Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma
[linux-2.6-microblaze.git] / net / core / dev.c
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *              This program is free software; you can redistribute it and/or
5  *              modify it under the terms of the GNU General Public License
6  *              as published by the Free Software Foundation; either version
7  *              2 of the License, or (at your option) any later version.
8  *
9  *      Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:        Ross Biro
11  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *      Additional Authors:
15  *              Florian la Roche <rzsfl@rz.uni-sb.de>
16  *              Alan Cox <gw4pts@gw4pts.ampr.org>
17  *              David Hinds <dahinds@users.sourceforge.net>
18  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *              Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *      Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *              Alan Cox        :       device private ioctl copies fields back.
28  *              Alan Cox        :       Transmit queue code does relevant
29  *                                      stunts to keep the queue safe.
30  *              Alan Cox        :       Fixed double lock.
31  *              Alan Cox        :       Fixed promisc NULL pointer trap
32  *              ????????        :       Support the full private ioctl range
33  *              Alan Cox        :       Moved ioctl permission check into
34  *                                      drivers
35  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
36  *              Alan Cox        :       100 backlog just doesn't cut it when
37  *                                      you start doing multicast video 8)
38  *              Alan Cox        :       Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *              Alan Cox        :       Took out transmit every packet pass
41  *                                      Saved a few bytes in the ioctl handler
42  *              Alan Cox        :       Network driver sets packet type before
43  *                                      calling netif_rx. Saves a function
44  *                                      call a packet.
45  *              Alan Cox        :       Hashed net_bh()
46  *              Richard Kooijman:       Timestamp fixes.
47  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
48  *              Alan Cox        :       Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *                                      changes.
51  *              Rudi Cilibrasi  :       Pass the right thing to
52  *                                      set_mac_address()
53  *              Dave Miller     :       32bit quantity for the device lock to
54  *                                      make it work out on a Sparc.
55  *              Bjorn Ekwall    :       Added KERNELD hack.
56  *              Alan Cox        :       Cleaned up the backlog initialise.
57  *              Craig Metz      :       SIOCGIFCONF fix if space for under
58  *                                      1 device.
59  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
60  *                                      is no device open function.
61  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
62  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
63  *              Cyrus Durgin    :       Cleaned for KMOD
64  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
65  *                                      A network device unload needs to purge
66  *                                      the backlog queue.
67  *      Paul Rusty Russell      :       SIOCSIFNAME
68  *              Pekka Riikonen  :       Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *                                      - netif_rx() feedback
73  */
74
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dst.h>
106 #include <net/dst_metadata.h>
107 #include <net/pkt_sched.h>
108 #include <net/pkt_cls.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <linux/pci.h>
136 #include <linux/inetdevice.h>
137 #include <linux/cpu_rmap.h>
138 #include <linux/static_key.h>
139 #include <linux/hashtable.h>
140 #include <linux/vmalloc.h>
141 #include <linux/if_macvlan.h>
142 #include <linux/errqueue.h>
143 #include <linux/hrtimer.h>
144 #include <linux/netfilter_ingress.h>
145 #include <linux/crash_dump.h>
146 #include <linux/sctp.h>
147 #include <net/udp_tunnel.h>
148 #include <linux/net_namespace.h>
149
150 #include "net-sysfs.h"
151
152 /* Instead of increasing this, you should create a hash table. */
153 #define MAX_GRO_SKBS 8
154
155 /* This should be increased if a protocol with a bigger head is added. */
156 #define GRO_MAX_HEAD (MAX_HEADER + 128)
157
158 static DEFINE_SPINLOCK(ptype_lock);
159 static DEFINE_SPINLOCK(offload_lock);
160 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
161 struct list_head ptype_all __read_mostly;       /* Taps */
162 static struct list_head offload_base __read_mostly;
163
164 static int netif_rx_internal(struct sk_buff *skb);
165 static int call_netdevice_notifiers_info(unsigned long val,
166                                          struct netdev_notifier_info *info);
167 static struct napi_struct *napi_by_id(unsigned int napi_id);
168
169 /*
170  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
171  * semaphore.
172  *
173  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
174  *
175  * Writers must hold the rtnl semaphore while they loop through the
176  * dev_base_head list, and hold dev_base_lock for writing when they do the
177  * actual updates.  This allows pure readers to access the list even
178  * while a writer is preparing to update it.
179  *
180  * To put it another way, dev_base_lock is held for writing only to
181  * protect against pure readers; the rtnl semaphore provides the
182  * protection against other writers.
183  *
184  * See, for example usages, register_netdevice() and
185  * unregister_netdevice(), which must be called with the rtnl
186  * semaphore held.
187  */
188 DEFINE_RWLOCK(dev_base_lock);
189 EXPORT_SYMBOL(dev_base_lock);
190
191 static DEFINE_MUTEX(ifalias_mutex);
192
193 /* protects napi_hash addition/deletion and napi_gen_id */
194 static DEFINE_SPINLOCK(napi_hash_lock);
195
196 static unsigned int napi_gen_id = NR_CPUS;
197 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
198
199 static seqcount_t devnet_rename_seq;
200
201 static inline void dev_base_seq_inc(struct net *net)
202 {
203         while (++net->dev_base_seq == 0)
204                 ;
205 }
206
207 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
208 {
209         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
210
211         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
212 }
213
214 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
215 {
216         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
217 }
218
219 static inline void rps_lock(struct softnet_data *sd)
220 {
221 #ifdef CONFIG_RPS
222         spin_lock(&sd->input_pkt_queue.lock);
223 #endif
224 }
225
226 static inline void rps_unlock(struct softnet_data *sd)
227 {
228 #ifdef CONFIG_RPS
229         spin_unlock(&sd->input_pkt_queue.lock);
230 #endif
231 }
232
233 /* Device list insertion */
234 static void list_netdevice(struct net_device *dev)
235 {
236         struct net *net = dev_net(dev);
237
238         ASSERT_RTNL();
239
240         write_lock_bh(&dev_base_lock);
241         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
242         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
243         hlist_add_head_rcu(&dev->index_hlist,
244                            dev_index_hash(net, dev->ifindex));
245         write_unlock_bh(&dev_base_lock);
246
247         dev_base_seq_inc(net);
248 }
249
250 /* Device list removal
251  * caller must respect a RCU grace period before freeing/reusing dev
252  */
253 static void unlist_netdevice(struct net_device *dev)
254 {
255         ASSERT_RTNL();
256
257         /* Unlink dev from the device chain */
258         write_lock_bh(&dev_base_lock);
259         list_del_rcu(&dev->dev_list);
260         hlist_del_rcu(&dev->name_hlist);
261         hlist_del_rcu(&dev->index_hlist);
262         write_unlock_bh(&dev_base_lock);
263
264         dev_base_seq_inc(dev_net(dev));
265 }
266
267 /*
268  *      Our notifier list
269  */
270
271 static RAW_NOTIFIER_HEAD(netdev_chain);
272
273 /*
274  *      Device drivers call our routines to queue packets here. We empty the
275  *      queue in the local softnet handler.
276  */
277
278 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
279 EXPORT_PER_CPU_SYMBOL(softnet_data);
280
281 #ifdef CONFIG_LOCKDEP
282 /*
283  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
284  * according to dev->type
285  */
286 static const unsigned short netdev_lock_type[] = {
287          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
288          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
289          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
290          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
291          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
292          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
293          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
294          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
295          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
296          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
297          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
298          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
299          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
300          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
301          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
302
303 static const char *const netdev_lock_name[] = {
304         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
305         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
306         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
307         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
308         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
309         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
310         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
311         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
312         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
313         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
314         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
315         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
316         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
317         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
318         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
319
320 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
321 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
322
323 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
324 {
325         int i;
326
327         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
328                 if (netdev_lock_type[i] == dev_type)
329                         return i;
330         /* the last key is used by default */
331         return ARRAY_SIZE(netdev_lock_type) - 1;
332 }
333
334 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
335                                                  unsigned short dev_type)
336 {
337         int i;
338
339         i = netdev_lock_pos(dev_type);
340         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
341                                    netdev_lock_name[i]);
342 }
343
344 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
345 {
346         int i;
347
348         i = netdev_lock_pos(dev->type);
349         lockdep_set_class_and_name(&dev->addr_list_lock,
350                                    &netdev_addr_lock_key[i],
351                                    netdev_lock_name[i]);
352 }
353 #else
354 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
355                                                  unsigned short dev_type)
356 {
357 }
358 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
359 {
360 }
361 #endif
362
363 /*******************************************************************************
364  *
365  *              Protocol management and registration routines
366  *
367  *******************************************************************************/
368
369
370 /*
371  *      Add a protocol ID to the list. Now that the input handler is
372  *      smarter we can dispense with all the messy stuff that used to be
373  *      here.
374  *
375  *      BEWARE!!! Protocol handlers, mangling input packets,
376  *      MUST BE last in hash buckets and checking protocol handlers
377  *      MUST start from promiscuous ptype_all chain in net_bh.
378  *      It is true now, do not change it.
379  *      Explanation follows: if protocol handler, mangling packet, will
380  *      be the first on list, it is not able to sense, that packet
381  *      is cloned and should be copied-on-write, so that it will
382  *      change it and subsequent readers will get broken packet.
383  *                                                      --ANK (980803)
384  */
385
386 static inline struct list_head *ptype_head(const struct packet_type *pt)
387 {
388         if (pt->type == htons(ETH_P_ALL))
389                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
390         else
391                 return pt->dev ? &pt->dev->ptype_specific :
392                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
393 }
394
395 /**
396  *      dev_add_pack - add packet handler
397  *      @pt: packet type declaration
398  *
399  *      Add a protocol handler to the networking stack. The passed &packet_type
400  *      is linked into kernel lists and may not be freed until it has been
401  *      removed from the kernel lists.
402  *
403  *      This call does not sleep therefore it can not
404  *      guarantee all CPU's that are in middle of receiving packets
405  *      will see the new packet type (until the next received packet).
406  */
407
408 void dev_add_pack(struct packet_type *pt)
409 {
410         struct list_head *head = ptype_head(pt);
411
412         spin_lock(&ptype_lock);
413         list_add_rcu(&pt->list, head);
414         spin_unlock(&ptype_lock);
415 }
416 EXPORT_SYMBOL(dev_add_pack);
417
418 /**
419  *      __dev_remove_pack        - remove packet handler
420  *      @pt: packet type declaration
421  *
422  *      Remove a protocol handler that was previously added to the kernel
423  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
424  *      from the kernel lists and can be freed or reused once this function
425  *      returns.
426  *
427  *      The packet type might still be in use by receivers
428  *      and must not be freed until after all the CPU's have gone
429  *      through a quiescent state.
430  */
431 void __dev_remove_pack(struct packet_type *pt)
432 {
433         struct list_head *head = ptype_head(pt);
434         struct packet_type *pt1;
435
436         spin_lock(&ptype_lock);
437
438         list_for_each_entry(pt1, head, list) {
439                 if (pt == pt1) {
440                         list_del_rcu(&pt->list);
441                         goto out;
442                 }
443         }
444
445         pr_warn("dev_remove_pack: %p not found\n", pt);
446 out:
447         spin_unlock(&ptype_lock);
448 }
449 EXPORT_SYMBOL(__dev_remove_pack);
450
451 /**
452  *      dev_remove_pack  - remove packet handler
453  *      @pt: packet type declaration
454  *
455  *      Remove a protocol handler that was previously added to the kernel
456  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
457  *      from the kernel lists and can be freed or reused once this function
458  *      returns.
459  *
460  *      This call sleeps to guarantee that no CPU is looking at the packet
461  *      type after return.
462  */
463 void dev_remove_pack(struct packet_type *pt)
464 {
465         __dev_remove_pack(pt);
466
467         synchronize_net();
468 }
469 EXPORT_SYMBOL(dev_remove_pack);
470
471
472 /**
473  *      dev_add_offload - register offload handlers
474  *      @po: protocol offload declaration
475  *
476  *      Add protocol offload handlers to the networking stack. The passed
477  *      &proto_offload is linked into kernel lists and may not be freed until
478  *      it has been removed from the kernel lists.
479  *
480  *      This call does not sleep therefore it can not
481  *      guarantee all CPU's that are in middle of receiving packets
482  *      will see the new offload handlers (until the next received packet).
483  */
484 void dev_add_offload(struct packet_offload *po)
485 {
486         struct packet_offload *elem;
487
488         spin_lock(&offload_lock);
489         list_for_each_entry(elem, &offload_base, list) {
490                 if (po->priority < elem->priority)
491                         break;
492         }
493         list_add_rcu(&po->list, elem->list.prev);
494         spin_unlock(&offload_lock);
495 }
496 EXPORT_SYMBOL(dev_add_offload);
497
498 /**
499  *      __dev_remove_offload     - remove offload handler
500  *      @po: packet offload declaration
501  *
502  *      Remove a protocol offload handler that was previously added to the
503  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
504  *      is removed from the kernel lists and can be freed or reused once this
505  *      function returns.
506  *
507  *      The packet type might still be in use by receivers
508  *      and must not be freed until after all the CPU's have gone
509  *      through a quiescent state.
510  */
511 static void __dev_remove_offload(struct packet_offload *po)
512 {
513         struct list_head *head = &offload_base;
514         struct packet_offload *po1;
515
516         spin_lock(&offload_lock);
517
518         list_for_each_entry(po1, head, list) {
519                 if (po == po1) {
520                         list_del_rcu(&po->list);
521                         goto out;
522                 }
523         }
524
525         pr_warn("dev_remove_offload: %p not found\n", po);
526 out:
527         spin_unlock(&offload_lock);
528 }
529
530 /**
531  *      dev_remove_offload       - remove packet offload handler
532  *      @po: packet offload declaration
533  *
534  *      Remove a packet offload handler that was previously added to the kernel
535  *      offload handlers by dev_add_offload(). The passed &offload_type is
536  *      removed from the kernel lists and can be freed or reused once this
537  *      function returns.
538  *
539  *      This call sleeps to guarantee that no CPU is looking at the packet
540  *      type after return.
541  */
542 void dev_remove_offload(struct packet_offload *po)
543 {
544         __dev_remove_offload(po);
545
546         synchronize_net();
547 }
548 EXPORT_SYMBOL(dev_remove_offload);
549
550 /******************************************************************************
551  *
552  *                    Device Boot-time Settings Routines
553  *
554  ******************************************************************************/
555
556 /* Boot time configuration table */
557 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
558
559 /**
560  *      netdev_boot_setup_add   - add new setup entry
561  *      @name: name of the device
562  *      @map: configured settings for the device
563  *
564  *      Adds new setup entry to the dev_boot_setup list.  The function
565  *      returns 0 on error and 1 on success.  This is a generic routine to
566  *      all netdevices.
567  */
568 static int netdev_boot_setup_add(char *name, struct ifmap *map)
569 {
570         struct netdev_boot_setup *s;
571         int i;
572
573         s = dev_boot_setup;
574         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
575                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
576                         memset(s[i].name, 0, sizeof(s[i].name));
577                         strlcpy(s[i].name, name, IFNAMSIZ);
578                         memcpy(&s[i].map, map, sizeof(s[i].map));
579                         break;
580                 }
581         }
582
583         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
584 }
585
586 /**
587  * netdev_boot_setup_check      - check boot time settings
588  * @dev: the netdevice
589  *
590  * Check boot time settings for the device.
591  * The found settings are set for the device to be used
592  * later in the device probing.
593  * Returns 0 if no settings found, 1 if they are.
594  */
595 int netdev_boot_setup_check(struct net_device *dev)
596 {
597         struct netdev_boot_setup *s = dev_boot_setup;
598         int i;
599
600         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
601                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
602                     !strcmp(dev->name, s[i].name)) {
603                         dev->irq = s[i].map.irq;
604                         dev->base_addr = s[i].map.base_addr;
605                         dev->mem_start = s[i].map.mem_start;
606                         dev->mem_end = s[i].map.mem_end;
607                         return 1;
608                 }
609         }
610         return 0;
611 }
612 EXPORT_SYMBOL(netdev_boot_setup_check);
613
614
615 /**
616  * netdev_boot_base     - get address from boot time settings
617  * @prefix: prefix for network device
618  * @unit: id for network device
619  *
620  * Check boot time settings for the base address of device.
621  * The found settings are set for the device to be used
622  * later in the device probing.
623  * Returns 0 if no settings found.
624  */
625 unsigned long netdev_boot_base(const char *prefix, int unit)
626 {
627         const struct netdev_boot_setup *s = dev_boot_setup;
628         char name[IFNAMSIZ];
629         int i;
630
631         sprintf(name, "%s%d", prefix, unit);
632
633         /*
634          * If device already registered then return base of 1
635          * to indicate not to probe for this interface
636          */
637         if (__dev_get_by_name(&init_net, name))
638                 return 1;
639
640         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
641                 if (!strcmp(name, s[i].name))
642                         return s[i].map.base_addr;
643         return 0;
644 }
645
646 /*
647  * Saves at boot time configured settings for any netdevice.
648  */
649 int __init netdev_boot_setup(char *str)
650 {
651         int ints[5];
652         struct ifmap map;
653
654         str = get_options(str, ARRAY_SIZE(ints), ints);
655         if (!str || !*str)
656                 return 0;
657
658         /* Save settings */
659         memset(&map, 0, sizeof(map));
660         if (ints[0] > 0)
661                 map.irq = ints[1];
662         if (ints[0] > 1)
663                 map.base_addr = ints[2];
664         if (ints[0] > 2)
665                 map.mem_start = ints[3];
666         if (ints[0] > 3)
667                 map.mem_end = ints[4];
668
669         /* Add new entry to the list */
670         return netdev_boot_setup_add(str, &map);
671 }
672
673 __setup("netdev=", netdev_boot_setup);
674
675 /*******************************************************************************
676  *
677  *                          Device Interface Subroutines
678  *
679  *******************************************************************************/
680
681 /**
682  *      dev_get_iflink  - get 'iflink' value of a interface
683  *      @dev: targeted interface
684  *
685  *      Indicates the ifindex the interface is linked to.
686  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
687  */
688
689 int dev_get_iflink(const struct net_device *dev)
690 {
691         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
692                 return dev->netdev_ops->ndo_get_iflink(dev);
693
694         return dev->ifindex;
695 }
696 EXPORT_SYMBOL(dev_get_iflink);
697
698 /**
699  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
700  *      @dev: targeted interface
701  *      @skb: The packet.
702  *
703  *      For better visibility of tunnel traffic OVS needs to retrieve
704  *      egress tunnel information for a packet. Following API allows
705  *      user to get this info.
706  */
707 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
708 {
709         struct ip_tunnel_info *info;
710
711         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
712                 return -EINVAL;
713
714         info = skb_tunnel_info_unclone(skb);
715         if (!info)
716                 return -ENOMEM;
717         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
718                 return -EINVAL;
719
720         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
721 }
722 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
723
724 /**
725  *      __dev_get_by_name       - find a device by its name
726  *      @net: the applicable net namespace
727  *      @name: name to find
728  *
729  *      Find an interface by name. Must be called under RTNL semaphore
730  *      or @dev_base_lock. If the name is found a pointer to the device
731  *      is returned. If the name is not found then %NULL is returned. The
732  *      reference counters are not incremented so the caller must be
733  *      careful with locks.
734  */
735
736 struct net_device *__dev_get_by_name(struct net *net, const char *name)
737 {
738         struct net_device *dev;
739         struct hlist_head *head = dev_name_hash(net, name);
740
741         hlist_for_each_entry(dev, head, name_hlist)
742                 if (!strncmp(dev->name, name, IFNAMSIZ))
743                         return dev;
744
745         return NULL;
746 }
747 EXPORT_SYMBOL(__dev_get_by_name);
748
749 /**
750  * dev_get_by_name_rcu  - find a device by its name
751  * @net: the applicable net namespace
752  * @name: name to find
753  *
754  * Find an interface by name.
755  * If the name is found a pointer to the device is returned.
756  * If the name is not found then %NULL is returned.
757  * The reference counters are not incremented so the caller must be
758  * careful with locks. The caller must hold RCU lock.
759  */
760
761 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
762 {
763         struct net_device *dev;
764         struct hlist_head *head = dev_name_hash(net, name);
765
766         hlist_for_each_entry_rcu(dev, head, name_hlist)
767                 if (!strncmp(dev->name, name, IFNAMSIZ))
768                         return dev;
769
770         return NULL;
771 }
772 EXPORT_SYMBOL(dev_get_by_name_rcu);
773
774 /**
775  *      dev_get_by_name         - find a device by its name
776  *      @net: the applicable net namespace
777  *      @name: name to find
778  *
779  *      Find an interface by name. This can be called from any
780  *      context and does its own locking. The returned handle has
781  *      the usage count incremented and the caller must use dev_put() to
782  *      release it when it is no longer needed. %NULL is returned if no
783  *      matching device is found.
784  */
785
786 struct net_device *dev_get_by_name(struct net *net, const char *name)
787 {
788         struct net_device *dev;
789
790         rcu_read_lock();
791         dev = dev_get_by_name_rcu(net, name);
792         if (dev)
793                 dev_hold(dev);
794         rcu_read_unlock();
795         return dev;
796 }
797 EXPORT_SYMBOL(dev_get_by_name);
798
799 /**
800  *      __dev_get_by_index - find a device by its ifindex
801  *      @net: the applicable net namespace
802  *      @ifindex: index of device
803  *
804  *      Search for an interface by index. Returns %NULL if the device
805  *      is not found or a pointer to the device. The device has not
806  *      had its reference counter increased so the caller must be careful
807  *      about locking. The caller must hold either the RTNL semaphore
808  *      or @dev_base_lock.
809  */
810
811 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
812 {
813         struct net_device *dev;
814         struct hlist_head *head = dev_index_hash(net, ifindex);
815
816         hlist_for_each_entry(dev, head, index_hlist)
817                 if (dev->ifindex == ifindex)
818                         return dev;
819
820         return NULL;
821 }
822 EXPORT_SYMBOL(__dev_get_by_index);
823
824 /**
825  *      dev_get_by_index_rcu - find a device by its ifindex
826  *      @net: the applicable net namespace
827  *      @ifindex: index of device
828  *
829  *      Search for an interface by index. Returns %NULL if the device
830  *      is not found or a pointer to the device. The device has not
831  *      had its reference counter increased so the caller must be careful
832  *      about locking. The caller must hold RCU lock.
833  */
834
835 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
836 {
837         struct net_device *dev;
838         struct hlist_head *head = dev_index_hash(net, ifindex);
839
840         hlist_for_each_entry_rcu(dev, head, index_hlist)
841                 if (dev->ifindex == ifindex)
842                         return dev;
843
844         return NULL;
845 }
846 EXPORT_SYMBOL(dev_get_by_index_rcu);
847
848
849 /**
850  *      dev_get_by_index - find a device by its ifindex
851  *      @net: the applicable net namespace
852  *      @ifindex: index of device
853  *
854  *      Search for an interface by index. Returns NULL if the device
855  *      is not found or a pointer to the device. The device returned has
856  *      had a reference added and the pointer is safe until the user calls
857  *      dev_put to indicate they have finished with it.
858  */
859
860 struct net_device *dev_get_by_index(struct net *net, int ifindex)
861 {
862         struct net_device *dev;
863
864         rcu_read_lock();
865         dev = dev_get_by_index_rcu(net, ifindex);
866         if (dev)
867                 dev_hold(dev);
868         rcu_read_unlock();
869         return dev;
870 }
871 EXPORT_SYMBOL(dev_get_by_index);
872
873 /**
874  *      dev_get_by_napi_id - find a device by napi_id
875  *      @napi_id: ID of the NAPI struct
876  *
877  *      Search for an interface by NAPI ID. Returns %NULL if the device
878  *      is not found or a pointer to the device. The device has not had
879  *      its reference counter increased so the caller must be careful
880  *      about locking. The caller must hold RCU lock.
881  */
882
883 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
884 {
885         struct napi_struct *napi;
886
887         WARN_ON_ONCE(!rcu_read_lock_held());
888
889         if (napi_id < MIN_NAPI_ID)
890                 return NULL;
891
892         napi = napi_by_id(napi_id);
893
894         return napi ? napi->dev : NULL;
895 }
896 EXPORT_SYMBOL(dev_get_by_napi_id);
897
898 /**
899  *      netdev_get_name - get a netdevice name, knowing its ifindex.
900  *      @net: network namespace
901  *      @name: a pointer to the buffer where the name will be stored.
902  *      @ifindex: the ifindex of the interface to get the name from.
903  *
904  *      The use of raw_seqcount_begin() and cond_resched() before
905  *      retrying is required as we want to give the writers a chance
906  *      to complete when CONFIG_PREEMPT is not set.
907  */
908 int netdev_get_name(struct net *net, char *name, int ifindex)
909 {
910         struct net_device *dev;
911         unsigned int seq;
912
913 retry:
914         seq = raw_seqcount_begin(&devnet_rename_seq);
915         rcu_read_lock();
916         dev = dev_get_by_index_rcu(net, ifindex);
917         if (!dev) {
918                 rcu_read_unlock();
919                 return -ENODEV;
920         }
921
922         strcpy(name, dev->name);
923         rcu_read_unlock();
924         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
925                 cond_resched();
926                 goto retry;
927         }
928
929         return 0;
930 }
931
932 /**
933  *      dev_getbyhwaddr_rcu - find a device by its hardware address
934  *      @net: the applicable net namespace
935  *      @type: media type of device
936  *      @ha: hardware address
937  *
938  *      Search for an interface by MAC address. Returns NULL if the device
939  *      is not found or a pointer to the device.
940  *      The caller must hold RCU or RTNL.
941  *      The returned device has not had its ref count increased
942  *      and the caller must therefore be careful about locking
943  *
944  */
945
946 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
947                                        const char *ha)
948 {
949         struct net_device *dev;
950
951         for_each_netdev_rcu(net, dev)
952                 if (dev->type == type &&
953                     !memcmp(dev->dev_addr, ha, dev->addr_len))
954                         return dev;
955
956         return NULL;
957 }
958 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
959
960 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
961 {
962         struct net_device *dev;
963
964         ASSERT_RTNL();
965         for_each_netdev(net, dev)
966                 if (dev->type == type)
967                         return dev;
968
969         return NULL;
970 }
971 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
972
973 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
974 {
975         struct net_device *dev, *ret = NULL;
976
977         rcu_read_lock();
978         for_each_netdev_rcu(net, dev)
979                 if (dev->type == type) {
980                         dev_hold(dev);
981                         ret = dev;
982                         break;
983                 }
984         rcu_read_unlock();
985         return ret;
986 }
987 EXPORT_SYMBOL(dev_getfirstbyhwtype);
988
989 /**
990  *      __dev_get_by_flags - find any device with given flags
991  *      @net: the applicable net namespace
992  *      @if_flags: IFF_* values
993  *      @mask: bitmask of bits in if_flags to check
994  *
995  *      Search for any interface with the given flags. Returns NULL if a device
996  *      is not found or a pointer to the device. Must be called inside
997  *      rtnl_lock(), and result refcount is unchanged.
998  */
999
1000 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1001                                       unsigned short mask)
1002 {
1003         struct net_device *dev, *ret;
1004
1005         ASSERT_RTNL();
1006
1007         ret = NULL;
1008         for_each_netdev(net, dev) {
1009                 if (((dev->flags ^ if_flags) & mask) == 0) {
1010                         ret = dev;
1011                         break;
1012                 }
1013         }
1014         return ret;
1015 }
1016 EXPORT_SYMBOL(__dev_get_by_flags);
1017
1018 /**
1019  *      dev_valid_name - check if name is okay for network device
1020  *      @name: name string
1021  *
1022  *      Network device names need to be valid file names to
1023  *      to allow sysfs to work.  We also disallow any kind of
1024  *      whitespace.
1025  */
1026 bool dev_valid_name(const char *name)
1027 {
1028         if (*name == '\0')
1029                 return false;
1030         if (strlen(name) >= IFNAMSIZ)
1031                 return false;
1032         if (!strcmp(name, ".") || !strcmp(name, ".."))
1033                 return false;
1034
1035         while (*name) {
1036                 if (*name == '/' || *name == ':' || isspace(*name))
1037                         return false;
1038                 name++;
1039         }
1040         return true;
1041 }
1042 EXPORT_SYMBOL(dev_valid_name);
1043
1044 /**
1045  *      __dev_alloc_name - allocate a name for a device
1046  *      @net: network namespace to allocate the device name in
1047  *      @name: name format string
1048  *      @buf:  scratch buffer and result name string
1049  *
1050  *      Passed a format string - eg "lt%d" it will try and find a suitable
1051  *      id. It scans list of devices to build up a free map, then chooses
1052  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1053  *      while allocating the name and adding the device in order to avoid
1054  *      duplicates.
1055  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1056  *      Returns the number of the unit assigned or a negative errno code.
1057  */
1058
1059 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1060 {
1061         int i = 0;
1062         const char *p;
1063         const int max_netdevices = 8*PAGE_SIZE;
1064         unsigned long *inuse;
1065         struct net_device *d;
1066
1067         if (!dev_valid_name(name))
1068                 return -EINVAL;
1069
1070         p = strchr(name, '%');
1071         if (p) {
1072                 /*
1073                  * Verify the string as this thing may have come from
1074                  * the user.  There must be either one "%d" and no other "%"
1075                  * characters.
1076                  */
1077                 if (p[1] != 'd' || strchr(p + 2, '%'))
1078                         return -EINVAL;
1079
1080                 /* Use one page as a bit array of possible slots */
1081                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1082                 if (!inuse)
1083                         return -ENOMEM;
1084
1085                 for_each_netdev(net, d) {
1086                         if (!sscanf(d->name, name, &i))
1087                                 continue;
1088                         if (i < 0 || i >= max_netdevices)
1089                                 continue;
1090
1091                         /*  avoid cases where sscanf is not exact inverse of printf */
1092                         snprintf(buf, IFNAMSIZ, name, i);
1093                         if (!strncmp(buf, d->name, IFNAMSIZ))
1094                                 set_bit(i, inuse);
1095                 }
1096
1097                 i = find_first_zero_bit(inuse, max_netdevices);
1098                 free_page((unsigned long) inuse);
1099         }
1100
1101         snprintf(buf, IFNAMSIZ, name, i);
1102         if (!__dev_get_by_name(net, buf))
1103                 return i;
1104
1105         /* It is possible to run out of possible slots
1106          * when the name is long and there isn't enough space left
1107          * for the digits, or if all bits are used.
1108          */
1109         return -ENFILE;
1110 }
1111
1112 static int dev_alloc_name_ns(struct net *net,
1113                              struct net_device *dev,
1114                              const char *name)
1115 {
1116         char buf[IFNAMSIZ];
1117         int ret;
1118
1119         BUG_ON(!net);
1120         ret = __dev_alloc_name(net, name, buf);
1121         if (ret >= 0)
1122                 strlcpy(dev->name, buf, IFNAMSIZ);
1123         return ret;
1124 }
1125
1126 /**
1127  *      dev_alloc_name - allocate a name for a device
1128  *      @dev: device
1129  *      @name: name format string
1130  *
1131  *      Passed a format string - eg "lt%d" it will try and find a suitable
1132  *      id. It scans list of devices to build up a free map, then chooses
1133  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1134  *      while allocating the name and adding the device in order to avoid
1135  *      duplicates.
1136  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1137  *      Returns the number of the unit assigned or a negative errno code.
1138  */
1139
1140 int dev_alloc_name(struct net_device *dev, const char *name)
1141 {
1142         return dev_alloc_name_ns(dev_net(dev), dev, name);
1143 }
1144 EXPORT_SYMBOL(dev_alloc_name);
1145
1146 int dev_get_valid_name(struct net *net, struct net_device *dev,
1147                        const char *name)
1148 {
1149         BUG_ON(!net);
1150
1151         if (!dev_valid_name(name))
1152                 return -EINVAL;
1153
1154         if (strchr(name, '%'))
1155                 return dev_alloc_name_ns(net, dev, name);
1156         else if (__dev_get_by_name(net, name))
1157                 return -EEXIST;
1158         else if (dev->name != name)
1159                 strlcpy(dev->name, name, IFNAMSIZ);
1160
1161         return 0;
1162 }
1163 EXPORT_SYMBOL(dev_get_valid_name);
1164
1165 /**
1166  *      dev_change_name - change name of a device
1167  *      @dev: device
1168  *      @newname: name (or format string) must be at least IFNAMSIZ
1169  *
1170  *      Change name of a device, can pass format strings "eth%d".
1171  *      for wildcarding.
