Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
[linux-2.6-microblaze.git] / net / core / dev.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *      Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:        Ross Biro
7  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *      Additional Authors:
11  *              Florian la Roche <rzsfl@rz.uni-sb.de>
12  *              Alan Cox <gw4pts@gw4pts.ampr.org>
13  *              David Hinds <dahinds@users.sourceforge.net>
14  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *              Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *      Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *              Alan Cox        :       device private ioctl copies fields back.
24  *              Alan Cox        :       Transmit queue code does relevant
25  *                                      stunts to keep the queue safe.
26  *              Alan Cox        :       Fixed double lock.
27  *              Alan Cox        :       Fixed promisc NULL pointer trap
28  *              ????????        :       Support the full private ioctl range
29  *              Alan Cox        :       Moved ioctl permission check into
30  *                                      drivers
31  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
32  *              Alan Cox        :       100 backlog just doesn't cut it when
33  *                                      you start doing multicast video 8)
34  *              Alan Cox        :       Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *              Alan Cox        :       Took out transmit every packet pass
37  *                                      Saved a few bytes in the ioctl handler
38  *              Alan Cox        :       Network driver sets packet type before
39  *                                      calling netif_rx. Saves a function
40  *                                      call a packet.
41  *              Alan Cox        :       Hashed net_bh()
42  *              Richard Kooijman:       Timestamp fixes.
43  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
44  *              Alan Cox        :       Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *                                      changes.
47  *              Rudi Cilibrasi  :       Pass the right thing to
48  *                                      set_mac_address()
49  *              Dave Miller     :       32bit quantity for the device lock to
50  *                                      make it work out on a Sparc.
51  *              Bjorn Ekwall    :       Added KERNELD hack.
52  *              Alan Cox        :       Cleaned up the backlog initialise.
53  *              Craig Metz      :       SIOCGIFCONF fix if space for under
54  *                                      1 device.
55  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
56  *                                      is no device open function.
57  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
58  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
59  *              Cyrus Durgin    :       Cleaned for KMOD
60  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
61  *                                      A network device unload needs to purge
62  *                                      the backlog queue.
63  *      Paul Rusty Russell      :       SIOCSIFNAME
64  *              Pekka Riikonen  :       Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *                                      - netif_rx() feedback
69  */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <trace/events/qdisc.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_netdev.h>
144 #include <linux/crash_dump.h>
145 #include <linux/sctp.h>
146 #include <net/udp_tunnel.h>
147 #include <linux/net_namespace.h>
148 #include <linux/indirect_call_wrapper.h>
149 #include <net/devlink.h>
150 #include <linux/pm_runtime.h>
151 #include <linux/prandom.h>
152 #include <linux/once_lite.h>
153
154 #include "dev.h"
155 #include "net-sysfs.h"
156
157
158 static DEFINE_SPINLOCK(ptype_lock);
159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160 struct list_head ptype_all __read_mostly;       /* Taps */
161
162 static int netif_rx_internal(struct sk_buff *skb);
163 static int call_netdevice_notifiers_info(unsigned long val,
164                                          struct netdev_notifier_info *info);
165 static int call_netdevice_notifiers_extack(unsigned long val,
166                                            struct net_device *dev,
167                                            struct netlink_ext_ack *extack);
168 static struct napi_struct *napi_by_id(unsigned int napi_id);
169
170 /*
171  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
172  * semaphore.
173  *
174  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
175  *
176  * Writers must hold the rtnl semaphore while they loop through the
177  * dev_base_head list, and hold dev_base_lock for writing when they do the
178  * actual updates.  This allows pure readers to access the list even
179  * while a writer is preparing to update it.
180  *
181  * To put it another way, dev_base_lock is held for writing only to
182  * protect against pure readers; the rtnl semaphore provides the
183  * protection against other writers.
184  *
185  * See, for example usages, register_netdevice() and
186  * unregister_netdevice(), which must be called with the rtnl
187  * semaphore held.
188  */
189 DEFINE_RWLOCK(dev_base_lock);
190 EXPORT_SYMBOL(dev_base_lock);
191
192 static DEFINE_MUTEX(ifalias_mutex);
193
194 /* protects napi_hash addition/deletion and napi_gen_id */
195 static DEFINE_SPINLOCK(napi_hash_lock);
196
197 static unsigned int napi_gen_id = NR_CPUS;
198 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
199
200 static DECLARE_RWSEM(devnet_rename_sem);
201
202 static inline void dev_base_seq_inc(struct net *net)
203 {
204         while (++net->dev_base_seq == 0)
205                 ;
206 }
207
208 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
209 {
210         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
211
212         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
213 }
214
215 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
216 {
217         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
218 }
219
220 static inline void rps_lock_irqsave(struct softnet_data *sd,
221                                     unsigned long *flags)
222 {
223         if (IS_ENABLED(CONFIG_RPS))
224                 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
225         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
226                 local_irq_save(*flags);
227 }
228
229 static inline void rps_lock_irq_disable(struct softnet_data *sd)
230 {
231         if (IS_ENABLED(CONFIG_RPS))
232                 spin_lock_irq(&sd->input_pkt_queue.lock);
233         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
234                 local_irq_disable();
235 }
236
237 static inline void rps_unlock_irq_restore(struct softnet_data *sd,
238                                           unsigned long *flags)
239 {
240         if (IS_ENABLED(CONFIG_RPS))
241                 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
242         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
243                 local_irq_restore(*flags);
244 }
245
246 static inline void rps_unlock_irq_enable(struct softnet_data *sd)
247 {
248         if (IS_ENABLED(CONFIG_RPS))
249                 spin_unlock_irq(&sd->input_pkt_queue.lock);
250         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
251                 local_irq_enable();
252 }
253
254 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
255                                                        const char *name)
256 {
257         struct netdev_name_node *name_node;
258
259         name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
260         if (!name_node)
261                 return NULL;
262         INIT_HLIST_NODE(&name_node->hlist);
263         name_node->dev = dev;
264         name_node->name = name;
265         return name_node;
266 }
267
268 static struct netdev_name_node *
269 netdev_name_node_head_alloc(struct net_device *dev)
270 {
271         struct netdev_name_node *name_node;
272
273         name_node = netdev_name_node_alloc(dev, dev->name);
274         if (!name_node)
275                 return NULL;
276         INIT_LIST_HEAD(&name_node->list);
277         return name_node;
278 }
279
280 static void netdev_name_node_free(struct netdev_name_node *name_node)
281 {
282         kfree(name_node);
283 }
284
285 static void netdev_name_node_add(struct net *net,
286                                  struct netdev_name_node *name_node)
287 {
288         hlist_add_head_rcu(&name_node->hlist,
289                            dev_name_hash(net, name_node->name));
290 }
291
292 static void netdev_name_node_del(struct netdev_name_node *name_node)
293 {
294         hlist_del_rcu(&name_node->hlist);
295 }
296
297 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
298                                                         const char *name)
299 {
300         struct hlist_head *head = dev_name_hash(net, name);
301         struct netdev_name_node *name_node;
302
303         hlist_for_each_entry(name_node, head, hlist)
304                 if (!strcmp(name_node->name, name))
305                         return name_node;
306         return NULL;
307 }
308
309 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
310                                                             const char *name)
311 {
312         struct hlist_head *head = dev_name_hash(net, name);
313         struct netdev_name_node *name_node;
314
315         hlist_for_each_entry_rcu(name_node, head, hlist)
316                 if (!strcmp(name_node->name, name))
317                         return name_node;
318         return NULL;
319 }
320
321 bool netdev_name_in_use(struct net *net, const char *name)
322 {
323         return netdev_name_node_lookup(net, name);
324 }
325 EXPORT_SYMBOL(netdev_name_in_use);
326
327 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
328 {
329         struct netdev_name_node *name_node;
330         struct net *net = dev_net(dev);
331
332         name_node = netdev_name_node_lookup(net, name);
333         if (name_node)
334                 return -EEXIST;
335         name_node = netdev_name_node_alloc(dev, name);
336         if (!name_node)
337                 return -ENOMEM;
338         netdev_name_node_add(net, name_node);
339         /* The node that holds dev->name acts as a head of per-device list. */
340         list_add_tail(&name_node->list, &dev->name_node->list);
341
342         return 0;
343 }
344
345 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
346 {
347         list_del(&name_node->list);
348         netdev_name_node_del(name_node);
349         kfree(name_node->name);
350         netdev_name_node_free(name_node);
351 }
352
353 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
354 {
355         struct netdev_name_node *name_node;
356         struct net *net = dev_net(dev);
357
358         name_node = netdev_name_node_lookup(net, name);
359         if (!name_node)
360                 return -ENOENT;
361         /* lookup might have found our primary name or a name belonging
362          * to another device.
363          */
364         if (name_node == dev->name_node || name_node->dev != dev)
365                 return -EINVAL;
366
367         __netdev_name_node_alt_destroy(name_node);
368
369         return 0;
370 }
371
372 static void netdev_name_node_alt_flush(struct net_device *dev)
373 {
374         struct netdev_name_node *name_node, *tmp;
375
376         list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
377                 __netdev_name_node_alt_destroy(name_node);
378 }
379
380 /* Device list insertion */
381 static void list_netdevice(struct net_device *dev)
382 {
383         struct net *net = dev_net(dev);
384
385         ASSERT_RTNL();
386
387         write_lock(&dev_base_lock);
388         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
389         netdev_name_node_add(net, dev->name_node);
390         hlist_add_head_rcu(&dev->index_hlist,
391                            dev_index_hash(net, dev->ifindex));
392         write_unlock(&dev_base_lock);
393
394         dev_base_seq_inc(net);
395 }
396
397 /* Device list removal
398  * caller must respect a RCU grace period before freeing/reusing dev
399  */
400 static void unlist_netdevice(struct net_device *dev, bool lock)
401 {
402         ASSERT_RTNL();
403
404         /* Unlink dev from the device chain */
405         if (lock)
406                 write_lock(&dev_base_lock);
407         list_del_rcu(&dev->dev_list);
408         netdev_name_node_del(dev->name_node);
409         hlist_del_rcu(&dev->index_hlist);
410         if (lock)
411                 write_unlock(&dev_base_lock);
412
413         dev_base_seq_inc(dev_net(dev));
414 }
415
416 /*
417  *      Our notifier list
418  */
419
420 static RAW_NOTIFIER_HEAD(netdev_chain);
421
422 /*
423  *      Device drivers call our routines to queue packets here. We empty the
424  *      queue in the local softnet handler.
425  */
426
427 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
428 EXPORT_PER_CPU_SYMBOL(softnet_data);
429
430 #ifdef CONFIG_LOCKDEP
431 /*
432  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
433  * according to dev->type
434  */
435 static const unsigned short netdev_lock_type[] = {
436          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
437          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
438          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
439          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
440          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
441          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
442          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
443          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
444          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
445          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
446          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
447          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
448          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
449          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
450          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
451
452 static const char *const netdev_lock_name[] = {
453         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
454         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
455         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
456         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
457         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
458         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
459         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
460         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
461         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
462         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
463         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
464         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
465         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
466         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
467         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
468
469 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
470 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
471
472 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
473 {
474         int i;
475
476         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
477                 if (netdev_lock_type[i] == dev_type)
478                         return i;
479         /* the last key is used by default */
480         return ARRAY_SIZE(netdev_lock_type) - 1;
481 }
482
483 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
484                                                  unsigned short dev_type)
485 {
486         int i;
487
488         i = netdev_lock_pos(dev_type);
489         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
490                                    netdev_lock_name[i]);
491 }
492
493 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
494 {
495         int i;
496
497         i = netdev_lock_pos(dev->type);
498         lockdep_set_class_and_name(&dev->addr_list_lock,
499                                    &netdev_addr_lock_key[i],
500                                    netdev_lock_name[i]);
501 }
502 #else
503 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
504                                                  unsigned short dev_type)
505 {
506 }
507
508 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
509 {
510 }
511 #endif
512
513 /*******************************************************************************
514  *
515  *              Protocol management and registration routines
516  *
517  *******************************************************************************/
518
519
520 /*
521  *      Add a protocol ID to the list. Now that the input handler is
522  *      smarter we can dispense with all the messy stuff that used to be
523  *      here.
524  *
525  *      BEWARE!!! Protocol handlers, mangling input packets,
526  *      MUST BE last in hash buckets and checking protocol handlers
527  *      MUST start from promiscuous ptype_all chain in net_bh.
528  *      It is true now, do not change it.
529  *      Explanation follows: if protocol handler, mangling packet, will
530  *      be the first on list, it is not able to sense, that packet
531  *      is cloned and should be copied-on-write, so that it will
532  *      change it and subsequent readers will get broken packet.
533  *                                                      --ANK (980803)
534  */
535
536 static inline struct list_head *ptype_head(const struct packet_type *pt)
537 {
538         if (pt->type == htons(ETH_P_ALL))
539                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
540         else
541                 return pt->dev ? &pt->dev->ptype_specific :
542                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
543 }
544
545 /**
546  *      dev_add_pack - add packet handler
547  *      @pt: packet type declaration
548  *
549  *      Add a protocol handler to the networking stack. The passed &packet_type
550  *      is linked into kernel lists and may not be freed until it has been
551  *      removed from the kernel lists.
552  *
553  *      This call does not sleep therefore it can not
554  *      guarantee all CPU's that are in middle of receiving packets
555  *      will see the new packet type (until the next received packet).
556  */
557
558 void dev_add_pack(struct packet_type *pt)
559 {
560         struct list_head *head = ptype_head(pt);
561
562         spin_lock(&ptype_lock);
563         list_add_rcu(&pt->list, head);
564         spin_unlock(&ptype_lock);
565 }
566 EXPORT_SYMBOL(dev_add_pack);
567
568 /**
569  *      __dev_remove_pack        - remove packet handler
570  *      @pt: packet type declaration
571  *
572  *      Remove a protocol handler that was previously added to the kernel
573  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
574  *      from the kernel lists and can be freed or reused once this function
575  *      returns.
576  *
577  *      The packet type might still be in use by receivers
578  *      and must not be freed until after all the CPU's have gone
579  *      through a quiescent state.
580  */
581 void __dev_remove_pack(struct packet_type *pt)
582 {
583         struct list_head *head = ptype_head(pt);
584         struct packet_type *pt1;
585
586         spin_lock(&ptype_lock);
587
588         list_for_each_entry(pt1, head, list) {
589                 if (pt == pt1) {
590                         list_del_rcu(&pt->list);
591                         goto out;
592                 }
593         }
594
595         pr_warn("dev_remove_pack: %p not found\n", pt);
596 out:
597         spin_unlock(&ptype_lock);
598 }
599 EXPORT_SYMBOL(__dev_remove_pack);
600
601 /**
602  *      dev_remove_pack  - remove packet handler
603  *      @pt: packet type declaration
604  *
605  *      Remove a protocol handler that was previously added to the kernel
606  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
607  *      from the kernel lists and can be freed or reused once this function
608  *      returns.
609  *
610  *      This call sleeps to guarantee that no CPU is looking at the packet
611  *      type after return.
612  */
613 void dev_remove_pack(struct packet_type *pt)
614 {
615         __dev_remove_pack(pt);
616
617         synchronize_net();
618 }
619 EXPORT_SYMBOL(dev_remove_pack);
620
621
622 /*******************************************************************************
623  *
624  *                          Device Interface Subroutines
625  *
626  *******************************************************************************/
627
628 /**
629  *      dev_get_iflink  - get 'iflink' value of a interface
630  *      @dev: targeted interface
631  *
632  *      Indicates the ifindex the interface is linked to.
633  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
634  */
635
636 int dev_get_iflink(const struct net_device *dev)
637 {
638         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
639                 return dev->netdev_ops->ndo_get_iflink(dev);
640
641         return dev->ifindex;
642 }
643 EXPORT_SYMBOL(dev_get_iflink);
644
645 /**
646  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
647  *      @dev: targeted interface
648  *      @skb: The packet.
649  *
650  *      For better visibility of tunnel traffic OVS needs to retrieve
651  *      egress tunnel information for a packet. Following API allows
652  *      user to get this info.
653  */
654 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
655 {
656         struct ip_tunnel_info *info;
657
658         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
659                 return -EINVAL;
660
661         info = skb_tunnel_info_unclone(skb);
662         if (!info)
663                 return -ENOMEM;
664         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
665                 return -EINVAL;
666
667         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
668 }
669 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
670
671 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
672 {
673         int k = stack->num_paths++;
674
675         if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
676                 return NULL;
677
678         return &stack->path[k];
679 }
680
681 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
682                           struct net_device_path_stack *stack)
683 {
684         const struct net_device *last_dev;
685         struct net_device_path_ctx ctx = {
686                 .dev    = dev,
687         };
688         struct net_device_path *path;
689         int ret = 0;
690
691         memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
692         stack->num_paths = 0;
693         while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
694                 last_dev = ctx.dev;
695                 path = dev_fwd_path(stack);
696                 if (!path)
697                         return -1;
698
699                 memset(path, 0, sizeof(struct net_device_path));
700                 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
701                 if (ret < 0)
702                         return -1;
703
704                 if (WARN_ON_ONCE(last_dev == ctx.dev))
705                         return -1;
706         }
707
708         if (!ctx.dev)
709                 return ret;
710
711         path = dev_fwd_path(stack);
712         if (!path)
713                 return -1;
714         path->type = DEV_PATH_ETHERNET;
715         path->dev = ctx.dev;
716
717         return ret;
718 }
719 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
720
721 /**
722  *      __dev_get_by_name       - find a device by its name
723  *      @net: the applicable net namespace
724  *      @name: name to find
725  *
726  *      Find an interface by name. Must be called under RTNL semaphore
727  *      or @dev_base_lock. If the name is found a pointer to the device
728  *      is returned. If the name is not found then %NULL is returned. The
729  *      reference counters are not incremented so the caller must be
730  *      careful with locks.
731  */
732
733 struct net_device *__dev_get_by_name(struct net *net, const char *name)
734 {
735         struct netdev_name_node *node_name;
736
737         node_name = netdev_name_node_lookup(net, name);
738         return node_name ? node_name->dev : NULL;
739 }
740 EXPORT_SYMBOL(__dev_get_by_name);
741
742 /**
743  * dev_get_by_name_rcu  - find a device by its name
744  * @net: the applicable net namespace
745  * @name: name to find
746  *
747  * Find an interface by name.
748  * If the name is found a pointer to the device is returned.
749  * If the name is not found then %NULL is returned.
750  * The reference counters are not incremented so the caller must be
751  * careful with locks. The caller must hold RCU lock.
752  */
753
754 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
755 {
756         struct netdev_name_node *node_name;
757
758         node_name = netdev_name_node_lookup_rcu(net, name);
759         return node_name ? node_name->dev : NULL;
760 }
761 EXPORT_SYMBOL(dev_get_by_name_rcu);
762
763 /**
764  *      dev_get_by_name         - find a device by its name
765  *      @net: the applicable net namespace
766  *      @name: name to find
767  *
768  *      Find an interface by name. This can be called from any
769  *      context and does its own locking. The returned handle has
770  *      the usage count incremented and the caller must use dev_put() to
771  *      release it when it is no longer needed. %NULL is returned if no
772  *      matching device is found.
773  */
774
775 struct net_device *dev_get_by_name(struct net *net, const char *name)
776 {
777         struct net_device *dev;
778
779         rcu_read_lock();
780         dev = dev_get_by_name_rcu(net, name);
781         dev_hold(dev);
782         rcu_read_unlock();
783         return dev;
784 }
785 EXPORT_SYMBOL(dev_get_by_name);
786
787 /**
788  *      __dev_get_by_index - find a device by its ifindex
789  *      @net: the applicable net namespace
790  *      @ifindex: index of device
791  *
792  *      Search for an interface by index. Returns %NULL if the device
793  *      is not found or a pointer to the device. The device has not
794  *      had its reference counter increased so the caller must be careful
795  *      about locking. The caller must hold either the RTNL semaphore
796  *      or @dev_base_lock.
797  */
798
799 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
800 {
801         struct net_device *dev;
802         struct hlist_head *head = dev_index_hash(net, ifindex);
803
804         hlist_for_each_entry(dev, head, index_hlist)
805                 if (dev->ifindex == ifindex)
806                         return dev;
807
808         return NULL;
809 }
810 EXPORT_SYMBOL(__dev_get_by_index);
811
812 /**
813  *      dev_get_by_index_rcu - find a device by its ifindex
814  *      @net: the applicable net namespace
815  *      @ifindex: index of device
816  *
817  *      Search for an interface by index. Returns %NULL if the device
818  *      is not found or a pointer to the device. The device has not
819  *      had its reference counter increased so the caller must be careful
820  *      about locking. The caller must hold RCU lock.
821  */
822
823 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
824 {
825         struct net_device *dev;
826         struct hlist_head *head = dev_index_hash(net, ifindex);
827
828         hlist_for_each_entry_rcu(dev, head, index_hlist)
829                 if (dev->ifindex == ifindex)
830                         return dev;
831
832         return NULL;
833 }
834 EXPORT_SYMBOL(dev_get_by_index_rcu);
835
836
837 /**
838  *      dev_get_by_index - find a device by its ifindex
839  *      @net: the applicable net namespace
840  *      @ifindex: index of device
841  *
842  *      Search for an interface by index. Returns NULL if the device
843  *      is not found or a pointer to the device. The device returned has
844  *      had a reference added and the pointer is safe until the user calls
845  *      dev_put to indicate they have finished with it.
846  */
847
848 struct net_device *dev_get_by_index(struct net *net, int ifindex)
849 {
850         struct net_device *dev;
851
852         rcu_read_lock();
853         dev = dev_get_by_index_rcu(net, ifindex);
854         dev_hold(dev);
855         rcu_read_unlock();
856         return dev;
857 }
858 EXPORT_SYMBOL(dev_get_by_index);
859
860 /**
861  *      dev_get_by_napi_id - find a device by napi_id
862  *      @napi_id: ID of the NAPI struct
863  *
864  *      Search for an interface by NAPI ID. Returns %NULL if the device
865  *      is not found or a pointer to the device. The device has not had
866  *      its reference counter increased so the caller must be careful
867  *      about locking. The caller must hold RCU lock.
868  */
869
870 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
871 {
872         struct napi_struct *napi;
873
874         WARN_ON_ONCE(!rcu_read_lock_held());
875
876         if (napi_id < MIN_NAPI_ID)
877                 return NULL;
878
879         napi = napi_by_id(napi_id);
880
881         return napi ? napi->dev : NULL;
882 }
883 EXPORT_SYMBOL(dev_get_by_napi_id);
884
885 /**
886  *      netdev_get_name - get a netdevice name, knowing its ifindex.
887  *      @net: network namespace
888  *      @name: a pointer to the buffer where the name will be stored.
889  *      @ifindex: the ifindex of the interface to get the name from.
890  */
891 int netdev_get_name(struct net *net, char *name, int ifindex)
892 {
893         struct net_device *dev;
894         int ret;
895
896         down_read(&devnet_rename_sem);
897         rcu_read_lock();
898
899         dev = dev_get_by_index_rcu(net, ifindex);
900         if (!dev) {
901                 ret = -ENODEV;
902                 goto out;
903         }
904
905         strcpy(name, dev->name);
906
907         ret = 0;
908 out:
909         rcu_read_unlock();
910         up_read(&devnet_rename_sem);
911         return ret;
912 }
913
914 /**
915  *      dev_getbyhwaddr_rcu - find a device by its hardware address
916  *      @net: the applicable net namespace
917  *      @type: media type of device
918  *      @ha: hardware address
919  *
920  *      Search for an interface by MAC address. Returns NULL if the device
921  *      is not found or a pointer to the device.
922  *      The caller must hold RCU or RTNL.
923  *      The returned device has not had its ref count increased
924  *      and the caller must therefore be careful about locking
925  *
926  */
927
928 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
929                                        const char *ha)
930 {
931         struct net_device *dev;
932
933         for_each_netdev_rcu(net, dev)
934                 if (dev->type == type &&
935                     !memcmp(dev->dev_addr, ha, dev->addr_len))
936                         return dev;
937
938         return NULL;
939 }
940 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
941
942 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
943 {
944         struct net_device *dev, *ret = NULL;
945
946         rcu_read_lock();
947         for_each_netdev_rcu(net, dev)
948                 if (dev->type == type) {
949                         dev_hold(dev);
950                         ret = dev;
951                         break;
952                 }
953         rcu_read_unlock();
954         return ret;
955 }
956 EXPORT_SYMBOL(dev_getfirstbyhwtype);
957
958 /**
959  *      __dev_get_by_flags - find any device with given flags
960  *      @net: the applicable net namespace
961  *      @if_flags: IFF_* values
962  *      @mask: bitmask of bits in if_flags to check
963  *
964  *      Search for any interface with the given flags. Returns NULL if a device
965  *      is not found or a pointer to the device. Must be called inside
966  *      rtnl_lock(), and result refcount is unchanged.
967  */
968
969 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
970                                       unsigned short mask)
971 {
972         struct net_device *dev, *ret;
973
974         ASSERT_RTNL();
975
976         ret = NULL;
977         for_each_netdev(net, dev) {
978                 if (((dev->flags ^ if_flags) & mask) == 0) {
979                         ret = dev;
980                         break;
981                 }
982         }
983         return ret;
984 }
985 EXPORT_SYMBOL(__dev_get_by_flags);
986
987 /**
988  *      dev_valid_name - check if name is okay for network device
989  *      @name: name string
990  *
991  *      Network device names need to be valid file names to
992  *      allow sysfs to work.  We also disallow any kind of
993  *      whitespace.
994  */
995 bool dev_valid_name(const char *name)
996 {
997         if (*name == '\0')
998                 return false;
999         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1000                 return false;
1001         if (!strcmp(name, ".") || !strcmp(name, ".."))
1002                 return false;
1003
1004         while (*name) {
1005                 if (*name == '/' || *name == ':' || isspace(*name))
1006                         return false;
1007                 name++;
1008         }
1009         return true;
1010 }
1011 EXPORT_SYMBOL(dev_valid_name);
1012
1013 /**
1014  *      __dev_alloc_name - allocate a name for a device
1015  *      @net: network namespace to allocate the device name in
1016  *      @name: name format string
1017  *      @buf:  scratch buffer and result name string
1018  *
1019  *      Passed a format string - eg "lt%d" it will try and find a suitable
1020  *      id. It scans list of devices to build up a free map, then chooses
1021  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1022  *      while allocating the name and adding the device in order to avoid
1023  *      duplicates.
1024  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1025  *      Returns the number of the unit assigned or a negative errno code.
1026  */
1027
1028 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1029 {
1030         int i = 0;
1031         const char *p;
1032         const int max_netdevices = 8*PAGE_SIZE;
1033         unsigned long *inuse;
1034         struct net_device *d;
1035
1036         if (!dev_valid_name(name))
1037                 return -EINVAL;
1038
1039         p = strchr(name, '%');
1040         if (p) {
1041                 /*
1042                  * Verify the string as this thing may have come from
1043                  * the user.  There must be either one "%d" and no other "%"
1044                  * characters.
1045                  */
1046                 if (p[1] != 'd' || strchr(p + 2, '%'))
1047                         return -EINVAL;
1048
1049                 /* Use one page as a bit array of possible slots */
1050                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1051                 if (!inuse)
1052                         return -ENOMEM;
1053
1054                 for_each_netdev(net, d) {
1055                         struct netdev_name_node *name_node;
1056                         list_for_each_entry(name_node, &d->name_node->list, list) {
1057                                 if (!sscanf(name_node->name, name, &i))
1058                                         continue;
1059                                 if (i < 0 || i >= max_netdevices)
1060                                         continue;
1061
1062                                 /*  avoid cases where sscanf is not exact inverse of printf */
1063                                 snprintf(buf, IFNAMSIZ, name, i);
1064                                 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1065                                         __set_bit(i, inuse);
1066                         }
1067                         if (!sscanf(d->name, name, &i))
1068                                 continue;
1069                         if (i < 0 || i >= max_netdevices)
1070                                 continue;
1071
1072                         /*  avoid cases where sscanf is not exact inverse of printf */
1073                         snprintf(buf, IFNAMSIZ, name, i);
1074                         if (!strncmp(buf, d->name, IFNAMSIZ))
1075                                 __set_bit(i, inuse);
1076                 }
1077
1078                 i = find_first_zero_bit(inuse, max_netdevices);
1079                 free_page((unsigned long) inuse);
1080         }
1081
1082         snprintf(buf, IFNAMSIZ, name, i);
1083         if (!netdev_name_in_use(net, buf))
1084                 return i;
1085
1086         /* It is possible to run out of possible slots
1087          * when the name is long and there isn't enough space left
1088          * for the digits, or if all bits are used.
1089          */
1090         return -ENFILE;
1091 }
1092
1093 static int dev_alloc_name_ns(struct net *net,
1094                              struct net_device *dev,
1095                              const char *name)
1096 {
1097         char buf[IFNAMSIZ];
1098         int ret;
1099
1100         BUG_ON(!net);
1101         ret = __dev_alloc_name(net, name, buf);
1102         if (ret >= 0)
1103                 strlcpy(dev->name, buf, IFNAMSIZ);
1104         return ret;
1105 }
1106
1107 /**
1108  *      dev_alloc_name - allocate a name for a device
1109  *      @dev: device
1110  *      @name: name format string
1111  *
1112  *      Passed a format string - eg "lt%d" it will try and find a suitable
1113  *      id. It scans list of devices to build up a free map, then chooses
1114  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1115  *      while allocating the name and adding the device in order to avoid
1116  *      duplicates.
1117  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1118  *      Returns the number of the unit assigned or a negative errno code.
1119  */
1120
1121 int dev_alloc_name(struct net_device *dev, const char *name)
1122 {
1123         return dev_alloc_name_ns(dev_net(dev), dev, name);
1124 }
1125 EXPORT_SYMBOL(dev_alloc_name);
1126
1127 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1128                               const char *name)
1129 {
1130         BUG_ON(!net);
1131
1132         if (!dev_valid_name(name))
1133                 return -EINVAL;
1134
1135         if (strchr(name, '%'))
1136                 return dev_alloc_name_ns(net, dev, name);
1137         else if (netdev_name_in_use(net, name))
1138                 return -EEXIST;
1139         else if (dev->name != name)
1140                 strlcpy(dev->name, name, IFNAMSIZ);
1141
1142         return 0;
1143 }
1144
1145 /**
1146  *      dev_change_name - change name of a device
1147  *      @dev: device
1148  *      @newname: name (or format string) must be at least IFNAMSIZ
1149  *
1150  *      Change name of a device, can pass format strings "eth%d".
1151  *      for wildcarding.
1152  */
1153 int dev_change_name(struct net_device *dev, const char *newname)
1154 {
1155         unsigned char old_assign_type;
1156         char oldname[IFNAMSIZ];
1157         int err = 0;
1158         int ret;
1159         struct net *net;
1160
1161         ASSERT_RTNL();
1162         BUG_ON(!dev_net(dev));
1163
1164         net = dev_net(dev);
1165
1166         /* Some auto-enslaved devices e.g. failover slaves are
1167          * special, as userspace might rename the device after
1168          * the interface had been brought up and running since
1169          * the point kernel initiated auto-enslavement. Allow
1170          * live name change even when these slave devices are
1171          * up and running.
1172          *
1173          * Typically, users of these auto-enslaving devices
1174          * don't actually care about slave name change, as
1175          * they are supposed to operate on master interface
1176          * directly.
1177          */
1178         if (dev->flags & IFF_UP &&
1179             likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1180                 return -EBUSY;
1181
1182         down_write(&devnet_rename_sem);
1183
1184         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1185                 up_write(&devnet_rename_sem);
1186                 return 0;
1187         }
1188
1189         memcpy(oldname, dev->name, IFNAMSIZ);
1190
1191         err = dev_get_valid_name(net, dev, newname);
1192         if (err < 0) {
1193                 up_write(&devnet_rename_sem);
1194                 return err;
1195         }
1196
1197         if (oldname[0] && !strchr(oldname, '%'))
1198                 netdev_info(dev, "renamed from %s\n", oldname);
1199
1200         old_assign_type = dev->name_assign_type;
1201         dev->name_assign_type = NET_NAME_RENAMED;
1202
1203 rollback:
1204         ret = device_rename(&dev->dev, dev->name);
1205         if (ret) {
1206                 memcpy(dev->name, oldname, IFNAMSIZ);
1207                 dev->name_assign_type = old_assign_type;
1208                 up_write(&devnet_rename_sem);
1209                 return ret;
1210         }
1211
1212         up_write(&devnet_rename_sem);
1213
1214         netdev_adjacent_rename_links(dev, oldname);
1215
1216         write_lock(&dev_base_lock);
1217         netdev_name_node_del(dev->name_node);
1218         write_unlock(&dev_base_lock);
1219
1220         synchronize_rcu();
1221
1222         write_lock(&dev_base_lock);
1223         netdev_name_node_add(net, dev->name_node);
1224         write_unlock(&dev_base_lock);
1225
1226         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1227         ret = notifier_to_errno(ret);
1228
1229         if (ret) {
1230                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1231                 if (err >= 0) {
1232                         err = ret;
1233                         down_write(&devnet_rename_sem);
1234                         memcpy(dev->name, oldname, IFNAMSIZ);
1235                         memcpy(oldname, newname, IFNAMSIZ);
1236                         dev->name_assign_type = old_assign_type;
1237                         old_assign_type = NET_NAME_RENAMED;
1238                         goto rollback;
1239                 } else {
1240                         netdev_err(dev, "name change rollback failed: %d\n",
1241                                    ret);
1242                 }
1243         }
1244
1245         return err;
1246 }
1247
1248 /**
1249  *      dev_set_alias - change ifalias of a device
1250  *      @dev: device
1251  *      @alias: name up to IFALIASZ
1252  *      @len: limit of bytes to copy from info
1253  *
1254  *      Set ifalias for a device,
1255  */
1256 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1257 {
1258         struct dev_ifalias *new_alias = NULL;
1259
1260         if (len >= IFALIASZ)
1261                 return -EINVAL;
1262
1263         if (len) {
1264                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1265                 if (!new_alias)
1266                         return -ENOMEM;
1267
1268                 memcpy(new_alias->ifalias, alias, len);
1269                 new_alias->ifalias[len] = 0;
1270         }
1271
1272         mutex_lock(&ifalias_mutex);
1273         new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1274                                         mutex_is_locked(&ifalias_mutex));
1275         mutex_unlock(&ifalias_mutex);
1276
1277         if (new_alias)
1278                 kfree_rcu(new_alias, rcuhead);
1279
1280         return len;
1281 }
1282 EXPORT_SYMBOL(dev_set_alias);
1283
1284 /**
1285  *      dev_get_alias - get ifalias of a device
1286  *      @dev: device
1287  *      @name: buffer to store name of ifalias
1288  *      @len: size of buffer
1289  *
1290  *      get ifalias for a device.  Caller must make sure dev cannot go
1291  *      away,  e.g. rcu read lock or own a reference count to device.
1292  */
1293 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1294 {
1295         const struct dev_ifalias *alias;
1296         int ret = 0;
1297
1298         rcu_read_lock();
1299         alias = rcu_dereference(dev->ifalias);
1300         if (alias)
1301                 ret = snprintf(name, len, "%s", alias->ifalias);
1302         rcu_read_unlock();
1303
1304         return ret;
1305 }
1306
1307 /**
1308  *      netdev_features_change - device changes features
1309  *      @dev: device to cause notification
1310  *
1311  *      Called to indicate a device has changed features.
1312  */
1313 void netdev_features_change(struct net_device *dev)
1314 {
1315         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1316 }
1317 EXPORT_SYMBOL(netdev_features_change);
1318
1319 /**
1320  *      netdev_state_change - device changes state
1321  *      @dev: device to cause notification
1322  *
1323  *      Called to indicate a device has changed state. This function calls
1324  *      the notifier chains for netdev_chain and sends a NEWLINK message
1325  *      to the routing socket.
1326  */
1327 void netdev_state_change(struct net_device *dev)
1328 {
1329         if (dev->flags & IFF_UP) {
1330                 struct netdev_notifier_change_info change_info = {
1331                         .info.dev = dev,
1332                 };
1333
1334                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1335                                               &change_info.info);
1336                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1337         }
1338 }
1339 EXPORT_SYMBOL(netdev_state_change);
1340
1341 /**
1342  * __netdev_notify_peers - notify network peers about existence of @dev,
1343  * to be called when rtnl lock is already held.
1344  * @dev: network device
1345  *
1346  * Generate traffic such that interested network peers are aware of
1347  * @dev, such as by generating a gratuitous ARP. This may be used when
1348  * a device wants to inform the rest of the network about some sort of
1349  * reconfiguration such as a failover event or virtual machine
1350  * migration.
1351  */
1352 void __netdev_notify_peers(struct net_device *dev)
1353 {
1354         ASSERT_RTNL();
1355         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1356         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1357 }
1358 EXPORT_SYMBOL(__netdev_notify_peers);
1359
1360 /**
1361  * netdev_notify_peers - notify network peers about existence of @dev
1362  * @dev: network device
1363  *
1364  * Generate traffic such that interested network peers are aware of
1365  * @dev, such as by generating a gratuitous ARP. This may be used when
1366  * a device wants to inform the rest of the network about some sort of
1367  * reconfiguration such as a failover event or virtual machine
1368  * migration.
1369  */
1370 void netdev_notify_peers(struct net_device *dev)
1371 {
1372         rtnl_lock();
1373         __netdev_notify_peers(dev);
1374         rtnl_unlock();
1375 }
1376 EXPORT_SYMBOL(netdev_notify_peers);
1377
1378 static int napi_threaded_poll(void *data);
1379
1380 static int napi_kthread_create(struct napi_struct *n)
1381 {
1382         int err = 0;
1383
1384         /* Create and wake up the kthread once to put it in
1385          * TASK_INTERRUPTIBLE mode to avoid the blocked task
1386          * warning and work with loadavg.
1387          */
1388         n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1389                                 n->dev->name, n->napi_id);
1390         if (IS_ERR(n->thread)) {
1391                 err = PTR_ERR(n->thread);
1392                 pr_err("kthread_run failed with err %d\n", err);
1393                 n->thread = NULL;
1394         }
1395
1396         return err;
1397 }
1398
1399 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1400 {
1401         const struct net_device_ops *ops = dev->netdev_ops;
1402         int ret;
1403
1404         ASSERT_RTNL();
1405         dev_addr_check(dev);
1406
1407         if (!netif_device_present(dev)) {
1408                 /* may be detached because parent is runtime-suspended */
1409                 if (dev->dev.parent)
1410                         pm_runtime_resume(dev->dev.parent);
1411                 if (!netif_device_present(dev))
1412                         return -ENODEV;
1413         }
1414
1415         /* Block netpoll from trying to do any rx path servicing.
1416          * If we don't do this there is a chance ndo_poll_controller
1417          * or ndo_poll may be running while we open the device
1418          */
1419         netpoll_poll_disable(dev);
1420
1421         ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1422         ret = notifier_to_errno(ret);
1423         if (ret)
1424                 return ret;
1425
1426         set_bit(__LINK_STATE_START, &dev->state);
1427
1428         if (ops->ndo_validate_addr)
1429                 ret = ops->ndo_validate_addr(dev);
1430
1431         if (!ret && ops->ndo_open)
1432                 ret = ops->ndo_open(dev);
1433
1434         netpoll_poll_enable(dev);
1435
1436         if (ret)
1437                 clear_bit(__LINK_STATE_START, &dev->state);
1438         else {
1439                 dev->flags |= IFF_UP;
1440                 dev_set_rx_mode(dev);
1441                 dev_activate(dev);
1442                 add_device_randomness(dev->dev_addr, dev->addr_len);
1443         }
1444
1445         return ret;
1446 }
1447
1448 /**
1449  *      dev_open        - prepare an interface for use.
1450  *      @dev: device to open
1451  *      @extack: netlink extended ack
1452  *
1453  *      Takes a device from down to up state. The device's private open
1454  *      function is invoked and then the multicast lists are loaded. Finally
1455  *      the device is moved into the up state and a %NETDEV_UP message is
1456  *      sent to the netdev notifier chain.
1457  *
1458  *      Calling this function on an active interface is a nop. On a failure
1459  *      a negative errno code is returned.
1460  */
1461 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1462 {
1463         int ret;
1464
1465         if (dev->flags & IFF_UP)
1466                 return 0;
1467
1468         ret = __dev_open(dev, extack);
1469         if (ret < 0)
1470                 return ret;
1471
1472         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1473         call_netdevice_notifiers(NETDEV_UP, dev);
1474
1475         return ret;
1476 }
1477 EXPORT_SYMBOL(dev_open);
1478
1479 static void __dev_close_many(struct list_head *head)
1480 {
1481         struct net_device *dev;
1482
1483         ASSERT_RTNL();
1484         might_sleep();
1485
1486         list_for_each_entry(dev, head, close_list) {
1487                 /* Temporarily disable netpoll until the interface is down */
1488                 netpoll_poll_disable(dev);
1489
1490                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1491
1492                 clear_bit(__LINK_STATE_START, &dev->state);
1493
1494                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1495                  * can be even on different cpu. So just clear netif_running().
1496                  *
1497                  * dev->stop() will invoke napi_disable() on all of it's
1498                  * napi_struct instances on this device.
1499                  */
1500                 smp_mb__after_atomic(); /* Commit netif_running(). */
1501         }
1502
1503         dev_deactivate_many(head);
1504
1505         list_for_each_entry(dev, head, close_list) {
1506                 const struct net_device_ops *ops = dev->netdev_ops;
1507
1508                 /*
1509                  *      Call the device specific close. This cannot fail.
1510                  *      Only if device is UP
1511                  *
1512                  *      We allow it to be called even after a DETACH hot-plug
1513                  *      event.
1514                  */
1515                 if (ops->ndo_stop)
1516                         ops->ndo_stop(dev);
1517
1518                 dev->flags &= ~IFF_UP;
1519                 netpoll_poll_enable(dev);
1520         }
1521 }
1522
1523 static void __dev_close(struct net_device *dev)
1524 {
1525         LIST_HEAD(single);
1526
1527         list_add(&dev->close_list, &single);
1528         __dev_close_many(&single);
1529         list_del(&single);
1530 }
1531
1532 void dev_close_many(struct list_head *head, bool unlink)
1533 {
1534         struct net_device *dev, *tmp;
1535
1536         /* Remove the devices that don't need to be closed */
1537         list_for_each_entry_safe(dev, tmp, head, close_list)
1538                 if (!(dev->flags & IFF_UP))
1539                         list_del_init(&dev->close_list);
1540
1541         __dev_close_many(head);
1542
1543         list_for_each_entry_safe(dev, tmp, head, close_list) {
1544                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1545                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1546                 if (unlink)
1547                         list_del_init(&dev->close_list);
1548         }
1549 }
1550 EXPORT_SYMBOL(dev_close_many);
1551
1552 /**
1553  *      dev_close - shutdown an interface.
