ba69ddf85af6b4543caa91f314caf54794a3a02a
[linux-2.6-microblaze.git] / net / core / dev.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *      Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:        Ross Biro
7  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *      Additional Authors:
11  *              Florian la Roche <rzsfl@rz.uni-sb.de>
12  *              Alan Cox <gw4pts@gw4pts.ampr.org>
13  *              David Hinds <dahinds@users.sourceforge.net>
14  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *              Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *      Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *              Alan Cox        :       device private ioctl copies fields back.
24  *              Alan Cox        :       Transmit queue code does relevant
25  *                                      stunts to keep the queue safe.
26  *              Alan Cox        :       Fixed double lock.
27  *              Alan Cox        :       Fixed promisc NULL pointer trap
28  *              ????????        :       Support the full private ioctl range
29  *              Alan Cox        :       Moved ioctl permission check into
30  *                                      drivers
31  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
32  *              Alan Cox        :       100 backlog just doesn't cut it when
33  *                                      you start doing multicast video 8)
34  *              Alan Cox        :       Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *              Alan Cox        :       Took out transmit every packet pass
37  *                                      Saved a few bytes in the ioctl handler
38  *              Alan Cox        :       Network driver sets packet type before
39  *                                      calling netif_rx. Saves a function
40  *                                      call a packet.
41  *              Alan Cox        :       Hashed net_bh()
42  *              Richard Kooijman:       Timestamp fixes.
43  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
44  *              Alan Cox        :       Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *                                      changes.
47  *              Rudi Cilibrasi  :       Pass the right thing to
48  *                                      set_mac_address()
49  *              Dave Miller     :       32bit quantity for the device lock to
50  *                                      make it work out on a Sparc.
51  *              Bjorn Ekwall    :       Added KERNELD hack.
52  *              Alan Cox        :       Cleaned up the backlog initialise.
53  *              Craig Metz      :       SIOCGIFCONF fix if space for under
54  *                                      1 device.
55  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
56  *                                      is no device open function.
57  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
58  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
59  *              Cyrus Durgin    :       Cleaned for KMOD
60  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
61  *                                      A network device unload needs to purge
62  *                                      the backlog queue.
63  *      Paul Rusty Russell      :       SIOCSIFNAME
64  *              Pekka Riikonen  :       Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *                                      - netif_rx() feedback
69  */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <trace/events/qdisc.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_netdev.h>
144 #include <linux/crash_dump.h>
145 #include <linux/sctp.h>
146 #include <net/udp_tunnel.h>
147 #include <linux/net_namespace.h>
148 #include <linux/indirect_call_wrapper.h>
149 #include <net/devlink.h>
150 #include <linux/pm_runtime.h>
151 #include <linux/prandom.h>
152 #include <linux/once_lite.h>
153
154 #include "net-sysfs.h"
155
156
157 static DEFINE_SPINLOCK(ptype_lock);
158 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
159 struct list_head ptype_all __read_mostly;       /* Taps */
160
161 static int netif_rx_internal(struct sk_buff *skb);
162 static int call_netdevice_notifiers_info(unsigned long val,
163                                          struct netdev_notifier_info *info);
164 static int call_netdevice_notifiers_extack(unsigned long val,
165                                            struct net_device *dev,
166                                            struct netlink_ext_ack *extack);
167 static struct napi_struct *napi_by_id(unsigned int napi_id);
168
169 /*
170  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
171  * semaphore.
172  *
173  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
174  *
175  * Writers must hold the rtnl semaphore while they loop through the
176  * dev_base_head list, and hold dev_base_lock for writing when they do the
177  * actual updates.  This allows pure readers to access the list even
178  * while a writer is preparing to update it.
179  *
180  * To put it another way, dev_base_lock is held for writing only to
181  * protect against pure readers; the rtnl semaphore provides the
182  * protection against other writers.
183  *
184  * See, for example usages, register_netdevice() and
185  * unregister_netdevice(), which must be called with the rtnl
186  * semaphore held.
187  */
188 DEFINE_RWLOCK(dev_base_lock);
189 EXPORT_SYMBOL(dev_base_lock);
190
191 static DEFINE_MUTEX(ifalias_mutex);
192
193 /* protects napi_hash addition/deletion and napi_gen_id */
194 static DEFINE_SPINLOCK(napi_hash_lock);
195
196 static unsigned int napi_gen_id = NR_CPUS;
197 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
198
199 static DECLARE_RWSEM(devnet_rename_sem);
200
201 static inline void dev_base_seq_inc(struct net *net)
202 {
203         while (++net->dev_base_seq == 0)
204                 ;
205 }
206
207 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
208 {
209         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
210
211         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
212 }
213
214 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
215 {
216         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
217 }
218
219 static inline void rps_lock_irqsave(struct softnet_data *sd,
220                                     unsigned long *flags)
221 {
222         if (IS_ENABLED(CONFIG_RPS))
223                 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
224         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
225                 local_irq_save(*flags);
226 }
227
228 static inline void rps_lock_irq_disable(struct softnet_data *sd)
229 {
230         if (IS_ENABLED(CONFIG_RPS))
231                 spin_lock_irq(&sd->input_pkt_queue.lock);
232         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
233                 local_irq_disable();
234 }
235
236 static inline void rps_unlock_irq_restore(struct softnet_data *sd,
237                                           unsigned long *flags)
238 {
239         if (IS_ENABLED(CONFIG_RPS))
240                 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
241         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
242                 local_irq_restore(*flags);
243 }
244
245 static inline void rps_unlock_irq_enable(struct softnet_data *sd)
246 {
247         if (IS_ENABLED(CONFIG_RPS))
248                 spin_unlock_irq(&sd->input_pkt_queue.lock);
249         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
250                 local_irq_enable();
251 }
252
253 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
254                                                        const char *name)
255 {
256         struct netdev_name_node *name_node;
257
258         name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
259         if (!name_node)
260                 return NULL;
261         INIT_HLIST_NODE(&name_node->hlist);
262         name_node->dev = dev;
263         name_node->name = name;
264         return name_node;
265 }
266
267 static struct netdev_name_node *
268 netdev_name_node_head_alloc(struct net_device *dev)
269 {
270         struct netdev_name_node *name_node;
271
272         name_node = netdev_name_node_alloc(dev, dev->name);
273         if (!name_node)
274                 return NULL;
275         INIT_LIST_HEAD(&name_node->list);
276         return name_node;
277 }
278
279 static void netdev_name_node_free(struct netdev_name_node *name_node)
280 {
281         kfree(name_node);
282 }
283
284 static void netdev_name_node_add(struct net *net,
285                                  struct netdev_name_node *name_node)
286 {
287         hlist_add_head_rcu(&name_node->hlist,
288                            dev_name_hash(net, name_node->name));
289 }
290
291 static void netdev_name_node_del(struct netdev_name_node *name_node)
292 {
293         hlist_del_rcu(&name_node->hlist);
294 }
295
296 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
297                                                         const char *name)
298 {
299         struct hlist_head *head = dev_name_hash(net, name);
300         struct netdev_name_node *name_node;
301
302         hlist_for_each_entry(name_node, head, hlist)
303                 if (!strcmp(name_node->name, name))
304                         return name_node;
305         return NULL;
306 }
307
308 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
309                                                             const char *name)
310 {
311         struct hlist_head *head = dev_name_hash(net, name);
312         struct netdev_name_node *name_node;
313
314         hlist_for_each_entry_rcu(name_node, head, hlist)
315                 if (!strcmp(name_node->name, name))
316                         return name_node;
317         return NULL;
318 }
319
320 bool netdev_name_in_use(struct net *net, const char *name)
321 {
322         return netdev_name_node_lookup(net, name);
323 }
324 EXPORT_SYMBOL(netdev_name_in_use);
325
326 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
327 {
328         struct netdev_name_node *name_node;
329         struct net *net = dev_net(dev);
330
331         name_node = netdev_name_node_lookup(net, name);
332         if (name_node)
333                 return -EEXIST;
334         name_node = netdev_name_node_alloc(dev, name);
335         if (!name_node)
336                 return -ENOMEM;
337         netdev_name_node_add(net, name_node);
338         /* The node that holds dev->name acts as a head of per-device list. */
339         list_add_tail(&name_node->list, &dev->name_node->list);
340
341         return 0;
342 }
343 EXPORT_SYMBOL(netdev_name_node_alt_create);
344
345 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
346 {
347         list_del(&name_node->list);
348         netdev_name_node_del(name_node);
349         kfree(name_node->name);
350         netdev_name_node_free(name_node);
351 }
352
353 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
354 {
355         struct netdev_name_node *name_node;
356         struct net *net = dev_net(dev);
357
358         name_node = netdev_name_node_lookup(net, name);
359         if (!name_node)
360                 return -ENOENT;
361         /* lookup might have found our primary name or a name belonging
362          * to another device.
363          */
364         if (name_node == dev->name_node || name_node->dev != dev)
365                 return -EINVAL;
366
367         __netdev_name_node_alt_destroy(name_node);
368
369         return 0;
370 }
371 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
372
373 static void netdev_name_node_alt_flush(struct net_device *dev)
374 {
375         struct netdev_name_node *name_node, *tmp;
376
377         list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
378                 __netdev_name_node_alt_destroy(name_node);
379 }
380
381 /* Device list insertion */
382 static void list_netdevice(struct net_device *dev)
383 {
384         struct net *net = dev_net(dev);
385
386         ASSERT_RTNL();
387
388         write_lock(&dev_base_lock);
389         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
390         netdev_name_node_add(net, dev->name_node);
391         hlist_add_head_rcu(&dev->index_hlist,
392                            dev_index_hash(net, dev->ifindex));
393         write_unlock(&dev_base_lock);
394
395         dev_base_seq_inc(net);
396 }
397
398 /* Device list removal
399  * caller must respect a RCU grace period before freeing/reusing dev
400  */
401 static void unlist_netdevice(struct net_device *dev)
402 {
403         ASSERT_RTNL();
404
405         /* Unlink dev from the device chain */
406         write_lock(&dev_base_lock);
407         list_del_rcu(&dev->dev_list);
408         netdev_name_node_del(dev->name_node);
409         hlist_del_rcu(&dev->index_hlist);
410         write_unlock(&dev_base_lock);
411
412         dev_base_seq_inc(dev_net(dev));
413 }
414
415 /*
416  *      Our notifier list
417  */
418
419 static RAW_NOTIFIER_HEAD(netdev_chain);
420
421 /*
422  *      Device drivers call our routines to queue packets here. We empty the
423  *      queue in the local softnet handler.
424  */
425
426 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
427 EXPORT_PER_CPU_SYMBOL(softnet_data);
428
429 #ifdef CONFIG_LOCKDEP
430 /*
431  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
432  * according to dev->type
433  */
434 static const unsigned short netdev_lock_type[] = {
435          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
436          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
437          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
438          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
439          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
440          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
441          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
442          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
443          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
444          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
445          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
446          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
447          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
448          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
449          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
450
451 static const char *const netdev_lock_name[] = {
452         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
453         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
454         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
455         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
456         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
457         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
458         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
459         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
460         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
461         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
462         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
463         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
464         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
465         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
466         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
467
468 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
469 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
470
471 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
472 {
473         int i;
474
475         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
476                 if (netdev_lock_type[i] == dev_type)
477                         return i;
478         /* the last key is used by default */
479         return ARRAY_SIZE(netdev_lock_type) - 1;
480 }
481
482 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
483                                                  unsigned short dev_type)
484 {
485         int i;
486
487         i = netdev_lock_pos(dev_type);
488         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
489                                    netdev_lock_name[i]);
490 }
491
492 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
493 {
494         int i;
495
496         i = netdev_lock_pos(dev->type);
497         lockdep_set_class_and_name(&dev->addr_list_lock,
498                                    &netdev_addr_lock_key[i],
499                                    netdev_lock_name[i]);
500 }
501 #else
502 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
503                                                  unsigned short dev_type)
504 {
505 }
506
507 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
508 {
509 }
510 #endif
511
512 /*******************************************************************************
513  *
514  *              Protocol management and registration routines
515  *
516  *******************************************************************************/
517
518
519 /*
520  *      Add a protocol ID to the list. Now that the input handler is
521  *      smarter we can dispense with all the messy stuff that used to be
522  *      here.
523  *
524  *      BEWARE!!! Protocol handlers, mangling input packets,
525  *      MUST BE last in hash buckets and checking protocol handlers
526  *      MUST start from promiscuous ptype_all chain in net_bh.
527  *      It is true now, do not change it.
528  *      Explanation follows: if protocol handler, mangling packet, will
529  *      be the first on list, it is not able to sense, that packet
530  *      is cloned and should be copied-on-write, so that it will
531  *      change it and subsequent readers will get broken packet.
532  *                                                      --ANK (980803)
533  */
534
535 static inline struct list_head *ptype_head(const struct packet_type *pt)
536 {
537         if (pt->type == htons(ETH_P_ALL))
538                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
539         else
540                 return pt->dev ? &pt->dev->ptype_specific :
541                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
542 }
543
544 /**
545  *      dev_add_pack - add packet handler
546  *      @pt: packet type declaration
547  *
548  *      Add a protocol handler to the networking stack. The passed &packet_type
549  *      is linked into kernel lists and may not be freed until it has been
550  *      removed from the kernel lists.
551  *
552  *      This call does not sleep therefore it can not
553  *      guarantee all CPU's that are in middle of receiving packets
554  *      will see the new packet type (until the next received packet).
555  */
556
557 void dev_add_pack(struct packet_type *pt)
558 {
559         struct list_head *head = ptype_head(pt);
560
561         spin_lock(&ptype_lock);
562         list_add_rcu(&pt->list, head);
563         spin_unlock(&ptype_lock);
564 }
565 EXPORT_SYMBOL(dev_add_pack);
566
567 /**
568  *      __dev_remove_pack        - remove packet handler
569  *      @pt: packet type declaration
570  *
571  *      Remove a protocol handler that was previously added to the kernel
572  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
573  *      from the kernel lists and can be freed or reused once this function
574  *      returns.
575  *
576  *      The packet type might still be in use by receivers
577  *      and must not be freed until after all the CPU's have gone
578  *      through a quiescent state.
579  */
580 void __dev_remove_pack(struct packet_type *pt)
581 {
582         struct list_head *head = ptype_head(pt);
583         struct packet_type *pt1;
584
585         spin_lock(&ptype_lock);
586
587         list_for_each_entry(pt1, head, list) {
588                 if (pt == pt1) {
589                         list_del_rcu(&pt->list);
590                         goto out;
591                 }
592         }
593
594         pr_warn("dev_remove_pack: %p not found\n", pt);
595 out:
596         spin_unlock(&ptype_lock);
597 }
598 EXPORT_SYMBOL(__dev_remove_pack);
599
600 /**
601  *      dev_remove_pack  - remove packet handler
602  *      @pt: packet type declaration
603  *
604  *      Remove a protocol handler that was previously added to the kernel
605  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
606  *      from the kernel lists and can be freed or reused once this function
607  *      returns.
608  *
609  *      This call sleeps to guarantee that no CPU is looking at the packet
610  *      type after return.
611  */
612 void dev_remove_pack(struct packet_type *pt)
613 {
614         __dev_remove_pack(pt);
615
616         synchronize_net();
617 }
618 EXPORT_SYMBOL(dev_remove_pack);
619
620
621 /*******************************************************************************
622  *
623  *                          Device Interface Subroutines
624  *
625  *******************************************************************************/
626
627 /**
628  *      dev_get_iflink  - get 'iflink' value of a interface
629  *      @dev: targeted interface
630  *
631  *      Indicates the ifindex the interface is linked to.
632  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
633  */
634
635 int dev_get_iflink(const struct net_device *dev)
636 {
637         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
638                 return dev->netdev_ops->ndo_get_iflink(dev);
639
640         return dev->ifindex;
641 }
642 EXPORT_SYMBOL(dev_get_iflink);
643
644 /**
645  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
646  *      @dev: targeted interface
647  *      @skb: The packet.
648  *
649  *      For better visibility of tunnel traffic OVS needs to retrieve
650  *      egress tunnel information for a packet. Following API allows
651  *      user to get this info.
652  */
653 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
654 {
655         struct ip_tunnel_info *info;
656
657         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
658                 return -EINVAL;
659
660         info = skb_tunnel_info_unclone(skb);
661         if (!info)
662                 return -ENOMEM;
663         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
664                 return -EINVAL;
665
666         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
667 }
668 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
669
670 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
671 {
672         int k = stack->num_paths++;
673
674         if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
675                 return NULL;
676
677         return &stack->path[k];
678 }
679
680 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
681                           struct net_device_path_stack *stack)
682 {
683         const struct net_device *last_dev;
684         struct net_device_path_ctx ctx = {
685                 .dev    = dev,
686                 .daddr  = daddr,
687         };
688         struct net_device_path *path;
689         int ret = 0;
690
691         stack->num_paths = 0;
692         while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
693                 last_dev = ctx.dev;
694                 path = dev_fwd_path(stack);
695                 if (!path)
696                         return -1;
697
698                 memset(path, 0, sizeof(struct net_device_path));
699                 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
700                 if (ret < 0)
701                         return -1;
702
703                 if (WARN_ON_ONCE(last_dev == ctx.dev))
704                         return -1;
705         }
706         path = dev_fwd_path(stack);
707         if (!path)
708                 return -1;
709         path->type = DEV_PATH_ETHERNET;
710         path->dev = ctx.dev;
711
712         return ret;
713 }
714 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
715
716 /**
717  *      __dev_get_by_name       - find a device by its name
718  *      @net: the applicable net namespace
719  *      @name: name to find
720  *
721  *      Find an interface by name. Must be called under RTNL semaphore
722  *      or @dev_base_lock. If the name is found a pointer to the device
723  *      is returned. If the name is not found then %NULL is returned. The
724  *      reference counters are not incremented so the caller must be
725  *      careful with locks.
726  */
727
728 struct net_device *__dev_get_by_name(struct net *net, const char *name)
729 {
730         struct netdev_name_node *node_name;
731
732         node_name = netdev_name_node_lookup(net, name);
733         return node_name ? node_name->dev : NULL;
734 }
735 EXPORT_SYMBOL(__dev_get_by_name);
736
737 /**
738  * dev_get_by_name_rcu  - find a device by its name
739  * @net: the applicable net namespace
740  * @name: name to find
741  *
742  * Find an interface by name.
743  * If the name is found a pointer to the device is returned.
744  * If the name is not found then %NULL is returned.
745  * The reference counters are not incremented so the caller must be
746  * careful with locks. The caller must hold RCU lock.
747  */
748
749 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
750 {
751         struct netdev_name_node *node_name;
752
753         node_name = netdev_name_node_lookup_rcu(net, name);
754         return node_name ? node_name->dev : NULL;
755 }
756 EXPORT_SYMBOL(dev_get_by_name_rcu);
757
758 /**
759  *      dev_get_by_name         - find a device by its name
760  *      @net: the applicable net namespace
761  *      @name: name to find
762  *
763  *      Find an interface by name. This can be called from any
764  *      context and does its own locking. The returned handle has
765  *      the usage count incremented and the caller must use dev_put() to
766  *      release it when it is no longer needed. %NULL is returned if no
767  *      matching device is found.
768  */
769
770 struct net_device *dev_get_by_name(struct net *net, const char *name)
771 {
772         struct net_device *dev;
773
774         rcu_read_lock();
775         dev = dev_get_by_name_rcu(net, name);
776         dev_hold(dev);
777         rcu_read_unlock();
778         return dev;
779 }
780 EXPORT_SYMBOL(dev_get_by_name);
781
782 /**
783  *      __dev_get_by_index - find a device by its ifindex
784  *      @net: the applicable net namespace
785  *      @ifindex: index of device
786  *
787  *      Search for an interface by index. Returns %NULL if the device
788  *      is not found or a pointer to the device. The device has not
789  *      had its reference counter increased so the caller must be careful
790  *      about locking. The caller must hold either the RTNL semaphore
791  *      or @dev_base_lock.
792  */
793
794 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
795 {
796         struct net_device *dev;
797         struct hlist_head *head = dev_index_hash(net, ifindex);
798
799         hlist_for_each_entry(dev, head, index_hlist)
800                 if (dev->ifindex == ifindex)
801                         return dev;
802
803         return NULL;
804 }
805 EXPORT_SYMBOL(__dev_get_by_index);
806
807 /**
808  *      dev_get_by_index_rcu - find a device by its ifindex
809  *      @net: the applicable net namespace
810  *      @ifindex: index of device
811  *
812  *      Search for an interface by index. Returns %NULL if the device
813  *      is not found or a pointer to the device. The device has not
814  *      had its reference counter increased so the caller must be careful
815  *      about locking. The caller must hold RCU lock.
816  */
817
818 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
819 {
820         struct net_device *dev;
821         struct hlist_head *head = dev_index_hash(net, ifindex);
822
823         hlist_for_each_entry_rcu(dev, head, index_hlist)
824                 if (dev->ifindex == ifindex)
825                         return dev;
826
827         return NULL;
828 }
829 EXPORT_SYMBOL(dev_get_by_index_rcu);
830
831
832 /**
833  *      dev_get_by_index - find a device by its ifindex
834  *      @net: the applicable net namespace
835  *      @ifindex: index of device
836  *
837  *      Search for an interface by index. Returns NULL if the device
838  *      is not found or a pointer to the device. The device returned has
839  *      had a reference added and the pointer is safe until the user calls
840  *      dev_put to indicate they have finished with it.
841  */
842
843 struct net_device *dev_get_by_index(struct net *net, int ifindex)
844 {
845         struct net_device *dev;
846
847         rcu_read_lock();
848         dev = dev_get_by_index_rcu(net, ifindex);
849         dev_hold(dev);
850         rcu_read_unlock();
851         return dev;
852 }
853 EXPORT_SYMBOL(dev_get_by_index);
854
855 /**
856  *      dev_get_by_napi_id - find a device by napi_id
857  *      @napi_id: ID of the NAPI struct
858  *
859  *      Search for an interface by NAPI ID. Returns %NULL if the device
860  *      is not found or a pointer to the device. The device has not had
861  *      its reference counter increased so the caller must be careful
862  *      about locking. The caller must hold RCU lock.
863  */
864
865 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
866 {
867         struct napi_struct *napi;
868
869         WARN_ON_ONCE(!rcu_read_lock_held());
870
871         if (napi_id < MIN_NAPI_ID)
872                 return NULL;
873
874         napi = napi_by_id(napi_id);
875
876         return napi ? napi->dev : NULL;
877 }
878 EXPORT_SYMBOL(dev_get_by_napi_id);
879
880 /**
881  *      netdev_get_name - get a netdevice name, knowing its ifindex.
882  *      @net: network namespace
883  *      @name: a pointer to the buffer where the name will be stored.
884  *      @ifindex: the ifindex of the interface to get the name from.
885  */
886 int netdev_get_name(struct net *net, char *name, int ifindex)
887 {
888         struct net_device *dev;
889         int ret;
890
891         down_read(&devnet_rename_sem);
892         rcu_read_lock();
893
894         dev = dev_get_by_index_rcu(net, ifindex);
895         if (!dev) {
896                 ret = -ENODEV;
897                 goto out;
898         }
899
900         strcpy(name, dev->name);
901
902         ret = 0;
903 out:
904         rcu_read_unlock();
905         up_read(&devnet_rename_sem);
906         return ret;
907 }
908
909 /**
910  *      dev_getbyhwaddr_rcu - find a device by its hardware address
911  *      @net: the applicable net namespace
912  *      @type: media type of device
913  *      @ha: hardware address
914  *
915  *      Search for an interface by MAC address. Returns NULL if the device
916  *      is not found or a pointer to the device.
917  *      The caller must hold RCU or RTNL.
918  *      The returned device has not had its ref count increased
919  *      and the caller must therefore be careful about locking
920  *
921  */
922
923 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
924                                        const char *ha)
925 {
926         struct net_device *dev;
927
928         for_each_netdev_rcu(net, dev)
929                 if (dev->type == type &&
930                     !memcmp(dev->dev_addr, ha, dev->addr_len))
931                         return dev;
932
933         return NULL;
934 }
935 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
936
937 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
938 {
939         struct net_device *dev, *ret = NULL;
940
941         rcu_read_lock();
942         for_each_netdev_rcu(net, dev)
943                 if (dev->type == type) {
944                         dev_hold(dev);
945                         ret = dev;
946                         break;
947                 }
948         rcu_read_unlock();
949         return ret;
950 }
951 EXPORT_SYMBOL(dev_getfirstbyhwtype);
952
953 /**
954  *      __dev_get_by_flags - find any device with given flags
955  *      @net: the applicable net namespace
956  *      @if_flags: IFF_* values
957  *      @mask: bitmask of bits in if_flags to check
958  *
959  *      Search for any interface with the given flags. Returns NULL if a device
960  *      is not found or a pointer to the device. Must be called inside
961  *      rtnl_lock(), and result refcount is unchanged.
962  */
963
964 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
965                                       unsigned short mask)
966 {
967         struct net_device *dev, *ret;
968
969         ASSERT_RTNL();
970
971         ret = NULL;
972         for_each_netdev(net, dev) {
973                 if (((dev->flags ^ if_flags) & mask) == 0) {
974                         ret = dev;
975                         break;
976                 }
977         }
978         return ret;
979 }
980 EXPORT_SYMBOL(__dev_get_by_flags);
981
982 /**
983  *      dev_valid_name - check if name is okay for network device
984  *      @name: name string
985  *
986  *      Network device names need to be valid file names to
987  *      allow sysfs to work.  We also disallow any kind of
988  *      whitespace.
989  */
990 bool dev_valid_name(const char *name)
991 {
992         if (*name == '\0')
993                 return false;
994         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
995                 return false;
996         if (!strcmp(name, ".") || !strcmp(name, ".."))
997                 return false;
998
999         while (*name) {
1000                 if (*name == '/' || *name == ':' || isspace(*name))
1001                         return false;
1002                 name++;
1003         }
1004         return true;
1005 }
1006 EXPORT_SYMBOL(dev_valid_name);
1007
1008 /**
1009  *      __dev_alloc_name - allocate a name for a device
1010  *      @net: network namespace to allocate the device name in
1011  *      @name: name format string
1012  *      @buf:  scratch buffer and result name string
1013  *
1014  *      Passed a format string - eg "lt%d" it will try and find a suitable
1015  *      id. It scans list of devices to build up a free map, then chooses
1016  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1017  *      while allocating the name and adding the device in order to avoid
1018  *      duplicates.
1019  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1020  *      Returns the number of the unit assigned or a negative errno code.
1021  */
1022
1023 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1024 {
1025         int i = 0;
1026         const char *p;
1027         const int max_netdevices = 8*PAGE_SIZE;
1028         unsigned long *inuse;
1029         struct net_device *d;
1030
1031         if (!dev_valid_name(name))
1032                 return -EINVAL;
1033
1034         p = strchr(name, '%');
1035         if (p) {
1036                 /*
1037                  * Verify the string as this thing may have come from
1038                  * the user.  There must be either one "%d" and no other "%"
1039                  * characters.
1040                  */
1041                 if (p[1] != 'd' || strchr(p + 2, '%'))
1042                         return -EINVAL;
1043
1044                 /* Use one page as a bit array of possible slots */
1045                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1046                 if (!inuse)
1047                         return -ENOMEM;
1048
1049                 for_each_netdev(net, d) {
1050                         struct netdev_name_node *name_node;
1051                         list_for_each_entry(name_node, &d->name_node->list, list) {
1052                                 if (!sscanf(name_node->name, name, &i))
1053                                         continue;
1054                                 if (i < 0 || i >= max_netdevices)
1055                                         continue;
1056
1057                                 /*  avoid cases where sscanf is not exact inverse of printf */
1058                                 snprintf(buf, IFNAMSIZ, name, i);
1059                                 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1060                                         __set_bit(i, inuse);
1061                         }
1062                         if (!sscanf(d->name, name, &i))
1063                                 continue;
1064                         if (i < 0 || i >= max_netdevices)
1065                                 continue;
1066
1067                         /*  avoid cases where sscanf is not exact inverse of printf */
1068                         snprintf(buf, IFNAMSIZ, name, i);
1069                         if (!strncmp(buf, d->name, IFNAMSIZ))
1070                                 __set_bit(i, inuse);
1071                 }
1072
1073                 i = find_first_zero_bit(inuse, max_netdevices);
1074                 free_page((unsigned long) inuse);
1075         }
1076
1077         snprintf(buf, IFNAMSIZ, name, i);
1078         if (!netdev_name_in_use(net, buf))
1079                 return i;
1080
1081         /* It is possible to run out of possible slots
1082          * when the name is long and there isn't enough space left
1083          * for the digits, or if all bits are used.
1084          */
1085         return -ENFILE;
1086 }
1087
1088 static int dev_alloc_name_ns(struct net *net,
1089                              struct net_device *dev,
1090                              const char *name)
1091 {
1092         char buf[IFNAMSIZ];
1093         int ret;
1094
1095         BUG_ON(!net);
1096         ret = __dev_alloc_name(net, name, buf);
1097         if (ret >= 0)
1098                 strlcpy(dev->name, buf, IFNAMSIZ);
1099         return ret;
1100 }
1101
1102 /**
1103  *      dev_alloc_name - allocate a name for a device
1104  *      @dev: device
1105  *      @name: name format string
1106  *
1107  *      Passed a format string - eg "lt%d" it will try and find a suitable
1108  *      id. It scans list of devices to build up a free map, then chooses
1109  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1110  *      while allocating the name and adding the device in order to avoid
1111  *      duplicates.
1112  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1113  *      Returns the number of the unit assigned or a negative errno code.
1114  */
1115
1116 int dev_alloc_name(struct net_device *dev, const char *name)
1117 {
1118         return dev_alloc_name_ns(dev_net(dev), dev, name);
1119 }
1120 EXPORT_SYMBOL(dev_alloc_name);
1121
1122 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1123                               const char *name)
1124 {
1125         BUG_ON(!net);
1126
1127         if (!dev_valid_name(name))
1128                 return -EINVAL;
1129
1130         if (strchr(name, '%'))
1131                 return dev_alloc_name_ns(net, dev, name);
1132         else if (netdev_name_in_use(net, name))
1133                 return -EEXIST;
1134         else if (dev->name != name)
1135                 strlcpy(dev->name, name, IFNAMSIZ);
1136
1137         return 0;
1138 }
1139
1140 /**
1141  *      dev_change_name - change name of a device
1142  *      @dev: device
1143  *      @newname: name (or format string) must be at least IFNAMSIZ
1144  *
1145  *      Change name of a device, can pass format strings "eth%d".
1146  *      for wildcarding.
1147  */
1148 int dev_change_name(struct net_device *dev, const char *newname)
1149 {
1150         unsigned char old_assign_type;
1151         char oldname[IFNAMSIZ];
1152         int err = 0;
1153         int ret;
1154         struct net *net;
1155
1156         ASSERT_RTNL();
1157         BUG_ON(!dev_net(dev));
1158
1159         net = dev_net(dev);
1160
1161         /* Some auto-enslaved devices e.g. failover slaves are
1162          * special, as userspace might rename the device after
1163          * the interface had been brought up and running since
1164          * the point kernel initiated auto-enslavement. Allow
1165          * live name change even when these slave devices are
1166          * up and running.
1167          *
1168          * Typically, users of these auto-enslaving devices
1169          * don't actually care about slave name change, as
1170          * they are supposed to operate on master interface
1171          * directly.
1172          */
1173         if (dev->flags & IFF_UP &&
1174             likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1175                 return -EBUSY;
1176
1177         down_write(&devnet_rename_sem);
1178
1179         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1180                 up_write(&devnet_rename_sem);
1181                 return 0;
1182         }
1183
1184         memcpy(oldname, dev->name, IFNAMSIZ);
1185
1186         err = dev_get_valid_name(net, dev, newname);
1187         if (err < 0) {
1188                 up_write(&devnet_rename_sem);
1189                 return err;
1190         }
1191
1192         if (oldname[0] && !strchr(oldname, '%'))
1193                 netdev_info(dev, "renamed from %s\n", oldname);
1194
1195         old_assign_type = dev->name_assign_type;
1196         dev->name_assign_type = NET_NAME_RENAMED;
1197
1198 rollback:
1199         ret = device_rename(&dev->dev, dev->name);
1200         if (ret) {
1201                 memcpy(dev->name, oldname, IFNAMSIZ);
1202                 dev->name_assign_type = old_assign_type;
1203                 up_write(&devnet_rename_sem);
1204                 return ret;
1205         }
1206
1207         up_write(&devnet_rename_sem);
1208
1209         netdev_adjacent_rename_links(dev, oldname);
1210
1211         write_lock(&dev_base_lock);
1212         netdev_name_node_del(dev->name_node);
1213         write_unlock(&dev_base_lock);
1214
1215         synchronize_rcu();
1216
1217         write_lock(&dev_base_lock);
1218         netdev_name_node_add(net, dev->name_node);
1219         write_unlock(&dev_base_lock);
1220
1221         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1222         ret = notifier_to_errno(ret);
1223
1224         if (ret) {
1225                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1226                 if (err >= 0) {
1227                         err = ret;
1228                         down_write(&devnet_rename_sem);
1229                         memcpy(dev->name, oldname, IFNAMSIZ);
1230                         memcpy(oldname, newname, IFNAMSIZ);
1231                         dev->name_assign_type = old_assign_type;
1232                         old_assign_type = NET_NAME_RENAMED;
1233                         goto rollback;
1234                 } else {
1235                         netdev_err(dev, "name change rollback failed: %d\n",
1236                                    ret);
1237                 }
1238         }
1239
1240         return err;
1241 }
1242
1243 /**
1244  *      dev_set_alias - change ifalias of a device
1245  *      @dev: device
1246  *      @alias: name up to IFALIASZ
1247  *      @len: limit of bytes to copy from info
1248  *
1249  *      Set ifalias for a device,
1250  */
1251 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1252 {
1253         struct dev_ifalias *new_alias = NULL;
1254
1255         if (len >= IFALIASZ)
1256                 return -EINVAL;
1257
1258         if (len) {
1259                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1260                 if (!new_alias)
1261                         return -ENOMEM;
1262
1263                 memcpy(new_alias->ifalias, alias, len);
1264                 new_alias->ifalias[len] = 0;
1265         }
1266
1267         mutex_lock(&ifalias_mutex);
1268         new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1269                                         mutex_is_locked(&ifalias_mutex));
1270         mutex_unlock(&ifalias_mutex);
1271
1272         if (new_alias)
1273                 kfree_rcu(new_alias, rcuhead);
1274
1275         return len;
1276 }
1277 EXPORT_SYMBOL(dev_set_alias);
1278
1279 /**
1280  *      dev_get_alias - get ifalias of a device
1281  *      @dev: device
1282  *      @name: buffer to store name of ifalias
1283  *      @len: size of buffer
1284  *
1285  *      get ifalias for a device.  Caller must make sure dev cannot go
1286  *      away,  e.g. rcu read lock or own a reference count to device.
1287  */
1288 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1289 {
1290         const struct dev_ifalias *alias;
1291         int ret = 0;
1292
1293         rcu_read_lock();
1294         alias = rcu_dereference(dev->ifalias);
1295         if (alias)
1296                 ret = snprintf(name, len, "%s", alias->ifalias);
1297         rcu_read_unlock();
1298
1299         return ret;
1300 }
1301
1302 /**
1303  *      netdev_features_change - device changes features
1304  *      @dev: device to cause notification
1305  *
1306  *      Called to indicate a device has changed features.
1307  */
1308 void netdev_features_change(struct net_device *dev)
1309 {
1310         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1311 }
1312 EXPORT_SYMBOL(netdev_features_change);
1313
1314 /**
1315  *      netdev_state_change - device changes state
1316  *      @dev: device to cause notification
1317  *
1318  *      Called to indicate a device has changed state. This function calls
1319  *      the notifier chains for netdev_chain and sends a NEWLINK message
1320  *      to the routing socket.
1321  */
1322 void netdev_state_change(struct net_device *dev)
1323 {
1324         if (dev->flags & IFF_UP) {
1325                 struct netdev_notifier_change_info change_info = {
1326                         .info.dev = dev,
1327                 };
1328
1329                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1330                                               &change_info.info);
1331                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1332         }
1333 }
1334 EXPORT_SYMBOL(netdev_state_change);
1335
1336 /**
1337  * __netdev_notify_peers - notify network peers about existence of @dev,
1338  * to be called when rtnl lock is already held.
1339  * @dev: network device
1340  *
1341  * Generate traffic such that interested network peers are aware of
1342  * @dev, such as by generating a gratuitous ARP. This may be used when
1343  * a device wants to inform the rest of the network about some sort of
1344  * reconfiguration such as a failover event or virtual machine
1345  * migration.
1346  */
1347 void __netdev_notify_peers(struct net_device *dev)
1348 {
1349         ASSERT_RTNL();
1350         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1351         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1352 }
1353 EXPORT_SYMBOL(__netdev_notify_peers);
1354
1355 /**
1356  * netdev_notify_peers - notify network peers about existence of @dev
1357  * @dev: network device
1358  *
1359  * Generate traffic such that interested network peers are aware of
1360  * @dev, such as by generating a gratuitous ARP. This may be used when
1361  * a device wants to inform the rest of the network about some sort of
1362  * reconfiguration such as a failover event or virtual machine
1363  * migration.
1364  */
1365 void netdev_notify_peers(struct net_device *dev)
1366 {
1367         rtnl_lock();
1368         __netdev_notify_peers(dev);
1369         rtnl_unlock();
1370 }
1371 EXPORT_SYMBOL(netdev_notify_peers);
1372
1373 static int napi_threaded_poll(void *data);
1374
1375 static int napi_kthread_create(struct napi_struct *n)
1376 {
1377         int err = 0;
1378
1379         /* Create and wake up the kthread once to put it in
1380          * TASK_INTERRUPTIBLE mode to avoid the blocked task
1381          * warning and work with loadavg.
1382          */
1383         n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1384                                 n->dev->name, n->napi_id);
1385         if (IS_ERR(n->thread)) {
1386                 err = PTR_ERR(n->thread);
1387                 pr_err("kthread_run failed with err %d\n", err);
1388                 n->thread = NULL;
1389         }
1390
1391         return err;
1392 }
1393
1394 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1395 {
1396         const struct net_device_ops *ops = dev->netdev_ops;
1397         int ret;
1398
1399         ASSERT_RTNL();
1400         dev_addr_check(dev);
1401
1402         if (!netif_device_present(dev)) {
1403                 /* may be detached because parent is runtime-suspended */
1404                 if (dev->dev.parent)
1405                         pm_runtime_resume(dev->dev.parent);
1406                 if (!netif_device_present(dev))
1407                         return -ENODEV;
1408         }
1409
1410         /* Block netpoll from trying to do any rx path servicing.
1411          * If we don't do this there is a chance ndo_poll_controller
1412          * or ndo_poll may be running while we open the device
1413          */
1414         netpoll_poll_disable(dev);
1415
1416         ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1417         ret = notifier_to_errno(ret);
1418         if (ret)
1419                 return ret;
1420
1421         set_bit(__LINK_STATE_START, &dev->state);
1422
1423         if (ops->ndo_validate_addr)
1424                 ret = ops->ndo_validate_addr(dev);
1425
1426         if (!ret && ops->ndo_open)
1427                 ret = ops->ndo_open(dev);
1428
1429         netpoll_poll_enable(dev);
1430
1431         if (ret)
1432                 clear_bit(__LINK_STATE_START, &dev->state);
1433         else {
1434                 dev->flags |= IFF_UP;
1435                 dev_set_rx_mode(dev);
1436                 dev_activate(dev);
1437                 add_device_randomness(dev->dev_addr, dev->addr_len);
1438         }
1439
1440         return ret;
1441 }
1442
1443 /**
1444  *      dev_open        - prepare an interface for use.
1445  *      @dev: device to open
1446  *      @extack: netlink extended ack
1447  *
1448  *      Takes a device from down to up state. The device's private open
1449  *      function is invoked and then the multicast lists are loaded. Finally
1450  *      the device is moved into the up state and a %NETDEV_UP message is
1451  *      sent to the netdev notifier chain.
1452  *
1453  *      Calling this function on an active interface is a nop. On a failure
1454  *      a negative errno code is returned.
1455  */
1456 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1457 {
1458         int ret;
1459
1460         if (dev->flags & IFF_UP)
1461                 return 0;
1462
1463         ret = __dev_open(dev, extack);
1464         if (ret < 0)
1465                 return ret;
1466
1467         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1468         call_netdevice_notifiers(NETDEV_UP, dev);
1469
1470         return ret;
1471 }
1472 EXPORT_SYMBOL(dev_open);
1473
1474 static void __dev_close_many(struct list_head *head)
1475 {
1476         struct net_device *dev;
1477
1478         ASSERT_RTNL();
1479         might_sleep();
1480
1481         list_for_each_entry(dev, head, close_list) {
1482                 /* Temporarily disable netpoll until the interface is down */
1483                 netpoll_poll_disable(dev);
1484
1485                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1486
1487                 clear_bit(__LINK_STATE_START, &dev->state);
1488
1489                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1490                  * can be even on different cpu. So just clear netif_running().
1491                  *
1492                  * dev->stop() will invoke napi_disable() on all of it's
1493                  * napi_struct instances on this device.
1494                  */
1495                 smp_mb__after_atomic(); /* Commit netif_running(). */
1496         }
1497
1498         dev_deactivate_many(head);
1499
1500         list_for_each_entry(dev, head, close_list) {
1501                 const struct net_device_ops *ops = dev->netdev_ops;
1502
1503                 /*
1504                  *      Call the device specific close. This cannot fail.
1505                  *      Only if device is UP
1506                  *
1507                  *      We allow it to be called even after a DETACH hot-plug
1508                  *      event.
