Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
[linux-2.6-microblaze.git] / net / core / dev.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *      Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:        Ross Biro
7  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *      Additional Authors:
11  *              Florian la Roche <rzsfl@rz.uni-sb.de>
12  *              Alan Cox <gw4pts@gw4pts.ampr.org>
13  *              David Hinds <dahinds@users.sourceforge.net>
14  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *              Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *      Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *              Alan Cox        :       device private ioctl copies fields back.
24  *              Alan Cox        :       Transmit queue code does relevant
25  *                                      stunts to keep the queue safe.
26  *              Alan Cox        :       Fixed double lock.
27  *              Alan Cox        :       Fixed promisc NULL pointer trap
28  *              ????????        :       Support the full private ioctl range
29  *              Alan Cox        :       Moved ioctl permission check into
30  *                                      drivers
31  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
32  *              Alan Cox        :       100 backlog just doesn't cut it when
33  *                                      you start doing multicast video 8)
34  *              Alan Cox        :       Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *              Alan Cox        :       Took out transmit every packet pass
37  *                                      Saved a few bytes in the ioctl handler
38  *              Alan Cox        :       Network driver sets packet type before
39  *                                      calling netif_rx. Saves a function
40  *                                      call a packet.
41  *              Alan Cox        :       Hashed net_bh()
42  *              Richard Kooijman:       Timestamp fixes.
43  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
44  *              Alan Cox        :       Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *                                      changes.
47  *              Rudi Cilibrasi  :       Pass the right thing to
48  *                                      set_mac_address()
49  *              Dave Miller     :       32bit quantity for the device lock to
50  *                                      make it work out on a Sparc.
51  *              Bjorn Ekwall    :       Added KERNELD hack.
52  *              Alan Cox        :       Cleaned up the backlog initialise.
53  *              Craig Metz      :       SIOCGIFCONF fix if space for under
54  *                                      1 device.
55  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
56  *                                      is no device open function.
57  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
58  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
59  *              Cyrus Durgin    :       Cleaned for KMOD
60  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
61  *                                      A network device unload needs to purge
62  *                                      the backlog queue.
63  *      Paul Rusty Russell      :       SIOCSIFNAME
64  *              Pekka Riikonen  :       Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *                                      - netif_rx() feedback
69  */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <linux/inetdevice.h>
135 #include <linux/cpu_rmap.h>
136 #include <linux/static_key.h>
137 #include <linux/hashtable.h>
138 #include <linux/vmalloc.h>
139 #include <linux/if_macvlan.h>
140 #include <linux/errqueue.h>
141 #include <linux/hrtimer.h>
142 #include <linux/netfilter_ingress.h>
143 #include <linux/crash_dump.h>
144 #include <linux/sctp.h>
145 #include <net/udp_tunnel.h>
146 #include <linux/net_namespace.h>
147 #include <linux/indirect_call_wrapper.h>
148 #include <net/devlink.h>
149 #include <linux/pm_runtime.h>
150 #include <linux/prandom.h>
151
152 #include "net-sysfs.h"
153
154 #define MAX_GRO_SKBS 8
155
156 /* This should be increased if a protocol with a bigger head is added. */
157 #define GRO_MAX_HEAD (MAX_HEADER + 128)
158
159 static DEFINE_SPINLOCK(ptype_lock);
160 static DEFINE_SPINLOCK(offload_lock);
161 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
162 struct list_head ptype_all __read_mostly;       /* Taps */
163 static struct list_head offload_base __read_mostly;
164
165 static int netif_rx_internal(struct sk_buff *skb);
166 static int call_netdevice_notifiers_info(unsigned long val,
167                                          struct netdev_notifier_info *info);
168 static int call_netdevice_notifiers_extack(unsigned long val,
169                                            struct net_device *dev,
170                                            struct netlink_ext_ack *extack);
171 static struct napi_struct *napi_by_id(unsigned int napi_id);
172
173 /*
174  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
175  * semaphore.
176  *
177  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
178  *
179  * Writers must hold the rtnl semaphore while they loop through the
180  * dev_base_head list, and hold dev_base_lock for writing when they do the
181  * actual updates.  This allows pure readers to access the list even
182  * while a writer is preparing to update it.
183  *
184  * To put it another way, dev_base_lock is held for writing only to
185  * protect against pure readers; the rtnl semaphore provides the
186  * protection against other writers.
187  *
188  * See, for example usages, register_netdevice() and
189  * unregister_netdevice(), which must be called with the rtnl
190  * semaphore held.
191  */
192 DEFINE_RWLOCK(dev_base_lock);
193 EXPORT_SYMBOL(dev_base_lock);
194
195 static DEFINE_MUTEX(ifalias_mutex);
196
197 /* protects napi_hash addition/deletion and napi_gen_id */
198 static DEFINE_SPINLOCK(napi_hash_lock);
199
200 static unsigned int napi_gen_id = NR_CPUS;
201 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
202
203 static DECLARE_RWSEM(devnet_rename_sem);
204
205 static inline void dev_base_seq_inc(struct net *net)
206 {
207         while (++net->dev_base_seq == 0)
208                 ;
209 }
210
211 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
212 {
213         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
214
215         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
216 }
217
218 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
219 {
220         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
221 }
222
223 static inline void rps_lock(struct softnet_data *sd)
224 {
225 #ifdef CONFIG_RPS
226         spin_lock(&sd->input_pkt_queue.lock);
227 #endif
228 }
229
230 static inline void rps_unlock(struct softnet_data *sd)
231 {
232 #ifdef CONFIG_RPS
233         spin_unlock(&sd->input_pkt_queue.lock);
234 #endif
235 }
236
237 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
238                                                        const char *name)
239 {
240         struct netdev_name_node *name_node;
241
242         name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
243         if (!name_node)
244                 return NULL;
245         INIT_HLIST_NODE(&name_node->hlist);
246         name_node->dev = dev;
247         name_node->name = name;
248         return name_node;
249 }
250
251 static struct netdev_name_node *
252 netdev_name_node_head_alloc(struct net_device *dev)
253 {
254         struct netdev_name_node *name_node;
255
256         name_node = netdev_name_node_alloc(dev, dev->name);
257         if (!name_node)
258                 return NULL;
259         INIT_LIST_HEAD(&name_node->list);
260         return name_node;
261 }
262
263 static void netdev_name_node_free(struct netdev_name_node *name_node)
264 {
265         kfree(name_node);
266 }
267
268 static void netdev_name_node_add(struct net *net,
269                                  struct netdev_name_node *name_node)
270 {
271         hlist_add_head_rcu(&name_node->hlist,
272                            dev_name_hash(net, name_node->name));
273 }
274
275 static void netdev_name_node_del(struct netdev_name_node *name_node)
276 {
277         hlist_del_rcu(&name_node->hlist);
278 }
279
280 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
281                                                         const char *name)
282 {
283         struct hlist_head *head = dev_name_hash(net, name);
284         struct netdev_name_node *name_node;
285
286         hlist_for_each_entry(name_node, head, hlist)
287                 if (!strcmp(name_node->name, name))
288                         return name_node;
289         return NULL;
290 }
291
292 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
293                                                             const char *name)
294 {
295         struct hlist_head *head = dev_name_hash(net, name);
296         struct netdev_name_node *name_node;
297
298         hlist_for_each_entry_rcu(name_node, head, hlist)
299                 if (!strcmp(name_node->name, name))
300                         return name_node;
301         return NULL;
302 }
303
304 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
305 {
306         struct netdev_name_node *name_node;
307         struct net *net = dev_net(dev);
308
309         name_node = netdev_name_node_lookup(net, name);
310         if (name_node)
311                 return -EEXIST;
312         name_node = netdev_name_node_alloc(dev, name);
313         if (!name_node)
314                 return -ENOMEM;
315         netdev_name_node_add(net, name_node);
316         /* The node that holds dev->name acts as a head of per-device list. */
317         list_add_tail(&name_node->list, &dev->name_node->list);
318
319         return 0;
320 }
321 EXPORT_SYMBOL(netdev_name_node_alt_create);
322
323 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
324 {
325         list_del(&name_node->list);
326         netdev_name_node_del(name_node);
327         kfree(name_node->name);
328         netdev_name_node_free(name_node);
329 }
330
331 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
332 {
333         struct netdev_name_node *name_node;
334         struct net *net = dev_net(dev);
335
336         name_node = netdev_name_node_lookup(net, name);
337         if (!name_node)
338                 return -ENOENT;
339         /* lookup might have found our primary name or a name belonging
340          * to another device.
341          */
342         if (name_node == dev->name_node || name_node->dev != dev)
343                 return -EINVAL;
344
345         __netdev_name_node_alt_destroy(name_node);
346
347         return 0;
348 }
349 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
350
351 static void netdev_name_node_alt_flush(struct net_device *dev)
352 {
353         struct netdev_name_node *name_node, *tmp;
354
355         list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
356                 __netdev_name_node_alt_destroy(name_node);
357 }
358
359 /* Device list insertion */
360 static void list_netdevice(struct net_device *dev)
361 {
362         struct net *net = dev_net(dev);
363
364         ASSERT_RTNL();
365
366         write_lock_bh(&dev_base_lock);
367         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
368         netdev_name_node_add(net, dev->name_node);
369         hlist_add_head_rcu(&dev->index_hlist,
370                            dev_index_hash(net, dev->ifindex));
371         write_unlock_bh(&dev_base_lock);
372
373         dev_base_seq_inc(net);
374 }
375
376 /* Device list removal
377  * caller must respect a RCU grace period before freeing/reusing dev
378  */
379 static void unlist_netdevice(struct net_device *dev)
380 {
381         ASSERT_RTNL();
382
383         /* Unlink dev from the device chain */
384         write_lock_bh(&dev_base_lock);
385         list_del_rcu(&dev->dev_list);
386         netdev_name_node_del(dev->name_node);
387         hlist_del_rcu(&dev->index_hlist);
388         write_unlock_bh(&dev_base_lock);
389
390         dev_base_seq_inc(dev_net(dev));
391 }
392
393 /*
394  *      Our notifier list
395  */
396
397 static RAW_NOTIFIER_HEAD(netdev_chain);
398
399 /*
400  *      Device drivers call our routines to queue packets here. We empty the
401  *      queue in the local softnet handler.
402  */
403
404 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
405 EXPORT_PER_CPU_SYMBOL(softnet_data);
406
407 #ifdef CONFIG_LOCKDEP
408 /*
409  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
410  * according to dev->type
411  */
412 static const unsigned short netdev_lock_type[] = {
413          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
414          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
415          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
416          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
417          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
418          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
419          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
420          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
421          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
422          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
423          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
424          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
425          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
426          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
427          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
428
429 static const char *const netdev_lock_name[] = {
430         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
431         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
432         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
433         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
434         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
435         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
436         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
437         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
438         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
439         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
440         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
441         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
442         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
443         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
444         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
445
446 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
447 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
448
449 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
450 {
451         int i;
452
453         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
454                 if (netdev_lock_type[i] == dev_type)
455                         return i;
456         /* the last key is used by default */
457         return ARRAY_SIZE(netdev_lock_type) - 1;
458 }
459
460 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
461                                                  unsigned short dev_type)
462 {
463         int i;
464
465         i = netdev_lock_pos(dev_type);
466         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
467                                    netdev_lock_name[i]);
468 }
469
470 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
471 {
472         int i;
473
474         i = netdev_lock_pos(dev->type);
475         lockdep_set_class_and_name(&dev->addr_list_lock,
476                                    &netdev_addr_lock_key[i],
477                                    netdev_lock_name[i]);
478 }
479 #else
480 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
481                                                  unsigned short dev_type)
482 {
483 }
484
485 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
486 {
487 }
488 #endif
489
490 /*******************************************************************************
491  *
492  *              Protocol management and registration routines
493  *
494  *******************************************************************************/
495
496
497 /*
498  *      Add a protocol ID to the list. Now that the input handler is
499  *      smarter we can dispense with all the messy stuff that used to be
500  *      here.
501  *
502  *      BEWARE!!! Protocol handlers, mangling input packets,
503  *      MUST BE last in hash buckets and checking protocol handlers
504  *      MUST start from promiscuous ptype_all chain in net_bh.
505  *      It is true now, do not change it.
506  *      Explanation follows: if protocol handler, mangling packet, will
507  *      be the first on list, it is not able to sense, that packet
508  *      is cloned and should be copied-on-write, so that it will
509  *      change it and subsequent readers will get broken packet.
510  *                                                      --ANK (980803)
511  */
512
513 static inline struct list_head *ptype_head(const struct packet_type *pt)
514 {
515         if (pt->type == htons(ETH_P_ALL))
516                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
517         else
518                 return pt->dev ? &pt->dev->ptype_specific :
519                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
520 }
521
522 /**
523  *      dev_add_pack - add packet handler
524  *      @pt: packet type declaration
525  *
526  *      Add a protocol handler to the networking stack. The passed &packet_type
527  *      is linked into kernel lists and may not be freed until it has been
528  *      removed from the kernel lists.
529  *
530  *      This call does not sleep therefore it can not
531  *      guarantee all CPU's that are in middle of receiving packets
532  *      will see the new packet type (until the next received packet).
533  */
534
535 void dev_add_pack(struct packet_type *pt)
536 {
537         struct list_head *head = ptype_head(pt);
538
539         spin_lock(&ptype_lock);
540         list_add_rcu(&pt->list, head);
541         spin_unlock(&ptype_lock);
542 }
543 EXPORT_SYMBOL(dev_add_pack);
544
545 /**
546  *      __dev_remove_pack        - remove packet handler
547  *      @pt: packet type declaration
548  *
549  *      Remove a protocol handler that was previously added to the kernel
550  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
551  *      from the kernel lists and can be freed or reused once this function
552  *      returns.
553  *
554  *      The packet type might still be in use by receivers
555  *      and must not be freed until after all the CPU's have gone
556  *      through a quiescent state.
557  */
558 void __dev_remove_pack(struct packet_type *pt)
559 {
560         struct list_head *head = ptype_head(pt);
561         struct packet_type *pt1;
562
563         spin_lock(&ptype_lock);
564
565         list_for_each_entry(pt1, head, list) {
566                 if (pt == pt1) {
567                         list_del_rcu(&pt->list);
568                         goto out;
569                 }
570         }
571
572         pr_warn("dev_remove_pack: %p not found\n", pt);
573 out:
574         spin_unlock(&ptype_lock);
575 }
576 EXPORT_SYMBOL(__dev_remove_pack);
577
578 /**
579  *      dev_remove_pack  - remove packet handler
580  *      @pt: packet type declaration
581  *
582  *      Remove a protocol handler that was previously added to the kernel
583  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
584  *      from the kernel lists and can be freed or reused once this function
585  *      returns.
586  *
587  *      This call sleeps to guarantee that no CPU is looking at the packet
588  *      type after return.
589  */
590 void dev_remove_pack(struct packet_type *pt)
591 {
592         __dev_remove_pack(pt);
593
594         synchronize_net();
595 }
596 EXPORT_SYMBOL(dev_remove_pack);
597
598
599 /**
600  *      dev_add_offload - register offload handlers
601  *      @po: protocol offload declaration
602  *
603  *      Add protocol offload handlers to the networking stack. The passed
604  *      &proto_offload is linked into kernel lists and may not be freed until
605  *      it has been removed from the kernel lists.
606  *
607  *      This call does not sleep therefore it can not
608  *      guarantee all CPU's that are in middle of receiving packets
609  *      will see the new offload handlers (until the next received packet).
610  */
611 void dev_add_offload(struct packet_offload *po)
612 {
613         struct packet_offload *elem;
614
615         spin_lock(&offload_lock);
616         list_for_each_entry(elem, &offload_base, list) {
617                 if (po->priority < elem->priority)
618                         break;
619         }
620         list_add_rcu(&po->list, elem->list.prev);
621         spin_unlock(&offload_lock);
622 }
623 EXPORT_SYMBOL(dev_add_offload);
624
625 /**
626  *      __dev_remove_offload     - remove offload handler
627  *      @po: packet offload declaration
628  *
629  *      Remove a protocol offload handler that was previously added to the
630  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
631  *      is removed from the kernel lists and can be freed or reused once this
632  *      function returns.
633  *
634  *      The packet type might still be in use by receivers
635  *      and must not be freed until after all the CPU's have gone
636  *      through a quiescent state.
637  */
638 static void __dev_remove_offload(struct packet_offload *po)
639 {
640         struct list_head *head = &offload_base;
641         struct packet_offload *po1;
642
643         spin_lock(&offload_lock);
644
645         list_for_each_entry(po1, head, list) {
646                 if (po == po1) {
647                         list_del_rcu(&po->list);
648                         goto out;
649                 }
650         }
651
652         pr_warn("dev_remove_offload: %p not found\n", po);
653 out:
654         spin_unlock(&offload_lock);
655 }
656
657 /**
658  *      dev_remove_offload       - remove packet offload handler
659  *      @po: packet offload declaration
660  *
661  *      Remove a packet offload handler that was previously added to the kernel
662  *      offload handlers by dev_add_offload(). The passed &offload_type is
663  *      removed from the kernel lists and can be freed or reused once this
664  *      function returns.
665  *
666  *      This call sleeps to guarantee that no CPU is looking at the packet
667  *      type after return.
668  */
669 void dev_remove_offload(struct packet_offload *po)
670 {
671         __dev_remove_offload(po);
672
673         synchronize_net();
674 }
675 EXPORT_SYMBOL(dev_remove_offload);
676
677 /******************************************************************************
678  *
679  *                    Device Boot-time Settings Routines
680  *
681  ******************************************************************************/
682
683 /* Boot time configuration table */
684 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
685
686 /**
687  *      netdev_boot_setup_add   - add new setup entry
688  *      @name: name of the device
689  *      @map: configured settings for the device
690  *
691  *      Adds new setup entry to the dev_boot_setup list.  The function
692  *      returns 0 on error and 1 on success.  This is a generic routine to
693  *      all netdevices.
694  */
695 static int netdev_boot_setup_add(char *name, struct ifmap *map)
696 {
697         struct netdev_boot_setup *s;
698         int i;
699
700         s = dev_boot_setup;
701         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
702                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
703                         memset(s[i].name, 0, sizeof(s[i].name));
704                         strlcpy(s[i].name, name, IFNAMSIZ);
705                         memcpy(&s[i].map, map, sizeof(s[i].map));
706                         break;
707                 }
708         }
709
710         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
711 }
712
713 /**
714  * netdev_boot_setup_check      - check boot time settings
715  * @dev: the netdevice
716  *
717  * Check boot time settings for the device.
718  * The found settings are set for the device to be used
719  * later in the device probing.
720  * Returns 0 if no settings found, 1 if they are.
721  */
722 int netdev_boot_setup_check(struct net_device *dev)
723 {
724         struct netdev_boot_setup *s = dev_boot_setup;
725         int i;
726
727         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
728                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
729                     !strcmp(dev->name, s[i].name)) {
730                         dev->irq = s[i].map.irq;
731                         dev->base_addr = s[i].map.base_addr;
732                         dev->mem_start = s[i].map.mem_start;
733                         dev->mem_end = s[i].map.mem_end;
734                         return 1;
735                 }
736         }
737         return 0;
738 }
739 EXPORT_SYMBOL(netdev_boot_setup_check);
740
741
742 /**
743  * netdev_boot_base     - get address from boot time settings
744  * @prefix: prefix for network device
745  * @unit: id for network device
746  *
747  * Check boot time settings for the base address of device.
748  * The found settings are set for the device to be used
749  * later in the device probing.
750  * Returns 0 if no settings found.
751  */
752 unsigned long netdev_boot_base(const char *prefix, int unit)
753 {
754         const struct netdev_boot_setup *s = dev_boot_setup;
755         char name[IFNAMSIZ];
756         int i;
757
758         sprintf(name, "%s%d", prefix, unit);
759
760         /*
761          * If device already registered then return base of 1
762          * to indicate not to probe for this interface
763          */
764         if (__dev_get_by_name(&init_net, name))
765                 return 1;
766
767         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
768                 if (!strcmp(name, s[i].name))
769                         return s[i].map.base_addr;
770         return 0;
771 }
772
773 /*
774  * Saves at boot time configured settings for any netdevice.
775  */
776 int __init netdev_boot_setup(char *str)
777 {
778         int ints[5];
779         struct ifmap map;
780
781         str = get_options(str, ARRAY_SIZE(ints), ints);
782         if (!str || !*str)
783                 return 0;
784
785         /* Save settings */
786         memset(&map, 0, sizeof(map));
787         if (ints[0] > 0)
788                 map.irq = ints[1];
789         if (ints[0] > 1)
790                 map.base_addr = ints[2];
791         if (ints[0] > 2)
792                 map.mem_start = ints[3];
793         if (ints[0] > 3)
794                 map.mem_end = ints[4];
795
796         /* Add new entry to the list */
797         return netdev_boot_setup_add(str, &map);
798 }
799
800 __setup("netdev=", netdev_boot_setup);
801
802 /*******************************************************************************
803  *
804  *                          Device Interface Subroutines
805  *
806  *******************************************************************************/
807
808 /**
809  *      dev_get_iflink  - get 'iflink' value of a interface
810  *      @dev: targeted interface
811  *
812  *      Indicates the ifindex the interface is linked to.
813  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
814  */
815
816 int dev_get_iflink(const struct net_device *dev)
817 {
818         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
819                 return dev->netdev_ops->ndo_get_iflink(dev);
820
821         return dev->ifindex;
822 }
823 EXPORT_SYMBOL(dev_get_iflink);
824
825 /**
826  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
827  *      @dev: targeted interface
828  *      @skb: The packet.
829  *
830  *      For better visibility of tunnel traffic OVS needs to retrieve
831  *      egress tunnel information for a packet. Following API allows
832  *      user to get this info.
833  */
834 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
835 {
836         struct ip_tunnel_info *info;
837
838         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
839                 return -EINVAL;
840
841         info = skb_tunnel_info_unclone(skb);
842         if (!info)
843                 return -ENOMEM;
844         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
845                 return -EINVAL;
846
847         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
848 }
849 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
850
851 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
852 {
853         int k = stack->num_paths++;
854
855         if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
856                 return NULL;
857
858         return &stack->path[k];
859 }
860
861 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
862                           struct net_device_path_stack *stack)
863 {
864         const struct net_device *last_dev;
865         struct net_device_path_ctx ctx = {
866                 .dev    = dev,
867                 .daddr  = daddr,
868         };
869         struct net_device_path *path;
870         int ret = 0;
871
872         stack->num_paths = 0;
873         while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
874                 last_dev = ctx.dev;
875                 path = dev_fwd_path(stack);
876                 if (!path)
877                         return -1;
878
879                 memset(path, 0, sizeof(struct net_device_path));
880                 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
881                 if (ret < 0)
882                         return -1;
883
884                 if (WARN_ON_ONCE(last_dev == ctx.dev))
885                         return -1;
886         }
887         path = dev_fwd_path(stack);
888         if (!path)
889                 return -1;
890         path->type = DEV_PATH_ETHERNET;
891         path->dev = ctx.dev;
892
893         return ret;
894 }
895 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
896
897 /**
898  *      __dev_get_by_name       - find a device by its name
899  *      @net: the applicable net namespace
900  *      @name: name to find
901  *
902  *      Find an interface by name. Must be called under RTNL semaphore
903  *      or @dev_base_lock. If the name is found a pointer to the device
904  *      is returned. If the name is not found then %NULL is returned. The
905  *      reference counters are not incremented so the caller must be
906  *      careful with locks.
907  */
908
909 struct net_device *__dev_get_by_name(struct net *net, const char *name)
910 {
911         struct netdev_name_node *node_name;
912
913         node_name = netdev_name_node_lookup(net, name);
914         return node_name ? node_name->dev : NULL;
915 }
916 EXPORT_SYMBOL(__dev_get_by_name);
917
918 /**
919  * dev_get_by_name_rcu  - find a device by its name
920  * @net: the applicable net namespace
921  * @name: name to find
922  *
923  * Find an interface by name.
924  * If the name is found a pointer to the device is returned.
925  * If the name is not found then %NULL is returned.
926  * The reference counters are not incremented so the caller must be
927  * careful with locks. The caller must hold RCU lock.
928  */
929
930 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
931 {
932         struct netdev_name_node *node_name;
933
934         node_name = netdev_name_node_lookup_rcu(net, name);
935         return node_name ? node_name->dev : NULL;
936 }
937 EXPORT_SYMBOL(dev_get_by_name_rcu);
938
939 /**
940  *      dev_get_by_name         - find a device by its name
941  *      @net: the applicable net namespace
942  *      @name: name to find
943  *
944  *      Find an interface by name. This can be called from any
945  *      context and does its own locking. The returned handle has
946  *      the usage count incremented and the caller must use dev_put() to
947  *      release it when it is no longer needed. %NULL is returned if no
948  *      matching device is found.
949  */
950
951 struct net_device *dev_get_by_name(struct net *net, const char *name)
952 {
953         struct net_device *dev;
954
955         rcu_read_lock();
956         dev = dev_get_by_name_rcu(net, name);
957         if (dev)
958                 dev_hold(dev);
959         rcu_read_unlock();
960         return dev;
961 }
962 EXPORT_SYMBOL(dev_get_by_name);
963
964 /**
965  *      __dev_get_by_index - find a device by its ifindex
966  *      @net: the applicable net namespace
967  *      @ifindex: index of device
968  *
969  *      Search for an interface by index. Returns %NULL if the device
970  *      is not found or a pointer to the device. The device has not
971  *      had its reference counter increased so the caller must be careful
972  *      about locking. The caller must hold either the RTNL semaphore
973  *      or @dev_base_lock.
974  */
975
976 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
977 {
978         struct net_device *dev;
979         struct hlist_head *head = dev_index_hash(net, ifindex);
980
981         hlist_for_each_entry(dev, head, index_hlist)
982                 if (dev->ifindex == ifindex)
983                         return dev;
984
985         return NULL;
986 }
987 EXPORT_SYMBOL(__dev_get_by_index);
988
989 /**
990  *      dev_get_by_index_rcu - find a device by its ifindex
991  *      @net: the applicable net namespace
992  *      @ifindex: index of device
993  *
994  *      Search for an interface by index. Returns %NULL if the device
995  *      is not found or a pointer to the device. The device has not
996  *      had its reference counter increased so the caller must be careful
997  *      about locking. The caller must hold RCU lock.
998  */
999
1000 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
1001 {
1002         struct net_device *dev;
1003         struct hlist_head *head = dev_index_hash(net, ifindex);
1004
1005         hlist_for_each_entry_rcu(dev, head, index_hlist)
1006                 if (dev->ifindex == ifindex)
1007                         return dev;
1008
1009         return NULL;
1010 }
1011 EXPORT_SYMBOL(dev_get_by_index_rcu);
1012
1013
1014 /**
1015  *      dev_get_by_index - find a device by its ifindex
1016  *      @net: the applicable net namespace
1017  *      @ifindex: index of device
1018  *
1019  *      Search for an interface by index. Returns NULL if the device
1020  *      is not found or a pointer to the device. The device returned has
1021  *      had a reference added and the pointer is safe until the user calls
1022  *      dev_put to indicate they have finished with it.
1023  */
1024
1025 struct net_device *dev_get_by_index(struct net *net, int ifindex)
1026 {
1027         struct net_device *dev;
1028
1029         rcu_read_lock();
1030         dev = dev_get_by_index_rcu(net, ifindex);
1031         if (dev)
1032                 dev_hold(dev);
1033         rcu_read_unlock();
1034         return dev;
1035 }
1036 EXPORT_SYMBOL(dev_get_by_index);
1037
1038 /**
1039  *      dev_get_by_napi_id - find a device by napi_id
1040  *      @napi_id: ID of the NAPI struct
1041  *
1042  *      Search for an interface by NAPI ID. Returns %NULL if the device
1043  *      is not found or a pointer to the device. The device has not had
1044  *      its reference counter increased so the caller must be careful
1045  *      about locking. The caller must hold RCU lock.
1046  */
1047
1048 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1049 {
1050         struct napi_struct *napi;
1051
1052         WARN_ON_ONCE(!rcu_read_lock_held());
1053
1054         if (napi_id < MIN_NAPI_ID)
1055                 return NULL;
1056
1057         napi = napi_by_id(napi_id);
1058
1059         return napi ? napi->dev : NULL;
1060 }
1061 EXPORT_SYMBOL(dev_get_by_napi_id);
1062
1063 /**
1064  *      netdev_get_name - get a netdevice name, knowing its ifindex.
1065  *      @net: network namespace
1066  *      @name: a pointer to the buffer where the name will be stored.
1067  *      @ifindex: the ifindex of the interface to get the name from.
1068  */
1069 int netdev_get_name(struct net *net, char *name, int ifindex)
1070 {
1071         struct net_device *dev;
1072         int ret;
1073
1074         down_read(&devnet_rename_sem);
1075         rcu_read_lock();
1076
1077         dev = dev_get_by_index_rcu(net, ifindex);
1078         if (!dev) {
1079                 ret = -ENODEV;
1080                 goto out;
1081         }
1082
1083         strcpy(name, dev->name);
1084
1085         ret = 0;
1086 out:
1087         rcu_read_unlock();
1088         up_read(&devnet_rename_sem);
1089         return ret;
1090 }
1091
1092 /**
1093  *      dev_getbyhwaddr_rcu - find a device by its hardware address
1094  *      @net: the applicable net namespace
1095  *      @type: media type of device
1096  *      @ha: hardware address
1097  *
1098  *      Search for an interface by MAC address. Returns NULL if the device
1099  *      is not found or a pointer to the device.
1100  *      The caller must hold RCU or RTNL.
1101  *      The returned device has not had its ref count increased
1102  *      and the caller must therefore be careful about locking
1103  *
1104  */
1105
1106 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1107                                        const char *ha)
1108 {
1109         struct net_device *dev;
1110
1111         for_each_netdev_rcu(net, dev)
1112                 if (dev->type == type &&
1113                     !memcmp(dev->dev_addr, ha, dev->addr_len))
1114                         return dev;
1115
1116         return NULL;
1117 }
1118 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1119
1120 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1121 {
1122         struct net_device *dev, *ret = NULL;
1123
1124         rcu_read_lock();
1125         for_each_netdev_rcu(net, dev)
1126                 if (dev->type == type) {
1127                         dev_hold(dev);
1128                         ret = dev;
1129                         break;
1130                 }
1131         rcu_read_unlock();
1132         return ret;
1133 }
1134 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1135
1136 /**
1137  *      __dev_get_by_flags - find any device with given flags
1138  *      @net: the applicable net namespace
1139  *      @if_flags: IFF_* values
1140  *      @mask: bitmask of bits in if_flags to check
1141  *
1142  *      Search for any interface with the given flags. Returns NULL if a device
1143  *      is not found or a pointer to the device. Must be called inside
1144  *      rtnl_lock(), and result refcount is unchanged.
1145  */
1146
1147 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1148                                       unsigned short mask)
1149 {
1150         struct net_device *dev, *ret;
1151
1152         ASSERT_RTNL();
1153
1154         ret = NULL;
1155         for_each_netdev(net, dev) {
1156                 if (((dev->flags ^ if_flags) & mask) == 0) {
1157                         ret = dev;
1158                         break;
1159                 }
1160         }
1161         return ret;
1162 }
1163 EXPORT_SYMBOL(__dev_get_by_flags);
1164
1165 /**
1166  *      dev_valid_name - check if name is okay for network device
1167  *      @name: name string
1168  *
1169  *      Network device names need to be valid file names to
1170  *      allow sysfs to work.  We also disallow any kind of
1171  *      whitespace.
1172  */
1173 bool dev_valid_name(const char *name)
1174 {
1175         if (*name == '\0')
1176                 return false;
1177         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1178                 return false;
1179         if (!strcmp(name, ".") || !strcmp(name, ".."))
1180                 return false;
1181
1182         while (*name) {
1183                 if (*name == '/' || *name == ':' || isspace(*name))
1184                         return false;
1185                 name++;
1186         }
1187         return true;
1188 }
1189 EXPORT_SYMBOL(dev_valid_name);
1190
1191 /**
1192  *      __dev_alloc_name - allocate a name for a device
1193  *      @net: network namespace to allocate the device name in
1194  *      @name: name format string
1195  *      @buf:  scratch buffer and result name string
1196  *
1197  *      Passed a format string - eg "lt%d" it will try and find a suitable
1198  *      id. It scans list of devices to build up a free map, then chooses
1199  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1200  *      while allocating the name and adding the device in order to avoid
1201  *      duplicates.
1202  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1203  *      Returns the number of the unit assigned or a negative errno code.
1204  */
1205
1206 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1207 {
1208         int i = 0;
1209         const char *p;
1210         const int max_netdevices = 8*PAGE_SIZE;
1211         unsigned long *inuse;
1212         struct net_device *d;
1213
1214         if (!dev_valid_name(name))
1215                 return -EINVAL;
1216
1217         p = strchr(name, '%');
1218         if (p) {
1219                 /*
1220                  * Verify the string as this thing may have come from
1221                  * the user.  There must be either one "%d" and no other "%"
1222                  * characters.
1223                  */
1224                 if (p[1] != 'd' || strchr(p + 2, '%'))
1225                         return -EINVAL;
1226
1227                 /* Use one page as a bit array of possible slots */
1228                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1229                 if (!inuse)
1230                         return -ENOMEM;
1231
1232                 for_each_netdev(net, d) {
1233                         struct netdev_name_node *name_node;
1234                         list_for_each_entry(name_node, &d->name_node->list, list) {
1235                                 if (!sscanf(name_node->name, name, &i))
1236                                         continue;
1237                                 if (i < 0 || i >= max_netdevices)
1238                                         continue;
1239
1240                                 /*  avoid cases where sscanf is not exact inverse of printf */
1241                                 snprintf(buf, IFNAMSIZ, name, i);
1242                                 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1243                                         set_bit(i, inuse);
1244                         }
1245                         if (!sscanf(d->name, name, &i))
1246                                 continue;
1247                         if (i < 0 || i >= max_netdevices)
1248                                 continue;
1249
1250                         /*  avoid cases where sscanf is not exact inverse of printf */
1251                         snprintf(buf, IFNAMSIZ, name, i);
1252                         if (!strncmp(buf, d->name, IFNAMSIZ))
1253                                 set_bit(i, inuse);
1254                 }
1255
1256                 i = find_first_zero_bit(inuse, max_netdevices);
1257                 free_page((unsigned long) inuse);
1258         }
1259
1260         snprintf(buf, IFNAMSIZ, name, i);
1261         if (!__dev_get_by_name(net, buf))
1262                 return i;
1263
1264         /* It is possible to run out of possible slots
1265          * when the name is long and there isn't enough space left
1266          * for the digits, or if all bits are used.
1267          */
1268         return -ENFILE;
1269 }
1270
1271 static int dev_alloc_name_ns(struct net *net,
1272                              struct net_device *dev,
1273                              const char *name)
1274 {
1275         char buf[IFNAMSIZ];
1276         int ret;
1277
1278         BUG_ON(!net);
1279         ret = __dev_alloc_name(net, name, buf);
1280         if (ret >= 0)
1281                 strlcpy(dev->name, buf, IFNAMSIZ);
1282         return ret;
1283 }
1284
1285 /**
1286  *      dev_alloc_name - allocate a name for a device
1287  *      @dev: device
1288  *      @name: name format string
1289  *
1290  *      Passed a format string - eg "lt%d" it will try and find a suitable
1291  *      id. It scans list of devices to build up a free map, then chooses
1292  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1293  *      while allocating the name and adding the device in order to avoid
1294  *      duplicates.
1295  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1296  *      Returns the number of the unit assigned or a negative errno code.
1297  */
1298
1299 int dev_alloc_name(struct net_device *dev, const char *name)
1300 {
1301         return dev_alloc_name_ns(dev_net(dev), dev, name);
1302 }
1303 EXPORT_SYMBOL(dev_alloc_name);
1304
1305 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1306                               const char *name)
1307 {
1308         BUG_ON(!net);
1309
1310         if (!dev_valid_name(name))
1311                 return -EINVAL;
1312
1313         if (strchr(name, '%'))
1314                 return dev_alloc_name_ns(net, dev, name);
1315         else if (__dev_get_by_name(net, name))
1316                 return -EEXIST;
1317         else if (dev->name != name)
1318                 strlcpy(dev->name, name, IFNAMSIZ);
1319
1320         return 0;
1321 }
1322
1323 /**
1324  *      dev_change_name - change name of a device
1325  *      @dev: device
1326  *      @newname: name (or format string) must be at least IFNAMSIZ
1327  *
1328  *      Change name of a device, can pass format strings "eth%d".
1329  *      for wildcarding.
1330  */
1331 int dev_change_name(struct net_device *dev, const char *newname)
1332 {
1333         unsigned char old_assign_type;
1334         char oldname[IFNAMSIZ];
1335         int err = 0;
1336         int ret;
1337         struct net *net;
1338
1339         ASSERT_RTNL();
1340         BUG_ON(!dev_net(dev));
1341
1342         net = dev_net(dev);
1343
1344         /* Some auto-enslaved devices e.g. failover slaves are
1345          * special, as userspace might rename the device after
1346          * the interface had been brought up and running since
1347          * the point kernel initiated auto-enslavement. Allow
1348          * live name change even when these slave devices are
1349          * up and running.
1350          *
1351          * Typically, users of these auto-enslaving devices
1352          * don't actually care about slave name change, as
1353          * they are supposed to operate on master interface
1354          * directly.
1355          */
1356         if (dev->flags & IFF_UP &&
1357             likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1358                 return -EBUSY;
1359
1360         down_write(&devnet_rename_sem);
1361
1362         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1363                 up_write(&devnet_rename_sem);
1364                 return 0;
1365         }
1366
1367         memcpy(oldname, dev->name, IFNAMSIZ);
1368
1369         err = dev_get_valid_name(net, dev, newname);
1370         if (err < 0) {
1371                 up_write(&devnet_rename_sem);
1372                 return err;
1373         }
1374
1375         if (oldname[0] && !strchr(oldname, '%'))
1376                 netdev_info(dev, "renamed from %s\n", oldname);
1377
1378         old_assign_type = dev->name_assign_type;
1379         dev->name_assign_type = NET_NAME_RENAMED;
1380
1381 rollback:
1382         ret = device_rename(&dev->dev, dev->name);
1383         if (ret) {
1384                 memcpy(dev->name, oldname, IFNAMSIZ);
1385                 dev->name_assign_type = old_assign_type;
1386                 up_write(&devnet_rename_sem);
1387                 return ret;
1388         }
1389
1390         up_write(&devnet_rename_sem);
1391
1392         netdev_adjacent_rename_links(dev, oldname);
1393
1394         write_lock_bh(&dev_base_lock);
1395         netdev_name_node_del(dev->name_node);
1396         write_unlock_bh(&dev_base_lock);
1397
1398         synchronize_rcu();
1399
1400         write_lock_bh(&dev_base_lock);
1401         netdev_name_node_add(net, dev->name_node);
1402         write_unlock_bh(&dev_base_lock);
1403
1404         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1405         ret = notifier_to_errno(ret);
1406
1407         if (ret) {
1408                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1409                 if (err >= 0) {
1410                         err = ret;
1411                         down_write(&devnet_rename_sem);
1412                         memcpy(dev->name, oldname, IFNAMSIZ);
1413                         memcpy(oldname, newname, IFNAMSIZ);
1414                         dev->name_assign_type = old_assign_type;
1415                         old_assign_type = NET_NAME_RENAMED;
1416                         goto rollback;
1417                 } else {
1418                         pr_err("%s: name change rollback failed: %d\n",
1419                                dev->name, ret);
1420                 }
1421         }
1422
1423         return err;
1424 }
1425
1426 /**
1427  *      dev_set_alias - change ifalias of a device
1428  *      @dev: device
1429  *      @alias: name up to IFALIASZ
1430  *      @len: limit of bytes to copy from info
1431  *
1432  *      Set ifalias for a device,
1433  */
1434 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1435 {
1436         struct dev_ifalias *new_alias = NULL;
1437
1438         if (len >= IFALIASZ)
1439                 return -EINVAL;
1440
1441         if (len) {
1442                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1443                 if (!new_alias)
1444                         return -ENOMEM;
1445
1446                 memcpy(new_alias->ifalias, alias, len);
1447                 new_alias->ifalias[len] = 0;
1448         }
1449
1450         mutex_lock(&ifalias_mutex);
1451         new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1452                                         mutex_is_locked(&ifalias_mutex));
1453         mutex_unlock(&ifalias_mutex);
1454
1455         if (new_alias)
1456                 kfree_rcu(new_alias, rcuhead);
1457
1458         return len;
1459 }
1460 EXPORT_SYMBOL(dev_set_alias);
1461
1462 /**
1463  *      dev_get_alias - get ifalias of a device
1464  *      @dev: device
1465  *      @name: buffer to store name of ifalias
1466  *      @len: size of buffer
1467  *
1468  *      get ifalias for a device.  Caller must make sure dev cannot go
1469  *      away,  e.g. rcu read lock or own a reference count to device.
1470  */
1471 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1472 {
1473         const struct dev_ifalias *alias;
1474         int ret = 0;
1475
1476         rcu_read_lock();
1477         alias = rcu_dereference(dev->ifalias);
1478         if (alias)
1479                 ret = snprintf(name, len, "%s", alias->ifalias);
1480         rcu_read_unlock();
1481
1482         return ret;
1483 }
1484
1485 /**
1486  *      netdev_features_change - device changes features
1487  *      @dev: device to cause notification
1488  *
1489  *      Called to indicate a device has changed features.
1490  */
1491 void netdev_features_change(struct net_device *dev)
1492 {
1493         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1494 }
1495 EXPORT_SYMBOL(netdev_features_change);
1496
1497 /**
1498  *      netdev_state_change - device changes state
1499  *      @dev: device to cause notification
1500  *
1501  *      Called to indicate a device has changed state. This function calls
1502  *      the notifier chains for netdev_chain and sends a NEWLINK message
1503  *      to the routing socket.
1504  */
1505 void netdev_state_change(struct net_device *dev)
1506 {
1507         if (dev->flags & IFF_UP) {
1508                 struct netdev_notifier_change_info change_info = {
1509                         .info.dev = dev,
1510                 };
1511
1512                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1513                                               &change_info.info);
1514                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1515         }
1516 }
1517 EXPORT_SYMBOL(netdev_state_change);
1518
1519 /**
1520  * __netdev_notify_peers - notify network peers about existence of @dev,
1521  * to be called when rtnl lock is already held.
1522  * @dev: network device
1523  *
1524  * Generate traffic such that interested network peers are aware of
1525  * @dev, such as by generating a gratuitous ARP. This may be used when
1526  * a device wants to inform the rest of the network about some sort of
1527  * reconfiguration such as a failover event or virtual machine
1528  * migration.
1529  */
1530 void __netdev_notify_peers(struct net_device *dev)
1531 {
1532         ASSERT_RTNL();
1533         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1534         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1535 }
1536 EXPORT_SYMBOL(__netdev_notify_peers);
1537
1538 /**
1539  * netdev_notify_peers - notify network peers about existence of @dev
1540  * @dev: network device
1541  *
1542  * Generate traffic such that interested network peers are aware of
1543  * @dev, such as by generating a gratuitous ARP. This may be used when
1544  * a device wants to inform the rest of the network about some sort of
1545  * reconfiguration such as a failover event or virtual machine
1546  * migration.