1554  *      @dev: device to shutdown
1555  *
1556  *      This function moves an active device into down state. A
1557  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1558  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1559  *      chain.
1560  */
1561 void dev_close(struct net_device *dev)
1562 {
1563         if (dev->flags & IFF_UP) {
1564                 LIST_HEAD(single);
1565
1566                 list_add(&dev->close_list, &single);
1567                 dev_close_many(&single, true);
1568                 list_del(&single);
1569         }
1570 }
1571 EXPORT_SYMBOL(dev_close);
1572
1573
1574 /**
1575  *      dev_disable_lro - disable Large Receive Offload on a device
1576  *      @dev: device
1577  *
1578  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1579  *      called under RTNL.  This is needed if received packets may be
1580  *      forwarded to another interface.
1581  */
1582 void dev_disable_lro(struct net_device *dev)
1583 {
1584         struct net_device *lower_dev;
1585         struct list_head *iter;
1586
1587         dev->wanted_features &= ~NETIF_F_LRO;
1588         netdev_update_features(dev);
1589
1590         if (unlikely(dev->features & NETIF_F_LRO))
1591                 netdev_WARN(dev, "failed to disable LRO!\n");
1592
1593         netdev_for_each_lower_dev(dev, lower_dev, iter)
1594                 dev_disable_lro(lower_dev);
1595 }
1596 EXPORT_SYMBOL(dev_disable_lro);
1597
1598 /**
1599  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1600  *      @dev: device
1601  *
1602  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1603  *      called under RTNL.  This is needed if Generic XDP is installed on
1604  *      the device.
1605  */
1606 static void dev_disable_gro_hw(struct net_device *dev)
1607 {
1608         dev->wanted_features &= ~NETIF_F_GRO_HW;
1609         netdev_update_features(dev);
1610
1611         if (unlikely(dev->features & NETIF_F_GRO_HW))
1612                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1613 }
1614
1615 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1616 {
1617 #define N(val)                                          \
1618         case NETDEV_##val:                              \
1619                 return "NETDEV_" __stringify(val);
1620         switch (cmd) {
1621         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1622         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1623         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1624         N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1625         N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1626         N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1627         N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1628         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1629         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1630         N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1631         N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1632         }
1633 #undef N
1634         return "UNKNOWN_NETDEV_EVENT";
1635 }
1636 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1637
1638 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1639                                    struct net_device *dev)
1640 {
1641         struct netdev_notifier_info info = {
1642                 .dev = dev,
1643         };
1644
1645         return nb->notifier_call(nb, val, &info);
1646 }
1647
1648 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1649                                              struct net_device *dev)
1650 {
1651         int err;
1652
1653         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1654         err = notifier_to_errno(err);
1655         if (err)
1656                 return err;
1657
1658         if (!(dev->flags & IFF_UP))
1659                 return 0;
1660
1661         call_netdevice_notifier(nb, NETDEV_UP, dev);
1662         return 0;
1663 }
1664
1665 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1666                                                 struct net_device *dev)
1667 {
1668         if (dev->flags & IFF_UP) {
1669                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1670                                         dev);
1671                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1672         }
1673         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1674 }
1675
1676 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1677                                                  struct net *net)
1678 {
1679         struct net_device *dev;
1680         int err;
1681
1682         for_each_netdev(net, dev) {
1683                 err = call_netdevice_register_notifiers(nb, dev);
1684                 if (err)
1685                         goto rollback;
1686         }
1687         return 0;
1688
1689 rollback:
1690         for_each_netdev_continue_reverse(net, dev)
1691                 call_netdevice_unregister_notifiers(nb, dev);
1692         return err;
1693 }
1694
1695 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1696                                                     struct net *net)
1697 {
1698         struct net_device *dev;
1699
1700         for_each_netdev(net, dev)
1701                 call_netdevice_unregister_notifiers(nb, dev);
1702 }
1703
1704 static int dev_boot_phase = 1;
1705
1706 /**
1707  * register_netdevice_notifier - register a network notifier block
1708  * @nb: notifier
1709  *
1710  * Register a notifier to be called when network device events occur.
1711  * The notifier passed is linked into the kernel structures and must
1712  * not be reused until it has been unregistered. A negative errno code
1713  * is returned on a failure.
1714  *
1715  * When registered all registration and up events are replayed
1716  * to the new notifier to allow device to have a race free
1717  * view of the network device list.
1718  */
1719
1720 int register_netdevice_notifier(struct notifier_block *nb)
1721 {
1722         struct net *net;
1723         int err;
1724
1725         /* Close race with setup_net() and cleanup_net() */
1726         down_write(&pernet_ops_rwsem);
1727         rtnl_lock();
1728         err = raw_notifier_chain_register(&netdev_chain, nb);
1729         if (err)
1730                 goto unlock;
1731         if (dev_boot_phase)
1732                 goto unlock;
1733         for_each_net(net) {
1734                 err = call_netdevice_register_net_notifiers(nb, net);
1735                 if (err)
1736                         goto rollback;
1737         }
1738
1739 unlock:
1740         rtnl_unlock();
1741         up_write(&pernet_ops_rwsem);
1742         return err;
1743
1744 rollback:
1745         for_each_net_continue_reverse(net)
1746                 call_netdevice_unregister_net_notifiers(nb, net);
1747
1748         raw_notifier_chain_unregister(&netdev_chain, nb);
1749         goto unlock;
1750 }
1751 EXPORT_SYMBOL(register_netdevice_notifier);
1752
1753 /**
1754  * unregister_netdevice_notifier - unregister a network notifier block
1755  * @nb: notifier
1756  *
1757  * Unregister a notifier previously registered by
1758  * register_netdevice_notifier(). The notifier is unlinked into the
1759  * kernel structures and may then be reused. A negative errno code
1760  * is returned on a failure.
1761  *
1762  * After unregistering unregister and down device events are synthesized
1763  * for all devices on the device list to the removed notifier to remove
1764  * the need for special case cleanup code.
1765  */
1766
1767 int unregister_netdevice_notifier(struct notifier_block *nb)
1768 {
1769         struct net *net;
1770         int err;
1771
1772         /* Close race with setup_net() and cleanup_net() */
1773         down_write(&pernet_ops_rwsem);
1774         rtnl_lock();
1775         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1776         if (err)
1777                 goto unlock;
1778
1779         for_each_net(net)
1780                 call_netdevice_unregister_net_notifiers(nb, net);
1781
1782 unlock:
1783         rtnl_unlock();
1784         up_write(&pernet_ops_rwsem);
1785         return err;
1786 }
1787 EXPORT_SYMBOL(unregister_netdevice_notifier);
1788
1789 static int __register_netdevice_notifier_net(struct net *net,
1790                                              struct notifier_block *nb,
1791                                              bool ignore_call_fail)
1792 {
1793         int err;
1794
1795         err = raw_notifier_chain_register(&net->netdev_chain, nb);
1796         if (err)
1797                 return err;
1798         if (dev_boot_phase)
1799                 return 0;
1800
1801         err = call_netdevice_register_net_notifiers(nb, net);
1802         if (err && !ignore_call_fail)
1803                 goto chain_unregister;
1804
1805         return 0;
1806
1807 chain_unregister:
1808         raw_notifier_chain_unregister(&net->netdev_chain, nb);
1809         return err;
1810 }
1811
1812 static int __unregister_netdevice_notifier_net(struct net *net,
1813                                                struct notifier_block *nb)
1814 {
1815         int err;
1816
1817         err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1818         if (err)
1819                 return err;
1820
1821         call_netdevice_unregister_net_notifiers(nb, net);
1822         return 0;
1823 }
1824
1825 /**
1826  * register_netdevice_notifier_net - register a per-netns network notifier block
1827  * @net: network namespace
1828  * @nb: notifier
1829  *
1830  * Register a notifier to be called when network device events occur.
1831  * The notifier passed is linked into the kernel structures and must
1832  * not be reused until it has been unregistered. A negative errno code
1833  * is returned on a failure.
1834  *
1835  * When registered all registration and up events are replayed
1836  * to the new notifier to allow device to have a race free
1837  * view of the network device list.
1838  */
1839
1840 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1841 {
1842         int err;
1843
1844         rtnl_lock();
1845         err = __register_netdevice_notifier_net(net, nb, false);
1846         rtnl_unlock();
1847         return err;
1848 }
1849 EXPORT_SYMBOL(register_netdevice_notifier_net);
1850
1851 /**
1852  * unregister_netdevice_notifier_net - unregister a per-netns
1853  *                                     network notifier block
1854  * @net: network namespace
1855  * @nb: notifier
1856  *
1857  * Unregister a notifier previously registered by
1858  * register_netdevice_notifier(). The notifier is unlinked into the
1859  * kernel structures and may then be reused. A negative errno code
1860  * is returned on a failure.
1861  *
1862  * After unregistering unregister and down device events are synthesized
1863  * for all devices on the device list to the removed notifier to remove
1864  * the need for special case cleanup code.
1865  */
1866
1867 int unregister_netdevice_notifier_net(struct net *net,
1868                                       struct notifier_block *nb)
1869 {
1870         int err;
1871
1872         rtnl_lock();
1873         err = __unregister_netdevice_notifier_net(net, nb);
1874         rtnl_unlock();
1875         return err;
1876 }
1877 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1878
1879 int register_netdevice_notifier_dev_net(struct net_device *dev,
1880                                         struct notifier_block *nb,
1881                                         struct netdev_net_notifier *nn)
1882 {
1883         int err;
1884
1885         rtnl_lock();
1886         err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1887         if (!err) {
1888                 nn->nb = nb;
1889                 list_add(&nn->list, &dev->net_notifier_list);
1890         }
1891         rtnl_unlock();
1892         return err;
1893 }
1894 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1895
1896 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1897                                           struct notifier_block *nb,
1898                                           struct netdev_net_notifier *nn)
1899 {
1900         int err;
1901
1902         rtnl_lock();
1903         list_del(&nn->list);
1904         err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1905         rtnl_unlock();
1906         return err;
1907 }
1908 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1909
1910 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1911                                              struct net *net)
1912 {
1913         struct netdev_net_notifier *nn;
1914
1915         list_for_each_entry(nn, &dev->net_notifier_list, list) {
1916                 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
1917                 __register_netdevice_notifier_net(net, nn->nb, true);
1918         }
1919 }
1920
1921 /**
1922  *      call_netdevice_notifiers_info - call all network notifier blocks
1923  *      @val: value passed unmodified to notifier function
1924  *      @info: notifier information data
1925  *
1926  *      Call all network notifier blocks.  Parameters and return value
1927  *      are as for raw_notifier_call_chain().
1928  */
1929
1930 static int call_netdevice_notifiers_info(unsigned long val,
1931                                          struct netdev_notifier_info *info)
1932 {
1933         struct net *net = dev_net(info->dev);
1934         int ret;
1935
1936         ASSERT_RTNL();
1937
1938         /* Run per-netns notifier block chain first, then run the global one.
1939          * Hopefully, one day, the global one is going to be removed after
1940          * all notifier block registrators get converted to be per-netns.
1941          */
1942         ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1943         if (ret & NOTIFY_STOP_MASK)
1944                 return ret;
1945         return raw_notifier_call_chain(&netdev_chain, val, info);
1946 }
1947
1948 /**
1949  *      call_netdevice_notifiers_info_robust - call per-netns notifier blocks
1950  *                                             for and rollback on error
1951  *      @val_up: value passed unmodified to notifier function
1952  *      @val_down: value passed unmodified to the notifier function when
1953  *                 recovering from an error on @val_up
1954  *      @info: notifier information data
1955  *
1956  *      Call all per-netns network notifier blocks, but not notifier blocks on
1957  *      the global notifier chain. Parameters and return value are as for
1958  *      raw_notifier_call_chain_robust().
1959  */
1960
1961 static int
1962 call_netdevice_notifiers_info_robust(unsigned long val_up,
1963                                      unsigned long val_down,
1964                                      struct netdev_notifier_info *info)
1965 {
1966         struct net *net = dev_net(info->dev);
1967
1968         ASSERT_RTNL();
1969
1970         return raw_notifier_call_chain_robust(&net->netdev_chain,
1971                                               val_up, val_down, info);
1972 }
1973
1974 static int call_netdevice_notifiers_extack(unsigned long val,
1975                                            struct net_device *dev,
1976                                            struct netlink_ext_ack *extack)
1977 {
1978         struct netdev_notifier_info info = {
1979                 .dev = dev,
1980                 .extack = extack,
1981         };
1982
1983         return call_netdevice_notifiers_info(val, &info);
1984 }
1985
1986 /**
1987  *      call_netdevice_notifiers - call all network notifier blocks
1988  *      @val: value passed unmodified to notifier function
1989  *      @dev: net_device pointer passed unmodified to notifier function
1990  *
1991  *      Call all network notifier blocks.  Parameters and return value
1992  *      are as for raw_notifier_call_chain().
1993  */
1994
1995 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1996 {
1997         return call_netdevice_notifiers_extack(val, dev, NULL);
1998 }
1999 EXPORT_SYMBOL(call_netdevice_notifiers);
2000
2001 /**
2002  *      call_netdevice_notifiers_mtu - call all network notifier blocks
2003  *      @val: value passed unmodified to notifier function
2004  *      @dev: net_device pointer passed unmodified to notifier function
2005  *      @arg: additional u32 argument passed to the notifier function
2006  *
2007  *      Call all network notifier blocks.  Parameters and return value
2008  *      are as for raw_notifier_call_chain().
2009  */
2010 static int call_netdevice_notifiers_mtu(unsigned long val,
2011                                         struct net_device *dev, u32 arg)
2012 {
2013         struct netdev_notifier_info_ext info = {
2014                 .info.dev = dev,
2015                 .ext.mtu = arg,
2016         };
2017
2018         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2019
2020         return call_netdevice_notifiers_info(val, &info.info);
2021 }
2022
2023 #ifdef CONFIG_NET_INGRESS
2024 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2025
2026 void net_inc_ingress_queue(void)
2027 {
2028         static_branch_inc(&ingress_needed_key);
2029 }
2030 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2031
2032 void net_dec_ingress_queue(void)
2033 {
2034         static_branch_dec(&ingress_needed_key);
2035 }
2036 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2037 #endif
2038
2039 #ifdef CONFIG_NET_EGRESS
2040 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2041
2042 void net_inc_egress_queue(void)
2043 {
2044         static_branch_inc(&egress_needed_key);
2045 }
2046 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2047
2048 void net_dec_egress_queue(void)
2049 {
2050         static_branch_dec(&egress_needed_key);
2051 }
2052 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2053 #endif
2054
2055 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2056 EXPORT_SYMBOL(netstamp_needed_key);
2057 #ifdef CONFIG_JUMP_LABEL
2058 static atomic_t netstamp_needed_deferred;
2059 static atomic_t netstamp_wanted;
2060 static void netstamp_clear(struct work_struct *work)
2061 {
2062         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2063         int wanted;
2064
2065         wanted = atomic_add_return(deferred, &netstamp_wanted);
2066         if (wanted > 0)
2067                 static_branch_enable(&netstamp_needed_key);
2068         else
2069                 static_branch_disable(&netstamp_needed_key);
2070 }
2071 static DECLARE_WORK(netstamp_work, netstamp_clear);
2072 #endif
2073
2074 void net_enable_timestamp(void)
2075 {
2076 #ifdef CONFIG_JUMP_LABEL
2077         int wanted;
2078
2079         while (1) {
2080                 wanted = atomic_read(&netstamp_wanted);
2081                 if (wanted <= 0)
2082                         break;
2083                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2084                         return;
2085         }
2086         atomic_inc(&netstamp_needed_deferred);
2087         schedule_work(&netstamp_work);
2088 #else
2089         static_branch_inc(&netstamp_needed_key);
2090 #endif
2091 }
2092 EXPORT_SYMBOL(net_enable_timestamp);
2093
2094 void net_disable_timestamp(void)
2095 {
2096 #ifdef CONFIG_JUMP_LABEL
2097         int wanted;
2098
2099         while (1) {
2100                 wanted = atomic_read(&netstamp_wanted);
2101                 if (wanted <= 1)
2102                         break;
2103                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2104                         return;
2105         }
2106         atomic_dec(&netstamp_needed_deferred);
2107         schedule_work(&netstamp_work);
2108 #else
2109         static_branch_dec(&netstamp_needed_key);
2110 #endif
2111 }
2112 EXPORT_SYMBOL(net_disable_timestamp);
2113
2114 static inline void net_timestamp_set(struct sk_buff *skb)
2115 {
2116         skb->tstamp = 0;
2117         skb->mono_delivery_time = 0;
2118         if (static_branch_unlikely(&netstamp_needed_key))
2119                 skb->tstamp = ktime_get_real();
2120 }
2121
2122 #define net_timestamp_check(COND, SKB)                          \
2123         if (static_branch_unlikely(&netstamp_needed_key)) {     \
2124                 if ((COND) && !(SKB)->tstamp)                   \
2125                         (SKB)->tstamp = ktime_get_real();       \
2126         }                                                       \
2127
2128 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2129 {
2130         return __is_skb_forwardable(dev, skb, true);
2131 }
2132 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2133
2134 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2135                               bool check_mtu)
2136 {
2137         int ret = ____dev_forward_skb(dev, skb, check_mtu);
2138
2139         if (likely(!ret)) {
2140                 skb->protocol = eth_type_trans(skb, dev);
2141                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2142         }
2143
2144         return ret;
2145 }
2146
2147 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2148 {
2149         return __dev_forward_skb2(dev, skb, true);
2150 }
2151 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2152
2153 /**
2154  * dev_forward_skb - loopback an skb to another netif
2155  *
2156  * @dev: destination network device
2157  * @skb: buffer to forward
2158  *
2159  * return values:
2160  *      NET_RX_SUCCESS  (no congestion)
2161  *      NET_RX_DROP     (packet was dropped, but freed)
2162  *
2163  * dev_forward_skb can be used for injecting an skb from the
2164  * start_xmit function of one device into the receive queue
2165  * of another device.
2166  *
2167  * The receiving device may be in another namespace, so
2168  * we have to clear all information in the skb that could
2169  * impact namespace isolation.
2170  */
2171 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2172 {
2173         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2174 }
2175 EXPORT_SYMBOL_GPL(dev_forward_skb);
2176
2177 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2178 {
2179         return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2180 }
2181
2182 static inline int deliver_skb(struct sk_buff *skb,
2183                               struct packet_type *pt_prev,
2184                               struct net_device *orig_dev)
2185 {
2186         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2187                 return -ENOMEM;
2188         refcount_inc(&skb->users);
2189         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2190 }
2191
2192 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2193                                           struct packet_type **pt,
2194                                           struct net_device *orig_dev,
2195                                           __be16 type,
2196                                           struct list_head *ptype_list)
2197 {
2198         struct packet_type *ptype, *pt_prev = *pt;
2199
2200         list_for_each_entry_rcu(ptype, ptype_list, list) {
2201                 if (ptype->type != type)
2202                         continue;
2203                 if (pt_prev)
2204                         deliver_skb(skb, pt_prev, orig_dev);
2205                 pt_prev = ptype;
2206         }
2207         *pt = pt_prev;
2208 }
2209
2210 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2211 {
2212         if (!ptype->af_packet_priv || !skb->sk)
2213                 return false;
2214
2215         if (ptype->id_match)
2216                 return ptype->id_match(ptype, skb->sk);
2217         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2218                 return true;
2219
2220         return false;
2221 }
2222
2223 /**
2224  * dev_nit_active - return true if any network interface taps are in use
2225  *
2226  * @dev: network device to check for the presence of taps
2227  */
2228 bool dev_nit_active(struct net_device *dev)
2229 {
2230         return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2231 }
2232 EXPORT_SYMBOL_GPL(dev_nit_active);
2233
2234 /*
2235  *      Support routine. Sends outgoing frames to any network
2236  *      taps currently in use.
2237  */
2238
2239 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2240 {
2241         struct packet_type *ptype;
2242         struct sk_buff *skb2 = NULL;
2243         struct packet_type *pt_prev = NULL;
2244         struct list_head *ptype_list = &ptype_all;
2245
2246         rcu_read_lock();
2247 again:
2248         list_for_each_entry_rcu(ptype, ptype_list, list) {
2249                 if (ptype->ignore_outgoing)
2250                         continue;
2251
2252                 /* Never send packets back to the socket
2253                  * they originated from - MvS (miquels@drinkel.ow.org)
2254                  */
2255                 if (skb_loop_sk(ptype, skb))
2256                         continue;
2257
2258                 if (pt_prev) {
2259                         deliver_skb(skb2, pt_prev, skb->dev);
2260                         pt_prev = ptype;
2261                         continue;
2262                 }
2263
2264                 /* need to clone skb, done only once */
2265                 skb2 = skb_clone(skb, GFP_ATOMIC);
2266                 if (!skb2)
2267                         goto out_unlock;
2268
2269                 net_timestamp_set(skb2);
2270
2271                 /* skb->nh should be correctly
2272                  * set by sender, so that the second statement is
2273                  * just protection against buggy protocols.
2274                  */
2275                 skb_reset_mac_header(skb2);
2276
2277                 if (skb_network_header(skb2) < skb2->data ||
2278                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2279                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2280                                              ntohs(skb2->protocol),
2281                                              dev->name);
2282                         skb_reset_network_header(skb2);
2283                 }
2284
2285                 skb2->transport_header = skb2->network_header;
2286                 skb2->pkt_type = PACKET_OUTGOING;
2287                 pt_prev = ptype;
2288         }
2289
2290         if (ptype_list == &ptype_all) {
2291                 ptype_list = &dev->ptype_all;
2292                 goto again;
2293         }
2294 out_unlock:
2295         if (pt_prev) {
2296                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2297                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2298                 else
2299                         kfree_skb(skb2);
2300         }
2301         rcu_read_unlock();
2302 }
2303 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2304
2305 /**
2306  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2307  * @dev: Network device
2308  * @txq: number of queues available
2309  *
2310  * If real_num_tx_queues is changed the tc mappings may no longer be
2311  * valid. To resolve this verify the tc mapping remains valid and if
2312  * not NULL the mapping. With no priorities mapping to this
2313  * offset/count pair it will no longer be used. In the worst case TC0
2314  * is invalid nothing can be done so disable priority mappings. If is
2315  * expected that drivers will fix this mapping if they can before
2316  * calling netif_set_real_num_tx_queues.
2317  */
2318 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2319 {
2320         int i;
2321         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2322
2323         /* If TC0 is invalidated disable TC mapping */
2324         if (tc->offset + tc->count > txq) {
2325                 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2326                 dev->num_tc = 0;
2327                 return;
2328         }
2329
2330         /* Invalidated prio to tc mappings set to TC0 */
2331         for (i = 1; i < TC_BITMASK + 1; i++) {
2332                 int q = netdev_get_prio_tc_map(dev, i);
2333
2334                 tc = &dev->tc_to_txq[q];
2335                 if (tc->offset + tc->count > txq) {
2336                         netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2337                                     i, q);
2338                         netdev_set_prio_tc_map(dev, i, 0);
2339                 }
2340         }
2341 }
2342
2343 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2344 {
2345         if (dev->num_tc) {
2346                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2347                 int i;
2348
2349                 /* walk through the TCs and see if it falls into any of them */
2350                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2351                         if ((txq - tc->offset) < tc->count)
2352                                 return i;
2353                 }
2354
2355                 /* didn't find it, just return -1 to indicate no match */
2356                 return -1;
2357         }
2358
2359         return 0;
2360 }
2361 EXPORT_SYMBOL(netdev_txq_to_tc);
2362
2363 #ifdef CONFIG_XPS
2364 static struct static_key xps_needed __read_mostly;
2365 static struct static_key xps_rxqs_needed __read_mostly;
2366 static DEFINE_MUTEX(xps_map_mutex);
2367 #define xmap_dereference(P)             \
2368         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2369
2370 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2371                              struct xps_dev_maps *old_maps, int tci, u16 index)
2372 {
2373         struct xps_map *map = NULL;
2374         int pos;
2375
2376         if (dev_maps)
2377                 map = xmap_dereference(dev_maps->attr_map[tci]);
2378         if (!map)
2379                 return false;
2380
2381         for (pos = map->len; pos--;) {
2382                 if (map->queues[pos] != index)
2383                         continue;
2384
2385                 if (map->len > 1) {
2386                         map->queues[pos] = map->queues[--map->len];
2387                         break;
2388                 }
2389
2390                 if (old_maps)
2391                         RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2392                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2393                 kfree_rcu(map, rcu);
2394                 return false;
2395         }
2396
2397         return true;
2398 }
2399
2400 static bool remove_xps_queue_cpu(struct net_device *dev,
2401                                  struct xps_dev_maps *dev_maps,
2402                                  int cpu, u16 offset, u16 count)
2403 {
2404         int num_tc = dev_maps->num_tc;
2405         bool active = false;
2406         int tci;
2407
2408         for (tci = cpu * num_tc; num_tc--; tci++) {
2409                 int i, j;
2410
2411                 for (i = count, j = offset; i--; j++) {
2412                         if (!remove_xps_queue(dev_maps, NULL, tci, j))
2413                                 break;
2414                 }
2415
2416                 active |= i < 0;
2417         }
2418
2419         return active;
2420 }
2421
2422 static void reset_xps_maps(struct net_device *dev,
2423                            struct xps_dev_maps *dev_maps,
2424                            enum xps_map_type type)
2425 {
2426         static_key_slow_dec_cpuslocked(&xps_needed);
2427         if (type == XPS_RXQS)
2428                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2429
2430         RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2431
2432         kfree_rcu(dev_maps, rcu);
2433 }
2434
2435 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2436                            u16 offset, u16 count)
2437 {
2438         struct xps_dev_maps *dev_maps;
2439         bool active = false;
2440         int i, j;
2441
2442         dev_maps = xmap_dereference(dev->xps_maps[type]);
2443         if (!dev_maps)
2444                 return;
2445
2446         for (j = 0; j < dev_maps->nr_ids; j++)
2447                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2448         if (!active)
2449                 reset_xps_maps(dev, dev_maps, type);
2450
2451         if (type == XPS_CPUS) {
2452                 for (i = offset + (count - 1); count--; i--)
2453                         netdev_queue_numa_node_write(
2454                                 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2455         }
2456 }
2457
2458 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2459                                    u16 count)
2460 {
2461         if (!static_key_false(&xps_needed))
2462                 return;
2463
2464         cpus_read_lock();
2465         mutex_lock(&xps_map_mutex);
2466
2467         if (static_key_false(&xps_rxqs_needed))
2468                 clean_xps_maps(dev, XPS_RXQS, offset, count);
2469
2470         clean_xps_maps(dev, XPS_CPUS, offset, count);
2471
2472         mutex_unlock(&xps_map_mutex);
2473         cpus_read_unlock();
2474 }
2475
2476 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2477 {
2478         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2479 }
2480
2481 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2482                                       u16 index, bool is_rxqs_map)
2483 {
2484         struct xps_map *new_map;
2485         int alloc_len = XPS_MIN_MAP_ALLOC;
2486         int i, pos;
2487
2488         for (pos = 0; map && pos < map->len; pos++) {
2489                 if (map->queues[pos] != index)
2490                         continue;
2491                 return map;
2492         }
2493
2494         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2495         if (map) {
2496                 if (pos < map->alloc_len)
2497                         return map;
2498
2499                 alloc_len = map->alloc_len * 2;
2500         }
2501
2502         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2503          *  map
2504          */
2505         if (is_rxqs_map)
2506                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2507         else
2508                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2509                                        cpu_to_node(attr_index));
2510         if (!new_map)
2511                 return NULL;
2512
2513         for (i = 0; i < pos; i++)
2514                 new_map->queues[i] = map->queues[i];
2515         new_map->alloc_len = alloc_len;
2516         new_map->len = pos;
2517
2518         return new_map;
2519 }
2520
2521 /* Copy xps maps at a given index */
2522 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2523                               struct xps_dev_maps *new_dev_maps, int index,
2524                               int tc, bool skip_tc)
2525 {
2526         int i, tci = index * dev_maps->num_tc;
2527         struct xps_map *map;
2528
2529         /* copy maps belonging to foreign traffic classes */
2530         for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2531                 if (i == tc && skip_tc)
2532                         continue;
2533
2534                 /* fill in the new device map from the old device map */
2535                 map = xmap_dereference(dev_maps->attr_map[tci]);
2536                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2537         }
2538 }
2539
2540 /* Must be called under cpus_read_lock */
2541 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2542                           u16 index, enum xps_map_type type)
2543 {
2544         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2545         const unsigned long *online_mask = NULL;
2546         bool active = false, copy = false;
2547         int i, j, tci, numa_node_id = -2;
2548         int maps_sz, num_tc = 1, tc = 0;
2549         struct xps_map *map, *new_map;
2550         unsigned int nr_ids;
2551
2552         if (dev->num_tc) {
2553                 /* Do not allow XPS on subordinate device directly */
2554                 num_tc = dev->num_tc;
2555                 if (num_tc < 0)
2556                         return -EINVAL;
2557
2558                 /* If queue belongs to subordinate dev use its map */
2559                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2560
2561                 tc = netdev_txq_to_tc(dev, index);
2562                 if (tc < 0)
2563                         return -EINVAL;
2564         }
2565
2566         mutex_lock(&xps_map_mutex);
2567
2568         dev_maps = xmap_dereference(dev->xps_maps[type]);
2569         if (type == XPS_RXQS) {
2570                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2571                 nr_ids = dev->num_rx_queues;
2572         } else {
2573                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2574                 if (num_possible_cpus() > 1)
2575                         online_mask = cpumask_bits(cpu_online_mask);
2576                 nr_ids = nr_cpu_ids;
2577         }
2578
2579         if (maps_sz < L1_CACHE_BYTES)
2580                 maps_sz = L1_CACHE_BYTES;
2581
2582         /* The old dev_maps could be larger or smaller than the one we're
2583          * setting up now, as dev->num_tc or nr_ids could have been updated in
2584          * between. We could try to be smart, but let's be safe instead and only
2585          * copy foreign traffic classes if the two map sizes match.
2586          */
2587         if (dev_maps &&
2588             dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2589                 copy = true;
2590
2591         /* allocate memory for queue storage */
2592         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2593              j < nr_ids;) {
2594                 if (!new_dev_maps) {
2595                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2596                         if (!new_dev_maps) {
2597                                 mutex_unlock(&xps_map_mutex);
2598                                 return -ENOMEM;
2599                         }
2600
2601                         new_dev_maps->nr_ids = nr_ids;
2602                         new_dev_maps->num_tc = num_tc;
2603                 }
2604
2605                 tci = j * num_tc + tc;
2606                 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2607
2608                 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2609                 if (!map)
2610                         goto error;
2611
2612                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2613         }
2614
2615         if (!new_dev_maps)
2616                 goto out_no_new_maps;
2617
2618         if (!dev_maps) {
2619                 /* Increment static keys at most once per type */
2620                 static_key_slow_inc_cpuslocked(&xps_needed);
2621                 if (type == XPS_RXQS)
2622                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2623         }
2624
2625         for (j = 0; j < nr_ids; j++) {
2626                 bool skip_tc = false;
2627
2628                 tci = j * num_tc + tc;
2629                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2630                     netif_attr_test_online(j, online_mask, nr_ids)) {
2631                         /* add tx-queue to CPU/rx-queue maps */
2632                         int pos = 0;
2633
2634                         skip_tc = true;
2635
2636                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2637                         while ((pos < map->len) && (map->queues[pos] != index))
2638                                 pos++;
2639
2640                         if (pos == map->len)
2641                                 map->queues[map->len++] = index;
2642 #ifdef CONFIG_NUMA
2643                         if (type == XPS_CPUS) {
2644                                 if (numa_node_id == -2)
2645                                         numa_node_id = cpu_to_node(j);
2646                                 else if (numa_node_id != cpu_to_node(j))
2647                                         numa_node_id = -1;
2648                         }
2649 #endif
2650                 }
2651
2652                 if (copy)
2653                         xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2654                                           skip_tc);
2655         }
2656
2657         rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2658
2659         /* Cleanup old maps */
2660         if (!dev_maps)
2661                 goto out_no_old_maps;
2662
2663         for (j = 0; j < dev_maps->nr_ids; j++) {
2664                 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2665                         map = xmap_dereference(dev_maps->attr_map[tci]);
2666                         if (!map)
2667                                 continue;
2668
2669                         if (copy) {
2670                                 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2671                                 if (map == new_map)
2672                                         continue;
2673                         }
2674
2675                         RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2676                         kfree_rcu(map, rcu);
2677                 }
2678         }
2679
2680         old_dev_maps = dev_maps;
2681
2682 out_no_old_maps:
2683         dev_maps = new_dev_maps;
2684         active = true;
2685
2686 out_no_new_maps:
2687         if (type == XPS_CPUS)
2688                 /* update Tx queue numa node */
2689                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2690                                              (numa_node_id >= 0) ?
2691                                              numa_node_id : NUMA_NO_NODE);
2692
2693         if (!dev_maps)
2694                 goto out_no_maps;
2695
2696         /* removes tx-queue from unused CPUs/rx-queues */
2697         for (j = 0; j < dev_maps->nr_ids; j++) {
2698                 tci = j * dev_maps->num_tc;
2699
2700                 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2701                         if (i == tc &&
2702                             netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2703                             netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2704                                 continue;
2705
2706                         active |= remove_xps_queue(dev_maps,
2707                                                    copy ? old_dev_maps : NULL,
2708                                                    tci, index);
2709                 }
2710         }
2711
2712         if (old_dev_maps)
2713                 kfree_rcu(old_dev_maps, rcu);
2714
2715         /* free map if not active */
2716         if (!active)
2717                 reset_xps_maps(dev, dev_maps, type);
2718
2719 out_no_maps:
2720         mutex_unlock(&xps_map_mutex);
2721
2722         return 0;
2723 error:
2724         /* remove any maps that we added */
2725         for (j = 0; j < nr_ids; j++) {
2726                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2727                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2728                         map = copy ?
2729                               xmap_dereference(dev_maps->attr_map[tci]) :
2730                               NULL;
2731                         if (new_map && new_map != map)
2732                                 kfree(new_map);
2733                 }
2734         }
2735
2736         mutex_unlock(&xps_map_mutex);
2737
2738         kfree(new_dev_maps);
2739         return -ENOMEM;
2740 }
2741 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2742
2743 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2744                         u16 index)
2745 {
2746         int ret;
2747
2748         cpus_read_lock();
2749         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2750         cpus_read_unlock();
2751
2752         return ret;
2753 }
2754 EXPORT_SYMBOL(netif_set_xps_queue);
2755
2756 #endif
2757 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2758 {
2759         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2760
2761         /* Unbind any subordinate channels */
2762         while (txq-- != &dev->_tx[0]) {
2763                 if (txq->sb_dev)
2764                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2765         }
2766 }
2767
2768 void netdev_reset_tc(struct net_device *dev)
2769 {
2770 #ifdef CONFIG_XPS
2771         netif_reset_xps_queues_gt(dev, 0);
2772 #endif
2773         netdev_unbind_all_sb_channels(dev);
2774
2775         /* Reset TC configuration of device */
2776         dev->num_tc = 0;
2777         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2778         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2779 }
2780 EXPORT_SYMBOL(netdev_reset_tc);
2781
2782 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2783 {
2784         if (tc >= dev->num_tc)
2785                 return -EINVAL;
2786
2787 #ifdef CONFIG_XPS
2788         netif_reset_xps_queues(dev, offset, count);
2789 #endif
2790         dev->tc_to_txq[tc].count = count;
2791         dev->tc_to_txq[tc].offset = offset;
2792         return 0;
2793 }
2794 EXPORT_SYMBOL(netdev_set_tc_queue);
2795
2796 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2797 {
2798         if (num_tc > TC_MAX_QUEUE)
2799                 return -EINVAL;
2800
2801 #ifdef CONFIG_XPS
2802         netif_reset_xps_queues_gt(dev, 0);
2803 #endif
2804         netdev_unbind_all_sb_channels(dev);
2805
2806         dev->num_tc = num_tc;
2807         return 0;
2808 }
2809 EXPORT_SYMBOL(netdev_set_num_tc);
2810
2811 void netdev_unbind_sb_channel(struct net_device *dev,
2812                               struct net_device *sb_dev)
2813 {
2814         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2815
2816 #ifdef CONFIG_XPS
2817         netif_reset_xps_queues_gt(sb_dev, 0);
2818 #endif
2819         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2820         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2821
2822         while (txq-- != &dev->_tx[0]) {
2823                 if (txq->sb_dev == sb_dev)
2824                         txq->sb_dev = NULL;
2825         }
2826 }
2827 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2828
2829 int netdev_bind_sb_channel_queue(struct net_device *dev,
2830                                  struct net_device *sb_dev,
2831                                  u8 tc, u16 count, u16 offset)
2832 {
2833         /* Make certain the sb_dev and dev are already configured */
2834         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2835                 return -EINVAL;
2836
2837         /* We cannot hand out queues we don't have */
2838         if ((offset + count) > dev->real_num_tx_queues)
2839                 return -EINVAL;
2840
2841         /* Record the mapping */
2842         sb_dev->tc_to_txq[tc].count = count;
2843         sb_dev->tc_to_txq[tc].offset = offset;
2844
2845         /* Provide a way for Tx queue to find the tc_to_txq map or
2846          * XPS map for itself.
2847          */
2848         while (count--)
2849                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2850
2851         return 0;
2852 }
2853 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2854
2855 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2856 {
2857         /* Do not use a multiqueue device to represent a subordinate channel */
2858         if (netif_is_multiqueue(dev))
2859                 return -ENODEV;
2860
2861         /* We allow channels 1 - 32767 to be used for subordinate channels.
2862          * Channel 0 is meant to be "native" mode and used only to represent
2863          * the main root device. We allow writing 0 to reset the device back
2864          * to normal mode after being used as a subordinate channel.
2865          */
2866         if (channel > S16_MAX)
2867                 return -EINVAL;
2868
2869         dev->num_tc = -channel;
2870
2871         return 0;
2872 }
2873 EXPORT_SYMBOL(netdev_set_sb_channel);
2874
2875 /*
2876  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2877  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2878  */
2879 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2880 {
2881         bool disabling;
2882         int rc;
2883
2884         disabling = txq < dev->real_num_tx_queues;
2885
2886         if (txq < 1 || txq > dev->num_tx_queues)
2887                 return -EINVAL;
2888
2889         if (dev->reg_state == NETREG_REGISTERED ||
2890             dev->reg_state == NETREG_UNREGISTERING) {
2891                 ASSERT_RTNL();
2892
2893                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2894                                                   txq);
2895                 if (rc)
2896                         return rc;
2897
2898                 if (dev->num_tc)
2899                         netif_setup_tc(dev, txq);
2900
2901                 dev_qdisc_change_real_num_tx(dev, txq);
2902
2903                 dev->real_num_tx_queues = txq;
2904
2905                 if (disabling) {
2906                         synchronize_net();
2907                         qdisc_reset_all_tx_gt(dev, txq);
2908 #ifdef CONFIG_XPS
2909                         netif_reset_xps_queues_gt(dev, txq);
2910 #endif
2911                 }
2912         } else {
2913                 dev->real_num_tx_queues = txq;
2914         }
2915
2916         return 0;
2917 }
2918 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2919
2920 #ifdef CONFIG_SYSFS
2921 /**
2922  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2923  *      @dev: Network device
2924  *      @rxq: Actual number of RX queues
2925  *
2926  *      This must be called either with the rtnl_lock held or before
2927  *      registration of the net device.  Returns 0 on success, or a
2928  *      negative error code.  If called before registration, it always
2929  *      succeeds.
2930  */
2931 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2932 {
2933         int rc;
2934
2935         if (rxq < 1 || rxq > dev->num_rx_queues)
2936                 return -EINVAL;
2937
2938         if (dev->reg_state == NETREG_REGISTERED) {
2939                 ASSERT_RTNL();
2940
2941                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2942                                                   rxq);
2943                 if (rc)
2944                         return rc;
2945         }
2946
2947         dev->real_num_rx_queues = rxq;
2948         return 0;
2949 }
2950 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2951 #endif
2952
2953 /**
2954  *      netif_set_real_num_queues - set actual number of RX and TX queues used
2955  *      @dev: Network device
2956  *      @txq: Actual number of TX queues
2957  *      @rxq: Actual number of RX queues
2958  *
2959  *      Set the real number of both TX and RX queues.
2960  *      Does nothing if the number of queues is already correct.
2961  */
2962 int netif_set_real_num_queues(struct net_device *dev,
2963                               unsigned int txq, unsigned int rxq)
2964 {
2965         unsigned int old_rxq = dev->real_num_rx_queues;
2966         int err;
2967
2968         if (txq < 1 || txq > dev->num_tx_queues ||
2969             rxq < 1 || rxq > dev->num_rx_queues)
2970                 return -EINVAL;
2971
2972         /* Start from increases, so the error path only does decreases -
2973          * decreases can't fail.
2974          */
2975         if (rxq > dev->real_num_rx_queues) {
2976                 err = netif_set_real_num_rx_queues(dev, rxq);
2977                 if (err)
2978                         return err;
2979         }
2980         if (txq > dev->real_num_tx_queues) {
2981                 err = netif_set_real_num_tx_queues(dev, txq);
2982                 if (err)
2983                         goto undo_rx;
2984         }
2985         if (rxq < dev->real_num_rx_queues)
2986                 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
2987         if (txq < dev->real_num_tx_queues)
2988                 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
2989
2990         return 0;
2991 undo_rx:
2992         WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
2993         return err;
2994 }
2995 EXPORT_SYMBOL(netif_set_real_num_queues);
2996
2997 /**
2998  * netif_set_tso_max_size() - set the max size of TSO frames supported
2999  * @dev:        netdev to update
3000  * @size:       max skb->len of a TSO frame
3001  *
3002  * Set the limit on the size of TSO super-frames the device can handle.
3003  * Unless explicitly set the stack will assume the value of
3004  * %GSO_LEGACY_MAX_SIZE.
