Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
[linux-2.6-microblaze.git] / net / core / dev.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *      Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:        Ross Biro
7  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *      Additional Authors:
11  *              Florian la Roche <rzsfl@rz.uni-sb.de>
12  *              Alan Cox <gw4pts@gw4pts.ampr.org>
13  *              David Hinds <dahinds@users.sourceforge.net>
14  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *              Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *      Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *              Alan Cox        :       device private ioctl copies fields back.
24  *              Alan Cox        :       Transmit queue code does relevant
25  *                                      stunts to keep the queue safe.
26  *              Alan Cox        :       Fixed double lock.
27  *              Alan Cox        :       Fixed promisc NULL pointer trap
28  *              ????????        :       Support the full private ioctl range
29  *              Alan Cox        :       Moved ioctl permission check into
30  *                                      drivers
31  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
32  *              Alan Cox        :       100 backlog just doesn't cut it when
33  *                                      you start doing multicast video 8)
34  *              Alan Cox        :       Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *              Alan Cox        :       Took out transmit every packet pass
37  *                                      Saved a few bytes in the ioctl handler
38  *              Alan Cox        :       Network driver sets packet type before
39  *                                      calling netif_rx. Saves a function
40  *                                      call a packet.
41  *              Alan Cox        :       Hashed net_bh()
42  *              Richard Kooijman:       Timestamp fixes.
43  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
44  *              Alan Cox        :       Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *                                      changes.
47  *              Rudi Cilibrasi  :       Pass the right thing to
48  *                                      set_mac_address()
49  *              Dave Miller     :       32bit quantity for the device lock to
50  *                                      make it work out on a Sparc.
51  *              Bjorn Ekwall    :       Added KERNELD hack.
52  *              Alan Cox        :       Cleaned up the backlog initialise.
53  *              Craig Metz      :       SIOCGIFCONF fix if space for under
54  *                                      1 device.
55  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
56  *                                      is no device open function.
57  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
58  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
59  *              Cyrus Durgin    :       Cleaned for KMOD
60  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
61  *                                      A network device unload needs to purge
62  *                                      the backlog queue.
63  *      Paul Rusty Russell      :       SIOCSIFNAME
64  *              Pekka Riikonen  :       Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *                                      - netif_rx() feedback
69  */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/bpf.h>
95 #include <linux/bpf_trace.h>
96 #include <net/net_namespace.h>
97 #include <net/sock.h>
98 #include <net/busy_poll.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dsa.h>
102 #include <net/dst.h>
103 #include <net/dst_metadata.h>
104 #include <net/pkt_sched.h>
105 #include <net/pkt_cls.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/iw_handler.h>
115 #include <asm/current.h>
116 #include <linux/audit.h>
117 #include <linux/dmaengine.h>
118 #include <linux/err.h>
119 #include <linux/ctype.h>
120 #include <linux/if_arp.h>
121 #include <linux/if_vlan.h>
122 #include <linux/ip.h>
123 #include <net/ip.h>
124 #include <net/mpls.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/inetdevice.h>
133 #include <linux/cpu_rmap.h>
134 #include <linux/static_key.h>
135 #include <linux/hashtable.h>
136 #include <linux/vmalloc.h>
137 #include <linux/if_macvlan.h>
138 #include <linux/errqueue.h>
139 #include <linux/hrtimer.h>
140 #include <linux/netfilter_ingress.h>
141 #include <linux/crash_dump.h>
142 #include <linux/sctp.h>
143 #include <net/udp_tunnel.h>
144 #include <linux/net_namespace.h>
145 #include <linux/indirect_call_wrapper.h>
146 #include <net/devlink.h>
147 #include <linux/pm_runtime.h>
148
149 #include "net-sysfs.h"
150
151 #define MAX_GRO_SKBS 8
152
153 /* This should be increased if a protocol with a bigger head is added. */
154 #define GRO_MAX_HEAD (MAX_HEADER + 128)
155
156 static DEFINE_SPINLOCK(ptype_lock);
157 static DEFINE_SPINLOCK(offload_lock);
158 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
159 struct list_head ptype_all __read_mostly;       /* Taps */
160 static struct list_head offload_base __read_mostly;
161
162 static int netif_rx_internal(struct sk_buff *skb);
163 static int call_netdevice_notifiers_info(unsigned long val,
164                                          struct netdev_notifier_info *info);
165 static int call_netdevice_notifiers_extack(unsigned long val,
166                                            struct net_device *dev,
167                                            struct netlink_ext_ack *extack);
168 static struct napi_struct *napi_by_id(unsigned int napi_id);
169
170 /*
171  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
172  * semaphore.
173  *
174  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
175  *
176  * Writers must hold the rtnl semaphore while they loop through the
177  * dev_base_head list, and hold dev_base_lock for writing when they do the
178  * actual updates.  This allows pure readers to access the list even
179  * while a writer is preparing to update it.
180  *
181  * To put it another way, dev_base_lock is held for writing only to
182  * protect against pure readers; the rtnl semaphore provides the
183  * protection against other writers.
184  *
185  * See, for example usages, register_netdevice() and
186  * unregister_netdevice(), which must be called with the rtnl
187  * semaphore held.
188  */
189 DEFINE_RWLOCK(dev_base_lock);
190 EXPORT_SYMBOL(dev_base_lock);
191
192 static DEFINE_MUTEX(ifalias_mutex);
193
194 /* protects napi_hash addition/deletion and napi_gen_id */
195 static DEFINE_SPINLOCK(napi_hash_lock);
196
197 static unsigned int napi_gen_id = NR_CPUS;
198 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
199
200 static DECLARE_RWSEM(devnet_rename_sem);
201
202 static inline void dev_base_seq_inc(struct net *net)
203 {
204         while (++net->dev_base_seq == 0)
205                 ;
206 }
207
208 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
209 {
210         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
211
212         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
213 }
214
215 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
216 {
217         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
218 }
219
220 static inline void rps_lock(struct softnet_data *sd)
221 {
222 #ifdef CONFIG_RPS
223         spin_lock(&sd->input_pkt_queue.lock);
224 #endif
225 }
226
227 static inline void rps_unlock(struct softnet_data *sd)
228 {
229 #ifdef CONFIG_RPS
230         spin_unlock(&sd->input_pkt_queue.lock);
231 #endif
232 }
233
234 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
235                                                        const char *name)
236 {
237         struct netdev_name_node *name_node;
238
239         name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
240         if (!name_node)
241                 return NULL;
242         INIT_HLIST_NODE(&name_node->hlist);
243         name_node->dev = dev;
244         name_node->name = name;
245         return name_node;
246 }
247
248 static struct netdev_name_node *
249 netdev_name_node_head_alloc(struct net_device *dev)
250 {
251         struct netdev_name_node *name_node;
252
253         name_node = netdev_name_node_alloc(dev, dev->name);
254         if (!name_node)
255                 return NULL;
256         INIT_LIST_HEAD(&name_node->list);
257         return name_node;
258 }
259
260 static void netdev_name_node_free(struct netdev_name_node *name_node)
261 {
262         kfree(name_node);
263 }
264
265 static void netdev_name_node_add(struct net *net,
266                                  struct netdev_name_node *name_node)
267 {
268         hlist_add_head_rcu(&name_node->hlist,
269                            dev_name_hash(net, name_node->name));
270 }
271
272 static void netdev_name_node_del(struct netdev_name_node *name_node)
273 {
274         hlist_del_rcu(&name_node->hlist);
275 }
276
277 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
278                                                         const char *name)
279 {
280         struct hlist_head *head = dev_name_hash(net, name);
281         struct netdev_name_node *name_node;
282
283         hlist_for_each_entry(name_node, head, hlist)
284                 if (!strcmp(name_node->name, name))
285                         return name_node;
286         return NULL;
287 }
288
289 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
290                                                             const char *name)
291 {
292         struct hlist_head *head = dev_name_hash(net, name);
293         struct netdev_name_node *name_node;
294
295         hlist_for_each_entry_rcu(name_node, head, hlist)
296                 if (!strcmp(name_node->name, name))
297                         return name_node;
298         return NULL;
299 }
300
301 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
302 {
303         struct netdev_name_node *name_node;
304         struct net *net = dev_net(dev);
305
306         name_node = netdev_name_node_lookup(net, name);
307         if (name_node)
308                 return -EEXIST;
309         name_node = netdev_name_node_alloc(dev, name);
310         if (!name_node)
311                 return -ENOMEM;
312         netdev_name_node_add(net, name_node);
313         /* The node that holds dev->name acts as a head of per-device list. */
314         list_add_tail(&name_node->list, &dev->name_node->list);
315
316         return 0;
317 }
318 EXPORT_SYMBOL(netdev_name_node_alt_create);
319
320 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
321 {
322         list_del(&name_node->list);
323         netdev_name_node_del(name_node);
324         kfree(name_node->name);
325         netdev_name_node_free(name_node);
326 }
327
328 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
329 {
330         struct netdev_name_node *name_node;
331         struct net *net = dev_net(dev);
332
333         name_node = netdev_name_node_lookup(net, name);
334         if (!name_node)
335                 return -ENOENT;
336         /* lookup might have found our primary name or a name belonging
337          * to another device.
338          */
339         if (name_node == dev->name_node || name_node->dev != dev)
340                 return -EINVAL;
341
342         __netdev_name_node_alt_destroy(name_node);
343
344         return 0;
345 }
346 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
347
348 static void netdev_name_node_alt_flush(struct net_device *dev)
349 {
350         struct netdev_name_node *name_node, *tmp;
351
352         list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
353                 __netdev_name_node_alt_destroy(name_node);
354 }
355
356 /* Device list insertion */
357 static void list_netdevice(struct net_device *dev)
358 {
359         struct net *net = dev_net(dev);
360
361         ASSERT_RTNL();
362
363         write_lock_bh(&dev_base_lock);
364         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
365         netdev_name_node_add(net, dev->name_node);
366         hlist_add_head_rcu(&dev->index_hlist,
367                            dev_index_hash(net, dev->ifindex));
368         write_unlock_bh(&dev_base_lock);
369
370         dev_base_seq_inc(net);
371 }
372
373 /* Device list removal
374  * caller must respect a RCU grace period before freeing/reusing dev
375  */
376 static void unlist_netdevice(struct net_device *dev)
377 {
378         ASSERT_RTNL();
379
380         /* Unlink dev from the device chain */
381         write_lock_bh(&dev_base_lock);
382         list_del_rcu(&dev->dev_list);
383         netdev_name_node_del(dev->name_node);
384         hlist_del_rcu(&dev->index_hlist);
385         write_unlock_bh(&dev_base_lock);
386
387         dev_base_seq_inc(dev_net(dev));
388 }
389
390 /*
391  *      Our notifier list
392  */
393
394 static RAW_NOTIFIER_HEAD(netdev_chain);
395
396 /*
397  *      Device drivers call our routines to queue packets here. We empty the
398  *      queue in the local softnet handler.
