptype->callbacks.gso_segment) {
3177                         segs = ptype->callbacks.gso_segment(skb, features);
3178                         break;
3179                 }
3180         }
3181         rcu_read_unlock();
3182
3183         __skb_push(skb, skb->data - skb_mac_header(skb));
3184
3185         return segs;
3186 }
3187 EXPORT_SYMBOL(skb_mac_gso_segment);
3188
3189
3190 /* openvswitch calls this on rx path, so we need a different check.
3191  */
3192 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3193 {
3194         if (tx_path)
3195                 return skb->ip_summed != CHECKSUM_PARTIAL &&
3196                        skb->ip_summed != CHECKSUM_UNNECESSARY;
3197
3198         return skb->ip_summed == CHECKSUM_NONE;
3199 }
3200
3201 /**
3202  *      __skb_gso_segment - Perform segmentation on skb.
3203  *      @skb: buffer to segment
3204  *      @features: features for the output path (see dev->features)
3205  *      @tx_path: whether it is called in TX path
3206  *
3207  *      This function segments the given skb and returns a list of segments.
3208  *
3209  *      It may return NULL if the skb requires no segmentation.  This is
3210  *      only possible when GSO is used for verifying header integrity.
3211  *
3212  *      Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
3213  */
3214 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3215                                   netdev_features_t features, bool tx_path)
3216 {
3217         struct sk_buff *segs;
3218
3219         if (unlikely(skb_needs_check(skb, tx_path))) {
3220                 int err;
3221
3222                 /* We're going to init ->check field in TCP or UDP header */
3223                 err = skb_cow_head(skb, 0);
3224                 if (err < 0)
3225                         return ERR_PTR(err);
3226         }
3227
3228         /* Only report GSO partial support if it will enable us to
3229          * support segmentation on this frame without needing additional
3230          * work.
3231          */
3232         if (features & NETIF_F_GSO_PARTIAL) {
3233                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3234                 struct net_device *dev = skb->dev;
3235
3236                 partial_features |= dev->features & dev->gso_partial_features;
3237                 if (!skb_gso_ok(skb, features | partial_features))
3238                         features &= ~NETIF_F_GSO_PARTIAL;
3239         }
3240
3241         BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3242                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3243
3244         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3245         SKB_GSO_CB(skb)->encap_level = 0;
3246
3247         skb_reset_mac_header(skb);
3248         skb_reset_mac_len(skb);
3249
3250         segs = skb_mac_gso_segment(skb, features);
3251
3252         if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3253                 skb_warn_bad_offload(skb);
3254
3255         return segs;
3256 }
3257 EXPORT_SYMBOL(__skb_gso_segment);
3258
3259 /* Take action when hardware reception checksum errors are detected. */
3260 #ifdef CONFIG_BUG
3261 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3262 {
3263         if (net_ratelimit()) {
3264                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3265                 skb_dump(KERN_ERR, skb, true);
3266                 dump_stack();
3267         }
3268 }
3269 EXPORT_SYMBOL(netdev_rx_csum_fault);
3270 #endif
3271
3272 /* XXX: check that highmem exists at all on the given machine. */
3273 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3274 {
3275 #ifdef CONFIG_HIGHMEM
3276         int i;
3277
3278         if (!(dev->features & NETIF_F_HIGHDMA)) {
3279                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3280                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3281
3282                         if (PageHighMem(skb_frag_page(frag)))
3283                                 return 1;
3284                 }
3285         }
3286 #endif
3287         return 0;
3288 }
3289
3290 /* If MPLS offload request, verify we are testing hardware MPLS features
3291  * instead of standard features for the netdev.
3292  */
3293 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3294 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3295                                            netdev_features_t features,
3296                                            __be16 type)
3297 {
3298         if (eth_p_mpls(type))
3299                 features &= skb->dev->mpls_features;
3300
3301         return features;
3302 }
3303 #else
3304 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3305                                            netdev_features_t features,
3306                                            __be16 type)
3307 {
3308         return features;
3309 }
3310 #endif
3311
3312 static netdev_features_t harmonize_features(struct sk_buff *skb,
3313         netdev_features_t features)
3314 {
3315         int tmp;
3316         __be16 type;
3317
3318         type = skb_network_protocol(skb, &tmp);
3319         features = net_mpls_features(skb, features, type);
3320
3321         if (skb->ip_summed != CHECKSUM_NONE &&
3322             !can_checksum_protocol(features, type)) {
3323                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3324         }
3325         if (illegal_highdma(skb->dev, skb))
3326                 features &= ~NETIF_F_SG;
3327
3328         return features;
3329 }
3330
3331 netdev_features_t passthru_features_check(struct sk_buff *skb,
3332                                           struct net_device *dev,
3333                                           netdev_features_t features)
3334 {
3335         return features;
3336 }
3337 EXPORT_SYMBOL(passthru_features_check);
3338
3339 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3340                                              struct net_device *dev,
3341                                              netdev_features_t features)
3342 {
3343         return vlan_features_check(skb, features);
3344 }
3345
3346 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3347                                             struct net_device *dev,
3348                                             netdev_features_t features)
3349 {
3350         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3351
3352         if (gso_segs > dev->gso_max_segs)
3353                 return features & ~NETIF_F_GSO_MASK;
3354
3355         /* Support for GSO partial features requires software
3356          * intervention before we can actually process the packets
3357          * so we need to strip support for any partial features now
3358          * and we can pull them back in after we have partially
3359          * segmented the frame.
3360          */
3361         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3362                 features &= ~dev->gso_partial_features;
3363
3364         /* Make sure to clear the IPv4 ID mangling feature if the
3365          * IPv4 header has the potential to be fragmented.
3366          */
3367         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3368                 struct iphdr *iph = skb->encapsulation ?
3369                                     inner_ip_hdr(skb) : ip_hdr(skb);
3370
3371                 if (!(iph->frag_off & htons(IP_DF)))
3372                         features &= ~NETIF_F_TSO_MANGLEID;
3373         }
3374
3375         return features;
3376 }
3377
3378 netdev_features_t netif_skb_features(struct sk_buff *skb)
3379 {
3380         struct net_device *dev = skb->dev;
3381         netdev_features_t features = dev->features;
3382
3383         if (skb_is_gso(skb))
3384                 features = gso_features_check(skb, dev, features);
3385
3386         /* If encapsulation offload request, verify we are testing
3387          * hardware encapsulation features instead of standard
3388          * features for the netdev
3389          */
3390         if (skb->encapsulation)
3391                 features &= dev->hw_enc_features;
3392
3393         if (skb_vlan_tagged(skb))
3394                 features = netdev_intersect_features(features,
3395                                                      dev->vlan_features |
3396                                                      NETIF_F_HW_VLAN_CTAG_TX |
3397                                                      NETIF_F_HW_VLAN_STAG_TX);
3398
3399         if (dev->netdev_ops->ndo_features_check)
3400                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3401                                                                 features);
3402         else
3403                 features &= dflt_features_check(skb, dev, features);
3404
3405         return harmonize_features(skb, features);
3406 }
3407 EXPORT_SYMBOL(netif_skb_features);
3408
3409 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3410                     struct netdev_queue *txq, bool more)
3411 {
3412         unsigned int len;
3413         int rc;
3414
3415         if (dev_nit_active(dev))
3416                 dev_queue_xmit_nit(skb, dev);
3417
3418         len = skb->len;
3419         trace_net_dev_start_xmit(skb, dev);
3420         rc = netdev_start_xmit(skb, dev, txq, more);
3421         trace_net_dev_xmit(skb, rc, dev, len);
3422
3423         return rc;
3424 }
3425
3426 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3427                                     struct netdev_queue *txq, int *ret)
3428 {
3429         struct sk_buff *skb = first;
3430         int rc = NETDEV_TX_OK;
3431
3432         while (skb) {
3433                 struct sk_buff *next = skb->next;
3434
3435                 skb_mark_not_on_list(skb);
3436                 rc = xmit_one(skb, dev, txq, next != NULL);
3437                 if (unlikely(!dev_xmit_complete(rc))) {
3438                         skb->next = next;
3439                         goto out;
3440                 }
3441
3442                 skb = next;
3443                 if (netif_tx_queue_stopped(txq) && skb) {
3444                         rc = NETDEV_TX_BUSY;
3445                         break;
3446                 }
3447         }
3448
3449 out:
3450         *ret = rc;
3451         return skb;
3452 }
3453
3454 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3455                                           netdev_features_t features)
3456 {
3457         if (skb_vlan_tag_present(skb) &&
3458             !vlan_hw_offload_capable(features, skb->vlan_proto))
3459                 skb = __vlan_hwaccel_push_inside(skb);
3460         return skb;
3461 }
3462
3463 int skb_csum_hwoffload_help(struct sk_buff *skb,
3464                             const netdev_features_t features)
3465 {
3466         if (unlikely(skb->csum_not_inet))
3467                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3468                         skb_crc32c_csum_help(skb);
3469
3470         return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3471 }
3472 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3473
3474 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3475 {
3476         netdev_features_t features;
3477
3478         features = netif_skb_features(skb);
3479         skb = validate_xmit_vlan(skb, features);
3480         if (unlikely(!skb))
3481                 goto out_null;
3482
3483         skb = sk_validate_xmit_skb(skb, dev);
3484         if (unlikely(!skb))
3485                 goto out_null;
3486
3487         if (netif_needs_gso(skb, features)) {
3488                 struct sk_buff *segs;
3489
3490                 segs = skb_gso_segment(skb, features);
3491                 if (IS_ERR(segs)) {
3492                         goto out_kfree_skb;
3493                 } else if (segs) {
3494                         consume_skb(skb);
3495                         skb = segs;
3496                 }
3497         } else {
3498                 if (skb_needs_linearize(skb, features) &&
3499                     __skb_linearize(skb))
3500                         goto out_kfree_skb;
3501
3502                 /* If packet is not checksummed and device does not
3503                  * support checksumming for this protocol, complete
3504                  * checksumming here.
3505                  */
3506                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3507                         if (skb->encapsulation)
3508                                 skb_set_inner_transport_header(skb,
3509                                                                skb_checksum_start_offset(skb));
3510                         else
3511                                 skb_set_transport_header(skb,
3512                                                          skb_checksum_start_offset(skb));
3513                         if (skb_csum_hwoffload_help(skb, features))
3514                                 goto out_kfree_skb;
3515                 }
3516         }
3517
3518         skb = validate_xmit_xfrm(skb, features, again);
3519
3520         return skb;
3521
3522 out_kfree_skb:
3523         kfree_skb(skb);
3524 out_null:
3525         atomic_long_inc(&dev->tx_dropped);
3526         return NULL;
3527 }
3528
3529 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3530 {
3531         struct sk_buff *next, *head = NULL, *tail;
3532
3533         for (; skb != NULL; skb = next) {
3534                 next = skb->next;
3535                 skb_mark_not_on_list(skb);
3536
3537                 /* in case skb wont be segmented, point to itself */
3538                 skb->prev = skb;
3539
3540                 skb = validate_xmit_skb(skb, dev, again);
3541                 if (!skb)
3542                         continue;
3543
3544                 if (!head)
3545                         head = skb;
3546                 else
3547                         tail->next = skb;
3548                 /* If skb was segmented, skb->prev points to
3549                  * the last segment. If not, it still contains skb.
3550                  */
3551                 tail = skb->prev;
3552         }
3553         return head;
3554 }
3555 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3556
3557 static void qdisc_pkt_len_init(struct sk_buff *skb)
3558 {
3559         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3560
3561         qdisc_skb_cb(skb)->pkt_len = skb->len;
3562
3563         /* To get more precise estimation of bytes sent on wire,
3564          * we add to pkt_len the headers size of all segments
3565          */
3566         if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3567                 unsigned int hdr_len;
3568                 u16 gso_segs = shinfo->gso_segs;
3569
3570                 /* mac layer + network layer */
3571                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3572
3573                 /* + transport layer */
3574                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3575                         const struct tcphdr *th;
3576                         struct tcphdr _tcphdr;
3577
3578                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3579                                                 sizeof(_tcphdr), &_tcphdr);
3580                         if (likely(th))
3581                                 hdr_len += __tcp_hdrlen(th);
3582                 } else {
3583                         struct udphdr _udphdr;
3584
3585                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3586                                                sizeof(_udphdr), &_udphdr))
3587                                 hdr_len += sizeof(struct udphdr);
3588                 }
3589
3590                 if (shinfo->gso_type & SKB_GSO_DODGY)
3591                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3592                                                 shinfo->gso_size);
3593
3594                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3595         }
3596 }
3597
3598 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3599                                  struct net_device *dev,
3600                                  struct netdev_queue *txq)
3601 {
3602         spinlock_t *root_lock = qdisc_lock(q);
3603         struct sk_buff *to_free = NULL;
3604         bool contended;
3605         int rc;
3606
3607         qdisc_calculate_pkt_len(skb, q);
3608
3609         if (q->flags & TCQ_F_NOLOCK) {
3610                 if ((q->flags & TCQ_F_CAN_BYPASS) && READ_ONCE(q->empty) &&
3611                     qdisc_run_begin(q)) {
3612                         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
3613                                               &q->state))) {
3614                                 __qdisc_drop(skb, &to_free);
3615                                 rc = NET_XMIT_DROP;
3616                                 goto end_run;
3617                         }
3618                         qdisc_bstats_cpu_update(q, skb);
3619
3620                         rc = NET_XMIT_SUCCESS;
3621                         if (sch_direct_xmit(skb, q, dev, txq, NULL, true))
3622                                 __qdisc_run(q);
3623
3624 end_run:
3625                         qdisc_run_end(q);
3626                 } else {
3627                         rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3628                         qdisc_run(q);
3629                 }
3630
3631                 if (unlikely(to_free))
3632                         kfree_skb_list(to_free);
3633                 return rc;
3634         }
3635
3636         /*
3637          * Heuristic to force contended enqueues to serialize on a
3638          * separate lock before trying to get qdisc main lock.
3639          * This permits qdisc->running owner to get the lock more
3640          * often and dequeue packets faster.
3641          */
3642         contended = qdisc_is_running(q);
3643         if (unlikely(contended))
3644                 spin_lock(&q->busylock);
3645
3646         spin_lock(root_lock);
3647         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3648                 __qdisc_drop(skb, &to_free);
3649                 rc = NET_XMIT_DROP;
3650         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3651                    qdisc_run_begin(q)) {
3652                 /*
3653                  * This is a work-conserving queue; there are no old skbs
3654                  * waiting to be sent out; and the qdisc is not running -
3655                  * xmit the skb directly.
3656                  */
3657
3658                 qdisc_bstats_update(q, skb);
3659
3660                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3661                         if (unlikely(contended)) {
3662                                 spin_unlock(&q->busylock);
3663                                 contended = false;
3664                         }
3665                         __qdisc_run(q);
3666                 }
3667
3668                 qdisc_run_end(q);
3669                 rc = NET_XMIT_SUCCESS;
3670         } else {
3671                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3672                 if (qdisc_run_begin(q)) {
3673                         if (unlikely(contended)) {
3674                                 spin_unlock(&q->busylock);
3675                                 contended = false;
3676                         }
3677                         __qdisc_run(q);
3678                         qdisc_run_end(q);
3679                 }
3680         }
3681         spin_unlock(root_lock);
3682         if (unlikely(to_free))
3683                 kfree_skb_list(to_free);
3684         if (unlikely(contended))
3685                 spin_unlock(&q->busylock);
3686         return rc;
3687 }
3688
3689 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3690 static void skb_update_prio(struct sk_buff *skb)
3691 {
3692         const struct netprio_map *map;
3693         const struct sock *sk;
3694         unsigned int prioidx;
3695
3696         if (skb->priority)
3697                 return;
3698         map = rcu_dereference_bh(skb->dev->priomap);
3699         if (!map)
3700                 return;
3701         sk = skb_to_full_sk(skb);
3702         if (!sk)
3703                 return;
3704
3705         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3706
3707         if (prioidx < map->priomap_len)
3708                 skb->priority = map->priomap[prioidx];
3709 }
3710 #else
3711 #define skb_update_prio(skb)
3712 #endif
3713
3714 /**
3715  *      dev_loopback_xmit - loop back @skb
3716  *      @net: network namespace this loopback is happening in
3717  *      @sk:  sk needed to be a netfilter okfn
3718  *      @skb: buffer to transmit
3719  */
3720 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3721 {
3722         skb_reset_mac_header(skb);
3723         __skb_pull(skb, skb_network_offset(skb));
3724         skb->pkt_type = PACKET_LOOPBACK;
3725         skb->ip_summed = CHECKSUM_UNNECESSARY;
3726         WARN_ON(!skb_dst(skb));
3727         skb_dst_force(skb);
3728         netif_rx_ni(skb);
3729         return 0;
3730 }
3731 EXPORT_SYMBOL(dev_loopback_xmit);
3732
3733 #ifdef CONFIG_NET_EGRESS
3734 static struct sk_buff *
3735 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3736 {
3737         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3738         struct tcf_result cl_res;
3739
3740         if (!miniq)
3741                 return skb;
3742
3743         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3744         mini_qdisc_bstats_cpu_update(miniq, skb);
3745
3746         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3747         case TC_ACT_OK:
3748         case TC_ACT_RECLASSIFY:
3749                 skb->tc_index = TC_H_MIN(cl_res.classid);
3750                 break;
3751         case TC_ACT_SHOT:
3752                 mini_qdisc_qstats_cpu_drop(miniq);
3753                 *ret = NET_XMIT_DROP;
3754                 kfree_skb(skb);
3755                 return NULL;
3756         case TC_ACT_STOLEN:
3757         case TC_ACT_QUEUED:
3758         case TC_ACT_TRAP:
3759                 *ret = NET_XMIT_SUCCESS;
3760                 consume_skb(skb);
3761                 return NULL;
3762         case TC_ACT_REDIRECT:
3763                 /* No need to push/pop skb's mac_header here on egress! */
3764                 skb_do_redirect(skb);
3765                 *ret = NET_XMIT_SUCCESS;
3766                 return NULL;
3767         default:
3768                 break;
3769         }
3770
3771         return skb;
3772 }
3773 #endif /* CONFIG_NET_EGRESS */
3774
3775 #ifdef CONFIG_XPS
3776 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3777                                struct xps_dev_maps *dev_maps, unsigned int tci)
3778 {
3779         struct xps_map *map;
3780         int queue_index = -1;
3781
3782         if (dev->num_tc) {
3783                 tci *= dev->num_tc;
3784                 tci += netdev_get_prio_tc_map(dev, skb->priority);
3785         }
3786
3787         map = rcu_dereference(dev_maps->attr_map[tci]);
3788         if (map) {
3789                 if (map->len == 1)
3790                         queue_index = map->queues[0];
3791                 else
3792                         queue_index = map->queues[reciprocal_scale(
3793                                                 skb_get_hash(skb), map->len)];
3794                 if (unlikely(queue_index >= dev->real_num_tx_queues))
3795                         queue_index = -1;
3796         }
3797         return queue_index;
3798 }
3799 #endif
3800
3801 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3802                          struct sk_buff *skb)
3803 {
3804 #ifdef CONFIG_XPS
3805         struct xps_dev_maps *dev_maps;
3806         struct sock *sk = skb->sk;
3807         int queue_index = -1;
3808
3809         if (!static_key_false(&xps_needed))
3810                 return -1;
3811
3812         rcu_read_lock();
3813         if (!static_key_false(&xps_rxqs_needed))
3814                 goto get_cpus_map;
3815
3816         dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3817         if (dev_maps) {
3818                 int tci = sk_rx_queue_get(sk);
3819
3820                 if (tci >= 0 && tci < dev->num_rx_queues)
3821                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3822                                                           tci);
3823         }
3824
3825 get_cpus_map:
3826         if (queue_index < 0) {
3827                 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3828                 if (dev_maps) {
3829                         unsigned int tci = skb->sender_cpu - 1;
3830
3831                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3832                                                           tci);
3833                 }
3834         }
3835         rcu_read_unlock();
3836
3837         return queue_index;
3838 #else
3839         return -1;
3840 #endif
3841 }
3842
3843 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3844                      struct net_device *sb_dev)
3845 {
3846         return 0;
3847 }
3848 EXPORT_SYMBOL(dev_pick_tx_zero);
3849
3850 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3851                        struct net_device *sb_dev)
3852 {
3853         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3854 }
3855 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3856
3857 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3858                      struct net_device *sb_dev)
3859 {
3860         struct sock *sk = skb->sk;
3861         int queue_index = sk_tx_queue_get(sk);
3862
3863         sb_dev = sb_dev ? : dev;
3864
3865         if (queue_index < 0 || skb->ooo_okay ||
3866             queue_index >= dev->real_num_tx_queues) {
3867                 int new_index = get_xps_queue(dev, sb_dev, skb);
3868
3869                 if (new_index < 0)
3870                         new_index = skb_tx_hash(dev, sb_dev, skb);
3871
3872                 if (queue_index != new_index && sk &&
3873                     sk_fullsock(sk) &&
3874                     rcu_access_pointer(sk->sk_dst_cache))
3875                         sk_tx_queue_set(sk, new_index);
3876
3877                 queue_index = new_index;
3878         }
3879
3880         return queue_index;
3881 }
3882 EXPORT_SYMBOL(netdev_pick_tx);
3883
3884 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
3885                                          struct sk_buff *skb,
3886                                          struct net_device *sb_dev)
3887 {
3888         int queue_index = 0;
3889
3890 #ifdef CONFIG_XPS
3891         u32 sender_cpu = skb->sender_cpu - 1;
3892
3893         if (sender_cpu >= (u32)NR_CPUS)
3894                 skb->sender_cpu = raw_smp_processor_id() + 1;
3895 #endif
3896
3897         if (dev->real_num_tx_queues != 1) {
3898                 const struct net_device_ops *ops = dev->netdev_ops;
3899
3900                 if (ops->ndo_select_queue)
3901                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
3902                 else
3903                         queue_index = netdev_pick_tx(dev, skb, sb_dev);
3904
3905                 queue_index = netdev_cap_txqueue(dev, queue_index);
3906         }
3907
3908         skb_set_queue_mapping(skb, queue_index);
3909         return netdev_get_tx_queue(dev, queue_index);
3910 }
3911
3912 /**
3913  *      __dev_queue_xmit - transmit a buffer
3914  *      @skb: buffer to transmit
3915  *      @sb_dev: suboordinate device used for L2 forwarding offload
3916  *
3917  *      Queue a buffer for transmission to a network device. The caller must
3918  *      have set the device and priority and built the buffer before calling
3919  *      this function. The function can be called from an interrupt.
3920  *
3921  *      A negative errno code is returned on a failure. A success does not
3922  *      guarantee the frame will be transmitted as it may be dropped due
3923  *      to congestion or traffic shaping.
3924  *
3925  * -----------------------------------------------------------------------------------
3926  *      I notice this method can also return errors from the queue disciplines,
3927  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3928  *      be positive.
3929  *
3930  *      Regardless of the return value, the skb is consumed, so it is currently
3931  *      difficult to retry a send to this method.  (You can bump the ref count
3932  *      before sending to hold a reference for retry if you are careful.)
3933  *
3934  *      When calling this method, interrupts MUST be enabled.  This is because
3935  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3936  *          --BLG
3937  */
3938 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
3939 {
3940         struct net_device *dev = skb->dev;
3941         struct netdev_queue *txq;
3942         struct Qdisc *q;
3943         int rc = -ENOMEM;
3944         bool again = false;
3945
3946         skb_reset_mac_header(skb);
3947
3948         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3949                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3950
3951         /* Disable soft irqs for various locks below. Also
3952          * stops preemption for RCU.
3953          */
3954         rcu_read_lock_bh();
3955
3956         skb_update_prio(skb);
3957
3958         qdisc_pkt_len_init(skb);
3959 #ifdef CONFIG_NET_CLS_ACT
3960         skb->tc_at_ingress = 0;
3961 # ifdef CONFIG_NET_EGRESS
3962         if (static_branch_unlikely(&egress_needed_key)) {
3963                 skb = sch_handle_egress(skb, &rc, dev);
3964                 if (!skb)
3965                         goto out;
3966         }
3967 # endif
3968 #endif
3969         /* If device/qdisc don't need skb->dst, release it right now while
3970          * its hot in this cpu cache.
3971          */
3972         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3973                 skb_dst_drop(skb);
3974         else
3975                 skb_dst_force(skb);
3976
3977         txq = netdev_core_pick_tx(dev, skb, sb_dev);
3978         q = rcu_dereference_bh(txq->qdisc);
3979
3980         trace_net_dev_queue(skb);
3981         if (q->enqueue) {
3982                 rc = __dev_xmit_skb(skb, q, dev, txq);
3983                 goto out;
3984         }
3985
3986         /* The device has no queue. Common case for software devices:
3987          * loopback, all the sorts of tunnels...
3988
3989          * Really, it is unlikely that netif_tx_lock protection is necessary
3990          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3991          * counters.)
3992          * However, it is possible, that they rely on protection
3993          * made by us here.
3994
3995          * Check this and shot the lock. It is not prone from deadlocks.