1509                  */
1510                 if (ops->ndo_stop)
1511                         ops->ndo_stop(dev);
1512
1513                 dev->flags &= ~IFF_UP;
1514                 netpoll_poll_enable(dev);
1515         }
1516 }
1517
1518 static void __dev_close(struct net_device *dev)
1519 {
1520         LIST_HEAD(single);
1521
1522         list_add(&dev->close_list, &single);
1523         __dev_close_many(&single);
1524         list_del(&single);
1525 }
1526
1527 void dev_close_many(struct list_head *head, bool unlink)
1528 {
1529         struct net_device *dev, *tmp;
1530
1531         /* Remove the devices that don't need to be closed */
1532         list_for_each_entry_safe(dev, tmp, head, close_list)
1533                 if (!(dev->flags & IFF_UP))
1534                         list_del_init(&dev->close_list);
1535
1536         __dev_close_many(head);
1537
1538         list_for_each_entry_safe(dev, tmp, head, close_list) {
1539                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1540                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1541                 if (unlink)
1542                         list_del_init(&dev->close_list);
1543         }
1544 }
1545 EXPORT_SYMBOL(dev_close_many);
1546
1547 /**
1548  *      dev_close - shutdown an interface.
1549  *      @dev: device to shutdown
1550  *
1551  *      This function moves an active device into down state. A
1552  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1553  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1554  *      chain.
1555  */
1556 void dev_close(struct net_device *dev)
1557 {
1558         if (dev->flags & IFF_UP) {
1559                 LIST_HEAD(single);
1560
1561                 list_add(&dev->close_list, &single);
1562                 dev_close_many(&single, true);
1563                 list_del(&single);
1564         }
1565 }
1566 EXPORT_SYMBOL(dev_close);
1567
1568
1569 /**
1570  *      dev_disable_lro - disable Large Receive Offload on a device
1571  *      @dev: device
1572  *
1573  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1574  *      called under RTNL.  This is needed if received packets may be
1575  *      forwarded to another interface.
1576  */
1577 void dev_disable_lro(struct net_device *dev)
1578 {
1579         struct net_device *lower_dev;
1580         struct list_head *iter;
1581
1582         dev->wanted_features &= ~NETIF_F_LRO;
1583         netdev_update_features(dev);
1584
1585         if (unlikely(dev->features & NETIF_F_LRO))
1586                 netdev_WARN(dev, "failed to disable LRO!\n");
1587
1588         netdev_for_each_lower_dev(dev, lower_dev, iter)
1589                 dev_disable_lro(lower_dev);
1590 }
1591 EXPORT_SYMBOL(dev_disable_lro);
1592
1593 /**
1594  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1595  *      @dev: device
1596  *
1597  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1598  *      called under RTNL.  This is needed if Generic XDP is installed on
1599  *      the device.
1600  */
1601 static void dev_disable_gro_hw(struct net_device *dev)
1602 {
1603         dev->wanted_features &= ~NETIF_F_GRO_HW;
1604         netdev_update_features(dev);
1605
1606         if (unlikely(dev->features & NETIF_F_GRO_HW))
1607                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1608 }
1609
1610 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1611 {
1612 #define N(val)                                          \
1613         case NETDEV_##val:                              \
1614                 return "NETDEV_" __stringify(val);
1615         switch (cmd) {
1616         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1617         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1618         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1619         N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1620         N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1621         N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1622         N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1623         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1624         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1625         N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1626         N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1627         }
1628 #undef N
1629         return "UNKNOWN_NETDEV_EVENT";
1630 }
1631 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1632
1633 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1634                                    struct net_device *dev)
1635 {
1636         struct netdev_notifier_info info = {
1637                 .dev = dev,
1638         };
1639
1640         return nb->notifier_call(nb, val, &info);
1641 }
1642
1643 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1644                                              struct net_device *dev)
1645 {
1646         int err;
1647
1648         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1649         err = notifier_to_errno(err);
1650         if (err)
1651                 return err;
1652
1653         if (!(dev->flags & IFF_UP))
1654                 return 0;
1655
1656         call_netdevice_notifier(nb, NETDEV_UP, dev);
1657         return 0;
1658 }
1659
1660 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1661                                                 struct net_device *dev)
1662 {
1663         if (dev->flags & IFF_UP) {
1664                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1665                                         dev);
1666                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1667         }
1668         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1669 }
1670
1671 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1672                                                  struct net *net)
1673 {
1674         struct net_device *dev;
1675         int err;
1676
1677         for_each_netdev(net, dev) {
1678                 err = call_netdevice_register_notifiers(nb, dev);
1679                 if (err)
1680                         goto rollback;
1681         }
1682         return 0;
1683
1684 rollback:
1685         for_each_netdev_continue_reverse(net, dev)
1686                 call_netdevice_unregister_notifiers(nb, dev);
1687         return err;
1688 }
1689
1690 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1691                                                     struct net *net)
1692 {
1693         struct net_device *dev;
1694
1695         for_each_netdev(net, dev)
1696                 call_netdevice_unregister_notifiers(nb, dev);
1697 }
1698
1699 static int dev_boot_phase = 1;
1700
1701 /**
1702  * register_netdevice_notifier - register a network notifier block
1703  * @nb: notifier
1704  *
1705  * Register a notifier to be called when network device events occur.
1706  * The notifier passed is linked into the kernel structures and must
1707  * not be reused until it has been unregistered. A negative errno code
1708  * is returned on a failure.
1709  *
1710  * When registered all registration and up events are replayed
1711  * to the new notifier to allow device to have a race free
1712  * view of the network device list.
1713  */
1714
1715 int register_netdevice_notifier(struct notifier_block *nb)
1716 {
1717         struct net *net;
1718         int err;
1719
1720         /* Close race with setup_net() and cleanup_net() */
1721         down_write(&pernet_ops_rwsem);
1722         rtnl_lock();
1723         err = raw_notifier_chain_register(&netdev_chain, nb);
1724         if (err)
1725                 goto unlock;
1726         if (dev_boot_phase)
1727                 goto unlock;
1728         for_each_net(net) {
1729                 err = call_netdevice_register_net_notifiers(nb, net);
1730                 if (err)
1731                         goto rollback;
1732         }
1733
1734 unlock:
1735         rtnl_unlock();
1736         up_write(&pernet_ops_rwsem);
1737         return err;
1738
1739 rollback:
1740         for_each_net_continue_reverse(net)
1741                 call_netdevice_unregister_net_notifiers(nb, net);
1742
1743         raw_notifier_chain_unregister(&netdev_chain, nb);
1744         goto unlock;
1745 }
1746 EXPORT_SYMBOL(register_netdevice_notifier);
1747
1748 /**
1749  * unregister_netdevice_notifier - unregister a network notifier block
1750  * @nb: notifier
1751  *
1752  * Unregister a notifier previously registered by
1753  * register_netdevice_notifier(). The notifier is unlinked into the
1754  * kernel structures and may then be reused. A negative errno code
1755  * is returned on a failure.
1756  *
1757  * After unregistering unregister and down device events are synthesized
1758  * for all devices on the device list to the removed notifier to remove
1759  * the need for special case cleanup code.
1760  */
1761
1762 int unregister_netdevice_notifier(struct notifier_block *nb)
1763 {
1764         struct net *net;
1765         int err;
1766
1767         /* Close race with setup_net() and cleanup_net() */
1768         down_write(&pernet_ops_rwsem);
1769         rtnl_lock();
1770         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1771         if (err)
1772                 goto unlock;
1773
1774         for_each_net(net)
1775                 call_netdevice_unregister_net_notifiers(nb, net);
1776
1777 unlock:
1778         rtnl_unlock();
1779         up_write(&pernet_ops_rwsem);
1780         return err;
1781 }
1782 EXPORT_SYMBOL(unregister_netdevice_notifier);
1783
1784 static int __register_netdevice_notifier_net(struct net *net,
1785                                              struct notifier_block *nb,
1786                                              bool ignore_call_fail)
1787 {
1788         int err;
1789
1790         err = raw_notifier_chain_register(&net->netdev_chain, nb);
1791         if (err)
1792                 return err;
1793         if (dev_boot_phase)
1794                 return 0;
1795
1796         err = call_netdevice_register_net_notifiers(nb, net);
1797         if (err && !ignore_call_fail)
1798                 goto chain_unregister;
1799
1800         return 0;
1801
1802 chain_unregister:
1803         raw_notifier_chain_unregister(&net->netdev_chain, nb);
1804         return err;
1805 }
1806
1807 static int __unregister_netdevice_notifier_net(struct net *net,
1808                                                struct notifier_block *nb)
1809 {
1810         int err;
1811
1812         err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1813         if (err)
1814                 return err;
1815
1816         call_netdevice_unregister_net_notifiers(nb, net);
1817         return 0;
1818 }
1819
1820 /**
1821  * register_netdevice_notifier_net - register a per-netns network notifier block
1822  * @net: network namespace
1823  * @nb: notifier
1824  *
1825  * Register a notifier to be called when network device events occur.
1826  * The notifier passed is linked into the kernel structures and must
1827  * not be reused until it has been unregistered. A negative errno code
1828  * is returned on a failure.
1829  *
1830  * When registered all registration and up events are replayed
1831  * to the new notifier to allow device to have a race free
1832  * view of the network device list.
1833  */
1834
1835 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1836 {
1837         int err;
1838
1839         rtnl_lock();
1840         err = __register_netdevice_notifier_net(net, nb, false);
1841         rtnl_unlock();
1842         return err;
1843 }
1844 EXPORT_SYMBOL(register_netdevice_notifier_net);
1845
1846 /**
1847  * unregister_netdevice_notifier_net - unregister a per-netns
1848  *                                     network notifier block
1849  * @net: network namespace
1850  * @nb: notifier
1851  *
1852  * Unregister a notifier previously registered by
1853  * register_netdevice_notifier(). The notifier is unlinked into the
1854  * kernel structures and may then be reused. A negative errno code
1855  * is returned on a failure.
1856  *
1857  * After unregistering unregister and down device events are synthesized
1858  * for all devices on the device list to the removed notifier to remove
1859  * the need for special case cleanup code.
1860  */
1861
1862 int unregister_netdevice_notifier_net(struct net *net,
1863                                       struct notifier_block *nb)
1864 {
1865         int err;
1866
1867         rtnl_lock();
1868         err = __unregister_netdevice_notifier_net(net, nb);
1869         rtnl_unlock();
1870         return err;
1871 }
1872 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1873
1874 int register_netdevice_notifier_dev_net(struct net_device *dev,
1875                                         struct notifier_block *nb,
1876                                         struct netdev_net_notifier *nn)
1877 {
1878         int err;
1879
1880         rtnl_lock();
1881         err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1882         if (!err) {
1883                 nn->nb = nb;
1884                 list_add(&nn->list, &dev->net_notifier_list);
1885         }
1886         rtnl_unlock();
1887         return err;
1888 }
1889 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1890
1891 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1892                                           struct notifier_block *nb,
1893                                           struct netdev_net_notifier *nn)
1894 {
1895         int err;
1896
1897         rtnl_lock();
1898         list_del(&nn->list);
1899         err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1900         rtnl_unlock();
1901         return err;
1902 }
1903 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1904
1905 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1906                                              struct net *net)
1907 {
1908         struct netdev_net_notifier *nn;
1909
1910         list_for_each_entry(nn, &dev->net_notifier_list, list) {
1911                 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
1912                 __register_netdevice_notifier_net(net, nn->nb, true);
1913         }
1914 }
1915
1916 /**
1917  *      call_netdevice_notifiers_info - call all network notifier blocks
1918  *      @val: value passed unmodified to notifier function
1919  *      @info: notifier information data
1920  *
1921  *      Call all network notifier blocks.  Parameters and return value
1922  *      are as for raw_notifier_call_chain().
1923  */
1924
1925 static int call_netdevice_notifiers_info(unsigned long val,
1926                                          struct netdev_notifier_info *info)
1927 {
1928         struct net *net = dev_net(info->dev);
1929         int ret;
1930
1931         ASSERT_RTNL();
1932
1933         /* Run per-netns notifier block chain first, then run the global one.
1934          * Hopefully, one day, the global one is going to be removed after
1935          * all notifier block registrators get converted to be per-netns.
1936          */
1937         ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1938         if (ret & NOTIFY_STOP_MASK)
1939                 return ret;
1940         return raw_notifier_call_chain(&netdev_chain, val, info);
1941 }
1942
1943 /**
1944  *      call_netdevice_notifiers_info_robust - call per-netns notifier blocks
1945  *                                             for and rollback on error
1946  *      @val_up: value passed unmodified to notifier function
1947  *      @val_down: value passed unmodified to the notifier function when
1948  *                 recovering from an error on @val_up
1949  *      @info: notifier information data
1950  *
1951  *      Call all per-netns network notifier blocks, but not notifier blocks on
1952  *      the global notifier chain. Parameters and return value are as for
1953  *      raw_notifier_call_chain_robust().
1954  */
1955
1956 static int
1957 call_netdevice_notifiers_info_robust(unsigned long val_up,
1958                                      unsigned long val_down,
1959                                      struct netdev_notifier_info *info)
1960 {
1961         struct net *net = dev_net(info->dev);
1962
1963         ASSERT_RTNL();
1964
1965         return raw_notifier_call_chain_robust(&net->netdev_chain,
1966                                               val_up, val_down, info);
1967 }
1968
1969 static int call_netdevice_notifiers_extack(unsigned long val,
1970                                            struct net_device *dev,
1971                                            struct netlink_ext_ack *extack)
1972 {
1973         struct netdev_notifier_info info = {
1974                 .dev = dev,
1975                 .extack = extack,
1976         };
1977
1978         return call_netdevice_notifiers_info(val, &info);
1979 }
1980
1981 /**
1982  *      call_netdevice_notifiers - call all network notifier blocks
1983  *      @val: value passed unmodified to notifier function
1984  *      @dev: net_device pointer passed unmodified to notifier function
1985  *
1986  *      Call all network notifier blocks.  Parameters and return value
1987  *      are as for raw_notifier_call_chain().
1988  */
1989
1990 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1991 {
1992         return call_netdevice_notifiers_extack(val, dev, NULL);
1993 }
1994 EXPORT_SYMBOL(call_netdevice_notifiers);
1995
1996 /**
1997  *      call_netdevice_notifiers_mtu - call all network notifier blocks
1998  *      @val: value passed unmodified to notifier function
1999  *      @dev: net_device pointer passed unmodified to notifier function
2000  *      @arg: additional u32 argument passed to the notifier function
2001  *
2002  *      Call all network notifier blocks.  Parameters and return value
2003  *      are as for raw_notifier_call_chain().
2004  */
2005 static int call_netdevice_notifiers_mtu(unsigned long val,
2006                                         struct net_device *dev, u32 arg)
2007 {
2008         struct netdev_notifier_info_ext info = {
2009                 .info.dev = dev,
2010                 .ext.mtu = arg,
2011         };
2012
2013         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2014
2015         return call_netdevice_notifiers_info(val, &info.info);
2016 }
2017
2018 #ifdef CONFIG_NET_INGRESS
2019 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2020
2021 void net_inc_ingress_queue(void)
2022 {
2023         static_branch_inc(&ingress_needed_key);
2024 }
2025 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2026
2027 void net_dec_ingress_queue(void)
2028 {
2029         static_branch_dec(&ingress_needed_key);
2030 }
2031 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2032 #endif
2033
2034 #ifdef CONFIG_NET_EGRESS
2035 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2036
2037 void net_inc_egress_queue(void)
2038 {
2039         static_branch_inc(&egress_needed_key);
2040 }
2041 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2042
2043 void net_dec_egress_queue(void)
2044 {
2045         static_branch_dec(&egress_needed_key);
2046 }
2047 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2048 #endif
2049
2050 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2051 EXPORT_SYMBOL(netstamp_needed_key);
2052 #ifdef CONFIG_JUMP_LABEL
2053 static atomic_t netstamp_needed_deferred;
2054 static atomic_t netstamp_wanted;
2055 static void netstamp_clear(struct work_struct *work)
2056 {
2057         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2058         int wanted;
2059
2060         wanted = atomic_add_return(deferred, &netstamp_wanted);
2061         if (wanted > 0)
2062                 static_branch_enable(&netstamp_needed_key);
2063         else
2064                 static_branch_disable(&netstamp_needed_key);
2065 }
2066 static DECLARE_WORK(netstamp_work, netstamp_clear);
2067 #endif
2068
2069 void net_enable_timestamp(void)
2070 {
2071 #ifdef CONFIG_JUMP_LABEL
2072         int wanted;
2073
2074         while (1) {
2075                 wanted = atomic_read(&netstamp_wanted);
2076                 if (wanted <= 0)
2077                         break;
2078                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2079                         return;
2080         }
2081         atomic_inc(&netstamp_needed_deferred);
2082         schedule_work(&netstamp_work);
2083 #else
2084         static_branch_inc(&netstamp_needed_key);
2085 #endif
2086 }
2087 EXPORT_SYMBOL(net_enable_timestamp);
2088
2089 void net_disable_timestamp(void)
2090 {
2091 #ifdef CONFIG_JUMP_LABEL
2092         int wanted;
2093
2094         while (1) {
2095                 wanted = atomic_read(&netstamp_wanted);
2096                 if (wanted <= 1)
2097                         break;
2098                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2099                         return;
2100         }
2101         atomic_dec(&netstamp_needed_deferred);
2102         schedule_work(&netstamp_work);
2103 #else
2104         static_branch_dec(&netstamp_needed_key);
2105 #endif
2106 }
2107 EXPORT_SYMBOL(net_disable_timestamp);
2108
2109 static inline void net_timestamp_set(struct sk_buff *skb)
2110 {
2111         skb->tstamp = 0;
2112         skb->mono_delivery_time = 0;
2113         if (static_branch_unlikely(&netstamp_needed_key))
2114                 skb->tstamp = ktime_get_real();
2115 }
2116
2117 #define net_timestamp_check(COND, SKB)                          \
2118         if (static_branch_unlikely(&netstamp_needed_key)) {     \
2119                 if ((COND) && !(SKB)->tstamp)                   \
2120                         (SKB)->tstamp = ktime_get_real();       \
2121         }                                                       \
2122
2123 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2124 {
2125         return __is_skb_forwardable(dev, skb, true);
2126 }
2127 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2128
2129 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2130                               bool check_mtu)
2131 {
2132         int ret = ____dev_forward_skb(dev, skb, check_mtu);
2133
2134         if (likely(!ret)) {
2135                 skb->protocol = eth_type_trans(skb, dev);
2136                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2137         }
2138
2139         return ret;
2140 }
2141
2142 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2143 {
2144         return __dev_forward_skb2(dev, skb, true);
2145 }
2146 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2147
2148 /**
2149  * dev_forward_skb - loopback an skb to another netif
2150  *
2151  * @dev: destination network device
2152  * @skb: buffer to forward
2153  *
2154  * return values:
2155  *      NET_RX_SUCCESS  (no congestion)
2156  *      NET_RX_DROP     (packet was dropped, but freed)
2157  *
2158  * dev_forward_skb can be used for injecting an skb from the
2159  * start_xmit function of one device into the receive queue
2160  * of another device.
2161  *
2162  * The receiving device may be in another namespace, so
2163  * we have to clear all information in the skb that could
2164  * impact namespace isolation.
2165  */
2166 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2167 {
2168         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2169 }
2170 EXPORT_SYMBOL_GPL(dev_forward_skb);
2171
2172 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2173 {
2174         return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2175 }
2176
2177 static inline int deliver_skb(struct sk_buff *skb,
2178                               struct packet_type *pt_prev,
2179                               struct net_device *orig_dev)
2180 {
2181         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2182                 return -ENOMEM;
2183         refcount_inc(&skb->users);
2184         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2185 }
2186
2187 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2188                                           struct packet_type **pt,
2189                                           struct net_device *orig_dev,
2190                                           __be16 type,
2191                                           struct list_head *ptype_list)
2192 {
2193         struct packet_type *ptype, *pt_prev = *pt;
2194
2195         list_for_each_entry_rcu(ptype, ptype_list, list) {
2196                 if (ptype->type != type)
2197                         continue;
2198                 if (pt_prev)
2199                         deliver_skb(skb, pt_prev, orig_dev);
2200                 pt_prev = ptype;
2201         }
2202         *pt = pt_prev;
2203 }
2204
2205 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2206 {
2207         if (!ptype->af_packet_priv || !skb->sk)
2208                 return false;
2209
2210         if (ptype->id_match)
2211                 return ptype->id_match(ptype, skb->sk);
2212         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2213                 return true;
2214
2215         return false;
2216 }
2217
2218 /**
2219  * dev_nit_active - return true if any network interface taps are in use
2220  *
2221  * @dev: network device to check for the presence of taps
2222  */
2223 bool dev_nit_active(struct net_device *dev)
2224 {
2225         return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2226 }
2227 EXPORT_SYMBOL_GPL(dev_nit_active);
2228
2229 /*
2230  *      Support routine. Sends outgoing frames to any network
2231  *      taps currently in use.
2232  */
2233
2234 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2235 {
2236         struct packet_type *ptype;
2237         struct sk_buff *skb2 = NULL;
2238         struct packet_type *pt_prev = NULL;
2239         struct list_head *ptype_list = &ptype_all;
2240
2241         rcu_read_lock();
2242 again:
2243         list_for_each_entry_rcu(ptype, ptype_list, list) {
2244                 if (ptype->ignore_outgoing)
2245                         continue;
2246
2247                 /* Never send packets back to the socket
2248                  * they originated from - MvS (miquels@drinkel.ow.org)
2249                  */
2250                 if (skb_loop_sk(ptype, skb))
2251                         continue;
2252
2253                 if (pt_prev) {
2254                         deliver_skb(skb2, pt_prev, skb->dev);
2255                         pt_prev = ptype;
2256                         continue;
2257                 }
2258
2259                 /* need to clone skb, done only once */
2260                 skb2 = skb_clone(skb, GFP_ATOMIC);
2261                 if (!skb2)
2262                         goto out_unlock;
2263
2264                 net_timestamp_set(skb2);
2265
2266                 /* skb->nh should be correctly
2267                  * set by sender, so that the second statement is
2268                  * just protection against buggy protocols.
2269                  */
2270                 skb_reset_mac_header(skb2);
2271
2272                 if (skb_network_header(skb2) < skb2->data ||
2273                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2274                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2275                                              ntohs(skb2->protocol),
2276                                              dev->name);
2277                         skb_reset_network_header(skb2);
2278                 }
2279
2280                 skb2->transport_header = skb2->network_header;
2281                 skb2->pkt_type = PACKET_OUTGOING;
2282                 pt_prev = ptype;
2283         }
2284
2285         if (ptype_list == &ptype_all) {
2286                 ptype_list = &dev->ptype_all;
2287                 goto again;
2288         }
2289 out_unlock:
2290         if (pt_prev) {
2291                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2292                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2293                 else
2294                         kfree_skb(skb2);
2295         }
2296         rcu_read_unlock();
2297 }
2298 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2299
2300 /**
2301  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2302  * @dev: Network device
2303  * @txq: number of queues available
2304  *
2305  * If real_num_tx_queues is changed the tc mappings may no longer be
2306  * valid. To resolve this verify the tc mapping remains valid and if
2307  * not NULL the mapping. With no priorities mapping to this
2308  * offset/count pair it will no longer be used. In the worst case TC0
2309  * is invalid nothing can be done so disable priority mappings. If is
2310  * expected that drivers will fix this mapping if they can before
2311  * calling netif_set_real_num_tx_queues.
2312  */
2313 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2314 {
2315         int i;
2316         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2317
2318         /* If TC0 is invalidated disable TC mapping */
2319         if (tc->offset + tc->count > txq) {
2320                 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2321                 dev->num_tc = 0;
2322                 return;
2323         }
2324
2325         /* Invalidated prio to tc mappings set to TC0 */
2326         for (i = 1; i < TC_BITMASK + 1; i++) {
2327                 int q = netdev_get_prio_tc_map(dev, i);
2328
2329                 tc = &dev->tc_to_txq[q];
2330                 if (tc->offset + tc->count > txq) {
2331                         netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2332                                     i, q);
2333                         netdev_set_prio_tc_map(dev, i, 0);
2334                 }
2335         }
2336 }
2337
2338 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2339 {
2340         if (dev->num_tc) {
2341                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2342                 int i;
2343
2344                 /* walk through the TCs and see if it falls into any of them */
2345                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2346                         if ((txq - tc->offset) < tc->count)
2347                                 return i;
2348                 }
2349
2350                 /* didn't find it, just return -1 to indicate no match */
2351                 return -1;
2352         }
2353
2354         return 0;
2355 }
2356 EXPORT_SYMBOL(netdev_txq_to_tc);
2357
2358 #ifdef CONFIG_XPS
2359 static struct static_key xps_needed __read_mostly;
2360 static struct static_key xps_rxqs_needed __read_mostly;
2361 static DEFINE_MUTEX(xps_map_mutex);
2362 #define xmap_dereference(P)             \
2363         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2364
2365 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2366                              struct xps_dev_maps *old_maps, int tci, u16 index)
2367 {
2368         struct xps_map *map = NULL;
2369         int pos;
2370
2371         if (dev_maps)
2372                 map = xmap_dereference(dev_maps->attr_map[tci]);
2373         if (!map)
2374                 return false;
2375
2376         for (pos = map->len; pos--;) {
2377                 if (map->queues[pos] != index)
2378                         continue;
2379
2380                 if (map->len > 1) {
2381                         map->queues[pos] = map->queues[--map->len];
2382                         break;
2383                 }
2384
2385                 if (old_maps)
2386                         RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2387                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2388                 kfree_rcu(map, rcu);
2389                 return false;
2390         }
2391
2392         return true;
2393 }
2394
2395 static bool remove_xps_queue_cpu(struct net_device *dev,
2396                                  struct xps_dev_maps *dev_maps,
2397                                  int cpu, u16 offset, u16 count)
2398 {
2399         int num_tc = dev_maps->num_tc;
2400         bool active = false;
2401         int tci;
2402
2403         for (tci = cpu * num_tc; num_tc--; tci++) {
2404                 int i, j;
2405
2406                 for (i = count, j = offset; i--; j++) {
2407                         if (!remove_xps_queue(dev_maps, NULL, tci, j))
2408                                 break;
2409                 }
2410
2411                 active |= i < 0;
2412         }
2413
2414         return active;
2415 }
2416
2417 static void reset_xps_maps(struct net_device *dev,
2418                            struct xps_dev_maps *dev_maps,
2419                            enum xps_map_type type)
2420 {
2421         static_key_slow_dec_cpuslocked(&xps_needed);
2422         if (type == XPS_RXQS)
2423                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2424
2425         RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2426
2427         kfree_rcu(dev_maps, rcu);
2428 }
2429
2430 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2431                            u16 offset, u16 count)
2432 {
2433         struct xps_dev_maps *dev_maps;
2434         bool active = false;
2435         int i, j;
2436
2437         dev_maps = xmap_dereference(dev->xps_maps[type]);
2438         if (!dev_maps)
2439                 return;
2440
2441         for (j = 0; j < dev_maps->nr_ids; j++)
2442                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2443         if (!active)
2444                 reset_xps_maps(dev, dev_maps, type);
2445
2446         if (type == XPS_CPUS) {
2447                 for (i = offset + (count - 1); count--; i--)
2448                         netdev_queue_numa_node_write(
2449                                 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2450         }
2451 }
2452
2453 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2454                                    u16 count)
2455 {
2456         if (!static_key_false(&xps_needed))
2457                 return;
2458
2459         cpus_read_lock();
2460         mutex_lock(&xps_map_mutex);
2461
2462         if (static_key_false(&xps_rxqs_needed))
2463                 clean_xps_maps(dev, XPS_RXQS, offset, count);
2464
2465         clean_xps_maps(dev, XPS_CPUS, offset, count);
2466
2467         mutex_unlock(&xps_map_mutex);
2468         cpus_read_unlock();
2469 }
2470
2471 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2472 {
2473         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2474 }
2475
2476 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2477                                       u16 index, bool is_rxqs_map)
2478 {
2479         struct xps_map *new_map;
2480         int alloc_len = XPS_MIN_MAP_ALLOC;
2481         int i, pos;
2482
2483         for (pos = 0; map && pos < map->len; pos++) {
2484                 if (map->queues[pos] != index)
2485                         continue;
2486                 return map;
2487         }
2488
2489         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2490         if (map) {
2491                 if (pos < map->alloc_len)
2492                         return map;
2493
2494                 alloc_len = map->alloc_len * 2;
2495         }
2496
2497         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2498          *  map
2499          */
2500         if (is_rxqs_map)
2501                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2502         else
2503                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2504                                        cpu_to_node(attr_index));
2505         if (!new_map)
2506                 return NULL;
2507
2508         for (i = 0; i < pos; i++)
2509                 new_map->queues[i] = map->queues[i];
2510         new_map->alloc_len = alloc_len;
2511         new_map->len = pos;
2512
2513         return new_map;
2514 }
2515
2516 /* Copy xps maps at a given index */
2517 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2518                               struct xps_dev_maps *new_dev_maps, int index,
2519                               int tc, bool skip_tc)
2520 {
2521         int i, tci = index * dev_maps->num_tc;
2522         struct xps_map *map;
2523
2524         /* copy maps belonging to foreign traffic classes */
2525         for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2526                 if (i == tc && skip_tc)
2527                         continue;
2528
2529                 /* fill in the new device map from the old device map */
2530                 map = xmap_dereference(dev_maps->attr_map[tci]);
2531                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2532         }
2533 }
2534
2535 /* Must be called under cpus_read_lock */
2536 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2537                           u16 index, enum xps_map_type type)
2538 {
2539         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2540         const unsigned long *online_mask = NULL;
2541         bool active = false, copy = false;
2542         int i, j, tci, numa_node_id = -2;
2543         int maps_sz, num_tc = 1, tc = 0;
2544         struct xps_map *map, *new_map;
2545         unsigned int nr_ids;
2546
2547         if (dev->num_tc) {
2548                 /* Do not allow XPS on subordinate device directly */
2549                 num_tc = dev->num_tc;
2550                 if (num_tc < 0)
2551                         return -EINVAL;
2552
2553                 /* If queue belongs to subordinate dev use its map */
2554                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2555
2556                 tc = netdev_txq_to_tc(dev, index);
2557                 if (tc < 0)
2558                         return -EINVAL;
2559         }
2560
2561         mutex_lock(&xps_map_mutex);
2562
2563         dev_maps = xmap_dereference(dev->xps_maps[type]);
2564         if (type == XPS_RXQS) {
2565                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2566                 nr_ids = dev->num_rx_queues;
2567         } else {
2568                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2569                 if (num_possible_cpus() > 1)
2570                         online_mask = cpumask_bits(cpu_online_mask);
2571                 nr_ids = nr_cpu_ids;
2572         }
2573
2574         if (maps_sz < L1_CACHE_BYTES)
2575                 maps_sz = L1_CACHE_BYTES;
2576
2577         /* The old dev_maps could be larger or smaller than the one we're
2578          * setting up now, as dev->num_tc or nr_ids could have been updated in
2579          * between. We could try to be smart, but let's be safe instead and only
2580          * copy foreign traffic classes if the two map sizes match.
2581          */
2582         if (dev_maps &&
2583             dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2584                 copy = true;
2585
2586         /* allocate memory for queue storage */
2587         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2588              j < nr_ids;) {
2589                 if (!new_dev_maps) {
2590                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2591                         if (!new_dev_maps) {
2592                                 mutex_unlock(&xps_map_mutex);
2593                                 return -ENOMEM;
2594                         }
2595
2596                         new_dev_maps->nr_ids = nr_ids;
2597                         new_dev_maps->num_tc = num_tc;
2598                 }
2599
2600                 tci = j * num_tc + tc;
2601                 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2602
2603                 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2604                 if (!map)
2605                         goto error;
2606
2607                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2608         }
2609
2610         if (!new_dev_maps)
2611                 goto out_no_new_maps;
2612
2613         if (!dev_maps) {
2614                 /* Increment static keys at most once per type */
2615                 static_key_slow_inc_cpuslocked(&xps_needed);
2616                 if (type == XPS_RXQS)
2617                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2618         }
2619
2620         for (j = 0; j < nr_ids; j++) {
2621                 bool skip_tc = false;
2622
2623                 tci = j * num_tc + tc;
2624                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2625                     netif_attr_test_online(j, online_mask, nr_ids)) {
2626                         /* add tx-queue to CPU/rx-queue maps */
2627                         int pos = 0;
2628
2629                         skip_tc = true;
2630
2631                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2632                         while ((pos < map->len) && (map->queues[pos] != index))
2633                                 pos++;
2634
2635                         if (pos == map->len)
2636                                 map->queues[map->len++] = index;
2637 #ifdef CONFIG_NUMA
2638                         if (type == XPS_CPUS) {
2639                                 if (numa_node_id == -2)
2640                                         numa_node_id = cpu_to_node(j);
2641                                 else if (numa_node_id != cpu_to_node(j))
2642                                         numa_node_id = -1;
2643                         }
2644 #endif
2645                 }
2646
2647                 if (copy)
2648                         xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2649                                           skip_tc);
2650         }
2651
2652         rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2653
2654         /* Cleanup old maps */
2655         if (!dev_maps)
2656                 goto out_no_old_maps;
2657
2658         for (j = 0; j < dev_maps->nr_ids; j++) {
2659                 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2660                         map = xmap_dereference(dev_maps->attr_map[tci]);
2661                         if (!map)
2662                                 continue;
2663
2664                         if (copy) {
2665                                 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2666                                 if (map == new_map)
2667                                         continue;
2668                         }
2669
2670                         RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2671                         kfree_rcu(map, rcu);
2672                 }
2673         }
2674
2675         old_dev_maps = dev_maps;
2676
2677 out_no_old_maps:
2678         dev_maps = new_dev_maps;
2679         active = true;
2680
2681 out_no_new_maps:
2682         if (type == XPS_CPUS)
2683                 /* update Tx queue numa node */
2684                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2685                                              (numa_node_id >= 0) ?
2686                                              numa_node_id : NUMA_NO_NODE);
2687
2688         if (!dev_maps)
2689                 goto out_no_maps;
2690
2691         /* removes tx-queue from unused CPUs/rx-queues */
2692         for (j = 0; j < dev_maps->nr_ids; j++) {
2693                 tci = j * dev_maps->num_tc;
2694
2695                 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2696                         if (i == tc &&
2697                             netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2698                             netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2699                                 continue;
2700
2701                         active |= remove_xps_queue(dev_maps,
2702                                                    copy ? old_dev_maps : NULL,
2703                                                    tci, index);
2704                 }
2705         }
2706
2707         if (old_dev_maps)
2708                 kfree_rcu(old_dev_maps, rcu);
2709
2710         /* free map if not active */
2711         if (!active)
2712                 reset_xps_maps(dev, dev_maps, type);
2713
2714 out_no_maps:
2715         mutex_unlock(&xps_map_mutex);
2716
2717         return 0;
2718 error:
2719         /* remove any maps that we added */
2720         for (j = 0; j < nr_ids; j++) {
2721                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2722                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2723                         map = copy ?
2724                               xmap_dereference(dev_maps->attr_map[tci]) :
2725                               NULL;
2726                         if (new_map && new_map != map)
2727                                 kfree(new_map);
2728                 }
2729         }
2730
2731         mutex_unlock(&xps_map_mutex);
2732
2733         kfree(new_dev_maps);
2734         return -ENOMEM;
2735 }
2736 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2737
2738 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2739                         u16 index)
2740 {
2741         int ret;
2742
2743         cpus_read_lock();
2744         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2745         cpus_read_unlock();
2746
2747         return ret;
2748 }
2749 EXPORT_SYMBOL(netif_set_xps_queue);
2750
2751 #endif
2752 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2753 {
2754         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2755
2756         /* Unbind any subordinate channels */
2757         while (txq-- != &dev->_tx[0]) {
2758                 if (txq->sb_dev)
2759                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2760         }
2761 }
2762
2763 void netdev_reset_tc(struct net_device *dev)
2764 {
2765 #ifdef CONFIG_XPS
2766         netif_reset_xps_queues_gt(dev, 0);
2767 #endif
2768         netdev_unbind_all_sb_channels(dev);
2769
2770         /* Reset TC configuration of device */
2771         dev->num_tc = 0;
2772         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2773         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2774 }
2775 EXPORT_SYMBOL(netdev_reset_tc);
2776
2777 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2778 {
2779         if (tc >= dev->num_tc)
2780                 return -EINVAL;
2781
2782 #ifdef CONFIG_XPS
2783         netif_reset_xps_queues(dev, offset, count);
2784 #endif
2785         dev->tc_to_txq[tc].count = count;
2786         dev->tc_to_txq[tc].offset = offset;
2787         return 0;
2788 }
2789 EXPORT_SYMBOL(netdev_set_tc_queue);
2790
2791 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2792 {
2793         if (num_tc > TC_MAX_QUEUE)
2794                 return -EINVAL;
2795
2796 #ifdef CONFIG_XPS
2797         netif_reset_xps_queues_gt(dev, 0);
2798 #endif
2799         netdev_unbind_all_sb_channels(dev);
2800
2801         dev->num_tc = num_tc;
2802         return 0;
2803 }
2804 EXPORT_SYMBOL(netdev_set_num_tc);
2805
2806 void netdev_unbind_sb_channel(struct net_device *dev,
2807                               struct net_device *sb_dev)
2808 {
2809         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2810
2811 #ifdef CONFIG_XPS
2812         netif_reset_xps_queues_gt(sb_dev, 0);
2813 #endif
2814         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2815         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2816
2817         while (txq-- != &dev->_tx[0]) {
2818                 if (txq->sb_dev == sb_dev)
2819                         txq->sb_dev = NULL;
2820         }
2821 }
2822 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2823
2824 int netdev_bind_sb_channel_queue(struct net_device *dev,
2825                                  struct net_device *sb_dev,
2826                                  u8 tc, u16 count, u16 offset)
2827 {
2828         /* Make certain the sb_dev and dev are already configured */
2829         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2830                 return -EINVAL;
2831
2832         /* We cannot hand out queues we don't have */
2833         if ((offset + count) > dev->real_num_tx_queues)
2834                 return -EINVAL;
2835
2836         /* Record the mapping */
2837         sb_dev->tc_to_txq[tc].count = count;
2838         sb_dev->tc_to_txq[tc].offset = offset;
2839
2840         /* Provide a way for Tx queue to find the tc_to_txq map or
2841          * XPS map for itself.
2842          */
2843         while (count--)
2844                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2845
2846         return 0;
2847 }
2848 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2849
2850 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2851 {
2852         /* Do not use a multiqueue device to represent a subordinate channel */
2853         if (netif_is_multiqueue(dev))
2854                 return -ENODEV;
2855
2856         /* We allow channels 1 - 32767 to be used for subordinate channels.
2857          * Channel 0 is meant to be "native" mode and used only to represent
2858          * the main root device. We allow writing 0 to reset the device back
2859          * to normal mode after being used as a subordinate channel.
2860          */
2861         if (channel > S16_MAX)
2862                 return -EINVAL;
2863
2864         dev->num_tc = -channel;
2865
2866         return 0;
2867 }
2868 EXPORT_SYMBOL(netdev_set_sb_channel);
2869
2870 /*
2871  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2872  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2873  */
2874 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2875 {
2876         bool disabling;
2877         int rc;
2878
2879         disabling = txq < dev->real_num_tx_queues;
2880
2881         if (txq < 1 || txq > dev->num_tx_queues)
2882                 return -EINVAL;
2883
2884         if (dev->reg_state == NETREG_REGISTERED ||
2885             dev->reg_state == NETREG_UNREGISTERING) {
2886                 ASSERT_RTNL();
2887
2888                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2889                                                   txq);
2890                 if (rc)
2891                         return rc;
2892
2893                 if (dev->num_tc)
2894                         netif_setup_tc(dev, txq);
2895
2896                 dev_qdisc_change_real_num_tx(dev, txq);
2897
2898                 dev->real_num_tx_queues = txq;
2899
2900                 if (disabling) {
2901                         synchronize_net();
2902                         qdisc_reset_all_tx_gt(dev, txq);
2903 #ifdef CONFIG_XPS
2904                         netif_reset_xps_queues_gt(dev, txq);
2905 #endif
2906                 }
2907         } else {
2908                 dev->real_num_tx_queues = txq;
2909         }
2910
2911         return 0;
2912 }
2913 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2914
2915 #ifdef CONFIG_SYSFS
2916 /**
2917  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2918  *      @dev: Network device
2919  *      @rxq: Actual number of RX queues
2920  *
2921  *      This must be called either with the rtnl_lock held or before
2922  *      registration of the net device.  Returns 0 on success, or a
2923  *      negative error code.  If called before registration, it always
2924  *      succeeds.
2925  */
2926 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2927 {
2928         int rc;
2929
2930         if (rxq < 1 || rxq > dev->num_rx_queues)
2931                 return -EINVAL;
2932
2933         if (dev->reg_state == NETREG_REGISTERED) {
2934                 ASSERT_RTNL();
2935
2936                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2937                                                   rxq);
2938                 if (rc)
2939                         return rc;
2940         }
2941
2942         dev->real_num_rx_queues = rxq;
2943         return 0;
2944 }
2945 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2946 #endif
2947
2948 /**
2949  *      netif_set_real_num_queues - set actual number of RX and TX queues used
2950  *      @dev: Network device
2951  *      @txq: Actual number of TX queues
2952  *      @rxq: Actual number of RX queues
2953  *
2954  *      Set the real number of both TX and RX queues.
2955  *      Does nothing if the number of queues is already correct.
2956  */
2957 int netif_set_real_num_queues(struct net_device *dev,
2958                               unsigned int txq, unsigned int rxq)
2959 {
2960         unsigned int old_rxq = dev->real_num_rx_queues;
2961         int err;
2962
2963         if (txq < 1 || txq > dev->num_tx_queues ||
2964             rxq < 1 || rxq > dev->num_rx_queues)
2965                 return -EINVAL;
2966
2967         /* Start from increases, so the error path only does decreases -
2968          * decreases can't fail.