3005  */
3006 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3007 {
3008         dev->tso_max_size = min(GSO_MAX_SIZE, size);
3009         if (size < READ_ONCE(dev->gso_max_size))
3010                 netif_set_gso_max_size(dev, size);
3011 }
3012 EXPORT_SYMBOL(netif_set_tso_max_size);
3013
3014 /**
3015  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3016  * @dev:        netdev to update
3017  * @segs:       max number of TCP segments
3018  *
3019  * Set the limit on the number of TCP segments the device can generate from
3020  * a single TSO super-frame.
3021  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3022  */
3023 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3024 {
3025         dev->tso_max_segs = segs;
3026         if (segs < READ_ONCE(dev->gso_max_segs))
3027                 netif_set_gso_max_segs(dev, segs);
3028 }
3029 EXPORT_SYMBOL(netif_set_tso_max_segs);
3030
3031 /**
3032  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3033  * @to:         netdev to update
3034  * @from:       netdev from which to copy the limits
3035  */
3036 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3037 {
3038         netif_set_tso_max_size(to, from->tso_max_size);
3039         netif_set_tso_max_segs(to, from->tso_max_segs);
3040 }
3041 EXPORT_SYMBOL(netif_inherit_tso_max);
3042
3043 /**
3044  * netif_get_num_default_rss_queues - default number of RSS queues
3045  *
3046  * Default value is the number of physical cores if there are only 1 or 2, or
3047  * divided by 2 if there are more.
3048  */
3049 int netif_get_num_default_rss_queues(void)
3050 {
3051         cpumask_var_t cpus;
3052         int cpu, count = 0;
3053
3054         if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3055                 return 1;
3056
3057         cpumask_copy(cpus, cpu_online_mask);
3058         for_each_cpu(cpu, cpus) {
3059                 ++count;
3060                 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3061         }
3062         free_cpumask_var(cpus);
3063
3064         return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3065 }
3066 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3067
3068 static void __netif_reschedule(struct Qdisc *q)
3069 {
3070         struct softnet_data *sd;
3071         unsigned long flags;
3072
3073         local_irq_save(flags);
3074         sd = this_cpu_ptr(&softnet_data);
3075         q->next_sched = NULL;
3076         *sd->output_queue_tailp = q;
3077         sd->output_queue_tailp = &q->next_sched;
3078         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3079         local_irq_restore(flags);
3080 }
3081
3082 void __netif_schedule(struct Qdisc *q)
3083 {
3084         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3085                 __netif_reschedule(q);
3086 }
3087 EXPORT_SYMBOL(__netif_schedule);
3088
3089 struct dev_kfree_skb_cb {
3090         enum skb_free_reason reason;
3091 };
3092
3093 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3094 {
3095         return (struct dev_kfree_skb_cb *)skb->cb;
3096 }
3097
3098 void netif_schedule_queue(struct netdev_queue *txq)
3099 {
3100         rcu_read_lock();
3101         if (!netif_xmit_stopped(txq)) {
3102                 struct Qdisc *q = rcu_dereference(txq->qdisc);
3103
3104                 __netif_schedule(q);
3105         }
3106         rcu_read_unlock();
3107 }
3108 EXPORT_SYMBOL(netif_schedule_queue);
3109
3110 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3111 {
3112         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3113                 struct Qdisc *q;
3114
3115                 rcu_read_lock();
3116                 q = rcu_dereference(dev_queue->qdisc);
3117                 __netif_schedule(q);
3118                 rcu_read_unlock();
3119         }
3120 }
3121 EXPORT_SYMBOL(netif_tx_wake_queue);
3122
3123 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3124 {
3125         unsigned long flags;
3126
3127         if (unlikely(!skb))
3128                 return;
3129
3130         if (likely(refcount_read(&skb->users) == 1)) {
3131                 smp_rmb();
3132                 refcount_set(&skb->users, 0);
3133         } else if (likely(!refcount_dec_and_test(&skb->users))) {
3134                 return;
3135         }
3136         get_kfree_skb_cb(skb)->reason = reason;
3137         local_irq_save(flags);
3138         skb->next = __this_cpu_read(softnet_data.completion_queue);
3139         __this_cpu_write(softnet_data.completion_queue, skb);
3140         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3141         local_irq_restore(flags);
3142 }
3143 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3144
3145 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3146 {
3147         if (in_hardirq() || irqs_disabled())
3148                 __dev_kfree_skb_irq(skb, reason);
3149         else
3150                 dev_kfree_skb(skb);
3151 }
3152 EXPORT_SYMBOL(__dev_kfree_skb_any);
3153
3154
3155 /**
3156  * netif_device_detach - mark device as removed
3157  * @dev: network device
3158  *
3159  * Mark device as removed from system and therefore no longer available.
3160  */
3161 void netif_device_detach(struct net_device *dev)
3162 {
3163         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3164             netif_running(dev)) {
3165                 netif_tx_stop_all_queues(dev);
3166         }
3167 }
3168 EXPORT_SYMBOL(netif_device_detach);
3169
3170 /**
3171  * netif_device_attach - mark device as attached
3172  * @dev: network device
3173  *
3174  * Mark device as attached from system and restart if needed.
3175  */
3176 void netif_device_attach(struct net_device *dev)
3177 {
3178         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3179             netif_running(dev)) {
3180                 netif_tx_wake_all_queues(dev);
3181                 __netdev_watchdog_up(dev);
3182         }
3183 }
3184 EXPORT_SYMBOL(netif_device_attach);
3185
3186 /*
3187  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3188  * to be used as a distribution range.
3189  */
3190 static u16 skb_tx_hash(const struct net_device *dev,
3191                        const struct net_device *sb_dev,
3192                        struct sk_buff *skb)
3193 {
3194         u32 hash;
3195         u16 qoffset = 0;
3196         u16 qcount = dev->real_num_tx_queues;
3197
3198         if (dev->num_tc) {
3199                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3200
3201                 qoffset = sb_dev->tc_to_txq[tc].offset;
3202                 qcount = sb_dev->tc_to_txq[tc].count;
3203                 if (unlikely(!qcount)) {
3204                         net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3205                                              sb_dev->name, qoffset, tc);
3206                         qoffset = 0;
3207                         qcount = dev->real_num_tx_queues;
3208                 }
3209         }
3210
3211         if (skb_rx_queue_recorded(skb)) {
3212                 hash = skb_get_rx_queue(skb);
3213                 if (hash >= qoffset)
3214                         hash -= qoffset;
3215                 while (unlikely(hash >= qcount))
3216                         hash -= qcount;
3217                 return hash + qoffset;
3218         }
3219
3220         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3221 }
3222
3223 static void skb_warn_bad_offload(const struct sk_buff *skb)
3224 {
3225         static const netdev_features_t null_features;
3226         struct net_device *dev = skb->dev;
3227         const char *name = "";
3228
3229         if (!net_ratelimit())
3230                 return;
3231
3232         if (dev) {
3233                 if (dev->dev.parent)
3234                         name = dev_driver_string(dev->dev.parent);
3235                 else
3236                         name = netdev_name(dev);
3237         }
3238         skb_dump(KERN_WARNING, skb, false);
3239         WARN(1, "%s: caps=(%pNF, %pNF)\n",
3240              name, dev ? &dev->features : &null_features,
3241              skb->sk ? &skb->sk->sk_route_caps : &null_features);
3242 }
3243
3244 /*
3245  * Invalidate hardware checksum when packet is to be mangled, and
3246  * complete checksum manually on outgoing path.
3247  */
3248 int skb_checksum_help(struct sk_buff *skb)
3249 {
3250         __wsum csum;
3251         int ret = 0, offset;
3252
3253         if (skb->ip_summed == CHECKSUM_COMPLETE)
3254                 goto out_set_summed;
3255
3256         if (unlikely(skb_is_gso(skb))) {
3257                 skb_warn_bad_offload(skb);
3258                 return -EINVAL;
3259         }
3260
3261         /* Before computing a checksum, we should make sure no frag could
3262          * be modified by an external entity : checksum could be wrong.
3263          */
3264         if (skb_has_shared_frag(skb)) {
3265                 ret = __skb_linearize(skb);
3266                 if (ret)
3267                         goto out;
3268         }
3269
3270         offset = skb_checksum_start_offset(skb);
3271         ret = -EINVAL;
3272         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3273                 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3274                 goto out;
3275         }
3276         csum = skb_checksum(skb, offset, skb->len - offset, 0);
3277
3278         offset += skb->csum_offset;
3279         if (WARN_ON_ONCE(offset + sizeof(__sum16) > skb_headlen(skb))) {
3280                 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3281                 goto out;
3282         }
3283         ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3284         if (ret)
3285                 goto out;
3286
3287         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3288 out_set_summed:
3289         skb->ip_summed = CHECKSUM_NONE;
3290 out:
3291         return ret;
3292 }
3293 EXPORT_SYMBOL(skb_checksum_help);
3294
3295 int skb_crc32c_csum_help(struct sk_buff *skb)
3296 {
3297         __le32 crc32c_csum;
3298         int ret = 0, offset, start;
3299
3300         if (skb->ip_summed != CHECKSUM_PARTIAL)
3301                 goto out;
3302
3303         if (unlikely(skb_is_gso(skb)))
3304                 goto out;
3305
3306         /* Before computing a checksum, we should make sure no frag could
3307          * be modified by an external entity : checksum could be wrong.
3308          */
3309         if (unlikely(skb_has_shared_frag(skb))) {
3310                 ret = __skb_linearize(skb);
3311                 if (ret)
3312                         goto out;
3313         }
3314         start = skb_checksum_start_offset(skb);
3315         offset = start + offsetof(struct sctphdr, checksum);
3316         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3317                 ret = -EINVAL;
3318                 goto out;
3319         }
3320
3321         ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3322         if (ret)
3323                 goto out;
3324
3325         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3326                                                   skb->len - start, ~(__u32)0,
3327                                                   crc32c_csum_stub));
3328         *(__le32 *)(skb->data + offset) = crc32c_csum;
3329         skb->ip_summed = CHECKSUM_NONE;
3330         skb->csum_not_inet = 0;
3331 out:
3332         return ret;
3333 }
3334
3335 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3336 {
3337         __be16 type = skb->protocol;
3338
3339         /* Tunnel gso handlers can set protocol to ethernet. */
3340         if (type == htons(ETH_P_TEB)) {
3341                 struct ethhdr *eth;
3342
3343                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3344                         return 0;
3345
3346                 eth = (struct ethhdr *)skb->data;
3347                 type = eth->h_proto;
3348         }
3349
3350         return __vlan_get_protocol(skb, type, depth);
3351 }
3352
3353 /* openvswitch calls this on rx path, so we need a different check.
3354  */
3355 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3356 {
3357         if (tx_path)
3358                 return skb->ip_summed != CHECKSUM_PARTIAL &&
3359                        skb->ip_summed != CHECKSUM_UNNECESSARY;
3360
3361         return skb->ip_summed == CHECKSUM_NONE;
3362 }
3363
3364 /**
3365  *      __skb_gso_segment - Perform segmentation on skb.
3366  *      @skb: buffer to segment
3367  *      @features: features for the output path (see dev->features)
3368  *      @tx_path: whether it is called in TX path
3369  *
3370  *      This function segments the given skb and returns a list of segments.
3371  *
3372  *      It may return NULL if the skb requires no segmentation.  This is
3373  *      only possible when GSO is used for verifying header integrity.
3374  *
3375  *      Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3376  */
3377 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3378                                   netdev_features_t features, bool tx_path)
3379 {
3380         struct sk_buff *segs;
3381
3382         if (unlikely(skb_needs_check(skb, tx_path))) {
3383                 int err;
3384
3385                 /* We're going to init ->check field in TCP or UDP header */
3386                 err = skb_cow_head(skb, 0);
3387                 if (err < 0)
3388                         return ERR_PTR(err);
3389         }
3390
3391         /* Only report GSO partial support if it will enable us to
3392          * support segmentation on this frame without needing additional
3393          * work.
3394          */
3395         if (features & NETIF_F_GSO_PARTIAL) {
3396                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3397                 struct net_device *dev = skb->dev;
3398
3399                 partial_features |= dev->features & dev->gso_partial_features;
3400                 if (!skb_gso_ok(skb, features | partial_features))
3401                         features &= ~NETIF_F_GSO_PARTIAL;
3402         }
3403
3404         BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3405                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3406
3407         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3408         SKB_GSO_CB(skb)->encap_level = 0;
3409
3410         skb_reset_mac_header(skb);
3411         skb_reset_mac_len(skb);
3412
3413         segs = skb_mac_gso_segment(skb, features);
3414
3415         if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3416                 skb_warn_bad_offload(skb);
3417
3418         return segs;
3419 }
3420 EXPORT_SYMBOL(__skb_gso_segment);
3421
3422 /* Take action when hardware reception checksum errors are detected. */
3423 #ifdef CONFIG_BUG
3424 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3425 {
3426         netdev_err(dev, "hw csum failure\n");
3427         skb_dump(KERN_ERR, skb, true);
3428         dump_stack();
3429 }
3430
3431 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3432 {
3433         DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3434 }
3435 EXPORT_SYMBOL(netdev_rx_csum_fault);
3436 #endif
3437
3438 /* XXX: check that highmem exists at all on the given machine. */
3439 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3440 {
3441 #ifdef CONFIG_HIGHMEM
3442         int i;
3443
3444         if (!(dev->features & NETIF_F_HIGHDMA)) {
3445                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3446                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3447
3448                         if (PageHighMem(skb_frag_page(frag)))
3449                                 return 1;
3450                 }
3451         }
3452 #endif
3453         return 0;
3454 }
3455
3456 /* If MPLS offload request, verify we are testing hardware MPLS features
3457  * instead of standard features for the netdev.
3458  */
3459 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3460 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3461                                            netdev_features_t features,
3462                                            __be16 type)
3463 {
3464         if (eth_p_mpls(type))
3465                 features &= skb->dev->mpls_features;
3466
3467         return features;
3468 }
3469 #else
3470 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3471                                            netdev_features_t features,
3472                                            __be16 type)
3473 {
3474         return features;
3475 }
3476 #endif
3477
3478 static netdev_features_t harmonize_features(struct sk_buff *skb,
3479         netdev_features_t features)
3480 {
3481         __be16 type;
3482
3483         type = skb_network_protocol(skb, NULL);
3484         features = net_mpls_features(skb, features, type);
3485
3486         if (skb->ip_summed != CHECKSUM_NONE &&
3487             !can_checksum_protocol(features, type)) {
3488                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3489         }
3490         if (illegal_highdma(skb->dev, skb))
3491                 features &= ~NETIF_F_SG;
3492
3493         return features;
3494 }
3495
3496 netdev_features_t passthru_features_check(struct sk_buff *skb,
3497                                           struct net_device *dev,
3498                                           netdev_features_t features)
3499 {
3500         return features;
3501 }
3502 EXPORT_SYMBOL(passthru_features_check);
3503
3504 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3505                                              struct net_device *dev,
3506                                              netdev_features_t features)
3507 {
3508         return vlan_features_check(skb, features);
3509 }
3510
3511 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3512                                             struct net_device *dev,
3513                                             netdev_features_t features)
3514 {
3515         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3516
3517         if (gso_segs > READ_ONCE(dev->gso_max_segs))
3518                 return features & ~NETIF_F_GSO_MASK;
3519
3520         if (!skb_shinfo(skb)->gso_type) {
3521                 skb_warn_bad_offload(skb);
3522                 return features & ~NETIF_F_GSO_MASK;
3523         }
3524
3525         /* Support for GSO partial features requires software
3526          * intervention before we can actually process the packets
3527          * so we need to strip support for any partial features now
3528          * and we can pull them back in after we have partially
3529          * segmented the frame.
3530          */
3531         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3532                 features &= ~dev->gso_partial_features;
3533
3534         /* Make sure to clear the IPv4 ID mangling feature if the
3535          * IPv4 header has the potential to be fragmented.
3536          */
3537         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3538                 struct iphdr *iph = skb->encapsulation ?
3539                                     inner_ip_hdr(skb) : ip_hdr(skb);
3540
3541                 if (!(iph->frag_off & htons(IP_DF)))
3542                         features &= ~NETIF_F_TSO_MANGLEID;
3543         }
3544
3545         return features;
3546 }
3547
3548 netdev_features_t netif_skb_features(struct sk_buff *skb)
3549 {
3550         struct net_device *dev = skb->dev;
3551         netdev_features_t features = dev->features;
3552
3553         if (skb_is_gso(skb))
3554                 features = gso_features_check(skb, dev, features);
3555
3556         /* If encapsulation offload request, verify we are testing
3557          * hardware encapsulation features instead of standard
3558          * features for the netdev
3559          */
3560         if (skb->encapsulation)
3561                 features &= dev->hw_enc_features;
3562
3563         if (skb_vlan_tagged(skb))
3564                 features = netdev_intersect_features(features,
3565                                                      dev->vlan_features |
3566                                                      NETIF_F_HW_VLAN_CTAG_TX |
3567                                                      NETIF_F_HW_VLAN_STAG_TX);
3568
3569         if (dev->netdev_ops->ndo_features_check)
3570                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3571                                                                 features);
3572         else
3573                 features &= dflt_features_check(skb, dev, features);
3574
3575         return harmonize_features(skb, features);
3576 }
3577 EXPORT_SYMBOL(netif_skb_features);
3578
3579 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3580                     struct netdev_queue *txq, bool more)
3581 {
3582         unsigned int len;
3583         int rc;
3584
3585         if (dev_nit_active(dev))
3586                 dev_queue_xmit_nit(skb, dev);
3587
3588         len = skb->len;
3589         trace_net_dev_start_xmit(skb, dev);
3590         rc = netdev_start_xmit(skb, dev, txq, more);
3591         trace_net_dev_xmit(skb, rc, dev, len);
3592
3593         return rc;
3594 }
3595
3596 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3597                                     struct netdev_queue *txq, int *ret)
3598 {
3599         struct sk_buff *skb = first;
3600         int rc = NETDEV_TX_OK;
3601
3602         while (skb) {
3603                 struct sk_buff *next = skb->next;
3604
3605                 skb_mark_not_on_list(skb);
3606                 rc = xmit_one(skb, dev, txq, next != NULL);
3607                 if (unlikely(!dev_xmit_complete(rc))) {
3608                         skb->next = next;
3609                         goto out;
3610                 }
3611
3612                 skb = next;
3613                 if (netif_tx_queue_stopped(txq) && skb) {
3614                         rc = NETDEV_TX_BUSY;
3615                         break;
3616                 }
3617         }
3618
3619 out:
3620         *ret = rc;
3621         return skb;
3622 }
3623
3624 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3625                                           netdev_features_t features)
3626 {
3627         if (skb_vlan_tag_present(skb) &&
3628             !vlan_hw_offload_capable(features, skb->vlan_proto))
3629                 skb = __vlan_hwaccel_push_inside(skb);
3630         return skb;
3631 }
3632
3633 int skb_csum_hwoffload_help(struct sk_buff *skb,
3634                             const netdev_features_t features)
3635 {
3636         if (unlikely(skb_csum_is_sctp(skb)))
3637                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3638                         skb_crc32c_csum_help(skb);
3639
3640         if (features & NETIF_F_HW_CSUM)
3641                 return 0;
3642
3643         if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3644                 switch (skb->csum_offset) {
3645                 case offsetof(struct tcphdr, check):
3646                 case offsetof(struct udphdr, check):
3647                         return 0;
3648                 }
3649         }
3650
3651         return skb_checksum_help(skb);
3652 }
3653 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3654
3655 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3656 {
3657         netdev_features_t features;
3658
3659         features = netif_skb_features(skb);
3660         skb = validate_xmit_vlan(skb, features);
3661         if (unlikely(!skb))
3662                 goto out_null;
3663
3664         skb = sk_validate_xmit_skb(skb, dev);
3665         if (unlikely(!skb))
3666                 goto out_null;
3667
3668         if (netif_needs_gso(skb, features)) {
3669                 struct sk_buff *segs;
3670
3671                 segs = skb_gso_segment(skb, features);
3672                 if (IS_ERR(segs)) {
3673                         goto out_kfree_skb;
3674                 } else if (segs) {
3675                         consume_skb(skb);
3676                         skb = segs;
3677                 }
3678         } else {
3679                 if (skb_needs_linearize(skb, features) &&
3680                     __skb_linearize(skb))
3681                         goto out_kfree_skb;
3682
3683                 /* If packet is not checksummed and device does not
3684                  * support checksumming for this protocol, complete
3685                  * checksumming here.
3686                  */
3687                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3688                         if (skb->encapsulation)
3689                                 skb_set_inner_transport_header(skb,
3690                                                                skb_checksum_start_offset(skb));
3691                         else
3692                                 skb_set_transport_header(skb,
3693                                                          skb_checksum_start_offset(skb));
3694                         if (skb_csum_hwoffload_help(skb, features))
3695                                 goto out_kfree_skb;
3696                 }
3697         }
3698
3699         skb = validate_xmit_xfrm(skb, features, again);
3700
3701         return skb;
3702
3703 out_kfree_skb:
3704         kfree_skb(skb);
3705 out_null:
3706         dev_core_stats_tx_dropped_inc(dev);
3707         return NULL;
3708 }
3709
3710 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3711 {
3712         struct sk_buff *next, *head = NULL, *tail;
3713
3714         for (; skb != NULL; skb = next) {
3715                 next = skb->next;
3716                 skb_mark_not_on_list(skb);
3717
3718                 /* in case skb wont be segmented, point to itself */
3719                 skb->prev = skb;
3720
3721                 skb = validate_xmit_skb(skb, dev, again);
3722                 if (!skb)
3723                         continue;
3724
3725                 if (!head)
3726                         head = skb;
3727                 else
3728                         tail->next = skb;
3729                 /* If skb was segmented, skb->prev points to
3730                  * the last segment. If not, it still contains skb.
3731                  */
3732                 tail = skb->prev;
3733         }
3734         return head;
3735 }
3736 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3737
3738 static void qdisc_pkt_len_init(struct sk_buff *skb)
3739 {
3740         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3741
3742         qdisc_skb_cb(skb)->pkt_len = skb->len;
3743
3744         /* To get more precise estimation of bytes sent on wire,
3745          * we add to pkt_len the headers size of all segments
3746          */
3747         if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3748                 unsigned int hdr_len;
3749                 u16 gso_segs = shinfo->gso_segs;
3750
3751                 /* mac layer + network layer */
3752                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3753
3754                 /* + transport layer */
3755                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3756                         const struct tcphdr *th;
3757                         struct tcphdr _tcphdr;
3758
3759                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3760                                                 sizeof(_tcphdr), &_tcphdr);
3761                         if (likely(th))
3762                                 hdr_len += __tcp_hdrlen(th);
3763                 } else {
3764                         struct udphdr _udphdr;
3765
3766                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3767                                                sizeof(_udphdr), &_udphdr))
3768                                 hdr_len += sizeof(struct udphdr);
3769                 }
3770
3771                 if (shinfo->gso_type & SKB_GSO_DODGY)
3772                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3773                                                 shinfo->gso_size);
3774
3775                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3776         }
3777 }
3778
3779 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3780                              struct sk_buff **to_free,
3781                              struct netdev_queue *txq)
3782 {
3783         int rc;
3784
3785         rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3786         if (rc == NET_XMIT_SUCCESS)
3787                 trace_qdisc_enqueue(q, txq, skb);
3788         return rc;
3789 }
3790
3791 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3792                                  struct net_device *dev,
3793                                  struct netdev_queue *txq)
3794 {
3795         spinlock_t *root_lock = qdisc_lock(q);
3796         struct sk_buff *to_free = NULL;
3797         bool contended;
3798         int rc;
3799
3800         qdisc_calculate_pkt_len(skb, q);
3801
3802         if (q->flags & TCQ_F_NOLOCK) {
3803                 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3804                     qdisc_run_begin(q)) {
3805                         /* Retest nolock_qdisc_is_empty() within the protection
3806                          * of q->seqlock to protect from racing with requeuing.
3807                          */
3808                         if (unlikely(!nolock_qdisc_is_empty(q))) {
3809                                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3810                                 __qdisc_run(q);
3811                                 qdisc_run_end(q);
3812
3813                                 goto no_lock_out;
3814                         }
3815
3816                         qdisc_bstats_cpu_update(q, skb);
3817                         if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3818                             !nolock_qdisc_is_empty(q))
3819                                 __qdisc_run(q);
3820
3821                         qdisc_run_end(q);
3822                         return NET_XMIT_SUCCESS;
3823                 }
3824
3825                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3826                 qdisc_run(q);
3827
3828 no_lock_out:
3829                 if (unlikely(to_free))
3830                         kfree_skb_list_reason(to_free,
3831                                               SKB_DROP_REASON_QDISC_DROP);
3832                 return rc;
3833         }
3834
3835         /*
3836          * Heuristic to force contended enqueues to serialize on a
3837          * separate lock before trying to get qdisc main lock.
3838          * This permits qdisc->running owner to get the lock more
3839          * often and dequeue packets faster.
3840          * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3841          * and then other tasks will only enqueue packets. The packets will be
3842          * sent after the qdisc owner is scheduled again. To prevent this
3843          * scenario the task always serialize on the lock.
3844          */
3845         contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3846         if (unlikely(contended))
3847                 spin_lock(&q->busylock);
3848
3849         spin_lock(root_lock);
3850         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3851                 __qdisc_drop(skb, &to_free);
3852                 rc = NET_XMIT_DROP;
3853         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3854                    qdisc_run_begin(q)) {
3855                 /*
3856                  * This is a work-conserving queue; there are no old skbs
3857                  * waiting to be sent out; and the qdisc is not running -
3858                  * xmit the skb directly.
3859                  */
3860
3861                 qdisc_bstats_update(q, skb);
3862
3863                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3864                         if (unlikely(contended)) {
3865                                 spin_unlock(&q->busylock);
3866                                 contended = false;
3867                         }
3868                         __qdisc_run(q);
3869                 }
3870
3871                 qdisc_run_end(q);
3872                 rc = NET_XMIT_SUCCESS;
3873         } else {
3874                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3875                 if (qdisc_run_begin(q)) {
3876                         if (unlikely(contended)) {
3877                                 spin_unlock(&q->busylock);
3878                                 contended = false;
3879                         }
3880                         __qdisc_run(q);
3881                         qdisc_run_end(q);
3882                 }
3883         }
3884         spin_unlock(root_lock);
3885         if (unlikely(to_free))
3886                 kfree_skb_list_reason(to_free, SKB_DROP_REASON_QDISC_DROP);
3887         if (unlikely(contended))
3888                 spin_unlock(&q->busylock);
3889         return rc;
3890 }
3891
3892 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3893 static void skb_update_prio(struct sk_buff *skb)
3894 {
3895         const struct netprio_map *map;
3896         const struct sock *sk;
3897         unsigned int prioidx;
3898
3899         if (skb->priority)
3900                 return;
3901         map = rcu_dereference_bh(skb->dev->priomap);
3902         if (!map)
3903                 return;
3904         sk = skb_to_full_sk(skb);
3905         if (!sk)
3906                 return;
3907
3908         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3909
3910         if (prioidx < map->priomap_len)
3911                 skb->priority = map->priomap[prioidx];
3912 }
3913 #else
3914 #define skb_update_prio(skb)
3915 #endif
3916
3917 /**
3918  *      dev_loopback_xmit - loop back @skb
3919  *      @net: network namespace this loopback is happening in
3920  *      @sk:  sk needed to be a netfilter okfn
3921  *      @skb: buffer to transmit
3922  */
3923 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3924 {
3925         skb_reset_mac_header(skb);
3926         __skb_pull(skb, skb_network_offset(skb));
3927         skb->pkt_type = PACKET_LOOPBACK;
3928         if (skb->ip_summed == CHECKSUM_NONE)
3929                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3930         DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3931         skb_dst_force(skb);
3932         netif_rx(skb);
3933         return 0;
3934 }
3935 EXPORT_SYMBOL(dev_loopback_xmit);
3936
3937 #ifdef CONFIG_NET_EGRESS
3938 static struct sk_buff *
3939 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3940 {
3941 #ifdef CONFIG_NET_CLS_ACT
3942         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3943         struct tcf_result cl_res;
3944
3945         if (!miniq)
3946                 return skb;
3947
3948         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3949         tc_skb_cb(skb)->mru = 0;
3950         tc_skb_cb(skb)->post_ct = false;
3951         mini_qdisc_bstats_cpu_update(miniq, skb);
3952
3953         switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
3954         case TC_ACT_OK:
3955         case TC_ACT_RECLASSIFY:
3956                 skb->tc_index = TC_H_MIN(cl_res.classid);
3957                 break;
3958         case TC_ACT_SHOT:
3959                 mini_qdisc_qstats_cpu_drop(miniq);
3960                 *ret = NET_XMIT_DROP;
3961                 kfree_skb_reason(skb, SKB_DROP_REASON_TC_EGRESS);
3962                 return NULL;
3963         case TC_ACT_STOLEN:
3964         case TC_ACT_QUEUED:
3965         case TC_ACT_TRAP:
3966                 *ret = NET_XMIT_SUCCESS;
3967                 consume_skb(skb);
3968                 return NULL;
3969         case TC_ACT_REDIRECT:
3970                 /* No need to push/pop skb's mac_header here on egress! */
3971                 skb_do_redirect(skb);
3972                 *ret = NET_XMIT_SUCCESS;
3973                 return NULL;
3974         default:
3975                 break;
3976         }
3977 #endif /* CONFIG_NET_CLS_ACT */
3978
3979         return skb;
3980 }
3981
3982 static struct netdev_queue *
3983 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3984 {
3985         int qm = skb_get_queue_mapping(skb);
3986
3987         return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3988 }
3989
3990 static bool netdev_xmit_txqueue_skipped(void)
3991 {
3992         return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3993 }
3994
3995 void netdev_xmit_skip_txqueue(bool skip)
3996 {
3997         __this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3998 }
3999 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4000 #endif /* CONFIG_NET_EGRESS */
4001
4002 #ifdef CONFIG_XPS
4003 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4004                                struct xps_dev_maps *dev_maps, unsigned int tci)
4005 {
4006         int tc = netdev_get_prio_tc_map(dev, skb->priority);
4007         struct xps_map *map;
4008         int queue_index = -1;
4009
4010         if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4011                 return queue_index;
4012
4013         tci *= dev_maps->num_tc;
4014         tci += tc;
4015
4016         map = rcu_dereference(dev_maps->attr_map[tci]);
4017         if (map) {
4018                 if (map->len == 1)
4019                         queue_index = map->queues[0];
4020                 else
4021                         queue_index = map->queues[reciprocal_scale(
4022                                                 skb_get_hash(skb), map->len)];
4023                 if (unlikely(queue_index >= dev->real_num_tx_queues))
4024                         queue_index = -1;
4025         }
4026         return queue_index;
4027 }
4028 #endif
4029
4030 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4031                          struct sk_buff *skb)
4032 {
4033 #ifdef CONFIG_XPS
4034         struct xps_dev_maps *dev_maps;
4035         struct sock *sk = skb->sk;
4036         int queue_index = -1;
4037
4038         if (!static_key_false(&xps_needed))
4039                 return -1;
4040
4041         rcu_read_lock();
4042         if (!static_key_false(&xps_rxqs_needed))
4043                 goto get_cpus_map;
4044
4045         dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4046         if (dev_maps) {
4047                 int tci = sk_rx_queue_get(sk);
4048
4049                 if (tci >= 0)
4050                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4051                                                           tci);
4052         }
4053
4054 get_cpus_map:
4055         if (queue_index < 0) {
4056                 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4057                 if (dev_maps) {
4058                         unsigned int tci = skb->sender_cpu - 1;
4059
4060                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4061                                                           tci);
4062                 }
4063         }
4064         rcu_read_unlock();
4065
4066         return queue_index;
4067 #else
4068         return -1;
4069 #endif
4070 }
4071
4072 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4073                      struct net_device *sb_dev)
4074 {
4075         return 0;
4076 }
4077 EXPORT_SYMBOL(dev_pick_tx_zero);
4078
4079 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4080                        struct net_device *sb_dev)
4081 {
4082         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4083 }
4084 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4085
4086 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4087                      struct net_device *sb_dev)
4088 {
4089         struct sock *sk = skb->sk;
4090         int queue_index = sk_tx_queue_get(sk);
4091
4092         sb_dev = sb_dev ? : dev;
4093
4094         if (queue_index < 0 || skb->ooo_okay ||
4095             queue_index >= dev->real_num_tx_queues) {
4096                 int new_index = get_xps_queue(dev, sb_dev, skb);
4097
4098                 if (new_index < 0)
4099                         new_index = skb_tx_hash(dev, sb_dev, skb);
4100
4101                 if (queue_index != new_index && sk &&
4102                     sk_fullsock(sk) &&
4103                     rcu_access_pointer(sk->sk_dst_cache))
4104                         sk_tx_queue_set(sk, new_index);
4105
4106                 queue_index = new_index;
4107         }
4108
4109         return queue_index;
4110 }
4111 EXPORT_SYMBOL(netdev_pick_tx);
4112
4113 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4114                                          struct sk_buff *skb,
4115                                          struct net_device *sb_dev)
4116 {
4117         int queue_index = 0;
4118
4119 #ifdef CONFIG_XPS
4120         u32 sender_cpu = skb->sender_cpu - 1;
4121
4122         if (sender_cpu >= (u32)NR_CPUS)
4123                 skb->sender_cpu = raw_smp_processor_id() + 1;
4124 #endif
4125
4126         if (dev->real_num_tx_queues != 1) {
4127                 const struct net_device_ops *ops = dev->netdev_ops;
4128
4129                 if (ops->ndo_select_queue)
4130                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4131                 else
4132                         queue_index = netdev_pick_tx(dev, skb, sb_dev);
4133
4134                 queue_index = netdev_cap_txqueue(dev, queue_index);
4135         }
4136
4137         skb_set_queue_mapping(skb, queue_index);
4138         return netdev_get_tx_queue(dev, queue_index);
4139 }
4140
4141 /**
4142  * __dev_queue_xmit() - transmit a buffer
4143  * @skb:        buffer to transmit
4144  * @sb_dev:     suboordinate device used for L2 forwarding offload
4145  *
4146  * Queue a buffer for transmission to a network device. The caller must
4147  * have set the device and priority and built the buffer before calling
4148  * this function. The function can be called from an interrupt.
4149  *
4150  * When calling this method, interrupts MUST be enabled. This is because
4151  * the BH enable code must have IRQs enabled so that it will not deadlock.
4152  *
4153  * Regardless of the return value, the skb is consumed, so it is currently
4154  * difficult to retry a send to this method. (You can bump the ref count
4155  * before sending to hold a reference for retry if you are careful.)
4156  *
4157  * Return:
4158  * * 0                          - buffer successfully transmitted
4159  * * positive qdisc return code - NET_XMIT_DROP etc.
4160  * * negative errno             - other errors
4161  */
4162 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4163 {
4164         struct net_device *dev = skb->dev;
4165         struct netdev_queue *txq = NULL;
4166         struct Qdisc *q;
4167         int rc = -ENOMEM;
4168         bool again = false;
4169
4170         skb_reset_mac_header(skb);
4171
4172         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4173                 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4174
4175         /* Disable soft irqs for various locks below. Also
4176          * stops preemption for RCU.
4177          */
4178         rcu_read_lock_bh();
4179
4180         skb_update_prio(skb);
4181
4182         qdisc_pkt_len_init(skb);
4183 #ifdef CONFIG_NET_CLS_ACT
4184         skb->tc_at_ingress = 0;
4185 #endif
4186 #ifdef CONFIG_NET_EGRESS
4187         if (static_branch_unlikely(&egress_needed_key)) {
4188                 if (nf_hook_egress_active()) {
4189                         skb = nf_hook_egress(skb, &rc, dev);
4190                         if (!skb)
4191                                 goto out;
4192                 }
4193
4194                 netdev_xmit_skip_txqueue(false);
4195
4196                 nf_skip_egress(skb, true);
4197                 skb = sch_handle_egress(skb, &rc, dev);
4198                 if (!skb)
4199                         goto out;
4200                 nf_skip_egress(skb, false);
4201
4202                 if (netdev_xmit_txqueue_skipped())
4203                         txq = netdev_tx_queue_mapping(dev, skb);
4204         }
4205 #endif
4206         /* If device/qdisc don't need skb->dst, release it right now while
4207          * its hot in this cpu cache.
4208          */
4209         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4210                 skb_dst_drop(skb);
4211         else
4212                 skb_dst_force(skb);
4213
4214         if (!txq)
4215                 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4216
4217         q = rcu_dereference_bh(txq->qdisc);
4218
4219         trace_net_dev_queue(skb);
4220         if (q->enqueue) {
4221                 rc = __dev_xmit_skb(skb, q, dev, txq);
4222                 goto out;
4223         }
4224
4225         /* The device has no queue. Common case for software devices:
4226          * loopback, all the sorts of tunnels...
4227
4228          * Really, it is unlikely that netif_tx_lock protection is necessary
4229          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4230          * counters.)
4231          * However, it is possible, that they rely on protection
4232          * made by us here.
4233
4234          * Check this and shot the lock. It is not prone from deadlocks.
4235          *Either shot noqueue qdisc, it is even simpler 8)
4236          */
4237         if (dev->flags & IFF_UP) {
4238                 int cpu = smp_processor_id(); /* ok because BHs are off */
4239
4240                 /* Other cpus might concurrently change txq->xmit_lock_owner
4241                  * to -1 or to their cpu id, but not to our id.
4242                  */
4243                 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4244                         if (dev_xmit_recursion())
4245                                 goto recursion_alert;
4246
4247                         skb = validate_xmit_skb(skb, dev, &again);
4248                         if (!skb)
4249                                 goto out;
4250
4251                         HARD_TX_LOCK(dev, txq, cpu);
4252
4253                         if (!netif_xmit_stopped(txq)) {
4254                                 dev_xmit_recursion_inc();
4255                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4256                                 dev_xmit_recursion_dec();
4257                                 if (dev_xmit_complete(rc)) {
4258                                         HARD_TX_UNLOCK(dev, txq);
4259                                         goto out;
4260                                 }
4261                         }
4262                         HARD_TX_UNLOCK(dev, txq);
4263                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4264                                              dev->name);
4265                 } else {
4266                         /* Recursion is detected! It is possible,
4267                          * unfortunately
4268                          */
4269 recursion_alert:
4270                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4271                                              dev->name);
4272                 }
4273         }
4274
4275         rc = -ENETDOWN;
4276         rcu_read_unlock_bh();
4277
4278         dev_core_stats_tx_dropped_inc(dev);
4279         kfree_skb_list(skb);
4280         return rc;
4281 out:
4282         rcu_read_unlock_bh();
4283         return rc;
4284 }
4285 EXPORT_SYMBOL(__dev_queue_xmit);
4286
4287 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4288 {
4289         struct net_device *dev = skb->dev;
4290         struct sk_buff *orig_skb = skb;
4291         struct netdev_queue *txq;
4292         int ret = NETDEV_TX_BUSY;
4293         bool again = false;
4294
4295         if (unlikely(!netif_running(dev) ||
4296                      !netif_carrier_ok(dev)))
4297                 goto drop;
4298
4299         skb = validate_xmit_skb_list(skb, dev, &again);
4300         if (skb != orig_skb)
4301                 goto drop;
4302
4303         skb_set_queue_mapping(skb, queue_id);
4304         txq = skb_get_tx_queue(dev, skb);
4305
4306         local_bh_disable();
4307
4308         dev_xmit_recursion_inc();
4309         HARD_TX_LOCK(dev, txq, smp_processor_id());
4310         if (!netif_xmit_frozen_or_drv_stopped(txq))
4311                 ret = netdev_start_xmit(skb, dev, txq, false);
4312         HARD_TX_UNLOCK(dev, txq);
4313         dev_xmit_recursion_dec();
4314
4315         local_bh_enable();
4316         return ret;
4317 drop:
4318         dev_core_stats_tx_dropped_inc(dev);
4319         kfree_skb_list(skb);
4320         return NET_XMIT_DROP;
4321 }
4322 EXPORT_SYMBOL(__dev_direct_xmit);
4323
4324 /*************************************************************************
4325  *                      Receiver routines
4326  *************************************************************************/
4327
4328 int netdev_max_backlog __read_mostly = 1000;
4329 EXPORT_SYMBOL(netdev_max_backlog);
4330
4331 int netdev_tstamp_prequeue __read_mostly = 1;
4332 unsigned int sysctl_skb_defer_max __read_mostly = 64;
4333 int netdev_budget __read_mostly = 300;
4334 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4335 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4336 int weight_p __read_mostly = 64;           /* old backlog weight */
4337 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4338 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4339 int dev_rx_weight __read_mostly = 64;
4340 int dev_tx_weight __read_mostly = 64;
4341
4342 /* Called with irq disabled */
4343 static inline void ____napi_schedule(struct softnet_data *sd,
4344                                      struct napi_struct *napi)
4345 {
4346         struct task_struct *thread;
4347
4348         lockdep_assert_irqs_disabled();
4349
4350         if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4351                 /* Paired with smp_mb__before_atomic() in
4352                  * napi_enable()/dev_set_threaded().
4353                  * Use READ_ONCE() to guarantee a complete
4354                  * read on napi->thread. Only call
4355                  * wake_up_process() when it's not NULL.
4356                  */
4357                 thread = READ_ONCE(napi->thread);
4358                 if (thread) {
4359                         /* Avoid doing set_bit() if the thread is in
4360                          * INTERRUPTIBLE state, cause napi_thread_wait()
4361                          * makes sure to proceed with napi polling
4362                          * if the thread is explicitly woken from here.