3996          *Either shot noqueue qdisc, it is even simpler 8)
3997          */
3998         if (dev->flags & IFF_UP) {
3999                 int cpu = smp_processor_id(); /* ok because BHs are off */
4000
4001                 if (txq->xmit_lock_owner != cpu) {
4002                         if (dev_xmit_recursion())
4003                                 goto recursion_alert;
4004
4005                         skb = validate_xmit_skb(skb, dev, &again);
4006                         if (!skb)
4007                                 goto out;
4008
4009                         HARD_TX_LOCK(dev, txq, cpu);
4010
4011                         if (!netif_xmit_stopped(txq)) {
4012                                 dev_xmit_recursion_inc();
4013                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4014                                 dev_xmit_recursion_dec();
4015                                 if (dev_xmit_complete(rc)) {
4016                                         HARD_TX_UNLOCK(dev, txq);
4017                                         goto out;
4018                                 }
4019                         }
4020                         HARD_TX_UNLOCK(dev, txq);
4021                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4022                                              dev->name);
4023                 } else {
4024                         /* Recursion is detected! It is possible,
4025                          * unfortunately
4026                          */
4027 recursion_alert:
4028                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4029                                              dev->name);
4030                 }
4031         }
4032
4033         rc = -ENETDOWN;
4034         rcu_read_unlock_bh();
4035
4036         atomic_long_inc(&dev->tx_dropped);
4037         kfree_skb_list(skb);
4038         return rc;
4039 out:
4040         rcu_read_unlock_bh();
4041         return rc;
4042 }
4043
4044 int dev_queue_xmit(struct sk_buff *skb)
4045 {
4046         return __dev_queue_xmit(skb, NULL);
4047 }
4048 EXPORT_SYMBOL(dev_queue_xmit);
4049
4050 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4051 {
4052         return __dev_queue_xmit(skb, sb_dev);
4053 }
4054 EXPORT_SYMBOL(dev_queue_xmit_accel);
4055
4056 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4057 {
4058         struct net_device *dev = skb->dev;
4059         struct sk_buff *orig_skb = skb;
4060         struct netdev_queue *txq;
4061         int ret = NETDEV_TX_BUSY;
4062         bool again = false;
4063
4064         if (unlikely(!netif_running(dev) ||
4065                      !netif_carrier_ok(dev)))
4066                 goto drop;
4067
4068         skb = validate_xmit_skb_list(skb, dev, &again);
4069         if (skb != orig_skb)
4070                 goto drop;
4071
4072         skb_set_queue_mapping(skb, queue_id);
4073         txq = skb_get_tx_queue(dev, skb);
4074
4075         local_bh_disable();
4076
4077         HARD_TX_LOCK(dev, txq, smp_processor_id());
4078         if (!netif_xmit_frozen_or_drv_stopped(txq))
4079                 ret = netdev_start_xmit(skb, dev, txq, false);
4080         HARD_TX_UNLOCK(dev, txq);
4081
4082         local_bh_enable();
4083
4084         if (!dev_xmit_complete(ret))
4085                 kfree_skb(skb);
4086
4087         return ret;
4088 drop:
4089         atomic_long_inc(&dev->tx_dropped);
4090         kfree_skb_list(skb);
4091         return NET_XMIT_DROP;
4092 }
4093 EXPORT_SYMBOL(dev_direct_xmit);
4094
4095 /*************************************************************************
4096  *                      Receiver routines
4097  *************************************************************************/
4098
4099 int netdev_max_backlog __read_mostly = 1000;
4100 EXPORT_SYMBOL(netdev_max_backlog);
4101
4102 int netdev_tstamp_prequeue __read_mostly = 1;
4103 int netdev_budget __read_mostly = 300;
4104 unsigned int __read_mostly netdev_budget_usecs = 2000;
4105 int weight_p __read_mostly = 64;           /* old backlog weight */
4106 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4107 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4108 int dev_rx_weight __read_mostly = 64;
4109 int dev_tx_weight __read_mostly = 64;
4110 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4111 int gro_normal_batch __read_mostly = 8;
4112
4113 /* Called with irq disabled */
4114 static inline void ____napi_schedule(struct softnet_data *sd,
4115                                      struct napi_struct *napi)
4116 {
4117         list_add_tail(&napi->poll_list, &sd->poll_list);
4118         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4119 }
4120
4121 #ifdef CONFIG_RPS
4122
4123 /* One global table that all flow-based protocols share. */
4124 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4125 EXPORT_SYMBOL(rps_sock_flow_table);
4126 u32 rps_cpu_mask __read_mostly;
4127 EXPORT_SYMBOL(rps_cpu_mask);
4128
4129 struct static_key_false rps_needed __read_mostly;
4130 EXPORT_SYMBOL(rps_needed);
4131 struct static_key_false rfs_needed __read_mostly;
4132 EXPORT_SYMBOL(rfs_needed);
4133
4134 static struct rps_dev_flow *
4135 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4136             struct rps_dev_flow *rflow, u16 next_cpu)
4137 {
4138         if (next_cpu < nr_cpu_ids) {
4139 #ifdef CONFIG_RFS_ACCEL
4140                 struct netdev_rx_queue *rxqueue;
4141                 struct rps_dev_flow_table *flow_table;
4142                 struct rps_dev_flow *old_rflow;
4143                 u32 flow_id;
4144                 u16 rxq_index;
4145                 int rc;
4146
4147                 /* Should we steer this flow to a different hardware queue? */
4148                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4149                     !(dev->features & NETIF_F_NTUPLE))
4150                         goto out;
4151                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4152                 if (rxq_index == skb_get_rx_queue(skb))
4153                         goto out;
4154
4155                 rxqueue = dev->_rx + rxq_index;
4156                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4157                 if (!flow_table)
4158                         goto out;
4159                 flow_id = skb_get_hash(skb) & flow_table->mask;
4160                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4161                                                         rxq_index, flow_id);
4162                 if (rc < 0)
4163                         goto out;
4164                 old_rflow = rflow;
4165                 rflow = &flow_table->flows[flow_id];
4166                 rflow->filter = rc;
4167                 if (old_rflow->filter == rflow->filter)
4168                         old_rflow->filter = RPS_NO_FILTER;
4169         out:
4170 #endif
4171                 rflow->last_qtail =
4172                         per_cpu(softnet_data, next_cpu).input_queue_head;
4173         }
4174
4175         rflow->cpu = next_cpu;
4176         return rflow;
4177 }
4178
4179 /*
4180  * get_rps_cpu is called from netif_receive_skb and returns the target
4181  * CPU from the RPS map of the receiving queue for a given skb.
4182  * rcu_read_lock must be held on entry.
4183  */
4184 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4185                        struct rps_dev_flow **rflowp)
4186 {
4187         const struct rps_sock_flow_table *sock_flow_table;
4188         struct netdev_rx_queue *rxqueue = dev->_rx;
4189         struct rps_dev_flow_table *flow_table;
4190         struct rps_map *map;
4191         int cpu = -1;
4192         u32 tcpu;
4193         u32 hash;
4194
4195         if (skb_rx_queue_recorded(skb)) {
4196                 u16 index = skb_get_rx_queue(skb);
4197
4198                 if (unlikely(index >= dev->real_num_rx_queues)) {
4199                         WARN_ONCE(dev->real_num_rx_queues > 1,
4200                                   "%s received packet on queue %u, but number "
4201                                   "of RX queues is %u\n",
4202                                   dev->name, index, dev->real_num_rx_queues);
4203                         goto done;
4204                 }
4205                 rxqueue += index;
4206         }
4207
4208         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4209
4210         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4211         map = rcu_dereference(rxqueue->rps_map);
4212         if (!flow_table && !map)
4213                 goto done;
4214
4215         skb_reset_network_header(skb);
4216         hash = skb_get_hash(skb);
4217         if (!hash)
4218                 goto done;
4219
4220         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4221         if (flow_table && sock_flow_table) {
4222                 struct rps_dev_flow *rflow;
4223                 u32 next_cpu;
4224                 u32 ident;
4225
4226                 /* First check into global flow table if there is a match */
4227                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4228                 if ((ident ^ hash) & ~rps_cpu_mask)
4229                         goto try_rps;
4230
4231                 next_cpu = ident & rps_cpu_mask;
4232
4233                 /* OK, now we know there is a match,
4234                  * we can look at the local (per receive queue) flow table
4235                  */
4236                 rflow = &flow_table->flows[hash & flow_table->mask];
4237                 tcpu = rflow->cpu;
4238
4239                 /*
4240                  * If the desired CPU (where last recvmsg was done) is
4241                  * different from current CPU (one in the rx-queue flow
4242                  * table entry), switch if one of the following holds:
4243                  *   - Current CPU is unset (>= nr_cpu_ids).
4244                  *   - Current CPU is offline.
4245                  *   - The current CPU's queue tail has advanced beyond the
4246                  *     last packet that was enqueued using this table entry.
4247                  *     This guarantees that all previous packets for the flow
4248                  *     have been dequeued, thus preserving in order delivery.
4249                  */
4250                 if (unlikely(tcpu != next_cpu) &&
4251                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4252                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4253                       rflow->last_qtail)) >= 0)) {
4254                         tcpu = next_cpu;
4255                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4256                 }
4257
4258                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4259                         *rflowp = rflow;
4260                         cpu = tcpu;
4261                         goto done;
4262                 }
4263         }
4264
4265 try_rps:
4266
4267         if (map) {
4268                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4269                 if (cpu_online(tcpu)) {
4270                         cpu = tcpu;
4271                         goto done;
4272                 }
4273         }
4274
4275 done:
4276         return cpu;
4277 }
4278
4279 #ifdef CONFIG_RFS_ACCEL
4280
4281 /**
4282  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4283  * @dev: Device on which the filter was set
4284  * @rxq_index: RX queue index
4285  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4286  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4287  *
4288  * Drivers that implement ndo_rx_flow_steer() should periodically call
4289  * this function for each installed filter and remove the filters for
4290  * which it returns %true.
4291  */
4292 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4293                          u32 flow_id, u16 filter_id)
4294 {
4295         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4296         struct rps_dev_flow_table *flow_table;
4297         struct rps_dev_flow *rflow;
4298         bool expire = true;
4299         unsigned int cpu;
4300
4301         rcu_read_lock();
4302         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4303         if (flow_table && flow_id <= flow_table->mask) {
4304                 rflow = &flow_table->flows[flow_id];
4305                 cpu = READ_ONCE(rflow->cpu);
4306                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4307                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4308                            rflow->last_qtail) <
4309                      (int)(10 * flow_table->mask)))
4310                         expire = false;
4311         }
4312         rcu_read_unlock();
4313         return expire;
4314 }
4315 EXPORT_SYMBOL(rps_may_expire_flow);
4316
4317 #endif /* CONFIG_RFS_ACCEL */
4318
4319 /* Called from hardirq (IPI) context */
4320 static void rps_trigger_softirq(void *data)
4321 {
4322         struct softnet_data *sd = data;
4323
4324         ____napi_schedule(sd, &sd->backlog);
4325         sd->received_rps++;
4326 }
4327
4328 #endif /* CONFIG_RPS */
4329
4330 /*
4331  * Check if this softnet_data structure is another cpu one
4332  * If yes, queue it to our IPI list and return 1
4333  * If no, return 0
4334  */
4335 static int rps_ipi_queued(struct softnet_data *sd)
4336 {
4337 #ifdef CONFIG_RPS
4338         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4339
4340         if (sd != mysd) {
4341                 sd->rps_ipi_next = mysd->rps_ipi_list;
4342                 mysd->rps_ipi_list = sd;
4343
4344                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4345                 return 1;
4346         }
4347 #endif /* CONFIG_RPS */
4348         return 0;
4349 }
4350
4351 #ifdef CONFIG_NET_FLOW_LIMIT
4352 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4353 #endif
4354
4355 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4356 {
4357 #ifdef CONFIG_NET_FLOW_LIMIT
4358         struct sd_flow_limit *fl;
4359         struct softnet_data *sd;
4360         unsigned int old_flow, new_flow;
4361
4362         if (qlen < (netdev_max_backlog >> 1))
4363                 return false;
4364
4365         sd = this_cpu_ptr(&softnet_data);
4366
4367         rcu_read_lock();
4368         fl = rcu_dereference(sd->flow_limit);
4369         if (fl) {
4370                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4371                 old_flow = fl->history[fl->history_head];
4372                 fl->history[fl->history_head] = new_flow;
4373
4374                 fl->history_head++;
4375                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4376
4377                 if (likely(fl->buckets[old_flow]))
4378                         fl->buckets[old_flow]--;
4379
4380                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4381                         fl->count++;
4382                         rcu_read_unlock();
4383                         return true;
4384                 }
4385         }
4386         rcu_read_unlock();
4387 #endif
4388         return false;
4389 }
4390
4391 /*
4392  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4393  * queue (may be a remote CPU queue).
4394  */
4395 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4396                               unsigned int *qtail)
4397 {
4398         struct softnet_data *sd;
4399         unsigned long flags;
4400         unsigned int qlen;
4401
4402         sd = &per_cpu(softnet_data, cpu);
4403
4404         local_irq_save(flags);
4405
4406         rps_lock(sd);
4407         if (!netif_running(skb->dev))
4408                 goto drop;
4409         qlen = skb_queue_len(&sd->input_pkt_queue);
4410         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4411                 if (qlen) {
4412 enqueue:
4413                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4414                         input_queue_tail_incr_save(sd, qtail);
4415                         rps_unlock(sd);
4416                         local_irq_restore(flags);
4417                         return NET_RX_SUCCESS;
4418                 }
4419
4420                 /* Schedule NAPI for backlog device
4421                  * We can use non atomic operation since we own the queue lock
4422                  */
4423                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4424                         if (!rps_ipi_queued(sd))
4425                                 ____napi_schedule(sd, &sd->backlog);
4426                 }
4427                 goto enqueue;
4428         }
4429
4430 drop:
4431         sd->dropped++;
4432         rps_unlock(sd);
4433
4434         local_irq_restore(flags);
4435
4436         atomic_long_inc(&skb->dev->rx_dropped);
4437         kfree_skb(skb);
4438         return NET_RX_DROP;
4439 }
4440
4441 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4442 {
4443         struct net_device *dev = skb->dev;
4444         struct netdev_rx_queue *rxqueue;
4445
4446         rxqueue = dev->_rx;
4447
4448         if (skb_rx_queue_recorded(skb)) {
4449                 u16 index = skb_get_rx_queue(skb);
4450
4451                 if (unlikely(index >= dev->real_num_rx_queues)) {
4452                         WARN_ONCE(dev->real_num_rx_queues > 1,
4453                                   "%s received packet on queue %u, but number "
4454                                   "of RX queues is %u\n",
4455                                   dev->name, index, dev->real_num_rx_queues);
4456
4457                         return rxqueue; /* Return first rxqueue */
4458                 }
4459                 rxqueue += index;
4460         }
4461         return rxqueue;
4462 }
4463
4464 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4465                                      struct xdp_buff *xdp,
4466                                      struct bpf_prog *xdp_prog)
4467 {
4468         struct netdev_rx_queue *rxqueue;
4469         void *orig_data, *orig_data_end;
4470         u32 metalen, act = XDP_DROP;
4471         __be16 orig_eth_type;
4472         struct ethhdr *eth;
4473         bool orig_bcast;
4474         int hlen, off;
4475         u32 mac_len;
4476
4477         /* Reinjected packets coming from act_mirred or similar should
4478          * not get XDP generic processing.
4479          */
4480         if (skb_cloned(skb) || skb_is_tc_redirected(skb))
4481                 return XDP_PASS;
4482
4483         /* XDP packets must be linear and must have sufficient headroom
4484          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4485          * native XDP provides, thus we need to do it here as well.
4486          */
4487         if (skb_is_nonlinear(skb) ||
4488             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4489                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4490                 int troom = skb->tail + skb->data_len - skb->end;
4491
4492                 /* In case we have to go down the path and also linearize,
4493                  * then lets do the pskb_expand_head() work just once here.
4494                  */
4495                 if (pskb_expand_head(skb,
4496                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4497                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4498                         goto do_drop;
4499                 if (skb_linearize(skb))
4500                         goto do_drop;
4501         }
4502
4503         /* The XDP program wants to see the packet starting at the MAC
4504          * header.
4505          */
4506         mac_len = skb->data - skb_mac_header(skb);
4507         hlen = skb_headlen(skb) + mac_len;
4508         xdp->data = skb->data - mac_len;
4509         xdp->data_meta = xdp->data;
4510         xdp->data_end = xdp->data + hlen;
4511         xdp->data_hard_start = skb->data - skb_headroom(skb);
4512         orig_data_end = xdp->data_end;
4513         orig_data = xdp->data;
4514         eth = (struct ethhdr *)xdp->data;
4515         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4516         orig_eth_type = eth->h_proto;
4517
4518         rxqueue = netif_get_rxqueue(skb);
4519         xdp->rxq = &rxqueue->xdp_rxq;
4520
4521         act = bpf_prog_run_xdp(xdp_prog, xdp);
4522
4523         /* check if bpf_xdp_adjust_head was used */
4524         off = xdp->data - orig_data;
4525         if (off) {
4526                 if (off > 0)
4527                         __skb_pull(skb, off);
4528                 else if (off < 0)
4529                         __skb_push(skb, -off);
4530
4531                 skb->mac_header += off;
4532                 skb_reset_network_header(skb);
4533         }
4534
4535         /* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4536          * pckt.
4537          */
4538         off = orig_data_end - xdp->data_end;
4539         if (off != 0) {
4540                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4541                 skb->len -= off;
4542
4543         }
4544
4545         /* check if XDP changed eth hdr such SKB needs update */
4546         eth = (struct ethhdr *)xdp->data;
4547         if ((orig_eth_type != eth->h_proto) ||
4548             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4549                 __skb_push(skb, ETH_HLEN);
4550                 skb->protocol = eth_type_trans(skb, skb->dev);
4551         }
4552
4553         switch (act) {
4554         case XDP_REDIRECT:
4555         case XDP_TX:
4556                 __skb_push(skb, mac_len);
4557                 break;
4558         case XDP_PASS:
4559                 metalen = xdp->data - xdp->data_meta;
4560                 if (metalen)
4561                         skb_metadata_set(skb, metalen);
4562                 break;
4563         default:
4564                 bpf_warn_invalid_xdp_action(act);
4565                 /* fall through */
4566         case XDP_ABORTED:
4567                 trace_xdp_exception(skb->dev, xdp_prog, act);
4568                 /* fall through */
4569         case XDP_DROP:
4570         do_drop:
4571                 kfree_skb(skb);
4572                 break;
4573         }
4574
4575         return act;
4576 }
4577
4578 /* When doing generic XDP we have to bypass the qdisc layer and the
4579  * network taps in order to match in-driver-XDP behavior.
4580  */
4581 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4582 {
4583         struct net_device *dev = skb->dev;
4584         struct netdev_queue *txq;
4585         bool free_skb = true;
4586         int cpu, rc;
4587
4588         txq = netdev_core_pick_tx(dev, skb, NULL);
4589         cpu = smp_processor_id();
4590         HARD_TX_LOCK(dev, txq, cpu);
4591         if (!netif_xmit_stopped(txq)) {
4592                 rc = netdev_start_xmit(skb, dev, txq, 0);
4593                 if (dev_xmit_complete(rc))
4594                         free_skb = false;
4595         }
4596         HARD_TX_UNLOCK(dev, txq);
4597         if (free_skb) {
4598                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4599                 kfree_skb(skb);
4600         }
4601 }
4602 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4603
4604 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4605
4606 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4607 {
4608         if (xdp_prog) {
4609                 struct xdp_buff xdp;
4610                 u32 act;
4611                 int err;
4612
4613                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4614                 if (act != XDP_PASS) {
4615                         switch (act) {
4616                         case XDP_REDIRECT:
4617                                 err = xdp_do_generic_redirect(skb->dev, skb,
4618                                                               &xdp, xdp_prog);
4619                                 if (err)
4620                                         goto out_redir;
4621                                 break;
4622                         case XDP_TX:
4623                                 generic_xdp_tx(skb, xdp_prog);
4624                                 break;
4625                         }
4626                         return XDP_DROP;
4627                 }
4628         }
4629         return XDP_PASS;
4630 out_redir:
4631         kfree_skb(skb);
4632         return XDP_DROP;
4633 }
4634 EXPORT_SYMBOL_GPL(do_xdp_generic);
4635
4636 static int netif_rx_internal(struct sk_buff *skb)
4637 {
4638         int ret;
4639
4640         net_timestamp_check(netdev_tstamp_prequeue, skb);
4641
4642         trace_netif_rx(skb);
4643
4644 #ifdef CONFIG_RPS
4645         if (static_branch_unlikely(&rps_needed)) {
4646                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4647                 int cpu;
4648
4649                 preempt_disable();
4650                 rcu_read_lock();
4651
4652                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4653                 if (cpu < 0)
4654                         cpu = smp_processor_id();
4655
4656                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4657
4658                 rcu_read_unlock();
4659                 preempt_enable();
4660         } else
4661 #endif
4662         {
4663                 unsigned int qtail;
4664
4665                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4666                 put_cpu();
4667         }
4668         return ret;
4669 }
4670
4671 /**
4672  *      netif_rx        -       post buffer to the network code
4673  *      @skb: buffer to post
4674  *
4675  *      This function receives a packet from a device driver and queues it for
4676  *      the upper (protocol) levels to process.  It always succeeds. The buffer
4677  *      may be dropped during processing for congestion control or by the
4678  *      protocol layers.
4679  *
4680  *      return values:
4681  *      NET_RX_SUCCESS  (no congestion)
4682  *      NET_RX_DROP     (packet was dropped)
4683  *
4684  */
4685
4686 int netif_rx(struct sk_buff *skb)
4687 {
4688         int ret;
4689
4690         trace_netif_rx_entry(skb);
4691
4692         ret = netif_rx_internal(skb);
4693         trace_netif_rx_exit(ret);
4694
4695         return ret;
4696 }
4697 EXPORT_SYMBOL(netif_rx);
4698
4699 int netif_rx_ni(struct sk_buff *skb)
4700 {
4701         int err;
4702
4703         trace_netif_rx_ni_entry(skb);
4704
4705         preempt_disable();
4706         err = netif_rx_internal(skb);
4707         if (local_softirq_pending())
4708                 do_softirq();
4709         preempt_enable();
4710         trace_netif_rx_ni_exit(err);
4711
4712         return err;
4713 }
4714 EXPORT_SYMBOL(netif_rx_ni);
4715
4716 static __latent_entropy void net_tx_action(struct softirq_action *h)
4717 {
4718         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4719
4720         if (sd->completion_queue) {
4721                 struct sk_buff *clist;
4722
4723                 local_irq_disable();
4724                 clist = sd->completion_queue;
4725                 sd->completion_queue = NULL;
4726                 local_irq_enable();
4727
4728                 while (clist) {
4729                         struct sk_buff *skb = clist;
4730
4731                         clist = clist->next;
4732
4733                         WARN_ON(refcount_read(&skb->users));
4734                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4735                                 trace_consume_skb(skb);
4736                         else
4737                                 trace_kfree_skb(skb, net_tx_action);
4738
4739                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4740                                 __kfree_skb(skb);
4741                         else
4742                                 __kfree_skb_defer(skb);
4743                 }
4744
4745                 __kfree_skb_flush();
4746         }
4747
4748         if (sd->output_queue) {
4749                 struct Qdisc *head;
4750
4751                 local_irq_disable();
4752                 head = sd->output_queue;
4753                 sd->output_queue = NULL;
4754                 sd->output_queue_tailp = &sd->output_queue;
4755                 local_irq_enable();
4756
4757                 while (head) {
4758                         struct Qdisc *q = head;
4759                         spinlock_t *root_lock = NULL;
4760
4761                         head = head->next_sched;
4762
4763                         if (!(q->flags & TCQ_F_NOLOCK)) {
4764                                 root_lock = qdisc_lock(q);
4765                                 spin_lock(root_lock);
4766                         }
4767                         /* We need to make sure head->next_sched is read
4768                          * before clearing __QDISC_STATE_SCHED
4769                          */
4770                         smp_mb__before_atomic();
4771                         clear_bit(__QDISC_STATE_SCHED, &q->state);
4772                         qdisc_run(q);
4773                         if (root_lock)
4774                                 spin_unlock(root_lock);
4775                 }
4776         }
4777
4778         xfrm_dev_backlog(sd);
4779 }
4780
4781 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4782 /* This hook is defined here for ATM LANE */
4783 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4784                              unsigned char *addr) __read_mostly;
4785 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4786 #endif
4787
4788 static inline struct sk_buff *
4789 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4790                    struct net_device *orig_dev)
4791 {
4792 #ifdef CONFIG_NET_CLS_ACT
4793         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4794         struct tcf_result cl_res;
4795
4796         /* If there's at least one ingress present somewhere (so
4797          * we get here via enabled static key), remaining devices
4798          * that are not configured with an ingress qdisc will bail
4799          * out here.
4800          */
4801         if (!miniq)
4802                 return skb;
4803
4804         if (*pt_prev) {
4805                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4806                 *pt_prev = NULL;
4807         }
4808
4809         qdisc_skb_cb(skb)->pkt_len = skb->len;
4810         skb->tc_at_ingress = 1;
4811         mini_qdisc_bstats_cpu_update(miniq, skb);
4812
4813         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4814         case TC_ACT_OK:
4815         case TC_ACT_RECLASSIFY:
4816                 skb->tc_index = TC_H_MIN(cl_res.classid);
4817                 break;
4818         case TC_ACT_SHOT:
4819                 mini_qdisc_qstats_cpu_drop(miniq);
4820                 kfree_skb(skb);
4821                 return NULL;
4822         case TC_ACT_STOLEN:
4823         case TC_ACT_QUEUED:
4824         case TC_ACT_TRAP:
4825                 consume_skb(skb);
4826                 return NULL;
4827         case TC_ACT_REDIRECT:
4828                 /* skb_mac_header check was done by cls/act_bpf, so
4829                  * we can safely push the L2 header back before
4830                  * redirecting to another netdev
4831                  */
4832                 __skb_push(skb, skb->mac_len);
4833                 skb_do_redirect(skb);
4834                 return NULL;
4835         case TC_ACT_CONSUMED:
4836                 return NULL;
4837         default:
4838                 break;
4839         }
4840 #endif /* CONFIG_NET_CLS_ACT */
4841         return skb;
4842 }
4843
4844 /**
4845  *      netdev_is_rx_handler_busy - check if receive handler is registered
4846  *      @dev: device to check
4847  *
4848  *      Check if a receive handler is already registered for a given device.
4849  *      Return true if there one.
4850  *
4851  *      The caller must hold the rtnl_mutex.
4852  */
4853 bool netdev_is_rx_handler_busy(struct net_device *dev)
4854 {
4855         ASSERT_RTNL();
4856         return dev && rtnl_dereference(dev->rx_handler);
4857 }
4858 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4859
4860 /**
4861  *      netdev_rx_handler_register - register receive handler
4862  *      @dev: device to register a handler for
4863  *      @rx_handler: receive handler to register
4864  *      @rx_handler_data: data pointer that is used by rx handler
4865  *
4866  *      Register a receive handler for a device. This handler will then be
4867  *      called from __netif_receive_skb. A negative errno code is returned
4868  *      on a failure.
4869  *
4870  *      The caller must hold the rtnl_mutex.
4871  *
4872  *      For a general description of rx_handler, see enum rx_handler_result.
4873  */
4874 int netdev_rx_handler_register(struct net_device *dev,
4875                                rx_handler_func_t *rx_handler,
4876                                void *rx_handler_data)
4877 {
4878         if (netdev_is_rx_handler_busy(dev))
4879                 return -EBUSY;
4880
4881         if (dev->priv_flags & IFF_NO_RX_HANDLER)
4882                 return -EINVAL;
4883
4884         /* Note: rx_handler_data must be set before rx_handler */
4885         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4886         rcu_assign_pointer(dev->rx_handler, rx_handler);
4887
4888         return 0;
4889 }
4890 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4891
4892 /**
4893  *      netdev_rx_handler_unregister - unregister receive handler
4894  *      @dev: device to unregister a handler from
4895  *
4896  *      Unregister a receive handler from a device.
4897  *
4898  *      The caller must hold the rtnl_mutex.
4899  */
4900 void netdev_rx_handler_unregister(struct net_device *dev)
4901 {
4902
4903         ASSERT_RTNL();
4904         RCU_INIT_POINTER(dev->rx_handler, NULL);
4905         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4906          * section has a guarantee to see a non NULL rx_handler_data
4907          * as well.
4908          */
4909         synchronize_net();
4910         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4911 }
4912 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4913
4914 /*
4915  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4916  * the special handling of PFMEMALLOC skbs.