1172  */
1173 int dev_change_name(struct net_device *dev, const char *newname)
1174 {
1175         unsigned char old_assign_type;
1176         char oldname[IFNAMSIZ];
1177         int err = 0;
1178         int ret;
1179         struct net *net;
1180
1181         ASSERT_RTNL();
1182         BUG_ON(!dev_net(dev));
1183
1184         net = dev_net(dev);
1185         if (dev->flags & IFF_UP)
1186                 return -EBUSY;
1187
1188         write_seqcount_begin(&devnet_rename_seq);
1189
1190         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1191                 write_seqcount_end(&devnet_rename_seq);
1192                 return 0;
1193         }
1194
1195         memcpy(oldname, dev->name, IFNAMSIZ);
1196
1197         err = dev_get_valid_name(net, dev, newname);
1198         if (err < 0) {
1199                 write_seqcount_end(&devnet_rename_seq);
1200                 return err;
1201         }
1202
1203         if (oldname[0] && !strchr(oldname, '%'))
1204                 netdev_info(dev, "renamed from %s\n", oldname);
1205
1206         old_assign_type = dev->name_assign_type;
1207         dev->name_assign_type = NET_NAME_RENAMED;
1208
1209 rollback:
1210         ret = device_rename(&dev->dev, dev->name);
1211         if (ret) {
1212                 memcpy(dev->name, oldname, IFNAMSIZ);
1213                 dev->name_assign_type = old_assign_type;
1214                 write_seqcount_end(&devnet_rename_seq);
1215                 return ret;
1216         }
1217
1218         write_seqcount_end(&devnet_rename_seq);
1219
1220         netdev_adjacent_rename_links(dev, oldname);
1221
1222         write_lock_bh(&dev_base_lock);
1223         hlist_del_rcu(&dev->name_hlist);
1224         write_unlock_bh(&dev_base_lock);
1225
1226         synchronize_rcu();
1227
1228         write_lock_bh(&dev_base_lock);
1229         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1230         write_unlock_bh(&dev_base_lock);
1231
1232         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1233         ret = notifier_to_errno(ret);
1234
1235         if (ret) {
1236                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1237                 if (err >= 0) {
1238                         err = ret;
1239                         write_seqcount_begin(&devnet_rename_seq);
1240                         memcpy(dev->name, oldname, IFNAMSIZ);
1241                         memcpy(oldname, newname, IFNAMSIZ);
1242                         dev->name_assign_type = old_assign_type;
1243                         old_assign_type = NET_NAME_RENAMED;
1244                         goto rollback;
1245                 } else {
1246                         pr_err("%s: name change rollback failed: %d\n",
1247                                dev->name, ret);
1248                 }
1249         }
1250
1251         return err;
1252 }
1253
1254 /**
1255  *      dev_set_alias - change ifalias of a device
1256  *      @dev: device
1257  *      @alias: name up to IFALIASZ
1258  *      @len: limit of bytes to copy from info
1259  *
1260  *      Set ifalias for a device,
1261  */
1262 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1263 {
1264         struct dev_ifalias *new_alias = NULL;
1265
1266         if (len >= IFALIASZ)
1267                 return -EINVAL;
1268
1269         if (len) {
1270                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1271                 if (!new_alias)
1272                         return -ENOMEM;
1273
1274                 memcpy(new_alias->ifalias, alias, len);
1275                 new_alias->ifalias[len] = 0;
1276         }
1277
1278         mutex_lock(&ifalias_mutex);
1279         rcu_swap_protected(dev->ifalias, new_alias,
1280                            mutex_is_locked(&ifalias_mutex));
1281         mutex_unlock(&ifalias_mutex);
1282
1283         if (new_alias)
1284                 kfree_rcu(new_alias, rcuhead);
1285
1286         return len;
1287 }
1288
1289 /**
1290  *      dev_get_alias - get ifalias of a device
1291  *      @dev: device
1292  *      @name: buffer to store name of ifalias
1293  *      @len: size of buffer
1294  *
1295  *      get ifalias for a device.  Caller must make sure dev cannot go
1296  *      away,  e.g. rcu read lock or own a reference count to device.
1297  */
1298 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1299 {
1300         const struct dev_ifalias *alias;
1301         int ret = 0;
1302
1303         rcu_read_lock();
1304         alias = rcu_dereference(dev->ifalias);
1305         if (alias)
1306                 ret = snprintf(name, len, "%s", alias->ifalias);
1307         rcu_read_unlock();
1308
1309         return ret;
1310 }
1311
1312 /**
1313  *      netdev_features_change - device changes features
1314  *      @dev: device to cause notification
1315  *
1316  *      Called to indicate a device has changed features.
1317  */
1318 void netdev_features_change(struct net_device *dev)
1319 {
1320         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1321 }
1322 EXPORT_SYMBOL(netdev_features_change);
1323
1324 /**
1325  *      netdev_state_change - device changes state
1326  *      @dev: device to cause notification
1327  *
1328  *      Called to indicate a device has changed state. This function calls
1329  *      the notifier chains for netdev_chain and sends a NEWLINK message
1330  *      to the routing socket.
1331  */
1332 void netdev_state_change(struct net_device *dev)
1333 {
1334         if (dev->flags & IFF_UP) {
1335                 struct netdev_notifier_change_info change_info = {
1336                         .info.dev = dev,
1337                 };
1338
1339                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1340                                               &change_info.info);
1341                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1342         }
1343 }
1344 EXPORT_SYMBOL(netdev_state_change);
1345
1346 /**
1347  * netdev_notify_peers - notify network peers about existence of @dev
1348  * @dev: network device
1349  *
1350  * Generate traffic such that interested network peers are aware of
1351  * @dev, such as by generating a gratuitous ARP. This may be used when
1352  * a device wants to inform the rest of the network about some sort of
1353  * reconfiguration such as a failover event or virtual machine
1354  * migration.
1355  */
1356 void netdev_notify_peers(struct net_device *dev)
1357 {
1358         rtnl_lock();
1359         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1360         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1361         rtnl_unlock();
1362 }
1363 EXPORT_SYMBOL(netdev_notify_peers);
1364
1365 static int __dev_open(struct net_device *dev)
1366 {
1367         const struct net_device_ops *ops = dev->netdev_ops;
1368         int ret;
1369
1370         ASSERT_RTNL();
1371
1372         if (!netif_device_present(dev))
1373                 return -ENODEV;
1374
1375         /* Block netpoll from trying to do any rx path servicing.
1376          * If we don't do this there is a chance ndo_poll_controller
1377          * or ndo_poll may be running while we open the device
1378          */
1379         netpoll_poll_disable(dev);
1380
1381         ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1382         ret = notifier_to_errno(ret);
1383         if (ret)
1384                 return ret;
1385
1386         set_bit(__LINK_STATE_START, &dev->state);
1387
1388         if (ops->ndo_validate_addr)
1389                 ret = ops->ndo_validate_addr(dev);
1390
1391         if (!ret && ops->ndo_open)
1392                 ret = ops->ndo_open(dev);
1393
1394         netpoll_poll_enable(dev);
1395
1396         if (ret)
1397                 clear_bit(__LINK_STATE_START, &dev->state);
1398         else {
1399                 dev->flags |= IFF_UP;
1400                 dev_set_rx_mode(dev);
1401                 dev_activate(dev);
1402                 add_device_randomness(dev->dev_addr, dev->addr_len);
1403         }
1404
1405         return ret;
1406 }
1407
1408 /**
1409  *      dev_open        - prepare an interface for use.
1410  *      @dev:   device to open
1411  *
1412  *      Takes a device from down to up state. The device's private open
1413  *      function is invoked and then the multicast lists are loaded. Finally
1414  *      the device is moved into the up state and a %NETDEV_UP message is
1415  *      sent to the netdev notifier chain.
1416  *
1417  *      Calling this function on an active interface is a nop. On a failure
1418  *      a negative errno code is returned.
1419  */
1420 int dev_open(struct net_device *dev)
1421 {
1422         int ret;
1423
1424         if (dev->flags & IFF_UP)
1425                 return 0;
1426
1427         ret = __dev_open(dev);
1428         if (ret < 0)
1429                 return ret;
1430
1431         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1432         call_netdevice_notifiers(NETDEV_UP, dev);
1433
1434         return ret;
1435 }
1436 EXPORT_SYMBOL(dev_open);
1437
1438 static void __dev_close_many(struct list_head *head)
1439 {
1440         struct net_device *dev;
1441
1442         ASSERT_RTNL();
1443         might_sleep();
1444
1445         list_for_each_entry(dev, head, close_list) {
1446                 /* Temporarily disable netpoll until the interface is down */
1447                 netpoll_poll_disable(dev);
1448
1449                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1450
1451                 clear_bit(__LINK_STATE_START, &dev->state);
1452
1453                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1454                  * can be even on different cpu. So just clear netif_running().
1455                  *
1456                  * dev->stop() will invoke napi_disable() on all of it's
1457                  * napi_struct instances on this device.
1458                  */
1459                 smp_mb__after_atomic(); /* Commit netif_running(). */
1460         }
1461
1462         dev_deactivate_many(head);
1463
1464         list_for_each_entry(dev, head, close_list) {
1465                 const struct net_device_ops *ops = dev->netdev_ops;
1466
1467                 /*
1468                  *      Call the device specific close. This cannot fail.
1469                  *      Only if device is UP
1470                  *
1471                  *      We allow it to be called even after a DETACH hot-plug
1472                  *      event.
1473                  */
1474                 if (ops->ndo_stop)
1475                         ops->ndo_stop(dev);
1476
1477                 dev->flags &= ~IFF_UP;
1478                 netpoll_poll_enable(dev);
1479         }
1480 }
1481
1482 static void __dev_close(struct net_device *dev)
1483 {
1484         LIST_HEAD(single);
1485
1486         list_add(&dev->close_list, &single);
1487         __dev_close_many(&single);
1488         list_del(&single);
1489 }
1490
1491 void dev_close_many(struct list_head *head, bool unlink)
1492 {
1493         struct net_device *dev, *tmp;
1494
1495         /* Remove the devices that don't need to be closed */
1496         list_for_each_entry_safe(dev, tmp, head, close_list)
1497                 if (!(dev->flags & IFF_UP))
1498                         list_del_init(&dev->close_list);
1499
1500         __dev_close_many(head);
1501
1502         list_for_each_entry_safe(dev, tmp, head, close_list) {
1503                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1504                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1505                 if (unlink)
1506                         list_del_init(&dev->close_list);
1507         }
1508 }
1509 EXPORT_SYMBOL(dev_close_many);
1510
1511 /**
1512  *      dev_close - shutdown an interface.
1513  *      @dev: device to shutdown
1514  *
1515  *      This function moves an active device into down state. A
1516  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1517  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1518  *      chain.
1519  */
1520 void dev_close(struct net_device *dev)
1521 {
1522         if (dev->flags & IFF_UP) {
1523                 LIST_HEAD(single);
1524
1525                 list_add(&dev->close_list, &single);
1526                 dev_close_many(&single, true);
1527                 list_del(&single);
1528         }
1529 }
1530 EXPORT_SYMBOL(dev_close);
1531
1532
1533 /**
1534  *      dev_disable_lro - disable Large Receive Offload on a device
1535  *      @dev: device
1536  *
1537  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1538  *      called under RTNL.  This is needed if received packets may be
1539  *      forwarded to another interface.
1540  */
1541 void dev_disable_lro(struct net_device *dev)
1542 {
1543         struct net_device *lower_dev;
1544         struct list_head *iter;
1545
1546         dev->wanted_features &= ~NETIF_F_LRO;
1547         netdev_update_features(dev);
1548
1549         if (unlikely(dev->features & NETIF_F_LRO))
1550                 netdev_WARN(dev, "failed to disable LRO!\n");
1551
1552         netdev_for_each_lower_dev(dev, lower_dev, iter)
1553                 dev_disable_lro(lower_dev);
1554 }
1555 EXPORT_SYMBOL(dev_disable_lro);
1556
1557 /**
1558  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1559  *      @dev: device
1560  *
1561  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1562  *      called under RTNL.  This is needed if Generic XDP is installed on
1563  *      the device.
1564  */
1565 static void dev_disable_gro_hw(struct net_device *dev)
1566 {
1567         dev->wanted_features &= ~NETIF_F_GRO_HW;
1568         netdev_update_features(dev);
1569
1570         if (unlikely(dev->features & NETIF_F_GRO_HW))
1571                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1572 }
1573
1574 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1575                                    struct net_device *dev)
1576 {
1577         struct netdev_notifier_info info = {
1578                 .dev = dev,
1579         };
1580
1581         return nb->notifier_call(nb, val, &info);
1582 }
1583
1584 static int dev_boot_phase = 1;
1585
1586 /**
1587  * register_netdevice_notifier - register a network notifier block
1588  * @nb: notifier
1589  *
1590  * Register a notifier to be called when network device events occur.
1591  * The notifier passed is linked into the kernel structures and must
1592  * not be reused until it has been unregistered. A negative errno code
1593  * is returned on a failure.
1594  *
1595  * When registered all registration and up events are replayed
1596  * to the new notifier to allow device to have a race free
1597  * view of the network device list.
1598  */
1599
1600 int register_netdevice_notifier(struct notifier_block *nb)
1601 {
1602         struct net_device *dev;
1603         struct net_device *last;
1604         struct net *net;
1605         int err;
1606
1607         rtnl_lock();
1608         err = raw_notifier_chain_register(&netdev_chain, nb);
1609         if (err)
1610                 goto unlock;
1611         if (dev_boot_phase)
1612                 goto unlock;
1613         for_each_net(net) {
1614                 for_each_netdev(net, dev) {
1615                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1616                         err = notifier_to_errno(err);
1617                         if (err)
1618                                 goto rollback;
1619
1620                         if (!(dev->flags & IFF_UP))
1621                                 continue;
1622
1623                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1624                 }
1625         }
1626
1627 unlock:
1628         rtnl_unlock();
1629         return err;
1630
1631 rollback:
1632         last = dev;
1633         for_each_net(net) {
1634                 for_each_netdev(net, dev) {
1635                         if (dev == last)
1636                                 goto outroll;
1637
1638                         if (dev->flags & IFF_UP) {
1639                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1640                                                         dev);
1641                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1642                         }
1643                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1644                 }
1645         }
1646
1647 outroll:
1648         raw_notifier_chain_unregister(&netdev_chain, nb);
1649         goto unlock;
1650 }
1651 EXPORT_SYMBOL(register_netdevice_notifier);
1652
1653 /**
1654  * unregister_netdevice_notifier - unregister a network notifier block
1655  * @nb: notifier
1656  *
1657  * Unregister a notifier previously registered by
1658  * register_netdevice_notifier(). The notifier is unlinked into the
1659  * kernel structures and may then be reused. A negative errno code
1660  * is returned on a failure.
1661  *
1662  * After unregistering unregister and down device events are synthesized
1663  * for all devices on the device list to the removed notifier to remove
1664  * the need for special case cleanup code.
1665  */
1666
1667 int unregister_netdevice_notifier(struct notifier_block *nb)
1668 {
1669         struct net_device *dev;
1670         struct net *net;
1671         int err;
1672
1673         rtnl_lock();
1674         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1675         if (err)
1676                 goto unlock;
1677
1678         for_each_net(net) {
1679                 for_each_netdev(net, dev) {
1680                         if (dev->flags & IFF_UP) {
1681                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1682                                                         dev);
1683                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1684                         }
1685                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1686                 }
1687         }
1688 unlock:
1689         rtnl_unlock();
1690         return err;
1691 }
1692 EXPORT_SYMBOL(unregister_netdevice_notifier);
1693
1694 /**
1695  *      call_netdevice_notifiers_info - call all network notifier blocks
1696  *      @val: value passed unmodified to notifier function
1697  *      @info: notifier information data
1698  *
1699  *      Call all network notifier blocks.  Parameters and return value
1700  *      are as for raw_notifier_call_chain().
1701  */
1702
1703 static int call_netdevice_notifiers_info(unsigned long val,
1704                                          struct netdev_notifier_info *info)
1705 {
1706         ASSERT_RTNL();
1707         return raw_notifier_call_chain(&netdev_chain, val, info);
1708 }
1709
1710 /**
1711  *      call_netdevice_notifiers - call all network notifier blocks
1712  *      @val: value passed unmodified to notifier function
1713  *      @dev: net_device pointer passed unmodified to notifier function
1714  *
1715  *      Call all network notifier blocks.  Parameters and return value
1716  *      are as for raw_notifier_call_chain().
1717  */
1718
1719 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1720 {
1721         struct netdev_notifier_info info = {
1722                 .dev = dev,
1723         };
1724
1725         return call_netdevice_notifiers_info(val, &info);
1726 }
1727 EXPORT_SYMBOL(call_netdevice_notifiers);
1728
1729 #ifdef CONFIG_NET_INGRESS
1730 static struct static_key ingress_needed __read_mostly;
1731
1732 void net_inc_ingress_queue(void)
1733 {
1734         static_key_slow_inc(&ingress_needed);
1735 }
1736 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1737
1738 void net_dec_ingress_queue(void)
1739 {
1740         static_key_slow_dec(&ingress_needed);
1741 }
1742 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1743 #endif
1744
1745 #ifdef CONFIG_NET_EGRESS
1746 static struct static_key egress_needed __read_mostly;
1747
1748 void net_inc_egress_queue(void)
1749 {
1750         static_key_slow_inc(&egress_needed);
1751 }
1752 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1753
1754 void net_dec_egress_queue(void)
1755 {
1756         static_key_slow_dec(&egress_needed);
1757 }
1758 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1759 #endif
1760
1761 static struct static_key netstamp_needed __read_mostly;
1762 #ifdef HAVE_JUMP_LABEL
1763 static atomic_t netstamp_needed_deferred;
1764 static atomic_t netstamp_wanted;
1765 static void netstamp_clear(struct work_struct *work)
1766 {
1767         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1768         int wanted;
1769
1770         wanted = atomic_add_return(deferred, &netstamp_wanted);
1771         if (wanted > 0)
1772                 static_key_enable(&netstamp_needed);
1773         else
1774                 static_key_disable(&netstamp_needed);
1775 }
1776 static DECLARE_WORK(netstamp_work, netstamp_clear);
1777 #endif
1778
1779 void net_enable_timestamp(void)
1780 {
1781 #ifdef HAVE_JUMP_LABEL
1782         int wanted;
1783
1784         while (1) {
1785                 wanted = atomic_read(&netstamp_wanted);
1786                 if (wanted <= 0)
1787                         break;
1788                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1789                         return;
1790         }
1791         atomic_inc(&netstamp_needed_deferred);
1792         schedule_work(&netstamp_work);
1793 #else
1794         static_key_slow_inc(&netstamp_needed);
1795 #endif
1796 }
1797 EXPORT_SYMBOL(net_enable_timestamp);
1798
1799 void net_disable_timestamp(void)
1800 {
1801 #ifdef HAVE_JUMP_LABEL
1802         int wanted;
1803
1804         while (1) {
1805                 wanted = atomic_read(&netstamp_wanted);
1806                 if (wanted <= 1)
1807                         break;
1808                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1809                         return;
1810         }
1811         atomic_dec(&netstamp_needed_deferred);
1812         schedule_work(&netstamp_work);
1813 #else
1814         static_key_slow_dec(&netstamp_needed);
1815 #endif
1816 }
1817 EXPORT_SYMBOL(net_disable_timestamp);
1818
1819 static inline void net_timestamp_set(struct sk_buff *skb)
1820 {
1821         skb->tstamp = 0;
1822         if (static_key_false(&netstamp_needed))
1823                 __net_timestamp(skb);
1824 }
1825
1826 #define net_timestamp_check(COND, SKB)                  \
1827         if (static_key_false(&netstamp_needed)) {               \
1828                 if ((COND) && !(SKB)->tstamp)   \
1829                         __net_timestamp(SKB);           \
1830         }                                               \
1831
1832 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1833 {
1834         unsigned int len;
1835
1836         if (!(dev->flags & IFF_UP))
1837                 return false;
1838
1839         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1840         if (skb->len <= len)
1841                 return true;
1842
1843         /* if TSO is enabled, we don't care about the length as the packet
1844          * could be forwarded without being segmented before
1845          */
1846         if (skb_is_gso(skb))
1847                 return true;
1848
1849         return false;
1850 }
1851 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1852
1853 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1854 {
1855         int ret = ____dev_forward_skb(dev, skb);
1856
1857         if (likely(!ret)) {
1858                 skb->protocol = eth_type_trans(skb, dev);
1859                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1860         }
1861
1862         return ret;
1863 }
1864 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1865
1866 /**
1867  * dev_forward_skb - loopback an skb to another netif
1868  *
1869  * @dev: destination network device
1870  * @skb: buffer to forward
1871  *
1872  * return values:
1873  *      NET_RX_SUCCESS  (no congestion)
1874  *      NET_RX_DROP     (packet was dropped, but freed)
1875  *
1876  * dev_forward_skb can be used for injecting an skb from the
1877  * start_xmit function of one device into the receive queue
1878  * of another device.
1879  *
1880  * The receiving device may be in another namespace, so
1881  * we have to clear all information in the skb that could
1882  * impact namespace isolation.
1883  */
1884 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1885 {
1886         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1887 }
1888 EXPORT_SYMBOL_GPL(dev_forward_skb);
1889
1890 static inline int deliver_skb(struct sk_buff *skb,
1891                               struct packet_type *pt_prev,
1892                               struct net_device *orig_dev)
1893 {
1894         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1895                 return -ENOMEM;
1896         refcount_inc(&skb->users);
1897         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1898 }
1899
1900 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1901                                           struct packet_type **pt,
1902                                           struct net_device *orig_dev,
1903                                           __be16 type,
1904                                           struct list_head *ptype_list)
1905 {
1906         struct packet_type *ptype, *pt_prev = *pt;
1907
1908         list_for_each_entry_rcu(ptype, ptype_list, list) {
1909                 if (ptype->type != type)
1910                         continue;
1911                 if (pt_prev)
1912                         deliver_skb(skb, pt_prev, orig_dev);
1913                 pt_prev = ptype;
1914         }
1915         *pt = pt_prev;
1916 }
1917
1918 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1919 {
1920         if (!ptype->af_packet_priv || !skb->sk)
1921                 return false;
1922
1923         if (ptype->id_match)
1924                 return ptype->id_match(ptype, skb->sk);
1925         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1926                 return true;
1927
1928         return false;
1929 }
1930
1931 /*
1932  *      Support routine. Sends outgoing frames to any network
1933  *      taps currently in use.
1934  */
1935
1936 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1937 {
1938         struct packet_type *ptype;
1939         struct sk_buff *skb2 = NULL;
1940         struct packet_type *pt_prev = NULL;
1941         struct list_head *ptype_list = &ptype_all;
1942
1943         rcu_read_lock();
1944 again:
1945         list_for_each_entry_rcu(ptype, ptype_list, list) {
1946                 /* Never send packets back to the socket
1947                  * they originated from - MvS (miquels@drinkel.ow.org)
1948                  */
1949                 if (skb_loop_sk(ptype, skb))
1950                         continue;
1951
1952                 if (pt_prev) {
1953                         deliver_skb(skb2, pt_prev, skb->dev);
1954                         pt_prev = ptype;
1955                         continue;
1956                 }
1957
1958                 /* need to clone skb, done only once */
1959                 skb2 = skb_clone(skb, GFP_ATOMIC);
1960                 if (!skb2)
1961                         goto out_unlock;
1962
1963                 net_timestamp_set(skb2);
1964
1965                 /* skb->nh should be correctly
1966                  * set by sender, so that the second statement is
1967                  * just protection against buggy protocols.
1968                  */
1969                 skb_reset_mac_header(skb2);
1970
1971                 if (skb_network_header(skb2) < skb2->data ||
1972                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1973                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1974                                              ntohs(skb2->protocol),
1975                                              dev->name);
1976                         skb_reset_network_header(skb2);
1977                 }
1978
1979                 skb2->transport_header = skb2->network_header;
1980                 skb2->pkt_type = PACKET_OUTGOING;
1981                 pt_prev = ptype;
1982         }
1983
1984         if (ptype_list == &ptype_all) {
1985                 ptype_list = &dev->ptype_all;
1986                 goto again;
1987         }
1988 out_unlock:
1989         if (pt_prev) {
1990                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
1991                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1992                 else
1993                         kfree_skb(skb2);
1994         }
1995         rcu_read_unlock();
1996 }
1997 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1998
1999 /**
2000  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2001  * @dev: Network device
2002  * @txq: number of queues available
2003  *
2004  * If real_num_tx_queues is changed the tc mappings may no longer be
2005  * valid. To resolve this verify the tc mapping remains valid and if
2006  * not NULL the mapping. With no priorities mapping to this
2007  * offset/count pair it will no longer be used. In the worst case TC0
2008  * is invalid nothing can be done so disable priority mappings. If is
2009  * expected that drivers will fix this mapping if they can before
2010  * calling netif_set_real_num_tx_queues.
2011  */
2012 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2013 {
2014         int i;
2015         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2016
2017         /* If TC0 is invalidated disable TC mapping */
2018         if (tc->offset + tc->count > txq) {
2019                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2020                 dev->num_tc = 0;
2021                 return;
2022         }
2023
2024         /* Invalidated prio to tc mappings set to TC0 */
2025         for (i = 1; i < TC_BITMASK + 1; i++) {
2026                 int q = netdev_get_prio_tc_map(dev, i);
2027
2028                 tc = &dev->tc_to_txq[q];
2029                 if (tc->offset + tc->count > txq) {
2030                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2031                                 i, q);
2032                         netdev_set_prio_tc_map(dev, i, 0);
2033                 }
2034         }
2035 }
2036
2037 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2038 {
2039         if (dev->num_tc) {
2040                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2041                 int i;
2042
2043                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2044                         if ((txq - tc->offset) < tc->count)
2045                                 return i;
2046                 }
2047
2048                 return -1;
2049         }
2050
2051         return 0;
2052 }
2053 EXPORT_SYMBOL(netdev_txq_to_tc);
2054
2055 #ifdef CONFIG_XPS
2056 static DEFINE_MUTEX(xps_map_mutex);
2057 #define xmap_dereference(P)             \
2058         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2059
2060 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2061                              int tci, u16 index)
2062 {
2063         struct xps_map *map = NULL;
2064         int pos;
2065
2066         if (dev_maps)
2067                 map = xmap_dereference(dev_maps->cpu_map[tci]);
2068         if (!map)
2069                 return false;
2070
2071         for (pos = map->len; pos--;) {
2072                 if (map->queues[pos] != index)
2073                         continue;
2074
2075                 if (map->len > 1) {
2076                         map->queues[pos] = map->queues[--map->len];
2077                         break;
2078                 }
2079
2080                 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
2081                 kfree_rcu(map, rcu);
2082                 return false;
2083         }
2084
2085         return true;
2086 }
2087
2088 static bool remove_xps_queue_cpu(struct net_device *dev,
2089                                  struct xps_dev_maps *dev_maps,
2090                                  int cpu, u16 offset, u16 count)
2091 {
2092         int num_tc = dev->num_tc ? : 1;
2093         bool active = false;
2094         int tci;
2095
2096         for (tci = cpu * num_tc; num_tc--; tci++) {
2097                 int i, j;
2098
2099                 for (i = count, j = offset; i--; j++) {
2100                         if (!remove_xps_queue(dev_maps, cpu, j))
2101                                 break;
2102                 }
2103
2104                 active |= i < 0;
2105         }
2106
2107         return active;
2108 }
2109
2110 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2111                                    u16 count)
2112 {
2113         struct xps_dev_maps *dev_maps;
2114         int cpu, i;
2115         bool active = false;
2116
2117         mutex_lock(&xps_map_mutex);
2118         dev_maps = xmap_dereference(dev->xps_maps);
2119
2120         if (!dev_maps)
2121                 goto out_no_maps;
2122
2123         for_each_possible_cpu(cpu)
2124                 active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2125                                                offset, count);
2126
2127         if (!active) {
2128                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2129                 kfree_rcu(dev_maps, rcu);
2130         }
2131
2132         for (i = offset + (count - 1); count--; i--)
2133                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2134                                              NUMA_NO_NODE);
2135
2136 out_no_maps:
2137         mutex_unlock(&xps_map_mutex);
2138 }
2139
2140 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2141 {
2142         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2143 }
2144
2145 static struct xps_map *expand_xps_map(struct xps_map *map,
2146                                       int cpu, u16 index)
2147 {
2148         struct xps_map *new_map;
2149         int alloc_len = XPS_MIN_MAP_ALLOC;
2150         int i, pos;
2151
2152         for (pos = 0; map && pos < map->len; pos++) {
2153                 if (map->queues[pos] != index)
2154                         continue;
2155                 return map;
2156         }
2157
2158         /* Need to add queue to this CPU's existing map */
2159         if (map) {
2160                 if (pos < map->alloc_len)
2161                         return map;
2162
2163                 alloc_len = map->alloc_len * 2;
2164         }
2165
2166         /* Need to allocate new map to store queue on this CPU's map */
2167         new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2168                                cpu_to_node(cpu));
2169         if (!new_map)
2170                 return NULL;
2171
2172         for (i = 0; i < pos; i++)
2173                 new_map->queues[i] = map->queues[i];
2174         new_map->alloc_len = alloc_len;
2175         new_map->len = pos;
2176
2177         return new_map;
2178 }
2179
2180 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2181                         u16 index)
2182 {
2183         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2184         int i, cpu, tci, numa_node_id = -2;
2185         int maps_sz, num_tc = 1, tc = 0;
2186         struct xps_map *map, *new_map;
2187         bool active = false;
2188
2189         if (dev->num_tc) {
2190                 num_tc = dev->num_tc;
2191                 tc = netdev_txq_to_tc(dev, index);
2192                 if (tc < 0)
2193                         return -EINVAL;
2194         }
2195
2196         maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2197         if (maps_sz < L1_CACHE_BYTES)
2198                 maps_sz = L1_CACHE_BYTES;
2199
2200         mutex_lock(&xps_map_mutex);
2201
2202         dev_maps = xmap_dereference(dev->xps_maps);
2203
2204         /* allocate memory for queue storage */
2205         for_each_cpu_and(cpu, cpu_online_mask, mask) {
2206                 if (!new_dev_maps)
2207                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2208                 if (!new_dev_maps) {
2209                         mutex_unlock(&xps_map_mutex);
2210                         return -ENOMEM;
2211                 }
2212
2213                 tci = cpu * num_tc + tc;
2214                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2215                                  NULL;
2216
2217                 map = expand_xps_map(map, cpu, index);
2218                 if (!map)
2219                         goto error;
2220
2221                 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2222         }
2223
2224         if (!new_dev_maps)
2225                 goto out_no_new_maps;
2226
2227         for_each_possible_cpu(cpu) {
2228                 /* copy maps belonging to foreign traffic classes */
2229                 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2230                         /* fill in the new device map from the old device map */
2231                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2232                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2233                 }
2234
2235                 /* We need to explicitly update tci as prevous loop
2236                  * could break out early if dev_maps is NULL.
2237                  */
2238                 tci = cpu * num_tc + tc;
2239
2240                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2241                         /* add queue to CPU maps */
2242                         int pos = 0;
2243
2244                         map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2245                         while ((pos < map->len) && (map->queues[pos] != index))
2246                                 pos++;
2247
2248                         if (pos == map->len)
2249                                 map->queues[map->len++] = index;
2250 #ifdef CONFIG_NUMA
2251                         if (numa_node_id == -2)
2252                                 numa_node_id = cpu_to_node(cpu);
2253                         else if (numa_node_id != cpu_to_node(cpu))
2254                                 numa_node_id = -1;
2255 #endif
2256                 } else if (dev_maps) {
2257                         /* fill in the new device map from the old device map */
2258                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2259                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2260                 }
2261
2262                 /* copy maps belonging to foreign traffic classes */
2263                 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2264                         /* fill in the new device map from the old device map */
2265                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2266                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2267                 }
2268         }
2269
2270         rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2271
2272         /* Cleanup old maps */
2273         if (!dev_maps)
2274                 goto out_no_old_maps;
2275
2276         for_each_possible_cpu(cpu) {
2277                 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2278                         new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2279                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2280                         if (map && map != new_map)
2281                                 kfree_rcu(map, rcu);
2282                 }
2283         }
2284
2285         kfree_rcu(dev_maps, rcu);
2286
2287 out_no_old_maps:
2288         dev_maps = new_dev_maps;
2289         active = true;
2290
2291 out_no_new_maps:
2292         /* update Tx queue numa node */
2293         netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2294                                      (numa_node_id >= 0) ? numa_node_id :
2295                                      NUMA_NO_NODE);
2296
2297         if (!dev_maps)
2298                 goto out_no_maps;
2299
2300         /* removes queue from unused CPUs */
2301         for_each_possible_cpu(cpu) {
2302                 for (i = tc, tci = cpu * num_tc; i--; tci++)
2303                         active |= remove_xps_queue(dev_maps, tci, index);
2304                 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2305                         active |= remove_xps_queue(dev_maps, tci, index);
2306                 for (i = num_tc - tc, tci++; --i; tci++)
2307                         active |= remove_xps_queue(dev_maps, tci, index);
2308         }
2309
2310         /* free map if not active */
2311         if (!active) {
2312                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2313                 kfree_rcu(dev_maps, rcu);
2314         }
2315
2316 out_no_maps:
2317         mutex_unlock(&xps_map_mutex);
2318
2319         return 0;
2320 error:
2321         /* remove any maps that we added */
2322         for_each_possible_cpu(cpu) {
2323                 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2324                         new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2325                         map = dev_maps ?
2326                               xmap_dereference(dev_maps->cpu_map[tci]) :
2327                               NULL;
2328                         if (new_map && new_map != map)
2329                                 kfree(new_map);
2330                 }
2331         }
2332
2333         mutex_unlock(&xps_map_mutex);
2334
2335         kfree(new_dev_maps);
2336         return -ENOMEM;
2337 }
2338 EXPORT_SYMBOL(netif_set_xps_queue);
2339
2340 #endif
2341 void netdev_reset_tc(struct net_device *dev)
2342 {
2343 #ifdef CONFIG_XPS
2344         netif_reset_xps_queues_gt(dev, 0);
2345 #endif
2346         dev->num_tc = 0;
2347         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2348         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2349 }
2350 EXPORT_SYMBOL(netdev_reset_tc);
2351
2352 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2353 {
2354         if (tc >= dev->num_tc)
2355                 return -EINVAL;
2356
2357 #ifdef CONFIG_XPS
2358         netif_reset_xps_queues(dev, offset, count);
2359 #endif
2360         dev->tc_to_txq[tc].count = count;
2361         dev->tc_to_txq[tc].offset = offset;
2362         return 0;
2363 }
2364 EXPORT_SYMBOL(netdev_set_tc_queue);
2365
2366 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2367 {
2368         if (num_tc > TC_MAX_QUEUE)
2369                 return -EINVAL;
2370
2371 #ifdef CONFIG_XPS
2372         netif_reset_xps_queues_gt(dev, 0);
2373 #endif
2374         dev->num_tc = num_tc;
2375         return 0;
2376 }
2377 EXPORT_SYMBOL(netdev_set_num_tc);
2378
2379 /*
2380  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2381  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2382  */
2383 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2384 {
2385         bool disabling;
2386         int rc;
2387
2388         disabling = txq < dev->real_num_tx_queues;
2389
2390         if (txq < 1 || txq > dev->num_tx_queues)
2391                 return -EINVAL;
2392
2393         if (dev->reg_state == NETREG_REGISTERED ||
2394             dev->reg_state == NETREG_UNREGISTERING) {
2395                 ASSERT_RTNL();
2396
2397                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2398                                                   txq);
2399                 if (rc)
2400                         return rc;
2401
2402                 if (dev->num_tc)
2403                         netif_setup_tc(dev, txq);
2404
2405                 dev->real_num_tx_queues = txq;
2406
2407                 if (disabling) {
2408                         synchronize_net();
2409                         qdisc_reset_all_tx_gt(dev, txq);
2410 #ifdef CONFIG_XPS
2411                         netif_reset_xps_queues_gt(dev, txq);
2412 #endif
2413                 }
2414         } else {
2415                 dev->real_num_tx_queues = txq;
2416         }
2417
2418         return 0;
2419 }
2420 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2421
2422 #ifdef CONFIG_SYSFS
2423 /**
2424  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2425  *      @dev: Network device
2426  *      @rxq: Actual number of RX queues
2427  *
2428  *      This must be called either with the rtnl_lock held or before
2429  *      registration of the net device.  Returns 0 on success, or a
2430  *      negative error code.  If called before registration, it always
2431  *      succeeds.