2969          */
2970         if (rxq > dev->real_num_rx_queues) {
2971                 err = netif_set_real_num_rx_queues(dev, rxq);
2972                 if (err)
2973                         return err;
2974         }
2975         if (txq > dev->real_num_tx_queues) {
2976                 err = netif_set_real_num_tx_queues(dev, txq);
2977                 if (err)
2978                         goto undo_rx;
2979         }
2980         if (rxq < dev->real_num_rx_queues)
2981                 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
2982         if (txq < dev->real_num_tx_queues)
2983                 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
2984
2985         return 0;
2986 undo_rx:
2987         WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
2988         return err;
2989 }
2990 EXPORT_SYMBOL(netif_set_real_num_queues);
2991
2992 /**
2993  * netif_get_num_default_rss_queues - default number of RSS queues
2994  *
2995  * This routine should set an upper limit on the number of RSS queues
2996  * used by default by multiqueue devices.
2997  */
2998 int netif_get_num_default_rss_queues(void)
2999 {
3000         return is_kdump_kernel() ?
3001                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3002 }
3003 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3004
3005 static void __netif_reschedule(struct Qdisc *q)
3006 {
3007         struct softnet_data *sd;
3008         unsigned long flags;
3009
3010         local_irq_save(flags);
3011         sd = this_cpu_ptr(&softnet_data);
3012         q->next_sched = NULL;
3013         *sd->output_queue_tailp = q;
3014         sd->output_queue_tailp = &q->next_sched;
3015         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3016         local_irq_restore(flags);
3017 }
3018
3019 void __netif_schedule(struct Qdisc *q)
3020 {
3021         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3022                 __netif_reschedule(q);
3023 }
3024 EXPORT_SYMBOL(__netif_schedule);
3025
3026 struct dev_kfree_skb_cb {
3027         enum skb_free_reason reason;
3028 };
3029
3030 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3031 {
3032         return (struct dev_kfree_skb_cb *)skb->cb;
3033 }
3034
3035 void netif_schedule_queue(struct netdev_queue *txq)
3036 {
3037         rcu_read_lock();
3038         if (!netif_xmit_stopped(txq)) {
3039                 struct Qdisc *q = rcu_dereference(txq->qdisc);
3040
3041                 __netif_schedule(q);
3042         }
3043         rcu_read_unlock();
3044 }
3045 EXPORT_SYMBOL(netif_schedule_queue);
3046
3047 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3048 {
3049         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3050                 struct Qdisc *q;
3051
3052                 rcu_read_lock();
3053                 q = rcu_dereference(dev_queue->qdisc);
3054                 __netif_schedule(q);
3055                 rcu_read_unlock();
3056         }
3057 }
3058 EXPORT_SYMBOL(netif_tx_wake_queue);
3059
3060 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3061 {
3062         unsigned long flags;
3063
3064         if (unlikely(!skb))
3065                 return;
3066
3067         if (likely(refcount_read(&skb->users) == 1)) {
3068                 smp_rmb();
3069                 refcount_set(&skb->users, 0);
3070         } else if (likely(!refcount_dec_and_test(&skb->users))) {
3071                 return;
3072         }
3073         get_kfree_skb_cb(skb)->reason = reason;
3074         local_irq_save(flags);
3075         skb->next = __this_cpu_read(softnet_data.completion_queue);
3076         __this_cpu_write(softnet_data.completion_queue, skb);
3077         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3078         local_irq_restore(flags);
3079 }
3080 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3081
3082 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3083 {
3084         if (in_hardirq() || irqs_disabled())
3085                 __dev_kfree_skb_irq(skb, reason);
3086         else
3087                 dev_kfree_skb(skb);
3088 }
3089 EXPORT_SYMBOL(__dev_kfree_skb_any);
3090
3091
3092 /**
3093  * netif_device_detach - mark device as removed
3094  * @dev: network device
3095  *
3096  * Mark device as removed from system and therefore no longer available.
3097  */
3098 void netif_device_detach(struct net_device *dev)
3099 {
3100         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3101             netif_running(dev)) {
3102                 netif_tx_stop_all_queues(dev);
3103         }
3104 }
3105 EXPORT_SYMBOL(netif_device_detach);
3106
3107 /**
3108  * netif_device_attach - mark device as attached
3109  * @dev: network device
3110  *
3111  * Mark device as attached from system and restart if needed.
3112  */
3113 void netif_device_attach(struct net_device *dev)
3114 {
3115         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3116             netif_running(dev)) {
3117                 netif_tx_wake_all_queues(dev);
3118                 __netdev_watchdog_up(dev);
3119         }
3120 }
3121 EXPORT_SYMBOL(netif_device_attach);
3122
3123 /*
3124  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3125  * to be used as a distribution range.
3126  */
3127 static u16 skb_tx_hash(const struct net_device *dev,
3128                        const struct net_device *sb_dev,
3129                        struct sk_buff *skb)
3130 {
3131         u32 hash;
3132         u16 qoffset = 0;
3133         u16 qcount = dev->real_num_tx_queues;
3134
3135         if (dev->num_tc) {
3136                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3137
3138                 qoffset = sb_dev->tc_to_txq[tc].offset;
3139                 qcount = sb_dev->tc_to_txq[tc].count;
3140                 if (unlikely(!qcount)) {
3141                         net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3142                                              sb_dev->name, qoffset, tc);
3143                         qoffset = 0;
3144                         qcount = dev->real_num_tx_queues;
3145                 }
3146         }
3147
3148         if (skb_rx_queue_recorded(skb)) {
3149                 hash = skb_get_rx_queue(skb);
3150                 if (hash >= qoffset)
3151                         hash -= qoffset;
3152                 while (unlikely(hash >= qcount))
3153                         hash -= qcount;
3154                 return hash + qoffset;
3155         }
3156
3157         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3158 }
3159
3160 static void skb_warn_bad_offload(const struct sk_buff *skb)
3161 {
3162         static const netdev_features_t null_features;
3163         struct net_device *dev = skb->dev;
3164         const char *name = "";
3165
3166         if (!net_ratelimit())
3167                 return;
3168
3169         if (dev) {
3170                 if (dev->dev.parent)
3171                         name = dev_driver_string(dev->dev.parent);
3172                 else
3173                         name = netdev_name(dev);
3174         }
3175         skb_dump(KERN_WARNING, skb, false);
3176         WARN(1, "%s: caps=(%pNF, %pNF)\n",
3177              name, dev ? &dev->features : &null_features,
3178              skb->sk ? &skb->sk->sk_route_caps : &null_features);
3179 }
3180
3181 /*
3182  * Invalidate hardware checksum when packet is to be mangled, and
3183  * complete checksum manually on outgoing path.
3184  */
3185 int skb_checksum_help(struct sk_buff *skb)
3186 {
3187         __wsum csum;
3188         int ret = 0, offset;
3189
3190         if (skb->ip_summed == CHECKSUM_COMPLETE)
3191                 goto out_set_summed;
3192
3193         if (unlikely(skb_is_gso(skb))) {
3194                 skb_warn_bad_offload(skb);
3195                 return -EINVAL;
3196         }
3197
3198         /* Before computing a checksum, we should make sure no frag could
3199          * be modified by an external entity : checksum could be wrong.
3200          */
3201         if (skb_has_shared_frag(skb)) {
3202                 ret = __skb_linearize(skb);
3203                 if (ret)
3204                         goto out;
3205         }
3206
3207         offset = skb_checksum_start_offset(skb);
3208         BUG_ON(offset >= skb_headlen(skb));
3209         csum = skb_checksum(skb, offset, skb->len - offset, 0);
3210
3211         offset += skb->csum_offset;
3212         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3213
3214         ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3215         if (ret)
3216                 goto out;
3217
3218         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3219 out_set_summed:
3220         skb->ip_summed = CHECKSUM_NONE;
3221 out:
3222         return ret;
3223 }
3224 EXPORT_SYMBOL(skb_checksum_help);
3225
3226 int skb_crc32c_csum_help(struct sk_buff *skb)
3227 {
3228         __le32 crc32c_csum;
3229         int ret = 0, offset, start;
3230
3231         if (skb->ip_summed != CHECKSUM_PARTIAL)
3232                 goto out;
3233
3234         if (unlikely(skb_is_gso(skb)))
3235                 goto out;
3236
3237         /* Before computing a checksum, we should make sure no frag could
3238          * be modified by an external entity : checksum could be wrong.
3239          */
3240         if (unlikely(skb_has_shared_frag(skb))) {
3241                 ret = __skb_linearize(skb);
3242                 if (ret)
3243                         goto out;
3244         }
3245         start = skb_checksum_start_offset(skb);
3246         offset = start + offsetof(struct sctphdr, checksum);
3247         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3248                 ret = -EINVAL;
3249                 goto out;
3250         }
3251
3252         ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3253         if (ret)
3254                 goto out;
3255
3256         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3257                                                   skb->len - start, ~(__u32)0,
3258                                                   crc32c_csum_stub));
3259         *(__le32 *)(skb->data + offset) = crc32c_csum;
3260         skb->ip_summed = CHECKSUM_NONE;
3261         skb->csum_not_inet = 0;
3262 out:
3263         return ret;
3264 }
3265
3266 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3267 {
3268         __be16 type = skb->protocol;
3269
3270         /* Tunnel gso handlers can set protocol to ethernet. */
3271         if (type == htons(ETH_P_TEB)) {
3272                 struct ethhdr *eth;
3273
3274                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3275                         return 0;
3276
3277                 eth = (struct ethhdr *)skb->data;
3278                 type = eth->h_proto;
3279         }
3280
3281         return __vlan_get_protocol(skb, type, depth);
3282 }
3283
3284 /* openvswitch calls this on rx path, so we need a different check.
3285  */
3286 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3287 {
3288         if (tx_path)
3289                 return skb->ip_summed != CHECKSUM_PARTIAL &&
3290                        skb->ip_summed != CHECKSUM_UNNECESSARY;
3291
3292         return skb->ip_summed == CHECKSUM_NONE;
3293 }
3294
3295 /**
3296  *      __skb_gso_segment - Perform segmentation on skb.
3297  *      @skb: buffer to segment
3298  *      @features: features for the output path (see dev->features)
3299  *      @tx_path: whether it is called in TX path
3300  *
3301  *      This function segments the given skb and returns a list of segments.
3302  *
3303  *      It may return NULL if the skb requires no segmentation.  This is
3304  *      only possible when GSO is used for verifying header integrity.
3305  *
3306  *      Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3307  */
3308 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3309                                   netdev_features_t features, bool tx_path)
3310 {
3311         struct sk_buff *segs;
3312
3313         if (unlikely(skb_needs_check(skb, tx_path))) {
3314                 int err;
3315
3316                 /* We're going to init ->check field in TCP or UDP header */
3317                 err = skb_cow_head(skb, 0);
3318                 if (err < 0)
3319                         return ERR_PTR(err);
3320         }
3321
3322         /* Only report GSO partial support if it will enable us to
3323          * support segmentation on this frame without needing additional
3324          * work.
3325          */
3326         if (features & NETIF_F_GSO_PARTIAL) {
3327                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3328                 struct net_device *dev = skb->dev;
3329
3330                 partial_features |= dev->features & dev->gso_partial_features;
3331                 if (!skb_gso_ok(skb, features | partial_features))
3332                         features &= ~NETIF_F_GSO_PARTIAL;
3333         }
3334
3335         BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3336                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3337
3338         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3339         SKB_GSO_CB(skb)->encap_level = 0;
3340
3341         skb_reset_mac_header(skb);
3342         skb_reset_mac_len(skb);
3343
3344         segs = skb_mac_gso_segment(skb, features);
3345
3346         if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3347                 skb_warn_bad_offload(skb);
3348
3349         return segs;
3350 }
3351 EXPORT_SYMBOL(__skb_gso_segment);
3352
3353 /* Take action when hardware reception checksum errors are detected. */
3354 #ifdef CONFIG_BUG
3355 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3356 {
3357         netdev_err(dev, "hw csum failure\n");
3358         skb_dump(KERN_ERR, skb, true);
3359         dump_stack();
3360 }
3361
3362 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3363 {
3364         DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3365 }
3366 EXPORT_SYMBOL(netdev_rx_csum_fault);
3367 #endif
3368
3369 /* XXX: check that highmem exists at all on the given machine. */
3370 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3371 {
3372 #ifdef CONFIG_HIGHMEM
3373         int i;
3374
3375         if (!(dev->features & NETIF_F_HIGHDMA)) {
3376                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3377                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3378
3379                         if (PageHighMem(skb_frag_page(frag)))
3380                                 return 1;
3381                 }
3382         }
3383 #endif
3384         return 0;
3385 }
3386
3387 /* If MPLS offload request, verify we are testing hardware MPLS features
3388  * instead of standard features for the netdev.
3389  */
3390 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3391 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3392                                            netdev_features_t features,
3393                                            __be16 type)
3394 {
3395         if (eth_p_mpls(type))
3396                 features &= skb->dev->mpls_features;
3397
3398         return features;
3399 }
3400 #else
3401 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3402                                            netdev_features_t features,
3403                                            __be16 type)
3404 {
3405         return features;
3406 }
3407 #endif
3408
3409 static netdev_features_t harmonize_features(struct sk_buff *skb,
3410         netdev_features_t features)
3411 {
3412         __be16 type;
3413
3414         type = skb_network_protocol(skb, NULL);
3415         features = net_mpls_features(skb, features, type);
3416
3417         if (skb->ip_summed != CHECKSUM_NONE &&
3418             !can_checksum_protocol(features, type)) {
3419                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3420         }
3421         if (illegal_highdma(skb->dev, skb))
3422                 features &= ~NETIF_F_SG;
3423
3424         return features;
3425 }
3426
3427 netdev_features_t passthru_features_check(struct sk_buff *skb,
3428                                           struct net_device *dev,
3429                                           netdev_features_t features)
3430 {
3431         return features;
3432 }
3433 EXPORT_SYMBOL(passthru_features_check);
3434
3435 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3436                                              struct net_device *dev,
3437                                              netdev_features_t features)
3438 {
3439         return vlan_features_check(skb, features);
3440 }
3441
3442 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3443                                             struct net_device *dev,
3444                                             netdev_features_t features)
3445 {
3446         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3447
3448         if (gso_segs > READ_ONCE(dev->gso_max_segs))
3449                 return features & ~NETIF_F_GSO_MASK;
3450
3451         if (!skb_shinfo(skb)->gso_type) {
3452                 skb_warn_bad_offload(skb);
3453                 return features & ~NETIF_F_GSO_MASK;
3454         }
3455
3456         /* Support for GSO partial features requires software
3457          * intervention before we can actually process the packets
3458          * so we need to strip support for any partial features now
3459          * and we can pull them back in after we have partially
3460          * segmented the frame.
3461          */
3462         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3463                 features &= ~dev->gso_partial_features;
3464
3465         /* Make sure to clear the IPv4 ID mangling feature if the
3466          * IPv4 header has the potential to be fragmented.
3467          */
3468         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3469                 struct iphdr *iph = skb->encapsulation ?
3470                                     inner_ip_hdr(skb) : ip_hdr(skb);
3471
3472                 if (!(iph->frag_off & htons(IP_DF)))
3473                         features &= ~NETIF_F_TSO_MANGLEID;
3474         }
3475
3476         return features;
3477 }
3478
3479 netdev_features_t netif_skb_features(struct sk_buff *skb)
3480 {
3481         struct net_device *dev = skb->dev;
3482         netdev_features_t features = dev->features;
3483
3484         if (skb_is_gso(skb))
3485                 features = gso_features_check(skb, dev, features);
3486
3487         /* If encapsulation offload request, verify we are testing
3488          * hardware encapsulation features instead of standard
3489          * features for the netdev
3490          */
3491         if (skb->encapsulation)
3492                 features &= dev->hw_enc_features;
3493
3494         if (skb_vlan_tagged(skb))
3495                 features = netdev_intersect_features(features,
3496                                                      dev->vlan_features |
3497                                                      NETIF_F_HW_VLAN_CTAG_TX |
3498                                                      NETIF_F_HW_VLAN_STAG_TX);
3499
3500         if (dev->netdev_ops->ndo_features_check)
3501                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3502                                                                 features);
3503         else
3504                 features &= dflt_features_check(skb, dev, features);
3505
3506         return harmonize_features(skb, features);
3507 }
3508 EXPORT_SYMBOL(netif_skb_features);
3509
3510 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3511                     struct netdev_queue *txq, bool more)
3512 {
3513         unsigned int len;
3514         int rc;
3515
3516         if (dev_nit_active(dev))
3517                 dev_queue_xmit_nit(skb, dev);
3518
3519         len = skb->len;
3520         PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3521         trace_net_dev_start_xmit(skb, dev);
3522         rc = netdev_start_xmit(skb, dev, txq, more);
3523         trace_net_dev_xmit(skb, rc, dev, len);
3524
3525         return rc;
3526 }
3527
3528 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3529                                     struct netdev_queue *txq, int *ret)
3530 {
3531         struct sk_buff *skb = first;
3532         int rc = NETDEV_TX_OK;
3533
3534         while (skb) {
3535                 struct sk_buff *next = skb->next;
3536
3537                 skb_mark_not_on_list(skb);
3538                 rc = xmit_one(skb, dev, txq, next != NULL);
3539                 if (unlikely(!dev_xmit_complete(rc))) {
3540                         skb->next = next;
3541                         goto out;
3542                 }
3543
3544                 skb = next;
3545                 if (netif_tx_queue_stopped(txq) && skb) {
3546                         rc = NETDEV_TX_BUSY;
3547                         break;
3548                 }
3549         }
3550
3551 out:
3552         *ret = rc;
3553         return skb;
3554 }
3555
3556 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3557                                           netdev_features_t features)
3558 {
3559         if (skb_vlan_tag_present(skb) &&
3560             !vlan_hw_offload_capable(features, skb->vlan_proto))
3561                 skb = __vlan_hwaccel_push_inside(skb);
3562         return skb;
3563 }
3564
3565 int skb_csum_hwoffload_help(struct sk_buff *skb,
3566                             const netdev_features_t features)
3567 {
3568         if (unlikely(skb_csum_is_sctp(skb)))
3569                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3570                         skb_crc32c_csum_help(skb);
3571
3572         if (features & NETIF_F_HW_CSUM)
3573                 return 0;
3574
3575         if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3576                 switch (skb->csum_offset) {
3577                 case offsetof(struct tcphdr, check):
3578                 case offsetof(struct udphdr, check):
3579                         return 0;
3580                 }
3581         }
3582
3583         return skb_checksum_help(skb);
3584 }
3585 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3586
3587 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3588 {
3589         netdev_features_t features;
3590
3591         features = netif_skb_features(skb);
3592         skb = validate_xmit_vlan(skb, features);
3593         if (unlikely(!skb))
3594                 goto out_null;
3595
3596         skb = sk_validate_xmit_skb(skb, dev);
3597         if (unlikely(!skb))
3598                 goto out_null;
3599
3600         if (netif_needs_gso(skb, features)) {
3601                 struct sk_buff *segs;
3602
3603                 segs = skb_gso_segment(skb, features);
3604                 if (IS_ERR(segs)) {
3605                         goto out_kfree_skb;
3606                 } else if (segs) {
3607                         consume_skb(skb);
3608                         skb = segs;
3609                 }
3610         } else {
3611                 if (skb_needs_linearize(skb, features) &&
3612                     __skb_linearize(skb))
3613                         goto out_kfree_skb;
3614
3615                 /* If packet is not checksummed and device does not
3616                  * support checksumming for this protocol, complete
3617                  * checksumming here.
3618                  */
3619                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3620                         if (skb->encapsulation)
3621                                 skb_set_inner_transport_header(skb,
3622                                                                skb_checksum_start_offset(skb));
3623                         else
3624                                 skb_set_transport_header(skb,
3625                                                          skb_checksum_start_offset(skb));
3626                         if (skb_csum_hwoffload_help(skb, features))
3627                                 goto out_kfree_skb;
3628                 }
3629         }
3630
3631         skb = validate_xmit_xfrm(skb, features, again);
3632
3633         return skb;
3634
3635 out_kfree_skb:
3636         kfree_skb(skb);
3637 out_null:
3638         atomic_long_inc(&dev->tx_dropped);
3639         return NULL;
3640 }
3641
3642 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3643 {
3644         struct sk_buff *next, *head = NULL, *tail;
3645
3646         for (; skb != NULL; skb = next) {
3647                 next = skb->next;
3648                 skb_mark_not_on_list(skb);
3649
3650                 /* in case skb wont be segmented, point to itself */
3651                 skb->prev = skb;
3652
3653                 skb = validate_xmit_skb(skb, dev, again);
3654                 if (!skb)
3655                         continue;
3656
3657                 if (!head)
3658                         head = skb;
3659                 else
3660                         tail->next = skb;
3661                 /* If skb was segmented, skb->prev points to
3662                  * the last segment. If not, it still contains skb.
3663                  */
3664                 tail = skb->prev;
3665         }
3666         return head;
3667 }
3668 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3669
3670 static void qdisc_pkt_len_init(struct sk_buff *skb)
3671 {
3672         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3673
3674         qdisc_skb_cb(skb)->pkt_len = skb->len;
3675
3676         /* To get more precise estimation of bytes sent on wire,
3677          * we add to pkt_len the headers size of all segments
3678          */
3679         if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3680                 unsigned int hdr_len;
3681                 u16 gso_segs = shinfo->gso_segs;
3682
3683                 /* mac layer + network layer */
3684                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3685
3686                 /* + transport layer */
3687                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3688                         const struct tcphdr *th;
3689                         struct tcphdr _tcphdr;
3690
3691                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3692                                                 sizeof(_tcphdr), &_tcphdr);
3693                         if (likely(th))
3694                                 hdr_len += __tcp_hdrlen(th);
3695                 } else {
3696                         struct udphdr _udphdr;
3697
3698                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3699                                                sizeof(_udphdr), &_udphdr))
3700                                 hdr_len += sizeof(struct udphdr);
3701                 }
3702
3703                 if (shinfo->gso_type & SKB_GSO_DODGY)
3704                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3705                                                 shinfo->gso_size);
3706
3707                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3708         }
3709 }
3710
3711 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3712                              struct sk_buff **to_free,
3713                              struct netdev_queue *txq)
3714 {
3715         int rc;
3716
3717         rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3718         if (rc == NET_XMIT_SUCCESS)
3719                 trace_qdisc_enqueue(q, txq, skb);
3720         return rc;
3721 }
3722
3723 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3724                                  struct net_device *dev,
3725                                  struct netdev_queue *txq)
3726 {
3727         spinlock_t *root_lock = qdisc_lock(q);
3728         struct sk_buff *to_free = NULL;
3729         bool contended;
3730         int rc;
3731
3732         qdisc_calculate_pkt_len(skb, q);
3733
3734         if (q->flags & TCQ_F_NOLOCK) {
3735                 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3736                     qdisc_run_begin(q)) {
3737                         /* Retest nolock_qdisc_is_empty() within the protection
3738                          * of q->seqlock to protect from racing with requeuing.
3739                          */
3740                         if (unlikely(!nolock_qdisc_is_empty(q))) {
3741                                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3742                                 __qdisc_run(q);
3743                                 qdisc_run_end(q);
3744
3745                                 goto no_lock_out;
3746                         }
3747
3748                         qdisc_bstats_cpu_update(q, skb);
3749                         if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3750                             !nolock_qdisc_is_empty(q))
3751                                 __qdisc_run(q);
3752
3753                         qdisc_run_end(q);
3754                         return NET_XMIT_SUCCESS;
3755                 }
3756
3757                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3758                 qdisc_run(q);
3759
3760 no_lock_out:
3761                 if (unlikely(to_free))
3762                         kfree_skb_list_reason(to_free,
3763                                               SKB_DROP_REASON_QDISC_DROP);
3764                 return rc;
3765         }
3766
3767         /*
3768          * Heuristic to force contended enqueues to serialize on a
3769          * separate lock before trying to get qdisc main lock.
3770          * This permits qdisc->running owner to get the lock more
3771          * often and dequeue packets faster.
3772          * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3773          * and then other tasks will only enqueue packets. The packets will be
3774          * sent after the qdisc owner is scheduled again. To prevent this
3775          * scenario the task always serialize on the lock.
3776          */
3777         contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3778         if (unlikely(contended))
3779                 spin_lock(&q->busylock);
3780
3781         spin_lock(root_lock);
3782         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3783                 __qdisc_drop(skb, &to_free);
3784                 rc = NET_XMIT_DROP;
3785         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3786                    qdisc_run_begin(q)) {
3787                 /*
3788                  * This is a work-conserving queue; there are no old skbs
3789                  * waiting to be sent out; and the qdisc is not running -
3790                  * xmit the skb directly.
3791                  */
3792
3793                 qdisc_bstats_update(q, skb);
3794
3795                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3796                         if (unlikely(contended)) {
3797                                 spin_unlock(&q->busylock);
3798                                 contended = false;
3799                         }
3800                         __qdisc_run(q);
3801                 }
3802
3803                 qdisc_run_end(q);
3804                 rc = NET_XMIT_SUCCESS;
3805         } else {
3806                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3807                 if (qdisc_run_begin(q)) {
3808                         if (unlikely(contended)) {
3809                                 spin_unlock(&q->busylock);
3810                                 contended = false;
3811                         }
3812                         __qdisc_run(q);
3813                         qdisc_run_end(q);
3814                 }
3815         }
3816         spin_unlock(root_lock);
3817         if (unlikely(to_free))
3818                 kfree_skb_list_reason(to_free, SKB_DROP_REASON_QDISC_DROP);
3819         if (unlikely(contended))
3820                 spin_unlock(&q->busylock);
3821         return rc;
3822 }
3823
3824 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3825 static void skb_update_prio(struct sk_buff *skb)
3826 {
3827         const struct netprio_map *map;
3828         const struct sock *sk;
3829         unsigned int prioidx;
3830
3831         if (skb->priority)
3832                 return;
3833         map = rcu_dereference_bh(skb->dev->priomap);
3834         if (!map)
3835                 return;
3836         sk = skb_to_full_sk(skb);
3837         if (!sk)
3838                 return;
3839
3840         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3841
3842         if (prioidx < map->priomap_len)
3843                 skb->priority = map->priomap[prioidx];
3844 }
3845 #else
3846 #define skb_update_prio(skb)
3847 #endif
3848
3849 /**
3850  *      dev_loopback_xmit - loop back @skb
3851  *      @net: network namespace this loopback is happening in
3852  *      @sk:  sk needed to be a netfilter okfn
3853  *      @skb: buffer to transmit
3854  */
3855 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3856 {
3857         skb_reset_mac_header(skb);
3858         __skb_pull(skb, skb_network_offset(skb));
3859         skb->pkt_type = PACKET_LOOPBACK;
3860         if (skb->ip_summed == CHECKSUM_NONE)
3861                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3862         WARN_ON(!skb_dst(skb));
3863         skb_dst_force(skb);
3864         netif_rx(skb);
3865         return 0;
3866 }
3867 EXPORT_SYMBOL(dev_loopback_xmit);
3868
3869 #ifdef CONFIG_NET_EGRESS
3870 static struct sk_buff *
3871 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3872 {
3873 #ifdef CONFIG_NET_CLS_ACT
3874         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3875         struct tcf_result cl_res;
3876
3877         if (!miniq)
3878                 return skb;
3879
3880         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3881         tc_skb_cb(skb)->mru = 0;
3882         tc_skb_cb(skb)->post_ct = false;
3883         mini_qdisc_bstats_cpu_update(miniq, skb);
3884
3885         switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
3886         case TC_ACT_OK:
3887         case TC_ACT_RECLASSIFY:
3888                 skb->tc_index = TC_H_MIN(cl_res.classid);
3889                 break;
3890         case TC_ACT_SHOT:
3891                 mini_qdisc_qstats_cpu_drop(miniq);
3892                 *ret = NET_XMIT_DROP;
3893                 kfree_skb_reason(skb, SKB_DROP_REASON_TC_EGRESS);
3894                 return NULL;
3895         case TC_ACT_STOLEN:
3896         case TC_ACT_QUEUED:
3897         case TC_ACT_TRAP:
3898                 *ret = NET_XMIT_SUCCESS;
3899                 consume_skb(skb);
3900                 return NULL;
3901         case TC_ACT_REDIRECT:
3902                 /* No need to push/pop skb's mac_header here on egress! */
3903                 skb_do_redirect(skb);
3904                 *ret = NET_XMIT_SUCCESS;
3905                 return NULL;
3906         default:
3907                 break;
3908         }
3909 #endif /* CONFIG_NET_CLS_ACT */
3910
3911         return skb;
3912 }
3913 #endif /* CONFIG_NET_EGRESS */
3914
3915 #ifdef CONFIG_XPS
3916 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3917                                struct xps_dev_maps *dev_maps, unsigned int tci)
3918 {
3919         int tc = netdev_get_prio_tc_map(dev, skb->priority);
3920         struct xps_map *map;
3921         int queue_index = -1;
3922
3923         if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
3924                 return queue_index;
3925
3926         tci *= dev_maps->num_tc;
3927         tci += tc;
3928
3929         map = rcu_dereference(dev_maps->attr_map[tci]);
3930         if (map) {
3931                 if (map->len == 1)
3932                         queue_index = map->queues[0];
3933                 else
3934                         queue_index = map->queues[reciprocal_scale(
3935                                                 skb_get_hash(skb), map->len)];
3936                 if (unlikely(queue_index >= dev->real_num_tx_queues))
3937                         queue_index = -1;
3938         }
3939         return queue_index;
3940 }
3941 #endif
3942
3943 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3944                          struct sk_buff *skb)
3945 {
3946 #ifdef CONFIG_XPS
3947         struct xps_dev_maps *dev_maps;
3948         struct sock *sk = skb->sk;
3949         int queue_index = -1;
3950
3951         if (!static_key_false(&xps_needed))
3952                 return -1;
3953
3954         rcu_read_lock();
3955         if (!static_key_false(&xps_rxqs_needed))
3956                 goto get_cpus_map;
3957
3958         dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
3959         if (dev_maps) {
3960                 int tci = sk_rx_queue_get(sk);
3961
3962                 if (tci >= 0)
3963                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3964                                                           tci);
3965         }
3966
3967 get_cpus_map:
3968         if (queue_index < 0) {
3969                 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
3970                 if (dev_maps) {
3971                         unsigned int tci = skb->sender_cpu - 1;
3972
3973                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3974                                                           tci);
3975                 }
3976         }
3977         rcu_read_unlock();
3978
3979         return queue_index;
3980 #else
3981         return -1;
3982 #endif
3983 }
3984
3985 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3986                      struct net_device *sb_dev)
3987 {
3988         return 0;
3989 }
3990 EXPORT_SYMBOL(dev_pick_tx_zero);
3991
3992 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3993                        struct net_device *sb_dev)
3994 {
3995         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3996 }
3997 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3998
3999 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4000                      struct net_device *sb_dev)
4001 {
4002         struct sock *sk = skb->sk;
4003         int queue_index = sk_tx_queue_get(sk);
4004
4005         sb_dev = sb_dev ? : dev;
4006
4007         if (queue_index < 0 || skb->ooo_okay ||
4008             queue_index >= dev->real_num_tx_queues) {
4009                 int new_index = get_xps_queue(dev, sb_dev, skb);
4010
4011                 if (new_index < 0)
4012                         new_index = skb_tx_hash(dev, sb_dev, skb);
4013
4014                 if (queue_index != new_index && sk &&
4015                     sk_fullsock(sk) &&
4016                     rcu_access_pointer(sk->sk_dst_cache))
4017                         sk_tx_queue_set(sk, new_index);
4018
4019                 queue_index = new_index;
4020         }
4021
4022         return queue_index;
4023 }
4024 EXPORT_SYMBOL(netdev_pick_tx);
4025
4026 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4027                                          struct sk_buff *skb,
4028                                          struct net_device *sb_dev)
4029 {
4030         int queue_index = 0;
4031
4032 #ifdef CONFIG_XPS
4033         u32 sender_cpu = skb->sender_cpu - 1;
4034
4035         if (sender_cpu >= (u32)NR_CPUS)
4036                 skb->sender_cpu = raw_smp_processor_id() + 1;
4037 #endif
4038
4039         if (dev->real_num_tx_queues != 1) {
4040                 const struct net_device_ops *ops = dev->netdev_ops;
4041
4042                 if (ops->ndo_select_queue)
4043                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4044                 else
4045                         queue_index = netdev_pick_tx(dev, skb, sb_dev);
4046
4047                 queue_index = netdev_cap_txqueue(dev, queue_index);
4048         }
4049
4050         skb_set_queue_mapping(skb, queue_index);
4051         return netdev_get_tx_queue(dev, queue_index);
4052 }
4053
4054 /**
4055  *      __dev_queue_xmit - transmit a buffer
4056  *      @skb: buffer to transmit
4057  *      @sb_dev: suboordinate device used for L2 forwarding offload
4058  *
4059  *      Queue a buffer for transmission to a network device. The caller must
4060  *      have set the device and priority and built the buffer before calling
4061  *      this function. The function can be called from an interrupt.
4062  *
4063  *      A negative errno code is returned on a failure. A success does not
4064  *      guarantee the frame will be transmitted as it may be dropped due
4065  *      to congestion or traffic shaping.
4066  *
4067  * -----------------------------------------------------------------------------------
4068  *      I notice this method can also return errors from the queue disciplines,
4069  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4070  *      be positive.
4071  *
4072  *      Regardless of the return value, the skb is consumed, so it is currently
4073  *      difficult to retry a send to this method.  (You can bump the ref count
4074  *      before sending to hold a reference for retry if you are careful.)
4075  *
4076  *      When calling this method, interrupts MUST be enabled.  This is because
4077  *      the BH enable code must have IRQs enabled so that it will not deadlock.
4078  *          --BLG
4079  */
4080 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4081 {
4082         struct net_device *dev = skb->dev;
4083         struct netdev_queue *txq;
4084         struct Qdisc *q;
4085         int rc = -ENOMEM;
4086         bool again = false;
4087
4088         skb_reset_mac_header(skb);
4089
4090         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4091                 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4092
4093         /* Disable soft irqs for various locks below. Also
4094          * stops preemption for RCU.
4095          */
4096         rcu_read_lock_bh();
4097
4098         skb_update_prio(skb);
4099
4100         qdisc_pkt_len_init(skb);
4101 #ifdef CONFIG_NET_CLS_ACT
4102         skb->tc_at_ingress = 0;
4103 #endif
4104 #ifdef CONFIG_NET_EGRESS
4105         if (static_branch_unlikely(&egress_needed_key)) {
4106                 if (nf_hook_egress_active()) {
4107                         skb = nf_hook_egress(skb, &rc, dev);
4108                         if (!skb)
4109                                 goto out;
4110                 }
4111                 nf_skip_egress(skb, true);
4112                 skb = sch_handle_egress(skb, &rc, dev);
4113                 if (!skb)
4114                         goto out;
4115                 nf_skip_egress(skb, false);
4116         }
4117 #endif
4118         /* If device/qdisc don't need skb->dst, release it right now while
4119          * its hot in this cpu cache.
4120          */
4121         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4122                 skb_dst_drop(skb);
4123         else
4124                 skb_dst_force(skb);
4125
4126         txq = netdev_core_pick_tx(dev, skb, sb_dev);
4127         q = rcu_dereference_bh(txq->qdisc);
4128
4129         trace_net_dev_queue(skb);
4130         if (q->enqueue) {
4131                 rc = __dev_xmit_skb(skb, q, dev, txq);
4132                 goto out;
4133         }
4134
4135         /* The device has no queue. Common case for software devices:
4136          * loopback, all the sorts of tunnels...
4137
4138          * Really, it is unlikely that netif_tx_lock protection is necessary
4139          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4140          * counters.)
4141          * However, it is possible, that they rely on protection
4142          * made by us here.
4143
4144          * Check this and shot the lock. It is not prone from deadlocks.
4145          *Either shot noqueue qdisc, it is even simpler 8)
4146          */
4147         if (dev->flags & IFF_UP) {
4148                 int cpu = smp_processor_id(); /* ok because BHs are off */
4149
4150                 /* Other cpus might concurrently change txq->xmit_lock_owner
4151                  * to -1 or to their cpu id, but not to our id.
4152                  */
4153                 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4154                         if (dev_xmit_recursion())
4155                                 goto recursion_alert;
4156
4157                         skb = validate_xmit_skb(skb, dev, &again);
4158                         if (!skb)
4159                                 goto out;
4160
4161                         PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4162                         HARD_TX_LOCK(dev, txq, cpu);
4163
4164                         if (!netif_xmit_stopped(txq)) {
4165                                 dev_xmit_recursion_inc();
4166                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4167                                 dev_xmit_recursion_dec();
4168                                 if (dev_xmit_complete(rc)) {
4169                                         HARD_TX_UNLOCK(dev, txq);
4170                                         goto out;
4171                                 }
4172                         }
4173                         HARD_TX_UNLOCK(dev, txq);
4174                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4175                                              dev->name);
4176                 } else {
4177                         /* Recursion is detected! It is possible,
4178                          * unfortunately
4179                          */
4180 recursion_alert:
4181                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4182                                              dev->name);
4183                 }
4184         }
4185
4186         rc = -ENETDOWN;
4187         rcu_read_unlock_bh();
4188
4189         atomic_long_inc(&dev->tx_dropped);
4190         kfree_skb_list(skb);
4191         return rc;
4192 out:
4193         rcu_read_unlock_bh();
4194         return rc;
4195 }
4196
4197 int dev_queue_xmit(struct sk_buff *skb)
4198 {
4199         return __dev_queue_xmit(skb, NULL);
4200 }
4201 EXPORT_SYMBOL(dev_queue_xmit);
4202
4203 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4204 {
4205         return __dev_queue_xmit(skb, sb_dev);
4206 }
4207 EXPORT_SYMBOL(dev_queue_xmit_accel);
4208
4209 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4210 {
4211         struct net_device *dev = skb->dev;
4212         struct sk_buff *orig_skb = skb;
4213         struct netdev_queue *txq;
4214         int ret = NETDEV_TX_BUSY;
4215         bool again = false;
4216
4217         if (unlikely(!netif_running(dev) ||
4218                      !netif_carrier_ok(dev)))
4219                 goto drop;
4220
4221         skb = validate_xmit_skb_list(skb, dev, &again);
4222         if (skb != orig_skb)
4223                 goto drop;
4224
4225         skb_set_queue_mapping(skb, queue_id);
4226         txq = skb_get_tx_queue(dev, skb);
4227         PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4228
4229         local_bh_disable();
4230
4231         dev_xmit_recursion_inc();
4232         HARD_TX_LOCK(dev, txq, smp_processor_id());
4233         if (!netif_xmit_frozen_or_drv_stopped(txq))
4234                 ret = netdev_start_xmit(skb, dev, txq, false);
4235         HARD_TX_UNLOCK(dev, txq);
4236         dev_xmit_recursion_dec();
4237
4238         local_bh_enable();
4239         return ret;
4240 drop:
4241         atomic_long_inc(&dev->tx_dropped);
4242         kfree_skb_list(skb);
4243         return NET_XMIT_DROP;
4244 }
4245 EXPORT_SYMBOL(__dev_direct_xmit);
4246
4247 /*************************************************************************
4248  *                      Receiver routines
4249  *************************************************************************/
4250
4251 int netdev_max_backlog __read_mostly = 1000;
4252 EXPORT_SYMBOL(netdev_max_backlog);
4253
4254 int netdev_tstamp_prequeue __read_mostly = 1;
4255 int netdev_budget __read_mostly = 300;
4256 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4257 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4258 int weight_p __read_mostly = 64;           /* old backlog weight */
4259 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4260 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4261 int dev_rx_weight __read_mostly = 64;
4262 int dev_tx_weight __read_mostly = 64;
4263
4264 /* Called with irq disabled */
4265 static inline void ____napi_schedule(struct softnet_data *sd,
4266                                      struct napi_struct *napi)
4267 {
4268         struct task_struct *thread;
4269
4270         if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4271                 /* Paired with smp_mb__before_atomic() in
4272                  * napi_enable()/dev_set_threaded().
4273                  * Use READ_ONCE() to guarantee a complete
4274                  * read on napi->thread. Only call
4275                  * wake_up_process() when it's not NULL.
4276                  */
4277                 thread = READ_ONCE(napi->thread);
4278                 if (thread) {
4279                         /* Avoid doing set_bit() if the thread is in
4280                          * INTERRUPTIBLE state, cause napi_thread_wait()
4281                          * makes sure to proceed with napi polling
4282                          * if the thread is explicitly woken from here.
4283                          */
4284                         if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4285                                 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4286                         wake_up_process(thread);
4287                         return;
4288                 }
4289         }
4290
4291         list_add_tail(&napi->poll_list, &sd->poll_list);
4292         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4293 }
4294
4295 #ifdef CONFIG_RPS
4296
4297 /* One global table that all flow-based protocols share. */
4298 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4299 EXPORT_SYMBOL(rps_sock_flow_table);
4300 u32 rps_cpu_mask __read_mostly;
4301 EXPORT_SYMBOL(rps_cpu_mask);
4302
4303 struct static_key_false rps_needed __read_mostly;
4304 EXPORT_SYMBOL(rps_needed);
4305 struct static_key_false rfs_needed __read_mostly;
4306 EXPORT_SYMBOL(rfs_needed);
4307
4308 static struct rps_dev_flow *
4309 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4310             struct rps_dev_flow *rflow, u16 next_cpu)
4311 {
4312         if (next_cpu < nr_cpu_ids) {
4313 #ifdef CONFIG_RFS_ACCEL
4314                 struct netdev_rx_queue *rxqueue;
4315                 struct rps_dev_flow_table *flow_table;
4316                 struct rps_dev_flow *old_rflow;
4317                 u32 flow_id;
4318                 u16 rxq_index;
4319                 int rc;
4320
4321                 /* Should we steer this flow to a different hardware queue? */
4322                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4323                     !(dev->features & NETIF_F_NTUPLE))
4324                         goto out;
4325                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4326                 if (rxq_index == skb_get_rx_queue(skb))
4327                         goto out;
4328
4329                 rxqueue = dev->_rx + rxq_index;
4330                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4331                 if (!flow_table)
4332                         goto out;
4333                 flow_id = skb_get_hash(skb) & flow_table->mask;
4334                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4335                                                         rxq_index, flow_id);
4336                 if (rc < 0)
4337                         goto out;
4338                 old_rflow = rflow;
4339                 rflow = &flow_table->flows[flow_id];
4340                 rflow->filter = rc;
4341                 if (old_rflow->filter == rflow->filter)
4342                         old_rflow->filter = RPS_NO_FILTER;
4343         out:
4344 #endif
4345                 rflow->last_qtail =
4346                         per_cpu(softnet_data, next_cpu).input_queue_head;
4347         }
4348
4349         rflow->cpu = next_cpu;
4350         return rflow;
4351 }
4352
4353 /*
4354  * get_rps_cpu is called from netif_receive_skb and returns the target
4355  * CPU from the RPS map of the receiving queue for a given skb.