1547  */
1548 void netdev_notify_peers(struct net_device *dev)
1549 {
1550         rtnl_lock();
1551         __netdev_notify_peers(dev);
1552         rtnl_unlock();
1553 }
1554 EXPORT_SYMBOL(netdev_notify_peers);
1555
1556 static int napi_threaded_poll(void *data);
1557
1558 static int napi_kthread_create(struct napi_struct *n)
1559 {
1560         int err = 0;
1561
1562         /* Create and wake up the kthread once to put it in
1563          * TASK_INTERRUPTIBLE mode to avoid the blocked task
1564          * warning and work with loadavg.
1565          */
1566         n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1567                                 n->dev->name, n->napi_id);
1568         if (IS_ERR(n->thread)) {
1569                 err = PTR_ERR(n->thread);
1570                 pr_err("kthread_run failed with err %d\n", err);
1571                 n->thread = NULL;
1572         }
1573
1574         return err;
1575 }
1576
1577 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1578 {
1579         const struct net_device_ops *ops = dev->netdev_ops;
1580         int ret;
1581
1582         ASSERT_RTNL();
1583
1584         if (!netif_device_present(dev)) {
1585                 /* may be detached because parent is runtime-suspended */
1586                 if (dev->dev.parent)
1587                         pm_runtime_resume(dev->dev.parent);
1588                 if (!netif_device_present(dev))
1589                         return -ENODEV;
1590         }
1591
1592         /* Block netpoll from trying to do any rx path servicing.
1593          * If we don't do this there is a chance ndo_poll_controller
1594          * or ndo_poll may be running while we open the device
1595          */
1596         netpoll_poll_disable(dev);
1597
1598         ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1599         ret = notifier_to_errno(ret);
1600         if (ret)
1601                 return ret;
1602
1603         set_bit(__LINK_STATE_START, &dev->state);
1604
1605         if (ops->ndo_validate_addr)
1606                 ret = ops->ndo_validate_addr(dev);
1607
1608         if (!ret && ops->ndo_open)
1609                 ret = ops->ndo_open(dev);
1610
1611         netpoll_poll_enable(dev);
1612
1613         if (ret)
1614                 clear_bit(__LINK_STATE_START, &dev->state);
1615         else {
1616                 dev->flags |= IFF_UP;
1617                 dev_set_rx_mode(dev);
1618                 dev_activate(dev);
1619                 add_device_randomness(dev->dev_addr, dev->addr_len);
1620         }
1621
1622         return ret;
1623 }
1624
1625 /**
1626  *      dev_open        - prepare an interface for use.
1627  *      @dev: device to open
1628  *      @extack: netlink extended ack
1629  *
1630  *      Takes a device from down to up state. The device's private open
1631  *      function is invoked and then the multicast lists are loaded. Finally
1632  *      the device is moved into the up state and a %NETDEV_UP message is
1633  *      sent to the netdev notifier chain.
1634  *
1635  *      Calling this function on an active interface is a nop. On a failure
1636  *      a negative errno code is returned.
1637  */
1638 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1639 {
1640         int ret;
1641
1642         if (dev->flags & IFF_UP)
1643                 return 0;
1644
1645         ret = __dev_open(dev, extack);
1646         if (ret < 0)
1647                 return ret;
1648
1649         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1650         call_netdevice_notifiers(NETDEV_UP, dev);
1651
1652         return ret;
1653 }
1654 EXPORT_SYMBOL(dev_open);
1655
1656 static void __dev_close_many(struct list_head *head)
1657 {
1658         struct net_device *dev;
1659
1660         ASSERT_RTNL();
1661         might_sleep();
1662
1663         list_for_each_entry(dev, head, close_list) {
1664                 /* Temporarily disable netpoll until the interface is down */
1665                 netpoll_poll_disable(dev);
1666
1667                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1668
1669                 clear_bit(__LINK_STATE_START, &dev->state);
1670
1671                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1672                  * can be even on different cpu. So just clear netif_running().
1673                  *
1674                  * dev->stop() will invoke napi_disable() on all of it's
1675                  * napi_struct instances on this device.
1676                  */
1677                 smp_mb__after_atomic(); /* Commit netif_running(). */
1678         }
1679
1680         dev_deactivate_many(head);
1681
1682         list_for_each_entry(dev, head, close_list) {
1683                 const struct net_device_ops *ops = dev->netdev_ops;
1684
1685                 /*
1686                  *      Call the device specific close. This cannot fail.
1687                  *      Only if device is UP
1688                  *
1689                  *      We allow it to be called even after a DETACH hot-plug
1690                  *      event.
1691                  */
1692                 if (ops->ndo_stop)
1693                         ops->ndo_stop(dev);
1694
1695                 dev->flags &= ~IFF_UP;
1696                 netpoll_poll_enable(dev);
1697         }
1698 }
1699
1700 static void __dev_close(struct net_device *dev)
1701 {
1702         LIST_HEAD(single);
1703
1704         list_add(&dev->close_list, &single);
1705         __dev_close_many(&single);
1706         list_del(&single);
1707 }
1708
1709 void dev_close_many(struct list_head *head, bool unlink)
1710 {
1711         struct net_device *dev, *tmp;
1712
1713         /* Remove the devices that don't need to be closed */
1714         list_for_each_entry_safe(dev, tmp, head, close_list)
1715                 if (!(dev->flags & IFF_UP))
1716                         list_del_init(&dev->close_list);
1717
1718         __dev_close_many(head);
1719
1720         list_for_each_entry_safe(dev, tmp, head, close_list) {
1721                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1722                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1723                 if (unlink)
1724                         list_del_init(&dev->close_list);
1725         }
1726 }
1727 EXPORT_SYMBOL(dev_close_many);
1728
1729 /**
1730  *      dev_close - shutdown an interface.
1731  *      @dev: device to shutdown
1732  *
1733  *      This function moves an active device into down state. A
1734  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1735  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1736  *      chain.
1737  */
1738 void dev_close(struct net_device *dev)
1739 {
1740         if (dev->flags & IFF_UP) {
1741                 LIST_HEAD(single);
1742
1743                 list_add(&dev->close_list, &single);
1744                 dev_close_many(&single, true);
1745                 list_del(&single);
1746         }
1747 }
1748 EXPORT_SYMBOL(dev_close);
1749
1750
1751 /**
1752  *      dev_disable_lro - disable Large Receive Offload on a device
1753  *      @dev: device
1754  *
1755  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1756  *      called under RTNL.  This is needed if received packets may be
1757  *      forwarded to another interface.
1758  */
1759 void dev_disable_lro(struct net_device *dev)
1760 {
1761         struct net_device *lower_dev;
1762         struct list_head *iter;
1763
1764         dev->wanted_features &= ~NETIF_F_LRO;
1765         netdev_update_features(dev);
1766
1767         if (unlikely(dev->features & NETIF_F_LRO))
1768                 netdev_WARN(dev, "failed to disable LRO!\n");
1769
1770         netdev_for_each_lower_dev(dev, lower_dev, iter)
1771                 dev_disable_lro(lower_dev);
1772 }
1773 EXPORT_SYMBOL(dev_disable_lro);
1774
1775 /**
1776  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1777  *      @dev: device
1778  *
1779  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1780  *      called under RTNL.  This is needed if Generic XDP is installed on
1781  *      the device.
1782  */
1783 static void dev_disable_gro_hw(struct net_device *dev)
1784 {
1785         dev->wanted_features &= ~NETIF_F_GRO_HW;
1786         netdev_update_features(dev);
1787
1788         if (unlikely(dev->features & NETIF_F_GRO_HW))
1789                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1790 }
1791
1792 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1793 {
1794 #define N(val)                                          \
1795         case NETDEV_##val:                              \
1796                 return "NETDEV_" __stringify(val);
1797         switch (cmd) {
1798         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1799         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1800         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1801         N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1802         N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1803         N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1804         N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1805         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1806         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1807         N(PRE_CHANGEADDR)
1808         }
1809 #undef N
1810         return "UNKNOWN_NETDEV_EVENT";
1811 }
1812 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1813
1814 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1815                                    struct net_device *dev)
1816 {
1817         struct netdev_notifier_info info = {
1818                 .dev = dev,
1819         };
1820
1821         return nb->notifier_call(nb, val, &info);
1822 }
1823
1824 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1825                                              struct net_device *dev)
1826 {
1827         int err;
1828
1829         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1830         err = notifier_to_errno(err);
1831         if (err)
1832                 return err;
1833
1834         if (!(dev->flags & IFF_UP))
1835                 return 0;
1836
1837         call_netdevice_notifier(nb, NETDEV_UP, dev);
1838         return 0;
1839 }
1840
1841 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1842                                                 struct net_device *dev)
1843 {
1844         if (dev->flags & IFF_UP) {
1845                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1846                                         dev);
1847                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1848         }
1849         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1850 }
1851
1852 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1853                                                  struct net *net)
1854 {
1855         struct net_device *dev;
1856         int err;
1857
1858         for_each_netdev(net, dev) {
1859                 err = call_netdevice_register_notifiers(nb, dev);
1860                 if (err)
1861                         goto rollback;
1862         }
1863         return 0;
1864
1865 rollback:
1866         for_each_netdev_continue_reverse(net, dev)
1867                 call_netdevice_unregister_notifiers(nb, dev);
1868         return err;
1869 }
1870
1871 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1872                                                     struct net *net)
1873 {
1874         struct net_device *dev;
1875
1876         for_each_netdev(net, dev)
1877                 call_netdevice_unregister_notifiers(nb, dev);
1878 }
1879
1880 static int dev_boot_phase = 1;
1881
1882 /**
1883  * register_netdevice_notifier - register a network notifier block
1884  * @nb: notifier
1885  *
1886  * Register a notifier to be called when network device events occur.
1887  * The notifier passed is linked into the kernel structures and must
1888  * not be reused until it has been unregistered. A negative errno code
1889  * is returned on a failure.
1890  *
1891  * When registered all registration and up events are replayed
1892  * to the new notifier to allow device to have a race free
1893  * view of the network device list.
1894  */
1895
1896 int register_netdevice_notifier(struct notifier_block *nb)
1897 {
1898         struct net *net;
1899         int err;
1900
1901         /* Close race with setup_net() and cleanup_net() */
1902         down_write(&pernet_ops_rwsem);
1903         rtnl_lock();
1904         err = raw_notifier_chain_register(&netdev_chain, nb);
1905         if (err)
1906                 goto unlock;
1907         if (dev_boot_phase)
1908                 goto unlock;
1909         for_each_net(net) {
1910                 err = call_netdevice_register_net_notifiers(nb, net);
1911                 if (err)
1912                         goto rollback;
1913         }
1914
1915 unlock:
1916         rtnl_unlock();
1917         up_write(&pernet_ops_rwsem);
1918         return err;
1919
1920 rollback:
1921         for_each_net_continue_reverse(net)
1922                 call_netdevice_unregister_net_notifiers(nb, net);
1923
1924         raw_notifier_chain_unregister(&netdev_chain, nb);
1925         goto unlock;
1926 }
1927 EXPORT_SYMBOL(register_netdevice_notifier);
1928
1929 /**
1930  * unregister_netdevice_notifier - unregister a network notifier block
1931  * @nb: notifier
1932  *
1933  * Unregister a notifier previously registered by
1934  * register_netdevice_notifier(). The notifier is unlinked into the
1935  * kernel structures and may then be reused. A negative errno code
1936  * is returned on a failure.
1937  *
1938  * After unregistering unregister and down device events are synthesized
1939  * for all devices on the device list to the removed notifier to remove
1940  * the need for special case cleanup code.
1941  */
1942
1943 int unregister_netdevice_notifier(struct notifier_block *nb)
1944 {
1945         struct net *net;
1946         int err;
1947
1948         /* Close race with setup_net() and cleanup_net() */
1949         down_write(&pernet_ops_rwsem);
1950         rtnl_lock();
1951         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1952         if (err)
1953                 goto unlock;
1954
1955         for_each_net(net)
1956                 call_netdevice_unregister_net_notifiers(nb, net);
1957
1958 unlock:
1959         rtnl_unlock();
1960         up_write(&pernet_ops_rwsem);
1961         return err;
1962 }
1963 EXPORT_SYMBOL(unregister_netdevice_notifier);
1964
1965 static int __register_netdevice_notifier_net(struct net *net,
1966                                              struct notifier_block *nb,
1967                                              bool ignore_call_fail)
1968 {
1969         int err;
1970
1971         err = raw_notifier_chain_register(&net->netdev_chain, nb);
1972         if (err)
1973                 return err;
1974         if (dev_boot_phase)
1975                 return 0;
1976
1977         err = call_netdevice_register_net_notifiers(nb, net);
1978         if (err && !ignore_call_fail)
1979                 goto chain_unregister;
1980
1981         return 0;
1982
1983 chain_unregister:
1984         raw_notifier_chain_unregister(&net->netdev_chain, nb);
1985         return err;
1986 }
1987
1988 static int __unregister_netdevice_notifier_net(struct net *net,
1989                                                struct notifier_block *nb)
1990 {
1991         int err;
1992
1993         err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1994         if (err)
1995                 return err;
1996
1997         call_netdevice_unregister_net_notifiers(nb, net);
1998         return 0;
1999 }
2000
2001 /**
2002  * register_netdevice_notifier_net - register a per-netns network notifier block
2003  * @net: network namespace
2004  * @nb: notifier
2005  *
2006  * Register a notifier to be called when network device events occur.
2007  * The notifier passed is linked into the kernel structures and must
2008  * not be reused until it has been unregistered. A negative errno code
2009  * is returned on a failure.
2010  *
2011  * When registered all registration and up events are replayed
2012  * to the new notifier to allow device to have a race free
2013  * view of the network device list.
2014  */
2015
2016 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
2017 {
2018         int err;
2019
2020         rtnl_lock();
2021         err = __register_netdevice_notifier_net(net, nb, false);
2022         rtnl_unlock();
2023         return err;
2024 }
2025 EXPORT_SYMBOL(register_netdevice_notifier_net);
2026
2027 /**
2028  * unregister_netdevice_notifier_net - unregister a per-netns
2029  *                                     network notifier block
2030  * @net: network namespace
2031  * @nb: notifier
2032  *
2033  * Unregister a notifier previously registered by
2034  * register_netdevice_notifier(). The notifier is unlinked into the
2035  * kernel structures and may then be reused. A negative errno code
2036  * is returned on a failure.
2037  *
2038  * After unregistering unregister and down device events are synthesized
2039  * for all devices on the device list to the removed notifier to remove
2040  * the need for special case cleanup code.
2041  */
2042
2043 int unregister_netdevice_notifier_net(struct net *net,
2044                                       struct notifier_block *nb)
2045 {
2046         int err;
2047
2048         rtnl_lock();
2049         err = __unregister_netdevice_notifier_net(net, nb);
2050         rtnl_unlock();
2051         return err;
2052 }
2053 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
2054
2055 int register_netdevice_notifier_dev_net(struct net_device *dev,
2056                                         struct notifier_block *nb,
2057                                         struct netdev_net_notifier *nn)
2058 {
2059         int err;
2060
2061         rtnl_lock();
2062         err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
2063         if (!err) {
2064                 nn->nb = nb;
2065                 list_add(&nn->list, &dev->net_notifier_list);
2066         }
2067         rtnl_unlock();
2068         return err;
2069 }
2070 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
2071
2072 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2073                                           struct notifier_block *nb,
2074                                           struct netdev_net_notifier *nn)
2075 {
2076         int err;
2077
2078         rtnl_lock();
2079         list_del(&nn->list);
2080         err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2081         rtnl_unlock();
2082         return err;
2083 }
2084 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2085
2086 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2087                                              struct net *net)
2088 {
2089         struct netdev_net_notifier *nn;
2090
2091         list_for_each_entry(nn, &dev->net_notifier_list, list) {
2092                 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
2093                 __register_netdevice_notifier_net(net, nn->nb, true);
2094         }
2095 }
2096
2097 /**
2098  *      call_netdevice_notifiers_info - call all network notifier blocks
2099  *      @val: value passed unmodified to notifier function
2100  *      @info: notifier information data
2101  *
2102  *      Call all network notifier blocks.  Parameters and return value
2103  *      are as for raw_notifier_call_chain().
2104  */
2105
2106 static int call_netdevice_notifiers_info(unsigned long val,
2107                                          struct netdev_notifier_info *info)
2108 {
2109         struct net *net = dev_net(info->dev);
2110         int ret;
2111
2112         ASSERT_RTNL();
2113
2114         /* Run per-netns notifier block chain first, then run the global one.
2115          * Hopefully, one day, the global one is going to be removed after
2116          * all notifier block registrators get converted to be per-netns.
2117          */
2118         ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2119         if (ret & NOTIFY_STOP_MASK)
2120                 return ret;
2121         return raw_notifier_call_chain(&netdev_chain, val, info);
2122 }
2123
2124 static int call_netdevice_notifiers_extack(unsigned long val,
2125                                            struct net_device *dev,
2126                                            struct netlink_ext_ack *extack)
2127 {
2128         struct netdev_notifier_info info = {
2129                 .dev = dev,
2130                 .extack = extack,
2131         };
2132
2133         return call_netdevice_notifiers_info(val, &info);
2134 }
2135
2136 /**
2137  *      call_netdevice_notifiers - call all network notifier blocks
2138  *      @val: value passed unmodified to notifier function
2139  *      @dev: net_device pointer passed unmodified to notifier function
2140  *
2141  *      Call all network notifier blocks.  Parameters and return value
2142  *      are as for raw_notifier_call_chain().
2143  */
2144
2145 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2146 {
2147         return call_netdevice_notifiers_extack(val, dev, NULL);
2148 }
2149 EXPORT_SYMBOL(call_netdevice_notifiers);
2150
2151 /**
2152  *      call_netdevice_notifiers_mtu - call all network notifier blocks
2153  *      @val: value passed unmodified to notifier function
2154  *      @dev: net_device pointer passed unmodified to notifier function
2155  *      @arg: additional u32 argument passed to the notifier function
2156  *
2157  *      Call all network notifier blocks.  Parameters and return value
2158  *      are as for raw_notifier_call_chain().
2159  */
2160 static int call_netdevice_notifiers_mtu(unsigned long val,
2161                                         struct net_device *dev, u32 arg)
2162 {
2163         struct netdev_notifier_info_ext info = {
2164                 .info.dev = dev,
2165                 .ext.mtu = arg,
2166         };
2167
2168         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2169
2170         return call_netdevice_notifiers_info(val, &info.info);
2171 }
2172
2173 #ifdef CONFIG_NET_INGRESS
2174 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2175
2176 void net_inc_ingress_queue(void)
2177 {
2178         static_branch_inc(&ingress_needed_key);
2179 }
2180 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2181
2182 void net_dec_ingress_queue(void)
2183 {
2184         static_branch_dec(&ingress_needed_key);
2185 }
2186 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2187 #endif
2188
2189 #ifdef CONFIG_NET_EGRESS
2190 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2191
2192 void net_inc_egress_queue(void)
2193 {
2194         static_branch_inc(&egress_needed_key);
2195 }
2196 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2197
2198 void net_dec_egress_queue(void)
2199 {
2200         static_branch_dec(&egress_needed_key);
2201 }
2202 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2203 #endif
2204
2205 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2206 #ifdef CONFIG_JUMP_LABEL
2207 static atomic_t netstamp_needed_deferred;
2208 static atomic_t netstamp_wanted;
2209 static void netstamp_clear(struct work_struct *work)
2210 {
2211         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2212         int wanted;
2213
2214         wanted = atomic_add_return(deferred, &netstamp_wanted);
2215         if (wanted > 0)
2216                 static_branch_enable(&netstamp_needed_key);
2217         else
2218                 static_branch_disable(&netstamp_needed_key);
2219 }
2220 static DECLARE_WORK(netstamp_work, netstamp_clear);
2221 #endif
2222
2223 void net_enable_timestamp(void)
2224 {
2225 #ifdef CONFIG_JUMP_LABEL
2226         int wanted;
2227
2228         while (1) {
2229                 wanted = atomic_read(&netstamp_wanted);
2230                 if (wanted <= 0)
2231                         break;
2232                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2233                         return;
2234         }
2235         atomic_inc(&netstamp_needed_deferred);
2236         schedule_work(&netstamp_work);
2237 #else
2238         static_branch_inc(&netstamp_needed_key);
2239 #endif
2240 }
2241 EXPORT_SYMBOL(net_enable_timestamp);
2242
2243 void net_disable_timestamp(void)
2244 {
2245 #ifdef CONFIG_JUMP_LABEL
2246         int wanted;
2247
2248         while (1) {
2249                 wanted = atomic_read(&netstamp_wanted);
2250                 if (wanted <= 1)
2251                         break;
2252                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2253                         return;
2254         }
2255         atomic_dec(&netstamp_needed_deferred);
2256         schedule_work(&netstamp_work);
2257 #else
2258         static_branch_dec(&netstamp_needed_key);
2259 #endif
2260 }
2261 EXPORT_SYMBOL(net_disable_timestamp);
2262
2263 static inline void net_timestamp_set(struct sk_buff *skb)
2264 {
2265         skb->tstamp = 0;
2266         if (static_branch_unlikely(&netstamp_needed_key))
2267                 __net_timestamp(skb);
2268 }
2269
2270 #define net_timestamp_check(COND, SKB)                          \
2271         if (static_branch_unlikely(&netstamp_needed_key)) {     \
2272                 if ((COND) && !(SKB)->tstamp)                   \
2273                         __net_timestamp(SKB);                   \
2274         }                                                       \
2275
2276 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2277 {
2278         return __is_skb_forwardable(dev, skb, true);
2279 }
2280 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2281
2282 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2283                               bool check_mtu)
2284 {
2285         int ret = ____dev_forward_skb(dev, skb, check_mtu);
2286
2287         if (likely(!ret)) {
2288                 skb->protocol = eth_type_trans(skb, dev);
2289                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2290         }
2291
2292         return ret;
2293 }
2294
2295 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2296 {
2297         return __dev_forward_skb2(dev, skb, true);
2298 }
2299 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2300
2301 /**
2302  * dev_forward_skb - loopback an skb to another netif
2303  *
2304  * @dev: destination network device
2305  * @skb: buffer to forward
2306  *
2307  * return values:
2308  *      NET_RX_SUCCESS  (no congestion)
2309  *      NET_RX_DROP     (packet was dropped, but freed)
2310  *
2311  * dev_forward_skb can be used for injecting an skb from the
2312  * start_xmit function of one device into the receive queue
2313  * of another device.
2314  *
2315  * The receiving device may be in another namespace, so
2316  * we have to clear all information in the skb that could
2317  * impact namespace isolation.
2318  */
2319 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2320 {
2321         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2322 }
2323 EXPORT_SYMBOL_GPL(dev_forward_skb);
2324
2325 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2326 {
2327         return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2328 }
2329
2330 static inline int deliver_skb(struct sk_buff *skb,
2331                               struct packet_type *pt_prev,
2332                               struct net_device *orig_dev)
2333 {
2334         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2335                 return -ENOMEM;
2336         refcount_inc(&skb->users);
2337         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2338 }
2339
2340 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2341                                           struct packet_type **pt,
2342                                           struct net_device *orig_dev,
2343                                           __be16 type,
2344                                           struct list_head *ptype_list)
2345 {
2346         struct packet_type *ptype, *pt_prev = *pt;
2347
2348         list_for_each_entry_rcu(ptype, ptype_list, list) {
2349                 if (ptype->type != type)
2350                         continue;
2351                 if (pt_prev)
2352                         deliver_skb(skb, pt_prev, orig_dev);
2353                 pt_prev = ptype;
2354         }
2355         *pt = pt_prev;
2356 }
2357
2358 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2359 {
2360         if (!ptype->af_packet_priv || !skb->sk)
2361                 return false;
2362
2363         if (ptype->id_match)
2364                 return ptype->id_match(ptype, skb->sk);
2365         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2366                 return true;
2367
2368         return false;
2369 }
2370
2371 /**
2372  * dev_nit_active - return true if any network interface taps are in use
2373  *
2374  * @dev: network device to check for the presence of taps
2375  */
2376 bool dev_nit_active(struct net_device *dev)
2377 {
2378         return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2379 }
2380 EXPORT_SYMBOL_GPL(dev_nit_active);
2381
2382 /*
2383  *      Support routine. Sends outgoing frames to any network
2384  *      taps currently in use.
2385  */
2386
2387 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2388 {
2389         struct packet_type *ptype;
2390         struct sk_buff *skb2 = NULL;
2391         struct packet_type *pt_prev = NULL;
2392         struct list_head *ptype_list = &ptype_all;
2393
2394         rcu_read_lock();
2395 again:
2396         list_for_each_entry_rcu(ptype, ptype_list, list) {
2397                 if (ptype->ignore_outgoing)
2398                         continue;
2399
2400                 /* Never send packets back to the socket
2401                  * they originated from - MvS (miquels@drinkel.ow.org)
2402                  */
2403                 if (skb_loop_sk(ptype, skb))
2404                         continue;
2405
2406                 if (pt_prev) {
2407                         deliver_skb(skb2, pt_prev, skb->dev);
2408                         pt_prev = ptype;
2409                         continue;
2410                 }
2411
2412                 /* need to clone skb, done only once */
2413                 skb2 = skb_clone(skb, GFP_ATOMIC);
2414                 if (!skb2)
2415                         goto out_unlock;
2416
2417                 net_timestamp_set(skb2);
2418
2419                 /* skb->nh should be correctly
2420                  * set by sender, so that the second statement is
2421                  * just protection against buggy protocols.
2422                  */
2423                 skb_reset_mac_header(skb2);
2424
2425                 if (skb_network_header(skb2) < skb2->data ||
2426                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2427                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2428                                              ntohs(skb2->protocol),
2429                                              dev->name);
2430                         skb_reset_network_header(skb2);
2431                 }
2432
2433                 skb2->transport_header = skb2->network_header;
2434                 skb2->pkt_type = PACKET_OUTGOING;
2435                 pt_prev = ptype;
2436         }
2437
2438         if (ptype_list == &ptype_all) {
2439                 ptype_list = &dev->ptype_all;
2440                 goto again;
2441         }
2442 out_unlock:
2443         if (pt_prev) {
2444                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2445                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2446                 else
2447                         kfree_skb(skb2);
2448         }
2449         rcu_read_unlock();
2450 }
2451 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2452
2453 /**
2454  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2455  * @dev: Network device
2456  * @txq: number of queues available
2457  *
2458  * If real_num_tx_queues is changed the tc mappings may no longer be
2459  * valid. To resolve this verify the tc mapping remains valid and if
2460  * not NULL the mapping. With no priorities mapping to this
2461  * offset/count pair it will no longer be used. In the worst case TC0
2462  * is invalid nothing can be done so disable priority mappings. If is
2463  * expected that drivers will fix this mapping if they can before
2464  * calling netif_set_real_num_tx_queues.
2465  */
2466 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2467 {
2468         int i;
2469         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2470
2471         /* If TC0 is invalidated disable TC mapping */
2472         if (tc->offset + tc->count > txq) {
2473                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2474                 dev->num_tc = 0;
2475                 return;
2476         }
2477
2478         /* Invalidated prio to tc mappings set to TC0 */
2479         for (i = 1; i < TC_BITMASK + 1; i++) {
2480                 int q = netdev_get_prio_tc_map(dev, i);
2481
2482                 tc = &dev->tc_to_txq[q];
2483                 if (tc->offset + tc->count > txq) {
2484                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2485                                 i, q);
2486                         netdev_set_prio_tc_map(dev, i, 0);
2487                 }
2488         }
2489 }
2490
2491 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2492 {
2493         if (dev->num_tc) {
2494                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2495                 int i;
2496
2497                 /* walk through the TCs and see if it falls into any of them */
2498                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2499                         if ((txq - tc->offset) < tc->count)
2500                                 return i;
2501                 }
2502
2503                 /* didn't find it, just return -1 to indicate no match */
2504                 return -1;
2505         }
2506
2507         return 0;
2508 }
2509 EXPORT_SYMBOL(netdev_txq_to_tc);
2510
2511 #ifdef CONFIG_XPS
2512 static struct static_key xps_needed __read_mostly;
2513 static struct static_key xps_rxqs_needed __read_mostly;
2514 static DEFINE_MUTEX(xps_map_mutex);
2515 #define xmap_dereference(P)             \
2516         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2517
2518 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2519                              struct xps_dev_maps *old_maps, int tci, u16 index)
2520 {
2521         struct xps_map *map = NULL;
2522         int pos;
2523
2524         if (dev_maps)
2525                 map = xmap_dereference(dev_maps->attr_map[tci]);
2526         if (!map)
2527                 return false;
2528
2529         for (pos = map->len; pos--;) {
2530                 if (map->queues[pos] != index)
2531                         continue;
2532
2533                 if (map->len > 1) {
2534                         map->queues[pos] = map->queues[--map->len];
2535                         break;
2536                 }
2537
2538                 if (old_maps)
2539                         RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2540                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2541                 kfree_rcu(map, rcu);
2542                 return false;
2543         }
2544
2545         return true;
2546 }
2547
2548 static bool remove_xps_queue_cpu(struct net_device *dev,
2549                                  struct xps_dev_maps *dev_maps,
2550                                  int cpu, u16 offset, u16 count)
2551 {
2552         int num_tc = dev_maps->num_tc;
2553         bool active = false;
2554         int tci;
2555
2556         for (tci = cpu * num_tc; num_tc--; tci++) {
2557                 int i, j;
2558
2559                 for (i = count, j = offset; i--; j++) {
2560                         if (!remove_xps_queue(dev_maps, NULL, tci, j))
2561                                 break;
2562                 }
2563
2564                 active |= i < 0;
2565         }
2566
2567         return active;
2568 }
2569
2570 static void reset_xps_maps(struct net_device *dev,
2571                            struct xps_dev_maps *dev_maps,
2572                            enum xps_map_type type)
2573 {
2574         static_key_slow_dec_cpuslocked(&xps_needed);
2575         if (type == XPS_RXQS)
2576                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2577
2578         RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2579
2580         kfree_rcu(dev_maps, rcu);
2581 }
2582
2583 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2584                            u16 offset, u16 count)
2585 {
2586         struct xps_dev_maps *dev_maps;
2587         bool active = false;
2588         int i, j;
2589
2590         dev_maps = xmap_dereference(dev->xps_maps[type]);
2591         if (!dev_maps)
2592                 return;
2593
2594         for (j = 0; j < dev_maps->nr_ids; j++)
2595                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2596         if (!active)
2597                 reset_xps_maps(dev, dev_maps, type);
2598
2599         if (type == XPS_CPUS) {
2600                 for (i = offset + (count - 1); count--; i--)
2601                         netdev_queue_numa_node_write(
2602                                 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2603         }
2604 }
2605
2606 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2607                                    u16 count)
2608 {
2609         if (!static_key_false(&xps_needed))
2610                 return;
2611
2612         cpus_read_lock();
2613         mutex_lock(&xps_map_mutex);
2614
2615         if (static_key_false(&xps_rxqs_needed))
2616                 clean_xps_maps(dev, XPS_RXQS, offset, count);
2617
2618         clean_xps_maps(dev, XPS_CPUS, offset, count);
2619
2620         mutex_unlock(&xps_map_mutex);
2621         cpus_read_unlock();
2622 }
2623
2624 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2625 {
2626         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2627 }
2628
2629 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2630                                       u16 index, bool is_rxqs_map)
2631 {
2632         struct xps_map *new_map;
2633         int alloc_len = XPS_MIN_MAP_ALLOC;
2634         int i, pos;
2635
2636         for (pos = 0; map && pos < map->len; pos++) {
2637                 if (map->queues[pos] != index)
2638                         continue;
2639                 return map;
2640         }
2641
2642         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2643         if (map) {
2644                 if (pos < map->alloc_len)
2645                         return map;
2646
2647                 alloc_len = map->alloc_len * 2;
2648         }
2649
2650         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2651          *  map
2652          */
2653         if (is_rxqs_map)
2654                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2655         else
2656                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2657                                        cpu_to_node(attr_index));
2658         if (!new_map)
2659                 return NULL;
2660
2661         for (i = 0; i < pos; i++)
2662                 new_map->queues[i] = map->queues[i];
2663         new_map->alloc_len = alloc_len;
2664         new_map->len = pos;
2665
2666         return new_map;
2667 }
2668
2669 /* Copy xps maps at a given index */
2670 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2671                               struct xps_dev_maps *new_dev_maps, int index,
2672                               int tc, bool skip_tc)
2673 {
2674         int i, tci = index * dev_maps->num_tc;
2675         struct xps_map *map;
2676
2677         /* copy maps belonging to foreign traffic classes */
2678         for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2679                 if (i == tc && skip_tc)
2680                         continue;
2681
2682                 /* fill in the new device map from the old device map */
2683                 map = xmap_dereference(dev_maps->attr_map[tci]);
2684                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2685         }
2686 }
2687
2688 /* Must be called under cpus_read_lock */
2689 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2690                           u16 index, enum xps_map_type type)
2691 {
2692         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2693         const unsigned long *online_mask = NULL;
2694         bool active = false, copy = false;
2695         int i, j, tci, numa_node_id = -2;
2696         int maps_sz, num_tc = 1, tc = 0;
2697         struct xps_map *map, *new_map;
2698         unsigned int nr_ids;
2699
2700         if (dev->num_tc) {
2701                 /* Do not allow XPS on subordinate device directly */
2702                 num_tc = dev->num_tc;
2703                 if (num_tc < 0)
2704                         return -EINVAL;
2705
2706                 /* If queue belongs to subordinate dev use its map */
2707                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2708
2709                 tc = netdev_txq_to_tc(dev, index);
2710                 if (tc < 0)
2711                         return -EINVAL;
2712         }
2713
2714         mutex_lock(&xps_map_mutex);
2715
2716         dev_maps = xmap_dereference(dev->xps_maps[type]);
2717         if (type == XPS_RXQS) {
2718                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2719                 nr_ids = dev->num_rx_queues;
2720         } else {
2721                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2722                 if (num_possible_cpus() > 1)
2723                         online_mask = cpumask_bits(cpu_online_mask);
2724                 nr_ids = nr_cpu_ids;
2725         }
2726
2727         if (maps_sz < L1_CACHE_BYTES)
2728                 maps_sz = L1_CACHE_BYTES;
2729
2730         /* The old dev_maps could be larger or smaller than the one we're
2731          * setting up now, as dev->num_tc or nr_ids could have been updated in
2732          * between. We could try to be smart, but let's be safe instead and only
2733          * copy foreign traffic classes if the two map sizes match.
2734          */
2735         if (dev_maps &&
2736             dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2737                 copy = true;
2738
2739         /* allocate memory for queue storage */
2740         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2741              j < nr_ids;) {
2742                 if (!new_dev_maps) {
2743                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2744                         if (!new_dev_maps) {
2745                                 mutex_unlock(&xps_map_mutex);
2746                                 return -ENOMEM;
2747                         }
2748
2749                         new_dev_maps->nr_ids = nr_ids;
2750                         new_dev_maps->num_tc = num_tc;
2751                 }
2752
2753                 tci = j * num_tc + tc;
2754                 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2755
2756                 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2757                 if (!map)
2758                         goto error;
2759
2760                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2761         }
2762
2763         if (!new_dev_maps)
2764                 goto out_no_new_maps;
2765
2766         if (!dev_maps) {
2767                 /* Increment static keys at most once per type */
2768                 static_key_slow_inc_cpuslocked(&xps_needed);
2769                 if (type == XPS_RXQS)
2770                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2771         }
2772
2773         for (j = 0; j < nr_ids; j++) {
2774                 bool skip_tc = false;
2775
2776                 tci = j * num_tc + tc;
2777                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2778                     netif_attr_test_online(j, online_mask, nr_ids)) {
2779                         /* add tx-queue to CPU/rx-queue maps */
2780                         int pos = 0;
2781
2782                         skip_tc = true;
2783
2784                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2785                         while ((pos < map->len) && (map->queues[pos] != index))
2786                                 pos++;
2787
2788                         if (pos == map->len)
2789                                 map->queues[map->len++] = index;
2790 #ifdef CONFIG_NUMA
2791                         if (type == XPS_CPUS) {
2792                                 if (numa_node_id == -2)
2793                                         numa_node_id = cpu_to_node(j);
2794                                 else if (numa_node_id != cpu_to_node(j))
2795                                         numa_node_id = -1;
2796                         }
2797 #endif
2798                 }
2799
2800                 if (copy)
2801                         xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2802                                           skip_tc);
2803         }
2804
2805         rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2806
2807         /* Cleanup old maps */
2808         if (!dev_maps)
2809                 goto out_no_old_maps;
2810
2811         for (j = 0; j < dev_maps->nr_ids; j++) {
2812                 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2813                         map = xmap_dereference(dev_maps->attr_map[tci]);
2814                         if (!map)
2815                                 continue;
2816
2817                         if (copy) {
2818                                 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2819                                 if (map == new_map)
2820                                         continue;
2821                         }
2822
2823                         RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2824                         kfree_rcu(map, rcu);
2825                 }
2826         }
2827
2828         old_dev_maps = dev_maps;
2829
2830 out_no_old_maps:
2831         dev_maps = new_dev_maps;
2832         active = true;
2833
2834 out_no_new_maps:
2835         if (type == XPS_CPUS)
2836                 /* update Tx queue numa node */
2837                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2838                                              (numa_node_id >= 0) ?
2839                                              numa_node_id : NUMA_NO_NODE);
2840
2841         if (!dev_maps)
2842                 goto out_no_maps;
2843
2844         /* removes tx-queue from unused CPUs/rx-queues */
2845         for (j = 0; j < dev_maps->nr_ids; j++) {
2846                 tci = j * dev_maps->num_tc;
2847
2848                 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2849                         if (i == tc &&
2850                             netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2851                             netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2852                                 continue;
2853
2854                         active |= remove_xps_queue(dev_maps,
2855                                                    copy ? old_dev_maps : NULL,
2856                                                    tci, index);
2857                 }
2858         }
2859
2860         if (old_dev_maps)
2861                 kfree_rcu(old_dev_maps, rcu);
2862
2863         /* free map if not active */
2864         if (!active)
2865                 reset_xps_maps(dev, dev_maps, type);
2866
2867 out_no_maps:
2868         mutex_unlock(&xps_map_mutex);
2869
2870         return 0;
2871 error:
2872         /* remove any maps that we added */
2873         for (j = 0; j < nr_ids; j++) {
2874                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2875                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2876                         map = copy ?
2877                               xmap_dereference(dev_maps->attr_map[tci]) :
2878                               NULL;
2879                         if (new_map && new_map != map)
2880                                 kfree(new_map);
2881                 }
2882         }
2883
2884         mutex_unlock(&xps_map_mutex);
2885
2886         kfree(new_dev_maps);
2887         return -ENOMEM;
2888 }
2889 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2890
2891 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2892                         u16 index)
2893 {
2894         int ret;
2895
2896         cpus_read_lock();
2897         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2898         cpus_read_unlock();
2899
2900         return ret;
2901 }
2902 EXPORT_SYMBOL(netif_set_xps_queue);
2903
2904 #endif
2905 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2906 {
2907         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2908
2909         /* Unbind any subordinate channels */
2910         while (txq-- != &dev->_tx[0]) {
2911                 if (txq->sb_dev)
2912                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2913         }
2914 }
2915
2916 void netdev_reset_tc(struct net_device *dev)
2917 {
2918 #ifdef CONFIG_XPS
2919         netif_reset_xps_queues_gt(dev, 0);
2920 #endif
2921         netdev_unbind_all_sb_channels(dev);
2922
2923         /* Reset TC configuration of device */
2924         dev->num_tc = 0;
2925         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2926         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2927 }
2928 EXPORT_SYMBOL(netdev_reset_tc);
2929
2930 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2931 {
2932         if (tc >= dev->num_tc)
2933                 return -EINVAL;
2934
2935 #ifdef CONFIG_XPS
2936         netif_reset_xps_queues(dev, offset, count);
2937 #endif
2938         dev->tc_to_txq[tc].count = count;
2939         dev->tc_to_txq[tc].offset = offset;
2940         return 0;
2941 }
2942 EXPORT_SYMBOL(netdev_set_tc_queue);
2943
2944 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2945 {
2946         if (num_tc > TC_MAX_QUEUE)
2947                 return -EINVAL;
2948
2949 #ifdef CONFIG_XPS
2950         netif_reset_xps_queues_gt(dev, 0);
2951 #endif
2952         netdev_unbind_all_sb_channels(dev);
2953
2954         dev->num_tc = num_tc;
2955         return 0;
2956 }
2957 EXPORT_SYMBOL(netdev_set_num_tc);
2958
2959 void netdev_unbind_sb_channel(struct net_device *dev,
2960                               struct net_device *sb_dev)
2961 {
2962         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2963
2964 #ifdef CONFIG_XPS
2965         netif_reset_xps_queues_gt(sb_dev, 0);
2966 #endif
2967         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2968         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2969
2970         while (txq-- != &dev->_tx[0]) {
2971                 if (txq->sb_dev == sb_dev)
2972                         txq->sb_dev = NULL;
2973         }
2974 }
2975 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2976
2977 int netdev_bind_sb_channel_queue(struct net_device *dev,
2978                                  struct net_device *sb_dev,
2979                                  u8 tc, u16 count, u16 offset)
2980 {
2981         /* Make certain the sb_dev and dev are already configured */
2982         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2983                 return -EINVAL;
2984
2985         /* We cannot hand out queues we don't have */
2986         if ((offset + count) > dev->real_num_tx_queues)
2987                 return -EINVAL;
2988
2989         /* Record the mapping */
2990         sb_dev->tc_to_txq[tc].count = count;
2991         sb_dev->tc_to_txq[tc].offset = offset;
2992
2993         /* Provide a way for Tx queue to find the tc_to_txq map or
2994          * XPS map for itself.
2995          */
2996         while (count--)
2997                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2998
2999         return 0;
3000 }
3001 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
3002
3003 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
3004 {
3005         /* Do not use a multiqueue device to represent a subordinate channel */
3006         if (netif_is_multiqueue(dev))
3007                 return -ENODEV;
3008
3009         /* We allow channels 1 - 32767 to be used for subordinate channels.
3010          * Channel 0 is meant to be "native" mode and used only to represent
3011          * the main root device. We allow writing 0 to reset the device back
3012          * to normal mode after being used as a subordinate channel.