2432  */
2433 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2434 {
2435         int rc;
2436
2437         if (rxq < 1 || rxq > dev->num_rx_queues)
2438                 return -EINVAL;
2439
2440         if (dev->reg_state == NETREG_REGISTERED) {
2441                 ASSERT_RTNL();
2442
2443                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2444                                                   rxq);
2445                 if (rc)
2446                         return rc;
2447         }
2448
2449         dev->real_num_rx_queues = rxq;
2450         return 0;
2451 }
2452 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2453 #endif
2454
2455 /**
2456  * netif_get_num_default_rss_queues - default number of RSS queues
2457  *
2458  * This routine should set an upper limit on the number of RSS queues
2459  * used by default by multiqueue devices.
2460  */
2461 int netif_get_num_default_rss_queues(void)
2462 {
2463         return is_kdump_kernel() ?
2464                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2465 }
2466 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2467
2468 static void __netif_reschedule(struct Qdisc *q)
2469 {
2470         struct softnet_data *sd;
2471         unsigned long flags;
2472
2473         local_irq_save(flags);
2474         sd = this_cpu_ptr(&softnet_data);
2475         q->next_sched = NULL;
2476         *sd->output_queue_tailp = q;
2477         sd->output_queue_tailp = &q->next_sched;
2478         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2479         local_irq_restore(flags);
2480 }
2481
2482 void __netif_schedule(struct Qdisc *q)
2483 {
2484         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2485                 __netif_reschedule(q);
2486 }
2487 EXPORT_SYMBOL(__netif_schedule);
2488
2489 struct dev_kfree_skb_cb {
2490         enum skb_free_reason reason;
2491 };
2492
2493 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2494 {
2495         return (struct dev_kfree_skb_cb *)skb->cb;
2496 }
2497
2498 void netif_schedule_queue(struct netdev_queue *txq)
2499 {
2500         rcu_read_lock();
2501         if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2502                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2503
2504                 __netif_schedule(q);
2505         }
2506         rcu_read_unlock();
2507 }
2508 EXPORT_SYMBOL(netif_schedule_queue);
2509
2510 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2511 {
2512         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2513                 struct Qdisc *q;
2514
2515                 rcu_read_lock();
2516                 q = rcu_dereference(dev_queue->qdisc);
2517                 __netif_schedule(q);
2518                 rcu_read_unlock();
2519         }
2520 }
2521 EXPORT_SYMBOL(netif_tx_wake_queue);
2522
2523 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2524 {
2525         unsigned long flags;
2526
2527         if (unlikely(!skb))
2528                 return;
2529
2530         if (likely(refcount_read(&skb->users) == 1)) {
2531                 smp_rmb();
2532                 refcount_set(&skb->users, 0);
2533         } else if (likely(!refcount_dec_and_test(&skb->users))) {
2534                 return;
2535         }
2536         get_kfree_skb_cb(skb)->reason = reason;
2537         local_irq_save(flags);
2538         skb->next = __this_cpu_read(softnet_data.completion_queue);
2539         __this_cpu_write(softnet_data.completion_queue, skb);
2540         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2541         local_irq_restore(flags);
2542 }
2543 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2544
2545 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2546 {
2547         if (in_irq() || irqs_disabled())
2548                 __dev_kfree_skb_irq(skb, reason);
2549         else
2550                 dev_kfree_skb(skb);
2551 }
2552 EXPORT_SYMBOL(__dev_kfree_skb_any);
2553
2554
2555 /**
2556  * netif_device_detach - mark device as removed
2557  * @dev: network device
2558  *
2559  * Mark device as removed from system and therefore no longer available.
2560  */
2561 void netif_device_detach(struct net_device *dev)
2562 {
2563         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2564             netif_running(dev)) {
2565                 netif_tx_stop_all_queues(dev);
2566         }
2567 }
2568 EXPORT_SYMBOL(netif_device_detach);
2569
2570 /**
2571  * netif_device_attach - mark device as attached
2572  * @dev: network device
2573  *
2574  * Mark device as attached from system and restart if needed.
2575  */
2576 void netif_device_attach(struct net_device *dev)
2577 {
2578         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2579             netif_running(dev)) {
2580                 netif_tx_wake_all_queues(dev);
2581                 __netdev_watchdog_up(dev);
2582         }
2583 }
2584 EXPORT_SYMBOL(netif_device_attach);
2585
2586 /*
2587  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2588  * to be used as a distribution range.
2589  */
2590 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2591                   unsigned int num_tx_queues)
2592 {
2593         u32 hash;
2594         u16 qoffset = 0;
2595         u16 qcount = num_tx_queues;
2596
2597         if (skb_rx_queue_recorded(skb)) {
2598                 hash = skb_get_rx_queue(skb);
2599                 while (unlikely(hash >= num_tx_queues))
2600                         hash -= num_tx_queues;
2601                 return hash;
2602         }
2603
2604         if (dev->num_tc) {
2605                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2606
2607                 qoffset = dev->tc_to_txq[tc].offset;
2608                 qcount = dev->tc_to_txq[tc].count;
2609         }
2610
2611         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2612 }
2613 EXPORT_SYMBOL(__skb_tx_hash);
2614
2615 static void skb_warn_bad_offload(const struct sk_buff *skb)
2616 {
2617         static const netdev_features_t null_features;
2618         struct net_device *dev = skb->dev;
2619         const char *name = "";
2620
2621         if (!net_ratelimit())
2622                 return;
2623
2624         if (dev) {
2625                 if (dev->dev.parent)
2626                         name = dev_driver_string(dev->dev.parent);
2627                 else
2628                         name = netdev_name(dev);
2629         }
2630         WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2631              "gso_type=%d ip_summed=%d\n",
2632              name, dev ? &dev->features : &null_features,
2633              skb->sk ? &skb->sk->sk_route_caps : &null_features,
2634              skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2635              skb_shinfo(skb)->gso_type, skb->ip_summed);
2636 }
2637
2638 /*
2639  * Invalidate hardware checksum when packet is to be mangled, and
2640  * complete checksum manually on outgoing path.
2641  */
2642 int skb_checksum_help(struct sk_buff *skb)
2643 {
2644         __wsum csum;
2645         int ret = 0, offset;
2646
2647         if (skb->ip_summed == CHECKSUM_COMPLETE)
2648                 goto out_set_summed;
2649
2650         if (unlikely(skb_shinfo(skb)->gso_size)) {
2651                 skb_warn_bad_offload(skb);
2652                 return -EINVAL;
2653         }
2654
2655         /* Before computing a checksum, we should make sure no frag could
2656          * be modified by an external entity : checksum could be wrong.
2657          */
2658         if (skb_has_shared_frag(skb)) {
2659                 ret = __skb_linearize(skb);
2660                 if (ret)
2661                         goto out;
2662         }
2663
2664         offset = skb_checksum_start_offset(skb);
2665         BUG_ON(offset >= skb_headlen(skb));
2666         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2667
2668         offset += skb->csum_offset;
2669         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2670
2671         if (skb_cloned(skb) &&
2672             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2673                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2674                 if (ret)
2675                         goto out;
2676         }
2677
2678         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2679 out_set_summed:
2680         skb->ip_summed = CHECKSUM_NONE;
2681 out:
2682         return ret;
2683 }
2684 EXPORT_SYMBOL(skb_checksum_help);
2685
2686 int skb_crc32c_csum_help(struct sk_buff *skb)
2687 {
2688         __le32 crc32c_csum;
2689         int ret = 0, offset, start;
2690
2691         if (skb->ip_summed != CHECKSUM_PARTIAL)
2692                 goto out;
2693
2694         if (unlikely(skb_is_gso(skb)))
2695                 goto out;
2696
2697         /* Before computing a checksum, we should make sure no frag could
2698          * be modified by an external entity : checksum could be wrong.
2699          */
2700         if (unlikely(skb_has_shared_frag(skb))) {
2701                 ret = __skb_linearize(skb);
2702                 if (ret)
2703                         goto out;
2704         }
2705         start = skb_checksum_start_offset(skb);
2706         offset = start + offsetof(struct sctphdr, checksum);
2707         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2708                 ret = -EINVAL;
2709                 goto out;
2710         }
2711         if (skb_cloned(skb) &&
2712             !skb_clone_writable(skb, offset + sizeof(__le32))) {
2713                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2714                 if (ret)
2715                         goto out;
2716         }
2717         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2718                                                   skb->len - start, ~(__u32)0,
2719                                                   crc32c_csum_stub));
2720         *(__le32 *)(skb->data + offset) = crc32c_csum;
2721         skb->ip_summed = CHECKSUM_NONE;
2722         skb->csum_not_inet = 0;
2723 out:
2724         return ret;
2725 }
2726
2727 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2728 {
2729         __be16 type = skb->protocol;
2730
2731         /* Tunnel gso handlers can set protocol to ethernet. */
2732         if (type == htons(ETH_P_TEB)) {
2733                 struct ethhdr *eth;
2734
2735                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2736                         return 0;
2737
2738                 eth = (struct ethhdr *)skb_mac_header(skb);
2739                 type = eth->h_proto;
2740         }
2741
2742         return __vlan_get_protocol(skb, type, depth);
2743 }
2744
2745 /**
2746  *      skb_mac_gso_segment - mac layer segmentation handler.
2747  *      @skb: buffer to segment
2748  *      @features: features for the output path (see dev->features)
2749  */
2750 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2751                                     netdev_features_t features)
2752 {
2753         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2754         struct packet_offload *ptype;
2755         int vlan_depth = skb->mac_len;
2756         __be16 type = skb_network_protocol(skb, &vlan_depth);
2757
2758         if (unlikely(!type))
2759                 return ERR_PTR(-EINVAL);
2760
2761         __skb_pull(skb, vlan_depth);
2762
2763         rcu_read_lock();
2764         list_for_each_entry_rcu(ptype, &offload_base, list) {
2765                 if (ptype->type == type && ptype->callbacks.gso_segment) {
2766                         segs = ptype->callbacks.gso_segment(skb, features);
2767                         break;
2768                 }
2769         }
2770         rcu_read_unlock();
2771
2772         __skb_push(skb, skb->data - skb_mac_header(skb));
2773
2774         return segs;
2775 }
2776 EXPORT_SYMBOL(skb_mac_gso_segment);
2777
2778
2779 /* openvswitch calls this on rx path, so we need a different check.
2780  */
2781 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2782 {
2783         if (tx_path)
2784                 return skb->ip_summed != CHECKSUM_PARTIAL &&
2785                        skb->ip_summed != CHECKSUM_UNNECESSARY;
2786
2787         return skb->ip_summed == CHECKSUM_NONE;
2788 }
2789
2790 /**
2791  *      __skb_gso_segment - Perform segmentation on skb.
2792  *      @skb: buffer to segment
2793  *      @features: features for the output path (see dev->features)
2794  *      @tx_path: whether it is called in TX path
2795  *
2796  *      This function segments the given skb and returns a list of segments.
2797  *
2798  *      It may return NULL if the skb requires no segmentation.  This is
2799  *      only possible when GSO is used for verifying header integrity.
2800  *
2801  *      Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2802  */
2803 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2804                                   netdev_features_t features, bool tx_path)
2805 {
2806         struct sk_buff *segs;
2807
2808         if (unlikely(skb_needs_check(skb, tx_path))) {
2809                 int err;
2810
2811                 /* We're going to init ->check field in TCP or UDP header */
2812                 err = skb_cow_head(skb, 0);
2813                 if (err < 0)
2814                         return ERR_PTR(err);
2815         }
2816
2817         /* Only report GSO partial support if it will enable us to
2818          * support segmentation on this frame without needing additional
2819          * work.
2820          */
2821         if (features & NETIF_F_GSO_PARTIAL) {
2822                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2823                 struct net_device *dev = skb->dev;
2824
2825                 partial_features |= dev->features & dev->gso_partial_features;
2826                 if (!skb_gso_ok(skb, features | partial_features))
2827                         features &= ~NETIF_F_GSO_PARTIAL;
2828         }
2829
2830         BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2831                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2832
2833         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2834         SKB_GSO_CB(skb)->encap_level = 0;
2835
2836         skb_reset_mac_header(skb);
2837         skb_reset_mac_len(skb);
2838
2839         segs = skb_mac_gso_segment(skb, features);
2840
2841         if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
2842                 skb_warn_bad_offload(skb);
2843
2844         return segs;
2845 }
2846 EXPORT_SYMBOL(__skb_gso_segment);
2847
2848 /* Take action when hardware reception checksum errors are detected. */
2849 #ifdef CONFIG_BUG
2850 void netdev_rx_csum_fault(struct net_device *dev)
2851 {
2852         if (net_ratelimit()) {
2853                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2854                 dump_stack();
2855         }
2856 }
2857 EXPORT_SYMBOL(netdev_rx_csum_fault);
2858 #endif
2859
2860 /* Actually, we should eliminate this check as soon as we know, that:
2861  * 1. IOMMU is present and allows to map all the memory.
2862  * 2. No high memory really exists on this machine.
2863  */
2864
2865 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2866 {
2867 #ifdef CONFIG_HIGHMEM
2868         int i;
2869
2870         if (!(dev->features & NETIF_F_HIGHDMA)) {
2871                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2872                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2873
2874                         if (PageHighMem(skb_frag_page(frag)))
2875                                 return 1;
2876                 }
2877         }
2878
2879         if (PCI_DMA_BUS_IS_PHYS) {
2880                 struct device *pdev = dev->dev.parent;
2881
2882                 if (!pdev)
2883                         return 0;
2884                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2885                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2886                         dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2887
2888                         if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2889                                 return 1;
2890                 }
2891         }
2892 #endif
2893         return 0;
2894 }
2895
2896 /* If MPLS offload request, verify we are testing hardware MPLS features
2897  * instead of standard features for the netdev.
2898  */
2899 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2900 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2901                                            netdev_features_t features,
2902                                            __be16 type)
2903 {
2904         if (eth_p_mpls(type))
2905                 features &= skb->dev->mpls_features;
2906
2907         return features;
2908 }
2909 #else
2910 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2911                                            netdev_features_t features,
2912                                            __be16 type)
2913 {
2914         return features;
2915 }
2916 #endif
2917
2918 static netdev_features_t harmonize_features(struct sk_buff *skb,
2919         netdev_features_t features)
2920 {
2921         int tmp;
2922         __be16 type;
2923
2924         type = skb_network_protocol(skb, &tmp);
2925         features = net_mpls_features(skb, features, type);
2926
2927         if (skb->ip_summed != CHECKSUM_NONE &&
2928             !can_checksum_protocol(features, type)) {
2929                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2930         }
2931         if (illegal_highdma(skb->dev, skb))
2932                 features &= ~NETIF_F_SG;
2933
2934         return features;
2935 }
2936
2937 netdev_features_t passthru_features_check(struct sk_buff *skb,
2938                                           struct net_device *dev,
2939                                           netdev_features_t features)
2940 {
2941         return features;
2942 }
2943 EXPORT_SYMBOL(passthru_features_check);
2944
2945 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2946                                              struct net_device *dev,
2947                                              netdev_features_t features)
2948 {
2949         return vlan_features_check(skb, features);
2950 }
2951
2952 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2953                                             struct net_device *dev,
2954                                             netdev_features_t features)
2955 {
2956         u16 gso_segs = skb_shinfo(skb)->gso_segs;
2957
2958         if (gso_segs > dev->gso_max_segs)
2959                 return features & ~NETIF_F_GSO_MASK;
2960
2961         /* Support for GSO partial features requires software
2962          * intervention before we can actually process the packets
2963          * so we need to strip support for any partial features now
2964          * and we can pull them back in after we have partially
2965          * segmented the frame.
2966          */
2967         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2968                 features &= ~dev->gso_partial_features;
2969
2970         /* Make sure to clear the IPv4 ID mangling feature if the
2971          * IPv4 header has the potential to be fragmented.
2972          */
2973         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2974                 struct iphdr *iph = skb->encapsulation ?
2975                                     inner_ip_hdr(skb) : ip_hdr(skb);
2976
2977                 if (!(iph->frag_off & htons(IP_DF)))
2978                         features &= ~NETIF_F_TSO_MANGLEID;
2979         }
2980
2981         return features;
2982 }
2983
2984 netdev_features_t netif_skb_features(struct sk_buff *skb)
2985 {
2986         struct net_device *dev = skb->dev;
2987         netdev_features_t features = dev->features;
2988
2989         if (skb_is_gso(skb))
2990                 features = gso_features_check(skb, dev, features);
2991
2992         /* If encapsulation offload request, verify we are testing
2993          * hardware encapsulation features instead of standard
2994          * features for the netdev
2995          */
2996         if (skb->encapsulation)
2997                 features &= dev->hw_enc_features;
2998
2999         if (skb_vlan_tagged(skb))
3000                 features = netdev_intersect_features(features,
3001                                                      dev->vlan_features |
3002                                                      NETIF_F_HW_VLAN_CTAG_TX |
3003                                                      NETIF_F_HW_VLAN_STAG_TX);
3004
3005         if (dev->netdev_ops->ndo_features_check)
3006                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3007                                                                 features);
3008         else
3009                 features &= dflt_features_check(skb, dev, features);
3010
3011         return harmonize_features(skb, features);
3012 }
3013 EXPORT_SYMBOL(netif_skb_features);
3014
3015 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3016                     struct netdev_queue *txq, bool more)
3017 {
3018         unsigned int len;
3019         int rc;
3020
3021         if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
3022                 dev_queue_xmit_nit(skb, dev);
3023
3024         len = skb->len;
3025         trace_net_dev_start_xmit(skb, dev);
3026         rc = netdev_start_xmit(skb, dev, txq, more);
3027         trace_net_dev_xmit(skb, rc, dev, len);
3028
3029         return rc;
3030 }
3031
3032 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3033                                     struct netdev_queue *txq, int *ret)
3034 {
3035         struct sk_buff *skb = first;
3036         int rc = NETDEV_TX_OK;
3037
3038         while (skb) {
3039                 struct sk_buff *next = skb->next;
3040
3041                 skb->next = NULL;
3042                 rc = xmit_one(skb, dev, txq, next != NULL);
3043                 if (unlikely(!dev_xmit_complete(rc))) {
3044                         skb->next = next;
3045                         goto out;
3046                 }
3047
3048                 skb = next;
3049                 if (netif_xmit_stopped(txq) && skb) {
3050                         rc = NETDEV_TX_BUSY;
3051                         break;
3052                 }
3053         }
3054
3055 out:
3056         *ret = rc;
3057         return skb;
3058 }
3059
3060 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3061                                           netdev_features_t features)
3062 {
3063         if (skb_vlan_tag_present(skb) &&
3064             !vlan_hw_offload_capable(features, skb->vlan_proto))
3065                 skb = __vlan_hwaccel_push_inside(skb);
3066         return skb;
3067 }
3068
3069 int skb_csum_hwoffload_help(struct sk_buff *skb,
3070                             const netdev_features_t features)
3071 {
3072         if (unlikely(skb->csum_not_inet))
3073                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3074                         skb_crc32c_csum_help(skb);
3075
3076         return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3077 }
3078 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3079
3080 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3081 {
3082         netdev_features_t features;
3083
3084         features = netif_skb_features(skb);
3085         skb = validate_xmit_vlan(skb, features);
3086         if (unlikely(!skb))
3087                 goto out_null;
3088
3089         if (netif_needs_gso(skb, features)) {
3090                 struct sk_buff *segs;
3091
3092                 segs = skb_gso_segment(skb, features);
3093                 if (IS_ERR(segs)) {
3094                         goto out_kfree_skb;
3095                 } else if (segs) {
3096                         consume_skb(skb);
3097                         skb = segs;
3098                 }
3099         } else {
3100                 if (skb_needs_linearize(skb, features) &&
3101                     __skb_linearize(skb))
3102                         goto out_kfree_skb;
3103
3104                 /* If packet is not checksummed and device does not
3105                  * support checksumming for this protocol, complete
3106                  * checksumming here.
3107                  */
3108                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3109                         if (skb->encapsulation)
3110                                 skb_set_inner_transport_header(skb,
3111                                                                skb_checksum_start_offset(skb));
3112                         else
3113                                 skb_set_transport_header(skb,
3114                                                          skb_checksum_start_offset(skb));
3115                         if (skb_csum_hwoffload_help(skb, features))
3116                                 goto out_kfree_skb;
3117                 }
3118         }
3119
3120         skb = validate_xmit_xfrm(skb, features, again);
3121
3122         return skb;
3123
3124 out_kfree_skb:
3125         kfree_skb(skb);
3126 out_null:
3127         atomic_long_inc(&dev->tx_dropped);
3128         return NULL;
3129 }
3130
3131 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3132 {
3133         struct sk_buff *next, *head = NULL, *tail;
3134
3135         for (; skb != NULL; skb = next) {
3136                 next = skb->next;
3137                 skb->next = NULL;
3138
3139                 /* in case skb wont be segmented, point to itself */
3140                 skb->prev = skb;
3141
3142                 skb = validate_xmit_skb(skb, dev, again);
3143                 if (!skb)
3144                         continue;
3145
3146                 if (!head)
3147                         head = skb;
3148                 else
3149                         tail->next = skb;
3150                 /* If skb was segmented, skb->prev points to
3151                  * the last segment. If not, it still contains skb.
3152                  */
3153                 tail = skb->prev;
3154         }
3155         return head;
3156 }
3157 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3158
3159 static void qdisc_pkt_len_init(struct sk_buff *skb)
3160 {
3161         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3162
3163         qdisc_skb_cb(skb)->pkt_len = skb->len;
3164
3165         /* To get more precise estimation of bytes sent on wire,
3166          * we add to pkt_len the headers size of all segments
3167          */
3168         if (shinfo->gso_size)  {
3169                 unsigned int hdr_len;
3170                 u16 gso_segs = shinfo->gso_segs;
3171
3172                 /* mac layer + network layer */
3173                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3174
3175                 /* + transport layer */
3176                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3177                         const struct tcphdr *th;
3178                         struct tcphdr _tcphdr;
3179
3180                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3181                                                 sizeof(_tcphdr), &_tcphdr);
3182                         if (likely(th))
3183                                 hdr_len += __tcp_hdrlen(th);
3184                 } else {
3185                         struct udphdr _udphdr;
3186
3187                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3188                                                sizeof(_udphdr), &_udphdr))
3189                                 hdr_len += sizeof(struct udphdr);
3190                 }
3191
3192                 if (shinfo->gso_type & SKB_GSO_DODGY)
3193                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3194                                                 shinfo->gso_size);
3195
3196                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3197         }
3198 }
3199
3200 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3201                                  struct net_device *dev,
3202                                  struct netdev_queue *txq)
3203 {
3204         spinlock_t *root_lock = qdisc_lock(q);
3205         struct sk_buff *to_free = NULL;
3206         bool contended;
3207         int rc;
3208
3209         qdisc_calculate_pkt_len(skb, q);
3210
3211         if (q->flags & TCQ_F_NOLOCK) {
3212                 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3213                         __qdisc_drop(skb, &to_free);
3214                         rc = NET_XMIT_DROP;
3215                 } else {
3216                         rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3217                         __qdisc_run(q);
3218                 }
3219
3220                 if (unlikely(to_free))
3221                         kfree_skb_list(to_free);
3222                 return rc;
3223         }
3224
3225         /*
3226          * Heuristic to force contended enqueues to serialize on a
3227          * separate lock before trying to get qdisc main lock.
3228          * This permits qdisc->running owner to get the lock more
3229          * often and dequeue packets faster.
3230          */
3231         contended = qdisc_is_running(q);
3232         if (unlikely(contended))
3233                 spin_lock(&q->busylock);
3234
3235         spin_lock(root_lock);
3236         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3237                 __qdisc_drop(skb, &to_free);
3238                 rc = NET_XMIT_DROP;
3239         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3240                    qdisc_run_begin(q)) {
3241                 /*
3242                  * This is a work-conserving queue; there are no old skbs
3243                  * waiting to be sent out; and the qdisc is not running -
3244                  * xmit the skb directly.
3245                  */
3246
3247                 qdisc_bstats_update(q, skb);
3248
3249                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3250                         if (unlikely(contended)) {
3251                                 spin_unlock(&q->busylock);
3252                                 contended = false;
3253                         }
3254                         __qdisc_run(q);
3255                 }
3256
3257                 qdisc_run_end(q);
3258                 rc = NET_XMIT_SUCCESS;
3259         } else {
3260                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3261                 if (qdisc_run_begin(q)) {
3262                         if (unlikely(contended)) {
3263                                 spin_unlock(&q->busylock);
3264                                 contended = false;
3265                         }
3266                         __qdisc_run(q);
3267                         qdisc_run_end(q);
3268                 }
3269         }
3270         spin_unlock(root_lock);
3271         if (unlikely(to_free))
3272                 kfree_skb_list(to_free);
3273         if (unlikely(contended))
3274                 spin_unlock(&q->busylock);
3275         return rc;
3276 }
3277
3278 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3279 static void skb_update_prio(struct sk_buff *skb)
3280 {
3281         struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3282
3283         if (!skb->priority && skb->sk && map) {
3284                 unsigned int prioidx =
3285                         sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3286
3287                 if (prioidx < map->priomap_len)
3288                         skb->priority = map->priomap[prioidx];
3289         }
3290 }
3291 #else
3292 #define skb_update_prio(skb)
3293 #endif
3294
3295 DEFINE_PER_CPU(int, xmit_recursion);
3296 EXPORT_SYMBOL(xmit_recursion);
3297
3298 /**
3299  *      dev_loopback_xmit - loop back @skb
3300  *      @net: network namespace this loopback is happening in
3301  *      @sk:  sk needed to be a netfilter okfn
3302  *      @skb: buffer to transmit
3303  */
3304 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3305 {
3306         skb_reset_mac_header(skb);
3307         __skb_pull(skb, skb_network_offset(skb));
3308         skb->pkt_type = PACKET_LOOPBACK;
3309         skb->ip_summed = CHECKSUM_UNNECESSARY;
3310         WARN_ON(!skb_dst(skb));
3311         skb_dst_force(skb);
3312         netif_rx_ni(skb);
3313         return 0;
3314 }
3315 EXPORT_SYMBOL(dev_loopback_xmit);
3316
3317 #ifdef CONFIG_NET_EGRESS
3318 static struct sk_buff *
3319 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3320 {
3321         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3322         struct tcf_result cl_res;
3323
3324         if (!miniq)
3325                 return skb;
3326
3327         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3328         mini_qdisc_bstats_cpu_update(miniq, skb);
3329
3330         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3331         case TC_ACT_OK:
3332         case TC_ACT_RECLASSIFY:
3333                 skb->tc_index = TC_H_MIN(cl_res.classid);
3334                 break;
3335         case TC_ACT_SHOT:
3336                 mini_qdisc_qstats_cpu_drop(miniq);
3337                 *ret = NET_XMIT_DROP;
3338                 kfree_skb(skb);
3339                 return NULL;
3340         case TC_ACT_STOLEN:
3341         case TC_ACT_QUEUED:
3342         case TC_ACT_TRAP:
3343                 *ret = NET_XMIT_SUCCESS;
3344                 consume_skb(skb);
3345                 return NULL;
3346         case TC_ACT_REDIRECT:
3347                 /* No need to push/pop skb's mac_header here on egress! */
3348                 skb_do_redirect(skb);
3349                 *ret = NET_XMIT_SUCCESS;
3350                 return NULL;
3351         default:
3352                 break;
3353         }
3354
3355         return skb;
3356 }
3357 #endif /* CONFIG_NET_EGRESS */
3358
3359 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3360 {
3361 #ifdef CONFIG_XPS
3362         struct xps_dev_maps *dev_maps;
3363         struct xps_map *map;
3364         int queue_index = -1;
3365
3366         rcu_read_lock();
3367         dev_maps = rcu_dereference(dev->xps_maps);
3368         if (dev_maps) {
3369                 unsigned int tci = skb->sender_cpu - 1;
3370
3371                 if (dev->num_tc) {
3372                         tci *= dev->num_tc;
3373                         tci += netdev_get_prio_tc_map(dev, skb->priority);
3374                 }
3375
3376                 map = rcu_dereference(dev_maps->cpu_map[tci]);
3377                 if (map) {
3378                         if (map->len == 1)
3379                                 queue_index = map->queues[0];
3380                         else
3381                                 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3382                                                                            map->len)];
3383                         if (unlikely(queue_index >= dev->real_num_tx_queues))
3384                                 queue_index = -1;
3385                 }
3386         }
3387         rcu_read_unlock();
3388
3389         return queue_index;
3390 #else
3391         return -1;
3392 #endif
3393 }
3394
3395 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3396 {
3397         struct sock *sk = skb->sk;
3398         int queue_index = sk_tx_queue_get(sk);
3399
3400         if (queue_index < 0 || skb->ooo_okay ||
3401             queue_index >= dev->real_num_tx_queues) {
3402                 int new_index = get_xps_queue(dev, skb);
3403
3404                 if (new_index < 0)
3405                         new_index = skb_tx_hash(dev, skb);
3406
3407                 if (queue_index != new_index && sk &&
3408                     sk_fullsock(sk) &&
3409                     rcu_access_pointer(sk->sk_dst_cache))
3410                         sk_tx_queue_set(sk, new_index);
3411
3412                 queue_index = new_index;
3413         }
3414
3415         return queue_index;
3416 }
3417
3418 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3419                                     struct sk_buff *skb,
3420                                     void *accel_priv)
3421 {
3422         int queue_index = 0;
3423
3424 #ifdef CONFIG_XPS
3425         u32 sender_cpu = skb->sender_cpu - 1;
3426
3427         if (sender_cpu >= (u32)NR_CPUS)
3428                 skb->sender_cpu = raw_smp_processor_id() + 1;
3429 #endif
3430
3431         if (dev->real_num_tx_queues != 1) {
3432                 const struct net_device_ops *ops = dev->netdev_ops;
3433
3434                 if (ops->ndo_select_queue)
3435                         queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3436                                                             __netdev_pick_tx);
3437                 else
3438                         queue_index = __netdev_pick_tx(dev, skb);
3439
3440                 queue_index = netdev_cap_txqueue(dev, queue_index);
3441         }
3442
3443         skb_set_queue_mapping(skb, queue_index);
3444         return netdev_get_tx_queue(dev, queue_index);
3445 }
3446
3447 /**
3448  *      __dev_queue_xmit - transmit a buffer
3449  *      @skb: buffer to transmit
3450  *      @accel_priv: private data used for L2 forwarding offload
3451  *
3452  *      Queue a buffer for transmission to a network device. The caller must
3453  *      have set the device and priority and built the buffer before calling
3454  *      this function. The function can be called from an interrupt.
3455  *
3456  *      A negative errno code is returned on a failure. A success does not
3457  *      guarantee the frame will be transmitted as it may be dropped due
3458  *      to congestion or traffic shaping.
3459  *
3460  * -----------------------------------------------------------------------------------
3461  *      I notice this method can also return errors from the queue disciplines,
3462  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3463  *      be positive.
3464  *
3465  *      Regardless of the return value, the skb is consumed, so it is currently
3466  *      difficult to retry a send to this method.  (You can bump the ref count
3467  *      before sending to hold a reference for retry if you are careful.)
3468  *
3469  *      When calling this method, interrupts MUST be enabled.  This is because
3470  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3471  *          --BLG
3472  */
3473 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3474 {
3475         struct net_device *dev = skb->dev;
3476         struct netdev_queue *txq;
3477         struct Qdisc *q;
3478         int rc = -ENOMEM;
3479         bool again = false;
3480
3481         skb_reset_mac_header(skb);
3482
3483         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3484                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3485
3486         /* Disable soft irqs for various locks below. Also
3487          * stops preemption for RCU.
3488          */
3489         rcu_read_lock_bh();
3490
3491         skb_update_prio(skb);
3492
3493         qdisc_pkt_len_init(skb);
3494 #ifdef CONFIG_NET_CLS_ACT
3495         skb->tc_at_ingress = 0;
3496 # ifdef CONFIG_NET_EGRESS
3497         if (static_key_false(&egress_needed)) {
3498                 skb = sch_handle_egress(skb, &rc, dev);
3499                 if (!skb)
3500                         goto out;
3501         }
3502 # endif
3503 #endif
3504         /* If device/qdisc don't need skb->dst, release it right now while
3505          * its hot in this cpu cache.