4917  */
4918 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4919 {
4920         switch (skb->protocol) {
4921         case htons(ETH_P_ARP):
4922         case htons(ETH_P_IP):
4923         case htons(ETH_P_IPV6):
4924         case htons(ETH_P_8021Q):
4925         case htons(ETH_P_8021AD):
4926                 return true;
4927         default:
4928                 return false;
4929         }
4930 }
4931
4932 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4933                              int *ret, struct net_device *orig_dev)
4934 {
4935 #ifdef CONFIG_NETFILTER_INGRESS
4936         if (nf_hook_ingress_active(skb)) {
4937                 int ingress_retval;
4938
4939                 if (*pt_prev) {
4940                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
4941                         *pt_prev = NULL;
4942                 }
4943
4944                 rcu_read_lock();
4945                 ingress_retval = nf_hook_ingress(skb);
4946                 rcu_read_unlock();
4947                 return ingress_retval;
4948         }
4949 #endif /* CONFIG_NETFILTER_INGRESS */
4950         return 0;
4951 }
4952
4953 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
4954                                     struct packet_type **ppt_prev)
4955 {
4956         struct packet_type *ptype, *pt_prev;
4957         rx_handler_func_t *rx_handler;
4958         struct net_device *orig_dev;
4959         bool deliver_exact = false;
4960         int ret = NET_RX_DROP;
4961         __be16 type;
4962
4963         net_timestamp_check(!netdev_tstamp_prequeue, skb);
4964
4965         trace_netif_receive_skb(skb);
4966
4967         orig_dev = skb->dev;
4968
4969         skb_reset_network_header(skb);
4970         if (!skb_transport_header_was_set(skb))
4971                 skb_reset_transport_header(skb);
4972         skb_reset_mac_len(skb);
4973
4974         pt_prev = NULL;
4975
4976 another_round:
4977         skb->skb_iif = skb->dev->ifindex;
4978
4979         __this_cpu_inc(softnet_data.processed);
4980
4981         if (static_branch_unlikely(&generic_xdp_needed_key)) {
4982                 int ret2;
4983
4984                 preempt_disable();
4985                 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4986                 preempt_enable();
4987
4988                 if (ret2 != XDP_PASS)
4989                         return NET_RX_DROP;
4990                 skb_reset_mac_len(skb);
4991         }
4992
4993         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4994             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4995                 skb = skb_vlan_untag(skb);
4996                 if (unlikely(!skb))
4997                         goto out;
4998         }
4999
5000         if (skb_skip_tc_classify(skb))
5001                 goto skip_classify;
5002
5003         if (pfmemalloc)
5004                 goto skip_taps;
5005
5006         list_for_each_entry_rcu(ptype, &ptype_all, list) {
5007                 if (pt_prev)
5008                         ret = deliver_skb(skb, pt_prev, orig_dev);
5009                 pt_prev = ptype;
5010         }
5011
5012         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5013                 if (pt_prev)
5014                         ret = deliver_skb(skb, pt_prev, orig_dev);
5015                 pt_prev = ptype;
5016         }
5017
5018 skip_taps:
5019 #ifdef CONFIG_NET_INGRESS
5020         if (static_branch_unlikely(&ingress_needed_key)) {
5021                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
5022                 if (!skb)
5023                         goto out;
5024
5025                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5026                         goto out;
5027         }
5028 #endif
5029         skb_reset_tc(skb);
5030 skip_classify:
5031         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5032                 goto drop;
5033
5034         if (skb_vlan_tag_present(skb)) {
5035                 if (pt_prev) {
5036                         ret = deliver_skb(skb, pt_prev, orig_dev);
5037                         pt_prev = NULL;
5038                 }
5039                 if (vlan_do_receive(&skb))
5040                         goto another_round;
5041                 else if (unlikely(!skb))
5042                         goto out;
5043         }
5044
5045         rx_handler = rcu_dereference(skb->dev->rx_handler);
5046         if (rx_handler) {
5047                 if (pt_prev) {
5048                         ret = deliver_skb(skb, pt_prev, orig_dev);
5049                         pt_prev = NULL;
5050                 }
5051                 switch (rx_handler(&skb)) {
5052                 case RX_HANDLER_CONSUMED:
5053                         ret = NET_RX_SUCCESS;
5054                         goto out;
5055                 case RX_HANDLER_ANOTHER:
5056                         goto another_round;
5057                 case RX_HANDLER_EXACT:
5058                         deliver_exact = true;
5059                 case RX_HANDLER_PASS:
5060                         break;
5061                 default:
5062                         BUG();
5063                 }
5064         }
5065
5066         if (unlikely(skb_vlan_tag_present(skb))) {
5067 check_vlan_id:
5068                 if (skb_vlan_tag_get_id(skb)) {
5069                         /* Vlan id is non 0 and vlan_do_receive() above couldn't
5070                          * find vlan device.
5071                          */
5072                         skb->pkt_type = PACKET_OTHERHOST;
5073                 } else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5074                            skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5075                         /* Outer header is 802.1P with vlan 0, inner header is
5076                          * 802.1Q or 802.1AD and vlan_do_receive() above could
5077                          * not find vlan dev for vlan id 0.
5078                          */
5079                         __vlan_hwaccel_clear_tag(skb);
5080                         skb = skb_vlan_untag(skb);
5081                         if (unlikely(!skb))
5082                                 goto out;
5083                         if (vlan_do_receive(&skb))
5084                                 /* After stripping off 802.1P header with vlan 0
5085                                  * vlan dev is found for inner header.
5086                                  */
5087                                 goto another_round;
5088                         else if (unlikely(!skb))
5089                                 goto out;
5090                         else
5091                                 /* We have stripped outer 802.1P vlan 0 header.
5092                                  * But could not find vlan dev.
5093                                  * check again for vlan id to set OTHERHOST.
5094                                  */
5095                                 goto check_vlan_id;
5096                 }
5097                 /* Note: we might in the future use prio bits
5098                  * and set skb->priority like in vlan_do_receive()
5099                  * For the time being, just ignore Priority Code Point
5100                  */
5101                 __vlan_hwaccel_clear_tag(skb);
5102         }
5103
5104         type = skb->protocol;
5105
5106         /* deliver only exact match when indicated */
5107         if (likely(!deliver_exact)) {
5108                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5109                                        &ptype_base[ntohs(type) &
5110                                                    PTYPE_HASH_MASK]);
5111         }
5112
5113         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5114                                &orig_dev->ptype_specific);
5115
5116         if (unlikely(skb->dev != orig_dev)) {
5117                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5118                                        &skb->dev->ptype_specific);
5119         }
5120
5121         if (pt_prev) {
5122                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5123                         goto drop;
5124                 *ppt_prev = pt_prev;
5125         } else {
5126 drop:
5127                 if (!deliver_exact)
5128                         atomic_long_inc(&skb->dev->rx_dropped);
5129                 else
5130                         atomic_long_inc(&skb->dev->rx_nohandler);
5131                 kfree_skb(skb);
5132                 /* Jamal, now you will not able to escape explaining
5133                  * me how you were going to use this. :-)
5134                  */
5135                 ret = NET_RX_DROP;
5136         }
5137
5138 out:
5139         return ret;
5140 }
5141
5142 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5143 {
5144         struct net_device *orig_dev = skb->dev;
5145         struct packet_type *pt_prev = NULL;
5146         int ret;
5147
5148         ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5149         if (pt_prev)
5150                 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5151                                          skb->dev, pt_prev, orig_dev);
5152         return ret;
5153 }
5154
5155 /**
5156  *      netif_receive_skb_core - special purpose version of netif_receive_skb
5157  *      @skb: buffer to process
5158  *
5159  *      More direct receive version of netif_receive_skb().  It should
5160  *      only be used by callers that have a need to skip RPS and Generic XDP.
5161  *      Caller must also take care of handling if (page_is_)pfmemalloc.
5162  *
5163  *      This function may only be called from softirq context and interrupts
5164  *      should be enabled.
5165  *
5166  *      Return values (usually ignored):
5167  *      NET_RX_SUCCESS: no congestion
5168  *      NET_RX_DROP: packet was dropped
5169  */
5170 int netif_receive_skb_core(struct sk_buff *skb)
5171 {
5172         int ret;
5173
5174         rcu_read_lock();
5175         ret = __netif_receive_skb_one_core(skb, false);
5176         rcu_read_unlock();
5177
5178         return ret;
5179 }
5180 EXPORT_SYMBOL(netif_receive_skb_core);
5181
5182 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5183                                                   struct packet_type *pt_prev,
5184                                                   struct net_device *orig_dev)
5185 {
5186         struct sk_buff *skb, *next;
5187
5188         if (!pt_prev)
5189                 return;
5190         if (list_empty(head))
5191                 return;
5192         if (pt_prev->list_func != NULL)
5193                 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5194                                    ip_list_rcv, head, pt_prev, orig_dev);
5195         else
5196                 list_for_each_entry_safe(skb, next, head, list) {
5197                         skb_list_del_init(skb);
5198                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5199                 }
5200 }
5201
5202 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5203 {
5204         /* Fast-path assumptions:
5205          * - There is no RX handler.
5206          * - Only one packet_type matches.
5207          * If either of these fails, we will end up doing some per-packet
5208          * processing in-line, then handling the 'last ptype' for the whole
5209          * sublist.  This can't cause out-of-order delivery to any single ptype,
5210          * because the 'last ptype' must be constant across the sublist, and all
5211          * other ptypes are handled per-packet.
5212          */
5213         /* Current (common) ptype of sublist */
5214         struct packet_type *pt_curr = NULL;
5215         /* Current (common) orig_dev of sublist */
5216         struct net_device *od_curr = NULL;
5217         struct list_head sublist;
5218         struct sk_buff *skb, *next;
5219
5220         INIT_LIST_HEAD(&sublist);
5221         list_for_each_entry_safe(skb, next, head, list) {
5222                 struct net_device *orig_dev = skb->dev;
5223                 struct packet_type *pt_prev = NULL;
5224
5225                 skb_list_del_init(skb);
5226                 __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5227                 if (!pt_prev)
5228                         continue;
5229                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5230                         /* dispatch old sublist */
5231                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5232                         /* start new sublist */
5233                         INIT_LIST_HEAD(&sublist);
5234                         pt_curr = pt_prev;
5235                         od_curr = orig_dev;
5236                 }
5237                 list_add_tail(&skb->list, &sublist);
5238         }
5239
5240         /* dispatch final sublist */
5241         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5242 }
5243
5244 static int __netif_receive_skb(struct sk_buff *skb)
5245 {
5246         int ret;
5247
5248         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5249                 unsigned int noreclaim_flag;
5250
5251                 /*
5252                  * PFMEMALLOC skbs are special, they should
5253                  * - be delivered to SOCK_MEMALLOC sockets only
5254                  * - stay away from userspace
5255                  * - have bounded memory usage
5256                  *
5257                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5258                  * context down to all allocation sites.
5259                  */
5260                 noreclaim_flag = memalloc_noreclaim_save();
5261                 ret = __netif_receive_skb_one_core(skb, true);
5262                 memalloc_noreclaim_restore(noreclaim_flag);
5263         } else
5264                 ret = __netif_receive_skb_one_core(skb, false);
5265
5266         return ret;
5267 }
5268
5269 static void __netif_receive_skb_list(struct list_head *head)
5270 {
5271         unsigned long noreclaim_flag = 0;
5272         struct sk_buff *skb, *next;
5273         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5274
5275         list_for_each_entry_safe(skb, next, head, list) {
5276                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5277                         struct list_head sublist;
5278
5279                         /* Handle the previous sublist */
5280                         list_cut_before(&sublist, head, &skb->list);
5281                         if (!list_empty(&sublist))
5282                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5283                         pfmemalloc = !pfmemalloc;
5284                         /* See comments in __netif_receive_skb */
5285                         if (pfmemalloc)
5286                                 noreclaim_flag = memalloc_noreclaim_save();
5287                         else
5288                                 memalloc_noreclaim_restore(noreclaim_flag);
5289                 }
5290         }
5291         /* Handle the remaining sublist */
5292         if (!list_empty(head))
5293                 __netif_receive_skb_list_core(head, pfmemalloc);
5294         /* Restore pflags */
5295         if (pfmemalloc)
5296                 memalloc_noreclaim_restore(noreclaim_flag);
5297 }
5298
5299 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5300 {
5301         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5302         struct bpf_prog *new = xdp->prog;
5303         int ret = 0;
5304
5305         switch (xdp->command) {
5306         case XDP_SETUP_PROG:
5307                 rcu_assign_pointer(dev->xdp_prog, new);
5308                 if (old)
5309                         bpf_prog_put(old);
5310
5311                 if (old && !new) {
5312                         static_branch_dec(&generic_xdp_needed_key);
5313                 } else if (new && !old) {
5314                         static_branch_inc(&generic_xdp_needed_key);
5315                         dev_disable_lro(dev);
5316                         dev_disable_gro_hw(dev);
5317                 }
5318                 break;
5319
5320         case XDP_QUERY_PROG:
5321                 xdp->prog_id = old ? old->aux->id : 0;
5322                 break;
5323
5324         default:
5325                 ret = -EINVAL;
5326                 break;
5327         }
5328
5329         return ret;
5330 }
5331
5332 static int netif_receive_skb_internal(struct sk_buff *skb)
5333 {
5334         int ret;
5335
5336         net_timestamp_check(netdev_tstamp_prequeue, skb);
5337
5338         if (skb_defer_rx_timestamp(skb))
5339                 return NET_RX_SUCCESS;
5340
5341         rcu_read_lock();
5342 #ifdef CONFIG_RPS
5343         if (static_branch_unlikely(&rps_needed)) {
5344                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5345                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5346
5347                 if (cpu >= 0) {
5348                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5349                         rcu_read_unlock();
5350                         return ret;
5351                 }
5352         }
5353 #endif
5354         ret = __netif_receive_skb(skb);
5355         rcu_read_unlock();
5356         return ret;
5357 }
5358
5359 static void netif_receive_skb_list_internal(struct list_head *head)
5360 {
5361         struct sk_buff *skb, *next;
5362         struct list_head sublist;
5363
5364         INIT_LIST_HEAD(&sublist);
5365         list_for_each_entry_safe(skb, next, head, list) {
5366                 net_timestamp_check(netdev_tstamp_prequeue, skb);
5367                 skb_list_del_init(skb);
5368                 if (!skb_defer_rx_timestamp(skb))
5369                         list_add_tail(&skb->list, &sublist);
5370         }
5371         list_splice_init(&sublist, head);
5372
5373         rcu_read_lock();
5374 #ifdef CONFIG_RPS
5375         if (static_branch_unlikely(&rps_needed)) {
5376                 list_for_each_entry_safe(skb, next, head, list) {
5377                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5378                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5379
5380                         if (cpu >= 0) {
5381                                 /* Will be handled, remove from list */
5382                                 skb_list_del_init(skb);
5383                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5384                         }
5385                 }
5386         }
5387 #endif
5388         __netif_receive_skb_list(head);
5389         rcu_read_unlock();
5390 }
5391
5392 /**
5393  *      netif_receive_skb - process receive buffer from network
5394  *      @skb: buffer to process
5395  *
5396  *      netif_receive_skb() is the main receive data processing function.
5397  *      It always succeeds. The buffer may be dropped during processing
5398  *      for congestion control or by the protocol layers.
5399  *
5400  *      This function may only be called from softirq context and interrupts
5401  *      should be enabled.
5402  *
5403  *      Return values (usually ignored):
5404  *      NET_RX_SUCCESS: no congestion
5405  *      NET_RX_DROP: packet was dropped
5406  */
5407 int netif_receive_skb(struct sk_buff *skb)
5408 {
5409         int ret;
5410
5411         trace_netif_receive_skb_entry(skb);
5412
5413         ret = netif_receive_skb_internal(skb);
5414         trace_netif_receive_skb_exit(ret);
5415
5416         return ret;
5417 }
5418 EXPORT_SYMBOL(netif_receive_skb);
5419
5420 /**
5421  *      netif_receive_skb_list - process many receive buffers from network
5422  *      @head: list of skbs to process.
5423  *
5424  *      Since return value of netif_receive_skb() is normally ignored, and
5425  *      wouldn't be meaningful for a list, this function returns void.
5426  *
5427  *      This function may only be called from softirq context and interrupts
5428  *      should be enabled.
5429  */
5430 void netif_receive_skb_list(struct list_head *head)
5431 {
5432         struct sk_buff *skb;
5433
5434         if (list_empty(head))
5435                 return;
5436         if (trace_netif_receive_skb_list_entry_enabled()) {
5437                 list_for_each_entry(skb, head, list)
5438                         trace_netif_receive_skb_list_entry(skb);
5439         }
5440         netif_receive_skb_list_internal(head);
5441         trace_netif_receive_skb_list_exit(0);
5442 }
5443 EXPORT_SYMBOL(netif_receive_skb_list);
5444
5445 DEFINE_PER_CPU(struct work_struct, flush_works);
5446
5447 /* Network device is going away, flush any packets still pending */
5448 static void flush_backlog(struct work_struct *work)
5449 {
5450         struct sk_buff *skb, *tmp;
5451         struct softnet_data *sd;
5452
5453         local_bh_disable();
5454         sd = this_cpu_ptr(&softnet_data);
5455
5456         local_irq_disable();
5457         rps_lock(sd);
5458         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5459                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5460                         __skb_unlink(skb, &sd->input_pkt_queue);
5461                         kfree_skb(skb);
5462                         input_queue_head_incr(sd);
5463                 }
5464         }
5465         rps_unlock(sd);
5466         local_irq_enable();
5467
5468         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5469                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5470                         __skb_unlink(skb, &sd->process_queue);
5471                         kfree_skb(skb);
5472                         input_queue_head_incr(sd);
5473                 }
5474         }
5475         local_bh_enable();
5476 }
5477
5478 static void flush_all_backlogs(void)
5479 {
5480         unsigned int cpu;
5481
5482         get_online_cpus();
5483
5484         for_each_online_cpu(cpu)
5485                 queue_work_on(cpu, system_highpri_wq,
5486                               per_cpu_ptr(&flush_works, cpu));
5487
5488         for_each_online_cpu(cpu)
5489                 flush_work(per_cpu_ptr(&flush_works, cpu));
5490
5491         put_online_cpus();
5492 }
5493
5494 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5495 static void gro_normal_list(struct napi_struct *napi)
5496 {
5497         if (!napi->rx_count)
5498                 return;
5499         netif_receive_skb_list_internal(&napi->rx_list);
5500         INIT_LIST_HEAD(&napi->rx_list);
5501         napi->rx_count = 0;
5502 }
5503
5504 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5505  * pass the whole batch up to the stack.
5506  */
5507 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb)
5508 {
5509         list_add_tail(&skb->list, &napi->rx_list);
5510         if (++napi->rx_count >= gro_normal_batch)
5511                 gro_normal_list(napi);
5512 }
5513
5514 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5515 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
5516 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5517 {
5518         struct packet_offload *ptype;
5519         __be16 type = skb->protocol;
5520         struct list_head *head = &offload_base;
5521         int err = -ENOENT;
5522
5523         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5524
5525         if (NAPI_GRO_CB(skb)->count == 1) {
5526                 skb_shinfo(skb)->gso_size = 0;
5527                 goto out;
5528         }
5529
5530         rcu_read_lock();
5531         list_for_each_entry_rcu(ptype, head, list) {
5532                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5533                         continue;
5534
5535                 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5536                                          ipv6_gro_complete, inet_gro_complete,
5537                                          skb, 0);
5538                 break;
5539         }
5540         rcu_read_unlock();
5541
5542         if (err) {
5543                 WARN_ON(&ptype->list == head);
5544                 kfree_skb(skb);
5545                 return NET_RX_SUCCESS;
5546         }
5547
5548 out:
5549         gro_normal_one(napi, skb);
5550         return NET_RX_SUCCESS;
5551 }
5552
5553 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5554                                    bool flush_old)
5555 {
5556         struct list_head *head = &napi->gro_hash[index].list;
5557         struct sk_buff *skb, *p;
5558
5559         list_for_each_entry_safe_reverse(skb, p, head, list) {
5560                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5561                         return;
5562                 skb_list_del_init(skb);
5563                 napi_gro_complete(napi, skb);
5564                 napi->gro_hash[index].count--;
5565         }
5566
5567         if (!napi->gro_hash[index].count)
5568                 __clear_bit(index, &napi->gro_bitmask);
5569 }
5570
5571 /* napi->gro_hash[].list contains packets ordered by age.
5572  * youngest packets at the head of it.
5573  * Complete skbs in reverse order to reduce latencies.
5574  */
5575 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5576 {
5577         unsigned long bitmask = napi->gro_bitmask;
5578         unsigned int i, base = ~0U;
5579
5580         while ((i = ffs(bitmask)) != 0) {
5581                 bitmask >>= i;
5582                 base += i;
5583                 __napi_gro_flush_chain(napi, base, flush_old);
5584         }
5585 }
5586 EXPORT_SYMBOL(napi_gro_flush);
5587
5588 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5589                                           struct sk_buff *skb)
5590 {
5591         unsigned int maclen = skb->dev->hard_header_len;
5592         u32 hash = skb_get_hash_raw(skb);
5593         struct list_head *head;
5594         struct sk_buff *p;
5595
5596         head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5597         list_for_each_entry(p, head, list) {
5598                 unsigned long diffs;
5599
5600                 NAPI_GRO_CB(p)->flush = 0;
5601
5602                 if (hash != skb_get_hash_raw(p)) {
5603                         NAPI_GRO_CB(p)->same_flow = 0;
5604                         continue;
5605                 }
5606
5607                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5608                 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5609                 if (skb_vlan_tag_present(p))
5610                         diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5611                 diffs |= skb_metadata_dst_cmp(p, skb);
5612                 diffs |= skb_metadata_differs(p, skb);
5613                 if (maclen == ETH_HLEN)
5614                         diffs |= compare_ether_header(skb_mac_header(p),
5615                                                       skb_mac_header(skb));
5616                 else if (!diffs)
5617                         diffs = memcmp(skb_mac_header(p),
5618                                        skb_mac_header(skb),
5619                                        maclen);
5620                 NAPI_GRO_CB(p)->same_flow = !diffs;
5621         }
5622
5623         return head;
5624 }
5625
5626 static void skb_gro_reset_offset(struct sk_buff *skb)
5627 {
5628         const struct skb_shared_info *pinfo = skb_shinfo(skb);
5629         const skb_frag_t *frag0 = &pinfo->frags[0];
5630
5631         NAPI_GRO_CB(skb)->data_offset = 0;
5632         NAPI_GRO_CB(skb)->frag0 = NULL;
5633         NAPI_GRO_CB(skb)->frag0_len = 0;
5634
5635         if (!skb_headlen(skb) && pinfo->nr_frags &&
5636             !PageHighMem(skb_frag_page(frag0))) {
5637                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5638                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5639                                                     skb_frag_size(frag0),
5640                                                     skb->end - skb->tail);
5641         }
5642 }
5643
5644 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5645 {
5646         struct skb_shared_info *pinfo = skb_shinfo(skb);
5647
5648         BUG_ON(skb->end - skb->tail < grow);
5649
5650         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5651
5652         skb->data_len -= grow;
5653         skb->tail += grow;
5654
5655         skb_frag_off_add(&pinfo->frags[0], grow);
5656         skb_frag_size_sub(&pinfo->frags[0], grow);
5657
5658         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5659                 skb_frag_unref(skb, 0);
5660                 memmove(pinfo->frags, pinfo->frags + 1,
5661                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5662         }
5663 }
5664
5665 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
5666 {
5667         struct sk_buff *oldest;
5668
5669         oldest = list_last_entry(head, struct sk_buff, list);
5670
5671         /* We are called with head length >= MAX_GRO_SKBS, so this is
5672          * impossible.
5673          */
5674         if (WARN_ON_ONCE(!oldest))
5675                 return;
5676
5677         /* Do not adjust napi->gro_hash[].count, caller is adding a new
5678          * SKB to the chain.
5679          */
5680         skb_list_del_init(oldest);
5681         napi_gro_complete(napi, oldest);
5682 }
5683
5684 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5685                                                            struct sk_buff *));
5686 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5687                                                            struct sk_buff *));
5688 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5689 {
5690         u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5691         struct list_head *head = &offload_base;
5692         struct packet_offload *ptype;
5693         __be16 type = skb->protocol;
5694         struct list_head *gro_head;
5695         struct sk_buff *pp = NULL;
5696         enum gro_result ret;
5697         int same_flow;
5698         int grow;
5699
5700         if (netif_elide_gro(skb->dev))
5701                 goto normal;
5702
5703         gro_head = gro_list_prepare(napi, skb);
5704
5705         rcu_read_lock();
5706         list_for_each_entry_rcu(ptype, head, list) {
5707                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5708                         continue;
5709
5710                 skb_set_network_header(skb, skb_gro_offset(skb));
5711                 skb_reset_mac_len(skb);
5712                 NAPI_GRO_CB(skb)->same_flow = 0;
5713                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5714                 NAPI_GRO_CB(skb)->free = 0;
5715                 NAPI_GRO_CB(skb)->encap_mark = 0;
5716                 NAPI_GRO_CB(skb)->recursion_counter = 0;
5717                 NAPI_GRO_CB(skb)->is_fou = 0;
5718                 NAPI_GRO_CB(skb)->is_atomic = 1;
5719                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5720
5721                 /* Setup for GRO checksum validation */
5722                 switch (skb->ip_summed) {
5723                 case CHECKSUM_COMPLETE:
5724                         NAPI_GRO_CB(skb)->csum = skb->csum;
5725                         NAPI_GRO_CB(skb)->csum_valid = 1;
5726                         NAPI_GRO_CB(skb)->csum_cnt = 0;
5727                         break;
5728                 case CHECKSUM_UNNECESSARY:
5729                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5730                         NAPI_GRO_CB(skb)->csum_valid = 0;
5731                         break;
5732                 default:
5733                         NAPI_GRO_CB(skb)->csum_cnt = 0;
5734                         NAPI_GRO_CB(skb)->csum_valid = 0;
5735                 }
5736
5737                 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5738                                         ipv6_gro_receive, inet_gro_receive,
5739                                         gro_head, skb);
5740                 break;
5741         }
5742         rcu_read_unlock();
5743
5744         if (&ptype->list == head)
5745                 goto normal;
5746
5747         if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5748                 ret = GRO_CONSUMED;
5749                 goto ok;
5750         }
5751
5752         same_flow = NAPI_GRO_CB(skb)->same_flow;
5753         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5754
5755         if (pp) {
5756                 skb_list_del_init(pp);
5757                 napi_gro_complete(napi, pp);
5758                 napi->gro_hash[hash].count--;
5759         }
5760
5761         if (same_flow)
5762                 goto ok;
5763
5764         if (NAPI_GRO_CB(skb)->flush)
5765                 goto normal;
5766
5767         if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5768                 gro_flush_oldest(napi, gro_head);
5769         } else {
5770                 napi->gro_hash[hash].count++;
5771         }
5772         NAPI_GRO_CB(skb)->count = 1;
5773         NAPI_GRO_CB(skb)->age = jiffies;
5774         NAPI_GRO_CB(skb)->last = skb;
5775         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5776         list_add(&skb->list, gro_head);
5777         ret = GRO_HELD;
5778
5779 pull:
5780         grow = skb_gro_offset(skb) - skb_headlen(skb);
5781         if (grow > 0)
5782                 gro_pull_from_frag0(skb, grow);
5783 ok:
5784         if (napi->gro_hash[hash].count) {
5785                 if (!test_bit(hash, &napi->gro_bitmask))
5786                         __set_bit(hash, &napi->gro_bitmask);
5787         } else if (test_bit(hash, &napi->gro_bitmask)) {
5788                 __clear_bit(hash, &napi->gro_bitmask);
5789         }
5790
5791         return ret;
5792
5793 normal:
5794         ret = GRO_NORMAL;
5795         goto pull;
5796 }
5797
5798 struct packet_offload *gro_find_receive_by_type(__be16 type)
5799 {
5800         struct list_head *offload_head = &offload_base;
5801         struct packet_offload *ptype;
5802
5803         list_for_each_entry_rcu(ptype, offload_head, list) {
5804                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5805                         continue;
5806                 return ptype;
5807         }
5808         return NULL;
5809 }
5810 EXPORT_SYMBOL(gro_find_receive_by_type);
5811
5812 struct packet_offload *gro_find_complete_by_type(__be16 type)
5813 {
5814         struct list_head *offload_head = &offload_base;
5815         struct packet_offload *ptype;
5816
5817         list_for_each_entry_rcu(ptype, offload_head, list) {
5818                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5819                         continue;
5820                 return ptype;
5821         }
5822         return NULL;
5823 }
5824 EXPORT_SYMBOL(gro_find_complete_by_type);
5825
5826 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5827 {
5828         skb_dst_drop(skb);
5829         skb_ext_put(skb);
5830         kmem_cache_free(skbuff_head_cache, skb);
5831 }
5832
5833 static gro_result_t napi_skb_finish(struct napi_struct *napi,
5834                                     struct sk_buff *skb,
5835                                     gro_result_t ret)
5836 {
5837         switch (ret) {
5838         case GRO_NORMAL:
5839                 gro_normal_one(napi, skb);
5840                 break;
5841
5842         case GRO_DROP:
5843                 kfree_skb(skb);
5844                 break;
5845
5846         case GRO_MERGED_FREE:
5847                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5848                         napi_skb_free_stolen_head(skb);
5849                 else
5850                         __kfree_skb(skb);
5851                 break;
5852
5853         case GRO_HELD:
5854         case GRO_MERGED:
5855         case GRO_CONSUMED:
5856                 break;
5857         }
5858
5859         return ret;
5860 }
5861
5862 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5863 {
5864         gro_result_t ret;
5865
5866         skb_mark_napi_id(skb, napi);
5867         trace_napi_gro_receive_entry(skb);
5868
5869         skb_gro_reset_offset(skb);
5870
5871         ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
5872         trace_napi_gro_receive_exit(ret);
5873
5874         return ret;
5875 }
5876 EXPORT_SYMBOL(napi_gro_receive);
5877
5878 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5879 {
5880         if (unlikely(skb->pfmemalloc)) {
5881                 consume_skb(skb);
5882                 return;
5883         }
5884         __skb_pull(skb, skb_headlen(skb));
5885         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5886         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5887         __vlan_hwaccel_clear_tag(skb);
5888         skb->dev = napi->dev;
5889         skb->skb_iif = 0;
5890
5891         /* eth_type_trans() assumes pkt_type is PACKET_HOST */
5892         skb->pkt_type = PACKET_HOST;
5893
5894         skb->encapsulation = 0;
5895         skb_shinfo(skb)->gso_type = 0;
5896         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5897         skb_ext_reset(skb);
5898
5899         napi->skb = skb;
5900 }
5901
5902 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5903 {
5904         struct sk_buff *skb = napi->skb;
5905
5906         if (!skb) {
5907                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5908                 if (skb) {
5909                         napi->skb = skb;
5910                         skb_mark_napi_id(skb, napi);
5911                 }
5912         }
5913         return skb;
5914 }
5915 EXPORT_SYMBOL(napi_get_frags);
5916
5917 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5918                                       struct sk_buff *skb,
5919                                       gro_result_t ret)
5920 {
5921         switch (ret) {
5922         case GRO_NORMAL:
5923         case GRO_HELD:
5924                 __skb_push(skb, ETH_HLEN);
5925                 skb->protocol = eth_type_trans(skb, skb->dev);
5926                 if (ret == GRO_NORMAL)
5927                         gro_normal_one(napi, skb);
5928                 break;
5929
5930         case GRO_DROP:
5931                 napi_reuse_skb(napi, skb);
5932                 break;
5933
5934         case GRO_MERGED_FREE:
5935                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5936                         napi_skb_free_stolen_head(skb);
5937                 else
5938                         napi_reuse_skb(napi, skb);
5939                 break;
5940
5941         case GRO_MERGED:
5942         case GRO_CONSUMED:
5943                 break;
5944         }
5945
5946         return ret;
5947 }
5948
5949 /* Upper GRO stack assumes network header starts at gro_offset=0
5950  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5951  * We copy ethernet header into skb->data to have a common layout.