3013          */
3014         if (channel > S16_MAX)
3015                 return -EINVAL;
3016
3017         dev->num_tc = -channel;
3018
3019         return 0;
3020 }
3021 EXPORT_SYMBOL(netdev_set_sb_channel);
3022
3023 /*
3024  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
3025  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
3026  */
3027 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
3028 {
3029         bool disabling;
3030         int rc;
3031
3032         disabling = txq < dev->real_num_tx_queues;
3033
3034         if (txq < 1 || txq > dev->num_tx_queues)
3035                 return -EINVAL;
3036
3037         if (dev->reg_state == NETREG_REGISTERED ||
3038             dev->reg_state == NETREG_UNREGISTERING) {
3039                 ASSERT_RTNL();
3040
3041                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
3042                                                   txq);
3043                 if (rc)
3044                         return rc;
3045
3046                 if (dev->num_tc)
3047                         netif_setup_tc(dev, txq);
3048
3049                 dev->real_num_tx_queues = txq;
3050
3051                 if (disabling) {
3052                         synchronize_net();
3053                         qdisc_reset_all_tx_gt(dev, txq);
3054 #ifdef CONFIG_XPS
3055                         netif_reset_xps_queues_gt(dev, txq);
3056 #endif
3057                 }
3058         } else {
3059                 dev->real_num_tx_queues = txq;
3060         }
3061
3062         return 0;
3063 }
3064 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
3065
3066 #ifdef CONFIG_SYSFS
3067 /**
3068  *      netif_set_real_num_rx_queues - set actual number of RX queues used
3069  *      @dev: Network device
3070  *      @rxq: Actual number of RX queues
3071  *
3072  *      This must be called either with the rtnl_lock held or before
3073  *      registration of the net device.  Returns 0 on success, or a
3074  *      negative error code.  If called before registration, it always
3075  *      succeeds.
3076  */
3077 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3078 {
3079         int rc;
3080
3081         if (rxq < 1 || rxq > dev->num_rx_queues)
3082                 return -EINVAL;
3083
3084         if (dev->reg_state == NETREG_REGISTERED) {
3085                 ASSERT_RTNL();
3086
3087                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3088                                                   rxq);
3089                 if (rc)
3090                         return rc;
3091         }
3092
3093         dev->real_num_rx_queues = rxq;
3094         return 0;
3095 }
3096 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3097 #endif
3098
3099 /**
3100  * netif_get_num_default_rss_queues - default number of RSS queues
3101  *
3102  * This routine should set an upper limit on the number of RSS queues
3103  * used by default by multiqueue devices.
3104  */
3105 int netif_get_num_default_rss_queues(void)
3106 {
3107         return is_kdump_kernel() ?
3108                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3109 }
3110 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3111
3112 static void __netif_reschedule(struct Qdisc *q)
3113 {
3114         struct softnet_data *sd;
3115         unsigned long flags;
3116
3117         local_irq_save(flags);
3118         sd = this_cpu_ptr(&softnet_data);
3119         q->next_sched = NULL;
3120         *sd->output_queue_tailp = q;
3121         sd->output_queue_tailp = &q->next_sched;
3122         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3123         local_irq_restore(flags);
3124 }
3125
3126 void __netif_schedule(struct Qdisc *q)
3127 {
3128         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3129                 __netif_reschedule(q);
3130 }
3131 EXPORT_SYMBOL(__netif_schedule);
3132
3133 struct dev_kfree_skb_cb {
3134         enum skb_free_reason reason;
3135 };
3136
3137 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3138 {
3139         return (struct dev_kfree_skb_cb *)skb->cb;
3140 }
3141
3142 void netif_schedule_queue(struct netdev_queue *txq)
3143 {
3144         rcu_read_lock();
3145         if (!netif_xmit_stopped(txq)) {
3146                 struct Qdisc *q = rcu_dereference(txq->qdisc);
3147
3148                 __netif_schedule(q);
3149         }
3150         rcu_read_unlock();
3151 }
3152 EXPORT_SYMBOL(netif_schedule_queue);
3153
3154 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3155 {
3156         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3157                 struct Qdisc *q;
3158
3159                 rcu_read_lock();
3160                 q = rcu_dereference(dev_queue->qdisc);
3161                 __netif_schedule(q);
3162                 rcu_read_unlock();
3163         }
3164 }
3165 EXPORT_SYMBOL(netif_tx_wake_queue);
3166
3167 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3168 {
3169         unsigned long flags;
3170
3171         if (unlikely(!skb))
3172                 return;
3173
3174         if (likely(refcount_read(&skb->users) == 1)) {
3175                 smp_rmb();
3176                 refcount_set(&skb->users, 0);
3177         } else if (likely(!refcount_dec_and_test(&skb->users))) {
3178                 return;
3179         }
3180         get_kfree_skb_cb(skb)->reason = reason;
3181         local_irq_save(flags);
3182         skb->next = __this_cpu_read(softnet_data.completion_queue);
3183         __this_cpu_write(softnet_data.completion_queue, skb);
3184         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3185         local_irq_restore(flags);
3186 }
3187 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3188
3189 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3190 {
3191         if (in_irq() || irqs_disabled())
3192                 __dev_kfree_skb_irq(skb, reason);
3193         else
3194                 dev_kfree_skb(skb);
3195 }
3196 EXPORT_SYMBOL(__dev_kfree_skb_any);
3197
3198
3199 /**
3200  * netif_device_detach - mark device as removed
3201  * @dev: network device
3202  *
3203  * Mark device as removed from system and therefore no longer available.
3204  */
3205 void netif_device_detach(struct net_device *dev)
3206 {
3207         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3208             netif_running(dev)) {
3209                 netif_tx_stop_all_queues(dev);
3210         }
3211 }
3212 EXPORT_SYMBOL(netif_device_detach);
3213
3214 /**
3215  * netif_device_attach - mark device as attached
3216  * @dev: network device
3217  *
3218  * Mark device as attached from system and restart if needed.
3219  */
3220 void netif_device_attach(struct net_device *dev)
3221 {
3222         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3223             netif_running(dev)) {
3224                 netif_tx_wake_all_queues(dev);
3225                 __netdev_watchdog_up(dev);
3226         }
3227 }
3228 EXPORT_SYMBOL(netif_device_attach);
3229
3230 /*
3231  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3232  * to be used as a distribution range.
3233  */
3234 static u16 skb_tx_hash(const struct net_device *dev,
3235                        const struct net_device *sb_dev,
3236                        struct sk_buff *skb)
3237 {
3238         u32 hash;
3239         u16 qoffset = 0;
3240         u16 qcount = dev->real_num_tx_queues;
3241
3242         if (dev->num_tc) {
3243                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3244
3245                 qoffset = sb_dev->tc_to_txq[tc].offset;
3246                 qcount = sb_dev->tc_to_txq[tc].count;
3247         }
3248
3249         if (skb_rx_queue_recorded(skb)) {
3250                 hash = skb_get_rx_queue(skb);
3251                 if (hash >= qoffset)
3252                         hash -= qoffset;
3253                 while (unlikely(hash >= qcount))
3254                         hash -= qcount;
3255                 return hash + qoffset;
3256         }
3257
3258         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3259 }
3260
3261 static void skb_warn_bad_offload(const struct sk_buff *skb)
3262 {
3263         static const netdev_features_t null_features;
3264         struct net_device *dev = skb->dev;
3265         const char *name = "";
3266
3267         if (!net_ratelimit())
3268                 return;
3269
3270         if (dev) {
3271                 if (dev->dev.parent)
3272                         name = dev_driver_string(dev->dev.parent);
3273                 else
3274                         name = netdev_name(dev);
3275         }
3276         skb_dump(KERN_WARNING, skb, false);
3277         WARN(1, "%s: caps=(%pNF, %pNF)\n",
3278              name, dev ? &dev->features : &null_features,
3279              skb->sk ? &skb->sk->sk_route_caps : &null_features);
3280 }
3281
3282 /*
3283  * Invalidate hardware checksum when packet is to be mangled, and
3284  * complete checksum manually on outgoing path.
3285  */
3286 int skb_checksum_help(struct sk_buff *skb)
3287 {
3288         __wsum csum;
3289         int ret = 0, offset;
3290
3291         if (skb->ip_summed == CHECKSUM_COMPLETE)
3292                 goto out_set_summed;
3293
3294         if (unlikely(skb_is_gso(skb))) {
3295                 skb_warn_bad_offload(skb);
3296                 return -EINVAL;
3297         }
3298
3299         /* Before computing a checksum, we should make sure no frag could
3300          * be modified by an external entity : checksum could be wrong.
3301          */
3302         if (skb_has_shared_frag(skb)) {
3303                 ret = __skb_linearize(skb);
3304                 if (ret)
3305                         goto out;
3306         }
3307
3308         offset = skb_checksum_start_offset(skb);
3309         BUG_ON(offset >= skb_headlen(skb));
3310         csum = skb_checksum(skb, offset, skb->len - offset, 0);
3311
3312         offset += skb->csum_offset;
3313         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3314
3315         ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3316         if (ret)
3317                 goto out;
3318
3319         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3320 out_set_summed:
3321         skb->ip_summed = CHECKSUM_NONE;
3322 out:
3323         return ret;
3324 }
3325 EXPORT_SYMBOL(skb_checksum_help);
3326
3327 int skb_crc32c_csum_help(struct sk_buff *skb)
3328 {
3329         __le32 crc32c_csum;
3330         int ret = 0, offset, start;
3331
3332         if (skb->ip_summed != CHECKSUM_PARTIAL)
3333                 goto out;
3334
3335         if (unlikely(skb_is_gso(skb)))
3336                 goto out;
3337
3338         /* Before computing a checksum, we should make sure no frag could
3339          * be modified by an external entity : checksum could be wrong.
3340          */
3341         if (unlikely(skb_has_shared_frag(skb))) {
3342                 ret = __skb_linearize(skb);
3343                 if (ret)
3344                         goto out;
3345         }
3346         start = skb_checksum_start_offset(skb);
3347         offset = start + offsetof(struct sctphdr, checksum);
3348         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3349                 ret = -EINVAL;
3350                 goto out;
3351         }
3352
3353         ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3354         if (ret)
3355                 goto out;
3356
3357         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3358                                                   skb->len - start, ~(__u32)0,
3359                                                   crc32c_csum_stub));
3360         *(__le32 *)(skb->data + offset) = crc32c_csum;
3361         skb->ip_summed = CHECKSUM_NONE;
3362         skb->csum_not_inet = 0;
3363 out:
3364         return ret;
3365 }
3366
3367 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3368 {
3369         __be16 type = skb->protocol;
3370
3371         /* Tunnel gso handlers can set protocol to ethernet. */
3372         if (type == htons(ETH_P_TEB)) {
3373                 struct ethhdr *eth;
3374
3375                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3376                         return 0;
3377
3378                 eth = (struct ethhdr *)skb->data;
3379                 type = eth->h_proto;
3380         }
3381
3382         return __vlan_get_protocol(skb, type, depth);
3383 }
3384
3385 /**
3386  *      skb_mac_gso_segment - mac layer segmentation handler.
3387  *      @skb: buffer to segment
3388  *      @features: features for the output path (see dev->features)
3389  */
3390 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3391                                     netdev_features_t features)
3392 {
3393         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3394         struct packet_offload *ptype;
3395         int vlan_depth = skb->mac_len;
3396         __be16 type = skb_network_protocol(skb, &vlan_depth);
3397
3398         if (unlikely(!type))
3399                 return ERR_PTR(-EINVAL);
3400
3401         __skb_pull(skb, vlan_depth);
3402
3403         rcu_read_lock();
3404         list_for_each_entry_rcu(ptype, &offload_base, list) {
3405                 if (ptype->type == type && ptype->callbacks.gso_segment) {
3406                         segs = ptype->callbacks.gso_segment(skb, features);
3407                         break;
3408                 }
3409         }
3410         rcu_read_unlock();
3411
3412         __skb_push(skb, skb->data - skb_mac_header(skb));
3413
3414         return segs;
3415 }
3416 EXPORT_SYMBOL(skb_mac_gso_segment);
3417
3418
3419 /* openvswitch calls this on rx path, so we need a different check.
3420  */
3421 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3422 {
3423         if (tx_path)
3424                 return skb->ip_summed != CHECKSUM_PARTIAL &&
3425                        skb->ip_summed != CHECKSUM_UNNECESSARY;
3426
3427         return skb->ip_summed == CHECKSUM_NONE;
3428 }
3429
3430 /**
3431  *      __skb_gso_segment - Perform segmentation on skb.
3432  *      @skb: buffer to segment
3433  *      @features: features for the output path (see dev->features)
3434  *      @tx_path: whether it is called in TX path
3435  *
3436  *      This function segments the given skb and returns a list of segments.
3437  *
3438  *      It may return NULL if the skb requires no segmentation.  This is
3439  *      only possible when GSO is used for verifying header integrity.
3440  *
3441  *      Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3442  */
3443 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3444                                   netdev_features_t features, bool tx_path)
3445 {
3446         struct sk_buff *segs;
3447
3448         if (unlikely(skb_needs_check(skb, tx_path))) {
3449                 int err;
3450
3451                 /* We're going to init ->check field in TCP or UDP header */
3452                 err = skb_cow_head(skb, 0);
3453                 if (err < 0)
3454                         return ERR_PTR(err);
3455         }
3456
3457         /* Only report GSO partial support if it will enable us to
3458          * support segmentation on this frame without needing additional
3459          * work.
3460          */
3461         if (features & NETIF_F_GSO_PARTIAL) {
3462                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3463                 struct net_device *dev = skb->dev;
3464
3465                 partial_features |= dev->features & dev->gso_partial_features;
3466                 if (!skb_gso_ok(skb, features | partial_features))
3467                         features &= ~NETIF_F_GSO_PARTIAL;
3468         }
3469
3470         BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3471                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3472
3473         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3474         SKB_GSO_CB(skb)->encap_level = 0;
3475
3476         skb_reset_mac_header(skb);
3477         skb_reset_mac_len(skb);
3478
3479         segs = skb_mac_gso_segment(skb, features);
3480
3481         if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3482                 skb_warn_bad_offload(skb);
3483
3484         return segs;
3485 }
3486 EXPORT_SYMBOL(__skb_gso_segment);
3487
3488 /* Take action when hardware reception checksum errors are detected. */
3489 #ifdef CONFIG_BUG
3490 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3491 {
3492         if (net_ratelimit()) {
3493                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3494                 skb_dump(KERN_ERR, skb, true);
3495                 dump_stack();
3496         }
3497 }
3498 EXPORT_SYMBOL(netdev_rx_csum_fault);
3499 #endif
3500
3501 /* XXX: check that highmem exists at all on the given machine. */
3502 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3503 {
3504 #ifdef CONFIG_HIGHMEM
3505         int i;
3506
3507         if (!(dev->features & NETIF_F_HIGHDMA)) {
3508                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3509                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3510
3511                         if (PageHighMem(skb_frag_page(frag)))
3512                                 return 1;
3513                 }
3514         }
3515 #endif
3516         return 0;
3517 }
3518
3519 /* If MPLS offload request, verify we are testing hardware MPLS features
3520  * instead of standard features for the netdev.
3521  */
3522 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3523 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3524                                            netdev_features_t features,
3525                                            __be16 type)
3526 {
3527         if (eth_p_mpls(type))
3528                 features &= skb->dev->mpls_features;
3529
3530         return features;
3531 }
3532 #else
3533 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3534                                            netdev_features_t features,
3535                                            __be16 type)
3536 {
3537         return features;
3538 }
3539 #endif
3540
3541 static netdev_features_t harmonize_features(struct sk_buff *skb,
3542         netdev_features_t features)
3543 {
3544         __be16 type;
3545
3546         type = skb_network_protocol(skb, NULL);
3547         features = net_mpls_features(skb, features, type);
3548
3549         if (skb->ip_summed != CHECKSUM_NONE &&
3550             !can_checksum_protocol(features, type)) {
3551                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3552         }
3553         if (illegal_highdma(skb->dev, skb))
3554                 features &= ~NETIF_F_SG;
3555
3556         return features;
3557 }
3558
3559 netdev_features_t passthru_features_check(struct sk_buff *skb,
3560                                           struct net_device *dev,
3561                                           netdev_features_t features)
3562 {
3563         return features;
3564 }
3565 EXPORT_SYMBOL(passthru_features_check);
3566
3567 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3568                                              struct net_device *dev,
3569                                              netdev_features_t features)
3570 {
3571         return vlan_features_check(skb, features);
3572 }
3573
3574 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3575                                             struct net_device *dev,
3576                                             netdev_features_t features)
3577 {
3578         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3579
3580         if (gso_segs > dev->gso_max_segs)
3581                 return features & ~NETIF_F_GSO_MASK;
3582
3583         if (!skb_shinfo(skb)->gso_type) {
3584                 skb_warn_bad_offload(skb);
3585                 return features & ~NETIF_F_GSO_MASK;
3586         }
3587
3588         /* Support for GSO partial features requires software
3589          * intervention before we can actually process the packets
3590          * so we need to strip support for any partial features now
3591          * and we can pull them back in after we have partially
3592          * segmented the frame.
3593          */
3594         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3595                 features &= ~dev->gso_partial_features;
3596
3597         /* Make sure to clear the IPv4 ID mangling feature if the
3598          * IPv4 header has the potential to be fragmented.
3599          */
3600         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3601                 struct iphdr *iph = skb->encapsulation ?
3602                                     inner_ip_hdr(skb) : ip_hdr(skb);
3603
3604                 if (!(iph->frag_off & htons(IP_DF)))
3605                         features &= ~NETIF_F_TSO_MANGLEID;
3606         }
3607
3608         return features;
3609 }
3610
3611 netdev_features_t netif_skb_features(struct sk_buff *skb)
3612 {
3613         struct net_device *dev = skb->dev;
3614         netdev_features_t features = dev->features;
3615
3616         if (skb_is_gso(skb))
3617                 features = gso_features_check(skb, dev, features);
3618
3619         /* If encapsulation offload request, verify we are testing
3620          * hardware encapsulation features instead of standard
3621          * features for the netdev
3622          */
3623         if (skb->encapsulation)
3624                 features &= dev->hw_enc_features;
3625
3626         if (skb_vlan_tagged(skb))
3627                 features = netdev_intersect_features(features,
3628                                                      dev->vlan_features |
3629                                                      NETIF_F_HW_VLAN_CTAG_TX |
3630                                                      NETIF_F_HW_VLAN_STAG_TX);
3631
3632         if (dev->netdev_ops->ndo_features_check)
3633                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3634                                                                 features);
3635         else
3636                 features &= dflt_features_check(skb, dev, features);
3637
3638         return harmonize_features(skb, features);
3639 }
3640 EXPORT_SYMBOL(netif_skb_features);
3641
3642 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3643                     struct netdev_queue *txq, bool more)
3644 {
3645         unsigned int len;
3646         int rc;
3647
3648         if (dev_nit_active(dev))
3649                 dev_queue_xmit_nit(skb, dev);
3650
3651         len = skb->len;
3652         PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3653         trace_net_dev_start_xmit(skb, dev);
3654         rc = netdev_start_xmit(skb, dev, txq, more);
3655         trace_net_dev_xmit(skb, rc, dev, len);
3656
3657         return rc;
3658 }
3659
3660 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3661                                     struct netdev_queue *txq, int *ret)
3662 {
3663         struct sk_buff *skb = first;
3664         int rc = NETDEV_TX_OK;
3665
3666         while (skb) {
3667                 struct sk_buff *next = skb->next;
3668
3669                 skb_mark_not_on_list(skb);
3670                 rc = xmit_one(skb, dev, txq, next != NULL);
3671                 if (unlikely(!dev_xmit_complete(rc))) {
3672                         skb->next = next;
3673                         goto out;
3674                 }
3675
3676                 skb = next;
3677                 if (netif_tx_queue_stopped(txq) && skb) {
3678                         rc = NETDEV_TX_BUSY;
3679                         break;
3680                 }
3681         }
3682
3683 out:
3684         *ret = rc;
3685         return skb;
3686 }
3687
3688 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3689                                           netdev_features_t features)
3690 {
3691         if (skb_vlan_tag_present(skb) &&
3692             !vlan_hw_offload_capable(features, skb->vlan_proto))
3693                 skb = __vlan_hwaccel_push_inside(skb);
3694         return skb;
3695 }
3696
3697 int skb_csum_hwoffload_help(struct sk_buff *skb,
3698                             const netdev_features_t features)
3699 {
3700         if (unlikely(skb_csum_is_sctp(skb)))
3701                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3702                         skb_crc32c_csum_help(skb);
3703
3704         if (features & NETIF_F_HW_CSUM)
3705                 return 0;
3706
3707         if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3708                 switch (skb->csum_offset) {
3709                 case offsetof(struct tcphdr, check):
3710                 case offsetof(struct udphdr, check):
3711                         return 0;
3712                 }
3713         }
3714
3715         return skb_checksum_help(skb);
3716 }
3717 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3718
3719 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3720 {
3721         netdev_features_t features;
3722
3723         features = netif_skb_features(skb);
3724         skb = validate_xmit_vlan(skb, features);
3725         if (unlikely(!skb))
3726                 goto out_null;
3727
3728         skb = sk_validate_xmit_skb(skb, dev);
3729         if (unlikely(!skb))
3730                 goto out_null;
3731
3732         if (netif_needs_gso(skb, features)) {
3733                 struct sk_buff *segs;
3734
3735                 segs = skb_gso_segment(skb, features);
3736                 if (IS_ERR(segs)) {
3737                         goto out_kfree_skb;
3738                 } else if (segs) {
3739                         consume_skb(skb);
3740                         skb = segs;
3741                 }
3742         } else {
3743                 if (skb_needs_linearize(skb, features) &&
3744                     __skb_linearize(skb))
3745                         goto out_kfree_skb;
3746
3747                 /* If packet is not checksummed and device does not
3748                  * support checksumming for this protocol, complete
3749                  * checksumming here.
3750                  */
3751                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3752                         if (skb->encapsulation)
3753                                 skb_set_inner_transport_header(skb,
3754                                                                skb_checksum_start_offset(skb));
3755                         else
3756                                 skb_set_transport_header(skb,
3757                                                          skb_checksum_start_offset(skb));
3758                         if (skb_csum_hwoffload_help(skb, features))
3759                                 goto out_kfree_skb;
3760                 }
3761         }
3762
3763         skb = validate_xmit_xfrm(skb, features, again);
3764
3765         return skb;
3766
3767 out_kfree_skb:
3768         kfree_skb(skb);
3769 out_null:
3770         atomic_long_inc(&dev->tx_dropped);
3771         return NULL;
3772 }
3773
3774 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3775 {
3776         struct sk_buff *next, *head = NULL, *tail;
3777
3778         for (; skb != NULL; skb = next) {
3779                 next = skb->next;
3780                 skb_mark_not_on_list(skb);
3781
3782                 /* in case skb wont be segmented, point to itself */
3783                 skb->prev = skb;
3784
3785                 skb = validate_xmit_skb(skb, dev, again);
3786                 if (!skb)
3787                         continue;
3788
3789                 if (!head)
3790                         head = skb;
3791                 else
3792                         tail->next = skb;
3793                 /* If skb was segmented, skb->prev points to
3794                  * the last segment. If not, it still contains skb.
3795                  */
3796                 tail = skb->prev;
3797         }
3798         return head;
3799 }
3800 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3801
3802 static void qdisc_pkt_len_init(struct sk_buff *skb)
3803 {
3804         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3805
3806         qdisc_skb_cb(skb)->pkt_len = skb->len;
3807
3808         /* To get more precise estimation of bytes sent on wire,
3809          * we add to pkt_len the headers size of all segments
3810          */
3811         if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3812                 unsigned int hdr_len;
3813                 u16 gso_segs = shinfo->gso_segs;
3814
3815                 /* mac layer + network layer */
3816                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3817
3818                 /* + transport layer */
3819                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3820                         const struct tcphdr *th;
3821                         struct tcphdr _tcphdr;
3822
3823                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3824                                                 sizeof(_tcphdr), &_tcphdr);
3825                         if (likely(th))
3826                                 hdr_len += __tcp_hdrlen(th);
3827                 } else {
3828                         struct udphdr _udphdr;
3829
3830                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3831                                                sizeof(_udphdr), &_udphdr))
3832                                 hdr_len += sizeof(struct udphdr);
3833                 }
3834
3835                 if (shinfo->gso_type & SKB_GSO_DODGY)
3836                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3837                                                 shinfo->gso_size);
3838
3839                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3840         }
3841 }
3842
3843 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3844                                  struct net_device *dev,
3845                                  struct netdev_queue *txq)
3846 {
3847         spinlock_t *root_lock = qdisc_lock(q);
3848         struct sk_buff *to_free = NULL;
3849         bool contended;
3850         int rc;
3851
3852         qdisc_calculate_pkt_len(skb, q);
3853
3854         if (q->flags & TCQ_F_NOLOCK) {
3855                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3856                 qdisc_run(q);
3857
3858                 if (unlikely(to_free))
3859                         kfree_skb_list(to_free);
3860                 return rc;
3861         }
3862
3863         /*
3864          * Heuristic to force contended enqueues to serialize on a
3865          * separate lock before trying to get qdisc main lock.
3866          * This permits qdisc->running owner to get the lock more
3867          * often and dequeue packets faster.
3868          */
3869         contended = qdisc_is_running(q);
3870         if (unlikely(contended))
3871                 spin_lock(&q->busylock);
3872
3873         spin_lock(root_lock);
3874         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3875                 __qdisc_drop(skb, &to_free);
3876                 rc = NET_XMIT_DROP;
3877         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3878                    qdisc_run_begin(q)) {
3879                 /*
3880                  * This is a work-conserving queue; there are no old skbs
3881                  * waiting to be sent out; and the qdisc is not running -
3882                  * xmit the skb directly.
3883                  */
3884
3885                 qdisc_bstats_update(q, skb);
3886
3887                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3888                         if (unlikely(contended)) {
3889                                 spin_unlock(&q->busylock);
3890                                 contended = false;
3891                         }
3892                         __qdisc_run(q);
3893                 }
3894
3895                 qdisc_run_end(q);
3896                 rc = NET_XMIT_SUCCESS;
3897         } else {
3898                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3899                 if (qdisc_run_begin(q)) {
3900                         if (unlikely(contended)) {
3901                                 spin_unlock(&q->busylock);
3902                                 contended = false;
3903                         }
3904                         __qdisc_run(q);
3905                         qdisc_run_end(q);
3906                 }
3907         }
3908         spin_unlock(root_lock);
3909         if (unlikely(to_free))
3910                 kfree_skb_list(to_free);
3911         if (unlikely(contended))
3912                 spin_unlock(&q->busylock);
3913         return rc;
3914 }
3915
3916 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3917 static void skb_update_prio(struct sk_buff *skb)
3918 {
3919         const struct netprio_map *map;
3920         const struct sock *sk;
3921         unsigned int prioidx;
3922
3923         if (skb->priority)
3924                 return;
3925         map = rcu_dereference_bh(skb->dev->priomap);
3926         if (!map)
3927                 return;
3928         sk = skb_to_full_sk(skb);
3929         if (!sk)
3930                 return;
3931
3932         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3933
3934         if (prioidx < map->priomap_len)
3935                 skb->priority = map->priomap[prioidx];
3936 }
3937 #else
3938 #define skb_update_prio(skb)
3939 #endif
3940
3941 /**
3942  *      dev_loopback_xmit - loop back @skb
3943  *      @net: network namespace this loopback is happening in
3944  *      @sk:  sk needed to be a netfilter okfn
3945  *      @skb: buffer to transmit
3946  */
3947 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3948 {
3949         skb_reset_mac_header(skb);
3950         __skb_pull(skb, skb_network_offset(skb));
3951         skb->pkt_type = PACKET_LOOPBACK;
3952         skb->ip_summed = CHECKSUM_UNNECESSARY;
3953         WARN_ON(!skb_dst(skb));
3954         skb_dst_force(skb);
3955         netif_rx_ni(skb);
3956         return 0;
3957 }
3958 EXPORT_SYMBOL(dev_loopback_xmit);
3959
3960 #ifdef CONFIG_NET_EGRESS
3961 static struct sk_buff *
3962 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3963 {
3964         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3965         struct tcf_result cl_res;
3966
3967         if (!miniq)
3968                 return skb;
3969
3970         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3971         qdisc_skb_cb(skb)->mru = 0;
3972         qdisc_skb_cb(skb)->post_ct = false;
3973         mini_qdisc_bstats_cpu_update(miniq, skb);
3974
3975         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3976         case TC_ACT_OK:
3977         case TC_ACT_RECLASSIFY:
3978                 skb->tc_index = TC_H_MIN(cl_res.classid);
3979                 break;
3980         case TC_ACT_SHOT:
3981                 mini_qdisc_qstats_cpu_drop(miniq);
3982                 *ret = NET_XMIT_DROP;
3983                 kfree_skb(skb);
3984                 return NULL;
3985         case TC_ACT_STOLEN:
3986         case TC_ACT_QUEUED:
3987         case TC_ACT_TRAP:
3988                 *ret = NET_XMIT_SUCCESS;
3989                 consume_skb(skb);
3990                 return NULL;
3991         case TC_ACT_REDIRECT:
3992                 /* No need to push/pop skb's mac_header here on egress! */
3993                 skb_do_redirect(skb);
3994                 *ret = NET_XMIT_SUCCESS;
3995                 return NULL;
3996         default:
3997                 break;
3998         }
3999
4000         return skb;
4001 }
4002 #endif /* CONFIG_NET_EGRESS */
4003
4004 #ifdef CONFIG_XPS
4005 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4006                                struct xps_dev_maps *dev_maps, unsigned int tci)
4007 {
4008         int tc = netdev_get_prio_tc_map(dev, skb->priority);
4009         struct xps_map *map;
4010         int queue_index = -1;
4011
4012         if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4013                 return queue_index;
4014
4015         tci *= dev_maps->num_tc;
4016         tci += tc;
4017
4018         map = rcu_dereference(dev_maps->attr_map[tci]);
4019         if (map) {
4020                 if (map->len == 1)
4021                         queue_index = map->queues[0];
4022                 else
4023                         queue_index = map->queues[reciprocal_scale(
4024                                                 skb_get_hash(skb), map->len)];
4025                 if (unlikely(queue_index >= dev->real_num_tx_queues))
4026                         queue_index = -1;
4027         }
4028         return queue_index;
4029 }
4030 #endif
4031
4032 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4033                          struct sk_buff *skb)
4034 {
4035 #ifdef CONFIG_XPS
4036         struct xps_dev_maps *dev_maps;
4037         struct sock *sk = skb->sk;
4038         int queue_index = -1;
4039
4040         if (!static_key_false(&xps_needed))
4041                 return -1;
4042
4043         rcu_read_lock();
4044         if (!static_key_false(&xps_rxqs_needed))
4045                 goto get_cpus_map;
4046
4047         dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4048         if (dev_maps) {
4049                 int tci = sk_rx_queue_get(sk);
4050
4051                 if (tci >= 0)
4052                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4053                                                           tci);
4054         }
4055
4056 get_cpus_map:
4057         if (queue_index < 0) {
4058                 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4059                 if (dev_maps) {
4060                         unsigned int tci = skb->sender_cpu - 1;
4061
4062                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4063                                                           tci);
4064                 }
4065         }
4066         rcu_read_unlock();
4067
4068         return queue_index;
4069 #else
4070         return -1;
4071 #endif
4072 }
4073
4074 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4075                      struct net_device *sb_dev)
4076 {
4077         return 0;
4078 }
4079 EXPORT_SYMBOL(dev_pick_tx_zero);
4080
4081 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4082                        struct net_device *sb_dev)
4083 {
4084         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4085 }
4086 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4087
4088 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4089                      struct net_device *sb_dev)
4090 {
4091         struct sock *sk = skb->sk;
4092         int queue_index = sk_tx_queue_get(sk);
4093
4094         sb_dev = sb_dev ? : dev;
4095
4096         if (queue_index < 0 || skb->ooo_okay ||
4097             queue_index >= dev->real_num_tx_queues) {
4098                 int new_index = get_xps_queue(dev, sb_dev, skb);
4099
4100                 if (new_index < 0)
4101                         new_index = skb_tx_hash(dev, sb_dev, skb);
4102
4103                 if (queue_index != new_index && sk &&
4104                     sk_fullsock(sk) &&
4105                     rcu_access_pointer(sk->sk_dst_cache))
4106                         sk_tx_queue_set(sk, new_index);
4107
4108                 queue_index = new_index;
4109         }
4110
4111         return queue_index;
4112 }
4113 EXPORT_SYMBOL(netdev_pick_tx);
4114
4115 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4116                                          struct sk_buff *skb,
4117                                          struct net_device *sb_dev)
4118 {
4119         int queue_index = 0;
4120
4121 #ifdef CONFIG_XPS
4122         u32 sender_cpu = skb->sender_cpu - 1;
4123
4124         if (sender_cpu >= (u32)NR_CPUS)
4125                 skb->sender_cpu = raw_smp_processor_id() + 1;
4126 #endif
4127
4128         if (dev->real_num_tx_queues != 1) {
4129                 const struct net_device_ops *ops = dev->netdev_ops;
4130
4131                 if (ops->ndo_select_queue)
4132                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4133                 else
4134                         queue_index = netdev_pick_tx(dev, skb, sb_dev);
4135
4136                 queue_index = netdev_cap_txqueue(dev, queue_index);
4137         }
4138
4139         skb_set_queue_mapping(skb, queue_index);
4140         return netdev_get_tx_queue(dev, queue_index);
4141 }
4142
4143 /**
4144  *      __dev_queue_xmit - transmit a buffer
4145  *      @skb: buffer to transmit
4146  *      @sb_dev: suboordinate device used for L2 forwarding offload
4147  *
4148  *      Queue a buffer for transmission to a network device. The caller must
4149  *      have set the device and priority and built the buffer before calling
4150  *      this function. The function can be called from an interrupt.
4151  *
4152  *      A negative errno code is returned on a failure. A success does not
4153  *      guarantee the frame will be transmitted as it may be dropped due
4154  *      to congestion or traffic shaping.
4155  *
4156  * -----------------------------------------------------------------------------------
4157  *      I notice this method can also return errors from the queue disciplines,
4158  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4159  *      be positive.
4160  *
4161  *      Regardless of the return value, the skb is consumed, so it is currently
4162  *      difficult to retry a send to this method.  (You can bump the ref count
4163  *      before sending to hold a reference for retry if you are careful.)
4164  *
4165  *      When calling this method, interrupts MUST be enabled.  This is because
4166  *      the BH enable code must have IRQs enabled so that it will not deadlock.
4167  *          --BLG
4168  */
4169 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4170 {
4171         struct net_device *dev = skb->dev;
4172         struct netdev_queue *txq;
4173         struct Qdisc *q;
4174         int rc = -ENOMEM;
4175         bool again = false;
4176
4177         skb_reset_mac_header(skb);
4178
4179         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4180                 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4181
4182         /* Disable soft irqs for various locks below. Also
4183          * stops preemption for RCU.
4184          */
4185         rcu_read_lock_bh();
4186
4187         skb_update_prio(skb);
4188
4189         qdisc_pkt_len_init(skb);
4190 #ifdef CONFIG_NET_CLS_ACT
4191         skb->tc_at_ingress = 0;
4192 # ifdef CONFIG_NET_EGRESS
4193         if (static_branch_unlikely(&egress_needed_key)) {
4194                 skb = sch_handle_egress(skb, &rc, dev);
4195                 if (!skb)
4196                         goto out;
4197         }
4198 # endif
4199 #endif
4200         /* If device/qdisc don't need skb->dst, release it right now while
4201          * its hot in this cpu cache.
4202          */
4203         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4204                 skb_dst_drop(skb);
4205         else
4206                 skb_dst_force(skb);
4207
4208         txq = netdev_core_pick_tx(dev, skb, sb_dev);
4209         q = rcu_dereference_bh(txq->qdisc);
4210
4211         trace_net_dev_queue(skb);
4212         if (q->enqueue) {
4213                 rc = __dev_xmit_skb(skb, q, dev, txq);
4214                 goto out;
4215         }
4216
4217         /* The device has no queue. Common case for software devices:
4218          * loopback, all the sorts of tunnels...
4219
4220          * Really, it is unlikely that netif_tx_lock protection is necessary
4221          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4222          * counters.)
4223          * However, it is possible, that they rely on protection
4224          * made by us here.
4225
4226          * Check this and shot the lock. It is not prone from deadlocks.
4227          *Either shot noqueue qdisc, it is even simpler 8)
4228          */
4229         if (dev->flags & IFF_UP) {
4230                 int cpu = smp_processor_id(); /* ok because BHs are off */
4231
4232                 if (txq->xmit_lock_owner != cpu) {
4233                         if (dev_xmit_recursion())
4234                                 goto recursion_alert;
4235
4236                         skb = validate_xmit_skb(skb, dev, &again);
4237                         if (!skb)
4238                                 goto out;
4239
4240                         PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4241                         HARD_TX_LOCK(dev, txq, cpu);
4242
4243                         if (!netif_xmit_stopped(txq)) {
4244                                 dev_xmit_recursion_inc();
4245                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4246                                 dev_xmit_recursion_dec();
4247                                 if (dev_xmit_complete(rc)) {
4248                                         HARD_TX_UNLOCK(dev, txq);
4249                                         goto out;
4250                                 }
4251                         }
4252                         HARD_TX_UNLOCK(dev, txq);
4253                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4254                                              dev->name);
4255                 } else {
4256                         /* Recursion is detected! It is possible,
4257                          * unfortunately
4258                          */
4259 recursion_alert:
4260                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4261                                              dev->name);
4262                 }
4263         }
4264
4265         rc = -ENETDOWN;
4266         rcu_read_unlock_bh();
4267
4268         atomic_long_inc(&dev->tx_dropped);
4269         kfree_skb_list(skb);
4270         return rc;
4271 out:
4272         rcu_read_unlock_bh();
4273         return rc;
4274 }
4275
4276 int dev_queue_xmit(struct sk_buff *skb)
4277 {
4278         return __dev_queue_xmit(skb, NULL);
4279 }
4280 EXPORT_SYMBOL(dev_queue_xmit);
4281
4282 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4283 {
4284         return __dev_queue_xmit(skb, sb_dev);
4285 }
4286 EXPORT_SYMBOL(dev_queue_xmit_accel);
4287
4288 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4289 {
4290         struct net_device *dev = skb->dev;
4291         struct sk_buff *orig_skb = skb;
4292         struct netdev_queue *txq;
4293         int ret = NETDEV_TX_BUSY;
4294         bool again = false;
4295
4296         if (unlikely(!netif_running(dev) ||
4297                      !netif_carrier_ok(dev)))
4298                 goto drop;
4299
4300         skb = validate_xmit_skb_list(skb, dev, &again);
4301         if (skb != orig_skb)
4302                 goto drop;
4303
4304         skb_set_queue_mapping(skb, queue_id);
4305         txq = skb_get_tx_queue(dev, skb);
4306         PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4307
4308         local_bh_disable();
4309
4310         dev_xmit_recursion_inc();
4311         HARD_TX_LOCK(dev, txq, smp_processor_id());
4312         if (!netif_xmit_frozen_or_drv_stopped(txq))
4313                 ret = netdev_start_xmit(skb, dev, txq, false);
4314         HARD_TX_UNLOCK(dev, txq);
4315         dev_xmit_recursion_dec();
4316
4317         local_bh_enable();
4318         return ret;
4319 drop:
4320         atomic_long_inc(&dev->tx_dropped);
4321         kfree_skb_list(skb);
4322         return NET_XMIT_DROP;
4323 }
4324 EXPORT_SYMBOL(__dev_direct_xmit);
4325
4326 /*************************************************************************
4327  *                      Receiver routines
4328  *************************************************************************/
4329
4330 int netdev_max_backlog __read_mostly = 1000;
4331 EXPORT_SYMBOL(netdev_max_backlog);
4332
4333 int netdev_tstamp_prequeue __read_mostly = 1;
4334 int netdev_budget __read_mostly = 300;
4335 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4336 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4337 int weight_p __read_mostly = 64;           /* old backlog weight */
4338 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4339 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4340 int dev_rx_weight __read_mostly = 64;
4341 int dev_tx_weight __read_mostly = 64;
4342 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4343 int gro_normal_batch __read_mostly = 8;
4344
4345 /* Called with irq disabled */
4346 static inline void ____napi_schedule(struct softnet_data *sd,
4347                                      struct napi_struct *napi)
4348 {
4349         struct task_struct *thread;
4350
4351         if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4352                 /* Paired with smp_mb__before_atomic() in
4353                  * napi_enable()/dev_set_threaded().
4354                  * Use READ_ONCE() to guarantee a complete
4355                  * read on napi->thread. Only call
4356                  * wake_up_process() when it's not NULL.
4357                  */
4358                 thread = READ_ONCE(napi->thread);
4359                 if (thread) {
4360                         /* Avoid doing set_bit() if the thread is in
4361                          * INTERRUPTIBLE state, cause napi_thread_wait()
4362                          * makes sure to proceed with napi polling
4363                          * if the thread is explicitly woken from here.
4364                          */
4365                         if (READ_ONCE(thread->state) != TASK_INTERRUPTIBLE)
4366                                 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4367                         wake_up_process(thread);
4368                         return;
4369                 }
4370         }
4371
4372         list_add_tail(&napi->poll_list, &sd->poll_list);
4373         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4374 }
4375
4376 #ifdef CONFIG_RPS
4377
4378 /* One global table that all flow-based protocols share. */
4379 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4380 EXPORT_SYMBOL(rps_sock_flow_table);
4381 u32 rps_cpu_mask __read_mostly;
4382 EXPORT_SYMBOL(rps_cpu_mask);
4383
4384 struct static_key_false rps_needed __read_mostly;
4385 EXPORT_SYMBOL(rps_needed);
4386 struct static_key_false rfs_needed __read_mostly;
4387 EXPORT_SYMBOL(rfs_needed);
4388
4389 static struct rps_dev_flow *
4390 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4391             struct rps_dev_flow *rflow, u16 next_cpu)
4392 {
4393         if (next_cpu < nr_cpu_ids) {
4394 #ifdef CONFIG_RFS_ACCEL
4395                 struct netdev_rx_queue *rxqueue;
4396                 struct rps_dev_flow_table *flow_table;
4397                 struct rps_dev_flow *old_rflow;
4398                 u32 flow_id;
4399                 u16 rxq_index;
4400                 int rc;
4401
4402                 /* Should we steer this flow to a different hardware queue? */
4403                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4404                     !(dev->features & NETIF_F_NTUPLE))
4405                         goto out;
4406                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4407                 if (rxq_index == skb_get_rx_queue(skb))
4408                         goto out;
4409
4410                 rxqueue = dev->_rx + rxq_index;
4411                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4412                 if (!flow_table)
4413                         goto out;
4414                 flow_id = skb_get_hash(skb) & flow_table->mask;
4415                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4416                                                         rxq_index, flow_id);
4417                 if (rc < 0)
4418                         goto out;
4419                 old_rflow = rflow;
4420                 rflow = &flow_table->flows[flow_id];
4421                 rflow->filter = rc;
4422                 if (old_rflow->filter == rflow->filter)
4423                         old_rflow->filter = RPS_NO_FILTER;
4424         out:
4425 #endif
4426                 rflow->last_qtail =
4427                         per_cpu(softnet_data, next_cpu).input_queue_head;
4428         }
4429
4430         rflow->cpu = next_cpu;
4431         return rflow;
4432 }
4433
4434 /*
4435  * get_rps_cpu is called from netif_receive_skb and returns the target
4436  * CPU from the RPS map of the receiving queue for a given skb.
4437  * rcu_read_lock must be held on entry.