4356  * rcu_read_lock must be held on entry.
4357  */
4358 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4359                        struct rps_dev_flow **rflowp)
4360 {
4361         const struct rps_sock_flow_table *sock_flow_table;
4362         struct netdev_rx_queue *rxqueue = dev->_rx;
4363         struct rps_dev_flow_table *flow_table;
4364         struct rps_map *map;
4365         int cpu = -1;
4366         u32 tcpu;
4367         u32 hash;
4368
4369         if (skb_rx_queue_recorded(skb)) {
4370                 u16 index = skb_get_rx_queue(skb);
4371
4372                 if (unlikely(index >= dev->real_num_rx_queues)) {
4373                         WARN_ONCE(dev->real_num_rx_queues > 1,
4374                                   "%s received packet on queue %u, but number "
4375                                   "of RX queues is %u\n",
4376                                   dev->name, index, dev->real_num_rx_queues);
4377                         goto done;
4378                 }
4379                 rxqueue += index;
4380         }
4381
4382         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4383
4384         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4385         map = rcu_dereference(rxqueue->rps_map);
4386         if (!flow_table && !map)
4387                 goto done;
4388
4389         skb_reset_network_header(skb);
4390         hash = skb_get_hash(skb);
4391         if (!hash)
4392                 goto done;
4393
4394         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4395         if (flow_table && sock_flow_table) {
4396                 struct rps_dev_flow *rflow;
4397                 u32 next_cpu;
4398                 u32 ident;
4399
4400                 /* First check into global flow table if there is a match */
4401                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4402                 if ((ident ^ hash) & ~rps_cpu_mask)
4403                         goto try_rps;
4404
4405                 next_cpu = ident & rps_cpu_mask;
4406
4407                 /* OK, now we know there is a match,
4408                  * we can look at the local (per receive queue) flow table
4409                  */
4410                 rflow = &flow_table->flows[hash & flow_table->mask];
4411                 tcpu = rflow->cpu;
4412
4413                 /*
4414                  * If the desired CPU (where last recvmsg was done) is
4415                  * different from current CPU (one in the rx-queue flow
4416                  * table entry), switch if one of the following holds:
4417                  *   - Current CPU is unset (>= nr_cpu_ids).
4418                  *   - Current CPU is offline.
4419                  *   - The current CPU's queue tail has advanced beyond the
4420                  *     last packet that was enqueued using this table entry.
4421                  *     This guarantees that all previous packets for the flow
4422                  *     have been dequeued, thus preserving in order delivery.
4423                  */
4424                 if (unlikely(tcpu != next_cpu) &&
4425                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4426                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4427                       rflow->last_qtail)) >= 0)) {
4428                         tcpu = next_cpu;
4429                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4430                 }
4431
4432                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4433                         *rflowp = rflow;
4434                         cpu = tcpu;
4435                         goto done;
4436                 }
4437         }
4438
4439 try_rps:
4440
4441         if (map) {
4442                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4443                 if (cpu_online(tcpu)) {
4444                         cpu = tcpu;
4445                         goto done;
4446                 }
4447         }
4448
4449 done:
4450         return cpu;
4451 }
4452
4453 #ifdef CONFIG_RFS_ACCEL
4454
4455 /**
4456  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4457  * @dev: Device on which the filter was set
4458  * @rxq_index: RX queue index
4459  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4460  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4461  *
4462  * Drivers that implement ndo_rx_flow_steer() should periodically call
4463  * this function for each installed filter and remove the filters for
4464  * which it returns %true.
4465  */
4466 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4467                          u32 flow_id, u16 filter_id)
4468 {
4469         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4470         struct rps_dev_flow_table *flow_table;
4471         struct rps_dev_flow *rflow;
4472         bool expire = true;
4473         unsigned int cpu;
4474
4475         rcu_read_lock();
4476         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4477         if (flow_table && flow_id <= flow_table->mask) {
4478                 rflow = &flow_table->flows[flow_id];
4479                 cpu = READ_ONCE(rflow->cpu);
4480                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4481                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4482                            rflow->last_qtail) <
4483                      (int)(10 * flow_table->mask)))
4484                         expire = false;
4485         }
4486         rcu_read_unlock();
4487         return expire;
4488 }
4489 EXPORT_SYMBOL(rps_may_expire_flow);
4490
4491 #endif /* CONFIG_RFS_ACCEL */
4492
4493 /* Called from hardirq (IPI) context */
4494 static void rps_trigger_softirq(void *data)
4495 {
4496         struct softnet_data *sd = data;
4497
4498         ____napi_schedule(sd, &sd->backlog);
4499         sd->received_rps++;
4500 }
4501
4502 #endif /* CONFIG_RPS */
4503
4504 /*
4505  * Check if this softnet_data structure is another cpu one
4506  * If yes, queue it to our IPI list and return 1
4507  * If no, return 0
4508  */
4509 static int napi_schedule_rps(struct softnet_data *sd)
4510 {
4511         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4512
4513 #ifdef CONFIG_RPS
4514         if (sd != mysd) {
4515                 sd->rps_ipi_next = mysd->rps_ipi_list;
4516                 mysd->rps_ipi_list = sd;
4517
4518                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4519                 return 1;
4520         }
4521 #endif /* CONFIG_RPS */
4522         __napi_schedule_irqoff(&mysd->backlog);
4523         return 0;
4524 }
4525
4526 #ifdef CONFIG_NET_FLOW_LIMIT
4527 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4528 #endif
4529
4530 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4531 {
4532 #ifdef CONFIG_NET_FLOW_LIMIT
4533         struct sd_flow_limit *fl;
4534         struct softnet_data *sd;
4535         unsigned int old_flow, new_flow;
4536
4537         if (qlen < (netdev_max_backlog >> 1))
4538                 return false;
4539
4540         sd = this_cpu_ptr(&softnet_data);
4541
4542         rcu_read_lock();
4543         fl = rcu_dereference(sd->flow_limit);
4544         if (fl) {
4545                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4546                 old_flow = fl->history[fl->history_head];
4547                 fl->history[fl->history_head] = new_flow;
4548
4549                 fl->history_head++;
4550                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4551
4552                 if (likely(fl->buckets[old_flow]))
4553                         fl->buckets[old_flow]--;
4554
4555                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4556                         fl->count++;
4557                         rcu_read_unlock();
4558                         return true;
4559                 }
4560         }
4561         rcu_read_unlock();
4562 #endif
4563         return false;
4564 }
4565
4566 /*
4567  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4568  * queue (may be a remote CPU queue).
4569  */
4570 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4571                               unsigned int *qtail)
4572 {
4573         enum skb_drop_reason reason;
4574         struct softnet_data *sd;
4575         unsigned long flags;
4576         unsigned int qlen;
4577
4578         reason = SKB_DROP_REASON_NOT_SPECIFIED;
4579         sd = &per_cpu(softnet_data, cpu);
4580
4581         rps_lock_irqsave(sd, &flags);
4582         if (!netif_running(skb->dev))
4583                 goto drop;
4584         qlen = skb_queue_len(&sd->input_pkt_queue);
4585         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4586                 if (qlen) {
4587 enqueue:
4588                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4589                         input_queue_tail_incr_save(sd, qtail);
4590                         rps_unlock_irq_restore(sd, &flags);
4591                         return NET_RX_SUCCESS;
4592                 }
4593
4594                 /* Schedule NAPI for backlog device
4595                  * We can use non atomic operation since we own the queue lock
4596                  */
4597                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4598                         napi_schedule_rps(sd);
4599                 goto enqueue;
4600         }
4601         reason = SKB_DROP_REASON_CPU_BACKLOG;
4602
4603 drop:
4604         sd->dropped++;
4605         rps_unlock_irq_restore(sd, &flags);
4606
4607         atomic_long_inc(&skb->dev->rx_dropped);
4608         kfree_skb_reason(skb, reason);
4609         return NET_RX_DROP;
4610 }
4611
4612 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4613 {
4614         struct net_device *dev = skb->dev;
4615         struct netdev_rx_queue *rxqueue;
4616
4617         rxqueue = dev->_rx;
4618
4619         if (skb_rx_queue_recorded(skb)) {
4620                 u16 index = skb_get_rx_queue(skb);
4621
4622                 if (unlikely(index >= dev->real_num_rx_queues)) {
4623                         WARN_ONCE(dev->real_num_rx_queues > 1,
4624                                   "%s received packet on queue %u, but number "
4625                                   "of RX queues is %u\n",
4626                                   dev->name, index, dev->real_num_rx_queues);
4627
4628                         return rxqueue; /* Return first rxqueue */
4629                 }
4630                 rxqueue += index;
4631         }
4632         return rxqueue;
4633 }
4634
4635 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4636                              struct bpf_prog *xdp_prog)
4637 {
4638         void *orig_data, *orig_data_end, *hard_start;
4639         struct netdev_rx_queue *rxqueue;
4640         bool orig_bcast, orig_host;
4641         u32 mac_len, frame_sz;
4642         __be16 orig_eth_type;
4643         struct ethhdr *eth;
4644         u32 metalen, act;
4645         int off;
4646
4647         /* The XDP program wants to see the packet starting at the MAC
4648          * header.
4649          */
4650         mac_len = skb->data - skb_mac_header(skb);
4651         hard_start = skb->data - skb_headroom(skb);
4652
4653         /* SKB "head" area always have tailroom for skb_shared_info */
4654         frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4655         frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4656
4657         rxqueue = netif_get_rxqueue(skb);
4658         xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4659         xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4660                          skb_headlen(skb) + mac_len, true);
4661
4662         orig_data_end = xdp->data_end;
4663         orig_data = xdp->data;
4664         eth = (struct ethhdr *)xdp->data;
4665         orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4666         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4667         orig_eth_type = eth->h_proto;
4668
4669         act = bpf_prog_run_xdp(xdp_prog, xdp);
4670
4671         /* check if bpf_xdp_adjust_head was used */
4672         off = xdp->data - orig_data;
4673         if (off) {
4674                 if (off > 0)
4675                         __skb_pull(skb, off);
4676                 else if (off < 0)
4677                         __skb_push(skb, -off);
4678
4679                 skb->mac_header += off;
4680                 skb_reset_network_header(skb);
4681         }
4682
4683         /* check if bpf_xdp_adjust_tail was used */
4684         off = xdp->data_end - orig_data_end;
4685         if (off != 0) {
4686                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4687                 skb->len += off; /* positive on grow, negative on shrink */
4688         }
4689
4690         /* check if XDP changed eth hdr such SKB needs update */
4691         eth = (struct ethhdr *)xdp->data;
4692         if ((orig_eth_type != eth->h_proto) ||
4693             (orig_host != ether_addr_equal_64bits(eth->h_dest,
4694                                                   skb->dev->dev_addr)) ||
4695             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4696                 __skb_push(skb, ETH_HLEN);
4697                 skb->pkt_type = PACKET_HOST;
4698                 skb->protocol = eth_type_trans(skb, skb->dev);
4699         }
4700
4701         /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4702          * before calling us again on redirect path. We do not call do_redirect
4703          * as we leave that up to the caller.
4704          *
4705          * Caller is responsible for managing lifetime of skb (i.e. calling
4706          * kfree_skb in response to actions it cannot handle/XDP_DROP).
4707          */
4708         switch (act) {
4709         case XDP_REDIRECT:
4710         case XDP_TX:
4711                 __skb_push(skb, mac_len);
4712                 break;
4713         case XDP_PASS:
4714                 metalen = xdp->data - xdp->data_meta;
4715                 if (metalen)
4716                         skb_metadata_set(skb, metalen);
4717                 break;
4718         }
4719
4720         return act;
4721 }
4722
4723 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4724                                      struct xdp_buff *xdp,
4725                                      struct bpf_prog *xdp_prog)
4726 {
4727         u32 act = XDP_DROP;
4728
4729         /* Reinjected packets coming from act_mirred or similar should
4730          * not get XDP generic processing.
4731          */
4732         if (skb_is_redirected(skb))
4733                 return XDP_PASS;
4734
4735         /* XDP packets must be linear and must have sufficient headroom
4736          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4737          * native XDP provides, thus we need to do it here as well.
4738          */
4739         if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4740             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4741                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4742                 int troom = skb->tail + skb->data_len - skb->end;
4743
4744                 /* In case we have to go down the path and also linearize,
4745                  * then lets do the pskb_expand_head() work just once here.
4746                  */
4747                 if (pskb_expand_head(skb,
4748                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4749                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4750                         goto do_drop;
4751                 if (skb_linearize(skb))
4752                         goto do_drop;
4753         }
4754
4755         act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4756         switch (act) {
4757         case XDP_REDIRECT:
4758         case XDP_TX:
4759         case XDP_PASS:
4760                 break;
4761         default:
4762                 bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
4763                 fallthrough;
4764         case XDP_ABORTED:
4765                 trace_xdp_exception(skb->dev, xdp_prog, act);
4766                 fallthrough;
4767         case XDP_DROP:
4768         do_drop:
4769                 kfree_skb(skb);
4770                 break;
4771         }
4772
4773         return act;
4774 }
4775
4776 /* When doing generic XDP we have to bypass the qdisc layer and the
4777  * network taps in order to match in-driver-XDP behavior.
4778  */
4779 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4780 {
4781         struct net_device *dev = skb->dev;
4782         struct netdev_queue *txq;
4783         bool free_skb = true;
4784         int cpu, rc;
4785
4786         txq = netdev_core_pick_tx(dev, skb, NULL);
4787         cpu = smp_processor_id();
4788         HARD_TX_LOCK(dev, txq, cpu);
4789         if (!netif_xmit_stopped(txq)) {
4790                 rc = netdev_start_xmit(skb, dev, txq, 0);
4791                 if (dev_xmit_complete(rc))
4792                         free_skb = false;
4793         }
4794         HARD_TX_UNLOCK(dev, txq);
4795         if (free_skb) {
4796                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4797                 kfree_skb(skb);
4798         }
4799 }
4800
4801 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4802
4803 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4804 {
4805         if (xdp_prog) {
4806                 struct xdp_buff xdp;
4807                 u32 act;
4808                 int err;
4809
4810                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4811                 if (act != XDP_PASS) {
4812                         switch (act) {
4813                         case XDP_REDIRECT:
4814                                 err = xdp_do_generic_redirect(skb->dev, skb,
4815                                                               &xdp, xdp_prog);
4816                                 if (err)
4817                                         goto out_redir;
4818                                 break;
4819                         case XDP_TX:
4820                                 generic_xdp_tx(skb, xdp_prog);
4821                                 break;
4822                         }
4823                         return XDP_DROP;
4824                 }
4825         }
4826         return XDP_PASS;
4827 out_redir:
4828         kfree_skb_reason(skb, SKB_DROP_REASON_XDP);
4829         return XDP_DROP;
4830 }
4831 EXPORT_SYMBOL_GPL(do_xdp_generic);
4832
4833 static int netif_rx_internal(struct sk_buff *skb)
4834 {
4835         int ret;
4836
4837         net_timestamp_check(netdev_tstamp_prequeue, skb);
4838
4839         trace_netif_rx(skb);
4840
4841 #ifdef CONFIG_RPS
4842         if (static_branch_unlikely(&rps_needed)) {
4843                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4844                 int cpu;
4845
4846                 rcu_read_lock();
4847
4848                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4849                 if (cpu < 0)
4850                         cpu = smp_processor_id();
4851
4852                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4853
4854                 rcu_read_unlock();
4855         } else
4856 #endif
4857         {
4858                 unsigned int qtail;
4859
4860                 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
4861         }
4862         return ret;
4863 }
4864
4865 /**
4866  *      __netif_rx      -       Slightly optimized version of netif_rx
4867  *      @skb: buffer to post
4868  *
4869  *      This behaves as netif_rx except that it does not disable bottom halves.
4870  *      As a result this function may only be invoked from the interrupt context
4871  *      (either hard or soft interrupt).
4872  */
4873 int __netif_rx(struct sk_buff *skb)
4874 {
4875         int ret;
4876
4877         lockdep_assert_once(hardirq_count() | softirq_count());
4878
4879         trace_netif_rx_entry(skb);
4880         ret = netif_rx_internal(skb);
4881         trace_netif_rx_exit(ret);
4882         return ret;
4883 }
4884 EXPORT_SYMBOL(__netif_rx);
4885
4886 /**
4887  *      netif_rx        -       post buffer to the network code
4888  *      @skb: buffer to post
4889  *
4890  *      This function receives a packet from a device driver and queues it for
4891  *      the upper (protocol) levels to process via the backlog NAPI device. It
4892  *      always succeeds. The buffer may be dropped during processing for
4893  *      congestion control or by the protocol layers.
4894  *      The network buffer is passed via the backlog NAPI device. Modern NIC
4895  *      driver should use NAPI and GRO.
4896  *      This function can used from interrupt and from process context. The
4897  *      caller from process context must not disable interrupts before invoking
4898  *      this function.
4899  *
4900  *      return values:
4901  *      NET_RX_SUCCESS  (no congestion)
4902  *      NET_RX_DROP     (packet was dropped)
4903  *
4904  */
4905 int netif_rx(struct sk_buff *skb)
4906 {
4907         bool need_bh_off = !(hardirq_count() | softirq_count());
4908         int ret;
4909
4910         if (need_bh_off)
4911                 local_bh_disable();
4912         trace_netif_rx_entry(skb);
4913         ret = netif_rx_internal(skb);
4914         trace_netif_rx_exit(ret);
4915         if (need_bh_off)
4916                 local_bh_enable();
4917         return ret;
4918 }
4919 EXPORT_SYMBOL(netif_rx);
4920
4921 static __latent_entropy void net_tx_action(struct softirq_action *h)
4922 {
4923         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4924
4925         if (sd->completion_queue) {
4926                 struct sk_buff *clist;
4927
4928                 local_irq_disable();
4929                 clist = sd->completion_queue;
4930                 sd->completion_queue = NULL;
4931                 local_irq_enable();
4932
4933                 while (clist) {
4934                         struct sk_buff *skb = clist;
4935
4936                         clist = clist->next;
4937
4938                         WARN_ON(refcount_read(&skb->users));
4939                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4940                                 trace_consume_skb(skb);
4941                         else
4942                                 trace_kfree_skb(skb, net_tx_action,
4943                                                 SKB_DROP_REASON_NOT_SPECIFIED);
4944
4945                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4946                                 __kfree_skb(skb);
4947                         else
4948                                 __kfree_skb_defer(skb);
4949                 }
4950         }
4951
4952         if (sd->output_queue) {
4953                 struct Qdisc *head;
4954
4955                 local_irq_disable();
4956                 head = sd->output_queue;
4957                 sd->output_queue = NULL;
4958                 sd->output_queue_tailp = &sd->output_queue;
4959                 local_irq_enable();
4960
4961                 rcu_read_lock();
4962
4963                 while (head) {
4964                         struct Qdisc *q = head;
4965                         spinlock_t *root_lock = NULL;
4966
4967                         head = head->next_sched;
4968
4969                         /* We need to make sure head->next_sched is read
4970                          * before clearing __QDISC_STATE_SCHED
4971                          */
4972                         smp_mb__before_atomic();
4973
4974                         if (!(q->flags & TCQ_F_NOLOCK)) {
4975                                 root_lock = qdisc_lock(q);
4976                                 spin_lock(root_lock);
4977                         } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
4978                                                      &q->state))) {
4979                                 /* There is a synchronize_net() between
4980                                  * STATE_DEACTIVATED flag being set and
4981                                  * qdisc_reset()/some_qdisc_is_busy() in
4982                                  * dev_deactivate(), so we can safely bail out
4983                                  * early here to avoid data race between
4984                                  * qdisc_deactivate() and some_qdisc_is_busy()
4985                                  * for lockless qdisc.
4986                                  */
4987                                 clear_bit(__QDISC_STATE_SCHED, &q->state);
4988                                 continue;
4989                         }
4990
4991                         clear_bit(__QDISC_STATE_SCHED, &q->state);
4992                         qdisc_run(q);
4993                         if (root_lock)
4994                                 spin_unlock(root_lock);
4995                 }
4996
4997                 rcu_read_unlock();
4998         }
4999
5000         xfrm_dev_backlog(sd);
5001 }
5002
5003 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5004 /* This hook is defined here for ATM LANE */
5005 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5006                              unsigned char *addr) __read_mostly;
5007 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5008 #endif
5009
5010 static inline struct sk_buff *
5011 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5012                    struct net_device *orig_dev, bool *another)
5013 {
5014 #ifdef CONFIG_NET_CLS_ACT
5015         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5016         struct tcf_result cl_res;
5017
5018         /* If there's at least one ingress present somewhere (so
5019          * we get here via enabled static key), remaining devices
5020          * that are not configured with an ingress qdisc will bail
5021          * out here.
5022          */
5023         if (!miniq)
5024                 return skb;
5025
5026         if (*pt_prev) {
5027                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5028                 *pt_prev = NULL;
5029         }
5030
5031         qdisc_skb_cb(skb)->pkt_len = skb->len;
5032         tc_skb_cb(skb)->mru = 0;
5033         tc_skb_cb(skb)->post_ct = false;
5034         skb->tc_at_ingress = 1;
5035         mini_qdisc_bstats_cpu_update(miniq, skb);
5036
5037         switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
5038         case TC_ACT_OK:
5039         case TC_ACT_RECLASSIFY:
5040                 skb->tc_index = TC_H_MIN(cl_res.classid);
5041                 break;
5042         case TC_ACT_SHOT:
5043                 mini_qdisc_qstats_cpu_drop(miniq);
5044                 kfree_skb_reason(skb, SKB_DROP_REASON_TC_INGRESS);
5045                 return NULL;
5046         case TC_ACT_STOLEN:
5047         case TC_ACT_QUEUED:
5048         case TC_ACT_TRAP:
5049                 consume_skb(skb);
5050                 return NULL;
5051         case TC_ACT_REDIRECT:
5052                 /* skb_mac_header check was done by cls/act_bpf, so
5053                  * we can safely push the L2 header back before
5054                  * redirecting to another netdev
5055                  */
5056                 __skb_push(skb, skb->mac_len);
5057                 if (skb_do_redirect(skb) == -EAGAIN) {
5058                         __skb_pull(skb, skb->mac_len);
5059                         *another = true;
5060                         break;
5061                 }
5062                 return NULL;
5063         case TC_ACT_CONSUMED:
5064                 return NULL;
5065         default:
5066                 break;
5067         }
5068 #endif /* CONFIG_NET_CLS_ACT */
5069         return skb;
5070 }
5071
5072 /**
5073  *      netdev_is_rx_handler_busy - check if receive handler is registered
5074  *      @dev: device to check
5075  *
5076  *      Check if a receive handler is already registered for a given device.
5077  *      Return true if there one.
5078  *
5079  *      The caller must hold the rtnl_mutex.
5080  */
5081 bool netdev_is_rx_handler_busy(struct net_device *dev)
5082 {
5083         ASSERT_RTNL();
5084         return dev && rtnl_dereference(dev->rx_handler);
5085 }
5086 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5087
5088 /**
5089  *      netdev_rx_handler_register - register receive handler
5090  *      @dev: device to register a handler for
5091  *      @rx_handler: receive handler to register
5092  *      @rx_handler_data: data pointer that is used by rx handler
5093  *
5094  *      Register a receive handler for a device. This handler will then be
5095  *      called from __netif_receive_skb. A negative errno code is returned
5096  *      on a failure.
5097  *
5098  *      The caller must hold the rtnl_mutex.
5099  *
5100  *      For a general description of rx_handler, see enum rx_handler_result.
5101  */
5102 int netdev_rx_handler_register(struct net_device *dev,
5103                                rx_handler_func_t *rx_handler,
5104                                void *rx_handler_data)
5105 {
5106         if (netdev_is_rx_handler_busy(dev))
5107                 return -EBUSY;
5108
5109         if (dev->priv_flags & IFF_NO_RX_HANDLER)
5110                 return -EINVAL;
5111
5112         /* Note: rx_handler_data must be set before rx_handler */
5113         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5114         rcu_assign_pointer(dev->rx_handler, rx_handler);
5115
5116         return 0;
5117 }
5118 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5119
5120 /**
5121  *      netdev_rx_handler_unregister - unregister receive handler
5122  *      @dev: device to unregister a handler from
5123  *
5124  *      Unregister a receive handler from a device.
5125  *
5126  *      The caller must hold the rtnl_mutex.
5127  */
5128 void netdev_rx_handler_unregister(struct net_device *dev)
5129 {
5130
5131         ASSERT_RTNL();
5132         RCU_INIT_POINTER(dev->rx_handler, NULL);
5133         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5134          * section has a guarantee to see a non NULL rx_handler_data
5135          * as well.
5136          */
5137         synchronize_net();
5138         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5139 }
5140 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5141
5142 /*
5143  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5144  * the special handling of PFMEMALLOC skbs.
5145  */
5146 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5147 {
5148         switch (skb->protocol) {
5149         case htons(ETH_P_ARP):
5150         case htons(ETH_P_IP):
5151         case htons(ETH_P_IPV6):
5152         case htons(ETH_P_8021Q):
5153         case htons(ETH_P_8021AD):
5154                 return true;
5155         default:
5156                 return false;
5157         }
5158 }
5159
5160 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5161                              int *ret, struct net_device *orig_dev)
5162 {
5163         if (nf_hook_ingress_active(skb)) {
5164                 int ingress_retval;
5165
5166                 if (*pt_prev) {
5167                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
5168                         *pt_prev = NULL;
5169                 }
5170
5171                 rcu_read_lock();
5172                 ingress_retval = nf_hook_ingress(skb);
5173                 rcu_read_unlock();
5174                 return ingress_retval;
5175         }
5176         return 0;
5177 }
5178
5179 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5180                                     struct packet_type **ppt_prev)
5181 {
5182         struct packet_type *ptype, *pt_prev;
5183         rx_handler_func_t *rx_handler;
5184         struct sk_buff *skb = *pskb;
5185         struct net_device *orig_dev;
5186         bool deliver_exact = false;
5187         int ret = NET_RX_DROP;
5188         __be16 type;
5189
5190         net_timestamp_check(!netdev_tstamp_prequeue, skb);
5191
5192         trace_netif_receive_skb(skb);
5193
5194         orig_dev = skb->dev;
5195
5196         skb_reset_network_header(skb);
5197         if (!skb_transport_header_was_set(skb))
5198                 skb_reset_transport_header(skb);
5199         skb_reset_mac_len(skb);
5200
5201         pt_prev = NULL;
5202
5203 another_round:
5204         skb->skb_iif = skb->dev->ifindex;
5205
5206         __this_cpu_inc(softnet_data.processed);
5207
5208         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5209                 int ret2;
5210
5211                 migrate_disable();
5212                 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5213                 migrate_enable();
5214
5215                 if (ret2 != XDP_PASS) {
5216                         ret = NET_RX_DROP;
5217                         goto out;
5218                 }
5219         }
5220
5221         if (eth_type_vlan(skb->protocol)) {
5222                 skb = skb_vlan_untag(skb);
5223                 if (unlikely(!skb))
5224                         goto out;
5225         }
5226
5227         if (skb_skip_tc_classify(skb))
5228                 goto skip_classify;
5229
5230         if (pfmemalloc)
5231                 goto skip_taps;
5232
5233         list_for_each_entry_rcu(ptype, &ptype_all, list) {
5234                 if (pt_prev)
5235                         ret = deliver_skb(skb, pt_prev, orig_dev);
5236                 pt_prev = ptype;
5237         }
5238
5239         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5240                 if (pt_prev)
5241                         ret = deliver_skb(skb, pt_prev, orig_dev);
5242                 pt_prev = ptype;
5243         }
5244
5245 skip_taps:
5246 #ifdef CONFIG_NET_INGRESS
5247         if (static_branch_unlikely(&ingress_needed_key)) {
5248                 bool another = false;
5249
5250                 nf_skip_egress(skb, true);
5251                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5252                                          &another);
5253                 if (another)
5254                         goto another_round;
5255                 if (!skb)
5256                         goto out;
5257
5258                 nf_skip_egress(skb, false);
5259                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5260                         goto out;
5261         }
5262 #endif
5263         skb_reset_redirect(skb);
5264 skip_classify:
5265         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5266                 goto drop;
5267
5268         if (skb_vlan_tag_present(skb)) {
5269                 if (pt_prev) {
5270                         ret = deliver_skb(skb, pt_prev, orig_dev);
5271                         pt_prev = NULL;
5272                 }
5273                 if (vlan_do_receive(&skb))
5274                         goto another_round;
5275                 else if (unlikely(!skb))
5276                         goto out;
5277         }
5278
5279         rx_handler = rcu_dereference(skb->dev->rx_handler);
5280         if (rx_handler) {
5281                 if (pt_prev) {
5282                         ret = deliver_skb(skb, pt_prev, orig_dev);
5283                         pt_prev = NULL;
5284                 }
5285                 switch (rx_handler(&skb)) {
5286                 case RX_HANDLER_CONSUMED:
5287                         ret = NET_RX_SUCCESS;
5288                         goto out;
5289                 case RX_HANDLER_ANOTHER:
5290                         goto another_round;
5291                 case RX_HANDLER_EXACT:
5292                         deliver_exact = true;
5293                         break;
5294                 case RX_HANDLER_PASS:
5295                         break;
5296                 default:
5297                         BUG();
5298                 }
5299         }
5300
5301         if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5302 check_vlan_id:
5303                 if (skb_vlan_tag_get_id(skb)) {
5304                         /* Vlan id is non 0 and vlan_do_receive() above couldn't
5305                          * find vlan device.
5306                          */
5307                         skb->pkt_type = PACKET_OTHERHOST;
5308                 } else if (eth_type_vlan(skb->protocol)) {
5309                         /* Outer header is 802.1P with vlan 0, inner header is
5310                          * 802.1Q or 802.1AD and vlan_do_receive() above could
5311                          * not find vlan dev for vlan id 0.
5312                          */
5313                         __vlan_hwaccel_clear_tag(skb);
5314                         skb = skb_vlan_untag(skb);
5315                         if (unlikely(!skb))
5316                                 goto out;
5317                         if (vlan_do_receive(&skb))
5318                                 /* After stripping off 802.1P header with vlan 0
5319                                  * vlan dev is found for inner header.
5320                                  */
5321                                 goto another_round;
5322                         else if (unlikely(!skb))
5323                                 goto out;
5324                         else
5325                                 /* We have stripped outer 802.1P vlan 0 header.
5326                                  * But could not find vlan dev.
5327                                  * check again for vlan id to set OTHERHOST.
5328                                  */
5329                                 goto check_vlan_id;
5330                 }
5331                 /* Note: we might in the future use prio bits
5332                  * and set skb->priority like in vlan_do_receive()
5333                  * For the time being, just ignore Priority Code Point
5334                  */
5335                 __vlan_hwaccel_clear_tag(skb);
5336         }
5337
5338         type = skb->protocol;
5339
5340         /* deliver only exact match when indicated */
5341         if (likely(!deliver_exact)) {
5342                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5343                                        &ptype_base[ntohs(type) &
5344                                                    PTYPE_HASH_MASK]);
5345         }
5346
5347         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5348                                &orig_dev->ptype_specific);
5349
5350         if (unlikely(skb->dev != orig_dev)) {
5351                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5352                                        &skb->dev->ptype_specific);
5353         }
5354
5355         if (pt_prev) {
5356                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5357                         goto drop;
5358                 *ppt_prev = pt_prev;
5359         } else {
5360 drop:
5361                 if (!deliver_exact) {
5362                         atomic_long_inc(&skb->dev->rx_dropped);
5363                         kfree_skb_reason(skb, SKB_DROP_REASON_PTYPE_ABSENT);
5364                 } else {
5365                         atomic_long_inc(&skb->dev->rx_nohandler);
5366                         kfree_skb(skb);
5367                 }
5368                 /* Jamal, now you will not able to escape explaining
5369                  * me how you were going to use this. :-)
5370                  */
5371                 ret = NET_RX_DROP;
5372         }
5373
5374 out:
5375         /* The invariant here is that if *ppt_prev is not NULL
5376          * then skb should also be non-NULL.
5377          *
5378          * Apparently *ppt_prev assignment above holds this invariant due to
5379          * skb dereferencing near it.
5380          */
5381         *pskb = skb;
5382         return ret;
5383 }
5384
5385 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5386 {
5387         struct net_device *orig_dev = skb->dev;
5388         struct packet_type *pt_prev = NULL;
5389         int ret;
5390
5391         ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5392         if (pt_prev)
5393                 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5394                                          skb->dev, pt_prev, orig_dev);
5395         return ret;
5396 }
5397
5398 /**
5399  *      netif_receive_skb_core - special purpose version of netif_receive_skb
5400  *      @skb: buffer to process
5401  *
5402  *      More direct receive version of netif_receive_skb().  It should
5403  *      only be used by callers that have a need to skip RPS and Generic XDP.
5404  *      Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5405  *
5406  *      This function may only be called from softirq context and interrupts
5407  *      should be enabled.
5408  *
5409  *      Return values (usually ignored):
5410  *      NET_RX_SUCCESS: no congestion
5411  *      NET_RX_DROP: packet was dropped
5412  */
5413 int netif_receive_skb_core(struct sk_buff *skb)
5414 {
5415         int ret;
5416
5417         rcu_read_lock();
5418         ret = __netif_receive_skb_one_core(skb, false);
5419         rcu_read_unlock();
5420
5421         return ret;
5422 }
5423 EXPORT_SYMBOL(netif_receive_skb_core);
5424
5425 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5426                                                   struct packet_type *pt_prev,
5427                                                   struct net_device *orig_dev)
5428 {
5429         struct sk_buff *skb, *next;
5430
5431         if (!pt_prev)
5432                 return;
5433         if (list_empty(head))
5434                 return;
5435         if (pt_prev->list_func != NULL)
5436                 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5437                                    ip_list_rcv, head, pt_prev, orig_dev);
5438         else
5439                 list_for_each_entry_safe(skb, next, head, list) {
5440                         skb_list_del_init(skb);
5441                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5442                 }
5443 }
5444
5445 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5446 {
5447         /* Fast-path assumptions:
5448          * - There is no RX handler.
5449          * - Only one packet_type matches.
5450          * If either of these fails, we will end up doing some per-packet
5451          * processing in-line, then handling the 'last ptype' for the whole
5452          * sublist.  This can't cause out-of-order delivery to any single ptype,
5453          * because the 'last ptype' must be constant across the sublist, and all
5454          * other ptypes are handled per-packet.
5455          */
5456         /* Current (common) ptype of sublist */
5457         struct packet_type *pt_curr = NULL;
5458         /* Current (common) orig_dev of sublist */
5459         struct net_device *od_curr = NULL;
5460         struct list_head sublist;
5461         struct sk_buff *skb, *next;
5462
5463         INIT_LIST_HEAD(&sublist);
5464         list_for_each_entry_safe(skb, next, head, list) {
5465                 struct net_device *orig_dev = skb->dev;
5466                 struct packet_type *pt_prev = NULL;
5467
5468                 skb_list_del_init(skb);
5469                 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5470                 if (!pt_prev)
5471                         continue;
5472                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5473                         /* dispatch old sublist */
5474                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5475                         /* start new sublist */
5476                         INIT_LIST_HEAD(&sublist);
5477                         pt_curr = pt_prev;
5478                         od_curr = orig_dev;
5479                 }
5480                 list_add_tail(&skb->list, &sublist);
5481         }
5482
5483         /* dispatch final sublist */
5484         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5485 }
5486
5487 static int __netif_receive_skb(struct sk_buff *skb)
5488 {
5489         int ret;
5490
5491         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5492                 unsigned int noreclaim_flag;
5493
5494                 /*
5495                  * PFMEMALLOC skbs are special, they should
5496                  * - be delivered to SOCK_MEMALLOC sockets only
5497                  * - stay away from userspace
5498                  * - have bounded memory usage
5499                  *
5500                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5501                  * context down to all allocation sites.
5502                  */
5503                 noreclaim_flag = memalloc_noreclaim_save();
5504                 ret = __netif_receive_skb_one_core(skb, true);
5505                 memalloc_noreclaim_restore(noreclaim_flag);
5506         } else
5507                 ret = __netif_receive_skb_one_core(skb, false);
5508
5509         return ret;
5510 }
5511
5512 static void __netif_receive_skb_list(struct list_head *head)
5513 {
5514         unsigned long noreclaim_flag = 0;
5515         struct sk_buff *skb, *next;
5516         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5517
5518         list_for_each_entry_safe(skb, next, head, list) {
5519                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5520                         struct list_head sublist;
5521
5522                         /* Handle the previous sublist */
5523                         list_cut_before(&sublist, head, &skb->list);
5524                         if (!list_empty(&sublist))
5525                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5526                         pfmemalloc = !pfmemalloc;
5527                         /* See comments in __netif_receive_skb */
5528                         if (pfmemalloc)
5529                                 noreclaim_flag = memalloc_noreclaim_save();
5530                         else
5531                                 memalloc_noreclaim_restore(noreclaim_flag);
5532                 }
5533         }
5534         /* Handle the remaining sublist */
5535         if (!list_empty(head))
5536                 __netif_receive_skb_list_core(head, pfmemalloc);
5537         /* Restore pflags */
5538         if (pfmemalloc)
5539                 memalloc_noreclaim_restore(noreclaim_flag);
5540 }
5541
5542 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5543 {
5544         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5545         struct bpf_prog *new = xdp->prog;
5546         int ret = 0;
5547
5548         switch (xdp->command) {
5549         case XDP_SETUP_PROG:
5550                 rcu_assign_pointer(dev->xdp_prog, new);
5551                 if (old)
5552                         bpf_prog_put(old);
5553
5554                 if (old && !new) {
5555                         static_branch_dec(&generic_xdp_needed_key);
5556                 } else if (new && !old) {
5557                         static_branch_inc(&generic_xdp_needed_key);
5558                         dev_disable_lro(dev);
5559                         dev_disable_gro_hw(dev);
5560                 }
5561                 break;
5562
5563         default:
5564                 ret = -EINVAL;
5565                 break;
5566         }
5567
5568         return ret;
5569 }
5570
5571 static int netif_receive_skb_internal(struct sk_buff *skb)
5572 {
5573         int ret;
5574
5575         net_timestamp_check(netdev_tstamp_prequeue, skb);
5576
5577         if (skb_defer_rx_timestamp(skb))
5578                 return NET_RX_SUCCESS;
5579
5580         rcu_read_lock();
5581 #ifdef CONFIG_RPS
5582         if (static_branch_unlikely(&rps_needed)) {
5583                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5584                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5585
5586                 if (cpu >= 0) {
5587                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5588                         rcu_read_unlock();
5589                         return ret;
5590                 }
5591         }
5592 #endif
5593         ret = __netif_receive_skb(skb);
5594         rcu_read_unlock();
5595         return ret;
5596 }
5597
5598 void netif_receive_skb_list_internal(struct list_head *head)
5599 {
5600         struct sk_buff *skb, *next;
5601         struct list_head sublist;
5602
5603         INIT_LIST_HEAD(&sublist);
5604         list_for_each_entry_safe(skb, next, head, list) {
5605                 net_timestamp_check(netdev_tstamp_prequeue, skb);
5606                 skb_list_del_init(skb);
5607                 if (!skb_defer_rx_timestamp(skb))
5608                         list_add_tail(&skb->list, &sublist);
5609         }
5610         list_splice_init(&sublist, head);
5611
5612         rcu_read_lock();
5613 #ifdef CONFIG_RPS
5614         if (static_branch_unlikely(&rps_needed)) {
5615                 list_for_each_entry_safe(skb, next, head, list) {
5616                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5617                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5618
5619                         if (cpu >= 0) {
5620                                 /* Will be handled, remove from list */
5621                                 skb_list_del_init(skb);
5622                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5623                         }
5624                 }
5625         }
5626 #endif
5627         __netif_receive_skb_list(head);
5628         rcu_read_unlock();
5629 }
5630
5631 /**
5632  *      netif_receive_skb - process receive buffer from network
5633  *      @skb: buffer to process
5634  *
5635  *      netif_receive_skb() is the main receive data processing function.
5636  *      It always succeeds. The buffer may be dropped during processing
5637  *      for congestion control or by the protocol layers.
5638  *
5639  *      This function may only be called from softirq context and interrupts
5640  *      should be enabled.
5641  *
5642  *      Return values (usually ignored):
5643  *      NET_RX_SUCCESS: no congestion
5644  *      NET_RX_DROP: packet was dropped
5645  */
5646 int netif_receive_skb(struct sk_buff *skb)
5647 {
5648         int ret;
5649
5650         trace_netif_receive_skb_entry(skb);
5651
5652         ret = netif_receive_skb_internal(skb);
5653         trace_netif_receive_skb_exit(ret);
5654
5655         return ret;
5656 }
5657 EXPORT_SYMBOL(netif_receive_skb);
5658
5659 /**
5660  *      netif_receive_skb_list - process many receive buffers from network
5661  *      @head: list of skbs to process.