399  */
400
401 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
402 EXPORT_PER_CPU_SYMBOL(softnet_data);
403
404 #ifdef CONFIG_LOCKDEP
405 /*
406  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
407  * according to dev->type
408  */
409 static const unsigned short netdev_lock_type[] = {
410          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
411          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
412          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
413          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
414          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
415          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
416          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
417          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
418          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
419          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
420          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
421          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
422          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
423          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
424          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
425
426 static const char *const netdev_lock_name[] = {
427         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
428         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
429         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
430         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
431         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
432         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
433         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
434         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
435         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
436         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
437         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
438         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
439         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
440         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
441         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
442
443 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
444 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
445
446 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
447 {
448         int i;
449
450         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
451                 if (netdev_lock_type[i] == dev_type)
452                         return i;
453         /* the last key is used by default */
454         return ARRAY_SIZE(netdev_lock_type) - 1;
455 }
456
457 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
458                                                  unsigned short dev_type)
459 {
460         int i;
461
462         i = netdev_lock_pos(dev_type);
463         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
464                                    netdev_lock_name[i]);
465 }
466
467 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
468 {
469         int i;
470
471         i = netdev_lock_pos(dev->type);
472         lockdep_set_class_and_name(&dev->addr_list_lock,
473                                    &netdev_addr_lock_key[i],
474                                    netdev_lock_name[i]);
475 }
476 #else
477 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
478                                                  unsigned short dev_type)
479 {
480 }
481
482 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
483 {
484 }
485 #endif
486
487 /*******************************************************************************
488  *
489  *              Protocol management and registration routines
490  *
491  *******************************************************************************/
492
493
494 /*
495  *      Add a protocol ID to the list. Now that the input handler is
496  *      smarter we can dispense with all the messy stuff that used to be
497  *      here.
498  *
499  *      BEWARE!!! Protocol handlers, mangling input packets,
500  *      MUST BE last in hash buckets and checking protocol handlers
501  *      MUST start from promiscuous ptype_all chain in net_bh.
502  *      It is true now, do not change it.
503  *      Explanation follows: if protocol handler, mangling packet, will
504  *      be the first on list, it is not able to sense, that packet
505  *      is cloned and should be copied-on-write, so that it will
506  *      change it and subsequent readers will get broken packet.
507  *                                                      --ANK (980803)
508  */
509
510 static inline struct list_head *ptype_head(const struct packet_type *pt)
511 {
512         if (pt->type == htons(ETH_P_ALL))
513                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
514         else
515                 return pt->dev ? &pt->dev->ptype_specific :
516                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
517 }
518
519 /**
520  *      dev_add_pack - add packet handler
521  *      @pt: packet type declaration
522  *
523  *      Add a protocol handler to the networking stack. The passed &packet_type
524  *      is linked into kernel lists and may not be freed until it has been
525  *      removed from the kernel lists.
526  *
527  *      This call does not sleep therefore it can not
528  *      guarantee all CPU's that are in middle of receiving packets
529  *      will see the new packet type (until the next received packet).
530  */
531
532 void dev_add_pack(struct packet_type *pt)
533 {
534         struct list_head *head = ptype_head(pt);
535
536         spin_lock(&ptype_lock);
537         list_add_rcu(&pt->list, head);
538         spin_unlock(&ptype_lock);
539 }
540 EXPORT_SYMBOL(dev_add_pack);
541
542 /**
543  *      __dev_remove_pack        - remove packet handler
544  *      @pt: packet type declaration
545  *
546  *      Remove a protocol handler that was previously added to the kernel
547  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
548  *      from the kernel lists and can be freed or reused once this function
549  *      returns.
550  *
551  *      The packet type might still be in use by receivers
552  *      and must not be freed until after all the CPU's have gone
553  *      through a quiescent state.
554  */
555 void __dev_remove_pack(struct packet_type *pt)
556 {
557         struct list_head *head = ptype_head(pt);
558         struct packet_type *pt1;
559
560         spin_lock(&ptype_lock);
561
562         list_for_each_entry(pt1, head, list) {
563                 if (pt == pt1) {
564                         list_del_rcu(&pt->list);
565                         goto out;
566                 }
567         }
568
569         pr_warn("dev_remove_pack: %p not found\n", pt);
570 out:
571         spin_unlock(&ptype_lock);
572 }
573 EXPORT_SYMBOL(__dev_remove_pack);
574
575 /**
576  *      dev_remove_pack  - remove packet handler
577  *      @pt: packet type declaration
578  *
579  *      Remove a protocol handler that was previously added to the kernel
580  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
581  *      from the kernel lists and can be freed or reused once this function
582  *      returns.
583  *
584  *      This call sleeps to guarantee that no CPU is looking at the packet
585  *      type after return.
586  */
587 void dev_remove_pack(struct packet_type *pt)
588 {
589         __dev_remove_pack(pt);
590
591         synchronize_net();
592 }
593 EXPORT_SYMBOL(dev_remove_pack);
594
595
596 /**
597  *      dev_add_offload - register offload handlers
598  *      @po: protocol offload declaration
599  *
600  *      Add protocol offload handlers to the networking stack. The passed
601  *      &proto_offload is linked into kernel lists and may not be freed until
602  *      it has been removed from the kernel lists.
603  *
604  *      This call does not sleep therefore it can not
605  *      guarantee all CPU's that are in middle of receiving packets
606  *      will see the new offload handlers (until the next received packet).
607  */
608 void dev_add_offload(struct packet_offload *po)
609 {
610         struct packet_offload *elem;
611
612         spin_lock(&offload_lock);
613         list_for_each_entry(elem, &offload_base, list) {
614                 if (po->priority < elem->priority)
615                         break;
616         }
617         list_add_rcu(&po->list, elem->list.prev);
618         spin_unlock(&offload_lock);
619 }
620 EXPORT_SYMBOL(dev_add_offload);
621
622 /**
623  *      __dev_remove_offload     - remove offload handler
624  *      @po: packet offload declaration
625  *
626  *      Remove a protocol offload handler that was previously added to the
627  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
628  *      is removed from the kernel lists and can be freed or reused once this
629  *      function returns.
630  *
631  *      The packet type might still be in use by receivers
632  *      and must not be freed until after all the CPU's have gone
633  *      through a quiescent state.
634  */
635 static void __dev_remove_offload(struct packet_offload *po)
636 {
637         struct list_head *head = &offload_base;
638         struct packet_offload *po1;
639
640         spin_lock(&offload_lock);
641
642         list_for_each_entry(po1, head, list) {
643                 if (po == po1) {
644                         list_del_rcu(&po->list);
645                         goto out;
646                 }
647         }
648
649         pr_warn("dev_remove_offload: %p not found\n", po);
650 out:
651         spin_unlock(&offload_lock);
652 }
653
654 /**
655  *      dev_remove_offload       - remove packet offload handler
656  *      @po: packet offload declaration
657  *
658  *      Remove a packet offload handler that was previously added to the kernel
659  *      offload handlers by dev_add_offload(). The passed &offload_type is
660  *      removed from the kernel lists and can be freed or reused once this
661  *      function returns.
662  *
663  *      This call sleeps to guarantee that no CPU is looking at the packet
664  *      type after return.
665  */
666 void dev_remove_offload(struct packet_offload *po)
667 {
668         __dev_remove_offload(po);
669
670         synchronize_net();
671 }
672 EXPORT_SYMBOL(dev_remove_offload);
673
674 /******************************************************************************
675  *
676  *                    Device Boot-time Settings Routines
677  *
678  ******************************************************************************/
679
680 /* Boot time configuration table */
681 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
682
683 /**
684  *      netdev_boot_setup_add   - add new setup entry
685  *      @name: name of the device
686  *      @map: configured settings for the device
687  *
688  *      Adds new setup entry to the dev_boot_setup list.  The function
689  *      returns 0 on error and 1 on success.  This is a generic routine to
690  *      all netdevices.
691  */
692 static int netdev_boot_setup_add(char *name, struct ifmap *map)
693 {
694         struct netdev_boot_setup *s;
695         int i;
696
697         s = dev_boot_setup;
698         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
699                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
700                         memset(s[i].name, 0, sizeof(s[i].name));
701                         strlcpy(s[i].name, name, IFNAMSIZ);
702                         memcpy(&s[i].map, map, sizeof(s[i].map));
703                         break;
704                 }
705         }
706
707         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
708 }
709
710 /**
711  * netdev_boot_setup_check      - check boot time settings
712  * @dev: the netdevice
713  *
714  * Check boot time settings for the device.
715  * The found settings are set for the device to be used
716  * later in the device probing.
717  * Returns 0 if no settings found, 1 if they are.
718  */
719 int netdev_boot_setup_check(struct net_device *dev)
720 {
721         struct netdev_boot_setup *s = dev_boot_setup;
722         int i;
723
724         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
725                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
726                     !strcmp(dev->name, s[i].name)) {
727                         dev->irq = s[i].map.irq;
728                         dev->base_addr = s[i].map.base_addr;
729                         dev->mem_start = s[i].map.mem_start;
730                         dev->mem_end = s[i].map.mem_end;
731                         return 1;
732                 }
733         }
734         return 0;
735 }
736 EXPORT_SYMBOL(netdev_boot_setup_check);
737
738
739 /**
740  * netdev_boot_base     - get address from boot time settings
741  * @prefix: prefix for network device
742  * @unit: id for network device
743  *
744  * Check boot time settings for the base address of device.
745  * The found settings are set for the device to be used
746  * later in the device probing.
747  * Returns 0 if no settings found.
748  */
749 unsigned long netdev_boot_base(const char *prefix, int unit)
750 {
751         const struct netdev_boot_setup *s = dev_boot_setup;
752         char name[IFNAMSIZ];
753         int i;
754
755         sprintf(name, "%s%d", prefix, unit);
756
757         /*
758          * If device already registered then return base of 1
759          * to indicate not to probe for this interface
760          */
761         if (__dev_get_by_name(&init_net, name))
762                 return 1;
763
764         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
765                 if (!strcmp(name, s[i].name))
766                         return s[i].map.base_addr;
767         return 0;
768 }
769
770 /*
771  * Saves at boot time configured settings for any netdevice.