5952  */
5953 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5954 {
5955         struct sk_buff *skb = napi->skb;
5956         const struct ethhdr *eth;
5957         unsigned int hlen = sizeof(*eth);
5958
5959         napi->skb = NULL;
5960
5961         skb_reset_mac_header(skb);
5962         skb_gro_reset_offset(skb);
5963
5964         if (unlikely(skb_gro_header_hard(skb, hlen))) {
5965                 eth = skb_gro_header_slow(skb, hlen, 0);
5966                 if (unlikely(!eth)) {
5967                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5968                                              __func__, napi->dev->name);
5969                         napi_reuse_skb(napi, skb);
5970                         return NULL;
5971                 }
5972         } else {
5973                 eth = (const struct ethhdr *)skb->data;
5974                 gro_pull_from_frag0(skb, hlen);
5975                 NAPI_GRO_CB(skb)->frag0 += hlen;
5976                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
5977         }
5978         __skb_pull(skb, hlen);
5979
5980         /*
5981          * This works because the only protocols we care about don't require
5982          * special handling.
5983          * We'll fix it up properly in napi_frags_finish()
5984          */
5985         skb->protocol = eth->h_proto;
5986
5987         return skb;
5988 }
5989
5990 gro_result_t napi_gro_frags(struct napi_struct *napi)
5991 {
5992         gro_result_t ret;
5993         struct sk_buff *skb = napi_frags_skb(napi);
5994
5995         if (!skb)
5996                 return GRO_DROP;
5997
5998         trace_napi_gro_frags_entry(skb);
5999
6000         ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6001         trace_napi_gro_frags_exit(ret);
6002
6003         return ret;
6004 }
6005 EXPORT_SYMBOL(napi_gro_frags);
6006
6007 /* Compute the checksum from gro_offset and return the folded value
6008  * after adding in any pseudo checksum.
6009  */
6010 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6011 {
6012         __wsum wsum;
6013         __sum16 sum;
6014
6015         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6016
6017         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6018         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6019         /* See comments in __skb_checksum_complete(). */
6020         if (likely(!sum)) {
6021                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6022                     !skb->csum_complete_sw)
6023                         netdev_rx_csum_fault(skb->dev, skb);
6024         }
6025
6026         NAPI_GRO_CB(skb)->csum = wsum;
6027         NAPI_GRO_CB(skb)->csum_valid = 1;
6028
6029         return sum;
6030 }
6031 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6032
6033 static void net_rps_send_ipi(struct softnet_data *remsd)
6034 {
6035 #ifdef CONFIG_RPS
6036         while (remsd) {
6037                 struct softnet_data *next = remsd->rps_ipi_next;
6038
6039                 if (cpu_online(remsd->cpu))
6040                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
6041                 remsd = next;
6042         }
6043 #endif
6044 }
6045
6046 /*
6047  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6048  * Note: called with local irq disabled, but exits with local irq enabled.
6049  */
6050 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6051 {
6052 #ifdef CONFIG_RPS
6053         struct softnet_data *remsd = sd->rps_ipi_list;
6054
6055         if (remsd) {
6056                 sd->rps_ipi_list = NULL;
6057
6058                 local_irq_enable();
6059
6060                 /* Send pending IPI's to kick RPS processing on remote cpus. */
6061                 net_rps_send_ipi(remsd);
6062         } else
6063 #endif
6064                 local_irq_enable();
6065 }
6066
6067 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6068 {
6069 #ifdef CONFIG_RPS
6070         return sd->rps_ipi_list != NULL;
6071 #else
6072         return false;
6073 #endif
6074 }
6075
6076 static int process_backlog(struct napi_struct *napi, int quota)
6077 {
6078         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6079         bool again = true;
6080         int work = 0;
6081
6082         /* Check if we have pending ipi, its better to send them now,
6083          * not waiting net_rx_action() end.
6084          */
6085         if (sd_has_rps_ipi_waiting(sd)) {
6086                 local_irq_disable();
6087                 net_rps_action_and_irq_enable(sd);
6088         }
6089
6090         napi->weight = dev_rx_weight;
6091         while (again) {
6092                 struct sk_buff *skb;
6093
6094                 while ((skb = __skb_dequeue(&sd->process_queue))) {
6095                         rcu_read_lock();
6096                         __netif_receive_skb(skb);
6097                         rcu_read_unlock();
6098                         input_queue_head_incr(sd);
6099                         if (++work >= quota)
6100                                 return work;
6101
6102                 }
6103
6104                 local_irq_disable();
6105                 rps_lock(sd);
6106                 if (skb_queue_empty(&sd->input_pkt_queue)) {
6107                         /*
6108                          * Inline a custom version of __napi_complete().
6109                          * only current cpu owns and manipulates this napi,
6110                          * and NAPI_STATE_SCHED is the only possible flag set
6111                          * on backlog.
6112                          * We can use a plain write instead of clear_bit(),
6113                          * and we dont need an smp_mb() memory barrier.
6114                          */
6115                         napi->state = 0;
6116                         again = false;
6117                 } else {
6118                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
6119                                                    &sd->process_queue);
6120                 }
6121                 rps_unlock(sd);
6122                 local_irq_enable();
6123         }
6124
6125         return work;
6126 }
6127
6128 /**
6129  * __napi_schedule - schedule for receive
6130  * @n: entry to schedule
6131  *
6132  * The entry's receive function will be scheduled to run.
6133  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6134  */
6135 void __napi_schedule(struct napi_struct *n)
6136 {
6137         unsigned long flags;
6138
6139         local_irq_save(flags);
6140         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6141         local_irq_restore(flags);
6142 }
6143 EXPORT_SYMBOL(__napi_schedule);
6144
6145 /**
6146  *      napi_schedule_prep - check if napi can be scheduled
6147  *      @n: napi context
6148  *
6149  * Test if NAPI routine is already running, and if not mark
6150  * it as running.  This is used as a condition variable
6151  * insure only one NAPI poll instance runs.  We also make
6152  * sure there is no pending NAPI disable.
6153  */
6154 bool napi_schedule_prep(struct napi_struct *n)
6155 {
6156         unsigned long val, new;
6157
6158         do {
6159                 val = READ_ONCE(n->state);
6160                 if (unlikely(val & NAPIF_STATE_DISABLE))
6161                         return false;
6162                 new = val | NAPIF_STATE_SCHED;
6163
6164                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6165                  * This was suggested by Alexander Duyck, as compiler
6166                  * emits better code than :
6167                  * if (val & NAPIF_STATE_SCHED)
6168                  *     new |= NAPIF_STATE_MISSED;
6169                  */
6170                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6171                                                    NAPIF_STATE_MISSED;
6172         } while (cmpxchg(&n->state, val, new) != val);
6173
6174         return !(val & NAPIF_STATE_SCHED);
6175 }
6176 EXPORT_SYMBOL(napi_schedule_prep);
6177
6178 /**
6179  * __napi_schedule_irqoff - schedule for receive
6180  * @n: entry to schedule
6181  *
6182  * Variant of __napi_schedule() assuming hard irqs are masked
6183  */
6184 void __napi_schedule_irqoff(struct napi_struct *n)
6185 {
6186         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6187 }
6188 EXPORT_SYMBOL(__napi_schedule_irqoff);
6189
6190 bool napi_complete_done(struct napi_struct *n, int work_done)
6191 {
6192         unsigned long flags, val, new;
6193
6194         /*
6195          * 1) Don't let napi dequeue from the cpu poll list
6196          *    just in case its running on a different cpu.
6197          * 2) If we are busy polling, do nothing here, we have
6198          *    the guarantee we will be called later.
6199          */
6200         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6201                                  NAPIF_STATE_IN_BUSY_POLL)))
6202                 return false;
6203
6204         if (n->gro_bitmask) {
6205                 unsigned long timeout = 0;
6206
6207                 if (work_done)
6208                         timeout = n->dev->gro_flush_timeout;
6209
6210                 /* When the NAPI instance uses a timeout and keeps postponing
6211                  * it, we need to bound somehow the time packets are kept in
6212                  * the GRO layer
6213                  */
6214                 napi_gro_flush(n, !!timeout);
6215                 if (timeout)
6216                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
6217                                       HRTIMER_MODE_REL_PINNED);
6218         }
6219
6220         gro_normal_list(n);
6221
6222         if (unlikely(!list_empty(&n->poll_list))) {
6223                 /* If n->poll_list is not empty, we need to mask irqs */
6224                 local_irq_save(flags);
6225                 list_del_init(&n->poll_list);
6226                 local_irq_restore(flags);
6227         }
6228
6229         do {
6230                 val = READ_ONCE(n->state);
6231
6232                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6233
6234                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6235
6236                 /* If STATE_MISSED was set, leave STATE_SCHED set,
6237                  * because we will call napi->poll() one more time.
6238                  * This C code was suggested by Alexander Duyck to help gcc.
6239                  */
6240                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6241                                                     NAPIF_STATE_SCHED;
6242         } while (cmpxchg(&n->state, val, new) != val);
6243
6244         if (unlikely(val & NAPIF_STATE_MISSED)) {
6245                 __napi_schedule(n);
6246                 return false;
6247         }
6248
6249         return true;
6250 }
6251 EXPORT_SYMBOL(napi_complete_done);
6252
6253 /* must be called under rcu_read_lock(), as we dont take a reference */
6254 static struct napi_struct *napi_by_id(unsigned int napi_id)
6255 {
6256         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6257         struct napi_struct *napi;
6258
6259         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6260                 if (napi->napi_id == napi_id)
6261                         return napi;
6262
6263         return NULL;
6264 }
6265
6266 #if defined(CONFIG_NET_RX_BUSY_POLL)
6267
6268 #define BUSY_POLL_BUDGET 8
6269
6270 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6271 {
6272         int rc;
6273
6274         /* Busy polling means there is a high chance device driver hard irq
6275          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6276          * set in napi_schedule_prep().
6277          * Since we are about to call napi->poll() once more, we can safely
6278          * clear NAPI_STATE_MISSED.
6279          *
6280          * Note: x86 could use a single "lock and ..." instruction
6281          * to perform these two clear_bit()
6282          */
6283         clear_bit(NAPI_STATE_MISSED, &napi->state);
6284         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6285
6286         local_bh_disable();
6287
6288         /* All we really want here is to re-enable device interrupts.
6289          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6290          */
6291         rc = napi->poll(napi, BUSY_POLL_BUDGET);
6292         /* We can't gro_normal_list() here, because napi->poll() might have
6293          * rearmed the napi (napi_complete_done()) in which case it could
6294          * already be running on another CPU.
6295          */
6296         trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6297         netpoll_poll_unlock(have_poll_lock);
6298         if (rc == BUSY_POLL_BUDGET) {
6299                 /* As the whole budget was spent, we still own the napi so can
6300                  * safely handle the rx_list.
6301                  */
6302                 gro_normal_list(napi);
6303                 __napi_schedule(napi);
6304         }
6305         local_bh_enable();
6306 }
6307
6308 void napi_busy_loop(unsigned int napi_id,
6309                     bool (*loop_end)(void *, unsigned long),
6310                     void *loop_end_arg)
6311 {
6312         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6313         int (*napi_poll)(struct napi_struct *napi, int budget);
6314         void *have_poll_lock = NULL;
6315         struct napi_struct *napi;
6316
6317 restart:
6318         napi_poll = NULL;
6319
6320         rcu_read_lock();
6321
6322         napi = napi_by_id(napi_id);
6323         if (!napi)
6324                 goto out;
6325
6326         preempt_disable();
6327         for (;;) {
6328                 int work = 0;
6329
6330                 local_bh_disable();
6331                 if (!napi_poll) {
6332                         unsigned long val = READ_ONCE(napi->state);
6333
6334                         /* If multiple threads are competing for this napi,
6335                          * we avoid dirtying napi->state as much as we can.
6336                          */
6337                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6338                                    NAPIF_STATE_IN_BUSY_POLL))
6339                                 goto count;
6340                         if (cmpxchg(&napi->state, val,
6341                                     val | NAPIF_STATE_IN_BUSY_POLL |
6342                                           NAPIF_STATE_SCHED) != val)
6343                                 goto count;
6344                         have_poll_lock = netpoll_poll_lock(napi);
6345                         napi_poll = napi->poll;
6346                 }
6347                 work = napi_poll(napi, BUSY_POLL_BUDGET);
6348                 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6349                 gro_normal_list(napi);
6350 count:
6351                 if (work > 0)
6352                         __NET_ADD_STATS(dev_net(napi->dev),
6353                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6354                 local_bh_enable();
6355
6356                 if (!loop_end || loop_end(loop_end_arg, start_time))
6357                         break;
6358
6359                 if (unlikely(need_resched())) {
6360                         if (napi_poll)
6361                                 busy_poll_stop(napi, have_poll_lock);
6362                         preempt_enable();
6363                         rcu_read_unlock();
6364                         cond_resched();
6365                         if (loop_end(loop_end_arg, start_time))
6366                                 return;
6367                         goto restart;
6368                 }
6369                 cpu_relax();
6370         }
6371         if (napi_poll)
6372                 busy_poll_stop(napi, have_poll_lock);
6373         preempt_enable();
6374 out:
6375         rcu_read_unlock();
6376 }
6377 EXPORT_SYMBOL(napi_busy_loop);
6378
6379 #endif /* CONFIG_NET_RX_BUSY_POLL */
6380
6381 static void napi_hash_add(struct napi_struct *napi)
6382 {
6383         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6384             test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6385                 return;
6386
6387         spin_lock(&napi_hash_lock);
6388
6389         /* 0..NR_CPUS range is reserved for sender_cpu use */
6390         do {
6391                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6392                         napi_gen_id = MIN_NAPI_ID;
6393         } while (napi_by_id(napi_gen_id));
6394         napi->napi_id = napi_gen_id;
6395
6396         hlist_add_head_rcu(&napi->napi_hash_node,
6397                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6398
6399         spin_unlock(&napi_hash_lock);
6400 }
6401
6402 /* Warning : caller is responsible to make sure rcu grace period
6403  * is respected before freeing memory containing @napi
6404  */
6405 bool napi_hash_del(struct napi_struct *napi)
6406 {
6407         bool rcu_sync_needed = false;
6408
6409         spin_lock(&napi_hash_lock);
6410
6411         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6412                 rcu_sync_needed = true;
6413                 hlist_del_rcu(&napi->napi_hash_node);
6414         }
6415         spin_unlock(&napi_hash_lock);
6416         return rcu_sync_needed;
6417 }
6418 EXPORT_SYMBOL_GPL(napi_hash_del);
6419
6420 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6421 {
6422         struct napi_struct *napi;
6423
6424         napi = container_of(timer, struct napi_struct, timer);
6425
6426         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6427          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6428          */
6429         if (napi->gro_bitmask && !napi_disable_pending(napi) &&
6430             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6431                 __napi_schedule_irqoff(napi);
6432
6433         return HRTIMER_NORESTART;
6434 }
6435
6436 static void init_gro_hash(struct napi_struct *napi)
6437 {
6438         int i;
6439
6440         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6441                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6442                 napi->gro_hash[i].count = 0;
6443         }
6444         napi->gro_bitmask = 0;
6445 }
6446
6447 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6448                     int (*poll)(struct napi_struct *, int), int weight)
6449 {
6450         INIT_LIST_HEAD(&napi->poll_list);
6451         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6452         napi->timer.function = napi_watchdog;
6453         init_gro_hash(napi);
6454         napi->skb = NULL;
6455         INIT_LIST_HEAD(&napi->rx_list);
6456         napi->rx_count = 0;
6457         napi->poll = poll;
6458         if (weight > NAPI_POLL_WEIGHT)
6459                 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6460                                 weight);
6461         napi->weight = weight;
6462         list_add(&napi->dev_list, &dev->napi_list);
6463         napi->dev = dev;
6464 #ifdef CONFIG_NETPOLL
6465         napi->poll_owner = -1;
6466 #endif
6467         set_bit(NAPI_STATE_SCHED, &napi->state);
6468         napi_hash_add(napi);
6469 }
6470 EXPORT_SYMBOL(netif_napi_add);
6471
6472 void napi_disable(struct napi_struct *n)
6473 {
6474         might_sleep();
6475         set_bit(NAPI_STATE_DISABLE, &n->state);
6476
6477         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6478                 msleep(1);
6479         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6480                 msleep(1);
6481
6482         hrtimer_cancel(&n->timer);
6483
6484         clear_bit(NAPI_STATE_DISABLE, &n->state);
6485 }
6486 EXPORT_SYMBOL(napi_disable);
6487
6488 static void flush_gro_hash(struct napi_struct *napi)
6489 {
6490         int i;
6491
6492         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6493                 struct sk_buff *skb, *n;
6494
6495                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6496                         kfree_skb(skb);
6497                 napi->gro_hash[i].count = 0;
6498         }
6499 }
6500
6501 /* Must be called in process context */
6502 void netif_napi_del(struct napi_struct *napi)
6503 {
6504         might_sleep();
6505         if (napi_hash_del(napi))
6506                 synchronize_net();
6507         list_del_init(&napi->dev_list);
6508         napi_free_frags(napi);
6509
6510         flush_gro_hash(napi);
6511         napi->gro_bitmask = 0;
6512 }
6513 EXPORT_SYMBOL(netif_napi_del);
6514
6515 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6516 {
6517         void *have;
6518         int work, weight;
6519
6520         list_del_init(&n->poll_list);
6521
6522         have = netpoll_poll_lock(n);
6523
6524         weight = n->weight;
6525
6526         /* This NAPI_STATE_SCHED test is for avoiding a race
6527          * with netpoll's poll_napi().  Only the entity which
6528          * obtains the lock and sees NAPI_STATE_SCHED set will
6529          * actually make the ->poll() call.  Therefore we avoid
6530          * accidentally calling ->poll() when NAPI is not scheduled.
6531          */
6532         work = 0;
6533         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6534                 work = n->poll(n, weight);
6535                 trace_napi_poll(n, work, weight);
6536         }
6537
6538         WARN_ON_ONCE(work > weight);
6539
6540         if (likely(work < weight))
6541                 goto out_unlock;
6542
6543         /* Drivers must not modify the NAPI state if they
6544          * consume the entire weight.  In such cases this code
6545          * still "owns" the NAPI instance and therefore can
6546          * move the instance around on the list at-will.
6547          */
6548         if (unlikely(napi_disable_pending(n))) {
6549                 napi_complete(n);
6550                 goto out_unlock;
6551         }
6552
6553         if (n->gro_bitmask) {
6554                 /* flush too old packets
6555                  * If HZ < 1000, flush all packets.
6556                  */
6557                 napi_gro_flush(n, HZ >= 1000);
6558         }
6559
6560         gro_normal_list(n);
6561
6562         /* Some drivers may have called napi_schedule
6563          * prior to exhausting their budget.
6564          */
6565         if (unlikely(!list_empty(&n->poll_list))) {
6566                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6567                              n->dev ? n->dev->name : "backlog");
6568                 goto out_unlock;
6569         }
6570
6571         list_add_tail(&n->poll_list, repoll);
6572
6573 out_unlock:
6574         netpoll_poll_unlock(have);
6575
6576         return work;
6577 }
6578
6579 static __latent_entropy void net_rx_action(struct softirq_action *h)
6580 {
6581         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6582         unsigned long time_limit = jiffies +
6583                 usecs_to_jiffies(netdev_budget_usecs);
6584         int budget = netdev_budget;
6585         LIST_HEAD(list);
6586         LIST_HEAD(repoll);
6587
6588         local_irq_disable();
6589         list_splice_init(&sd->poll_list, &list);
6590         local_irq_enable();
6591
6592         for (;;) {
6593                 struct napi_struct *n;
6594
6595                 if (list_empty(&list)) {
6596                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6597                                 goto out;
6598                         break;
6599                 }
6600
6601                 n = list_first_entry(&list, struct napi_struct, poll_list);
6602                 budget -= napi_poll(n, &repoll);
6603
6604                 /* If softirq window is exhausted then punt.
6605                  * Allow this to run for 2 jiffies since which will allow
6606                  * an average latency of 1.5/HZ.
6607                  */
6608                 if (unlikely(budget <= 0 ||
6609                              time_after_eq(jiffies, time_limit))) {
6610                         sd->time_squeeze++;
6611                         break;
6612                 }
6613         }
6614
6615         local_irq_disable();
6616
6617         list_splice_tail_init(&sd->poll_list, &list);
6618         list_splice_tail(&repoll, &list);
6619         list_splice(&list, &sd->poll_list);
6620         if (!list_empty(&sd->poll_list))
6621                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6622
6623         net_rps_action_and_irq_enable(sd);
6624 out:
6625         __kfree_skb_flush();
6626 }
6627
6628 struct netdev_adjacent {
6629         struct net_device *dev;
6630
6631         /* upper master flag, there can only be one master device per list */
6632         bool master;
6633
6634         /* lookup ignore flag */
6635         bool ignore;
6636
6637         /* counter for the number of times this device was added to us */
6638         u16 ref_nr;
6639
6640         /* private field for the users */
6641         void *private;
6642
6643         struct list_head list;
6644         struct rcu_head rcu;
6645 };
6646
6647 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6648                                                  struct list_head *adj_list)
6649 {
6650         struct netdev_adjacent *adj;
6651
6652         list_for_each_entry(adj, adj_list, list) {
6653                 if (adj->dev == adj_dev)
6654                         return adj;
6655         }
6656         return NULL;
6657 }
6658
6659 static int ____netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6660 {
6661         struct net_device *dev = data;
6662
6663         return upper_dev == dev;
6664 }
6665
6666 /**
6667  * netdev_has_upper_dev - Check if device is linked to an upper device
6668  * @dev: device
6669  * @upper_dev: upper device to check
6670  *
6671  * Find out if a device is linked to specified upper device and return true
6672  * in case it is. Note that this checks only immediate upper device,
6673  * not through a complete stack of devices. The caller must hold the RTNL lock.
6674  */
6675 bool netdev_has_upper_dev(struct net_device *dev,
6676                           struct net_device *upper_dev)
6677 {
6678         ASSERT_RTNL();
6679
6680         return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6681                                              upper_dev);
6682 }
6683 EXPORT_SYMBOL(netdev_has_upper_dev);
6684
6685 /**
6686  * netdev_has_upper_dev_all - Check if device is linked to an upper device
6687  * @dev: device
6688  * @upper_dev: upper device to check
6689  *
6690  * Find out if a device is linked to specified upper device and return true
6691  * in case it is. Note that this checks the entire upper device chain.
6692  * The caller must hold rcu lock.
6693  */
6694
6695 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6696                                   struct net_device *upper_dev)
6697 {
6698         return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6699                                                upper_dev);
6700 }
6701 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6702
6703 /**
6704  * netdev_has_any_upper_dev - Check if device is linked to some device
6705  * @dev: device
6706  *
6707  * Find out if a device is linked to an upper device and return true in case
6708  * it is. The caller must hold the RTNL lock.
6709  */
6710 bool netdev_has_any_upper_dev(struct net_device *dev)
6711 {
6712         ASSERT_RTNL();
6713
6714         return !list_empty(&dev->adj_list.upper);
6715 }
6716 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6717
6718 /**
6719  * netdev_master_upper_dev_get - Get master upper device
6720  * @dev: device
6721  *
6722  * Find a master upper device and return pointer to it or NULL in case
6723  * it's not there. The caller must hold the RTNL lock.
6724  */
6725 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6726 {
6727         struct netdev_adjacent *upper;
6728
6729         ASSERT_RTNL();
6730
6731         if (list_empty(&dev->adj_list.upper))
6732                 return NULL;
6733
6734         upper = list_first_entry(&dev->adj_list.upper,
6735                                  struct netdev_adjacent, list);
6736         if (likely(upper->master))
6737                 return upper->dev;
6738         return NULL;
6739 }
6740 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6741
6742 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6743 {
6744         struct netdev_adjacent *upper;
6745
6746         ASSERT_RTNL();
6747
6748         if (list_empty(&dev->adj_list.upper))
6749                 return NULL;
6750
6751         upper = list_first_entry(&dev->adj_list.upper,
6752                                  struct netdev_adjacent, list);
6753         if (likely(upper->master) && !upper->ignore)
6754                 return upper->dev;
6755         return NULL;
6756 }
6757
6758 /**
6759  * netdev_has_any_lower_dev - Check if device is linked to some device
6760  * @dev: device
6761  *
6762  * Find out if a device is linked to a lower device and return true in case
6763  * it is. The caller must hold the RTNL lock.
6764  */
6765 static bool netdev_has_any_lower_dev(struct net_device *dev)
6766 {
6767         ASSERT_RTNL();
6768
6769         return !list_empty(&dev->adj_list.lower);
6770 }
6771
6772 void *netdev_adjacent_get_private(struct list_head *adj_list)
6773 {
6774         struct netdev_adjacent *adj;
6775
6776         adj = list_entry(adj_list, struct netdev_adjacent, list);
6777
6778         return adj->private;
6779 }
6780 EXPORT_SYMBOL(netdev_adjacent_get_private);
6781
6782 /**
6783  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6784  * @dev: device
6785  * @iter: list_head ** of the current position
6786  *
6787  * Gets the next device from the dev's upper list, starting from iter
6788  * position. The caller must hold RCU read lock.