5662  *
5663  *      Since return value of netif_receive_skb() is normally ignored, and
5664  *      wouldn't be meaningful for a list, this function returns void.
5665  *
5666  *      This function may only be called from softirq context and interrupts
5667  *      should be enabled.
5668  */
5669 void netif_receive_skb_list(struct list_head *head)
5670 {
5671         struct sk_buff *skb;
5672
5673         if (list_empty(head))
5674                 return;
5675         if (trace_netif_receive_skb_list_entry_enabled()) {
5676                 list_for_each_entry(skb, head, list)
5677                         trace_netif_receive_skb_list_entry(skb);
5678         }
5679         netif_receive_skb_list_internal(head);
5680         trace_netif_receive_skb_list_exit(0);
5681 }
5682 EXPORT_SYMBOL(netif_receive_skb_list);
5683
5684 static DEFINE_PER_CPU(struct work_struct, flush_works);
5685
5686 /* Network device is going away, flush any packets still pending */
5687 static void flush_backlog(struct work_struct *work)
5688 {
5689         struct sk_buff *skb, *tmp;
5690         struct softnet_data *sd;
5691
5692         local_bh_disable();
5693         sd = this_cpu_ptr(&softnet_data);
5694
5695         rps_lock_irq_disable(sd);
5696         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5697                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5698                         __skb_unlink(skb, &sd->input_pkt_queue);
5699                         dev_kfree_skb_irq(skb);
5700                         input_queue_head_incr(sd);
5701                 }
5702         }
5703         rps_unlock_irq_enable(sd);
5704
5705         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5706                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5707                         __skb_unlink(skb, &sd->process_queue);
5708                         kfree_skb(skb);
5709                         input_queue_head_incr(sd);
5710                 }
5711         }
5712         local_bh_enable();
5713 }
5714
5715 static bool flush_required(int cpu)
5716 {
5717 #if IS_ENABLED(CONFIG_RPS)
5718         struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5719         bool do_flush;
5720
5721         rps_lock_irq_disable(sd);
5722
5723         /* as insertion into process_queue happens with the rps lock held,
5724          * process_queue access may race only with dequeue
5725          */
5726         do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5727                    !skb_queue_empty_lockless(&sd->process_queue);
5728         rps_unlock_irq_enable(sd);
5729
5730         return do_flush;
5731 #endif
5732         /* without RPS we can't safely check input_pkt_queue: during a
5733          * concurrent remote skb_queue_splice() we can detect as empty both
5734          * input_pkt_queue and process_queue even if the latter could end-up
5735          * containing a lot of packets.
5736          */
5737         return true;
5738 }
5739
5740 static void flush_all_backlogs(void)
5741 {
5742         static cpumask_t flush_cpus;
5743         unsigned int cpu;
5744
5745         /* since we are under rtnl lock protection we can use static data
5746          * for the cpumask and avoid allocating on stack the possibly
5747          * large mask
5748          */
5749         ASSERT_RTNL();
5750
5751         cpus_read_lock();
5752
5753         cpumask_clear(&flush_cpus);
5754         for_each_online_cpu(cpu) {
5755                 if (flush_required(cpu)) {
5756                         queue_work_on(cpu, system_highpri_wq,
5757                                       per_cpu_ptr(&flush_works, cpu));
5758                         cpumask_set_cpu(cpu, &flush_cpus);
5759                 }
5760         }
5761
5762         /* we can have in flight packet[s] on the cpus we are not flushing,
5763          * synchronize_net() in unregister_netdevice_many() will take care of
5764          * them
5765          */
5766         for_each_cpu(cpu, &flush_cpus)
5767                 flush_work(per_cpu_ptr(&flush_works, cpu));
5768
5769         cpus_read_unlock();
5770 }
5771
5772 static void net_rps_send_ipi(struct softnet_data *remsd)
5773 {
5774 #ifdef CONFIG_RPS
5775         while (remsd) {
5776                 struct softnet_data *next = remsd->rps_ipi_next;
5777
5778                 if (cpu_online(remsd->cpu))
5779                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
5780                 remsd = next;
5781         }
5782 #endif
5783 }
5784
5785 /*
5786  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5787  * Note: called with local irq disabled, but exits with local irq enabled.
5788  */
5789 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5790 {
5791 #ifdef CONFIG_RPS
5792         struct softnet_data *remsd = sd->rps_ipi_list;
5793
5794         if (remsd) {
5795                 sd->rps_ipi_list = NULL;
5796
5797                 local_irq_enable();
5798
5799                 /* Send pending IPI's to kick RPS processing on remote cpus. */
5800                 net_rps_send_ipi(remsd);
5801         } else
5802 #endif
5803                 local_irq_enable();
5804 }
5805
5806 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5807 {
5808 #ifdef CONFIG_RPS
5809         return sd->rps_ipi_list != NULL;
5810 #else
5811         return false;
5812 #endif
5813 }
5814
5815 static int process_backlog(struct napi_struct *napi, int quota)
5816 {
5817         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5818         bool again = true;
5819         int work = 0;
5820
5821         /* Check if we have pending ipi, its better to send them now,
5822          * not waiting net_rx_action() end.
5823          */
5824         if (sd_has_rps_ipi_waiting(sd)) {
5825                 local_irq_disable();
5826                 net_rps_action_and_irq_enable(sd);
5827         }
5828
5829         napi->weight = dev_rx_weight;
5830         while (again) {
5831                 struct sk_buff *skb;
5832
5833                 while ((skb = __skb_dequeue(&sd->process_queue))) {
5834                         rcu_read_lock();
5835                         __netif_receive_skb(skb);
5836                         rcu_read_unlock();
5837                         input_queue_head_incr(sd);
5838                         if (++work >= quota)
5839                                 return work;
5840
5841                 }
5842
5843                 rps_lock_irq_disable(sd);
5844                 if (skb_queue_empty(&sd->input_pkt_queue)) {
5845                         /*
5846                          * Inline a custom version of __napi_complete().
5847                          * only current cpu owns and manipulates this napi,
5848                          * and NAPI_STATE_SCHED is the only possible flag set
5849                          * on backlog.
5850                          * We can use a plain write instead of clear_bit(),
5851                          * and we dont need an smp_mb() memory barrier.
5852                          */
5853                         napi->state = 0;
5854                         again = false;
5855                 } else {
5856                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
5857                                                    &sd->process_queue);
5858                 }
5859                 rps_unlock_irq_enable(sd);
5860         }
5861
5862         return work;
5863 }
5864
5865 /**
5866  * __napi_schedule - schedule for receive
5867  * @n: entry to schedule
5868  *
5869  * The entry's receive function will be scheduled to run.
5870  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5871  */
5872 void __napi_schedule(struct napi_struct *n)
5873 {
5874         unsigned long flags;
5875
5876         local_irq_save(flags);
5877         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5878         local_irq_restore(flags);
5879 }
5880 EXPORT_SYMBOL(__napi_schedule);
5881
5882 /**
5883  *      napi_schedule_prep - check if napi can be scheduled
5884  *      @n: napi context
5885  *
5886  * Test if NAPI routine is already running, and if not mark
5887  * it as running.  This is used as a condition variable to
5888  * insure only one NAPI poll instance runs.  We also make
5889  * sure there is no pending NAPI disable.
5890  */
5891 bool napi_schedule_prep(struct napi_struct *n)
5892 {
5893         unsigned long val, new;
5894
5895         do {
5896                 val = READ_ONCE(n->state);
5897                 if (unlikely(val & NAPIF_STATE_DISABLE))
5898                         return false;
5899                 new = val | NAPIF_STATE_SCHED;
5900
5901                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5902                  * This was suggested by Alexander Duyck, as compiler
5903                  * emits better code than :
5904                  * if (val & NAPIF_STATE_SCHED)
5905                  *     new |= NAPIF_STATE_MISSED;
5906                  */
5907                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5908                                                    NAPIF_STATE_MISSED;
5909         } while (cmpxchg(&n->state, val, new) != val);
5910
5911         return !(val & NAPIF_STATE_SCHED);
5912 }
5913 EXPORT_SYMBOL(napi_schedule_prep);
5914
5915 /**
5916  * __napi_schedule_irqoff - schedule for receive
5917  * @n: entry to schedule
5918  *
5919  * Variant of __napi_schedule() assuming hard irqs are masked.
5920  *
5921  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
5922  * because the interrupt disabled assumption might not be true
5923  * due to force-threaded interrupts and spinlock substitution.
5924  */
5925 void __napi_schedule_irqoff(struct napi_struct *n)
5926 {
5927         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
5928                 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5929         else
5930                 __napi_schedule(n);
5931 }
5932 EXPORT_SYMBOL(__napi_schedule_irqoff);
5933
5934 bool napi_complete_done(struct napi_struct *n, int work_done)
5935 {
5936         unsigned long flags, val, new, timeout = 0;
5937         bool ret = true;
5938
5939         /*
5940          * 1) Don't let napi dequeue from the cpu poll list
5941          *    just in case its running on a different cpu.
5942          * 2) If we are busy polling, do nothing here, we have
5943          *    the guarantee we will be called later.
5944          */
5945         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5946                                  NAPIF_STATE_IN_BUSY_POLL)))
5947                 return false;
5948
5949         if (work_done) {
5950                 if (n->gro_bitmask)
5951                         timeout = READ_ONCE(n->dev->gro_flush_timeout);
5952                 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
5953         }
5954         if (n->defer_hard_irqs_count > 0) {
5955                 n->defer_hard_irqs_count--;
5956                 timeout = READ_ONCE(n->dev->gro_flush_timeout);
5957                 if (timeout)
5958                         ret = false;
5959         }
5960         if (n->gro_bitmask) {
5961                 /* When the NAPI instance uses a timeout and keeps postponing
5962                  * it, we need to bound somehow the time packets are kept in
5963                  * the GRO layer
5964                  */
5965                 napi_gro_flush(n, !!timeout);
5966         }
5967
5968         gro_normal_list(n);
5969
5970         if (unlikely(!list_empty(&n->poll_list))) {
5971                 /* If n->poll_list is not empty, we need to mask irqs */
5972                 local_irq_save(flags);
5973                 list_del_init(&n->poll_list);
5974                 local_irq_restore(flags);
5975         }
5976
5977         do {
5978                 val = READ_ONCE(n->state);
5979
5980                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5981
5982                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
5983                               NAPIF_STATE_SCHED_THREADED |
5984                               NAPIF_STATE_PREFER_BUSY_POLL);
5985
5986                 /* If STATE_MISSED was set, leave STATE_SCHED set,
5987                  * because we will call napi->poll() one more time.
5988                  * This C code was suggested by Alexander Duyck to help gcc.
5989                  */
5990                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5991                                                     NAPIF_STATE_SCHED;
5992         } while (cmpxchg(&n->state, val, new) != val);
5993
5994         if (unlikely(val & NAPIF_STATE_MISSED)) {
5995                 __napi_schedule(n);
5996                 return false;
5997         }
5998
5999         if (timeout)
6000                 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6001                               HRTIMER_MODE_REL_PINNED);
6002         return ret;
6003 }
6004 EXPORT_SYMBOL(napi_complete_done);
6005
6006 /* must be called under rcu_read_lock(), as we dont take a reference */
6007 static struct napi_struct *napi_by_id(unsigned int napi_id)
6008 {
6009         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6010         struct napi_struct *napi;
6011
6012         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6013                 if (napi->napi_id == napi_id)
6014                         return napi;
6015
6016         return NULL;
6017 }
6018
6019 #if defined(CONFIG_NET_RX_BUSY_POLL)
6020
6021 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6022 {
6023         if (!skip_schedule) {
6024                 gro_normal_list(napi);
6025                 __napi_schedule(napi);
6026                 return;
6027         }
6028
6029         if (napi->gro_bitmask) {
6030                 /* flush too old packets
6031                  * If HZ < 1000, flush all packets.
6032                  */
6033                 napi_gro_flush(napi, HZ >= 1000);
6034         }
6035
6036         gro_normal_list(napi);
6037         clear_bit(NAPI_STATE_SCHED, &napi->state);
6038 }
6039
6040 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6041                            u16 budget)
6042 {
6043         bool skip_schedule = false;
6044         unsigned long timeout;
6045         int rc;
6046
6047         /* Busy polling means there is a high chance device driver hard irq
6048          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6049          * set in napi_schedule_prep().
6050          * Since we are about to call napi->poll() once more, we can safely
6051          * clear NAPI_STATE_MISSED.
6052          *
6053          * Note: x86 could use a single "lock and ..." instruction
6054          * to perform these two clear_bit()
6055          */
6056         clear_bit(NAPI_STATE_MISSED, &napi->state);
6057         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6058
6059         local_bh_disable();
6060
6061         if (prefer_busy_poll) {
6062                 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6063                 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6064                 if (napi->defer_hard_irqs_count && timeout) {
6065                         hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6066                         skip_schedule = true;
6067                 }
6068         }
6069
6070         /* All we really want here is to re-enable device interrupts.
6071          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6072          */
6073         rc = napi->poll(napi, budget);
6074         /* We can't gro_normal_list() here, because napi->poll() might have
6075          * rearmed the napi (napi_complete_done()) in which case it could
6076          * already be running on another CPU.
6077          */
6078         trace_napi_poll(napi, rc, budget);
6079         netpoll_poll_unlock(have_poll_lock);
6080         if (rc == budget)
6081                 __busy_poll_stop(napi, skip_schedule);
6082         local_bh_enable();
6083 }
6084
6085 void napi_busy_loop(unsigned int napi_id,
6086                     bool (*loop_end)(void *, unsigned long),
6087                     void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6088 {
6089         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6090         int (*napi_poll)(struct napi_struct *napi, int budget);
6091         void *have_poll_lock = NULL;
6092         struct napi_struct *napi;
6093
6094 restart:
6095         napi_poll = NULL;
6096
6097         rcu_read_lock();
6098
6099         napi = napi_by_id(napi_id);
6100         if (!napi)
6101                 goto out;
6102
6103         preempt_disable();
6104         for (;;) {
6105                 int work = 0;
6106
6107                 local_bh_disable();
6108                 if (!napi_poll) {
6109                         unsigned long val = READ_ONCE(napi->state);
6110
6111                         /* If multiple threads are competing for this napi,
6112                          * we avoid dirtying napi->state as much as we can.
6113                          */
6114                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6115                                    NAPIF_STATE_IN_BUSY_POLL)) {
6116                                 if (prefer_busy_poll)
6117                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6118                                 goto count;
6119                         }
6120                         if (cmpxchg(&napi->state, val,
6121                                     val | NAPIF_STATE_IN_BUSY_POLL |
6122                                           NAPIF_STATE_SCHED) != val) {
6123                                 if (prefer_busy_poll)
6124                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6125                                 goto count;
6126                         }
6127                         have_poll_lock = netpoll_poll_lock(napi);
6128                         napi_poll = napi->poll;
6129                 }
6130                 work = napi_poll(napi, budget);
6131                 trace_napi_poll(napi, work, budget);
6132                 gro_normal_list(napi);
6133 count:
6134                 if (work > 0)
6135                         __NET_ADD_STATS(dev_net(napi->dev),
6136                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6137                 local_bh_enable();
6138
6139                 if (!loop_end || loop_end(loop_end_arg, start_time))
6140                         break;
6141
6142                 if (unlikely(need_resched())) {
6143                         if (napi_poll)
6144                                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6145                         preempt_enable();
6146                         rcu_read_unlock();
6147                         cond_resched();
6148                         if (loop_end(loop_end_arg, start_time))
6149                                 return;
6150                         goto restart;
6151                 }
6152                 cpu_relax();
6153         }
6154         if (napi_poll)
6155                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6156         preempt_enable();
6157 out:
6158         rcu_read_unlock();
6159 }
6160 EXPORT_SYMBOL(napi_busy_loop);
6161
6162 #endif /* CONFIG_NET_RX_BUSY_POLL */
6163
6164 static void napi_hash_add(struct napi_struct *napi)
6165 {
6166         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6167                 return;
6168
6169         spin_lock(&napi_hash_lock);
6170
6171         /* 0..NR_CPUS range is reserved for sender_cpu use */
6172         do {
6173                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6174                         napi_gen_id = MIN_NAPI_ID;
6175         } while (napi_by_id(napi_gen_id));
6176         napi->napi_id = napi_gen_id;
6177
6178         hlist_add_head_rcu(&napi->napi_hash_node,
6179                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6180
6181         spin_unlock(&napi_hash_lock);
6182 }
6183
6184 /* Warning : caller is responsible to make sure rcu grace period
6185  * is respected before freeing memory containing @napi
6186  */
6187 static void napi_hash_del(struct napi_struct *napi)
6188 {
6189         spin_lock(&napi_hash_lock);
6190
6191         hlist_del_init_rcu(&napi->napi_hash_node);
6192
6193         spin_unlock(&napi_hash_lock);
6194 }
6195
6196 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6197 {
6198         struct napi_struct *napi;
6199
6200         napi = container_of(timer, struct napi_struct, timer);
6201
6202         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6203          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6204          */
6205         if (!napi_disable_pending(napi) &&
6206             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6207                 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6208                 __napi_schedule_irqoff(napi);
6209         }
6210
6211         return HRTIMER_NORESTART;
6212 }
6213
6214 static void init_gro_hash(struct napi_struct *napi)
6215 {
6216         int i;
6217
6218         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6219                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6220                 napi->gro_hash[i].count = 0;
6221         }
6222         napi->gro_bitmask = 0;
6223 }
6224
6225 int dev_set_threaded(struct net_device *dev, bool threaded)
6226 {
6227         struct napi_struct *napi;
6228         int err = 0;
6229
6230         if (dev->threaded == threaded)
6231                 return 0;
6232
6233         if (threaded) {
6234                 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6235                         if (!napi->thread) {
6236                                 err = napi_kthread_create(napi);
6237                                 if (err) {
6238                                         threaded = false;
6239                                         break;
6240                                 }
6241                         }
6242                 }
6243         }
6244
6245         dev->threaded = threaded;
6246
6247         /* Make sure kthread is created before THREADED bit
6248          * is set.
6249          */
6250         smp_mb__before_atomic();
6251
6252         /* Setting/unsetting threaded mode on a napi might not immediately
6253          * take effect, if the current napi instance is actively being
6254          * polled. In this case, the switch between threaded mode and
6255          * softirq mode will happen in the next round of napi_schedule().
6256          * This should not cause hiccups/stalls to the live traffic.
6257          */
6258         list_for_each_entry(napi, &dev->napi_list, dev_list) {
6259                 if (threaded)
6260                         set_bit(NAPI_STATE_THREADED, &napi->state);
6261                 else
6262                         clear_bit(NAPI_STATE_THREADED, &napi->state);
6263         }
6264
6265         return err;
6266 }
6267 EXPORT_SYMBOL(dev_set_threaded);
6268
6269 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6270                     int (*poll)(struct napi_struct *, int), int weight)
6271 {
6272         if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6273                 return;
6274
6275         INIT_LIST_HEAD(&napi->poll_list);
6276         INIT_HLIST_NODE(&napi->napi_hash_node);
6277         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6278         napi->timer.function = napi_watchdog;
6279         init_gro_hash(napi);
6280         napi->skb = NULL;
6281         INIT_LIST_HEAD(&napi->rx_list);
6282         napi->rx_count = 0;
6283         napi->poll = poll;
6284         if (weight > NAPI_POLL_WEIGHT)
6285                 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6286                                 weight);
6287         napi->weight = weight;
6288         napi->dev = dev;
6289 #ifdef CONFIG_NETPOLL
6290         napi->poll_owner = -1;
6291 #endif
6292         set_bit(NAPI_STATE_SCHED, &napi->state);
6293         set_bit(NAPI_STATE_NPSVC, &napi->state);
6294         list_add_rcu(&napi->dev_list, &dev->napi_list);
6295         napi_hash_add(napi);
6296         /* Create kthread for this napi if dev->threaded is set.
6297          * Clear dev->threaded if kthread creation failed so that
6298          * threaded mode will not be enabled in napi_enable().
6299          */
6300         if (dev->threaded && napi_kthread_create(napi))
6301                 dev->threaded = 0;
6302 }
6303 EXPORT_SYMBOL(netif_napi_add);
6304
6305 void napi_disable(struct napi_struct *n)
6306 {
6307         unsigned long val, new;
6308
6309         might_sleep();
6310         set_bit(NAPI_STATE_DISABLE, &n->state);
6311
6312         for ( ; ; ) {
6313                 val = READ_ONCE(n->state);
6314                 if (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6315                         usleep_range(20, 200);
6316                         continue;
6317                 }
6318
6319                 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6320                 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6321
6322                 if (cmpxchg(&n->state, val, new) == val)
6323                         break;
6324         }
6325
6326         hrtimer_cancel(&n->timer);
6327
6328         clear_bit(NAPI_STATE_DISABLE, &n->state);
6329 }
6330 EXPORT_SYMBOL(napi_disable);
6331
6332 /**
6333  *      napi_enable - enable NAPI scheduling
6334  *      @n: NAPI context
6335  *
6336  * Resume NAPI from being scheduled on this context.
6337  * Must be paired with napi_disable.
6338  */
6339 void napi_enable(struct napi_struct *n)
6340 {
6341         unsigned long val, new;
6342
6343         do {
6344                 val = READ_ONCE(n->state);
6345                 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6346
6347                 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6348                 if (n->dev->threaded && n->thread)
6349                         new |= NAPIF_STATE_THREADED;
6350         } while (cmpxchg(&n->state, val, new) != val);
6351 }
6352 EXPORT_SYMBOL(napi_enable);
6353
6354 static void flush_gro_hash(struct napi_struct *napi)
6355 {
6356         int i;
6357
6358         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6359                 struct sk_buff *skb, *n;
6360
6361                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6362                         kfree_skb(skb);
6363                 napi->gro_hash[i].count = 0;
6364         }
6365 }
6366
6367 /* Must be called in process context */
6368 void __netif_napi_del(struct napi_struct *napi)
6369 {
6370         if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6371                 return;
6372
6373         napi_hash_del(napi);
6374         list_del_rcu(&napi->dev_list);
6375         napi_free_frags(napi);
6376
6377         flush_gro_hash(napi);
6378         napi->gro_bitmask = 0;
6379
6380         if (napi->thread) {
6381                 kthread_stop(napi->thread);
6382                 napi->thread = NULL;
6383         }
6384 }
6385 EXPORT_SYMBOL(__netif_napi_del);
6386
6387 static int __napi_poll(struct napi_struct *n, bool *repoll)
6388 {
6389         int work, weight;
6390
6391         weight = n->weight;
6392
6393         /* This NAPI_STATE_SCHED test is for avoiding a race
6394          * with netpoll's poll_napi().  Only the entity which
6395          * obtains the lock and sees NAPI_STATE_SCHED set will
6396          * actually make the ->poll() call.  Therefore we avoid
6397          * accidentally calling ->poll() when NAPI is not scheduled.
6398          */
6399         work = 0;
6400         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6401                 work = n->poll(n, weight);
6402                 trace_napi_poll(n, work, weight);
6403         }
6404
6405         if (unlikely(work > weight))
6406                 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6407                                 n->poll, work, weight);
6408
6409         if (likely(work < weight))
6410                 return work;
6411
6412         /* Drivers must not modify the NAPI state if they
6413          * consume the entire weight.  In such cases this code
6414          * still "owns" the NAPI instance and therefore can
6415          * move the instance around on the list at-will.
6416          */
6417         if (unlikely(napi_disable_pending(n))) {
6418                 napi_complete(n);
6419                 return work;
6420         }
6421
6422         /* The NAPI context has more processing work, but busy-polling
6423          * is preferred. Exit early.
6424          */
6425         if (napi_prefer_busy_poll(n)) {
6426                 if (napi_complete_done(n, work)) {
6427                         /* If timeout is not set, we need to make sure
6428                          * that the NAPI is re-scheduled.
6429                          */
6430                         napi_schedule(n);
6431                 }
6432                 return work;
6433         }
6434
6435         if (n->gro_bitmask) {
6436                 /* flush too old packets
6437                  * If HZ < 1000, flush all packets.
6438                  */
6439                 napi_gro_flush(n, HZ >= 1000);
6440         }
6441
6442         gro_normal_list(n);
6443
6444         /* Some drivers may have called napi_schedule
6445          * prior to exhausting their budget.
6446          */
6447         if (unlikely(!list_empty(&n->poll_list))) {
6448                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6449                              n->dev ? n->dev->name : "backlog");
6450                 return work;
6451         }
6452
6453         *repoll = true;
6454
6455         return work;
6456 }
6457
6458 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6459 {
6460         bool do_repoll = false;
6461         void *have;
6462         int work;
6463
6464         list_del_init(&n->poll_list);
6465
6466         have = netpoll_poll_lock(n);
6467
6468         work = __napi_poll(n, &do_repoll);
6469
6470         if (do_repoll)
6471                 list_add_tail(&n->poll_list, repoll);
6472
6473         netpoll_poll_unlock(have);
6474
6475         return work;
6476 }
6477
6478 static int napi_thread_wait(struct napi_struct *napi)
6479 {
6480         bool woken = false;
6481
6482         set_current_state(TASK_INTERRUPTIBLE);
6483
6484         while (!kthread_should_stop()) {
6485                 /* Testing SCHED_THREADED bit here to make sure the current
6486                  * kthread owns this napi and could poll on this napi.
6487                  * Testing SCHED bit is not enough because SCHED bit might be
6488                  * set by some other busy poll thread or by napi_disable().
6489                  */
6490                 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6491                         WARN_ON(!list_empty(&napi->poll_list));
6492                         __set_current_state(TASK_RUNNING);
6493                         return 0;
6494                 }
6495
6496                 schedule();
6497                 /* woken being true indicates this thread owns this napi. */
6498                 woken = true;
6499                 set_current_state(TASK_INTERRUPTIBLE);
6500         }
6501         __set_current_state(TASK_RUNNING);
6502
6503         return -1;
6504 }
6505
6506 static int napi_threaded_poll(void *data)
6507 {
6508         struct napi_struct *napi = data;
6509         void *have;
6510
6511         while (!napi_thread_wait(napi)) {
6512                 for (;;) {
6513                         bool repoll = false;
6514
6515                         local_bh_disable();
6516
6517                         have = netpoll_poll_lock(napi);
6518                         __napi_poll(napi, &repoll);
6519                         netpoll_poll_unlock(have);
6520
6521                         local_bh_enable();
6522
6523                         if (!repoll)
6524                                 break;
6525
6526                         cond_resched();
6527                 }
6528         }
6529         return 0;
6530 }
6531
6532 static __latent_entropy void net_rx_action(struct softirq_action *h)
6533 {
6534         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6535         unsigned long time_limit = jiffies +
6536                 usecs_to_jiffies(netdev_budget_usecs);
6537         int budget = netdev_budget;
6538         LIST_HEAD(list);
6539         LIST_HEAD(repoll);
6540
6541         local_irq_disable();
6542         list_splice_init(&sd->poll_list, &list);
6543         local_irq_enable();
6544
6545         for (;;) {
6546                 struct napi_struct *n;
6547
6548                 if (list_empty(&list)) {
6549                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6550                                 return;
6551                         break;
6552                 }
6553
6554                 n = list_first_entry(&list, struct napi_struct, poll_list);
6555                 budget -= napi_poll(n, &repoll);
6556
6557                 /* If softirq window is exhausted then punt.
6558                  * Allow this to run for 2 jiffies since which will allow
6559                  * an average latency of 1.5/HZ.
6560                  */
6561                 if (unlikely(budget <= 0 ||
6562                              time_after_eq(jiffies, time_limit))) {
6563                         sd->time_squeeze++;
6564                         break;
6565                 }
6566         }
6567
6568         local_irq_disable();
6569
6570         list_splice_tail_init(&sd->poll_list, &list);
6571         list_splice_tail(&repoll, &list);
6572         list_splice(&list, &sd->poll_list);
6573         if (!list_empty(&sd->poll_list))
6574                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6575
6576         net_rps_action_and_irq_enable(sd);
6577 }
6578
6579 struct netdev_adjacent {
6580         struct net_device *dev;
6581         netdevice_tracker dev_tracker;
6582
6583         /* upper master flag, there can only be one master device per list */
6584         bool master;
6585
6586         /* lookup ignore flag */
6587         bool ignore;
6588
6589         /* counter for the number of times this device was added to us */
6590         u16 ref_nr;
6591
6592         /* private field for the users */
6593         void *private;
6594
6595         struct list_head list;
6596         struct rcu_head rcu;
6597 };
6598
6599 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6600                                                  struct list_head *adj_list)
6601 {
6602         struct netdev_adjacent *adj;
6603
6604         list_for_each_entry(adj, adj_list, list) {
6605                 if (adj->dev == adj_dev)
6606                         return adj;
6607         }
6608         return NULL;
6609 }
6610
6611 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6612                                     struct netdev_nested_priv *priv)
6613 {
6614         struct net_device *dev = (struct net_device *)priv->data;
6615
6616         return upper_dev == dev;
6617 }
6618
6619 /**
6620  * netdev_has_upper_dev - Check if device is linked to an upper device
6621  * @dev: device
6622  * @upper_dev: upper device to check
6623  *
6624  * Find out if a device is linked to specified upper device and return true
6625  * in case it is. Note that this checks only immediate upper device,
6626  * not through a complete stack of devices. The caller must hold the RTNL lock.
6627  */
6628 bool netdev_has_upper_dev(struct net_device *dev,
6629                           struct net_device *upper_dev)
6630 {
6631         struct netdev_nested_priv priv = {
6632                 .data = (void *)upper_dev,
6633         };
6634
6635         ASSERT_RTNL();
6636
6637         return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6638                                              &priv);
6639 }
6640 EXPORT_SYMBOL(netdev_has_upper_dev);
6641
6642 /**
6643  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6644  * @dev: device
6645  * @upper_dev: upper device to check
6646  *
6647  * Find out if a device is linked to specified upper device and return true
6648  * in case it is. Note that this checks the entire upper device chain.
6649  * The caller must hold rcu lock.
6650  */
6651
6652 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6653                                   struct net_device *upper_dev)
6654 {
6655         struct netdev_nested_priv priv = {
6656                 .data = (void *)upper_dev,
6657         };
6658
6659         return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6660                                                &priv);
6661 }
6662 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6663
6664 /**
6665  * netdev_has_any_upper_dev - Check if device is linked to some device
6666  * @dev: device
6667  *
6668  * Find out if a device is linked to an upper device and return true in case
6669  * it is. The caller must hold the RTNL lock.
6670  */
6671 bool netdev_has_any_upper_dev(struct net_device *dev)
6672 {
6673         ASSERT_RTNL();
6674
6675         return !list_empty(&dev->adj_list.upper);
6676 }
6677 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6678
6679 /**
6680  * netdev_master_upper_dev_get - Get master upper device
6681  * @dev: device
6682  *
6683  * Find a master upper device and return pointer to it or NULL in case
6684  * it's not there. The caller must hold the RTNL lock.
6685  */
6686 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6687 {
6688         struct netdev_adjacent *upper;
6689
6690         ASSERT_RTNL();
6691
6692         if (list_empty(&dev->adj_list.upper))
6693                 return NULL;
6694
6695         upper = list_first_entry(&dev->adj_list.upper,
6696                                  struct netdev_adjacent, list);
6697         if (likely(upper->master))
6698                 return upper->dev;
6699         return NULL;
6700 }
6701 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6702
6703 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6704 {
6705         struct netdev_adjacent *upper;
6706
6707         ASSERT_RTNL();
6708
6709         if (list_empty(&dev->adj_list.upper))
6710                 return NULL;
6711
6712         upper = list_first_entry(&dev->adj_list.upper,
6713                                  struct netdev_adjacent, list);
6714         if (likely(upper->master) && !upper->ignore)
6715                 return upper->dev;
6716         return NULL;
6717 }
6718
6719 /**
6720  * netdev_has_any_lower_dev - Check if device is linked to some device
6721  * @dev: device
6722  *
6723  * Find out if a device is linked to a lower device and return true in case
6724  * it is. The caller must hold the RTNL lock.
6725  */
6726 static bool netdev_has_any_lower_dev(struct net_device *dev)
6727 {
6728         ASSERT_RTNL();
6729
6730         return !list_empty(&dev->adj_list.lower);
6731 }
6732
6733 void *netdev_adjacent_get_private(struct list_head *adj_list)
6734 {
6735         struct netdev_adjacent *adj;
6736
6737         adj = list_entry(adj_list, struct netdev_adjacent, list);
6738
6739         return adj->private;
6740 }
6741 EXPORT_SYMBOL(netdev_adjacent_get_private);
6742
6743 /**
6744  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6745  * @dev: device
6746  * @iter: list_head ** of the current position
6747  *
6748  * Gets the next device from the dev's upper list, starting from iter
6749  * position. The caller must hold RCU read lock.
6750  */
6751 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6752                                                  struct list_head **iter)
6753 {
6754         struct netdev_adjacent *upper;
6755
6756         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6757
6758         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6759
6760         if (&upper->list == &dev->adj_list.upper)
6761                 return NULL;
6762
6763         *iter = &upper->list;
6764
6765         return upper->dev;
6766 }
6767 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6768
6769 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6770                                                   struct list_head **iter,
6771                                                   bool *ignore)
6772 {
6773         struct netdev_adjacent *upper;
6774
6775         upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6776
6777         if (&upper->list == &dev->adj_list.upper)
6778                 return NULL;
6779
6780         *iter = &upper->list;
6781         *ignore = upper->ignore;
6782
6783         return upper->dev;
6784 }
6785
6786 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6787                                                     struct list_head **iter)
6788 {
6789         struct netdev_adjacent *upper;
6790
6791         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6792
6793         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6794
6795         if (&upper->list == &dev->adj_list.upper)
6796                 return NULL;
6797
6798         *iter = &upper->list;
6799
6800         return upper->dev;
6801 }
6802
6803 static int __netdev_walk_all_upper_dev(struct net_device *dev,
6804                                        int (*fn)(struct net_device *dev,
6805                                          struct netdev_nested_priv *priv),
6806                                        struct netdev_nested_priv *priv)
6807 {
6808         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6809         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6810         int ret, cur = 0;
6811         bool ignore;
6812
6813         now = dev;
6814         iter = &dev->adj_list.upper;
6815
6816         while (1) {
6817                 if (now != dev) {
6818                         ret = fn(now, priv);
6819                         if (ret)
6820                                 return ret;
6821                 }
6822
6823                 next = NULL;
6824                 while (1) {
6825                         udev = __netdev_next_upper_dev(now, &iter, &ignore);
6826                         if (!udev)
6827                                 break;
6828                         if (ignore)
6829                                 continue;
6830
6831                         next = udev;
6832                         niter = &udev->adj_list.upper;
6833                         dev_stack[cur] = now;
6834                         iter_stack[cur++] = iter;
6835                         break;
6836                 }
6837
6838                 if (!next) {
6839                         if (!cur)
6840                                 return 0;
6841                         next = dev_stack[--cur];
6842                         niter = iter_stack[cur];
6843                 }
6844
6845                 now = next;
6846                 iter = niter;
6847         }
6848
6849         return 0;
6850 }
6851
6852 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6853                                   int (*fn)(struct net_device *dev,
6854                                             struct netdev_nested_priv *priv),
6855                                   struct netdev_nested_priv *priv)
6856 {
6857         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6858         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6859         int ret, cur = 0;
6860
6861         now = dev;
6862         iter = &dev->adj_list.upper;
6863
6864         while (1) {
6865                 if (now != dev) {
6866                         ret = fn(now, priv);
6867                         if (ret)
6868                                 return ret;
6869                 }
6870
6871                 next = NULL;
6872                 while (1) {
6873                         udev = netdev_next_upper_dev_rcu(now, &iter);
6874                         if (!udev)
6875                                 break;
6876
6877                         next = udev;
6878                         niter = &udev->adj_list.upper;
6879                         dev_stack[cur] = now;
6880                         iter_stack[cur++] = iter;
6881                         break;
6882                 }
6883
6884                 if (!next) {
6885                         if (!cur)
6886                                 return 0;
6887                         next = dev_stack[--cur];
6888                         niter = iter_stack[cur];
6889                 }
6890
6891                 now = next;
6892                 iter = niter;
6893         }
6894
6895         return 0;
6896 }
6897 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6898
6899 static bool __netdev_has_upper_dev(struct net_device *dev,
6900                                    struct net_device *upper_dev)
6901 {
6902         struct netdev_nested_priv priv = {
6903                 .flags = 0,
6904                 .data = (void *)upper_dev,
6905         };
6906
6907         ASSERT_RTNL();
6908
6909         return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
6910                                            &priv);
6911 }
6912
6913 /**
6914  * netdev_lower_get_next_private - Get the next ->private from the
6915  *                                 lower neighbour list
6916  * @dev: device
6917  * @iter: list_head ** of the current position
6918  *
6919  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6920  * list, starting from iter position. The caller must hold either hold the
6921  * RTNL lock or its own locking that guarantees that the neighbour lower
6922  * list will remain unchanged.
6923  */
6924 void *netdev_lower_get_next_private(struct net_device *dev,
6925                                     struct list_head **iter)
6926 {
6927         struct netdev_adjacent *lower;
6928
6929         lower = list_entry(*iter, struct netdev_adjacent, list);
6930
6931         if (&lower->list == &dev->adj_list.lower)
6932                 return NULL;
6933
6934         *iter = lower->list.next;
6935
6936         return lower->private;
6937 }
6938 EXPORT_SYMBOL(netdev_lower_get_next_private);
6939
6940 /**
6941  * netdev_lower_get_next_private_rcu - Get the next ->private from the
6942  *                                     lower neighbour list, RCU
6943  *                                     variant
6944  * @dev: device
6945  * @iter: list_head ** of the current position
6946  *
6947  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6948  * list, starting from iter position. The caller must hold RCU read lock.
6949  */
6950 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6951                                         struct list_head **iter)
6952 {
6953         struct netdev_adjacent *lower;
6954
6955         WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
6956
6957         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6958
6959         if (&lower->list == &dev->adj_list.lower)
6960                 return NULL;
6961
6962         *iter = &lower->list;
6963
6964         return lower->private;
6965 }
6966 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6967
6968 /**
6969  * netdev_lower_get_next - Get the next device from the lower neighbour
6970  *                         list
6971  * @dev: device
6972  * @iter: list_head ** of the current position
6973  *
6974  * Gets the next netdev_adjacent from the dev's lower neighbour
6975  * list, starting from iter position. The caller must hold RTNL lock or
6976  * its own locking that guarantees that the neighbour lower
6977  * list will remain unchanged.