772  */
773 int __init netdev_boot_setup(char *str)
774 {
775         int ints[5];
776         struct ifmap map;
777
778         str = get_options(str, ARRAY_SIZE(ints), ints);
779         if (!str || !*str)
780                 return 0;
781
782         /* Save settings */
783         memset(&map, 0, sizeof(map));
784         if (ints[0] > 0)
785                 map.irq = ints[1];
786         if (ints[0] > 1)
787                 map.base_addr = ints[2];
788         if (ints[0] > 2)
789                 map.mem_start = ints[3];
790         if (ints[0] > 3)
791                 map.mem_end = ints[4];
792
793         /* Add new entry to the list */
794         return netdev_boot_setup_add(str, &map);
795 }
796
797 __setup("netdev=", netdev_boot_setup);
798
799 /*******************************************************************************
800  *
801  *                          Device Interface Subroutines
802  *
803  *******************************************************************************/
804
805 /**
806  *      dev_get_iflink  - get 'iflink' value of a interface
807  *      @dev: targeted interface
808  *
809  *      Indicates the ifindex the interface is linked to.
810  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
811  */
812
813 int dev_get_iflink(const struct net_device *dev)
814 {
815         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
816                 return dev->netdev_ops->ndo_get_iflink(dev);
817
818         return dev->ifindex;
819 }
820 EXPORT_SYMBOL(dev_get_iflink);
821
822 /**
823  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
824  *      @dev: targeted interface
825  *      @skb: The packet.
826  *
827  *      For better visibility of tunnel traffic OVS needs to retrieve
828  *      egress tunnel information for a packet. Following API allows
829  *      user to get this info.
830  */
831 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
832 {
833         struct ip_tunnel_info *info;
834
835         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
836                 return -EINVAL;
837
838         info = skb_tunnel_info_unclone(skb);
839         if (!info)
840                 return -ENOMEM;
841         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
842                 return -EINVAL;
843
844         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
845 }
846 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
847
848 /**
849  *      __dev_get_by_name       - find a device by its name
850  *      @net: the applicable net namespace
851  *      @name: name to find
852  *
853  *      Find an interface by name. Must be called under RTNL semaphore
854  *      or @dev_base_lock. If the name is found a pointer to the device
855  *      is returned. If the name is not found then %NULL is returned. The
856  *      reference counters are not incremented so the caller must be
857  *      careful with locks.
858  */
859
860 struct net_device *__dev_get_by_name(struct net *net, const char *name)
861 {
862         struct netdev_name_node *node_name;
863
864         node_name = netdev_name_node_lookup(net, name);
865         return node_name ? node_name->dev : NULL;
866 }
867 EXPORT_SYMBOL(__dev_get_by_name);
868
869 /**
870  * dev_get_by_name_rcu  - find a device by its name
871  * @net: the applicable net namespace
872  * @name: name to find
873  *
874  * Find an interface by name.
875  * If the name is found a pointer to the device is returned.
876  * If the name is not found then %NULL is returned.
877  * The reference counters are not incremented so the caller must be
878  * careful with locks. The caller must hold RCU lock.
879  */
880
881 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
882 {
883         struct netdev_name_node *node_name;
884
885         node_name = netdev_name_node_lookup_rcu(net, name);
886         return node_name ? node_name->dev : NULL;
887 }
888 EXPORT_SYMBOL(dev_get_by_name_rcu);
889
890 /**
891  *      dev_get_by_name         - find a device by its name
892  *      @net: the applicable net namespace
893  *      @name: name to find
894  *
895  *      Find an interface by name. This can be called from any
896  *      context and does its own locking. The returned handle has
897  *      the usage count incremented and the caller must use dev_put() to
898  *      release it when it is no longer needed. %NULL is returned if no
899  *      matching device is found.
900  */
901
902 struct net_device *dev_get_by_name(struct net *net, const char *name)
903 {
904         struct net_device *dev;
905
906         rcu_read_lock();
907         dev = dev_get_by_name_rcu(net, name);
908         if (dev)
909                 dev_hold(dev);
910         rcu_read_unlock();
911         return dev;
912 }
913 EXPORT_SYMBOL(dev_get_by_name);
914
915 /**
916  *      __dev_get_by_index - find a device by its ifindex
917  *      @net: the applicable net namespace
918  *      @ifindex: index of device
919  *
920  *      Search for an interface by index. Returns %NULL if the device
921  *      is not found or a pointer to the device. The device has not
922  *      had its reference counter increased so the caller must be careful
923  *      about locking. The caller must hold either the RTNL semaphore
924  *      or @dev_base_lock.
925  */
926
927 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
928 {
929         struct net_device *dev;
930         struct hlist_head *head = dev_index_hash(net, ifindex);
931
932         hlist_for_each_entry(dev, head, index_hlist)
933                 if (dev->ifindex == ifindex)
934                         return dev;
935
936         return NULL;
937 }
938 EXPORT_SYMBOL(__dev_get_by_index);
939
940 /**
941  *      dev_get_by_index_rcu - find a device by its ifindex
942  *      @net: the applicable net namespace
943  *      @ifindex: index of device
944  *
945  *      Search for an interface by index. Returns %NULL if the device
946  *      is not found or a pointer to the device. The device has not
947  *      had its reference counter increased so the caller must be careful
948  *      about locking. The caller must hold RCU lock.
949  */
950
951 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
952 {
953         struct net_device *dev;
954         struct hlist_head *head = dev_index_hash(net, ifindex);
955
956         hlist_for_each_entry_rcu(dev, head, index_hlist)
957                 if (dev->ifindex == ifindex)
958                         return dev;
959
960         return NULL;
961 }
962 EXPORT_SYMBOL(dev_get_by_index_rcu);
963
964
965 /**
966  *      dev_get_by_index - find a device by its ifindex
967  *      @net: the applicable net namespace
968  *      @ifindex: index of device
969  *
970  *      Search for an interface by index. Returns NULL if the device
971  *      is not found or a pointer to the device. The device returned has
972  *      had a reference added and the pointer is safe until the user calls
973  *      dev_put to indicate they have finished with it.
974  */
975
976 struct net_device *dev_get_by_index(struct net *net, int ifindex)
977 {
978         struct net_device *dev;
979
980         rcu_read_lock();
981         dev = dev_get_by_index_rcu(net, ifindex);
982         if (dev)
983                 dev_hold(dev);
984         rcu_read_unlock();
985         return dev;
986 }
987 EXPORT_SYMBOL(dev_get_by_index);
988
989 /**
990  *      dev_get_by_napi_id - find a device by napi_id
991  *      @napi_id: ID of the NAPI struct
992  *
993  *      Search for an interface by NAPI ID. Returns %NULL if the device
994  *      is not found or a pointer to the device. The device has not had
995  *      its reference counter increased so the caller must be careful
996  *      about locking. The caller must hold RCU lock.
997  */
998
999 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1000 {
1001         struct napi_struct *napi;
1002
1003         WARN_ON_ONCE(!rcu_read_lock_held());
1004
1005         if (napi_id < MIN_NAPI_ID)
1006                 return NULL;
1007
1008         napi = napi_by_id(napi_id);
1009
1010         return napi ? napi->dev : NULL;
1011 }
1012 EXPORT_SYMBOL(dev_get_by_napi_id);
1013
1014 /**
1015  *      netdev_get_name - get a netdevice name, knowing its ifindex.
1016  *      @net: network namespace
1017  *      @name: a pointer to the buffer where the name will be stored.
1018  *      @ifindex: the ifindex of the interface to get the name from.
1019  */
1020 int netdev_get_name(struct net *net, char *name, int ifindex)
1021 {
1022         struct net_device *dev;
1023         int ret;
1024
1025         down_read(&devnet_rename_sem);
1026         rcu_read_lock();
1027
1028         dev = dev_get_by_index_rcu(net, ifindex);
1029         if (!dev) {
1030                 ret = -ENODEV;
1031                 goto out;
1032         }
1033
1034         strcpy(name, dev->name);
1035
1036         ret = 0;
1037 out:
1038         rcu_read_unlock();
1039         up_read(&devnet_rename_sem);
1040         return ret;
1041 }
1042
1043 /**
1044  *      dev_getbyhwaddr_rcu - find a device by its hardware address
1045  *      @net: the applicable net namespace
1046  *      @type: media type of device
1047  *      @ha: hardware address
1048  *
1049  *      Search for an interface by MAC address. Returns NULL if the device
1050  *      is not found or a pointer to the device.
1051  *      The caller must hold RCU or RTNL.
1052  *      The returned device has not had its ref count increased
1053  *      and the caller must therefore be careful about locking
1054  *
1055  */
1056
1057 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1058                                        const char *ha)
1059 {
1060         struct net_device *dev;
1061
1062         for_each_netdev_rcu(net, dev)
1063                 if (dev->type == type &&
1064                     !memcmp(dev->dev_addr, ha, dev->addr_len))
1065                         return dev;
1066
1067         return NULL;
1068 }
1069 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1070
1071 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1072 {
1073         struct net_device *dev;
1074
1075         ASSERT_RTNL();
1076         for_each_netdev(net, dev)
1077                 if (dev->type == type)
1078                         return dev;
1079
1080         return NULL;
1081 }
1082 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
1083
1084 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1085 {
1086         struct net_device *dev, *ret = NULL;
1087
1088         rcu_read_lock();
1089         for_each_netdev_rcu(net, dev)
1090                 if (dev->type == type) {
1091                         dev_hold(dev);
1092                         ret = dev;
1093                         break;
1094                 }
1095         rcu_read_unlock();
1096         return ret;
1097 }
1098 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1099
1100 /**
1101  *      __dev_get_by_flags - find any device with given flags
1102  *      @net: the applicable net namespace
1103  *      @if_flags: IFF_* values
1104  *      @mask: bitmask of bits in if_flags to check
1105  *
1106  *      Search for any interface with the given flags. Returns NULL if a device
1107  *      is not found or a pointer to the device. Must be called inside
1108  *      rtnl_lock(), and result refcount is unchanged.
1109  */
1110
1111 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1112                                       unsigned short mask)
1113 {
1114         struct net_device *dev, *ret;
1115
1116         ASSERT_RTNL();
1117
1118         ret = NULL;
1119         for_each_netdev(net, dev) {
1120                 if (((dev->flags ^ if_flags) & mask) == 0) {
1121                         ret = dev;
1122                         break;
1123                 }
1124         }
1125         return ret;
1126 }
1127 EXPORT_SYMBOL(__dev_get_by_flags);
1128
1129 /**
1130  *      dev_valid_name - check if name is okay for network device
1131  *      @name: name string
1132  *
1133  *      Network device names need to be valid file names to
1134  *      allow sysfs to work.  We also disallow any kind of
1135  *      whitespace.