4363                          */
4364                         if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4365                                 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4366                         wake_up_process(thread);
4367                         return;
4368                 }
4369         }
4370
4371         list_add_tail(&napi->poll_list, &sd->poll_list);
4372         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4373 }
4374
4375 #ifdef CONFIG_RPS
4376
4377 /* One global table that all flow-based protocols share. */
4378 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4379 EXPORT_SYMBOL(rps_sock_flow_table);
4380 u32 rps_cpu_mask __read_mostly;
4381 EXPORT_SYMBOL(rps_cpu_mask);
4382
4383 struct static_key_false rps_needed __read_mostly;
4384 EXPORT_SYMBOL(rps_needed);
4385 struct static_key_false rfs_needed __read_mostly;
4386 EXPORT_SYMBOL(rfs_needed);
4387
4388 static struct rps_dev_flow *
4389 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4390             struct rps_dev_flow *rflow, u16 next_cpu)
4391 {
4392         if (next_cpu < nr_cpu_ids) {
4393 #ifdef CONFIG_RFS_ACCEL
4394                 struct netdev_rx_queue *rxqueue;
4395                 struct rps_dev_flow_table *flow_table;
4396                 struct rps_dev_flow *old_rflow;
4397                 u32 flow_id;
4398                 u16 rxq_index;
4399                 int rc;
4400
4401                 /* Should we steer this flow to a different hardware queue? */
4402                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4403                     !(dev->features & NETIF_F_NTUPLE))
4404                         goto out;
4405                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4406                 if (rxq_index == skb_get_rx_queue(skb))
4407                         goto out;
4408
4409                 rxqueue = dev->_rx + rxq_index;
4410                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4411                 if (!flow_table)
4412                         goto out;
4413                 flow_id = skb_get_hash(skb) & flow_table->mask;
4414                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4415                                                         rxq_index, flow_id);
4416                 if (rc < 0)
4417                         goto out;
4418                 old_rflow = rflow;
4419                 rflow = &flow_table->flows[flow_id];
4420                 rflow->filter = rc;
4421                 if (old_rflow->filter == rflow->filter)
4422                         old_rflow->filter = RPS_NO_FILTER;
4423         out:
4424 #endif
4425                 rflow->last_qtail =
4426                         per_cpu(softnet_data, next_cpu).input_queue_head;
4427         }
4428
4429         rflow->cpu = next_cpu;
4430         return rflow;
4431 }
4432
4433 /*
4434  * get_rps_cpu is called from netif_receive_skb and returns the target
4435  * CPU from the RPS map of the receiving queue for a given skb.
4436  * rcu_read_lock must be held on entry.
4437  */
4438 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4439                        struct rps_dev_flow **rflowp)
4440 {
4441         const struct rps_sock_flow_table *sock_flow_table;
4442         struct netdev_rx_queue *rxqueue = dev->_rx;
4443         struct rps_dev_flow_table *flow_table;
4444         struct rps_map *map;
4445         int cpu = -1;
4446         u32 tcpu;
4447         u32 hash;
4448
4449         if (skb_rx_queue_recorded(skb)) {
4450                 u16 index = skb_get_rx_queue(skb);
4451
4452                 if (unlikely(index >= dev->real_num_rx_queues)) {
4453                         WARN_ONCE(dev->real_num_rx_queues > 1,
4454                                   "%s received packet on queue %u, but number "
4455                                   "of RX queues is %u\n",
4456                                   dev->name, index, dev->real_num_rx_queues);
4457                         goto done;
4458                 }
4459                 rxqueue += index;
4460         }
4461
4462         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4463
4464         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4465         map = rcu_dereference(rxqueue->rps_map);
4466         if (!flow_table && !map)
4467                 goto done;
4468
4469         skb_reset_network_header(skb);
4470         hash = skb_get_hash(skb);
4471         if (!hash)
4472                 goto done;
4473
4474         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4475         if (flow_table && sock_flow_table) {
4476                 struct rps_dev_flow *rflow;
4477                 u32 next_cpu;
4478                 u32 ident;
4479
4480                 /* First check into global flow table if there is a match */
4481                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4482                 if ((ident ^ hash) & ~rps_cpu_mask)
4483                         goto try_rps;
4484
4485                 next_cpu = ident & rps_cpu_mask;
4486
4487                 /* OK, now we know there is a match,
4488                  * we can look at the local (per receive queue) flow table
4489                  */
4490                 rflow = &flow_table->flows[hash & flow_table->mask];
4491                 tcpu = rflow->cpu;
4492
4493                 /*
4494                  * If the desired CPU (where last recvmsg was done) is
4495                  * different from current CPU (one in the rx-queue flow
4496                  * table entry), switch if one of the following holds:
4497                  *   - Current CPU is unset (>= nr_cpu_ids).
4498                  *   - Current CPU is offline.
4499                  *   - The current CPU's queue tail has advanced beyond the
4500                  *     last packet that was enqueued using this table entry.
4501                  *     This guarantees that all previous packets for the flow
4502                  *     have been dequeued, thus preserving in order delivery.
4503                  */
4504                 if (unlikely(tcpu != next_cpu) &&
4505                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4506                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4507                       rflow->last_qtail)) >= 0)) {
4508                         tcpu = next_cpu;
4509                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4510                 }
4511
4512                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4513                         *rflowp = rflow;
4514                         cpu = tcpu;
4515                         goto done;
4516                 }
4517         }
4518
4519 try_rps:
4520
4521         if (map) {
4522                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4523                 if (cpu_online(tcpu)) {
4524                         cpu = tcpu;
4525                         goto done;
4526                 }
4527         }
4528
4529 done:
4530         return cpu;
4531 }
4532
4533 #ifdef CONFIG_RFS_ACCEL
4534
4535 /**
4536  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4537  * @dev: Device on which the filter was set
4538  * @rxq_index: RX queue index
4539  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4540  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4541  *
4542  * Drivers that implement ndo_rx_flow_steer() should periodically call
4543  * this function for each installed filter and remove the filters for
4544  * which it returns %true.
4545  */
4546 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4547                          u32 flow_id, u16 filter_id)
4548 {
4549         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4550         struct rps_dev_flow_table *flow_table;
4551         struct rps_dev_flow *rflow;
4552         bool expire = true;
4553         unsigned int cpu;
4554
4555         rcu_read_lock();
4556         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4557         if (flow_table && flow_id <= flow_table->mask) {
4558                 rflow = &flow_table->flows[flow_id];
4559                 cpu = READ_ONCE(rflow->cpu);
4560                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4561                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4562                            rflow->last_qtail) <
4563                      (int)(10 * flow_table->mask)))
4564                         expire = false;
4565         }
4566         rcu_read_unlock();
4567         return expire;
4568 }
4569 EXPORT_SYMBOL(rps_may_expire_flow);
4570
4571 #endif /* CONFIG_RFS_ACCEL */
4572
4573 /* Called from hardirq (IPI) context */
4574 static void rps_trigger_softirq(void *data)
4575 {
4576         struct softnet_data *sd = data;
4577
4578         ____napi_schedule(sd, &sd->backlog);
4579         sd->received_rps++;
4580 }
4581
4582 #endif /* CONFIG_RPS */
4583
4584 /* Called from hardirq (IPI) context */
4585 static void trigger_rx_softirq(void *data)
4586 {
4587         struct softnet_data *sd = data;
4588
4589         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4590         smp_store_release(&sd->defer_ipi_scheduled, 0);
4591 }
4592
4593 /*
4594  * Check if this softnet_data structure is another cpu one
4595  * If yes, queue it to our IPI list and return 1
4596  * If no, return 0
4597  */
4598 static int napi_schedule_rps(struct softnet_data *sd)
4599 {
4600         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4601
4602 #ifdef CONFIG_RPS
4603         if (sd != mysd) {
4604                 sd->rps_ipi_next = mysd->rps_ipi_list;
4605                 mysd->rps_ipi_list = sd;
4606
4607                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4608                 return 1;
4609         }
4610 #endif /* CONFIG_RPS */
4611         __napi_schedule_irqoff(&mysd->backlog);
4612         return 0;
4613 }
4614
4615 #ifdef CONFIG_NET_FLOW_LIMIT
4616 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4617 #endif
4618
4619 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4620 {
4621 #ifdef CONFIG_NET_FLOW_LIMIT
4622         struct sd_flow_limit *fl;
4623         struct softnet_data *sd;
4624         unsigned int old_flow, new_flow;
4625
4626         if (qlen < (netdev_max_backlog >> 1))
4627                 return false;
4628
4629         sd = this_cpu_ptr(&softnet_data);
4630
4631         rcu_read_lock();
4632         fl = rcu_dereference(sd->flow_limit);
4633         if (fl) {
4634                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4635                 old_flow = fl->history[fl->history_head];
4636                 fl->history[fl->history_head] = new_flow;
4637
4638                 fl->history_head++;
4639                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4640
4641                 if (likely(fl->buckets[old_flow]))
4642                         fl->buckets[old_flow]--;
4643
4644                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4645                         fl->count++;
4646                         rcu_read_unlock();
4647                         return true;
4648                 }
4649         }
4650         rcu_read_unlock();
4651 #endif
4652         return false;
4653 }
4654
4655 /*
4656  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4657  * queue (may be a remote CPU queue).
4658  */
4659 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4660                               unsigned int *qtail)
4661 {
4662         enum skb_drop_reason reason;
4663         struct softnet_data *sd;
4664         unsigned long flags;
4665         unsigned int qlen;
4666
4667         reason = SKB_DROP_REASON_NOT_SPECIFIED;
4668         sd = &per_cpu(softnet_data, cpu);
4669
4670         rps_lock_irqsave(sd, &flags);
4671         if (!netif_running(skb->dev))
4672                 goto drop;
4673         qlen = skb_queue_len(&sd->input_pkt_queue);
4674         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4675                 if (qlen) {
4676 enqueue:
4677                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4678                         input_queue_tail_incr_save(sd, qtail);
4679                         rps_unlock_irq_restore(sd, &flags);
4680                         return NET_RX_SUCCESS;
4681                 }
4682
4683                 /* Schedule NAPI for backlog device
4684                  * We can use non atomic operation since we own the queue lock
4685                  */
4686                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4687                         napi_schedule_rps(sd);
4688                 goto enqueue;
4689         }
4690         reason = SKB_DROP_REASON_CPU_BACKLOG;
4691
4692 drop:
4693         sd->dropped++;
4694         rps_unlock_irq_restore(sd, &flags);
4695
4696         dev_core_stats_rx_dropped_inc(skb->dev);
4697         kfree_skb_reason(skb, reason);
4698         return NET_RX_DROP;
4699 }
4700
4701 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4702 {
4703         struct net_device *dev = skb->dev;
4704         struct netdev_rx_queue *rxqueue;
4705
4706         rxqueue = dev->_rx;
4707
4708         if (skb_rx_queue_recorded(skb)) {
4709                 u16 index = skb_get_rx_queue(skb);
4710
4711                 if (unlikely(index >= dev->real_num_rx_queues)) {
4712                         WARN_ONCE(dev->real_num_rx_queues > 1,
4713                                   "%s received packet on queue %u, but number "
4714                                   "of RX queues is %u\n",
4715                                   dev->name, index, dev->real_num_rx_queues);
4716
4717                         return rxqueue; /* Return first rxqueue */
4718                 }
4719                 rxqueue += index;
4720         }
4721         return rxqueue;
4722 }
4723
4724 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4725                              struct bpf_prog *xdp_prog)
4726 {
4727         void *orig_data, *orig_data_end, *hard_start;
4728         struct netdev_rx_queue *rxqueue;
4729         bool orig_bcast, orig_host;
4730         u32 mac_len, frame_sz;
4731         __be16 orig_eth_type;
4732         struct ethhdr *eth;
4733         u32 metalen, act;
4734         int off;
4735
4736         /* The XDP program wants to see the packet starting at the MAC
4737          * header.
4738          */
4739         mac_len = skb->data - skb_mac_header(skb);
4740         hard_start = skb->data - skb_headroom(skb);
4741
4742         /* SKB "head" area always have tailroom for skb_shared_info */
4743         frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4744         frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4745
4746         rxqueue = netif_get_rxqueue(skb);
4747         xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4748         xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4749                          skb_headlen(skb) + mac_len, true);
4750
4751         orig_data_end = xdp->data_end;
4752         orig_data = xdp->data;
4753         eth = (struct ethhdr *)xdp->data;
4754         orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4755         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4756         orig_eth_type = eth->h_proto;
4757
4758         act = bpf_prog_run_xdp(xdp_prog, xdp);
4759
4760         /* check if bpf_xdp_adjust_head was used */
4761         off = xdp->data - orig_data;
4762         if (off) {
4763                 if (off > 0)
4764                         __skb_pull(skb, off);
4765                 else if (off < 0)
4766                         __skb_push(skb, -off);
4767
4768                 skb->mac_header += off;
4769                 skb_reset_network_header(skb);
4770         }
4771
4772         /* check if bpf_xdp_adjust_tail was used */
4773         off = xdp->data_end - orig_data_end;
4774         if (off != 0) {
4775                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4776                 skb->len += off; /* positive on grow, negative on shrink */
4777         }
4778
4779         /* check if XDP changed eth hdr such SKB needs update */
4780         eth = (struct ethhdr *)xdp->data;
4781         if ((orig_eth_type != eth->h_proto) ||
4782             (orig_host != ether_addr_equal_64bits(eth->h_dest,
4783                                                   skb->dev->dev_addr)) ||
4784             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4785                 __skb_push(skb, ETH_HLEN);
4786                 skb->pkt_type = PACKET_HOST;
4787                 skb->protocol = eth_type_trans(skb, skb->dev);
4788         }
4789
4790         /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4791          * before calling us again on redirect path. We do not call do_redirect
4792          * as we leave that up to the caller.
4793          *
4794          * Caller is responsible for managing lifetime of skb (i.e. calling
4795          * kfree_skb in response to actions it cannot handle/XDP_DROP).
4796          */
4797         switch (act) {
4798         case XDP_REDIRECT:
4799         case XDP_TX:
4800                 __skb_push(skb, mac_len);
4801                 break;
4802         case XDP_PASS:
4803                 metalen = xdp->data - xdp->data_meta;
4804                 if (metalen)
4805                         skb_metadata_set(skb, metalen);
4806                 break;
4807         }
4808
4809         return act;
4810 }
4811
4812 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4813                                      struct xdp_buff *xdp,
4814                                      struct bpf_prog *xdp_prog)
4815 {
4816         u32 act = XDP_DROP;
4817
4818         /* Reinjected packets coming from act_mirred or similar should
4819          * not get XDP generic processing.
4820          */
4821         if (skb_is_redirected(skb))
4822                 return XDP_PASS;
4823
4824         /* XDP packets must be linear and must have sufficient headroom
4825          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4826          * native XDP provides, thus we need to do it here as well.
4827          */
4828         if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4829             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4830                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4831                 int troom = skb->tail + skb->data_len - skb->end;
4832
4833                 /* In case we have to go down the path and also linearize,
4834                  * then lets do the pskb_expand_head() work just once here.
4835                  */
4836                 if (pskb_expand_head(skb,
4837                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4838                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4839                         goto do_drop;
4840                 if (skb_linearize(skb))
4841                         goto do_drop;
4842         }
4843
4844         act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4845         switch (act) {
4846         case XDP_REDIRECT:
4847         case XDP_TX:
4848         case XDP_PASS:
4849                 break;
4850         default:
4851                 bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
4852                 fallthrough;
4853         case XDP_ABORTED:
4854                 trace_xdp_exception(skb->dev, xdp_prog, act);
4855                 fallthrough;
4856         case XDP_DROP:
4857         do_drop:
4858                 kfree_skb(skb);
4859                 break;
4860         }
4861
4862         return act;
4863 }
4864
4865 /* When doing generic XDP we have to bypass the qdisc layer and the
4866  * network taps in order to match in-driver-XDP behavior. This also means
4867  * that XDP packets are able to starve other packets going through a qdisc,
4868  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
4869  * queues, so they do not have this starvation issue.
4870  */
4871 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4872 {
4873         struct net_device *dev = skb->dev;
4874         struct netdev_queue *txq;
4875         bool free_skb = true;
4876         int cpu, rc;
4877
4878         txq = netdev_core_pick_tx(dev, skb, NULL);
4879         cpu = smp_processor_id();
4880         HARD_TX_LOCK(dev, txq, cpu);
4881         if (!netif_xmit_frozen_or_drv_stopped(txq)) {
4882                 rc = netdev_start_xmit(skb, dev, txq, 0);
4883                 if (dev_xmit_complete(rc))
4884                         free_skb = false;
4885         }
4886         HARD_TX_UNLOCK(dev, txq);
4887         if (free_skb) {
4888                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4889                 dev_core_stats_tx_dropped_inc(dev);
4890                 kfree_skb(skb);
4891         }
4892 }
4893
4894 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4895
4896 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4897 {
4898         if (xdp_prog) {
4899                 struct xdp_buff xdp;
4900                 u32 act;
4901                 int err;
4902
4903                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4904                 if (act != XDP_PASS) {
4905                         switch (act) {
4906                         case XDP_REDIRECT:
4907                                 err = xdp_do_generic_redirect(skb->dev, skb,
4908                                                               &xdp, xdp_prog);
4909                                 if (err)
4910                                         goto out_redir;
4911                                 break;
4912                         case XDP_TX:
4913                                 generic_xdp_tx(skb, xdp_prog);
4914                                 break;
4915                         }
4916                         return XDP_DROP;
4917                 }
4918         }
4919         return XDP_PASS;
4920 out_redir:
4921         kfree_skb_reason(skb, SKB_DROP_REASON_XDP);
4922         return XDP_DROP;
4923 }
4924 EXPORT_SYMBOL_GPL(do_xdp_generic);
4925
4926 static int netif_rx_internal(struct sk_buff *skb)
4927 {
4928         int ret;
4929
4930         net_timestamp_check(netdev_tstamp_prequeue, skb);
4931
4932         trace_netif_rx(skb);
4933
4934 #ifdef CONFIG_RPS
4935         if (static_branch_unlikely(&rps_needed)) {
4936                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4937                 int cpu;
4938
4939                 rcu_read_lock();
4940
4941                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4942                 if (cpu < 0)
4943                         cpu = smp_processor_id();
4944
4945                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4946
4947                 rcu_read_unlock();
4948         } else
4949 #endif
4950         {
4951                 unsigned int qtail;
4952
4953                 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
4954         }
4955         return ret;
4956 }
4957
4958 /**
4959  *      __netif_rx      -       Slightly optimized version of netif_rx
4960  *      @skb: buffer to post
4961  *
4962  *      This behaves as netif_rx except that it does not disable bottom halves.
4963  *      As a result this function may only be invoked from the interrupt context
4964  *      (either hard or soft interrupt).
4965  */
4966 int __netif_rx(struct sk_buff *skb)
4967 {
4968         int ret;
4969
4970         lockdep_assert_once(hardirq_count() | softirq_count());
4971
4972         trace_netif_rx_entry(skb);
4973         ret = netif_rx_internal(skb);
4974         trace_netif_rx_exit(ret);
4975         return ret;
4976 }
4977 EXPORT_SYMBOL(__netif_rx);
4978
4979 /**
4980  *      netif_rx        -       post buffer to the network code
4981  *      @skb: buffer to post
4982  *
4983  *      This function receives a packet from a device driver and queues it for
4984  *      the upper (protocol) levels to process via the backlog NAPI device. It
4985  *      always succeeds. The buffer may be dropped during processing for
4986  *      congestion control or by the protocol layers.
4987  *      The network buffer is passed via the backlog NAPI device. Modern NIC
4988  *      driver should use NAPI and GRO.
4989  *      This function can used from interrupt and from process context. The
4990  *      caller from process context must not disable interrupts before invoking
4991  *      this function.
4992  *
4993  *      return values:
4994  *      NET_RX_SUCCESS  (no congestion)
4995  *      NET_RX_DROP     (packet was dropped)
4996  *
4997  */
4998 int netif_rx(struct sk_buff *skb)
4999 {
5000         bool need_bh_off = !(hardirq_count() | softirq_count());
5001         int ret;
5002
5003         if (need_bh_off)
5004                 local_bh_disable();
5005         trace_netif_rx_entry(skb);
5006         ret = netif_rx_internal(skb);
5007         trace_netif_rx_exit(ret);
5008         if (need_bh_off)
5009                 local_bh_enable();
5010         return ret;
5011 }
5012 EXPORT_SYMBOL(netif_rx);
5013
5014 static __latent_entropy void net_tx_action(struct softirq_action *h)
5015 {
5016         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5017
5018         if (sd->completion_queue) {
5019                 struct sk_buff *clist;
5020
5021                 local_irq_disable();
5022                 clist = sd->completion_queue;
5023                 sd->completion_queue = NULL;
5024                 local_irq_enable();
5025
5026                 while (clist) {
5027                         struct sk_buff *skb = clist;
5028
5029                         clist = clist->next;
5030
5031                         WARN_ON(refcount_read(&skb->users));
5032                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
5033                                 trace_consume_skb(skb);
5034                         else
5035                                 trace_kfree_skb(skb, net_tx_action,
5036                                                 SKB_DROP_REASON_NOT_SPECIFIED);
5037
5038                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5039                                 __kfree_skb(skb);
5040                         else
5041                                 __kfree_skb_defer(skb);
5042                 }
5043         }
5044
5045         if (sd->output_queue) {
5046                 struct Qdisc *head;
5047
5048                 local_irq_disable();
5049                 head = sd->output_queue;
5050                 sd->output_queue = NULL;
5051                 sd->output_queue_tailp = &sd->output_queue;
5052                 local_irq_enable();
5053
5054                 rcu_read_lock();
5055
5056                 while (head) {
5057                         struct Qdisc *q = head;
5058                         spinlock_t *root_lock = NULL;
5059
5060                         head = head->next_sched;
5061
5062                         /* We need to make sure head->next_sched is read
5063                          * before clearing __QDISC_STATE_SCHED
5064                          */
5065                         smp_mb__before_atomic();
5066
5067                         if (!(q->flags & TCQ_F_NOLOCK)) {
5068                                 root_lock = qdisc_lock(q);
5069                                 spin_lock(root_lock);
5070                         } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5071                                                      &q->state))) {
5072                                 /* There is a synchronize_net() between
5073                                  * STATE_DEACTIVATED flag being set and
5074                                  * qdisc_reset()/some_qdisc_is_busy() in
5075                                  * dev_deactivate(), so we can safely bail out
5076                                  * early here to avoid data race between
5077                                  * qdisc_deactivate() and some_qdisc_is_busy()
5078                                  * for lockless qdisc.
5079                                  */
5080                                 clear_bit(__QDISC_STATE_SCHED, &q->state);
5081                                 continue;
5082                         }
5083
5084                         clear_bit(__QDISC_STATE_SCHED, &q->state);
5085                         qdisc_run(q);
5086                         if (root_lock)
5087                                 spin_unlock(root_lock);
5088                 }
5089
5090                 rcu_read_unlock();
5091         }
5092
5093         xfrm_dev_backlog(sd);
5094 }
5095
5096 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5097 /* This hook is defined here for ATM LANE */
5098 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5099                              unsigned char *addr) __read_mostly;
5100 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5101 #endif
5102
5103 static inline struct sk_buff *
5104 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5105                    struct net_device *orig_dev, bool *another)
5106 {
5107 #ifdef CONFIG_NET_CLS_ACT
5108         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5109         struct tcf_result cl_res;
5110
5111         /* If there's at least one ingress present somewhere (so
5112          * we get here via enabled static key), remaining devices
5113          * that are not configured with an ingress qdisc will bail
5114          * out here.
5115          */
5116         if (!miniq)
5117                 return skb;
5118
5119         if (*pt_prev) {
5120                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5121                 *pt_prev = NULL;
5122         }
5123
5124         qdisc_skb_cb(skb)->pkt_len = skb->len;
5125         tc_skb_cb(skb)->mru = 0;
5126         tc_skb_cb(skb)->post_ct = false;
5127         skb->tc_at_ingress = 1;
5128         mini_qdisc_bstats_cpu_update(miniq, skb);
5129
5130         switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
5131         case TC_ACT_OK:
5132         case TC_ACT_RECLASSIFY:
5133                 skb->tc_index = TC_H_MIN(cl_res.classid);
5134                 break;
5135         case TC_ACT_SHOT:
5136                 mini_qdisc_qstats_cpu_drop(miniq);
5137                 kfree_skb_reason(skb, SKB_DROP_REASON_TC_INGRESS);
5138                 return NULL;
5139         case TC_ACT_STOLEN:
5140         case TC_ACT_QUEUED:
5141         case TC_ACT_TRAP:
5142                 consume_skb(skb);
5143                 return NULL;
5144         case TC_ACT_REDIRECT:
5145                 /* skb_mac_header check was done by cls/act_bpf, so
5146                  * we can safely push the L2 header back before
5147                  * redirecting to another netdev
5148                  */
5149                 __skb_push(skb, skb->mac_len);
5150                 if (skb_do_redirect(skb) == -EAGAIN) {
5151                         __skb_pull(skb, skb->mac_len);
5152                         *another = true;
5153                         break;
5154                 }
5155                 return NULL;
5156         case TC_ACT_CONSUMED:
5157                 return NULL;
5158         default:
5159                 break;
5160         }
5161 #endif /* CONFIG_NET_CLS_ACT */
5162         return skb;
5163 }
5164
5165 /**
5166  *      netdev_is_rx_handler_busy - check if receive handler is registered
5167  *      @dev: device to check
5168  *
5169  *      Check if a receive handler is already registered for a given device.
5170  *      Return true if there one.
5171  *
5172  *      The caller must hold the rtnl_mutex.
5173  */
5174 bool netdev_is_rx_handler_busy(struct net_device *dev)
5175 {
5176         ASSERT_RTNL();
5177         return dev && rtnl_dereference(dev->rx_handler);
5178 }
5179 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5180
5181 /**
5182  *      netdev_rx_handler_register - register receive handler
5183  *      @dev: device to register a handler for
5184  *      @rx_handler: receive handler to register
5185  *      @rx_handler_data: data pointer that is used by rx handler
5186  *
5187  *      Register a receive handler for a device. This handler will then be
5188  *      called from __netif_receive_skb. A negative errno code is returned
5189  *      on a failure.
5190  *
5191  *      The caller must hold the rtnl_mutex.
5192  *
5193  *      For a general description of rx_handler, see enum rx_handler_result.
5194  */
5195 int netdev_rx_handler_register(struct net_device *dev,
5196                                rx_handler_func_t *rx_handler,
5197                                void *rx_handler_data)
5198 {
5199         if (netdev_is_rx_handler_busy(dev))
5200                 return -EBUSY;
5201
5202         if (dev->priv_flags & IFF_NO_RX_HANDLER)
5203                 return -EINVAL;
5204
5205         /* Note: rx_handler_data must be set before rx_handler */
5206         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5207         rcu_assign_pointer(dev->rx_handler, rx_handler);
5208
5209         return 0;
5210 }
5211 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5212
5213 /**
5214  *      netdev_rx_handler_unregister - unregister receive handler
5215  *      @dev: device to unregister a handler from
5216  *
5217  *      Unregister a receive handler from a device.
5218  *
5219  *      The caller must hold the rtnl_mutex.
5220  */
5221 void netdev_rx_handler_unregister(struct net_device *dev)
5222 {
5223
5224         ASSERT_RTNL();
5225         RCU_INIT_POINTER(dev->rx_handler, NULL);
5226         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5227          * section has a guarantee to see a non NULL rx_handler_data
5228          * as well.
5229          */
5230         synchronize_net();
5231         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5232 }
5233 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5234
5235 /*
5236  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5237  * the special handling of PFMEMALLOC skbs.
5238  */
5239 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5240 {
5241         switch (skb->protocol) {
5242         case htons(ETH_P_ARP):
5243         case htons(ETH_P_IP):
5244         case htons(ETH_P_IPV6):
5245         case htons(ETH_P_8021Q):
5246         case htons(ETH_P_8021AD):
5247                 return true;
5248         default:
5249                 return false;
5250         }
5251 }
5252
5253 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5254                              int *ret, struct net_device *orig_dev)
5255 {
5256         if (nf_hook_ingress_active(skb)) {
5257                 int ingress_retval;
5258
5259                 if (*pt_prev) {
5260                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
5261                         *pt_prev = NULL;
5262                 }
5263
5264                 rcu_read_lock();
5265                 ingress_retval = nf_hook_ingress(skb);
5266                 rcu_read_unlock();
5267                 return ingress_retval;
5268         }
5269         return 0;
5270 }
5271
5272 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5273                                     struct packet_type **ppt_prev)
5274 {
5275         struct packet_type *ptype, *pt_prev;
5276         rx_handler_func_t *rx_handler;
5277         struct sk_buff *skb = *pskb;
5278         struct net_device *orig_dev;
5279         bool deliver_exact = false;
5280         int ret = NET_RX_DROP;
5281         __be16 type;
5282
5283         net_timestamp_check(!netdev_tstamp_prequeue, skb);
5284
5285         trace_netif_receive_skb(skb);
5286
5287         orig_dev = skb->dev;
5288
5289         skb_reset_network_header(skb);
5290         if (!skb_transport_header_was_set(skb))
5291                 skb_reset_transport_header(skb);
5292         skb_reset_mac_len(skb);
5293
5294         pt_prev = NULL;
5295
5296 another_round:
5297         skb->skb_iif = skb->dev->ifindex;
5298
5299         __this_cpu_inc(softnet_data.processed);
5300
5301         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5302                 int ret2;
5303
5304                 migrate_disable();
5305                 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5306                 migrate_enable();
5307
5308                 if (ret2 != XDP_PASS) {
5309                         ret = NET_RX_DROP;
5310                         goto out;
5311                 }
5312         }
5313
5314         if (eth_type_vlan(skb->protocol)) {
5315                 skb = skb_vlan_untag(skb);
5316                 if (unlikely(!skb))
5317                         goto out;
5318         }
5319
5320         if (skb_skip_tc_classify(skb))
5321                 goto skip_classify;
5322
5323         if (pfmemalloc)
5324                 goto skip_taps;
5325
5326         list_for_each_entry_rcu(ptype, &ptype_all, list) {
5327                 if (pt_prev)
5328                         ret = deliver_skb(skb, pt_prev, orig_dev);
5329                 pt_prev = ptype;
5330         }
5331
5332         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5333                 if (pt_prev)
5334                         ret = deliver_skb(skb, pt_prev, orig_dev);
5335                 pt_prev = ptype;
5336         }
5337
5338 skip_taps:
5339 #ifdef CONFIG_NET_INGRESS
5340         if (static_branch_unlikely(&ingress_needed_key)) {
5341                 bool another = false;
5342
5343                 nf_skip_egress(skb, true);
5344                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5345                                          &another);
5346                 if (another)
5347                         goto another_round;
5348                 if (!skb)
5349                         goto out;
5350
5351                 nf_skip_egress(skb, false);
5352                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5353                         goto out;
5354         }
5355 #endif
5356         skb_reset_redirect(skb);
5357 skip_classify:
5358         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5359                 goto drop;
5360
5361         if (skb_vlan_tag_present(skb)) {
5362                 if (pt_prev) {
5363                         ret = deliver_skb(skb, pt_prev, orig_dev);
5364                         pt_prev = NULL;
5365                 }
5366                 if (vlan_do_receive(&skb))
5367                         goto another_round;
5368                 else if (unlikely(!skb))
5369                         goto out;
5370         }
5371
5372         rx_handler = rcu_dereference(skb->dev->rx_handler);
5373         if (rx_handler) {
5374                 if (pt_prev) {
5375                         ret = deliver_skb(skb, pt_prev, orig_dev);
5376                         pt_prev = NULL;
5377                 }
5378                 switch (rx_handler(&skb)) {
5379                 case RX_HANDLER_CONSUMED:
5380                         ret = NET_RX_SUCCESS;
5381                         goto out;
5382                 case RX_HANDLER_ANOTHER:
5383                         goto another_round;
5384                 case RX_HANDLER_EXACT:
5385                         deliver_exact = true;
5386                         break;
5387                 case RX_HANDLER_PASS:
5388                         break;
5389                 default:
5390                         BUG();
5391                 }
5392         }
5393
5394         if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5395 check_vlan_id:
5396                 if (skb_vlan_tag_get_id(skb)) {
5397                         /* Vlan id is non 0 and vlan_do_receive() above couldn't
5398                          * find vlan device.
5399                          */
5400                         skb->pkt_type = PACKET_OTHERHOST;
5401                 } else if (eth_type_vlan(skb->protocol)) {
5402                         /* Outer header is 802.1P with vlan 0, inner header is
5403                          * 802.1Q or 802.1AD and vlan_do_receive() above could
5404                          * not find vlan dev for vlan id 0.
5405                          */
5406                         __vlan_hwaccel_clear_tag(skb);
5407                         skb = skb_vlan_untag(skb);
5408                         if (unlikely(!skb))
5409                                 goto out;
5410                         if (vlan_do_receive(&skb))
5411                                 /* After stripping off 802.1P header with vlan 0
5412                                  * vlan dev is found for inner header.
5413                                  */
5414                                 goto another_round;
5415                         else if (unlikely(!skb))
5416                                 goto out;
5417                         else
5418                                 /* We have stripped outer 802.1P vlan 0 header.
5419                                  * But could not find vlan dev.
5420                                  * check again for vlan id to set OTHERHOST.
5421                                  */
5422                                 goto check_vlan_id;
5423                 }
5424                 /* Note: we might in the future use prio bits
5425                  * and set skb->priority like in vlan_do_receive()
5426                  * For the time being, just ignore Priority Code Point
5427                  */
5428                 __vlan_hwaccel_clear_tag(skb);
5429         }
5430
5431         type = skb->protocol;
5432
5433         /* deliver only exact match when indicated */
5434         if (likely(!deliver_exact)) {
5435                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5436                                        &ptype_base[ntohs(type) &
5437                                                    PTYPE_HASH_MASK]);
5438         }
5439
5440         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5441                                &orig_dev->ptype_specific);
5442
5443         if (unlikely(skb->dev != orig_dev)) {
5444                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5445                                        &skb->dev->ptype_specific);
5446         }
5447
5448         if (pt_prev) {
5449                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5450                         goto drop;
5451                 *ppt_prev = pt_prev;
5452         } else {
5453 drop:
5454                 if (!deliver_exact)
5455                         dev_core_stats_rx_dropped_inc(skb->dev);
5456                 else
5457                         dev_core_stats_rx_nohandler_inc(skb->dev);
5458                 kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5459                 /* Jamal, now you will not able to escape explaining
5460                  * me how you were going to use this. :-)
5461                  */
5462                 ret = NET_RX_DROP;
5463         }
5464
5465 out:
5466         /* The invariant here is that if *ppt_prev is not NULL
5467          * then skb should also be non-NULL.
5468          *
5469          * Apparently *ppt_prev assignment above holds this invariant due to
5470          * skb dereferencing near it.
5471          */
5472         *pskb = skb;
5473         return ret;
5474 }
5475
5476 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5477 {
5478         struct net_device *orig_dev = skb->dev;
5479         struct packet_type *pt_prev = NULL;
5480         int ret;
5481
5482         ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5483         if (pt_prev)
5484                 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5485                                          skb->dev, pt_prev, orig_dev);
5486         return ret;
5487 }
5488
5489 /**
5490  *      netif_receive_skb_core - special purpose version of netif_receive_skb
5491  *      @skb: buffer to process
5492  *
5493  *      More direct receive version of netif_receive_skb().  It should
5494  *      only be used by callers that have a need to skip RPS and Generic XDP.
5495  *      Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5496  *
5497  *      This function may only be called from softirq context and interrupts
5498  *      should be enabled.
5499  *
5500  *      Return values (usually ignored):
5501  *      NET_RX_SUCCESS: no congestion
5502  *      NET_RX_DROP: packet was dropped
5503  */
5504 int netif_receive_skb_core(struct sk_buff *skb)
5505 {
5506         int ret;
5507
5508         rcu_read_lock();
5509         ret = __netif_receive_skb_one_core(skb, false);
5510         rcu_read_unlock();
5511
5512         return ret;
5513 }
5514 EXPORT_SYMBOL(netif_receive_skb_core);
5515
5516 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5517                                                   struct packet_type *pt_prev,
5518                                                   struct net_device *orig_dev)
5519 {
5520         struct sk_buff *skb, *next;
5521
5522         if (!pt_prev)
5523                 return;
5524         if (list_empty(head))
5525                 return;
5526         if (pt_prev->list_func != NULL)
5527                 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5528                                    ip_list_rcv, head, pt_prev, orig_dev);
5529         else
5530                 list_for_each_entry_safe(skb, next, head, list) {
5531                         skb_list_del_init(skb);
5532                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5533                 }
5534 }
5535
5536 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5537 {
5538         /* Fast-path assumptions:
5539          * - There is no RX handler.
5540          * - Only one packet_type matches.
5541          * If either of these fails, we will end up doing some per-packet
5542          * processing in-line, then handling the 'last ptype' for the whole
5543          * sublist.  This can't cause out-of-order delivery to any single ptype,
5544          * because the 'last ptype' must be constant across the sublist, and all
5545          * other ptypes are handled per-packet.
5546          */
5547         /* Current (common) ptype of sublist */
5548         struct packet_type *pt_curr = NULL;
5549         /* Current (common) orig_dev of sublist */
5550         struct net_device *od_curr = NULL;
5551         struct list_head sublist;
5552         struct sk_buff *skb, *next;
5553
5554         INIT_LIST_HEAD(&sublist);
5555         list_for_each_entry_safe(skb, next, head, list) {
5556                 struct net_device *orig_dev = skb->dev;
5557                 struct packet_type *pt_prev = NULL;
5558
5559                 skb_list_del_init(skb);
5560                 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5561                 if (!pt_prev)
5562                         continue;
5563                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5564                         /* dispatch old sublist */
5565                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5566                         /* start new sublist */
5567                         INIT_LIST_HEAD(&sublist);
5568                         pt_curr = pt_prev;
5569                         od_curr = orig_dev;
5570                 }
5571                 list_add_tail(&skb->list, &sublist);
5572         }
5573
5574         /* dispatch final sublist */
5575         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5576 }
5577
5578 static int __netif_receive_skb(struct sk_buff *skb)
5579 {
5580         int ret;
5581
5582         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5583                 unsigned int noreclaim_flag;
5584
5585                 /*
5586                  * PFMEMALLOC skbs are special, they should
5587                  * - be delivered to SOCK_MEMALLOC sockets only
5588                  * - stay away from userspace
5589                  * - have bounded memory usage
5590                  *
5591                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5592                  * context down to all allocation sites.
5593                  */
5594                 noreclaim_flag = memalloc_noreclaim_save();
5595                 ret = __netif_receive_skb_one_core(skb, true);
5596                 memalloc_noreclaim_restore(noreclaim_flag);
5597         } else
5598                 ret = __netif_receive_skb_one_core(skb, false);
5599
5600         return ret;
5601 }
5602
5603 static void __netif_receive_skb_list(struct list_head *head)
5604 {
5605         unsigned long noreclaim_flag = 0;
5606         struct sk_buff *skb, *next;
5607         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5608
5609         list_for_each_entry_safe(skb, next, head, list) {
5610                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5611                         struct list_head sublist;
5612
5613                         /* Handle the previous sublist */
5614                         list_cut_before(&sublist, head, &skb->list);
5615                         if (!list_empty(&sublist))
5616                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5617                         pfmemalloc = !pfmemalloc;
5618                         /* See comments in __netif_receive_skb */
5619                         if (pfmemalloc)
5620                                 noreclaim_flag = memalloc_noreclaim_save();
5621                         else
5622                                 memalloc_noreclaim_restore(noreclaim_flag);
5623                 }
5624         }
5625         /* Handle the remaining sublist */
5626         if (!list_empty(head))
5627                 __netif_receive_skb_list_core(head, pfmemalloc);
5628         /* Restore pflags */
5629         if (pfmemalloc)
5630                 memalloc_noreclaim_restore(noreclaim_flag);
5631 }
5632
5633 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5634 {
5635         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5636         struct bpf_prog *new = xdp->prog;
5637         int ret = 0;
5638
5639         switch (xdp->command) {
5640         case XDP_SETUP_PROG:
5641                 rcu_assign_pointer(dev->xdp_prog, new);
5642                 if (old)
5643                         bpf_prog_put(old);
5644
5645                 if (old && !new) {
5646                         static_branch_dec(&generic_xdp_needed_key);
5647                 } else if (new && !old) {
5648                         static_branch_inc(&generic_xdp_needed_key);
5649                         dev_disable_lro(dev);
5650                         dev_disable_gro_hw(dev);
5651                 }
5652                 break;
5653
5654         default:
5655                 ret = -EINVAL;
5656                 break;
5657         }
5658
5659         return ret;
5660 }
5661
5662 static int netif_receive_skb_internal(struct sk_buff *skb)
5663 {
5664         int ret;
5665
5666         net_timestamp_check(netdev_tstamp_prequeue, skb);
5667
5668         if (skb_defer_rx_timestamp(skb))
5669                 return NET_RX_SUCCESS;
5670
5671         rcu_read_lock();
5672 #ifdef CONFIG_RPS
5673         if (static_branch_unlikely(&rps_needed)) {
5674                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5675                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5676
5677                 if (cpu >= 0) {
5678                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5679                         rcu_read_unlock();
5680                         return ret;
5681                 }
5682         }
5683 #endif
5684         ret = __netif_receive_skb(skb);
5685         rcu_read_unlock();
5686         return ret;
5687 }
5688
5689 void netif_receive_skb_list_internal(struct list_head *head)
5690 {
5691         struct sk_buff *skb, *next;
5692         struct list_head sublist;
5693
5694         INIT_LIST_HEAD(&sublist);
5695         list_for_each_entry_safe(skb, next, head, list) {
5696                 net_timestamp_check(netdev_tstamp_prequeue, skb);
5697                 skb_list_del_init(skb);
5698                 if (!skb_defer_rx_timestamp(skb))
5699                         list_add_tail(&skb->list, &sublist);
5700         }
5701         list_splice_init(&sublist, head);
5702
5703         rcu_read_lock();
5704 #ifdef CONFIG_RPS
5705         if (static_branch_unlikely(&rps_needed)) {
5706                 list_for_each_entry_safe(skb, next, head, list) {
5707                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5708                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5709
5710                         if (cpu >= 0) {
5711                                 /* Will be handled, remove from list */
5712                                 skb_list_del_init(skb);
5713                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5714                         }
5715                 }
5716         }
5717 #endif
5718         __netif_receive_skb_list(head);
5719         rcu_read_unlock();
5720 }
5721
5722 /**
5723  *      netif_receive_skb - process receive buffer from network
5724  *      @skb: buffer to process
5725  *
5726  *      netif_receive_skb() is the main receive data processing function.
5727  *      It always succeeds. The buffer may be dropped during processing
5728  *      for congestion control or by the protocol layers.
5729  *
5730  *      This function may only be called from softirq context and interrupts
5731  *      should be enabled.