6978  */
6979 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6980 {
6981         struct netdev_adjacent *lower;
6982
6983         lower = list_entry(*iter, struct netdev_adjacent, list);
6984
6985         if (&lower->list == &dev->adj_list.lower)
6986                 return NULL;
6987
6988         *iter = lower->list.next;
6989
6990         return lower->dev;
6991 }
6992 EXPORT_SYMBOL(netdev_lower_get_next);
6993
6994 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6995                                                 struct list_head **iter)
6996 {
6997         struct netdev_adjacent *lower;
6998
6999         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7000
7001         if (&lower->list == &dev->adj_list.lower)
7002                 return NULL;
7003
7004         *iter = &lower->list;
7005
7006         return lower->dev;
7007 }
7008
7009 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7010                                                   struct list_head **iter,
7011                                                   bool *ignore)
7012 {
7013         struct netdev_adjacent *lower;
7014
7015         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7016
7017         if (&lower->list == &dev->adj_list.lower)
7018                 return NULL;
7019
7020         *iter = &lower->list;
7021         *ignore = lower->ignore;
7022
7023         return lower->dev;
7024 }
7025
7026 int netdev_walk_all_lower_dev(struct net_device *dev,
7027                               int (*fn)(struct net_device *dev,
7028                                         struct netdev_nested_priv *priv),
7029                               struct netdev_nested_priv *priv)
7030 {
7031         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7032         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7033         int ret, cur = 0;
7034
7035         now = dev;
7036         iter = &dev->adj_list.lower;
7037
7038         while (1) {
7039                 if (now != dev) {
7040                         ret = fn(now, priv);
7041                         if (ret)
7042                                 return ret;
7043                 }
7044
7045                 next = NULL;
7046                 while (1) {
7047                         ldev = netdev_next_lower_dev(now, &iter);
7048                         if (!ldev)
7049                                 break;
7050
7051                         next = ldev;
7052                         niter = &ldev->adj_list.lower;
7053                         dev_stack[cur] = now;
7054                         iter_stack[cur++] = iter;
7055                         break;
7056                 }
7057
7058                 if (!next) {
7059                         if (!cur)
7060                                 return 0;
7061                         next = dev_stack[--cur];
7062                         niter = iter_stack[cur];
7063                 }
7064
7065                 now = next;
7066                 iter = niter;
7067         }
7068
7069         return 0;
7070 }
7071 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7072
7073 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7074                                        int (*fn)(struct net_device *dev,
7075                                          struct netdev_nested_priv *priv),
7076                                        struct netdev_nested_priv *priv)
7077 {
7078         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7079         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7080         int ret, cur = 0;
7081         bool ignore;
7082
7083         now = dev;
7084         iter = &dev->adj_list.lower;
7085
7086         while (1) {
7087                 if (now != dev) {
7088                         ret = fn(now, priv);
7089                         if (ret)
7090                                 return ret;
7091                 }
7092
7093                 next = NULL;
7094                 while (1) {
7095                         ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7096                         if (!ldev)
7097                                 break;
7098                         if (ignore)
7099                                 continue;
7100
7101                         next = ldev;
7102                         niter = &ldev->adj_list.lower;
7103                         dev_stack[cur] = now;
7104                         iter_stack[cur++] = iter;
7105                         break;
7106                 }
7107
7108                 if (!next) {
7109                         if (!cur)
7110                                 return 0;
7111                         next = dev_stack[--cur];
7112                         niter = iter_stack[cur];
7113                 }
7114
7115                 now = next;
7116                 iter = niter;
7117         }
7118
7119         return 0;
7120 }
7121
7122 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7123                                              struct list_head **iter)
7124 {
7125         struct netdev_adjacent *lower;
7126
7127         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7128         if (&lower->list == &dev->adj_list.lower)
7129                 return NULL;
7130
7131         *iter = &lower->list;
7132
7133         return lower->dev;
7134 }
7135 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7136
7137 static u8 __netdev_upper_depth(struct net_device *dev)
7138 {
7139         struct net_device *udev;
7140         struct list_head *iter;
7141         u8 max_depth = 0;
7142         bool ignore;
7143
7144         for (iter = &dev->adj_list.upper,
7145              udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7146              udev;
7147              udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7148                 if (ignore)
7149                         continue;
7150                 if (max_depth < udev->upper_level)
7151                         max_depth = udev->upper_level;
7152         }
7153
7154         return max_depth;
7155 }
7156
7157 static u8 __netdev_lower_depth(struct net_device *dev)
7158 {
7159         struct net_device *ldev;
7160         struct list_head *iter;
7161         u8 max_depth = 0;
7162         bool ignore;
7163
7164         for (iter = &dev->adj_list.lower,
7165              ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7166              ldev;
7167              ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7168                 if (ignore)
7169                         continue;
7170                 if (max_depth < ldev->lower_level)
7171                         max_depth = ldev->lower_level;
7172         }
7173
7174         return max_depth;
7175 }
7176
7177 static int __netdev_update_upper_level(struct net_device *dev,
7178                                        struct netdev_nested_priv *__unused)
7179 {
7180         dev->upper_level = __netdev_upper_depth(dev) + 1;
7181         return 0;
7182 }
7183
7184 static int __netdev_update_lower_level(struct net_device *dev,
7185                                        struct netdev_nested_priv *priv)
7186 {
7187         dev->lower_level = __netdev_lower_depth(dev) + 1;
7188
7189 #ifdef CONFIG_LOCKDEP
7190         if (!priv)
7191                 return 0;
7192
7193         if (priv->flags & NESTED_SYNC_IMM)
7194                 dev->nested_level = dev->lower_level - 1;
7195         if (priv->flags & NESTED_SYNC_TODO)
7196                 net_unlink_todo(dev);
7197 #endif
7198         return 0;
7199 }
7200
7201 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7202                                   int (*fn)(struct net_device *dev,
7203                                             struct netdev_nested_priv *priv),
7204                                   struct netdev_nested_priv *priv)
7205 {
7206         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7207         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7208         int ret, cur = 0;
7209
7210         now = dev;
7211         iter = &dev->adj_list.lower;
7212
7213         while (1) {
7214                 if (now != dev) {
7215                         ret = fn(now, priv);
7216                         if (ret)
7217                                 return ret;
7218                 }
7219
7220                 next = NULL;
7221                 while (1) {
7222                         ldev = netdev_next_lower_dev_rcu(now, &iter);
7223                         if (!ldev)
7224                                 break;
7225
7226                         next = ldev;
7227                         niter = &ldev->adj_list.lower;
7228                         dev_stack[cur] = now;
7229                         iter_stack[cur++] = iter;
7230                         break;
7231                 }
7232
7233                 if (!next) {
7234                         if (!cur)
7235                                 return 0;
7236                         next = dev_stack[--cur];
7237                         niter = iter_stack[cur];
7238                 }
7239
7240                 now = next;
7241                 iter = niter;
7242         }
7243
7244         return 0;
7245 }
7246 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7247
7248 /**
7249  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7250  *                                     lower neighbour list, RCU
7251  *                                     variant
7252  * @dev: device
7253  *
7254  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7255  * list. The caller must hold RCU read lock.
7256  */
7257 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7258 {
7259         struct netdev_adjacent *lower;
7260
7261         lower = list_first_or_null_rcu(&dev->adj_list.lower,
7262                         struct netdev_adjacent, list);
7263         if (lower)
7264                 return lower->private;
7265         return NULL;
7266 }
7267 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7268
7269 /**
7270  * netdev_master_upper_dev_get_rcu - Get master upper device
7271  * @dev: device
7272  *
7273  * Find a master upper device and return pointer to it or NULL in case
7274  * it's not there. The caller must hold the RCU read lock.
7275  */
7276 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7277 {
7278         struct netdev_adjacent *upper;
7279
7280         upper = list_first_or_null_rcu(&dev->adj_list.upper,
7281                                        struct netdev_adjacent, list);
7282         if (upper && likely(upper->master))
7283                 return upper->dev;
7284         return NULL;
7285 }
7286 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7287
7288 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7289                               struct net_device *adj_dev,
7290                               struct list_head *dev_list)
7291 {
7292         char linkname[IFNAMSIZ+7];
7293
7294         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7295                 "upper_%s" : "lower_%s", adj_dev->name);
7296         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7297                                  linkname);
7298 }
7299 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7300                                char *name,
7301                                struct list_head *dev_list)
7302 {
7303         char linkname[IFNAMSIZ+7];
7304
7305         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7306                 "upper_%s" : "lower_%s", name);
7307         sysfs_remove_link(&(dev->dev.kobj), linkname);
7308 }
7309
7310 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7311                                                  struct net_device *adj_dev,
7312                                                  struct list_head *dev_list)
7313 {
7314         return (dev_list == &dev->adj_list.upper ||
7315                 dev_list == &dev->adj_list.lower) &&
7316                 net_eq(dev_net(dev), dev_net(adj_dev));
7317 }
7318
7319 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7320                                         struct net_device *adj_dev,
7321                                         struct list_head *dev_list,
7322                                         void *private, bool master)
7323 {
7324         struct netdev_adjacent *adj;
7325         int ret;
7326
7327         adj = __netdev_find_adj(adj_dev, dev_list);
7328
7329         if (adj) {
7330                 adj->ref_nr += 1;
7331                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7332                          dev->name, adj_dev->name, adj->ref_nr);
7333
7334                 return 0;
7335         }
7336
7337         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7338         if (!adj)
7339                 return -ENOMEM;
7340
7341         adj->dev = adj_dev;
7342         adj->master = master;
7343         adj->ref_nr = 1;
7344         adj->private = private;
7345         adj->ignore = false;
7346         dev_hold_track(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7347
7348         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7349                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7350
7351         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7352                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7353                 if (ret)
7354                         goto free_adj;
7355         }
7356
7357         /* Ensure that master link is always the first item in list. */
7358         if (master) {
7359                 ret = sysfs_create_link(&(dev->dev.kobj),
7360                                         &(adj_dev->dev.kobj), "master");
7361                 if (ret)
7362                         goto remove_symlinks;
7363
7364                 list_add_rcu(&adj->list, dev_list);
7365         } else {
7366                 list_add_tail_rcu(&adj->list, dev_list);
7367         }
7368
7369         return 0;
7370
7371 remove_symlinks:
7372         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7373                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7374 free_adj:
7375         dev_put_track(adj_dev, &adj->dev_tracker);
7376         kfree(adj);
7377
7378         return ret;
7379 }
7380
7381 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7382                                          struct net_device *adj_dev,
7383                                          u16 ref_nr,
7384                                          struct list_head *dev_list)
7385 {
7386         struct netdev_adjacent *adj;
7387
7388         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7389                  dev->name, adj_dev->name, ref_nr);
7390
7391         adj = __netdev_find_adj(adj_dev, dev_list);
7392
7393         if (!adj) {
7394                 pr_err("Adjacency does not exist for device %s from %s\n",
7395                        dev->name, adj_dev->name);
7396                 WARN_ON(1);
7397                 return;
7398         }
7399
7400         if (adj->ref_nr > ref_nr) {
7401                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7402                          dev->name, adj_dev->name, ref_nr,
7403                          adj->ref_nr - ref_nr);
7404                 adj->ref_nr -= ref_nr;
7405                 return;
7406         }
7407
7408         if (adj->master)
7409                 sysfs_remove_link(&(dev->dev.kobj), "master");
7410
7411         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7412                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7413
7414         list_del_rcu(&adj->list);
7415         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7416                  adj_dev->name, dev->name, adj_dev->name);
7417         dev_put_track(adj_dev, &adj->dev_tracker);
7418         kfree_rcu(adj, rcu);
7419 }
7420
7421 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7422                                             struct net_device *upper_dev,
7423                                             struct list_head *up_list,
7424                                             struct list_head *down_list,
7425                                             void *private, bool master)
7426 {
7427         int ret;
7428
7429         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7430                                            private, master);
7431         if (ret)
7432                 return ret;
7433
7434         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7435                                            private, false);
7436         if (ret) {
7437                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7438                 return ret;
7439         }
7440
7441         return 0;
7442 }
7443
7444 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7445                                                struct net_device *upper_dev,
7446                                                u16 ref_nr,
7447                                                struct list_head *up_list,
7448                                                struct list_head *down_list)
7449 {
7450         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7451         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7452 }
7453
7454 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7455                                                 struct net_device *upper_dev,
7456                                                 void *private, bool master)
7457 {
7458         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7459                                                 &dev->adj_list.upper,
7460                                                 &upper_dev->adj_list.lower,
7461                                                 private, master);
7462 }
7463
7464 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7465                                                    struct net_device *upper_dev)
7466 {
7467         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7468                                            &dev->adj_list.upper,
7469                                            &upper_dev->adj_list.lower);
7470 }
7471
7472 static int __netdev_upper_dev_link(struct net_device *dev,
7473                                    struct net_device *upper_dev, bool master,
7474                                    void *upper_priv, void *upper_info,
7475                                    struct netdev_nested_priv *priv,
7476                                    struct netlink_ext_ack *extack)
7477 {
7478         struct netdev_notifier_changeupper_info changeupper_info = {
7479                 .info = {
7480                         .dev = dev,
7481                         .extack = extack,
7482                 },
7483                 .upper_dev = upper_dev,
7484                 .master = master,
7485                 .linking = true,
7486                 .upper_info = upper_info,
7487         };
7488         struct net_device *master_dev;
7489         int ret = 0;
7490
7491         ASSERT_RTNL();
7492
7493         if (dev == upper_dev)
7494                 return -EBUSY;
7495
7496         /* To prevent loops, check if dev is not upper device to upper_dev. */
7497         if (__netdev_has_upper_dev(upper_dev, dev))
7498                 return -EBUSY;
7499
7500         if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7501                 return -EMLINK;
7502
7503         if (!master) {
7504                 if (__netdev_has_upper_dev(dev, upper_dev))
7505                         return -EEXIST;
7506         } else {
7507                 master_dev = __netdev_master_upper_dev_get(dev);
7508                 if (master_dev)
7509                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
7510         }
7511
7512         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7513                                             &changeupper_info.info);
7514         ret = notifier_to_errno(ret);
7515         if (ret)
7516                 return ret;
7517
7518         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7519                                                    master);
7520         if (ret)
7521                 return ret;
7522
7523         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7524                                             &changeupper_info.info);
7525         ret = notifier_to_errno(ret);
7526         if (ret)
7527                 goto rollback;
7528
7529         __netdev_update_upper_level(dev, NULL);
7530         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7531
7532         __netdev_update_lower_level(upper_dev, priv);
7533         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7534                                     priv);
7535
7536         return 0;
7537
7538 rollback:
7539         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7540
7541         return ret;
7542 }
7543
7544 /**
7545  * netdev_upper_dev_link - Add a link to the upper device
7546  * @dev: device
7547  * @upper_dev: new upper device
7548  * @extack: netlink extended ack
7549  *
7550  * Adds a link to device which is upper to this one. The caller must hold
7551  * the RTNL lock. On a failure a negative errno code is returned.
7552  * On success the reference counts are adjusted and the function
7553  * returns zero.
7554  */
7555 int netdev_upper_dev_link(struct net_device *dev,
7556                           struct net_device *upper_dev,
7557                           struct netlink_ext_ack *extack)
7558 {
7559         struct netdev_nested_priv priv = {
7560                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7561                 .data = NULL,
7562         };
7563
7564         return __netdev_upper_dev_link(dev, upper_dev, false,
7565                                        NULL, NULL, &priv, extack);
7566 }
7567 EXPORT_SYMBOL(netdev_upper_dev_link);
7568
7569 /**
7570  * netdev_master_upper_dev_link - Add a master link to the upper device
7571  * @dev: device
7572  * @upper_dev: new upper device
7573  * @upper_priv: upper device private
7574  * @upper_info: upper info to be passed down via notifier
7575  * @extack: netlink extended ack
7576  *
7577  * Adds a link to device which is upper to this one. In this case, only
7578  * one master upper device can be linked, although other non-master devices
7579  * might be linked as well. The caller must hold the RTNL lock.
7580  * On a failure a negative errno code is returned. On success the reference
7581  * counts are adjusted and the function returns zero.
7582  */
7583 int netdev_master_upper_dev_link(struct net_device *dev,
7584                                  struct net_device *upper_dev,
7585                                  void *upper_priv, void *upper_info,
7586                                  struct netlink_ext_ack *extack)
7587 {
7588         struct netdev_nested_priv priv = {
7589                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7590                 .data = NULL,
7591         };
7592
7593         return __netdev_upper_dev_link(dev, upper_dev, true,
7594                                        upper_priv, upper_info, &priv, extack);
7595 }
7596 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7597
7598 static void __netdev_upper_dev_unlink(struct net_device *dev,
7599                                       struct net_device *upper_dev,
7600                                       struct netdev_nested_priv *priv)
7601 {
7602         struct netdev_notifier_changeupper_info changeupper_info = {
7603                 .info = {
7604                         .dev = dev,
7605                 },
7606                 .upper_dev = upper_dev,
7607                 .linking = false,
7608         };
7609
7610         ASSERT_RTNL();
7611
7612         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7613
7614         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7615                                       &changeupper_info.info);
7616
7617         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7618
7619         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7620                                       &changeupper_info.info);
7621
7622         __netdev_update_upper_level(dev, NULL);
7623         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7624
7625         __netdev_update_lower_level(upper_dev, priv);
7626         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7627                                     priv);
7628 }
7629
7630 /**
7631  * netdev_upper_dev_unlink - Removes a link to upper device
7632  * @dev: device
7633  * @upper_dev: new upper device
7634  *
7635  * Removes a link to device which is upper to this one. The caller must hold
7636  * the RTNL lock.
7637  */
7638 void netdev_upper_dev_unlink(struct net_device *dev,
7639                              struct net_device *upper_dev)
7640 {
7641         struct netdev_nested_priv priv = {
7642                 .flags = NESTED_SYNC_TODO,
7643                 .data = NULL,
7644         };
7645
7646         __netdev_upper_dev_unlink(dev, upper_dev, &priv);
7647 }
7648 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7649
7650 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7651                                       struct net_device *lower_dev,
7652                                       bool val)
7653 {
7654         struct netdev_adjacent *adj;
7655
7656         adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7657         if (adj)
7658                 adj->ignore = val;
7659
7660         adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7661         if (adj)
7662                 adj->ignore = val;
7663 }
7664
7665 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7666                                         struct net_device *lower_dev)
7667 {
7668         __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7669 }
7670
7671 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7672                                        struct net_device *lower_dev)
7673 {
7674         __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7675 }
7676
7677 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7678                                    struct net_device *new_dev,
7679                                    struct net_device *dev,
7680                                    struct netlink_ext_ack *extack)
7681 {
7682         struct netdev_nested_priv priv = {
7683                 .flags = 0,
7684                 .data = NULL,
7685         };
7686         int err;
7687
7688         if (!new_dev)
7689                 return 0;
7690
7691         if (old_dev && new_dev != old_dev)
7692                 netdev_adjacent_dev_disable(dev, old_dev);
7693         err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7694                                       extack);
7695         if (err) {
7696                 if (old_dev && new_dev != old_dev)
7697                         netdev_adjacent_dev_enable(dev, old_dev);
7698                 return err;
7699         }
7700
7701         return 0;
7702 }
7703 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7704
7705 void netdev_adjacent_change_commit(struct net_device *old_dev,
7706                                    struct net_device *new_dev,
7707                                    struct net_device *dev)
7708 {
7709         struct netdev_nested_priv priv = {
7710                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7711                 .data = NULL,
7712         };
7713
7714         if (!new_dev || !old_dev)
7715                 return;
7716
7717         if (new_dev == old_dev)
7718                 return;
7719
7720         netdev_adjacent_dev_enable(dev, old_dev);
7721         __netdev_upper_dev_unlink(old_dev, dev, &priv);
7722 }
7723 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7724
7725 void netdev_adjacent_change_abort(struct net_device *old_dev,
7726                                   struct net_device *new_dev,
7727                                   struct net_device *dev)
7728 {
7729         struct netdev_nested_priv priv = {
7730                 .flags = 0,
7731                 .data = NULL,
7732         };
7733
7734         if (!new_dev)
7735                 return;
7736
7737         if (old_dev && new_dev != old_dev)
7738                 netdev_adjacent_dev_enable(dev, old_dev);
7739
7740         __netdev_upper_dev_unlink(new_dev, dev, &priv);
7741 }
7742 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7743
7744 /**
7745  * netdev_bonding_info_change - Dispatch event about slave change
7746  * @dev: device
7747  * @bonding_info: info to dispatch
7748  *
7749  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7750  * The caller must hold the RTNL lock.
7751  */
7752 void netdev_bonding_info_change(struct net_device *dev,
7753                                 struct netdev_bonding_info *bonding_info)
7754 {
7755         struct netdev_notifier_bonding_info info = {
7756                 .info.dev = dev,
7757         };
7758
7759         memcpy(&info.bonding_info, bonding_info,
7760                sizeof(struct netdev_bonding_info));
7761         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7762                                       &info.info);
7763 }
7764 EXPORT_SYMBOL(netdev_bonding_info_change);
7765
7766 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
7767                                            struct netlink_ext_ack *extack)
7768 {
7769         struct netdev_notifier_offload_xstats_info info = {
7770                 .info.dev = dev,
7771                 .info.extack = extack,
7772                 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7773         };
7774         int err;
7775         int rc;
7776
7777         dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
7778                                          GFP_KERNEL);
7779         if (!dev->offload_xstats_l3)
7780                 return -ENOMEM;
7781
7782         rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
7783                                                   NETDEV_OFFLOAD_XSTATS_DISABLE,
7784                                                   &info.info);
7785         err = notifier_to_errno(rc);
7786         if (err)
7787                 goto free_stats;
7788
7789         return 0;
7790
7791 free_stats:
7792         kfree(dev->offload_xstats_l3);
7793         dev->offload_xstats_l3 = NULL;
7794         return err;
7795 }
7796
7797 int netdev_offload_xstats_enable(struct net_device *dev,
7798                                  enum netdev_offload_xstats_type type,
7799                                  struct netlink_ext_ack *extack)
7800 {
7801         ASSERT_RTNL();
7802
7803         if (netdev_offload_xstats_enabled(dev, type))
7804                 return -EALREADY;
7805
7806         switch (type) {
7807         case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7808                 return netdev_offload_xstats_enable_l3(dev, extack);
7809         }
7810
7811         WARN_ON(1);
7812         return -EINVAL;
7813 }
7814 EXPORT_SYMBOL(netdev_offload_xstats_enable);
7815
7816 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
7817 {
7818         struct netdev_notifier_offload_xstats_info info = {
7819                 .info.dev = dev,
7820                 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7821         };
7822
7823         call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
7824                                       &info.info);
7825         kfree(dev->offload_xstats_l3);
7826         dev->offload_xstats_l3 = NULL;
7827 }
7828
7829 int netdev_offload_xstats_disable(struct net_device *dev,
7830                                   enum netdev_offload_xstats_type type)
7831 {
7832         ASSERT_RTNL();
7833
7834         if (!netdev_offload_xstats_enabled(dev, type))
7835                 return -EALREADY;
7836
7837         switch (type) {
7838         case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7839                 netdev_offload_xstats_disable_l3(dev);
7840                 return 0;
7841         }
7842
7843         WARN_ON(1);
7844         return -EINVAL;
7845 }
7846 EXPORT_SYMBOL(netdev_offload_xstats_disable);
7847
7848 static void netdev_offload_xstats_disable_all(struct net_device *dev)
7849 {
7850         netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
7851 }
7852
7853 static struct rtnl_hw_stats64 *
7854 netdev_offload_xstats_get_ptr(const struct net_device *dev,
7855                               enum netdev_offload_xstats_type type)
7856 {
7857         switch (type) {
7858         case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7859                 return dev->offload_xstats_l3;
7860         }
7861
7862         WARN_ON(1);
7863         return NULL;
7864 }
7865
7866 bool netdev_offload_xstats_enabled(const struct net_device *dev,
7867                                    enum netdev_offload_xstats_type type)
7868 {
7869         ASSERT_RTNL();
7870
7871         return netdev_offload_xstats_get_ptr(dev, type);
7872 }
7873 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
7874
7875 struct netdev_notifier_offload_xstats_ru {
7876         bool used;
7877 };
7878
7879 struct netdev_notifier_offload_xstats_rd {
7880         struct rtnl_hw_stats64 stats;
7881         bool used;
7882 };
7883
7884 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
7885                                   const struct rtnl_hw_stats64 *src)
7886 {
7887         dest->rx_packets          += src->rx_packets;
7888         dest->tx_packets          += src->tx_packets;
7889         dest->rx_bytes            += src->rx_bytes;
7890         dest->tx_bytes            += src->tx_bytes;
7891         dest->rx_errors           += src->rx_errors;
7892         dest->tx_errors           += src->tx_errors;
7893         dest->rx_dropped          += src->rx_dropped;
7894         dest->tx_dropped          += src->tx_dropped;
7895         dest->multicast           += src->multicast;
7896 }
7897
7898 static int netdev_offload_xstats_get_used(struct net_device *dev,
7899                                           enum netdev_offload_xstats_type type,
7900                                           bool *p_used,
7901                                           struct netlink_ext_ack *extack)
7902 {
7903         struct netdev_notifier_offload_xstats_ru report_used = {};
7904         struct netdev_notifier_offload_xstats_info info = {
7905                 .info.dev = dev,
7906                 .info.extack = extack,
7907                 .type = type,
7908                 .report_used = &report_used,
7909         };
7910         int rc;
7911
7912         WARN_ON(!netdev_offload_xstats_enabled(dev, type));
7913         rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
7914                                            &info.info);
7915         *p_used = report_used.used;
7916         return notifier_to_errno(rc);
7917 }
7918
7919 static int netdev_offload_xstats_get_stats(struct net_device *dev,
7920                                            enum netdev_offload_xstats_type type,
7921                                            struct rtnl_hw_stats64 *p_stats,
7922                                            bool *p_used,
7923                                            struct netlink_ext_ack *extack)
7924 {
7925         struct netdev_notifier_offload_xstats_rd report_delta = {};
7926         struct netdev_notifier_offload_xstats_info info = {
7927                 .info.dev = dev,
7928                 .info.extack = extack,
7929                 .type = type,
7930                 .report_delta = &report_delta,
7931         };
7932         struct rtnl_hw_stats64 *stats;
7933         int rc;
7934
7935         stats = netdev_offload_xstats_get_ptr(dev, type);
7936         if (WARN_ON(!stats))
7937                 return -EINVAL;
7938
7939         rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
7940                                            &info.info);
7941
7942         /* Cache whatever we got, even if there was an error, otherwise the
7943          * successful stats retrievals would get lost.
7944          */
7945         netdev_hw_stats64_add(stats, &report_delta.stats);
7946
7947         if (p_stats)
7948                 *p_stats = *stats;
7949         *p_used = report_delta.used;
7950
7951         return notifier_to_errno(rc);
7952 }
7953
7954 int netdev_offload_xstats_get(struct net_device *dev,
7955                               enum netdev_offload_xstats_type type,
7956                               struct rtnl_hw_stats64 *p_stats, bool *p_used,
7957                               struct netlink_ext_ack *extack)
7958 {
7959         ASSERT_RTNL();
7960
7961         if (p_stats)
7962                 return netdev_offload_xstats_get_stats(dev, type, p_stats,
7963                                                        p_used, extack);
7964         else
7965                 return netdev_offload_xstats_get_used(dev, type, p_used,
7966                                                       extack);
7967 }
7968 EXPORT_SYMBOL(netdev_offload_xstats_get);
7969
7970 void
7971 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
7972                                    const struct rtnl_hw_stats64 *stats)
7973 {
7974         report_delta->used = true;
7975         netdev_hw_stats64_add(&report_delta->stats, stats);
7976 }
7977 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
7978
7979 void
7980 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
7981 {
7982         report_used->used = true;
7983 }
7984 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
7985
7986 void netdev_offload_xstats_push_delta(struct net_device *dev,
7987                                       enum netdev_offload_xstats_type type,
7988                                       const struct rtnl_hw_stats64 *p_stats)
7989 {
7990         struct rtnl_hw_stats64 *stats;
7991
7992         ASSERT_RTNL();
7993
7994         stats = netdev_offload_xstats_get_ptr(dev, type);
7995         if (WARN_ON(!stats))
7996                 return;
7997
7998         netdev_hw_stats64_add(stats, p_stats);
7999 }
8000 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8001
8002 /**
8003  * netdev_get_xmit_slave - Get the xmit slave of master device
8004  * @dev: device
8005  * @skb: The packet
8006  * @all_slaves: assume all the slaves are active
8007  *
8008  * The reference counters are not incremented so the caller must be
8009  * careful with locks. The caller must hold RCU lock.
8010  * %NULL is returned if no slave is found.
8011  */
8012
8013 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8014                                          struct sk_buff *skb,
8015                                          bool all_slaves)
8016 {
8017         const struct net_device_ops *ops = dev->netdev_ops;
8018
8019         if (!ops->ndo_get_xmit_slave)
8020                 return NULL;
8021         return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8022 }
8023 EXPORT_SYMBOL(netdev_get_xmit_slave);
8024
8025 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8026                                                   struct sock *sk)
8027 {
8028         const struct net_device_ops *ops = dev->netdev_ops;
8029
8030         if (!ops->ndo_sk_get_lower_dev)
8031                 return NULL;
8032         return ops->ndo_sk_get_lower_dev(dev, sk);
8033 }
8034
8035 /**
8036  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8037  * @dev: device
8038  * @sk: the socket
8039  *
8040  * %NULL is returned if no lower device is found.
8041  */
8042
8043 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8044                                             struct sock *sk)
8045 {
8046         struct net_device *lower;
8047
8048         lower = netdev_sk_get_lower_dev(dev, sk);
8049         while (lower) {
8050                 dev = lower;
8051                 lower = netdev_sk_get_lower_dev(dev, sk);
8052         }
8053
8054         return dev;
8055 }
8056 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8057
8058 static void netdev_adjacent_add_links(struct net_device *dev)
8059 {
8060         struct netdev_adjacent *iter;
8061
8062         struct net *net = dev_net(dev);
8063
8064         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8065                 if (!net_eq(net, dev_net(iter->dev)))
8066                         continue;
8067                 netdev_adjacent_sysfs_add(iter->dev, dev,
8068                                           &iter->dev->adj_list.lower);
8069                 netdev_adjacent_sysfs_add(dev, iter->dev,
8070                                           &dev->adj_list.upper);
8071         }
8072
8073         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8074                 if (!net_eq(net, dev_net(iter->dev)))
8075                         continue;
8076                 netdev_adjacent_sysfs_add(iter->dev, dev,
8077                                           &iter->dev->adj_list.upper);
8078                 netdev_adjacent_sysfs_add(dev, iter->dev,
8079                                           &dev->adj_list.lower);
8080         }
8081 }
8082
8083 static void netdev_adjacent_del_links(struct net_device *dev)
8084 {
8085         struct netdev_adjacent *iter;
8086
8087         struct net *net = dev_net(dev);
8088
8089         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8090                 if (!net_eq(net, dev_net(iter->dev)))
8091                         continue;
8092                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8093                                           &iter->dev->adj_list.lower);
8094                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8095                                           &dev->adj_list.upper);
8096         }
8097
8098         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8099                 if (!net_eq(net, dev_net(iter->dev)))
8100                         continue;
8101                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8102                                           &iter->dev->adj_list.upper);
8103                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8104                                           &dev->adj_list.lower);
8105         }
8106 }
8107
8108 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8109 {
8110         struct netdev_adjacent *iter;
8111
8112         struct net *net = dev_net(dev);
8113
8114         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8115                 if (!net_eq(net, dev_net(iter->dev)))
8116                         continue;
8117                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8118                                           &iter->dev->adj_list.lower);
8119                 netdev_adjacent_sysfs_add(iter->dev, dev,
8120                                           &iter->dev->adj_list.lower);
8121         }
8122
8123         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8124                 if (!net_eq(net, dev_net(iter->dev)))
8125                         continue;
8126                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8127                                           &iter->dev->adj_list.upper);
8128                 netdev_adjacent_sysfs_add(iter->dev, dev,
8129                                           &iter->dev->adj_list.upper);
8130         }
8131 }
8132
8133 void *netdev_lower_dev_get_private(struct net_device *dev,
8134                                    struct net_device *lower_dev)
8135 {
8136         struct netdev_adjacent *lower;
8137
8138         if (!lower_dev)
8139                 return NULL;
8140         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8141         if (!lower)
8142                 return NULL;
8143
8144         return lower->private;
8145 }
8146 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8147
8148
8149 /**
8150  * netdev_lower_state_changed - Dispatch event about lower device state change
8151  * @lower_dev: device
8152  * @lower_state_info: state to dispatch
8153  *
8154  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8155  * The caller must hold the RTNL lock.
8156  */
8157 void netdev_lower_state_changed(struct net_device *lower_dev,
8158                                 void *lower_state_info)
8159 {
8160         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8161                 .info.dev = lower_dev,
8162         };
8163
8164         ASSERT_RTNL();
8165         changelowerstate_info.lower_state_info = lower_state_info;
8166         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8167                                       &changelowerstate_info.info);
8168 }
8169 EXPORT_SYMBOL(netdev_lower_state_changed);
8170
8171 static void dev_change_rx_flags(struct net_device *dev, int flags)
8172 {
8173         const struct net_device_ops *ops = dev->netdev_ops;
8174
8175         if (ops->ndo_change_rx_flags)
8176                 ops->ndo_change_rx_flags(dev, flags);
8177 }
8178
8179 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8180 {
8181         unsigned int old_flags = dev->flags;
8182         kuid_t uid;
8183         kgid_t gid;
8184
8185         ASSERT_RTNL();
8186
8187         dev->flags |= IFF_PROMISC;
8188         dev->promiscuity += inc;
8189         if (dev->promiscuity == 0) {
8190                 /*
8191                  * Avoid overflow.
8192                  * If inc causes overflow, untouch promisc and return error.
8193                  */
8194                 if (inc < 0)
8195                         dev->flags &= ~IFF_PROMISC;
8196                 else {
8197                         dev->promiscuity -= inc;
8198                         netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8199                         return -EOVERFLOW;
8200                 }
8201         }
8202         if (dev->flags != old_flags) {
8203                 pr_info("device %s %s promiscuous mode\n",
8204                         dev->name,
8205                         dev->flags & IFF_PROMISC ? "entered" : "left");
8206                 if (audit_enabled) {
8207                         current_uid_gid(&uid, &gid);
8208                         audit_log(audit_context(), GFP_ATOMIC,
8209                                   AUDIT_ANOM_PROMISCUOUS,
8210                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8211                                   dev->name, (dev->flags & IFF_PROMISC),
8212                                   (old_flags & IFF_PROMISC),
8213                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
8214                                   from_kuid(&init_user_ns, uid),
8215                                   from_kgid(&init_user_ns, gid),
8216                                   audit_get_sessionid(current));
8217                 }
8218
8219                 dev_change_rx_flags(dev, IFF_PROMISC);
8220         }
8221         if (notify)
8222                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
8223         return 0;
8224 }
8225
8226 /**
8227  *      dev_set_promiscuity     - update promiscuity count on a device
8228  *      @dev: device
8229  *      @inc: modifier
8230  *
8231  *      Add or remove promiscuity from a device. While the count in the device
8232  *      remains above zero the interface remains promiscuous. Once it hits zero
8233  *      the device reverts back to normal filtering operation. A negative inc
8234  *      value is used to drop promiscuity on the device.
8235  *      Return 0 if successful or a negative errno code on error.
8236  */
8237 int dev_set_promiscuity(struct net_device *dev, int inc)
8238 {
8239         unsigned int old_flags = dev->flags;
8240         int err;
8241
8242         err = __dev_set_promiscuity(dev, inc, true);
8243         if (err < 0)
8244                 return err;
8245         if (dev->flags != old_flags)
8246                 dev_set_rx_mode(dev);
8247         return err;
8248 }
8249 EXPORT_SYMBOL(dev_set_promiscuity);
8250
8251 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8252 {
8253         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8254
8255         ASSERT_RTNL();
8256
8257         dev->flags |= IFF_ALLMULTI;
8258         dev->allmulti += inc;
8259         if (dev->allmulti == 0) {
8260                 /*
8261                  * Avoid overflow.
8262                  * If inc causes overflow, untouch allmulti and return error.
8263                  */
8264                 if (inc < 0)
8265                         dev->flags &= ~IFF_ALLMULTI;
8266                 else {
8267                         dev->allmulti -= inc;
8268                         netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8269                         return -EOVERFLOW;
8270                 }
8271         }
8272         if (dev->flags ^ old_flags) {
8273                 dev_change_rx_flags(dev, IFF_ALLMULTI);
8274                 dev_set_rx_mode(dev);
8275                 if (notify)
8276                         __dev_notify_flags(dev, old_flags,
8277                                            dev->gflags ^ old_gflags);
8278         }
8279         return 0;
8280 }
8281
8282 /**
8283  *      dev_set_allmulti        - update allmulti count on a device
8284  *      @dev: device
8285  *      @inc: modifier
8286  *
8287  *      Add or remove reception of all multicast frames to a device. While the
8288  *      count in the device remains above zero the interface remains listening
8289  *      to all interfaces. Once it hits zero the device reverts back to normal
8290  *      filtering operation. A negative @inc value is used to drop the counter
8291  *      when releasing a resource needing all multicasts.
8292  *      Return 0 if successful or a negative errno code on error.
8293  */
8294
8295 int dev_set_allmulti(struct net_device *dev, int inc)
8296 {
8297         return __dev_set_allmulti(dev, inc, true);
8298 }
8299 EXPORT_SYMBOL(dev_set_allmulti);
8300
8301 /*
8302  *      Upload unicast and multicast address lists to device and
8303  *      configure RX filtering. When the device doesn't support unicast
8304  *      filtering it is put in promiscuous mode while unicast addresses
8305  *      are present.
8306  */
8307 void __dev_set_rx_mode(struct net_device *dev)
8308 {
8309         const struct net_device_ops *ops = dev->netdev_ops;
8310
8311         /* dev_open will call this function so the list will stay sane. */
8312         if (!(dev->flags&IFF_UP))
8313                 return;
8314
8315         if (!netif_device_present(dev))
8316                 return;
8317
8318         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8319                 /* Unicast addresses changes may only happen under the rtnl,
8320                  * therefore calling __dev_set_promiscuity here is safe.
8321                  */
8322                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8323                         __dev_set_promiscuity(dev, 1, false);
8324                         dev->uc_promisc = true;
8325                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8326                         __dev_set_promiscuity(dev, -1, false);
8327                         dev->uc_promisc = false;
8328                 }
8329         }
8330
8331         if (ops->ndo_set_rx_mode)
8332                 ops->ndo_set_rx_mode(dev);
8333 }
8334
8335 void dev_set_rx_mode(struct net_device *dev)
8336 {
8337         netif_addr_lock_bh(dev);
8338         __dev_set_rx_mode(dev);
8339         netif_addr_unlock_bh(dev);
8340 }
8341
8342 /**
8343  *      dev_get_flags - get flags reported to userspace
8344  *      @dev: device
8345  *
8346  *      Get the combination of flag bits exported through APIs to userspace.
8347  */
8348 unsigned int dev_get_flags(const struct net_device *dev)
8349 {
8350         unsigned int flags;
8351
8352         flags = (dev->flags & ~(IFF_PROMISC |
8353                                 IFF_ALLMULTI |
8354                                 IFF_RUNNING |
8355                                 IFF_LOWER_UP |
8356                                 IFF_DORMANT)) |
8357                 (dev->gflags & (IFF_PROMISC |
8358                                 IFF_ALLMULTI));
8359
8360         if (netif_running(dev)) {
8361                 if (netif_oper_up(dev))
8362                         flags |= IFF_RUNNING;
8363                 if (netif_carrier_ok(dev))
8364                         flags |= IFF_LOWER_UP;
8365                 if (netif_dormant(dev))
8366                         flags |= IFF_DORMANT;
8367         }
8368
8369         return flags;
8370 }
8371 EXPORT_SYMBOL(dev_get_flags);
8372
8373 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8374                        struct netlink_ext_ack *extack)
8375 {
8376         unsigned int old_flags = dev->flags;
8377         int ret;
8378
8379         ASSERT_RTNL();
8380
8381         /*
8382          *      Set the flags on our device.
8383          */
8384
8385         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8386                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8387                                IFF_AUTOMEDIA)) |
8388                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8389                                     IFF_ALLMULTI));
8390
8391         /*
8392          *      Load in the correct multicast list now the flags have changed.
8393          */
8394
8395         if ((old_flags ^ flags) & IFF_MULTICAST)
8396                 dev_change_rx_flags(dev, IFF_MULTICAST);
8397
8398         dev_set_rx_mode(dev);
8399
8400         /*
8401          *      Have we downed the interface. We handle IFF_UP ourselves
8402          *      according to user attempts to set it, rather than blindly
8403          *      setting it.
8404          */
8405
8406         ret = 0;
8407         if ((old_flags ^ flags) & IFF_UP) {
8408                 if (old_flags & IFF_UP)
8409                         __dev_close(dev);
8410                 else
8411                         ret = __dev_open(dev, extack);
8412         }
8413
8414         if ((flags ^ dev->gflags) & IFF_PROMISC) {
8415                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8416                 unsigned int old_flags = dev->flags;
8417
8418                 dev->gflags ^= IFF_PROMISC;
8419
8420                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8421                         if (dev->flags != old_flags)
8422                                 dev_set_rx_mode(dev);
8423         }
8424
8425         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8426          * is important. Some (broken) drivers set IFF_PROMISC, when
8427          * IFF_ALLMULTI is requested not asking us and not reporting.
8428          */
8429         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8430                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8431
8432                 dev->gflags ^= IFF_ALLMULTI;
8433                 __dev_set_allmulti(dev, inc, false);
8434         }
8435
8436         return ret;
8437 }
8438
8439 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8440                         unsigned int gchanges)
8441 {
8442         unsigned int changes = dev->flags ^ old_flags;
8443
8444         if (gchanges)
8445                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8446
8447         if (changes & IFF_UP) {
8448                 if (dev->flags & IFF_UP)
8449                         call_netdevice_notifiers(NETDEV_UP, dev);
8450                 else
8451                         call_netdevice_notifiers(NETDEV_DOWN, dev);
8452         }
8453
8454         if (dev->flags & IFF_UP &&
8455             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8456                 struct netdev_notifier_change_info change_info = {
8457                         .info = {
8458                                 .dev = dev,
8459                         },
8460                         .flags_changed = changes,
8461                 };
8462
8463                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8464         }
8465 }
8466
8467 /**
8468  *      dev_change_flags - change device settings
8469  *      @dev: device
8470  *      @flags: device state flags
8471  *      @extack: netlink extended ack
8472  *
8473  *      Change settings on device based state flags. The flags are
8474  *      in the userspace exported format.
8475  */
8476 int dev_change_flags(struct net_device *dev, unsigned int flags,
8477                      struct netlink_ext_ack *extack)
8478 {
8479         int ret;
8480         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8481
8482         ret = __dev_change_flags(dev, flags, extack);
8483         if (ret < 0)
8484                 return ret;
8485
8486         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8487         __dev_notify_flags(dev, old_flags, changes);
8488         return ret;
8489 }
8490 EXPORT_SYMBOL(dev_change_flags);
8491
8492 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8493 {
8494         const struct net_device_ops *ops = dev->netdev_ops;
8495
8496         if (ops->ndo_change_mtu)
8497                 return ops->ndo_change_mtu(dev, new_mtu);
8498
8499         /* Pairs with all the lockless reads of dev->mtu in the stack */
8500         WRITE_ONCE(dev->mtu, new_mtu);
8501         return 0;
8502 }
8503 EXPORT_SYMBOL(__dev_set_mtu);
8504
8505 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8506                      struct netlink_ext_ack *extack)
8507 {
8508         /* MTU must be positive, and in range */
8509         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8510                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8511                 return -EINVAL;
8512         }
8513
8514         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8515                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8516                 return -EINVAL;
8517         }
8518         return 0;
8519 }
8520
8521 /**
8522  *      dev_set_mtu_ext - Change maximum transfer unit
8523  *      @dev: device
8524  *      @new_mtu: new transfer unit
8525  *      @extack: netlink extended ack
8526  *
8527  *      Change the maximum transfer size of the network device.
8528  */
8529 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8530                     struct netlink_ext_ack *extack)
8531 {
8532         int err, orig_mtu;
8533
8534         if (new_mtu == dev->mtu)
8535                 return 0;
8536
8537         err = dev_validate_mtu(dev, new_mtu, extack);
8538         if (err)
8539                 return err;
8540
8541         if (!netif_device_present(dev))
8542                 return -ENODEV;
8543
8544         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8545         err = notifier_to_errno(err);
8546         if (err)
8547                 return err;
8548
8549         orig_mtu = dev->mtu;
8550         err = __dev_set_mtu(dev, new_mtu);
8551
8552         if (!err) {
8553                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8554                                                    orig_mtu);
8555                 err = notifier_to_errno(err);
8556                 if (err) {
8557                         /* setting mtu back and notifying everyone again,
8558                          * so that they have a chance to revert changes.