1136  */
1137 bool dev_valid_name(const char *name)
1138 {
1139         if (*name == '\0')
1140                 return false;
1141         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1142                 return false;
1143         if (!strcmp(name, ".") || !strcmp(name, ".."))
1144                 return false;
1145
1146         while (*name) {
1147                 if (*name == '/' || *name == ':' || isspace(*name))
1148                         return false;
1149                 name++;
1150         }
1151         return true;
1152 }
1153 EXPORT_SYMBOL(dev_valid_name);
1154
1155 /**
1156  *      __dev_alloc_name - allocate a name for a device
1157  *      @net: network namespace to allocate the device name in
1158  *      @name: name format string
1159  *      @buf:  scratch buffer and result name string
1160  *
1161  *      Passed a format string - eg "lt%d" it will try and find a suitable
1162  *      id. It scans list of devices to build up a free map, then chooses
1163  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1164  *      while allocating the name and adding the device in order to avoid
1165  *      duplicates.
1166  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1167  *      Returns the number of the unit assigned or a negative errno code.
1168  */
1169
1170 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1171 {
1172         int i = 0;
1173         const char *p;
1174         const int max_netdevices = 8*PAGE_SIZE;
1175         unsigned long *inuse;
1176         struct net_device *d;
1177
1178         if (!dev_valid_name(name))
1179                 return -EINVAL;
1180
1181         p = strchr(name, '%');
1182         if (p) {
1183                 /*
1184                  * Verify the string as this thing may have come from
1185                  * the user.  There must be either one "%d" and no other "%"
1186                  * characters.
1187                  */
1188                 if (p[1] != 'd' || strchr(p + 2, '%'))
1189                         return -EINVAL;
1190
1191                 /* Use one page as a bit array of possible slots */
1192                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1193                 if (!inuse)
1194                         return -ENOMEM;
1195
1196                 for_each_netdev(net, d) {
1197                         if (!sscanf(d->name, name, &i))
1198                                 continue;
1199                         if (i < 0 || i >= max_netdevices)
1200                                 continue;
1201
1202                         /*  avoid cases where sscanf is not exact inverse of printf */
1203                         snprintf(buf, IFNAMSIZ, name, i);
1204                         if (!strncmp(buf, d->name, IFNAMSIZ))
1205                                 set_bit(i, inuse);
1206                 }
1207
1208                 i = find_first_zero_bit(inuse, max_netdevices);
1209                 free_page((unsigned long) inuse);
1210         }
1211
1212         snprintf(buf, IFNAMSIZ, name, i);
1213         if (!__dev_get_by_name(net, buf))
1214                 return i;
1215
1216         /* It is possible to run out of possible slots
1217          * when the name is long and there isn't enough space left
1218          * for the digits, or if all bits are used.
1219          */
1220         return -ENFILE;
1221 }
1222
1223 static int dev_alloc_name_ns(struct net *net,
1224                              struct net_device *dev,
1225                              const char *name)
1226 {
1227         char buf[IFNAMSIZ];
1228         int ret;
1229
1230         BUG_ON(!net);
1231         ret = __dev_alloc_name(net, name, buf);
1232         if (ret >= 0)
1233                 strlcpy(dev->name, buf, IFNAMSIZ);
1234         return ret;
1235 }
1236
1237 /**
1238  *      dev_alloc_name - allocate a name for a device
1239  *      @dev: device
1240  *      @name: name format string
1241  *
1242  *      Passed a format string - eg "lt%d" it will try and find a suitable
1243  *      id. It scans list of devices to build up a free map, then chooses
1244  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1245  *      while allocating the name and adding the device in order to avoid
1246  *      duplicates.
1247  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1248  *      Returns the number of the unit assigned or a negative errno code.
1249  */
1250
1251 int dev_alloc_name(struct net_device *dev, const char *name)
1252 {
1253         return dev_alloc_name_ns(dev_net(dev), dev, name);
1254 }
1255 EXPORT_SYMBOL(dev_alloc_name);
1256
1257 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1258                               const char *name)
1259 {
1260         BUG_ON(!net);
1261
1262         if (!dev_valid_name(name))
1263                 return -EINVAL;
1264
1265         if (strchr(name, '%'))
1266                 return dev_alloc_name_ns(net, dev, name);
1267         else if (__dev_get_by_name(net, name))
1268                 return -EEXIST;
1269         else if (dev->name != name)
1270                 strlcpy(dev->name, name, IFNAMSIZ);
1271
1272         return 0;
1273 }
1274
1275 /**
1276  *      dev_change_name - change name of a device
1277  *      @dev: device
1278  *      @newname: name (or format string) must be at least IFNAMSIZ
1279  *
1280  *      Change name of a device, can pass format strings "eth%d".
1281  *      for wildcarding.
1282  */
1283 int dev_change_name(struct net_device *dev, const char *newname)
1284 {
1285         unsigned char old_assign_type;
1286         char oldname[IFNAMSIZ];
1287         int err = 0;
1288         int ret;
1289         struct net *net;
1290
1291         ASSERT_RTNL();
1292         BUG_ON(!dev_net(dev));
1293
1294         net = dev_net(dev);
1295
1296         /* Some auto-enslaved devices e.g. failover slaves are
1297          * special, as userspace might rename the device after
1298          * the interface had been brought up and running since
1299          * the point kernel initiated auto-enslavement. Allow
1300          * live name change even when these slave devices are
1301          * up and running.
1302          *
1303          * Typically, users of these auto-enslaving devices
1304          * don't actually care about slave name change, as
1305          * they are supposed to operate on master interface
1306          * directly.
1307          */
1308         if (dev->flags & IFF_UP &&
1309             likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1310                 return -EBUSY;
1311
1312         down_write(&devnet_rename_sem);
1313
1314         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1315                 up_write(&devnet_rename_sem);
1316                 return 0;
1317         }
1318
1319         memcpy(oldname, dev->name, IFNAMSIZ);
1320
1321         err = dev_get_valid_name(net, dev, newname);
1322         if (err < 0) {
1323                 up_write(&devnet_rename_sem);
1324                 return err;
1325         }
1326
1327         if (oldname[0] && !strchr(oldname, '%'))
1328                 netdev_info(dev, "renamed from %s\n", oldname);
1329
1330         old_assign_type = dev->name_assign_type;
1331         dev->name_assign_type = NET_NAME_RENAMED;
1332
1333 rollback:
1334         ret = device_rename(&dev->dev, dev->name);
1335         if (ret) {
1336                 memcpy(dev->name, oldname, IFNAMSIZ);
1337                 dev->name_assign_type = old_assign_type;
1338                 up_write(&devnet_rename_sem);
1339                 return ret;
1340         }
1341
1342         up_write(&devnet_rename_sem);
1343
1344         netdev_adjacent_rename_links(dev, oldname);
1345
1346         write_lock_bh(&dev_base_lock);
1347         netdev_name_node_del(dev->name_node);
1348         write_unlock_bh(&dev_base_lock);
1349
1350         synchronize_rcu();
1351
1352         write_lock_bh(&dev_base_lock);
1353         netdev_name_node_add(net, dev->name_node);
1354         write_unlock_bh(&dev_base_lock);
1355
1356         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1357         ret = notifier_to_errno(ret);
1358
1359         if (ret) {
1360                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1361                 if (err >= 0) {
1362                         err = ret;
1363                         down_write(&devnet_rename_sem);
1364                         memcpy(dev->name, oldname, IFNAMSIZ);
1365                         memcpy(oldname, newname, IFNAMSIZ);
1366                         dev->name_assign_type = old_assign_type;
1367                         old_assign_type = NET_NAME_RENAMED;
1368                         goto rollback;
1369                 } else {
1370                         pr_err("%s: name change rollback failed: %d\n",
1371                                dev->name, ret);
1372                 }
1373         }
1374
1375         return err;
1376 }
1377
1378 /**
1379  *      dev_set_alias - change ifalias of a device
1380  *      @dev: device
1381  *      @alias: name up to IFALIASZ
1382  *      @len: limit of bytes to copy from info
1383  *
1384  *      Set ifalias for a device,
1385  */
1386 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1387 {
1388         struct dev_ifalias *new_alias = NULL;
1389
1390         if (len >= IFALIASZ)
1391                 return -EINVAL;
1392
1393         if (len) {
1394                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1395                 if (!new_alias)
1396                         return -ENOMEM;
1397
1398                 memcpy(new_alias->ifalias, alias, len);
1399                 new_alias->ifalias[len] = 0;
1400         }
1401
1402         mutex_lock(&ifalias_mutex);
1403         new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1404                                         mutex_is_locked(&ifalias_mutex));
1405         mutex_unlock(&ifalias_mutex);
1406
1407         if (new_alias)
1408                 kfree_rcu(new_alias, rcuhead);
1409
1410         return len;
1411 }
1412 EXPORT_SYMBOL(dev_set_alias);
1413
1414 /**
1415  *      dev_get_alias - get ifalias of a device
1416  *      @dev: device
1417  *      @name: buffer to store name of ifalias
1418  *      @len: size of buffer
1419  *
1420  *      get ifalias for a device.  Caller must make sure dev cannot go
1421  *      away,  e.g. rcu read lock or own a reference count to device.
1422  */
1423 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1424 {
1425         const struct dev_ifalias *alias;
1426         int ret = 0;
1427
1428         rcu_read_lock();
1429         alias = rcu_dereference(dev->ifalias);
1430         if (alias)
1431                 ret = snprintf(name, len, "%s", alias->ifalias);
1432         rcu_read_unlock();
1433
1434         return ret;
1435 }
1436
1437 /**
1438  *      netdev_features_change - device changes features
1439  *      @dev: device to cause notification
1440  *
1441  *      Called to indicate a device has changed features.
1442  */
1443 void netdev_features_change(struct net_device *dev)
1444 {
1445         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1446 }
1447 EXPORT_SYMBOL(netdev_features_change);
1448
1449 /**
1450  *      netdev_state_change - device changes state
1451  *      @dev: device to cause notification
1452  *
1453  *      Called to indicate a device has changed state. This function calls
1454  *      the notifier chains for netdev_chain and sends a NEWLINK message
1455  *      to the routing socket.