3506          */
3507         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3508                 skb_dst_drop(skb);
3509         else
3510                 skb_dst_force(skb);
3511
3512         txq = netdev_pick_tx(dev, skb, accel_priv);
3513         q = rcu_dereference_bh(txq->qdisc);
3514
3515         trace_net_dev_queue(skb);
3516         if (q->enqueue) {
3517                 rc = __dev_xmit_skb(skb, q, dev, txq);
3518                 goto out;
3519         }
3520
3521         /* The device has no queue. Common case for software devices:
3522          * loopback, all the sorts of tunnels...
3523
3524          * Really, it is unlikely that netif_tx_lock protection is necessary
3525          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3526          * counters.)
3527          * However, it is possible, that they rely on protection
3528          * made by us here.
3529
3530          * Check this and shot the lock. It is not prone from deadlocks.
3531          *Either shot noqueue qdisc, it is even simpler 8)
3532          */
3533         if (dev->flags & IFF_UP) {
3534                 int cpu = smp_processor_id(); /* ok because BHs are off */
3535
3536                 if (txq->xmit_lock_owner != cpu) {
3537                         if (unlikely(__this_cpu_read(xmit_recursion) >
3538                                      XMIT_RECURSION_LIMIT))
3539                                 goto recursion_alert;
3540
3541                         skb = validate_xmit_skb(skb, dev, &again);
3542                         if (!skb)
3543                                 goto out;
3544
3545                         HARD_TX_LOCK(dev, txq, cpu);
3546
3547                         if (!netif_xmit_stopped(txq)) {
3548                                 __this_cpu_inc(xmit_recursion);
3549                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3550                                 __this_cpu_dec(xmit_recursion);
3551                                 if (dev_xmit_complete(rc)) {
3552                                         HARD_TX_UNLOCK(dev, txq);
3553                                         goto out;
3554                                 }
3555                         }
3556                         HARD_TX_UNLOCK(dev, txq);
3557                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3558                                              dev->name);
3559                 } else {
3560                         /* Recursion is detected! It is possible,
3561                          * unfortunately
3562                          */
3563 recursion_alert:
3564                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3565                                              dev->name);
3566                 }
3567         }
3568
3569         rc = -ENETDOWN;
3570         rcu_read_unlock_bh();
3571
3572         atomic_long_inc(&dev->tx_dropped);
3573         kfree_skb_list(skb);
3574         return rc;
3575 out:
3576         rcu_read_unlock_bh();
3577         return rc;
3578 }
3579
3580 int dev_queue_xmit(struct sk_buff *skb)
3581 {
3582         return __dev_queue_xmit(skb, NULL);
3583 }
3584 EXPORT_SYMBOL(dev_queue_xmit);
3585
3586 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3587 {
3588         return __dev_queue_xmit(skb, accel_priv);
3589 }
3590 EXPORT_SYMBOL(dev_queue_xmit_accel);
3591
3592
3593 /*************************************************************************
3594  *                      Receiver routines
3595  *************************************************************************/
3596
3597 int netdev_max_backlog __read_mostly = 1000;
3598 EXPORT_SYMBOL(netdev_max_backlog);
3599
3600 int netdev_tstamp_prequeue __read_mostly = 1;
3601 int netdev_budget __read_mostly = 300;
3602 unsigned int __read_mostly netdev_budget_usecs = 2000;
3603 int weight_p __read_mostly = 64;           /* old backlog weight */
3604 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3605 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3606 int dev_rx_weight __read_mostly = 64;
3607 int dev_tx_weight __read_mostly = 64;
3608
3609 /* Called with irq disabled */
3610 static inline void ____napi_schedule(struct softnet_data *sd,
3611                                      struct napi_struct *napi)
3612 {
3613         list_add_tail(&napi->poll_list, &sd->poll_list);
3614         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3615 }
3616
3617 #ifdef CONFIG_RPS
3618
3619 /* One global table that all flow-based protocols share. */
3620 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3621 EXPORT_SYMBOL(rps_sock_flow_table);
3622 u32 rps_cpu_mask __read_mostly;
3623 EXPORT_SYMBOL(rps_cpu_mask);
3624
3625 struct static_key rps_needed __read_mostly;
3626 EXPORT_SYMBOL(rps_needed);
3627 struct static_key rfs_needed __read_mostly;
3628 EXPORT_SYMBOL(rfs_needed);
3629
3630 static struct rps_dev_flow *
3631 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3632             struct rps_dev_flow *rflow, u16 next_cpu)
3633 {
3634         if (next_cpu < nr_cpu_ids) {
3635 #ifdef CONFIG_RFS_ACCEL
3636                 struct netdev_rx_queue *rxqueue;
3637                 struct rps_dev_flow_table *flow_table;
3638                 struct rps_dev_flow *old_rflow;
3639                 u32 flow_id;
3640                 u16 rxq_index;
3641                 int rc;
3642
3643                 /* Should we steer this flow to a different hardware queue? */
3644                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3645                     !(dev->features & NETIF_F_NTUPLE))
3646                         goto out;
3647                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3648                 if (rxq_index == skb_get_rx_queue(skb))
3649                         goto out;
3650
3651                 rxqueue = dev->_rx + rxq_index;
3652                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3653                 if (!flow_table)
3654                         goto out;
3655                 flow_id = skb_get_hash(skb) & flow_table->mask;
3656                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3657                                                         rxq_index, flow_id);
3658                 if (rc < 0)
3659                         goto out;
3660                 old_rflow = rflow;
3661                 rflow = &flow_table->flows[flow_id];
3662                 rflow->filter = rc;
3663                 if (old_rflow->filter == rflow->filter)
3664                         old_rflow->filter = RPS_NO_FILTER;
3665         out:
3666 #endif
3667                 rflow->last_qtail =
3668                         per_cpu(softnet_data, next_cpu).input_queue_head;
3669         }
3670
3671         rflow->cpu = next_cpu;
3672         return rflow;
3673 }
3674
3675 /*
3676  * get_rps_cpu is called from netif_receive_skb and returns the target
3677  * CPU from the RPS map of the receiving queue for a given skb.
3678  * rcu_read_lock must be held on entry.
3679  */
3680 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3681                        struct rps_dev_flow **rflowp)
3682 {
3683         const struct rps_sock_flow_table *sock_flow_table;
3684         struct netdev_rx_queue *rxqueue = dev->_rx;
3685         struct rps_dev_flow_table *flow_table;
3686         struct rps_map *map;
3687         int cpu = -1;
3688         u32 tcpu;
3689         u32 hash;
3690
3691         if (skb_rx_queue_recorded(skb)) {
3692                 u16 index = skb_get_rx_queue(skb);
3693
3694                 if (unlikely(index >= dev->real_num_rx_queues)) {
3695                         WARN_ONCE(dev->real_num_rx_queues > 1,
3696                                   "%s received packet on queue %u, but number "
3697                                   "of RX queues is %u\n",
3698                                   dev->name, index, dev->real_num_rx_queues);
3699                         goto done;
3700                 }
3701                 rxqueue += index;
3702         }
3703
3704         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3705
3706         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3707         map = rcu_dereference(rxqueue->rps_map);
3708         if (!flow_table && !map)
3709                 goto done;
3710
3711         skb_reset_network_header(skb);
3712         hash = skb_get_hash(skb);
3713         if (!hash)
3714                 goto done;
3715
3716         sock_flow_table = rcu_dereference(rps_sock_flow_table);
3717         if (flow_table && sock_flow_table) {
3718                 struct rps_dev_flow *rflow;
3719                 u32 next_cpu;
3720                 u32 ident;
3721
3722                 /* First check into global flow table if there is a match */
3723                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3724                 if ((ident ^ hash) & ~rps_cpu_mask)
3725                         goto try_rps;
3726
3727                 next_cpu = ident & rps_cpu_mask;
3728
3729                 /* OK, now we know there is a match,
3730                  * we can look at the local (per receive queue) flow table
3731                  */
3732                 rflow = &flow_table->flows[hash & flow_table->mask];
3733                 tcpu = rflow->cpu;
3734
3735                 /*
3736                  * If the desired CPU (where last recvmsg was done) is
3737                  * different from current CPU (one in the rx-queue flow
3738                  * table entry), switch if one of the following holds:
3739                  *   - Current CPU is unset (>= nr_cpu_ids).
3740                  *   - Current CPU is offline.
3741                  *   - The current CPU's queue tail has advanced beyond the
3742                  *     last packet that was enqueued using this table entry.
3743                  *     This guarantees that all previous packets for the flow
3744                  *     have been dequeued, thus preserving in order delivery.
3745                  */
3746                 if (unlikely(tcpu != next_cpu) &&
3747                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3748                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3749                       rflow->last_qtail)) >= 0)) {
3750                         tcpu = next_cpu;
3751                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3752                 }
3753
3754                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3755                         *rflowp = rflow;
3756                         cpu = tcpu;
3757                         goto done;
3758                 }
3759         }
3760
3761 try_rps:
3762
3763         if (map) {
3764                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3765                 if (cpu_online(tcpu)) {
3766                         cpu = tcpu;
3767                         goto done;
3768                 }
3769         }
3770
3771 done:
3772         return cpu;
3773 }
3774
3775 #ifdef CONFIG_RFS_ACCEL
3776
3777 /**
3778  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3779  * @dev: Device on which the filter was set
3780  * @rxq_index: RX queue index
3781  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3782  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3783  *
3784  * Drivers that implement ndo_rx_flow_steer() should periodically call
3785  * this function for each installed filter and remove the filters for
3786  * which it returns %true.
3787  */
3788 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3789                          u32 flow_id, u16 filter_id)
3790 {
3791         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3792         struct rps_dev_flow_table *flow_table;
3793         struct rps_dev_flow *rflow;
3794         bool expire = true;
3795         unsigned int cpu;
3796
3797         rcu_read_lock();
3798         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3799         if (flow_table && flow_id <= flow_table->mask) {
3800                 rflow = &flow_table->flows[flow_id];
3801                 cpu = READ_ONCE(rflow->cpu);
3802                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3803                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3804                            rflow->last_qtail) <
3805                      (int)(10 * flow_table->mask)))
3806                         expire = false;
3807         }
3808         rcu_read_unlock();
3809         return expire;
3810 }
3811 EXPORT_SYMBOL(rps_may_expire_flow);
3812
3813 #endif /* CONFIG_RFS_ACCEL */
3814
3815 /* Called from hardirq (IPI) context */
3816 static void rps_trigger_softirq(void *data)
3817 {
3818         struct softnet_data *sd = data;
3819
3820         ____napi_schedule(sd, &sd->backlog);
3821         sd->received_rps++;
3822 }
3823
3824 #endif /* CONFIG_RPS */
3825
3826 /*
3827  * Check if this softnet_data structure is another cpu one
3828  * If yes, queue it to our IPI list and return 1
3829  * If no, return 0
3830  */
3831 static int rps_ipi_queued(struct softnet_data *sd)
3832 {
3833 #ifdef CONFIG_RPS
3834         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3835
3836         if (sd != mysd) {
3837                 sd->rps_ipi_next = mysd->rps_ipi_list;
3838                 mysd->rps_ipi_list = sd;
3839
3840                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3841                 return 1;
3842         }
3843 #endif /* CONFIG_RPS */
3844         return 0;
3845 }
3846
3847 #ifdef CONFIG_NET_FLOW_LIMIT
3848 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3849 #endif
3850
3851 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3852 {
3853 #ifdef CONFIG_NET_FLOW_LIMIT
3854         struct sd_flow_limit *fl;
3855         struct softnet_data *sd;
3856         unsigned int old_flow, new_flow;
3857
3858         if (qlen < (netdev_max_backlog >> 1))
3859                 return false;
3860
3861         sd = this_cpu_ptr(&softnet_data);
3862
3863         rcu_read_lock();
3864         fl = rcu_dereference(sd->flow_limit);
3865         if (fl) {
3866                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3867                 old_flow = fl->history[fl->history_head];
3868                 fl->history[fl->history_head] = new_flow;
3869
3870                 fl->history_head++;
3871                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3872
3873                 if (likely(fl->buckets[old_flow]))
3874                         fl->buckets[old_flow]--;
3875
3876                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3877                         fl->count++;
3878                         rcu_read_unlock();
3879                         return true;
3880                 }
3881         }
3882         rcu_read_unlock();
3883 #endif
3884         return false;
3885 }
3886
3887 /*
3888  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3889  * queue (may be a remote CPU queue).
3890  */
3891 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3892                               unsigned int *qtail)
3893 {
3894         struct softnet_data *sd;
3895         unsigned long flags;
3896         unsigned int qlen;
3897
3898         sd = &per_cpu(softnet_data, cpu);
3899
3900         local_irq_save(flags);
3901
3902         rps_lock(sd);
3903         if (!netif_running(skb->dev))
3904                 goto drop;
3905         qlen = skb_queue_len(&sd->input_pkt_queue);
3906         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3907                 if (qlen) {
3908 enqueue:
3909                         __skb_queue_tail(&sd->input_pkt_queue, skb);
3910                         input_queue_tail_incr_save(sd, qtail);
3911                         rps_unlock(sd);
3912                         local_irq_restore(flags);
3913                         return NET_RX_SUCCESS;
3914                 }
3915
3916                 /* Schedule NAPI for backlog device
3917                  * We can use non atomic operation since we own the queue lock
3918                  */
3919                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3920                         if (!rps_ipi_queued(sd))
3921                                 ____napi_schedule(sd, &sd->backlog);
3922                 }
3923                 goto enqueue;
3924         }
3925
3926 drop:
3927         sd->dropped++;
3928         rps_unlock(sd);
3929
3930         local_irq_restore(flags);
3931
3932         atomic_long_inc(&skb->dev->rx_dropped);
3933         kfree_skb(skb);
3934         return NET_RX_DROP;
3935 }
3936
3937 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
3938 {
3939         struct net_device *dev = skb->dev;
3940         struct netdev_rx_queue *rxqueue;
3941
3942         rxqueue = dev->_rx;
3943
3944         if (skb_rx_queue_recorded(skb)) {
3945                 u16 index = skb_get_rx_queue(skb);
3946
3947                 if (unlikely(index >= dev->real_num_rx_queues)) {
3948                         WARN_ONCE(dev->real_num_rx_queues > 1,
3949                                   "%s received packet on queue %u, but number "
3950                                   "of RX queues is %u\n",
3951                                   dev->name, index, dev->real_num_rx_queues);
3952
3953                         return rxqueue; /* Return first rxqueue */
3954                 }
3955                 rxqueue += index;
3956         }
3957         return rxqueue;
3958 }
3959
3960 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
3961                                      struct bpf_prog *xdp_prog)
3962 {
3963         struct netdev_rx_queue *rxqueue;
3964         u32 metalen, act = XDP_DROP;
3965         struct xdp_buff xdp;
3966         void *orig_data;
3967         int hlen, off;
3968         u32 mac_len;
3969
3970         /* Reinjected packets coming from act_mirred or similar should
3971          * not get XDP generic processing.
3972          */
3973         if (skb_cloned(skb))
3974                 return XDP_PASS;
3975
3976         /* XDP packets must be linear and must have sufficient headroom
3977          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
3978          * native XDP provides, thus we need to do it here as well.
3979          */
3980         if (skb_is_nonlinear(skb) ||
3981             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
3982                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
3983                 int troom = skb->tail + skb->data_len - skb->end;
3984
3985                 /* In case we have to go down the path and also linearize,
3986                  * then lets do the pskb_expand_head() work just once here.
3987                  */
3988                 if (pskb_expand_head(skb,
3989                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
3990                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
3991                         goto do_drop;
3992                 if (skb_linearize(skb))
3993                         goto do_drop;
3994         }
3995
3996         /* The XDP program wants to see the packet starting at the MAC
3997          * header.
3998          */
3999         mac_len = skb->data - skb_mac_header(skb);
4000         hlen = skb_headlen(skb) + mac_len;
4001         xdp.data = skb->data - mac_len;
4002         xdp.data_meta = xdp.data;
4003         xdp.data_end = xdp.data + hlen;
4004         xdp.data_hard_start = skb->data - skb_headroom(skb);
4005         orig_data = xdp.data;
4006
4007         rxqueue = netif_get_rxqueue(skb);
4008         xdp.rxq = &rxqueue->xdp_rxq;
4009
4010         act = bpf_prog_run_xdp(xdp_prog, &xdp);
4011
4012         off = xdp.data - orig_data;
4013         if (off > 0)
4014                 __skb_pull(skb, off);
4015         else if (off < 0)
4016                 __skb_push(skb, -off);
4017         skb->mac_header += off;
4018
4019         switch (act) {
4020         case XDP_REDIRECT:
4021         case XDP_TX:
4022                 __skb_push(skb, mac_len);
4023                 break;
4024         case XDP_PASS:
4025                 metalen = xdp.data - xdp.data_meta;
4026                 if (metalen)
4027                         skb_metadata_set(skb, metalen);
4028                 break;
4029         default:
4030                 bpf_warn_invalid_xdp_action(act);
4031                 /* fall through */
4032         case XDP_ABORTED:
4033                 trace_xdp_exception(skb->dev, xdp_prog, act);
4034                 /* fall through */
4035         case XDP_DROP:
4036         do_drop:
4037                 kfree_skb(skb);
4038                 break;
4039         }
4040
4041         return act;
4042 }
4043
4044 /* When doing generic XDP we have to bypass the qdisc layer and the
4045  * network taps in order to match in-driver-XDP behavior.
4046  */
4047 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4048 {
4049         struct net_device *dev = skb->dev;
4050         struct netdev_queue *txq;
4051         bool free_skb = true;
4052         int cpu, rc;
4053
4054         txq = netdev_pick_tx(dev, skb, NULL);
4055         cpu = smp_processor_id();
4056         HARD_TX_LOCK(dev, txq, cpu);
4057         if (!netif_xmit_stopped(txq)) {
4058                 rc = netdev_start_xmit(skb, dev, txq, 0);
4059                 if (dev_xmit_complete(rc))
4060                         free_skb = false;
4061         }
4062         HARD_TX_UNLOCK(dev, txq);
4063         if (free_skb) {
4064                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4065                 kfree_skb(skb);
4066         }
4067 }
4068 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4069
4070 static struct static_key generic_xdp_needed __read_mostly;
4071
4072 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4073 {
4074         if (xdp_prog) {
4075                 u32 act = netif_receive_generic_xdp(skb, xdp_prog);
4076                 int err;
4077
4078                 if (act != XDP_PASS) {
4079                         switch (act) {
4080                         case XDP_REDIRECT:
4081                                 err = xdp_do_generic_redirect(skb->dev, skb,
4082                                                               xdp_prog);
4083                                 if (err)
4084                                         goto out_redir;
4085                         /* fallthru to submit skb */
4086                         case XDP_TX:
4087                                 generic_xdp_tx(skb, xdp_prog);
4088                                 break;
4089                         }
4090                         return XDP_DROP;
4091                 }
4092         }
4093         return XDP_PASS;
4094 out_redir:
4095         kfree_skb(skb);
4096         return XDP_DROP;
4097 }
4098 EXPORT_SYMBOL_GPL(do_xdp_generic);
4099
4100 static int netif_rx_internal(struct sk_buff *skb)
4101 {
4102         int ret;
4103
4104         net_timestamp_check(netdev_tstamp_prequeue, skb);
4105
4106         trace_netif_rx(skb);
4107
4108         if (static_key_false(&generic_xdp_needed)) {
4109                 int ret;
4110
4111                 preempt_disable();
4112                 rcu_read_lock();
4113                 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4114                 rcu_read_unlock();
4115                 preempt_enable();
4116
4117                 /* Consider XDP consuming the packet a success from
4118                  * the netdev point of view we do not want to count
4119                  * this as an error.
4120                  */
4121                 if (ret != XDP_PASS)
4122                         return NET_RX_SUCCESS;
4123         }
4124
4125 #ifdef CONFIG_RPS
4126         if (static_key_false(&rps_needed)) {
4127                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4128                 int cpu;
4129
4130                 preempt_disable();
4131                 rcu_read_lock();
4132
4133                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4134                 if (cpu < 0)
4135                         cpu = smp_processor_id();
4136
4137                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4138
4139                 rcu_read_unlock();
4140                 preempt_enable();
4141         } else
4142 #endif
4143         {
4144                 unsigned int qtail;
4145
4146                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4147                 put_cpu();
4148         }
4149         return ret;
4150 }
4151
4152 /**
4153  *      netif_rx        -       post buffer to the network code
4154  *      @skb: buffer to post
4155  *
4156  *      This function receives a packet from a device driver and queues it for
4157  *      the upper (protocol) levels to process.  It always succeeds. The buffer
4158  *      may be dropped during processing for congestion control or by the
4159  *      protocol layers.
4160  *
4161  *      return values:
4162  *      NET_RX_SUCCESS  (no congestion)
4163  *      NET_RX_DROP     (packet was dropped)
4164  *
4165  */
4166
4167 int netif_rx(struct sk_buff *skb)
4168 {
4169         trace_netif_rx_entry(skb);
4170
4171         return netif_rx_internal(skb);
4172 }
4173 EXPORT_SYMBOL(netif_rx);
4174
4175 int netif_rx_ni(struct sk_buff *skb)
4176 {
4177         int err;
4178
4179         trace_netif_rx_ni_entry(skb);
4180
4181         preempt_disable();
4182         err = netif_rx_internal(skb);
4183         if (local_softirq_pending())
4184                 do_softirq();
4185         preempt_enable();
4186
4187         return err;
4188 }
4189 EXPORT_SYMBOL(netif_rx_ni);
4190
4191 static __latent_entropy void net_tx_action(struct softirq_action *h)
4192 {
4193         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4194
4195         if (sd->completion_queue) {
4196                 struct sk_buff *clist;
4197
4198                 local_irq_disable();
4199                 clist = sd->completion_queue;
4200                 sd->completion_queue = NULL;
4201                 local_irq_enable();
4202
4203                 while (clist) {
4204                         struct sk_buff *skb = clist;
4205
4206                         clist = clist->next;
4207
4208                         WARN_ON(refcount_read(&skb->users));
4209                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4210                                 trace_consume_skb(skb);
4211                         else
4212                                 trace_kfree_skb(skb, net_tx_action);
4213
4214                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4215                                 __kfree_skb(skb);
4216                         else
4217                                 __kfree_skb_defer(skb);
4218                 }
4219
4220                 __kfree_skb_flush();
4221         }
4222
4223         if (sd->output_queue) {
4224                 struct Qdisc *head;
4225
4226                 local_irq_disable();
4227                 head = sd->output_queue;
4228                 sd->output_queue = NULL;
4229                 sd->output_queue_tailp = &sd->output_queue;
4230                 local_irq_enable();
4231
4232                 while (head) {
4233                         struct Qdisc *q = head;
4234                         spinlock_t *root_lock = NULL;
4235
4236                         head = head->next_sched;
4237
4238                         if (!(q->flags & TCQ_F_NOLOCK)) {
4239                                 root_lock = qdisc_lock(q);
4240                                 spin_lock(root_lock);
4241                         }
4242                         /* We need to make sure head->next_sched is read
4243                          * before clearing __QDISC_STATE_SCHED
4244                          */
4245                         smp_mb__before_atomic();
4246                         clear_bit(__QDISC_STATE_SCHED, &q->state);
4247                         qdisc_run(q);
4248                         if (root_lock)
4249                                 spin_unlock(root_lock);
4250                 }
4251         }
4252
4253         xfrm_dev_backlog(sd);
4254 }
4255
4256 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4257 /* This hook is defined here for ATM LANE */
4258 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4259                              unsigned char *addr) __read_mostly;
4260 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4261 #endif
4262
4263 static inline struct sk_buff *
4264 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4265                    struct net_device *orig_dev)
4266 {
4267 #ifdef CONFIG_NET_CLS_ACT
4268         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4269         struct tcf_result cl_res;
4270
4271         /* If there's at least one ingress present somewhere (so
4272          * we get here via enabled static key), remaining devices
4273          * that are not configured with an ingress qdisc will bail
4274          * out here.
4275          */
4276         if (!miniq)
4277                 return skb;
4278
4279         if (*pt_prev) {
4280                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4281                 *pt_prev = NULL;
4282         }
4283
4284         qdisc_skb_cb(skb)->pkt_len = skb->len;
4285         skb->tc_at_ingress = 1;
4286         mini_qdisc_bstats_cpu_update(miniq, skb);
4287
4288         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4289         case TC_ACT_OK:
4290         case TC_ACT_RECLASSIFY:
4291                 skb->tc_index = TC_H_MIN(cl_res.classid);
4292                 break;
4293         case TC_ACT_SHOT:
4294                 mini_qdisc_qstats_cpu_drop(miniq);
4295                 kfree_skb(skb);
4296                 return NULL;
4297         case TC_ACT_STOLEN:
4298         case TC_ACT_QUEUED:
4299         case TC_ACT_TRAP:
4300                 consume_skb(skb);
4301                 return NULL;
4302         case TC_ACT_REDIRECT:
4303                 /* skb_mac_header check was done by cls/act_bpf, so
4304                  * we can safely push the L2 header back before
4305                  * redirecting to another netdev
4306                  */
4307                 __skb_push(skb, skb->mac_len);
4308                 skb_do_redirect(skb);
4309                 return NULL;
4310         default:
4311                 break;
4312         }
4313 #endif /* CONFIG_NET_CLS_ACT */
4314         return skb;
4315 }
4316
4317 /**
4318  *      netdev_is_rx_handler_busy - check if receive handler is registered
4319  *      @dev: device to check
4320  *
4321  *      Check if a receive handler is already registered for a given device.
4322  *      Return true if there one.
4323  *
4324  *      The caller must hold the rtnl_mutex.
4325  */
4326 bool netdev_is_rx_handler_busy(struct net_device *dev)
4327 {
4328         ASSERT_RTNL();
4329         return dev && rtnl_dereference(dev->rx_handler);
4330 }
4331 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4332
4333 /**
4334  *      netdev_rx_handler_register - register receive handler
4335  *      @dev: device to register a handler for
4336  *      @rx_handler: receive handler to register
4337  *      @rx_handler_data: data pointer that is used by rx handler
4338  *
4339  *      Register a receive handler for a device. This handler will then be
4340  *      called from __netif_receive_skb. A negative errno code is returned
4341  *      on a failure.
4342  *
4343  *      The caller must hold the rtnl_mutex.
4344  *
4345  *      For a general description of rx_handler, see enum rx_handler_result.
4346  */
4347 int netdev_rx_handler_register(struct net_device *dev,
4348                                rx_handler_func_t *rx_handler,
4349                                void *rx_handler_data)
4350 {
4351         if (netdev_is_rx_handler_busy(dev))
4352                 return -EBUSY;
4353
4354         /* Note: rx_handler_data must be set before rx_handler */
4355         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4356         rcu_assign_pointer(dev->rx_handler, rx_handler);
4357
4358         return 0;
4359 }
4360 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4361
4362 /**
4363  *      netdev_rx_handler_unregister - unregister receive handler
4364  *      @dev: device to unregister a handler from
4365  *
4366  *      Unregister a receive handler from a device.
4367  *
4368  *      The caller must hold the rtnl_mutex.
4369  */
4370 void netdev_rx_handler_unregister(struct net_device *dev)
4371 {
4372
4373         ASSERT_RTNL();
4374         RCU_INIT_POINTER(dev->rx_handler, NULL);
4375         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4376          * section has a guarantee to see a non NULL rx_handler_data
4377          * as well.
4378          */
4379         synchronize_net();
4380         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4381 }
4382 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4383
4384 /*
4385  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4386  * the special handling of PFMEMALLOC skbs.
4387  */
4388 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4389 {
4390         switch (skb->protocol) {
4391         case htons(ETH_P_ARP):
4392         case htons(ETH_P_IP):
4393         case htons(ETH_P_IPV6):
4394         case htons(ETH_P_8021Q):
4395         case htons(ETH_P_8021AD):
4396                 return true;
4397         default:
4398                 return false;
4399         }
4400 }
4401
4402 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4403                              int *ret, struct net_device *orig_dev)
4404 {
4405 #ifdef CONFIG_NETFILTER_INGRESS
4406         if (nf_hook_ingress_active(skb)) {
4407                 int ingress_retval;
4408
4409                 if (*pt_prev) {
4410                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
4411                         *pt_prev = NULL;
4412                 }
4413
4414                 rcu_read_lock();
4415                 ingress_retval = nf_hook_ingress(skb);
4416                 rcu_read_unlock();
4417                 return ingress_retval;
4418         }
4419 #endif /* CONFIG_NETFILTER_INGRESS */
4420         return 0;
4421 }
4422
4423 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4424 {
4425         struct packet_type *ptype, *pt_prev;
4426         rx_handler_func_t *rx_handler;
4427         struct net_device *orig_dev;
4428         bool deliver_exact = false;
4429         int ret = NET_RX_DROP;
4430         __be16 type;
4431
4432         net_timestamp_check(!netdev_tstamp_prequeue, skb);
4433
4434         trace_netif_receive_skb(skb);
4435
4436         orig_dev = skb->dev;
4437
4438         skb_reset_network_header(skb);
4439         if (!skb_transport_header_was_set(skb))
4440                 skb_reset_transport_header(skb);
4441         skb_reset_mac_len(skb);
4442
4443         pt_prev = NULL;
4444
4445 another_round:
4446         skb->skb_iif = skb->dev->ifindex;
4447
4448         __this_cpu_inc(softnet_data.processed);
4449
4450         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4451             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4452                 skb = skb_vlan_untag(skb);
4453                 if (unlikely(!skb))
4454                         goto out;
4455         }
4456
4457         if (skb_skip_tc_classify(skb))
4458                 goto skip_classify;
4459
4460         if (pfmemalloc)
4461                 goto skip_taps;
4462
4463         list_for_each_entry_rcu(ptype, &ptype_all, list) {
4464                 if (pt_prev)
4465                         ret = deliver_skb(skb, pt_prev, orig_dev);
4466                 pt_prev = ptype;
4467         }
4468
4469         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4470                 if (pt_prev)
4471                         ret = deliver_skb(skb, pt_prev, orig_dev);
4472                 pt_prev = ptype;
4473         }
4474
4475 skip_taps:
4476 #ifdef CONFIG_NET_INGRESS
4477         if (static_key_false(&ingress_needed)) {
4478                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4479                 if (!skb)
4480                         goto out;
4481
4482                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4483                         goto out;
4484         }
4485 #endif
4486         skb_reset_tc(skb);
4487 skip_classify:
4488         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4489                 goto drop;
4490
4491         if (skb_vlan_tag_present(skb)) {
4492                 if (pt_prev) {
4493                         ret = deliver_skb(skb, pt_prev, orig_dev);
4494                         pt_prev = NULL;
4495                 }
4496                 if (vlan_do_receive(&skb))
4497                         goto another_round;
4498                 else if (unlikely(!skb))
4499                         goto out;
4500         }
4501
4502         rx_handler = rcu_dereference(skb->dev->rx_handler);
4503         if (rx_handler) {
4504                 if (pt_prev) {
4505                         ret = deliver_skb(skb, pt_prev, orig_dev);
4506                         pt_prev = NULL;
4507                 }
4508                 switch (rx_handler(&skb)) {
4509                 case RX_HANDLER_CONSUMED:
4510                         ret = NET_RX_SUCCESS;
4511                         goto out;
4512                 case RX_HANDLER_ANOTHER:
4513                         goto another_round;
4514                 case RX_HANDLER_EXACT:
4515                         deliver_exact = true;
4516                 case RX_HANDLER_PASS:
4517                         break;
4518                 default:
4519                         BUG();
4520                 }
4521         }
4522
4523         if (unlikely(skb_vlan_tag_present(skb))) {
4524                 if (skb_vlan_tag_get_id(skb))
4525                         skb->pkt_type = PACKET_OTHERHOST;
4526                 /* Note: we might in the future use prio bits
4527                  * and set skb->priority like in vlan_do_receive()
4528                  * For the time being, just ignore Priority Code Point
4529                  */
4530                 skb->vlan_tci = 0;
4531         }
4532
4533         type = skb->protocol;
4534
4535         /* deliver only exact match when indicated */
4536         if (likely(!deliver_exact)) {
4537                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4538                                        &ptype_base[ntohs(type) &
4539                                                    PTYPE_HASH_MASK]);
4540         }
4541
4542         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4543                                &orig_dev->ptype_specific);
4544
4545         if (unlikely(skb->dev != orig_dev)) {
4546                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4547                                        &skb->dev->ptype_specific);
4548         }
4549
4550         if (pt_prev) {
4551                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4552                         goto drop;
4553                 else
4554                         ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4555         } else {
4556 drop:
4557                 if (!deliver_exact)
4558                         atomic_long_inc(&skb->dev->rx_dropped);
4559                 else
4560                         atomic_long_inc(&skb->dev->rx_nohandler);
4561                 kfree_skb(skb);
4562                 /* Jamal, now you will not able to escape explaining
4563                  * me how you were going to use this. :-)
4564                  */
4565                 ret = NET_RX_DROP;
4566         }
4567
4568 out:
4569         return ret;
4570 }
4571
4572 /**
4573  *      netif_receive_skb_core - special purpose version of netif_receive_skb
4574  *      @skb: buffer to process
4575  *
4576  *      More direct receive version of netif_receive_skb().  It should
4577  *      only be used by callers that have a need to skip RPS and Generic XDP.
4578  *      Caller must also take care of handling if (page_is_)pfmemalloc.
4579  *
4580  *      This function may only be called from softirq context and interrupts
4581  *      should be enabled.