8559                          */
8560                         __dev_set_mtu(dev, orig_mtu);
8561                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8562                                                      new_mtu);
8563                 }
8564         }
8565         return err;
8566 }
8567
8568 int dev_set_mtu(struct net_device *dev, int new_mtu)
8569 {
8570         struct netlink_ext_ack extack;
8571         int err;
8572
8573         memset(&extack, 0, sizeof(extack));
8574         err = dev_set_mtu_ext(dev, new_mtu, &extack);
8575         if (err && extack._msg)
8576                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8577         return err;
8578 }
8579 EXPORT_SYMBOL(dev_set_mtu);
8580
8581 /**
8582  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
8583  *      @dev: device
8584  *      @new_len: new tx queue length
8585  */
8586 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8587 {
8588         unsigned int orig_len = dev->tx_queue_len;
8589         int res;
8590
8591         if (new_len != (unsigned int)new_len)
8592                 return -ERANGE;
8593
8594         if (new_len != orig_len) {
8595                 dev->tx_queue_len = new_len;
8596                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8597                 res = notifier_to_errno(res);
8598                 if (res)
8599                         goto err_rollback;
8600                 res = dev_qdisc_change_tx_queue_len(dev);
8601                 if (res)
8602                         goto err_rollback;
8603         }
8604
8605         return 0;
8606
8607 err_rollback:
8608         netdev_err(dev, "refused to change device tx_queue_len\n");
8609         dev->tx_queue_len = orig_len;
8610         return res;
8611 }
8612
8613 /**
8614  *      dev_set_group - Change group this device belongs to
8615  *      @dev: device
8616  *      @new_group: group this device should belong to
8617  */
8618 void dev_set_group(struct net_device *dev, int new_group)
8619 {
8620         dev->group = new_group;
8621 }
8622 EXPORT_SYMBOL(dev_set_group);
8623
8624 /**
8625  *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8626  *      @dev: device
8627  *      @addr: new address
8628  *      @extack: netlink extended ack
8629  */
8630 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8631                               struct netlink_ext_ack *extack)
8632 {
8633         struct netdev_notifier_pre_changeaddr_info info = {
8634                 .info.dev = dev,
8635                 .info.extack = extack,
8636                 .dev_addr = addr,
8637         };
8638         int rc;
8639
8640         rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8641         return notifier_to_errno(rc);
8642 }
8643 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8644
8645 /**
8646  *      dev_set_mac_address - Change Media Access Control Address
8647  *      @dev: device
8648  *      @sa: new address
8649  *      @extack: netlink extended ack
8650  *
8651  *      Change the hardware (MAC) address of the device
8652  */
8653 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8654                         struct netlink_ext_ack *extack)
8655 {
8656         const struct net_device_ops *ops = dev->netdev_ops;
8657         int err;
8658
8659         if (!ops->ndo_set_mac_address)
8660                 return -EOPNOTSUPP;
8661         if (sa->sa_family != dev->type)
8662                 return -EINVAL;
8663         if (!netif_device_present(dev))
8664                 return -ENODEV;
8665         err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8666         if (err)
8667                 return err;
8668         err = ops->ndo_set_mac_address(dev, sa);
8669         if (err)
8670                 return err;
8671         dev->addr_assign_type = NET_ADDR_SET;
8672         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8673         add_device_randomness(dev->dev_addr, dev->addr_len);
8674         return 0;
8675 }
8676 EXPORT_SYMBOL(dev_set_mac_address);
8677
8678 static DECLARE_RWSEM(dev_addr_sem);
8679
8680 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8681                              struct netlink_ext_ack *extack)
8682 {
8683         int ret;
8684
8685         down_write(&dev_addr_sem);
8686         ret = dev_set_mac_address(dev, sa, extack);
8687         up_write(&dev_addr_sem);
8688         return ret;
8689 }
8690 EXPORT_SYMBOL(dev_set_mac_address_user);
8691
8692 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8693 {
8694         size_t size = sizeof(sa->sa_data);
8695         struct net_device *dev;
8696         int ret = 0;
8697
8698         down_read(&dev_addr_sem);
8699         rcu_read_lock();
8700
8701         dev = dev_get_by_name_rcu(net, dev_name);
8702         if (!dev) {
8703                 ret = -ENODEV;
8704                 goto unlock;
8705         }
8706         if (!dev->addr_len)
8707                 memset(sa->sa_data, 0, size);
8708         else
8709                 memcpy(sa->sa_data, dev->dev_addr,
8710                        min_t(size_t, size, dev->addr_len));
8711         sa->sa_family = dev->type;
8712
8713 unlock:
8714         rcu_read_unlock();
8715         up_read(&dev_addr_sem);
8716         return ret;
8717 }
8718 EXPORT_SYMBOL(dev_get_mac_address);
8719
8720 /**
8721  *      dev_change_carrier - Change device carrier
8722  *      @dev: device
8723  *      @new_carrier: new value
8724  *
8725  *      Change device carrier
8726  */
8727 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8728 {
8729         const struct net_device_ops *ops = dev->netdev_ops;
8730
8731         if (!ops->ndo_change_carrier)
8732                 return -EOPNOTSUPP;
8733         if (!netif_device_present(dev))
8734                 return -ENODEV;
8735         return ops->ndo_change_carrier(dev, new_carrier);
8736 }
8737 EXPORT_SYMBOL(dev_change_carrier);
8738
8739 /**
8740  *      dev_get_phys_port_id - Get device physical port ID
8741  *      @dev: device
8742  *      @ppid: port ID
8743  *
8744  *      Get device physical port ID
8745  */
8746 int dev_get_phys_port_id(struct net_device *dev,
8747                          struct netdev_phys_item_id *ppid)
8748 {
8749         const struct net_device_ops *ops = dev->netdev_ops;
8750
8751         if (!ops->ndo_get_phys_port_id)
8752                 return -EOPNOTSUPP;
8753         return ops->ndo_get_phys_port_id(dev, ppid);
8754 }
8755 EXPORT_SYMBOL(dev_get_phys_port_id);
8756
8757 /**
8758  *      dev_get_phys_port_name - Get device physical port name
8759  *      @dev: device
8760  *      @name: port name
8761  *      @len: limit of bytes to copy to name
8762  *
8763  *      Get device physical port name
8764  */
8765 int dev_get_phys_port_name(struct net_device *dev,
8766                            char *name, size_t len)
8767 {
8768         const struct net_device_ops *ops = dev->netdev_ops;
8769         int err;
8770
8771         if (ops->ndo_get_phys_port_name) {
8772                 err = ops->ndo_get_phys_port_name(dev, name, len);
8773                 if (err != -EOPNOTSUPP)
8774                         return err;
8775         }
8776         return devlink_compat_phys_port_name_get(dev, name, len);
8777 }
8778 EXPORT_SYMBOL(dev_get_phys_port_name);
8779
8780 /**
8781  *      dev_get_port_parent_id - Get the device's port parent identifier
8782  *      @dev: network device
8783  *      @ppid: pointer to a storage for the port's parent identifier
8784  *      @recurse: allow/disallow recursion to lower devices
8785  *
8786  *      Get the devices's port parent identifier
8787  */
8788 int dev_get_port_parent_id(struct net_device *dev,
8789                            struct netdev_phys_item_id *ppid,
8790                            bool recurse)
8791 {
8792         const struct net_device_ops *ops = dev->netdev_ops;
8793         struct netdev_phys_item_id first = { };
8794         struct net_device *lower_dev;
8795         struct list_head *iter;
8796         int err;
8797
8798         if (ops->ndo_get_port_parent_id) {
8799                 err = ops->ndo_get_port_parent_id(dev, ppid);
8800                 if (err != -EOPNOTSUPP)
8801                         return err;
8802         }
8803
8804         err = devlink_compat_switch_id_get(dev, ppid);
8805         if (!recurse || err != -EOPNOTSUPP)
8806                 return err;
8807
8808         netdev_for_each_lower_dev(dev, lower_dev, iter) {
8809                 err = dev_get_port_parent_id(lower_dev, ppid, true);
8810                 if (err)
8811                         break;
8812                 if (!first.id_len)
8813                         first = *ppid;
8814                 else if (memcmp(&first, ppid, sizeof(*ppid)))
8815                         return -EOPNOTSUPP;
8816         }
8817
8818         return err;
8819 }
8820 EXPORT_SYMBOL(dev_get_port_parent_id);
8821
8822 /**
8823  *      netdev_port_same_parent_id - Indicate if two network devices have
8824  *      the same port parent identifier
8825  *      @a: first network device
8826  *      @b: second network device
8827  */
8828 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8829 {
8830         struct netdev_phys_item_id a_id = { };
8831         struct netdev_phys_item_id b_id = { };
8832
8833         if (dev_get_port_parent_id(a, &a_id, true) ||
8834             dev_get_port_parent_id(b, &b_id, true))
8835                 return false;
8836
8837         return netdev_phys_item_id_same(&a_id, &b_id);
8838 }
8839 EXPORT_SYMBOL(netdev_port_same_parent_id);
8840
8841 /**
8842  *      dev_change_proto_down - set carrier according to proto_down.
8843  *
8844  *      @dev: device
8845  *      @proto_down: new value
8846  */
8847 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8848 {
8849         if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
8850                 return -EOPNOTSUPP;
8851         if (!netif_device_present(dev))
8852                 return -ENODEV;
8853         if (proto_down)
8854                 netif_carrier_off(dev);
8855         else
8856                 netif_carrier_on(dev);
8857         dev->proto_down = proto_down;
8858         return 0;
8859 }
8860 EXPORT_SYMBOL(dev_change_proto_down);
8861
8862 /**
8863  *      dev_change_proto_down_reason - proto down reason
8864  *
8865  *      @dev: device
8866  *      @mask: proto down mask
8867  *      @value: proto down value
8868  */
8869 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
8870                                   u32 value)
8871 {
8872         int b;
8873
8874         if (!mask) {
8875                 dev->proto_down_reason = value;
8876         } else {
8877                 for_each_set_bit(b, &mask, 32) {
8878                         if (value & (1 << b))
8879                                 dev->proto_down_reason |= BIT(b);
8880                         else
8881                                 dev->proto_down_reason &= ~BIT(b);
8882                 }
8883         }
8884 }
8885 EXPORT_SYMBOL(dev_change_proto_down_reason);
8886
8887 struct bpf_xdp_link {
8888         struct bpf_link link;
8889         struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
8890         int flags;
8891 };
8892
8893 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
8894 {
8895         if (flags & XDP_FLAGS_HW_MODE)
8896                 return XDP_MODE_HW;
8897         if (flags & XDP_FLAGS_DRV_MODE)
8898                 return XDP_MODE_DRV;
8899         if (flags & XDP_FLAGS_SKB_MODE)
8900                 return XDP_MODE_SKB;
8901         return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
8902 }
8903
8904 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
8905 {
8906         switch (mode) {
8907         case XDP_MODE_SKB:
8908                 return generic_xdp_install;
8909         case XDP_MODE_DRV:
8910         case XDP_MODE_HW:
8911                 return dev->netdev_ops->ndo_bpf;
8912         default:
8913                 return NULL;
8914         }
8915 }
8916
8917 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
8918                                          enum bpf_xdp_mode mode)
8919 {
8920         return dev->xdp_state[mode].link;
8921 }
8922
8923 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
8924                                      enum bpf_xdp_mode mode)
8925 {
8926         struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
8927
8928         if (link)
8929                 return link->link.prog;
8930         return dev->xdp_state[mode].prog;
8931 }
8932
8933 u8 dev_xdp_prog_count(struct net_device *dev)
8934 {
8935         u8 count = 0;
8936         int i;
8937
8938         for (i = 0; i < __MAX_XDP_MODE; i++)
8939                 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
8940                         count++;
8941         return count;
8942 }
8943 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
8944
8945 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
8946 {
8947         struct bpf_prog *prog = dev_xdp_prog(dev, mode);
8948
8949         return prog ? prog->aux->id : 0;
8950 }
8951
8952 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
8953                              struct bpf_xdp_link *link)
8954 {
8955         dev->xdp_state[mode].link = link;
8956         dev->xdp_state[mode].prog = NULL;
8957 }
8958
8959 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
8960                              struct bpf_prog *prog)
8961 {
8962         dev->xdp_state[mode].link = NULL;
8963         dev->xdp_state[mode].prog = prog;
8964 }
8965
8966 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
8967                            bpf_op_t bpf_op, struct netlink_ext_ack *extack,
8968                            u32 flags, struct bpf_prog *prog)
8969 {
8970         struct netdev_bpf xdp;
8971         int err;
8972
8973         memset(&xdp, 0, sizeof(xdp));
8974         xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
8975         xdp.extack = extack;
8976         xdp.flags = flags;
8977         xdp.prog = prog;
8978
8979         /* Drivers assume refcnt is already incremented (i.e, prog pointer is
8980          * "moved" into driver), so they don't increment it on their own, but
8981          * they do decrement refcnt when program is detached or replaced.
8982          * Given net_device also owns link/prog, we need to bump refcnt here
8983          * to prevent drivers from underflowing it.
8984          */
8985         if (prog)
8986                 bpf_prog_inc(prog);
8987         err = bpf_op(dev, &xdp);
8988         if (err) {
8989                 if (prog)
8990                         bpf_prog_put(prog);
8991                 return err;
8992         }
8993
8994         if (mode != XDP_MODE_HW)
8995                 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
8996
8997         return 0;
8998 }
8999
9000 static void dev_xdp_uninstall(struct net_device *dev)
9001 {
9002         struct bpf_xdp_link *link;
9003         struct bpf_prog *prog;
9004         enum bpf_xdp_mode mode;
9005         bpf_op_t bpf_op;
9006
9007         ASSERT_RTNL();
9008
9009         for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9010                 prog = dev_xdp_prog(dev, mode);
9011                 if (!prog)
9012                         continue;
9013
9014                 bpf_op = dev_xdp_bpf_op(dev, mode);
9015                 if (!bpf_op)
9016                         continue;
9017
9018                 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9019
9020                 /* auto-detach link from net device */
9021                 link = dev_xdp_link(dev, mode);
9022                 if (link)
9023                         link->dev = NULL;
9024                 else
9025                         bpf_prog_put(prog);
9026
9027                 dev_xdp_set_link(dev, mode, NULL);
9028         }
9029 }
9030
9031 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9032                           struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9033                           struct bpf_prog *old_prog, u32 flags)
9034 {
9035         unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9036         struct bpf_prog *cur_prog;
9037         struct net_device *upper;
9038         struct list_head *iter;
9039         enum bpf_xdp_mode mode;
9040         bpf_op_t bpf_op;
9041         int err;
9042
9043         ASSERT_RTNL();
9044
9045         /* either link or prog attachment, never both */
9046         if (link && (new_prog || old_prog))
9047                 return -EINVAL;
9048         /* link supports only XDP mode flags */
9049         if (link && (flags & ~XDP_FLAGS_MODES)) {
9050                 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9051                 return -EINVAL;
9052         }
9053         /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9054         if (num_modes > 1) {
9055                 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9056                 return -EINVAL;
9057         }
9058         /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9059         if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9060                 NL_SET_ERR_MSG(extack,
9061                                "More than one program loaded, unset mode is ambiguous");
9062                 return -EINVAL;
9063         }
9064         /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9065         if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9066                 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9067                 return -EINVAL;
9068         }
9069
9070         mode = dev_xdp_mode(dev, flags);
9071         /* can't replace attached link */
9072         if (dev_xdp_link(dev, mode)) {
9073                 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9074                 return -EBUSY;
9075         }
9076
9077         /* don't allow if an upper device already has a program */
9078         netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9079                 if (dev_xdp_prog_count(upper) > 0) {
9080                         NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9081                         return -EEXIST;
9082                 }
9083         }
9084
9085         cur_prog = dev_xdp_prog(dev, mode);
9086         /* can't replace attached prog with link */
9087         if (link && cur_prog) {
9088                 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9089                 return -EBUSY;
9090         }
9091         if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9092                 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9093                 return -EEXIST;
9094         }
9095
9096         /* put effective new program into new_prog */
9097         if (link)
9098                 new_prog = link->link.prog;
9099
9100         if (new_prog) {
9101                 bool offload = mode == XDP_MODE_HW;
9102                 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9103                                                ? XDP_MODE_DRV : XDP_MODE_SKB;
9104
9105                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9106                         NL_SET_ERR_MSG(extack, "XDP program already attached");
9107                         return -EBUSY;
9108                 }
9109                 if (!offload && dev_xdp_prog(dev, other_mode)) {
9110                         NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9111                         return -EEXIST;
9112                 }
9113                 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9114                         NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9115                         return -EINVAL;
9116                 }
9117                 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9118                         NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9119                         return -EINVAL;
9120                 }
9121                 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9122                         NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9123                         return -EINVAL;
9124                 }
9125         }
9126
9127         /* don't call drivers if the effective program didn't change */
9128         if (new_prog != cur_prog) {
9129                 bpf_op = dev_xdp_bpf_op(dev, mode);
9130                 if (!bpf_op) {
9131                         NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9132                         return -EOPNOTSUPP;
9133                 }
9134
9135                 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9136                 if (err)
9137                         return err;
9138         }
9139
9140         if (link)
9141                 dev_xdp_set_link(dev, mode, link);
9142         else
9143                 dev_xdp_set_prog(dev, mode, new_prog);
9144         if (cur_prog)
9145                 bpf_prog_put(cur_prog);
9146
9147         return 0;
9148 }
9149
9150 static int dev_xdp_attach_link(struct net_device *dev,
9151                                struct netlink_ext_ack *extack,
9152                                struct bpf_xdp_link *link)
9153 {
9154         return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9155 }
9156
9157 static int dev_xdp_detach_link(struct net_device *dev,
9158                                struct netlink_ext_ack *extack,
9159                                struct bpf_xdp_link *link)
9160 {
9161         enum bpf_xdp_mode mode;
9162         bpf_op_t bpf_op;
9163
9164         ASSERT_RTNL();
9165
9166         mode = dev_xdp_mode(dev, link->flags);
9167         if (dev_xdp_link(dev, mode) != link)
9168                 return -EINVAL;
9169
9170         bpf_op = dev_xdp_bpf_op(dev, mode);
9171         WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9172         dev_xdp_set_link(dev, mode, NULL);
9173         return 0;
9174 }
9175
9176 static void bpf_xdp_link_release(struct bpf_link *link)
9177 {
9178         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9179
9180         rtnl_lock();
9181
9182         /* if racing with net_device's tear down, xdp_link->dev might be
9183          * already NULL, in which case link was already auto-detached
9184          */
9185         if (xdp_link->dev) {
9186                 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9187                 xdp_link->dev = NULL;
9188         }
9189
9190         rtnl_unlock();
9191 }
9192
9193 static int bpf_xdp_link_detach(struct bpf_link *link)
9194 {
9195         bpf_xdp_link_release(link);
9196         return 0;
9197 }
9198
9199 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9200 {
9201         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9202
9203         kfree(xdp_link);
9204 }
9205
9206 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9207                                      struct seq_file *seq)
9208 {
9209         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9210         u32 ifindex = 0;
9211
9212         rtnl_lock();
9213         if (xdp_link->dev)
9214                 ifindex = xdp_link->dev->ifindex;
9215         rtnl_unlock();
9216
9217         seq_printf(seq, "ifindex:\t%u\n", ifindex);
9218 }
9219
9220 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9221                                        struct bpf_link_info *info)
9222 {
9223         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9224         u32 ifindex = 0;
9225
9226         rtnl_lock();
9227         if (xdp_link->dev)
9228                 ifindex = xdp_link->dev->ifindex;
9229         rtnl_unlock();
9230
9231         info->xdp.ifindex = ifindex;
9232         return 0;
9233 }
9234
9235 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9236                                struct bpf_prog *old_prog)
9237 {
9238         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9239         enum bpf_xdp_mode mode;
9240         bpf_op_t bpf_op;
9241         int err = 0;
9242
9243         rtnl_lock();
9244
9245         /* link might have been auto-released already, so fail */
9246         if (!xdp_link->dev) {
9247                 err = -ENOLINK;
9248                 goto out_unlock;
9249         }
9250
9251         if (old_prog && link->prog != old_prog) {
9252                 err = -EPERM;
9253                 goto out_unlock;
9254         }
9255         old_prog = link->prog;
9256         if (old_prog->type != new_prog->type ||
9257             old_prog->expected_attach_type != new_prog->expected_attach_type) {
9258                 err = -EINVAL;
9259                 goto out_unlock;
9260         }
9261
9262         if (old_prog == new_prog) {
9263                 /* no-op, don't disturb drivers */
9264                 bpf_prog_put(new_prog);
9265                 goto out_unlock;
9266         }
9267
9268         mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9269         bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9270         err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9271                               xdp_link->flags, new_prog);
9272         if (err)
9273                 goto out_unlock;
9274
9275         old_prog = xchg(&link->prog, new_prog);
9276         bpf_prog_put(old_prog);
9277
9278 out_unlock:
9279         rtnl_unlock();
9280         return err;
9281 }
9282
9283 static const struct bpf_link_ops bpf_xdp_link_lops = {
9284         .release = bpf_xdp_link_release,
9285         .dealloc = bpf_xdp_link_dealloc,
9286         .detach = bpf_xdp_link_detach,
9287         .show_fdinfo = bpf_xdp_link_show_fdinfo,
9288         .fill_link_info = bpf_xdp_link_fill_link_info,
9289         .update_prog = bpf_xdp_link_update,
9290 };
9291
9292 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9293 {
9294         struct net *net = current->nsproxy->net_ns;
9295         struct bpf_link_primer link_primer;
9296         struct bpf_xdp_link *link;
9297         struct net_device *dev;
9298         int err, fd;
9299
9300         rtnl_lock();
9301         dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9302         if (!dev) {
9303                 rtnl_unlock();
9304                 return -EINVAL;
9305         }
9306
9307         link = kzalloc(sizeof(*link), GFP_USER);
9308         if (!link) {
9309                 err = -ENOMEM;
9310                 goto unlock;
9311         }
9312
9313         bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9314         link->dev = dev;
9315         link->flags = attr->link_create.flags;
9316
9317         err = bpf_link_prime(&link->link, &link_primer);
9318         if (err) {
9319                 kfree(link);
9320                 goto unlock;
9321         }
9322
9323         err = dev_xdp_attach_link(dev, NULL, link);
9324         rtnl_unlock();
9325
9326         if (err) {
9327                 link->dev = NULL;
9328                 bpf_link_cleanup(&link_primer);
9329                 goto out_put_dev;
9330         }
9331
9332         fd = bpf_link_settle(&link_primer);
9333         /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9334         dev_put(dev);
9335         return fd;
9336
9337 unlock:
9338         rtnl_unlock();
9339
9340 out_put_dev:
9341         dev_put(dev);
9342         return err;
9343 }
9344
9345 /**
9346  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
9347  *      @dev: device
9348  *      @extack: netlink extended ack
9349  *      @fd: new program fd or negative value to clear
9350  *      @expected_fd: old program fd that userspace expects to replace or clear
9351  *      @flags: xdp-related flags
9352  *
9353  *      Set or clear a bpf program for a device
9354  */
9355 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9356                       int fd, int expected_fd, u32 flags)
9357 {
9358         enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9359         struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9360         int err;
9361
9362         ASSERT_RTNL();
9363
9364         if (fd >= 0) {
9365                 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9366                                                  mode != XDP_MODE_SKB);
9367                 if (IS_ERR(new_prog))
9368                         return PTR_ERR(new_prog);
9369         }
9370
9371         if (expected_fd >= 0) {
9372                 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9373                                                  mode != XDP_MODE_SKB);
9374                 if (IS_ERR(old_prog)) {
9375                         err = PTR_ERR(old_prog);
9376                         old_prog = NULL;
9377                         goto err_out;
9378                 }
9379         }
9380
9381         err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9382
9383 err_out:
9384         if (err && new_prog)
9385                 bpf_prog_put(new_prog);
9386         if (old_prog)
9387                 bpf_prog_put(old_prog);
9388         return err;
9389 }
9390
9391 /**
9392  *      dev_new_index   -       allocate an ifindex
9393  *      @net: the applicable net namespace
9394  *
9395  *      Returns a suitable unique value for a new device interface
9396  *      number.  The caller must hold the rtnl semaphore or the
9397  *      dev_base_lock to be sure it remains unique.
9398  */
9399 static int dev_new_index(struct net *net)
9400 {
9401         int ifindex = net->ifindex;
9402
9403         for (;;) {
9404                 if (++ifindex <= 0)
9405                         ifindex = 1;
9406                 if (!__dev_get_by_index(net, ifindex))
9407                         return net->ifindex = ifindex;
9408         }
9409 }
9410
9411 /* Delayed registration/unregisteration */
9412 static LIST_HEAD(net_todo_list);
9413 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9414
9415 static void net_set_todo(struct net_device *dev)
9416 {
9417         list_add_tail(&dev->todo_list, &net_todo_list);
9418         atomic_inc(&dev_net(dev)->dev_unreg_count);
9419 }
9420
9421 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9422         struct net_device *upper, netdev_features_t features)
9423 {
9424         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9425         netdev_features_t feature;
9426         int feature_bit;
9427
9428         for_each_netdev_feature(upper_disables, feature_bit) {
9429                 feature = __NETIF_F_BIT(feature_bit);
9430                 if (!(upper->wanted_features & feature)
9431                     && (features & feature)) {
9432                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9433                                    &feature, upper->name);
9434                         features &= ~feature;
9435                 }
9436         }
9437
9438         return features;
9439 }
9440
9441 static void netdev_sync_lower_features(struct net_device *upper,
9442         struct net_device *lower, netdev_features_t features)
9443 {
9444         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9445         netdev_features_t feature;
9446         int feature_bit;
9447
9448         for_each_netdev_feature(upper_disables, feature_bit) {
9449                 feature = __NETIF_F_BIT(feature_bit);
9450                 if (!(features & feature) && (lower->features & feature)) {
9451                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9452                                    &feature, lower->name);
9453                         lower->wanted_features &= ~feature;
9454                         __netdev_update_features(lower);
9455
9456                         if (unlikely(lower->features & feature))
9457                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9458                                             &feature, lower->name);
9459                         else
9460                                 netdev_features_change(lower);
9461                 }
9462         }
9463 }
9464
9465 static netdev_features_t netdev_fix_features(struct net_device *dev,
9466         netdev_features_t features)
9467 {
9468         /* Fix illegal checksum combinations */
9469         if ((features & NETIF_F_HW_CSUM) &&
9470             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9471                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9472                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9473         }
9474
9475         /* TSO requires that SG is present as well. */
9476         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9477                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9478                 features &= ~NETIF_F_ALL_TSO;
9479         }
9480
9481         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9482                                         !(features & NETIF_F_IP_CSUM)) {
9483                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9484                 features &= ~NETIF_F_TSO;
9485                 features &= ~NETIF_F_TSO_ECN;
9486         }
9487
9488         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9489                                          !(features & NETIF_F_IPV6_CSUM)) {
9490                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9491                 features &= ~NETIF_F_TSO6;
9492         }
9493
9494         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9495         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9496                 features &= ~NETIF_F_TSO_MANGLEID;
9497
9498         /* TSO ECN requires that TSO is present as well. */
9499         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9500                 features &= ~NETIF_F_TSO_ECN;
9501
9502         /* Software GSO depends on SG. */
9503         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9504                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9505                 features &= ~NETIF_F_GSO;
9506         }
9507
9508         /* GSO partial features require GSO partial be set */
9509         if ((features & dev->gso_partial_features) &&
9510             !(features & NETIF_F_GSO_PARTIAL)) {
9511                 netdev_dbg(dev,
9512                            "Dropping partially supported GSO features since no GSO partial.\n");
9513                 features &= ~dev->gso_partial_features;
9514         }
9515
9516         if (!(features & NETIF_F_RXCSUM)) {
9517                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9518                  * successfully merged by hardware must also have the
9519                  * checksum verified by hardware.  If the user does not
9520                  * want to enable RXCSUM, logically, we should disable GRO_HW.
9521                  */
9522                 if (features & NETIF_F_GRO_HW) {
9523                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9524                         features &= ~NETIF_F_GRO_HW;
9525                 }
9526         }
9527
9528         /* LRO/HW-GRO features cannot be combined with RX-FCS */
9529         if (features & NETIF_F_RXFCS) {
9530                 if (features & NETIF_F_LRO) {
9531                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9532                         features &= ~NETIF_F_LRO;
9533                 }
9534
9535                 if (features & NETIF_F_GRO_HW) {
9536                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9537                         features &= ~NETIF_F_GRO_HW;
9538                 }
9539         }
9540
9541         if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9542                 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9543                 features &= ~NETIF_F_LRO;
9544         }
9545
9546         if (features & NETIF_F_HW_TLS_TX) {
9547                 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9548                         (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9549                 bool hw_csum = features & NETIF_F_HW_CSUM;
9550
9551                 if (!ip_csum && !hw_csum) {
9552                         netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9553                         features &= ~NETIF_F_HW_TLS_TX;
9554                 }
9555         }
9556
9557         if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9558                 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9559                 features &= ~NETIF_F_HW_TLS_RX;
9560         }
9561
9562         return features;
9563 }
9564
9565 int __netdev_update_features(struct net_device *dev)
9566 {
9567         struct net_device *upper, *lower;
9568         netdev_features_t features;
9569         struct list_head *iter;
9570         int err = -1;
9571
9572         ASSERT_RTNL();
9573
9574         features = netdev_get_wanted_features(dev);
9575
9576         if (dev->netdev_ops->ndo_fix_features)
9577                 features = dev->netdev_ops->ndo_fix_features(dev, features);
9578
9579         /* driver might be less strict about feature dependencies */
9580         features = netdev_fix_features(dev, features);
9581
9582         /* some features can't be enabled if they're off on an upper device */
9583         netdev_for_each_upper_dev_rcu(dev, upper, iter)
9584                 features = netdev_sync_upper_features(dev, upper, features);
9585
9586         if (dev->features == features)
9587                 goto sync_lower;
9588
9589         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9590                 &dev->features, &features);
9591
9592         if (dev->netdev_ops->ndo_set_features)
9593                 err = dev->netdev_ops->ndo_set_features(dev, features);
9594         else
9595                 err = 0;
9596
9597         if (unlikely(err < 0)) {
9598                 netdev_err(dev,
9599                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
9600                         err, &features, &dev->features);
9601                 /* return non-0 since some features might have changed and
9602                  * it's better to fire a spurious notification than miss it
9603                  */
9604                 return -1;
9605         }
9606
9607 sync_lower:
9608         /* some features must be disabled on lower devices when disabled
9609          * on an upper device (think: bonding master or bridge)
9610          */
9611         netdev_for_each_lower_dev(dev, lower, iter)
9612                 netdev_sync_lower_features(dev, lower, features);
9613
9614         if (!err) {
9615                 netdev_features_t diff = features ^ dev->features;
9616
9617                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9618                         /* udp_tunnel_{get,drop}_rx_info both need
9619                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9620                          * device, or they won't do anything.
9621                          * Thus we need to update dev->features
9622                          * *before* calling udp_tunnel_get_rx_info,
9623                          * but *after* calling udp_tunnel_drop_rx_info.
9624                          */
9625                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9626                                 dev->features = features;
9627                                 udp_tunnel_get_rx_info(dev);
9628                         } else {
9629                                 udp_tunnel_drop_rx_info(dev);
9630                         }
9631                 }
9632
9633                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9634                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9635                                 dev->features = features;
9636                                 err |= vlan_get_rx_ctag_filter_info(dev);
9637                         } else {
9638                                 vlan_drop_rx_ctag_filter_info(dev);
9639                         }
9640                 }
9641
9642                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9643                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9644                                 dev->features = features;
9645                                 err |= vlan_get_rx_stag_filter_info(dev);
9646                         } else {
9647                                 vlan_drop_rx_stag_filter_info(dev);
9648                         }
9649                 }
9650
9651                 dev->features = features;
9652         }
9653
9654         return err < 0 ? 0 : 1;
9655 }
9656
9657 /**
9658  *      netdev_update_features - recalculate device features
9659  *      @dev: the device to check
9660  *
9661  *      Recalculate dev->features set and send notifications if it
9662  *      has changed. Should be called after driver or hardware dependent
9663  *      conditions might have changed that influence the features.
9664  */
9665 void netdev_update_features(struct net_device *dev)
9666 {
9667         if (__netdev_update_features(dev))
9668                 netdev_features_change(dev);
9669 }
9670 EXPORT_SYMBOL(netdev_update_features);
9671
9672 /**
9673  *      netdev_change_features - recalculate device features
9674  *      @dev: the device to check
9675  *
9676  *      Recalculate dev->features set and send notifications even
9677  *      if they have not changed. Should be called instead of
9678  *      netdev_update_features() if also dev->vlan_features might
9679  *      have changed to allow the changes to be propagated to stacked
9680  *      VLAN devices.
9681  */
9682 void netdev_change_features(struct net_device *dev)
9683 {
9684         __netdev_update_features(dev);
9685         netdev_features_change(dev);
9686 }
9687 EXPORT_SYMBOL(netdev_change_features);
9688
9689 /**
9690  *      netif_stacked_transfer_operstate -      transfer operstate
9691  *      @rootdev: the root or lower level device to transfer state from
9692  *      @dev: the device to transfer operstate to
9693  *
9694  *      Transfer operational state from root to device. This is normally
9695  *      called when a stacking relationship exists between the root
9696  *      device and the device(a leaf device).
9697  */
9698 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9699                                         struct net_device *dev)
9700 {
9701         if (rootdev->operstate == IF_OPER_DORMANT)
9702                 netif_dormant_on(dev);
9703         else
9704                 netif_dormant_off(dev);
9705
9706         if (rootdev->operstate == IF_OPER_TESTING)
9707                 netif_testing_on(dev);
9708         else
9709                 netif_testing_off(dev);
9710
9711         if (netif_carrier_ok(rootdev))
9712                 netif_carrier_on(dev);
9713         else
9714                 netif_carrier_off(dev);
9715 }
9716 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9717
9718 static int netif_alloc_rx_queues(struct net_device *dev)
9719 {
9720         unsigned int i, count = dev->num_rx_queues;
9721         struct netdev_rx_queue *rx;
9722         size_t sz = count * sizeof(*rx);
9723         int err = 0;
9724
9725         BUG_ON(count < 1);
9726
9727         rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9728         if (!rx)
9729                 return -ENOMEM;
9730
9731         dev->_rx = rx;
9732
9733         for (i = 0; i < count; i++) {
9734                 rx[i].dev = dev;
9735
9736                 /* XDP RX-queue setup */
9737                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9738                 if (err < 0)
9739                         goto err_rxq_info;
9740         }
9741         return 0;
9742
9743 err_rxq_info:
9744         /* Rollback successful reg's and free other resources */
9745         while (i--)
9746                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9747         kvfree(dev->_rx);
9748         dev->_rx = NULL;
9749         return err;
9750 }
9751
9752 static void netif_free_rx_queues(struct net_device *dev)
9753 {
9754         unsigned int i, count = dev->num_rx_queues;
9755
9756         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9757         if (!dev->_rx)
9758                 return;
9759
9760         for (i = 0; i < count; i++)
9761                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9762
9763         kvfree(dev->_rx);
9764 }
9765
9766 static void netdev_init_one_queue(struct net_device *dev,
9767                                   struct netdev_queue *queue, void *_unused)
9768 {
9769         /* Initialize queue lock */
9770         spin_lock_init(&queue->_xmit_lock);
9771         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9772         queue->xmit_lock_owner = -1;
9773         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9774         queue->dev = dev;
9775 #ifdef CONFIG_BQL
9776         dql_init(&queue->dql, HZ);
9777 #endif
9778 }
9779
9780 static void netif_free_tx_queues(struct net_device *dev)
9781 {
9782         kvfree(dev->_tx);
9783 }
9784
9785 static int netif_alloc_netdev_queues(struct net_device *dev)
9786 {
9787         unsigned int count = dev->num_tx_queues;
9788         struct netdev_queue *tx;
9789         size_t sz = count * sizeof(*tx);
9790
9791         if (count < 1 || count > 0xffff)
9792                 return -EINVAL;
9793
9794         tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9795         if (!tx)
9796                 return -ENOMEM;
9797
9798         dev->_tx = tx;
9799
9800         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9801         spin_lock_init(&dev->tx_global_lock);
9802
9803         return 0;
9804 }
9805
9806 void netif_tx_stop_all_queues(struct net_device *dev)
9807 {
9808         unsigned int i;
9809
9810         for (i = 0; i < dev->num_tx_queues; i++) {
9811                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9812
9813                 netif_tx_stop_queue(txq);
9814         }
9815 }
9816 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9817
9818 /**
9819  *      register_netdevice      - register a network device
9820  *      @dev: device to register
9821  *
9822  *      Take a completed network device structure and add it to the kernel
9823  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9824  *      chain. 0 is returned on success. A negative errno code is returned
9825  *      on a failure to set up the device, or if the name is a duplicate.
9826  *
9827  *      Callers must hold the rtnl semaphore. You may want
9828  *      register_netdev() instead of this.
9829  *
9830  *      BUGS:
9831  *      The locking appears insufficient to guarantee two parallel registers
9832  *      will not get the same name.
9833  */
9834
9835 int register_netdevice(struct net_device *dev)
9836 {
9837         int ret;
9838         struct net *net = dev_net(dev);
9839
9840         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9841                      NETDEV_FEATURE_COUNT);
9842         BUG_ON(dev_boot_phase);
9843         ASSERT_RTNL();
9844
9845         might_sleep();
9846
9847         /* When net_device's are persistent, this will be fatal. */
9848         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9849         BUG_ON(!net);
9850
9851         ret = ethtool_check_ops(dev->ethtool_ops);
9852         if (ret)
9853                 return ret;
9854
9855         spin_lock_init(&dev->addr_list_lock);
9856         netdev_set_addr_lockdep_class(dev);
9857
9858         ret = dev_get_valid_name(net, dev, dev->name);
9859         if (ret < 0)
9860                 goto out;
9861
9862         ret = -ENOMEM;
9863         dev->name_node = netdev_name_node_head_alloc(dev);
9864         if (!dev->name_node)
9865                 goto out;
9866
9867         /* Init, if this function is available */
9868         if (dev->netdev_ops->ndo_init) {
9869                 ret = dev->netdev_ops->ndo_init(dev);
9870                 if (ret) {
9871                         if (ret > 0)
9872                                 ret = -EIO;
9873                         goto err_free_name;
9874                 }
9875         }
9876
9877         if (((dev->hw_features | dev->features) &
9878              NETIF_F_HW_VLAN_CTAG_FILTER) &&
9879             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9880              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9881                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9882                 ret = -EINVAL;
9883                 goto err_uninit;
9884         }
9885
9886         ret = -EBUSY;
9887         if (!dev->ifindex)
9888                 dev->ifindex = dev_new_index(net);
9889         else if (__dev_get_by_index(net, dev->ifindex))
9890                 goto err_uninit;
9891
9892         /* Transfer changeable features to wanted_features and enable
9893          * software offloads (GSO and GRO).
9894          */
9895         dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
9896         dev->features |= NETIF_F_SOFT_FEATURES;
9897
9898         if (dev->udp_tunnel_nic_info) {
9899                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9900                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9901         }
9902
9903         dev->wanted_features = dev->features & dev->hw_features;
9904
9905         if (!(dev->flags & IFF_LOOPBACK))
9906                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
9907
9908         /* If IPv4 TCP segmentation offload is supported we should also
9909          * allow the device to enable segmenting the frame with the option
9910          * of ignoring a static IP ID value.  This doesn't enable the
9911          * feature itself but allows the user to enable it later.
9912          */
9913         if (dev->hw_features & NETIF_F_TSO)
9914                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
9915         if (dev->vlan_features & NETIF_F_TSO)
9916                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
9917         if (dev->mpls_features & NETIF_F_TSO)
9918                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
9919         if (dev->hw_enc_features & NETIF_F_TSO)
9920                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
9921
9922         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
9923          */
9924         dev->vlan_features |= NETIF_F_HIGHDMA;
9925
9926         /* Make NETIF_F_SG inheritable to tunnel devices.
9927          */
9928         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
9929
9930         /* Make NETIF_F_SG inheritable to MPLS.
9931          */
9932         dev->mpls_features |= NETIF_F_SG;
9933
9934         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
9935         ret = notifier_to_errno(ret);
9936         if (ret)
9937                 goto err_uninit;
9938
9939         ret = netdev_register_kobject(dev);
9940         if (ret) {
9941                 dev->reg_state = NETREG_UNREGISTERED;
9942                 goto err_uninit;
9943         }
9944         dev->reg_state = NETREG_REGISTERED;
9945
9946         __netdev_update_features(dev);
9947
9948         /*
9949          *      Default initial state at registry is that the
9950          *      device is present.
9951          */
9952
9953         set_bit(__LINK_STATE_PRESENT, &dev->state);
9954
9955         linkwatch_init_dev(dev);
9956
9957         dev_init_scheduler(dev);
9958
9959         dev_hold_track(dev, &dev->dev_registered_tracker, GFP_KERNEL);
9960         list_netdevice(dev);
9961
9962         add_device_randomness(dev->dev_addr, dev->addr_len);
9963
9964         /* If the device has permanent device address, driver should
9965          * set dev_addr and also addr_assign_type should be set to
9966          * NET_ADDR_PERM (default value).
9967          */
9968         if (dev->addr_assign_type == NET_ADDR_PERM)
9969                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
9970
9971         /* Notify protocols, that a new device appeared. */
9972         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
9973         ret = notifier_to_errno(ret);
9974         if (ret) {
9975                 /* Expect explicit free_netdev() on failure */
9976                 dev->needs_free_netdev = false;
9977                 unregister_netdevice_queue(dev, NULL);
9978                 goto out;
9979         }
9980         /*
9981          *      Prevent userspace races by waiting until the network
9982          *      device is fully setup before sending notifications.