1456  */
1457 void netdev_state_change(struct net_device *dev)
1458 {
1459         if (dev->flags & IFF_UP) {
1460                 struct netdev_notifier_change_info change_info = {
1461                         .info.dev = dev,
1462                 };
1463
1464                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1465                                               &change_info.info);
1466                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1467         }
1468 }
1469 EXPORT_SYMBOL(netdev_state_change);
1470
1471 /**
1472  * netdev_notify_peers - notify network peers about existence of @dev
1473  * @dev: network device
1474  *
1475  * Generate traffic such that interested network peers are aware of
1476  * @dev, such as by generating a gratuitous ARP. This may be used when
1477  * a device wants to inform the rest of the network about some sort of
1478  * reconfiguration such as a failover event or virtual machine
1479  * migration.
1480  */
1481 void netdev_notify_peers(struct net_device *dev)
1482 {
1483         rtnl_lock();
1484         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1485         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1486         rtnl_unlock();
1487 }
1488 EXPORT_SYMBOL(netdev_notify_peers);
1489
1490 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1491 {
1492         const struct net_device_ops *ops = dev->netdev_ops;
1493         int ret;
1494
1495         ASSERT_RTNL();
1496
1497         if (!netif_device_present(dev)) {
1498                 /* may be detached because parent is runtime-suspended */
1499                 if (dev->dev.parent)
1500                         pm_runtime_resume(dev->dev.parent);
1501                 if (!netif_device_present(dev))
1502                         return -ENODEV;
1503         }
1504
1505         /* Block netpoll from trying to do any rx path servicing.
1506          * If we don't do this there is a chance ndo_poll_controller
1507          * or ndo_poll may be running while we open the device
1508          */
1509         netpoll_poll_disable(dev);
1510
1511         ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1512         ret = notifier_to_errno(ret);
1513         if (ret)
1514                 return ret;
1515
1516         set_bit(__LINK_STATE_START, &dev->state);
1517
1518         if (ops->ndo_validate_addr)
1519                 ret = ops->ndo_validate_addr(dev);
1520
1521         if (!ret && ops->ndo_open)
1522                 ret = ops->ndo_open(dev);
1523
1524         netpoll_poll_enable(dev);
1525
1526         if (ret)
1527                 clear_bit(__LINK_STATE_START, &dev->state);
1528         else {
1529                 dev->flags |= IFF_UP;
1530                 dev_set_rx_mode(dev);
1531                 dev_activate(dev);
1532                 add_device_randomness(dev->dev_addr, dev->addr_len);
1533         }
1534
1535         return ret;
1536 }
1537
1538 /**
1539  *      dev_open        - prepare an interface for use.
1540  *      @dev: device to open
1541  *      @extack: netlink extended ack
1542  *
1543  *      Takes a device from down to up state. The device's private open
1544  *      function is invoked and then the multicast lists are loaded. Finally
1545  *      the device is moved into the up state and a %NETDEV_UP message is
1546  *      sent to the netdev notifier chain.
1547  *
1548  *      Calling this function on an active interface is a nop. On a failure
1549  *      a negative errno code is returned.
1550  */
1551 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1552 {
1553         int ret;
1554
1555         if (dev->flags & IFF_UP)
1556                 return 0;
1557
1558         ret = __dev_open(dev, extack);
1559         if (ret < 0)
1560                 return ret;
1561
1562         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1563         call_netdevice_notifiers(NETDEV_UP, dev);
1564
1565         return ret;
1566 }
1567 EXPORT_SYMBOL(dev_open);
1568
1569 static void __dev_close_many(struct list_head *head)
1570 {
1571         struct net_device *dev;
1572
1573         ASSERT_RTNL();
1574         might_sleep();
1575
1576         list_for_each_entry(dev, head, close_list) {
1577                 /* Temporarily disable netpoll until the interface is down */
1578                 netpoll_poll_disable(dev);
1579
1580                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1581
1582                 clear_bit(__LINK_STATE_START, &dev->state);
1583
1584                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1585                  * can be even on different cpu. So just clear netif_running().
1586                  *
1587                  * dev->stop() will invoke napi_disable() on all of it's
1588                  * napi_struct instances on this device.
1589                  */
1590                 smp_mb__after_atomic(); /* Commit netif_running(). */
1591         }
1592
1593         dev_deactivate_many(head);
1594
1595         list_for_each_entry(dev, head, close_list) {
1596                 const struct net_device_ops *ops = dev->netdev_ops;
1597
1598                 /*
1599                  *      Call the device specific close. This cannot fail.
1600                  *      Only if device is UP
1601                  *
1602                  *      We allow it to be called even after a DETACH hot-plug
1603                  *      event.
1604                  */
1605                 if (ops->ndo_stop)
1606                         ops->ndo_stop(dev);
1607
1608                 dev->flags &= ~IFF_UP;
1609                 netpoll_poll_enable(dev);
1610         }
1611 }
1612
1613 static void __dev_close(struct net_device *dev)
1614 {
1615         LIST_HEAD(single);
1616
1617         list_add(&dev->close_list, &single);
1618         __dev_close_many(&single);
1619         list_del(&single);
1620 }
1621
1622 void dev_close_many(struct list_head *head, bool unlink)
1623 {
1624         struct net_device *dev, *tmp;
1625
1626         /* Remove the devices that don't need to be closed */
1627         list_for_each_entry_safe(dev, tmp, head, close_list)
1628                 if (!(dev->flags & IFF_UP))
1629                         list_del_init(&dev->close_list);
1630
1631         __dev_close_many(head);
1632
1633         list_for_each_entry_safe(dev, tmp, head, close_list) {
1634                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1635                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1636                 if (unlink)
1637                         list_del_init(&dev->close_list);
1638         }
1639 }
1640 EXPORT_SYMBOL(dev_close_many);
1641
1642 /**
1643  *      dev_close - shutdown an interface.
1644  *      @dev: device to shutdown
1645  *
1646  *      This function moves an active device into down state. A
1647  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1648  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1649  *      chain.
1650  */
1651 void dev_close(struct net_device *dev)
1652 {
1653         if (dev->flags & IFF_UP) {
1654                 LIST_HEAD(single);
1655
1656                 list_add(&dev->close_list, &single);
1657                 dev_close_many(&single, true);
1658                 list_del(&single);
1659         }
1660 }
1661 EXPORT_SYMBOL(dev_close);
1662
1663
1664 /**
1665  *      dev_disable_lro - disable Large Receive Offload on a device
1666  *      @dev: device
1667  *
1668  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1669  *      called under RTNL.  This is needed if received packets may be
1670  *      forwarded to another interface.
1671  */
1672 void dev_disable_lro(struct net_device *dev)
1673 {
1674         struct net_device *lower_dev;
1675         struct list_head *iter;
1676
1677         dev->wanted_features &= ~NETIF_F_LRO;
1678         netdev_update_features(dev);
1679
1680         if (unlikely(dev->features & NETIF_F_LRO))
1681                 netdev_WARN(dev, "failed to disable LRO!\n");
1682
1683         netdev_for_each_lower_dev(dev, lower_dev, iter)
1684                 dev_disable_lro(lower_dev);
1685 }
1686 EXPORT_SYMBOL(dev_disable_lro);
1687
1688 /**
1689  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1690  *      @dev: device
1691  *
1692  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1693  *      called under RTNL.  This is needed if Generic XDP is installed on
1694  *      the device.
1695  */
1696 static void dev_disable_gro_hw(struct net_device *dev)
1697 {
1698         dev->wanted_features &= ~NETIF_F_GRO_HW;
1699         netdev_update_features(dev);
1700
1701         if (unlikely(dev->features & NETIF_F_GRO_HW))
1702                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1703 }
1704
1705 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1706 {
1707 #define N(val)                                          \
1708         case NETDEV_##val:                              \
1709                 return "NETDEV_" __stringify(val);
1710         switch (cmd) {
1711         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1712         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1713         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1714         N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1715         N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1716         N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1717         N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1718         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1719         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1720         N(PRE_CHANGEADDR)
1721         }
1722 #undef N
1723         return "UNKNOWN_NETDEV_EVENT";
1724 }
1725 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1726
1727 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1728                                    struct net_device *dev)
1729 {
1730         struct netdev_notifier_info info = {
1731                 .dev = dev,
1732         };
1733
1734         return nb->notifier_call(nb, val, &info);
1735 }
1736
1737 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1738                                              struct net_device *dev)
1739 {
1740         int err;
1741
1742         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1743         err = notifier_to_errno(err);
1744         if (err)
1745                 return err;
1746
1747         if (!(dev->flags & IFF_UP))
1748                 return 0;
1749
1750         call_netdevice_notifier(nb, NETDEV_UP, dev);
1751         return 0;
1752 }
1753
1754 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1755                                                 struct net_device *dev)
1756 {
1757         if (dev->flags & IFF_UP) {
1758                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1759                                         dev);
1760                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1761         }
1762         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1763 }
1764
1765 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1766                                                  struct net *net)
1767 {
1768         struct net_device *dev;
1769         int err;
1770
1771         for_each_netdev(net, dev) {
1772                 err = call_netdevice_register_notifiers(nb, dev);
1773                 if (err)
1774                         goto rollback;
1775         }
1776         return 0;
1777
1778 rollback:
1779         for_each_netdev_continue_reverse(net, dev)
1780                 call_netdevice_unregister_notifiers(nb, dev);
1781         return err;
1782 }
1783
1784 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1785                                                     struct net *net)
1786 {
1787         struct net_device *dev;
1788
1789         for_each_netdev(net, dev)
1790                 call_netdevice_unregister_notifiers(nb, dev);
1791 }
1792
1793 static int dev_boot_phase = 1;
1794
1795 /**
1796  * register_netdevice_notifier - register a network notifier block
1797  * @nb: notifier
1798  *
1799  * Register a notifier to be called when network device events occur.
1800  * The notifier passed is linked into the kernel structures and must
1801  * not be reused until it has been unregistered. A negative errno code
1802  * is returned on a failure.
1803  *
1804  * When registered all registration and up events are replayed
1805  * to the new notifier to allow device to have a race free
1806  * view of the network device list.
1807  */
1808
1809 int register_netdevice_notifier(struct notifier_block *nb)
1810 {
1811         struct net *net;
1812         int err;
1813
1814         /* Close race with setup_net() and cleanup_net() */
1815         down_write(&pernet_ops_rwsem);
1816         rtnl_lock();
1817         err = raw_notifier_chain_register(&netdev_chain, nb);
1818         if (err)
1819                 goto unlock;
1820         if (dev_boot_phase)
1821                 goto unlock;
1822         for_each_net(net) {
1823                 err = call_netdevice_register_net_notifiers(nb, net);
1824                 if (err)
1825                         goto rollback;
1826         }
1827
1828 unlock:
1829         rtnl_unlock();
1830         up_write(&pernet_ops_rwsem);
1831         return err;
1832
1833 rollback:
1834         for_each_net_continue_reverse(net)
1835                 call_netdevice_unregister_net_notifiers(nb, net);
1836
1837         raw_notifier_chain_unregister(&netdev_chain, nb);
1838         goto unlock;
1839 }
1840 EXPORT_SYMBOL(register_netdevice_notifier);
1841
1842 /**
1843  * unregister_netdevice_notifier - unregister a network notifier block
1844  * @nb: notifier
1845  *
1846  * Unregister a notifier previously registered by
1847  * register_netdevice_notifier(). The notifier is unlinked into the
1848  * kernel structures and may then be reused. A negative errno code
1849  * is returned on a failure.