4438  */
4439 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4440                        struct rps_dev_flow **rflowp)
4441 {
4442         const struct rps_sock_flow_table *sock_flow_table;
4443         struct netdev_rx_queue *rxqueue = dev->_rx;
4444         struct rps_dev_flow_table *flow_table;
4445         struct rps_map *map;
4446         int cpu = -1;
4447         u32 tcpu;
4448         u32 hash;
4449
4450         if (skb_rx_queue_recorded(skb)) {
4451                 u16 index = skb_get_rx_queue(skb);
4452
4453                 if (unlikely(index >= dev->real_num_rx_queues)) {
4454                         WARN_ONCE(dev->real_num_rx_queues > 1,
4455                                   "%s received packet on queue %u, but number "
4456                                   "of RX queues is %u\n",
4457                                   dev->name, index, dev->real_num_rx_queues);
4458                         goto done;
4459                 }
4460                 rxqueue += index;
4461         }
4462
4463         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4464
4465         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4466         map = rcu_dereference(rxqueue->rps_map);
4467         if (!flow_table && !map)
4468                 goto done;
4469
4470         skb_reset_network_header(skb);
4471         hash = skb_get_hash(skb);
4472         if (!hash)
4473                 goto done;
4474
4475         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4476         if (flow_table && sock_flow_table) {
4477                 struct rps_dev_flow *rflow;
4478                 u32 next_cpu;
4479                 u32 ident;
4480
4481                 /* First check into global flow table if there is a match */
4482                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4483                 if ((ident ^ hash) & ~rps_cpu_mask)
4484                         goto try_rps;
4485
4486                 next_cpu = ident & rps_cpu_mask;
4487
4488                 /* OK, now we know there is a match,
4489                  * we can look at the local (per receive queue) flow table
4490                  */
4491                 rflow = &flow_table->flows[hash & flow_table->mask];
4492                 tcpu = rflow->cpu;
4493
4494                 /*
4495                  * If the desired CPU (where last recvmsg was done) is
4496                  * different from current CPU (one in the rx-queue flow
4497                  * table entry), switch if one of the following holds:
4498                  *   - Current CPU is unset (>= nr_cpu_ids).
4499                  *   - Current CPU is offline.
4500                  *   - The current CPU's queue tail has advanced beyond the
4501                  *     last packet that was enqueued using this table entry.
4502                  *     This guarantees that all previous packets for the flow
4503                  *     have been dequeued, thus preserving in order delivery.
4504                  */
4505                 if (unlikely(tcpu != next_cpu) &&
4506                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4507                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4508                       rflow->last_qtail)) >= 0)) {
4509                         tcpu = next_cpu;
4510                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4511                 }
4512
4513                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4514                         *rflowp = rflow;
4515                         cpu = tcpu;
4516                         goto done;
4517                 }
4518         }
4519
4520 try_rps:
4521
4522         if (map) {
4523                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4524                 if (cpu_online(tcpu)) {
4525                         cpu = tcpu;
4526                         goto done;
4527                 }
4528         }
4529
4530 done:
4531         return cpu;
4532 }
4533
4534 #ifdef CONFIG_RFS_ACCEL
4535
4536 /**
4537  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4538  * @dev: Device on which the filter was set
4539  * @rxq_index: RX queue index
4540  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4541  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4542  *
4543  * Drivers that implement ndo_rx_flow_steer() should periodically call
4544  * this function for each installed filter and remove the filters for
4545  * which it returns %true.
4546  */
4547 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4548                          u32 flow_id, u16 filter_id)
4549 {
4550         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4551         struct rps_dev_flow_table *flow_table;
4552         struct rps_dev_flow *rflow;
4553         bool expire = true;
4554         unsigned int cpu;
4555
4556         rcu_read_lock();
4557         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4558         if (flow_table && flow_id <= flow_table->mask) {
4559                 rflow = &flow_table->flows[flow_id];
4560                 cpu = READ_ONCE(rflow->cpu);
4561                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4562                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4563                            rflow->last_qtail) <
4564                      (int)(10 * flow_table->mask)))
4565                         expire = false;
4566         }
4567         rcu_read_unlock();
4568         return expire;
4569 }
4570 EXPORT_SYMBOL(rps_may_expire_flow);
4571
4572 #endif /* CONFIG_RFS_ACCEL */
4573
4574 /* Called from hardirq (IPI) context */
4575 static void rps_trigger_softirq(void *data)
4576 {
4577         struct softnet_data *sd = data;
4578
4579         ____napi_schedule(sd, &sd->backlog);
4580         sd->received_rps++;
4581 }
4582
4583 #endif /* CONFIG_RPS */
4584
4585 /*
4586  * Check if this softnet_data structure is another cpu one
4587  * If yes, queue it to our IPI list and return 1
4588  * If no, return 0
4589  */
4590 static int rps_ipi_queued(struct softnet_data *sd)
4591 {
4592 #ifdef CONFIG_RPS
4593         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4594
4595         if (sd != mysd) {
4596                 sd->rps_ipi_next = mysd->rps_ipi_list;
4597                 mysd->rps_ipi_list = sd;
4598
4599                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4600                 return 1;
4601         }
4602 #endif /* CONFIG_RPS */
4603         return 0;
4604 }
4605
4606 #ifdef CONFIG_NET_FLOW_LIMIT
4607 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4608 #endif
4609
4610 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4611 {
4612 #ifdef CONFIG_NET_FLOW_LIMIT
4613         struct sd_flow_limit *fl;
4614         struct softnet_data *sd;
4615         unsigned int old_flow, new_flow;
4616
4617         if (qlen < (netdev_max_backlog >> 1))
4618                 return false;
4619
4620         sd = this_cpu_ptr(&softnet_data);
4621
4622         rcu_read_lock();
4623         fl = rcu_dereference(sd->flow_limit);
4624         if (fl) {
4625                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4626                 old_flow = fl->history[fl->history_head];
4627                 fl->history[fl->history_head] = new_flow;
4628
4629                 fl->history_head++;
4630                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4631
4632                 if (likely(fl->buckets[old_flow]))
4633                         fl->buckets[old_flow]--;
4634
4635                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4636                         fl->count++;
4637                         rcu_read_unlock();
4638                         return true;
4639                 }
4640         }
4641         rcu_read_unlock();
4642 #endif
4643         return false;
4644 }
4645
4646 /*
4647  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4648  * queue (may be a remote CPU queue).
4649  */
4650 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4651                               unsigned int *qtail)
4652 {
4653         struct softnet_data *sd;
4654         unsigned long flags;
4655         unsigned int qlen;
4656
4657         sd = &per_cpu(softnet_data, cpu);
4658
4659         local_irq_save(flags);
4660
4661         rps_lock(sd);
4662         if (!netif_running(skb->dev))
4663                 goto drop;
4664         qlen = skb_queue_len(&sd->input_pkt_queue);
4665         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4666                 if (qlen) {
4667 enqueue:
4668                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4669                         input_queue_tail_incr_save(sd, qtail);
4670                         rps_unlock(sd);
4671                         local_irq_restore(flags);
4672                         return NET_RX_SUCCESS;
4673                 }
4674
4675                 /* Schedule NAPI for backlog device
4676                  * We can use non atomic operation since we own the queue lock
4677                  */
4678                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4679                         if (!rps_ipi_queued(sd))
4680                                 ____napi_schedule(sd, &sd->backlog);
4681                 }
4682                 goto enqueue;
4683         }
4684
4685 drop:
4686         sd->dropped++;
4687         rps_unlock(sd);
4688
4689         local_irq_restore(flags);
4690
4691         atomic_long_inc(&skb->dev->rx_dropped);
4692         kfree_skb(skb);
4693         return NET_RX_DROP;
4694 }
4695
4696 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4697 {
4698         struct net_device *dev = skb->dev;
4699         struct netdev_rx_queue *rxqueue;
4700
4701         rxqueue = dev->_rx;
4702
4703         if (skb_rx_queue_recorded(skb)) {
4704                 u16 index = skb_get_rx_queue(skb);
4705
4706                 if (unlikely(index >= dev->real_num_rx_queues)) {
4707                         WARN_ONCE(dev->real_num_rx_queues > 1,
4708                                   "%s received packet on queue %u, but number "
4709                                   "of RX queues is %u\n",
4710                                   dev->name, index, dev->real_num_rx_queues);
4711
4712                         return rxqueue; /* Return first rxqueue */
4713                 }
4714                 rxqueue += index;
4715         }
4716         return rxqueue;
4717 }
4718
4719 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4720                                      struct xdp_buff *xdp,
4721                                      struct bpf_prog *xdp_prog)
4722 {
4723         void *orig_data, *orig_data_end, *hard_start;
4724         struct netdev_rx_queue *rxqueue;
4725         u32 metalen, act = XDP_DROP;
4726         u32 mac_len, frame_sz;
4727         __be16 orig_eth_type;
4728         struct ethhdr *eth;
4729         bool orig_bcast;
4730         int off;
4731
4732         /* Reinjected packets coming from act_mirred or similar should
4733          * not get XDP generic processing.
4734          */
4735         if (skb_is_redirected(skb))
4736                 return XDP_PASS;
4737
4738         /* XDP packets must be linear and must have sufficient headroom
4739          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4740          * native XDP provides, thus we need to do it here as well.
4741          */
4742         if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4743             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4744                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4745                 int troom = skb->tail + skb->data_len - skb->end;
4746
4747                 /* In case we have to go down the path and also linearize,
4748                  * then lets do the pskb_expand_head() work just once here.
4749                  */
4750                 if (pskb_expand_head(skb,
4751                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4752                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4753                         goto do_drop;
4754                 if (skb_linearize(skb))
4755                         goto do_drop;
4756         }
4757
4758         /* The XDP program wants to see the packet starting at the MAC
4759          * header.
4760          */
4761         mac_len = skb->data - skb_mac_header(skb);
4762         hard_start = skb->data - skb_headroom(skb);
4763
4764         /* SKB "head" area always have tailroom for skb_shared_info */
4765         frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4766         frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4767
4768         rxqueue = netif_get_rxqueue(skb);
4769         xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4770         xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4771                          skb_headlen(skb) + mac_len, true);
4772
4773         orig_data_end = xdp->data_end;
4774         orig_data = xdp->data;
4775         eth = (struct ethhdr *)xdp->data;
4776         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4777         orig_eth_type = eth->h_proto;
4778
4779         act = bpf_prog_run_xdp(xdp_prog, xdp);
4780
4781         /* check if bpf_xdp_adjust_head was used */
4782         off = xdp->data - orig_data;
4783         if (off) {
4784                 if (off > 0)
4785                         __skb_pull(skb, off);
4786                 else if (off < 0)
4787                         __skb_push(skb, -off);
4788
4789                 skb->mac_header += off;
4790                 skb_reset_network_header(skb);
4791         }
4792
4793         /* check if bpf_xdp_adjust_tail was used */
4794         off = xdp->data_end - orig_data_end;
4795         if (off != 0) {
4796                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4797                 skb->len += off; /* positive on grow, negative on shrink */
4798         }
4799
4800         /* check if XDP changed eth hdr such SKB needs update */
4801         eth = (struct ethhdr *)xdp->data;
4802         if ((orig_eth_type != eth->h_proto) ||
4803             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4804                 __skb_push(skb, ETH_HLEN);
4805                 skb->protocol = eth_type_trans(skb, skb->dev);
4806         }
4807
4808         switch (act) {
4809         case XDP_REDIRECT:
4810         case XDP_TX:
4811                 __skb_push(skb, mac_len);
4812                 break;
4813         case XDP_PASS:
4814                 metalen = xdp->data - xdp->data_meta;
4815                 if (metalen)
4816                         skb_metadata_set(skb, metalen);
4817                 break;
4818         default:
4819                 bpf_warn_invalid_xdp_action(act);
4820                 fallthrough;
4821         case XDP_ABORTED:
4822                 trace_xdp_exception(skb->dev, xdp_prog, act);
4823                 fallthrough;
4824         case XDP_DROP:
4825         do_drop:
4826                 kfree_skb(skb);
4827                 break;
4828         }
4829
4830         return act;
4831 }
4832
4833 /* When doing generic XDP we have to bypass the qdisc layer and the
4834  * network taps in order to match in-driver-XDP behavior.
4835  */
4836 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4837 {
4838         struct net_device *dev = skb->dev;
4839         struct netdev_queue *txq;
4840         bool free_skb = true;
4841         int cpu, rc;
4842
4843         txq = netdev_core_pick_tx(dev, skb, NULL);
4844         cpu = smp_processor_id();
4845         HARD_TX_LOCK(dev, txq, cpu);
4846         if (!netif_xmit_stopped(txq)) {
4847                 rc = netdev_start_xmit(skb, dev, txq, 0);
4848                 if (dev_xmit_complete(rc))
4849                         free_skb = false;
4850         }
4851         HARD_TX_UNLOCK(dev, txq);
4852         if (free_skb) {
4853                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4854                 kfree_skb(skb);
4855         }
4856 }
4857
4858 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4859
4860 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4861 {
4862         if (xdp_prog) {
4863                 struct xdp_buff xdp;
4864                 u32 act;
4865                 int err;
4866
4867                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4868                 if (act != XDP_PASS) {
4869                         switch (act) {
4870                         case XDP_REDIRECT:
4871                                 err = xdp_do_generic_redirect(skb->dev, skb,
4872                                                               &xdp, xdp_prog);
4873                                 if (err)
4874                                         goto out_redir;
4875                                 break;
4876                         case XDP_TX:
4877                                 generic_xdp_tx(skb, xdp_prog);
4878                                 break;
4879                         }
4880                         return XDP_DROP;
4881                 }
4882         }
4883         return XDP_PASS;
4884 out_redir:
4885         kfree_skb(skb);
4886         return XDP_DROP;
4887 }
4888 EXPORT_SYMBOL_GPL(do_xdp_generic);
4889
4890 static int netif_rx_internal(struct sk_buff *skb)
4891 {
4892         int ret;
4893
4894         net_timestamp_check(netdev_tstamp_prequeue, skb);
4895
4896         trace_netif_rx(skb);
4897
4898 #ifdef CONFIG_RPS
4899         if (static_branch_unlikely(&rps_needed)) {
4900                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4901                 int cpu;
4902
4903                 preempt_disable();
4904                 rcu_read_lock();
4905
4906                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4907                 if (cpu < 0)
4908                         cpu = smp_processor_id();
4909
4910                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4911
4912                 rcu_read_unlock();
4913                 preempt_enable();
4914         } else
4915 #endif
4916         {
4917                 unsigned int qtail;
4918
4919                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4920                 put_cpu();
4921         }
4922         return ret;
4923 }
4924
4925 /**
4926  *      netif_rx        -       post buffer to the network code
4927  *      @skb: buffer to post
4928  *
4929  *      This function receives a packet from a device driver and queues it for
4930  *      the upper (protocol) levels to process.  It always succeeds. The buffer
4931  *      may be dropped during processing for congestion control or by the
4932  *      protocol layers.
4933  *
4934  *      return values:
4935  *      NET_RX_SUCCESS  (no congestion)
4936  *      NET_RX_DROP     (packet was dropped)
4937  *
4938  */
4939
4940 int netif_rx(struct sk_buff *skb)
4941 {
4942         int ret;
4943
4944         trace_netif_rx_entry(skb);
4945
4946         ret = netif_rx_internal(skb);
4947         trace_netif_rx_exit(ret);
4948
4949         return ret;
4950 }
4951 EXPORT_SYMBOL(netif_rx);
4952
4953 int netif_rx_ni(struct sk_buff *skb)
4954 {
4955         int err;
4956
4957         trace_netif_rx_ni_entry(skb);
4958
4959         preempt_disable();
4960         err = netif_rx_internal(skb);
4961         if (local_softirq_pending())
4962                 do_softirq();
4963         preempt_enable();
4964         trace_netif_rx_ni_exit(err);
4965
4966         return err;
4967 }
4968 EXPORT_SYMBOL(netif_rx_ni);
4969
4970 int netif_rx_any_context(struct sk_buff *skb)
4971 {
4972         /*
4973          * If invoked from contexts which do not invoke bottom half
4974          * processing either at return from interrupt or when softrqs are
4975          * reenabled, use netif_rx_ni() which invokes bottomhalf processing
4976          * directly.
4977          */
4978         if (in_interrupt())
4979                 return netif_rx(skb);
4980         else
4981                 return netif_rx_ni(skb);
4982 }
4983 EXPORT_SYMBOL(netif_rx_any_context);
4984
4985 static __latent_entropy void net_tx_action(struct softirq_action *h)
4986 {
4987         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4988
4989         if (sd->completion_queue) {
4990                 struct sk_buff *clist;
4991
4992                 local_irq_disable();
4993                 clist = sd->completion_queue;
4994                 sd->completion_queue = NULL;
4995                 local_irq_enable();
4996
4997                 while (clist) {
4998                         struct sk_buff *skb = clist;
4999
5000                         clist = clist->next;
5001
5002                         WARN_ON(refcount_read(&skb->users));
5003                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
5004                                 trace_consume_skb(skb);
5005                         else
5006                                 trace_kfree_skb(skb, net_tx_action);
5007
5008                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5009                                 __kfree_skb(skb);
5010                         else
5011                                 __kfree_skb_defer(skb);
5012                 }
5013         }
5014
5015         if (sd->output_queue) {
5016                 struct Qdisc *head;
5017
5018                 local_irq_disable();
5019                 head = sd->output_queue;
5020                 sd->output_queue = NULL;
5021                 sd->output_queue_tailp = &sd->output_queue;
5022                 local_irq_enable();
5023
5024                 while (head) {
5025                         struct Qdisc *q = head;
5026                         spinlock_t *root_lock = NULL;
5027
5028                         head = head->next_sched;
5029
5030                         if (!(q->flags & TCQ_F_NOLOCK)) {
5031                                 root_lock = qdisc_lock(q);
5032                                 spin_lock(root_lock);
5033                         }
5034                         /* We need to make sure head->next_sched is read
5035                          * before clearing __QDISC_STATE_SCHED
5036                          */
5037                         smp_mb__before_atomic();
5038                         clear_bit(__QDISC_STATE_SCHED, &q->state);
5039                         qdisc_run(q);
5040                         if (root_lock)
5041                                 spin_unlock(root_lock);
5042                 }
5043         }
5044
5045         xfrm_dev_backlog(sd);
5046 }
5047
5048 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5049 /* This hook is defined here for ATM LANE */
5050 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5051                              unsigned char *addr) __read_mostly;
5052 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5053 #endif
5054
5055 static inline struct sk_buff *
5056 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5057                    struct net_device *orig_dev, bool *another)
5058 {
5059 #ifdef CONFIG_NET_CLS_ACT
5060         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5061         struct tcf_result cl_res;
5062
5063         /* If there's at least one ingress present somewhere (so
5064          * we get here via enabled static key), remaining devices
5065          * that are not configured with an ingress qdisc will bail
5066          * out here.
5067          */
5068         if (!miniq)
5069                 return skb;
5070
5071         if (*pt_prev) {
5072                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5073                 *pt_prev = NULL;
5074         }
5075
5076         qdisc_skb_cb(skb)->pkt_len = skb->len;
5077         qdisc_skb_cb(skb)->mru = 0;
5078         qdisc_skb_cb(skb)->post_ct = false;
5079         skb->tc_at_ingress = 1;
5080         mini_qdisc_bstats_cpu_update(miniq, skb);
5081
5082         switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
5083                                      &cl_res, false)) {
5084         case TC_ACT_OK:
5085         case TC_ACT_RECLASSIFY:
5086                 skb->tc_index = TC_H_MIN(cl_res.classid);
5087                 break;
5088         case TC_ACT_SHOT:
5089                 mini_qdisc_qstats_cpu_drop(miniq);
5090                 kfree_skb(skb);
5091                 return NULL;
5092         case TC_ACT_STOLEN:
5093         case TC_ACT_QUEUED:
5094         case TC_ACT_TRAP:
5095                 consume_skb(skb);
5096                 return NULL;
5097         case TC_ACT_REDIRECT:
5098                 /* skb_mac_header check was done by cls/act_bpf, so
5099                  * we can safely push the L2 header back before
5100                  * redirecting to another netdev
5101                  */
5102                 __skb_push(skb, skb->mac_len);
5103                 if (skb_do_redirect(skb) == -EAGAIN) {
5104                         __skb_pull(skb, skb->mac_len);
5105                         *another = true;
5106                         break;
5107                 }
5108                 return NULL;
5109         case TC_ACT_CONSUMED:
5110                 return NULL;
5111         default:
5112                 break;
5113         }
5114 #endif /* CONFIG_NET_CLS_ACT */
5115         return skb;
5116 }
5117
5118 /**
5119  *      netdev_is_rx_handler_busy - check if receive handler is registered
5120  *      @dev: device to check
5121  *
5122  *      Check if a receive handler is already registered for a given device.
5123  *      Return true if there one.
5124  *
5125  *      The caller must hold the rtnl_mutex.
5126  */
5127 bool netdev_is_rx_handler_busy(struct net_device *dev)
5128 {
5129         ASSERT_RTNL();
5130         return dev && rtnl_dereference(dev->rx_handler);
5131 }
5132 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5133
5134 /**
5135  *      netdev_rx_handler_register - register receive handler
5136  *      @dev: device to register a handler for
5137  *      @rx_handler: receive handler to register
5138  *      @rx_handler_data: data pointer that is used by rx handler
5139  *
5140  *      Register a receive handler for a device. This handler will then be
5141  *      called from __netif_receive_skb. A negative errno code is returned
5142  *      on a failure.
5143  *
5144  *      The caller must hold the rtnl_mutex.
5145  *
5146  *      For a general description of rx_handler, see enum rx_handler_result.
5147  */
5148 int netdev_rx_handler_register(struct net_device *dev,
5149                                rx_handler_func_t *rx_handler,
5150                                void *rx_handler_data)
5151 {
5152         if (netdev_is_rx_handler_busy(dev))
5153                 return -EBUSY;
5154
5155         if (dev->priv_flags & IFF_NO_RX_HANDLER)
5156                 return -EINVAL;
5157
5158         /* Note: rx_handler_data must be set before rx_handler */
5159         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5160         rcu_assign_pointer(dev->rx_handler, rx_handler);
5161
5162         return 0;
5163 }
5164 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5165
5166 /**
5167  *      netdev_rx_handler_unregister - unregister receive handler
5168  *      @dev: device to unregister a handler from
5169  *
5170  *      Unregister a receive handler from a device.
5171  *
5172  *      The caller must hold the rtnl_mutex.
5173  */
5174 void netdev_rx_handler_unregister(struct net_device *dev)
5175 {
5176
5177         ASSERT_RTNL();
5178         RCU_INIT_POINTER(dev->rx_handler, NULL);
5179         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5180          * section has a guarantee to see a non NULL rx_handler_data
5181          * as well.
5182          */
5183         synchronize_net();
5184         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5185 }
5186 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5187
5188 /*
5189  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5190  * the special handling of PFMEMALLOC skbs.
5191  */
5192 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5193 {
5194         switch (skb->protocol) {
5195         case htons(ETH_P_ARP):
5196         case htons(ETH_P_IP):
5197         case htons(ETH_P_IPV6):
5198         case htons(ETH_P_8021Q):
5199         case htons(ETH_P_8021AD):
5200                 return true;
5201         default:
5202                 return false;
5203         }
5204 }
5205
5206 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5207                              int *ret, struct net_device *orig_dev)
5208 {
5209         if (nf_hook_ingress_active(skb)) {
5210                 int ingress_retval;
5211
5212                 if (*pt_prev) {
5213                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
5214                         *pt_prev = NULL;
5215                 }
5216
5217                 rcu_read_lock();
5218                 ingress_retval = nf_hook_ingress(skb);
5219                 rcu_read_unlock();
5220                 return ingress_retval;
5221         }
5222         return 0;
5223 }
5224
5225 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5226                                     struct packet_type **ppt_prev)
5227 {
5228         struct packet_type *ptype, *pt_prev;
5229         rx_handler_func_t *rx_handler;
5230         struct sk_buff *skb = *pskb;
5231         struct net_device *orig_dev;
5232         bool deliver_exact = false;
5233         int ret = NET_RX_DROP;
5234         __be16 type;
5235
5236         net_timestamp_check(!netdev_tstamp_prequeue, skb);
5237
5238         trace_netif_receive_skb(skb);
5239
5240         orig_dev = skb->dev;
5241
5242         skb_reset_network_header(skb);
5243         if (!skb_transport_header_was_set(skb))
5244                 skb_reset_transport_header(skb);
5245         skb_reset_mac_len(skb);
5246
5247         pt_prev = NULL;
5248
5249 another_round:
5250         skb->skb_iif = skb->dev->ifindex;
5251
5252         __this_cpu_inc(softnet_data.processed);
5253
5254         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5255                 int ret2;
5256
5257                 preempt_disable();
5258                 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5259                 preempt_enable();
5260
5261                 if (ret2 != XDP_PASS) {
5262                         ret = NET_RX_DROP;
5263                         goto out;
5264                 }
5265                 skb_reset_mac_len(skb);
5266         }
5267
5268         if (eth_type_vlan(skb->protocol)) {
5269                 skb = skb_vlan_untag(skb);
5270                 if (unlikely(!skb))
5271                         goto out;
5272         }
5273
5274         if (skb_skip_tc_classify(skb))
5275                 goto skip_classify;
5276
5277         if (pfmemalloc)
5278                 goto skip_taps;
5279
5280         list_for_each_entry_rcu(ptype, &ptype_all, list) {
5281                 if (pt_prev)
5282                         ret = deliver_skb(skb, pt_prev, orig_dev);
5283                 pt_prev = ptype;
5284         }
5285
5286         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5287                 if (pt_prev)
5288                         ret = deliver_skb(skb, pt_prev, orig_dev);
5289                 pt_prev = ptype;
5290         }
5291
5292 skip_taps:
5293 #ifdef CONFIG_NET_INGRESS
5294         if (static_branch_unlikely(&ingress_needed_key)) {
5295                 bool another = false;
5296
5297                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5298                                          &another);
5299                 if (another)
5300                         goto another_round;
5301                 if (!skb)
5302                         goto out;
5303
5304                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5305                         goto out;
5306         }
5307 #endif
5308         skb_reset_redirect(skb);
5309 skip_classify:
5310         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5311                 goto drop;
5312
5313         if (skb_vlan_tag_present(skb)) {
5314                 if (pt_prev) {
5315                         ret = deliver_skb(skb, pt_prev, orig_dev);
5316                         pt_prev = NULL;
5317                 }
5318                 if (vlan_do_receive(&skb))
5319                         goto another_round;
5320                 else if (unlikely(!skb))
5321                         goto out;
5322         }
5323
5324         rx_handler = rcu_dereference(skb->dev->rx_handler);
5325         if (rx_handler) {
5326                 if (pt_prev) {
5327                         ret = deliver_skb(skb, pt_prev, orig_dev);
5328                         pt_prev = NULL;
5329                 }
5330                 switch (rx_handler(&skb)) {
5331                 case RX_HANDLER_CONSUMED:
5332                         ret = NET_RX_SUCCESS;
5333                         goto out;
5334                 case RX_HANDLER_ANOTHER:
5335                         goto another_round;
5336                 case RX_HANDLER_EXACT:
5337                         deliver_exact = true;
5338                         break;
5339                 case RX_HANDLER_PASS:
5340                         break;
5341                 default:
5342                         BUG();
5343                 }
5344         }
5345
5346         if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5347 check_vlan_id:
5348                 if (skb_vlan_tag_get_id(skb)) {
5349                         /* Vlan id is non 0 and vlan_do_receive() above couldn't
5350                          * find vlan device.
5351                          */
5352                         skb->pkt_type = PACKET_OTHERHOST;
5353                 } else if (eth_type_vlan(skb->protocol)) {
5354                         /* Outer header is 802.1P with vlan 0, inner header is
5355                          * 802.1Q or 802.1AD and vlan_do_receive() above could
5356                          * not find vlan dev for vlan id 0.
5357                          */
5358                         __vlan_hwaccel_clear_tag(skb);
5359                         skb = skb_vlan_untag(skb);
5360                         if (unlikely(!skb))
5361                                 goto out;
5362                         if (vlan_do_receive(&skb))
5363                                 /* After stripping off 802.1P header with vlan 0
5364                                  * vlan dev is found for inner header.
5365                                  */
5366                                 goto another_round;
5367                         else if (unlikely(!skb))
5368                                 goto out;
5369                         else
5370                                 /* We have stripped outer 802.1P vlan 0 header.
5371                                  * But could not find vlan dev.
5372                                  * check again for vlan id to set OTHERHOST.
5373                                  */
5374                                 goto check_vlan_id;
5375                 }
5376                 /* Note: we might in the future use prio bits
5377                  * and set skb->priority like in vlan_do_receive()
5378                  * For the time being, just ignore Priority Code Point
5379                  */
5380                 __vlan_hwaccel_clear_tag(skb);
5381         }
5382
5383         type = skb->protocol;
5384
5385         /* deliver only exact match when indicated */
5386         if (likely(!deliver_exact)) {
5387                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5388                                        &ptype_base[ntohs(type) &
5389                                                    PTYPE_HASH_MASK]);
5390         }
5391
5392         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5393                                &orig_dev->ptype_specific);
5394
5395         if (unlikely(skb->dev != orig_dev)) {
5396                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5397                                        &skb->dev->ptype_specific);
5398         }
5399
5400         if (pt_prev) {
5401                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5402                         goto drop;
5403                 *ppt_prev = pt_prev;
5404         } else {
5405 drop:
5406                 if (!deliver_exact)
5407                         atomic_long_inc(&skb->dev->rx_dropped);
5408                 else
5409                         atomic_long_inc(&skb->dev->rx_nohandler);
5410                 kfree_skb(skb);
5411                 /* Jamal, now you will not able to escape explaining
5412                  * me how you were going to use this. :-)
5413                  */
5414                 ret = NET_RX_DROP;
5415         }
5416
5417 out:
5418         /* The invariant here is that if *ppt_prev is not NULL
5419          * then skb should also be non-NULL.
5420          *
5421          * Apparently *ppt_prev assignment above holds this invariant due to
5422          * skb dereferencing near it.
5423          */
5424         *pskb = skb;
5425         return ret;
5426 }
5427
5428 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5429 {
5430         struct net_device *orig_dev = skb->dev;
5431         struct packet_type *pt_prev = NULL;
5432         int ret;
5433
5434         ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5435         if (pt_prev)
5436                 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5437                                          skb->dev, pt_prev, orig_dev);
5438         return ret;
5439 }
5440
5441 /**
5442  *      netif_receive_skb_core - special purpose version of netif_receive_skb
5443  *      @skb: buffer to process
5444  *
5445  *      More direct receive version of netif_receive_skb().  It should
5446  *      only be used by callers that have a need to skip RPS and Generic XDP.
5447  *      Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5448  *
5449  *      This function may only be called from softirq context and interrupts
5450  *      should be enabled.
5451  *
5452  *      Return values (usually ignored):
5453  *      NET_RX_SUCCESS: no congestion
5454  *      NET_RX_DROP: packet was dropped
5455  */
5456 int netif_receive_skb_core(struct sk_buff *skb)
5457 {
5458         int ret;
5459
5460         rcu_read_lock();
5461         ret = __netif_receive_skb_one_core(skb, false);
5462         rcu_read_unlock();
5463
5464         return ret;
5465 }
5466 EXPORT_SYMBOL(netif_receive_skb_core);
5467
5468 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5469                                                   struct packet_type *pt_prev,
5470                                                   struct net_device *orig_dev)
5471 {
5472         struct sk_buff *skb, *next;
5473
5474         if (!pt_prev)
5475                 return;
5476         if (list_empty(head))
5477                 return;
5478         if (pt_prev->list_func != NULL)
5479                 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5480                                    ip_list_rcv, head, pt_prev, orig_dev);
5481         else
5482                 list_for_each_entry_safe(skb, next, head, list) {
5483                         skb_list_del_init(skb);
5484                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5485                 }
5486 }
5487
5488 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5489 {
5490         /* Fast-path assumptions:
5491          * - There is no RX handler.
5492          * - Only one packet_type matches.
5493          * If either of these fails, we will end up doing some per-packet
5494          * processing in-line, then handling the 'last ptype' for the whole
5495          * sublist.  This can't cause out-of-order delivery to any single ptype,
5496          * because the 'last ptype' must be constant across the sublist, and all
5497          * other ptypes are handled per-packet.
5498          */
5499         /* Current (common) ptype of sublist */
5500         struct packet_type *pt_curr = NULL;
5501         /* Current (common) orig_dev of sublist */
5502         struct net_device *od_curr = NULL;
5503         struct list_head sublist;
5504         struct sk_buff *skb, *next;
5505
5506         INIT_LIST_HEAD(&sublist);
5507         list_for_each_entry_safe(skb, next, head, list) {
5508                 struct net_device *orig_dev = skb->dev;
5509                 struct packet_type *pt_prev = NULL;
5510
5511                 skb_list_del_init(skb);
5512                 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5513                 if (!pt_prev)
5514                         continue;
5515                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5516                         /* dispatch old sublist */
5517                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5518                         /* start new sublist */
5519                         INIT_LIST_HEAD(&sublist);
5520                         pt_curr = pt_prev;
5521                         od_curr = orig_dev;
5522                 }
5523                 list_add_tail(&skb->list, &sublist);
5524         }
5525
5526         /* dispatch final sublist */
5527         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5528 }
5529
5530 static int __netif_receive_skb(struct sk_buff *skb)
5531 {
5532         int ret;
5533
5534         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5535                 unsigned int noreclaim_flag;
5536
5537                 /*
5538                  * PFMEMALLOC skbs are special, they should
5539                  * - be delivered to SOCK_MEMALLOC sockets only
5540                  * - stay away from userspace
5541                  * - have bounded memory usage
5542                  *
5543                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5544                  * context down to all allocation sites.
5545                  */
5546                 noreclaim_flag = memalloc_noreclaim_save();
5547                 ret = __netif_receive_skb_one_core(skb, true);
5548                 memalloc_noreclaim_restore(noreclaim_flag);
5549         } else
5550                 ret = __netif_receive_skb_one_core(skb, false);
5551
5552         return ret;
5553 }
5554
5555 static void __netif_receive_skb_list(struct list_head *head)
5556 {
5557         unsigned long noreclaim_flag = 0;
5558         struct sk_buff *skb, *next;
5559         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5560
5561         list_for_each_entry_safe(skb, next, head, list) {
5562                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5563                         struct list_head sublist;
5564
5565                         /* Handle the previous sublist */
5566                         list_cut_before(&sublist, head, &skb->list);
5567                         if (!list_empty(&sublist))
5568                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5569                         pfmemalloc = !pfmemalloc;
5570                         /* See comments in __netif_receive_skb */
5571                         if (pfmemalloc)
5572                                 noreclaim_flag = memalloc_noreclaim_save();
5573                         else
5574                                 memalloc_noreclaim_restore(noreclaim_flag);
5575                 }
5576         }
5577         /* Handle the remaining sublist */
5578         if (!list_empty(head))
5579                 __netif_receive_skb_list_core(head, pfmemalloc);
5580         /* Restore pflags */
5581         if (pfmemalloc)
5582                 memalloc_noreclaim_restore(noreclaim_flag);
5583 }
5584
5585 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5586 {
5587         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5588         struct bpf_prog *new = xdp->prog;
5589         int ret = 0;
5590
5591         if (new) {
5592                 u32 i;
5593
5594                 mutex_lock(&new->aux->used_maps_mutex);
5595
5596                 /* generic XDP does not work with DEVMAPs that can
5597                  * have a bpf_prog installed on an entry
5598                  */
5599                 for (i = 0; i < new->aux->used_map_cnt; i++) {
5600                         if (dev_map_can_have_prog(new->aux->used_maps[i]) ||
5601                             cpu_map_prog_allowed(new->aux->used_maps[i])) {
5602                                 mutex_unlock(&new->aux->used_maps_mutex);
5603                                 return -EINVAL;
5604                         }
5605                 }
5606
5607                 mutex_unlock(&new->aux->used_maps_mutex);
5608         }
5609
5610         switch (xdp->command) {
5611         case XDP_SETUP_PROG:
5612                 rcu_assign_pointer(dev->xdp_prog, new);
5613                 if (old)
5614                         bpf_prog_put(old);
5615
5616                 if (old && !new) {
5617                         static_branch_dec(&generic_xdp_needed_key);
5618                 } else if (new && !old) {
5619                         static_branch_inc(&generic_xdp_needed_key);
5620                         dev_disable_lro(dev);
5621                         dev_disable_gro_hw(dev);
5622                 }
5623                 break;
5624
5625         default:
5626                 ret = -EINVAL;
5627                 break;
5628         }
5629
5630         return ret;
5631 }
5632
5633 static int netif_receive_skb_internal(struct sk_buff *skb)
5634 {
5635         int ret;
5636
5637         net_timestamp_check(netdev_tstamp_prequeue, skb);
5638
5639         if (skb_defer_rx_timestamp(skb))
5640                 return NET_RX_SUCCESS;
5641
5642         rcu_read_lock();
5643 #ifdef CONFIG_RPS
5644         if (static_branch_unlikely(&rps_needed)) {
5645                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5646                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5647
5648                 if (cpu >= 0) {
5649                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5650                         rcu_read_unlock();
5651                         return ret;
5652                 }
5653         }
5654 #endif
5655         ret = __netif_receive_skb(skb);
5656         rcu_read_unlock();
5657         return ret;
5658 }
5659
5660 static void netif_receive_skb_list_internal(struct list_head *head)
5661 {
5662         struct sk_buff *skb, *next;
5663         struct list_head sublist;
5664
5665         INIT_LIST_HEAD(&sublist);
5666         list_for_each_entry_safe(skb, next, head, list) {
5667                 net_timestamp_check(netdev_tstamp_prequeue, skb);
5668                 skb_list_del_init(skb);
5669                 if (!skb_defer_rx_timestamp(skb))
5670                         list_add_tail(&skb->list, &sublist);
5671         }
5672         list_splice_init(&sublist, head);
5673
5674         rcu_read_lock();
5675 #ifdef CONFIG_RPS
5676         if (static_branch_unlikely(&rps_needed)) {
5677                 list_for_each_entry_safe(skb, next, head, list) {
5678                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5679                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5680
5681                         if (cpu >= 0) {
5682                                 /* Will be handled, remove from list */
5683                                 skb_list_del_init(skb);
5684                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5685                         }
5686                 }
5687         }
5688 #endif
5689         __netif_receive_skb_list(head);
5690         rcu_read_unlock();
5691 }
5692
5693 /**
5694  *      netif_receive_skb - process receive buffer from network
5695  *      @skb: buffer to process
5696  *
5697  *      netif_receive_skb() is the main receive data processing function.
5698  *      It always succeeds. The buffer may be dropped during processing
5699  *      for congestion control or by the protocol layers.
5700  *
5701  *      This function may only be called from softirq context and interrupts
5702  *      should be enabled.
5703  *
5704  *      Return values (usually ignored):
5705  *      NET_RX_SUCCESS: no congestion
5706  *      NET_RX_DROP: packet was dropped
5707  */
5708 int netif_receive_skb(struct sk_buff *skb)
5709 {
5710         int ret;
5711
5712         trace_netif_receive_skb_entry(skb);
5713
5714         ret = netif_receive_skb_internal(skb);
5715         trace_netif_receive_skb_exit(ret);
5716
5717         return ret;
5718 }
5719 EXPORT_SYMBOL(netif_receive_skb);
5720
5721 /**
5722  *      netif_receive_skb_list - process many receive buffers from network
5723  *      @head: list of skbs to process.
5724  *
5725  *      Since return value of netif_receive_skb() is normally ignored, and
5726  *      wouldn't be meaningful for a list, this function returns void.
5727  *
5728  *      This function may only be called from softirq context and interrupts
5729  *      should be enabled.
5730  */
5731 void netif_receive_skb_list(struct list_head *head)
5732 {
5733         struct sk_buff *skb;
5734
5735         if (list_empty(head))
5736                 return;
5737         if (trace_netif_receive_skb_list_entry_enabled()) {
5738                 list_for_each_entry(skb, head, list)
5739                         trace_netif_receive_skb_list_entry(skb);
5740         }
5741         netif_receive_skb_list_internal(head);
5742         trace_netif_receive_skb_list_exit(0);
5743 }
5744 EXPORT_SYMBOL(netif_receive_skb_list);
5745
5746 static DEFINE_PER_CPU(struct work_struct, flush_works);
5747
5748 /* Network device is going away, flush any packets still pending */
5749 static void flush_backlog(struct work_struct *work)
5750 {
5751         struct sk_buff *skb, *tmp;
5752         struct softnet_data *sd;
5753
5754         local_bh_disable();
5755         sd = this_cpu_ptr(&softnet_data);
5756
5757         local_irq_disable();
5758         rps_lock(sd);
5759         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5760                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5761                         __skb_unlink(skb, &sd->input_pkt_queue);
5762                         dev_kfree_skb_irq(skb);
5763                         input_queue_head_incr(sd);
5764                 }
5765         }
5766         rps_unlock(sd);
5767         local_irq_enable();
5768
5769         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5770                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5771                         __skb_unlink(skb, &sd->process_queue);
5772                         kfree_skb(skb);
5773                         input_queue_head_incr(sd);
5774                 }
5775         }
5776         local_bh_enable();
5777 }
5778
5779 static bool flush_required(int cpu)
5780 {
5781 #if IS_ENABLED(CONFIG_RPS)
5782         struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5783         bool do_flush;
5784
5785         local_irq_disable();
5786         rps_lock(sd);
5787
5788         /* as insertion into process_queue happens with the rps lock held,
5789          * process_queue access may race only with dequeue
5790          */
5791         do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5792                    !skb_queue_empty_lockless(&sd->process_queue);
5793         rps_unlock(sd);
5794         local_irq_enable();
5795
5796         return do_flush;
5797 #endif
5798         /* without RPS we can't safely check input_pkt_queue: during a
5799          * concurrent remote skb_queue_splice() we can detect as empty both
5800          * input_pkt_queue and process_queue even if the latter could end-up
5801          * containing a lot of packets.
5802          */
5803         return true;
5804 }
5805
5806 static void flush_all_backlogs(void)
5807 {
5808         static cpumask_t flush_cpus;
5809         unsigned int cpu;
5810
5811         /* since we are under rtnl lock protection we can use static data
5812          * for the cpumask and avoid allocating on stack the possibly
5813          * large mask
5814          */
5815         ASSERT_RTNL();
5816
5817         get_online_cpus();
5818
5819         cpumask_clear(&flush_cpus);
5820         for_each_online_cpu(cpu) {
5821                 if (flush_required(cpu)) {
5822                         queue_work_on(cpu, system_highpri_wq,
5823                                       per_cpu_ptr(&flush_works, cpu));
5824                         cpumask_set_cpu(cpu, &flush_cpus);
5825                 }
5826         }
5827
5828         /* we can have in flight packet[s] on the cpus we are not flushing,
5829          * synchronize_net() in unregister_netdevice_many() will take care of
5830          * them
5831          */
5832         for_each_cpu(cpu, &flush_cpus)
5833                 flush_work(per_cpu_ptr(&flush_works, cpu));
5834
5835         put_online_cpus();
5836 }
5837
5838 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5839 static void gro_normal_list(struct napi_struct *napi)
5840 {
5841         if (!napi->rx_count)
5842                 return;
5843         netif_receive_skb_list_internal(&napi->rx_list);
5844         INIT_LIST_HEAD(&napi->rx_list);
5845         napi->rx_count = 0;
5846 }
5847
5848 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5849  * pass the whole batch up to the stack.