9983          */
9984         if (!dev->rtnl_link_ops ||
9985             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
9986                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9987
9988 out:
9989         return ret;
9990
9991 err_uninit:
9992         if (dev->netdev_ops->ndo_uninit)
9993                 dev->netdev_ops->ndo_uninit(dev);
9994         if (dev->priv_destructor)
9995                 dev->priv_destructor(dev);
9996 err_free_name:
9997         netdev_name_node_free(dev->name_node);
9998         goto out;
9999 }
10000 EXPORT_SYMBOL(register_netdevice);
10001
10002 /**
10003  *      init_dummy_netdev       - init a dummy network device for NAPI
10004  *      @dev: device to init
10005  *
10006  *      This takes a network device structure and initialize the minimum
10007  *      amount of fields so it can be used to schedule NAPI polls without
10008  *      registering a full blown interface. This is to be used by drivers
10009  *      that need to tie several hardware interfaces to a single NAPI
10010  *      poll scheduler due to HW limitations.
10011  */
10012 int init_dummy_netdev(struct net_device *dev)
10013 {
10014         /* Clear everything. Note we don't initialize spinlocks
10015          * are they aren't supposed to be taken by any of the
10016          * NAPI code and this dummy netdev is supposed to be
10017          * only ever used for NAPI polls
10018          */
10019         memset(dev, 0, sizeof(struct net_device));
10020
10021         /* make sure we BUG if trying to hit standard
10022          * register/unregister code path
10023          */
10024         dev->reg_state = NETREG_DUMMY;
10025
10026         /* NAPI wants this */
10027         INIT_LIST_HEAD(&dev->napi_list);
10028
10029         /* a dummy interface is started by default */
10030         set_bit(__LINK_STATE_PRESENT, &dev->state);
10031         set_bit(__LINK_STATE_START, &dev->state);
10032
10033         /* napi_busy_loop stats accounting wants this */
10034         dev_net_set(dev, &init_net);
10035
10036         /* Note : We dont allocate pcpu_refcnt for dummy devices,
10037          * because users of this 'device' dont need to change
10038          * its refcount.
10039          */
10040
10041         return 0;
10042 }
10043 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10044
10045
10046 /**
10047  *      register_netdev - register a network device
10048  *      @dev: device to register
10049  *
10050  *      Take a completed network device structure and add it to the kernel
10051  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10052  *      chain. 0 is returned on success. A negative errno code is returned
10053  *      on a failure to set up the device, or if the name is a duplicate.
10054  *
10055  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
10056  *      and expands the device name if you passed a format string to
10057  *      alloc_netdev.
10058  */
10059 int register_netdev(struct net_device *dev)
10060 {
10061         int err;
10062
10063         if (rtnl_lock_killable())
10064                 return -EINTR;
10065         err = register_netdevice(dev);
10066         rtnl_unlock();
10067         return err;
10068 }
10069 EXPORT_SYMBOL(register_netdev);
10070
10071 int netdev_refcnt_read(const struct net_device *dev)
10072 {
10073 #ifdef CONFIG_PCPU_DEV_REFCNT
10074         int i, refcnt = 0;
10075
10076         for_each_possible_cpu(i)
10077                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10078         return refcnt;
10079 #else
10080         return refcount_read(&dev->dev_refcnt);
10081 #endif
10082 }
10083 EXPORT_SYMBOL(netdev_refcnt_read);
10084
10085 int netdev_unregister_timeout_secs __read_mostly = 10;
10086
10087 #define WAIT_REFS_MIN_MSECS 1
10088 #define WAIT_REFS_MAX_MSECS 250
10089 /**
10090  * netdev_wait_allrefs_any - wait until all references are gone.
10091  * @list: list of net_devices to wait on
10092  *
10093  * This is called when unregistering network devices.
10094  *
10095  * Any protocol or device that holds a reference should register
10096  * for netdevice notification, and cleanup and put back the
10097  * reference if they receive an UNREGISTER event.
10098  * We can get stuck here if buggy protocols don't correctly
10099  * call dev_put.
10100  */
10101 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10102 {
10103         unsigned long rebroadcast_time, warning_time;
10104         struct net_device *dev;
10105         int wait = 0;
10106
10107         rebroadcast_time = warning_time = jiffies;
10108
10109         list_for_each_entry(dev, list, todo_list)
10110                 if (netdev_refcnt_read(dev) == 1)
10111                         return dev;
10112
10113         while (true) {
10114                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10115                         rtnl_lock();
10116
10117                         /* Rebroadcast unregister notification */
10118                         list_for_each_entry(dev, list, todo_list)
10119                                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10120
10121                         __rtnl_unlock();
10122                         rcu_barrier();
10123                         rtnl_lock();
10124
10125                         list_for_each_entry(dev, list, todo_list)
10126                                 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10127                                              &dev->state)) {
10128                                         /* We must not have linkwatch events
10129                                          * pending on unregister. If this
10130                                          * happens, we simply run the queue
10131                                          * unscheduled, resulting in a noop
10132                                          * for this device.
10133                                          */
10134                                         linkwatch_run_queue();
10135                                         break;
10136                                 }
10137
10138                         __rtnl_unlock();
10139
10140                         rebroadcast_time = jiffies;
10141                 }
10142
10143                 if (!wait) {
10144                         rcu_barrier();
10145                         wait = WAIT_REFS_MIN_MSECS;
10146                 } else {
10147                         msleep(wait);
10148                         wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10149                 }
10150
10151                 list_for_each_entry(dev, list, todo_list)
10152                         if (netdev_refcnt_read(dev) == 1)
10153                                 return dev;
10154
10155                 if (time_after(jiffies, warning_time +
10156                                netdev_unregister_timeout_secs * HZ)) {
10157                         list_for_each_entry(dev, list, todo_list) {
10158                                 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10159                                          dev->name, netdev_refcnt_read(dev));
10160                                 ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10161                         }
10162
10163                         warning_time = jiffies;
10164                 }
10165         }
10166 }
10167
10168 /* The sequence is:
10169  *
10170  *      rtnl_lock();
10171  *      ...
10172  *      register_netdevice(x1);
10173  *      register_netdevice(x2);
10174  *      ...
10175  *      unregister_netdevice(y1);
10176  *      unregister_netdevice(y2);
10177  *      ...
10178  *      rtnl_unlock();
10179  *      free_netdev(y1);
10180  *      free_netdev(y2);
10181  *
10182  * We are invoked by rtnl_unlock().
10183  * This allows us to deal with problems:
10184  * 1) We can delete sysfs objects which invoke hotplug
10185  *    without deadlocking with linkwatch via keventd.
10186  * 2) Since we run with the RTNL semaphore not held, we can sleep
10187  *    safely in order to wait for the netdev refcnt to drop to zero.
10188  *
10189  * We must not return until all unregister events added during
10190  * the interval the lock was held have been completed.
10191  */
10192 void netdev_run_todo(void)
10193 {
10194         struct net_device *dev, *tmp;
10195         struct list_head list;
10196 #ifdef CONFIG_LOCKDEP
10197         struct list_head unlink_list;
10198
10199         list_replace_init(&net_unlink_list, &unlink_list);
10200
10201         while (!list_empty(&unlink_list)) {
10202                 struct net_device *dev = list_first_entry(&unlink_list,
10203                                                           struct net_device,
10204                                                           unlink_list);
10205                 list_del_init(&dev->unlink_list);
10206                 dev->nested_level = dev->lower_level - 1;
10207         }
10208 #endif
10209
10210         /* Snapshot list, allow later requests */
10211         list_replace_init(&net_todo_list, &list);
10212
10213         __rtnl_unlock();
10214
10215         /* Wait for rcu callbacks to finish before next phase */
10216         if (!list_empty(&list))
10217                 rcu_barrier();
10218
10219         list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10220                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10221                         netdev_WARN(dev, "run_todo but not unregistering\n");
10222                         list_del(&dev->todo_list);
10223                         continue;
10224                 }
10225
10226                 dev->reg_state = NETREG_UNREGISTERED;
10227                 linkwatch_forget_dev(dev);
10228         }
10229
10230         while (!list_empty(&list)) {
10231                 dev = netdev_wait_allrefs_any(&list);
10232                 list_del(&dev->todo_list);
10233
10234                 /* paranoia */
10235                 BUG_ON(netdev_refcnt_read(dev) != 1);
10236                 BUG_ON(!list_empty(&dev->ptype_all));
10237                 BUG_ON(!list_empty(&dev->ptype_specific));
10238                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10239                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10240 #if IS_ENABLED(CONFIG_DECNET)
10241                 WARN_ON(dev->dn_ptr);
10242 #endif
10243                 if (dev->priv_destructor)
10244                         dev->priv_destructor(dev);
10245                 if (dev->needs_free_netdev)
10246                         free_netdev(dev);
10247
10248                 if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count))
10249                         wake_up(&netdev_unregistering_wq);
10250
10251                 /* Free network device */
10252                 kobject_put(&dev->dev.kobj);
10253         }
10254 }
10255
10256 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10257  * all the same fields in the same order as net_device_stats, with only
10258  * the type differing, but rtnl_link_stats64 may have additional fields
10259  * at the end for newer counters.
10260  */
10261 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10262                              const struct net_device_stats *netdev_stats)
10263 {
10264 #if BITS_PER_LONG == 64
10265         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10266         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10267         /* zero out counters that only exist in rtnl_link_stats64 */
10268         memset((char *)stats64 + sizeof(*netdev_stats), 0,
10269                sizeof(*stats64) - sizeof(*netdev_stats));
10270 #else
10271         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10272         const unsigned long *src = (const unsigned long *)netdev_stats;
10273         u64 *dst = (u64 *)stats64;
10274
10275         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10276         for (i = 0; i < n; i++)
10277                 dst[i] = src[i];
10278         /* zero out counters that only exist in rtnl_link_stats64 */
10279         memset((char *)stats64 + n * sizeof(u64), 0,
10280                sizeof(*stats64) - n * sizeof(u64));
10281 #endif
10282 }
10283 EXPORT_SYMBOL(netdev_stats_to_stats64);
10284
10285 /**
10286  *      dev_get_stats   - get network device statistics
10287  *      @dev: device to get statistics from
10288  *      @storage: place to store stats
10289  *
10290  *      Get network statistics from device. Return @storage.
10291  *      The device driver may provide its own method by setting
10292  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10293  *      otherwise the internal statistics structure is used.
10294  */
10295 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10296                                         struct rtnl_link_stats64 *storage)
10297 {
10298         const struct net_device_ops *ops = dev->netdev_ops;
10299
10300         if (ops->ndo_get_stats64) {
10301                 memset(storage, 0, sizeof(*storage));
10302                 ops->ndo_get_stats64(dev, storage);
10303         } else if (ops->ndo_get_stats) {
10304                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10305         } else {
10306                 netdev_stats_to_stats64(storage, &dev->stats);
10307         }
10308         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10309         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10310         storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10311         return storage;
10312 }
10313 EXPORT_SYMBOL(dev_get_stats);
10314
10315 /**
10316  *      dev_fetch_sw_netstats - get per-cpu network device statistics
10317  *      @s: place to store stats
10318  *      @netstats: per-cpu network stats to read from
10319  *
10320  *      Read per-cpu network statistics and populate the related fields in @s.
10321  */
10322 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10323                            const struct pcpu_sw_netstats __percpu *netstats)
10324 {
10325         int cpu;
10326
10327         for_each_possible_cpu(cpu) {
10328                 const struct pcpu_sw_netstats *stats;
10329                 struct pcpu_sw_netstats tmp;
10330                 unsigned int start;
10331
10332                 stats = per_cpu_ptr(netstats, cpu);
10333                 do {
10334                         start = u64_stats_fetch_begin_irq(&stats->syncp);
10335                         tmp.rx_packets = stats->rx_packets;
10336                         tmp.rx_bytes   = stats->rx_bytes;
10337                         tmp.tx_packets = stats->tx_packets;
10338                         tmp.tx_bytes   = stats->tx_bytes;
10339                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10340
10341                 s->rx_packets += tmp.rx_packets;
10342                 s->rx_bytes   += tmp.rx_bytes;
10343                 s->tx_packets += tmp.tx_packets;
10344                 s->tx_bytes   += tmp.tx_bytes;
10345         }
10346 }
10347 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10348
10349 /**
10350  *      dev_get_tstats64 - ndo_get_stats64 implementation
10351  *      @dev: device to get statistics from
10352  *      @s: place to store stats
10353  *
10354  *      Populate @s from dev->stats and dev->tstats. Can be used as
10355  *      ndo_get_stats64() callback.
10356  */
10357 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10358 {
10359         netdev_stats_to_stats64(s, &dev->stats);
10360         dev_fetch_sw_netstats(s, dev->tstats);
10361 }
10362 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10363
10364 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10365 {
10366         struct netdev_queue *queue = dev_ingress_queue(dev);
10367
10368 #ifdef CONFIG_NET_CLS_ACT
10369         if (queue)
10370                 return queue;
10371         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10372         if (!queue)
10373                 return NULL;
10374         netdev_init_one_queue(dev, queue, NULL);
10375         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10376         queue->qdisc_sleeping = &noop_qdisc;
10377         rcu_assign_pointer(dev->ingress_queue, queue);
10378 #endif
10379         return queue;
10380 }
10381
10382 static const struct ethtool_ops default_ethtool_ops;
10383
10384 void netdev_set_default_ethtool_ops(struct net_device *dev,
10385                                     const struct ethtool_ops *ops)
10386 {
10387         if (dev->ethtool_ops == &default_ethtool_ops)
10388                 dev->ethtool_ops = ops;
10389 }
10390 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10391
10392 void netdev_freemem(struct net_device *dev)
10393 {
10394         char *addr = (char *)dev - dev->padded;
10395
10396         kvfree(addr);
10397 }
10398
10399 /**
10400  * alloc_netdev_mqs - allocate network device
10401  * @sizeof_priv: size of private data to allocate space for
10402  * @name: device name format string
10403  * @name_assign_type: origin of device name
10404  * @setup: callback to initialize device
10405  * @txqs: the number of TX subqueues to allocate
10406  * @rxqs: the number of RX subqueues to allocate
10407  *
10408  * Allocates a struct net_device with private data area for driver use
10409  * and performs basic initialization.  Also allocates subqueue structs
10410  * for each queue on the device.
10411  */
10412 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10413                 unsigned char name_assign_type,
10414                 void (*setup)(struct net_device *),
10415                 unsigned int txqs, unsigned int rxqs)
10416 {
10417         struct net_device *dev;
10418         unsigned int alloc_size;
10419         struct net_device *p;
10420
10421         BUG_ON(strlen(name) >= sizeof(dev->name));
10422
10423         if (txqs < 1) {
10424                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10425                 return NULL;
10426         }
10427
10428         if (rxqs < 1) {
10429                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10430                 return NULL;
10431         }
10432
10433         alloc_size = sizeof(struct net_device);
10434         if (sizeof_priv) {
10435                 /* ensure 32-byte alignment of private area */
10436                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10437                 alloc_size += sizeof_priv;
10438         }
10439         /* ensure 32-byte alignment of whole construct */
10440         alloc_size += NETDEV_ALIGN - 1;
10441
10442         p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10443         if (!p)
10444                 return NULL;
10445
10446         dev = PTR_ALIGN(p, NETDEV_ALIGN);
10447         dev->padded = (char *)dev - (char *)p;
10448
10449         ref_tracker_dir_init(&dev->refcnt_tracker, 128);
10450 #ifdef CONFIG_PCPU_DEV_REFCNT
10451         dev->pcpu_refcnt = alloc_percpu(int);
10452         if (!dev->pcpu_refcnt)
10453                 goto free_dev;
10454         __dev_hold(dev);
10455 #else
10456         refcount_set(&dev->dev_refcnt, 1);
10457 #endif
10458
10459         if (dev_addr_init(dev))
10460                 goto free_pcpu;
10461
10462         dev_mc_init(dev);
10463         dev_uc_init(dev);
10464
10465         dev_net_set(dev, &init_net);
10466
10467         dev->gso_max_size = GSO_MAX_SIZE;
10468         dev->gso_max_segs = GSO_MAX_SEGS;
10469         dev->gro_max_size = GRO_MAX_SIZE;
10470         dev->upper_level = 1;
10471         dev->lower_level = 1;
10472 #ifdef CONFIG_LOCKDEP
10473         dev->nested_level = 0;
10474         INIT_LIST_HEAD(&dev->unlink_list);
10475 #endif
10476
10477         INIT_LIST_HEAD(&dev->napi_list);
10478         INIT_LIST_HEAD(&dev->unreg_list);
10479         INIT_LIST_HEAD(&dev->close_list);
10480         INIT_LIST_HEAD(&dev->link_watch_list);
10481         INIT_LIST_HEAD(&dev->adj_list.upper);
10482         INIT_LIST_HEAD(&dev->adj_list.lower);
10483         INIT_LIST_HEAD(&dev->ptype_all);
10484         INIT_LIST_HEAD(&dev->ptype_specific);
10485         INIT_LIST_HEAD(&dev->net_notifier_list);
10486 #ifdef CONFIG_NET_SCHED
10487         hash_init(dev->qdisc_hash);
10488 #endif
10489         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10490         setup(dev);
10491
10492         if (!dev->tx_queue_len) {
10493                 dev->priv_flags |= IFF_NO_QUEUE;
10494                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10495         }
10496
10497         dev->num_tx_queues = txqs;
10498         dev->real_num_tx_queues = txqs;
10499         if (netif_alloc_netdev_queues(dev))
10500                 goto free_all;
10501
10502         dev->num_rx_queues = rxqs;
10503         dev->real_num_rx_queues = rxqs;
10504         if (netif_alloc_rx_queues(dev))
10505                 goto free_all;
10506
10507         strcpy(dev->name, name);
10508         dev->name_assign_type = name_assign_type;
10509         dev->group = INIT_NETDEV_GROUP;
10510         if (!dev->ethtool_ops)
10511                 dev->ethtool_ops = &default_ethtool_ops;
10512
10513         nf_hook_netdev_init(dev);
10514
10515         return dev;
10516
10517 free_all:
10518         free_netdev(dev);
10519         return NULL;
10520
10521 free_pcpu:
10522 #ifdef CONFIG_PCPU_DEV_REFCNT
10523         free_percpu(dev->pcpu_refcnt);
10524 free_dev:
10525 #endif
10526         netdev_freemem(dev);
10527         return NULL;
10528 }
10529 EXPORT_SYMBOL(alloc_netdev_mqs);
10530
10531 /**
10532  * free_netdev - free network device
10533  * @dev: device
10534  *
10535  * This function does the last stage of destroying an allocated device
10536  * interface. The reference to the device object is released. If this
10537  * is the last reference then it will be freed.Must be called in process
10538  * context.
10539  */
10540 void free_netdev(struct net_device *dev)
10541 {
10542         struct napi_struct *p, *n;
10543
10544         might_sleep();
10545
10546         /* When called immediately after register_netdevice() failed the unwind
10547          * handling may still be dismantling the device. Handle that case by
10548          * deferring the free.
10549          */
10550         if (dev->reg_state == NETREG_UNREGISTERING) {
10551                 ASSERT_RTNL();
10552                 dev->needs_free_netdev = true;
10553                 return;
10554         }
10555
10556         netif_free_tx_queues(dev);
10557         netif_free_rx_queues(dev);
10558
10559         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10560
10561         /* Flush device addresses */
10562         dev_addr_flush(dev);
10563
10564         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10565                 netif_napi_del(p);
10566
10567         ref_tracker_dir_exit(&dev->refcnt_tracker);
10568 #ifdef CONFIG_PCPU_DEV_REFCNT
10569         free_percpu(dev->pcpu_refcnt);
10570         dev->pcpu_refcnt = NULL;
10571 #endif
10572         free_percpu(dev->xdp_bulkq);
10573         dev->xdp_bulkq = NULL;
10574
10575         /*  Compatibility with error handling in drivers */
10576         if (dev->reg_state == NETREG_UNINITIALIZED) {
10577                 netdev_freemem(dev);
10578                 return;
10579         }
10580
10581         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10582         dev->reg_state = NETREG_RELEASED;
10583
10584         /* will free via device release */
10585         put_device(&dev->dev);
10586 }
10587 EXPORT_SYMBOL(free_netdev);
10588
10589 /**
10590  *      synchronize_net -  Synchronize with packet receive processing
10591  *
10592  *      Wait for packets currently being received to be done.
10593  *      Does not block later packets from starting.
10594  */
10595 void synchronize_net(void)
10596 {
10597         might_sleep();
10598         if (rtnl_is_locked())
10599                 synchronize_rcu_expedited();
10600         else
10601                 synchronize_rcu();
10602 }
10603 EXPORT_SYMBOL(synchronize_net);
10604
10605 /**
10606  *      unregister_netdevice_queue - remove device from the kernel
10607  *      @dev: device
10608  *      @head: list
10609  *
10610  *      This function shuts down a device interface and removes it
10611  *      from the kernel tables.
10612  *      If head not NULL, device is queued to be unregistered later.
10613  *
10614  *      Callers must hold the rtnl semaphore.  You may want
10615  *      unregister_netdev() instead of this.
10616  */
10617
10618 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10619 {
10620         ASSERT_RTNL();
10621
10622         if (head) {
10623                 list_move_tail(&dev->unreg_list, head);
10624         } else {
10625                 LIST_HEAD(single);
10626
10627                 list_add(&dev->unreg_list, &single);
10628                 unregister_netdevice_many(&single);
10629         }
10630 }
10631 EXPORT_SYMBOL(unregister_netdevice_queue);
10632
10633 /**
10634  *      unregister_netdevice_many - unregister many devices
10635  *      @head: list of devices
10636  *
10637  *  Note: As most callers use a stack allocated list_head,
10638  *  we force a list_del() to make sure stack wont be corrupted later.
10639  */
10640 void unregister_netdevice_many(struct list_head *head)
10641 {
10642         struct net_device *dev, *tmp;
10643         LIST_HEAD(close_head);
10644
10645         BUG_ON(dev_boot_phase);
10646         ASSERT_RTNL();
10647
10648         if (list_empty(head))
10649                 return;
10650
10651         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10652                 /* Some devices call without registering
10653                  * for initialization unwind. Remove those
10654                  * devices and proceed with the remaining.
10655                  */
10656                 if (dev->reg_state == NETREG_UNINITIALIZED) {
10657                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10658                                  dev->name, dev);
10659
10660                         WARN_ON(1);
10661                         list_del(&dev->unreg_list);
10662                         continue;
10663                 }
10664                 dev->dismantle = true;
10665                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
10666         }
10667
10668         /* If device is running, close it first. */
10669         list_for_each_entry(dev, head, unreg_list)
10670                 list_add_tail(&dev->close_list, &close_head);
10671         dev_close_many(&close_head, true);
10672
10673         list_for_each_entry(dev, head, unreg_list) {
10674                 /* And unlink it from device chain. */
10675                 unlist_netdevice(dev);
10676
10677                 dev->reg_state = NETREG_UNREGISTERING;
10678         }
10679         flush_all_backlogs();
10680
10681         synchronize_net();
10682
10683         list_for_each_entry(dev, head, unreg_list) {
10684                 struct sk_buff *skb = NULL;
10685
10686                 /* Shutdown queueing discipline. */
10687                 dev_shutdown(dev);
10688
10689                 dev_xdp_uninstall(dev);
10690
10691                 netdev_offload_xstats_disable_all(dev);
10692
10693                 /* Notify protocols, that we are about to destroy
10694                  * this device. They should clean all the things.
10695                  */
10696                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10697
10698                 if (!dev->rtnl_link_ops ||
10699                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10700                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
10701                                                      GFP_KERNEL, NULL, 0);
10702
10703                 /*
10704                  *      Flush the unicast and multicast chains
10705                  */
10706                 dev_uc_flush(dev);
10707                 dev_mc_flush(dev);
10708
10709                 netdev_name_node_alt_flush(dev);
10710                 netdev_name_node_free(dev->name_node);
10711
10712                 if (dev->netdev_ops->ndo_uninit)
10713                         dev->netdev_ops->ndo_uninit(dev);
10714
10715                 if (skb)
10716                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
10717
10718                 /* Notifier chain MUST detach us all upper devices. */
10719                 WARN_ON(netdev_has_any_upper_dev(dev));
10720                 WARN_ON(netdev_has_any_lower_dev(dev));
10721
10722                 /* Remove entries from kobject tree */
10723                 netdev_unregister_kobject(dev);
10724 #ifdef CONFIG_XPS
10725                 /* Remove XPS queueing entries */
10726                 netif_reset_xps_queues_gt(dev, 0);
10727 #endif
10728         }
10729
10730         synchronize_net();
10731
10732         list_for_each_entry(dev, head, unreg_list) {
10733                 dev_put_track(dev, &dev->dev_registered_tracker);
10734                 net_set_todo(dev);
10735         }
10736
10737         list_del(head);
10738 }
10739 EXPORT_SYMBOL(unregister_netdevice_many);
10740
10741 /**
10742  *      unregister_netdev - remove device from the kernel
10743  *      @dev: device
10744  *
10745  *      This function shuts down a device interface and removes it
10746  *      from the kernel tables.
10747  *
10748  *      This is just a wrapper for unregister_netdevice that takes
10749  *      the rtnl semaphore.  In general you want to use this and not
10750  *      unregister_netdevice.
10751  */
10752 void unregister_netdev(struct net_device *dev)
10753 {
10754         rtnl_lock();
10755         unregister_netdevice(dev);
10756         rtnl_unlock();
10757 }
10758 EXPORT_SYMBOL(unregister_netdev);
10759
10760 /**
10761  *      __dev_change_net_namespace - move device to different nethost namespace
10762  *      @dev: device
10763  *      @net: network namespace
10764  *      @pat: If not NULL name pattern to try if the current device name
10765  *            is already taken in the destination network namespace.
10766  *      @new_ifindex: If not zero, specifies device index in the target
10767  *                    namespace.
10768  *
10769  *      This function shuts down a device interface and moves it
10770  *      to a new network namespace. On success 0 is returned, on
10771  *      a failure a netagive errno code is returned.
10772  *
10773  *      Callers must hold the rtnl semaphore.
10774  */
10775
10776 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
10777                                const char *pat, int new_ifindex)
10778 {
10779         struct net *net_old = dev_net(dev);
10780         int err, new_nsid;
10781
10782         ASSERT_RTNL();
10783
10784         /* Don't allow namespace local devices to be moved. */
10785         err = -EINVAL;
10786         if (dev->features & NETIF_F_NETNS_LOCAL)
10787                 goto out;
10788
10789         /* Ensure the device has been registrered */
10790         if (dev->reg_state != NETREG_REGISTERED)
10791                 goto out;
10792
10793         /* Get out if there is nothing todo */
10794         err = 0;
10795         if (net_eq(net_old, net))
10796                 goto out;
10797
10798         /* Pick the destination device name, and ensure
10799          * we can use it in the destination network namespace.
10800          */
10801         err = -EEXIST;
10802         if (netdev_name_in_use(net, dev->name)) {
10803                 /* We get here if we can't use the current device name */
10804                 if (!pat)
10805                         goto out;
10806                 err = dev_get_valid_name(net, dev, pat);
10807                 if (err < 0)
10808                         goto out;
10809         }
10810
10811         /* Check that new_ifindex isn't used yet. */
10812         err = -EBUSY;
10813         if (new_ifindex && __dev_get_by_index(net, new_ifindex))
10814                 goto out;
10815
10816         /*
10817          * And now a mini version of register_netdevice unregister_netdevice.
10818          */
10819
10820         /* If device is running close it first. */
10821         dev_close(dev);
10822
10823         /* And unlink it from device chain */
10824         unlist_netdevice(dev);
10825
10826         synchronize_net();
10827
10828         /* Shutdown queueing discipline. */
10829         dev_shutdown(dev);
10830
10831         /* Notify protocols, that we are about to destroy
10832          * this device. They should clean all the things.
10833          *
10834          * Note that dev->reg_state stays at NETREG_REGISTERED.
10835          * This is wanted because this way 8021q and macvlan know
10836          * the device is just moving and can keep their slaves up.
10837          */
10838         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10839         rcu_barrier();
10840
10841         new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10842         /* If there is an ifindex conflict assign a new one */
10843         if (!new_ifindex) {
10844                 if (__dev_get_by_index(net, dev->ifindex))
10845                         new_ifindex = dev_new_index(net);
10846                 else
10847                         new_ifindex = dev->ifindex;
10848         }
10849
10850         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10851                             new_ifindex);
10852
10853         /*
10854          *      Flush the unicast and multicast chains
10855          */
10856         dev_uc_flush(dev);
10857         dev_mc_flush(dev);
10858
10859         /* Send a netdev-removed uevent to the old namespace */
10860         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
10861         netdev_adjacent_del_links(dev);
10862
10863         /* Move per-net netdevice notifiers that are following the netdevice */
10864         move_netdevice_notifiers_dev_net(dev, net);
10865
10866         /* Actually switch the network namespace */
10867         dev_net_set(dev, net);
10868         dev->ifindex = new_ifindex;
10869
10870         /* Send a netdev-add uevent to the new namespace */
10871         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
10872         netdev_adjacent_add_links(dev);
10873
10874         /* Fixup kobjects */
10875         err = device_rename(&dev->dev, dev->name);
10876         WARN_ON(err);
10877
10878         /* Adapt owner in case owning user namespace of target network
10879          * namespace is different from the original one.
10880          */
10881         err = netdev_change_owner(dev, net_old, net);
10882         WARN_ON(err);
10883
10884         /* Add the device back in the hashes */
10885         list_netdevice(dev);
10886
10887         /* Notify protocols, that a new device appeared. */
10888         call_netdevice_notifiers(NETDEV_REGISTER, dev);
10889
10890         /*
10891          *      Prevent userspace races by waiting until the network
10892          *      device is fully setup before sending notifications.
10893          */
10894         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10895
10896         synchronize_net();
10897         err = 0;
10898 out:
10899         return err;
10900 }
10901 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
10902
10903 static int dev_cpu_dead(unsigned int oldcpu)
10904 {
10905         struct sk_buff **list_skb;
10906         struct sk_buff *skb;
10907         unsigned int cpu;
10908         struct softnet_data *sd, *oldsd, *remsd = NULL;
10909
10910         local_irq_disable();
10911         cpu = smp_processor_id();
10912         sd = &per_cpu(softnet_data, cpu);
10913         oldsd = &per_cpu(softnet_data, oldcpu);
10914
10915         /* Find end of our completion_queue. */
10916         list_skb = &sd->completion_queue;
10917         while (*list_skb)
10918                 list_skb = &(*list_skb)->next;
10919         /* Append completion queue from offline CPU. */
10920         *list_skb = oldsd->completion_queue;
10921         oldsd->completion_queue = NULL;
10922
10923         /* Append output queue from offline CPU. */
10924         if (oldsd->output_queue) {
10925                 *sd->output_queue_tailp = oldsd->output_queue;
10926                 sd->output_queue_tailp = oldsd->output_queue_tailp;
10927                 oldsd->output_queue = NULL;
10928                 oldsd->output_queue_tailp = &oldsd->output_queue;
10929         }
10930         /* Append NAPI poll list from offline CPU, with one exception :
10931          * process_backlog() must be called by cpu owning percpu backlog.
10932          * We properly handle process_queue & input_pkt_queue later.
10933          */
10934         while (!list_empty(&oldsd->poll_list)) {
10935                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10936                                                             struct napi_struct,
10937                                                             poll_list);
10938
10939                 list_del_init(&napi->poll_list);
10940                 if (napi->poll == process_backlog)
10941                         napi->state = 0;
10942                 else
10943                         ____napi_schedule(sd, napi);
10944         }
10945
10946         raise_softirq_irqoff(NET_TX_SOFTIRQ);
10947         local_irq_enable();
10948
10949 #ifdef CONFIG_RPS
10950         remsd = oldsd->rps_ipi_list;
10951         oldsd->rps_ipi_list = NULL;
10952 #endif
10953         /* send out pending IPI's on offline CPU */
10954         net_rps_send_ipi(remsd);
10955
10956         /* Process offline CPU's input_pkt_queue */
10957         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
10958                 netif_rx(skb);
10959                 input_queue_head_incr(oldsd);
10960         }
10961         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
10962                 netif_rx(skb);
10963                 input_queue_head_incr(oldsd);
10964         }
10965
10966         return 0;
10967 }
10968
10969 /**
10970  *      netdev_increment_features - increment feature set by one
10971  *      @all: current feature set
10972  *      @one: new feature set
10973  *      @mask: mask feature set
10974  *
10975  *      Computes a new feature set after adding a device with feature set
10976  *      @one to the master device with current feature set @all.  Will not
10977  *      enable anything that is off in @mask. Returns the new feature set.
10978  */
10979 netdev_features_t netdev_increment_features(netdev_features_t all,
10980         netdev_features_t one, netdev_features_t mask)
10981 {
10982         if (mask & NETIF_F_HW_CSUM)
10983                 mask |= NETIF_F_CSUM_MASK;
10984         mask |= NETIF_F_VLAN_CHALLENGED;
10985
10986         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
10987         all &= one | ~NETIF_F_ALL_FOR_ALL;
10988
10989         /* If one device supports hw checksumming, set for all. */
10990         if (all & NETIF_F_HW_CSUM)
10991                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
10992
10993         return all;
10994 }
10995 EXPORT_SYMBOL(netdev_increment_features);
10996
10997 static struct hlist_head * __net_init netdev_create_hash(void)
10998 {
10999         int i;
11000         struct hlist_head *hash;
11001
11002         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11003         if (hash != NULL)
11004                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11005                         INIT_HLIST_HEAD(&hash[i]);
11006
11007         return hash;
11008 }
11009
11010 /* Initialize per network namespace state */
11011 static int __net_init netdev_init(struct net *net)
11012 {
11013         BUILD_BUG_ON(GRO_HASH_BUCKETS >
11014                      8 * sizeof_field(struct napi_struct, gro_bitmask));
11015
11016         INIT_LIST_HEAD(&net->dev_base_head);
11017
11018         net->dev_name_head = netdev_create_hash();
11019         if (net->dev_name_head == NULL)
11020                 goto err_name;
11021
11022         net->dev_index_head = netdev_create_hash();
11023         if (net->dev_index_head == NULL)
11024                 goto err_idx;
11025
11026         RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11027
11028         return 0;
11029
11030 err_idx:
11031         kfree(net->dev_name_head);
11032 err_name:
11033         return -ENOMEM;
11034 }
11035
11036 /**
11037  *      netdev_drivername - network driver for the device
11038  *      @dev: network device
11039  *
11040  *      Determine network driver for device.
11041  */
11042 const char *netdev_drivername(const struct net_device *dev)
11043 {
11044         const struct device_driver *driver;
11045         const struct device *parent;
11046         const char *empty = "";
11047
11048         parent = dev->dev.parent;
11049         if (!parent)
11050                 return empty;
11051
11052         driver = parent->driver;
11053         if (driver && driver->name)
11054                 return driver->name;
11055         return empty;
11056 }
11057
11058 static void __netdev_printk(const char *level, const struct net_device *dev,
11059                             struct va_format *vaf)
11060 {
11061         if (dev && dev->dev.parent) {
11062                 dev_printk_emit(level[1] - '0',
11063                                 dev->dev.parent,
11064                                 "%s %s %s%s: %pV",
11065                                 dev_driver_string(dev->dev.parent),
11066                                 dev_name(dev->dev.parent),
11067                                 netdev_name(dev), netdev_reg_state(dev),
11068                                 vaf);
11069         } else if (dev) {
11070                 printk("%s%s%s: %pV",
11071                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
11072         } else {
11073                 printk("%s(NULL net_device): %pV", level, vaf);
11074         }
11075 }
11076
11077 void netdev_printk(const char *level, const struct net_device *dev,
11078                    const char *format, ...)
11079 {
11080         struct va_format vaf;
11081         va_list args;
11082
11083         va_start(args, format);
11084
11085         vaf.fmt = format;
11086         vaf.va = &args;
11087
11088         __netdev_printk(level, dev, &vaf);
11089
11090         va_end(args);
11091 }
11092 EXPORT_SYMBOL(netdev_printk);
11093
11094 #define define_netdev_printk_level(func, level)                 \
11095 void func(const struct net_device *dev, const char *fmt, ...)   \
11096 {                                                               \
11097         struct va_format vaf;                                   \
11098         va_list args;                                           \
11099                                                                 \
11100         va_start(args, fmt);                                    \
11101                                                                 \
11102         vaf.fmt = fmt;                                          \
11103         vaf.va = &args;                                         \
11104                                                                 \
11105         __netdev_printk(level, dev, &vaf);                      \
11106                                                                 \
11107         va_end(args);                                           \
11108 }                                                               \
11109 EXPORT_SYMBOL(func);
11110
11111 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11112 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11113 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11114 define_netdev_printk_level(netdev_err, KERN_ERR);
11115 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11116 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11117 define_netdev_printk_level(netdev_info, KERN_INFO);
11118
11119 static void __net_exit netdev_exit(struct net *net)
11120 {
11121         kfree(net->dev_name_head);
11122         kfree(net->dev_index_head);
11123         if (net != &init_net)
11124                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11125 }
11126
11127 static struct pernet_operations __net_initdata netdev_net_ops = {
11128         .init = netdev_init,
11129         .exit = netdev_exit,
11130 };
11131
11132 static void __net_exit default_device_exit_net(struct net *net)
11133 {
11134         struct net_device *dev, *aux;
11135         /*
11136          * Push all migratable network devices back to the
11137          * initial network namespace
11138          */
11139         ASSERT_RTNL();
11140         for_each_netdev_safe(net, dev, aux) {
11141                 int err;
11142                 char fb_name[IFNAMSIZ];
11143
11144                 /* Ignore unmoveable devices (i.e. loopback) */
11145                 if (dev->features & NETIF_F_NETNS_LOCAL)
11146                         continue;
11147
11148                 /* Leave virtual devices for the generic cleanup */
11149                 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11150                         continue;
11151
11152                 /* Push remaining network devices to init_net */
11153                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11154                 if (netdev_name_in_use(&init_net, fb_name))
11155                         snprintf(fb_name, IFNAMSIZ, "dev%%d");
11156                 err = dev_change_net_namespace(dev, &init_net, fb_name);
11157                 if (err) {
11158                         pr_emerg("%s: failed to move %s to init_net: %d\n",
11159                                  __func__, dev->name, err);
11160                         BUG();
11161                 }
11162         }
11163 }
11164
11165 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11166 {
11167         /* At exit all network devices most be removed from a network
11168          * namespace.  Do this in the reverse order of registration.
11169          * Do this across as many network namespaces as possible to
11170          * improve batching efficiency.
11171          */
11172         struct net_device *dev;
11173         struct net *net;
11174         LIST_HEAD(dev_kill_list);
11175
11176         rtnl_lock();
11177         list_for_each_entry(net, net_list, exit_list) {
11178                 default_device_exit_net(net);
11179                 cond_resched();
11180         }
11181
11182         list_for_each_entry(net, net_list, exit_list) {
11183                 for_each_netdev_reverse(net, dev) {
11184                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11185                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11186                         else
11187                                 unregister_netdevice_queue(dev, &dev_kill_list);
11188                 }
11189         }
11190         unregister_netdevice_many(&dev_kill_list);
11191         rtnl_unlock();
11192 }
11193
11194 static struct pernet_operations __net_initdata default_device_ops = {
11195         .exit_batch = default_device_exit_batch,
11196 };
11197
11198 /*
11199  *      Initialize the DEV module. At boot time this walks the device list and
11200  *      unhooks any devices that fail to initialise (normally hardware not
11201  *      present) and leaves us with a valid list of present and active devices.
11202  *
11203  */
11204
11205 /*
11206  *       This is called single threaded during boot, so no need
11207  *       to take the rtnl semaphore.
11208  */
11209 static int __init net_dev_init(void)
11210 {
11211         int i, rc = -ENOMEM;
11212
11213         BUG_ON(!dev_boot_phase);
11214
11215         if (dev_proc_init())
11216                 goto out;
11217
11218         if (netdev_kobject_init())
11219                 goto out;
11220
11221         INIT_LIST_HEAD(&ptype_all);
11222         for (i = 0; i < PTYPE_HASH_SIZE; i++)
11223                 INIT_LIST_HEAD(&ptype_base[i]);
11224
11225         if (register_pernet_subsys(&netdev_net_ops))
11226                 goto out;
11227
11228         /*
11229          *      Initialise the packet receive queues.
11230          */
11231
11232         for_each_possible_cpu(i) {
11233                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11234                 struct softnet_data *sd = &per_cpu(softnet_data, i);
11235
11236                 INIT_WORK(flush, flush_backlog);
11237
11238                 skb_queue_head_init(&sd->input_pkt_queue);
11239                 skb_queue_head_init(&sd->process_queue);
11240 #ifdef CONFIG_XFRM_OFFLOAD
11241                 skb_queue_head_init(&sd->xfrm_backlog);
11242 #endif
11243                 INIT_LIST_HEAD(&sd->poll_list);
11244                 sd->output_queue_tailp = &sd->output_queue;
11245 #ifdef CONFIG_RPS
11246                 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11247                 sd->cpu = i;
11248 #endif
11249
11250                 init_gro_hash(&sd->backlog);
11251                 sd->backlog.poll = process_backlog;
11252                 sd->backlog.weight = weight_p;
11253         }
11254
11255         dev_boot_phase = 0;
11256
11257         /* The loopback device is special if any other network devices
11258          * is present in a network namespace the loopback device must
11259          * be present. Since we now dynamically allocate and free the
11260          * loopback device ensure this invariant is maintained by
11261          * keeping the loopback device as the first device on the
11262          * list of network devices.  Ensuring the loopback devices
11263          * is the first device that appears and the last network device
11264          * that disappears.
11265          */
11266         if (register_pernet_device(&loopback_net_ops))
11267                 goto out;
11268
11269         if (register_pernet_device(&default_device_ops))
11270                 goto out;
11271
11272         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11273         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11274
11275         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11276                                        NULL, dev_cpu_dead);
11277         WARN_ON(rc < 0);
11278         rc = 0;
11279 out:
11280         return rc;
11281 }
11282
11283 subsys_initcall(net_dev_init);