5732  *
5733  *      Return values (usually ignored):
5734  *      NET_RX_SUCCESS: no congestion
5735  *      NET_RX_DROP: packet was dropped
5736  */
5737 int netif_receive_skb(struct sk_buff *skb)
5738 {
5739         int ret;
5740
5741         trace_netif_receive_skb_entry(skb);
5742
5743         ret = netif_receive_skb_internal(skb);
5744         trace_netif_receive_skb_exit(ret);
5745
5746         return ret;
5747 }
5748 EXPORT_SYMBOL(netif_receive_skb);
5749
5750 /**
5751  *      netif_receive_skb_list - process many receive buffers from network
5752  *      @head: list of skbs to process.
5753  *
5754  *      Since return value of netif_receive_skb() is normally ignored, and
5755  *      wouldn't be meaningful for a list, this function returns void.
5756  *
5757  *      This function may only be called from softirq context and interrupts
5758  *      should be enabled.
5759  */
5760 void netif_receive_skb_list(struct list_head *head)
5761 {
5762         struct sk_buff *skb;
5763
5764         if (list_empty(head))
5765                 return;
5766         if (trace_netif_receive_skb_list_entry_enabled()) {
5767                 list_for_each_entry(skb, head, list)
5768                         trace_netif_receive_skb_list_entry(skb);
5769         }
5770         netif_receive_skb_list_internal(head);
5771         trace_netif_receive_skb_list_exit(0);
5772 }
5773 EXPORT_SYMBOL(netif_receive_skb_list);
5774
5775 static DEFINE_PER_CPU(struct work_struct, flush_works);
5776
5777 /* Network device is going away, flush any packets still pending */
5778 static void flush_backlog(struct work_struct *work)
5779 {
5780         struct sk_buff *skb, *tmp;
5781         struct softnet_data *sd;
5782
5783         local_bh_disable();
5784         sd = this_cpu_ptr(&softnet_data);
5785
5786         rps_lock_irq_disable(sd);
5787         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5788                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5789                         __skb_unlink(skb, &sd->input_pkt_queue);
5790                         dev_kfree_skb_irq(skb);
5791                         input_queue_head_incr(sd);
5792                 }
5793         }
5794         rps_unlock_irq_enable(sd);
5795
5796         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5797                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5798                         __skb_unlink(skb, &sd->process_queue);
5799                         kfree_skb(skb);
5800                         input_queue_head_incr(sd);
5801                 }
5802         }
5803         local_bh_enable();
5804 }
5805
5806 static bool flush_required(int cpu)
5807 {
5808 #if IS_ENABLED(CONFIG_RPS)
5809         struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5810         bool do_flush;
5811
5812         rps_lock_irq_disable(sd);
5813
5814         /* as insertion into process_queue happens with the rps lock held,
5815          * process_queue access may race only with dequeue
5816          */
5817         do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5818                    !skb_queue_empty_lockless(&sd->process_queue);
5819         rps_unlock_irq_enable(sd);
5820
5821         return do_flush;
5822 #endif
5823         /* without RPS we can't safely check input_pkt_queue: during a
5824          * concurrent remote skb_queue_splice() we can detect as empty both
5825          * input_pkt_queue and process_queue even if the latter could end-up
5826          * containing a lot of packets.
5827          */
5828         return true;
5829 }
5830
5831 static void flush_all_backlogs(void)
5832 {
5833         static cpumask_t flush_cpus;
5834         unsigned int cpu;
5835
5836         /* since we are under rtnl lock protection we can use static data
5837          * for the cpumask and avoid allocating on stack the possibly
5838          * large mask
5839          */
5840         ASSERT_RTNL();
5841
5842         cpus_read_lock();
5843
5844         cpumask_clear(&flush_cpus);
5845         for_each_online_cpu(cpu) {
5846                 if (flush_required(cpu)) {
5847                         queue_work_on(cpu, system_highpri_wq,
5848                                       per_cpu_ptr(&flush_works, cpu));
5849                         cpumask_set_cpu(cpu, &flush_cpus);
5850                 }
5851         }
5852
5853         /* we can have in flight packet[s] on the cpus we are not flushing,
5854          * synchronize_net() in unregister_netdevice_many() will take care of
5855          * them
5856          */
5857         for_each_cpu(cpu, &flush_cpus)
5858                 flush_work(per_cpu_ptr(&flush_works, cpu));
5859
5860         cpus_read_unlock();
5861 }
5862
5863 static void net_rps_send_ipi(struct softnet_data *remsd)
5864 {
5865 #ifdef CONFIG_RPS
5866         while (remsd) {
5867                 struct softnet_data *next = remsd->rps_ipi_next;
5868
5869                 if (cpu_online(remsd->cpu))
5870                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
5871                 remsd = next;
5872         }
5873 #endif
5874 }
5875
5876 /*
5877  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5878  * Note: called with local irq disabled, but exits with local irq enabled.
5879  */
5880 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5881 {
5882 #ifdef CONFIG_RPS
5883         struct softnet_data *remsd = sd->rps_ipi_list;
5884
5885         if (remsd) {
5886                 sd->rps_ipi_list = NULL;
5887
5888                 local_irq_enable();
5889
5890                 /* Send pending IPI's to kick RPS processing on remote cpus. */
5891                 net_rps_send_ipi(remsd);
5892         } else
5893 #endif
5894                 local_irq_enable();
5895 }
5896
5897 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5898 {
5899 #ifdef CONFIG_RPS
5900         return sd->rps_ipi_list != NULL;
5901 #else
5902         return false;
5903 #endif
5904 }
5905
5906 static int process_backlog(struct napi_struct *napi, int quota)
5907 {
5908         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5909         bool again = true;
5910         int work = 0;
5911
5912         /* Check if we have pending ipi, its better to send them now,
5913          * not waiting net_rx_action() end.
5914          */
5915         if (sd_has_rps_ipi_waiting(sd)) {
5916                 local_irq_disable();
5917                 net_rps_action_and_irq_enable(sd);
5918         }
5919
5920         napi->weight = dev_rx_weight;
5921         while (again) {
5922                 struct sk_buff *skb;
5923
5924                 while ((skb = __skb_dequeue(&sd->process_queue))) {
5925                         rcu_read_lock();
5926                         __netif_receive_skb(skb);
5927                         rcu_read_unlock();
5928                         input_queue_head_incr(sd);
5929                         if (++work >= quota)
5930                                 return work;
5931
5932                 }
5933
5934                 rps_lock_irq_disable(sd);
5935                 if (skb_queue_empty(&sd->input_pkt_queue)) {
5936                         /*
5937                          * Inline a custom version of __napi_complete().
5938                          * only current cpu owns and manipulates this napi,
5939                          * and NAPI_STATE_SCHED is the only possible flag set
5940                          * on backlog.
5941                          * We can use a plain write instead of clear_bit(),
5942                          * and we dont need an smp_mb() memory barrier.
5943                          */
5944                         napi->state = 0;
5945                         again = false;
5946                 } else {
5947                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
5948                                                    &sd->process_queue);
5949                 }
5950                 rps_unlock_irq_enable(sd);
5951         }
5952
5953         return work;
5954 }
5955
5956 /**
5957  * __napi_schedule - schedule for receive
5958  * @n: entry to schedule
5959  *
5960  * The entry's receive function will be scheduled to run.
5961  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5962  */
5963 void __napi_schedule(struct napi_struct *n)
5964 {
5965         unsigned long flags;
5966
5967         local_irq_save(flags);
5968         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5969         local_irq_restore(flags);
5970 }
5971 EXPORT_SYMBOL(__napi_schedule);
5972
5973 /**
5974  *      napi_schedule_prep - check if napi can be scheduled
5975  *      @n: napi context
5976  *
5977  * Test if NAPI routine is already running, and if not mark
5978  * it as running.  This is used as a condition variable to
5979  * insure only one NAPI poll instance runs.  We also make
5980  * sure there is no pending NAPI disable.
5981  */
5982 bool napi_schedule_prep(struct napi_struct *n)
5983 {
5984         unsigned long val, new;
5985
5986         do {
5987                 val = READ_ONCE(n->state);
5988                 if (unlikely(val & NAPIF_STATE_DISABLE))
5989                         return false;
5990                 new = val | NAPIF_STATE_SCHED;
5991
5992                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5993                  * This was suggested by Alexander Duyck, as compiler
5994                  * emits better code than :
5995                  * if (val & NAPIF_STATE_SCHED)
5996                  *     new |= NAPIF_STATE_MISSED;
5997                  */
5998                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5999                                                    NAPIF_STATE_MISSED;
6000         } while (cmpxchg(&n->state, val, new) != val);
6001
6002         return !(val & NAPIF_STATE_SCHED);
6003 }
6004 EXPORT_SYMBOL(napi_schedule_prep);
6005
6006 /**
6007  * __napi_schedule_irqoff - schedule for receive
6008  * @n: entry to schedule
6009  *
6010  * Variant of __napi_schedule() assuming hard irqs are masked.
6011  *
6012  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6013  * because the interrupt disabled assumption might not be true
6014  * due to force-threaded interrupts and spinlock substitution.
6015  */
6016 void __napi_schedule_irqoff(struct napi_struct *n)
6017 {
6018         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6019                 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6020         else
6021                 __napi_schedule(n);
6022 }
6023 EXPORT_SYMBOL(__napi_schedule_irqoff);
6024
6025 bool napi_complete_done(struct napi_struct *n, int work_done)
6026 {
6027         unsigned long flags, val, new, timeout = 0;
6028         bool ret = true;
6029
6030         /*
6031          * 1) Don't let napi dequeue from the cpu poll list
6032          *    just in case its running on a different cpu.
6033          * 2) If we are busy polling, do nothing here, we have
6034          *    the guarantee we will be called later.
6035          */
6036         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6037                                  NAPIF_STATE_IN_BUSY_POLL)))
6038                 return false;
6039
6040         if (work_done) {
6041                 if (n->gro_bitmask)
6042                         timeout = READ_ONCE(n->dev->gro_flush_timeout);
6043                 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6044         }
6045         if (n->defer_hard_irqs_count > 0) {
6046                 n->defer_hard_irqs_count--;
6047                 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6048                 if (timeout)
6049                         ret = false;
6050         }
6051         if (n->gro_bitmask) {
6052                 /* When the NAPI instance uses a timeout and keeps postponing
6053                  * it, we need to bound somehow the time packets are kept in
6054                  * the GRO layer
6055                  */
6056                 napi_gro_flush(n, !!timeout);
6057         }
6058
6059         gro_normal_list(n);
6060
6061         if (unlikely(!list_empty(&n->poll_list))) {
6062                 /* If n->poll_list is not empty, we need to mask irqs */
6063                 local_irq_save(flags);
6064                 list_del_init(&n->poll_list);
6065                 local_irq_restore(flags);
6066         }
6067
6068         do {
6069                 val = READ_ONCE(n->state);
6070
6071                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6072
6073                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6074                               NAPIF_STATE_SCHED_THREADED |
6075                               NAPIF_STATE_PREFER_BUSY_POLL);
6076
6077                 /* If STATE_MISSED was set, leave STATE_SCHED set,
6078                  * because we will call napi->poll() one more time.
6079                  * This C code was suggested by Alexander Duyck to help gcc.
6080                  */
6081                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6082                                                     NAPIF_STATE_SCHED;
6083         } while (cmpxchg(&n->state, val, new) != val);
6084
6085         if (unlikely(val & NAPIF_STATE_MISSED)) {
6086                 __napi_schedule(n);
6087                 return false;
6088         }
6089
6090         if (timeout)
6091                 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6092                               HRTIMER_MODE_REL_PINNED);
6093         return ret;
6094 }
6095 EXPORT_SYMBOL(napi_complete_done);
6096
6097 /* must be called under rcu_read_lock(), as we dont take a reference */
6098 static struct napi_struct *napi_by_id(unsigned int napi_id)
6099 {
6100         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6101         struct napi_struct *napi;
6102
6103         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6104                 if (napi->napi_id == napi_id)
6105                         return napi;
6106
6107         return NULL;
6108 }
6109
6110 #if defined(CONFIG_NET_RX_BUSY_POLL)
6111
6112 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6113 {
6114         if (!skip_schedule) {
6115                 gro_normal_list(napi);
6116                 __napi_schedule(napi);
6117                 return;
6118         }
6119
6120         if (napi->gro_bitmask) {
6121                 /* flush too old packets
6122                  * If HZ < 1000, flush all packets.
6123                  */
6124                 napi_gro_flush(napi, HZ >= 1000);
6125         }
6126
6127         gro_normal_list(napi);
6128         clear_bit(NAPI_STATE_SCHED, &napi->state);
6129 }
6130
6131 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6132                            u16 budget)
6133 {
6134         bool skip_schedule = false;
6135         unsigned long timeout;
6136         int rc;
6137
6138         /* Busy polling means there is a high chance device driver hard irq
6139          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6140          * set in napi_schedule_prep().
6141          * Since we are about to call napi->poll() once more, we can safely
6142          * clear NAPI_STATE_MISSED.
6143          *
6144          * Note: x86 could use a single "lock and ..." instruction
6145          * to perform these two clear_bit()
6146          */
6147         clear_bit(NAPI_STATE_MISSED, &napi->state);
6148         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6149
6150         local_bh_disable();
6151
6152         if (prefer_busy_poll) {
6153                 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6154                 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6155                 if (napi->defer_hard_irqs_count && timeout) {
6156                         hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6157                         skip_schedule = true;
6158                 }
6159         }
6160
6161         /* All we really want here is to re-enable device interrupts.
6162          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6163          */
6164         rc = napi->poll(napi, budget);
6165         /* We can't gro_normal_list() here, because napi->poll() might have
6166          * rearmed the napi (napi_complete_done()) in which case it could
6167          * already be running on another CPU.
6168          */
6169         trace_napi_poll(napi, rc, budget);
6170         netpoll_poll_unlock(have_poll_lock);
6171         if (rc == budget)
6172                 __busy_poll_stop(napi, skip_schedule);
6173         local_bh_enable();
6174 }
6175
6176 void napi_busy_loop(unsigned int napi_id,
6177                     bool (*loop_end)(void *, unsigned long),
6178                     void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6179 {
6180         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6181         int (*napi_poll)(struct napi_struct *napi, int budget);
6182         void *have_poll_lock = NULL;
6183         struct napi_struct *napi;
6184
6185 restart:
6186         napi_poll = NULL;
6187
6188         rcu_read_lock();
6189
6190         napi = napi_by_id(napi_id);
6191         if (!napi)
6192                 goto out;
6193
6194         preempt_disable();
6195         for (;;) {
6196                 int work = 0;
6197
6198                 local_bh_disable();
6199                 if (!napi_poll) {
6200                         unsigned long val = READ_ONCE(napi->state);
6201
6202                         /* If multiple threads are competing for this napi,
6203                          * we avoid dirtying napi->state as much as we can.
6204                          */
6205                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6206                                    NAPIF_STATE_IN_BUSY_POLL)) {
6207                                 if (prefer_busy_poll)
6208                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6209                                 goto count;
6210                         }
6211                         if (cmpxchg(&napi->state, val,
6212                                     val | NAPIF_STATE_IN_BUSY_POLL |
6213                                           NAPIF_STATE_SCHED) != val) {
6214                                 if (prefer_busy_poll)
6215                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6216                                 goto count;
6217                         }
6218                         have_poll_lock = netpoll_poll_lock(napi);
6219                         napi_poll = napi->poll;
6220                 }
6221                 work = napi_poll(napi, budget);
6222                 trace_napi_poll(napi, work, budget);
6223                 gro_normal_list(napi);
6224 count:
6225                 if (work > 0)
6226                         __NET_ADD_STATS(dev_net(napi->dev),
6227                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6228                 local_bh_enable();
6229
6230                 if (!loop_end || loop_end(loop_end_arg, start_time))
6231                         break;
6232
6233                 if (unlikely(need_resched())) {
6234                         if (napi_poll)
6235                                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6236                         preempt_enable();
6237                         rcu_read_unlock();
6238                         cond_resched();
6239                         if (loop_end(loop_end_arg, start_time))
6240                                 return;
6241                         goto restart;
6242                 }
6243                 cpu_relax();
6244         }
6245         if (napi_poll)
6246                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6247         preempt_enable();
6248 out:
6249         rcu_read_unlock();
6250 }
6251 EXPORT_SYMBOL(napi_busy_loop);
6252
6253 #endif /* CONFIG_NET_RX_BUSY_POLL */
6254
6255 static void napi_hash_add(struct napi_struct *napi)
6256 {
6257         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6258                 return;
6259
6260         spin_lock(&napi_hash_lock);
6261
6262         /* 0..NR_CPUS range is reserved for sender_cpu use */
6263         do {
6264                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6265                         napi_gen_id = MIN_NAPI_ID;
6266         } while (napi_by_id(napi_gen_id));
6267         napi->napi_id = napi_gen_id;
6268
6269         hlist_add_head_rcu(&napi->napi_hash_node,
6270                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6271
6272         spin_unlock(&napi_hash_lock);
6273 }
6274
6275 /* Warning : caller is responsible to make sure rcu grace period
6276  * is respected before freeing memory containing @napi
6277  */
6278 static void napi_hash_del(struct napi_struct *napi)
6279 {
6280         spin_lock(&napi_hash_lock);
6281
6282         hlist_del_init_rcu(&napi->napi_hash_node);
6283
6284         spin_unlock(&napi_hash_lock);
6285 }
6286
6287 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6288 {
6289         struct napi_struct *napi;
6290
6291         napi = container_of(timer, struct napi_struct, timer);
6292
6293         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6294          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6295          */
6296         if (!napi_disable_pending(napi) &&
6297             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6298                 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6299                 __napi_schedule_irqoff(napi);
6300         }
6301
6302         return HRTIMER_NORESTART;
6303 }
6304
6305 static void init_gro_hash(struct napi_struct *napi)
6306 {
6307         int i;
6308
6309         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6310                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6311                 napi->gro_hash[i].count = 0;
6312         }
6313         napi->gro_bitmask = 0;
6314 }
6315
6316 int dev_set_threaded(struct net_device *dev, bool threaded)
6317 {
6318         struct napi_struct *napi;
6319         int err = 0;
6320
6321         if (dev->threaded == threaded)
6322                 return 0;
6323
6324         if (threaded) {
6325                 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6326                         if (!napi->thread) {
6327                                 err = napi_kthread_create(napi);
6328                                 if (err) {
6329                                         threaded = false;
6330                                         break;
6331                                 }
6332                         }
6333                 }
6334         }
6335
6336         dev->threaded = threaded;
6337
6338         /* Make sure kthread is created before THREADED bit
6339          * is set.
6340          */
6341         smp_mb__before_atomic();
6342
6343         /* Setting/unsetting threaded mode on a napi might not immediately
6344          * take effect, if the current napi instance is actively being
6345          * polled. In this case, the switch between threaded mode and
6346          * softirq mode will happen in the next round of napi_schedule().
6347          * This should not cause hiccups/stalls to the live traffic.
6348          */
6349         list_for_each_entry(napi, &dev->napi_list, dev_list) {
6350                 if (threaded)
6351                         set_bit(NAPI_STATE_THREADED, &napi->state);
6352                 else
6353                         clear_bit(NAPI_STATE_THREADED, &napi->state);
6354         }
6355
6356         return err;
6357 }
6358 EXPORT_SYMBOL(dev_set_threaded);
6359
6360 /* Double check that napi_get_frags() allocates skbs with
6361  * skb->head being backed by slab, not a page fragment.
6362  * This is to make sure bug fixed in 3226b158e67c
6363  * ("net: avoid 32 x truesize under-estimation for tiny skbs")
6364  * does not accidentally come back.
6365  */
6366 static void napi_get_frags_check(struct napi_struct *napi)
6367 {
6368         struct sk_buff *skb;
6369
6370         local_bh_disable();
6371         skb = napi_get_frags(napi);
6372         WARN_ON_ONCE(skb && skb->head_frag);
6373         napi_free_frags(napi);
6374         local_bh_enable();
6375 }
6376
6377 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6378                            int (*poll)(struct napi_struct *, int), int weight)
6379 {
6380         if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6381                 return;
6382
6383         INIT_LIST_HEAD(&napi->poll_list);
6384         INIT_HLIST_NODE(&napi->napi_hash_node);
6385         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6386         napi->timer.function = napi_watchdog;
6387         init_gro_hash(napi);
6388         napi->skb = NULL;
6389         INIT_LIST_HEAD(&napi->rx_list);
6390         napi->rx_count = 0;
6391         napi->poll = poll;
6392         if (weight > NAPI_POLL_WEIGHT)
6393                 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6394                                 weight);
6395         napi->weight = weight;
6396         napi->dev = dev;
6397 #ifdef CONFIG_NETPOLL
6398         napi->poll_owner = -1;
6399 #endif
6400         set_bit(NAPI_STATE_SCHED, &napi->state);
6401         set_bit(NAPI_STATE_NPSVC, &napi->state);
6402         list_add_rcu(&napi->dev_list, &dev->napi_list);
6403         napi_hash_add(napi);
6404         napi_get_frags_check(napi);
6405         /* Create kthread for this napi if dev->threaded is set.
6406          * Clear dev->threaded if kthread creation failed so that
6407          * threaded mode will not be enabled in napi_enable().
6408          */
6409         if (dev->threaded && napi_kthread_create(napi))
6410                 dev->threaded = 0;
6411 }
6412 EXPORT_SYMBOL(netif_napi_add_weight);
6413
6414 void napi_disable(struct napi_struct *n)
6415 {
6416         unsigned long val, new;
6417
6418         might_sleep();
6419         set_bit(NAPI_STATE_DISABLE, &n->state);
6420
6421         for ( ; ; ) {
6422                 val = READ_ONCE(n->state);
6423                 if (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6424                         usleep_range(20, 200);
6425                         continue;
6426                 }
6427
6428                 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6429                 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6430
6431                 if (cmpxchg(&n->state, val, new) == val)
6432                         break;
6433         }
6434
6435         hrtimer_cancel(&n->timer);
6436
6437         clear_bit(NAPI_STATE_DISABLE, &n->state);
6438 }
6439 EXPORT_SYMBOL(napi_disable);
6440
6441 /**
6442  *      napi_enable - enable NAPI scheduling
6443  *      @n: NAPI context
6444  *
6445  * Resume NAPI from being scheduled on this context.
6446  * Must be paired with napi_disable.
6447  */
6448 void napi_enable(struct napi_struct *n)
6449 {
6450         unsigned long val, new;
6451
6452         do {
6453                 val = READ_ONCE(n->state);
6454                 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6455
6456                 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6457                 if (n->dev->threaded && n->thread)
6458                         new |= NAPIF_STATE_THREADED;
6459         } while (cmpxchg(&n->state, val, new) != val);
6460 }
6461 EXPORT_SYMBOL(napi_enable);
6462
6463 static void flush_gro_hash(struct napi_struct *napi)
6464 {
6465         int i;
6466
6467         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6468                 struct sk_buff *skb, *n;
6469
6470                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6471                         kfree_skb(skb);
6472                 napi->gro_hash[i].count = 0;
6473         }
6474 }
6475
6476 /* Must be called in process context */
6477 void __netif_napi_del(struct napi_struct *napi)
6478 {
6479         if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6480                 return;
6481
6482         napi_hash_del(napi);
6483         list_del_rcu(&napi->dev_list);
6484         napi_free_frags(napi);
6485
6486         flush_gro_hash(napi);
6487         napi->gro_bitmask = 0;
6488
6489         if (napi->thread) {
6490                 kthread_stop(napi->thread);
6491                 napi->thread = NULL;
6492         }
6493 }
6494 EXPORT_SYMBOL(__netif_napi_del);
6495
6496 static int __napi_poll(struct napi_struct *n, bool *repoll)
6497 {
6498         int work, weight;
6499
6500         weight = n->weight;
6501
6502         /* This NAPI_STATE_SCHED test is for avoiding a race
6503          * with netpoll's poll_napi().  Only the entity which
6504          * obtains the lock and sees NAPI_STATE_SCHED set will
6505          * actually make the ->poll() call.  Therefore we avoid
6506          * accidentally calling ->poll() when NAPI is not scheduled.
6507          */
6508         work = 0;
6509         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6510                 work = n->poll(n, weight);
6511                 trace_napi_poll(n, work, weight);
6512         }
6513
6514         if (unlikely(work > weight))
6515                 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6516                                 n->poll, work, weight);
6517
6518         if (likely(work < weight))
6519                 return work;
6520
6521         /* Drivers must not modify the NAPI state if they
6522          * consume the entire weight.  In such cases this code
6523          * still "owns" the NAPI instance and therefore can
6524          * move the instance around on the list at-will.
6525          */
6526         if (unlikely(napi_disable_pending(n))) {
6527                 napi_complete(n);
6528                 return work;
6529         }
6530
6531         /* The NAPI context has more processing work, but busy-polling
6532          * is preferred. Exit early.
6533          */
6534         if (napi_prefer_busy_poll(n)) {
6535                 if (napi_complete_done(n, work)) {
6536                         /* If timeout is not set, we need to make sure
6537                          * that the NAPI is re-scheduled.
6538                          */
6539                         napi_schedule(n);
6540                 }
6541                 return work;
6542         }
6543
6544         if (n->gro_bitmask) {
6545                 /* flush too old packets
6546                  * If HZ < 1000, flush all packets.
6547                  */
6548                 napi_gro_flush(n, HZ >= 1000);
6549         }
6550
6551         gro_normal_list(n);
6552
6553         /* Some drivers may have called napi_schedule
6554          * prior to exhausting their budget.
6555          */
6556         if (unlikely(!list_empty(&n->poll_list))) {
6557                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6558                              n->dev ? n->dev->name : "backlog");
6559                 return work;
6560         }
6561
6562         *repoll = true;
6563
6564         return work;
6565 }
6566
6567 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6568 {
6569         bool do_repoll = false;
6570         void *have;
6571         int work;
6572
6573         list_del_init(&n->poll_list);
6574
6575         have = netpoll_poll_lock(n);
6576
6577         work = __napi_poll(n, &do_repoll);
6578
6579         if (do_repoll)
6580                 list_add_tail(&n->poll_list, repoll);
6581
6582         netpoll_poll_unlock(have);
6583
6584         return work;
6585 }
6586
6587 static int napi_thread_wait(struct napi_struct *napi)
6588 {
6589         bool woken = false;
6590
6591         set_current_state(TASK_INTERRUPTIBLE);
6592
6593         while (!kthread_should_stop()) {
6594                 /* Testing SCHED_THREADED bit here to make sure the current
6595                  * kthread owns this napi and could poll on this napi.
6596                  * Testing SCHED bit is not enough because SCHED bit might be
6597                  * set by some other busy poll thread or by napi_disable().
6598                  */
6599                 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6600                         WARN_ON(!list_empty(&napi->poll_list));
6601                         __set_current_state(TASK_RUNNING);
6602                         return 0;
6603                 }
6604
6605                 schedule();
6606                 /* woken being true indicates this thread owns this napi. */
6607                 woken = true;
6608                 set_current_state(TASK_INTERRUPTIBLE);
6609         }
6610         __set_current_state(TASK_RUNNING);
6611
6612         return -1;
6613 }
6614
6615 static int napi_threaded_poll(void *data)
6616 {
6617         struct napi_struct *napi = data;
6618         void *have;
6619
6620         while (!napi_thread_wait(napi)) {
6621                 for (;;) {
6622                         bool repoll = false;
6623
6624                         local_bh_disable();
6625
6626                         have = netpoll_poll_lock(napi);
6627                         __napi_poll(napi, &repoll);
6628                         netpoll_poll_unlock(have);
6629
6630                         local_bh_enable();
6631
6632                         if (!repoll)
6633                                 break;
6634
6635                         cond_resched();
6636                 }
6637         }
6638         return 0;
6639 }
6640
6641 static void skb_defer_free_flush(struct softnet_data *sd)
6642 {
6643         struct sk_buff *skb, *next;
6644         unsigned long flags;
6645
6646         /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6647         if (!READ_ONCE(sd->defer_list))
6648                 return;
6649
6650         spin_lock_irqsave(&sd->defer_lock, flags);
6651         skb = sd->defer_list;
6652         sd->defer_list = NULL;
6653         sd->defer_count = 0;
6654         spin_unlock_irqrestore(&sd->defer_lock, flags);
6655
6656         while (skb != NULL) {
6657                 next = skb->next;
6658                 napi_consume_skb(skb, 1);
6659                 skb = next;
6660         }
6661 }
6662
6663 static __latent_entropy void net_rx_action(struct softirq_action *h)
6664 {
6665         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6666         unsigned long time_limit = jiffies +
6667                 usecs_to_jiffies(netdev_budget_usecs);
6668         int budget = netdev_budget;
6669         LIST_HEAD(list);
6670         LIST_HEAD(repoll);
6671
6672         local_irq_disable();
6673         list_splice_init(&sd->poll_list, &list);
6674         local_irq_enable();
6675
6676         for (;;) {
6677                 struct napi_struct *n;
6678
6679                 skb_defer_free_flush(sd);
6680
6681                 if (list_empty(&list)) {
6682                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6683                                 goto end;
6684                         break;
6685                 }
6686
6687                 n = list_first_entry(&list, struct napi_struct, poll_list);
6688                 budget -= napi_poll(n, &repoll);
6689
6690                 /* If softirq window is exhausted then punt.
6691                  * Allow this to run for 2 jiffies since which will allow
6692                  * an average latency of 1.5/HZ.
6693                  */
6694                 if (unlikely(budget <= 0 ||
6695                              time_after_eq(jiffies, time_limit))) {
6696                         sd->time_squeeze++;
6697                         break;
6698                 }
6699         }
6700
6701         local_irq_disable();
6702
6703         list_splice_tail_init(&sd->poll_list, &list);
6704         list_splice_tail(&repoll, &list);
6705         list_splice(&list, &sd->poll_list);
6706         if (!list_empty(&sd->poll_list))
6707                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6708
6709         net_rps_action_and_irq_enable(sd);
6710 end:;
6711 }
6712
6713 struct netdev_adjacent {
6714         struct net_device *dev;
6715         netdevice_tracker dev_tracker;
6716
6717         /* upper master flag, there can only be one master device per list */
6718         bool master;
6719
6720         /* lookup ignore flag */
6721         bool ignore;
6722
6723         /* counter for the number of times this device was added to us */
6724         u16 ref_nr;
6725
6726         /* private field for the users */
6727         void *private;
6728
6729         struct list_head list;
6730         struct rcu_head rcu;
6731 };
6732
6733 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6734                                                  struct list_head *adj_list)
6735 {
6736         struct netdev_adjacent *adj;
6737
6738         list_for_each_entry(adj, adj_list, list) {
6739                 if (adj->dev == adj_dev)
6740                         return adj;
6741         }
6742         return NULL;
6743 }
6744
6745 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6746                                     struct netdev_nested_priv *priv)
6747 {
6748         struct net_device *dev = (struct net_device *)priv->data;
6749
6750         return upper_dev == dev;
6751 }
6752
6753 /**
6754  * netdev_has_upper_dev - Check if device is linked to an upper device
6755  * @dev: device
6756  * @upper_dev: upper device to check
6757  *
6758  * Find out if a device is linked to specified upper device and return true
6759  * in case it is. Note that this checks only immediate upper device,
6760  * not through a complete stack of devices. The caller must hold the RTNL lock.
6761  */
6762 bool netdev_has_upper_dev(struct net_device *dev,
6763                           struct net_device *upper_dev)
6764 {
6765         struct netdev_nested_priv priv = {
6766                 .data = (void *)upper_dev,
6767         };
6768
6769         ASSERT_RTNL();
6770
6771         return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6772                                              &priv);
6773 }
6774 EXPORT_SYMBOL(netdev_has_upper_dev);
6775
6776 /**
6777  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6778  * @dev: device
6779  * @upper_dev: upper device to check
6780  *
6781  * Find out if a device is linked to specified upper device and return true
6782  * in case it is. Note that this checks the entire upper device chain.
6783  * The caller must hold rcu lock.
6784  */
6785
6786 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6787                                   struct net_device *upper_dev)
6788 {
6789         struct netdev_nested_priv priv = {
6790                 .data = (void *)upper_dev,
6791         };
6792
6793         return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6794                                                &priv);
6795 }
6796 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6797
6798 /**
6799  * netdev_has_any_upper_dev - Check if device is linked to some device
6800  * @dev: device
6801  *
6802  * Find out if a device is linked to an upper device and return true in case
6803  * it is. The caller must hold the RTNL lock.
6804  */
6805 bool netdev_has_any_upper_dev(struct net_device *dev)
6806 {
6807         ASSERT_RTNL();
6808
6809         return !list_empty(&dev->adj_list.upper);
6810 }
6811 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6812
6813 /**
6814  * netdev_master_upper_dev_get - Get master upper device
6815  * @dev: device
6816  *
6817  * Find a master upper device and return pointer to it or NULL in case
6818  * it's not there. The caller must hold the RTNL lock.
6819  */
6820 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6821 {
6822         struct netdev_adjacent *upper;
6823
6824         ASSERT_RTNL();
6825
6826         if (list_empty(&dev->adj_list.upper))
6827                 return NULL;
6828
6829         upper = list_first_entry(&dev->adj_list.upper,
6830                                  struct netdev_adjacent, list);
6831         if (likely(upper->master))
6832                 return upper->dev;
6833         return NULL;
6834 }
6835 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6836
6837 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6838 {
6839         struct netdev_adjacent *upper;
6840
6841         ASSERT_RTNL();
6842
6843         if (list_empty(&dev->adj_list.upper))
6844                 return NULL;
6845
6846         upper = list_first_entry(&dev->adj_list.upper,
6847                                  struct netdev_adjacent, list);
6848         if (likely(upper->master) && !upper->ignore)
6849                 return upper->dev;
6850         return NULL;
6851 }
6852
6853 /**
6854  * netdev_has_any_lower_dev - Check if device is linked to some device
6855  * @dev: device
6856  *
6857  * Find out if a device is linked to a lower device and return true in case
6858  * it is. The caller must hold the RTNL lock.
6859  */
6860 static bool netdev_has_any_lower_dev(struct net_device *dev)
6861 {
6862         ASSERT_RTNL();
6863
6864         return !list_empty(&dev->adj_list.lower);
6865 }
6866
6867 void *netdev_adjacent_get_private(struct list_head *adj_list)
6868 {
6869         struct netdev_adjacent *adj;
6870
6871         adj = list_entry(adj_list, struct netdev_adjacent, list);
6872
6873         return adj->private;
6874 }
6875 EXPORT_SYMBOL(netdev_adjacent_get_private);
6876
6877 /**
6878  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6879  * @dev: device
6880  * @iter: list_head ** of the current position
6881  *
6882  * Gets the next device from the dev's upper list, starting from iter
6883  * position. The caller must hold RCU read lock.
6884  */
6885 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6886                                                  struct list_head **iter)
6887 {
6888         struct netdev_adjacent *upper;
6889
6890         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6891
6892         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6893
6894         if (&upper->list == &dev->adj_list.upper)
6895                 return NULL;
6896
6897         *iter = &upper->list;
6898
6899         return upper->dev;
6900 }
6901 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6902
6903 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6904                                                   struct list_head **iter,
6905                                                   bool *ignore)
6906 {
6907         struct netdev_adjacent *upper;
6908
6909         upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6910
6911         if (&upper->list == &dev->adj_list.upper)
6912                 return NULL;
6913
6914         *iter = &upper->list;
6915         *ignore = upper->ignore;
6916
6917         return upper->dev;
6918 }
6919
6920 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6921                                                     struct list_head **iter)
6922 {
6923         struct netdev_adjacent *upper;
6924
6925         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6926
6927         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6928
6929         if (&upper->list == &dev->adj_list.upper)
6930                 return NULL;
6931
6932         *iter = &upper->list;
6933
6934         return upper->dev;
6935 }
6936
6937 static int __netdev_walk_all_upper_dev(struct net_device *dev,
6938                                        int (*fn)(struct net_device *dev,
6939                                          struct netdev_nested_priv *priv),
6940                                        struct netdev_nested_priv *priv)
6941 {
6942         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6943         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6944         int ret, cur = 0;
6945         bool ignore;
6946
6947         now = dev;
6948         iter = &dev->adj_list.upper;
6949
6950         while (1) {
6951                 if (now != dev) {
6952                         ret = fn(now, priv);
6953                         if (ret)
6954                                 return ret;
6955                 }
6956
6957                 next = NULL;
6958                 while (1) {
6959                         udev = __netdev_next_upper_dev(now, &iter, &ignore);
6960                         if (!udev)
6961                                 break;
6962                         if (ignore)
6963                                 continue;
6964
6965                         next = udev;
6966                         niter = &udev->adj_list.upper;
6967                         dev_stack[cur] = now;
6968                         iter_stack[cur++] = iter;
6969                         break;
6970                 }
6971
6972                 if (!next) {
6973                         if (!cur)
6974                                 return 0;
6975                         next = dev_stack[--cur];
6976                         niter = iter_stack[cur];
6977                 }
6978
6979                 now = next;
6980                 iter = niter;
6981         }
6982
6983         return 0;
6984 }
6985
6986 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6987                                   int (*fn)(struct net_device *dev,
6988                                             struct netdev_nested_priv *priv),
6989                                   struct netdev_nested_priv *priv)
6990 {
6991         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6992         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6993         int ret, cur = 0;
6994
6995         now = dev;
6996         iter = &dev->adj_list.upper;
6997
6998         while (1) {
6999                 if (now != dev) {
7000                         ret = fn(now, priv);
7001                         if (ret)
7002                                 return ret;
7003                 }
7004
7005                 next = NULL;
7006                 while (1) {
7007                         udev = netdev_next_upper_dev_rcu(now, &iter);
7008                         if (!udev)
7009                                 break;
7010
7011                         next = udev;
7012                         niter = &udev->adj_list.upper;
7013                         dev_stack[cur] = now;
7014                         iter_stack[cur++] = iter;
7015                         break;
7016                 }
7017
7018                 if (!next) {
7019                         if (!cur)
7020                                 return 0;
7021                         next = dev_stack[--cur];
7022                         niter = iter_stack[cur];
7023                 }
7024
7025                 now = next;
7026                 iter = niter;
7027         }
7028
7029         return 0;
7030 }
7031 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7032
7033 static bool __netdev_has_upper_dev(struct net_device *dev,
7034                                    struct net_device *upper_dev)
7035 {
7036         struct netdev_nested_priv priv = {
7037                 .flags = 0,
7038                 .data = (void *)upper_dev,
7039         };
7040
7041         ASSERT_RTNL();
7042
7043         return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7044                                            &priv);
7045 }
7046
7047 /**
7048  * netdev_lower_get_next_private - Get the next ->private from the
7049  *                                 lower neighbour list
7050  * @dev: device
7051  * @iter: list_head ** of the current position
7052  *
7053  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7054  * list, starting from iter position. The caller must hold either hold the
7055  * RTNL lock or its own locking that guarantees that the neighbour lower
7056  * list will remain unchanged.
7057  */
7058 void *netdev_lower_get_next_private(struct net_device *dev,
7059                                     struct list_head **iter)
7060 {
7061         struct netdev_adjacent *lower;
7062
7063         lower = list_entry(*iter, struct netdev_adjacent, list);
7064
7065         if (&lower->list == &dev->adj_list.lower)
7066                 return NULL;
7067
7068         *iter = lower->list.next;
7069
7070         return lower->private;
7071 }
7072 EXPORT_SYMBOL(netdev_lower_get_next_private);
7073
7074 /**
7075  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7076  *                                     lower neighbour list, RCU
7077  *                                     variant
7078  * @dev: device
7079  * @iter: list_head ** of the current position
7080  *
7081  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7082  * list, starting from iter position. The caller must hold RCU read lock.
7083  */
7084 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7085                                         struct list_head **iter)
7086 {
7087         struct netdev_adjacent *lower;
7088
7089         WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7090
7091         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7092
7093         if (&lower->list == &dev->adj_list.lower)
7094                 return NULL;
7095
7096         *iter = &lower->list;
7097
7098         return lower->private;
7099 }
7100 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7101
7102 /**
7103  * netdev_lower_get_next - Get the next device from the lower neighbour
7104  *                         list
7105  * @dev: device
7106  * @iter: list_head ** of the current position
7107  *
7108  * Gets the next netdev_adjacent from the dev's lower neighbour
7109  * list, starting from iter position. The caller must hold RTNL lock or
7110  * its own locking that guarantees that the neighbour lower
7111  * list will remain unchanged.