5850  */
5851 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb, int segs)
5852 {
5853         list_add_tail(&skb->list, &napi->rx_list);
5854         napi->rx_count += segs;
5855         if (napi->rx_count >= gro_normal_batch)
5856                 gro_normal_list(napi);
5857 }
5858
5859 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5860 {
5861         struct packet_offload *ptype;
5862         __be16 type = skb->protocol;
5863         struct list_head *head = &offload_base;
5864         int err = -ENOENT;
5865
5866         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5867
5868         if (NAPI_GRO_CB(skb)->count == 1) {
5869                 skb_shinfo(skb)->gso_size = 0;
5870                 goto out;
5871         }
5872
5873         rcu_read_lock();
5874         list_for_each_entry_rcu(ptype, head, list) {
5875                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5876                         continue;
5877
5878                 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5879                                          ipv6_gro_complete, inet_gro_complete,
5880                                          skb, 0);
5881                 break;
5882         }
5883         rcu_read_unlock();
5884
5885         if (err) {
5886                 WARN_ON(&ptype->list == head);
5887                 kfree_skb(skb);
5888                 return NET_RX_SUCCESS;
5889         }
5890
5891 out:
5892         gro_normal_one(napi, skb, NAPI_GRO_CB(skb)->count);
5893         return NET_RX_SUCCESS;
5894 }
5895
5896 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5897                                    bool flush_old)
5898 {
5899         struct list_head *head = &napi->gro_hash[index].list;
5900         struct sk_buff *skb, *p;
5901
5902         list_for_each_entry_safe_reverse(skb, p, head, list) {
5903                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5904                         return;
5905                 skb_list_del_init(skb);
5906                 napi_gro_complete(napi, skb);
5907                 napi->gro_hash[index].count--;
5908         }
5909
5910         if (!napi->gro_hash[index].count)
5911                 __clear_bit(index, &napi->gro_bitmask);
5912 }
5913
5914 /* napi->gro_hash[].list contains packets ordered by age.
5915  * youngest packets at the head of it.
5916  * Complete skbs in reverse order to reduce latencies.
5917  */
5918 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5919 {
5920         unsigned long bitmask = napi->gro_bitmask;
5921         unsigned int i, base = ~0U;
5922
5923         while ((i = ffs(bitmask)) != 0) {
5924                 bitmask >>= i;
5925                 base += i;
5926                 __napi_gro_flush_chain(napi, base, flush_old);
5927         }
5928 }
5929 EXPORT_SYMBOL(napi_gro_flush);
5930
5931 static void gro_list_prepare(const struct list_head *head,
5932                              const struct sk_buff *skb)
5933 {
5934         unsigned int maclen = skb->dev->hard_header_len;
5935         u32 hash = skb_get_hash_raw(skb);
5936         struct sk_buff *p;
5937
5938         list_for_each_entry(p, head, list) {
5939                 unsigned long diffs;
5940
5941                 NAPI_GRO_CB(p)->flush = 0;
5942
5943                 if (hash != skb_get_hash_raw(p)) {
5944                         NAPI_GRO_CB(p)->same_flow = 0;
5945                         continue;
5946                 }
5947
5948                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5949                 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5950                 if (skb_vlan_tag_present(p))
5951                         diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5952                 diffs |= skb_metadata_dst_cmp(p, skb);
5953                 diffs |= skb_metadata_differs(p, skb);
5954                 if (maclen == ETH_HLEN)
5955                         diffs |= compare_ether_header(skb_mac_header(p),
5956                                                       skb_mac_header(skb));
5957                 else if (!diffs)
5958                         diffs = memcmp(skb_mac_header(p),
5959                                        skb_mac_header(skb),
5960                                        maclen);
5961                 NAPI_GRO_CB(p)->same_flow = !diffs;
5962         }
5963 }
5964
5965 static void skb_gro_reset_offset(struct sk_buff *skb)
5966 {
5967         const struct skb_shared_info *pinfo = skb_shinfo(skb);
5968         const skb_frag_t *frag0 = &pinfo->frags[0];
5969
5970         NAPI_GRO_CB(skb)->data_offset = 0;
5971         NAPI_GRO_CB(skb)->frag0 = NULL;
5972         NAPI_GRO_CB(skb)->frag0_len = 0;
5973
5974         if (!skb_headlen(skb) && pinfo->nr_frags &&
5975             !PageHighMem(skb_frag_page(frag0)) &&
5976             (!NET_IP_ALIGN || !(skb_frag_off(frag0) & 3))) {
5977                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5978                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5979                                                     skb_frag_size(frag0),
5980                                                     skb->end - skb->tail);
5981         }
5982 }
5983
5984 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5985 {
5986         struct skb_shared_info *pinfo = skb_shinfo(skb);
5987
5988         BUG_ON(skb->end - skb->tail < grow);
5989
5990         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5991
5992         skb->data_len -= grow;
5993         skb->tail += grow;
5994
5995         skb_frag_off_add(&pinfo->frags[0], grow);
5996         skb_frag_size_sub(&pinfo->frags[0], grow);
5997
5998         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5999                 skb_frag_unref(skb, 0);
6000                 memmove(pinfo->frags, pinfo->frags + 1,
6001                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
6002         }
6003 }
6004
6005 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
6006 {
6007         struct sk_buff *oldest;
6008
6009         oldest = list_last_entry(head, struct sk_buff, list);
6010
6011         /* We are called with head length >= MAX_GRO_SKBS, so this is
6012          * impossible.
6013          */
6014         if (WARN_ON_ONCE(!oldest))
6015                 return;
6016
6017         /* Do not adjust napi->gro_hash[].count, caller is adding a new
6018          * SKB to the chain.
6019          */
6020         skb_list_del_init(oldest);
6021         napi_gro_complete(napi, oldest);
6022 }
6023
6024 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6025 {
6026         u32 bucket = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
6027         struct gro_list *gro_list = &napi->gro_hash[bucket];
6028         struct list_head *head = &offload_base;
6029         struct packet_offload *ptype;
6030         __be16 type = skb->protocol;
6031         struct sk_buff *pp = NULL;
6032         enum gro_result ret;
6033         int same_flow;
6034         int grow;
6035
6036         if (netif_elide_gro(skb->dev))
6037                 goto normal;
6038
6039         gro_list_prepare(&gro_list->list, skb);
6040
6041         rcu_read_lock();
6042         list_for_each_entry_rcu(ptype, head, list) {
6043                 if (ptype->type != type || !ptype->callbacks.gro_receive)
6044                         continue;
6045
6046                 skb_set_network_header(skb, skb_gro_offset(skb));
6047                 skb_reset_mac_len(skb);
6048                 NAPI_GRO_CB(skb)->same_flow = 0;
6049                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
6050                 NAPI_GRO_CB(skb)->free = 0;
6051                 NAPI_GRO_CB(skb)->encap_mark = 0;
6052                 NAPI_GRO_CB(skb)->recursion_counter = 0;
6053                 NAPI_GRO_CB(skb)->is_fou = 0;
6054                 NAPI_GRO_CB(skb)->is_atomic = 1;
6055                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
6056
6057                 /* Setup for GRO checksum validation */
6058                 switch (skb->ip_summed) {
6059                 case CHECKSUM_COMPLETE:
6060                         NAPI_GRO_CB(skb)->csum = skb->csum;
6061                         NAPI_GRO_CB(skb)->csum_valid = 1;
6062                         NAPI_GRO_CB(skb)->csum_cnt = 0;
6063                         break;
6064                 case CHECKSUM_UNNECESSARY:
6065                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
6066                         NAPI_GRO_CB(skb)->csum_valid = 0;
6067                         break;
6068                 default:
6069                         NAPI_GRO_CB(skb)->csum_cnt = 0;
6070                         NAPI_GRO_CB(skb)->csum_valid = 0;
6071                 }
6072
6073                 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
6074                                         ipv6_gro_receive, inet_gro_receive,
6075                                         &gro_list->list, skb);
6076                 break;
6077         }
6078         rcu_read_unlock();
6079
6080         if (&ptype->list == head)
6081                 goto normal;
6082
6083         if (PTR_ERR(pp) == -EINPROGRESS) {
6084                 ret = GRO_CONSUMED;
6085                 goto ok;
6086         }
6087
6088         same_flow = NAPI_GRO_CB(skb)->same_flow;
6089         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
6090
6091         if (pp) {
6092                 skb_list_del_init(pp);
6093                 napi_gro_complete(napi, pp);
6094                 gro_list->count--;
6095         }
6096
6097         if (same_flow)
6098                 goto ok;
6099
6100         if (NAPI_GRO_CB(skb)->flush)
6101                 goto normal;
6102
6103         if (unlikely(gro_list->count >= MAX_GRO_SKBS))
6104                 gro_flush_oldest(napi, &gro_list->list);
6105         else
6106                 gro_list->count++;
6107
6108         NAPI_GRO_CB(skb)->count = 1;
6109         NAPI_GRO_CB(skb)->age = jiffies;
6110         NAPI_GRO_CB(skb)->last = skb;
6111         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
6112         list_add(&skb->list, &gro_list->list);
6113         ret = GRO_HELD;
6114
6115 pull:
6116         grow = skb_gro_offset(skb) - skb_headlen(skb);
6117         if (grow > 0)
6118                 gro_pull_from_frag0(skb, grow);
6119 ok:
6120         if (gro_list->count) {
6121                 if (!test_bit(bucket, &napi->gro_bitmask))
6122                         __set_bit(bucket, &napi->gro_bitmask);
6123         } else if (test_bit(bucket, &napi->gro_bitmask)) {
6124                 __clear_bit(bucket, &napi->gro_bitmask);
6125         }
6126
6127         return ret;
6128
6129 normal:
6130         ret = GRO_NORMAL;
6131         goto pull;
6132 }
6133
6134 struct packet_offload *gro_find_receive_by_type(__be16 type)
6135 {
6136         struct list_head *offload_head = &offload_base;
6137         struct packet_offload *ptype;
6138
6139         list_for_each_entry_rcu(ptype, offload_head, list) {
6140                 if (ptype->type != type || !ptype->callbacks.gro_receive)
6141                         continue;
6142                 return ptype;
6143         }
6144         return NULL;
6145 }
6146 EXPORT_SYMBOL(gro_find_receive_by_type);
6147
6148 struct packet_offload *gro_find_complete_by_type(__be16 type)
6149 {
6150         struct list_head *offload_head = &offload_base;
6151         struct packet_offload *ptype;
6152
6153         list_for_each_entry_rcu(ptype, offload_head, list) {
6154                 if (ptype->type != type || !ptype->callbacks.gro_complete)
6155                         continue;
6156                 return ptype;
6157         }
6158         return NULL;
6159 }
6160 EXPORT_SYMBOL(gro_find_complete_by_type);
6161
6162 static gro_result_t napi_skb_finish(struct napi_struct *napi,
6163                                     struct sk_buff *skb,
6164                                     gro_result_t ret)
6165 {
6166         switch (ret) {
6167         case GRO_NORMAL:
6168                 gro_normal_one(napi, skb, 1);
6169                 break;
6170
6171         case GRO_MERGED_FREE:
6172                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6173                         napi_skb_free_stolen_head(skb);
6174                 else
6175                         __kfree_skb_defer(skb);
6176                 break;
6177
6178         case GRO_HELD:
6179         case GRO_MERGED:
6180         case GRO_CONSUMED:
6181                 break;
6182         }
6183
6184         return ret;
6185 }
6186
6187 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6188 {
6189         gro_result_t ret;
6190
6191         skb_mark_napi_id(skb, napi);
6192         trace_napi_gro_receive_entry(skb);
6193
6194         skb_gro_reset_offset(skb);
6195
6196         ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6197         trace_napi_gro_receive_exit(ret);
6198
6199         return ret;
6200 }
6201 EXPORT_SYMBOL(napi_gro_receive);
6202
6203 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6204 {
6205         if (unlikely(skb->pfmemalloc)) {
6206                 consume_skb(skb);
6207                 return;
6208         }
6209         __skb_pull(skb, skb_headlen(skb));
6210         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
6211         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6212         __vlan_hwaccel_clear_tag(skb);
6213         skb->dev = napi->dev;
6214         skb->skb_iif = 0;
6215
6216         /* eth_type_trans() assumes pkt_type is PACKET_HOST */
6217         skb->pkt_type = PACKET_HOST;
6218
6219         skb->encapsulation = 0;
6220         skb_shinfo(skb)->gso_type = 0;
6221         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6222         skb_ext_reset(skb);
6223
6224         napi->skb = skb;
6225 }
6226
6227 struct sk_buff *napi_get_frags(struct napi_struct *napi)
6228 {
6229         struct sk_buff *skb = napi->skb;
6230
6231         if (!skb) {
6232                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6233                 if (skb) {
6234                         napi->skb = skb;
6235                         skb_mark_napi_id(skb, napi);
6236                 }
6237         }
6238         return skb;
6239 }
6240 EXPORT_SYMBOL(napi_get_frags);
6241
6242 static gro_result_t napi_frags_finish(struct napi_struct *napi,
6243                                       struct sk_buff *skb,
6244                                       gro_result_t ret)
6245 {
6246         switch (ret) {
6247         case GRO_NORMAL:
6248         case GRO_HELD:
6249                 __skb_push(skb, ETH_HLEN);
6250                 skb->protocol = eth_type_trans(skb, skb->dev);
6251                 if (ret == GRO_NORMAL)
6252                         gro_normal_one(napi, skb, 1);
6253                 break;
6254
6255         case GRO_MERGED_FREE:
6256                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6257                         napi_skb_free_stolen_head(skb);
6258                 else
6259                         napi_reuse_skb(napi, skb);
6260                 break;
6261
6262         case GRO_MERGED:
6263         case GRO_CONSUMED:
6264                 break;
6265         }
6266
6267         return ret;
6268 }
6269
6270 /* Upper GRO stack assumes network header starts at gro_offset=0
6271  * Drivers could call both napi_gro_frags() and napi_gro_receive()
6272  * We copy ethernet header into skb->data to have a common layout.
6273  */
6274 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6275 {
6276         struct sk_buff *skb = napi->skb;
6277         const struct ethhdr *eth;
6278         unsigned int hlen = sizeof(*eth);
6279
6280         napi->skb = NULL;
6281
6282         skb_reset_mac_header(skb);
6283         skb_gro_reset_offset(skb);
6284
6285         if (unlikely(skb_gro_header_hard(skb, hlen))) {
6286                 eth = skb_gro_header_slow(skb, hlen, 0);
6287                 if (unlikely(!eth)) {
6288                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6289                                              __func__, napi->dev->name);
6290                         napi_reuse_skb(napi, skb);
6291                         return NULL;
6292                 }
6293         } else {
6294                 eth = (const struct ethhdr *)skb->data;
6295                 gro_pull_from_frag0(skb, hlen);
6296                 NAPI_GRO_CB(skb)->frag0 += hlen;
6297                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
6298         }
6299         __skb_pull(skb, hlen);
6300
6301         /*
6302          * This works because the only protocols we care about don't require
6303          * special handling.
6304          * We'll fix it up properly in napi_frags_finish()
6305          */
6306         skb->protocol = eth->h_proto;
6307
6308         return skb;
6309 }
6310
6311 gro_result_t napi_gro_frags(struct napi_struct *napi)
6312 {
6313         gro_result_t ret;
6314         struct sk_buff *skb = napi_frags_skb(napi);
6315
6316         trace_napi_gro_frags_entry(skb);
6317
6318         ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6319         trace_napi_gro_frags_exit(ret);
6320
6321         return ret;
6322 }
6323 EXPORT_SYMBOL(napi_gro_frags);
6324
6325 /* Compute the checksum from gro_offset and return the folded value
6326  * after adding in any pseudo checksum.
6327  */
6328 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6329 {
6330         __wsum wsum;
6331         __sum16 sum;
6332
6333         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6334
6335         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6336         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6337         /* See comments in __skb_checksum_complete(). */
6338         if (likely(!sum)) {
6339                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6340                     !skb->csum_complete_sw)
6341                         netdev_rx_csum_fault(skb->dev, skb);
6342         }
6343
6344         NAPI_GRO_CB(skb)->csum = wsum;
6345         NAPI_GRO_CB(skb)->csum_valid = 1;
6346
6347         return sum;
6348 }
6349 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6350
6351 static void net_rps_send_ipi(struct softnet_data *remsd)
6352 {
6353 #ifdef CONFIG_RPS
6354         while (remsd) {
6355                 struct softnet_data *next = remsd->rps_ipi_next;
6356
6357                 if (cpu_online(remsd->cpu))
6358                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
6359                 remsd = next;
6360         }
6361 #endif
6362 }
6363
6364 /*
6365  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6366  * Note: called with local irq disabled, but exits with local irq enabled.
6367  */
6368 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6369 {
6370 #ifdef CONFIG_RPS
6371         struct softnet_data *remsd = sd->rps_ipi_list;
6372
6373         if (remsd) {
6374                 sd->rps_ipi_list = NULL;
6375
6376                 local_irq_enable();
6377
6378                 /* Send pending IPI's to kick RPS processing on remote cpus. */
6379                 net_rps_send_ipi(remsd);
6380         } else
6381 #endif
6382                 local_irq_enable();
6383 }
6384
6385 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6386 {
6387 #ifdef CONFIG_RPS
6388         return sd->rps_ipi_list != NULL;
6389 #else
6390         return false;
6391 #endif
6392 }
6393
6394 static int process_backlog(struct napi_struct *napi, int quota)
6395 {
6396         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6397         bool again = true;
6398         int work = 0;
6399
6400         /* Check if we have pending ipi, its better to send them now,
6401          * not waiting net_rx_action() end.
6402          */
6403         if (sd_has_rps_ipi_waiting(sd)) {
6404                 local_irq_disable();
6405                 net_rps_action_and_irq_enable(sd);
6406         }
6407
6408         napi->weight = dev_rx_weight;
6409         while (again) {
6410                 struct sk_buff *skb;
6411
6412                 while ((skb = __skb_dequeue(&sd->process_queue))) {
6413                         rcu_read_lock();
6414                         __netif_receive_skb(skb);
6415                         rcu_read_unlock();
6416                         input_queue_head_incr(sd);
6417                         if (++work >= quota)
6418                                 return work;
6419
6420                 }
6421
6422                 local_irq_disable();
6423                 rps_lock(sd);
6424                 if (skb_queue_empty(&sd->input_pkt_queue)) {
6425                         /*
6426                          * Inline a custom version of __napi_complete().
6427                          * only current cpu owns and manipulates this napi,
6428                          * and NAPI_STATE_SCHED is the only possible flag set
6429                          * on backlog.
6430                          * We can use a plain write instead of clear_bit(),
6431                          * and we dont need an smp_mb() memory barrier.
6432                          */
6433                         napi->state = 0;
6434                         again = false;
6435                 } else {
6436                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
6437                                                    &sd->process_queue);
6438                 }
6439                 rps_unlock(sd);
6440                 local_irq_enable();
6441         }
6442
6443         return work;
6444 }
6445
6446 /**
6447  * __napi_schedule - schedule for receive
6448  * @n: entry to schedule
6449  *
6450  * The entry's receive function will be scheduled to run.
6451  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6452  */
6453 void __napi_schedule(struct napi_struct *n)
6454 {
6455         unsigned long flags;
6456
6457         local_irq_save(flags);
6458         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6459         local_irq_restore(flags);
6460 }
6461 EXPORT_SYMBOL(__napi_schedule);
6462
6463 /**
6464  *      napi_schedule_prep - check if napi can be scheduled
6465  *      @n: napi context
6466  *
6467  * Test if NAPI routine is already running, and if not mark
6468  * it as running.  This is used as a condition variable to
6469  * insure only one NAPI poll instance runs.  We also make
6470  * sure there is no pending NAPI disable.
6471  */
6472 bool napi_schedule_prep(struct napi_struct *n)
6473 {
6474         unsigned long val, new;
6475
6476         do {
6477                 val = READ_ONCE(n->state);
6478                 if (unlikely(val & NAPIF_STATE_DISABLE))
6479                         return false;
6480                 new = val | NAPIF_STATE_SCHED;
6481
6482                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6483                  * This was suggested by Alexander Duyck, as compiler
6484                  * emits better code than :
6485                  * if (val & NAPIF_STATE_SCHED)
6486                  *     new |= NAPIF_STATE_MISSED;
6487                  */
6488                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6489                                                    NAPIF_STATE_MISSED;
6490         } while (cmpxchg(&n->state, val, new) != val);
6491
6492         return !(val & NAPIF_STATE_SCHED);
6493 }
6494 EXPORT_SYMBOL(napi_schedule_prep);
6495
6496 /**
6497  * __napi_schedule_irqoff - schedule for receive
6498  * @n: entry to schedule
6499  *
6500  * Variant of __napi_schedule() assuming hard irqs are masked
6501  */
6502 void __napi_schedule_irqoff(struct napi_struct *n)
6503 {
6504         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6505 }
6506 EXPORT_SYMBOL(__napi_schedule_irqoff);
6507
6508 bool napi_complete_done(struct napi_struct *n, int work_done)
6509 {
6510         unsigned long flags, val, new, timeout = 0;
6511         bool ret = true;
6512
6513         /*
6514          * 1) Don't let napi dequeue from the cpu poll list
6515          *    just in case its running on a different cpu.
6516          * 2) If we are busy polling, do nothing here, we have
6517          *    the guarantee we will be called later.
6518          */
6519         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6520                                  NAPIF_STATE_IN_BUSY_POLL)))
6521                 return false;
6522
6523         if (work_done) {
6524                 if (n->gro_bitmask)
6525                         timeout = READ_ONCE(n->dev->gro_flush_timeout);
6526                 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6527         }
6528         if (n->defer_hard_irqs_count > 0) {
6529                 n->defer_hard_irqs_count--;
6530                 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6531                 if (timeout)
6532                         ret = false;
6533         }
6534         if (n->gro_bitmask) {
6535                 /* When the NAPI instance uses a timeout and keeps postponing
6536                  * it, we need to bound somehow the time packets are kept in
6537                  * the GRO layer
6538                  */
6539                 napi_gro_flush(n, !!timeout);
6540         }
6541
6542         gro_normal_list(n);
6543
6544         if (unlikely(!list_empty(&n->poll_list))) {
6545                 /* If n->poll_list is not empty, we need to mask irqs */
6546                 local_irq_save(flags);
6547                 list_del_init(&n->poll_list);
6548                 local_irq_restore(flags);
6549         }
6550
6551         do {
6552                 val = READ_ONCE(n->state);
6553
6554                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6555
6556                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6557                               NAPIF_STATE_SCHED_THREADED |
6558                               NAPIF_STATE_PREFER_BUSY_POLL);
6559
6560                 /* If STATE_MISSED was set, leave STATE_SCHED set,
6561                  * because we will call napi->poll() one more time.
6562                  * This C code was suggested by Alexander Duyck to help gcc.
6563                  */
6564                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6565                                                     NAPIF_STATE_SCHED;
6566         } while (cmpxchg(&n->state, val, new) != val);
6567
6568         if (unlikely(val & NAPIF_STATE_MISSED)) {
6569                 __napi_schedule(n);
6570                 return false;
6571         }
6572
6573         if (timeout)
6574                 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6575                               HRTIMER_MODE_REL_PINNED);
6576         return ret;
6577 }
6578 EXPORT_SYMBOL(napi_complete_done);
6579
6580 /* must be called under rcu_read_lock(), as we dont take a reference */
6581 static struct napi_struct *napi_by_id(unsigned int napi_id)
6582 {
6583         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6584         struct napi_struct *napi;
6585
6586         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6587                 if (napi->napi_id == napi_id)
6588                         return napi;
6589
6590         return NULL;
6591 }
6592
6593 #if defined(CONFIG_NET_RX_BUSY_POLL)
6594
6595 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6596 {
6597         if (!skip_schedule) {
6598                 gro_normal_list(napi);
6599                 __napi_schedule(napi);
6600                 return;
6601         }
6602
6603         if (napi->gro_bitmask) {
6604                 /* flush too old packets
6605                  * If HZ < 1000, flush all packets.
6606                  */
6607                 napi_gro_flush(napi, HZ >= 1000);
6608         }
6609
6610         gro_normal_list(napi);
6611         clear_bit(NAPI_STATE_SCHED, &napi->state);
6612 }
6613
6614 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6615                            u16 budget)
6616 {
6617         bool skip_schedule = false;
6618         unsigned long timeout;
6619         int rc;
6620
6621         /* Busy polling means there is a high chance device driver hard irq
6622          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6623          * set in napi_schedule_prep().
6624          * Since we are about to call napi->poll() once more, we can safely
6625          * clear NAPI_STATE_MISSED.
6626          *
6627          * Note: x86 could use a single "lock and ..." instruction
6628          * to perform these two clear_bit()
6629          */
6630         clear_bit(NAPI_STATE_MISSED, &napi->state);
6631         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6632
6633         local_bh_disable();
6634
6635         if (prefer_busy_poll) {
6636                 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6637                 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6638                 if (napi->defer_hard_irqs_count && timeout) {
6639                         hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6640                         skip_schedule = true;
6641                 }
6642         }
6643
6644         /* All we really want here is to re-enable device interrupts.
6645          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6646          */
6647         rc = napi->poll(napi, budget);
6648         /* We can't gro_normal_list() here, because napi->poll() might have
6649          * rearmed the napi (napi_complete_done()) in which case it could
6650          * already be running on another CPU.
6651          */
6652         trace_napi_poll(napi, rc, budget);
6653         netpoll_poll_unlock(have_poll_lock);
6654         if (rc == budget)
6655                 __busy_poll_stop(napi, skip_schedule);
6656         local_bh_enable();
6657 }
6658
6659 void napi_busy_loop(unsigned int napi_id,
6660                     bool (*loop_end)(void *, unsigned long),
6661                     void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6662 {
6663         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6664         int (*napi_poll)(struct napi_struct *napi, int budget);
6665         void *have_poll_lock = NULL;
6666         struct napi_struct *napi;
6667
6668 restart:
6669         napi_poll = NULL;
6670
6671         rcu_read_lock();
6672
6673         napi = napi_by_id(napi_id);
6674         if (!napi)
6675                 goto out;
6676
6677         preempt_disable();
6678         for (;;) {
6679                 int work = 0;
6680
6681                 local_bh_disable();
6682                 if (!napi_poll) {
6683                         unsigned long val = READ_ONCE(napi->state);
6684
6685                         /* If multiple threads are competing for this napi,
6686                          * we avoid dirtying napi->state as much as we can.
6687                          */
6688                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6689                                    NAPIF_STATE_IN_BUSY_POLL)) {
6690                                 if (prefer_busy_poll)
6691                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6692                                 goto count;
6693                         }
6694                         if (cmpxchg(&napi->state, val,
6695                                     val | NAPIF_STATE_IN_BUSY_POLL |
6696                                           NAPIF_STATE_SCHED) != val) {
6697                                 if (prefer_busy_poll)
6698                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6699                                 goto count;
6700                         }
6701                         have_poll_lock = netpoll_poll_lock(napi);
6702                         napi_poll = napi->poll;
6703                 }
6704                 work = napi_poll(napi, budget);
6705                 trace_napi_poll(napi, work, budget);
6706                 gro_normal_list(napi);
6707 count:
6708                 if (work > 0)
6709                         __NET_ADD_STATS(dev_net(napi->dev),
6710                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6711                 local_bh_enable();
6712
6713                 if (!loop_end || loop_end(loop_end_arg, start_time))
6714                         break;
6715
6716                 if (unlikely(need_resched())) {
6717                         if (napi_poll)
6718                                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6719                         preempt_enable();
6720                         rcu_read_unlock();
6721                         cond_resched();
6722                         if (loop_end(loop_end_arg, start_time))
6723                                 return;
6724                         goto restart;
6725                 }
6726                 cpu_relax();
6727         }
6728         if (napi_poll)
6729                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6730         preempt_enable();
6731 out:
6732         rcu_read_unlock();
6733 }
6734 EXPORT_SYMBOL(napi_busy_loop);
6735
6736 #endif /* CONFIG_NET_RX_BUSY_POLL */
6737
6738 static void napi_hash_add(struct napi_struct *napi)
6739 {
6740         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6741                 return;
6742
6743         spin_lock(&napi_hash_lock);
6744
6745         /* 0..NR_CPUS range is reserved for sender_cpu use */
6746         do {
6747                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6748                         napi_gen_id = MIN_NAPI_ID;
6749         } while (napi_by_id(napi_gen_id));
6750         napi->napi_id = napi_gen_id;
6751
6752         hlist_add_head_rcu(&napi->napi_hash_node,
6753                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6754
6755         spin_unlock(&napi_hash_lock);
6756 }
6757
6758 /* Warning : caller is responsible to make sure rcu grace period
6759  * is respected before freeing memory containing @napi
6760  */
6761 static void napi_hash_del(struct napi_struct *napi)
6762 {
6763         spin_lock(&napi_hash_lock);
6764
6765         hlist_del_init_rcu(&napi->napi_hash_node);
6766
6767         spin_unlock(&napi_hash_lock);
6768 }
6769
6770 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6771 {
6772         struct napi_struct *napi;
6773
6774         napi = container_of(timer, struct napi_struct, timer);
6775
6776         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6777          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6778          */
6779         if (!napi_disable_pending(napi) &&
6780             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6781                 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6782                 __napi_schedule_irqoff(napi);
6783         }
6784
6785         return HRTIMER_NORESTART;
6786 }
6787
6788 static void init_gro_hash(struct napi_struct *napi)
6789 {
6790         int i;
6791
6792         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6793                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6794                 napi->gro_hash[i].count = 0;
6795         }
6796         napi->gro_bitmask = 0;
6797 }
6798
6799 int dev_set_threaded(struct net_device *dev, bool threaded)
6800 {
6801         struct napi_struct *napi;
6802         int err = 0;
6803
6804         if (dev->threaded == threaded)
6805                 return 0;
6806
6807         if (threaded) {
6808                 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6809                         if (!napi->thread) {
6810                                 err = napi_kthread_create(napi);
6811                                 if (err) {
6812                                         threaded = false;
6813                                         break;
6814                                 }
6815                         }
6816                 }
6817         }
6818
6819         dev->threaded = threaded;
6820
6821         /* Make sure kthread is created before THREADED bit
6822          * is set.
6823          */
6824         smp_mb__before_atomic();
6825
6826         /* Setting/unsetting threaded mode on a napi might not immediately
6827          * take effect, if the current napi instance is actively being
6828          * polled. In this case, the switch between threaded mode and
6829          * softirq mode will happen in the next round of napi_schedule().
6830          * This should not cause hiccups/stalls to the live traffic.
6831          */
6832         list_for_each_entry(napi, &dev->napi_list, dev_list) {
6833                 if (threaded)
6834                         set_bit(NAPI_STATE_THREADED, &napi->state);
6835                 else
6836                         clear_bit(NAPI_STATE_THREADED, &napi->state);
6837         }
6838
6839         return err;
6840 }
6841 EXPORT_SYMBOL(dev_set_threaded);
6842
6843 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6844                     int (*poll)(struct napi_struct *, int), int weight)
6845 {
6846         if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6847                 return;
6848
6849         INIT_LIST_HEAD(&napi->poll_list);
6850         INIT_HLIST_NODE(&napi->napi_hash_node);
6851         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6852         napi->timer.function = napi_watchdog;
6853         init_gro_hash(napi);
6854         napi->skb = NULL;
6855         INIT_LIST_HEAD(&napi->rx_list);
6856         napi->rx_count = 0;
6857         napi->poll = poll;
6858         if (weight > NAPI_POLL_WEIGHT)
6859                 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6860                                 weight);
6861         napi->weight = weight;
6862         napi->dev = dev;
6863 #ifdef CONFIG_NETPOLL
6864         napi->poll_owner = -1;
6865 #endif
6866         set_bit(NAPI_STATE_SCHED, &napi->state);
6867         set_bit(NAPI_STATE_NPSVC, &napi->state);
6868         list_add_rcu(&napi->dev_list, &dev->napi_list);
6869         napi_hash_add(napi);
6870         /* Create kthread for this napi if dev->threaded is set.
6871          * Clear dev->threaded if kthread creation failed so that
6872          * threaded mode will not be enabled in napi_enable().
6873          */
6874         if (dev->threaded && napi_kthread_create(napi))
6875                 dev->threaded = 0;
6876 }
6877 EXPORT_SYMBOL(netif_napi_add);
6878
6879 void napi_disable(struct napi_struct *n)
6880 {
6881         might_sleep();
6882         set_bit(NAPI_STATE_DISABLE, &n->state);
6883
6884         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6885                 msleep(1);
6886         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6887                 msleep(1);
6888
6889         hrtimer_cancel(&n->timer);
6890
6891         clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
6892         clear_bit(NAPI_STATE_DISABLE, &n->state);
6893         clear_bit(NAPI_STATE_THREADED, &n->state);
6894 }
6895 EXPORT_SYMBOL(napi_disable);
6896
6897 /**
6898  *      napi_enable - enable NAPI scheduling
6899  *      @n: NAPI context
6900  *
6901  * Resume NAPI from being scheduled on this context.
6902  * Must be paired with napi_disable.
6903  */
6904 void napi_enable(struct napi_struct *n)
6905 {
6906         BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
6907         smp_mb__before_atomic();
6908         clear_bit(NAPI_STATE_SCHED, &n->state);
6909         clear_bit(NAPI_STATE_NPSVC, &n->state);
6910         if (n->dev->threaded && n->thread)
6911                 set_bit(NAPI_STATE_THREADED, &n->state);
6912 }
6913 EXPORT_SYMBOL(napi_enable);
6914
6915 static void flush_gro_hash(struct napi_struct *napi)
6916 {
6917         int i;
6918
6919         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6920                 struct sk_buff *skb, *n;
6921
6922                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6923                         kfree_skb(skb);
6924                 napi->gro_hash[i].count = 0;
6925         }
6926 }
6927
6928 /* Must be called in process context */
6929 void __netif_napi_del(struct napi_struct *napi)
6930 {
6931         if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6932                 return;
6933
6934         napi_hash_del(napi);
6935         list_del_rcu(&napi->dev_list);
6936         napi_free_frags(napi);
6937
6938         flush_gro_hash(napi);
6939         napi->gro_bitmask = 0;
6940
6941         if (napi->thread) {
6942                 kthread_stop(napi->thread);
6943                 napi->thread = NULL;
6944         }
6945 }
6946 EXPORT_SYMBOL(__netif_napi_del);
6947
6948 static int __napi_poll(struct napi_struct *n, bool *repoll)
6949 {
6950         int work, weight;
6951
6952         weight = n->weight;
6953
6954         /* This NAPI_STATE_SCHED test is for avoiding a race
6955          * with netpoll's poll_napi().  Only the entity which
6956          * obtains the lock and sees NAPI_STATE_SCHED set will
6957          * actually make the ->poll() call.  Therefore we avoid
6958          * accidentally calling ->poll() when NAPI is not scheduled.
6959          */
6960         work = 0;
6961         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6962                 work = n->poll(n, weight);
6963                 trace_napi_poll(n, work, weight);
6964         }
6965
6966         if (unlikely(work > weight))
6967                 pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6968                             n->poll, work, weight);
6969
6970         if (likely(work < weight))
6971                 return work;
6972
6973         /* Drivers must not modify the NAPI state if they
6974          * consume the entire weight.  In such cases this code
6975          * still "owns" the NAPI instance and therefore can
6976          * move the instance around on the list at-will.
6977          */
6978         if (unlikely(napi_disable_pending(n))) {
6979                 napi_complete(n);
6980                 return work;
6981         }
6982
6983         /* The NAPI context has more processing work, but busy-polling
6984          * is preferred. Exit early.
6985          */
6986         if (napi_prefer_busy_poll(n)) {
6987                 if (napi_complete_done(n, work)) {
6988                         /* If timeout is not set, we need to make sure
6989                          * that the NAPI is re-scheduled.
6990                          */
6991                         napi_schedule(n);
6992                 }
6993                 return work;
6994         }
6995
6996         if (n->gro_bitmask) {
6997                 /* flush too old packets
6998                  * If HZ < 1000, flush all packets.
6999                  */
7000                 napi_gro_flush(n, HZ >= 1000);
7001         }
7002
7003         gro_normal_list(n);
7004
7005         /* Some drivers may have called napi_schedule
7006          * prior to exhausting their budget.
7007          */
7008         if (unlikely(!list_empty(&n->poll_list))) {
7009                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7010                              n->dev ? n->dev->name : "backlog");
7011                 return work;
7012         }
7013
7014         *repoll = true;
7015
7016         return work;
7017 }
7018
7019 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7020 {
7021         bool do_repoll = false;
7022         void *have;
7023         int work;
7024
7025         list_del_init(&n->poll_list);
7026
7027         have = netpoll_poll_lock(n);
7028
7029         work = __napi_poll(n, &do_repoll);
7030
7031         if (do_repoll)
7032                 list_add_tail(&n->poll_list, repoll);
7033
7034         netpoll_poll_unlock(have);
7035
7036         return work;
7037 }
7038
7039 static int napi_thread_wait(struct napi_struct *napi)
7040 {
7041         bool woken = false;
7042
7043         set_current_state(TASK_INTERRUPTIBLE);
7044
7045         while (!kthread_should_stop()) {
7046                 /* Testing SCHED_THREADED bit here to make sure the current
7047                  * kthread owns this napi and could poll on this napi.
7048                  * Testing SCHED bit is not enough because SCHED bit might be
7049                  * set by some other busy poll thread or by napi_disable().
7050                  */
7051                 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
7052                         WARN_ON(!list_empty(&napi->poll_list));
7053                         __set_current_state(TASK_RUNNING);
7054                         return 0;
7055                 }
7056
7057                 schedule();
7058                 /* woken being true indicates this thread owns this napi. */
7059                 woken = true;
7060                 set_current_state(TASK_INTERRUPTIBLE);
7061         }
7062         __set_current_state(TASK_RUNNING);
7063
7064         return -1;
7065 }
7066
7067 static int napi_threaded_poll(void *data)
7068 {
7069         struct napi_struct *napi = data;
7070         void *have;
7071
7072         while (!napi_thread_wait(napi)) {
7073                 for (;;) {
7074                         bool repoll = false;
7075
7076                         local_bh_disable();
7077
7078                         have = netpoll_poll_lock(napi);
7079                         __napi_poll(napi, &repoll);
7080                         netpoll_poll_unlock(have);
7081
7082                         local_bh_enable();
7083
7084                         if (!repoll)
7085                                 break;
7086
7087                         cond_resched();
7088                 }
7089         }
7090         return 0;
7091 }
7092
7093 static __latent_entropy void net_rx_action(struct softirq_action *h)
7094 {
7095         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7096         unsigned long time_limit = jiffies +
7097                 usecs_to_jiffies(netdev_budget_usecs);
7098         int budget = netdev_budget;
7099         LIST_HEAD(list);
7100         LIST_HEAD(repoll);
7101
7102         local_irq_disable();
7103         list_splice_init(&sd->poll_list, &list);
7104         local_irq_enable();
7105
7106         for (;;) {
7107                 struct napi_struct *n;
7108
7109                 if (list_empty(&list)) {
7110                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
7111                                 return;
7112                         break;
7113                 }
7114
7115                 n = list_first_entry(&list, struct napi_struct, poll_list);
7116                 budget -= napi_poll(n, &repoll);
7117
7118                 /* If softirq window is exhausted then punt.
7119                  * Allow this to run for 2 jiffies since which will allow
7120                  * an average latency of 1.5/HZ.
7121                  */
7122                 if (unlikely(budget <= 0 ||
7123                              time_after_eq(jiffies, time_limit))) {
7124                         sd->time_squeeze++;
7125                         break;
7126                 }
7127         }
7128
7129         local_irq_disable();
7130
7131         list_splice_tail_init(&sd->poll_list, &list);
7132         list_splice_tail(&repoll, &list);
7133         list_splice(&list, &sd->poll_list);
7134         if (!list_empty(&sd->poll_list))
7135                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
7136
7137         net_rps_action_and_irq_enable(sd);
7138 }
7139
7140 struct netdev_adjacent {
7141         struct net_device *dev;
7142
7143         /* upper master flag, there can only be one master device per list */
7144         bool master;
7145
7146         /* lookup ignore flag */
7147         bool ignore;
7148
7149         /* counter for the number of times this device was added to us */
7150         u16 ref_nr;
7151
7152         /* private field for the users */
7153         void *private;
7154
7155         struct list_head list;
7156         struct rcu_head rcu;
7157 };
7158
7159 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7160                                                  struct list_head *adj_list)
7161 {
7162         struct netdev_adjacent *adj;
7163
7164         list_for_each_entry(adj, adj_list, list) {
7165                 if (adj->dev == adj_dev)
7166                         return adj;
7167         }
7168         return NULL;
7169 }
7170
7171 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7172                                     struct netdev_nested_priv *priv)
7173 {
7174         struct net_device *dev = (struct net_device *)priv->data;
7175
7176         return upper_dev == dev;
7177 }
7178
7179 /**
7180  * netdev_has_upper_dev - Check if device is linked to an upper device
7181  * @dev: device
7182  * @upper_dev: upper device to check
7183  *
7184  * Find out if a device is linked to specified upper device and return true
7185  * in case it is. Note that this checks only immediate upper device,
7186  * not through a complete stack of devices. The caller must hold the RTNL lock.
7187  */
7188 bool netdev_has_upper_dev(struct net_device *dev,
7189                           struct net_device *upper_dev)
7190 {
7191         struct netdev_nested_priv priv = {
7192                 .data = (void *)upper_dev,
7193         };
7194
7195         ASSERT_RTNL();
7196
7197         return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7198                                              &priv);
7199 }
7200 EXPORT_SYMBOL(netdev_has_upper_dev);
7201
7202 /**
7203  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7204  * @dev: device
7205  * @upper_dev: upper device to check
7206  *
7207  * Find out if a device is linked to specified upper device and return true
7208  * in case it is. Note that this checks the entire upper device chain.
7209  * The caller must hold rcu lock.
7210  */
7211
7212 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7213                                   struct net_device *upper_dev)
7214 {
7215         struct netdev_nested_priv priv = {
7216                 .data = (void *)upper_dev,
7217         };
7218
7219         return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7220                                                &priv);
7221 }
7222 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7223
7224 /**
7225  * netdev_has_any_upper_dev - Check if device is linked to some device
7226  * @dev: device
7227  *
7228  * Find out if a device is linked to an upper device and return true in case
7229  * it is. The caller must hold the RTNL lock.
7230  */
7231 bool netdev_has_any_upper_dev(struct net_device *dev)
7232 {
7233         ASSERT_RTNL();
7234
7235         return !list_empty(&dev->adj_list.upper);
7236 }
7237 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7238
7239 /**
7240  * netdev_master_upper_dev_get - Get master upper device
7241  * @dev: device
7242  *
7243  * Find a master upper device and return pointer to it or NULL in case
7244  * it's not there. The caller must hold the RTNL lock.