4582  *
4583  *      Return values (usually ignored):
4584  *      NET_RX_SUCCESS: no congestion
4585  *      NET_RX_DROP: packet was dropped
4586  */
4587 int netif_receive_skb_core(struct sk_buff *skb)
4588 {
4589         int ret;
4590
4591         rcu_read_lock();
4592         ret = __netif_receive_skb_core(skb, false);
4593         rcu_read_unlock();
4594
4595         return ret;
4596 }
4597 EXPORT_SYMBOL(netif_receive_skb_core);
4598
4599 static int __netif_receive_skb(struct sk_buff *skb)
4600 {
4601         int ret;
4602
4603         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4604                 unsigned int noreclaim_flag;
4605
4606                 /*
4607                  * PFMEMALLOC skbs are special, they should
4608                  * - be delivered to SOCK_MEMALLOC sockets only
4609                  * - stay away from userspace
4610                  * - have bounded memory usage
4611                  *
4612                  * Use PF_MEMALLOC as this saves us from propagating the allocation
4613                  * context down to all allocation sites.
4614                  */
4615                 noreclaim_flag = memalloc_noreclaim_save();
4616                 ret = __netif_receive_skb_core(skb, true);
4617                 memalloc_noreclaim_restore(noreclaim_flag);
4618         } else
4619                 ret = __netif_receive_skb_core(skb, false);
4620
4621         return ret;
4622 }
4623
4624 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
4625 {
4626         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
4627         struct bpf_prog *new = xdp->prog;
4628         int ret = 0;
4629
4630         switch (xdp->command) {
4631         case XDP_SETUP_PROG:
4632                 rcu_assign_pointer(dev->xdp_prog, new);
4633                 if (old)
4634                         bpf_prog_put(old);
4635
4636                 if (old && !new) {
4637                         static_key_slow_dec(&generic_xdp_needed);
4638                 } else if (new && !old) {
4639                         static_key_slow_inc(&generic_xdp_needed);
4640                         dev_disable_lro(dev);
4641                         dev_disable_gro_hw(dev);
4642                 }
4643                 break;
4644
4645         case XDP_QUERY_PROG:
4646                 xdp->prog_attached = !!old;
4647                 xdp->prog_id = old ? old->aux->id : 0;
4648                 break;
4649
4650         default:
4651                 ret = -EINVAL;
4652                 break;
4653         }
4654
4655         return ret;
4656 }
4657
4658 static int netif_receive_skb_internal(struct sk_buff *skb)
4659 {
4660         int ret;
4661
4662         net_timestamp_check(netdev_tstamp_prequeue, skb);
4663
4664         if (skb_defer_rx_timestamp(skb))
4665                 return NET_RX_SUCCESS;
4666
4667         if (static_key_false(&generic_xdp_needed)) {
4668                 int ret;
4669
4670                 preempt_disable();
4671                 rcu_read_lock();
4672                 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4673                 rcu_read_unlock();
4674                 preempt_enable();
4675
4676                 if (ret != XDP_PASS)
4677                         return NET_RX_DROP;
4678         }
4679
4680         rcu_read_lock();
4681 #ifdef CONFIG_RPS
4682         if (static_key_false(&rps_needed)) {
4683                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4684                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4685
4686                 if (cpu >= 0) {
4687                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4688                         rcu_read_unlock();
4689                         return ret;
4690                 }
4691         }
4692 #endif
4693         ret = __netif_receive_skb(skb);
4694         rcu_read_unlock();
4695         return ret;
4696 }
4697
4698 /**
4699  *      netif_receive_skb - process receive buffer from network
4700  *      @skb: buffer to process
4701  *
4702  *      netif_receive_skb() is the main receive data processing function.
4703  *      It always succeeds. The buffer may be dropped during processing
4704  *      for congestion control or by the protocol layers.
4705  *
4706  *      This function may only be called from softirq context and interrupts
4707  *      should be enabled.
4708  *
4709  *      Return values (usually ignored):
4710  *      NET_RX_SUCCESS: no congestion
4711  *      NET_RX_DROP: packet was dropped
4712  */
4713 int netif_receive_skb(struct sk_buff *skb)
4714 {
4715         trace_netif_receive_skb_entry(skb);
4716
4717         return netif_receive_skb_internal(skb);
4718 }
4719 EXPORT_SYMBOL(netif_receive_skb);
4720
4721 DEFINE_PER_CPU(struct work_struct, flush_works);
4722
4723 /* Network device is going away, flush any packets still pending */
4724 static void flush_backlog(struct work_struct *work)
4725 {
4726         struct sk_buff *skb, *tmp;
4727         struct softnet_data *sd;
4728
4729         local_bh_disable();
4730         sd = this_cpu_ptr(&softnet_data);
4731
4732         local_irq_disable();
4733         rps_lock(sd);
4734         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4735                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4736                         __skb_unlink(skb, &sd->input_pkt_queue);
4737                         kfree_skb(skb);
4738                         input_queue_head_incr(sd);
4739                 }
4740         }
4741         rps_unlock(sd);
4742         local_irq_enable();
4743
4744         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4745                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4746                         __skb_unlink(skb, &sd->process_queue);
4747                         kfree_skb(skb);
4748                         input_queue_head_incr(sd);
4749                 }
4750         }
4751         local_bh_enable();
4752 }
4753
4754 static void flush_all_backlogs(void)
4755 {
4756         unsigned int cpu;
4757
4758         get_online_cpus();
4759
4760         for_each_online_cpu(cpu)
4761                 queue_work_on(cpu, system_highpri_wq,
4762                               per_cpu_ptr(&flush_works, cpu));
4763
4764         for_each_online_cpu(cpu)
4765                 flush_work(per_cpu_ptr(&flush_works, cpu));
4766
4767         put_online_cpus();
4768 }
4769
4770 static int napi_gro_complete(struct sk_buff *skb)
4771 {
4772         struct packet_offload *ptype;
4773         __be16 type = skb->protocol;
4774         struct list_head *head = &offload_base;
4775         int err = -ENOENT;
4776
4777         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4778
4779         if (NAPI_GRO_CB(skb)->count == 1) {
4780                 skb_shinfo(skb)->gso_size = 0;
4781                 goto out;
4782         }
4783
4784         rcu_read_lock();
4785         list_for_each_entry_rcu(ptype, head, list) {
4786                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4787                         continue;
4788
4789                 err = ptype->callbacks.gro_complete(skb, 0);
4790                 break;
4791         }
4792         rcu_read_unlock();
4793
4794         if (err) {
4795                 WARN_ON(&ptype->list == head);
4796                 kfree_skb(skb);
4797                 return NET_RX_SUCCESS;
4798         }
4799
4800 out:
4801         return netif_receive_skb_internal(skb);
4802 }
4803
4804 /* napi->gro_list contains packets ordered by age.
4805  * youngest packets at the head of it.
4806  * Complete skbs in reverse order to reduce latencies.
4807  */
4808 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4809 {
4810         struct sk_buff *skb, *prev = NULL;
4811
4812         /* scan list and build reverse chain */
4813         for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4814                 skb->prev = prev;
4815                 prev = skb;
4816         }
4817
4818         for (skb = prev; skb; skb = prev) {
4819                 skb->next = NULL;
4820
4821                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4822                         return;
4823
4824                 prev = skb->prev;
4825                 napi_gro_complete(skb);
4826                 napi->gro_count--;
4827         }
4828
4829         napi->gro_list = NULL;
4830 }
4831 EXPORT_SYMBOL(napi_gro_flush);
4832
4833 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4834 {
4835         struct sk_buff *p;
4836         unsigned int maclen = skb->dev->hard_header_len;
4837         u32 hash = skb_get_hash_raw(skb);
4838
4839         for (p = napi->gro_list; p; p = p->next) {
4840                 unsigned long diffs;
4841
4842                 NAPI_GRO_CB(p)->flush = 0;
4843
4844                 if (hash != skb_get_hash_raw(p)) {
4845                         NAPI_GRO_CB(p)->same_flow = 0;
4846                         continue;
4847                 }
4848
4849                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4850                 diffs |= p->vlan_tci ^ skb->vlan_tci;
4851                 diffs |= skb_metadata_dst_cmp(p, skb);
4852                 diffs |= skb_metadata_differs(p, skb);
4853                 if (maclen == ETH_HLEN)
4854                         diffs |= compare_ether_header(skb_mac_header(p),
4855                                                       skb_mac_header(skb));
4856                 else if (!diffs)
4857                         diffs = memcmp(skb_mac_header(p),
4858                                        skb_mac_header(skb),
4859                                        maclen);
4860                 NAPI_GRO_CB(p)->same_flow = !diffs;
4861         }
4862 }
4863
4864 static void skb_gro_reset_offset(struct sk_buff *skb)
4865 {
4866         const struct skb_shared_info *pinfo = skb_shinfo(skb);
4867         const skb_frag_t *frag0 = &pinfo->frags[0];
4868
4869         NAPI_GRO_CB(skb)->data_offset = 0;
4870         NAPI_GRO_CB(skb)->frag0 = NULL;
4871         NAPI_GRO_CB(skb)->frag0_len = 0;
4872
4873         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4874             pinfo->nr_frags &&
4875             !PageHighMem(skb_frag_page(frag0))) {
4876                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4877                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4878                                                     skb_frag_size(frag0),
4879                                                     skb->end - skb->tail);
4880         }
4881 }
4882
4883 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4884 {
4885         struct skb_shared_info *pinfo = skb_shinfo(skb);
4886
4887         BUG_ON(skb->end - skb->tail < grow);
4888
4889         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4890
4891         skb->data_len -= grow;
4892         skb->tail += grow;
4893
4894         pinfo->frags[0].page_offset += grow;
4895         skb_frag_size_sub(&pinfo->frags[0], grow);
4896
4897         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4898                 skb_frag_unref(skb, 0);
4899                 memmove(pinfo->frags, pinfo->frags + 1,
4900                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4901         }
4902 }
4903
4904 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4905 {
4906         struct sk_buff **pp = NULL;
4907         struct packet_offload *ptype;
4908         __be16 type = skb->protocol;
4909         struct list_head *head = &offload_base;
4910         int same_flow;
4911         enum gro_result ret;
4912         int grow;
4913
4914         if (netif_elide_gro(skb->dev))
4915                 goto normal;
4916
4917         gro_list_prepare(napi, skb);
4918
4919         rcu_read_lock();
4920         list_for_each_entry_rcu(ptype, head, list) {
4921                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4922                         continue;
4923
4924                 skb_set_network_header(skb, skb_gro_offset(skb));
4925                 skb_reset_mac_len(skb);
4926                 NAPI_GRO_CB(skb)->same_flow = 0;
4927                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
4928                 NAPI_GRO_CB(skb)->free = 0;
4929                 NAPI_GRO_CB(skb)->encap_mark = 0;
4930                 NAPI_GRO_CB(skb)->recursion_counter = 0;
4931                 NAPI_GRO_CB(skb)->is_fou = 0;
4932                 NAPI_GRO_CB(skb)->is_atomic = 1;
4933                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4934
4935                 /* Setup for GRO checksum validation */
4936                 switch (skb->ip_summed) {
4937                 case CHECKSUM_COMPLETE:
4938                         NAPI_GRO_CB(skb)->csum = skb->csum;
4939                         NAPI_GRO_CB(skb)->csum_valid = 1;
4940                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4941                         break;
4942                 case CHECKSUM_UNNECESSARY:
4943                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4944                         NAPI_GRO_CB(skb)->csum_valid = 0;
4945                         break;
4946                 default:
4947                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4948                         NAPI_GRO_CB(skb)->csum_valid = 0;
4949                 }
4950
4951                 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4952                 break;
4953         }
4954         rcu_read_unlock();
4955
4956         if (&ptype->list == head)
4957                 goto normal;
4958
4959         if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
4960                 ret = GRO_CONSUMED;
4961                 goto ok;
4962         }
4963
4964         same_flow = NAPI_GRO_CB(skb)->same_flow;
4965         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4966
4967         if (pp) {
4968                 struct sk_buff *nskb = *pp;
4969
4970                 *pp = nskb->next;
4971                 nskb->next = NULL;
4972                 napi_gro_complete(nskb);
4973                 napi->gro_count--;
4974         }
4975
4976         if (same_flow)
4977                 goto ok;
4978
4979         if (NAPI_GRO_CB(skb)->flush)
4980                 goto normal;
4981
4982         if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4983                 struct sk_buff *nskb = napi->gro_list;
4984
4985                 /* locate the end of the list to select the 'oldest' flow */
4986                 while (nskb->next) {
4987                         pp = &nskb->next;
4988                         nskb = *pp;
4989                 }
4990                 *pp = NULL;
4991                 nskb->next = NULL;
4992                 napi_gro_complete(nskb);
4993         } else {
4994                 napi->gro_count++;
4995         }
4996         NAPI_GRO_CB(skb)->count = 1;
4997         NAPI_GRO_CB(skb)->age = jiffies;
4998         NAPI_GRO_CB(skb)->last = skb;
4999         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5000         skb->next = napi->gro_list;
5001         napi->gro_list = skb;
5002         ret = GRO_HELD;
5003
5004 pull:
5005         grow = skb_gro_offset(skb) - skb_headlen(skb);
5006         if (grow > 0)
5007                 gro_pull_from_frag0(skb, grow);
5008 ok:
5009         return ret;
5010
5011 normal:
5012         ret = GRO_NORMAL;
5013         goto pull;
5014 }
5015
5016 struct packet_offload *gro_find_receive_by_type(__be16 type)
5017 {
5018         struct list_head *offload_head = &offload_base;
5019         struct packet_offload *ptype;
5020
5021         list_for_each_entry_rcu(ptype, offload_head, list) {
5022                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5023                         continue;
5024                 return ptype;
5025         }
5026         return NULL;
5027 }
5028 EXPORT_SYMBOL(gro_find_receive_by_type);
5029
5030 struct packet_offload *gro_find_complete_by_type(__be16 type)
5031 {
5032         struct list_head *offload_head = &offload_base;
5033         struct packet_offload *ptype;
5034
5035         list_for_each_entry_rcu(ptype, offload_head, list) {
5036                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5037                         continue;
5038                 return ptype;
5039         }
5040         return NULL;
5041 }
5042 EXPORT_SYMBOL(gro_find_complete_by_type);
5043
5044 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5045 {
5046         skb_dst_drop(skb);
5047         secpath_reset(skb);
5048         kmem_cache_free(skbuff_head_cache, skb);
5049 }
5050
5051 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5052 {
5053         switch (ret) {
5054         case GRO_NORMAL:
5055                 if (netif_receive_skb_internal(skb))
5056                         ret = GRO_DROP;
5057                 break;
5058
5059         case GRO_DROP:
5060                 kfree_skb(skb);
5061                 break;
5062
5063         case GRO_MERGED_FREE:
5064                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5065                         napi_skb_free_stolen_head(skb);
5066                 else
5067                         __kfree_skb(skb);
5068                 break;
5069
5070         case GRO_HELD:
5071         case GRO_MERGED:
5072         case GRO_CONSUMED:
5073                 break;
5074         }
5075
5076         return ret;
5077 }
5078
5079 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5080 {
5081         skb_mark_napi_id(skb, napi);
5082         trace_napi_gro_receive_entry(skb);
5083
5084         skb_gro_reset_offset(skb);
5085
5086         return napi_skb_finish(dev_gro_receive(napi, skb), skb);
5087 }
5088 EXPORT_SYMBOL(napi_gro_receive);
5089
5090 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5091 {
5092         if (unlikely(skb->pfmemalloc)) {
5093                 consume_skb(skb);
5094                 return;
5095         }
5096         __skb_pull(skb, skb_headlen(skb));
5097         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5098         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5099         skb->vlan_tci = 0;
5100         skb->dev = napi->dev;
5101         skb->skb_iif = 0;
5102         skb->encapsulation = 0;
5103         skb_shinfo(skb)->gso_type = 0;
5104         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5105         secpath_reset(skb);
5106
5107         napi->skb = skb;
5108 }
5109
5110 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5111 {
5112         struct sk_buff *skb = napi->skb;
5113
5114         if (!skb) {
5115                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5116                 if (skb) {
5117                         napi->skb = skb;
5118                         skb_mark_napi_id(skb, napi);
5119                 }
5120         }
5121         return skb;
5122 }
5123 EXPORT_SYMBOL(napi_get_frags);
5124
5125 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5126                                       struct sk_buff *skb,
5127                                       gro_result_t ret)
5128 {
5129         switch (ret) {
5130         case GRO_NORMAL:
5131         case GRO_HELD:
5132                 __skb_push(skb, ETH_HLEN);
5133                 skb->protocol = eth_type_trans(skb, skb->dev);
5134                 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5135                         ret = GRO_DROP;
5136                 break;
5137
5138         case GRO_DROP:
5139                 napi_reuse_skb(napi, skb);
5140                 break;
5141
5142         case GRO_MERGED_FREE:
5143                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5144                         napi_skb_free_stolen_head(skb);
5145                 else
5146                         napi_reuse_skb(napi, skb);
5147                 break;
5148
5149         case GRO_MERGED:
5150         case GRO_CONSUMED:
5151                 break;
5152         }
5153
5154         return ret;
5155 }
5156
5157 /* Upper GRO stack assumes network header starts at gro_offset=0
5158  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5159  * We copy ethernet header into skb->data to have a common layout.
5160  */
5161 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5162 {
5163         struct sk_buff *skb = napi->skb;
5164         const struct ethhdr *eth;
5165         unsigned int hlen = sizeof(*eth);
5166
5167         napi->skb = NULL;
5168
5169         skb_reset_mac_header(skb);
5170         skb_gro_reset_offset(skb);
5171
5172         eth = skb_gro_header_fast(skb, 0);
5173         if (unlikely(skb_gro_header_hard(skb, hlen))) {
5174                 eth = skb_gro_header_slow(skb, hlen, 0);
5175                 if (unlikely(!eth)) {
5176                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5177                                              __func__, napi->dev->name);
5178                         napi_reuse_skb(napi, skb);
5179                         return NULL;
5180                 }
5181         } else {
5182                 gro_pull_from_frag0(skb, hlen);
5183                 NAPI_GRO_CB(skb)->frag0 += hlen;
5184                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
5185         }
5186         __skb_pull(skb, hlen);
5187
5188         /*
5189          * This works because the only protocols we care about don't require
5190          * special handling.
5191          * We'll fix it up properly in napi_frags_finish()
5192          */
5193         skb->protocol = eth->h_proto;
5194
5195         return skb;
5196 }
5197
5198 gro_result_t napi_gro_frags(struct napi_struct *napi)
5199 {
5200         struct sk_buff *skb = napi_frags_skb(napi);
5201
5202         if (!skb)
5203                 return GRO_DROP;
5204
5205         trace_napi_gro_frags_entry(skb);
5206
5207         return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5208 }
5209 EXPORT_SYMBOL(napi_gro_frags);
5210
5211 /* Compute the checksum from gro_offset and return the folded value
5212  * after adding in any pseudo checksum.
5213  */
5214 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5215 {
5216         __wsum wsum;
5217         __sum16 sum;
5218
5219         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5220
5221         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5222         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5223         if (likely(!sum)) {
5224                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5225                     !skb->csum_complete_sw)
5226                         netdev_rx_csum_fault(skb->dev);
5227         }
5228
5229         NAPI_GRO_CB(skb)->csum = wsum;
5230         NAPI_GRO_CB(skb)->csum_valid = 1;
5231
5232         return sum;
5233 }
5234 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5235
5236 static void net_rps_send_ipi(struct softnet_data *remsd)
5237 {
5238 #ifdef CONFIG_RPS
5239         while (remsd) {
5240                 struct softnet_data *next = remsd->rps_ipi_next;
5241
5242                 if (cpu_online(remsd->cpu))
5243                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
5244                 remsd = next;
5245         }
5246 #endif
5247 }
5248
5249 /*
5250  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5251  * Note: called with local irq disabled, but exits with local irq enabled.
5252  */
5253 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5254 {
5255 #ifdef CONFIG_RPS
5256         struct softnet_data *remsd = sd->rps_ipi_list;
5257
5258         if (remsd) {
5259                 sd->rps_ipi_list = NULL;
5260
5261                 local_irq_enable();
5262
5263                 /* Send pending IPI's to kick RPS processing on remote cpus. */
5264                 net_rps_send_ipi(remsd);
5265         } else
5266 #endif
5267                 local_irq_enable();
5268 }
5269
5270 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5271 {
5272 #ifdef CONFIG_RPS
5273         return sd->rps_ipi_list != NULL;
5274 #else
5275         return false;
5276 #endif
5277 }
5278
5279 static int process_backlog(struct napi_struct *napi, int quota)
5280 {
5281         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5282         bool again = true;
5283         int work = 0;
5284
5285         /* Check if we have pending ipi, its better to send them now,
5286          * not waiting net_rx_action() end.
5287          */
5288         if (sd_has_rps_ipi_waiting(sd)) {
5289                 local_irq_disable();
5290                 net_rps_action_and_irq_enable(sd);
5291         }
5292
5293         napi->weight = dev_rx_weight;
5294         while (again) {
5295                 struct sk_buff *skb;
5296
5297                 while ((skb = __skb_dequeue(&sd->process_queue))) {
5298                         rcu_read_lock();
5299                         __netif_receive_skb(skb);
5300                         rcu_read_unlock();
5301                         input_queue_head_incr(sd);
5302                         if (++work >= quota)
5303                                 return work;
5304
5305                 }
5306
5307                 local_irq_disable();
5308                 rps_lock(sd);
5309                 if (skb_queue_empty(&sd->input_pkt_queue)) {
5310                         /*
5311                          * Inline a custom version of __napi_complete().
5312                          * only current cpu owns and manipulates this napi,
5313                          * and NAPI_STATE_SCHED is the only possible flag set
5314                          * on backlog.
5315                          * We can use a plain write instead of clear_bit(),
5316                          * and we dont need an smp_mb() memory barrier.
5317                          */
5318                         napi->state = 0;
5319                         again = false;
5320                 } else {
5321                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
5322                                                    &sd->process_queue);
5323                 }
5324                 rps_unlock(sd);
5325                 local_irq_enable();
5326         }
5327
5328         return work;
5329 }
5330
5331 /**
5332  * __napi_schedule - schedule for receive
5333  * @n: entry to schedule
5334  *
5335  * The entry's receive function will be scheduled to run.
5336  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5337  */
5338 void __napi_schedule(struct napi_struct *n)
5339 {
5340         unsigned long flags;
5341
5342         local_irq_save(flags);
5343         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5344         local_irq_restore(flags);
5345 }
5346 EXPORT_SYMBOL(__napi_schedule);
5347
5348 /**
5349  *      napi_schedule_prep - check if napi can be scheduled
5350  *      @n: napi context
5351  *
5352  * Test if NAPI routine is already running, and if not mark
5353  * it as running.  This is used as a condition variable
5354  * insure only one NAPI poll instance runs.  We also make
5355  * sure there is no pending NAPI disable.
5356  */
5357 bool napi_schedule_prep(struct napi_struct *n)
5358 {
5359         unsigned long val, new;
5360
5361         do {
5362                 val = READ_ONCE(n->state);
5363                 if (unlikely(val & NAPIF_STATE_DISABLE))
5364                         return false;
5365                 new = val | NAPIF_STATE_SCHED;
5366
5367                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5368                  * This was suggested by Alexander Duyck, as compiler
5369                  * emits better code than :
5370                  * if (val & NAPIF_STATE_SCHED)
5371                  *     new |= NAPIF_STATE_MISSED;
5372                  */
5373                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5374                                                    NAPIF_STATE_MISSED;
5375         } while (cmpxchg(&n->state, val, new) != val);
5376
5377         return !(val & NAPIF_STATE_SCHED);
5378 }
5379 EXPORT_SYMBOL(napi_schedule_prep);
5380
5381 /**
5382  * __napi_schedule_irqoff - schedule for receive
5383  * @n: entry to schedule
5384  *
5385  * Variant of __napi_schedule() assuming hard irqs are masked
5386  */
5387 void __napi_schedule_irqoff(struct napi_struct *n)
5388 {
5389         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5390 }
5391 EXPORT_SYMBOL(__napi_schedule_irqoff);
5392
5393 bool napi_complete_done(struct napi_struct *n, int work_done)
5394 {
5395         unsigned long flags, val, new;
5396
5397         /*
5398          * 1) Don't let napi dequeue from the cpu poll list
5399          *    just in case its running on a different cpu.
5400          * 2) If we are busy polling, do nothing here, we have
5401          *    the guarantee we will be called later.
5402          */
5403         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5404                                  NAPIF_STATE_IN_BUSY_POLL)))
5405                 return false;
5406
5407         if (n->gro_list) {
5408                 unsigned long timeout = 0;
5409
5410                 if (work_done)
5411                         timeout = n->dev->gro_flush_timeout;
5412
5413                 if (timeout)
5414                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
5415                                       HRTIMER_MODE_REL_PINNED);
5416                 else
5417                         napi_gro_flush(n, false);
5418         }
5419         if (unlikely(!list_empty(&n->poll_list))) {
5420                 /* If n->poll_list is not empty, we need to mask irqs */
5421                 local_irq_save(flags);
5422                 list_del_init(&n->poll_list);
5423                 local_irq_restore(flags);
5424         }
5425
5426         do {
5427                 val = READ_ONCE(n->state);
5428
5429                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5430
5431                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5432
5433                 /* If STATE_MISSED was set, leave STATE_SCHED set,
5434                  * because we will call napi->poll() one more time.
5435                  * This C code was suggested by Alexander Duyck to help gcc.
5436                  */
5437                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5438                                                     NAPIF_STATE_SCHED;
5439         } while (cmpxchg(&n->state, val, new) != val);
5440
5441         if (unlikely(val & NAPIF_STATE_MISSED)) {
5442                 __napi_schedule(n);
5443                 return false;
5444         }
5445
5446         return true;
5447 }
5448 EXPORT_SYMBOL(napi_complete_done);
5449
5450 /* must be called under rcu_read_lock(), as we dont take a reference */
5451 static struct napi_struct *napi_by_id(unsigned int napi_id)
5452 {
5453         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5454         struct napi_struct *napi;
5455
5456         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5457                 if (napi->napi_id == napi_id)
5458                         return napi;
5459
5460         return NULL;
5461 }
5462
5463 #if defined(CONFIG_NET_RX_BUSY_POLL)
5464
5465 #define BUSY_POLL_BUDGET 8
5466
5467 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5468 {
5469         int rc;
5470
5471         /* Busy polling means there is a high chance device driver hard irq
5472          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5473          * set in napi_schedule_prep().
5474          * Since we are about to call napi->poll() once more, we can safely
5475          * clear NAPI_STATE_MISSED.
5476          *
5477          * Note: x86 could use a single "lock and ..." instruction
5478          * to perform these two clear_bit()
5479          */
5480         clear_bit(NAPI_STATE_MISSED, &napi->state);
5481         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5482
5483         local_bh_disable();
5484
5485         /* All we really want here is to re-enable device interrupts.
5486          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5487          */
5488         rc = napi->poll(napi, BUSY_POLL_BUDGET);
5489         trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5490         netpoll_poll_unlock(have_poll_lock);
5491         if (rc == BUSY_POLL_BUDGET)
5492                 __napi_schedule(napi);
5493         local_bh_enable();
5494 }
5495
5496 void napi_busy_loop(unsigned int napi_id,
5497                     bool (*loop_end)(void *, unsigned long),
5498                     void *loop_end_arg)
5499 {
5500         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
5501         int (*napi_poll)(struct napi_struct *napi, int budget);
5502         void *have_poll_lock = NULL;
5503         struct napi_struct *napi;
5504
5505 restart:
5506         napi_poll = NULL;
5507
5508         rcu_read_lock();
5509
5510         napi = napi_by_id(napi_id);
5511         if (!napi)
5512                 goto out;
5513
5514         preempt_disable();
5515         for (;;) {
5516                 int work = 0;
5517
5518                 local_bh_disable();
5519                 if (!napi_poll) {
5520                         unsigned long val = READ_ONCE(napi->state);
5521
5522                         /* If multiple threads are competing for this napi,
5523                          * we avoid dirtying napi->state as much as we can.
5524                          */
5525                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5526                                    NAPIF_STATE_IN_BUSY_POLL))
5527                                 goto count;
5528                         if (cmpxchg(&napi->state, val,
5529                                     val | NAPIF_STATE_IN_BUSY_POLL |
5530                                           NAPIF_STATE_SCHED) != val)
5531                                 goto count;
5532                         have_poll_lock = netpoll_poll_lock(napi);
5533                         napi_poll = napi->poll;
5534                 }
5535                 work = napi_poll(napi, BUSY_POLL_BUDGET);
5536                 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
5537 count:
5538                 if (work > 0)
5539                         __NET_ADD_STATS(dev_net(napi->dev),
5540                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
5541                 local_bh_enable();
5542
5543                 if (!loop_end || loop_end(loop_end_arg, start_time))
5544                         break;
5545
5546                 if (unlikely(need_resched())) {
5547                         if (napi_poll)
5548                                 busy_poll_stop(napi, have_poll_lock);
5549                         preempt_enable();
5550                         rcu_read_unlock();
5551                         cond_resched();
5552                         if (loop_end(loop_end_arg, start_time))
5553                                 return;
5554                         goto restart;
5555                 }
5556                 cpu_relax();
5557         }
5558         if (napi_poll)
5559                 busy_poll_stop(napi, have_poll_lock);
5560         preempt_enable();
5561 out:
5562         rcu_read_unlock();
5563 }
5564 EXPORT_SYMBOL(napi_busy_loop);
5565
5566 #endif /* CONFIG_NET_RX_BUSY_POLL */
5567
5568 static void napi_hash_add(struct napi_struct *napi)
5569 {
5570         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5571             test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5572                 return;
5573
5574         spin_lock(&napi_hash_lock);
5575
5576         /* 0..NR_CPUS range is reserved for sender_cpu use */
5577         do {
5578                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
5579                         napi_gen_id = MIN_NAPI_ID;
5580         } while (napi_by_id(napi_gen_id));
5581         napi->napi_id = napi_gen_id;
5582
5583         hlist_add_head_rcu(&napi->napi_hash_node,
5584                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5585
5586         spin_unlock(&napi_hash_lock);
5587 }
5588
5589 /* Warning : caller is responsible to make sure rcu grace period
5590  * is respected before freeing memory containing @napi
5591  */
5592 bool napi_hash_del(struct napi_struct *napi)
5593 {
5594         bool rcu_sync_needed = false;
5595
5596         spin_lock(&napi_hash_lock);
5597
5598         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5599                 rcu_sync_needed = true;
5600                 hlist_del_rcu(&napi->napi_hash_node);
5601         }
5602         spin_unlock(&napi_hash_lock);
5603         return rcu_sync_needed;
5604 }
5605 EXPORT_SYMBOL_GPL(napi_hash_del);
5606
5607 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5608 {
5609         struct napi_struct *napi;
5610
5611         napi = container_of(timer, struct napi_struct, timer);
5612
5613         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
5614          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5615          */
5616         if (napi->gro_list && !napi_disable_pending(napi) &&
5617             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5618                 __napi_schedule_irqoff(napi);
5619
5620         return HRTIMER_NORESTART;
5621 }
5622
5623 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5624                     int (*poll)(struct napi_struct *, int), int weight)
5625 {
5626         INIT_LIST_HEAD(&napi->poll_list);
5627         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5628         napi->timer.function = napi_watchdog;
5629         napi->gro_count = 0;
5630         napi->gro_list = NULL;
5631         napi->skb = NULL;
5632         napi->poll = poll;
5633         if (weight > NAPI_POLL_WEIGHT)
5634                 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5635                             weight, dev->name);
5636         napi->weight = weight;
5637         list_add(&napi->dev_list, &dev->napi_list);
5638         napi->dev = dev;
5639 #ifdef CONFIG_NETPOLL
5640         napi->poll_owner = -1;
5641 #endif
5642         set_bit(NAPI_STATE_SCHED, &napi->state);
5643         napi_hash_add(napi);
5644 }
5645 EXPORT_SYMBOL(netif_napi_add);
5646
5647 void napi_disable(struct napi_struct *n)
5648 {
5649         might_sleep();
5650         set_bit(NAPI_STATE_DISABLE, &n->state);
5651
5652         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5653                 msleep(1);
5654         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5655                 msleep(1);
5656
5657         hrtimer_cancel(&n->timer);
5658
5659         clear_bit(NAPI_STATE_DISABLE, &n->state);
5660 }
5661 EXPORT_SYMBOL(napi_disable);
5662
5663 /* Must be called in process context */
5664 void netif_napi_del(struct napi_struct *napi)
5665 {
5666         might_sleep();
5667         if (napi_hash_del(napi))
5668                 synchronize_net();
5669         list_del_init(&napi->dev_list);
5670         napi_free_frags(napi);
5671
5672         kfree_skb_list(napi->gro_list);
5673         napi->gro_list = NULL;
5674         napi->gro_count = 0;
5675 }
5676 EXPORT_SYMBOL(netif_napi_del);
5677
5678 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5679 {
5680         void *have;
5681         int work, weight;
5682
5683         list_del_init(&n->poll_list);
5684
5685         have = netpoll_poll_lock(n);
5686
5687         weight = n->weight;
5688
5689         /* This NAPI_STATE_SCHED test is for avoiding a race
5690          * with netpoll's poll_napi().  Only the entity which
5691          * obtains the lock and sees NAPI_STATE_SCHED set will
5692          * actually make the ->poll() call.  Therefore we avoid
5693          * accidentally calling ->poll() when NAPI is not scheduled.
5694          */
5695         work = 0;
5696         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5697                 work = n->poll(n, weight);
5698                 trace_napi_poll(n, work, weight);
5699         }
5700
5701         WARN_ON_ONCE(work > weight);
5702
5703         if (likely(work < weight))
5704                 goto out_unlock;
5705
5706         /* Drivers must not modify the NAPI state if they
5707          * consume the entire weight.  In such cases this code
5708          * still "owns" the NAPI instance and therefore can
5709          * move the instance around on the list at-will.
5710          */
5711         if (unlikely(napi_disable_pending(n))) {
5712                 napi_complete(n);
5713                 goto out_unlock;
5714         }
5715
5716         if (n->gro_list) {
5717                 /* flush too old packets
5718                  * If HZ < 1000, flush all packets.