1850  *
1851  * After unregistering unregister and down device events are synthesized
1852  * for all devices on the device list to the removed notifier to remove
1853  * the need for special case cleanup code.
1854  */
1855
1856 int unregister_netdevice_notifier(struct notifier_block *nb)
1857 {
1858         struct net *net;
1859         int err;
1860
1861         /* Close race with setup_net() and cleanup_net() */
1862         down_write(&pernet_ops_rwsem);
1863         rtnl_lock();
1864         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1865         if (err)
1866                 goto unlock;
1867
1868         for_each_net(net)
1869                 call_netdevice_unregister_net_notifiers(nb, net);
1870
1871 unlock:
1872         rtnl_unlock();
1873         up_write(&pernet_ops_rwsem);
1874         return err;
1875 }
1876 EXPORT_SYMBOL(unregister_netdevice_notifier);
1877
1878 static int __register_netdevice_notifier_net(struct net *net,
1879                                              struct notifier_block *nb,
1880                                              bool ignore_call_fail)
1881 {
1882         int err;
1883
1884         err = raw_notifier_chain_register(&net->netdev_chain, nb);
1885         if (err)
1886                 return err;
1887         if (dev_boot_phase)
1888                 return 0;
1889
1890         err = call_netdevice_register_net_notifiers(nb, net);
1891         if (err && !ignore_call_fail)
1892                 goto chain_unregister;
1893
1894         return 0;
1895
1896 chain_unregister:
1897         raw_notifier_chain_unregister(&net->netdev_chain, nb);
1898         return err;
1899 }
1900
1901 static int __unregister_netdevice_notifier_net(struct net *net,
1902                                                struct notifier_block *nb)
1903 {
1904         int err;
1905
1906         err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1907         if (err)
1908                 return err;
1909
1910         call_netdevice_unregister_net_notifiers(nb, net);
1911         return 0;
1912 }
1913
1914 /**
1915  * register_netdevice_notifier_net - register a per-netns network notifier block
1916  * @net: network namespace
1917  * @nb: notifier
1918  *
1919  * Register a notifier to be called when network device events occur.
1920  * The notifier passed is linked into the kernel structures and must
1921  * not be reused until it has been unregistered. A negative errno code
1922  * is returned on a failure.
1923  *
1924  * When registered all registration and up events are replayed
1925  * to the new notifier to allow device to have a race free
1926  * view of the network device list.
1927  */
1928
1929 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1930 {
1931         int err;
1932
1933         rtnl_lock();
1934         err = __register_netdevice_notifier_net(net, nb, false);
1935         rtnl_unlock();
1936         return err;
1937 }
1938 EXPORT_SYMBOL(register_netdevice_notifier_net);
1939
1940 /**
1941  * unregister_netdevice_notifier_net - unregister a per-netns
1942  *                                     network notifier block
1943  * @net: network namespace
1944  * @nb: notifier
1945  *
1946  * Unregister a notifier previously registered by
1947  * register_netdevice_notifier(). The notifier is unlinked into the
1948  * kernel structures and may then be reused. A negative errno code
1949  * is returned on a failure.
1950  *
1951  * After unregistering unregister and down device events are synthesized
1952  * for all devices on the device list to the removed notifier to remove
1953  * the need for special case cleanup code.
1954  */
1955
1956 int unregister_netdevice_notifier_net(struct net *net,
1957                                       struct notifier_block *nb)
1958 {
1959         int err;
1960
1961         rtnl_lock();
1962         err = __unregister_netdevice_notifier_net(net, nb);
1963         rtnl_unlock();
1964         return err;
1965 }
1966 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1967
1968 int register_netdevice_notifier_dev_net(struct net_device *dev,
1969                                         struct notifier_block *nb,
1970                                         struct netdev_net_notifier *nn)
1971 {
1972         int err;
1973
1974         rtnl_lock();
1975         err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1976         if (!err) {
1977                 nn->nb = nb;
1978                 list_add(&nn->list, &dev->net_notifier_list);
1979         }
1980         rtnl_unlock();
1981         return err;
1982 }
1983 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1984
1985 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1986                                           struct notifier_block *nb,
1987                                           struct netdev_net_notifier *nn)
1988 {
1989         int err;
1990
1991         rtnl_lock();
1992         list_del(&nn->list);
1993         err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1994         rtnl_unlock();
1995         return err;
1996 }
1997 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1998
1999 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2000                                              struct net *net)
2001 {
2002         struct netdev_net_notifier *nn;
2003
2004         list_for_each_entry(nn, &dev->net_notifier_list, list) {
2005                 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
2006                 __register_netdevice_notifier_net(net, nn->nb, true);
2007         }
2008 }
2009
2010 /**
2011  *      call_netdevice_notifiers_info - call all network notifier blocks
2012  *      @val: value passed unmodified to notifier function
2013  *      @info: notifier information data
2014  *
2015  *      Call all network notifier blocks.  Parameters and return value
2016  *      are as for raw_notifier_call_chain().
2017  */
2018
2019 static int call_netdevice_notifiers_info(unsigned long val,
2020                                          struct netdev_notifier_info *info)
2021 {
2022         struct net *net = dev_net(info->dev);
2023         int ret;
2024
2025         ASSERT_RTNL();
2026
2027         /* Run per-netns notifier block chain first, then run the global one.
2028          * Hopefully, one day, the global one is going to be removed after
2029          * all notifier block registrators get converted to be per-netns.
2030          */
2031         ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2032         if (ret & NOTIFY_STOP_MASK)
2033                 return ret;
2034         return raw_notifier_call_chain(&netdev_chain, val, info);
2035 }
2036
2037 static int call_netdevice_notifiers_extack(unsigned long val,
2038                                            struct net_device *dev,
2039                                            struct netlink_ext_ack *extack)
2040 {
2041         struct netdev_notifier_info info = {
2042                 .dev = dev,
2043                 .extack = extack,
2044         };
2045
2046         return call_netdevice_notifiers_info(val, &info);
2047 }
2048
2049 /**
2050  *      call_netdevice_notifiers - call all network notifier blocks
2051  *      @val: value passed unmodified to notifier function
2052  *      @dev: net_device pointer passed unmodified to notifier function
2053  *
2054  *      Call all network notifier blocks.  Parameters and return value
2055  *      are as for raw_notifier_call_chain().
2056  */
2057
2058 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2059 {
2060         return call_netdevice_notifiers_extack(val, dev, NULL);
2061 }
2062 EXPORT_SYMBOL(call_netdevice_notifiers);
2063
2064 /**
2065  *      call_netdevice_notifiers_mtu - call all network notifier blocks
2066  *      @val: value passed unmodified to notifier function
2067  *      @dev: net_device pointer passed unmodified to notifier function
2068  *      @arg: additional u32 argument passed to the notifier function
2069  *
2070  *      Call all network notifier blocks.  Parameters and return value
2071  *      are as for raw_notifier_call_chain().
2072  */
2073 static int call_netdevice_notifiers_mtu(unsigned long val,
2074                                         struct net_device *dev, u32 arg)
2075 {
2076         struct netdev_notifier_info_ext info = {
2077                 .info.dev = dev,
2078                 .ext.mtu = arg,
2079         };
2080
2081         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2082
2083         return call_netdevice_notifiers_info(val, &info.info);
2084 }
2085
2086 #ifdef CONFIG_NET_INGRESS
2087 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2088
2089 void net_inc_ingress_queue(void)
2090 {
2091         static_branch_inc(&ingress_needed_key);
2092 }
2093 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2094
2095 void net_dec_ingress_queue(void)
2096 {
2097         static_branch_dec(&ingress_needed_key);
2098 }
2099 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2100 #endif
2101
2102 #ifdef CONFIG_NET_EGRESS
2103 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2104
2105 void net_inc_egress_queue(void)
2106 {
2107         static_branch_inc(&egress_needed_key);
2108 }
2109 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2110
2111 void net_dec_egress_queue(void)
2112 {
2113         static_branch_dec(&egress_needed_key);
2114 }
2115 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2116 #endif
2117
2118 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2119 #ifdef CONFIG_JUMP_LABEL
2120 static atomic_t netstamp_needed_deferred;
2121 static atomic_t netstamp_wanted;
2122 static void netstamp_clear(struct work_struct *work)
2123 {
2124         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2125         int wanted;
2126
2127         wanted = atomic_add_return(deferred, &netstamp_wanted);
2128         if (wanted > 0)
2129                 static_branch_enable(&netstamp_needed_key);
2130         else
2131                 static_branch_disable(&netstamp_needed_key);
2132 }
2133 static DECLARE_WORK(netstamp_work, netstamp_clear);
2134 #endif
2135
2136 void net_enable_timestamp(void)
2137 {
2138 #ifdef CONFIG_JUMP_LABEL
2139         int wanted;
2140
2141         while (1) {
2142                 wanted = atomic_read(&netstamp_wanted);
2143                 if (wanted <= 0)
2144                         break;
2145                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2146                         return;
2147         }
2148         atomic_inc(&netstamp_needed_deferred);
2149         schedule_work(&netstamp_work);
2150 #else
2151         static_branch_inc(&netstamp_needed_key);
2152 #endif
2153 }
2154 EXPORT_SYMBOL(net_enable_timestamp);
2155
2156 void net_disable_timestamp(void)
2157 {
2158 #ifdef CONFIG_JUMP_LABEL
2159         int wanted;
2160
2161         while (1) {
2162                 wanted = atomic_read(&netstamp_wanted);
2163                 if (wanted <= 1)
2164                         break;
2165                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2166                         return;
2167         }
2168         atomic_dec(&netstamp_needed_deferred);
2169         schedule_work(&netstamp_work);
2170 #else
2171         static_branch_dec(&netstamp_needed_key);
2172 #endif
2173 }
2174 EXPORT_SYMBOL(net_disable_timestamp);
2175
2176 static inline void net_timestamp_set(struct sk_buff *skb)
2177 {
2178         skb->tstamp = 0;
2179         if (static_branch_unlikely(&netstamp_needed_key))
2180                 __net_timestamp(skb);
2181 }
2182
2183 #define net_timestamp_check(COND, SKB)                          \
2184         if (static_branch_unlikely(&netstamp_needed_key)) {     \
2185                 if ((COND) && !(SKB)->tstamp)                   \
2186                         __net_timestamp(SKB);                   \
2187         }                                                       \
2188
2189 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2190 {
2191         unsigned int len;
2192
2193         if (!(dev->flags & IFF_UP))
2194                 return false;
2195
2196         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
2197         if (skb->len <= len)
2198                 return true;
2199
2200         /* if TSO is enabled, we don't care about the length as the packet
2201          * could be forwarded without being segmented before
2202          */
2203         if (skb_is_gso(skb))
2204                 return true;
2205
2206         return false;
2207 }
2208 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2209
2210 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2211 {
2212         int ret = ____dev_forward_skb(dev, skb);
2213
2214         if (likely(!ret)) {
2215                 skb->protocol = eth_type_trans(skb, dev);
2216                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2217         }
2218
2219         return ret;
2220 }
2221 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2222
2223 /**
2224  * dev_forward_skb - loopback an skb to another netif
2225  *
2226  * @dev: destination network device
2227  * @skb: buffer to forward
2228  *
2229  * return values:
2230  *      NET_RX_SUCCESS  (no congestion)
2231  *      NET_RX_DROP     (packet was dropped, but freed)
2232  *
2233  * dev_forward_skb can be used for injecting an skb from the
2234  * start_xmit function of one device into the receive queue
2235  * of another device.