7245  */
7246 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7247 {
7248         struct netdev_adjacent *upper;
7249
7250         ASSERT_RTNL();
7251
7252         if (list_empty(&dev->adj_list.upper))
7253                 return NULL;
7254
7255         upper = list_first_entry(&dev->adj_list.upper,
7256                                  struct netdev_adjacent, list);
7257         if (likely(upper->master))
7258                 return upper->dev;
7259         return NULL;
7260 }
7261 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7262
7263 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7264 {
7265         struct netdev_adjacent *upper;
7266
7267         ASSERT_RTNL();
7268
7269         if (list_empty(&dev->adj_list.upper))
7270                 return NULL;
7271
7272         upper = list_first_entry(&dev->adj_list.upper,
7273                                  struct netdev_adjacent, list);
7274         if (likely(upper->master) && !upper->ignore)
7275                 return upper->dev;
7276         return NULL;
7277 }
7278
7279 /**
7280  * netdev_has_any_lower_dev - Check if device is linked to some device
7281  * @dev: device
7282  *
7283  * Find out if a device is linked to a lower device and return true in case
7284  * it is. The caller must hold the RTNL lock.
7285  */
7286 static bool netdev_has_any_lower_dev(struct net_device *dev)
7287 {
7288         ASSERT_RTNL();
7289
7290         return !list_empty(&dev->adj_list.lower);
7291 }
7292
7293 void *netdev_adjacent_get_private(struct list_head *adj_list)
7294 {
7295         struct netdev_adjacent *adj;
7296
7297         adj = list_entry(adj_list, struct netdev_adjacent, list);
7298
7299         return adj->private;
7300 }
7301 EXPORT_SYMBOL(netdev_adjacent_get_private);
7302
7303 /**
7304  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7305  * @dev: device
7306  * @iter: list_head ** of the current position
7307  *
7308  * Gets the next device from the dev's upper list, starting from iter
7309  * position. The caller must hold RCU read lock.
7310  */
7311 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7312                                                  struct list_head **iter)
7313 {
7314         struct netdev_adjacent *upper;
7315
7316         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7317
7318         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7319
7320         if (&upper->list == &dev->adj_list.upper)
7321                 return NULL;
7322
7323         *iter = &upper->list;
7324
7325         return upper->dev;
7326 }
7327 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7328
7329 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7330                                                   struct list_head **iter,
7331                                                   bool *ignore)
7332 {
7333         struct netdev_adjacent *upper;
7334
7335         upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7336
7337         if (&upper->list == &dev->adj_list.upper)
7338                 return NULL;
7339
7340         *iter = &upper->list;
7341         *ignore = upper->ignore;
7342
7343         return upper->dev;
7344 }
7345
7346 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7347                                                     struct list_head **iter)
7348 {
7349         struct netdev_adjacent *upper;
7350
7351         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7352
7353         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7354
7355         if (&upper->list == &dev->adj_list.upper)
7356                 return NULL;
7357
7358         *iter = &upper->list;
7359
7360         return upper->dev;
7361 }
7362
7363 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7364                                        int (*fn)(struct net_device *dev,
7365                                          struct netdev_nested_priv *priv),
7366                                        struct netdev_nested_priv *priv)
7367 {
7368         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7369         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7370         int ret, cur = 0;
7371         bool ignore;
7372
7373         now = dev;
7374         iter = &dev->adj_list.upper;
7375
7376         while (1) {
7377                 if (now != dev) {
7378                         ret = fn(now, priv);
7379                         if (ret)
7380                                 return ret;
7381                 }
7382
7383                 next = NULL;
7384                 while (1) {
7385                         udev = __netdev_next_upper_dev(now, &iter, &ignore);
7386                         if (!udev)
7387                                 break;
7388                         if (ignore)
7389                                 continue;
7390
7391                         next = udev;
7392                         niter = &udev->adj_list.upper;
7393                         dev_stack[cur] = now;
7394                         iter_stack[cur++] = iter;
7395                         break;
7396                 }
7397
7398                 if (!next) {
7399                         if (!cur)
7400                                 return 0;
7401                         next = dev_stack[--cur];
7402                         niter = iter_stack[cur];
7403                 }
7404
7405                 now = next;
7406                 iter = niter;
7407         }
7408
7409         return 0;
7410 }
7411
7412 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7413                                   int (*fn)(struct net_device *dev,
7414                                             struct netdev_nested_priv *priv),
7415                                   struct netdev_nested_priv *priv)
7416 {
7417         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7418         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7419         int ret, cur = 0;
7420
7421         now = dev;
7422         iter = &dev->adj_list.upper;
7423
7424         while (1) {
7425                 if (now != dev) {
7426                         ret = fn(now, priv);
7427                         if (ret)
7428                                 return ret;
7429                 }
7430
7431                 next = NULL;
7432                 while (1) {
7433                         udev = netdev_next_upper_dev_rcu(now, &iter);
7434                         if (!udev)
7435                                 break;
7436
7437                         next = udev;
7438                         niter = &udev->adj_list.upper;
7439                         dev_stack[cur] = now;
7440                         iter_stack[cur++] = iter;
7441                         break;
7442                 }
7443
7444                 if (!next) {
7445                         if (!cur)
7446                                 return 0;
7447                         next = dev_stack[--cur];
7448                         niter = iter_stack[cur];
7449                 }
7450
7451                 now = next;
7452                 iter = niter;
7453         }
7454
7455         return 0;
7456 }
7457 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7458
7459 static bool __netdev_has_upper_dev(struct net_device *dev,
7460                                    struct net_device *upper_dev)
7461 {
7462         struct netdev_nested_priv priv = {
7463                 .flags = 0,
7464                 .data = (void *)upper_dev,
7465         };
7466
7467         ASSERT_RTNL();
7468
7469         return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7470                                            &priv);
7471 }
7472
7473 /**
7474  * netdev_lower_get_next_private - Get the next ->private from the
7475  *                                 lower neighbour list
7476  * @dev: device
7477  * @iter: list_head ** of the current position
7478  *
7479  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7480  * list, starting from iter position. The caller must hold either hold the
7481  * RTNL lock or its own locking that guarantees that the neighbour lower
7482  * list will remain unchanged.
7483  */
7484 void *netdev_lower_get_next_private(struct net_device *dev,
7485                                     struct list_head **iter)
7486 {
7487         struct netdev_adjacent *lower;
7488
7489         lower = list_entry(*iter, struct netdev_adjacent, list);
7490
7491         if (&lower->list == &dev->adj_list.lower)
7492                 return NULL;
7493
7494         *iter = lower->list.next;
7495
7496         return lower->private;
7497 }
7498 EXPORT_SYMBOL(netdev_lower_get_next_private);
7499
7500 /**
7501  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7502  *                                     lower neighbour list, RCU
7503  *                                     variant
7504  * @dev: device
7505  * @iter: list_head ** of the current position
7506  *
7507  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7508  * list, starting from iter position. The caller must hold RCU read lock.
7509  */
7510 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7511                                         struct list_head **iter)
7512 {
7513         struct netdev_adjacent *lower;
7514
7515         WARN_ON_ONCE(!rcu_read_lock_held());
7516
7517         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7518
7519         if (&lower->list == &dev->adj_list.lower)
7520                 return NULL;
7521
7522         *iter = &lower->list;
7523
7524         return lower->private;
7525 }
7526 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7527
7528 /**
7529  * netdev_lower_get_next - Get the next device from the lower neighbour
7530  *                         list
7531  * @dev: device
7532  * @iter: list_head ** of the current position
7533  *
7534  * Gets the next netdev_adjacent from the dev's lower neighbour
7535  * list, starting from iter position. The caller must hold RTNL lock or
7536  * its own locking that guarantees that the neighbour lower
7537  * list will remain unchanged.
7538  */
7539 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7540 {
7541         struct netdev_adjacent *lower;
7542
7543         lower = list_entry(*iter, struct netdev_adjacent, list);
7544
7545         if (&lower->list == &dev->adj_list.lower)
7546                 return NULL;
7547
7548         *iter = lower->list.next;
7549
7550         return lower->dev;
7551 }
7552 EXPORT_SYMBOL(netdev_lower_get_next);
7553
7554 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7555                                                 struct list_head **iter)
7556 {
7557         struct netdev_adjacent *lower;
7558
7559         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7560
7561         if (&lower->list == &dev->adj_list.lower)
7562                 return NULL;
7563
7564         *iter = &lower->list;
7565
7566         return lower->dev;
7567 }
7568
7569 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7570                                                   struct list_head **iter,
7571                                                   bool *ignore)
7572 {
7573         struct netdev_adjacent *lower;
7574
7575         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7576
7577         if (&lower->list == &dev->adj_list.lower)
7578                 return NULL;
7579
7580         *iter = &lower->list;
7581         *ignore = lower->ignore;
7582
7583         return lower->dev;
7584 }
7585
7586 int netdev_walk_all_lower_dev(struct net_device *dev,
7587                               int (*fn)(struct net_device *dev,
7588                                         struct netdev_nested_priv *priv),
7589                               struct netdev_nested_priv *priv)
7590 {
7591         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7592         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7593         int ret, cur = 0;
7594
7595         now = dev;
7596         iter = &dev->adj_list.lower;
7597
7598         while (1) {
7599                 if (now != dev) {
7600                         ret = fn(now, priv);
7601                         if (ret)
7602                                 return ret;
7603                 }
7604
7605                 next = NULL;
7606                 while (1) {
7607                         ldev = netdev_next_lower_dev(now, &iter);
7608                         if (!ldev)
7609                                 break;
7610
7611                         next = ldev;
7612                         niter = &ldev->adj_list.lower;
7613                         dev_stack[cur] = now;
7614                         iter_stack[cur++] = iter;
7615                         break;
7616                 }
7617
7618                 if (!next) {
7619                         if (!cur)
7620                                 return 0;
7621                         next = dev_stack[--cur];
7622                         niter = iter_stack[cur];
7623                 }
7624
7625                 now = next;
7626                 iter = niter;
7627         }
7628
7629         return 0;
7630 }
7631 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7632
7633 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7634                                        int (*fn)(struct net_device *dev,
7635                                          struct netdev_nested_priv *priv),
7636                                        struct netdev_nested_priv *priv)
7637 {
7638         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7639         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7640         int ret, cur = 0;
7641         bool ignore;
7642
7643         now = dev;
7644         iter = &dev->adj_list.lower;
7645
7646         while (1) {
7647                 if (now != dev) {
7648                         ret = fn(now, priv);
7649                         if (ret)
7650                                 return ret;
7651                 }
7652
7653                 next = NULL;
7654                 while (1) {
7655                         ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7656                         if (!ldev)
7657                                 break;
7658                         if (ignore)
7659                                 continue;
7660
7661                         next = ldev;
7662                         niter = &ldev->adj_list.lower;
7663                         dev_stack[cur] = now;
7664                         iter_stack[cur++] = iter;
7665                         break;
7666                 }
7667
7668                 if (!next) {
7669                         if (!cur)
7670                                 return 0;
7671                         next = dev_stack[--cur];
7672                         niter = iter_stack[cur];
7673                 }
7674
7675                 now = next;
7676                 iter = niter;
7677         }
7678
7679         return 0;
7680 }
7681
7682 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7683                                              struct list_head **iter)
7684 {
7685         struct netdev_adjacent *lower;
7686
7687         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7688         if (&lower->list == &dev->adj_list.lower)
7689                 return NULL;
7690
7691         *iter = &lower->list;
7692
7693         return lower->dev;
7694 }
7695 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7696
7697 static u8 __netdev_upper_depth(struct net_device *dev)
7698 {
7699         struct net_device *udev;
7700         struct list_head *iter;
7701         u8 max_depth = 0;
7702         bool ignore;
7703
7704         for (iter = &dev->adj_list.upper,
7705              udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7706              udev;
7707              udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7708                 if (ignore)
7709                         continue;
7710                 if (max_depth < udev->upper_level)
7711                         max_depth = udev->upper_level;
7712         }
7713
7714         return max_depth;
7715 }
7716
7717 static u8 __netdev_lower_depth(struct net_device *dev)
7718 {
7719         struct net_device *ldev;
7720         struct list_head *iter;
7721         u8 max_depth = 0;
7722         bool ignore;
7723
7724         for (iter = &dev->adj_list.lower,
7725              ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7726              ldev;
7727              ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7728                 if (ignore)
7729                         continue;
7730                 if (max_depth < ldev->lower_level)
7731                         max_depth = ldev->lower_level;
7732         }
7733
7734         return max_depth;
7735 }
7736
7737 static int __netdev_update_upper_level(struct net_device *dev,
7738                                        struct netdev_nested_priv *__unused)
7739 {
7740         dev->upper_level = __netdev_upper_depth(dev) + 1;
7741         return 0;
7742 }
7743
7744 static int __netdev_update_lower_level(struct net_device *dev,
7745                                        struct netdev_nested_priv *priv)
7746 {
7747         dev->lower_level = __netdev_lower_depth(dev) + 1;
7748
7749 #ifdef CONFIG_LOCKDEP
7750         if (!priv)
7751                 return 0;
7752
7753         if (priv->flags & NESTED_SYNC_IMM)
7754                 dev->nested_level = dev->lower_level - 1;
7755         if (priv->flags & NESTED_SYNC_TODO)
7756                 net_unlink_todo(dev);
7757 #endif
7758         return 0;
7759 }
7760
7761 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7762                                   int (*fn)(struct net_device *dev,
7763                                             struct netdev_nested_priv *priv),
7764                                   struct netdev_nested_priv *priv)
7765 {
7766         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7767         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7768         int ret, cur = 0;
7769
7770         now = dev;
7771         iter = &dev->adj_list.lower;
7772
7773         while (1) {
7774                 if (now != dev) {
7775                         ret = fn(now, priv);
7776                         if (ret)
7777                                 return ret;
7778                 }
7779
7780                 next = NULL;
7781                 while (1) {
7782                         ldev = netdev_next_lower_dev_rcu(now, &iter);
7783                         if (!ldev)
7784                                 break;
7785
7786                         next = ldev;
7787                         niter = &ldev->adj_list.lower;
7788                         dev_stack[cur] = now;
7789                         iter_stack[cur++] = iter;
7790                         break;
7791                 }
7792
7793                 if (!next) {
7794                         if (!cur)
7795                                 return 0;
7796                         next = dev_stack[--cur];
7797                         niter = iter_stack[cur];
7798                 }
7799
7800                 now = next;
7801                 iter = niter;
7802         }
7803
7804         return 0;
7805 }
7806 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7807
7808 /**
7809  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7810  *                                     lower neighbour list, RCU
7811  *                                     variant
7812  * @dev: device
7813  *
7814  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7815  * list. The caller must hold RCU read lock.
7816  */
7817 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7818 {
7819         struct netdev_adjacent *lower;
7820
7821         lower = list_first_or_null_rcu(&dev->adj_list.lower,
7822                         struct netdev_adjacent, list);
7823         if (lower)
7824                 return lower->private;
7825         return NULL;
7826 }
7827 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7828
7829 /**
7830  * netdev_master_upper_dev_get_rcu - Get master upper device
7831  * @dev: device
7832  *
7833  * Find a master upper device and return pointer to it or NULL in case
7834  * it's not there. The caller must hold the RCU read lock.
7835  */
7836 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7837 {
7838         struct netdev_adjacent *upper;
7839
7840         upper = list_first_or_null_rcu(&dev->adj_list.upper,
7841                                        struct netdev_adjacent, list);
7842         if (upper && likely(upper->master))
7843                 return upper->dev;
7844         return NULL;
7845 }
7846 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7847
7848 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7849                               struct net_device *adj_dev,
7850                               struct list_head *dev_list)
7851 {
7852         char linkname[IFNAMSIZ+7];
7853
7854         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7855                 "upper_%s" : "lower_%s", adj_dev->name);
7856         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7857                                  linkname);
7858 }
7859 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7860                                char *name,
7861                                struct list_head *dev_list)
7862 {
7863         char linkname[IFNAMSIZ+7];
7864
7865         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7866                 "upper_%s" : "lower_%s", name);
7867         sysfs_remove_link(&(dev->dev.kobj), linkname);
7868 }
7869
7870 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7871                                                  struct net_device *adj_dev,
7872                                                  struct list_head *dev_list)
7873 {
7874         return (dev_list == &dev->adj_list.upper ||
7875                 dev_list == &dev->adj_list.lower) &&
7876                 net_eq(dev_net(dev), dev_net(adj_dev));
7877 }
7878
7879 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7880                                         struct net_device *adj_dev,
7881                                         struct list_head *dev_list,
7882                                         void *private, bool master)
7883 {
7884         struct netdev_adjacent *adj;
7885         int ret;
7886
7887         adj = __netdev_find_adj(adj_dev, dev_list);
7888
7889         if (adj) {
7890                 adj->ref_nr += 1;
7891                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7892                          dev->name, adj_dev->name, adj->ref_nr);
7893
7894                 return 0;
7895         }
7896
7897         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7898         if (!adj)
7899                 return -ENOMEM;
7900
7901         adj->dev = adj_dev;
7902         adj->master = master;
7903         adj->ref_nr = 1;
7904         adj->private = private;
7905         adj->ignore = false;
7906         dev_hold(adj_dev);
7907
7908         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7909                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7910
7911         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7912                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7913                 if (ret)
7914                         goto free_adj;
7915         }
7916
7917         /* Ensure that master link is always the first item in list. */
7918         if (master) {
7919                 ret = sysfs_create_link(&(dev->dev.kobj),
7920                                         &(adj_dev->dev.kobj), "master");
7921                 if (ret)
7922                         goto remove_symlinks;
7923
7924                 list_add_rcu(&adj->list, dev_list);
7925         } else {
7926                 list_add_tail_rcu(&adj->list, dev_list);
7927         }
7928
7929         return 0;
7930
7931 remove_symlinks:
7932         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7933                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7934 free_adj:
7935         kfree(adj);
7936         dev_put(adj_dev);
7937
7938         return ret;
7939 }
7940
7941 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7942                                          struct net_device *adj_dev,
7943                                          u16 ref_nr,
7944                                          struct list_head *dev_list)
7945 {
7946         struct netdev_adjacent *adj;
7947
7948         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7949                  dev->name, adj_dev->name, ref_nr);
7950
7951         adj = __netdev_find_adj(adj_dev, dev_list);
7952
7953         if (!adj) {
7954                 pr_err("Adjacency does not exist for device %s from %s\n",
7955                        dev->name, adj_dev->name);
7956                 WARN_ON(1);
7957                 return;
7958         }
7959
7960         if (adj->ref_nr > ref_nr) {
7961                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7962                          dev->name, adj_dev->name, ref_nr,
7963                          adj->ref_nr - ref_nr);
7964                 adj->ref_nr -= ref_nr;
7965                 return;
7966         }
7967
7968         if (adj->master)
7969                 sysfs_remove_link(&(dev->dev.kobj), "master");
7970
7971         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7972                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7973
7974         list_del_rcu(&adj->list);
7975         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7976                  adj_dev->name, dev->name, adj_dev->name);
7977         dev_put(adj_dev);
7978         kfree_rcu(adj, rcu);
7979 }
7980
7981 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7982                                             struct net_device *upper_dev,
7983                                             struct list_head *up_list,
7984                                             struct list_head *down_list,
7985                                             void *private, bool master)
7986 {
7987         int ret;
7988
7989         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7990                                            private, master);
7991         if (ret)
7992                 return ret;
7993
7994         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7995                                            private, false);
7996         if (ret) {
7997                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7998                 return ret;
7999         }
8000
8001         return 0;
8002 }
8003
8004 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8005                                                struct net_device *upper_dev,
8006                                                u16 ref_nr,
8007                                                struct list_head *up_list,
8008                                                struct list_head *down_list)
8009 {
8010         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8011         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8012 }
8013
8014 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8015                                                 struct net_device *upper_dev,
8016                                                 void *private, bool master)
8017 {
8018         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8019                                                 &dev->adj_list.upper,
8020                                                 &upper_dev->adj_list.lower,
8021                                                 private, master);
8022 }
8023
8024 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8025                                                    struct net_device *upper_dev)
8026 {
8027         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8028                                            &dev->adj_list.upper,
8029                                            &upper_dev->adj_list.lower);
8030 }
8031
8032 static int __netdev_upper_dev_link(struct net_device *dev,
8033                                    struct net_device *upper_dev, bool master,
8034                                    void *upper_priv, void *upper_info,
8035                                    struct netdev_nested_priv *priv,
8036                                    struct netlink_ext_ack *extack)
8037 {
8038         struct netdev_notifier_changeupper_info changeupper_info = {
8039                 .info = {
8040                         .dev = dev,
8041                         .extack = extack,
8042                 },
8043                 .upper_dev = upper_dev,
8044                 .master = master,
8045                 .linking = true,
8046                 .upper_info = upper_info,
8047         };
8048         struct net_device *master_dev;
8049         int ret = 0;
8050
8051         ASSERT_RTNL();
8052
8053         if (dev == upper_dev)
8054                 return -EBUSY;
8055
8056         /* To prevent loops, check if dev is not upper device to upper_dev. */
8057         if (__netdev_has_upper_dev(upper_dev, dev))
8058                 return -EBUSY;
8059
8060         if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8061                 return -EMLINK;
8062
8063         if (!master) {
8064                 if (__netdev_has_upper_dev(dev, upper_dev))
8065                         return -EEXIST;
8066         } else {
8067                 master_dev = __netdev_master_upper_dev_get(dev);
8068                 if (master_dev)
8069                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
8070         }
8071
8072         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8073                                             &changeupper_info.info);
8074         ret = notifier_to_errno(ret);
8075         if (ret)
8076                 return ret;
8077
8078         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8079                                                    master);
8080         if (ret)
8081                 return ret;
8082
8083         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8084                                             &changeupper_info.info);
8085         ret = notifier_to_errno(ret);
8086         if (ret)
8087                 goto rollback;
8088
8089         __netdev_update_upper_level(dev, NULL);
8090         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8091
8092         __netdev_update_lower_level(upper_dev, priv);
8093         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8094                                     priv);
8095
8096         return 0;
8097
8098 rollback:
8099         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8100
8101         return ret;
8102 }
8103
8104 /**
8105  * netdev_upper_dev_link - Add a link to the upper device
8106  * @dev: device
8107  * @upper_dev: new upper device
8108  * @extack: netlink extended ack
8109  *
8110  * Adds a link to device which is upper to this one. The caller must hold
8111  * the RTNL lock. On a failure a negative errno code is returned.
8112  * On success the reference counts are adjusted and the function
8113  * returns zero.
8114  */
8115 int netdev_upper_dev_link(struct net_device *dev,
8116                           struct net_device *upper_dev,
8117                           struct netlink_ext_ack *extack)
8118 {
8119         struct netdev_nested_priv priv = {
8120                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8121                 .data = NULL,
8122         };
8123
8124         return __netdev_upper_dev_link(dev, upper_dev, false,
8125                                        NULL, NULL, &priv, extack);
8126 }
8127 EXPORT_SYMBOL(netdev_upper_dev_link);
8128
8129 /**
8130  * netdev_master_upper_dev_link - Add a master link to the upper device
8131  * @dev: device
8132  * @upper_dev: new upper device
8133  * @upper_priv: upper device private
8134  * @upper_info: upper info to be passed down via notifier
8135  * @extack: netlink extended ack
8136  *
8137  * Adds a link to device which is upper to this one. In this case, only
8138  * one master upper device can be linked, although other non-master devices
8139  * might be linked as well. The caller must hold the RTNL lock.
8140  * On a failure a negative errno code is returned. On success the reference
8141  * counts are adjusted and the function returns zero.
8142  */
8143 int netdev_master_upper_dev_link(struct net_device *dev,
8144                                  struct net_device *upper_dev,
8145                                  void *upper_priv, void *upper_info,
8146                                  struct netlink_ext_ack *extack)
8147 {
8148         struct netdev_nested_priv priv = {
8149                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8150                 .data = NULL,
8151         };
8152
8153         return __netdev_upper_dev_link(dev, upper_dev, true,
8154                                        upper_priv, upper_info, &priv, extack);
8155 }
8156 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8157
8158 static void __netdev_upper_dev_unlink(struct net_device *dev,
8159                                       struct net_device *upper_dev,
8160                                       struct netdev_nested_priv *priv)
8161 {
8162         struct netdev_notifier_changeupper_info changeupper_info = {
8163                 .info = {
8164                         .dev = dev,
8165                 },
8166                 .upper_dev = upper_dev,
8167                 .linking = false,
8168         };
8169
8170         ASSERT_RTNL();
8171
8172         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8173
8174         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8175                                       &changeupper_info.info);
8176
8177         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8178
8179         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8180                                       &changeupper_info.info);
8181
8182         __netdev_update_upper_level(dev, NULL);
8183         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8184
8185         __netdev_update_lower_level(upper_dev, priv);
8186         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8187                                     priv);
8188 }
8189
8190 /**
8191  * netdev_upper_dev_unlink - Removes a link to upper device
8192  * @dev: device
8193  * @upper_dev: new upper device
8194  *
8195  * Removes a link to device which is upper to this one. The caller must hold
8196  * the RTNL lock.
8197  */
8198 void netdev_upper_dev_unlink(struct net_device *dev,
8199                              struct net_device *upper_dev)
8200 {
8201         struct netdev_nested_priv priv = {
8202                 .flags = NESTED_SYNC_TODO,
8203                 .data = NULL,
8204         };
8205
8206         __netdev_upper_dev_unlink(dev, upper_dev, &priv);
8207 }
8208 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8209
8210 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8211                                       struct net_device *lower_dev,
8212                                       bool val)
8213 {
8214         struct netdev_adjacent *adj;
8215
8216         adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8217         if (adj)
8218                 adj->ignore = val;
8219
8220         adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8221         if (adj)
8222                 adj->ignore = val;
8223 }
8224
8225 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8226                                         struct net_device *lower_dev)
8227 {
8228         __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8229 }
8230
8231 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8232                                        struct net_device *lower_dev)
8233 {
8234         __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8235 }
8236
8237 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8238                                    struct net_device *new_dev,
8239                                    struct net_device *dev,
8240                                    struct netlink_ext_ack *extack)
8241 {
8242         struct netdev_nested_priv priv = {
8243                 .flags = 0,
8244                 .data = NULL,
8245         };
8246         int err;
8247
8248         if (!new_dev)
8249                 return 0;
8250
8251         if (old_dev && new_dev != old_dev)
8252                 netdev_adjacent_dev_disable(dev, old_dev);
8253         err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8254                                       extack);
8255         if (err) {
8256                 if (old_dev && new_dev != old_dev)
8257                         netdev_adjacent_dev_enable(dev, old_dev);
8258                 return err;
8259         }
8260
8261         return 0;
8262 }
8263 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8264
8265 void netdev_adjacent_change_commit(struct net_device *old_dev,
8266                                    struct net_device *new_dev,
8267                                    struct net_device *dev)
8268 {
8269         struct netdev_nested_priv priv = {
8270                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8271                 .data = NULL,
8272         };
8273
8274         if (!new_dev || !old_dev)
8275                 return;
8276
8277         if (new_dev == old_dev)
8278                 return;
8279
8280         netdev_adjacent_dev_enable(dev, old_dev);
8281         __netdev_upper_dev_unlink(old_dev, dev, &priv);
8282 }
8283 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8284
8285 void netdev_adjacent_change_abort(struct net_device *old_dev,
8286                                   struct net_device *new_dev,
8287                                   struct net_device *dev)
8288 {
8289         struct netdev_nested_priv priv = {
8290                 .flags = 0,
8291                 .data = NULL,
8292         };
8293
8294         if (!new_dev)
8295                 return;
8296
8297         if (old_dev && new_dev != old_dev)
8298                 netdev_adjacent_dev_enable(dev, old_dev);
8299
8300         __netdev_upper_dev_unlink(new_dev, dev, &priv);
8301 }
8302 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8303
8304 /**
8305  * netdev_bonding_info_change - Dispatch event about slave change
8306  * @dev: device
8307  * @bonding_info: info to dispatch
8308  *
8309  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8310  * The caller must hold the RTNL lock.
8311  */
8312 void netdev_bonding_info_change(struct net_device *dev,
8313                                 struct netdev_bonding_info *bonding_info)
8314 {
8315         struct netdev_notifier_bonding_info info = {
8316                 .info.dev = dev,
8317         };
8318
8319         memcpy(&info.bonding_info, bonding_info,
8320                sizeof(struct netdev_bonding_info));
8321         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8322                                       &info.info);
8323 }
8324 EXPORT_SYMBOL(netdev_bonding_info_change);
8325
8326 /**
8327  * netdev_get_xmit_slave - Get the xmit slave of master device
8328  * @dev: device
8329  * @skb: The packet
8330  * @all_slaves: assume all the slaves are active
8331  *
8332  * The reference counters are not incremented so the caller must be
8333  * careful with locks. The caller must hold RCU lock.
8334  * %NULL is returned if no slave is found.
8335  */
8336
8337 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8338                                          struct sk_buff *skb,
8339                                          bool all_slaves)
8340 {
8341         const struct net_device_ops *ops = dev->netdev_ops;
8342
8343         if (!ops->ndo_get_xmit_slave)
8344                 return NULL;
8345         return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8346 }
8347 EXPORT_SYMBOL(netdev_get_xmit_slave);
8348
8349 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8350                                                   struct sock *sk)
8351 {
8352         const struct net_device_ops *ops = dev->netdev_ops;
8353
8354         if (!ops->ndo_sk_get_lower_dev)
8355                 return NULL;
8356         return ops->ndo_sk_get_lower_dev(dev, sk);
8357 }
8358
8359 /**
8360  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8361  * @dev: device
8362  * @sk: the socket
8363  *
8364  * %NULL is returned if no lower device is found.
8365  */
8366
8367 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8368                                             struct sock *sk)
8369 {
8370         struct net_device *lower;
8371
8372         lower = netdev_sk_get_lower_dev(dev, sk);
8373         while (lower) {
8374                 dev = lower;
8375                 lower = netdev_sk_get_lower_dev(dev, sk);
8376         }
8377
8378         return dev;
8379 }
8380 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8381
8382 static void netdev_adjacent_add_links(struct net_device *dev)
8383 {
8384         struct netdev_adjacent *iter;
8385
8386         struct net *net = dev_net(dev);
8387
8388         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8389                 if (!net_eq(net, dev_net(iter->dev)))
8390                         continue;
8391                 netdev_adjacent_sysfs_add(iter->dev, dev,
8392                                           &iter->dev->adj_list.lower);
8393                 netdev_adjacent_sysfs_add(dev, iter->dev,
8394                                           &dev->adj_list.upper);
8395         }
8396
8397         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8398                 if (!net_eq(net, dev_net(iter->dev)))
8399                         continue;
8400                 netdev_adjacent_sysfs_add(iter->dev, dev,
8401                                           &iter->dev->adj_list.upper);
8402                 netdev_adjacent_sysfs_add(dev, iter->dev,
8403                                           &dev->adj_list.lower);
8404         }
8405 }
8406
8407 static void netdev_adjacent_del_links(struct net_device *dev)
8408 {
8409         struct netdev_adjacent *iter;
8410
8411         struct net *net = dev_net(dev);
8412
8413         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8414                 if (!net_eq(net, dev_net(iter->dev)))
8415                         continue;
8416                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8417                                           &iter->dev->adj_list.lower);
8418                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8419                                           &dev->adj_list.upper);
8420         }
8421
8422         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8423                 if (!net_eq(net, dev_net(iter->dev)))
8424                         continue;
8425                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8426                                           &iter->dev->adj_list.upper);
8427                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8428                                           &dev->adj_list.lower);
8429         }
8430 }
8431
8432 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8433 {
8434         struct netdev_adjacent *iter;
8435
8436         struct net *net = dev_net(dev);
8437
8438         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8439                 if (!net_eq(net, dev_net(iter->dev)))
8440                         continue;
8441                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8442                                           &iter->dev->adj_list.lower);
8443                 netdev_adjacent_sysfs_add(iter->dev, dev,
8444                                           &iter->dev->adj_list.lower);
8445         }
8446
8447         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8448                 if (!net_eq(net, dev_net(iter->dev)))
8449                         continue;
8450                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8451                                           &iter->dev->adj_list.upper);
8452                 netdev_adjacent_sysfs_add(iter->dev, dev,
8453                                           &iter->dev->adj_list.upper);
8454         }
8455 }
8456
8457 void *netdev_lower_dev_get_private(struct net_device *dev,
8458                                    struct net_device *lower_dev)
8459 {
8460         struct netdev_adjacent *lower;
8461
8462         if (!lower_dev)
8463                 return NULL;
8464         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8465         if (!lower)
8466                 return NULL;
8467
8468         return lower->private;
8469 }
8470 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8471
8472
8473 /**
8474  * netdev_lower_state_changed - Dispatch event about lower device state change
8475  * @lower_dev: device
8476  * @lower_state_info: state to dispatch
8477  *
8478  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8479  * The caller must hold the RTNL lock.
8480  */
8481 void netdev_lower_state_changed(struct net_device *lower_dev,
8482                                 void *lower_state_info)
8483 {
8484         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8485                 .info.dev = lower_dev,
8486         };
8487
8488         ASSERT_RTNL();
8489         changelowerstate_info.lower_state_info = lower_state_info;
8490         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8491                                       &changelowerstate_info.info);
8492 }
8493 EXPORT_SYMBOL(netdev_lower_state_changed);
8494
8495 static void dev_change_rx_flags(struct net_device *dev, int flags)
8496 {
8497         const struct net_device_ops *ops = dev->netdev_ops;
8498
8499         if (ops->ndo_change_rx_flags)
8500                 ops->ndo_change_rx_flags(dev, flags);
8501 }
8502
8503 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8504 {
8505         unsigned int old_flags = dev->flags;
8506         kuid_t uid;
8507         kgid_t gid;
8508
8509         ASSERT_RTNL();
8510
8511         dev->flags |= IFF_PROMISC;
8512         dev->promiscuity += inc;
8513         if (dev->promiscuity == 0) {
8514                 /*
8515                  * Avoid overflow.
8516                  * If inc causes overflow, untouch promisc and return error.
8517                  */
8518                 if (inc < 0)
8519                         dev->flags &= ~IFF_PROMISC;
8520                 else {
8521                         dev->promiscuity -= inc;
8522                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8523                                 dev->name);
8524                         return -EOVERFLOW;
8525                 }
8526         }
8527         if (dev->flags != old_flags) {
8528                 pr_info("device %s %s promiscuous mode\n",
8529                         dev->name,
8530                         dev->flags & IFF_PROMISC ? "entered" : "left");
8531                 if (audit_enabled) {
8532                         current_uid_gid(&uid, &gid);
8533                         audit_log(audit_context(), GFP_ATOMIC,
8534                                   AUDIT_ANOM_PROMISCUOUS,
8535                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8536                                   dev->name, (dev->flags & IFF_PROMISC),
8537                                   (old_flags & IFF_PROMISC),
8538                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
8539                                   from_kuid(&init_user_ns, uid),
8540                                   from_kgid(&init_user_ns, gid),
8541                                   audit_get_sessionid(current));
8542                 }
8543
8544                 dev_change_rx_flags(dev, IFF_PROMISC);
8545         }
8546         if (notify)
8547                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
8548         return 0;
8549 }
8550
8551 /**
8552  *      dev_set_promiscuity     - update promiscuity count on a device
8553  *      @dev: device
8554  *      @inc: modifier
8555  *
8556  *      Add or remove promiscuity from a device. While the count in the device
8557  *      remains above zero the interface remains promiscuous. Once it hits zero
8558  *      the device reverts back to normal filtering operation. A negative inc
8559  *      value is used to drop promiscuity on the device.
8560  *      Return 0 if successful or a negative errno code on error.
8561  */
8562 int dev_set_promiscuity(struct net_device *dev, int inc)
8563 {
8564         unsigned int old_flags = dev->flags;
8565         int err;
8566
8567         err = __dev_set_promiscuity(dev, inc, true);
8568         if (err < 0)
8569                 return err;
8570         if (dev->flags != old_flags)
8571                 dev_set_rx_mode(dev);
8572         return err;
8573 }
8574 EXPORT_SYMBOL(dev_set_promiscuity);
8575
8576 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8577 {
8578         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8579
8580         ASSERT_RTNL();
8581
8582         dev->flags |= IFF_ALLMULTI;
8583         dev->allmulti += inc;
8584         if (dev->allmulti == 0) {
8585                 /*
8586                  * Avoid overflow.
8587                  * If inc causes overflow, untouch allmulti and return error.
8588                  */
8589                 if (inc < 0)
8590                         dev->flags &= ~IFF_ALLMULTI;
8591                 else {
8592                         dev->allmulti -= inc;
8593                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8594                                 dev->name);
8595                         return -EOVERFLOW;
8596                 }
8597         }
8598         if (dev->flags ^ old_flags) {
8599                 dev_change_rx_flags(dev, IFF_ALLMULTI);
8600                 dev_set_rx_mode(dev);
8601                 if (notify)
8602                         __dev_notify_flags(dev, old_flags,
8603                                            dev->gflags ^ old_gflags);
8604         }
8605         return 0;
8606 }
8607
8608 /**
8609  *      dev_set_allmulti        - update allmulti count on a device
8610  *      @dev: device
8611  *      @inc: modifier
8612  *
8613  *      Add or remove reception of all multicast frames to a device. While the
8614  *      count in the device remains above zero the interface remains listening
8615  *      to all interfaces. Once it hits zero the device reverts back to normal
8616  *      filtering operation. A negative @inc value is used to drop the counter
8617  *      when releasing a resource needing all multicasts.
8618  *      Return 0 if successful or a negative errno code on error.
8619  */
8620
8621 int dev_set_allmulti(struct net_device *dev, int inc)
8622 {
8623         return __dev_set_allmulti(dev, inc, true);
8624 }
8625 EXPORT_SYMBOL(dev_set_allmulti);
8626
8627 /*
8628  *      Upload unicast and multicast address lists to device and
8629  *      configure RX filtering. When the device doesn't support unicast
8630  *      filtering it is put in promiscuous mode while unicast addresses
8631  *      are present.
8632  */
8633 void __dev_set_rx_mode(struct net_device *dev)
8634 {
8635         const struct net_device_ops *ops = dev->netdev_ops;
8636
8637         /* dev_open will call this function so the list will stay sane. */
8638         if (!(dev->flags&IFF_UP))
8639                 return;
8640
8641         if (!netif_device_present(dev))
8642                 return;
8643
8644         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8645                 /* Unicast addresses changes may only happen under the rtnl,
8646                  * therefore calling __dev_set_promiscuity here is safe.
8647                  */
8648                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8649                         __dev_set_promiscuity(dev, 1, false);
8650                         dev->uc_promisc = true;
8651                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8652                         __dev_set_promiscuity(dev, -1, false);
8653                         dev->uc_promisc = false;
8654                 }
8655         }
8656
8657         if (ops->ndo_set_rx_mode)
8658                 ops->ndo_set_rx_mode(dev);
8659 }
8660
8661 void dev_set_rx_mode(struct net_device *dev)
8662 {
8663         netif_addr_lock_bh(dev);
8664         __dev_set_rx_mode(dev);
8665         netif_addr_unlock_bh(dev);
8666 }
8667
8668 /**
8669  *      dev_get_flags - get flags reported to userspace
8670  *      @dev: device
8671  *
8672  *      Get the combination of flag bits exported through APIs to userspace.
8673  */
8674 unsigned int dev_get_flags(const struct net_device *dev)
8675 {
8676         unsigned int flags;
8677
8678         flags = (dev->flags & ~(IFF_PROMISC |
8679                                 IFF_ALLMULTI |
8680                                 IFF_RUNNING |
8681                                 IFF_LOWER_UP |
8682                                 IFF_DORMANT)) |
8683                 (dev->gflags & (IFF_PROMISC |
8684                                 IFF_ALLMULTI));
8685
8686         if (netif_running(dev)) {
8687                 if (netif_oper_up(dev))
8688                         flags |= IFF_RUNNING;
8689                 if (netif_carrier_ok(dev))
8690                         flags |= IFF_LOWER_UP;
8691                 if (netif_dormant(dev))
8692                         flags |= IFF_DORMANT;
8693         }
8694
8695         return flags;
8696 }
8697 EXPORT_SYMBOL(dev_get_flags);
8698
8699 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8700                        struct netlink_ext_ack *extack)
8701 {
8702         unsigned int old_flags = dev->flags;
8703         int ret;
8704
8705         ASSERT_RTNL();
8706
8707         /*
8708          *      Set the flags on our device.
8709          */
8710
8711         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8712                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8713                                IFF_AUTOMEDIA)) |
8714                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8715                                     IFF_ALLMULTI));
8716
8717         /*
8718          *      Load in the correct multicast list now the flags have changed.
8719          */
8720
8721         if ((old_flags ^ flags) & IFF_MULTICAST)
8722                 dev_change_rx_flags(dev, IFF_MULTICAST);
8723
8724         dev_set_rx_mode(dev);
8725
8726         /*
8727          *      Have we downed the interface. We handle IFF_UP ourselves
8728          *      according to user attempts to set it, rather than blindly
8729          *      setting it.
8730          */
8731
8732         ret = 0;
8733         if ((old_flags ^ flags) & IFF_UP) {
8734                 if (old_flags & IFF_UP)
8735                         __dev_close(dev);
8736                 else
8737                         ret = __dev_open(dev, extack);
8738         }
8739
8740         if ((flags ^ dev->gflags) & IFF_PROMISC) {
8741                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8742                 unsigned int old_flags = dev->flags;
8743
8744                 dev->gflags ^= IFF_PROMISC;
8745
8746                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8747                         if (dev->flags != old_flags)
8748                                 dev_set_rx_mode(dev);
8749         }
8750
8751         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8752          * is important. Some (broken) drivers set IFF_PROMISC, when
8753          * IFF_ALLMULTI is requested not asking us and not reporting.
8754          */
8755         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8756                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8757
8758                 dev->gflags ^= IFF_ALLMULTI;
8759                 __dev_set_allmulti(dev, inc, false);
8760         }
8761
8762         return ret;
8763 }
8764
8765 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8766                         unsigned int gchanges)
8767 {
8768         unsigned int changes = dev->flags ^ old_flags;
8769
8770         if (gchanges)
8771                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8772
8773         if (changes & IFF_UP) {
8774                 if (dev->flags & IFF_UP)
8775                         call_netdevice_notifiers(NETDEV_UP, dev);
8776                 else
8777                         call_netdevice_notifiers(NETDEV_DOWN, dev);
8778         }
8779
8780         if (dev->flags & IFF_UP &&
8781             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8782                 struct netdev_notifier_change_info change_info = {
8783                         .info = {
8784                                 .dev = dev,
8785                         },
8786                         .flags_changed = changes,
8787                 };
8788
8789                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8790         }
8791 }
8792
8793 /**
8794  *      dev_change_flags - change device settings
8795  *      @dev: device
8796  *      @flags: device state flags
8797  *      @extack: netlink extended ack
8798  *
8799  *      Change settings on device based state flags. The flags are
8800  *      in the userspace exported format.