5719                  */
5720                 napi_gro_flush(n, HZ >= 1000);
5721         }
5722
5723         /* Some drivers may have called napi_schedule
5724          * prior to exhausting their budget.
5725          */
5726         if (unlikely(!list_empty(&n->poll_list))) {
5727                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5728                              n->dev ? n->dev->name : "backlog");
5729                 goto out_unlock;
5730         }
5731
5732         list_add_tail(&n->poll_list, repoll);
5733
5734 out_unlock:
5735         netpoll_poll_unlock(have);
5736
5737         return work;
5738 }
5739
5740 static __latent_entropy void net_rx_action(struct softirq_action *h)
5741 {
5742         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5743         unsigned long time_limit = jiffies +
5744                 usecs_to_jiffies(netdev_budget_usecs);
5745         int budget = netdev_budget;
5746         LIST_HEAD(list);
5747         LIST_HEAD(repoll);
5748
5749         local_irq_disable();
5750         list_splice_init(&sd->poll_list, &list);
5751         local_irq_enable();
5752
5753         for (;;) {
5754                 struct napi_struct *n;
5755
5756                 if (list_empty(&list)) {
5757                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5758                                 goto out;
5759                         break;
5760                 }
5761
5762                 n = list_first_entry(&list, struct napi_struct, poll_list);
5763                 budget -= napi_poll(n, &repoll);
5764
5765                 /* If softirq window is exhausted then punt.
5766                  * Allow this to run for 2 jiffies since which will allow
5767                  * an average latency of 1.5/HZ.
5768                  */
5769                 if (unlikely(budget <= 0 ||
5770                              time_after_eq(jiffies, time_limit))) {
5771                         sd->time_squeeze++;
5772                         break;
5773                 }
5774         }
5775
5776         local_irq_disable();
5777
5778         list_splice_tail_init(&sd->poll_list, &list);
5779         list_splice_tail(&repoll, &list);
5780         list_splice(&list, &sd->poll_list);
5781         if (!list_empty(&sd->poll_list))
5782                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5783
5784         net_rps_action_and_irq_enable(sd);
5785 out:
5786         __kfree_skb_flush();
5787 }
5788
5789 struct netdev_adjacent {
5790         struct net_device *dev;
5791
5792         /* upper master flag, there can only be one master device per list */
5793         bool master;
5794
5795         /* counter for the number of times this device was added to us */
5796         u16 ref_nr;
5797
5798         /* private field for the users */
5799         void *private;
5800
5801         struct list_head list;
5802         struct rcu_head rcu;
5803 };
5804
5805 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5806                                                  struct list_head *adj_list)
5807 {
5808         struct netdev_adjacent *adj;
5809
5810         list_for_each_entry(adj, adj_list, list) {
5811                 if (adj->dev == adj_dev)
5812                         return adj;
5813         }
5814         return NULL;
5815 }
5816
5817 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5818 {
5819         struct net_device *dev = data;
5820
5821         return upper_dev == dev;
5822 }
5823
5824 /**
5825  * netdev_has_upper_dev - Check if device is linked to an upper device
5826  * @dev: device
5827  * @upper_dev: upper device to check
5828  *
5829  * Find out if a device is linked to specified upper device and return true
5830  * in case it is. Note that this checks only immediate upper device,
5831  * not through a complete stack of devices. The caller must hold the RTNL lock.
5832  */
5833 bool netdev_has_upper_dev(struct net_device *dev,
5834                           struct net_device *upper_dev)
5835 {
5836         ASSERT_RTNL();
5837
5838         return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5839                                              upper_dev);
5840 }
5841 EXPORT_SYMBOL(netdev_has_upper_dev);
5842
5843 /**
5844  * netdev_has_upper_dev_all - Check if device is linked to an upper device
5845  * @dev: device
5846  * @upper_dev: upper device to check
5847  *
5848  * Find out if a device is linked to specified upper device and return true
5849  * in case it is. Note that this checks the entire upper device chain.
5850  * The caller must hold rcu lock.
5851  */
5852
5853 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5854                                   struct net_device *upper_dev)
5855 {
5856         return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5857                                                upper_dev);
5858 }
5859 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5860
5861 /**
5862  * netdev_has_any_upper_dev - Check if device is linked to some device
5863  * @dev: device
5864  *
5865  * Find out if a device is linked to an upper device and return true in case
5866  * it is. The caller must hold the RTNL lock.
5867  */
5868 bool netdev_has_any_upper_dev(struct net_device *dev)
5869 {
5870         ASSERT_RTNL();
5871
5872         return !list_empty(&dev->adj_list.upper);
5873 }
5874 EXPORT_SYMBOL(netdev_has_any_upper_dev);
5875
5876 /**
5877  * netdev_master_upper_dev_get - Get master upper device
5878  * @dev: device
5879  *
5880  * Find a master upper device and return pointer to it or NULL in case
5881  * it's not there. The caller must hold the RTNL lock.
5882  */
5883 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5884 {
5885         struct netdev_adjacent *upper;
5886
5887         ASSERT_RTNL();
5888
5889         if (list_empty(&dev->adj_list.upper))
5890                 return NULL;
5891
5892         upper = list_first_entry(&dev->adj_list.upper,
5893                                  struct netdev_adjacent, list);
5894         if (likely(upper->master))
5895                 return upper->dev;
5896         return NULL;
5897 }
5898 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5899
5900 /**
5901  * netdev_has_any_lower_dev - Check if device is linked to some device
5902  * @dev: device
5903  *
5904  * Find out if a device is linked to a lower device and return true in case
5905  * it is. The caller must hold the RTNL lock.
5906  */
5907 static bool netdev_has_any_lower_dev(struct net_device *dev)
5908 {
5909         ASSERT_RTNL();
5910
5911         return !list_empty(&dev->adj_list.lower);
5912 }
5913
5914 void *netdev_adjacent_get_private(struct list_head *adj_list)
5915 {
5916         struct netdev_adjacent *adj;
5917
5918         adj = list_entry(adj_list, struct netdev_adjacent, list);
5919
5920         return adj->private;
5921 }
5922 EXPORT_SYMBOL(netdev_adjacent_get_private);
5923
5924 /**
5925  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5926  * @dev: device
5927  * @iter: list_head ** of the current position
5928  *
5929  * Gets the next device from the dev's upper list, starting from iter
5930  * position. The caller must hold RCU read lock.
5931  */
5932 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5933                                                  struct list_head **iter)
5934 {
5935         struct netdev_adjacent *upper;
5936
5937         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5938
5939         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5940
5941         if (&upper->list == &dev->adj_list.upper)
5942                 return NULL;
5943
5944         *iter = &upper->list;
5945
5946         return upper->dev;
5947 }
5948 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5949
5950 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5951                                                     struct list_head **iter)
5952 {
5953         struct netdev_adjacent *upper;
5954
5955         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5956
5957         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5958
5959         if (&upper->list == &dev->adj_list.upper)
5960                 return NULL;
5961
5962         *iter = &upper->list;
5963
5964         return upper->dev;
5965 }
5966
5967 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5968                                   int (*fn)(struct net_device *dev,
5969                                             void *data),
5970                                   void *data)
5971 {
5972         struct net_device *udev;
5973         struct list_head *iter;
5974         int ret;
5975
5976         for (iter = &dev->adj_list.upper,
5977              udev = netdev_next_upper_dev_rcu(dev, &iter);
5978              udev;
5979              udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5980                 /* first is the upper device itself */
5981                 ret = fn(udev, data);
5982                 if (ret)
5983                         return ret;
5984
5985                 /* then look at all of its upper devices */
5986                 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5987                 if (ret)
5988                         return ret;
5989         }
5990
5991         return 0;
5992 }
5993 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5994
5995 /**
5996  * netdev_lower_get_next_private - Get the next ->private from the
5997  *                                 lower neighbour list
5998  * @dev: device
5999  * @iter: list_head ** of the current position
6000  *
6001  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6002  * list, starting from iter position. The caller must hold either hold the
6003  * RTNL lock or its own locking that guarantees that the neighbour lower
6004  * list will remain unchanged.
6005  */
6006 void *netdev_lower_get_next_private(struct net_device *dev,
6007                                     struct list_head **iter)
6008 {
6009         struct netdev_adjacent *lower;
6010
6011         lower = list_entry(*iter, struct netdev_adjacent, list);
6012
6013         if (&lower->list == &dev->adj_list.lower)
6014                 return NULL;
6015
6016         *iter = lower->list.next;
6017
6018         return lower->private;
6019 }
6020 EXPORT_SYMBOL(netdev_lower_get_next_private);
6021
6022 /**
6023  * netdev_lower_get_next_private_rcu - Get the next ->private from the
6024  *                                     lower neighbour list, RCU
6025  *                                     variant
6026  * @dev: device
6027  * @iter: list_head ** of the current position
6028  *
6029  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6030  * list, starting from iter position. The caller must hold RCU read lock.
6031  */
6032 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6033                                         struct list_head **iter)
6034 {
6035         struct netdev_adjacent *lower;
6036
6037         WARN_ON_ONCE(!rcu_read_lock_held());
6038
6039         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6040
6041         if (&lower->list == &dev->adj_list.lower)
6042                 return NULL;
6043
6044         *iter = &lower->list;
6045
6046         return lower->private;
6047 }
6048 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6049
6050 /**
6051  * netdev_lower_get_next - Get the next device from the lower neighbour
6052  *                         list
6053  * @dev: device
6054  * @iter: list_head ** of the current position
6055  *
6056  * Gets the next netdev_adjacent from the dev's lower neighbour
6057  * list, starting from iter position. The caller must hold RTNL lock or
6058  * its own locking that guarantees that the neighbour lower
6059  * list will remain unchanged.
6060  */
6061 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6062 {
6063         struct netdev_adjacent *lower;
6064
6065         lower = list_entry(*iter, struct netdev_adjacent, list);
6066
6067         if (&lower->list == &dev->adj_list.lower)
6068                 return NULL;
6069
6070         *iter = lower->list.next;
6071
6072         return lower->dev;
6073 }
6074 EXPORT_SYMBOL(netdev_lower_get_next);
6075
6076 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6077                                                 struct list_head **iter)
6078 {
6079         struct netdev_adjacent *lower;
6080
6081         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6082
6083         if (&lower->list == &dev->adj_list.lower)
6084                 return NULL;
6085
6086         *iter = &lower->list;
6087
6088         return lower->dev;
6089 }
6090
6091 int netdev_walk_all_lower_dev(struct net_device *dev,
6092                               int (*fn)(struct net_device *dev,
6093                                         void *data),
6094                               void *data)
6095 {
6096         struct net_device *ldev;
6097         struct list_head *iter;
6098         int ret;
6099
6100         for (iter = &dev->adj_list.lower,
6101              ldev = netdev_next_lower_dev(dev, &iter);
6102              ldev;
6103              ldev = netdev_next_lower_dev(dev, &iter)) {
6104                 /* first is the lower device itself */
6105                 ret = fn(ldev, data);
6106                 if (ret)
6107                         return ret;
6108
6109                 /* then look at all of its lower devices */
6110                 ret = netdev_walk_all_lower_dev(ldev, fn, data);
6111                 if (ret)
6112                         return ret;
6113         }
6114
6115         return 0;
6116 }
6117 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6118
6119 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6120                                                     struct list_head **iter)
6121 {
6122         struct netdev_adjacent *lower;
6123
6124         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6125         if (&lower->list == &dev->adj_list.lower)
6126                 return NULL;
6127
6128         *iter = &lower->list;
6129
6130         return lower->dev;
6131 }
6132
6133 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6134                                   int (*fn)(struct net_device *dev,
6135                                             void *data),
6136                                   void *data)
6137 {
6138         struct net_device *ldev;
6139         struct list_head *iter;
6140         int ret;
6141
6142         for (iter = &dev->adj_list.lower,
6143              ldev = netdev_next_lower_dev_rcu(dev, &iter);
6144              ldev;
6145              ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6146                 /* first is the lower device itself */
6147                 ret = fn(ldev, data);
6148                 if (ret)
6149                         return ret;
6150
6151                 /* then look at all of its lower devices */
6152                 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6153                 if (ret)
6154                         return ret;
6155         }
6156
6157         return 0;
6158 }
6159 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6160
6161 /**
6162  * netdev_lower_get_first_private_rcu - Get the first ->private from the
6163  *                                     lower neighbour list, RCU
6164  *                                     variant
6165  * @dev: device
6166  *
6167  * Gets the first netdev_adjacent->private from the dev's lower neighbour
6168  * list. The caller must hold RCU read lock.
6169  */
6170 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6171 {
6172         struct netdev_adjacent *lower;
6173
6174         lower = list_first_or_null_rcu(&dev->adj_list.lower,
6175                         struct netdev_adjacent, list);
6176         if (lower)
6177                 return lower->private;
6178         return NULL;
6179 }
6180 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6181
6182 /**
6183  * netdev_master_upper_dev_get_rcu - Get master upper device
6184  * @dev: device
6185  *
6186  * Find a master upper device and return pointer to it or NULL in case
6187  * it's not there. The caller must hold the RCU read lock.
6188  */
6189 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6190 {
6191         struct netdev_adjacent *upper;
6192
6193         upper = list_first_or_null_rcu(&dev->adj_list.upper,
6194                                        struct netdev_adjacent, list);
6195         if (upper && likely(upper->master))
6196                 return upper->dev;
6197         return NULL;
6198 }
6199 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6200
6201 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6202                               struct net_device *adj_dev,
6203                               struct list_head *dev_list)
6204 {
6205         char linkname[IFNAMSIZ+7];
6206
6207         sprintf(linkname, dev_list == &dev->adj_list.upper ?
6208                 "upper_%s" : "lower_%s", adj_dev->name);
6209         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6210                                  linkname);
6211 }
6212 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6213                                char *name,
6214                                struct list_head *dev_list)
6215 {
6216         char linkname[IFNAMSIZ+7];
6217
6218         sprintf(linkname, dev_list == &dev->adj_list.upper ?
6219                 "upper_%s" : "lower_%s", name);
6220         sysfs_remove_link(&(dev->dev.kobj), linkname);
6221 }
6222
6223 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6224                                                  struct net_device *adj_dev,
6225                                                  struct list_head *dev_list)
6226 {
6227         return (dev_list == &dev->adj_list.upper ||
6228                 dev_list == &dev->adj_list.lower) &&
6229                 net_eq(dev_net(dev), dev_net(adj_dev));
6230 }
6231
6232 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6233                                         struct net_device *adj_dev,
6234                                         struct list_head *dev_list,
6235                                         void *private, bool master)
6236 {
6237         struct netdev_adjacent *adj;
6238         int ret;
6239
6240         adj = __netdev_find_adj(adj_dev, dev_list);
6241
6242         if (adj) {
6243                 adj->ref_nr += 1;
6244                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6245                          dev->name, adj_dev->name, adj->ref_nr);
6246
6247                 return 0;
6248         }
6249
6250         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6251         if (!adj)
6252                 return -ENOMEM;
6253
6254         adj->dev = adj_dev;
6255         adj->master = master;
6256         adj->ref_nr = 1;
6257         adj->private = private;
6258         dev_hold(adj_dev);
6259
6260         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6261                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6262
6263         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6264                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6265                 if (ret)
6266                         goto free_adj;
6267         }
6268
6269         /* Ensure that master link is always the first item in list. */
6270         if (master) {
6271                 ret = sysfs_create_link(&(dev->dev.kobj),
6272                                         &(adj_dev->dev.kobj), "master");
6273                 if (ret)
6274                         goto remove_symlinks;
6275
6276                 list_add_rcu(&adj->list, dev_list);
6277         } else {
6278                 list_add_tail_rcu(&adj->list, dev_list);
6279         }
6280
6281         return 0;
6282
6283 remove_symlinks:
6284         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6285                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6286 free_adj:
6287         kfree(adj);
6288         dev_put(adj_dev);
6289
6290         return ret;
6291 }
6292
6293 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6294                                          struct net_device *adj_dev,
6295                                          u16 ref_nr,
6296                                          struct list_head *dev_list)
6297 {
6298         struct netdev_adjacent *adj;
6299
6300         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6301                  dev->name, adj_dev->name, ref_nr);
6302
6303         adj = __netdev_find_adj(adj_dev, dev_list);
6304
6305         if (!adj) {
6306                 pr_err("Adjacency does not exist for device %s from %s\n",
6307                        dev->name, adj_dev->name);
6308                 WARN_ON(1);
6309                 return;
6310         }
6311
6312         if (adj->ref_nr > ref_nr) {
6313                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6314                          dev->name, adj_dev->name, ref_nr,
6315                          adj->ref_nr - ref_nr);
6316                 adj->ref_nr -= ref_nr;
6317                 return;
6318         }
6319
6320         if (adj->master)
6321                 sysfs_remove_link(&(dev->dev.kobj), "master");
6322
6323         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6324                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6325
6326         list_del_rcu(&adj->list);
6327         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6328                  adj_dev->name, dev->name, adj_dev->name);
6329         dev_put(adj_dev);
6330         kfree_rcu(adj, rcu);
6331 }
6332
6333 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6334                                             struct net_device *upper_dev,
6335                                             struct list_head *up_list,
6336                                             struct list_head *down_list,
6337                                             void *private, bool master)
6338 {
6339         int ret;
6340
6341         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6342                                            private, master);
6343         if (ret)
6344                 return ret;
6345
6346         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6347                                            private, false);
6348         if (ret) {
6349                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6350                 return ret;
6351         }
6352
6353         return 0;
6354 }
6355
6356 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6357                                                struct net_device *upper_dev,
6358                                                u16 ref_nr,
6359                                                struct list_head *up_list,
6360                                                struct list_head *down_list)
6361 {
6362         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6363         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6364 }
6365
6366 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6367                                                 struct net_device *upper_dev,
6368                                                 void *private, bool master)
6369 {
6370         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6371                                                 &dev->adj_list.upper,
6372                                                 &upper_dev->adj_list.lower,
6373                                                 private, master);
6374 }
6375
6376 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6377                                                    struct net_device *upper_dev)
6378 {
6379         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6380                                            &dev->adj_list.upper,
6381                                            &upper_dev->adj_list.lower);
6382 }
6383
6384 static int __netdev_upper_dev_link(struct net_device *dev,
6385                                    struct net_device *upper_dev, bool master,
6386                                    void *upper_priv, void *upper_info,
6387                                    struct netlink_ext_ack *extack)
6388 {
6389         struct netdev_notifier_changeupper_info changeupper_info = {
6390                 .info = {
6391                         .dev = dev,
6392                         .extack = extack,
6393                 },
6394                 .upper_dev = upper_dev,
6395                 .master = master,
6396                 .linking = true,
6397                 .upper_info = upper_info,
6398         };
6399         int ret = 0;
6400
6401         ASSERT_RTNL();
6402
6403         if (dev == upper_dev)
6404                 return -EBUSY;
6405
6406         /* To prevent loops, check if dev is not upper device to upper_dev. */
6407         if (netdev_has_upper_dev(upper_dev, dev))
6408                 return -EBUSY;
6409
6410         if (netdev_has_upper_dev(dev, upper_dev))
6411                 return -EEXIST;
6412
6413         if (master && netdev_master_upper_dev_get(dev))
6414                 return -EBUSY;
6415
6416         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6417                                             &changeupper_info.info);
6418         ret = notifier_to_errno(ret);
6419         if (ret)
6420                 return ret;
6421
6422         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
6423                                                    master);
6424         if (ret)
6425                 return ret;
6426
6427         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6428                                             &changeupper_info.info);
6429         ret = notifier_to_errno(ret);
6430         if (ret)
6431                 goto rollback;
6432
6433         return 0;
6434
6435 rollback:
6436         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6437
6438         return ret;
6439 }
6440
6441 /**
6442  * netdev_upper_dev_link - Add a link to the upper device
6443  * @dev: device
6444  * @upper_dev: new upper device
6445  * @extack: netlink extended ack
6446  *
6447  * Adds a link to device which is upper to this one. The caller must hold
6448  * the RTNL lock. On a failure a negative errno code is returned.
6449  * On success the reference counts are adjusted and the function
6450  * returns zero.
6451  */
6452 int netdev_upper_dev_link(struct net_device *dev,
6453                           struct net_device *upper_dev,
6454                           struct netlink_ext_ack *extack)
6455 {
6456         return __netdev_upper_dev_link(dev, upper_dev, false,
6457                                        NULL, NULL, extack);
6458 }
6459 EXPORT_SYMBOL(netdev_upper_dev_link);
6460
6461 /**
6462  * netdev_master_upper_dev_link - Add a master link to the upper device
6463  * @dev: device
6464  * @upper_dev: new upper device
6465  * @upper_priv: upper device private
6466  * @upper_info: upper info to be passed down via notifier
6467  * @extack: netlink extended ack
6468  *
6469  * Adds a link to device which is upper to this one. In this case, only
6470  * one master upper device can be linked, although other non-master devices
6471  * might be linked as well. The caller must hold the RTNL lock.
6472  * On a failure a negative errno code is returned. On success the reference
6473  * counts are adjusted and the function returns zero.
6474  */
6475 int netdev_master_upper_dev_link(struct net_device *dev,
6476                                  struct net_device *upper_dev,
6477                                  void *upper_priv, void *upper_info,
6478                                  struct netlink_ext_ack *extack)
6479 {
6480         return __netdev_upper_dev_link(dev, upper_dev, true,
6481                                        upper_priv, upper_info, extack);
6482 }
6483 EXPORT_SYMBOL(netdev_master_upper_dev_link);
6484
6485 /**
6486  * netdev_upper_dev_unlink - Removes a link to upper device
6487  * @dev: device
6488  * @upper_dev: new upper device
6489  *
6490  * Removes a link to device which is upper to this one. The caller must hold
6491  * the RTNL lock.
6492  */
6493 void netdev_upper_dev_unlink(struct net_device *dev,
6494                              struct net_device *upper_dev)
6495 {
6496         struct netdev_notifier_changeupper_info changeupper_info = {
6497                 .info = {
6498                         .dev = dev,
6499                 },
6500                 .upper_dev = upper_dev,
6501                 .linking = false,
6502         };
6503
6504         ASSERT_RTNL();
6505
6506         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
6507
6508         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6509                                       &changeupper_info.info);
6510
6511         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6512
6513         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6514                                       &changeupper_info.info);
6515 }
6516 EXPORT_SYMBOL(netdev_upper_dev_unlink);
6517
6518 /**
6519  * netdev_bonding_info_change - Dispatch event about slave change
6520  * @dev: device
6521  * @bonding_info: info to dispatch
6522  *
6523  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6524  * The caller must hold the RTNL lock.
6525  */
6526 void netdev_bonding_info_change(struct net_device *dev,
6527                                 struct netdev_bonding_info *bonding_info)
6528 {
6529         struct netdev_notifier_bonding_info info = {
6530                 .info.dev = dev,
6531         };
6532
6533         memcpy(&info.bonding_info, bonding_info,
6534                sizeof(struct netdev_bonding_info));
6535         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
6536                                       &info.info);
6537 }
6538 EXPORT_SYMBOL(netdev_bonding_info_change);
6539
6540 static void netdev_adjacent_add_links(struct net_device *dev)
6541 {
6542         struct netdev_adjacent *iter;
6543
6544         struct net *net = dev_net(dev);
6545
6546         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6547                 if (!net_eq(net, dev_net(iter->dev)))
6548                         continue;
6549                 netdev_adjacent_sysfs_add(iter->dev, dev,
6550                                           &iter->dev->adj_list.lower);
6551                 netdev_adjacent_sysfs_add(dev, iter->dev,
6552                                           &dev->adj_list.upper);
6553         }
6554
6555         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6556                 if (!net_eq(net, dev_net(iter->dev)))
6557                         continue;
6558                 netdev_adjacent_sysfs_add(iter->dev, dev,
6559                                           &iter->dev->adj_list.upper);
6560                 netdev_adjacent_sysfs_add(dev, iter->dev,
6561                                           &dev->adj_list.lower);
6562         }
6563 }
6564
6565 static void netdev_adjacent_del_links(struct net_device *dev)
6566 {
6567         struct netdev_adjacent *iter;
6568
6569         struct net *net = dev_net(dev);
6570
6571         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6572                 if (!net_eq(net, dev_net(iter->dev)))
6573                         continue;
6574                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6575                                           &iter->dev->adj_list.lower);
6576                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6577                                           &dev->adj_list.upper);
6578         }
6579
6580         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6581                 if (!net_eq(net, dev_net(iter->dev)))
6582                         continue;
6583                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6584                                           &iter->dev->adj_list.upper);
6585                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6586                                           &dev->adj_list.lower);
6587         }
6588 }
6589
6590 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6591 {
6592         struct netdev_adjacent *iter;
6593
6594         struct net *net = dev_net(dev);
6595
6596         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6597                 if (!net_eq(net, dev_net(iter->dev)))
6598                         continue;
6599                 netdev_adjacent_sysfs_del(iter->dev, oldname,
6600                                           &iter->dev->adj_list.lower);
6601                 netdev_adjacent_sysfs_add(iter->dev, dev,
6602                                           &iter->dev->adj_list.lower);
6603         }
6604
6605         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6606                 if (!net_eq(net, dev_net(iter->dev)))
6607                         continue;
6608                 netdev_adjacent_sysfs_del(iter->dev, oldname,
6609                                           &iter->dev->adj_list.upper);
6610                 netdev_adjacent_sysfs_add(iter->dev, dev,
6611                                           &iter->dev->adj_list.upper);
6612         }
6613 }
6614
6615 void *netdev_lower_dev_get_private(struct net_device *dev,
6616                                    struct net_device *lower_dev)
6617 {
6618         struct netdev_adjacent *lower;
6619
6620         if (!lower_dev)
6621                 return NULL;
6622         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6623         if (!lower)
6624                 return NULL;
6625
6626         return lower->private;
6627 }
6628 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6629
6630
6631 int dev_get_nest_level(struct net_device *dev)
6632 {
6633         struct net_device *lower = NULL;
6634         struct list_head *iter;
6635         int max_nest = -1;
6636         int nest;
6637
6638         ASSERT_RTNL();
6639
6640         netdev_for_each_lower_dev(dev, lower, iter) {
6641                 nest = dev_get_nest_level(lower);
6642                 if (max_nest < nest)
6643                         max_nest = nest;
6644         }
6645
6646         return max_nest + 1;
6647 }
6648 EXPORT_SYMBOL(dev_get_nest_level);
6649
6650 /**
6651  * netdev_lower_change - Dispatch event about lower device state change
6652  * @lower_dev: device
6653  * @lower_state_info: state to dispatch
6654  *
6655  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6656  * The caller must hold the RTNL lock.
6657  */
6658 void netdev_lower_state_changed(struct net_device *lower_dev,
6659                                 void *lower_state_info)
6660 {
6661         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
6662                 .info.dev = lower_dev,
6663         };
6664
6665         ASSERT_RTNL();
6666         changelowerstate_info.lower_state_info = lower_state_info;
6667         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
6668                                       &changelowerstate_info.info);
6669 }
6670 EXPORT_SYMBOL(netdev_lower_state_changed);
6671
6672 static void dev_change_rx_flags(struct net_device *dev, int flags)
6673 {
6674         const struct net_device_ops *ops = dev->netdev_ops;
6675
6676         if (ops->ndo_change_rx_flags)
6677                 ops->ndo_change_rx_flags(dev, flags);
6678 }
6679
6680 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6681 {
6682         unsigned int old_flags = dev->flags;
6683         kuid_t uid;
6684         kgid_t gid;
6685
6686         ASSERT_RTNL();
6687
6688         dev->flags |= IFF_PROMISC;
6689         dev->promiscuity += inc;
6690         if (dev->promiscuity == 0) {
6691                 /*
6692                  * Avoid overflow.
6693                  * If inc causes overflow, untouch promisc and return error.
6694                  */
6695                 if (inc < 0)
6696                         dev->flags &= ~IFF_PROMISC;
6697                 else {
6698                         dev->promiscuity -= inc;
6699                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6700                                 dev->name);
6701                         return -EOVERFLOW;
6702                 }
6703         }
6704         if (dev->flags != old_flags) {
6705                 pr_info("device %s %s promiscuous mode\n",
6706                         dev->name,
6707                         dev->flags & IFF_PROMISC ? "entered" : "left");
6708                 if (audit_enabled) {
6709                         current_uid_gid(&uid, &gid);
6710                         audit_log(current->audit_context, GFP_ATOMIC,
6711                                 AUDIT_ANOM_PROMISCUOUS,
6712                                 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6713                                 dev->name, (dev->flags & IFF_PROMISC),
6714                                 (old_flags & IFF_PROMISC),
6715                                 from_kuid(&init_user_ns, audit_get_loginuid(current)),
6716                                 from_kuid(&init_user_ns, uid),
6717                                 from_kgid(&init_user_ns, gid),
6718                                 audit_get_sessionid(current));
6719                 }
6720
6721                 dev_change_rx_flags(dev, IFF_PROMISC);
6722         }
6723         if (notify)
6724                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6725         return 0;
6726 }
6727
6728 /**
6729  *      dev_set_promiscuity     - update promiscuity count on a device
6730  *      @dev: device
6731  *      @inc: modifier
6732  *
6733  *      Add or remove promiscuity from a device. While the count in the device
6734  *      remains above zero the interface remains promiscuous. Once it hits zero
6735  *      the device reverts back to normal filtering operation. A negative inc
6736  *      value is used to drop promiscuity on the device.
6737  *      Return 0 if successful or a negative errno code on error.
6738  */
6739 int dev_set_promiscuity(struct net_device *dev, int inc)
6740 {
6741         unsigned int old_flags = dev->flags;
6742         int err;
6743
6744         err = __dev_set_promiscuity(dev, inc, true);
6745         if (err < 0)
6746                 return err;
6747         if (dev->flags != old_flags)
6748                 dev_set_rx_mode(dev);
6749         return err;
6750 }
6751 EXPORT_SYMBOL(dev_set_promiscuity);
6752
6753 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6754 {
6755         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6756
6757         ASSERT_RTNL();
6758
6759         dev->flags |= IFF_ALLMULTI;
6760         dev->allmulti += inc;
6761         if (dev->allmulti == 0) {
6762                 /*
6763                  * Avoid overflow.
6764                  * If inc causes overflow, untouch allmulti and return error.
6765                  */
6766                 if (inc < 0)
6767                         dev->flags &= ~IFF_ALLMULTI;
6768                 else {
6769                         dev->allmulti -= inc;
6770                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6771                                 dev->name);
6772                         return -EOVERFLOW;
6773                 }
6774         }
6775         if (dev->flags ^ old_flags) {
6776                 dev_change_rx_flags(dev, IFF_ALLMULTI);
6777                 dev_set_rx_mode(dev);
6778                 if (notify)
6779                         __dev_notify_flags(dev, old_flags,
6780                                            dev->gflags ^ old_gflags);
6781         }
6782         return 0;
6783 }
6784
6785 /**
6786  *      dev_set_allmulti        - update allmulti count on a device
6787  *      @dev: device
6788  *      @inc: modifier
6789  *
6790  *      Add or remove reception of all multicast frames to a device. While the
6791  *      count in the device remains above zero the interface remains listening
6792  *      to all interfaces. Once it hits zero the device reverts back to normal
6793  *      filtering operation. A negative @inc value is used to drop the counter
6794  *      when releasing a resource needing all multicasts.
6795  *      Return 0 if successful or a negative errno code on error.
6796  */
6797
6798 int dev_set_allmulti(struct net_device *dev, int inc)
6799 {
6800         return __dev_set_allmulti(dev, inc, true);
6801 }
6802 EXPORT_SYMBOL(dev_set_allmulti);
6803
6804 /*
6805  *      Upload unicast and multicast address lists to device and
6806  *      configure RX filtering. When the device doesn't support unicast
6807  *      filtering it is put in promiscuous mode while unicast addresses
6808  *      are present.
6809  */
6810 void __dev_set_rx_mode(struct net_device *dev)
6811 {
6812         const struct net_device_ops *ops = dev->netdev_ops;
6813
6814         /* dev_open will call this function so the list will stay sane. */
6815         if (!(dev->flags&IFF_UP))
6816                 return;
6817
6818         if (!netif_device_present(dev))
6819                 return;
6820
6821         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6822                 /* Unicast addresses changes may only happen under the rtnl,
6823                  * therefore calling __dev_set_promiscuity here is safe.
6824                  */
6825                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6826                         __dev_set_promiscuity(dev, 1, false);
6827                         dev->uc_promisc = true;
6828                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6829                         __dev_set_promiscuity(dev, -1, false);
6830                         dev->uc_promisc = false;
6831                 }
6832         }
6833
6834         if (ops->ndo_set_rx_mode)
6835                 ops->ndo_set_rx_mode(dev);
6836 }
6837
6838 void dev_set_rx_mode(struct net_device *dev)
6839 {
6840         netif_addr_lock_bh(dev);
6841         __dev_set_rx_mode(dev);
6842         netif_addr_unlock_bh(dev);
6843 }
6844
6845 /**
6846  *      dev_get_flags - get flags reported to userspace
6847  *      @dev: device
6848  *
6849  *      Get the combination of flag bits exported through APIs to userspace.
6850  */
6851 unsigned int dev_get_flags(const struct net_device *dev)
6852 {
6853         unsigned int flags;
6854
6855         flags = (dev->flags & ~(IFF_PROMISC |
6856                                 IFF_ALLMULTI |
6857                                 IFF_RUNNING |
6858                                 IFF_LOWER_UP |
6859                                 IFF_DORMANT)) |
6860                 (dev->gflags & (IFF_PROMISC |
6861                                 IFF_ALLMULTI));
6862
6863         if (netif_running(dev)) {
6864                 if (netif_oper_up(dev))
6865                         flags |= IFF_RUNNING;
6866                 if (netif_carrier_ok(dev))
6867                         flags |= IFF_LOWER_UP;
6868                 if (netif_dormant(dev))
6869                         flags |= IFF_DORMANT;
6870         }
6871
6872         return flags;
6873 }
6874 EXPORT_SYMBOL(dev_get_flags);
6875
6876 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6877 {
6878         unsigned int old_flags = dev->flags;
6879         int ret;
6880
6881         ASSERT_RTNL();
6882
6883         /*
6884          *      Set the flags on our device.