7112  */
7113 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7114 {
7115         struct netdev_adjacent *lower;
7116
7117         lower = list_entry(*iter, struct netdev_adjacent, list);
7118
7119         if (&lower->list == &dev->adj_list.lower)
7120                 return NULL;
7121
7122         *iter = lower->list.next;
7123
7124         return lower->dev;
7125 }
7126 EXPORT_SYMBOL(netdev_lower_get_next);
7127
7128 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7129                                                 struct list_head **iter)
7130 {
7131         struct netdev_adjacent *lower;
7132
7133         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7134
7135         if (&lower->list == &dev->adj_list.lower)
7136                 return NULL;
7137
7138         *iter = &lower->list;
7139
7140         return lower->dev;
7141 }
7142
7143 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7144                                                   struct list_head **iter,
7145                                                   bool *ignore)
7146 {
7147         struct netdev_adjacent *lower;
7148
7149         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7150
7151         if (&lower->list == &dev->adj_list.lower)
7152                 return NULL;
7153
7154         *iter = &lower->list;
7155         *ignore = lower->ignore;
7156
7157         return lower->dev;
7158 }
7159
7160 int netdev_walk_all_lower_dev(struct net_device *dev,
7161                               int (*fn)(struct net_device *dev,
7162                                         struct netdev_nested_priv *priv),
7163                               struct netdev_nested_priv *priv)
7164 {
7165         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7166         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7167         int ret, cur = 0;
7168
7169         now = dev;
7170         iter = &dev->adj_list.lower;
7171
7172         while (1) {
7173                 if (now != dev) {
7174                         ret = fn(now, priv);
7175                         if (ret)
7176                                 return ret;
7177                 }
7178
7179                 next = NULL;
7180                 while (1) {
7181                         ldev = netdev_next_lower_dev(now, &iter);
7182                         if (!ldev)
7183                                 break;
7184
7185                         next = ldev;
7186                         niter = &ldev->adj_list.lower;
7187                         dev_stack[cur] = now;
7188                         iter_stack[cur++] = iter;
7189                         break;
7190                 }
7191
7192                 if (!next) {
7193                         if (!cur)
7194                                 return 0;
7195                         next = dev_stack[--cur];
7196                         niter = iter_stack[cur];
7197                 }
7198
7199                 now = next;
7200                 iter = niter;
7201         }
7202
7203         return 0;
7204 }
7205 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7206
7207 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7208                                        int (*fn)(struct net_device *dev,
7209                                          struct netdev_nested_priv *priv),
7210                                        struct netdev_nested_priv *priv)
7211 {
7212         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7213         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7214         int ret, cur = 0;
7215         bool ignore;
7216
7217         now = dev;
7218         iter = &dev->adj_list.lower;
7219
7220         while (1) {
7221                 if (now != dev) {
7222                         ret = fn(now, priv);
7223                         if (ret)
7224                                 return ret;
7225                 }
7226
7227                 next = NULL;
7228                 while (1) {
7229                         ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7230                         if (!ldev)
7231                                 break;
7232                         if (ignore)
7233                                 continue;
7234
7235                         next = ldev;
7236                         niter = &ldev->adj_list.lower;
7237                         dev_stack[cur] = now;
7238                         iter_stack[cur++] = iter;
7239                         break;
7240                 }
7241
7242                 if (!next) {
7243                         if (!cur)
7244                                 return 0;
7245                         next = dev_stack[--cur];
7246                         niter = iter_stack[cur];
7247                 }
7248
7249                 now = next;
7250                 iter = niter;
7251         }
7252
7253         return 0;
7254 }
7255
7256 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7257                                              struct list_head **iter)
7258 {
7259         struct netdev_adjacent *lower;
7260
7261         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7262         if (&lower->list == &dev->adj_list.lower)
7263                 return NULL;
7264
7265         *iter = &lower->list;
7266
7267         return lower->dev;
7268 }
7269 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7270
7271 static u8 __netdev_upper_depth(struct net_device *dev)
7272 {
7273         struct net_device *udev;
7274         struct list_head *iter;
7275         u8 max_depth = 0;
7276         bool ignore;
7277
7278         for (iter = &dev->adj_list.upper,
7279              udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7280              udev;
7281              udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7282                 if (ignore)
7283                         continue;
7284                 if (max_depth < udev->upper_level)
7285                         max_depth = udev->upper_level;
7286         }
7287
7288         return max_depth;
7289 }
7290
7291 static u8 __netdev_lower_depth(struct net_device *dev)
7292 {
7293         struct net_device *ldev;
7294         struct list_head *iter;
7295         u8 max_depth = 0;
7296         bool ignore;
7297
7298         for (iter = &dev->adj_list.lower,
7299              ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7300              ldev;
7301              ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7302                 if (ignore)
7303                         continue;
7304                 if (max_depth < ldev->lower_level)
7305                         max_depth = ldev->lower_level;
7306         }
7307
7308         return max_depth;
7309 }
7310
7311 static int __netdev_update_upper_level(struct net_device *dev,
7312                                        struct netdev_nested_priv *__unused)
7313 {
7314         dev->upper_level = __netdev_upper_depth(dev) + 1;
7315         return 0;
7316 }
7317
7318 #ifdef CONFIG_LOCKDEP
7319 static LIST_HEAD(net_unlink_list);
7320
7321 static void net_unlink_todo(struct net_device *dev)
7322 {
7323         if (list_empty(&dev->unlink_list))
7324                 list_add_tail(&dev->unlink_list, &net_unlink_list);
7325 }
7326 #endif
7327
7328 static int __netdev_update_lower_level(struct net_device *dev,
7329                                        struct netdev_nested_priv *priv)
7330 {
7331         dev->lower_level = __netdev_lower_depth(dev) + 1;
7332
7333 #ifdef CONFIG_LOCKDEP
7334         if (!priv)
7335                 return 0;
7336
7337         if (priv->flags & NESTED_SYNC_IMM)
7338                 dev->nested_level = dev->lower_level - 1;
7339         if (priv->flags & NESTED_SYNC_TODO)
7340                 net_unlink_todo(dev);
7341 #endif
7342         return 0;
7343 }
7344
7345 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7346                                   int (*fn)(struct net_device *dev,
7347                                             struct netdev_nested_priv *priv),
7348                                   struct netdev_nested_priv *priv)
7349 {
7350         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7351         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7352         int ret, cur = 0;
7353
7354         now = dev;
7355         iter = &dev->adj_list.lower;
7356
7357         while (1) {
7358                 if (now != dev) {
7359                         ret = fn(now, priv);
7360                         if (ret)
7361                                 return ret;
7362                 }
7363
7364                 next = NULL;
7365                 while (1) {
7366                         ldev = netdev_next_lower_dev_rcu(now, &iter);
7367                         if (!ldev)
7368                                 break;
7369
7370                         next = ldev;
7371                         niter = &ldev->adj_list.lower;
7372                         dev_stack[cur] = now;
7373                         iter_stack[cur++] = iter;
7374                         break;
7375                 }
7376
7377                 if (!next) {
7378                         if (!cur)
7379                                 return 0;
7380                         next = dev_stack[--cur];
7381                         niter = iter_stack[cur];
7382                 }
7383
7384                 now = next;
7385                 iter = niter;
7386         }
7387
7388         return 0;
7389 }
7390 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7391
7392 /**
7393  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7394  *                                     lower neighbour list, RCU
7395  *                                     variant
7396  * @dev: device
7397  *
7398  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7399  * list. The caller must hold RCU read lock.
7400  */
7401 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7402 {
7403         struct netdev_adjacent *lower;
7404
7405         lower = list_first_or_null_rcu(&dev->adj_list.lower,
7406                         struct netdev_adjacent, list);
7407         if (lower)
7408                 return lower->private;
7409         return NULL;
7410 }
7411 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7412
7413 /**
7414  * netdev_master_upper_dev_get_rcu - Get master upper device
7415  * @dev: device
7416  *
7417  * Find a master upper device and return pointer to it or NULL in case
7418  * it's not there. The caller must hold the RCU read lock.
7419  */
7420 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7421 {
7422         struct netdev_adjacent *upper;
7423
7424         upper = list_first_or_null_rcu(&dev->adj_list.upper,
7425                                        struct netdev_adjacent, list);
7426         if (upper && likely(upper->master))
7427                 return upper->dev;
7428         return NULL;
7429 }
7430 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7431
7432 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7433                               struct net_device *adj_dev,
7434                               struct list_head *dev_list)
7435 {
7436         char linkname[IFNAMSIZ+7];
7437
7438         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7439                 "upper_%s" : "lower_%s", adj_dev->name);
7440         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7441                                  linkname);
7442 }
7443 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7444                                char *name,
7445                                struct list_head *dev_list)
7446 {
7447         char linkname[IFNAMSIZ+7];
7448
7449         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7450                 "upper_%s" : "lower_%s", name);
7451         sysfs_remove_link(&(dev->dev.kobj), linkname);
7452 }
7453
7454 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7455                                                  struct net_device *adj_dev,
7456                                                  struct list_head *dev_list)
7457 {
7458         return (dev_list == &dev->adj_list.upper ||
7459                 dev_list == &dev->adj_list.lower) &&
7460                 net_eq(dev_net(dev), dev_net(adj_dev));
7461 }
7462
7463 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7464                                         struct net_device *adj_dev,
7465                                         struct list_head *dev_list,
7466                                         void *private, bool master)
7467 {
7468         struct netdev_adjacent *adj;
7469         int ret;
7470
7471         adj = __netdev_find_adj(adj_dev, dev_list);
7472
7473         if (adj) {
7474                 adj->ref_nr += 1;
7475                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7476                          dev->name, adj_dev->name, adj->ref_nr);
7477
7478                 return 0;
7479         }
7480
7481         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7482         if (!adj)
7483                 return -ENOMEM;
7484
7485         adj->dev = adj_dev;
7486         adj->master = master;
7487         adj->ref_nr = 1;
7488         adj->private = private;
7489         adj->ignore = false;
7490         netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7491
7492         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7493                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7494
7495         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7496                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7497                 if (ret)
7498                         goto free_adj;
7499         }
7500
7501         /* Ensure that master link is always the first item in list. */
7502         if (master) {
7503                 ret = sysfs_create_link(&(dev->dev.kobj),
7504                                         &(adj_dev->dev.kobj), "master");
7505                 if (ret)
7506                         goto remove_symlinks;
7507
7508                 list_add_rcu(&adj->list, dev_list);
7509         } else {
7510                 list_add_tail_rcu(&adj->list, dev_list);
7511         }
7512
7513         return 0;
7514
7515 remove_symlinks:
7516         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7517                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7518 free_adj:
7519         netdev_put(adj_dev, &adj->dev_tracker);
7520         kfree(adj);
7521
7522         return ret;
7523 }
7524
7525 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7526                                          struct net_device *adj_dev,
7527                                          u16 ref_nr,
7528                                          struct list_head *dev_list)
7529 {
7530         struct netdev_adjacent *adj;
7531
7532         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7533                  dev->name, adj_dev->name, ref_nr);
7534
7535         adj = __netdev_find_adj(adj_dev, dev_list);
7536
7537         if (!adj) {
7538                 pr_err("Adjacency does not exist for device %s from %s\n",
7539                        dev->name, adj_dev->name);
7540                 WARN_ON(1);
7541                 return;
7542         }
7543
7544         if (adj->ref_nr > ref_nr) {
7545                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7546                          dev->name, adj_dev->name, ref_nr,
7547                          adj->ref_nr - ref_nr);
7548                 adj->ref_nr -= ref_nr;
7549                 return;
7550         }
7551
7552         if (adj->master)
7553                 sysfs_remove_link(&(dev->dev.kobj), "master");
7554
7555         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7556                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7557
7558         list_del_rcu(&adj->list);
7559         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7560                  adj_dev->name, dev->name, adj_dev->name);
7561         netdev_put(adj_dev, &adj->dev_tracker);
7562         kfree_rcu(adj, rcu);
7563 }
7564
7565 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7566                                             struct net_device *upper_dev,
7567                                             struct list_head *up_list,
7568                                             struct list_head *down_list,
7569                                             void *private, bool master)
7570 {
7571         int ret;
7572
7573         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7574                                            private, master);
7575         if (ret)
7576                 return ret;
7577
7578         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7579                                            private, false);
7580         if (ret) {
7581                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7582                 return ret;
7583         }
7584
7585         return 0;
7586 }
7587
7588 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7589                                                struct net_device *upper_dev,
7590                                                u16 ref_nr,
7591                                                struct list_head *up_list,
7592                                                struct list_head *down_list)
7593 {
7594         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7595         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7596 }
7597
7598 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7599                                                 struct net_device *upper_dev,
7600                                                 void *private, bool master)
7601 {
7602         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7603                                                 &dev->adj_list.upper,
7604                                                 &upper_dev->adj_list.lower,
7605                                                 private, master);
7606 }
7607
7608 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7609                                                    struct net_device *upper_dev)
7610 {
7611         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7612                                            &dev->adj_list.upper,
7613                                            &upper_dev->adj_list.lower);
7614 }
7615
7616 static int __netdev_upper_dev_link(struct net_device *dev,
7617                                    struct net_device *upper_dev, bool master,
7618                                    void *upper_priv, void *upper_info,
7619                                    struct netdev_nested_priv *priv,
7620                                    struct netlink_ext_ack *extack)
7621 {
7622         struct netdev_notifier_changeupper_info changeupper_info = {
7623                 .info = {
7624                         .dev = dev,
7625                         .extack = extack,
7626                 },
7627                 .upper_dev = upper_dev,
7628                 .master = master,
7629                 .linking = true,
7630                 .upper_info = upper_info,
7631         };
7632         struct net_device *master_dev;
7633         int ret = 0;
7634
7635         ASSERT_RTNL();
7636
7637         if (dev == upper_dev)
7638                 return -EBUSY;
7639
7640         /* To prevent loops, check if dev is not upper device to upper_dev. */
7641         if (__netdev_has_upper_dev(upper_dev, dev))
7642                 return -EBUSY;
7643
7644         if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7645                 return -EMLINK;
7646
7647         if (!master) {
7648                 if (__netdev_has_upper_dev(dev, upper_dev))
7649                         return -EEXIST;
7650         } else {
7651                 master_dev = __netdev_master_upper_dev_get(dev);
7652                 if (master_dev)
7653                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
7654         }
7655
7656         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7657                                             &changeupper_info.info);
7658         ret = notifier_to_errno(ret);
7659         if (ret)
7660                 return ret;
7661
7662         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7663                                                    master);
7664         if (ret)
7665                 return ret;
7666
7667         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7668                                             &changeupper_info.info);
7669         ret = notifier_to_errno(ret);
7670         if (ret)
7671                 goto rollback;
7672
7673         __netdev_update_upper_level(dev, NULL);
7674         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7675
7676         __netdev_update_lower_level(upper_dev, priv);
7677         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7678                                     priv);
7679
7680         return 0;
7681
7682 rollback:
7683         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7684
7685         return ret;
7686 }
7687
7688 /**
7689  * netdev_upper_dev_link - Add a link to the upper device
7690  * @dev: device
7691  * @upper_dev: new upper device
7692  * @extack: netlink extended ack
7693  *
7694  * Adds a link to device which is upper to this one. The caller must hold
7695  * the RTNL lock. On a failure a negative errno code is returned.
7696  * On success the reference counts are adjusted and the function
7697  * returns zero.
7698  */
7699 int netdev_upper_dev_link(struct net_device *dev,
7700                           struct net_device *upper_dev,
7701                           struct netlink_ext_ack *extack)
7702 {
7703         struct netdev_nested_priv priv = {
7704                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7705                 .data = NULL,
7706         };
7707
7708         return __netdev_upper_dev_link(dev, upper_dev, false,
7709                                        NULL, NULL, &priv, extack);
7710 }
7711 EXPORT_SYMBOL(netdev_upper_dev_link);
7712
7713 /**
7714  * netdev_master_upper_dev_link - Add a master link to the upper device
7715  * @dev: device
7716  * @upper_dev: new upper device
7717  * @upper_priv: upper device private
7718  * @upper_info: upper info to be passed down via notifier
7719  * @extack: netlink extended ack
7720  *
7721  * Adds a link to device which is upper to this one. In this case, only
7722  * one master upper device can be linked, although other non-master devices
7723  * might be linked as well. The caller must hold the RTNL lock.
7724  * On a failure a negative errno code is returned. On success the reference
7725  * counts are adjusted and the function returns zero.
7726  */
7727 int netdev_master_upper_dev_link(struct net_device *dev,
7728                                  struct net_device *upper_dev,
7729                                  void *upper_priv, void *upper_info,
7730                                  struct netlink_ext_ack *extack)
7731 {
7732         struct netdev_nested_priv priv = {
7733                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7734                 .data = NULL,
7735         };
7736
7737         return __netdev_upper_dev_link(dev, upper_dev, true,
7738                                        upper_priv, upper_info, &priv, extack);
7739 }
7740 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7741
7742 static void __netdev_upper_dev_unlink(struct net_device *dev,
7743                                       struct net_device *upper_dev,
7744                                       struct netdev_nested_priv *priv)
7745 {
7746         struct netdev_notifier_changeupper_info changeupper_info = {
7747                 .info = {
7748                         .dev = dev,
7749                 },
7750                 .upper_dev = upper_dev,
7751                 .linking = false,
7752         };
7753
7754         ASSERT_RTNL();
7755
7756         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7757
7758         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7759                                       &changeupper_info.info);
7760
7761         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7762
7763         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7764                                       &changeupper_info.info);
7765
7766         __netdev_update_upper_level(dev, NULL);
7767         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7768
7769         __netdev_update_lower_level(upper_dev, priv);
7770         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7771                                     priv);
7772 }
7773
7774 /**
7775  * netdev_upper_dev_unlink - Removes a link to upper device
7776  * @dev: device
7777  * @upper_dev: new upper device
7778  *
7779  * Removes a link to device which is upper to this one. The caller must hold
7780  * the RTNL lock.
7781  */
7782 void netdev_upper_dev_unlink(struct net_device *dev,
7783                              struct net_device *upper_dev)
7784 {
7785         struct netdev_nested_priv priv = {
7786                 .flags = NESTED_SYNC_TODO,
7787                 .data = NULL,
7788         };
7789
7790         __netdev_upper_dev_unlink(dev, upper_dev, &priv);
7791 }
7792 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7793
7794 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7795                                       struct net_device *lower_dev,
7796                                       bool val)
7797 {
7798         struct netdev_adjacent *adj;
7799
7800         adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7801         if (adj)
7802                 adj->ignore = val;
7803
7804         adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7805         if (adj)
7806                 adj->ignore = val;
7807 }
7808
7809 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7810                                         struct net_device *lower_dev)
7811 {
7812         __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7813 }
7814
7815 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7816                                        struct net_device *lower_dev)
7817 {
7818         __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7819 }
7820
7821 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7822                                    struct net_device *new_dev,
7823                                    struct net_device *dev,
7824                                    struct netlink_ext_ack *extack)
7825 {
7826         struct netdev_nested_priv priv = {
7827                 .flags = 0,
7828                 .data = NULL,
7829         };
7830         int err;
7831
7832         if (!new_dev)
7833                 return 0;
7834
7835         if (old_dev && new_dev != old_dev)
7836                 netdev_adjacent_dev_disable(dev, old_dev);
7837         err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7838                                       extack);
7839         if (err) {
7840                 if (old_dev && new_dev != old_dev)
7841                         netdev_adjacent_dev_enable(dev, old_dev);
7842                 return err;
7843         }
7844
7845         return 0;
7846 }
7847 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7848
7849 void netdev_adjacent_change_commit(struct net_device *old_dev,
7850                                    struct net_device *new_dev,
7851                                    struct net_device *dev)
7852 {
7853         struct netdev_nested_priv priv = {
7854                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7855                 .data = NULL,
7856         };
7857
7858         if (!new_dev || !old_dev)
7859                 return;
7860
7861         if (new_dev == old_dev)
7862                 return;
7863
7864         netdev_adjacent_dev_enable(dev, old_dev);
7865         __netdev_upper_dev_unlink(old_dev, dev, &priv);
7866 }
7867 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7868
7869 void netdev_adjacent_change_abort(struct net_device *old_dev,
7870                                   struct net_device *new_dev,
7871                                   struct net_device *dev)
7872 {
7873         struct netdev_nested_priv priv = {
7874                 .flags = 0,
7875                 .data = NULL,
7876         };
7877
7878         if (!new_dev)
7879                 return;
7880
7881         if (old_dev && new_dev != old_dev)
7882                 netdev_adjacent_dev_enable(dev, old_dev);
7883
7884         __netdev_upper_dev_unlink(new_dev, dev, &priv);
7885 }
7886 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7887
7888 /**
7889  * netdev_bonding_info_change - Dispatch event about slave change
7890  * @dev: device
7891  * @bonding_info: info to dispatch
7892  *
7893  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7894  * The caller must hold the RTNL lock.
7895  */
7896 void netdev_bonding_info_change(struct net_device *dev,
7897                                 struct netdev_bonding_info *bonding_info)
7898 {
7899         struct netdev_notifier_bonding_info info = {
7900                 .info.dev = dev,
7901         };
7902
7903         memcpy(&info.bonding_info, bonding_info,
7904                sizeof(struct netdev_bonding_info));
7905         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7906                                       &info.info);
7907 }
7908 EXPORT_SYMBOL(netdev_bonding_info_change);
7909
7910 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
7911                                            struct netlink_ext_ack *extack)
7912 {
7913         struct netdev_notifier_offload_xstats_info info = {
7914                 .info.dev = dev,
7915                 .info.extack = extack,
7916                 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7917         };
7918         int err;
7919         int rc;
7920
7921         dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
7922                                          GFP_KERNEL);
7923         if (!dev->offload_xstats_l3)
7924                 return -ENOMEM;
7925
7926         rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
7927                                                   NETDEV_OFFLOAD_XSTATS_DISABLE,
7928                                                   &info.info);
7929         err = notifier_to_errno(rc);
7930         if (err)
7931                 goto free_stats;
7932
7933         return 0;
7934
7935 free_stats:
7936         kfree(dev->offload_xstats_l3);
7937         dev->offload_xstats_l3 = NULL;
7938         return err;
7939 }
7940
7941 int netdev_offload_xstats_enable(struct net_device *dev,
7942                                  enum netdev_offload_xstats_type type,
7943                                  struct netlink_ext_ack *extack)
7944 {
7945         ASSERT_RTNL();
7946
7947         if (netdev_offload_xstats_enabled(dev, type))
7948                 return -EALREADY;
7949
7950         switch (type) {
7951         case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7952                 return netdev_offload_xstats_enable_l3(dev, extack);
7953         }
7954
7955         WARN_ON(1);
7956         return -EINVAL;
7957 }
7958 EXPORT_SYMBOL(netdev_offload_xstats_enable);
7959
7960 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
7961 {
7962         struct netdev_notifier_offload_xstats_info info = {
7963                 .info.dev = dev,
7964                 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7965         };
7966
7967         call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
7968                                       &info.info);
7969         kfree(dev->offload_xstats_l3);
7970         dev->offload_xstats_l3 = NULL;
7971 }
7972
7973 int netdev_offload_xstats_disable(struct net_device *dev,
7974                                   enum netdev_offload_xstats_type type)
7975 {
7976         ASSERT_RTNL();
7977
7978         if (!netdev_offload_xstats_enabled(dev, type))
7979                 return -EALREADY;
7980
7981         switch (type) {
7982         case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7983                 netdev_offload_xstats_disable_l3(dev);
7984                 return 0;
7985         }
7986
7987         WARN_ON(1);
7988         return -EINVAL;
7989 }
7990 EXPORT_SYMBOL(netdev_offload_xstats_disable);
7991
7992 static void netdev_offload_xstats_disable_all(struct net_device *dev)
7993 {
7994         netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
7995 }
7996
7997 static struct rtnl_hw_stats64 *
7998 netdev_offload_xstats_get_ptr(const struct net_device *dev,
7999                               enum netdev_offload_xstats_type type)
8000 {
8001         switch (type) {
8002         case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8003                 return dev->offload_xstats_l3;
8004         }
8005
8006         WARN_ON(1);
8007         return NULL;
8008 }
8009
8010 bool netdev_offload_xstats_enabled(const struct net_device *dev,
8011                                    enum netdev_offload_xstats_type type)
8012 {
8013         ASSERT_RTNL();
8014
8015         return netdev_offload_xstats_get_ptr(dev, type);
8016 }
8017 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8018
8019 struct netdev_notifier_offload_xstats_ru {
8020         bool used;
8021 };
8022
8023 struct netdev_notifier_offload_xstats_rd {
8024         struct rtnl_hw_stats64 stats;
8025         bool used;
8026 };
8027
8028 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8029                                   const struct rtnl_hw_stats64 *src)
8030 {
8031         dest->rx_packets          += src->rx_packets;
8032         dest->tx_packets          += src->tx_packets;
8033         dest->rx_bytes            += src->rx_bytes;
8034         dest->tx_bytes            += src->tx_bytes;
8035         dest->rx_errors           += src->rx_errors;
8036         dest->tx_errors           += src->tx_errors;
8037         dest->rx_dropped          += src->rx_dropped;
8038         dest->tx_dropped          += src->tx_dropped;
8039         dest->multicast           += src->multicast;
8040 }
8041
8042 static int netdev_offload_xstats_get_used(struct net_device *dev,
8043                                           enum netdev_offload_xstats_type type,
8044                                           bool *p_used,
8045                                           struct netlink_ext_ack *extack)
8046 {
8047         struct netdev_notifier_offload_xstats_ru report_used = {};
8048         struct netdev_notifier_offload_xstats_info info = {
8049                 .info.dev = dev,
8050                 .info.extack = extack,
8051                 .type = type,
8052                 .report_used = &report_used,
8053         };
8054         int rc;
8055
8056         WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8057         rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8058                                            &info.info);
8059         *p_used = report_used.used;
8060         return notifier_to_errno(rc);
8061 }
8062
8063 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8064                                            enum netdev_offload_xstats_type type,
8065                                            struct rtnl_hw_stats64 *p_stats,
8066                                            bool *p_used,
8067                                            struct netlink_ext_ack *extack)
8068 {
8069         struct netdev_notifier_offload_xstats_rd report_delta = {};
8070         struct netdev_notifier_offload_xstats_info info = {
8071                 .info.dev = dev,
8072                 .info.extack = extack,
8073                 .type = type,
8074                 .report_delta = &report_delta,
8075         };
8076         struct rtnl_hw_stats64 *stats;
8077         int rc;
8078
8079         stats = netdev_offload_xstats_get_ptr(dev, type);
8080         if (WARN_ON(!stats))
8081                 return -EINVAL;
8082
8083         rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8084                                            &info.info);
8085
8086         /* Cache whatever we got, even if there was an error, otherwise the
8087          * successful stats retrievals would get lost.
8088          */
8089         netdev_hw_stats64_add(stats, &report_delta.stats);
8090
8091         if (p_stats)
8092                 *p_stats = *stats;
8093         *p_used = report_delta.used;
8094
8095         return notifier_to_errno(rc);
8096 }
8097
8098 int netdev_offload_xstats_get(struct net_device *dev,
8099                               enum netdev_offload_xstats_type type,
8100                               struct rtnl_hw_stats64 *p_stats, bool *p_used,
8101                               struct netlink_ext_ack *extack)
8102 {
8103         ASSERT_RTNL();
8104
8105         if (p_stats)
8106                 return netdev_offload_xstats_get_stats(dev, type, p_stats,
8107                                                        p_used, extack);
8108         else
8109                 return netdev_offload_xstats_get_used(dev, type, p_used,
8110                                                       extack);
8111 }
8112 EXPORT_SYMBOL(netdev_offload_xstats_get);
8113
8114 void
8115 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8116                                    const struct rtnl_hw_stats64 *stats)
8117 {
8118         report_delta->used = true;
8119         netdev_hw_stats64_add(&report_delta->stats, stats);
8120 }
8121 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8122
8123 void
8124 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8125 {
8126         report_used->used = true;
8127 }
8128 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8129
8130 void netdev_offload_xstats_push_delta(struct net_device *dev,
8131                                       enum netdev_offload_xstats_type type,
8132                                       const struct rtnl_hw_stats64 *p_stats)
8133 {
8134         struct rtnl_hw_stats64 *stats;
8135
8136         ASSERT_RTNL();
8137
8138         stats = netdev_offload_xstats_get_ptr(dev, type);
8139         if (WARN_ON(!stats))
8140                 return;
8141
8142         netdev_hw_stats64_add(stats, p_stats);
8143 }
8144 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8145
8146 /**
8147  * netdev_get_xmit_slave - Get the xmit slave of master device
8148  * @dev: device
8149  * @skb: The packet
8150  * @all_slaves: assume all the slaves are active
8151  *
8152  * The reference counters are not incremented so the caller must be
8153  * careful with locks. The caller must hold RCU lock.
8154  * %NULL is returned if no slave is found.
8155  */
8156
8157 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8158                                          struct sk_buff *skb,
8159                                          bool all_slaves)
8160 {
8161         const struct net_device_ops *ops = dev->netdev_ops;
8162
8163         if (!ops->ndo_get_xmit_slave)
8164                 return NULL;
8165         return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8166 }
8167 EXPORT_SYMBOL(netdev_get_xmit_slave);
8168
8169 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8170                                                   struct sock *sk)
8171 {
8172         const struct net_device_ops *ops = dev->netdev_ops;
8173
8174         if (!ops->ndo_sk_get_lower_dev)
8175                 return NULL;
8176         return ops->ndo_sk_get_lower_dev(dev, sk);
8177 }
8178
8179 /**
8180  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8181  * @dev: device
8182  * @sk: the socket
8183  *
8184  * %NULL is returned if no lower device is found.
8185  */
8186
8187 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8188                                             struct sock *sk)
8189 {
8190         struct net_device *lower;
8191
8192         lower = netdev_sk_get_lower_dev(dev, sk);
8193         while (lower) {
8194                 dev = lower;
8195                 lower = netdev_sk_get_lower_dev(dev, sk);
8196         }
8197
8198         return dev;
8199 }
8200 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8201
8202 static void netdev_adjacent_add_links(struct net_device *dev)
8203 {
8204         struct netdev_adjacent *iter;
8205
8206         struct net *net = dev_net(dev);
8207
8208         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8209                 if (!net_eq(net, dev_net(iter->dev)))
8210                         continue;
8211                 netdev_adjacent_sysfs_add(iter->dev, dev,
8212                                           &iter->dev->adj_list.lower);
8213                 netdev_adjacent_sysfs_add(dev, iter->dev,
8214                                           &dev->adj_list.upper);
8215         }
8216
8217         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8218                 if (!net_eq(net, dev_net(iter->dev)))
8219                         continue;
8220                 netdev_adjacent_sysfs_add(iter->dev, dev,
8221                                           &iter->dev->adj_list.upper);
8222                 netdev_adjacent_sysfs_add(dev, iter->dev,
8223                                           &dev->adj_list.lower);
8224         }
8225 }
8226
8227 static void netdev_adjacent_del_links(struct net_device *dev)
8228 {
8229         struct netdev_adjacent *iter;
8230
8231         struct net *net = dev_net(dev);
8232
8233         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8234                 if (!net_eq(net, dev_net(iter->dev)))
8235                         continue;
8236                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8237                                           &iter->dev->adj_list.lower);
8238                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8239                                           &dev->adj_list.upper);
8240         }
8241
8242         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8243                 if (!net_eq(net, dev_net(iter->dev)))
8244                         continue;
8245                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8246                                           &iter->dev->adj_list.upper);
8247                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8248                                           &dev->adj_list.lower);
8249         }
8250 }
8251
8252 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8253 {
8254         struct netdev_adjacent *iter;
8255
8256         struct net *net = dev_net(dev);
8257
8258         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8259                 if (!net_eq(net, dev_net(iter->dev)))
8260                         continue;
8261                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8262                                           &iter->dev->adj_list.lower);
8263                 netdev_adjacent_sysfs_add(iter->dev, dev,
8264                                           &iter->dev->adj_list.lower);
8265         }
8266
8267         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8268                 if (!net_eq(net, dev_net(iter->dev)))
8269                         continue;
8270                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8271                                           &iter->dev->adj_list.upper);
8272                 netdev_adjacent_sysfs_add(iter->dev, dev,
8273                                           &iter->dev->adj_list.upper);
8274         }
8275 }
8276
8277 void *netdev_lower_dev_get_private(struct net_device *dev,
8278                                    struct net_device *lower_dev)
8279 {
8280         struct netdev_adjacent *lower;
8281
8282         if (!lower_dev)
8283                 return NULL;
8284         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8285         if (!lower)
8286                 return NULL;
8287
8288         return lower->private;
8289 }
8290 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8291
8292
8293 /**
8294  * netdev_lower_state_changed - Dispatch event about lower device state change
8295  * @lower_dev: device
8296  * @lower_state_info: state to dispatch
8297  *
8298  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8299  * The caller must hold the RTNL lock.
8300  */
8301 void netdev_lower_state_changed(struct net_device *lower_dev,
8302                                 void *lower_state_info)
8303 {
8304         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8305                 .info.dev = lower_dev,
8306         };
8307
8308         ASSERT_RTNL();
8309         changelowerstate_info.lower_state_info = lower_state_info;
8310         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8311                                       &changelowerstate_info.info);
8312 }
8313 EXPORT_SYMBOL(netdev_lower_state_changed);
8314
8315 static void dev_change_rx_flags(struct net_device *dev, int flags)
8316 {
8317         const struct net_device_ops *ops = dev->netdev_ops;
8318
8319         if (ops->ndo_change_rx_flags)
8320                 ops->ndo_change_rx_flags(dev, flags);
8321 }
8322
8323 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8324 {
8325         unsigned int old_flags = dev->flags;
8326         kuid_t uid;
8327         kgid_t gid;
8328
8329         ASSERT_RTNL();
8330
8331         dev->flags |= IFF_PROMISC;
8332         dev->promiscuity += inc;
8333         if (dev->promiscuity == 0) {
8334                 /*
8335                  * Avoid overflow.
8336                  * If inc causes overflow, untouch promisc and return error.
8337                  */
8338                 if (inc < 0)
8339                         dev->flags &= ~IFF_PROMISC;
8340                 else {
8341                         dev->promiscuity -= inc;
8342                         netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8343                         return -EOVERFLOW;
8344                 }
8345         }
8346         if (dev->flags != old_flags) {
8347                 pr_info("device %s %s promiscuous mode\n",
8348                         dev->name,
8349                         dev->flags & IFF_PROMISC ? "entered" : "left");
8350                 if (audit_enabled) {
8351                         current_uid_gid(&uid, &gid);
8352                         audit_log(audit_context(), GFP_ATOMIC,
8353                                   AUDIT_ANOM_PROMISCUOUS,
8354                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8355                                   dev->name, (dev->flags & IFF_PROMISC),
8356                                   (old_flags & IFF_PROMISC),
8357                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
8358                                   from_kuid(&init_user_ns, uid),
8359                                   from_kgid(&init_user_ns, gid),
8360                                   audit_get_sessionid(current));
8361                 }
8362
8363                 dev_change_rx_flags(dev, IFF_PROMISC);
8364         }
8365         if (notify)
8366                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
8367         return 0;
8368 }
8369
8370 /**
8371  *      dev_set_promiscuity     - update promiscuity count on a device
8372  *      @dev: device
8373  *      @inc: modifier
8374  *
8375  *      Add or remove promiscuity from a device. While the count in the device
8376  *      remains above zero the interface remains promiscuous. Once it hits zero
8377  *      the device reverts back to normal filtering operation. A negative inc
8378  *      value is used to drop promiscuity on the device.
8379  *      Return 0 if successful or a negative errno code on error.
8380  */
8381 int dev_set_promiscuity(struct net_device *dev, int inc)
8382 {
8383         unsigned int old_flags = dev->flags;
8384         int err;
8385
8386         err = __dev_set_promiscuity(dev, inc, true);
8387         if (err < 0)
8388                 return err;
8389         if (dev->flags != old_flags)
8390                 dev_set_rx_mode(dev);
8391         return err;
8392 }
8393 EXPORT_SYMBOL(dev_set_promiscuity);
8394
8395 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8396 {
8397         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8398
8399         ASSERT_RTNL();
8400
8401         dev->flags |= IFF_ALLMULTI;
8402         dev->allmulti += inc;
8403         if (dev->allmulti == 0) {
8404                 /*
8405                  * Avoid overflow.
8406                  * If inc causes overflow, untouch allmulti and return error.
8407                  */
8408                 if (inc < 0)
8409                         dev->flags &= ~IFF_ALLMULTI;
8410                 else {
8411                         dev->allmulti -= inc;
8412                         netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8413                         return -EOVERFLOW;
8414                 }
8415         }
8416         if (dev->flags ^ old_flags) {
8417                 dev_change_rx_flags(dev, IFF_ALLMULTI);
8418                 dev_set_rx_mode(dev);
8419                 if (notify)
8420                         __dev_notify_flags(dev, old_flags,
8421                                            dev->gflags ^ old_gflags);
8422         }
8423         return 0;
8424 }
8425
8426 /**
8427  *      dev_set_allmulti        - update allmulti count on a device
8428  *      @dev: device
8429  *      @inc: modifier
8430  *
8431  *      Add or remove reception of all multicast frames to a device. While the
8432  *      count in the device remains above zero the interface remains listening
8433  *      to all interfaces. Once it hits zero the device reverts back to normal
8434  *      filtering operation. A negative @inc value is used to drop the counter
8435  *      when releasing a resource needing all multicasts.
8436  *      Return 0 if successful or a negative errno code on error.
8437  */
8438
8439 int dev_set_allmulti(struct net_device *dev, int inc)
8440 {
8441         return __dev_set_allmulti(dev, inc, true);
8442 }
8443 EXPORT_SYMBOL(dev_set_allmulti);
8444
8445 /*
8446  *      Upload unicast and multicast address lists to device and
8447  *      configure RX filtering. When the device doesn't support unicast
8448  *      filtering it is put in promiscuous mode while unicast addresses
8449  *      are present.
8450  */
8451 void __dev_set_rx_mode(struct net_device *dev)
8452 {
8453         const struct net_device_ops *ops = dev->netdev_ops;
8454
8455         /* dev_open will call this function so the list will stay sane. */
8456         if (!(dev->flags&IFF_UP))
8457                 return;
8458
8459         if (!netif_device_present(dev))
8460                 return;
8461
8462         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8463                 /* Unicast addresses changes may only happen under the rtnl,
8464                  * therefore calling __dev_set_promiscuity here is safe.
8465                  */
8466                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8467                         __dev_set_promiscuity(dev, 1, false);
8468                         dev->uc_promisc = true;
8469                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8470                         __dev_set_promiscuity(dev, -1, false);
8471                         dev->uc_promisc = false;
8472                 }
8473         }
8474
8475         if (ops->ndo_set_rx_mode)
8476                 ops->ndo_set_rx_mode(dev);
8477 }
8478
8479 void dev_set_rx_mode(struct net_device *dev)
8480 {
8481         netif_addr_lock_bh(dev);
8482         __dev_set_rx_mode(dev);
8483         netif_addr_unlock_bh(dev);
8484 }
8485
8486 /**
8487  *      dev_get_flags - get flags reported to userspace
8488  *      @dev: device
8489  *
8490  *      Get the combination of flag bits exported through APIs to userspace.
8491  */
8492 unsigned int dev_get_flags(const struct net_device *dev)
8493 {
8494         unsigned int flags;
8495
8496         flags = (dev->flags & ~(IFF_PROMISC |
8497                                 IFF_ALLMULTI |
8498                                 IFF_RUNNING |
8499                                 IFF_LOWER_UP |
8500                                 IFF_DORMANT)) |
8501                 (dev->gflags & (IFF_PROMISC |
8502                                 IFF_ALLMULTI));
8503
8504         if (netif_running(dev)) {
8505                 if (netif_oper_up(dev))
8506                         flags |= IFF_RUNNING;
8507                 if (netif_carrier_ok(dev))
8508                         flags |= IFF_LOWER_UP;
8509                 if (netif_dormant(dev))
8510                         flags |= IFF_DORMANT;
8511         }
8512
8513         return flags;
8514 }
8515 EXPORT_SYMBOL(dev_get_flags);
8516
8517 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8518                        struct netlink_ext_ack *extack)
8519 {
8520         unsigned int old_flags = dev->flags;
8521         int ret;
8522
8523         ASSERT_RTNL();
8524
8525         /*
8526          *      Set the flags on our device.
8527          */
8528
8529         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8530                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8531                                IFF_AUTOMEDIA)) |
8532                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8533                                     IFF_ALLMULTI));
8534
8535         /*
8536          *      Load in the correct multicast list now the flags have changed.
8537          */
8538
8539         if ((old_flags ^ flags) & IFF_MULTICAST)
8540                 dev_change_rx_flags(dev, IFF_MULTICAST);
8541
8542         dev_set_rx_mode(dev);
8543
8544         /*
8545          *      Have we downed the interface. We handle IFF_UP ourselves
8546          *      according to user attempts to set it, rather than blindly
8547          *      setting it.
8548          */
8549
8550         ret = 0;
8551         if ((old_flags ^ flags) & IFF_UP) {
8552                 if (old_flags & IFF_UP)
8553                         __dev_close(dev);
8554                 else
8555                         ret = __dev_open(dev, extack);
8556         }
8557
8558         if ((flags ^ dev->gflags) & IFF_PROMISC) {
8559                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8560                 unsigned int old_flags = dev->flags;
8561
8562                 dev->gflags ^= IFF_PROMISC;
8563
8564                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8565                         if (dev->flags != old_flags)
8566                                 dev_set_rx_mode(dev);
8567         }
8568
8569         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8570          * is important. Some (broken) drivers set IFF_PROMISC, when
8571          * IFF_ALLMULTI is requested not asking us and not reporting.
8572          */
8573         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8574                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8575
8576                 dev->gflags ^= IFF_ALLMULTI;
8577                 __dev_set_allmulti(dev, inc, false);
8578         }
8579
8580         return ret;
8581 }
8582
8583 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8584                         unsigned int gchanges)
8585 {
8586         unsigned int changes = dev->flags ^ old_flags;
8587
8588         if (gchanges)
8589                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8590
8591         if (changes & IFF_UP) {
8592                 if (dev->flags & IFF_UP)
8593                         call_netdevice_notifiers(NETDEV_UP, dev);
8594                 else
8595                         call_netdevice_notifiers(NETDEV_DOWN, dev);
8596         }
8597
8598         if (dev->flags & IFF_UP &&
8599             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8600                 struct netdev_notifier_change_info change_info = {
8601                         .info = {
8602                                 .dev = dev,
8603                         },
8604                         .flags_changed = changes,
8605                 };
8606
8607                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8608         }
8609 }
8610
8611 /**
8612  *      dev_change_flags - change device settings
8613  *      @dev: device
8614  *      @flags: device state flags
8615  *      @extack: netlink extended ack
8616  *
8617  *      Change settings on device based state flags. The flags are
8618  *      in the userspace exported format.
8619  */
8620 int dev_change_flags(struct net_device *dev, unsigned int flags,
8621                      struct netlink_ext_ack *extack)
8622 {
8623         int ret;
8624         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8625
8626         ret = __dev_change_flags(dev, flags, extack);
8627         if (ret < 0)
8628                 return ret;
8629
8630         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8631         __dev_notify_flags(dev, old_flags, changes);
8632         return ret;
8633 }
8634 EXPORT_SYMBOL(dev_change_flags);
8635
8636 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8637 {
8638         const struct net_device_ops *ops = dev->netdev_ops;
8639
8640         if (ops->ndo_change_mtu)
8641                 return ops->ndo_change_mtu(dev, new_mtu);
8642
8643         /* Pairs with all the lockless reads of dev->mtu in the stack */
8644         WRITE_ONCE(dev->mtu, new_mtu);
8645         return 0;
8646 }
8647 EXPORT_SYMBOL(__dev_set_mtu);
8648
8649 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8650                      struct netlink_ext_ack *extack)
8651 {
8652         /* MTU must be positive, and in range */
8653         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8654                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8655                 return -EINVAL;
8656         }
8657
8658         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8659                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8660                 return -EINVAL;
8661         }
8662         return 0;
8663 }
8664
8665 /**
8666  *      dev_set_mtu_ext - Change maximum transfer unit
8667  *      @dev: device
8668  *      @new_mtu: new transfer unit
8669  *      @extack: netlink extended ack
8670  *
8671  *      Change the maximum transfer size of the network device.