6789  */
6790 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6791                                                  struct list_head **iter)
6792 {
6793         struct netdev_adjacent *upper;
6794
6795         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6796
6797         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6798
6799         if (&upper->list == &dev->adj_list.upper)
6800                 return NULL;
6801
6802         *iter = &upper->list;
6803
6804         return upper->dev;
6805 }
6806 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6807
6808 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6809                                                   struct list_head **iter,
6810                                                   bool *ignore)
6811 {
6812         struct netdev_adjacent *upper;
6813
6814         upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6815
6816         if (&upper->list == &dev->adj_list.upper)
6817                 return NULL;
6818
6819         *iter = &upper->list;
6820         *ignore = upper->ignore;
6821
6822         return upper->dev;
6823 }
6824
6825 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6826                                                     struct list_head **iter)
6827 {
6828         struct netdev_adjacent *upper;
6829
6830         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6831
6832         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6833
6834         if (&upper->list == &dev->adj_list.upper)
6835                 return NULL;
6836
6837         *iter = &upper->list;
6838
6839         return upper->dev;
6840 }
6841
6842 static int __netdev_walk_all_upper_dev(struct net_device *dev,
6843                                        int (*fn)(struct net_device *dev,
6844                                                  void *data),
6845                                        void *data)
6846 {
6847         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6848         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6849         int ret, cur = 0;
6850         bool ignore;
6851
6852         now = dev;
6853         iter = &dev->adj_list.upper;
6854
6855         while (1) {
6856                 if (now != dev) {
6857                         ret = fn(now, data);
6858                         if (ret)
6859                                 return ret;
6860                 }
6861
6862                 next = NULL;
6863                 while (1) {
6864                         udev = __netdev_next_upper_dev(now, &iter, &ignore);
6865                         if (!udev)
6866                                 break;
6867                         if (ignore)
6868                                 continue;
6869
6870                         next = udev;
6871                         niter = &udev->adj_list.upper;
6872                         dev_stack[cur] = now;
6873                         iter_stack[cur++] = iter;
6874                         break;
6875                 }
6876
6877                 if (!next) {
6878                         if (!cur)
6879                                 return 0;
6880                         next = dev_stack[--cur];
6881                         niter = iter_stack[cur];
6882                 }
6883
6884                 now = next;
6885                 iter = niter;
6886         }
6887
6888         return 0;
6889 }
6890
6891 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6892                                   int (*fn)(struct net_device *dev,
6893                                             void *data),
6894                                   void *data)
6895 {
6896         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6897         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6898         int ret, cur = 0;
6899
6900         now = dev;
6901         iter = &dev->adj_list.upper;
6902
6903         while (1) {
6904                 if (now != dev) {
6905                         ret = fn(now, data);
6906                         if (ret)
6907                                 return ret;
6908                 }
6909
6910                 next = NULL;
6911                 while (1) {
6912                         udev = netdev_next_upper_dev_rcu(now, &iter);
6913                         if (!udev)
6914                                 break;
6915
6916                         next = udev;
6917                         niter = &udev->adj_list.upper;
6918                         dev_stack[cur] = now;
6919                         iter_stack[cur++] = iter;
6920                         break;
6921                 }
6922
6923                 if (!next) {
6924                         if (!cur)
6925                                 return 0;
6926                         next = dev_stack[--cur];
6927                         niter = iter_stack[cur];
6928                 }
6929
6930                 now = next;
6931                 iter = niter;
6932         }
6933
6934         return 0;
6935 }
6936 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6937
6938 static bool __netdev_has_upper_dev(struct net_device *dev,
6939                                    struct net_device *upper_dev)
6940 {
6941         ASSERT_RTNL();
6942
6943         return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
6944                                            upper_dev);
6945 }
6946
6947 /**
6948  * netdev_lower_get_next_private - Get the next ->private from the
6949  *                                 lower neighbour list
6950  * @dev: device
6951  * @iter: list_head ** of the current position
6952  *
6953  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6954  * list, starting from iter position. The caller must hold either hold the
6955  * RTNL lock or its own locking that guarantees that the neighbour lower
6956  * list will remain unchanged.
6957  */
6958 void *netdev_lower_get_next_private(struct net_device *dev,
6959                                     struct list_head **iter)
6960 {
6961         struct netdev_adjacent *lower;
6962
6963         lower = list_entry(*iter, struct netdev_adjacent, list);
6964
6965         if (&lower->list == &dev->adj_list.lower)
6966                 return NULL;
6967
6968         *iter = lower->list.next;
6969
6970         return lower->private;
6971 }
6972 EXPORT_SYMBOL(netdev_lower_get_next_private);
6973
6974 /**
6975  * netdev_lower_get_next_private_rcu - Get the next ->private from the
6976  *                                     lower neighbour list, RCU
6977  *                                     variant
6978  * @dev: device
6979  * @iter: list_head ** of the current position
6980  *
6981  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6982  * list, starting from iter position. The caller must hold RCU read lock.
6983  */
6984 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6985                                         struct list_head **iter)
6986 {
6987         struct netdev_adjacent *lower;
6988
6989         WARN_ON_ONCE(!rcu_read_lock_held());
6990
6991         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6992
6993         if (&lower->list == &dev->adj_list.lower)
6994                 return NULL;
6995
6996         *iter = &lower->list;
6997
6998         return lower->private;
6999 }
7000 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7001
7002 /**
7003  * netdev_lower_get_next - Get the next device from the lower neighbour
7004  *                         list
7005  * @dev: device
7006  * @iter: list_head ** of the current position
7007  *
7008  * Gets the next netdev_adjacent from the dev's lower neighbour
7009  * list, starting from iter position. The caller must hold RTNL lock or
7010  * its own locking that guarantees that the neighbour lower
7011  * list will remain unchanged.
7012  */
7013 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7014 {
7015         struct netdev_adjacent *lower;
7016
7017         lower = list_entry(*iter, struct netdev_adjacent, list);
7018
7019         if (&lower->list == &dev->adj_list.lower)
7020                 return NULL;
7021
7022         *iter = lower->list.next;
7023
7024         return lower->dev;
7025 }
7026 EXPORT_SYMBOL(netdev_lower_get_next);
7027
7028 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7029                                                 struct list_head **iter)
7030 {
7031         struct netdev_adjacent *lower;
7032
7033         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7034
7035         if (&lower->list == &dev->adj_list.lower)
7036                 return NULL;
7037
7038         *iter = &lower->list;
7039
7040         return lower->dev;
7041 }
7042
7043 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7044                                                   struct list_head **iter,
7045                                                   bool *ignore)
7046 {
7047         struct netdev_adjacent *lower;
7048
7049         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7050
7051         if (&lower->list == &dev->adj_list.lower)
7052                 return NULL;
7053
7054         *iter = &lower->list;
7055         *ignore = lower->ignore;
7056
7057         return lower->dev;
7058 }
7059
7060 int netdev_walk_all_lower_dev(struct net_device *dev,
7061                               int (*fn)(struct net_device *dev,
7062                                         void *data),
7063                               void *data)
7064 {
7065         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7066         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7067         int ret, cur = 0;
7068
7069         now = dev;
7070         iter = &dev->adj_list.lower;
7071
7072         while (1) {
7073                 if (now != dev) {
7074                         ret = fn(now, data);
7075                         if (ret)
7076                                 return ret;
7077                 }
7078
7079                 next = NULL;
7080                 while (1) {
7081                         ldev = netdev_next_lower_dev(now, &iter);
7082                         if (!ldev)
7083                                 break;
7084
7085                         next = ldev;
7086                         niter = &ldev->adj_list.lower;
7087                         dev_stack[cur] = now;
7088                         iter_stack[cur++] = iter;
7089                         break;
7090                 }
7091
7092                 if (!next) {
7093                         if (!cur)
7094                                 return 0;
7095                         next = dev_stack[--cur];
7096                         niter = iter_stack[cur];
7097                 }
7098
7099                 now = next;
7100                 iter = niter;
7101         }
7102
7103         return 0;
7104 }
7105 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7106
7107 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7108                                        int (*fn)(struct net_device *dev,
7109                                                  void *data),
7110                                        void *data)
7111 {
7112         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7113         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7114         int ret, cur = 0;
7115         bool ignore;
7116
7117         now = dev;
7118         iter = &dev->adj_list.lower;
7119
7120         while (1) {
7121                 if (now != dev) {
7122                         ret = fn(now, data);
7123                         if (ret)
7124                                 return ret;
7125                 }
7126
7127                 next = NULL;
7128                 while (1) {
7129                         ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7130                         if (!ldev)
7131                                 break;
7132                         if (ignore)
7133                                 continue;
7134
7135                         next = ldev;
7136                         niter = &ldev->adj_list.lower;
7137                         dev_stack[cur] = now;
7138                         iter_stack[cur++] = iter;
7139                         break;
7140                 }
7141
7142                 if (!next) {
7143                         if (!cur)
7144                                 return 0;
7145                         next = dev_stack[--cur];
7146                         niter = iter_stack[cur];
7147                 }
7148
7149                 now = next;
7150                 iter = niter;
7151         }
7152
7153         return 0;
7154 }
7155
7156 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7157                                                     struct list_head **iter)
7158 {
7159         struct netdev_adjacent *lower;
7160
7161         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7162         if (&lower->list == &dev->adj_list.lower)
7163                 return NULL;
7164
7165         *iter = &lower->list;
7166
7167         return lower->dev;
7168 }
7169
7170 static u8 __netdev_upper_depth(struct net_device *dev)
7171 {
7172         struct net_device *udev;
7173         struct list_head *iter;
7174         u8 max_depth = 0;
7175         bool ignore;
7176
7177         for (iter = &dev->adj_list.upper,
7178              udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7179              udev;
7180              udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7181                 if (ignore)
7182                         continue;
7183                 if (max_depth < udev->upper_level)
7184                         max_depth = udev->upper_level;
7185         }
7186
7187         return max_depth;
7188 }
7189
7190 static u8 __netdev_lower_depth(struct net_device *dev)
7191 {
7192         struct net_device *ldev;
7193         struct list_head *iter;
7194         u8 max_depth = 0;
7195         bool ignore;
7196
7197         for (iter = &dev->adj_list.lower,
7198              ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7199              ldev;
7200              ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7201                 if (ignore)
7202                         continue;
7203                 if (max_depth < ldev->lower_level)
7204                         max_depth = ldev->lower_level;
7205         }
7206
7207         return max_depth;
7208 }
7209
7210 static int __netdev_update_upper_level(struct net_device *dev, void *data)
7211 {
7212         dev->upper_level = __netdev_upper_depth(dev) + 1;
7213         return 0;
7214 }
7215
7216 static int __netdev_update_lower_level(struct net_device *dev, void *data)
7217 {
7218         dev->lower_level = __netdev_lower_depth(dev) + 1;
7219         return 0;
7220 }
7221
7222 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7223                                   int (*fn)(struct net_device *dev,
7224                                             void *data),
7225                                   void *data)
7226 {
7227         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7228         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7229         int ret, cur = 0;
7230
7231         now = dev;
7232         iter = &dev->adj_list.lower;
7233
7234         while (1) {
7235                 if (now != dev) {
7236                         ret = fn(now, data);
7237                         if (ret)
7238                                 return ret;
7239                 }
7240
7241                 next = NULL;
7242                 while (1) {
7243                         ldev = netdev_next_lower_dev_rcu(now, &iter);
7244                         if (!ldev)
7245                                 break;
7246
7247                         next = ldev;
7248                         niter = &ldev->adj_list.lower;
7249                         dev_stack[cur] = now;
7250                         iter_stack[cur++] = iter;
7251                         break;
7252                 }
7253
7254                 if (!next) {
7255                         if (!cur)
7256                                 return 0;
7257                         next = dev_stack[--cur];
7258                         niter = iter_stack[cur];
7259                 }
7260
7261                 now = next;
7262                 iter = niter;
7263         }
7264
7265         return 0;
7266 }
7267 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7268
7269 /**
7270  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7271  *                                     lower neighbour list, RCU
7272  *                                     variant
7273  * @dev: device
7274  *
7275  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7276  * list. The caller must hold RCU read lock.
7277  */
7278 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7279 {
7280         struct netdev_adjacent *lower;
7281
7282         lower = list_first_or_null_rcu(&dev->adj_list.lower,
7283                         struct netdev_adjacent, list);
7284         if (lower)
7285                 return lower->private;
7286         return NULL;
7287 }
7288 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7289
7290 /**
7291  * netdev_master_upper_dev_get_rcu - Get master upper device
7292  * @dev: device
7293  *
7294  * Find a master upper device and return pointer to it or NULL in case
7295  * it's not there. The caller must hold the RCU read lock.
7296  */
7297 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7298 {
7299         struct netdev_adjacent *upper;
7300
7301         upper = list_first_or_null_rcu(&dev->adj_list.upper,
7302                                        struct netdev_adjacent, list);
7303         if (upper && likely(upper->master))
7304                 return upper->dev;
7305         return NULL;
7306 }
7307 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7308
7309 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7310                               struct net_device *adj_dev,
7311                               struct list_head *dev_list)
7312 {
7313         char linkname[IFNAMSIZ+7];
7314
7315         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7316                 "upper_%s" : "lower_%s", adj_dev->name);
7317         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7318                                  linkname);
7319 }
7320 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7321                                char *name,
7322                                struct list_head *dev_list)
7323 {
7324         char linkname[IFNAMSIZ+7];
7325
7326         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7327                 "upper_%s" : "lower_%s", name);
7328         sysfs_remove_link(&(dev->dev.kobj), linkname);
7329 }
7330
7331 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7332                                                  struct net_device *adj_dev,
7333                                                  struct list_head *dev_list)
7334 {
7335         return (dev_list == &dev->adj_list.upper ||
7336                 dev_list == &dev->adj_list.lower) &&
7337                 net_eq(dev_net(dev), dev_net(adj_dev));
7338 }
7339
7340 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7341                                         struct net_device *adj_dev,
7342                                         struct list_head *dev_list,
7343                                         void *private, bool master)
7344 {
7345         struct netdev_adjacent *adj;
7346         int ret;
7347
7348         adj = __netdev_find_adj(adj_dev, dev_list);
7349
7350         if (adj) {
7351                 adj->ref_nr += 1;
7352                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7353                          dev->name, adj_dev->name, adj->ref_nr);
7354
7355                 return 0;
7356         }
7357
7358         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7359         if (!adj)
7360                 return -ENOMEM;
7361
7362         adj->dev = adj_dev;
7363         adj->master = master;
7364         adj->ref_nr = 1;
7365         adj->private = private;
7366         adj->ignore = false;
7367         dev_hold(adj_dev);
7368
7369         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7370                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7371
7372         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7373                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7374                 if (ret)
7375                         goto free_adj;
7376         }
7377
7378         /* Ensure that master link is always the first item in list. */
7379         if (master) {
7380                 ret = sysfs_create_link(&(dev->dev.kobj),
7381                                         &(adj_dev->dev.kobj), "master");
7382                 if (ret)
7383                         goto remove_symlinks;
7384
7385                 list_add_rcu(&adj->list, dev_list);
7386         } else {
7387                 list_add_tail_rcu(&adj->list, dev_list);
7388         }
7389
7390         return 0;
7391
7392 remove_symlinks:
7393         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7394                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7395 free_adj:
7396         kfree(adj);
7397         dev_put(adj_dev);
7398
7399         return ret;
7400 }
7401
7402 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7403                                          struct net_device *adj_dev,
7404                                          u16 ref_nr,
7405                                          struct list_head *dev_list)
7406 {
7407         struct netdev_adjacent *adj;
7408
7409         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7410                  dev->name, adj_dev->name, ref_nr);
7411
7412         adj = __netdev_find_adj(adj_dev, dev_list);
7413
7414         if (!adj) {
7415                 pr_err("Adjacency does not exist for device %s from %s\n",
7416                        dev->name, adj_dev->name);
7417                 WARN_ON(1);
7418                 return;
7419         }
7420
7421         if (adj->ref_nr > ref_nr) {
7422                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7423                          dev->name, adj_dev->name, ref_nr,
7424                          adj->ref_nr - ref_nr);
7425                 adj->ref_nr -= ref_nr;
7426                 return;
7427         }
7428
7429         if (adj->master)
7430                 sysfs_remove_link(&(dev->dev.kobj), "master");
7431
7432         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7433                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7434
7435         list_del_rcu(&adj->list);
7436         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7437                  adj_dev->name, dev->name, adj_dev->name);
7438         dev_put(adj_dev);
7439         kfree_rcu(adj, rcu);
7440 }
7441
7442 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7443                                             struct net_device *upper_dev,
7444                                             struct list_head *up_list,
7445                                             struct list_head *down_list,
7446                                             void *private, bool master)
7447 {
7448         int ret;
7449
7450         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7451                                            private, master);
7452         if (ret)
7453                 return ret;
7454
7455         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7456                                            private, false);
7457         if (ret) {
7458                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7459                 return ret;
7460         }
7461
7462         return 0;
7463 }
7464
7465 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7466                                                struct net_device *upper_dev,
7467                                                u16 ref_nr,
7468                                                struct list_head *up_list,
7469                                                struct list_head *down_list)
7470 {
7471         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7472         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7473 }
7474
7475 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7476                                                 struct net_device *upper_dev,
7477                                                 void *private, bool master)
7478 {
7479         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7480                                                 &dev->adj_list.upper,
7481                                                 &upper_dev->adj_list.lower,
7482                                                 private, master);
7483 }
7484
7485 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7486                                                    struct net_device *upper_dev)
7487 {
7488         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7489                                            &dev->adj_list.upper,
7490                                            &upper_dev->adj_list.lower);
7491 }
7492
7493 static int __netdev_upper_dev_link(struct net_device *dev,
7494                                    struct net_device *upper_dev, bool master,
7495                                    void *upper_priv, void *upper_info,
7496                                    struct netlink_ext_ack *extack)
7497 {
7498         struct netdev_notifier_changeupper_info changeupper_info = {
7499                 .info = {
7500                         .dev = dev,
7501                         .extack = extack,
7502                 },
7503                 .upper_dev = upper_dev,
7504                 .master = master,
7505                 .linking = true,
7506                 .upper_info = upper_info,
7507         };
7508         struct net_device *master_dev;
7509         int ret = 0;
7510
7511         ASSERT_RTNL();
7512
7513         if (dev == upper_dev)
7514                 return -EBUSY;
7515
7516         /* To prevent loops, check if dev is not upper device to upper_dev. */
7517         if (__netdev_has_upper_dev(upper_dev, dev))
7518                 return -EBUSY;
7519
7520         if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7521                 return -EMLINK;
7522
7523         if (!master) {
7524                 if (__netdev_has_upper_dev(dev, upper_dev))
7525                         return -EEXIST;
7526         } else {
7527                 master_dev = __netdev_master_upper_dev_get(dev);
7528                 if (master_dev)
7529                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
7530         }
7531
7532         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7533                                             &changeupper_info.info);
7534         ret = notifier_to_errno(ret);
7535         if (ret)
7536                 return ret;
7537
7538         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7539                                                    master);
7540         if (ret)
7541                 return ret;
7542
7543         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7544                                             &changeupper_info.info);
7545         ret = notifier_to_errno(ret);
7546         if (ret)
7547                 goto rollback;
7548
7549         __netdev_update_upper_level(dev, NULL);
7550         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7551
7552         __netdev_update_lower_level(upper_dev, NULL);
7553         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7554                                     NULL);
7555
7556         return 0;
7557
7558 rollback:
7559         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7560
7561         return ret;
7562 }
7563
7564 /**
7565  * netdev_upper_dev_link - Add a link to the upper device
7566  * @dev: device
7567  * @upper_dev: new upper device
7568  * @extack: netlink extended ack
7569  *
7570  * Adds a link to device which is upper to this one. The caller must hold
7571  * the RTNL lock. On a failure a negative errno code is returned.
7572  * On success the reference counts are adjusted and the function
7573  * returns zero.
7574  */
7575 int netdev_upper_dev_link(struct net_device *dev,
7576                           struct net_device *upper_dev,
7577                           struct netlink_ext_ack *extack)
7578 {
7579         return __netdev_upper_dev_link(dev, upper_dev, false,
7580                                        NULL, NULL, extack);
7581 }
7582 EXPORT_SYMBOL(netdev_upper_dev_link);
7583
7584 /**
7585  * netdev_master_upper_dev_link - Add a master link to the upper device
7586  * @dev: device
7587  * @upper_dev: new upper device
7588  * @upper_priv: upper device private
7589  * @upper_info: upper info to be passed down via notifier
7590  * @extack: netlink extended ack
7591  *
7592  * Adds a link to device which is upper to this one. In this case, only
7593  * one master upper device can be linked, although other non-master devices
7594  * might be linked as well. The caller must hold the RTNL lock.
7595  * On a failure a negative errno code is returned. On success the reference
7596  * counts are adjusted and the function returns zero.
7597  */
7598 int netdev_master_upper_dev_link(struct net_device *dev,
7599                                  struct net_device *upper_dev,
7600                                  void *upper_priv, void *upper_info,
7601                                  struct netlink_ext_ack *extack)
7602 {
7603         return __netdev_upper_dev_link(dev, upper_dev, true,
7604                                        upper_priv, upper_info, extack);
7605 }
7606 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7607
7608 /**
7609  * netdev_upper_dev_unlink - Removes a link to upper device
7610  * @dev: device
7611  * @upper_dev: new upper device
7612  *
7613  * Removes a link to device which is upper to this one. The caller must hold
7614  * the RTNL lock.
7615  */
7616 void netdev_upper_dev_unlink(struct net_device *dev,
7617                              struct net_device *upper_dev)
7618 {
7619         struct netdev_notifier_changeupper_info changeupper_info = {
7620                 .info = {
7621                         .dev = dev,
7622                 },
7623                 .upper_dev = upper_dev,
7624                 .linking = false,
7625         };
7626
7627         ASSERT_RTNL();
7628
7629         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7630
7631         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7632                                       &changeupper_info.info);
7633
7634         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7635
7636         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7637                                       &changeupper_info.info);
7638
7639         __netdev_update_upper_level(dev, NULL);
7640         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7641
7642         __netdev_update_lower_level(upper_dev, NULL);
7643         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7644                                     NULL);
7645 }
7646 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7647
7648 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7649                                       struct net_device *lower_dev,
7650                                       bool val)
7651 {
7652         struct netdev_adjacent *adj;
7653
7654         adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7655         if (adj)
7656                 adj->ignore = val;
7657
7658         adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7659         if (adj)
7660                 adj->ignore = val;
7661 }
7662
7663 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7664                                         struct net_device *lower_dev)
7665 {
7666         __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7667 }
7668
7669 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7670                                        struct net_device *lower_dev)
7671 {
7672         __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7673 }
7674
7675 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7676                                    struct net_device *new_dev,
7677                                    struct net_device *dev,
7678                                    struct netlink_ext_ack *extack)
7679 {
7680         int err;
7681
7682         if (!new_dev)
7683                 return 0;
7684
7685         if (old_dev && new_dev != old_dev)
7686                 netdev_adjacent_dev_disable(dev, old_dev);
7687
7688         err = netdev_upper_dev_link(new_dev, dev, extack);
7689         if (err) {
7690                 if (old_dev && new_dev != old_dev)
7691                         netdev_adjacent_dev_enable(dev, old_dev);
7692                 return err;
7693         }
7694
7695         return 0;
7696 }
7697 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7698
7699 void netdev_adjacent_change_commit(struct net_device *old_dev,
7700                                    struct net_device *new_dev,
7701                                    struct net_device *dev)
7702 {
7703         if (!new_dev || !old_dev)
7704                 return;
7705
7706         if (new_dev == old_dev)
7707                 return;
7708
7709         netdev_adjacent_dev_enable(dev, old_dev);
7710         netdev_upper_dev_unlink(old_dev, dev);
7711 }
7712 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7713
7714 void netdev_adjacent_change_abort(struct net_device *old_dev,
7715                                   struct net_device *new_dev,
7716                                   struct net_device *dev)
7717 {
7718         if (!new_dev)
7719                 return;
7720
7721         if (old_dev && new_dev != old_dev)
7722                 netdev_adjacent_dev_enable(dev, old_dev);
7723
7724         netdev_upper_dev_unlink(new_dev, dev);
7725 }
7726 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7727
7728 /**
7729  * netdev_bonding_info_change - Dispatch event about slave change
7730  * @dev: device
7731  * @bonding_info: info to dispatch
7732  *
7733  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7734  * The caller must hold the RTNL lock.
7735  */
7736 void netdev_bonding_info_change(struct net_device *dev,
7737                                 struct netdev_bonding_info *bonding_info)
7738 {
7739         struct netdev_notifier_bonding_info info = {
7740                 .info.dev = dev,
7741         };
7742
7743         memcpy(&info.bonding_info, bonding_info,
7744                sizeof(struct netdev_bonding_info));
7745         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7746                                       &info.info);
7747 }
7748 EXPORT_SYMBOL(netdev_bonding_info_change);
7749
7750 static void netdev_adjacent_add_links(struct net_device *dev)
7751 {
7752         struct netdev_adjacent *iter;
7753
7754         struct net *net = dev_net(dev);
7755
7756         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7757                 if (!net_eq(net, dev_net(iter->dev)))
7758                         continue;
7759                 netdev_adjacent_sysfs_add(iter->dev, dev,
7760                                           &iter->dev->adj_list.lower);
7761                 netdev_adjacent_sysfs_add(dev, iter->dev,
7762                                           &dev->adj_list.upper);
7763         }
7764
7765         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7766                 if (!net_eq(net, dev_net(iter->dev)))
7767                         continue;
7768                 netdev_adjacent_sysfs_add(iter->dev, dev,
7769                                           &iter->dev->adj_list.upper);
7770                 netdev_adjacent_sysfs_add(dev, iter->dev,
7771                                           &dev->adj_list.lower);
7772         }
7773 }
7774
7775 static void netdev_adjacent_del_links(struct net_device *dev)
7776 {
7777         struct netdev_adjacent *iter;
7778
7779         struct net *net = dev_net(dev);
7780
7781         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7782                 if (!net_eq(net, dev_net(iter->dev)))
7783                         continue;
7784                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7785                                           &iter->dev->adj_list.lower);
7786                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7787                                           &dev->adj_list.upper);
7788         }
7789
7790         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7791                 if (!net_eq(net, dev_net(iter->dev)))
7792                         continue;
7793                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7794                                           &iter->dev->adj_list.upper);
7795                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7796                                           &dev->adj_list.lower);
7797         }
7798 }
7799
7800 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7801 {
7802         struct netdev_adjacent *iter;
7803
7804         struct net *net = dev_net(dev);
7805
7806         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7807                 if (!net_eq(net, dev_net(iter->dev)))
7808                         continue;
7809                 netdev_adjacent_sysfs_del(iter->dev, oldname,
7810                                           &iter->dev->adj_list.lower);
7811                 netdev_adjacent_sysfs_add(iter->dev, dev,
7812                                           &iter->dev->adj_list.lower);
7813         }
7814
7815         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7816                 if (!net_eq(net, dev_net(iter->dev)))
7817                         continue;
7818                 netdev_adjacent_sysfs_del(iter->dev, oldname,
7819                                           &iter->dev->adj_list.upper);
7820                 netdev_adjacent_sysfs_add(iter->dev, dev,
7821                                           &iter->dev->adj_list.upper);
7822         }
7823 }
7824
7825 void *netdev_lower_dev_get_private(struct net_device *dev,
7826                                    struct net_device *lower_dev)
7827 {
7828         struct netdev_adjacent *lower;
7829
7830         if (!lower_dev)
7831                 return NULL;
7832         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7833         if (!lower)
7834                 return NULL;
7835
7836         return lower->private;
7837 }
7838 EXPORT_SYMBOL(netdev_lower_dev_get_private);
7839
7840
7841 /**
7842  * netdev_lower_change - Dispatch event about lower device state change
7843  * @lower_dev: device
7844  * @lower_state_info: state to dispatch
7845  *
7846  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7847  * The caller must hold the RTNL lock.