6885          */
6886
6887         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6888                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6889                                IFF_AUTOMEDIA)) |
6890                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6891                                     IFF_ALLMULTI));
6892
6893         /*
6894          *      Load in the correct multicast list now the flags have changed.
6895          */
6896
6897         if ((old_flags ^ flags) & IFF_MULTICAST)
6898                 dev_change_rx_flags(dev, IFF_MULTICAST);
6899
6900         dev_set_rx_mode(dev);
6901
6902         /*
6903          *      Have we downed the interface. We handle IFF_UP ourselves
6904          *      according to user attempts to set it, rather than blindly
6905          *      setting it.
6906          */
6907
6908         ret = 0;
6909         if ((old_flags ^ flags) & IFF_UP) {
6910                 if (old_flags & IFF_UP)
6911                         __dev_close(dev);
6912                 else
6913                         ret = __dev_open(dev);
6914         }
6915
6916         if ((flags ^ dev->gflags) & IFF_PROMISC) {
6917                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6918                 unsigned int old_flags = dev->flags;
6919
6920                 dev->gflags ^= IFF_PROMISC;
6921
6922                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6923                         if (dev->flags != old_flags)
6924                                 dev_set_rx_mode(dev);
6925         }
6926
6927         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6928          * is important. Some (broken) drivers set IFF_PROMISC, when
6929          * IFF_ALLMULTI is requested not asking us and not reporting.
6930          */
6931         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6932                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6933
6934                 dev->gflags ^= IFF_ALLMULTI;
6935                 __dev_set_allmulti(dev, inc, false);
6936         }
6937
6938         return ret;
6939 }
6940
6941 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6942                         unsigned int gchanges)
6943 {
6944         unsigned int changes = dev->flags ^ old_flags;
6945
6946         if (gchanges)
6947                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6948
6949         if (changes & IFF_UP) {
6950                 if (dev->flags & IFF_UP)
6951                         call_netdevice_notifiers(NETDEV_UP, dev);
6952                 else
6953                         call_netdevice_notifiers(NETDEV_DOWN, dev);
6954         }
6955
6956         if (dev->flags & IFF_UP &&
6957             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6958                 struct netdev_notifier_change_info change_info = {
6959                         .info = {
6960                                 .dev = dev,
6961                         },
6962                         .flags_changed = changes,
6963                 };
6964
6965                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
6966         }
6967 }
6968
6969 /**
6970  *      dev_change_flags - change device settings
6971  *      @dev: device
6972  *      @flags: device state flags
6973  *
6974  *      Change settings on device based state flags. The flags are
6975  *      in the userspace exported format.
6976  */
6977 int dev_change_flags(struct net_device *dev, unsigned int flags)
6978 {
6979         int ret;
6980         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6981
6982         ret = __dev_change_flags(dev, flags);
6983         if (ret < 0)
6984                 return ret;
6985
6986         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6987         __dev_notify_flags(dev, old_flags, changes);
6988         return ret;
6989 }
6990 EXPORT_SYMBOL(dev_change_flags);
6991
6992 int __dev_set_mtu(struct net_device *dev, int new_mtu)
6993 {
6994         const struct net_device_ops *ops = dev->netdev_ops;
6995
6996         if (ops->ndo_change_mtu)
6997                 return ops->ndo_change_mtu(dev, new_mtu);
6998
6999         dev->mtu = new_mtu;
7000         return 0;
7001 }
7002 EXPORT_SYMBOL(__dev_set_mtu);
7003
7004 /**
7005  *      dev_set_mtu - Change maximum transfer unit
7006  *      @dev: device
7007  *      @new_mtu: new transfer unit
7008  *
7009  *      Change the maximum transfer size of the network device.
7010  */
7011 int dev_set_mtu(struct net_device *dev, int new_mtu)
7012 {
7013         int err, orig_mtu;
7014
7015         if (new_mtu == dev->mtu)
7016                 return 0;
7017
7018         /* MTU must be positive, and in range */
7019         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7020                 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
7021                                     dev->name, new_mtu, dev->min_mtu);
7022                 return -EINVAL;
7023         }
7024
7025         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7026                 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
7027                                     dev->name, new_mtu, dev->max_mtu);
7028                 return -EINVAL;
7029         }
7030
7031         if (!netif_device_present(dev))
7032                 return -ENODEV;
7033
7034         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7035         err = notifier_to_errno(err);
7036         if (err)
7037                 return err;
7038
7039         orig_mtu = dev->mtu;
7040         err = __dev_set_mtu(dev, new_mtu);
7041
7042         if (!err) {
7043                 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
7044                 err = notifier_to_errno(err);
7045                 if (err) {
7046                         /* setting mtu back and notifying everyone again,
7047                          * so that they have a chance to revert changes.
7048                          */
7049                         __dev_set_mtu(dev, orig_mtu);
7050                         call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
7051                 }
7052         }
7053         return err;
7054 }
7055 EXPORT_SYMBOL(dev_set_mtu);
7056
7057 /**
7058  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
7059  *      @dev: device
7060  *      @new_len: new tx queue length
7061  */
7062 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7063 {
7064         unsigned int orig_len = dev->tx_queue_len;
7065         int res;
7066
7067         if (new_len != (unsigned int)new_len)
7068                 return -ERANGE;
7069
7070         if (new_len != orig_len) {
7071                 dev->tx_queue_len = new_len;
7072                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7073                 res = notifier_to_errno(res);
7074                 if (res) {
7075                         netdev_err(dev,
7076                                    "refused to change device tx_queue_len\n");
7077                         dev->tx_queue_len = orig_len;
7078                         return res;
7079                 }
7080                 return dev_qdisc_change_tx_queue_len(dev);
7081         }
7082
7083         return 0;
7084 }
7085
7086 /**
7087  *      dev_set_group - Change group this device belongs to
7088  *      @dev: device
7089  *      @new_group: group this device should belong to
7090  */
7091 void dev_set_group(struct net_device *dev, int new_group)
7092 {
7093         dev->group = new_group;
7094 }
7095 EXPORT_SYMBOL(dev_set_group);
7096
7097 /**
7098  *      dev_set_mac_address - Change Media Access Control Address
7099  *      @dev: device
7100  *      @sa: new address
7101  *
7102  *      Change the hardware (MAC) address of the device
7103  */
7104 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
7105 {
7106         const struct net_device_ops *ops = dev->netdev_ops;
7107         int err;
7108
7109         if (!ops->ndo_set_mac_address)
7110                 return -EOPNOTSUPP;
7111         if (sa->sa_family != dev->type)
7112                 return -EINVAL;
7113         if (!netif_device_present(dev))
7114                 return -ENODEV;
7115         err = ops->ndo_set_mac_address(dev, sa);
7116         if (err)
7117                 return err;
7118         dev->addr_assign_type = NET_ADDR_SET;
7119         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7120         add_device_randomness(dev->dev_addr, dev->addr_len);
7121         return 0;
7122 }
7123 EXPORT_SYMBOL(dev_set_mac_address);
7124
7125 /**
7126  *      dev_change_carrier - Change device carrier
7127  *      @dev: device
7128  *      @new_carrier: new value
7129  *
7130  *      Change device carrier
7131  */
7132 int dev_change_carrier(struct net_device *dev, bool new_carrier)
7133 {
7134         const struct net_device_ops *ops = dev->netdev_ops;
7135
7136         if (!ops->ndo_change_carrier)
7137                 return -EOPNOTSUPP;
7138         if (!netif_device_present(dev))
7139                 return -ENODEV;
7140         return ops->ndo_change_carrier(dev, new_carrier);
7141 }
7142 EXPORT_SYMBOL(dev_change_carrier);
7143
7144 /**
7145  *      dev_get_phys_port_id - Get device physical port ID
7146  *      @dev: device
7147  *      @ppid: port ID
7148  *
7149  *      Get device physical port ID
7150  */
7151 int dev_get_phys_port_id(struct net_device *dev,
7152                          struct netdev_phys_item_id *ppid)
7153 {
7154         const struct net_device_ops *ops = dev->netdev_ops;
7155
7156         if (!ops->ndo_get_phys_port_id)
7157                 return -EOPNOTSUPP;
7158         return ops->ndo_get_phys_port_id(dev, ppid);
7159 }
7160 EXPORT_SYMBOL(dev_get_phys_port_id);
7161
7162 /**
7163  *      dev_get_phys_port_name - Get device physical port name
7164  *      @dev: device
7165  *      @name: port name
7166  *      @len: limit of bytes to copy to name
7167  *
7168  *      Get device physical port name
7169  */
7170 int dev_get_phys_port_name(struct net_device *dev,
7171                            char *name, size_t len)
7172 {
7173         const struct net_device_ops *ops = dev->netdev_ops;
7174
7175         if (!ops->ndo_get_phys_port_name)
7176                 return -EOPNOTSUPP;
7177         return ops->ndo_get_phys_port_name(dev, name, len);
7178 }
7179 EXPORT_SYMBOL(dev_get_phys_port_name);
7180
7181 /**
7182  *      dev_change_proto_down - update protocol port state information
7183  *      @dev: device
7184  *      @proto_down: new value
7185  *
7186  *      This info can be used by switch drivers to set the phys state of the
7187  *      port.
7188  */
7189 int dev_change_proto_down(struct net_device *dev, bool proto_down)
7190 {
7191         const struct net_device_ops *ops = dev->netdev_ops;
7192
7193         if (!ops->ndo_change_proto_down)
7194                 return -EOPNOTSUPP;
7195         if (!netif_device_present(dev))
7196                 return -ENODEV;
7197         return ops->ndo_change_proto_down(dev, proto_down);
7198 }
7199 EXPORT_SYMBOL(dev_change_proto_down);
7200
7201 void __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
7202                      struct netdev_bpf *xdp)
7203 {
7204         memset(xdp, 0, sizeof(*xdp));
7205         xdp->command = XDP_QUERY_PROG;
7206
7207         /* Query must always succeed. */
7208         WARN_ON(bpf_op(dev, xdp) < 0);
7209 }
7210
7211 static u8 __dev_xdp_attached(struct net_device *dev, bpf_op_t bpf_op)
7212 {
7213         struct netdev_bpf xdp;
7214
7215         __dev_xdp_query(dev, bpf_op, &xdp);
7216
7217         return xdp.prog_attached;
7218 }
7219
7220 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
7221                            struct netlink_ext_ack *extack, u32 flags,
7222                            struct bpf_prog *prog)
7223 {
7224         struct netdev_bpf xdp;
7225
7226         memset(&xdp, 0, sizeof(xdp));
7227         if (flags & XDP_FLAGS_HW_MODE)
7228                 xdp.command = XDP_SETUP_PROG_HW;
7229         else
7230                 xdp.command = XDP_SETUP_PROG;
7231         xdp.extack = extack;
7232         xdp.flags = flags;
7233         xdp.prog = prog;
7234
7235         return bpf_op(dev, &xdp);
7236 }
7237
7238 static void dev_xdp_uninstall(struct net_device *dev)
7239 {
7240         struct netdev_bpf xdp;
7241         bpf_op_t ndo_bpf;
7242
7243         /* Remove generic XDP */
7244         WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
7245
7246         /* Remove from the driver */
7247         ndo_bpf = dev->netdev_ops->ndo_bpf;
7248         if (!ndo_bpf)
7249                 return;
7250
7251         __dev_xdp_query(dev, ndo_bpf, &xdp);
7252         if (xdp.prog_attached == XDP_ATTACHED_NONE)
7253                 return;
7254
7255         /* Program removal should always succeed */
7256         WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, NULL));
7257 }
7258
7259 /**
7260  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
7261  *      @dev: device
7262  *      @extack: netlink extended ack
7263  *      @fd: new program fd or negative value to clear
7264  *      @flags: xdp-related flags
7265  *
7266  *      Set or clear a bpf program for a device
7267  */
7268 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7269                       int fd, u32 flags)
7270 {
7271         const struct net_device_ops *ops = dev->netdev_ops;
7272         struct bpf_prog *prog = NULL;
7273         bpf_op_t bpf_op, bpf_chk;
7274         int err;
7275
7276         ASSERT_RTNL();
7277
7278         bpf_op = bpf_chk = ops->ndo_bpf;
7279         if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
7280                 return -EOPNOTSUPP;
7281         if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
7282                 bpf_op = generic_xdp_install;
7283         if (bpf_op == bpf_chk)
7284                 bpf_chk = generic_xdp_install;
7285
7286         if (fd >= 0) {
7287                 if (bpf_chk && __dev_xdp_attached(dev, bpf_chk))
7288                         return -EEXIST;
7289                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
7290                     __dev_xdp_attached(dev, bpf_op))
7291                         return -EBUSY;
7292
7293                 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
7294                                              bpf_op == ops->ndo_bpf);
7295                 if (IS_ERR(prog))
7296                         return PTR_ERR(prog);
7297
7298                 if (!(flags & XDP_FLAGS_HW_MODE) &&
7299                     bpf_prog_is_dev_bound(prog->aux)) {
7300                         NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
7301                         bpf_prog_put(prog);
7302                         return -EINVAL;
7303                 }
7304         }
7305
7306         err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
7307         if (err < 0 && prog)
7308                 bpf_prog_put(prog);
7309
7310         return err;
7311 }
7312
7313 /**
7314  *      dev_new_index   -       allocate an ifindex
7315  *      @net: the applicable net namespace
7316  *
7317  *      Returns a suitable unique value for a new device interface
7318  *      number.  The caller must hold the rtnl semaphore or the
7319  *      dev_base_lock to be sure it remains unique.
7320  */
7321 static int dev_new_index(struct net *net)
7322 {
7323         int ifindex = net->ifindex;
7324
7325         for (;;) {
7326                 if (++ifindex <= 0)
7327                         ifindex = 1;
7328                 if (!__dev_get_by_index(net, ifindex))
7329                         return net->ifindex = ifindex;
7330         }
7331 }
7332
7333 /* Delayed registration/unregisteration */
7334 static LIST_HEAD(net_todo_list);
7335 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
7336
7337 static void net_set_todo(struct net_device *dev)
7338 {
7339         list_add_tail(&dev->todo_list, &net_todo_list);
7340         dev_net(dev)->dev_unreg_count++;
7341 }
7342
7343 static void rollback_registered_many(struct list_head *head)
7344 {
7345         struct net_device *dev, *tmp;
7346         LIST_HEAD(close_head);
7347
7348         BUG_ON(dev_boot_phase);
7349         ASSERT_RTNL();
7350
7351         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
7352                 /* Some devices call without registering
7353                  * for initialization unwind. Remove those
7354                  * devices and proceed with the remaining.
7355                  */
7356                 if (dev->reg_state == NETREG_UNINITIALIZED) {
7357                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7358                                  dev->name, dev);
7359
7360                         WARN_ON(1);
7361                         list_del(&dev->unreg_list);
7362                         continue;
7363                 }
7364                 dev->dismantle = true;
7365                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
7366         }
7367
7368         /* If device is running, close it first. */
7369         list_for_each_entry(dev, head, unreg_list)
7370                 list_add_tail(&dev->close_list, &close_head);
7371         dev_close_many(&close_head, true);
7372
7373         list_for_each_entry(dev, head, unreg_list) {
7374                 /* And unlink it from device chain. */
7375                 unlist_netdevice(dev);
7376
7377                 dev->reg_state = NETREG_UNREGISTERING;
7378         }
7379         flush_all_backlogs();
7380
7381         synchronize_net();
7382
7383         list_for_each_entry(dev, head, unreg_list) {
7384                 struct sk_buff *skb = NULL;
7385
7386                 /* Shutdown queueing discipline. */
7387                 dev_shutdown(dev);
7388
7389                 dev_xdp_uninstall(dev);
7390
7391                 /* Notify protocols, that we are about to destroy
7392                  * this device. They should clean all the things.
7393                  */
7394                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7395
7396                 if (!dev->rtnl_link_ops ||
7397                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7398                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
7399                                                      GFP_KERNEL, NULL, 0);
7400
7401                 /*
7402                  *      Flush the unicast and multicast chains
7403                  */
7404                 dev_uc_flush(dev);
7405                 dev_mc_flush(dev);
7406
7407                 if (dev->netdev_ops->ndo_uninit)
7408                         dev->netdev_ops->ndo_uninit(dev);
7409
7410                 if (skb)
7411                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
7412
7413                 /* Notifier chain MUST detach us all upper devices. */
7414                 WARN_ON(netdev_has_any_upper_dev(dev));
7415                 WARN_ON(netdev_has_any_lower_dev(dev));
7416
7417                 /* Remove entries from kobject tree */
7418                 netdev_unregister_kobject(dev);
7419 #ifdef CONFIG_XPS
7420                 /* Remove XPS queueing entries */
7421                 netif_reset_xps_queues_gt(dev, 0);
7422 #endif
7423         }
7424
7425         synchronize_net();
7426
7427         list_for_each_entry(dev, head, unreg_list)
7428                 dev_put(dev);
7429 }
7430
7431 static void rollback_registered(struct net_device *dev)
7432 {
7433         LIST_HEAD(single);
7434
7435         list_add(&dev->unreg_list, &single);
7436         rollback_registered_many(&single);
7437         list_del(&single);
7438 }
7439
7440 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
7441         struct net_device *upper, netdev_features_t features)
7442 {
7443         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7444         netdev_features_t feature;
7445         int feature_bit;
7446
7447         for_each_netdev_feature(&upper_disables, feature_bit) {
7448                 feature = __NETIF_F_BIT(feature_bit);
7449                 if (!(upper->wanted_features & feature)
7450                     && (features & feature)) {
7451                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
7452                                    &feature, upper->name);
7453                         features &= ~feature;
7454                 }
7455         }
7456
7457         return features;
7458 }
7459
7460 static void netdev_sync_lower_features(struct net_device *upper,
7461         struct net_device *lower, netdev_features_t features)
7462 {
7463         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7464         netdev_features_t feature;
7465         int feature_bit;
7466
7467         for_each_netdev_feature(&upper_disables, feature_bit) {
7468                 feature = __NETIF_F_BIT(feature_bit);
7469                 if (!(features & feature) && (lower->features & feature)) {
7470                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
7471                                    &feature, lower->name);
7472                         lower->wanted_features &= ~feature;
7473                         netdev_update_features(lower);
7474
7475                         if (unlikely(lower->features & feature))
7476                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
7477                                             &feature, lower->name);
7478                 }
7479         }
7480 }
7481
7482 static netdev_features_t netdev_fix_features(struct net_device *dev,
7483         netdev_features_t features)
7484 {
7485         /* Fix illegal checksum combinations */
7486         if ((features & NETIF_F_HW_CSUM) &&
7487             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
7488                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
7489                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
7490         }
7491
7492         /* TSO requires that SG is present as well. */
7493         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
7494                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
7495                 features &= ~NETIF_F_ALL_TSO;
7496         }
7497
7498         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
7499                                         !(features & NETIF_F_IP_CSUM)) {
7500                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
7501                 features &= ~NETIF_F_TSO;
7502                 features &= ~NETIF_F_TSO_ECN;
7503         }
7504
7505         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
7506                                          !(features & NETIF_F_IPV6_CSUM)) {
7507                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
7508                 features &= ~NETIF_F_TSO6;
7509         }
7510
7511         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
7512         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
7513                 features &= ~NETIF_F_TSO_MANGLEID;
7514
7515         /* TSO ECN requires that TSO is present as well. */
7516         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
7517                 features &= ~NETIF_F_TSO_ECN;
7518
7519         /* Software GSO depends on SG. */
7520         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
7521                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
7522                 features &= ~NETIF_F_GSO;
7523         }
7524
7525         /* GSO partial features require GSO partial be set */
7526         if ((features & dev->gso_partial_features) &&
7527             !(features & NETIF_F_GSO_PARTIAL)) {
7528                 netdev_dbg(dev,
7529                            "Dropping partially supported GSO features since no GSO partial.\n");
7530                 features &= ~dev->gso_partial_features;
7531         }
7532
7533         if (!(features & NETIF_F_RXCSUM)) {
7534                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
7535                  * successfully merged by hardware must also have the
7536                  * checksum verified by hardware.  If the user does not
7537                  * want to enable RXCSUM, logically, we should disable GRO_HW.
7538                  */
7539                 if (features & NETIF_F_GRO_HW) {
7540                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
7541                         features &= ~NETIF_F_GRO_HW;
7542                 }
7543         }
7544
7545         return features;
7546 }
7547
7548 int __netdev_update_features(struct net_device *dev)
7549 {
7550         struct net_device *upper, *lower;
7551         netdev_features_t features;
7552         struct list_head *iter;
7553         int err = -1;
7554
7555         ASSERT_RTNL();
7556
7557         features = netdev_get_wanted_features(dev);
7558
7559         if (dev->netdev_ops->ndo_fix_features)
7560                 features = dev->netdev_ops->ndo_fix_features(dev, features);
7561
7562         /* driver might be less strict about feature dependencies */
7563         features = netdev_fix_features(dev, features);
7564
7565         /* some features can't be enabled if they're off an an upper device */
7566         netdev_for_each_upper_dev_rcu(dev, upper, iter)
7567                 features = netdev_sync_upper_features(dev, upper, features);
7568
7569         if (dev->features == features)
7570                 goto sync_lower;
7571
7572         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7573                 &dev->features, &features);
7574
7575         if (dev->netdev_ops->ndo_set_features)
7576                 err = dev->netdev_ops->ndo_set_features(dev, features);
7577         else
7578                 err = 0;
7579
7580         if (unlikely(err < 0)) {
7581                 netdev_err(dev,
7582                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
7583                         err, &features, &dev->features);
7584                 /* return non-0 since some features might have changed and
7585                  * it's better to fire a spurious notification than miss it
7586                  */
7587                 return -1;
7588         }
7589
7590 sync_lower:
7591         /* some features must be disabled on lower devices when disabled
7592          * on an upper device (think: bonding master or bridge)
7593          */
7594         netdev_for_each_lower_dev(dev, lower, iter)
7595                 netdev_sync_lower_features(dev, lower, features);
7596
7597         if (!err) {
7598                 netdev_features_t diff = features ^ dev->features;
7599
7600                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
7601                         /* udp_tunnel_{get,drop}_rx_info both need
7602                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
7603                          * device, or they won't do anything.
7604                          * Thus we need to update dev->features
7605                          * *before* calling udp_tunnel_get_rx_info,
7606                          * but *after* calling udp_tunnel_drop_rx_info.
7607                          */
7608                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
7609                                 dev->features = features;
7610                                 udp_tunnel_get_rx_info(dev);
7611                         } else {
7612                                 udp_tunnel_drop_rx_info(dev);
7613                         }
7614                 }
7615
7616                 dev->features = features;
7617         }
7618
7619         return err < 0 ? 0 : 1;
7620 }
7621
7622 /**
7623  *      netdev_update_features - recalculate device features
7624  *      @dev: the device to check
7625  *
7626  *      Recalculate dev->features set and send notifications if it
7627  *      has changed. Should be called after driver or hardware dependent
7628  *      conditions might have changed that influence the features.
7629  */
7630 void netdev_update_features(struct net_device *dev)
7631 {
7632         if (__netdev_update_features(dev))
7633                 netdev_features_change(dev);
7634 }
7635 EXPORT_SYMBOL(netdev_update_features);
7636
7637 /**
7638  *      netdev_change_features - recalculate device features
7639  *      @dev: the device to check
7640  *
7641  *      Recalculate dev->features set and send notifications even
7642  *      if they have not changed. Should be called instead of
7643  *      netdev_update_features() if also dev->vlan_features might
7644  *      have changed to allow the changes to be propagated to stacked
7645  *      VLAN devices.
7646  */
7647 void netdev_change_features(struct net_device *dev)
7648 {
7649         __netdev_update_features(dev);
7650         netdev_features_change(dev);
7651 }
7652 EXPORT_SYMBOL(netdev_change_features);
7653
7654 /**
7655  *      netif_stacked_transfer_operstate -      transfer operstate
7656  *      @rootdev: the root or lower level device to transfer state from
7657  *      @dev: the device to transfer operstate to
7658  *
7659  *      Transfer operational state from root to device. This is normally
7660  *      called when a stacking relationship exists between the root
7661  *      device and the device(a leaf device).
7662  */
7663 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7664                                         struct net_device *dev)
7665 {
7666         if (rootdev->operstate == IF_OPER_DORMANT)
7667                 netif_dormant_on(dev);
7668         else
7669                 netif_dormant_off(dev);
7670
7671         if (netif_carrier_ok(rootdev))
7672                 netif_carrier_on(dev);
7673         else
7674                 netif_carrier_off(dev);
7675 }
7676 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7677
7678 static int netif_alloc_rx_queues(struct net_device *dev)
7679 {
7680         unsigned int i, count = dev->num_rx_queues;
7681         struct netdev_rx_queue *rx;
7682         size_t sz = count * sizeof(*rx);
7683         int err = 0;
7684
7685         BUG_ON(count < 1);
7686
7687         rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7688         if (!rx)
7689                 return -ENOMEM;
7690
7691         dev->_rx = rx;
7692
7693         for (i = 0; i < count; i++) {
7694                 rx[i].dev = dev;
7695
7696                 /* XDP RX-queue setup */
7697                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
7698                 if (err < 0)
7699                         goto err_rxq_info;
7700         }
7701         return 0;
7702
7703 err_rxq_info:
7704         /* Rollback successful reg's and free other resources */
7705         while (i--)
7706                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
7707         kvfree(dev->_rx);
7708         dev->_rx = NULL;
7709         return err;
7710 }
7711
7712 static void netif_free_rx_queues(struct net_device *dev)
7713 {
7714         unsigned int i, count = dev->num_rx_queues;
7715
7716         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
7717         if (!dev->_rx)
7718                 return;
7719
7720         for (i = 0; i < count; i++)
7721                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
7722
7723         kvfree(dev->_rx);
7724 }
7725
7726 static void netdev_init_one_queue(struct net_device *dev,
7727                                   struct netdev_queue *queue, void *_unused)
7728 {
7729         /* Initialize queue lock */
7730         spin_lock_init(&queue->_xmit_lock);
7731         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7732         queue->xmit_lock_owner = -1;
7733         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7734         queue->dev = dev;
7735 #ifdef CONFIG_BQL
7736         dql_init(&queue->dql, HZ);
7737 #endif
7738 }
7739
7740 static void netif_free_tx_queues(struct net_device *dev)
7741 {
7742         kvfree(dev->_tx);
7743 }
7744
7745 static int netif_alloc_netdev_queues(struct net_device *dev)
7746 {
7747         unsigned int count = dev->num_tx_queues;
7748         struct netdev_queue *tx;
7749         size_t sz = count * sizeof(*tx);
7750
7751         if (count < 1 || count > 0xffff)
7752                 return -EINVAL;
7753
7754         tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7755         if (!tx)
7756                 return -ENOMEM;
7757
7758         dev->_tx = tx;
7759
7760         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7761         spin_lock_init(&dev->tx_global_lock);
7762
7763         return 0;
7764 }
7765
7766 void netif_tx_stop_all_queues(struct net_device *dev)
7767 {
7768         unsigned int i;
7769
7770         for (i = 0; i < dev->num_tx_queues; i++) {
7771                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7772
7773                 netif_tx_stop_queue(txq);
7774         }
7775 }
7776 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7777
7778 /**
7779  *      register_netdevice      - register a network device
7780  *      @dev: device to register
7781  *
7782  *      Take a completed network device structure and add it to the kernel
7783  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7784  *      chain. 0 is returned on success. A negative errno code is returned
7785  *      on a failure to set up the device, or if the name is a duplicate.
7786  *
7787  *      Callers must hold the rtnl semaphore. You may want
7788  *      register_netdev() instead of this.
7789  *
7790  *      BUGS:
7791  *      The locking appears insufficient to guarantee two parallel registers
7792  *      will not get the same name.
7793  */
7794
7795 int register_netdevice(struct net_device *dev)
7796 {
7797         int ret;
7798         struct net *net = dev_net(dev);
7799
7800         BUG_ON(dev_boot_phase);
7801         ASSERT_RTNL();
7802
7803         might_sleep();
7804
7805         /* When net_device's are persistent, this will be fatal. */
7806         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7807         BUG_ON(!net);
7808
7809         spin_lock_init(&dev->addr_list_lock);
7810         netdev_set_addr_lockdep_class(dev);
7811
7812         ret = dev_get_valid_name(net, dev, dev->name);
7813         if (ret < 0)
7814                 goto out;
7815
7816         /* Init, if this function is available */
7817         if (dev->netdev_ops->ndo_init) {
7818                 ret = dev->netdev_ops->ndo_init(dev);
7819                 if (ret) {
7820                         if (ret > 0)
7821                                 ret = -EIO;
7822                         goto out;
7823                 }
7824         }
7825
7826         if (((dev->hw_features | dev->features) &
7827              NETIF_F_HW_VLAN_CTAG_FILTER) &&
7828             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7829              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7830                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7831                 ret = -EINVAL;
7832                 goto err_uninit;
7833         }
7834
7835         ret = -EBUSY;
7836         if (!dev->ifindex)
7837                 dev->ifindex = dev_new_index(net);
7838         else if (__dev_get_by_index(net, dev->ifindex))
7839                 goto err_uninit;
7840
7841         /* Transfer changeable features to wanted_features and enable
7842          * software offloads (GSO and GRO).
7843          */
7844         dev->hw_features |= NETIF_F_SOFT_FEATURES;
7845         dev->features |= NETIF_F_SOFT_FEATURES;
7846
7847         if (dev->netdev_ops->ndo_udp_tunnel_add) {
7848                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7849                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7850         }
7851
7852         dev->wanted_features = dev->features & dev->hw_features;
7853
7854         if (!(dev->flags & IFF_LOOPBACK))
7855                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
7856
7857         /* If IPv4 TCP segmentation offload is supported we should also
7858          * allow the device to enable segmenting the frame with the option
7859          * of ignoring a static IP ID value.  This doesn't enable the
7860          * feature itself but allows the user to enable it later.
7861          */
7862         if (dev->hw_features & NETIF_F_TSO)
7863                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7864         if (dev->vlan_features & NETIF_F_TSO)
7865                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7866         if (dev->mpls_features & NETIF_F_TSO)
7867                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7868         if (dev->hw_enc_features & NETIF_F_TSO)
7869                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7870
7871         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7872          */
7873         dev->vlan_features |= NETIF_F_HIGHDMA;
7874
7875         /* Make NETIF_F_SG inheritable to tunnel devices.
7876          */
7877         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7878
7879         /* Make NETIF_F_SG inheritable to MPLS.
7880          */
7881         dev->mpls_features |= NETIF_F_SG;
7882
7883         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7884         ret = notifier_to_errno(ret);
7885         if (ret)
7886                 goto err_uninit;
7887
7888         ret = netdev_register_kobject(dev);
7889         if (ret)
7890                 goto err_uninit;
7891         dev->reg_state = NETREG_REGISTERED;
7892
7893         __netdev_update_features(dev);
7894
7895         /*
7896          *      Default initial state at registry is that the
7897          *      device is present.
7898          */
7899
7900         set_bit(__LINK_STATE_PRESENT, &dev->state);
7901
7902         linkwatch_init_dev(dev);
7903
7904         dev_init_scheduler(dev);
7905         dev_hold(dev);
7906         list_netdevice(dev);
7907         add_device_randomness(dev->dev_addr, dev->addr_len);
7908
7909         /* If the device has permanent device address, driver should
7910          * set dev_addr and also addr_assign_type should be set to
7911          * NET_ADDR_PERM (default value).
7912          */
7913         if (dev->addr_assign_type == NET_ADDR_PERM)
7914                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7915
7916         /* Notify protocols, that a new device appeared. */
7917         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7918         ret = notifier_to_errno(ret);
7919         if (ret) {
7920                 rollback_registered(dev);
7921                 dev->reg_state = NETREG_UNREGISTERED;
7922         }
7923         /*
7924          *      Prevent userspace races by waiting until the network
7925          *      device is fully setup before sending notifications.
7926          */
7927         if (!dev->rtnl_link_ops ||
7928             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7929                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7930
7931 out:
7932         return ret;
7933
7934 err_uninit:
7935         if (dev->netdev_ops->ndo_uninit)
7936                 dev->netdev_ops->ndo_uninit(dev);
7937         if (dev->priv_destructor)
7938                 dev->priv_destructor(dev);
7939         goto out;
7940 }
7941 EXPORT_SYMBOL(register_netdevice);
7942
7943 /**
7944  *      init_dummy_netdev       - init a dummy network device for NAPI
7945  *      @dev: device to init
7946  *
7947  *      This takes a network device structure and initialize the minimum
7948  *      amount of fields so it can be used to schedule NAPI polls without
7949  *      registering a full blown interface. This is to be used by drivers
7950  *      that need to tie several hardware interfaces to a single NAPI
7951  *      poll scheduler due to HW limitations.
7952  */
7953 int init_dummy_netdev(struct net_device *dev)
7954 {
7955         /* Clear everything. Note we don't initialize spinlocks
7956          * are they aren't supposed to be taken by any of the
7957          * NAPI code and this dummy netdev is supposed to be
7958          * only ever used for NAPI polls
7959          */
7960         memset(dev, 0, sizeof(struct net_device));
7961
7962         /* make sure we BUG if trying to hit standard
7963          * register/unregister code path
7964          */
7965         dev->reg_state = NETREG_DUMMY;
7966
7967         /* NAPI wants this */
7968         INIT_LIST_HEAD(&dev->napi_list);
7969
7970         /* a dummy interface is started by default */
7971         set_bit(__LINK_STATE_PRESENT, &dev->state);
7972         set_bit(__LINK_STATE_START, &dev->state);
7973
7974         /* Note : We dont allocate pcpu_refcnt for dummy devices,
7975          * because users of this 'device' dont need to change
7976          * its refcount.