2236  *
2237  * The receiving device may be in another namespace, so
2238  * we have to clear all information in the skb that could
2239  * impact namespace isolation.
2240  */
2241 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2242 {
2243         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2244 }
2245 EXPORT_SYMBOL_GPL(dev_forward_skb);
2246
2247 static inline int deliver_skb(struct sk_buff *skb,
2248                               struct packet_type *pt_prev,
2249                               struct net_device *orig_dev)
2250 {
2251         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2252                 return -ENOMEM;
2253         refcount_inc(&skb->users);
2254         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2255 }
2256
2257 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2258                                           struct packet_type **pt,
2259                                           struct net_device *orig_dev,
2260                                           __be16 type,
2261                                           struct list_head *ptype_list)
2262 {
2263         struct packet_type *ptype, *pt_prev = *pt;
2264
2265         list_for_each_entry_rcu(ptype, ptype_list, list) {
2266                 if (ptype->type != type)
2267                         continue;
2268                 if (pt_prev)
2269                         deliver_skb(skb, pt_prev, orig_dev);
2270                 pt_prev = ptype;
2271         }
2272         *pt = pt_prev;
2273 }
2274
2275 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2276 {
2277         if (!ptype->af_packet_priv || !skb->sk)
2278                 return false;
2279
2280         if (ptype->id_match)
2281                 return ptype->id_match(ptype, skb->sk);
2282         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2283                 return true;
2284
2285         return false;
2286 }
2287
2288 /**
2289  * dev_nit_active - return true if any network interface taps are in use
2290  *
2291  * @dev: network device to check for the presence of taps
2292  */
2293 bool dev_nit_active(struct net_device *dev)
2294 {
2295         return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2296 }
2297 EXPORT_SYMBOL_GPL(dev_nit_active);
2298
2299 /*
2300  *      Support routine. Sends outgoing frames to any network
2301  *      taps currently in use.
2302  */
2303
2304 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2305 {
2306         struct packet_type *ptype;
2307         struct sk_buff *skb2 = NULL;
2308         struct packet_type *pt_prev = NULL;
2309         struct list_head *ptype_list = &ptype_all;
2310
2311         rcu_read_lock();
2312 again:
2313         list_for_each_entry_rcu(ptype, ptype_list, list) {
2314                 if (ptype->ignore_outgoing)
2315                         continue;
2316
2317                 /* Never send packets back to the socket
2318                  * they originated from - MvS (miquels@drinkel.ow.org)
2319                  */
2320                 if (skb_loop_sk(ptype, skb))
2321                         continue;
2322
2323                 if (pt_prev) {
2324                         deliver_skb(skb2, pt_prev, skb->dev);
2325                         pt_prev = ptype;
2326                         continue;
2327                 }
2328
2329                 /* need to clone skb, done only once */
2330                 skb2 = skb_clone(skb, GFP_ATOMIC);
2331                 if (!skb2)
2332                         goto out_unlock;
2333
2334                 net_timestamp_set(skb2);
2335
2336                 /* skb->nh should be correctly
2337                  * set by sender, so that the second statement is
2338                  * just protection against buggy protocols.
2339                  */
2340                 skb_reset_mac_header(skb2);
2341
2342                 if (skb_network_header(skb2) < skb2->data ||
2343                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2344                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2345                                              ntohs(skb2->protocol),
2346                                              dev->name);
2347                         skb_reset_network_header(skb2);
2348                 }
2349
2350                 skb2->transport_header = skb2->network_header;
2351                 skb2->pkt_type = PACKET_OUTGOING;
2352                 pt_prev = ptype;
2353         }
2354
2355         if (ptype_list == &ptype_all) {
2356                 ptype_list = &dev->ptype_all;
2357                 goto again;
2358         }
2359 out_unlock:
2360         if (pt_prev) {
2361                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2362                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2363                 else
2364                         kfree_skb(skb2);
2365         }
2366         rcu_read_unlock();
2367 }
2368 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2369
2370 /**
2371  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2372  * @dev: Network device
2373  * @txq: number of queues available
2374  *
2375  * If real_num_tx_queues is changed the tc mappings may no longer be
2376  * valid. To resolve this verify the tc mapping remains valid and if
2377  * not NULL the mapping. With no priorities mapping to this
2378  * offset/count pair it will no longer be used. In the worst case TC0
2379  * is invalid nothing can be done so disable priority mappings. If is
2380  * expected that drivers will fix this mapping if they can before
2381  * calling netif_set_real_num_tx_queues.
2382  */
2383 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2384 {
2385         int i;
2386         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2387
2388         /* If TC0 is invalidated disable TC mapping */
2389         if (tc->offset + tc->count > txq) {
2390                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2391                 dev->num_tc = 0;
2392                 return;
2393         }
2394
2395         /* Invalidated prio to tc mappings set to TC0 */
2396         for (i = 1; i < TC_BITMASK + 1; i++) {
2397                 int q = netdev_get_prio_tc_map(dev, i);
2398
2399                 tc = &dev->tc_to_txq[q];
2400                 if (tc->offset + tc->count > txq) {
2401                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2402                                 i, q);
2403                         netdev_set_prio_tc_map(dev, i, 0);
2404                 }
2405         }
2406 }
2407
2408 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2409 {
2410         if (dev->num_tc) {
2411                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2412                 int i;
2413
2414                 /* walk through the TCs and see if it falls into any of them */
2415                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2416                         if ((txq - tc->offset) < tc->count)
2417                                 return i;
2418                 }
2419
2420                 /* didn't find it, just return -1 to indicate no match */
2421                 return -1;
2422         }
2423
2424         return 0;
2425 }
2426 EXPORT_SYMBOL(netdev_txq_to_tc);
2427
2428 #ifdef CONFIG_XPS
2429 struct static_key xps_needed __read_mostly;
2430 EXPORT_SYMBOL(xps_needed);
2431 struct static_key xps_rxqs_needed __read_mostly;
2432 EXPORT_SYMBOL(xps_rxqs_needed);
2433 static DEFINE_MUTEX(xps_map_mutex);
2434 #define xmap_dereference(P)             \
2435         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2436
2437 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2438                              int tci, u16 index)
2439 {
2440         struct xps_map *map = NULL;
2441         int pos;
2442
2443         if (dev_maps)
2444                 map = xmap_dereference(dev_maps->attr_map[tci]);
2445         if (!map)
2446                 return false;
2447
2448         for (pos = map->len; pos--;) {
2449                 if (map->queues[pos] != index)
2450                         continue;
2451
2452                 if (map->len > 1) {
2453                         map->queues[pos] = map->queues[--map->len];
2454                         break;
2455                 }
2456
2457                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2458                 kfree_rcu(map, rcu);
2459                 return false;
2460         }
2461
2462         return true;
2463 }
2464
2465 static bool remove_xps_queue_cpu(struct net_device *dev,
2466                                  struct xps_dev_maps *dev_maps,
2467                                  int cpu, u16 offset, u16 count)
2468 {
2469         int num_tc = dev->num_tc ? : 1;
2470         bool active = false;
2471         int tci;
2472
2473         for (tci = cpu * num_tc; num_tc--; tci++) {
2474                 int i, j;
2475
2476                 for (i = count, j = offset; i--; j++) {
2477                         if (!remove_xps_queue(dev_maps, tci, j))
2478                                 break;
2479                 }
2480
2481                 active |= i < 0;
2482         }
2483
2484         return active;
2485 }
2486
2487 static void reset_xps_maps(struct net_device *dev,
2488                            struct xps_dev_maps *dev_maps,
2489                            bool is_rxqs_map)
2490 {
2491         if (is_rxqs_map) {
2492                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2493                 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2494         } else {
2495                 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2496         }
2497         static_key_slow_dec_cpuslocked(&xps_needed);
2498         kfree_rcu(dev_maps, rcu);
2499 }
2500
2501 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2502                            struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2503                            u16 offset, u16 count, bool is_rxqs_map)
2504 {
2505         bool active = false;
2506         int i, j;
2507
2508         for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2509              j < nr_ids;)
2510                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2511                                                count);
2512         if (!active)
2513                 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2514
2515         if (!is_rxqs_map) {
2516                 for (i = offset + (count - 1); count--; i--) {
2517                         netdev_queue_numa_node_write(
2518                                 netdev_get_tx_queue(dev, i),
2519                                 NUMA_NO_NODE);
2520                 }
2521         }
2522 }
2523
2524 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2525                                    u16 count)
2526 {
2527         const unsigned long *possible_mask = NULL;
2528         struct xps_dev_maps *dev_maps;
2529         unsigned int nr_ids;
2530
2531         if (!static_key_false(&xps_needed))
2532                 return;
2533
2534         cpus_read_lock();
2535         mutex_lock(&xps_map_mutex);
2536
2537         if (static_key_false(&xps_rxqs_needed)) {
2538                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2539                 if (dev_maps) {
2540                         nr_ids = dev->num_rx_queues;
2541                         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2542                                        offset, count, true);
2543                 }
2544         }
2545
2546         dev_maps = xmap_dereference(dev->xps_cpus_map);
2547         if (!dev_maps)
2548                 goto out_no_maps;
2549
2550         if (num_possible_cpus() > 1)
2551                 possible_mask = cpumask_bits(cpu_possible_mask);
2552         nr_ids = nr_cpu_ids;
2553         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2554                        false);
2555
2556 out_no_maps:
2557         mutex_unlock(&xps_map_mutex);
2558         cpus_read_unlock();
2559 }
2560
2561 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2562 {
2563         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2564 }
2565
2566 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2567                                       u16 index, bool is_rxqs_map)
2568 {
2569         struct xps_map *new_map;
2570         int alloc_len = XPS_MIN_MAP_ALLOC;
2571         int i, pos;
2572
2573         for (pos = 0; map && pos < map->len; pos++) {
2574                 if (map->queues[pos] != index)
2575                         continue;
2576                 return map;
2577         }
2578
2579         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2580         if (map) {