7848  */
7849 void netdev_lower_state_changed(struct net_device *lower_dev,
7850                                 void *lower_state_info)
7851 {
7852         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7853                 .info.dev = lower_dev,
7854         };
7855
7856         ASSERT_RTNL();
7857         changelowerstate_info.lower_state_info = lower_state_info;
7858         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7859                                       &changelowerstate_info.info);
7860 }
7861 EXPORT_SYMBOL(netdev_lower_state_changed);
7862
7863 static void dev_change_rx_flags(struct net_device *dev, int flags)
7864 {
7865         const struct net_device_ops *ops = dev->netdev_ops;
7866
7867         if (ops->ndo_change_rx_flags)
7868                 ops->ndo_change_rx_flags(dev, flags);
7869 }
7870
7871 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7872 {
7873         unsigned int old_flags = dev->flags;
7874         kuid_t uid;
7875         kgid_t gid;
7876
7877         ASSERT_RTNL();
7878
7879         dev->flags |= IFF_PROMISC;
7880         dev->promiscuity += inc;
7881         if (dev->promiscuity == 0) {
7882                 /*
7883                  * Avoid overflow.
7884                  * If inc causes overflow, untouch promisc and return error.
7885                  */
7886                 if (inc < 0)
7887                         dev->flags &= ~IFF_PROMISC;
7888                 else {
7889                         dev->promiscuity -= inc;
7890                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7891                                 dev->name);
7892                         return -EOVERFLOW;
7893                 }
7894         }
7895         if (dev->flags != old_flags) {
7896                 pr_info("device %s %s promiscuous mode\n",
7897                         dev->name,
7898                         dev->flags & IFF_PROMISC ? "entered" : "left");
7899                 if (audit_enabled) {
7900                         current_uid_gid(&uid, &gid);
7901                         audit_log(audit_context(), GFP_ATOMIC,
7902                                   AUDIT_ANOM_PROMISCUOUS,
7903                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7904                                   dev->name, (dev->flags & IFF_PROMISC),
7905                                   (old_flags & IFF_PROMISC),
7906                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
7907                                   from_kuid(&init_user_ns, uid),
7908                                   from_kgid(&init_user_ns, gid),
7909                                   audit_get_sessionid(current));
7910                 }
7911
7912                 dev_change_rx_flags(dev, IFF_PROMISC);
7913         }
7914         if (notify)
7915                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
7916         return 0;
7917 }
7918
7919 /**
7920  *      dev_set_promiscuity     - update promiscuity count on a device
7921  *      @dev: device
7922  *      @inc: modifier
7923  *
7924  *      Add or remove promiscuity from a device. While the count in the device
7925  *      remains above zero the interface remains promiscuous. Once it hits zero
7926  *      the device reverts back to normal filtering operation. A negative inc
7927  *      value is used to drop promiscuity on the device.
7928  *      Return 0 if successful or a negative errno code on error.
7929  */
7930 int dev_set_promiscuity(struct net_device *dev, int inc)
7931 {
7932         unsigned int old_flags = dev->flags;
7933         int err;
7934
7935         err = __dev_set_promiscuity(dev, inc, true);
7936         if (err < 0)
7937                 return err;
7938         if (dev->flags != old_flags)
7939                 dev_set_rx_mode(dev);
7940         return err;
7941 }
7942 EXPORT_SYMBOL(dev_set_promiscuity);
7943
7944 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7945 {
7946         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7947
7948         ASSERT_RTNL();
7949
7950         dev->flags |= IFF_ALLMULTI;
7951         dev->allmulti += inc;
7952         if (dev->allmulti == 0) {
7953                 /*
7954                  * Avoid overflow.
7955                  * If inc causes overflow, untouch allmulti and return error.
7956                  */
7957                 if (inc < 0)
7958                         dev->flags &= ~IFF_ALLMULTI;
7959                 else {
7960                         dev->allmulti -= inc;
7961                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7962                                 dev->name);
7963                         return -EOVERFLOW;
7964                 }
7965         }
7966         if (dev->flags ^ old_flags) {
7967                 dev_change_rx_flags(dev, IFF_ALLMULTI);
7968                 dev_set_rx_mode(dev);
7969                 if (notify)
7970                         __dev_notify_flags(dev, old_flags,
7971                                            dev->gflags ^ old_gflags);
7972         }
7973         return 0;
7974 }
7975
7976 /**
7977  *      dev_set_allmulti        - update allmulti count on a device
7978  *      @dev: device
7979  *      @inc: modifier
7980  *
7981  *      Add or remove reception of all multicast frames to a device. While the
7982  *      count in the device remains above zero the interface remains listening
7983  *      to all interfaces. Once it hits zero the device reverts back to normal
7984  *      filtering operation. A negative @inc value is used to drop the counter
7985  *      when releasing a resource needing all multicasts.
7986  *      Return 0 if successful or a negative errno code on error.
7987  */
7988
7989 int dev_set_allmulti(struct net_device *dev, int inc)
7990 {
7991         return __dev_set_allmulti(dev, inc, true);
7992 }
7993 EXPORT_SYMBOL(dev_set_allmulti);
7994
7995 /*
7996  *      Upload unicast and multicast address lists to device and
7997  *      configure RX filtering. When the device doesn't support unicast
7998  *      filtering it is put in promiscuous mode while unicast addresses
7999  *      are present.
8000  */
8001 void __dev_set_rx_mode(struct net_device *dev)
8002 {
8003         const struct net_device_ops *ops = dev->netdev_ops;
8004
8005         /* dev_open will call this function so the list will stay sane. */
8006         if (!(dev->flags&IFF_UP))
8007                 return;
8008
8009         if (!netif_device_present(dev))
8010                 return;
8011
8012         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8013                 /* Unicast addresses changes may only happen under the rtnl,
8014                  * therefore calling __dev_set_promiscuity here is safe.
8015                  */
8016                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8017                         __dev_set_promiscuity(dev, 1, false);
8018                         dev->uc_promisc = true;
8019                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8020                         __dev_set_promiscuity(dev, -1, false);
8021                         dev->uc_promisc = false;
8022                 }
8023         }
8024
8025         if (ops->ndo_set_rx_mode)
8026                 ops->ndo_set_rx_mode(dev);
8027 }
8028
8029 void dev_set_rx_mode(struct net_device *dev)
8030 {
8031         netif_addr_lock_bh(dev);
8032         __dev_set_rx_mode(dev);
8033         netif_addr_unlock_bh(dev);
8034 }
8035
8036 /**
8037  *      dev_get_flags - get flags reported to userspace
8038  *      @dev: device
8039  *
8040  *      Get the combination of flag bits exported through APIs to userspace.
8041  */
8042 unsigned int dev_get_flags(const struct net_device *dev)
8043 {
8044         unsigned int flags;
8045
8046         flags = (dev->flags & ~(IFF_PROMISC |
8047                                 IFF_ALLMULTI |
8048                                 IFF_RUNNING |
8049                                 IFF_LOWER_UP |
8050                                 IFF_DORMANT)) |
8051                 (dev->gflags & (IFF_PROMISC |
8052                                 IFF_ALLMULTI));
8053
8054         if (netif_running(dev)) {
8055                 if (netif_oper_up(dev))
8056                         flags |= IFF_RUNNING;
8057                 if (netif_carrier_ok(dev))
8058                         flags |= IFF_LOWER_UP;
8059                 if (netif_dormant(dev))
8060                         flags |= IFF_DORMANT;
8061         }
8062
8063         return flags;
8064 }
8065 EXPORT_SYMBOL(dev_get_flags);
8066
8067 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8068                        struct netlink_ext_ack *extack)
8069 {
8070         unsigned int old_flags = dev->flags;
8071         int ret;
8072
8073         ASSERT_RTNL();
8074
8075         /*
8076          *      Set the flags on our device.
8077          */
8078
8079         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8080                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8081                                IFF_AUTOMEDIA)) |
8082                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8083                                     IFF_ALLMULTI));
8084
8085         /*
8086          *      Load in the correct multicast list now the flags have changed.
8087          */
8088
8089         if ((old_flags ^ flags) & IFF_MULTICAST)
8090                 dev_change_rx_flags(dev, IFF_MULTICAST);
8091
8092         dev_set_rx_mode(dev);
8093
8094         /*
8095          *      Have we downed the interface. We handle IFF_UP ourselves
8096          *      according to user attempts to set it, rather than blindly
8097          *      setting it.
8098          */
8099
8100         ret = 0;
8101         if ((old_flags ^ flags) & IFF_UP) {
8102                 if (old_flags & IFF_UP)
8103                         __dev_close(dev);
8104                 else
8105                         ret = __dev_open(dev, extack);
8106         }
8107
8108         if ((flags ^ dev->gflags) & IFF_PROMISC) {
8109                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8110                 unsigned int old_flags = dev->flags;
8111
8112                 dev->gflags ^= IFF_PROMISC;
8113
8114                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8115                         if (dev->flags != old_flags)
8116                                 dev_set_rx_mode(dev);
8117         }
8118
8119         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8120          * is important. Some (broken) drivers set IFF_PROMISC, when
8121          * IFF_ALLMULTI is requested not asking us and not reporting.
8122          */
8123         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8124                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8125
8126                 dev->gflags ^= IFF_ALLMULTI;
8127                 __dev_set_allmulti(dev, inc, false);
8128         }
8129
8130         return ret;
8131 }
8132
8133 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8134                         unsigned int gchanges)
8135 {
8136         unsigned int changes = dev->flags ^ old_flags;
8137
8138         if (gchanges)
8139                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8140
8141         if (changes & IFF_UP) {
8142                 if (dev->flags & IFF_UP)
8143                         call_netdevice_notifiers(NETDEV_UP, dev);
8144                 else
8145                         call_netdevice_notifiers(NETDEV_DOWN, dev);
8146         }
8147
8148         if (dev->flags & IFF_UP &&
8149             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8150                 struct netdev_notifier_change_info change_info = {
8151                         .info = {
8152                                 .dev = dev,
8153                         },
8154                         .flags_changed = changes,
8155                 };
8156
8157                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8158         }
8159 }
8160
8161 /**
8162  *      dev_change_flags - change device settings
8163  *      @dev: device
8164  *      @flags: device state flags
8165  *      @extack: netlink extended ack
8166  *
8167  *      Change settings on device based state flags. The flags are
8168  *      in the userspace exported format.
8169  */
8170 int dev_change_flags(struct net_device *dev, unsigned int flags,
8171                      struct netlink_ext_ack *extack)
8172 {
8173         int ret;
8174         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8175
8176         ret = __dev_change_flags(dev, flags, extack);
8177         if (ret < 0)
8178                 return ret;
8179
8180         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8181         __dev_notify_flags(dev, old_flags, changes);
8182         return ret;
8183 }
8184 EXPORT_SYMBOL(dev_change_flags);
8185
8186 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8187 {
8188         const struct net_device_ops *ops = dev->netdev_ops;
8189
8190         if (ops->ndo_change_mtu)
8191                 return ops->ndo_change_mtu(dev, new_mtu);
8192
8193         /* Pairs with all the lockless reads of dev->mtu in the stack */
8194         WRITE_ONCE(dev->mtu, new_mtu);
8195         return 0;
8196 }
8197 EXPORT_SYMBOL(__dev_set_mtu);
8198
8199 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8200                      struct netlink_ext_ack *extack)
8201 {
8202         /* MTU must be positive, and in range */
8203         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8204                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8205                 return -EINVAL;
8206         }
8207
8208         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8209                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8210                 return -EINVAL;
8211         }
8212         return 0;
8213 }
8214
8215 /**
8216  *      dev_set_mtu_ext - Change maximum transfer unit
8217  *      @dev: device
8218  *      @new_mtu: new transfer unit
8219  *      @extack: netlink extended ack
8220  *
8221  *      Change the maximum transfer size of the network device.
8222  */
8223 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8224                     struct netlink_ext_ack *extack)
8225 {
8226         int err, orig_mtu;
8227
8228         if (new_mtu == dev->mtu)
8229                 return 0;
8230
8231         err = dev_validate_mtu(dev, new_mtu, extack);
8232         if (err)
8233                 return err;
8234
8235         if (!netif_device_present(dev))
8236                 return -ENODEV;
8237
8238         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8239         err = notifier_to_errno(err);
8240         if (err)
8241                 return err;
8242
8243         orig_mtu = dev->mtu;
8244         err = __dev_set_mtu(dev, new_mtu);
8245
8246         if (!err) {
8247                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8248                                                    orig_mtu);
8249                 err = notifier_to_errno(err);
8250                 if (err) {
8251                         /* setting mtu back and notifying everyone again,
8252                          * so that they have a chance to revert changes.
8253                          */
8254                         __dev_set_mtu(dev, orig_mtu);
8255                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8256                                                      new_mtu);
8257                 }
8258         }
8259         return err;
8260 }
8261
8262 int dev_set_mtu(struct net_device *dev, int new_mtu)
8263 {
8264         struct netlink_ext_ack extack;
8265         int err;
8266
8267         memset(&extack, 0, sizeof(extack));
8268         err = dev_set_mtu_ext(dev, new_mtu, &extack);
8269         if (err && extack._msg)
8270                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8271         return err;
8272 }
8273 EXPORT_SYMBOL(dev_set_mtu);
8274
8275 /**
8276  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
8277  *      @dev: device
8278  *      @new_len: new tx queue length
8279  */
8280 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8281 {
8282         unsigned int orig_len = dev->tx_queue_len;
8283         int res;
8284
8285         if (new_len != (unsigned int)new_len)
8286                 return -ERANGE;
8287
8288         if (new_len != orig_len) {
8289                 dev->tx_queue_len = new_len;
8290                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8291                 res = notifier_to_errno(res);
8292                 if (res)
8293                         goto err_rollback;
8294                 res = dev_qdisc_change_tx_queue_len(dev);
8295                 if (res)
8296                         goto err_rollback;
8297         }
8298
8299         return 0;
8300
8301 err_rollback:
8302         netdev_err(dev, "refused to change device tx_queue_len\n");
8303         dev->tx_queue_len = orig_len;
8304         return res;
8305 }
8306
8307 /**
8308  *      dev_set_group - Change group this device belongs to
8309  *      @dev: device
8310  *      @new_group: group this device should belong to
8311  */
8312 void dev_set_group(struct net_device *dev, int new_group)
8313 {
8314         dev->group = new_group;
8315 }
8316 EXPORT_SYMBOL(dev_set_group);
8317
8318 /**
8319  *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8320  *      @dev: device
8321  *      @addr: new address
8322  *      @extack: netlink extended ack
8323  */
8324 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8325                               struct netlink_ext_ack *extack)
8326 {
8327         struct netdev_notifier_pre_changeaddr_info info = {
8328                 .info.dev = dev,
8329                 .info.extack = extack,
8330                 .dev_addr = addr,
8331         };
8332         int rc;
8333
8334         rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8335         return notifier_to_errno(rc);
8336 }
8337 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8338
8339 /**
8340  *      dev_set_mac_address - Change Media Access Control Address
8341  *      @dev: device
8342  *      @sa: new address
8343  *      @extack: netlink extended ack
8344  *
8345  *      Change the hardware (MAC) address of the device
8346  */
8347 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8348                         struct netlink_ext_ack *extack)
8349 {
8350         const struct net_device_ops *ops = dev->netdev_ops;
8351         int err;
8352
8353         if (!ops->ndo_set_mac_address)
8354                 return -EOPNOTSUPP;
8355         if (sa->sa_family != dev->type)
8356                 return -EINVAL;
8357         if (!netif_device_present(dev))
8358                 return -ENODEV;
8359         err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8360         if (err)
8361                 return err;
8362         err = ops->ndo_set_mac_address(dev, sa);
8363         if (err)
8364                 return err;
8365         dev->addr_assign_type = NET_ADDR_SET;
8366         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8367         add_device_randomness(dev->dev_addr, dev->addr_len);
8368         return 0;
8369 }
8370 EXPORT_SYMBOL(dev_set_mac_address);
8371
8372 /**
8373  *      dev_change_carrier - Change device carrier
8374  *      @dev: device
8375  *      @new_carrier: new value
8376  *
8377  *      Change device carrier
8378  */
8379 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8380 {
8381         const struct net_device_ops *ops = dev->netdev_ops;
8382
8383         if (!ops->ndo_change_carrier)
8384                 return -EOPNOTSUPP;
8385         if (!netif_device_present(dev))
8386                 return -ENODEV;
8387         return ops->ndo_change_carrier(dev, new_carrier);
8388 }
8389 EXPORT_SYMBOL(dev_change_carrier);
8390
8391 /**
8392  *      dev_get_phys_port_id - Get device physical port ID
8393  *      @dev: device
8394  *      @ppid: port ID
8395  *
8396  *      Get device physical port ID
8397  */
8398 int dev_get_phys_port_id(struct net_device *dev,
8399                          struct netdev_phys_item_id *ppid)
8400 {
8401         const struct net_device_ops *ops = dev->netdev_ops;
8402
8403         if (!ops->ndo_get_phys_port_id)
8404                 return -EOPNOTSUPP;
8405         return ops->ndo_get_phys_port_id(dev, ppid);
8406 }
8407 EXPORT_SYMBOL(dev_get_phys_port_id);
8408
8409 /**
8410  *      dev_get_phys_port_name - Get device physical port name
8411  *      @dev: device
8412  *      @name: port name
8413  *      @len: limit of bytes to copy to name
8414  *
8415  *      Get device physical port name
8416  */
8417 int dev_get_phys_port_name(struct net_device *dev,
8418                            char *name, size_t len)
8419 {
8420         const struct net_device_ops *ops = dev->netdev_ops;
8421         int err;
8422
8423         if (ops->ndo_get_phys_port_name) {
8424                 err = ops->ndo_get_phys_port_name(dev, name, len);
8425                 if (err != -EOPNOTSUPP)
8426                         return err;
8427         }
8428         return devlink_compat_phys_port_name_get(dev, name, len);
8429 }
8430 EXPORT_SYMBOL(dev_get_phys_port_name);
8431
8432 /**
8433  *      dev_get_port_parent_id - Get the device's port parent identifier
8434  *      @dev: network device
8435  *      @ppid: pointer to a storage for the port's parent identifier
8436  *      @recurse: allow/disallow recursion to lower devices
8437  *
8438  *      Get the devices's port parent identifier
8439  */
8440 int dev_get_port_parent_id(struct net_device *dev,
8441                            struct netdev_phys_item_id *ppid,
8442                            bool recurse)
8443 {
8444         const struct net_device_ops *ops = dev->netdev_ops;
8445         struct netdev_phys_item_id first = { };
8446         struct net_device *lower_dev;
8447         struct list_head *iter;
8448         int err;
8449
8450         if (ops->ndo_get_port_parent_id) {
8451                 err = ops->ndo_get_port_parent_id(dev, ppid);
8452                 if (err != -EOPNOTSUPP)
8453                         return err;
8454         }
8455
8456         err = devlink_compat_switch_id_get(dev, ppid);
8457         if (!err || err != -EOPNOTSUPP)
8458                 return err;
8459
8460         if (!recurse)
8461                 return -EOPNOTSUPP;
8462
8463         netdev_for_each_lower_dev(dev, lower_dev, iter) {
8464                 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
8465                 if (err)
8466                         break;
8467                 if (!first.id_len)
8468                         first = *ppid;
8469                 else if (memcmp(&first, ppid, sizeof(*ppid)))
8470                         return -ENODATA;
8471         }
8472
8473         return err;
8474 }
8475 EXPORT_SYMBOL(dev_get_port_parent_id);
8476
8477 /**
8478  *      netdev_port_same_parent_id - Indicate if two network devices have
8479  *      the same port parent identifier
8480  *      @a: first network device
8481  *      @b: second network device
8482  */
8483 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8484 {
8485         struct netdev_phys_item_id a_id = { };
8486         struct netdev_phys_item_id b_id = { };
8487
8488         if (dev_get_port_parent_id(a, &a_id, true) ||
8489             dev_get_port_parent_id(b, &b_id, true))
8490                 return false;
8491
8492         return netdev_phys_item_id_same(&a_id, &b_id);
8493 }
8494 EXPORT_SYMBOL(netdev_port_same_parent_id);
8495
8496 /**
8497  *      dev_change_proto_down - update protocol port state information
8498  *      @dev: device
8499  *      @proto_down: new value
8500  *
8501  *      This info can be used by switch drivers to set the phys state of the
8502  *      port.
8503  */
8504 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8505 {
8506         const struct net_device_ops *ops = dev->netdev_ops;
8507
8508         if (!ops->ndo_change_proto_down)
8509                 return -EOPNOTSUPP;
8510         if (!netif_device_present(dev))
8511                 return -ENODEV;
8512         return ops->ndo_change_proto_down(dev, proto_down);
8513 }
8514 EXPORT_SYMBOL(dev_change_proto_down);
8515
8516 /**
8517  *      dev_change_proto_down_generic - generic implementation for
8518  *      ndo_change_proto_down that sets carrier according to
8519  *      proto_down.
8520  *
8521  *      @dev: device
8522  *      @proto_down: new value
8523  */
8524 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8525 {
8526         if (proto_down)
8527                 netif_carrier_off(dev);
8528         else
8529                 netif_carrier_on(dev);
8530         dev->proto_down = proto_down;
8531         return 0;
8532 }
8533 EXPORT_SYMBOL(dev_change_proto_down_generic);
8534
8535 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
8536                     enum bpf_netdev_command cmd)
8537 {
8538         struct netdev_bpf xdp;
8539
8540         if (!bpf_op)
8541                 return 0;
8542
8543         memset(&xdp, 0, sizeof(xdp));
8544         xdp.command = cmd;
8545
8546         /* Query must always succeed. */
8547         WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
8548
8549         return xdp.prog_id;
8550 }
8551
8552 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
8553                            struct netlink_ext_ack *extack, u32 flags,
8554                            struct bpf_prog *prog)
8555 {
8556         struct netdev_bpf xdp;
8557
8558         memset(&xdp, 0, sizeof(xdp));
8559         if (flags & XDP_FLAGS_HW_MODE)
8560                 xdp.command = XDP_SETUP_PROG_HW;
8561         else
8562                 xdp.command = XDP_SETUP_PROG;
8563         xdp.extack = extack;
8564         xdp.flags = flags;
8565         xdp.prog = prog;
8566
8567         return bpf_op(dev, &xdp);
8568 }
8569
8570 static void dev_xdp_uninstall(struct net_device *dev)
8571 {
8572         struct netdev_bpf xdp;
8573         bpf_op_t ndo_bpf;
8574
8575         /* Remove generic XDP */
8576         WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
8577
8578         /* Remove from the driver */
8579         ndo_bpf = dev->netdev_ops->ndo_bpf;
8580         if (!ndo_bpf)
8581                 return;
8582
8583         memset(&xdp, 0, sizeof(xdp));
8584         xdp.command = XDP_QUERY_PROG;
8585         WARN_ON(ndo_bpf(dev, &xdp));
8586         if (xdp.prog_id)
8587                 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8588                                         NULL));
8589
8590         /* Remove HW offload */
8591         memset(&xdp, 0, sizeof(xdp));
8592         xdp.command = XDP_QUERY_PROG_HW;
8593         if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
8594                 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8595                                         NULL));
8596 }
8597
8598 /**
8599  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
8600  *      @dev: device
8601  *      @extack: netlink extended ack
8602  *      @fd: new program fd or negative value to clear
8603  *      @flags: xdp-related flags
8604  *
8605  *      Set or clear a bpf program for a device
8606  */
8607 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
8608                       int fd, u32 flags)
8609 {
8610         const struct net_device_ops *ops = dev->netdev_ops;
8611         enum bpf_netdev_command query;
8612         struct bpf_prog *prog = NULL;
8613         bpf_op_t bpf_op, bpf_chk;
8614         bool offload;
8615         int err;
8616
8617         ASSERT_RTNL();
8618
8619         offload = flags & XDP_FLAGS_HW_MODE;
8620         query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
8621
8622         bpf_op = bpf_chk = ops->ndo_bpf;
8623         if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) {
8624                 NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode");
8625                 return -EOPNOTSUPP;
8626         }
8627         if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
8628                 bpf_op = generic_xdp_install;
8629         if (bpf_op == bpf_chk)
8630                 bpf_chk = generic_xdp_install;
8631
8632         if (fd >= 0) {
8633                 u32 prog_id;
8634
8635                 if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) {
8636                         NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time");
8637                         return -EEXIST;
8638                 }
8639
8640                 prog_id = __dev_xdp_query(dev, bpf_op, query);
8641                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && prog_id) {
8642                         NL_SET_ERR_MSG(extack, "XDP program already attached");
8643                         return -EBUSY;
8644                 }
8645
8646                 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
8647                                              bpf_op == ops->ndo_bpf);
8648                 if (IS_ERR(prog))
8649                         return PTR_ERR(prog);
8650
8651                 if (!offload && bpf_prog_is_dev_bound(prog->aux)) {
8652                         NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
8653                         bpf_prog_put(prog);
8654                         return -EINVAL;
8655                 }
8656
8657                 /* prog->aux->id may be 0 for orphaned device-bound progs */
8658                 if (prog->aux->id && prog->aux->id == prog_id) {
8659                         bpf_prog_put(prog);
8660                         return 0;
8661                 }
8662         } else {
8663                 if (!__dev_xdp_query(dev, bpf_op, query))
8664                         return 0;
8665         }
8666
8667         err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
8668         if (err < 0 && prog)
8669                 bpf_prog_put(prog);
8670
8671         return err;
8672 }
8673
8674 /**
8675  *      dev_new_index   -       allocate an ifindex
8676  *      @net: the applicable net namespace
8677  *
8678  *      Returns a suitable unique value for a new device interface
8679  *      number.  The caller must hold the rtnl semaphore or the
8680  *      dev_base_lock to be sure it remains unique.
8681  */
8682 static int dev_new_index(struct net *net)
8683 {
8684         int ifindex = net->ifindex;
8685
8686         for (;;) {
8687                 if (++ifindex <= 0)
8688                         ifindex = 1;
8689                 if (!__dev_get_by_index(net, ifindex))
8690                         return net->ifindex = ifindex;
8691         }
8692 }
8693
8694 /* Delayed registration/unregisteration */
8695 static LIST_HEAD(net_todo_list);
8696 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
8697
8698 static void net_set_todo(struct net_device *dev)
8699 {
8700         list_add_tail(&dev->todo_list, &net_todo_list);
8701         dev_net(dev)->dev_unreg_count++;
8702 }
8703
8704 static void rollback_registered_many(struct list_head *head)
8705 {
8706         struct net_device *dev, *tmp;
8707         LIST_HEAD(close_head);
8708
8709         BUG_ON(dev_boot_phase);
8710         ASSERT_RTNL();
8711
8712         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
8713                 /* Some devices call without registering
8714                  * for initialization unwind. Remove those
8715                  * devices and proceed with the remaining.
8716                  */
8717                 if (dev->reg_state == NETREG_UNINITIALIZED) {
8718                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8719                                  dev->name, dev);
8720
8721                         WARN_ON(1);
8722                         list_del(&dev->unreg_list);
8723                         continue;
8724                 }
8725                 dev->dismantle = true;
8726                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
8727         }
8728
8729         /* If device is running, close it first. */
8730         list_for_each_entry(dev, head, unreg_list)
8731                 list_add_tail(&dev->close_list, &close_head);
8732         dev_close_many(&close_head, true);
8733
8734         list_for_each_entry(dev, head, unreg_list) {
8735                 /* And unlink it from device chain. */
8736                 unlist_netdevice(dev);
8737
8738                 dev->reg_state = NETREG_UNREGISTERING;
8739         }
8740         flush_all_backlogs();
8741
8742         synchronize_net();
8743
8744         list_for_each_entry(dev, head, unreg_list) {
8745                 struct sk_buff *skb = NULL;
8746
8747                 /* Shutdown queueing discipline. */
8748                 dev_shutdown(dev);
8749
8750                 dev_xdp_uninstall(dev);
8751
8752                 /* Notify protocols, that we are about to destroy
8753                  * this device. They should clean all the things.