7977          */
7978
7979         return 0;
7980 }
7981 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7982
7983
7984 /**
7985  *      register_netdev - register a network device
7986  *      @dev: device to register
7987  *
7988  *      Take a completed network device structure and add it to the kernel
7989  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7990  *      chain. 0 is returned on success. A negative errno code is returned
7991  *      on a failure to set up the device, or if the name is a duplicate.
7992  *
7993  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
7994  *      and expands the device name if you passed a format string to
7995  *      alloc_netdev.
7996  */
7997 int register_netdev(struct net_device *dev)
7998 {
7999         int err;
8000
8001         rtnl_lock();
8002         err = register_netdevice(dev);
8003         rtnl_unlock();
8004         return err;
8005 }
8006 EXPORT_SYMBOL(register_netdev);
8007
8008 int netdev_refcnt_read(const struct net_device *dev)
8009 {
8010         int i, refcnt = 0;
8011
8012         for_each_possible_cpu(i)
8013                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8014         return refcnt;
8015 }
8016 EXPORT_SYMBOL(netdev_refcnt_read);
8017
8018 /**
8019  * netdev_wait_allrefs - wait until all references are gone.
8020  * @dev: target net_device
8021  *
8022  * This is called when unregistering network devices.
8023  *
8024  * Any protocol or device that holds a reference should register
8025  * for netdevice notification, and cleanup and put back the
8026  * reference if they receive an UNREGISTER event.
8027  * We can get stuck here if buggy protocols don't correctly
8028  * call dev_put.
8029  */
8030 static void netdev_wait_allrefs(struct net_device *dev)
8031 {
8032         unsigned long rebroadcast_time, warning_time;
8033         int refcnt;
8034
8035         linkwatch_forget_dev(dev);
8036
8037         rebroadcast_time = warning_time = jiffies;
8038         refcnt = netdev_refcnt_read(dev);
8039
8040         while (refcnt != 0) {
8041                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
8042                         rtnl_lock();
8043
8044                         /* Rebroadcast unregister notification */
8045                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8046
8047                         __rtnl_unlock();
8048                         rcu_barrier();
8049                         rtnl_lock();
8050
8051                         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
8052                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8053                                      &dev->state)) {
8054                                 /* We must not have linkwatch events
8055                                  * pending on unregister. If this
8056                                  * happens, we simply run the queue
8057                                  * unscheduled, resulting in a noop
8058                                  * for this device.
8059                                  */
8060                                 linkwatch_run_queue();
8061                         }
8062
8063                         __rtnl_unlock();
8064
8065                         rebroadcast_time = jiffies;
8066                 }
8067
8068                 msleep(250);
8069
8070                 refcnt = netdev_refcnt_read(dev);
8071
8072                 if (time_after(jiffies, warning_time + 10 * HZ)) {
8073                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8074                                  dev->name, refcnt);
8075                         warning_time = jiffies;
8076                 }
8077         }
8078 }
8079
8080 /* The sequence is:
8081  *
8082  *      rtnl_lock();
8083  *      ...
8084  *      register_netdevice(x1);
8085  *      register_netdevice(x2);
8086  *      ...
8087  *      unregister_netdevice(y1);
8088  *      unregister_netdevice(y2);
8089  *      ...
8090  *      rtnl_unlock();
8091  *      free_netdev(y1);
8092  *      free_netdev(y2);
8093  *
8094  * We are invoked by rtnl_unlock().
8095  * This allows us to deal with problems:
8096  * 1) We can delete sysfs objects which invoke hotplug
8097  *    without deadlocking with linkwatch via keventd.
8098  * 2) Since we run with the RTNL semaphore not held, we can sleep
8099  *    safely in order to wait for the netdev refcnt to drop to zero.
8100  *
8101  * We must not return until all unregister events added during
8102  * the interval the lock was held have been completed.
8103  */
8104 void netdev_run_todo(void)
8105 {
8106         struct list_head list;
8107
8108         /* Snapshot list, allow later requests */
8109         list_replace_init(&net_todo_list, &list);
8110
8111         __rtnl_unlock();
8112
8113
8114         /* Wait for rcu callbacks to finish before next phase */
8115         if (!list_empty(&list))
8116                 rcu_barrier();
8117
8118         while (!list_empty(&list)) {
8119                 struct net_device *dev
8120                         = list_first_entry(&list, struct net_device, todo_list);
8121                 list_del(&dev->todo_list);
8122
8123                 rtnl_lock();
8124                 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
8125                 __rtnl_unlock();
8126
8127                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
8128                         pr_err("network todo '%s' but state %d\n",
8129                                dev->name, dev->reg_state);
8130                         dump_stack();
8131                         continue;
8132                 }
8133
8134                 dev->reg_state = NETREG_UNREGISTERED;
8135
8136                 netdev_wait_allrefs(dev);
8137
8138                 /* paranoia */
8139                 BUG_ON(netdev_refcnt_read(dev));
8140                 BUG_ON(!list_empty(&dev->ptype_all));
8141                 BUG_ON(!list_empty(&dev->ptype_specific));
8142                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
8143                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
8144                 WARN_ON(dev->dn_ptr);
8145
8146                 if (dev->priv_destructor)
8147                         dev->priv_destructor(dev);
8148                 if (dev->needs_free_netdev)
8149                         free_netdev(dev);
8150
8151                 /* Report a network device has been unregistered */
8152                 rtnl_lock();
8153                 dev_net(dev)->dev_unreg_count--;
8154                 __rtnl_unlock();
8155                 wake_up(&netdev_unregistering_wq);
8156
8157                 /* Free network device */
8158                 kobject_put(&dev->dev.kobj);
8159         }
8160 }
8161
8162 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
8163  * all the same fields in the same order as net_device_stats, with only
8164  * the type differing, but rtnl_link_stats64 may have additional fields
8165  * at the end for newer counters.
8166  */
8167 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
8168                              const struct net_device_stats *netdev_stats)
8169 {
8170 #if BITS_PER_LONG == 64
8171         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
8172         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
8173         /* zero out counters that only exist in rtnl_link_stats64 */
8174         memset((char *)stats64 + sizeof(*netdev_stats), 0,
8175                sizeof(*stats64) - sizeof(*netdev_stats));
8176 #else
8177         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
8178         const unsigned long *src = (const unsigned long *)netdev_stats;
8179         u64 *dst = (u64 *)stats64;
8180
8181         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
8182         for (i = 0; i < n; i++)
8183                 dst[i] = src[i];
8184         /* zero out counters that only exist in rtnl_link_stats64 */
8185         memset((char *)stats64 + n * sizeof(u64), 0,
8186                sizeof(*stats64) - n * sizeof(u64));
8187 #endif
8188 }
8189 EXPORT_SYMBOL(netdev_stats_to_stats64);
8190
8191 /**
8192  *      dev_get_stats   - get network device statistics
8193  *      @dev: device to get statistics from
8194  *      @storage: place to store stats
8195  *
8196  *      Get network statistics from device. Return @storage.
8197  *      The device driver may provide its own method by setting
8198  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
8199  *      otherwise the internal statistics structure is used.
8200  */
8201 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
8202                                         struct rtnl_link_stats64 *storage)
8203 {
8204         const struct net_device_ops *ops = dev->netdev_ops;
8205
8206         if (ops->ndo_get_stats64) {
8207                 memset(storage, 0, sizeof(*storage));
8208                 ops->ndo_get_stats64(dev, storage);
8209         } else if (ops->ndo_get_stats) {
8210                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
8211         } else {
8212                 netdev_stats_to_stats64(storage, &dev->stats);
8213         }
8214         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
8215         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
8216         storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
8217         return storage;
8218 }
8219 EXPORT_SYMBOL(dev_get_stats);
8220
8221 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
8222 {
8223         struct netdev_queue *queue = dev_ingress_queue(dev);
8224
8225 #ifdef CONFIG_NET_CLS_ACT
8226         if (queue)
8227                 return queue;
8228         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
8229         if (!queue)
8230                 return NULL;
8231         netdev_init_one_queue(dev, queue, NULL);
8232         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
8233         queue->qdisc_sleeping = &noop_qdisc;
8234         rcu_assign_pointer(dev->ingress_queue, queue);
8235 #endif
8236         return queue;
8237 }
8238
8239 static const struct ethtool_ops default_ethtool_ops;
8240
8241 void netdev_set_default_ethtool_ops(struct net_device *dev,
8242                                     const struct ethtool_ops *ops)
8243 {
8244         if (dev->ethtool_ops == &default_ethtool_ops)
8245                 dev->ethtool_ops = ops;
8246 }
8247 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
8248
8249 void netdev_freemem(struct net_device *dev)
8250 {
8251         char *addr = (char *)dev - dev->padded;
8252
8253         kvfree(addr);
8254 }
8255
8256 /**
8257  * alloc_netdev_mqs - allocate network device
8258  * @sizeof_priv: size of private data to allocate space for
8259  * @name: device name format string
8260  * @name_assign_type: origin of device name
8261  * @setup: callback to initialize device
8262  * @txqs: the number of TX subqueues to allocate
8263  * @rxqs: the number of RX subqueues to allocate
8264  *
8265  * Allocates a struct net_device with private data area for driver use
8266  * and performs basic initialization.  Also allocates subqueue structs
8267  * for each queue on the device.
8268  */
8269 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
8270                 unsigned char name_assign_type,
8271                 void (*setup)(struct net_device *),
8272                 unsigned int txqs, unsigned int rxqs)
8273 {
8274         struct net_device *dev;
8275         unsigned int alloc_size;
8276         struct net_device *p;
8277
8278         BUG_ON(strlen(name) >= sizeof(dev->name));
8279
8280         if (txqs < 1) {
8281                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
8282                 return NULL;
8283         }
8284
8285         if (rxqs < 1) {
8286                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
8287                 return NULL;
8288         }
8289
8290         alloc_size = sizeof(struct net_device);
8291         if (sizeof_priv) {
8292                 /* ensure 32-byte alignment of private area */
8293                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
8294                 alloc_size += sizeof_priv;
8295         }
8296         /* ensure 32-byte alignment of whole construct */
8297         alloc_size += NETDEV_ALIGN - 1;
8298
8299         p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8300         if (!p)
8301                 return NULL;
8302
8303         dev = PTR_ALIGN(p, NETDEV_ALIGN);
8304         dev->padded = (char *)dev - (char *)p;
8305
8306         dev->pcpu_refcnt = alloc_percpu(int);
8307         if (!dev->pcpu_refcnt)
8308                 goto free_dev;
8309
8310         if (dev_addr_init(dev))
8311                 goto free_pcpu;
8312
8313         dev_mc_init(dev);
8314         dev_uc_init(dev);
8315
8316         dev_net_set(dev, &init_net);
8317
8318         dev->gso_max_size = GSO_MAX_SIZE;
8319         dev->gso_max_segs = GSO_MAX_SEGS;
8320
8321         INIT_LIST_HEAD(&dev->napi_list);
8322         INIT_LIST_HEAD(&dev->unreg_list);
8323         INIT_LIST_HEAD(&dev->close_list);
8324         INIT_LIST_HEAD(&dev->link_watch_list);
8325         INIT_LIST_HEAD(&dev->adj_list.upper);
8326         INIT_LIST_HEAD(&dev->adj_list.lower);
8327         INIT_LIST_HEAD(&dev->ptype_all);
8328         INIT_LIST_HEAD(&dev->ptype_specific);
8329 #ifdef CONFIG_NET_SCHED
8330         hash_init(dev->qdisc_hash);
8331 #endif
8332         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8333         setup(dev);
8334
8335         if (!dev->tx_queue_len) {
8336                 dev->priv_flags |= IFF_NO_QUEUE;
8337                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
8338         }
8339
8340         dev->num_tx_queues = txqs;
8341         dev->real_num_tx_queues = txqs;
8342         if (netif_alloc_netdev_queues(dev))
8343                 goto free_all;
8344
8345         dev->num_rx_queues = rxqs;
8346         dev->real_num_rx_queues = rxqs;
8347         if (netif_alloc_rx_queues(dev))
8348                 goto free_all;
8349
8350         strcpy(dev->name, name);
8351         dev->name_assign_type = name_assign_type;
8352         dev->group = INIT_NETDEV_GROUP;
8353         if (!dev->ethtool_ops)
8354                 dev->ethtool_ops = &default_ethtool_ops;
8355
8356         nf_hook_ingress_init(dev);
8357
8358         return dev;
8359
8360 free_all:
8361         free_netdev(dev);
8362         return NULL;
8363
8364 free_pcpu:
8365         free_percpu(dev->pcpu_refcnt);
8366 free_dev:
8367         netdev_freemem(dev);
8368         return NULL;
8369 }
8370 EXPORT_SYMBOL(alloc_netdev_mqs);
8371
8372 /**
8373  * free_netdev - free network device
8374  * @dev: device
8375  *
8376  * This function does the last stage of destroying an allocated device
8377  * interface. The reference to the device object is released. If this
8378  * is the last reference then it will be freed.Must be called in process
8379  * context.
8380  */
8381 void free_netdev(struct net_device *dev)
8382 {
8383         struct napi_struct *p, *n;
8384
8385         might_sleep();
8386         netif_free_tx_queues(dev);
8387         netif_free_rx_queues(dev);
8388
8389         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
8390
8391         /* Flush device addresses */
8392         dev_addr_flush(dev);
8393
8394         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
8395                 netif_napi_del(p);
8396
8397         free_percpu(dev->pcpu_refcnt);
8398         dev->pcpu_refcnt = NULL;
8399
8400         /*  Compatibility with error handling in drivers */
8401         if (dev->reg_state == NETREG_UNINITIALIZED) {
8402                 netdev_freemem(dev);
8403                 return;
8404         }
8405
8406         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
8407         dev->reg_state = NETREG_RELEASED;
8408
8409         /* will free via device release */
8410         put_device(&dev->dev);
8411 }
8412 EXPORT_SYMBOL(free_netdev);
8413
8414 /**
8415  *      synchronize_net -  Synchronize with packet receive processing
8416  *
8417  *      Wait for packets currently being received to be done.
8418  *      Does not block later packets from starting.
8419  */
8420 void synchronize_net(void)
8421 {
8422         might_sleep();
8423         if (rtnl_is_locked())
8424                 synchronize_rcu_expedited();
8425         else
8426                 synchronize_rcu();
8427 }
8428 EXPORT_SYMBOL(synchronize_net);
8429
8430 /**
8431  *      unregister_netdevice_queue - remove device from the kernel
8432  *      @dev: device
8433  *      @head: list
8434  *
8435  *      This function shuts down a device interface and removes it
8436  *      from the kernel tables.
8437  *      If head not NULL, device is queued to be unregistered later.
8438  *
8439  *      Callers must hold the rtnl semaphore.  You may want
8440  *      unregister_netdev() instead of this.
8441  */
8442
8443 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
8444 {
8445         ASSERT_RTNL();
8446
8447         if (head) {
8448                 list_move_tail(&dev->unreg_list, head);
8449         } else {
8450                 rollback_registered(dev);
8451                 /* Finish processing unregister after unlock */
8452                 net_set_todo(dev);
8453         }
8454 }
8455 EXPORT_SYMBOL(unregister_netdevice_queue);
8456
8457 /**
8458  *      unregister_netdevice_many - unregister many devices
8459  *      @head: list of devices
8460  *
8461  *  Note: As most callers use a stack allocated list_head,
8462  *  we force a list_del() to make sure stack wont be corrupted later.
8463  */
8464 void unregister_netdevice_many(struct list_head *head)
8465 {
8466         struct net_device *dev;
8467
8468         if (!list_empty(head)) {
8469                 rollback_registered_many(head);
8470                 list_for_each_entry(dev, head, unreg_list)
8471                         net_set_todo(dev);
8472                 list_del(head);
8473         }
8474 }
8475 EXPORT_SYMBOL(unregister_netdevice_many);
8476
8477 /**
8478  *      unregister_netdev - remove device from the kernel
8479  *      @dev: device
8480  *
8481  *      This function shuts down a device interface and removes it
8482  *      from the kernel tables.
8483  *
8484  *      This is just a wrapper for unregister_netdevice that takes
8485  *      the rtnl semaphore.  In general you want to use this and not
8486  *      unregister_netdevice.
8487  */
8488 void unregister_netdev(struct net_device *dev)
8489 {
8490         rtnl_lock();
8491         unregister_netdevice(dev);
8492         rtnl_unlock();
8493 }
8494 EXPORT_SYMBOL(unregister_netdev);
8495
8496 /**
8497  *      dev_change_net_namespace - move device to different nethost namespace
8498  *      @dev: device
8499  *      @net: network namespace
8500  *      @pat: If not NULL name pattern to try if the current device name
8501  *            is already taken in the destination network namespace.
8502  *
8503  *      This function shuts down a device interface and moves it
8504  *      to a new network namespace. On success 0 is returned, on
8505  *      a failure a netagive errno code is returned.
8506  *
8507  *      Callers must hold the rtnl semaphore.
8508  */
8509
8510 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
8511 {
8512         int err, new_nsid, new_ifindex;
8513
8514         ASSERT_RTNL();
8515
8516         /* Don't allow namespace local devices to be moved. */
8517         err = -EINVAL;
8518         if (dev->features & NETIF_F_NETNS_LOCAL)
8519                 goto out;
8520
8521         /* Ensure the device has been registrered */
8522         if (dev->reg_state != NETREG_REGISTERED)
8523                 goto out;
8524
8525         /* Get out if there is nothing todo */
8526         err = 0;
8527         if (net_eq(dev_net(dev), net))
8528                 goto out;
8529
8530         /* Pick the destination device name, and ensure
8531          * we can use it in the destination network namespace.
8532          */
8533         err = -EEXIST;
8534         if (__dev_get_by_name(net, dev->name)) {
8535                 /* We get here if we can't use the current device name */
8536                 if (!pat)
8537                         goto out;
8538                 if (dev_get_valid_name(net, dev, pat) < 0)
8539                         goto out;
8540         }
8541
8542         /*
8543          * And now a mini version of register_netdevice unregister_netdevice.
8544          */
8545
8546         /* If device is running close it first. */
8547         dev_close(dev);
8548
8549         /* And unlink it from device chain */
8550         err = -ENODEV;
8551         unlist_netdevice(dev);
8552
8553         synchronize_net();
8554
8555         /* Shutdown queueing discipline. */
8556         dev_shutdown(dev);
8557
8558         /* Notify protocols, that we are about to destroy
8559          * this device. They should clean all the things.
8560          *
8561          * Note that dev->reg_state stays at NETREG_REGISTERED.
8562          * This is wanted because this way 8021q and macvlan know
8563          * the device is just moving and can keep their slaves up.
8564          */
8565         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8566         rcu_barrier();
8567         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
8568
8569         new_nsid = peernet2id_alloc(dev_net(dev), net);
8570         /* If there is an ifindex conflict assign a new one */
8571         if (__dev_get_by_index(net, dev->ifindex))
8572                 new_ifindex = dev_new_index(net);
8573         else
8574                 new_ifindex = dev->ifindex;
8575
8576         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
8577                             new_ifindex);
8578
8579         /*
8580          *      Flush the unicast and multicast chains
8581          */
8582         dev_uc_flush(dev);
8583         dev_mc_flush(dev);
8584
8585         /* Send a netdev-removed uevent to the old namespace */
8586         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
8587         netdev_adjacent_del_links(dev);
8588
8589         /* Actually switch the network namespace */
8590         dev_net_set(dev, net);
8591         dev->ifindex = new_ifindex;
8592
8593         /* Send a netdev-add uevent to the new namespace */
8594         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
8595         netdev_adjacent_add_links(dev);
8596
8597         /* Fixup kobjects */
8598         err = device_rename(&dev->dev, dev->name);
8599         WARN_ON(err);
8600
8601         /* Add the device back in the hashes */
8602         list_netdevice(dev);
8603
8604         /* Notify protocols, that a new device appeared. */
8605         call_netdevice_notifiers(NETDEV_REGISTER, dev);
8606
8607         /*
8608          *      Prevent userspace races by waiting until the network
8609          *      device is fully setup before sending notifications.
8610          */
8611         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8612
8613         synchronize_net();
8614         err = 0;
8615 out:
8616         return err;
8617 }
8618 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
8619
8620 static int dev_cpu_dead(unsigned int oldcpu)
8621 {
8622         struct sk_buff **list_skb;
8623         struct sk_buff *skb;
8624         unsigned int cpu;
8625         struct softnet_data *sd, *oldsd, *remsd = NULL;
8626
8627         local_irq_disable();
8628         cpu = smp_processor_id();
8629         sd = &per_cpu(softnet_data, cpu);
8630         oldsd = &per_cpu(softnet_data, oldcpu);
8631
8632         /* Find end of our completion_queue. */
8633         list_skb = &sd->completion_queue;
8634         while (*list_skb)
8635                 list_skb = &(*list_skb)->next;
8636         /* Append completion queue from offline CPU. */
8637         *list_skb = oldsd->completion_queue;
8638         oldsd->completion_queue = NULL;
8639
8640         /* Append output queue from offline CPU. */
8641         if (oldsd->output_queue) {
8642                 *sd->output_queue_tailp = oldsd->output_queue;
8643                 sd->output_queue_tailp = oldsd->output_queue_tailp;
8644                 oldsd->output_queue = NULL;
8645                 oldsd->output_queue_tailp = &oldsd->output_queue;
8646         }
8647         /* Append NAPI poll list from offline CPU, with one exception :
8648          * process_backlog() must be called by cpu owning percpu backlog.
8649          * We properly handle process_queue & input_pkt_queue later.
8650          */
8651         while (!list_empty(&oldsd->poll_list)) {
8652                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8653                                                             struct napi_struct,
8654                                                             poll_list);
8655
8656                 list_del_init(&napi->poll_list);
8657                 if (napi->poll == process_backlog)
8658                         napi->state = 0;
8659                 else
8660                         ____napi_schedule(sd, napi);
8661         }
8662
8663         raise_softirq_irqoff(NET_TX_SOFTIRQ);
8664         local_irq_enable();
8665
8666 #ifdef CONFIG_RPS
8667         remsd = oldsd->rps_ipi_list;
8668         oldsd->rps_ipi_list = NULL;
8669 #endif
8670         /* send out pending IPI's on offline CPU */
8671         net_rps_send_ipi(remsd);
8672
8673         /* Process offline CPU's input_pkt_queue */
8674         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8675                 netif_rx_ni(skb);
8676                 input_queue_head_incr(oldsd);
8677         }
8678         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8679                 netif_rx_ni(skb);
8680                 input_queue_head_incr(oldsd);
8681         }
8682
8683         return 0;
8684 }
8685
8686 /**
8687  *      netdev_increment_features - increment feature set by one
8688  *      @all: current feature set
8689  *      @one: new feature set
8690  *      @mask: mask feature set
8691  *
8692  *      Computes a new feature set after adding a device with feature set
8693  *      @one to the master device with current feature set @all.  Will not
8694  *      enable anything that is off in @mask. Returns the new feature set.
8695  */
8696 netdev_features_t netdev_increment_features(netdev_features_t all,
8697         netdev_features_t one, netdev_features_t mask)
8698 {
8699         if (mask & NETIF_F_HW_CSUM)
8700                 mask |= NETIF_F_CSUM_MASK;
8701         mask |= NETIF_F_VLAN_CHALLENGED;
8702
8703         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8704         all &= one | ~NETIF_F_ALL_FOR_ALL;
8705
8706         /* If one device supports hw checksumming, set for all. */
8707         if (all & NETIF_F_HW_CSUM)
8708                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8709
8710         return all;
8711 }
8712 EXPORT_SYMBOL(netdev_increment_features);
8713
8714 static struct hlist_head * __net_init netdev_create_hash(void)
8715 {
8716         int i;
8717         struct hlist_head *hash;
8718
8719         hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8720         if (hash != NULL)
8721                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8722                         INIT_HLIST_HEAD(&hash[i]);
8723
8724         return hash;
8725 }
8726
8727 /* Initialize per network namespace state */
8728 static int __net_init netdev_init(struct net *net)
8729 {
8730         if (net != &init_net)
8731                 INIT_LIST_HEAD(&net->dev_base_head);
8732
8733         net->dev_name_head = netdev_create_hash();
8734         if (net->dev_name_head == NULL)
8735                 goto err_name;
8736
8737         net->dev_index_head = netdev_create_hash();
8738         if (net->dev_index_head == NULL)
8739                 goto err_idx;
8740
8741         return 0;
8742
8743 err_idx:
8744         kfree(net->dev_name_head);
8745 err_name:
8746         return -ENOMEM;
8747 }
8748
8749 /**
8750  *      netdev_drivername - network driver for the device
8751  *      @dev: network device
8752  *
8753  *      Determine network driver for device.
8754  */
8755 const char *netdev_drivername(const struct net_device *dev)
8756 {
8757         const struct device_driver *driver;
8758         const struct device *parent;
8759         const char *empty = "";
8760
8761         parent = dev->dev.parent;
8762         if (!parent)
8763                 return empty;
8764
8765         driver = parent->driver;
8766         if (driver && driver->name)
8767                 return driver->name;
8768         return empty;
8769 }
8770
8771 static void __netdev_printk(const char *level, const struct net_device *dev,
8772                             struct va_format *vaf)
8773 {
8774         if (dev && dev->dev.parent) {
8775                 dev_printk_emit(level[1] - '0',
8776                                 dev->dev.parent,
8777                                 "%s %s %s%s: %pV",
8778                                 dev_driver_string(dev->dev.parent),
8779                                 dev_name(dev->dev.parent),
8780                                 netdev_name(dev), netdev_reg_state(dev),
8781                                 vaf);
8782         } else if (dev) {
8783                 printk("%s%s%s: %pV",
8784                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
8785         } else {
8786                 printk("%s(NULL net_device): %pV", level, vaf);
8787         }
8788 }
8789
8790 void netdev_printk(const char *level, const struct net_device *dev,
8791                    const char *format, ...)
8792 {
8793         struct va_format vaf;
8794         va_list args;
8795
8796         va_start(args, format);
8797
8798         vaf.fmt = format;
8799         vaf.va = &args;
8800
8801         __netdev_printk(level, dev, &vaf);
8802
8803         va_end(args);
8804 }
8805 EXPORT_SYMBOL(netdev_printk);
8806
8807 #define define_netdev_printk_level(func, level)                 \
8808 void func(const struct net_device *dev, const char *fmt, ...)   \
8809 {                                                               \
8810         struct va_format vaf;                                   \
8811         va_list args;                                           \
8812                                                                 \
8813         va_start(args, fmt);                                    \
8814                                                                 \
8815         vaf.fmt = fmt;                                          \
8816         vaf.va = &args;                                         \
8817                                                                 \
8818         __netdev_printk(level, dev, &vaf);                      \
8819                                                                 \
8820         va_end(args);                                           \
8821 }                                                               \
8822 EXPORT_SYMBOL(func);
8823
8824 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8825 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8826 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8827 define_netdev_printk_level(netdev_err, KERN_ERR);
8828 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8829 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8830 define_netdev_printk_level(netdev_info, KERN_INFO);
8831
8832 static void __net_exit netdev_exit(struct net *net)
8833 {
8834         kfree(net->dev_name_head);
8835         kfree(net->dev_index_head);
8836         if (net != &init_net)
8837                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
8838 }
8839
8840 static struct pernet_operations __net_initdata netdev_net_ops = {
8841         .init = netdev_init,
8842         .exit = netdev_exit,
8843 };
8844
8845 static void __net_exit default_device_exit(struct net *net)
8846 {
8847         struct net_device *dev, *aux;
8848         /*
8849          * Push all migratable network devices back to the
8850          * initial network namespace
8851          */
8852         rtnl_lock();
8853         for_each_netdev_safe(net, dev, aux) {
8854                 int err;
8855                 char fb_name[IFNAMSIZ];
8856
8857                 /* Ignore unmoveable devices (i.e. loopback) */
8858                 if (dev->features & NETIF_F_NETNS_LOCAL)
8859                         continue;
8860
8861                 /* Leave virtual devices for the generic cleanup */
8862                 if (dev->rtnl_link_ops)
8863                         continue;
8864
8865                 /* Push remaining network devices to init_net */
8866                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8867                 err = dev_change_net_namespace(dev, &init_net, fb_name);
8868                 if (err) {
8869                         pr_emerg("%s: failed to move %s to init_net: %d\n",
8870                                  __func__, dev->name, err);
8871                         BUG();
8872                 }
8873         }
8874         rtnl_unlock();
8875 }
8876
8877 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8878 {
8879         /* Return with the rtnl_lock held when there are no network
8880          * devices unregistering in any network namespace in net_list.
8881          */
8882         struct net *net;
8883         bool unregistering;
8884         DEFINE_WAIT_FUNC(wait, woken_wake_function);
8885
8886         add_wait_queue(&netdev_unregistering_wq, &wait);
8887         for (;;) {
8888                 unregistering = false;
8889                 rtnl_lock();
8890                 list_for_each_entry(net, net_list, exit_list) {
8891                         if (net->dev_unreg_count > 0) {
8892                                 unregistering = true;
8893                                 break;
8894                         }
8895                 }
8896                 if (!unregistering)
8897                         break;
8898                 __rtnl_unlock();
8899
8900                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8901         }
8902         remove_wait_queue(&netdev_unregistering_wq, &wait);
8903 }
8904
8905 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8906 {
8907         /* At exit all network devices most be removed from a network
8908          * namespace.  Do this in the reverse order of registration.
8909          * Do this across as many network namespaces as possible to
8910          * improve batching efficiency.
8911          */
8912         struct net_device *dev;
8913         struct net *net;
8914         LIST_HEAD(dev_kill_list);
8915
8916         /* To prevent network device cleanup code from dereferencing
8917          * loopback devices or network devices that have been freed
8918          * wait here for all pending unregistrations to complete,
8919          * before unregistring the loopback device and allowing the
8920          * network namespace be freed.
8921          *
8922          * The netdev todo list containing all network devices
8923          * unregistrations that happen in default_device_exit_batch
8924          * will run in the rtnl_unlock() at the end of
8925          * default_device_exit_batch.
8926          */
8927         rtnl_lock_unregistering(net_list);
8928         list_for_each_entry(net, net_list, exit_list) {
8929                 for_each_netdev_reverse(net, dev) {
8930                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8931                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8932                         else
8933                                 unregister_netdevice_queue(dev, &dev_kill_list);
8934                 }
8935         }
8936         unregister_netdevice_many(&dev_kill_list);
8937         rtnl_unlock();
8938 }
8939
8940 static struct pernet_operations __net_initdata default_device_ops = {
8941         .exit = default_device_exit,
8942         .exit_batch = default_device_exit_batch,
8943 };
8944
8945 /*
8946  *      Initialize the DEV module. At boot time this walks the device list and
8947  *      unhooks any devices that fail to initialise (normally hardware not
8948  *      present) and leaves us with a valid list of present and active devices.
8949  *
8950  */
8951
8952 /*
8953  *       This is called single threaded during boot, so no need
8954  *       to take the rtnl semaphore.
8955  */
8956 static int __init net_dev_init(void)
8957 {
8958         int i, rc = -ENOMEM;
8959
8960         BUG_ON(!dev_boot_phase);
8961
8962         if (dev_proc_init())
8963                 goto out;
8964
8965         if (netdev_kobject_init())
8966                 goto out;
8967
8968         INIT_LIST_HEAD(&ptype_all);
8969         for (i = 0; i < PTYPE_HASH_SIZE; i++)
8970                 INIT_LIST_HEAD(&ptype_base[i]);
8971
8972         INIT_LIST_HEAD(&offload_base);
8973
8974         if (register_pernet_subsys(&netdev_net_ops))
8975                 goto out;
8976
8977         /*
8978          *      Initialise the packet receive queues.
8979          */
8980
8981         for_each_possible_cpu(i) {
8982                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
8983                 struct softnet_data *sd = &per_cpu(softnet_data, i);
8984
8985                 INIT_WORK(flush, flush_backlog);
8986
8987                 skb_queue_head_init(&sd->input_pkt_queue);
8988                 skb_queue_head_init(&sd->process_queue);
8989 #ifdef CONFIG_XFRM_OFFLOAD
8990                 skb_queue_head_init(&sd->xfrm_backlog);
8991 #endif
8992                 INIT_LIST_HEAD(&sd->poll_list);
8993                 sd->output_queue_tailp = &sd->output_queue;
8994 #ifdef CONFIG_RPS
8995                 sd->csd.func = rps_trigger_softirq;
8996                 sd->csd.info = sd;
8997                 sd->cpu = i;
8998 #endif
8999
9000                 sd->backlog.poll = process_backlog;
9001                 sd->backlog.weight = weight_p;
9002         }
9003
9004         dev_boot_phase = 0;
9005
9006         /* The loopback device is special if any other network devices
9007          * is present in a network namespace the loopback device must
9008          * be present. Since we now dynamically allocate and free the
9009          * loopback device ensure this invariant is maintained by
9010          * keeping the loopback device as the first device on the
9011          * list of network devices.  Ensuring the loopback devices
9012          * is the first device that appears and the last network device
9013          * that disappears.
9014          */
9015         if (register_pernet_device(&loopback_net_ops))
9016                 goto out;
9017
9018         if (register_pernet_device(&default_device_ops))
9019                 goto out;
9020
9021         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9022         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
9023
9024         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9025                                        NULL, dev_cpu_dead);
9026         WARN_ON(rc < 0);
9027         rc = 0;
9028 out:
9029         return rc;
9030 }
9031
9032 subsys_initcall(net_dev_init);