8672  */
8673 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8674                     struct netlink_ext_ack *extack)
8675 {
8676         int err, orig_mtu;
8677
8678         if (new_mtu == dev->mtu)
8679                 return 0;
8680
8681         err = dev_validate_mtu(dev, new_mtu, extack);
8682         if (err)
8683                 return err;
8684
8685         if (!netif_device_present(dev))
8686                 return -ENODEV;
8687
8688         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8689         err = notifier_to_errno(err);
8690         if (err)
8691                 return err;
8692
8693         orig_mtu = dev->mtu;
8694         err = __dev_set_mtu(dev, new_mtu);
8695
8696         if (!err) {
8697                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8698                                                    orig_mtu);
8699                 err = notifier_to_errno(err);
8700                 if (err) {
8701                         /* setting mtu back and notifying everyone again,
8702                          * so that they have a chance to revert changes.
8703                          */
8704                         __dev_set_mtu(dev, orig_mtu);
8705                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8706                                                      new_mtu);
8707                 }
8708         }
8709         return err;
8710 }
8711
8712 int dev_set_mtu(struct net_device *dev, int new_mtu)
8713 {
8714         struct netlink_ext_ack extack;
8715         int err;
8716
8717         memset(&extack, 0, sizeof(extack));
8718         err = dev_set_mtu_ext(dev, new_mtu, &extack);
8719         if (err && extack._msg)
8720                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8721         return err;
8722 }
8723 EXPORT_SYMBOL(dev_set_mtu);
8724
8725 /**
8726  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
8727  *      @dev: device
8728  *      @new_len: new tx queue length
8729  */
8730 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8731 {
8732         unsigned int orig_len = dev->tx_queue_len;
8733         int res;
8734
8735         if (new_len != (unsigned int)new_len)
8736                 return -ERANGE;
8737
8738         if (new_len != orig_len) {
8739                 dev->tx_queue_len = new_len;
8740                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8741                 res = notifier_to_errno(res);
8742                 if (res)
8743                         goto err_rollback;
8744                 res = dev_qdisc_change_tx_queue_len(dev);
8745                 if (res)
8746                         goto err_rollback;
8747         }
8748
8749         return 0;
8750
8751 err_rollback:
8752         netdev_err(dev, "refused to change device tx_queue_len\n");
8753         dev->tx_queue_len = orig_len;
8754         return res;
8755 }
8756
8757 /**
8758  *      dev_set_group - Change group this device belongs to
8759  *      @dev: device
8760  *      @new_group: group this device should belong to
8761  */
8762 void dev_set_group(struct net_device *dev, int new_group)
8763 {
8764         dev->group = new_group;
8765 }
8766
8767 /**
8768  *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8769  *      @dev: device
8770  *      @addr: new address
8771  *      @extack: netlink extended ack
8772  */
8773 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8774                               struct netlink_ext_ack *extack)
8775 {
8776         struct netdev_notifier_pre_changeaddr_info info = {
8777                 .info.dev = dev,
8778                 .info.extack = extack,
8779                 .dev_addr = addr,
8780         };
8781         int rc;
8782
8783         rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8784         return notifier_to_errno(rc);
8785 }
8786 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8787
8788 /**
8789  *      dev_set_mac_address - Change Media Access Control Address
8790  *      @dev: device
8791  *      @sa: new address
8792  *      @extack: netlink extended ack
8793  *
8794  *      Change the hardware (MAC) address of the device
8795  */
8796 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8797                         struct netlink_ext_ack *extack)
8798 {
8799         const struct net_device_ops *ops = dev->netdev_ops;
8800         int err;
8801
8802         if (!ops->ndo_set_mac_address)
8803                 return -EOPNOTSUPP;
8804         if (sa->sa_family != dev->type)
8805                 return -EINVAL;
8806         if (!netif_device_present(dev))
8807                 return -ENODEV;
8808         err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8809         if (err)
8810                 return err;
8811         err = ops->ndo_set_mac_address(dev, sa);
8812         if (err)
8813                 return err;
8814         dev->addr_assign_type = NET_ADDR_SET;
8815         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8816         add_device_randomness(dev->dev_addr, dev->addr_len);
8817         return 0;
8818 }
8819 EXPORT_SYMBOL(dev_set_mac_address);
8820
8821 static DECLARE_RWSEM(dev_addr_sem);
8822
8823 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8824                              struct netlink_ext_ack *extack)
8825 {
8826         int ret;
8827
8828         down_write(&dev_addr_sem);
8829         ret = dev_set_mac_address(dev, sa, extack);
8830         up_write(&dev_addr_sem);
8831         return ret;
8832 }
8833 EXPORT_SYMBOL(dev_set_mac_address_user);
8834
8835 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8836 {
8837         size_t size = sizeof(sa->sa_data);
8838         struct net_device *dev;
8839         int ret = 0;
8840
8841         down_read(&dev_addr_sem);
8842         rcu_read_lock();
8843
8844         dev = dev_get_by_name_rcu(net, dev_name);
8845         if (!dev) {
8846                 ret = -ENODEV;
8847                 goto unlock;
8848         }
8849         if (!dev->addr_len)
8850                 memset(sa->sa_data, 0, size);
8851         else
8852                 memcpy(sa->sa_data, dev->dev_addr,
8853                        min_t(size_t, size, dev->addr_len));
8854         sa->sa_family = dev->type;
8855
8856 unlock:
8857         rcu_read_unlock();
8858         up_read(&dev_addr_sem);
8859         return ret;
8860 }
8861 EXPORT_SYMBOL(dev_get_mac_address);
8862
8863 /**
8864  *      dev_change_carrier - Change device carrier
8865  *      @dev: device
8866  *      @new_carrier: new value
8867  *
8868  *      Change device carrier
8869  */
8870 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8871 {
8872         const struct net_device_ops *ops = dev->netdev_ops;
8873
8874         if (!ops->ndo_change_carrier)
8875                 return -EOPNOTSUPP;
8876         if (!netif_device_present(dev))
8877                 return -ENODEV;
8878         return ops->ndo_change_carrier(dev, new_carrier);
8879 }
8880
8881 /**
8882  *      dev_get_phys_port_id - Get device physical port ID
8883  *      @dev: device
8884  *      @ppid: port ID
8885  *
8886  *      Get device physical port ID
8887  */
8888 int dev_get_phys_port_id(struct net_device *dev,
8889                          struct netdev_phys_item_id *ppid)
8890 {
8891         const struct net_device_ops *ops = dev->netdev_ops;
8892
8893         if (!ops->ndo_get_phys_port_id)
8894                 return -EOPNOTSUPP;
8895         return ops->ndo_get_phys_port_id(dev, ppid);
8896 }
8897
8898 /**
8899  *      dev_get_phys_port_name - Get device physical port name
8900  *      @dev: device
8901  *      @name: port name
8902  *      @len: limit of bytes to copy to name
8903  *
8904  *      Get device physical port name
8905  */
8906 int dev_get_phys_port_name(struct net_device *dev,
8907                            char *name, size_t len)
8908 {
8909         const struct net_device_ops *ops = dev->netdev_ops;
8910         int err;
8911
8912         if (ops->ndo_get_phys_port_name) {
8913                 err = ops->ndo_get_phys_port_name(dev, name, len);
8914                 if (err != -EOPNOTSUPP)
8915                         return err;
8916         }
8917         return devlink_compat_phys_port_name_get(dev, name, len);
8918 }
8919
8920 /**
8921  *      dev_get_port_parent_id - Get the device's port parent identifier
8922  *      @dev: network device
8923  *      @ppid: pointer to a storage for the port's parent identifier
8924  *      @recurse: allow/disallow recursion to lower devices
8925  *
8926  *      Get the devices's port parent identifier
8927  */
8928 int dev_get_port_parent_id(struct net_device *dev,
8929                            struct netdev_phys_item_id *ppid,
8930                            bool recurse)
8931 {
8932         const struct net_device_ops *ops = dev->netdev_ops;
8933         struct netdev_phys_item_id first = { };
8934         struct net_device *lower_dev;
8935         struct list_head *iter;
8936         int err;
8937
8938         if (ops->ndo_get_port_parent_id) {
8939                 err = ops->ndo_get_port_parent_id(dev, ppid);
8940                 if (err != -EOPNOTSUPP)
8941                         return err;
8942         }
8943
8944         err = devlink_compat_switch_id_get(dev, ppid);
8945         if (!recurse || err != -EOPNOTSUPP)
8946                 return err;
8947
8948         netdev_for_each_lower_dev(dev, lower_dev, iter) {
8949                 err = dev_get_port_parent_id(lower_dev, ppid, true);
8950                 if (err)
8951                         break;
8952                 if (!first.id_len)
8953                         first = *ppid;
8954                 else if (memcmp(&first, ppid, sizeof(*ppid)))
8955                         return -EOPNOTSUPP;
8956         }
8957
8958         return err;
8959 }
8960 EXPORT_SYMBOL(dev_get_port_parent_id);
8961
8962 /**
8963  *      netdev_port_same_parent_id - Indicate if two network devices have
8964  *      the same port parent identifier
8965  *      @a: first network device
8966  *      @b: second network device
8967  */
8968 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8969 {
8970         struct netdev_phys_item_id a_id = { };
8971         struct netdev_phys_item_id b_id = { };
8972
8973         if (dev_get_port_parent_id(a, &a_id, true) ||
8974             dev_get_port_parent_id(b, &b_id, true))
8975                 return false;
8976
8977         return netdev_phys_item_id_same(&a_id, &b_id);
8978 }
8979 EXPORT_SYMBOL(netdev_port_same_parent_id);
8980
8981 /**
8982  *      dev_change_proto_down - set carrier according to proto_down.
8983  *
8984  *      @dev: device
8985  *      @proto_down: new value
8986  */
8987 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8988 {
8989         if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
8990                 return -EOPNOTSUPP;
8991         if (!netif_device_present(dev))
8992                 return -ENODEV;
8993         if (proto_down)
8994                 netif_carrier_off(dev);
8995         else
8996                 netif_carrier_on(dev);
8997         dev->proto_down = proto_down;
8998         return 0;
8999 }
9000
9001 /**
9002  *      dev_change_proto_down_reason - proto down reason
9003  *
9004  *      @dev: device
9005  *      @mask: proto down mask
9006  *      @value: proto down value
9007  */
9008 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9009                                   u32 value)
9010 {
9011         int b;
9012
9013         if (!mask) {
9014                 dev->proto_down_reason = value;
9015         } else {
9016                 for_each_set_bit(b, &mask, 32) {
9017                         if (value & (1 << b))
9018                                 dev->proto_down_reason |= BIT(b);
9019                         else
9020                                 dev->proto_down_reason &= ~BIT(b);
9021                 }
9022         }
9023 }
9024
9025 struct bpf_xdp_link {
9026         struct bpf_link link;
9027         struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9028         int flags;
9029 };
9030
9031 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9032 {
9033         if (flags & XDP_FLAGS_HW_MODE)
9034                 return XDP_MODE_HW;
9035         if (flags & XDP_FLAGS_DRV_MODE)
9036                 return XDP_MODE_DRV;
9037         if (flags & XDP_FLAGS_SKB_MODE)
9038                 return XDP_MODE_SKB;
9039         return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9040 }
9041
9042 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9043 {
9044         switch (mode) {
9045         case XDP_MODE_SKB:
9046                 return generic_xdp_install;
9047         case XDP_MODE_DRV:
9048         case XDP_MODE_HW:
9049                 return dev->netdev_ops->ndo_bpf;
9050         default:
9051                 return NULL;
9052         }
9053 }
9054
9055 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9056                                          enum bpf_xdp_mode mode)
9057 {
9058         return dev->xdp_state[mode].link;
9059 }
9060
9061 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9062                                      enum bpf_xdp_mode mode)
9063 {
9064         struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9065
9066         if (link)
9067                 return link->link.prog;
9068         return dev->xdp_state[mode].prog;
9069 }
9070
9071 u8 dev_xdp_prog_count(struct net_device *dev)
9072 {
9073         u8 count = 0;
9074         int i;
9075
9076         for (i = 0; i < __MAX_XDP_MODE; i++)
9077                 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9078                         count++;
9079         return count;
9080 }
9081 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9082
9083 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9084 {
9085         struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9086
9087         return prog ? prog->aux->id : 0;
9088 }
9089
9090 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9091                              struct bpf_xdp_link *link)
9092 {
9093         dev->xdp_state[mode].link = link;
9094         dev->xdp_state[mode].prog = NULL;
9095 }
9096
9097 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9098                              struct bpf_prog *prog)
9099 {
9100         dev->xdp_state[mode].link = NULL;
9101         dev->xdp_state[mode].prog = prog;
9102 }
9103
9104 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9105                            bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9106                            u32 flags, struct bpf_prog *prog)
9107 {
9108         struct netdev_bpf xdp;
9109         int err;
9110
9111         memset(&xdp, 0, sizeof(xdp));
9112         xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9113         xdp.extack = extack;
9114         xdp.flags = flags;
9115         xdp.prog = prog;
9116
9117         /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9118          * "moved" into driver), so they don't increment it on their own, but
9119          * they do decrement refcnt when program is detached or replaced.
9120          * Given net_device also owns link/prog, we need to bump refcnt here
9121          * to prevent drivers from underflowing it.
9122          */
9123         if (prog)
9124                 bpf_prog_inc(prog);
9125         err = bpf_op(dev, &xdp);
9126         if (err) {
9127                 if (prog)
9128                         bpf_prog_put(prog);
9129                 return err;
9130         }
9131
9132         if (mode != XDP_MODE_HW)
9133                 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9134
9135         return 0;
9136 }
9137
9138 static void dev_xdp_uninstall(struct net_device *dev)
9139 {
9140         struct bpf_xdp_link *link;
9141         struct bpf_prog *prog;
9142         enum bpf_xdp_mode mode;
9143         bpf_op_t bpf_op;
9144
9145         ASSERT_RTNL();
9146
9147         for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9148                 prog = dev_xdp_prog(dev, mode);
9149                 if (!prog)
9150                         continue;
9151
9152                 bpf_op = dev_xdp_bpf_op(dev, mode);
9153                 if (!bpf_op)
9154                         continue;
9155
9156                 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9157
9158                 /* auto-detach link from net device */
9159                 link = dev_xdp_link(dev, mode);
9160                 if (link)
9161                         link->dev = NULL;
9162                 else
9163                         bpf_prog_put(prog);
9164
9165                 dev_xdp_set_link(dev, mode, NULL);
9166         }
9167 }
9168
9169 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9170                           struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9171                           struct bpf_prog *old_prog, u32 flags)
9172 {
9173         unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9174         struct bpf_prog *cur_prog;
9175         struct net_device *upper;
9176         struct list_head *iter;
9177         enum bpf_xdp_mode mode;
9178         bpf_op_t bpf_op;
9179         int err;
9180
9181         ASSERT_RTNL();
9182
9183         /* either link or prog attachment, never both */
9184         if (link && (new_prog || old_prog))
9185                 return -EINVAL;
9186         /* link supports only XDP mode flags */
9187         if (link && (flags & ~XDP_FLAGS_MODES)) {
9188                 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9189                 return -EINVAL;
9190         }
9191         /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9192         if (num_modes > 1) {
9193                 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9194                 return -EINVAL;
9195         }
9196         /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9197         if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9198                 NL_SET_ERR_MSG(extack,
9199                                "More than one program loaded, unset mode is ambiguous");
9200                 return -EINVAL;
9201         }
9202         /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9203         if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9204                 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9205                 return -EINVAL;
9206         }
9207
9208         mode = dev_xdp_mode(dev, flags);
9209         /* can't replace attached link */
9210         if (dev_xdp_link(dev, mode)) {
9211                 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9212                 return -EBUSY;
9213         }
9214
9215         /* don't allow if an upper device already has a program */
9216         netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9217                 if (dev_xdp_prog_count(upper) > 0) {
9218                         NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9219                         return -EEXIST;
9220                 }
9221         }
9222
9223         cur_prog = dev_xdp_prog(dev, mode);
9224         /* can't replace attached prog with link */
9225         if (link && cur_prog) {
9226                 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9227                 return -EBUSY;
9228         }
9229         if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9230                 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9231                 return -EEXIST;
9232         }
9233
9234         /* put effective new program into new_prog */
9235         if (link)
9236                 new_prog = link->link.prog;
9237
9238         if (new_prog) {
9239                 bool offload = mode == XDP_MODE_HW;
9240                 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9241                                                ? XDP_MODE_DRV : XDP_MODE_SKB;
9242
9243                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9244                         NL_SET_ERR_MSG(extack, "XDP program already attached");
9245                         return -EBUSY;
9246                 }
9247                 if (!offload && dev_xdp_prog(dev, other_mode)) {
9248                         NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9249                         return -EEXIST;
9250                 }
9251                 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9252                         NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9253                         return -EINVAL;
9254                 }
9255                 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9256                         NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9257                         return -EINVAL;
9258                 }
9259                 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9260                         NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9261                         return -EINVAL;
9262                 }
9263         }
9264
9265         /* don't call drivers if the effective program didn't change */
9266         if (new_prog != cur_prog) {
9267                 bpf_op = dev_xdp_bpf_op(dev, mode);
9268                 if (!bpf_op) {
9269                         NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9270                         return -EOPNOTSUPP;
9271                 }
9272
9273                 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9274                 if (err)
9275                         return err;
9276         }
9277
9278         if (link)
9279                 dev_xdp_set_link(dev, mode, link);
9280         else
9281                 dev_xdp_set_prog(dev, mode, new_prog);
9282         if (cur_prog)
9283                 bpf_prog_put(cur_prog);
9284
9285         return 0;
9286 }
9287
9288 static int dev_xdp_attach_link(struct net_device *dev,
9289                                struct netlink_ext_ack *extack,
9290                                struct bpf_xdp_link *link)
9291 {
9292         return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9293 }
9294
9295 static int dev_xdp_detach_link(struct net_device *dev,
9296                                struct netlink_ext_ack *extack,
9297                                struct bpf_xdp_link *link)
9298 {
9299         enum bpf_xdp_mode mode;
9300         bpf_op_t bpf_op;
9301
9302         ASSERT_RTNL();
9303
9304         mode = dev_xdp_mode(dev, link->flags);
9305         if (dev_xdp_link(dev, mode) != link)
9306                 return -EINVAL;
9307
9308         bpf_op = dev_xdp_bpf_op(dev, mode);
9309         WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9310         dev_xdp_set_link(dev, mode, NULL);
9311         return 0;
9312 }
9313
9314 static void bpf_xdp_link_release(struct bpf_link *link)
9315 {
9316         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9317
9318         rtnl_lock();
9319
9320         /* if racing with net_device's tear down, xdp_link->dev might be
9321          * already NULL, in which case link was already auto-detached
9322          */
9323         if (xdp_link->dev) {
9324                 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9325                 xdp_link->dev = NULL;
9326         }
9327
9328         rtnl_unlock();
9329 }
9330
9331 static int bpf_xdp_link_detach(struct bpf_link *link)
9332 {
9333         bpf_xdp_link_release(link);
9334         return 0;
9335 }
9336
9337 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9338 {
9339         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9340
9341         kfree(xdp_link);
9342 }
9343
9344 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9345                                      struct seq_file *seq)
9346 {
9347         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9348         u32 ifindex = 0;
9349
9350         rtnl_lock();
9351         if (xdp_link->dev)
9352                 ifindex = xdp_link->dev->ifindex;
9353         rtnl_unlock();
9354
9355         seq_printf(seq, "ifindex:\t%u\n", ifindex);
9356 }
9357
9358 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9359                                        struct bpf_link_info *info)
9360 {
9361         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9362         u32 ifindex = 0;
9363
9364         rtnl_lock();
9365         if (xdp_link->dev)
9366                 ifindex = xdp_link->dev->ifindex;
9367         rtnl_unlock();
9368
9369         info->xdp.ifindex = ifindex;
9370         return 0;
9371 }
9372
9373 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9374                                struct bpf_prog *old_prog)
9375 {
9376         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9377         enum bpf_xdp_mode mode;
9378         bpf_op_t bpf_op;
9379         int err = 0;
9380
9381         rtnl_lock();
9382
9383         /* link might have been auto-released already, so fail */
9384         if (!xdp_link->dev) {
9385                 err = -ENOLINK;
9386                 goto out_unlock;
9387         }
9388
9389         if (old_prog && link->prog != old_prog) {
9390                 err = -EPERM;
9391                 goto out_unlock;
9392         }
9393         old_prog = link->prog;
9394         if (old_prog->type != new_prog->type ||
9395             old_prog->expected_attach_type != new_prog->expected_attach_type) {
9396                 err = -EINVAL;
9397                 goto out_unlock;
9398         }
9399
9400         if (old_prog == new_prog) {
9401                 /* no-op, don't disturb drivers */
9402                 bpf_prog_put(new_prog);
9403                 goto out_unlock;
9404         }
9405
9406         mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9407         bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9408         err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9409                               xdp_link->flags, new_prog);
9410         if (err)
9411                 goto out_unlock;
9412
9413         old_prog = xchg(&link->prog, new_prog);
9414         bpf_prog_put(old_prog);
9415
9416 out_unlock:
9417         rtnl_unlock();
9418         return err;
9419 }
9420
9421 static const struct bpf_link_ops bpf_xdp_link_lops = {
9422         .release = bpf_xdp_link_release,
9423         .dealloc = bpf_xdp_link_dealloc,
9424         .detach = bpf_xdp_link_detach,
9425         .show_fdinfo = bpf_xdp_link_show_fdinfo,
9426         .fill_link_info = bpf_xdp_link_fill_link_info,
9427         .update_prog = bpf_xdp_link_update,
9428 };
9429
9430 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9431 {
9432         struct net *net = current->nsproxy->net_ns;
9433         struct bpf_link_primer link_primer;
9434         struct bpf_xdp_link *link;
9435         struct net_device *dev;
9436         int err, fd;
9437
9438         rtnl_lock();
9439         dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9440         if (!dev) {
9441                 rtnl_unlock();
9442                 return -EINVAL;
9443         }
9444
9445         link = kzalloc(sizeof(*link), GFP_USER);
9446         if (!link) {
9447                 err = -ENOMEM;
9448                 goto unlock;
9449         }
9450
9451         bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9452         link->dev = dev;
9453         link->flags = attr->link_create.flags;
9454
9455         err = bpf_link_prime(&link->link, &link_primer);
9456         if (err) {
9457                 kfree(link);
9458                 goto unlock;
9459         }
9460
9461         err = dev_xdp_attach_link(dev, NULL, link);
9462         rtnl_unlock();
9463
9464         if (err) {
9465                 link->dev = NULL;
9466                 bpf_link_cleanup(&link_primer);
9467                 goto out_put_dev;
9468         }
9469
9470         fd = bpf_link_settle(&link_primer);
9471         /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9472         dev_put(dev);
9473         return fd;
9474
9475 unlock:
9476         rtnl_unlock();
9477
9478 out_put_dev:
9479         dev_put(dev);
9480         return err;
9481 }
9482
9483 /**
9484  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
9485  *      @dev: device
9486  *      @extack: netlink extended ack
9487  *      @fd: new program fd or negative value to clear
9488  *      @expected_fd: old program fd that userspace expects to replace or clear
9489  *      @flags: xdp-related flags
9490  *
9491  *      Set or clear a bpf program for a device
9492  */
9493 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9494                       int fd, int expected_fd, u32 flags)
9495 {
9496         enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9497         struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9498         int err;
9499
9500         ASSERT_RTNL();
9501
9502         if (fd >= 0) {
9503                 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9504                                                  mode != XDP_MODE_SKB);
9505                 if (IS_ERR(new_prog))
9506                         return PTR_ERR(new_prog);
9507         }
9508
9509         if (expected_fd >= 0) {
9510                 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9511                                                  mode != XDP_MODE_SKB);
9512                 if (IS_ERR(old_prog)) {
9513                         err = PTR_ERR(old_prog);
9514                         old_prog = NULL;
9515                         goto err_out;
9516                 }
9517         }
9518
9519         err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9520
9521 err_out:
9522         if (err && new_prog)
9523                 bpf_prog_put(new_prog);
9524         if (old_prog)
9525                 bpf_prog_put(old_prog);
9526         return err;
9527 }
9528
9529 /**
9530  *      dev_new_index   -       allocate an ifindex
9531  *      @net: the applicable net namespace
9532  *
9533  *      Returns a suitable unique value for a new device interface
9534  *      number.  The caller must hold the rtnl semaphore or the
9535  *      dev_base_lock to be sure it remains unique.
9536  */
9537 static int dev_new_index(struct net *net)
9538 {
9539         int ifindex = net->ifindex;
9540
9541         for (;;) {
9542                 if (++ifindex <= 0)
9543                         ifindex = 1;
9544                 if (!__dev_get_by_index(net, ifindex))
9545                         return net->ifindex = ifindex;
9546         }
9547 }
9548
9549 /* Delayed registration/unregisteration */
9550 LIST_HEAD(net_todo_list);
9551 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9552
9553 static void net_set_todo(struct net_device *dev)
9554 {
9555         list_add_tail(&dev->todo_list, &net_todo_list);
9556         atomic_inc(&dev_net(dev)->dev_unreg_count);
9557 }
9558
9559 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9560         struct net_device *upper, netdev_features_t features)
9561 {
9562         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9563         netdev_features_t feature;
9564         int feature_bit;
9565
9566         for_each_netdev_feature(upper_disables, feature_bit) {
9567                 feature = __NETIF_F_BIT(feature_bit);
9568                 if (!(upper->wanted_features & feature)
9569                     && (features & feature)) {
9570                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9571                                    &feature, upper->name);
9572                         features &= ~feature;
9573                 }
9574         }
9575
9576         return features;
9577 }
9578
9579 static void netdev_sync_lower_features(struct net_device *upper,
9580         struct net_device *lower, netdev_features_t features)
9581 {
9582         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9583         netdev_features_t feature;
9584         int feature_bit;
9585
9586         for_each_netdev_feature(upper_disables, feature_bit) {
9587                 feature = __NETIF_F_BIT(feature_bit);
9588                 if (!(features & feature) && (lower->features & feature)) {
9589                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9590                                    &feature, lower->name);
9591                         lower->wanted_features &= ~feature;
9592                         __netdev_update_features(lower);
9593
9594                         if (unlikely(lower->features & feature))
9595                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9596                                             &feature, lower->name);
9597                         else
9598                                 netdev_features_change(lower);
9599                 }
9600         }
9601 }
9602
9603 static netdev_features_t netdev_fix_features(struct net_device *dev,
9604         netdev_features_t features)
9605 {
9606         /* Fix illegal checksum combinations */
9607         if ((features & NETIF_F_HW_CSUM) &&
9608             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9609                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9610                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9611         }
9612
9613         /* TSO requires that SG is present as well. */
9614         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9615                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9616                 features &= ~NETIF_F_ALL_TSO;
9617         }
9618
9619         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9620                                         !(features & NETIF_F_IP_CSUM)) {
9621                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9622                 features &= ~NETIF_F_TSO;
9623                 features &= ~NETIF_F_TSO_ECN;
9624         }
9625
9626         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9627                                          !(features & NETIF_F_IPV6_CSUM)) {
9628                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9629                 features &= ~NETIF_F_TSO6;
9630         }
9631
9632         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9633         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9634                 features &= ~NETIF_F_TSO_MANGLEID;
9635
9636         /* TSO ECN requires that TSO is present as well. */
9637         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9638                 features &= ~NETIF_F_TSO_ECN;
9639
9640         /* Software GSO depends on SG. */
9641         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9642                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9643                 features &= ~NETIF_F_GSO;
9644         }
9645
9646         /* GSO partial features require GSO partial be set */
9647         if ((features & dev->gso_partial_features) &&
9648             !(features & NETIF_F_GSO_PARTIAL)) {
9649                 netdev_dbg(dev,
9650                            "Dropping partially supported GSO features since no GSO partial.\n");
9651                 features &= ~dev->gso_partial_features;
9652         }
9653
9654         if (!(features & NETIF_F_RXCSUM)) {
9655                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9656                  * successfully merged by hardware must also have the
9657                  * checksum verified by hardware.  If the user does not
9658                  * want to enable RXCSUM, logically, we should disable GRO_HW.
9659                  */
9660                 if (features & NETIF_F_GRO_HW) {
9661                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9662                         features &= ~NETIF_F_GRO_HW;
9663                 }
9664         }
9665
9666         /* LRO/HW-GRO features cannot be combined with RX-FCS */
9667         if (features & NETIF_F_RXFCS) {
9668                 if (features & NETIF_F_LRO) {
9669                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9670                         features &= ~NETIF_F_LRO;
9671                 }
9672
9673                 if (features & NETIF_F_GRO_HW) {
9674                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9675                         features &= ~NETIF_F_GRO_HW;
9676                 }
9677         }
9678
9679         if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9680                 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9681                 features &= ~NETIF_F_LRO;
9682         }
9683
9684         if (features & NETIF_F_HW_TLS_TX) {
9685                 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9686                         (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9687                 bool hw_csum = features & NETIF_F_HW_CSUM;
9688
9689                 if (!ip_csum && !hw_csum) {
9690                         netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9691                         features &= ~NETIF_F_HW_TLS_TX;
9692                 }
9693         }
9694
9695         if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9696                 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9697                 features &= ~NETIF_F_HW_TLS_RX;
9698         }
9699
9700         return features;
9701 }
9702
9703 int __netdev_update_features(struct net_device *dev)
9704 {
9705         struct net_device *upper, *lower;
9706         netdev_features_t features;
9707         struct list_head *iter;
9708         int err = -1;
9709
9710         ASSERT_RTNL();
9711
9712         features = netdev_get_wanted_features(dev);
9713
9714         if (dev->netdev_ops->ndo_fix_features)
9715                 features = dev->netdev_ops->ndo_fix_features(dev, features);
9716
9717         /* driver might be less strict about feature dependencies */
9718         features = netdev_fix_features(dev, features);
9719
9720         /* some features can't be enabled if they're off on an upper device */
9721         netdev_for_each_upper_dev_rcu(dev, upper, iter)
9722                 features = netdev_sync_upper_features(dev, upper, features);
9723
9724         if (dev->features == features)
9725                 goto sync_lower;
9726
9727         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9728                 &dev->features, &features);
9729
9730         if (dev->netdev_ops->ndo_set_features)
9731                 err = dev->netdev_ops->ndo_set_features(dev, features);
9732         else
9733                 err = 0;
9734
9735         if (unlikely(err < 0)) {
9736                 netdev_err(dev,
9737                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
9738                         err, &features, &dev->features);
9739                 /* return non-0 since some features might have changed and
9740                  * it's better to fire a spurious notification than miss it
9741                  */
9742                 return -1;
9743         }
9744
9745 sync_lower:
9746         /* some features must be disabled on lower devices when disabled
9747          * on an upper device (think: bonding master or bridge)
9748          */
9749         netdev_for_each_lower_dev(dev, lower, iter)
9750                 netdev_sync_lower_features(dev, lower, features);
9751
9752         if (!err) {
9753                 netdev_features_t diff = features ^ dev->features;
9754
9755                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9756                         /* udp_tunnel_{get,drop}_rx_info both need
9757                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9758                          * device, or they won't do anything.
9759                          * Thus we need to update dev->features
9760                          * *before* calling udp_tunnel_get_rx_info,
9761                          * but *after* calling udp_tunnel_drop_rx_info.
9762                          */
9763                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9764                                 dev->features = features;
9765                                 udp_tunnel_get_rx_info(dev);
9766                         } else {
9767                                 udp_tunnel_drop_rx_info(dev);
9768                         }
9769                 }
9770
9771                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9772                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9773                                 dev->features = features;
9774                                 err |= vlan_get_rx_ctag_filter_info(dev);
9775                         } else {
9776                                 vlan_drop_rx_ctag_filter_info(dev);
9777                         }
9778                 }
9779
9780                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9781                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9782                                 dev->features = features;
9783                                 err |= vlan_get_rx_stag_filter_info(dev);
9784                         } else {
9785                                 vlan_drop_rx_stag_filter_info(dev);
9786                         }
9787                 }
9788
9789                 dev->features = features;
9790         }
9791
9792         return err < 0 ? 0 : 1;
9793 }
9794
9795 /**
9796  *      netdev_update_features - recalculate device features
9797  *      @dev: the device to check
9798  *
9799  *      Recalculate dev->features set and send notifications if it
9800  *      has changed. Should be called after driver or hardware dependent
9801  *      conditions might have changed that influence the features.
9802  */
9803 void netdev_update_features(struct net_device *dev)
9804 {
9805         if (__netdev_update_features(dev))
9806                 netdev_features_change(dev);
9807 }
9808 EXPORT_SYMBOL(netdev_update_features);
9809
9810 /**
9811  *      netdev_change_features - recalculate device features
9812  *      @dev: the device to check
9813  *
9814  *      Recalculate dev->features set and send notifications even
9815  *      if they have not changed. Should be called instead of
9816  *      netdev_update_features() if also dev->vlan_features might
9817  *      have changed to allow the changes to be propagated to stacked
9818  *      VLAN devices.
9819  */
9820 void netdev_change_features(struct net_device *dev)
9821 {
9822         __netdev_update_features(dev);
9823         netdev_features_change(dev);
9824 }
9825 EXPORT_SYMBOL(netdev_change_features);
9826
9827 /**
9828  *      netif_stacked_transfer_operstate -      transfer operstate
9829  *      @rootdev: the root or lower level device to transfer state from
9830  *      @dev: the device to transfer operstate to
9831  *
9832  *      Transfer operational state from root to device. This is normally
9833  *      called when a stacking relationship exists between the root
9834  *      device and the device(a leaf device).
9835  */
9836 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9837                                         struct net_device *dev)
9838 {
9839         if (rootdev->operstate == IF_OPER_DORMANT)
9840                 netif_dormant_on(dev);
9841         else
9842                 netif_dormant_off(dev);
9843
9844         if (rootdev->operstate == IF_OPER_TESTING)
9845                 netif_testing_on(dev);
9846         else
9847                 netif_testing_off(dev);
9848
9849         if (netif_carrier_ok(rootdev))
9850                 netif_carrier_on(dev);
9851         else
9852                 netif_carrier_off(dev);
9853 }
9854 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9855
9856 static int netif_alloc_rx_queues(struct net_device *dev)
9857 {
9858         unsigned int i, count = dev->num_rx_queues;
9859         struct netdev_rx_queue *rx;
9860         size_t sz = count * sizeof(*rx);
9861         int err = 0;
9862
9863         BUG_ON(count < 1);
9864
9865         rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9866         if (!rx)
9867                 return -ENOMEM;
9868
9869         dev->_rx = rx;
9870
9871         for (i = 0; i < count; i++) {
9872                 rx[i].dev = dev;
9873
9874                 /* XDP RX-queue setup */
9875                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9876                 if (err < 0)
9877                         goto err_rxq_info;
9878         }
9879         return 0;
9880
9881 err_rxq_info:
9882         /* Rollback successful reg's and free other resources */
9883         while (i--)
9884                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9885         kvfree(dev->_rx);
9886         dev->_rx = NULL;
9887         return err;
9888 }
9889
9890 static void netif_free_rx_queues(struct net_device *dev)
9891 {
9892         unsigned int i, count = dev->num_rx_queues;
9893
9894         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9895         if (!dev->_rx)
9896                 return;
9897
9898         for (i = 0; i < count; i++)
9899                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9900
9901         kvfree(dev->_rx);
9902 }
9903
9904 static void netdev_init_one_queue(struct net_device *dev,
9905                                   struct netdev_queue *queue, void *_unused)
9906 {
9907         /* Initialize queue lock */
9908         spin_lock_init(&queue->_xmit_lock);
9909         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9910         queue->xmit_lock_owner = -1;
9911         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9912         queue->dev = dev;
9913 #ifdef CONFIG_BQL
9914         dql_init(&queue->dql, HZ);
9915 #endif
9916 }
9917
9918 static void netif_free_tx_queues(struct net_device *dev)
9919 {
9920         kvfree(dev->_tx);
9921 }
9922
9923 static int netif_alloc_netdev_queues(struct net_device *dev)
9924 {
9925         unsigned int count = dev->num_tx_queues;
9926         struct netdev_queue *tx;
9927         size_t sz = count * sizeof(*tx);
9928
9929         if (count < 1 || count > 0xffff)
9930                 return -EINVAL;
9931
9932         tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9933         if (!tx)
9934                 return -ENOMEM;
9935
9936         dev->_tx = tx;
9937
9938         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9939         spin_lock_init(&dev->tx_global_lock);
9940
9941         return 0;
9942 }
9943
9944 void netif_tx_stop_all_queues(struct net_device *dev)
9945 {
9946         unsigned int i;
9947
9948         for (i = 0; i < dev->num_tx_queues; i++) {
9949                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9950
9951                 netif_tx_stop_queue(txq);
9952         }
9953 }
9954 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9955
9956 /**
9957  * register_netdevice() - register a network device
9958  * @dev: device to register
9959  *
9960  * Take a prepared network device structure and make it externally accessible.
9961  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
9962  * Callers must hold the rtnl lock - you may want register_netdev()
9963  * instead of this.
9964  */
9965 int register_netdevice(struct net_device *dev)
9966 {
9967         int ret;
9968         struct net *net = dev_net(dev);
9969
9970         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9971                      NETDEV_FEATURE_COUNT);
9972         BUG_ON(dev_boot_phase);
9973         ASSERT_RTNL();
9974
9975         might_sleep();
9976
9977         /* When net_device's are persistent, this will be fatal. */
9978         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9979         BUG_ON(!net);
9980
9981         ret = ethtool_check_ops(dev->ethtool_ops);
9982         if (ret)
9983                 return ret;
9984
9985         spin_lock_init(&dev->addr_list_lock);
9986         netdev_set_addr_lockdep_class(dev);
9987
9988         ret = dev_get_valid_name(net, dev, dev->name);
9989         if (ret < 0)
9990                 goto out;
9991
9992         ret = -ENOMEM;
9993         dev->name_node = netdev_name_node_head_alloc(dev);
9994         if (!dev->name_node)
9995                 goto out;
9996
9997         /* Init, if this function is available */
9998         if (dev->netdev_ops->ndo_init) {
9999                 ret = dev->netdev_ops->ndo_init(dev);
10000                 if (ret) {
10001                         if (ret > 0)
10002                                 ret = -EIO;
10003                         goto err_free_name;
10004                 }
10005         }
10006
10007         if (((dev->hw_features | dev->features) &
10008              NETIF_F_HW_VLAN_CTAG_FILTER) &&
10009             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10010              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10011                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10012                 ret = -EINVAL;
10013                 goto err_uninit;
10014         }
10015
10016         ret = -EBUSY;
10017         if (!dev->ifindex)
10018                 dev->ifindex = dev_new_index(net);
10019         else if (__dev_get_by_index(net, dev->ifindex))
10020                 goto err_uninit;
10021
10022         /* Transfer changeable features to wanted_features and enable
10023          * software offloads (GSO and GRO).
10024          */
10025         dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10026         dev->features |= NETIF_F_SOFT_FEATURES;
10027
10028         if (dev->udp_tunnel_nic_info) {
10029                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10030                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10031         }
10032
10033         dev->wanted_features = dev->features & dev->hw_features;
10034
10035         if (!(dev->flags & IFF_LOOPBACK))
10036                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10037
10038         /* If IPv4 TCP segmentation offload is supported we should also
10039          * allow the device to enable segmenting the frame with the option
10040          * of ignoring a static IP ID value.  This doesn't enable the
10041          * feature itself but allows the user to enable it later.
10042          */
10043         if (dev->hw_features & NETIF_F_TSO)
10044                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10045         if (dev->vlan_features & NETIF_F_TSO)
10046                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10047         if (dev->mpls_features & NETIF_F_TSO)
10048                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10049         if (dev->hw_enc_features & NETIF_F_TSO)
10050                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10051
10052         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10053          */
10054         dev->vlan_features |= NETIF_F_HIGHDMA;
10055
10056         /* Make NETIF_F_SG inheritable to tunnel devices.
10057          */
10058         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10059
10060         /* Make NETIF_F_SG inheritable to MPLS.
10061          */
10062         dev->mpls_features |= NETIF_F_SG;
10063
10064         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10065         ret = notifier_to_errno(ret);
10066         if (ret)
10067                 goto err_uninit;
10068
10069         ret = netdev_register_kobject(dev);
10070         write_lock(&dev_base_lock);
10071         dev->reg_state = ret ? NETREG_UNREGISTERED : NETREG_REGISTERED;
10072         write_unlock(&dev_base_lock);
10073         if (ret)
10074                 goto err_uninit;
10075
10076         __netdev_update_features(dev);
10077
10078         /*
10079          *      Default initial state at registry is that the
10080          *      device is present.
10081          */
10082
10083         set_bit(__LINK_STATE_PRESENT, &dev->state);
10084
10085         linkwatch_init_dev(dev);
10086
10087         dev_init_scheduler(dev);
10088
10089         netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10090         list_netdevice(dev);
10091
10092         add_device_randomness(dev->dev_addr, dev->addr_len);
10093
10094         /* If the device has permanent device address, driver should
10095          * set dev_addr and also addr_assign_type should be set to
10096          * NET_ADDR_PERM (default value).
10097          */
10098         if (dev->addr_assign_type == NET_ADDR_PERM)
10099                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10100
10101         /* Notify protocols, that a new device appeared. */
10102         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10103         ret = notifier_to_errno(ret);
10104         if (ret) {
10105                 /* Expect explicit free_netdev() on failure */
10106                 dev->needs_free_netdev = false;
10107                 unregister_netdevice_queue(dev, NULL);
10108                 goto out;
10109         }
10110         /*
10111          *      Prevent userspace races by waiting until the network
10112          *      device is fully setup before sending notifications.
10113          */
10114         if (!dev->rtnl_link_ops ||
10115             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10116                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10117
10118 out:
10119         return ret;
10120
10121 err_uninit:
10122         if (dev->netdev_ops->ndo_uninit)
10123                 dev->netdev_ops->ndo_uninit(dev);
10124         if (dev->priv_destructor)
10125                 dev->priv_destructor(dev);
10126 err_free_name:
10127         netdev_name_node_free(dev->name_node);
10128         goto out;
10129 }
10130 EXPORT_SYMBOL(register_netdevice);
10131
10132 /**
10133  *      init_dummy_netdev       - init a dummy network device for NAPI
10134  *      @dev: device to init
10135  *
10136  *      This takes a network device structure and initialize the minimum
10137  *      amount of fields so it can be used to schedule NAPI polls without
10138  *      registering a full blown interface. This is to be used by drivers
10139  *      that need to tie several hardware interfaces to a single NAPI
10140  *      poll scheduler due to HW limitations.