8754                  */
8755                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8756
8757                 if (!dev->rtnl_link_ops ||
8758                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8759                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
8760                                                      GFP_KERNEL, NULL, 0);
8761
8762                 /*
8763                  *      Flush the unicast and multicast chains
8764                  */
8765                 dev_uc_flush(dev);
8766                 dev_mc_flush(dev);
8767
8768                 netdev_name_node_alt_flush(dev);
8769                 netdev_name_node_free(dev->name_node);
8770
8771                 if (dev->netdev_ops->ndo_uninit)
8772                         dev->netdev_ops->ndo_uninit(dev);
8773
8774                 if (skb)
8775                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
8776
8777                 /* Notifier chain MUST detach us all upper devices. */
8778                 WARN_ON(netdev_has_any_upper_dev(dev));
8779                 WARN_ON(netdev_has_any_lower_dev(dev));
8780
8781                 /* Remove entries from kobject tree */
8782                 netdev_unregister_kobject(dev);
8783 #ifdef CONFIG_XPS
8784                 /* Remove XPS queueing entries */
8785                 netif_reset_xps_queues_gt(dev, 0);
8786 #endif
8787         }
8788
8789         synchronize_net();
8790
8791         list_for_each_entry(dev, head, unreg_list)
8792                 dev_put(dev);
8793 }
8794
8795 static void rollback_registered(struct net_device *dev)
8796 {
8797         LIST_HEAD(single);
8798
8799         list_add(&dev->unreg_list, &single);
8800         rollback_registered_many(&single);
8801         list_del(&single);
8802 }
8803
8804 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8805         struct net_device *upper, netdev_features_t features)
8806 {
8807         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8808         netdev_features_t feature;
8809         int feature_bit;
8810
8811         for_each_netdev_feature(upper_disables, feature_bit) {
8812                 feature = __NETIF_F_BIT(feature_bit);
8813                 if (!(upper->wanted_features & feature)
8814                     && (features & feature)) {
8815                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8816                                    &feature, upper->name);
8817                         features &= ~feature;
8818                 }
8819         }
8820
8821         return features;
8822 }
8823
8824 static void netdev_sync_lower_features(struct net_device *upper,
8825         struct net_device *lower, netdev_features_t features)
8826 {
8827         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8828         netdev_features_t feature;
8829         int feature_bit;
8830
8831         for_each_netdev_feature(upper_disables, feature_bit) {
8832                 feature = __NETIF_F_BIT(feature_bit);
8833                 if (!(features & feature) && (lower->features & feature)) {
8834                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8835                                    &feature, lower->name);
8836                         lower->wanted_features &= ~feature;
8837                         netdev_update_features(lower);
8838
8839                         if (unlikely(lower->features & feature))
8840                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8841                                             &feature, lower->name);
8842                 }
8843         }
8844 }
8845
8846 static netdev_features_t netdev_fix_features(struct net_device *dev,
8847         netdev_features_t features)
8848 {
8849         /* Fix illegal checksum combinations */
8850         if ((features & NETIF_F_HW_CSUM) &&
8851             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
8852                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
8853                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8854         }
8855
8856         /* TSO requires that SG is present as well. */
8857         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
8858                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
8859                 features &= ~NETIF_F_ALL_TSO;
8860         }
8861
8862         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8863                                         !(features & NETIF_F_IP_CSUM)) {
8864                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8865                 features &= ~NETIF_F_TSO;
8866                 features &= ~NETIF_F_TSO_ECN;
8867         }
8868
8869         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8870                                          !(features & NETIF_F_IPV6_CSUM)) {
8871                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8872                 features &= ~NETIF_F_TSO6;
8873         }
8874
8875         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8876         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8877                 features &= ~NETIF_F_TSO_MANGLEID;
8878
8879         /* TSO ECN requires that TSO is present as well. */
8880         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8881                 features &= ~NETIF_F_TSO_ECN;
8882
8883         /* Software GSO depends on SG. */
8884         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
8885                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
8886                 features &= ~NETIF_F_GSO;
8887         }
8888
8889         /* GSO partial features require GSO partial be set */
8890         if ((features & dev->gso_partial_features) &&
8891             !(features & NETIF_F_GSO_PARTIAL)) {
8892                 netdev_dbg(dev,
8893                            "Dropping partially supported GSO features since no GSO partial.\n");
8894                 features &= ~dev->gso_partial_features;
8895         }
8896
8897         if (!(features & NETIF_F_RXCSUM)) {
8898                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8899                  * successfully merged by hardware must also have the
8900                  * checksum verified by hardware.  If the user does not
8901                  * want to enable RXCSUM, logically, we should disable GRO_HW.
8902                  */
8903                 if (features & NETIF_F_GRO_HW) {
8904                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8905                         features &= ~NETIF_F_GRO_HW;
8906                 }
8907         }
8908
8909         /* LRO/HW-GRO features cannot be combined with RX-FCS */
8910         if (features & NETIF_F_RXFCS) {
8911                 if (features & NETIF_F_LRO) {
8912                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8913                         features &= ~NETIF_F_LRO;
8914                 }
8915
8916                 if (features & NETIF_F_GRO_HW) {
8917                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8918                         features &= ~NETIF_F_GRO_HW;
8919                 }
8920         }
8921
8922         return features;
8923 }
8924
8925 int __netdev_update_features(struct net_device *dev)
8926 {
8927         struct net_device *upper, *lower;
8928         netdev_features_t features;
8929         struct list_head *iter;
8930         int err = -1;
8931
8932         ASSERT_RTNL();
8933
8934         features = netdev_get_wanted_features(dev);
8935
8936         if (dev->netdev_ops->ndo_fix_features)
8937                 features = dev->netdev_ops->ndo_fix_features(dev, features);
8938
8939         /* driver might be less strict about feature dependencies */
8940         features = netdev_fix_features(dev, features);
8941
8942         /* some features can't be enabled if they're off an an upper device */
8943         netdev_for_each_upper_dev_rcu(dev, upper, iter)
8944                 features = netdev_sync_upper_features(dev, upper, features);
8945
8946         if (dev->features == features)
8947                 goto sync_lower;
8948
8949         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
8950                 &dev->features, &features);
8951
8952         if (dev->netdev_ops->ndo_set_features)
8953                 err = dev->netdev_ops->ndo_set_features(dev, features);
8954         else
8955                 err = 0;
8956
8957         if (unlikely(err < 0)) {
8958                 netdev_err(dev,
8959                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
8960                         err, &features, &dev->features);
8961                 /* return non-0 since some features might have changed and
8962                  * it's better to fire a spurious notification than miss it
8963                  */
8964                 return -1;
8965         }
8966
8967 sync_lower:
8968         /* some features must be disabled on lower devices when disabled
8969          * on an upper device (think: bonding master or bridge)
8970          */
8971         netdev_for_each_lower_dev(dev, lower, iter)
8972                 netdev_sync_lower_features(dev, lower, features);
8973
8974         if (!err) {
8975                 netdev_features_t diff = features ^ dev->features;
8976
8977                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
8978                         /* udp_tunnel_{get,drop}_rx_info both need
8979                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
8980                          * device, or they won't do anything.
8981                          * Thus we need to update dev->features
8982                          * *before* calling udp_tunnel_get_rx_info,
8983                          * but *after* calling udp_tunnel_drop_rx_info.
8984                          */
8985                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
8986                                 dev->features = features;
8987                                 udp_tunnel_get_rx_info(dev);
8988                         } else {
8989                                 udp_tunnel_drop_rx_info(dev);
8990                         }
8991                 }
8992
8993                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
8994                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
8995                                 dev->features = features;
8996                                 err |= vlan_get_rx_ctag_filter_info(dev);
8997                         } else {
8998                                 vlan_drop_rx_ctag_filter_info(dev);
8999                         }
9000                 }
9001
9002                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9003                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9004                                 dev->features = features;
9005                                 err |= vlan_get_rx_stag_filter_info(dev);
9006                         } else {
9007                                 vlan_drop_rx_stag_filter_info(dev);
9008                         }
9009                 }
9010
9011                 dev->features = features;
9012         }
9013
9014         return err < 0 ? 0 : 1;
9015 }
9016
9017 /**
9018  *      netdev_update_features - recalculate device features
9019  *      @dev: the device to check
9020  *
9021  *      Recalculate dev->features set and send notifications if it
9022  *      has changed. Should be called after driver or hardware dependent
9023  *      conditions might have changed that influence the features.
9024  */
9025 void netdev_update_features(struct net_device *dev)
9026 {
9027         if (__netdev_update_features(dev))
9028                 netdev_features_change(dev);
9029 }
9030 EXPORT_SYMBOL(netdev_update_features);
9031
9032 /**
9033  *      netdev_change_features - recalculate device features
9034  *      @dev: the device to check
9035  *
9036  *      Recalculate dev->features set and send notifications even
9037  *      if they have not changed. Should be called instead of
9038  *      netdev_update_features() if also dev->vlan_features might
9039  *      have changed to allow the changes to be propagated to stacked
9040  *      VLAN devices.
9041  */
9042 void netdev_change_features(struct net_device *dev)
9043 {
9044         __netdev_update_features(dev);
9045         netdev_features_change(dev);
9046 }
9047 EXPORT_SYMBOL(netdev_change_features);
9048
9049 /**
9050  *      netif_stacked_transfer_operstate -      transfer operstate
9051  *      @rootdev: the root or lower level device to transfer state from
9052  *      @dev: the device to transfer operstate to
9053  *
9054  *      Transfer operational state from root to device. This is normally
9055  *      called when a stacking relationship exists between the root
9056  *      device and the device(a leaf device).
9057  */
9058 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9059                                         struct net_device *dev)
9060 {
9061         if (rootdev->operstate == IF_OPER_DORMANT)
9062                 netif_dormant_on(dev);
9063         else
9064                 netif_dormant_off(dev);
9065
9066         if (netif_carrier_ok(rootdev))
9067                 netif_carrier_on(dev);
9068         else
9069                 netif_carrier_off(dev);
9070 }
9071 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9072
9073 static int netif_alloc_rx_queues(struct net_device *dev)
9074 {
9075         unsigned int i, count = dev->num_rx_queues;
9076         struct netdev_rx_queue *rx;
9077         size_t sz = count * sizeof(*rx);
9078         int err = 0;
9079
9080         BUG_ON(count < 1);
9081
9082         rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9083         if (!rx)
9084                 return -ENOMEM;
9085
9086         dev->_rx = rx;
9087
9088         for (i = 0; i < count; i++) {
9089                 rx[i].dev = dev;
9090
9091                 /* XDP RX-queue setup */
9092                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
9093                 if (err < 0)
9094                         goto err_rxq_info;
9095         }
9096         return 0;
9097
9098 err_rxq_info:
9099         /* Rollback successful reg's and free other resources */
9100         while (i--)
9101                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9102         kvfree(dev->_rx);
9103         dev->_rx = NULL;
9104         return err;
9105 }
9106
9107 static void netif_free_rx_queues(struct net_device *dev)
9108 {
9109         unsigned int i, count = dev->num_rx_queues;
9110
9111         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9112         if (!dev->_rx)
9113                 return;
9114
9115         for (i = 0; i < count; i++)
9116                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9117
9118         kvfree(dev->_rx);
9119 }
9120
9121 static void netdev_init_one_queue(struct net_device *dev,
9122                                   struct netdev_queue *queue, void *_unused)
9123 {
9124         /* Initialize queue lock */
9125         spin_lock_init(&queue->_xmit_lock);
9126         lockdep_set_class(&queue->_xmit_lock, &dev->qdisc_xmit_lock_key);
9127         queue->xmit_lock_owner = -1;
9128         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9129         queue->dev = dev;
9130 #ifdef CONFIG_BQL
9131         dql_init(&queue->dql, HZ);
9132 #endif
9133 }
9134
9135 static void netif_free_tx_queues(struct net_device *dev)
9136 {
9137         kvfree(dev->_tx);
9138 }
9139
9140 static int netif_alloc_netdev_queues(struct net_device *dev)
9141 {
9142         unsigned int count = dev->num_tx_queues;
9143         struct netdev_queue *tx;
9144         size_t sz = count * sizeof(*tx);
9145
9146         if (count < 1 || count > 0xffff)
9147                 return -EINVAL;
9148
9149         tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9150         if (!tx)
9151                 return -ENOMEM;
9152
9153         dev->_tx = tx;
9154
9155         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9156         spin_lock_init(&dev->tx_global_lock);
9157
9158         return 0;
9159 }
9160
9161 void netif_tx_stop_all_queues(struct net_device *dev)
9162 {
9163         unsigned int i;
9164
9165         for (i = 0; i < dev->num_tx_queues; i++) {
9166                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9167
9168                 netif_tx_stop_queue(txq);
9169         }
9170 }
9171 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9172
9173 static void netdev_register_lockdep_key(struct net_device *dev)
9174 {
9175         lockdep_register_key(&dev->qdisc_tx_busylock_key);
9176         lockdep_register_key(&dev->qdisc_running_key);
9177         lockdep_register_key(&dev->qdisc_xmit_lock_key);
9178         lockdep_register_key(&dev->addr_list_lock_key);
9179 }
9180
9181 static void netdev_unregister_lockdep_key(struct net_device *dev)
9182 {
9183         lockdep_unregister_key(&dev->qdisc_tx_busylock_key);
9184         lockdep_unregister_key(&dev->qdisc_running_key);
9185         lockdep_unregister_key(&dev->qdisc_xmit_lock_key);
9186         lockdep_unregister_key(&dev->addr_list_lock_key);
9187 }
9188
9189 void netdev_update_lockdep_key(struct net_device *dev)
9190 {
9191         lockdep_unregister_key(&dev->addr_list_lock_key);
9192         lockdep_register_key(&dev->addr_list_lock_key);
9193
9194         lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key);
9195 }
9196 EXPORT_SYMBOL(netdev_update_lockdep_key);
9197
9198 /**
9199  *      register_netdevice      - register a network device
9200  *      @dev: device to register
9201  *
9202  *      Take a completed network device structure and add it to the kernel
9203  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9204  *      chain. 0 is returned on success. A negative errno code is returned
9205  *      on a failure to set up the device, or if the name is a duplicate.
9206  *
9207  *      Callers must hold the rtnl semaphore. You may want
9208  *      register_netdev() instead of this.
9209  *
9210  *      BUGS:
9211  *      The locking appears insufficient to guarantee two parallel registers
9212  *      will not get the same name.
9213  */
9214
9215 int register_netdevice(struct net_device *dev)
9216 {
9217         int ret;
9218         struct net *net = dev_net(dev);
9219
9220         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9221                      NETDEV_FEATURE_COUNT);
9222         BUG_ON(dev_boot_phase);
9223         ASSERT_RTNL();
9224
9225         might_sleep();
9226
9227         /* When net_device's are persistent, this will be fatal. */
9228         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9229         BUG_ON(!net);
9230
9231         spin_lock_init(&dev->addr_list_lock);
9232         lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key);
9233
9234         ret = dev_get_valid_name(net, dev, dev->name);
9235         if (ret < 0)
9236                 goto out;
9237
9238         ret = -ENOMEM;
9239         dev->name_node = netdev_name_node_head_alloc(dev);
9240         if (!dev->name_node)
9241                 goto out;
9242
9243         /* Init, if this function is available */
9244         if (dev->netdev_ops->ndo_init) {
9245                 ret = dev->netdev_ops->ndo_init(dev);
9246                 if (ret) {
9247                         if (ret > 0)
9248                                 ret = -EIO;
9249                         goto err_free_name;
9250                 }
9251         }
9252
9253         if (((dev->hw_features | dev->features) &
9254              NETIF_F_HW_VLAN_CTAG_FILTER) &&
9255             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9256              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9257                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9258                 ret = -EINVAL;
9259                 goto err_uninit;
9260         }
9261
9262         ret = -EBUSY;
9263         if (!dev->ifindex)
9264                 dev->ifindex = dev_new_index(net);
9265         else if (__dev_get_by_index(net, dev->ifindex))
9266                 goto err_uninit;
9267
9268         /* Transfer changeable features to wanted_features and enable
9269          * software offloads (GSO and GRO).
9270          */
9271         dev->hw_features |= NETIF_F_SOFT_FEATURES;
9272         dev->features |= NETIF_F_SOFT_FEATURES;
9273
9274         if (dev->netdev_ops->ndo_udp_tunnel_add) {
9275                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9276                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9277         }
9278
9279         dev->wanted_features = dev->features & dev->hw_features;
9280
9281         if (!(dev->flags & IFF_LOOPBACK))
9282                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
9283
9284         /* If IPv4 TCP segmentation offload is supported we should also
9285          * allow the device to enable segmenting the frame with the option
9286          * of ignoring a static IP ID value.  This doesn't enable the
9287          * feature itself but allows the user to enable it later.
9288          */
9289         if (dev->hw_features & NETIF_F_TSO)
9290                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
9291         if (dev->vlan_features & NETIF_F_TSO)
9292                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
9293         if (dev->mpls_features & NETIF_F_TSO)
9294                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
9295         if (dev->hw_enc_features & NETIF_F_TSO)
9296                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
9297
9298         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
9299          */
9300         dev->vlan_features |= NETIF_F_HIGHDMA;
9301
9302         /* Make NETIF_F_SG inheritable to tunnel devices.
9303          */
9304         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
9305
9306         /* Make NETIF_F_SG inheritable to MPLS.
9307          */
9308         dev->mpls_features |= NETIF_F_SG;
9309
9310         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
9311         ret = notifier_to_errno(ret);
9312         if (ret)
9313                 goto err_uninit;
9314
9315         ret = netdev_register_kobject(dev);
9316         if (ret) {
9317                 dev->reg_state = NETREG_UNREGISTERED;
9318                 goto err_uninit;
9319         }
9320         dev->reg_state = NETREG_REGISTERED;
9321
9322         __netdev_update_features(dev);
9323
9324         /*
9325          *      Default initial state at registry is that the
9326          *      device is present.
9327          */
9328
9329         set_bit(__LINK_STATE_PRESENT, &dev->state);
9330
9331         linkwatch_init_dev(dev);
9332
9333         dev_init_scheduler(dev);
9334         dev_hold(dev);
9335         list_netdevice(dev);
9336         add_device_randomness(dev->dev_addr, dev->addr_len);
9337
9338         /* If the device has permanent device address, driver should
9339          * set dev_addr and also addr_assign_type should be set to
9340          * NET_ADDR_PERM (default value).
9341          */
9342         if (dev->addr_assign_type == NET_ADDR_PERM)
9343                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
9344
9345         /* Notify protocols, that a new device appeared. */
9346         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
9347         ret = notifier_to_errno(ret);
9348         if (ret) {
9349                 rollback_registered(dev);
9350                 rcu_barrier();
9351
9352                 dev->reg_state = NETREG_UNREGISTERED;
9353         }
9354         /*
9355          *      Prevent userspace races by waiting until the network
9356          *      device is fully setup before sending notifications.
9357          */
9358         if (!dev->rtnl_link_ops ||
9359             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
9360                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9361
9362 out:
9363         return ret;
9364
9365 err_uninit:
9366         if (dev->netdev_ops->ndo_uninit)
9367                 dev->netdev_ops->ndo_uninit(dev);
9368         if (dev->priv_destructor)
9369                 dev->priv_destructor(dev);
9370 err_free_name:
9371         netdev_name_node_free(dev->name_node);
9372         goto out;
9373 }
9374 EXPORT_SYMBOL(register_netdevice);
9375
9376 /**
9377  *      init_dummy_netdev       - init a dummy network device for NAPI
9378  *      @dev: device to init
9379  *
9380  *      This takes a network device structure and initialize the minimum
9381  *      amount of fields so it can be used to schedule NAPI polls without
9382  *      registering a full blown interface. This is to be used by drivers
9383  *      that need to tie several hardware interfaces to a single NAPI
9384  *      poll scheduler due to HW limitations.
9385  */
9386 int init_dummy_netdev(struct net_device *dev)
9387 {
9388         /* Clear everything. Note we don't initialize spinlocks
9389          * are they aren't supposed to be taken by any of the
9390          * NAPI code and this dummy netdev is supposed to be
9391          * only ever used for NAPI polls
9392          */
9393         memset(dev, 0, sizeof(struct net_device));
9394
9395         /* make sure we BUG if trying to hit standard
9396          * register/unregister code path
9397          */
9398         dev->reg_state = NETREG_DUMMY;
9399
9400         /* NAPI wants this */
9401         INIT_LIST_HEAD(&dev->napi_list);
9402
9403         /* a dummy interface is started by default */
9404         set_bit(__LINK_STATE_PRESENT, &dev->state);
9405         set_bit(__LINK_STATE_START, &dev->state);
9406
9407         /* napi_busy_loop stats accounting wants this */
9408         dev_net_set(dev, &init_net);
9409
9410         /* Note : We dont allocate pcpu_refcnt for dummy devices,
9411          * because users of this 'device' dont need to change
9412          * its refcount.
9413          */
9414
9415         return 0;
9416 }
9417 EXPORT_SYMBOL_GPL(init_dummy_netdev);
9418
9419
9420 /**
9421  *      register_netdev - register a network device
9422  *      @dev: device to register
9423  *
9424  *      Take a completed network device structure and add it to the kernel
9425  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9426  *      chain. 0 is returned on success. A negative errno code is returned
9427  *      on a failure to set up the device, or if the name is a duplicate.
9428  *
9429  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
9430  *      and expands the device name if you passed a format string to
9431  *      alloc_netdev.
9432  */
9433 int register_netdev(struct net_device *dev)
9434 {
9435         int err;
9436
9437         if (rtnl_lock_killable())
9438                 return -EINTR;
9439         err = register_netdevice(dev);
9440         rtnl_unlock();
9441         return err;
9442 }
9443 EXPORT_SYMBOL(register_netdev);
9444
9445 int netdev_refcnt_read(const struct net_device *dev)
9446 {
9447         int i, refcnt = 0;
9448
9449         for_each_possible_cpu(i)
9450                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
9451         return refcnt;
9452 }
9453 EXPORT_SYMBOL(netdev_refcnt_read);
9454
9455 /**
9456  * netdev_wait_allrefs - wait until all references are gone.
9457  * @dev: target net_device
9458  *
9459  * This is called when unregistering network devices.
9460  *
9461  * Any protocol or device that holds a reference should register
9462  * for netdevice notification, and cleanup and put back the
9463  * reference if they receive an UNREGISTER event.
9464  * We can get stuck here if buggy protocols don't correctly
9465  * call dev_put.
9466  */
9467 static void netdev_wait_allrefs(struct net_device *dev)
9468 {
9469         unsigned long rebroadcast_time, warning_time;
9470         int refcnt;
9471
9472         linkwatch_forget_dev(dev);
9473
9474         rebroadcast_time = warning_time = jiffies;
9475         refcnt = netdev_refcnt_read(dev);
9476
9477         while (refcnt != 0) {
9478                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
9479                         rtnl_lock();
9480
9481                         /* Rebroadcast unregister notification */
9482                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9483
9484                         __rtnl_unlock();
9485                         rcu_barrier();
9486                         rtnl_lock();
9487
9488                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
9489                                      &dev->state)) {
9490                                 /* We must not have linkwatch events
9491                                  * pending on unregister. If this
9492                                  * happens, we simply run the queue
9493                                  * unscheduled, resulting in a noop
9494                                  * for this device.
9495                                  */
9496                                 linkwatch_run_queue();
9497                         }
9498
9499                         __rtnl_unlock();
9500
9501                         rebroadcast_time = jiffies;
9502                 }
9503
9504                 msleep(250);
9505
9506                 refcnt = netdev_refcnt_read(dev);
9507
9508                 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
9509                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
9510                                  dev->name, refcnt);
9511                         warning_time = jiffies;
9512                 }
9513         }
9514 }
9515
9516 /* The sequence is:
9517  *
9518  *      rtnl_lock();
9519  *      ...
9520  *      register_netdevice(x1);
9521  *      register_netdevice(x2);
9522  *      ...
9523  *      unregister_netdevice(y1);
9524  *      unregister_netdevice(y2);
9525  *      ...
9526  *      rtnl_unlock();
9527  *      free_netdev(y1);
9528  *      free_netdev(y2);
9529  *
9530  * We are invoked by rtnl_unlock().
9531  * This allows us to deal with problems:
9532  * 1) We can delete sysfs objects which invoke hotplug
9533  *    without deadlocking with linkwatch via keventd.
9534  * 2) Since we run with the RTNL semaphore not held, we can sleep
9535  *    safely in order to wait for the netdev refcnt to drop to zero.
9536  *
9537  * We must not return until all unregister events added during
9538  * the interval the lock was held have been completed.
9539  */
9540 void netdev_run_todo(void)
9541 {
9542         struct list_head list;
9543
9544         /* Snapshot list, allow later requests */
9545         list_replace_init(&net_todo_list, &list);
9546
9547         __rtnl_unlock();
9548
9549
9550         /* Wait for rcu callbacks to finish before next phase */
9551         if (!list_empty(&list))
9552                 rcu_barrier();
9553
9554         while (!list_empty(&list)) {
9555                 struct net_device *dev
9556                         = list_first_entry(&list, struct net_device, todo_list);
9557                 list_del(&dev->todo_list);
9558
9559                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
9560                         pr_err("network todo '%s' but state %d\n",
9561                                dev->name, dev->reg_state);
9562                         dump_stack();
9563                         continue;
9564                 }
9565
9566                 dev->reg_state = NETREG_UNREGISTERED;
9567
9568                 netdev_wait_allrefs(dev);
9569
9570                 /* paranoia */
9571                 BUG_ON(netdev_refcnt_read(dev));
9572                 BUG_ON(!list_empty(&dev->ptype_all));
9573                 BUG_ON(!list_empty(&dev->ptype_specific));
9574                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
9575                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
9576 #if IS_ENABLED(CONFIG_DECNET)
9577                 WARN_ON(dev->dn_ptr);
9578 #endif
9579                 if (dev->priv_destructor)
9580                         dev->priv_destructor(dev);
9581                 if (dev->needs_free_netdev)
9582                         free_netdev(dev);
9583
9584                 /* Report a network device has been unregistered */
9585                 rtnl_lock();
9586                 dev_net(dev)->dev_unreg_count--;
9587                 __rtnl_unlock();
9588                 wake_up(&netdev_unregistering_wq);
9589
9590                 /* Free network device */
9591                 kobject_put(&dev->dev.kobj);
9592         }
9593 }
9594
9595 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
9596  * all the same fields in the same order as net_device_stats, with only
9597  * the type differing, but rtnl_link_stats64 may have additional fields
9598  * at the end for newer counters.
9599  */
9600 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
9601                              const struct net_device_stats *netdev_stats)
9602 {
9603 #if BITS_PER_LONG == 64
9604         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9605         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9606         /* zero out counters that only exist in rtnl_link_stats64 */
9607         memset((char *)stats64 + sizeof(*netdev_stats), 0,
9608                sizeof(*stats64) - sizeof(*netdev_stats));
9609 #else
9610         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
9611         const unsigned long *src = (const unsigned long *)netdev_stats;
9612         u64 *dst = (u64 *)stats64;
9613
9614         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
9615         for (i = 0; i < n; i++)
9616                 dst[i] = src[i];
9617         /* zero out counters that only exist in rtnl_link_stats64 */
9618         memset((char *)stats64 + n * sizeof(u64), 0,
9619                sizeof(*stats64) - n * sizeof(u64));
9620 #endif
9621 }
9622 EXPORT_SYMBOL(netdev_stats_to_stats64);
9623
9624 /**
9625  *      dev_get_stats   - get network device statistics
9626  *      @dev: device to get statistics from
9627  *      @storage: place to store stats
9628  *
9629  *      Get network statistics from device. Return @storage.