8801  */
8802 int dev_change_flags(struct net_device *dev, unsigned int flags,
8803                      struct netlink_ext_ack *extack)
8804 {
8805         int ret;
8806         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8807
8808         ret = __dev_change_flags(dev, flags, extack);
8809         if (ret < 0)
8810                 return ret;
8811
8812         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8813         __dev_notify_flags(dev, old_flags, changes);
8814         return ret;
8815 }
8816 EXPORT_SYMBOL(dev_change_flags);
8817
8818 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8819 {
8820         const struct net_device_ops *ops = dev->netdev_ops;
8821
8822         if (ops->ndo_change_mtu)
8823                 return ops->ndo_change_mtu(dev, new_mtu);
8824
8825         /* Pairs with all the lockless reads of dev->mtu in the stack */
8826         WRITE_ONCE(dev->mtu, new_mtu);
8827         return 0;
8828 }
8829 EXPORT_SYMBOL(__dev_set_mtu);
8830
8831 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8832                      struct netlink_ext_ack *extack)
8833 {
8834         /* MTU must be positive, and in range */
8835         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8836                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8837                 return -EINVAL;
8838         }
8839
8840         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8841                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8842                 return -EINVAL;
8843         }
8844         return 0;
8845 }
8846
8847 /**
8848  *      dev_set_mtu_ext - Change maximum transfer unit
8849  *      @dev: device
8850  *      @new_mtu: new transfer unit
8851  *      @extack: netlink extended ack
8852  *
8853  *      Change the maximum transfer size of the network device.
8854  */
8855 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8856                     struct netlink_ext_ack *extack)
8857 {
8858         int err, orig_mtu;
8859
8860         if (new_mtu == dev->mtu)
8861                 return 0;
8862
8863         err = dev_validate_mtu(dev, new_mtu, extack);
8864         if (err)
8865                 return err;
8866
8867         if (!netif_device_present(dev))
8868                 return -ENODEV;
8869
8870         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8871         err = notifier_to_errno(err);
8872         if (err)
8873                 return err;
8874
8875         orig_mtu = dev->mtu;
8876         err = __dev_set_mtu(dev, new_mtu);
8877
8878         if (!err) {
8879                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8880                                                    orig_mtu);
8881                 err = notifier_to_errno(err);
8882                 if (err) {
8883                         /* setting mtu back and notifying everyone again,
8884                          * so that they have a chance to revert changes.
8885                          */
8886                         __dev_set_mtu(dev, orig_mtu);
8887                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8888                                                      new_mtu);
8889                 }
8890         }
8891         return err;
8892 }
8893
8894 int dev_set_mtu(struct net_device *dev, int new_mtu)
8895 {
8896         struct netlink_ext_ack extack;
8897         int err;
8898
8899         memset(&extack, 0, sizeof(extack));
8900         err = dev_set_mtu_ext(dev, new_mtu, &extack);
8901         if (err && extack._msg)
8902                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8903         return err;
8904 }
8905 EXPORT_SYMBOL(dev_set_mtu);
8906
8907 /**
8908  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
8909  *      @dev: device
8910  *      @new_len: new tx queue length
8911  */
8912 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8913 {
8914         unsigned int orig_len = dev->tx_queue_len;
8915         int res;
8916
8917         if (new_len != (unsigned int)new_len)
8918                 return -ERANGE;
8919
8920         if (new_len != orig_len) {
8921                 dev->tx_queue_len = new_len;
8922                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8923                 res = notifier_to_errno(res);
8924                 if (res)
8925                         goto err_rollback;
8926                 res = dev_qdisc_change_tx_queue_len(dev);
8927                 if (res)
8928                         goto err_rollback;
8929         }
8930
8931         return 0;
8932
8933 err_rollback:
8934         netdev_err(dev, "refused to change device tx_queue_len\n");
8935         dev->tx_queue_len = orig_len;
8936         return res;
8937 }
8938
8939 /**
8940  *      dev_set_group - Change group this device belongs to
8941  *      @dev: device
8942  *      @new_group: group this device should belong to
8943  */
8944 void dev_set_group(struct net_device *dev, int new_group)
8945 {
8946         dev->group = new_group;
8947 }
8948 EXPORT_SYMBOL(dev_set_group);
8949
8950 /**
8951  *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8952  *      @dev: device
8953  *      @addr: new address
8954  *      @extack: netlink extended ack
8955  */
8956 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8957                               struct netlink_ext_ack *extack)
8958 {
8959         struct netdev_notifier_pre_changeaddr_info info = {
8960                 .info.dev = dev,
8961                 .info.extack = extack,
8962                 .dev_addr = addr,
8963         };
8964         int rc;
8965
8966         rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8967         return notifier_to_errno(rc);
8968 }
8969 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8970
8971 /**
8972  *      dev_set_mac_address - Change Media Access Control Address
8973  *      @dev: device
8974  *      @sa: new address
8975  *      @extack: netlink extended ack
8976  *
8977  *      Change the hardware (MAC) address of the device
8978  */
8979 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8980                         struct netlink_ext_ack *extack)
8981 {
8982         const struct net_device_ops *ops = dev->netdev_ops;
8983         int err;
8984
8985         if (!ops->ndo_set_mac_address)
8986                 return -EOPNOTSUPP;
8987         if (sa->sa_family != dev->type)
8988                 return -EINVAL;
8989         if (!netif_device_present(dev))
8990                 return -ENODEV;
8991         err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8992         if (err)
8993                 return err;
8994         err = ops->ndo_set_mac_address(dev, sa);
8995         if (err)
8996                 return err;
8997         dev->addr_assign_type = NET_ADDR_SET;
8998         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8999         add_device_randomness(dev->dev_addr, dev->addr_len);
9000         return 0;
9001 }
9002 EXPORT_SYMBOL(dev_set_mac_address);
9003
9004 static DECLARE_RWSEM(dev_addr_sem);
9005
9006 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
9007                              struct netlink_ext_ack *extack)
9008 {
9009         int ret;
9010
9011         down_write(&dev_addr_sem);
9012         ret = dev_set_mac_address(dev, sa, extack);
9013         up_write(&dev_addr_sem);
9014         return ret;
9015 }
9016 EXPORT_SYMBOL(dev_set_mac_address_user);
9017
9018 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9019 {
9020         size_t size = sizeof(sa->sa_data);
9021         struct net_device *dev;
9022         int ret = 0;
9023
9024         down_read(&dev_addr_sem);
9025         rcu_read_lock();
9026
9027         dev = dev_get_by_name_rcu(net, dev_name);
9028         if (!dev) {
9029                 ret = -ENODEV;
9030                 goto unlock;
9031         }
9032         if (!dev->addr_len)
9033                 memset(sa->sa_data, 0, size);
9034         else
9035                 memcpy(sa->sa_data, dev->dev_addr,
9036                        min_t(size_t, size, dev->addr_len));
9037         sa->sa_family = dev->type;
9038
9039 unlock:
9040         rcu_read_unlock();
9041         up_read(&dev_addr_sem);
9042         return ret;
9043 }
9044 EXPORT_SYMBOL(dev_get_mac_address);
9045
9046 /**
9047  *      dev_change_carrier - Change device carrier
9048  *      @dev: device
9049  *      @new_carrier: new value
9050  *
9051  *      Change device carrier
9052  */
9053 int dev_change_carrier(struct net_device *dev, bool new_carrier)
9054 {
9055         const struct net_device_ops *ops = dev->netdev_ops;
9056
9057         if (!ops->ndo_change_carrier)
9058                 return -EOPNOTSUPP;
9059         if (!netif_device_present(dev))
9060                 return -ENODEV;
9061         return ops->ndo_change_carrier(dev, new_carrier);
9062 }
9063 EXPORT_SYMBOL(dev_change_carrier);
9064
9065 /**
9066  *      dev_get_phys_port_id - Get device physical port ID
9067  *      @dev: device
9068  *      @ppid: port ID
9069  *
9070  *      Get device physical port ID
9071  */
9072 int dev_get_phys_port_id(struct net_device *dev,
9073                          struct netdev_phys_item_id *ppid)
9074 {
9075         const struct net_device_ops *ops = dev->netdev_ops;
9076
9077         if (!ops->ndo_get_phys_port_id)
9078                 return -EOPNOTSUPP;
9079         return ops->ndo_get_phys_port_id(dev, ppid);
9080 }
9081 EXPORT_SYMBOL(dev_get_phys_port_id);
9082
9083 /**
9084  *      dev_get_phys_port_name - Get device physical port name
9085  *      @dev: device
9086  *      @name: port name
9087  *      @len: limit of bytes to copy to name
9088  *
9089  *      Get device physical port name
9090  */
9091 int dev_get_phys_port_name(struct net_device *dev,
9092                            char *name, size_t len)
9093 {
9094         const struct net_device_ops *ops = dev->netdev_ops;
9095         int err;
9096
9097         if (ops->ndo_get_phys_port_name) {
9098                 err = ops->ndo_get_phys_port_name(dev, name, len);
9099                 if (err != -EOPNOTSUPP)
9100                         return err;
9101         }
9102         return devlink_compat_phys_port_name_get(dev, name, len);
9103 }
9104 EXPORT_SYMBOL(dev_get_phys_port_name);
9105
9106 /**
9107  *      dev_get_port_parent_id - Get the device's port parent identifier
9108  *      @dev: network device
9109  *      @ppid: pointer to a storage for the port's parent identifier
9110  *      @recurse: allow/disallow recursion to lower devices
9111  *
9112  *      Get the devices's port parent identifier
9113  */
9114 int dev_get_port_parent_id(struct net_device *dev,
9115                            struct netdev_phys_item_id *ppid,
9116                            bool recurse)
9117 {
9118         const struct net_device_ops *ops = dev->netdev_ops;
9119         struct netdev_phys_item_id first = { };
9120         struct net_device *lower_dev;
9121         struct list_head *iter;
9122         int err;
9123
9124         if (ops->ndo_get_port_parent_id) {
9125                 err = ops->ndo_get_port_parent_id(dev, ppid);
9126                 if (err != -EOPNOTSUPP)
9127                         return err;
9128         }
9129
9130         err = devlink_compat_switch_id_get(dev, ppid);
9131         if (!err || err != -EOPNOTSUPP)
9132                 return err;
9133
9134         if (!recurse)
9135                 return -EOPNOTSUPP;
9136
9137         netdev_for_each_lower_dev(dev, lower_dev, iter) {
9138                 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
9139                 if (err)
9140                         break;
9141                 if (!first.id_len)
9142                         first = *ppid;
9143                 else if (memcmp(&first, ppid, sizeof(*ppid)))
9144                         return -EOPNOTSUPP;
9145         }
9146
9147         return err;
9148 }
9149 EXPORT_SYMBOL(dev_get_port_parent_id);
9150
9151 /**
9152  *      netdev_port_same_parent_id - Indicate if two network devices have
9153  *      the same port parent identifier
9154  *      @a: first network device
9155  *      @b: second network device
9156  */
9157 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9158 {
9159         struct netdev_phys_item_id a_id = { };
9160         struct netdev_phys_item_id b_id = { };
9161
9162         if (dev_get_port_parent_id(a, &a_id, true) ||
9163             dev_get_port_parent_id(b, &b_id, true))
9164                 return false;
9165
9166         return netdev_phys_item_id_same(&a_id, &b_id);
9167 }
9168 EXPORT_SYMBOL(netdev_port_same_parent_id);
9169
9170 /**
9171  *      dev_change_proto_down - update protocol port state information
9172  *      @dev: device
9173  *      @proto_down: new value
9174  *
9175  *      This info can be used by switch drivers to set the phys state of the
9176  *      port.
9177  */
9178 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9179 {
9180         const struct net_device_ops *ops = dev->netdev_ops;
9181
9182         if (!ops->ndo_change_proto_down)
9183                 return -EOPNOTSUPP;
9184         if (!netif_device_present(dev))
9185                 return -ENODEV;
9186         return ops->ndo_change_proto_down(dev, proto_down);
9187 }
9188 EXPORT_SYMBOL(dev_change_proto_down);
9189
9190 /**
9191  *      dev_change_proto_down_generic - generic implementation for
9192  *      ndo_change_proto_down that sets carrier according to
9193  *      proto_down.
9194  *
9195  *      @dev: device
9196  *      @proto_down: new value
9197  */
9198 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
9199 {
9200         if (proto_down)
9201                 netif_carrier_off(dev);
9202         else
9203                 netif_carrier_on(dev);
9204         dev->proto_down = proto_down;
9205         return 0;
9206 }
9207 EXPORT_SYMBOL(dev_change_proto_down_generic);
9208
9209 /**
9210  *      dev_change_proto_down_reason - proto down reason
9211  *
9212  *      @dev: device
9213  *      @mask: proto down mask
9214  *      @value: proto down value
9215  */
9216 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9217                                   u32 value)
9218 {
9219         int b;
9220
9221         if (!mask) {
9222                 dev->proto_down_reason = value;
9223         } else {
9224                 for_each_set_bit(b, &mask, 32) {
9225                         if (value & (1 << b))
9226                                 dev->proto_down_reason |= BIT(b);
9227                         else
9228                                 dev->proto_down_reason &= ~BIT(b);
9229                 }
9230         }
9231 }
9232 EXPORT_SYMBOL(dev_change_proto_down_reason);
9233
9234 struct bpf_xdp_link {
9235         struct bpf_link link;
9236         struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9237         int flags;
9238 };
9239
9240 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9241 {
9242         if (flags & XDP_FLAGS_HW_MODE)
9243                 return XDP_MODE_HW;
9244         if (flags & XDP_FLAGS_DRV_MODE)
9245                 return XDP_MODE_DRV;
9246         if (flags & XDP_FLAGS_SKB_MODE)
9247                 return XDP_MODE_SKB;
9248         return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9249 }
9250
9251 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9252 {
9253         switch (mode) {
9254         case XDP_MODE_SKB:
9255                 return generic_xdp_install;
9256         case XDP_MODE_DRV:
9257         case XDP_MODE_HW:
9258                 return dev->netdev_ops->ndo_bpf;
9259         default:
9260                 return NULL;
9261         }
9262 }
9263
9264 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9265                                          enum bpf_xdp_mode mode)
9266 {
9267         return dev->xdp_state[mode].link;
9268 }
9269
9270 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9271                                      enum bpf_xdp_mode mode)
9272 {
9273         struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9274
9275         if (link)
9276                 return link->link.prog;
9277         return dev->xdp_state[mode].prog;
9278 }
9279
9280 static u8 dev_xdp_prog_count(struct net_device *dev)
9281 {
9282         u8 count = 0;
9283         int i;
9284
9285         for (i = 0; i < __MAX_XDP_MODE; i++)
9286                 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9287                         count++;
9288         return count;
9289 }
9290
9291 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9292 {
9293         struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9294
9295         return prog ? prog->aux->id : 0;
9296 }
9297
9298 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9299                              struct bpf_xdp_link *link)
9300 {
9301         dev->xdp_state[mode].link = link;
9302         dev->xdp_state[mode].prog = NULL;
9303 }
9304
9305 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9306                              struct bpf_prog *prog)
9307 {
9308         dev->xdp_state[mode].link = NULL;
9309         dev->xdp_state[mode].prog = prog;
9310 }
9311
9312 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9313                            bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9314                            u32 flags, struct bpf_prog *prog)
9315 {
9316         struct netdev_bpf xdp;
9317         int err;
9318
9319         memset(&xdp, 0, sizeof(xdp));
9320         xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9321         xdp.extack = extack;
9322         xdp.flags = flags;
9323         xdp.prog = prog;
9324
9325         /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9326          * "moved" into driver), so they don't increment it on their own, but
9327          * they do decrement refcnt when program is detached or replaced.
9328          * Given net_device also owns link/prog, we need to bump refcnt here
9329          * to prevent drivers from underflowing it.
9330          */
9331         if (prog)
9332                 bpf_prog_inc(prog);
9333         err = bpf_op(dev, &xdp);
9334         if (err) {
9335                 if (prog)
9336                         bpf_prog_put(prog);
9337                 return err;
9338         }
9339
9340         if (mode != XDP_MODE_HW)
9341                 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9342
9343         return 0;
9344 }
9345
9346 static void dev_xdp_uninstall(struct net_device *dev)
9347 {
9348         struct bpf_xdp_link *link;
9349         struct bpf_prog *prog;
9350         enum bpf_xdp_mode mode;
9351         bpf_op_t bpf_op;
9352
9353         ASSERT_RTNL();
9354
9355         for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9356                 prog = dev_xdp_prog(dev, mode);
9357                 if (!prog)
9358                         continue;
9359
9360                 bpf_op = dev_xdp_bpf_op(dev, mode);
9361                 if (!bpf_op)
9362                         continue;
9363
9364                 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9365
9366                 /* auto-detach link from net device */
9367                 link = dev_xdp_link(dev, mode);
9368                 if (link)
9369                         link->dev = NULL;
9370                 else
9371                         bpf_prog_put(prog);
9372
9373                 dev_xdp_set_link(dev, mode, NULL);
9374         }
9375 }
9376
9377 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9378                           struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9379                           struct bpf_prog *old_prog, u32 flags)
9380 {
9381         unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9382         struct bpf_prog *cur_prog;
9383         enum bpf_xdp_mode mode;
9384         bpf_op_t bpf_op;
9385         int err;
9386
9387         ASSERT_RTNL();
9388
9389         /* either link or prog attachment, never both */
9390         if (link && (new_prog || old_prog))
9391                 return -EINVAL;
9392         /* link supports only XDP mode flags */
9393         if (link && (flags & ~XDP_FLAGS_MODES)) {
9394                 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9395                 return -EINVAL;
9396         }
9397         /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9398         if (num_modes > 1) {
9399                 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9400                 return -EINVAL;
9401         }
9402         /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9403         if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9404                 NL_SET_ERR_MSG(extack,
9405                                "More than one program loaded, unset mode is ambiguous");
9406                 return -EINVAL;
9407         }
9408         /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9409         if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9410                 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9411                 return -EINVAL;
9412         }
9413
9414         mode = dev_xdp_mode(dev, flags);
9415         /* can't replace attached link */
9416         if (dev_xdp_link(dev, mode)) {
9417                 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9418                 return -EBUSY;
9419         }
9420
9421         cur_prog = dev_xdp_prog(dev, mode);
9422         /* can't replace attached prog with link */
9423         if (link && cur_prog) {
9424                 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9425                 return -EBUSY;
9426         }
9427         if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9428                 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9429                 return -EEXIST;
9430         }
9431
9432         /* put effective new program into new_prog */
9433         if (link)
9434                 new_prog = link->link.prog;
9435
9436         if (new_prog) {
9437                 bool offload = mode == XDP_MODE_HW;
9438                 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9439                                                ? XDP_MODE_DRV : XDP_MODE_SKB;
9440
9441                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9442                         NL_SET_ERR_MSG(extack, "XDP program already attached");
9443                         return -EBUSY;
9444                 }
9445                 if (!offload && dev_xdp_prog(dev, other_mode)) {
9446                         NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9447                         return -EEXIST;
9448                 }
9449                 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9450                         NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9451                         return -EINVAL;
9452                 }
9453                 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9454                         NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9455                         return -EINVAL;
9456                 }
9457                 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9458                         NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9459                         return -EINVAL;
9460                 }
9461         }
9462
9463         /* don't call drivers if the effective program didn't change */
9464         if (new_prog != cur_prog) {
9465                 bpf_op = dev_xdp_bpf_op(dev, mode);
9466                 if (!bpf_op) {
9467                         NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9468                         return -EOPNOTSUPP;
9469                 }
9470
9471                 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9472                 if (err)
9473                         return err;
9474         }
9475
9476         if (link)
9477                 dev_xdp_set_link(dev, mode, link);
9478         else
9479                 dev_xdp_set_prog(dev, mode, new_prog);
9480         if (cur_prog)
9481                 bpf_prog_put(cur_prog);
9482
9483         return 0;
9484 }
9485
9486 static int dev_xdp_attach_link(struct net_device *dev,
9487                                struct netlink_ext_ack *extack,
9488                                struct bpf_xdp_link *link)
9489 {
9490         return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9491 }
9492
9493 static int dev_xdp_detach_link(struct net_device *dev,
9494                                struct netlink_ext_ack *extack,
9495                                struct bpf_xdp_link *link)
9496 {
9497         enum bpf_xdp_mode mode;
9498         bpf_op_t bpf_op;
9499
9500         ASSERT_RTNL();
9501
9502         mode = dev_xdp_mode(dev, link->flags);
9503         if (dev_xdp_link(dev, mode) != link)
9504                 return -EINVAL;
9505
9506         bpf_op = dev_xdp_bpf_op(dev, mode);
9507         WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9508         dev_xdp_set_link(dev, mode, NULL);
9509         return 0;
9510 }
9511
9512 static void bpf_xdp_link_release(struct bpf_link *link)
9513 {
9514         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9515
9516         rtnl_lock();
9517
9518         /* if racing with net_device's tear down, xdp_link->dev might be
9519          * already NULL, in which case link was already auto-detached
9520          */
9521         if (xdp_link->dev) {
9522                 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9523                 xdp_link->dev = NULL;
9524         }
9525
9526         rtnl_unlock();
9527 }
9528
9529 static int bpf_xdp_link_detach(struct bpf_link *link)
9530 {
9531         bpf_xdp_link_release(link);
9532         return 0;
9533 }
9534
9535 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9536 {
9537         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9538
9539         kfree(xdp_link);
9540 }
9541
9542 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9543                                      struct seq_file *seq)
9544 {
9545         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9546         u32 ifindex = 0;
9547
9548         rtnl_lock();
9549         if (xdp_link->dev)
9550                 ifindex = xdp_link->dev->ifindex;
9551         rtnl_unlock();
9552
9553         seq_printf(seq, "ifindex:\t%u\n", ifindex);
9554 }
9555
9556 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9557                                        struct bpf_link_info *info)
9558 {
9559         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9560         u32 ifindex = 0;
9561
9562         rtnl_lock();
9563         if (xdp_link->dev)
9564                 ifindex = xdp_link->dev->ifindex;
9565         rtnl_unlock();
9566
9567         info->xdp.ifindex = ifindex;
9568         return 0;
9569 }
9570
9571 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9572                                struct bpf_prog *old_prog)
9573 {
9574         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9575         enum bpf_xdp_mode mode;
9576         bpf_op_t bpf_op;
9577         int err = 0;
9578
9579         rtnl_lock();
9580
9581         /* link might have been auto-released already, so fail */
9582         if (!xdp_link->dev) {
9583                 err = -ENOLINK;
9584                 goto out_unlock;
9585         }
9586
9587         if (old_prog && link->prog != old_prog) {
9588                 err = -EPERM;
9589                 goto out_unlock;
9590         }
9591         old_prog = link->prog;
9592         if (old_prog == new_prog) {
9593                 /* no-op, don't disturb drivers */
9594                 bpf_prog_put(new_prog);
9595                 goto out_unlock;
9596         }
9597
9598         mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9599         bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9600         err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9601                               xdp_link->flags, new_prog);
9602         if (err)
9603                 goto out_unlock;
9604
9605         old_prog = xchg(&link->prog, new_prog);
9606         bpf_prog_put(old_prog);
9607
9608 out_unlock:
9609         rtnl_unlock();
9610         return err;
9611 }
9612
9613 static const struct bpf_link_ops bpf_xdp_link_lops = {
9614         .release = bpf_xdp_link_release,
9615         .dealloc = bpf_xdp_link_dealloc,
9616         .detach = bpf_xdp_link_detach,
9617         .show_fdinfo = bpf_xdp_link_show_fdinfo,
9618         .fill_link_info = bpf_xdp_link_fill_link_info,
9619         .update_prog = bpf_xdp_link_update,
9620 };
9621
9622 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9623 {
9624         struct net *net = current->nsproxy->net_ns;
9625         struct bpf_link_primer link_primer;
9626         struct bpf_xdp_link *link;
9627         struct net_device *dev;
9628         int err, fd;
9629
9630         dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9631         if (!dev)
9632                 return -EINVAL;
9633
9634         link = kzalloc(sizeof(*link), GFP_USER);
9635         if (!link) {
9636                 err = -ENOMEM;
9637                 goto out_put_dev;
9638         }
9639
9640         bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9641         link->dev = dev;
9642         link->flags = attr->link_create.flags;
9643
9644         err = bpf_link_prime(&link->link, &link_primer);
9645         if (err) {
9646                 kfree(link);
9647                 goto out_put_dev;
9648         }
9649
9650         rtnl_lock();
9651         err = dev_xdp_attach_link(dev, NULL, link);
9652         rtnl_unlock();
9653
9654         if (err) {
9655                 bpf_link_cleanup(&link_primer);
9656                 goto out_put_dev;
9657         }
9658
9659         fd = bpf_link_settle(&link_primer);
9660         /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9661         dev_put(dev);
9662         return fd;
9663
9664 out_put_dev:
9665         dev_put(dev);
9666         return err;
9667 }
9668
9669 /**
9670  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
9671  *      @dev: device
9672  *      @extack: netlink extended ack
9673  *      @fd: new program fd or negative value to clear
9674  *      @expected_fd: old program fd that userspace expects to replace or clear
9675  *      @flags: xdp-related flags
9676  *
9677  *      Set or clear a bpf program for a device
9678  */
9679 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9680                       int fd, int expected_fd, u32 flags)
9681 {
9682         enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9683         struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9684         int err;
9685
9686         ASSERT_RTNL();
9687
9688         if (fd >= 0) {
9689                 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9690                                                  mode != XDP_MODE_SKB);
9691                 if (IS_ERR(new_prog))
9692                         return PTR_ERR(new_prog);
9693         }
9694
9695         if (expected_fd >= 0) {
9696                 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9697                                                  mode != XDP_MODE_SKB);
9698                 if (IS_ERR(old_prog)) {
9699                         err = PTR_ERR(old_prog);
9700                         old_prog = NULL;
9701                         goto err_out;
9702                 }
9703         }
9704
9705         err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9706
9707 err_out:
9708         if (err && new_prog)
9709                 bpf_prog_put(new_prog);
9710         if (old_prog)
9711                 bpf_prog_put(old_prog);
9712         return err;
9713 }
9714
9715 /**
9716  *      dev_new_index   -       allocate an ifindex
9717  *      @net: the applicable net namespace
9718  *
9719  *      Returns a suitable unique value for a new device interface
9720  *      number.  The caller must hold the rtnl semaphore or the
9721  *      dev_base_lock to be sure it remains unique.
9722  */
9723 static int dev_new_index(struct net *net)
9724 {
9725         int ifindex = net->ifindex;
9726
9727         for (;;) {
9728                 if (++ifindex <= 0)
9729                         ifindex = 1;
9730                 if (!__dev_get_by_index(net, ifindex))
9731                         return net->ifindex = ifindex;
9732         }
9733 }
9734
9735 /* Delayed registration/unregisteration */
9736 static LIST_HEAD(net_todo_list);
9737 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9738
9739 static void net_set_todo(struct net_device *dev)
9740 {
9741         list_add_tail(&dev->todo_list, &net_todo_list);
9742         dev_net(dev)->dev_unreg_count++;
9743 }
9744
9745 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9746         struct net_device *upper, netdev_features_t features)
9747 {
9748         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9749         netdev_features_t feature;
9750         int feature_bit;
9751
9752         for_each_netdev_feature(upper_disables, feature_bit) {
9753                 feature = __NETIF_F_BIT(feature_bit);
9754                 if (!(upper->wanted_features & feature)
9755                     && (features & feature)) {
9756                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9757                                    &feature, upper->name);
9758                         features &= ~feature;
9759                 }
9760         }
9761
9762         return features;
9763 }
9764
9765 static void netdev_sync_lower_features(struct net_device *upper,
9766         struct net_device *lower, netdev_features_t features)
9767 {
9768         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9769         netdev_features_t feature;
9770         int feature_bit;
9771
9772         for_each_netdev_feature(upper_disables, feature_bit) {
9773                 feature = __NETIF_F_BIT(feature_bit);
9774                 if (!(features & feature) && (lower->features & feature)) {
9775                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9776                                    &feature, lower->name);
9777                         lower->wanted_features &= ~feature;
9778                         __netdev_update_features(lower);
9779
9780                         if (unlikely(lower->features & feature))
9781                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9782                                             &feature, lower->name);
9783                         else
9784                                 netdev_features_change(lower);
9785                 }
9786         }
9787 }
9788
9789 static netdev_features_t netdev_fix_features(struct net_device *dev,
9790         netdev_features_t features)
9791 {
9792         /* Fix illegal checksum combinations */
9793         if ((features & NETIF_F_HW_CSUM) &&
9794             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9795                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9796                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9797         }
9798
9799         /* TSO requires that SG is present as well. */
9800         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9801                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9802                 features &= ~NETIF_F_ALL_TSO;
9803         }
9804
9805         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9806                                         !(features & NETIF_F_IP_CSUM)) {
9807                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9808                 features &= ~NETIF_F_TSO;
9809                 features &= ~NETIF_F_TSO_ECN;
9810         }
9811
9812         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9813                                          !(features & NETIF_F_IPV6_CSUM)) {
9814                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9815                 features &= ~NETIF_F_TSO6;
9816         }
9817
9818         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9819         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9820                 features &= ~NETIF_F_TSO_MANGLEID;
9821
9822         /* TSO ECN requires that TSO is present as well. */
9823         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9824                 features &= ~NETIF_F_TSO_ECN;
9825
9826         /* Software GSO depends on SG. */
9827         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9828                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9829                 features &= ~NETIF_F_GSO;
9830         }
9831
9832         /* GSO partial features require GSO partial be set */
9833         if ((features & dev->gso_partial_features) &&
9834             !(features & NETIF_F_GSO_PARTIAL)) {
9835                 netdev_dbg(dev,
9836                            "Dropping partially supported GSO features since no GSO partial.\n");
9837                 features &= ~dev->gso_partial_features;
9838         }
9839
9840         if (!(features & NETIF_F_RXCSUM)) {
9841                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9842                  * successfully merged by hardware must also have the
9843                  * checksum verified by hardware.  If the user does not
9844                  * want to enable RXCSUM, logically, we should disable GRO_HW.
9845                  */
9846                 if (features & NETIF_F_GRO_HW) {
9847                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9848                         features &= ~NETIF_F_GRO_HW;
9849                 }
9850         }
9851
9852         /* LRO/HW-GRO features cannot be combined with RX-FCS */
9853         if (features & NETIF_F_RXFCS) {
9854                 if (features & NETIF_F_LRO) {
9855                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9856                         features &= ~NETIF_F_LRO;
9857                 }
9858
9859                 if (features & NETIF_F_GRO_HW) {
9860                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9861                         features &= ~NETIF_F_GRO_HW;
9862                 }
9863         }
9864
9865         if (features & NETIF_F_HW_TLS_TX) {
9866                 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9867                         (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9868                 bool hw_csum = features & NETIF_F_HW_CSUM;
9869
9870                 if (!ip_csum && !hw_csum) {
9871                         netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9872                         features &= ~NETIF_F_HW_TLS_TX;
9873                 }
9874         }
9875
9876         if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9877                 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9878                 features &= ~NETIF_F_HW_TLS_RX;
9879         }
9880
9881         return features;
9882 }
9883
9884 int __netdev_update_features(struct net_device *dev)
9885 {
9886         struct net_device *upper, *lower;
9887         netdev_features_t features;
9888         struct list_head *iter;
9889         int err = -1;
9890
9891         ASSERT_RTNL();
9892
9893         features = netdev_get_wanted_features(dev);
9894
9895         if (dev->netdev_ops->ndo_fix_features)
9896                 features = dev->netdev_ops->ndo_fix_features(dev, features);
9897
9898         /* driver might be less strict about feature dependencies */
9899         features = netdev_fix_features(dev, features);
9900
9901         /* some features can't be enabled if they're off on an upper device */
9902         netdev_for_each_upper_dev_rcu(dev, upper, iter)
9903                 features = netdev_sync_upper_features(dev, upper, features);
9904
9905         if (dev->features == features)
9906                 goto sync_lower;
9907
9908         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9909                 &dev->features, &features);
9910
9911         if (dev->netdev_ops->ndo_set_features)
9912                 err = dev->netdev_ops->ndo_set_features(dev, features);
9913         else
9914                 err = 0;
9915
9916         if (unlikely(err < 0)) {
9917                 netdev_err(dev,
9918                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
9919                         err, &features, &dev->features);
9920                 /* return non-0 since some features might have changed and
9921                  * it's better to fire a spurious notification than miss it
9922                  */
9923                 return -1;
9924         }
9925
9926 sync_lower:
9927         /* some features must be disabled on lower devices when disabled
9928          * on an upper device (think: bonding master or bridge)
9929          */
9930         netdev_for_each_lower_dev(dev, lower, iter)
9931                 netdev_sync_lower_features(dev, lower, features);
9932
9933         if (!err) {
9934                 netdev_features_t diff = features ^ dev->features;
9935
9936                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9937                         /* udp_tunnel_{get,drop}_rx_info both need
9938                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9939                          * device, or they won't do anything.
9940                          * Thus we need to update dev->features
9941                          * *before* calling udp_tunnel_get_rx_info,
9942                          * but *after* calling udp_tunnel_drop_rx_info.
9943                          */
9944                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9945                                 dev->features = features;
9946                                 udp_tunnel_get_rx_info(dev);
9947                         } else {
9948                                 udp_tunnel_drop_rx_info(dev);
9949                         }
9950                 }
9951
9952                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9953                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9954                                 dev->features = features;
9955                                 err |= vlan_get_rx_ctag_filter_info(dev);
9956                         } else {
9957                                 vlan_drop_rx_ctag_filter_info(dev);
9958                         }
9959                 }
9960
9961                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9962                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9963                                 dev->features = features;
9964                                 err |= vlan_get_rx_stag_filter_info(dev);
9965                         } else {
9966                                 vlan_drop_rx_stag_filter_info(dev);
9967                         }
9968                 }
9969
9970                 dev->features = features;
9971         }
9972
9973         return err < 0 ? 0 : 1;
9974 }
9975
9976 /**
9977  *      netdev_update_features - recalculate device features
9978  *      @dev: the device to check
9979  *
9980  *      Recalculate dev->features set and send notifications if it
9981  *      has changed. Should be called after driver or hardware dependent
9982  *      conditions might have changed that influence the features.
9983  */
9984 void netdev_update_features(struct net_device *dev)
9985 {
9986         if (__netdev_update_features(dev))
9987                 netdev_features_change(dev);
9988 }
9989 EXPORT_SYMBOL(netdev_update_features);
9990
9991 /**
9992  *      netdev_change_features - recalculate device features
9993  *      @dev: the device to check
9994  *
9995  *      Recalculate dev->features set and send notifications even
9996  *      if they have not changed. Should be called instead of
9997  *      netdev_update_features() if also dev->vlan_features might
9998  *      have changed to allow the changes to be propagated to stacked
9999  *      VLAN devices.
10000  */
10001 void netdev_change_features(struct net_device *dev)
10002 {
10003         __netdev_update_features(dev);
10004         netdev_features_change(dev);
10005 }
10006 EXPORT_SYMBOL(netdev_change_features);
10007
10008 /**
10009  *      netif_stacked_transfer_operstate -      transfer operstate
10010  *      @rootdev: the root or lower level device to transfer state from
10011  *      @dev: the device to transfer operstate to
10012  *
10013  *      Transfer operational state from root to device. This is normally
10014  *      called when a stacking relationship exists between the root
10015  *      device and the device(a leaf device).
10016  */
10017 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10018                                         struct net_device *dev)
10019 {
10020         if (rootdev->operstate == IF_OPER_DORMANT)
10021                 netif_dormant_on(dev);
10022         else
10023                 netif_dormant_off(dev);
10024
10025         if (rootdev->operstate == IF_OPER_TESTING)
10026                 netif_testing_on(dev);
10027         else
10028                 netif_testing_off(dev);
10029
10030         if (netif_carrier_ok(rootdev))
10031                 netif_carrier_on(dev);
10032         else
10033                 netif_carrier_off(dev);
10034 }
10035 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10036
10037 static int netif_alloc_rx_queues(struct net_device *dev)
10038 {
10039         unsigned int i, count = dev->num_rx_queues;
10040         struct netdev_rx_queue *rx;
10041         size_t sz = count * sizeof(*rx);
10042         int err = 0;
10043
10044         BUG_ON(count < 1);
10045
10046         rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10047         if (!rx)
10048                 return -ENOMEM;
10049
10050         dev->_rx = rx;
10051
10052         for (i = 0; i < count; i++) {
10053                 rx[i].dev = dev;
10054
10055                 /* XDP RX-queue setup */
10056                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10057                 if (err < 0)
10058                         goto err_rxq_info;
10059         }
10060         return 0;
10061
10062 err_rxq_info:
10063         /* Rollback successful reg's and free other resources */
10064         while (i--)
10065                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10066         kvfree(dev->_rx);
10067         dev->_rx = NULL;
10068         return err;
10069 }
10070
10071 static void netif_free_rx_queues(struct net_device *dev)
10072 {
10073         unsigned int i, count = dev->num_rx_queues;
10074
10075         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10076         if (!dev->_rx)
10077                 return;
10078
10079         for (i = 0; i < count; i++)
10080                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10081
10082         kvfree(dev->_rx);
10083 }
10084
10085 static void netdev_init_one_queue(struct net_device *dev,
10086                                   struct netdev_queue *queue, void *_unused)
10087 {
10088         /* Initialize queue lock */
10089         spin_lock_init(&queue->_xmit_lock);
10090         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10091         queue->xmit_lock_owner = -1;
10092         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10093         queue->dev = dev;
10094 #ifdef CONFIG_BQL
10095         dql_init(&queue->dql, HZ);
10096 #endif
10097 }
10098
10099 static void netif_free_tx_queues(struct net_device *dev)
10100 {
10101         kvfree(dev->_tx);
10102 }
10103
10104 static int netif_alloc_netdev_queues(struct net_device *dev)
10105 {
10106         unsigned int count = dev->num_tx_queues;
10107         struct netdev_queue *tx;
10108         size_t sz = count * sizeof(*tx);
10109
10110         if (count < 1 || count > 0xffff)
10111                 return -EINVAL;
10112
10113         tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10114         if (!tx)
10115                 return -ENOMEM;
10116
10117         dev->_tx = tx;
10118
10119         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10120         spin_lock_init(&dev->tx_global_lock);
10121
10122         return 0;
10123 }
10124
10125 void netif_tx_stop_all_queues(struct net_device *dev)
10126 {
10127         unsigned int i;
10128
10129         for (i = 0; i < dev->num_tx_queues; i++) {
10130                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10131
10132                 netif_tx_stop_queue(txq);
10133         }
10134 }
10135 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10136
10137 /**
10138  *      register_netdevice      - register a network device
10139  *      @dev: device to register
10140  *
10141  *      Take a completed network device structure and add it to the kernel
10142  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10143  *      chain. 0 is returned on success. A negative errno code is returned
10144  *      on a failure to set up the device, or if the name is a duplicate.
10145  *
10146  *      Callers must hold the rtnl semaphore. You may want
10147  *      register_netdev() instead of this.
10148  *
10149  *      BUGS:
10150  *      The locking appears insufficient to guarantee two parallel registers
10151  *      will not get the same name.
10152  */
10153
10154 int register_netdevice(struct net_device *dev)
10155 {
10156         int ret;
10157         struct net *net = dev_net(dev);
10158
10159         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10160                      NETDEV_FEATURE_COUNT);
10161         BUG_ON(dev_boot_phase);
10162         ASSERT_RTNL();
10163
10164         might_sleep();
10165
10166         /* When net_device's are persistent, this will be fatal. */
10167         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10168         BUG_ON(!net);
10169
10170         ret = ethtool_check_ops(dev->ethtool_ops);
10171         if (ret)
10172                 return ret;
10173
10174         spin_lock_init(&dev->addr_list_lock);
10175         netdev_set_addr_lockdep_class(dev);
10176
10177         ret = dev_get_valid_name(net, dev, dev->name);
10178         if (ret < 0)
10179                 goto out;
10180
10181         ret = -ENOMEM;
10182         dev->name_node = netdev_name_node_head_alloc(dev);
10183         if (!dev->name_node)
10184                 goto out;
10185
10186         /* Init, if this function is available */
10187         if (dev->netdev_ops->ndo_init) {
10188                 ret = dev->netdev_ops->ndo_init(dev);
10189                 if (ret) {
10190                         if (ret > 0)
10191                                 ret = -EIO;
10192                         goto err_free_name;
10193                 }
10194         }
10195
10196         if (((dev->hw_features | dev->features) &
10197              NETIF_F_HW_VLAN_CTAG_FILTER) &&
10198             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10199              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10200                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10201                 ret = -EINVAL;
10202                 goto err_uninit;
10203         }
10204
10205         ret = -EBUSY;
10206         if (!dev->ifindex)
10207                 dev->ifindex = dev_new_index(net);
10208         else if (__dev_get_by_index(net, dev->ifindex))
10209                 goto err_uninit;
10210
10211         /* Transfer changeable features to wanted_features and enable
10212          * software offloads (GSO and GRO).
10213          */
10214         dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10215         dev->features |= NETIF_F_SOFT_FEATURES;
10216
10217         if (dev->udp_tunnel_nic_info) {
10218                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10219                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10220         }
10221
10222         dev->wanted_features = dev->features & dev->hw_features;
10223
10224         if (!(dev->flags & IFF_LOOPBACK))
10225                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10226
10227         /* If IPv4 TCP segmentation offload is supported we should also
10228          * allow the device to enable segmenting the frame with the option
10229          * of ignoring a static IP ID value.  This doesn't enable the
10230          * feature itself but allows the user to enable it later.
10231          */
10232         if (dev->hw_features & NETIF_F_TSO)
10233                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10234         if (dev->vlan_features & NETIF_F_TSO)
10235                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10236         if (dev->mpls_features & NETIF_F_TSO)
10237                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10238         if (dev->hw_enc_features & NETIF_F_TSO)
10239                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10240
10241         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10242          */
10243         dev->vlan_features |= NETIF_F_HIGHDMA;
10244
10245         /* Make NETIF_F_SG inheritable to tunnel devices.
10246          */
10247         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10248
10249         /* Make NETIF_F_SG inheritable to MPLS.
10250          */
10251         dev->mpls_features |= NETIF_F_SG;
10252
10253         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10254         ret = notifier_to_errno(ret);
10255         if (ret)
10256                 goto err_uninit;
10257
10258         ret = netdev_register_kobject(dev);
10259         if (ret) {
10260                 dev->reg_state = NETREG_UNREGISTERED;
10261                 goto err_uninit;
10262         }
10263         dev->reg_state = NETREG_REGISTERED;
10264
10265         __netdev_update_features(dev);
10266
10267         /*
10268          *      Default initial state at registry is that the
10269          *      device is present.
10270          */
10271
10272         set_bit(__LINK_STATE_PRESENT, &dev->state);
10273
10274         linkwatch_init_dev(dev);
10275
10276         dev_init_scheduler(dev);
10277         dev_hold(dev);
10278         list_netdevice(dev);
10279         add_device_randomness(dev->dev_addr, dev->addr_len);
10280
10281         /* If the device has permanent device address, driver should
10282          * set dev_addr and also addr_assign_type should be set to
10283          * NET_ADDR_PERM (default value).
10284          */
10285         if (dev->addr_assign_type == NET_ADDR_PERM)
10286                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10287
10288         /* Notify protocols, that a new device appeared. */
10289         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10290         ret = notifier_to_errno(ret);
10291         if (ret) {
10292                 /* Expect explicit free_netdev() on failure */
10293                 dev->needs_free_netdev = false;
10294                 unregister_netdevice_queue(dev, NULL);
10295                 goto out;
10296         }
10297         /*
10298          *      Prevent userspace races by waiting until the network
10299          *      device is fully setup before sending notifications.