10141  */
10142 int init_dummy_netdev(struct net_device *dev)
10143 {
10144         /* Clear everything. Note we don't initialize spinlocks
10145          * are they aren't supposed to be taken by any of the
10146          * NAPI code and this dummy netdev is supposed to be
10147          * only ever used for NAPI polls
10148          */
10149         memset(dev, 0, sizeof(struct net_device));
10150
10151         /* make sure we BUG if trying to hit standard
10152          * register/unregister code path
10153          */
10154         dev->reg_state = NETREG_DUMMY;
10155
10156         /* NAPI wants this */
10157         INIT_LIST_HEAD(&dev->napi_list);
10158
10159         /* a dummy interface is started by default */
10160         set_bit(__LINK_STATE_PRESENT, &dev->state);
10161         set_bit(__LINK_STATE_START, &dev->state);
10162
10163         /* napi_busy_loop stats accounting wants this */
10164         dev_net_set(dev, &init_net);
10165
10166         /* Note : We dont allocate pcpu_refcnt for dummy devices,
10167          * because users of this 'device' dont need to change
10168          * its refcount.
10169          */
10170
10171         return 0;
10172 }
10173 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10174
10175
10176 /**
10177  *      register_netdev - register a network device
10178  *      @dev: device to register
10179  *
10180  *      Take a completed network device structure and add it to the kernel
10181  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10182  *      chain. 0 is returned on success. A negative errno code is returned
10183  *      on a failure to set up the device, or if the name is a duplicate.
10184  *
10185  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
10186  *      and expands the device name if you passed a format string to
10187  *      alloc_netdev.
10188  */
10189 int register_netdev(struct net_device *dev)
10190 {
10191         int err;
10192
10193         if (rtnl_lock_killable())
10194                 return -EINTR;
10195         err = register_netdevice(dev);
10196         rtnl_unlock();
10197         return err;
10198 }
10199 EXPORT_SYMBOL(register_netdev);
10200
10201 int netdev_refcnt_read(const struct net_device *dev)
10202 {
10203 #ifdef CONFIG_PCPU_DEV_REFCNT
10204         int i, refcnt = 0;
10205
10206         for_each_possible_cpu(i)
10207                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10208         return refcnt;
10209 #else
10210         return refcount_read(&dev->dev_refcnt);
10211 #endif
10212 }
10213 EXPORT_SYMBOL(netdev_refcnt_read);
10214
10215 int netdev_unregister_timeout_secs __read_mostly = 10;
10216
10217 #define WAIT_REFS_MIN_MSECS 1
10218 #define WAIT_REFS_MAX_MSECS 250
10219 /**
10220  * netdev_wait_allrefs_any - wait until all references are gone.
10221  * @list: list of net_devices to wait on
10222  *
10223  * This is called when unregistering network devices.
10224  *
10225  * Any protocol or device that holds a reference should register
10226  * for netdevice notification, and cleanup and put back the
10227  * reference if they receive an UNREGISTER event.
10228  * We can get stuck here if buggy protocols don't correctly
10229  * call dev_put.
10230  */
10231 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10232 {
10233         unsigned long rebroadcast_time, warning_time;
10234         struct net_device *dev;
10235         int wait = 0;
10236
10237         rebroadcast_time = warning_time = jiffies;
10238
10239         list_for_each_entry(dev, list, todo_list)
10240                 if (netdev_refcnt_read(dev) == 1)
10241                         return dev;
10242
10243         while (true) {
10244                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10245                         rtnl_lock();
10246
10247                         /* Rebroadcast unregister notification */
10248                         list_for_each_entry(dev, list, todo_list)
10249                                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10250
10251                         __rtnl_unlock();
10252                         rcu_barrier();
10253                         rtnl_lock();
10254
10255                         list_for_each_entry(dev, list, todo_list)
10256                                 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10257                                              &dev->state)) {
10258                                         /* We must not have linkwatch events
10259                                          * pending on unregister. If this
10260                                          * happens, we simply run the queue
10261                                          * unscheduled, resulting in a noop
10262                                          * for this device.
10263                                          */
10264                                         linkwatch_run_queue();
10265                                         break;
10266                                 }
10267
10268                         __rtnl_unlock();
10269
10270                         rebroadcast_time = jiffies;
10271                 }
10272
10273                 if (!wait) {
10274                         rcu_barrier();
10275                         wait = WAIT_REFS_MIN_MSECS;
10276                 } else {
10277                         msleep(wait);
10278                         wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10279                 }
10280
10281                 list_for_each_entry(dev, list, todo_list)
10282                         if (netdev_refcnt_read(dev) == 1)
10283                                 return dev;
10284
10285                 if (time_after(jiffies, warning_time +
10286                                netdev_unregister_timeout_secs * HZ)) {
10287                         list_for_each_entry(dev, list, todo_list) {
10288                                 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10289                                          dev->name, netdev_refcnt_read(dev));
10290                                 ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10291                         }
10292
10293                         warning_time = jiffies;
10294                 }
10295         }
10296 }
10297
10298 /* The sequence is:
10299  *
10300  *      rtnl_lock();
10301  *      ...
10302  *      register_netdevice(x1);
10303  *      register_netdevice(x2);
10304  *      ...
10305  *      unregister_netdevice(y1);
10306  *      unregister_netdevice(y2);
10307  *      ...
10308  *      rtnl_unlock();
10309  *      free_netdev(y1);
10310  *      free_netdev(y2);
10311  *
10312  * We are invoked by rtnl_unlock().
10313  * This allows us to deal with problems:
10314  * 1) We can delete sysfs objects which invoke hotplug
10315  *    without deadlocking with linkwatch via keventd.
10316  * 2) Since we run with the RTNL semaphore not held, we can sleep
10317  *    safely in order to wait for the netdev refcnt to drop to zero.
10318  *
10319  * We must not return until all unregister events added during
10320  * the interval the lock was held have been completed.
10321  */
10322 void netdev_run_todo(void)
10323 {
10324         struct net_device *dev, *tmp;
10325         struct list_head list;
10326 #ifdef CONFIG_LOCKDEP
10327         struct list_head unlink_list;
10328
10329         list_replace_init(&net_unlink_list, &unlink_list);
10330
10331         while (!list_empty(&unlink_list)) {
10332                 struct net_device *dev = list_first_entry(&unlink_list,
10333                                                           struct net_device,
10334                                                           unlink_list);
10335                 list_del_init(&dev->unlink_list);
10336                 dev->nested_level = dev->lower_level - 1;
10337         }
10338 #endif
10339
10340         /* Snapshot list, allow later requests */
10341         list_replace_init(&net_todo_list, &list);
10342
10343         __rtnl_unlock();
10344
10345         /* Wait for rcu callbacks to finish before next phase */
10346         if (!list_empty(&list))
10347                 rcu_barrier();
10348
10349         list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10350                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10351                         netdev_WARN(dev, "run_todo but not unregistering\n");
10352                         list_del(&dev->todo_list);
10353                         continue;
10354                 }
10355
10356                 write_lock(&dev_base_lock);
10357                 dev->reg_state = NETREG_UNREGISTERED;
10358                 write_unlock(&dev_base_lock);
10359                 linkwatch_forget_dev(dev);
10360         }
10361
10362         while (!list_empty(&list)) {
10363                 dev = netdev_wait_allrefs_any(&list);
10364                 list_del(&dev->todo_list);
10365
10366                 /* paranoia */
10367                 BUG_ON(netdev_refcnt_read(dev) != 1);
10368                 BUG_ON(!list_empty(&dev->ptype_all));
10369                 BUG_ON(!list_empty(&dev->ptype_specific));
10370                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10371                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10372 #if IS_ENABLED(CONFIG_DECNET)
10373                 WARN_ON(dev->dn_ptr);
10374 #endif
10375                 if (dev->priv_destructor)
10376                         dev->priv_destructor(dev);
10377                 if (dev->needs_free_netdev)
10378                         free_netdev(dev);
10379
10380                 if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count))
10381                         wake_up(&netdev_unregistering_wq);
10382
10383                 /* Free network device */
10384                 kobject_put(&dev->dev.kobj);
10385         }
10386 }
10387
10388 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10389  * all the same fields in the same order as net_device_stats, with only
10390  * the type differing, but rtnl_link_stats64 may have additional fields
10391  * at the end for newer counters.
10392  */
10393 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10394                              const struct net_device_stats *netdev_stats)
10395 {
10396 #if BITS_PER_LONG == 64
10397         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10398         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10399         /* zero out counters that only exist in rtnl_link_stats64 */
10400         memset((char *)stats64 + sizeof(*netdev_stats), 0,
10401                sizeof(*stats64) - sizeof(*netdev_stats));
10402 #else
10403         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10404         const unsigned long *src = (const unsigned long *)netdev_stats;
10405         u64 *dst = (u64 *)stats64;
10406
10407         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10408         for (i = 0; i < n; i++)
10409                 dst[i] = src[i];
10410         /* zero out counters that only exist in rtnl_link_stats64 */
10411         memset((char *)stats64 + n * sizeof(u64), 0,
10412                sizeof(*stats64) - n * sizeof(u64));
10413 #endif
10414 }
10415 EXPORT_SYMBOL(netdev_stats_to_stats64);
10416
10417 struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev)
10418 {
10419         struct net_device_core_stats __percpu *p;
10420
10421         p = alloc_percpu_gfp(struct net_device_core_stats,
10422                              GFP_ATOMIC | __GFP_NOWARN);
10423
10424         if (p && cmpxchg(&dev->core_stats, NULL, p))
10425                 free_percpu(p);
10426
10427         /* This READ_ONCE() pairs with the cmpxchg() above */
10428         return READ_ONCE(dev->core_stats);
10429 }
10430 EXPORT_SYMBOL(netdev_core_stats_alloc);
10431
10432 /**
10433  *      dev_get_stats   - get network device statistics
10434  *      @dev: device to get statistics from
10435  *      @storage: place to store stats
10436  *
10437  *      Get network statistics from device. Return @storage.
10438  *      The device driver may provide its own method by setting
10439  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10440  *      otherwise the internal statistics structure is used.
10441  */
10442 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10443                                         struct rtnl_link_stats64 *storage)
10444 {
10445         const struct net_device_ops *ops = dev->netdev_ops;
10446         const struct net_device_core_stats __percpu *p;
10447
10448         if (ops->ndo_get_stats64) {
10449                 memset(storage, 0, sizeof(*storage));
10450                 ops->ndo_get_stats64(dev, storage);
10451         } else if (ops->ndo_get_stats) {
10452                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10453         } else {
10454                 netdev_stats_to_stats64(storage, &dev->stats);
10455         }
10456
10457         /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10458         p = READ_ONCE(dev->core_stats);
10459         if (p) {
10460                 const struct net_device_core_stats *core_stats;
10461                 int i;
10462
10463                 for_each_possible_cpu(i) {
10464                         core_stats = per_cpu_ptr(p, i);
10465                         storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10466                         storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10467                         storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10468                         storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10469                 }
10470         }
10471         return storage;
10472 }
10473 EXPORT_SYMBOL(dev_get_stats);
10474
10475 /**
10476  *      dev_fetch_sw_netstats - get per-cpu network device statistics
10477  *      @s: place to store stats
10478  *      @netstats: per-cpu network stats to read from
10479  *
10480  *      Read per-cpu network statistics and populate the related fields in @s.
10481  */
10482 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10483                            const struct pcpu_sw_netstats __percpu *netstats)
10484 {
10485         int cpu;
10486
10487         for_each_possible_cpu(cpu) {
10488                 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10489                 const struct pcpu_sw_netstats *stats;
10490                 unsigned int start;
10491
10492                 stats = per_cpu_ptr(netstats, cpu);
10493                 do {
10494                         start = u64_stats_fetch_begin_irq(&stats->syncp);
10495                         rx_packets = u64_stats_read(&stats->rx_packets);
10496                         rx_bytes   = u64_stats_read(&stats->rx_bytes);
10497                         tx_packets = u64_stats_read(&stats->tx_packets);
10498                         tx_bytes   = u64_stats_read(&stats->tx_bytes);
10499                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10500
10501                 s->rx_packets += rx_packets;
10502                 s->rx_bytes   += rx_bytes;
10503                 s->tx_packets += tx_packets;
10504                 s->tx_bytes   += tx_bytes;
10505         }
10506 }
10507 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10508
10509 /**
10510  *      dev_get_tstats64 - ndo_get_stats64 implementation
10511  *      @dev: device to get statistics from
10512  *      @s: place to store stats
10513  *
10514  *      Populate @s from dev->stats and dev->tstats. Can be used as
10515  *      ndo_get_stats64() callback.
10516  */
10517 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10518 {
10519         netdev_stats_to_stats64(s, &dev->stats);
10520         dev_fetch_sw_netstats(s, dev->tstats);
10521 }
10522 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10523
10524 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10525 {
10526         struct netdev_queue *queue = dev_ingress_queue(dev);
10527
10528 #ifdef CONFIG_NET_CLS_ACT
10529         if (queue)
10530                 return queue;
10531         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10532         if (!queue)
10533                 return NULL;
10534         netdev_init_one_queue(dev, queue, NULL);
10535         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10536         queue->qdisc_sleeping = &noop_qdisc;
10537         rcu_assign_pointer(dev->ingress_queue, queue);
10538 #endif
10539         return queue;
10540 }
10541
10542 static const struct ethtool_ops default_ethtool_ops;
10543
10544 void netdev_set_default_ethtool_ops(struct net_device *dev,
10545                                     const struct ethtool_ops *ops)
10546 {
10547         if (dev->ethtool_ops == &default_ethtool_ops)
10548                 dev->ethtool_ops = ops;
10549 }
10550 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10551
10552 void netdev_freemem(struct net_device *dev)
10553 {
10554         char *addr = (char *)dev - dev->padded;
10555
10556         kvfree(addr);
10557 }
10558
10559 /**
10560  * alloc_netdev_mqs - allocate network device
10561  * @sizeof_priv: size of private data to allocate space for
10562  * @name: device name format string
10563  * @name_assign_type: origin of device name
10564  * @setup: callback to initialize device
10565  * @txqs: the number of TX subqueues to allocate
10566  * @rxqs: the number of RX subqueues to allocate
10567  *
10568  * Allocates a struct net_device with private data area for driver use
10569  * and performs basic initialization.  Also allocates subqueue structs
10570  * for each queue on the device.
10571  */
10572 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10573                 unsigned char name_assign_type,
10574                 void (*setup)(struct net_device *),
10575                 unsigned int txqs, unsigned int rxqs)
10576 {
10577         struct net_device *dev;
10578         unsigned int alloc_size;
10579         struct net_device *p;
10580
10581         BUG_ON(strlen(name) >= sizeof(dev->name));
10582
10583         if (txqs < 1) {
10584                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10585                 return NULL;
10586         }
10587
10588         if (rxqs < 1) {
10589                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10590                 return NULL;
10591         }
10592
10593         alloc_size = sizeof(struct net_device);
10594         if (sizeof_priv) {
10595                 /* ensure 32-byte alignment of private area */
10596                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10597                 alloc_size += sizeof_priv;
10598         }
10599         /* ensure 32-byte alignment of whole construct */
10600         alloc_size += NETDEV_ALIGN - 1;
10601
10602         p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10603         if (!p)
10604                 return NULL;
10605
10606         dev = PTR_ALIGN(p, NETDEV_ALIGN);
10607         dev->padded = (char *)dev - (char *)p;
10608
10609         ref_tracker_dir_init(&dev->refcnt_tracker, 128);
10610 #ifdef CONFIG_PCPU_DEV_REFCNT
10611         dev->pcpu_refcnt = alloc_percpu(int);
10612         if (!dev->pcpu_refcnt)
10613                 goto free_dev;
10614         __dev_hold(dev);
10615 #else
10616         refcount_set(&dev->dev_refcnt, 1);
10617 #endif
10618
10619         if (dev_addr_init(dev))
10620                 goto free_pcpu;
10621
10622         dev_mc_init(dev);
10623         dev_uc_init(dev);
10624
10625         dev_net_set(dev, &init_net);
10626
10627         dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
10628         dev->gso_max_segs = GSO_MAX_SEGS;
10629         dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
10630         dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
10631         dev->tso_max_segs = TSO_MAX_SEGS;
10632         dev->upper_level = 1;
10633         dev->lower_level = 1;
10634 #ifdef CONFIG_LOCKDEP
10635         dev->nested_level = 0;
10636         INIT_LIST_HEAD(&dev->unlink_list);
10637 #endif
10638
10639         INIT_LIST_HEAD(&dev->napi_list);
10640         INIT_LIST_HEAD(&dev->unreg_list);
10641         INIT_LIST_HEAD(&dev->close_list);
10642         INIT_LIST_HEAD(&dev->link_watch_list);
10643         INIT_LIST_HEAD(&dev->adj_list.upper);
10644         INIT_LIST_HEAD(&dev->adj_list.lower);
10645         INIT_LIST_HEAD(&dev->ptype_all);
10646         INIT_LIST_HEAD(&dev->ptype_specific);
10647         INIT_LIST_HEAD(&dev->net_notifier_list);
10648 #ifdef CONFIG_NET_SCHED
10649         hash_init(dev->qdisc_hash);
10650 #endif
10651         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10652         setup(dev);
10653
10654         if (!dev->tx_queue_len) {
10655                 dev->priv_flags |= IFF_NO_QUEUE;
10656                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10657         }
10658
10659         dev->num_tx_queues = txqs;
10660         dev->real_num_tx_queues = txqs;
10661         if (netif_alloc_netdev_queues(dev))
10662                 goto free_all;
10663
10664         dev->num_rx_queues = rxqs;
10665         dev->real_num_rx_queues = rxqs;
10666         if (netif_alloc_rx_queues(dev))
10667                 goto free_all;
10668
10669         strcpy(dev->name, name);
10670         dev->name_assign_type = name_assign_type;
10671         dev->group = INIT_NETDEV_GROUP;
10672         if (!dev->ethtool_ops)
10673                 dev->ethtool_ops = &default_ethtool_ops;
10674
10675         nf_hook_netdev_init(dev);
10676
10677         return dev;
10678
10679 free_all:
10680         free_netdev(dev);
10681         return NULL;
10682
10683 free_pcpu:
10684 #ifdef CONFIG_PCPU_DEV_REFCNT
10685         free_percpu(dev->pcpu_refcnt);
10686 free_dev:
10687 #endif
10688         netdev_freemem(dev);
10689         return NULL;
10690 }
10691 EXPORT_SYMBOL(alloc_netdev_mqs);
10692
10693 /**
10694  * free_netdev - free network device
10695  * @dev: device
10696  *
10697  * This function does the last stage of destroying an allocated device
10698  * interface. The reference to the device object is released. If this
10699  * is the last reference then it will be freed.Must be called in process
10700  * context.
10701  */
10702 void free_netdev(struct net_device *dev)
10703 {
10704         struct napi_struct *p, *n;
10705
10706         might_sleep();
10707
10708         /* When called immediately after register_netdevice() failed the unwind
10709          * handling may still be dismantling the device. Handle that case by
10710          * deferring the free.
10711          */
10712         if (dev->reg_state == NETREG_UNREGISTERING) {
10713                 ASSERT_RTNL();
10714                 dev->needs_free_netdev = true;
10715                 return;
10716         }
10717
10718         netif_free_tx_queues(dev);
10719         netif_free_rx_queues(dev);
10720
10721         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10722
10723         /* Flush device addresses */
10724         dev_addr_flush(dev);
10725
10726         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10727                 netif_napi_del(p);
10728
10729         ref_tracker_dir_exit(&dev->refcnt_tracker);
10730 #ifdef CONFIG_PCPU_DEV_REFCNT
10731         free_percpu(dev->pcpu_refcnt);
10732         dev->pcpu_refcnt = NULL;
10733 #endif
10734         free_percpu(dev->core_stats);
10735         dev->core_stats = NULL;
10736         free_percpu(dev->xdp_bulkq);
10737         dev->xdp_bulkq = NULL;
10738
10739         /*  Compatibility with error handling in drivers */
10740         if (dev->reg_state == NETREG_UNINITIALIZED) {
10741                 netdev_freemem(dev);
10742                 return;
10743         }
10744
10745         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10746         dev->reg_state = NETREG_RELEASED;
10747
10748         /* will free via device release */
10749         put_device(&dev->dev);
10750 }
10751 EXPORT_SYMBOL(free_netdev);
10752
10753 /**
10754  *      synchronize_net -  Synchronize with packet receive processing
10755  *
10756  *      Wait for packets currently being received to be done.
10757  *      Does not block later packets from starting.
10758  */
10759 void synchronize_net(void)
10760 {
10761         might_sleep();
10762         if (rtnl_is_locked())
10763                 synchronize_rcu_expedited();
10764         else
10765                 synchronize_rcu();
10766 }
10767 EXPORT_SYMBOL(synchronize_net);
10768
10769 /**
10770  *      unregister_netdevice_queue - remove device from the kernel
10771  *      @dev: device
10772  *      @head: list
10773  *
10774  *      This function shuts down a device interface and removes it
10775  *      from the kernel tables.
10776  *      If head not NULL, device is queued to be unregistered later.
10777  *
10778  *      Callers must hold the rtnl semaphore.  You may want
10779  *      unregister_netdev() instead of this.
10780  */
10781
10782 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10783 {
10784         ASSERT_RTNL();
10785
10786         if (head) {
10787                 list_move_tail(&dev->unreg_list, head);
10788         } else {
10789                 LIST_HEAD(single);
10790
10791                 list_add(&dev->unreg_list, &single);
10792                 unregister_netdevice_many(&single);
10793         }
10794 }
10795 EXPORT_SYMBOL(unregister_netdevice_queue);
10796
10797 /**
10798  *      unregister_netdevice_many - unregister many devices
10799  *      @head: list of devices
10800  *
10801  *  Note: As most callers use a stack allocated list_head,
10802  *  we force a list_del() to make sure stack wont be corrupted later.
10803  */
10804 void unregister_netdevice_many(struct list_head *head)
10805 {
10806         struct net_device *dev, *tmp;
10807         LIST_HEAD(close_head);
10808
10809         BUG_ON(dev_boot_phase);
10810         ASSERT_RTNL();
10811
10812         if (list_empty(head))
10813                 return;
10814
10815         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10816                 /* Some devices call without registering
10817                  * for initialization unwind. Remove those
10818                  * devices and proceed with the remaining.
10819                  */
10820                 if (dev->reg_state == NETREG_UNINITIALIZED) {
10821                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10822                                  dev->name, dev);
10823
10824                         WARN_ON(1);
10825                         list_del(&dev->unreg_list);
10826                         continue;
10827                 }
10828                 dev->dismantle = true;
10829                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
10830         }
10831
10832         /* If device is running, close it first. */
10833         list_for_each_entry(dev, head, unreg_list)
10834                 list_add_tail(&dev->close_list, &close_head);
10835         dev_close_many(&close_head, true);
10836
10837         list_for_each_entry(dev, head, unreg_list) {
10838                 /* And unlink it from device chain. */
10839                 write_lock(&dev_base_lock);
10840                 unlist_netdevice(dev, false);
10841                 dev->reg_state = NETREG_UNREGISTERING;
10842                 write_unlock(&dev_base_lock);
10843         }
10844         flush_all_backlogs();
10845
10846         synchronize_net();
10847
10848         list_for_each_entry(dev, head, unreg_list) {
10849                 struct sk_buff *skb = NULL;
10850
10851                 /* Shutdown queueing discipline. */
10852                 dev_shutdown(dev);
10853
10854                 dev_xdp_uninstall(dev);
10855
10856                 netdev_offload_xstats_disable_all(dev);
10857
10858                 /* Notify protocols, that we are about to destroy
10859                  * this device. They should clean all the things.
10860                  */
10861                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10862
10863                 if (!dev->rtnl_link_ops ||
10864                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10865                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
10866                                                      GFP_KERNEL, NULL, 0);
10867
10868                 /*
10869                  *      Flush the unicast and multicast chains
10870                  */
10871                 dev_uc_flush(dev);
10872                 dev_mc_flush(dev);
10873
10874                 netdev_name_node_alt_flush(dev);
10875                 netdev_name_node_free(dev->name_node);
10876
10877                 if (dev->netdev_ops->ndo_uninit)
10878                         dev->netdev_ops->ndo_uninit(dev);
10879
10880                 if (skb)
10881                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
10882
10883                 /* Notifier chain MUST detach us all upper devices. */
10884                 WARN_ON(netdev_has_any_upper_dev(dev));
10885                 WARN_ON(netdev_has_any_lower_dev(dev));
10886
10887                 /* Remove entries from kobject tree */
10888                 netdev_unregister_kobject(dev);
10889 #ifdef CONFIG_XPS
10890                 /* Remove XPS queueing entries */
10891                 netif_reset_xps_queues_gt(dev, 0);
10892 #endif
10893         }
10894
10895         synchronize_net();
10896
10897         list_for_each_entry(dev, head, unreg_list) {
10898                 netdev_put(dev, &dev->dev_registered_tracker);
10899                 net_set_todo(dev);
10900         }
10901
10902         list_del(head);
10903 }
10904 EXPORT_SYMBOL(unregister_netdevice_many);
10905
10906 /**
10907  *      unregister_netdev - remove device from the kernel
10908  *      @dev: device
10909  *
10910  *      This function shuts down a device interface and removes it
10911  *      from the kernel tables.
10912  *
10913  *      This is just a wrapper for unregister_netdevice that takes
10914  *      the rtnl semaphore.  In general you want to use this and not
10915  *      unregister_netdevice.
10916  */
10917 void unregister_netdev(struct net_device *dev)
10918 {
10919         rtnl_lock();
10920         unregister_netdevice(dev);
10921         rtnl_unlock();
10922 }
10923 EXPORT_SYMBOL(unregister_netdev);
10924
10925 /**
10926  *      __dev_change_net_namespace - move device to different nethost namespace
10927  *      @dev: device
10928  *      @net: network namespace
10929  *      @pat: If not NULL name pattern to try if the current device name
10930  *            is already taken in the destination network namespace.
10931  *      @new_ifindex: If not zero, specifies device index in the target
10932  *                    namespace.
10933  *
10934  *      This function shuts down a device interface and moves it
10935  *      to a new network namespace. On success 0 is returned, on
10936  *      a failure a netagive errno code is returned.
10937  *
10938  *      Callers must hold the rtnl semaphore.
10939  */
10940
10941 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
10942                                const char *pat, int new_ifindex)
10943 {
10944         struct net *net_old = dev_net(dev);
10945         int err, new_nsid;
10946
10947         ASSERT_RTNL();
10948
10949         /* Don't allow namespace local devices to be moved. */
10950         err = -EINVAL;
10951         if (dev->features & NETIF_F_NETNS_LOCAL)
10952                 goto out;
10953
10954         /* Ensure the device has been registrered */
10955         if (dev->reg_state != NETREG_REGISTERED)
10956                 goto out;
10957
10958         /* Get out if there is nothing todo */
10959         err = 0;
10960         if (net_eq(net_old, net))
10961                 goto out;
10962
10963         /* Pick the destination device name, and ensure
10964          * we can use it in the destination network namespace.
10965          */
10966         err = -EEXIST;
10967         if (netdev_name_in_use(net, dev->name)) {
10968                 /* We get here if we can't use the current device name */
10969                 if (!pat)
10970                         goto out;
10971                 err = dev_get_valid_name(net, dev, pat);
10972                 if (err < 0)
10973                         goto out;
10974         }
10975
10976         /* Check that new_ifindex isn't used yet. */
10977         err = -EBUSY;
10978         if (new_ifindex && __dev_get_by_index(net, new_ifindex))
10979                 goto out;
10980
10981         /*
10982          * And now a mini version of register_netdevice unregister_netdevice.
10983          */
10984
10985         /* If device is running close it first. */
10986         dev_close(dev);
10987
10988         /* And unlink it from device chain */
10989         unlist_netdevice(dev, true);
10990
10991         synchronize_net();
10992
10993         /* Shutdown queueing discipline. */
10994         dev_shutdown(dev);
10995
10996         /* Notify protocols, that we are about to destroy
10997          * this device. They should clean all the things.
10998          *
10999          * Note that dev->reg_state stays at NETREG_REGISTERED.
11000          * This is wanted because this way 8021q and macvlan know
11001          * the device is just moving and can keep their slaves up.
11002          */
11003         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11004         rcu_barrier();
11005
11006         new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11007         /* If there is an ifindex conflict assign a new one */
11008         if (!new_ifindex) {
11009                 if (__dev_get_by_index(net, dev->ifindex))
11010                         new_ifindex = dev_new_index(net);
11011                 else
11012                         new_ifindex = dev->ifindex;
11013         }
11014
11015         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11016                             new_ifindex);
11017
11018         /*
11019          *      Flush the unicast and multicast chains
11020          */
11021         dev_uc_flush(dev);
11022         dev_mc_flush(dev);
11023
11024         /* Send a netdev-removed uevent to the old namespace */
11025         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11026         netdev_adjacent_del_links(dev);
11027
11028         /* Move per-net netdevice notifiers that are following the netdevice */
11029         move_netdevice_notifiers_dev_net(dev, net);
11030
11031         /* Actually switch the network namespace */
11032         dev_net_set(dev, net);
11033         dev->ifindex = new_ifindex;
11034
11035         /* Send a netdev-add uevent to the new namespace */
11036         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11037         netdev_adjacent_add_links(dev);
11038
11039         /* Fixup kobjects */
11040         err = device_rename(&dev->dev, dev->name);
11041         WARN_ON(err);
11042
11043         /* Adapt owner in case owning user namespace of target network
11044          * namespace is different from the original one.
11045          */
11046         err = netdev_change_owner(dev, net_old, net);
11047         WARN_ON(err);
11048
11049         /* Add the device back in the hashes */
11050         list_netdevice(dev);
11051
11052         /* Notify protocols, that a new device appeared. */
11053         call_netdevice_notifiers(NETDEV_REGISTER, dev);
11054
11055         /*
11056          *      Prevent userspace races by waiting until the network
11057          *      device is fully setup before sending notifications.
11058          */
11059         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
11060
11061         synchronize_net();
11062         err = 0;
11063 out:
11064         return err;
11065 }
11066 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11067
11068 static int dev_cpu_dead(unsigned int oldcpu)
11069 {
11070         struct sk_buff **list_skb;
11071         struct sk_buff *skb;
11072         unsigned int cpu;
11073         struct softnet_data *sd, *oldsd, *remsd = NULL;
11074
11075         local_irq_disable();
11076         cpu = smp_processor_id();
11077         sd = &per_cpu(softnet_data, cpu);
11078         oldsd = &per_cpu(softnet_data, oldcpu);
11079
11080         /* Find end of our completion_queue. */
11081         list_skb = &sd->completion_queue;
11082         while (*list_skb)
11083                 list_skb = &(*list_skb)->next;
11084         /* Append completion queue from offline CPU. */
11085         *list_skb = oldsd->completion_queue;
11086         oldsd->completion_queue = NULL;
11087
11088         /* Append output queue from offline CPU. */
11089         if (oldsd->output_queue) {
11090                 *sd->output_queue_tailp = oldsd->output_queue;
11091                 sd->output_queue_tailp = oldsd->output_queue_tailp;
11092                 oldsd->output_queue = NULL;
11093                 oldsd->output_queue_tailp = &oldsd->output_queue;
11094         }
11095         /* Append NAPI poll list from offline CPU, with one exception :
11096          * process_backlog() must be called by cpu owning percpu backlog.
11097          * We properly handle process_queue & input_pkt_queue later.
11098          */
11099         while (!list_empty(&oldsd->poll_list)) {
11100                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11101                                                             struct napi_struct,
11102                                                             poll_list);
11103
11104                 list_del_init(&napi->poll_list);
11105                 if (napi->poll == process_backlog)
11106                         napi->state = 0;
11107                 else
11108                         ____napi_schedule(sd, napi);
11109         }
11110
11111         raise_softirq_irqoff(NET_TX_SOFTIRQ);
11112         local_irq_enable();
11113
11114 #ifdef CONFIG_RPS
11115         remsd = oldsd->rps_ipi_list;
11116         oldsd->rps_ipi_list = NULL;
11117 #endif
11118         /* send out pending IPI's on offline CPU */
11119         net_rps_send_ipi(remsd);
11120
11121         /* Process offline CPU's input_pkt_queue */
11122         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11123                 netif_rx(skb);
11124                 input_queue_head_incr(oldsd);
11125         }
11126         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11127                 netif_rx(skb);
11128                 input_queue_head_incr(oldsd);
11129         }
11130
11131         return 0;
11132 }
11133
11134 /**
11135  *      netdev_increment_features - increment feature set by one
11136  *      @all: current feature set
11137  *      @one: new feature set
11138  *      @mask: mask feature set
11139  *
11140  *      Computes a new feature set after adding a device with feature set
11141  *      @one to the master device with current feature set @all.  Will not
11142  *      enable anything that is off in @mask. Returns the new feature set.
11143  */
11144 netdev_features_t netdev_increment_features(netdev_features_t all,
11145         netdev_features_t one, netdev_features_t mask)
11146 {
11147         if (mask & NETIF_F_HW_CSUM)
11148                 mask |= NETIF_F_CSUM_MASK;
11149         mask |= NETIF_F_VLAN_CHALLENGED;
11150
11151         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11152         all &= one | ~NETIF_F_ALL_FOR_ALL;
11153
11154         /* If one device supports hw checksumming, set for all. */
11155         if (all & NETIF_F_HW_CSUM)
11156                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11157
11158         return all;
11159 }
11160 EXPORT_SYMBOL(netdev_increment_features);
11161
11162 static struct hlist_head * __net_init netdev_create_hash(void)
11163 {
11164         int i;
11165         struct hlist_head *hash;
11166
11167         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11168         if (hash != NULL)
11169                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11170                         INIT_HLIST_HEAD(&hash[i]);
11171
11172         return hash;
11173 }
11174
11175 /* Initialize per network namespace state */
11176 static int __net_init netdev_init(struct net *net)
11177 {
11178         BUILD_BUG_ON(GRO_HASH_BUCKETS >
11179                      8 * sizeof_field(struct napi_struct, gro_bitmask));
11180
11181         INIT_LIST_HEAD(&net->dev_base_head);
11182
11183         net->dev_name_head = netdev_create_hash();
11184         if (net->dev_name_head == NULL)
11185                 goto err_name;
11186
11187         net->dev_index_head = netdev_create_hash();
11188         if (net->dev_index_head == NULL)
11189                 goto err_idx;
11190
11191         RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11192
11193         return 0;
11194
11195 err_idx:
11196         kfree(net->dev_name_head);
11197 err_name:
11198         return -ENOMEM;
11199 }
11200
11201 /**
11202  *      netdev_drivername - network driver for the device
11203  *      @dev: network device
11204  *
11205  *      Determine network driver for device.
11206  */
11207 const char *netdev_drivername(const struct net_device *dev)
11208 {
11209         const struct device_driver *driver;
11210         const struct device *parent;
11211         const char *empty = "";
11212
11213         parent = dev->dev.parent;
11214         if (!parent)
11215                 return empty;
11216
11217         driver = parent->driver;
11218         if (driver && driver->name)
11219                 return driver->name;
11220         return empty;
11221 }
11222
11223 static void __netdev_printk(const char *level, const struct net_device *dev,
11224                             struct va_format *vaf)
11225 {
11226         if (dev && dev->dev.parent) {
11227                 dev_printk_emit(level[1] - '0',
11228                                 dev->dev.parent,
11229                                 "%s %s %s%s: %pV",
11230                                 dev_driver_string(dev->dev.parent),
11231                                 dev_name(dev->dev.parent),
11232                                 netdev_name(dev), netdev_reg_state(dev),
11233                                 vaf);
11234         } else if (dev) {
11235                 printk("%s%s%s: %pV",
11236                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
11237         } else {
11238                 printk("%s(NULL net_device): %pV", level, vaf);
11239         }
11240 }
11241
11242 void netdev_printk(const char *level, const struct net_device *dev,
11243                    const char *format, ...)
11244 {
11245         struct va_format vaf;
11246         va_list args;
11247
11248         va_start(args, format);
11249
11250         vaf.fmt = format;
11251         vaf.va = &args;
11252
11253         __netdev_printk(level, dev, &vaf);
11254
11255         va_end(args);
11256 }
11257 EXPORT_SYMBOL(netdev_printk);
11258
11259 #define define_netdev_printk_level(func, level)                 \
11260 void func(const struct net_device *dev, const char *fmt, ...)   \
11261 {                                                               \
11262         struct va_format vaf;                                   \
11263         va_list args;                                           \
11264                                                                 \
11265         va_start(args, fmt);                                    \
11266                                                                 \
11267         vaf.fmt = fmt;                                          \
11268         vaf.va = &args;                                         \
11269                                                                 \
11270         __netdev_printk(level, dev, &vaf);                      \
11271                                                                 \
11272         va_end(args);                                           \
11273 }                                                               \
11274 EXPORT_SYMBOL(func);
11275
11276 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11277 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11278 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11279 define_netdev_printk_level(netdev_err, KERN_ERR);
11280 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11281 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11282 define_netdev_printk_level(netdev_info, KERN_INFO);
11283
11284 static void __net_exit netdev_exit(struct net *net)
11285 {
11286         kfree(net->dev_name_head);
11287         kfree(net->dev_index_head);
11288         if (net != &init_net)
11289                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11290 }
11291
11292 static struct pernet_operations __net_initdata netdev_net_ops = {
11293         .init = netdev_init,
11294         .exit = netdev_exit,
11295 };
11296
11297 static void __net_exit default_device_exit_net(struct net *net)
11298 {
11299         struct net_device *dev, *aux;
11300         /*
11301          * Push all migratable network devices back to the
11302          * initial network namespace
11303          */
11304         ASSERT_RTNL();
11305         for_each_netdev_safe(net, dev, aux) {
11306                 int err;
11307                 char fb_name[IFNAMSIZ];
11308
11309                 /* Ignore unmoveable devices (i.e. loopback) */
11310                 if (dev->features & NETIF_F_NETNS_LOCAL)
11311                         continue;
11312
11313                 /* Leave virtual devices for the generic cleanup */
11314                 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11315                         continue;
11316
11317                 /* Push remaining network devices to init_net */
11318                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11319                 if (netdev_name_in_use(&init_net, fb_name))
11320                         snprintf(fb_name, IFNAMSIZ, "dev%%d");
11321                 err = dev_change_net_namespace(dev, &init_net, fb_name);
11322                 if (err) {
11323                         pr_emerg("%s: failed to move %s to init_net: %d\n",
11324                                  __func__, dev->name, err);
11325                         BUG();
11326                 }
11327         }
11328 }
11329
11330 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11331 {
11332         /* At exit all network devices most be removed from a network
11333          * namespace.  Do this in the reverse order of registration.
11334          * Do this across as many network namespaces as possible to
11335          * improve batching efficiency.
11336          */
11337         struct net_device *dev;
11338         struct net *net;
11339         LIST_HEAD(dev_kill_list);
11340
11341         rtnl_lock();
11342         list_for_each_entry(net, net_list, exit_list) {
11343                 default_device_exit_net(net);
11344                 cond_resched();
11345         }
11346
11347         list_for_each_entry(net, net_list, exit_list) {
11348                 for_each_netdev_reverse(net, dev) {
11349                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11350                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11351                         else
11352                                 unregister_netdevice_queue(dev, &dev_kill_list);
11353                 }
11354         }
11355         unregister_netdevice_many(&dev_kill_list);
11356         rtnl_unlock();
11357 }
11358
11359 static struct pernet_operations __net_initdata default_device_ops = {
11360         .exit_batch = default_device_exit_batch,
11361 };
11362
11363 /*
11364  *      Initialize the DEV module. At boot time this walks the device list and
11365  *      unhooks any devices that fail to initialise (normally hardware not
11366  *      present) and leaves us with a valid list of present and active devices.
11367  *
11368  */
11369
11370 /*
11371  *       This is called single threaded during boot, so no need
11372  *       to take the rtnl semaphore.
11373  */
11374 static int __init net_dev_init(void)
11375 {
11376         int i, rc = -ENOMEM;
11377
11378         BUG_ON(!dev_boot_phase);
11379
11380         if (dev_proc_init())
11381                 goto out;
11382
11383         if (netdev_kobject_init())
11384                 goto out;
11385
11386         INIT_LIST_HEAD(&ptype_all);
11387         for (i = 0; i < PTYPE_HASH_SIZE; i++)
11388                 INIT_LIST_HEAD(&ptype_base[i]);
11389
11390         if (register_pernet_subsys(&netdev_net_ops))
11391                 goto out;
11392
11393         /*
11394          *      Initialise the packet receive queues.
11395          */
11396
11397         for_each_possible_cpu(i) {
11398                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11399                 struct softnet_data *sd = &per_cpu(softnet_data, i);
11400
11401                 INIT_WORK(flush, flush_backlog);
11402
11403                 skb_queue_head_init(&sd->input_pkt_queue);
11404                 skb_queue_head_init(&sd->process_queue);
11405 #ifdef CONFIG_XFRM_OFFLOAD
11406                 skb_queue_head_init(&sd->xfrm_backlog);
11407 #endif
11408                 INIT_LIST_HEAD(&sd->poll_list);
11409                 sd->output_queue_tailp = &sd->output_queue;
11410 #ifdef CONFIG_RPS
11411                 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11412                 sd->cpu = i;
11413 #endif
11414                 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
11415                 spin_lock_init(&sd->defer_lock);
11416
11417                 init_gro_hash(&sd->backlog);
11418                 sd->backlog.poll = process_backlog;
11419                 sd->backlog.weight = weight_p;
11420         }
11421
11422         dev_boot_phase = 0;
11423
11424         /* The loopback device is special if any other network devices
11425          * is present in a network namespace the loopback device must
11426          * be present. Since we now dynamically allocate and free the
11427          * loopback device ensure this invariant is maintained by
11428          * keeping the loopback device as the first device on the
11429          * list of network devices.  Ensuring the loopback devices
11430          * is the first device that appears and the last network device
11431          * that disappears.
11432          */
11433         if (register_pernet_device(&loopback_net_ops))
11434                 goto out;
11435
11436         if (register_pernet_device(&default_device_ops))
11437                 goto out;
11438
11439         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11440         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11441
11442         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11443                                        NULL, dev_cpu_dead);
11444         WARN_ON(rc < 0);
11445         rc = 0;
11446 out:
11447         return rc;
11448 }
11449
11450 subsys_initcall(net_dev_init);