9630  *      The device driver may provide its own method by setting
9631  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
9632  *      otherwise the internal statistics structure is used.
9633  */
9634 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
9635                                         struct rtnl_link_stats64 *storage)
9636 {
9637         const struct net_device_ops *ops = dev->netdev_ops;
9638
9639         if (ops->ndo_get_stats64) {
9640                 memset(storage, 0, sizeof(*storage));
9641                 ops->ndo_get_stats64(dev, storage);
9642         } else if (ops->ndo_get_stats) {
9643                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
9644         } else {
9645                 netdev_stats_to_stats64(storage, &dev->stats);
9646         }
9647         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
9648         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
9649         storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
9650         return storage;
9651 }
9652 EXPORT_SYMBOL(dev_get_stats);
9653
9654 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
9655 {
9656         struct netdev_queue *queue = dev_ingress_queue(dev);
9657
9658 #ifdef CONFIG_NET_CLS_ACT
9659         if (queue)
9660                 return queue;
9661         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
9662         if (!queue)
9663                 return NULL;
9664         netdev_init_one_queue(dev, queue, NULL);
9665         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
9666         queue->qdisc_sleeping = &noop_qdisc;
9667         rcu_assign_pointer(dev->ingress_queue, queue);
9668 #endif
9669         return queue;
9670 }
9671
9672 static const struct ethtool_ops default_ethtool_ops;
9673
9674 void netdev_set_default_ethtool_ops(struct net_device *dev,
9675                                     const struct ethtool_ops *ops)
9676 {
9677         if (dev->ethtool_ops == &default_ethtool_ops)
9678                 dev->ethtool_ops = ops;
9679 }
9680 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
9681
9682 void netdev_freemem(struct net_device *dev)
9683 {
9684         char *addr = (char *)dev - dev->padded;
9685
9686         kvfree(addr);
9687 }
9688
9689 /**
9690  * alloc_netdev_mqs - allocate network device
9691  * @sizeof_priv: size of private data to allocate space for
9692  * @name: device name format string
9693  * @name_assign_type: origin of device name
9694  * @setup: callback to initialize device
9695  * @txqs: the number of TX subqueues to allocate
9696  * @rxqs: the number of RX subqueues to allocate
9697  *
9698  * Allocates a struct net_device with private data area for driver use
9699  * and performs basic initialization.  Also allocates subqueue structs
9700  * for each queue on the device.
9701  */
9702 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
9703                 unsigned char name_assign_type,
9704                 void (*setup)(struct net_device *),
9705                 unsigned int txqs, unsigned int rxqs)
9706 {
9707         struct net_device *dev;
9708         unsigned int alloc_size;
9709         struct net_device *p;
9710
9711         BUG_ON(strlen(name) >= sizeof(dev->name));
9712
9713         if (txqs < 1) {
9714                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
9715                 return NULL;
9716         }
9717
9718         if (rxqs < 1) {
9719                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
9720                 return NULL;
9721         }
9722
9723         alloc_size = sizeof(struct net_device);
9724         if (sizeof_priv) {
9725                 /* ensure 32-byte alignment of private area */
9726                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
9727                 alloc_size += sizeof_priv;
9728         }
9729         /* ensure 32-byte alignment of whole construct */
9730         alloc_size += NETDEV_ALIGN - 1;
9731
9732         p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9733         if (!p)
9734                 return NULL;
9735
9736         dev = PTR_ALIGN(p, NETDEV_ALIGN);
9737         dev->padded = (char *)dev - (char *)p;
9738
9739         dev->pcpu_refcnt = alloc_percpu(int);
9740         if (!dev->pcpu_refcnt)
9741                 goto free_dev;
9742
9743         if (dev_addr_init(dev))
9744                 goto free_pcpu;
9745
9746         dev_mc_init(dev);
9747         dev_uc_init(dev);
9748
9749         dev_net_set(dev, &init_net);
9750
9751         netdev_register_lockdep_key(dev);
9752
9753         dev->gso_max_size = GSO_MAX_SIZE;
9754         dev->gso_max_segs = GSO_MAX_SEGS;
9755         dev->upper_level = 1;
9756         dev->lower_level = 1;
9757
9758         INIT_LIST_HEAD(&dev->napi_list);
9759         INIT_LIST_HEAD(&dev->unreg_list);
9760         INIT_LIST_HEAD(&dev->close_list);
9761         INIT_LIST_HEAD(&dev->link_watch_list);
9762         INIT_LIST_HEAD(&dev->adj_list.upper);
9763         INIT_LIST_HEAD(&dev->adj_list.lower);
9764         INIT_LIST_HEAD(&dev->ptype_all);
9765         INIT_LIST_HEAD(&dev->ptype_specific);
9766 #ifdef CONFIG_NET_SCHED
9767         hash_init(dev->qdisc_hash);
9768 #endif
9769         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
9770         setup(dev);
9771
9772         if (!dev->tx_queue_len) {
9773                 dev->priv_flags |= IFF_NO_QUEUE;
9774                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
9775         }
9776
9777         dev->num_tx_queues = txqs;
9778         dev->real_num_tx_queues = txqs;
9779         if (netif_alloc_netdev_queues(dev))
9780                 goto free_all;
9781
9782         dev->num_rx_queues = rxqs;
9783         dev->real_num_rx_queues = rxqs;
9784         if (netif_alloc_rx_queues(dev))
9785                 goto free_all;
9786
9787         strcpy(dev->name, name);
9788         dev->name_assign_type = name_assign_type;
9789         dev->group = INIT_NETDEV_GROUP;
9790         if (!dev->ethtool_ops)
9791                 dev->ethtool_ops = &default_ethtool_ops;
9792
9793         nf_hook_ingress_init(dev);
9794
9795         return dev;
9796
9797 free_all:
9798         free_netdev(dev);
9799         return NULL;
9800
9801 free_pcpu:
9802         free_percpu(dev->pcpu_refcnt);
9803 free_dev:
9804         netdev_freemem(dev);
9805         return NULL;
9806 }
9807 EXPORT_SYMBOL(alloc_netdev_mqs);
9808
9809 /**
9810  * free_netdev - free network device
9811  * @dev: device
9812  *
9813  * This function does the last stage of destroying an allocated device
9814  * interface. The reference to the device object is released. If this
9815  * is the last reference then it will be freed.Must be called in process
9816  * context.
9817  */
9818 void free_netdev(struct net_device *dev)
9819 {
9820         struct napi_struct *p, *n;
9821
9822         might_sleep();
9823         netif_free_tx_queues(dev);
9824         netif_free_rx_queues(dev);
9825
9826         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
9827
9828         /* Flush device addresses */
9829         dev_addr_flush(dev);
9830
9831         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
9832                 netif_napi_del(p);
9833
9834         free_percpu(dev->pcpu_refcnt);
9835         dev->pcpu_refcnt = NULL;
9836
9837         netdev_unregister_lockdep_key(dev);
9838
9839         /*  Compatibility with error handling in drivers */
9840         if (dev->reg_state == NETREG_UNINITIALIZED) {
9841                 netdev_freemem(dev);
9842                 return;
9843         }
9844
9845         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
9846         dev->reg_state = NETREG_RELEASED;
9847
9848         /* will free via device release */
9849         put_device(&dev->dev);
9850 }
9851 EXPORT_SYMBOL(free_netdev);
9852
9853 /**
9854  *      synchronize_net -  Synchronize with packet receive processing
9855  *
9856  *      Wait for packets currently being received to be done.
9857  *      Does not block later packets from starting.
9858  */
9859 void synchronize_net(void)
9860 {
9861         might_sleep();
9862         if (rtnl_is_locked())
9863                 synchronize_rcu_expedited();
9864         else
9865                 synchronize_rcu();
9866 }
9867 EXPORT_SYMBOL(synchronize_net);
9868
9869 /**
9870  *      unregister_netdevice_queue - remove device from the kernel
9871  *      @dev: device
9872  *      @head: list
9873  *
9874  *      This function shuts down a device interface and removes it
9875  *      from the kernel tables.
9876  *      If head not NULL, device is queued to be unregistered later.
9877  *
9878  *      Callers must hold the rtnl semaphore.  You may want
9879  *      unregister_netdev() instead of this.
9880  */
9881
9882 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
9883 {
9884         ASSERT_RTNL();
9885
9886         if (head) {
9887                 list_move_tail(&dev->unreg_list, head);
9888         } else {
9889                 rollback_registered(dev);
9890                 /* Finish processing unregister after unlock */
9891                 net_set_todo(dev);
9892         }
9893 }
9894 EXPORT_SYMBOL(unregister_netdevice_queue);
9895
9896 /**
9897  *      unregister_netdevice_many - unregister many devices
9898  *      @head: list of devices
9899  *
9900  *  Note: As most callers use a stack allocated list_head,
9901  *  we force a list_del() to make sure stack wont be corrupted later.
9902  */
9903 void unregister_netdevice_many(struct list_head *head)
9904 {
9905         struct net_device *dev;
9906
9907         if (!list_empty(head)) {
9908                 rollback_registered_many(head);
9909                 list_for_each_entry(dev, head, unreg_list)
9910                         net_set_todo(dev);
9911                 list_del(head);
9912         }
9913 }
9914 EXPORT_SYMBOL(unregister_netdevice_many);
9915
9916 /**
9917  *      unregister_netdev - remove device from the kernel
9918  *      @dev: device
9919  *
9920  *      This function shuts down a device interface and removes it
9921  *      from the kernel tables.
9922  *
9923  *      This is just a wrapper for unregister_netdevice that takes
9924  *      the rtnl semaphore.  In general you want to use this and not
9925  *      unregister_netdevice.
9926  */
9927 void unregister_netdev(struct net_device *dev)
9928 {
9929         rtnl_lock();
9930         unregister_netdevice(dev);
9931         rtnl_unlock();
9932 }
9933 EXPORT_SYMBOL(unregister_netdev);
9934
9935 /**
9936  *      dev_change_net_namespace - move device to different nethost namespace
9937  *      @dev: device
9938  *      @net: network namespace
9939  *      @pat: If not NULL name pattern to try if the current device name
9940  *            is already taken in the destination network namespace.
9941  *
9942  *      This function shuts down a device interface and moves it
9943  *      to a new network namespace. On success 0 is returned, on
9944  *      a failure a netagive errno code is returned.
9945  *
9946  *      Callers must hold the rtnl semaphore.
9947  */
9948
9949 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
9950 {
9951         int err, new_nsid, new_ifindex;
9952
9953         ASSERT_RTNL();
9954
9955         /* Don't allow namespace local devices to be moved. */
9956         err = -EINVAL;
9957         if (dev->features & NETIF_F_NETNS_LOCAL)
9958                 goto out;
9959
9960         /* Ensure the device has been registrered */
9961         if (dev->reg_state != NETREG_REGISTERED)
9962                 goto out;
9963
9964         /* Get out if there is nothing todo */
9965         err = 0;
9966         if (net_eq(dev_net(dev), net))
9967                 goto out;
9968
9969         /* Pick the destination device name, and ensure
9970          * we can use it in the destination network namespace.
9971          */
9972         err = -EEXIST;
9973         if (__dev_get_by_name(net, dev->name)) {
9974                 /* We get here if we can't use the current device name */
9975                 if (!pat)
9976                         goto out;
9977                 err = dev_get_valid_name(net, dev, pat);
9978                 if (err < 0)
9979                         goto out;
9980         }
9981
9982         /*
9983          * And now a mini version of register_netdevice unregister_netdevice.
9984          */
9985
9986         /* If device is running close it first. */
9987         dev_close(dev);
9988
9989         /* And unlink it from device chain */
9990         unlist_netdevice(dev);
9991
9992         synchronize_net();
9993
9994         /* Shutdown queueing discipline. */
9995         dev_shutdown(dev);
9996
9997         /* Notify protocols, that we are about to destroy
9998          * this device. They should clean all the things.
9999          *
10000          * Note that dev->reg_state stays at NETREG_REGISTERED.
10001          * This is wanted because this way 8021q and macvlan know
10002          * the device is just moving and can keep their slaves up.
10003          */
10004         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10005         rcu_barrier();
10006
10007         new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10008         /* If there is an ifindex conflict assign a new one */
10009         if (__dev_get_by_index(net, dev->ifindex))
10010                 new_ifindex = dev_new_index(net);
10011         else
10012                 new_ifindex = dev->ifindex;
10013
10014         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10015                             new_ifindex);
10016
10017         /*
10018          *      Flush the unicast and multicast chains
10019          */
10020         dev_uc_flush(dev);
10021         dev_mc_flush(dev);
10022
10023         /* Send a netdev-removed uevent to the old namespace */
10024         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
10025         netdev_adjacent_del_links(dev);
10026
10027         /* Actually switch the network namespace */
10028         dev_net_set(dev, net);
10029         dev->ifindex = new_ifindex;
10030
10031         /* Send a netdev-add uevent to the new namespace */
10032         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
10033         netdev_adjacent_add_links(dev);
10034
10035         /* Fixup kobjects */
10036         err = device_rename(&dev->dev, dev->name);
10037         WARN_ON(err);
10038
10039         /* Add the device back in the hashes */
10040         list_netdevice(dev);
10041
10042         /* Notify protocols, that a new device appeared. */
10043         call_netdevice_notifiers(NETDEV_REGISTER, dev);
10044
10045         /*
10046          *      Prevent userspace races by waiting until the network
10047          *      device is fully setup before sending notifications.
10048          */
10049         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10050
10051         synchronize_net();
10052         err = 0;
10053 out:
10054         return err;
10055 }
10056 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
10057
10058 static int dev_cpu_dead(unsigned int oldcpu)
10059 {
10060         struct sk_buff **list_skb;
10061         struct sk_buff *skb;
10062         unsigned int cpu;
10063         struct softnet_data *sd, *oldsd, *remsd = NULL;
10064
10065         local_irq_disable();
10066         cpu = smp_processor_id();
10067         sd = &per_cpu(softnet_data, cpu);
10068         oldsd = &per_cpu(softnet_data, oldcpu);
10069
10070         /* Find end of our completion_queue. */
10071         list_skb = &sd->completion_queue;
10072         while (*list_skb)
10073                 list_skb = &(*list_skb)->next;
10074         /* Append completion queue from offline CPU. */
10075         *list_skb = oldsd->completion_queue;
10076         oldsd->completion_queue = NULL;
10077
10078         /* Append output queue from offline CPU. */
10079         if (oldsd->output_queue) {
10080                 *sd->output_queue_tailp = oldsd->output_queue;
10081                 sd->output_queue_tailp = oldsd->output_queue_tailp;
10082                 oldsd->output_queue = NULL;
10083                 oldsd->output_queue_tailp = &oldsd->output_queue;
10084         }
10085         /* Append NAPI poll list from offline CPU, with one exception :
10086          * process_backlog() must be called by cpu owning percpu backlog.
10087          * We properly handle process_queue & input_pkt_queue later.
10088          */
10089         while (!list_empty(&oldsd->poll_list)) {
10090                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10091                                                             struct napi_struct,
10092                                                             poll_list);
10093
10094                 list_del_init(&napi->poll_list);
10095                 if (napi->poll == process_backlog)
10096                         napi->state = 0;
10097                 else
10098                         ____napi_schedule(sd, napi);
10099         }
10100
10101         raise_softirq_irqoff(NET_TX_SOFTIRQ);
10102         local_irq_enable();
10103
10104 #ifdef CONFIG_RPS
10105         remsd = oldsd->rps_ipi_list;
10106         oldsd->rps_ipi_list = NULL;
10107 #endif
10108         /* send out pending IPI's on offline CPU */
10109         net_rps_send_ipi(remsd);
10110
10111         /* Process offline CPU's input_pkt_queue */
10112         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
10113                 netif_rx_ni(skb);
10114                 input_queue_head_incr(oldsd);
10115         }
10116         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
10117                 netif_rx_ni(skb);
10118                 input_queue_head_incr(oldsd);
10119         }
10120
10121         return 0;
10122 }
10123
10124 /**
10125  *      netdev_increment_features - increment feature set by one
10126  *      @all: current feature set
10127  *      @one: new feature set
10128  *      @mask: mask feature set
10129  *
10130  *      Computes a new feature set after adding a device with feature set
10131  *      @one to the master device with current feature set @all.  Will not
10132  *      enable anything that is off in @mask. Returns the new feature set.
10133  */
10134 netdev_features_t netdev_increment_features(netdev_features_t all,
10135         netdev_features_t one, netdev_features_t mask)
10136 {
10137         if (mask & NETIF_F_HW_CSUM)
10138                 mask |= NETIF_F_CSUM_MASK;
10139         mask |= NETIF_F_VLAN_CHALLENGED;
10140
10141         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
10142         all &= one | ~NETIF_F_ALL_FOR_ALL;
10143
10144         /* If one device supports hw checksumming, set for all. */
10145         if (all & NETIF_F_HW_CSUM)
10146                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
10147
10148         return all;
10149 }
10150 EXPORT_SYMBOL(netdev_increment_features);
10151
10152 static struct hlist_head * __net_init netdev_create_hash(void)
10153 {
10154         int i;
10155         struct hlist_head *hash;
10156
10157         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
10158         if (hash != NULL)
10159                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
10160                         INIT_HLIST_HEAD(&hash[i]);
10161
10162         return hash;
10163 }
10164
10165 /* Initialize per network namespace state */
10166 static int __net_init netdev_init(struct net *net)
10167 {
10168         BUILD_BUG_ON(GRO_HASH_BUCKETS >
10169                      8 * sizeof_field(struct napi_struct, gro_bitmask));
10170
10171         if (net != &init_net)
10172                 INIT_LIST_HEAD(&net->dev_base_head);
10173
10174         net->dev_name_head = netdev_create_hash();
10175         if (net->dev_name_head == NULL)
10176                 goto err_name;
10177
10178         net->dev_index_head = netdev_create_hash();
10179         if (net->dev_index_head == NULL)
10180                 goto err_idx;
10181
10182         RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
10183
10184         return 0;
10185
10186 err_idx:
10187         kfree(net->dev_name_head);
10188 err_name:
10189         return -ENOMEM;
10190 }
10191
10192 /**
10193  *      netdev_drivername - network driver for the device
10194  *      @dev: network device
10195  *
10196  *      Determine network driver for device.
10197  */
10198 const char *netdev_drivername(const struct net_device *dev)
10199 {
10200         const struct device_driver *driver;
10201         const struct device *parent;
10202         const char *empty = "";
10203
10204         parent = dev->dev.parent;
10205         if (!parent)
10206                 return empty;
10207
10208         driver = parent->driver;
10209         if (driver && driver->name)
10210                 return driver->name;
10211         return empty;
10212 }
10213
10214 static void __netdev_printk(const char *level, const struct net_device *dev,
10215                             struct va_format *vaf)
10216 {
10217         if (dev && dev->dev.parent) {
10218                 dev_printk_emit(level[1] - '0',
10219                                 dev->dev.parent,
10220                                 "%s %s %s%s: %pV",
10221                                 dev_driver_string(dev->dev.parent),
10222                                 dev_name(dev->dev.parent),
10223                                 netdev_name(dev), netdev_reg_state(dev),
10224                                 vaf);
10225         } else if (dev) {
10226                 printk("%s%s%s: %pV",
10227                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
10228         } else {
10229                 printk("%s(NULL net_device): %pV", level, vaf);
10230         }
10231 }
10232
10233 void netdev_printk(const char *level, const struct net_device *dev,
10234                    const char *format, ...)
10235 {
10236         struct va_format vaf;
10237         va_list args;
10238
10239         va_start(args, format);
10240
10241         vaf.fmt = format;
10242         vaf.va = &args;
10243
10244         __netdev_printk(level, dev, &vaf);
10245
10246         va_end(args);
10247 }
10248 EXPORT_SYMBOL(netdev_printk);
10249
10250 #define define_netdev_printk_level(func, level)                 \
10251 void func(const struct net_device *dev, const char *fmt, ...)   \
10252 {                                                               \
10253         struct va_format vaf;                                   \
10254         va_list args;                                           \
10255                                                                 \
10256         va_start(args, fmt);                                    \
10257                                                                 \
10258         vaf.fmt = fmt;                                          \
10259         vaf.va = &args;                                         \
10260                                                                 \
10261         __netdev_printk(level, dev, &vaf);                      \
10262                                                                 \
10263         va_end(args);                                           \
10264 }                                                               \
10265 EXPORT_SYMBOL(func);
10266
10267 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
10268 define_netdev_printk_level(netdev_alert, KERN_ALERT);
10269 define_netdev_printk_level(netdev_crit, KERN_CRIT);
10270 define_netdev_printk_level(netdev_err, KERN_ERR);
10271 define_netdev_printk_level(netdev_warn, KERN_WARNING);
10272 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
10273 define_netdev_printk_level(netdev_info, KERN_INFO);
10274
10275 static void __net_exit netdev_exit(struct net *net)
10276 {
10277         kfree(net->dev_name_head);
10278         kfree(net->dev_index_head);
10279         if (net != &init_net)
10280                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
10281 }
10282
10283 static struct pernet_operations __net_initdata netdev_net_ops = {
10284         .init = netdev_init,
10285         .exit = netdev_exit,
10286 };
10287
10288 static void __net_exit default_device_exit(struct net *net)
10289 {
10290         struct net_device *dev, *aux;
10291         /*
10292          * Push all migratable network devices back to the
10293          * initial network namespace
10294          */
10295         rtnl_lock();
10296         for_each_netdev_safe(net, dev, aux) {
10297                 int err;
10298                 char fb_name[IFNAMSIZ];
10299
10300                 /* Ignore unmoveable devices (i.e. loopback) */
10301                 if (dev->features & NETIF_F_NETNS_LOCAL)
10302                         continue;
10303
10304                 /* Leave virtual devices for the generic cleanup */
10305                 if (dev->rtnl_link_ops)
10306                         continue;
10307
10308                 /* Push remaining network devices to init_net */
10309                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
10310                 if (__dev_get_by_name(&init_net, fb_name))
10311                         snprintf(fb_name, IFNAMSIZ, "dev%%d");
10312                 err = dev_change_net_namespace(dev, &init_net, fb_name);
10313                 if (err) {
10314                         pr_emerg("%s: failed to move %s to init_net: %d\n",
10315                                  __func__, dev->name, err);
10316                         BUG();
10317                 }
10318         }
10319         rtnl_unlock();
10320 }
10321
10322 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
10323 {
10324         /* Return with the rtnl_lock held when there are no network
10325          * devices unregistering in any network namespace in net_list.
10326          */
10327         struct net *net;
10328         bool unregistering;
10329         DEFINE_WAIT_FUNC(wait, woken_wake_function);
10330
10331         add_wait_queue(&netdev_unregistering_wq, &wait);
10332         for (;;) {
10333                 unregistering = false;
10334                 rtnl_lock();
10335                 list_for_each_entry(net, net_list, exit_list) {
10336                         if (net->dev_unreg_count > 0) {
10337                                 unregistering = true;
10338                                 break;
10339                         }
10340                 }
10341                 if (!unregistering)
10342                         break;
10343                 __rtnl_unlock();
10344
10345                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
10346         }
10347         remove_wait_queue(&netdev_unregistering_wq, &wait);
10348 }
10349
10350 static void __net_exit default_device_exit_batch(struct list_head *net_list)
10351 {
10352         /* At exit all network devices most be removed from a network
10353          * namespace.  Do this in the reverse order of registration.
10354          * Do this across as many network namespaces as possible to
10355          * improve batching efficiency.
10356          */
10357         struct net_device *dev;
10358         struct net *net;
10359         LIST_HEAD(dev_kill_list);
10360
10361         /* To prevent network device cleanup code from dereferencing
10362          * loopback devices or network devices that have been freed
10363          * wait here for all pending unregistrations to complete,
10364          * before unregistring the loopback device and allowing the
10365          * network namespace be freed.
10366          *
10367          * The netdev todo list containing all network devices
10368          * unregistrations that happen in default_device_exit_batch
10369          * will run in the rtnl_unlock() at the end of
10370          * default_device_exit_batch.
10371          */
10372         rtnl_lock_unregistering(net_list);
10373         list_for_each_entry(net, net_list, exit_list) {
10374                 for_each_netdev_reverse(net, dev) {
10375                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
10376                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
10377                         else
10378                                 unregister_netdevice_queue(dev, &dev_kill_list);
10379                 }
10380         }
10381         unregister_netdevice_many(&dev_kill_list);
10382         rtnl_unlock();
10383 }
10384
10385 static struct pernet_operations __net_initdata default_device_ops = {
10386         .exit = default_device_exit,
10387         .exit_batch = default_device_exit_batch,
10388 };
10389
10390 /*
10391  *      Initialize the DEV module. At boot time this walks the device list and
10392  *      unhooks any devices that fail to initialise (normally hardware not
10393  *      present) and leaves us with a valid list of present and active devices.
10394  *
10395  */
10396
10397 /*
10398  *       This is called single threaded during boot, so no need
10399  *       to take the rtnl semaphore.
10400  */
10401 static int __init net_dev_init(void)
10402 {
10403         int i, rc = -ENOMEM;
10404
10405         BUG_ON(!dev_boot_phase);
10406
10407         if (dev_proc_init())
10408                 goto out;
10409
10410         if (netdev_kobject_init())
10411                 goto out;
10412
10413         INIT_LIST_HEAD(&ptype_all);
10414         for (i = 0; i < PTYPE_HASH_SIZE; i++)
10415                 INIT_LIST_HEAD(&ptype_base[i]);
10416
10417         INIT_LIST_HEAD(&offload_base);
10418
10419         if (register_pernet_subsys(&netdev_net_ops))
10420                 goto out;
10421
10422         /*
10423          *      Initialise the packet receive queues.
10424          */
10425
10426         for_each_possible_cpu(i) {
10427                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
10428                 struct softnet_data *sd = &per_cpu(softnet_data, i);
10429
10430                 INIT_WORK(flush, flush_backlog);
10431
10432                 skb_queue_head_init(&sd->input_pkt_queue);
10433                 skb_queue_head_init(&sd->process_queue);
10434 #ifdef CONFIG_XFRM_OFFLOAD
10435                 skb_queue_head_init(&sd->xfrm_backlog);
10436 #endif
10437                 INIT_LIST_HEAD(&sd->poll_list);
10438                 sd->output_queue_tailp = &sd->output_queue;
10439 #ifdef CONFIG_RPS
10440                 sd->csd.func = rps_trigger_softirq;
10441                 sd->csd.info = sd;
10442                 sd->cpu = i;
10443 #endif
10444
10445                 init_gro_hash(&sd->backlog);
10446                 sd->backlog.poll = process_backlog;
10447                 sd->backlog.weight = weight_p;
10448         }
10449
10450         dev_boot_phase = 0;
10451
10452         /* The loopback device is special if any other network devices
10453          * is present in a network namespace the loopback device must
10454          * be present. Since we now dynamically allocate and free the
10455          * loopback device ensure this invariant is maintained by
10456          * keeping the loopback device as the first device on the
10457          * list of network devices.  Ensuring the loopback devices
10458          * is the first device that appears and the last network device
10459          * that disappears.
10460          */
10461         if (register_pernet_device(&loopback_net_ops))
10462                 goto out;
10463
10464         if (register_pernet_device(&default_device_ops))
10465                 goto out;
10466
10467         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
10468         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
10469
10470         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
10471                                        NULL, dev_cpu_dead);
10472         WARN_ON(rc < 0);
10473         rc = 0;
10474 out:
10475         return rc;
10476 }
10477
10478 subsys_initcall(net_dev_init);