10300          */
10301         if (!dev->rtnl_link_ops ||
10302             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10303                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10304
10305 out:
10306         return ret;
10307
10308 err_uninit:
10309         if (dev->netdev_ops->ndo_uninit)
10310                 dev->netdev_ops->ndo_uninit(dev);
10311         if (dev->priv_destructor)
10312                 dev->priv_destructor(dev);
10313 err_free_name:
10314         netdev_name_node_free(dev->name_node);
10315         goto out;
10316 }
10317 EXPORT_SYMBOL(register_netdevice);
10318
10319 /**
10320  *      init_dummy_netdev       - init a dummy network device for NAPI
10321  *      @dev: device to init
10322  *
10323  *      This takes a network device structure and initialize the minimum
10324  *      amount of fields so it can be used to schedule NAPI polls without
10325  *      registering a full blown interface. This is to be used by drivers
10326  *      that need to tie several hardware interfaces to a single NAPI
10327  *      poll scheduler due to HW limitations.
10328  */
10329 int init_dummy_netdev(struct net_device *dev)
10330 {
10331         /* Clear everything. Note we don't initialize spinlocks
10332          * are they aren't supposed to be taken by any of the
10333          * NAPI code and this dummy netdev is supposed to be
10334          * only ever used for NAPI polls
10335          */
10336         memset(dev, 0, sizeof(struct net_device));
10337
10338         /* make sure we BUG if trying to hit standard
10339          * register/unregister code path
10340          */
10341         dev->reg_state = NETREG_DUMMY;
10342
10343         /* NAPI wants this */
10344         INIT_LIST_HEAD(&dev->napi_list);
10345
10346         /* a dummy interface is started by default */
10347         set_bit(__LINK_STATE_PRESENT, &dev->state);
10348         set_bit(__LINK_STATE_START, &dev->state);
10349
10350         /* napi_busy_loop stats accounting wants this */
10351         dev_net_set(dev, &init_net);
10352
10353         /* Note : We dont allocate pcpu_refcnt for dummy devices,
10354          * because users of this 'device' dont need to change
10355          * its refcount.
10356          */
10357
10358         return 0;
10359 }
10360 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10361
10362
10363 /**
10364  *      register_netdev - register a network device
10365  *      @dev: device to register
10366  *
10367  *      Take a completed network device structure and add it to the kernel
10368  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10369  *      chain. 0 is returned on success. A negative errno code is returned
10370  *      on a failure to set up the device, or if the name is a duplicate.
10371  *
10372  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
10373  *      and expands the device name if you passed a format string to
10374  *      alloc_netdev.
10375  */
10376 int register_netdev(struct net_device *dev)
10377 {
10378         int err;
10379
10380         if (rtnl_lock_killable())
10381                 return -EINTR;
10382         err = register_netdevice(dev);
10383         rtnl_unlock();
10384         return err;
10385 }
10386 EXPORT_SYMBOL(register_netdev);
10387
10388 int netdev_refcnt_read(const struct net_device *dev)
10389 {
10390 #ifdef CONFIG_PCPU_DEV_REFCNT
10391         int i, refcnt = 0;
10392
10393         for_each_possible_cpu(i)
10394                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10395         return refcnt;
10396 #else
10397         return refcount_read(&dev->dev_refcnt);
10398 #endif
10399 }
10400 EXPORT_SYMBOL(netdev_refcnt_read);
10401
10402 int netdev_unregister_timeout_secs __read_mostly = 10;
10403
10404 #define WAIT_REFS_MIN_MSECS 1
10405 #define WAIT_REFS_MAX_MSECS 250
10406 /**
10407  * netdev_wait_allrefs - wait until all references are gone.
10408  * @dev: target net_device
10409  *
10410  * This is called when unregistering network devices.
10411  *
10412  * Any protocol or device that holds a reference should register
10413  * for netdevice notification, and cleanup and put back the
10414  * reference if they receive an UNREGISTER event.
10415  * We can get stuck here if buggy protocols don't correctly
10416  * call dev_put.
10417  */
10418 static void netdev_wait_allrefs(struct net_device *dev)
10419 {
10420         unsigned long rebroadcast_time, warning_time;
10421         int wait = 0, refcnt;
10422
10423         linkwatch_forget_dev(dev);
10424
10425         rebroadcast_time = warning_time = jiffies;
10426         refcnt = netdev_refcnt_read(dev);
10427
10428         while (refcnt != 1) {
10429                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10430                         rtnl_lock();
10431
10432                         /* Rebroadcast unregister notification */
10433                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10434
10435                         __rtnl_unlock();
10436                         rcu_barrier();
10437                         rtnl_lock();
10438
10439                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10440                                      &dev->state)) {
10441                                 /* We must not have linkwatch events
10442                                  * pending on unregister. If this
10443                                  * happens, we simply run the queue
10444                                  * unscheduled, resulting in a noop
10445                                  * for this device.
10446                                  */
10447                                 linkwatch_run_queue();
10448                         }
10449
10450                         __rtnl_unlock();
10451
10452                         rebroadcast_time = jiffies;
10453                 }
10454
10455                 if (!wait) {
10456                         rcu_barrier();
10457                         wait = WAIT_REFS_MIN_MSECS;
10458                 } else {
10459                         msleep(wait);
10460                         wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10461                 }
10462
10463                 refcnt = netdev_refcnt_read(dev);
10464
10465                 if (refcnt != 1 &&
10466                     time_after(jiffies, warning_time +
10467                                netdev_unregister_timeout_secs * HZ)) {
10468                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10469                                  dev->name, refcnt);
10470                         warning_time = jiffies;
10471                 }
10472         }
10473 }
10474
10475 /* The sequence is:
10476  *
10477  *      rtnl_lock();
10478  *      ...
10479  *      register_netdevice(x1);
10480  *      register_netdevice(x2);
10481  *      ...
10482  *      unregister_netdevice(y1);
10483  *      unregister_netdevice(y2);
10484  *      ...
10485  *      rtnl_unlock();
10486  *      free_netdev(y1);
10487  *      free_netdev(y2);
10488  *
10489  * We are invoked by rtnl_unlock().
10490  * This allows us to deal with problems:
10491  * 1) We can delete sysfs objects which invoke hotplug
10492  *    without deadlocking with linkwatch via keventd.
10493  * 2) Since we run with the RTNL semaphore not held, we can sleep
10494  *    safely in order to wait for the netdev refcnt to drop to zero.
10495  *
10496  * We must not return until all unregister events added during
10497  * the interval the lock was held have been completed.
10498  */
10499 void netdev_run_todo(void)
10500 {
10501         struct list_head list;
10502 #ifdef CONFIG_LOCKDEP
10503         struct list_head unlink_list;
10504
10505         list_replace_init(&net_unlink_list, &unlink_list);
10506
10507         while (!list_empty(&unlink_list)) {
10508                 struct net_device *dev = list_first_entry(&unlink_list,
10509                                                           struct net_device,
10510                                                           unlink_list);
10511                 list_del_init(&dev->unlink_list);
10512                 dev->nested_level = dev->lower_level - 1;
10513         }
10514 #endif
10515
10516         /* Snapshot list, allow later requests */
10517         list_replace_init(&net_todo_list, &list);
10518
10519         __rtnl_unlock();
10520
10521
10522         /* Wait for rcu callbacks to finish before next phase */
10523         if (!list_empty(&list))
10524                 rcu_barrier();
10525
10526         while (!list_empty(&list)) {
10527                 struct net_device *dev
10528                         = list_first_entry(&list, struct net_device, todo_list);
10529                 list_del(&dev->todo_list);
10530
10531                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10532                         pr_err("network todo '%s' but state %d\n",
10533                                dev->name, dev->reg_state);
10534                         dump_stack();
10535                         continue;
10536                 }
10537
10538                 dev->reg_state = NETREG_UNREGISTERED;
10539
10540                 netdev_wait_allrefs(dev);
10541
10542                 /* paranoia */
10543                 BUG_ON(netdev_refcnt_read(dev) != 1);
10544                 BUG_ON(!list_empty(&dev->ptype_all));
10545                 BUG_ON(!list_empty(&dev->ptype_specific));
10546                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10547                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10548 #if IS_ENABLED(CONFIG_DECNET)
10549                 WARN_ON(dev->dn_ptr);
10550 #endif
10551                 if (dev->priv_destructor)
10552                         dev->priv_destructor(dev);
10553                 if (dev->needs_free_netdev)
10554                         free_netdev(dev);
10555
10556                 /* Report a network device has been unregistered */
10557                 rtnl_lock();
10558                 dev_net(dev)->dev_unreg_count--;
10559                 __rtnl_unlock();
10560                 wake_up(&netdev_unregistering_wq);
10561
10562                 /* Free network device */
10563                 kobject_put(&dev->dev.kobj);
10564         }
10565 }
10566
10567 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10568  * all the same fields in the same order as net_device_stats, with only
10569  * the type differing, but rtnl_link_stats64 may have additional fields
10570  * at the end for newer counters.
10571  */
10572 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10573                              const struct net_device_stats *netdev_stats)
10574 {
10575 #if BITS_PER_LONG == 64
10576         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10577         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10578         /* zero out counters that only exist in rtnl_link_stats64 */
10579         memset((char *)stats64 + sizeof(*netdev_stats), 0,
10580                sizeof(*stats64) - sizeof(*netdev_stats));
10581 #else
10582         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10583         const unsigned long *src = (const unsigned long *)netdev_stats;
10584         u64 *dst = (u64 *)stats64;
10585
10586         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10587         for (i = 0; i < n; i++)
10588                 dst[i] = src[i];
10589         /* zero out counters that only exist in rtnl_link_stats64 */
10590         memset((char *)stats64 + n * sizeof(u64), 0,
10591                sizeof(*stats64) - n * sizeof(u64));
10592 #endif
10593 }
10594 EXPORT_SYMBOL(netdev_stats_to_stats64);
10595
10596 /**
10597  *      dev_get_stats   - get network device statistics
10598  *      @dev: device to get statistics from
10599  *      @storage: place to store stats
10600  *
10601  *      Get network statistics from device. Return @storage.
10602  *      The device driver may provide its own method by setting
10603  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10604  *      otherwise the internal statistics structure is used.
10605  */
10606 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10607                                         struct rtnl_link_stats64 *storage)
10608 {
10609         const struct net_device_ops *ops = dev->netdev_ops;
10610
10611         if (ops->ndo_get_stats64) {
10612                 memset(storage, 0, sizeof(*storage));
10613                 ops->ndo_get_stats64(dev, storage);
10614         } else if (ops->ndo_get_stats) {
10615                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10616         } else {
10617                 netdev_stats_to_stats64(storage, &dev->stats);
10618         }
10619         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10620         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10621         storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10622         return storage;
10623 }
10624 EXPORT_SYMBOL(dev_get_stats);
10625
10626 /**
10627  *      dev_fetch_sw_netstats - get per-cpu network device statistics
10628  *      @s: place to store stats
10629  *      @netstats: per-cpu network stats to read from
10630  *
10631  *      Read per-cpu network statistics and populate the related fields in @s.
10632  */
10633 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10634                            const struct pcpu_sw_netstats __percpu *netstats)
10635 {
10636         int cpu;
10637
10638         for_each_possible_cpu(cpu) {
10639                 const struct pcpu_sw_netstats *stats;
10640                 struct pcpu_sw_netstats tmp;
10641                 unsigned int start;
10642
10643                 stats = per_cpu_ptr(netstats, cpu);
10644                 do {
10645                         start = u64_stats_fetch_begin_irq(&stats->syncp);
10646                         tmp.rx_packets = stats->rx_packets;
10647                         tmp.rx_bytes   = stats->rx_bytes;
10648                         tmp.tx_packets = stats->tx_packets;
10649                         tmp.tx_bytes   = stats->tx_bytes;
10650                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10651
10652                 s->rx_packets += tmp.rx_packets;
10653                 s->rx_bytes   += tmp.rx_bytes;
10654                 s->tx_packets += tmp.tx_packets;
10655                 s->tx_bytes   += tmp.tx_bytes;
10656         }
10657 }
10658 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10659
10660 /**
10661  *      dev_get_tstats64 - ndo_get_stats64 implementation
10662  *      @dev: device to get statistics from
10663  *      @s: place to store stats
10664  *
10665  *      Populate @s from dev->stats and dev->tstats. Can be used as
10666  *      ndo_get_stats64() callback.
10667  */
10668 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10669 {
10670         netdev_stats_to_stats64(s, &dev->stats);
10671         dev_fetch_sw_netstats(s, dev->tstats);
10672 }
10673 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10674
10675 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10676 {
10677         struct netdev_queue *queue = dev_ingress_queue(dev);
10678
10679 #ifdef CONFIG_NET_CLS_ACT
10680         if (queue)
10681                 return queue;
10682         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10683         if (!queue)
10684                 return NULL;
10685         netdev_init_one_queue(dev, queue, NULL);
10686         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10687         queue->qdisc_sleeping = &noop_qdisc;
10688         rcu_assign_pointer(dev->ingress_queue, queue);
10689 #endif
10690         return queue;
10691 }
10692
10693 static const struct ethtool_ops default_ethtool_ops;
10694
10695 void netdev_set_default_ethtool_ops(struct net_device *dev,
10696                                     const struct ethtool_ops *ops)
10697 {
10698         if (dev->ethtool_ops == &default_ethtool_ops)
10699                 dev->ethtool_ops = ops;
10700 }
10701 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10702
10703 void netdev_freemem(struct net_device *dev)
10704 {
10705         char *addr = (char *)dev - dev->padded;
10706
10707         kvfree(addr);
10708 }
10709
10710 /**
10711  * alloc_netdev_mqs - allocate network device
10712  * @sizeof_priv: size of private data to allocate space for
10713  * @name: device name format string
10714  * @name_assign_type: origin of device name
10715  * @setup: callback to initialize device
10716  * @txqs: the number of TX subqueues to allocate
10717  * @rxqs: the number of RX subqueues to allocate
10718  *
10719  * Allocates a struct net_device with private data area for driver use
10720  * and performs basic initialization.  Also allocates subqueue structs
10721  * for each queue on the device.
10722  */
10723 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10724                 unsigned char name_assign_type,
10725                 void (*setup)(struct net_device *),
10726                 unsigned int txqs, unsigned int rxqs)
10727 {
10728         struct net_device *dev;
10729         unsigned int alloc_size;
10730         struct net_device *p;
10731
10732         BUG_ON(strlen(name) >= sizeof(dev->name));
10733
10734         if (txqs < 1) {
10735                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10736                 return NULL;
10737         }
10738
10739         if (rxqs < 1) {
10740                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10741                 return NULL;
10742         }
10743
10744         alloc_size = sizeof(struct net_device);
10745         if (sizeof_priv) {
10746                 /* ensure 32-byte alignment of private area */
10747                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10748                 alloc_size += sizeof_priv;
10749         }
10750         /* ensure 32-byte alignment of whole construct */
10751         alloc_size += NETDEV_ALIGN - 1;
10752
10753         p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10754         if (!p)
10755                 return NULL;
10756
10757         dev = PTR_ALIGN(p, NETDEV_ALIGN);
10758         dev->padded = (char *)dev - (char *)p;
10759
10760 #ifdef CONFIG_PCPU_DEV_REFCNT
10761         dev->pcpu_refcnt = alloc_percpu(int);
10762         if (!dev->pcpu_refcnt)
10763                 goto free_dev;
10764         dev_hold(dev);
10765 #else
10766         refcount_set(&dev->dev_refcnt, 1);
10767 #endif
10768
10769         if (dev_addr_init(dev))
10770                 goto free_pcpu;
10771
10772         dev_mc_init(dev);
10773         dev_uc_init(dev);
10774
10775         dev_net_set(dev, &init_net);
10776
10777         dev->gso_max_size = GSO_MAX_SIZE;
10778         dev->gso_max_segs = GSO_MAX_SEGS;
10779         dev->upper_level = 1;
10780         dev->lower_level = 1;
10781 #ifdef CONFIG_LOCKDEP
10782         dev->nested_level = 0;
10783         INIT_LIST_HEAD(&dev->unlink_list);
10784 #endif
10785
10786         INIT_LIST_HEAD(&dev->napi_list);
10787         INIT_LIST_HEAD(&dev->unreg_list);
10788         INIT_LIST_HEAD(&dev->close_list);
10789         INIT_LIST_HEAD(&dev->link_watch_list);
10790         INIT_LIST_HEAD(&dev->adj_list.upper);
10791         INIT_LIST_HEAD(&dev->adj_list.lower);
10792         INIT_LIST_HEAD(&dev->ptype_all);
10793         INIT_LIST_HEAD(&dev->ptype_specific);
10794         INIT_LIST_HEAD(&dev->net_notifier_list);
10795 #ifdef CONFIG_NET_SCHED
10796         hash_init(dev->qdisc_hash);
10797 #endif
10798         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10799         setup(dev);
10800
10801         if (!dev->tx_queue_len) {
10802                 dev->priv_flags |= IFF_NO_QUEUE;
10803                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10804         }
10805
10806         dev->num_tx_queues = txqs;
10807         dev->real_num_tx_queues = txqs;
10808         if (netif_alloc_netdev_queues(dev))
10809                 goto free_all;
10810
10811         dev->num_rx_queues = rxqs;
10812         dev->real_num_rx_queues = rxqs;
10813         if (netif_alloc_rx_queues(dev))
10814                 goto free_all;
10815
10816         strcpy(dev->name, name);
10817         dev->name_assign_type = name_assign_type;
10818         dev->group = INIT_NETDEV_GROUP;
10819         if (!dev->ethtool_ops)
10820                 dev->ethtool_ops = &default_ethtool_ops;
10821
10822         nf_hook_ingress_init(dev);
10823
10824         return dev;
10825
10826 free_all:
10827         free_netdev(dev);
10828         return NULL;
10829
10830 free_pcpu:
10831 #ifdef CONFIG_PCPU_DEV_REFCNT
10832         free_percpu(dev->pcpu_refcnt);
10833 free_dev:
10834 #endif
10835         netdev_freemem(dev);
10836         return NULL;
10837 }
10838 EXPORT_SYMBOL(alloc_netdev_mqs);
10839
10840 /**
10841  * free_netdev - free network device
10842  * @dev: device
10843  *
10844  * This function does the last stage of destroying an allocated device
10845  * interface. The reference to the device object is released. If this
10846  * is the last reference then it will be freed.Must be called in process
10847  * context.
10848  */
10849 void free_netdev(struct net_device *dev)
10850 {
10851         struct napi_struct *p, *n;
10852
10853         might_sleep();
10854
10855         /* When called immediately after register_netdevice() failed the unwind
10856          * handling may still be dismantling the device. Handle that case by
10857          * deferring the free.
10858          */
10859         if (dev->reg_state == NETREG_UNREGISTERING) {
10860                 ASSERT_RTNL();
10861                 dev->needs_free_netdev = true;
10862                 return;
10863         }
10864
10865         netif_free_tx_queues(dev);
10866         netif_free_rx_queues(dev);
10867
10868         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10869
10870         /* Flush device addresses */
10871         dev_addr_flush(dev);
10872
10873         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10874                 netif_napi_del(p);
10875
10876 #ifdef CONFIG_PCPU_DEV_REFCNT
10877         free_percpu(dev->pcpu_refcnt);
10878         dev->pcpu_refcnt = NULL;
10879 #endif
10880         free_percpu(dev->xdp_bulkq);
10881         dev->xdp_bulkq = NULL;
10882
10883         /*  Compatibility with error handling in drivers */
10884         if (dev->reg_state == NETREG_UNINITIALIZED) {
10885                 netdev_freemem(dev);
10886                 return;
10887         }
10888
10889         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10890         dev->reg_state = NETREG_RELEASED;
10891
10892         /* will free via device release */
10893         put_device(&dev->dev);
10894 }
10895 EXPORT_SYMBOL(free_netdev);
10896
10897 /**
10898  *      synchronize_net -  Synchronize with packet receive processing
10899  *
10900  *      Wait for packets currently being received to be done.
10901  *      Does not block later packets from starting.
10902  */
10903 void synchronize_net(void)
10904 {
10905         might_sleep();
10906         if (rtnl_is_locked())
10907                 synchronize_rcu_expedited();
10908         else
10909                 synchronize_rcu();
10910 }
10911 EXPORT_SYMBOL(synchronize_net);
10912
10913 /**
10914  *      unregister_netdevice_queue - remove device from the kernel
10915  *      @dev: device
10916  *      @head: list
10917  *
10918  *      This function shuts down a device interface and removes it
10919  *      from the kernel tables.
10920  *      If head not NULL, device is queued to be unregistered later.
10921  *
10922  *      Callers must hold the rtnl semaphore.  You may want
10923  *      unregister_netdev() instead of this.
10924  */
10925
10926 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10927 {
10928         ASSERT_RTNL();
10929
10930         if (head) {
10931                 list_move_tail(&dev->unreg_list, head);
10932         } else {
10933                 LIST_HEAD(single);
10934
10935                 list_add(&dev->unreg_list, &single);
10936                 unregister_netdevice_many(&single);
10937         }
10938 }
10939 EXPORT_SYMBOL(unregister_netdevice_queue);
10940
10941 /**
10942  *      unregister_netdevice_many - unregister many devices
10943  *      @head: list of devices
10944  *
10945  *  Note: As most callers use a stack allocated list_head,
10946  *  we force a list_del() to make sure stack wont be corrupted later.
10947  */
10948 void unregister_netdevice_many(struct list_head *head)
10949 {
10950         struct net_device *dev, *tmp;
10951         LIST_HEAD(close_head);
10952
10953         BUG_ON(dev_boot_phase);
10954         ASSERT_RTNL();
10955
10956         if (list_empty(head))
10957                 return;
10958
10959         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10960                 /* Some devices call without registering
10961                  * for initialization unwind. Remove those
10962                  * devices and proceed with the remaining.
10963                  */
10964                 if (dev->reg_state == NETREG_UNINITIALIZED) {
10965                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10966                                  dev->name, dev);
10967
10968                         WARN_ON(1);
10969                         list_del(&dev->unreg_list);
10970                         continue;
10971                 }
10972                 dev->dismantle = true;
10973                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
10974         }
10975
10976         /* If device is running, close it first. */
10977         list_for_each_entry(dev, head, unreg_list)
10978                 list_add_tail(&dev->close_list, &close_head);
10979         dev_close_many(&close_head, true);
10980
10981         list_for_each_entry(dev, head, unreg_list) {
10982                 /* And unlink it from device chain. */
10983                 unlist_netdevice(dev);
10984
10985                 dev->reg_state = NETREG_UNREGISTERING;
10986         }
10987         flush_all_backlogs();
10988
10989         synchronize_net();
10990
10991         list_for_each_entry(dev, head, unreg_list) {
10992                 struct sk_buff *skb = NULL;
10993
10994                 /* Shutdown queueing discipline. */
10995                 dev_shutdown(dev);
10996
10997                 dev_xdp_uninstall(dev);
10998
10999                 /* Notify protocols, that we are about to destroy
11000                  * this device. They should clean all the things.
11001                  */
11002                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11003
11004                 if (!dev->rtnl_link_ops ||
11005                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11006                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11007                                                      GFP_KERNEL, NULL, 0);
11008
11009                 /*
11010                  *      Flush the unicast and multicast chains
11011                  */
11012                 dev_uc_flush(dev);
11013                 dev_mc_flush(dev);
11014
11015                 netdev_name_node_alt_flush(dev);
11016                 netdev_name_node_free(dev->name_node);
11017
11018                 if (dev->netdev_ops->ndo_uninit)
11019                         dev->netdev_ops->ndo_uninit(dev);
11020
11021                 if (skb)
11022                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
11023
11024                 /* Notifier chain MUST detach us all upper devices. */
11025                 WARN_ON(netdev_has_any_upper_dev(dev));
11026                 WARN_ON(netdev_has_any_lower_dev(dev));
11027
11028                 /* Remove entries from kobject tree */
11029                 netdev_unregister_kobject(dev);
11030 #ifdef CONFIG_XPS
11031                 /* Remove XPS queueing entries */
11032                 netif_reset_xps_queues_gt(dev, 0);
11033 #endif
11034         }
11035
11036         synchronize_net();
11037
11038         list_for_each_entry(dev, head, unreg_list) {
11039                 dev_put(dev);
11040                 net_set_todo(dev);
11041         }
11042
11043         list_del(head);
11044 }
11045 EXPORT_SYMBOL(unregister_netdevice_many);
11046
11047 /**
11048  *      unregister_netdev - remove device from the kernel
11049  *      @dev: device
11050  *
11051  *      This function shuts down a device interface and removes it
11052  *      from the kernel tables.
11053  *
11054  *      This is just a wrapper for unregister_netdevice that takes
11055  *      the rtnl semaphore.  In general you want to use this and not
11056  *      unregister_netdevice.
11057  */
11058 void unregister_netdev(struct net_device *dev)
11059 {
11060         rtnl_lock();
11061         unregister_netdevice(dev);
11062         rtnl_unlock();
11063 }
11064 EXPORT_SYMBOL(unregister_netdev);
11065
11066 /**
11067  *      __dev_change_net_namespace - move device to different nethost namespace
11068  *      @dev: device
11069  *      @net: network namespace
11070  *      @pat: If not NULL name pattern to try if the current device name
11071  *            is already taken in the destination network namespace.
11072  *      @new_ifindex: If not zero, specifies device index in the target
11073  *                    namespace.
11074  *
11075  *      This function shuts down a device interface and moves it
11076  *      to a new network namespace. On success 0 is returned, on
11077  *      a failure a netagive errno code is returned.
11078  *
11079  *      Callers must hold the rtnl semaphore.
11080  */
11081
11082 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11083                                const char *pat, int new_ifindex)
11084 {
11085         struct net *net_old = dev_net(dev);
11086         int err, new_nsid;
11087
11088         ASSERT_RTNL();
11089
11090         /* Don't allow namespace local devices to be moved. */
11091         err = -EINVAL;
11092         if (dev->features & NETIF_F_NETNS_LOCAL)
11093                 goto out;
11094
11095         /* Ensure the device has been registrered */
11096         if (dev->reg_state != NETREG_REGISTERED)
11097                 goto out;
11098
11099         /* Get out if there is nothing todo */
11100         err = 0;
11101         if (net_eq(net_old, net))
11102                 goto out;
11103
11104         /* Pick the destination device name, and ensure
11105          * we can use it in the destination network namespace.
11106          */
11107         err = -EEXIST;
11108         if (__dev_get_by_name(net, dev->name)) {
11109                 /* We get here if we can't use the current device name */
11110                 if (!pat)
11111                         goto out;
11112                 err = dev_get_valid_name(net, dev, pat);
11113                 if (err < 0)
11114                         goto out;
11115         }
11116
11117         /* Check that new_ifindex isn't used yet. */
11118         err = -EBUSY;
11119         if (new_ifindex && __dev_get_by_index(net, new_ifindex))
11120                 goto out;
11121
11122         /*
11123          * And now a mini version of register_netdevice unregister_netdevice.
11124          */
11125
11126         /* If device is running close it first. */
11127         dev_close(dev);
11128
11129         /* And unlink it from device chain */
11130         unlist_netdevice(dev);
11131
11132         synchronize_net();
11133
11134         /* Shutdown queueing discipline. */
11135         dev_shutdown(dev);
11136
11137         /* Notify protocols, that we are about to destroy
11138          * this device. They should clean all the things.
11139          *
11140          * Note that dev->reg_state stays at NETREG_REGISTERED.
11141          * This is wanted because this way 8021q and macvlan know
11142          * the device is just moving and can keep their slaves up.
11143          */
11144         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11145         rcu_barrier();
11146
11147         new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11148         /* If there is an ifindex conflict assign a new one */
11149         if (!new_ifindex) {
11150                 if (__dev_get_by_index(net, dev->ifindex))
11151                         new_ifindex = dev_new_index(net);
11152                 else
11153                         new_ifindex = dev->ifindex;
11154         }
11155
11156         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11157                             new_ifindex);
11158
11159         /*
11160          *      Flush the unicast and multicast chains
11161          */
11162         dev_uc_flush(dev);
11163         dev_mc_flush(dev);
11164
11165         /* Send a netdev-removed uevent to the old namespace */
11166         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11167         netdev_adjacent_del_links(dev);
11168
11169         /* Move per-net netdevice notifiers that are following the netdevice */
11170         move_netdevice_notifiers_dev_net(dev, net);
11171
11172         /* Actually switch the network namespace */
11173         dev_net_set(dev, net);
11174         dev->ifindex = new_ifindex;
11175
11176         /* Send a netdev-add uevent to the new namespace */
11177         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11178         netdev_adjacent_add_links(dev);
11179
11180         /* Fixup kobjects */
11181         err = device_rename(&dev->dev, dev->name);
11182         WARN_ON(err);
11183
11184         /* Adapt owner in case owning user namespace of target network
11185          * namespace is different from the original one.
11186          */
11187         err = netdev_change_owner(dev, net_old, net);
11188         WARN_ON(err);
11189
11190         /* Add the device back in the hashes */
11191         list_netdevice(dev);
11192
11193         /* Notify protocols, that a new device appeared. */
11194         call_netdevice_notifiers(NETDEV_REGISTER, dev);
11195
11196         /*
11197          *      Prevent userspace races by waiting until the network
11198          *      device is fully setup before sending notifications.
11199          */
11200         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
11201
11202         synchronize_net();
11203         err = 0;
11204 out:
11205         return err;
11206 }
11207 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11208
11209 static int dev_cpu_dead(unsigned int oldcpu)
11210 {
11211         struct sk_buff **list_skb;
11212         struct sk_buff *skb;
11213         unsigned int cpu;
11214         struct softnet_data *sd, *oldsd, *remsd = NULL;
11215
11216         local_irq_disable();
11217         cpu = smp_processor_id();
11218         sd = &per_cpu(softnet_data, cpu);
11219         oldsd = &per_cpu(softnet_data, oldcpu);
11220
11221         /* Find end of our completion_queue. */
11222         list_skb = &sd->completion_queue;
11223         while (*list_skb)
11224                 list_skb = &(*list_skb)->next;
11225         /* Append completion queue from offline CPU. */
11226         *list_skb = oldsd->completion_queue;
11227         oldsd->completion_queue = NULL;
11228
11229         /* Append output queue from offline CPU. */
11230         if (oldsd->output_queue) {
11231                 *sd->output_queue_tailp = oldsd->output_queue;
11232                 sd->output_queue_tailp = oldsd->output_queue_tailp;
11233                 oldsd->output_queue = NULL;
11234                 oldsd->output_queue_tailp = &oldsd->output_queue;
11235         }
11236         /* Append NAPI poll list from offline CPU, with one exception :
11237          * process_backlog() must be called by cpu owning percpu backlog.
11238          * We properly handle process_queue & input_pkt_queue later.
11239          */
11240         while (!list_empty(&oldsd->poll_list)) {
11241                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11242                                                             struct napi_struct,
11243                                                             poll_list);
11244
11245                 list_del_init(&napi->poll_list);
11246                 if (napi->poll == process_backlog)
11247                         napi->state = 0;
11248                 else
11249                         ____napi_schedule(sd, napi);
11250         }
11251
11252         raise_softirq_irqoff(NET_TX_SOFTIRQ);
11253         local_irq_enable();
11254
11255 #ifdef CONFIG_RPS
11256         remsd = oldsd->rps_ipi_list;
11257         oldsd->rps_ipi_list = NULL;
11258 #endif
11259         /* send out pending IPI's on offline CPU */
11260         net_rps_send_ipi(remsd);
11261
11262         /* Process offline CPU's input_pkt_queue */
11263         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11264                 netif_rx_ni(skb);
11265                 input_queue_head_incr(oldsd);
11266         }
11267         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11268                 netif_rx_ni(skb);
11269                 input_queue_head_incr(oldsd);
11270         }
11271
11272         return 0;
11273 }
11274
11275 /**
11276  *      netdev_increment_features - increment feature set by one
11277  *      @all: current feature set
11278  *      @one: new feature set
11279  *      @mask: mask feature set
11280  *
11281  *      Computes a new feature set after adding a device with feature set
11282  *      @one to the master device with current feature set @all.  Will not
11283  *      enable anything that is off in @mask. Returns the new feature set.
11284  */
11285 netdev_features_t netdev_increment_features(netdev_features_t all,
11286         netdev_features_t one, netdev_features_t mask)
11287 {
11288         if (mask & NETIF_F_HW_CSUM)
11289                 mask |= NETIF_F_CSUM_MASK;
11290         mask |= NETIF_F_VLAN_CHALLENGED;
11291
11292         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11293         all &= one | ~NETIF_F_ALL_FOR_ALL;
11294
11295         /* If one device supports hw checksumming, set for all. */
11296         if (all & NETIF_F_HW_CSUM)
11297                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11298
11299         return all;
11300 }
11301 EXPORT_SYMBOL(netdev_increment_features);
11302
11303 static struct hlist_head * __net_init netdev_create_hash(void)
11304 {
11305         int i;
11306         struct hlist_head *hash;
11307
11308         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11309         if (hash != NULL)
11310                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11311                         INIT_HLIST_HEAD(&hash[i]);
11312
11313         return hash;
11314 }
11315
11316 /* Initialize per network namespace state */
11317 static int __net_init netdev_init(struct net *net)
11318 {
11319         BUILD_BUG_ON(GRO_HASH_BUCKETS >
11320                      8 * sizeof_field(struct napi_struct, gro_bitmask));
11321
11322         if (net != &init_net)
11323                 INIT_LIST_HEAD(&net->dev_base_head);
11324
11325         net->dev_name_head = netdev_create_hash();
11326         if (net->dev_name_head == NULL)
11327                 goto err_name;
11328
11329         net->dev_index_head = netdev_create_hash();
11330         if (net->dev_index_head == NULL)
11331                 goto err_idx;
11332
11333         RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11334
11335         return 0;
11336
11337 err_idx:
11338         kfree(net->dev_name_head);
11339 err_name:
11340         return -ENOMEM;
11341 }
11342
11343 /**
11344  *      netdev_drivername - network driver for the device
11345  *      @dev: network device
11346  *
11347  *      Determine network driver for device.
11348  */
11349 const char *netdev_drivername(const struct net_device *dev)
11350 {
11351         const struct device_driver *driver;
11352         const struct device *parent;
11353         const char *empty = "";
11354
11355         parent = dev->dev.parent;
11356         if (!parent)
11357                 return empty;
11358
11359         driver = parent->driver;
11360         if (driver && driver->name)
11361                 return driver->name;
11362         return empty;
11363 }
11364
11365 static void __netdev_printk(const char *level, const struct net_device *dev,
11366                             struct va_format *vaf)
11367 {
11368         if (dev && dev->dev.parent) {
11369                 dev_printk_emit(level[1] - '0',
11370                                 dev->dev.parent,
11371                                 "%s %s %s%s: %pV",
11372                                 dev_driver_string(dev->dev.parent),
11373                                 dev_name(dev->dev.parent),
11374                                 netdev_name(dev), netdev_reg_state(dev),
11375                                 vaf);
11376         } else if (dev) {
11377                 printk("%s%s%s: %pV",
11378                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
11379         } else {
11380                 printk("%s(NULL net_device): %pV", level, vaf);
11381         }
11382 }
11383
11384 void netdev_printk(const char *level, const struct net_device *dev,
11385                    const char *format, ...)
11386 {
11387         struct va_format vaf;
11388         va_list args;
11389
11390         va_start(args, format);
11391
11392         vaf.fmt = format;
11393         vaf.va = &args;
11394
11395         __netdev_printk(level, dev, &vaf);
11396
11397         va_end(args);
11398 }
11399 EXPORT_SYMBOL(netdev_printk);
11400
11401 #define define_netdev_printk_level(func, level)                 \
11402 void func(const struct net_device *dev, const char *fmt, ...)   \
11403 {                                                               \
11404         struct va_format vaf;                                   \
11405         va_list args;                                           \
11406                                                                 \
11407         va_start(args, fmt);                                    \
11408                                                                 \
11409         vaf.fmt = fmt;                                          \
11410         vaf.va = &args;                                         \
11411                                                                 \
11412         __netdev_printk(level, dev, &vaf);                      \
11413                                                                 \
11414         va_end(args);                                           \
11415 }                                                               \
11416 EXPORT_SYMBOL(func);
11417
11418 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11419 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11420 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11421 define_netdev_printk_level(netdev_err, KERN_ERR);
11422 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11423 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11424 define_netdev_printk_level(netdev_info, KERN_INFO);
11425
11426 static void __net_exit netdev_exit(struct net *net)
11427 {
11428         kfree(net->dev_name_head);
11429         kfree(net->dev_index_head);
11430         if (net != &init_net)
11431                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11432 }
11433
11434 static struct pernet_operations __net_initdata netdev_net_ops = {
11435         .init = netdev_init,
11436         .exit = netdev_exit,
11437 };
11438
11439 static void __net_exit default_device_exit(struct net *net)
11440 {
11441         struct net_device *dev, *aux;
11442         /*
11443          * Push all migratable network devices back to the
11444          * initial network namespace
11445          */
11446         rtnl_lock();
11447         for_each_netdev_safe(net, dev, aux) {
11448                 int err;
11449                 char fb_name[IFNAMSIZ];
11450
11451                 /* Ignore unmoveable devices (i.e. loopback) */
11452                 if (dev->features & NETIF_F_NETNS_LOCAL)
11453                         continue;
11454
11455                 /* Leave virtual devices for the generic cleanup */
11456                 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11457                         continue;
11458
11459                 /* Push remaining network devices to init_net */
11460                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11461                 if (__dev_get_by_name(&init_net, fb_name))
11462                         snprintf(fb_name, IFNAMSIZ, "dev%%d");
11463                 err = dev_change_net_namespace(dev, &init_net, fb_name);
11464                 if (err) {
11465                         pr_emerg("%s: failed to move %s to init_net: %d\n",
11466                                  __func__, dev->name, err);
11467                         BUG();
11468                 }
11469         }
11470         rtnl_unlock();
11471 }
11472
11473 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11474 {
11475         /* Return with the rtnl_lock held when there are no network
11476          * devices unregistering in any network namespace in net_list.
11477          */
11478         struct net *net;
11479         bool unregistering;
11480         DEFINE_WAIT_FUNC(wait, woken_wake_function);
11481
11482         add_wait_queue(&netdev_unregistering_wq, &wait);
11483         for (;;) {
11484                 unregistering = false;
11485                 rtnl_lock();
11486                 list_for_each_entry(net, net_list, exit_list) {
11487                         if (net->dev_unreg_count > 0) {
11488                                 unregistering = true;
11489                                 break;
11490                         }
11491                 }
11492                 if (!unregistering)
11493                         break;
11494                 __rtnl_unlock();
11495
11496                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
11497         }
11498         remove_wait_queue(&netdev_unregistering_wq, &wait);
11499 }
11500
11501 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11502 {
11503         /* At exit all network devices most be removed from a network
11504          * namespace.  Do this in the reverse order of registration.
11505          * Do this across as many network namespaces as possible to
11506          * improve batching efficiency.
11507          */
11508         struct net_device *dev;
11509         struct net *net;
11510         LIST_HEAD(dev_kill_list);
11511
11512         /* To prevent network device cleanup code from dereferencing
11513          * loopback devices or network devices that have been freed
11514          * wait here for all pending unregistrations to complete,
11515          * before unregistring the loopback device and allowing the
11516          * network namespace be freed.
11517          *
11518          * The netdev todo list containing all network devices
11519          * unregistrations that happen in default_device_exit_batch
11520          * will run in the rtnl_unlock() at the end of
11521          * default_device_exit_batch.
11522          */
11523         rtnl_lock_unregistering(net_list);
11524         list_for_each_entry(net, net_list, exit_list) {
11525                 for_each_netdev_reverse(net, dev) {
11526                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11527                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11528                         else
11529                                 unregister_netdevice_queue(dev, &dev_kill_list);
11530                 }
11531         }
11532         unregister_netdevice_many(&dev_kill_list);
11533         rtnl_unlock();
11534 }
11535
11536 static struct pernet_operations __net_initdata default_device_ops = {
11537         .exit = default_device_exit,
11538         .exit_batch = default_device_exit_batch,
11539 };
11540
11541 /*
11542  *      Initialize the DEV module. At boot time this walks the device list and
11543  *      unhooks any devices that fail to initialise (normally hardware not
11544  *      present) and leaves us with a valid list of present and active devices.
11545  *
11546  */
11547
11548 /*
11549  *       This is called single threaded during boot, so no need
11550  *       to take the rtnl semaphore.
11551  */
11552 static int __init net_dev_init(void)
11553 {
11554         int i, rc = -ENOMEM;
11555
11556         BUG_ON(!dev_boot_phase);
11557
11558         if (dev_proc_init())
11559                 goto out;
11560
11561         if (netdev_kobject_init())
11562                 goto out;
11563
11564         INIT_LIST_HEAD(&ptype_all);
11565         for (i = 0; i < PTYPE_HASH_SIZE; i++)
11566                 INIT_LIST_HEAD(&ptype_base[i]);
11567
11568         INIT_LIST_HEAD(&offload_base);
11569
11570         if (register_pernet_subsys(&netdev_net_ops))
11571                 goto out;
11572
11573         /*
11574          *      Initialise the packet receive queues.
11575          */
11576
11577         for_each_possible_cpu(i) {
11578                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11579                 struct softnet_data *sd = &per_cpu(softnet_data, i);
11580
11581                 INIT_WORK(flush, flush_backlog);
11582
11583                 skb_queue_head_init(&sd->input_pkt_queue);
11584                 skb_queue_head_init(&sd->process_queue);
11585 #ifdef CONFIG_XFRM_OFFLOAD
11586                 skb_queue_head_init(&sd->xfrm_backlog);
11587 #endif
11588                 INIT_LIST_HEAD(&sd->poll_list);
11589                 sd->output_queue_tailp = &sd->output_queue;
11590 #ifdef CONFIG_RPS
11591                 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11592                 sd->cpu = i;
11593 #endif
11594
11595                 init_gro_hash(&sd->backlog);
11596                 sd->backlog.poll = process_backlog;
11597                 sd->backlog.weight = weight_p;
11598         }
11599
11600         dev_boot_phase = 0;
11601
11602         /* The loopback device is special if any other network devices
11603          * is present in a network namespace the loopback device must
11604          * be present. Since we now dynamically allocate and free the
11605          * loopback device ensure this invariant is maintained by
11606          * keeping the loopback device as the first device on the
11607          * list of network devices.  Ensuring the loopback devices
11608          * is the first device that appears and the last network device
11609          * that disappears.
11610          */
11611         if (register_pernet_device(&loopback_net_ops))
11612                 goto out;
11613
11614         if (register_pernet_device(&default_device_ops))
11615                 goto out;
11616
11617         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11618         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11619
11620         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11621                                        NULL, dev_cpu_dead);
11622         WARN_ON(rc < 0);
11623         rc = 0;
11624 out:
11625         return rc;
11626 }
11627
11628 subsys_initcall(net_dev_init);