2581                 if (pos < map->alloc_len)
2582                         return map;
2583
2584                 alloc_len = map->alloc_len * 2;
2585         }
2586
2587         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2588          *  map
2589          */
2590         if (is_rxqs_map)
2591                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2592         else
2593                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2594                                        cpu_to_node(attr_index));
2595         if (!new_map)
2596                 return NULL;
2597
2598         for (i = 0; i < pos; i++)
2599                 new_map->queues[i] = map->queues[i];
2600         new_map->alloc_len = alloc_len;
2601         new_map->len = pos;
2602
2603         return new_map;
2604 }
2605
2606 /* Must be called under cpus_read_lock */
2607 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2608                           u16 index, bool is_rxqs_map)
2609 {
2610         const unsigned long *online_mask = NULL, *possible_mask = NULL;
2611         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2612         int i, j, tci, numa_node_id = -2;
2613         int maps_sz, num_tc = 1, tc = 0;
2614         struct xps_map *map, *new_map;
2615         bool active = false;
2616         unsigned int nr_ids;
2617
2618         if (dev->num_tc) {
2619                 /* Do not allow XPS on subordinate device directly */
2620                 num_tc = dev->num_tc;
2621                 if (num_tc < 0)
2622                         return -EINVAL;
2623
2624                 /* If queue belongs to subordinate dev use its map */
2625                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2626
2627                 tc = netdev_txq_to_tc(dev, index);
2628                 if (tc < 0)
2629                         return -EINVAL;
2630         }
2631
2632         mutex_lock(&xps_map_mutex);
2633         if (is_rxqs_map) {
2634                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2635                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2636                 nr_ids = dev->num_rx_queues;
2637         } else {
2638                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2639                 if (num_possible_cpus() > 1) {
2640                         online_mask = cpumask_bits(cpu_online_mask);
2641                         possible_mask = cpumask_bits(cpu_possible_mask);
2642                 }
2643                 dev_maps = xmap_dereference(dev->xps_cpus_map);
2644                 nr_ids = nr_cpu_ids;
2645         }
2646
2647         if (maps_sz < L1_CACHE_BYTES)
2648                 maps_sz = L1_CACHE_BYTES;
2649
2650         /* allocate memory for queue storage */
2651         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2652              j < nr_ids;) {
2653                 if (!new_dev_maps)
2654                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2655                 if (!new_dev_maps) {
2656                         mutex_unlock(&xps_map_mutex);
2657                         return -ENOMEM;
2658                 }
2659
2660                 tci = j * num_tc + tc;
2661                 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2662                                  NULL;
2663
2664                 map = expand_xps_map(map, j, index, is_rxqs_map);
2665                 if (!map)
2666                         goto error;
2667
2668                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2669         }
2670
2671         if (!new_dev_maps)
2672                 goto out_no_new_maps;
2673
2674         if (!dev_maps) {
2675                 /* Increment static keys at most once per type */
2676                 static_key_slow_inc_cpuslocked(&xps_needed);
2677                 if (is_rxqs_map)
2678                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2679         }
2680
2681         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2682              j < nr_ids;) {
2683                 /* copy maps belonging to foreign traffic classes */
2684                 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2685                         /* fill in the new device map from the old device map */
2686                         map = xmap_dereference(dev_maps->attr_map[tci]);
2687                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2688                 }
2689
2690                 /* We need to explicitly update tci as prevous loop
2691                  * could break out early if dev_maps is NULL.
2692                  */
2693                 tci = j * num_tc + tc;
2694
2695                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2696                     netif_attr_test_online(j, online_mask, nr_ids)) {
2697                         /* add tx-queue to CPU/rx-queue maps */
2698                         int pos = 0;
2699
2700                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2701                         while ((pos < map->len) && (map->queues[pos] != index))
2702                                 pos++;
2703
2704                         if (pos == map->len)
2705                                 map->queues[map->len++] = index;
2706 #ifdef CONFIG_NUMA
2707                         if (!is_rxqs_map) {
2708                                 if (numa_node_id == -2)
2709                                         numa_node_id = cpu_to_node(j);
2710                                 else if (numa_node_id != cpu_to_node(j))
2711                                         numa_node_id = -1;
2712                         }
2713 #endif
2714                 } else if (dev_maps) {
2715                         /* fill in the new device map from the old device map */
2716                         map = xmap_dereference(dev_maps->attr_map[tci]);
2717                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2718                 }
2719
2720                 /* copy maps belonging to foreign traffic classes */
2721                 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2722                         /* fill in the new device map from the old device map */
2723                         map = xmap_dereference(dev_maps->attr_map[tci]);
2724                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2725                 }
2726         }
2727
2728         if (is_rxqs_map)
2729                 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2730         else
2731                 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2732
2733         /* Cleanup old maps */
2734         if (!dev_maps)
2735                 goto out_no_old_maps;
2736
2737         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2738              j < nr_ids;) {
2739                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2740                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2741                         map = xmap_dereference(dev_maps->attr_map[tci]);
2742                         if (map && map != new_map)
2743                                 kfree_rcu(map, rcu);
2744                 }
2745         }
2746
2747         kfree_rcu(dev_maps, rcu);
2748
2749 out_no_old_maps:
2750         dev_maps = new_dev_maps;
2751         active = true;
2752
2753 out_no_new_maps:
2754         if (!is_rxqs_map) {
2755                 /* update Tx queue numa node */
2756                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2757                                              (numa_node_id >= 0) ?
2758                                              numa_node_id : NUMA_NO_NODE);
2759         }
2760
2761         if (!dev_maps)
2762                 goto out_no_maps;
2763
2764         /* removes tx-queue from unused CPUs/rx-queues */
2765         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2766              j < nr_ids;) {
2767                 for (i = tc, tci = j * num_tc; i--; tci++)
2768                         active |= remove_xps_queue(dev_maps, tci, index);
2769                 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2770                     !netif_attr_test_online(j, online_mask, nr_ids))
2771                         active |= remove_xps_queue(dev_maps, tci, index);
2772                 for (i = num_tc - tc, tci++; --i; tci++)
2773                         active |= remove_xps_queue(dev_maps, tci, index);
2774         }
2775
2776         /* free map if not active */
2777         if (!active)
2778                 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2779
2780 out_no_maps:
2781         mutex_unlock(&xps_map_mutex);
2782
2783         return 0;
2784 error:
2785         /* remove any maps that we added */
2786         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2787              j < nr_ids;) {
2788                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2789                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2790                         map = dev_maps ?
2791                               xmap_dereference(dev_maps->attr_map[tci]) :
2792                               NULL;
2793                         if (new_map && new_map != map)
2794                                 kfree(new_map);
2795                 }
2796         }
2797
2798         mutex_unlock(&xps_map_mutex);
2799
2800         kfree(new_dev_maps);
2801         return -ENOMEM;
2802 }
2803 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2804
2805 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2806                         u16 index)
2807 {
2808         int ret;
2809
2810         cpus_read_lock();
2811         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2812         cpus_read_unlock();
2813
2814         return ret;
2815 }
2816 EXPORT_SYMBOL(netif_set_xps_queue);
2817
2818 #endif
2819 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2820 {
2821         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2822
2823         /* Unbind any subordinate channels */
2824         while (txq-- != &dev->_tx[0]) {
2825                 if (txq->sb_dev)
2826                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2827         }
2828 }
2829
2830 void netdev_reset_tc(struct net_device *dev)
2831 {
2832 #ifdef CONFIG_XPS
2833         netif_reset_xps_queues_gt(dev, 0);
2834 #endif
2835         netdev_unbind_all_sb_channels(dev);
2836
2837         /* Reset TC configuration of device */
2838         dev->num_tc = 0;
2839         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2840         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2841 }
2842 EXPORT_SYMBOL(netdev_reset_tc);
2843
2844 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2845 {
2846         if (tc >= dev->num_tc)
2847                 return -EINVAL;
2848
2849 #ifdef CONFIG_XPS
2850         netif_reset_xps_queues(dev, offset, count);
2851 #endif
2852         dev->tc_to_txq[tc].count = count;
2853         dev->tc_to_txq[tc].offset = offset;
2854         return 0;
2855 }
2856 EXPORT_SYMBOL(netdev_set_tc_queue);
2857
2858 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2859 {
2860         if (num_tc > TC_MAX_QUEUE)
2861                 return -EINVAL;
2862
2863 #ifdef CONFIG_XPS
2864         netif_reset_xps_queues_gt(dev, 0);
2865 #endif
2866         netdev_unbind_all_sb_channels(dev);
2867
2868         dev->num_tc = num_tc;
2869         return 0;
2870 }
2871 EXPORT_SYMBOL(netdev_set_num_tc);
2872
2873 void netdev_unbind_sb_channel(struct net_device *dev,
2874                               struct net_device *sb_dev)
2875 {
2876         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2877
2878 #ifdef CONFIG_XPS
2879         netif_reset_xps_queues_gt(sb_dev, 0);
2880 #endif
2881         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2882         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2883
2884         while (txq-- != &dev->_tx[0]) {
2885                 if (txq->sb_dev == sb_dev)
2886                         txq->sb_dev = NULL;
2887         }
2888 }
2889 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2890
2891 int netdev_bind_sb_channel_queue(struct net_device *dev,
2892                                  struct net_device *sb_dev,
2893                                  u8 tc, u16 count, u16 offset)
2894 {
2895         /* Make certain the sb_dev and dev are already configured */
2896         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2897                 return -EINVAL;
2898
2899         /* We cannot hand out queues we don't have */
2900         if ((offset + count) > dev->real_num_tx_queues)
2901                 return -EINVAL;
2902
2903         /* Record the mapping */
2904         sb_dev->tc_to_txq[tc].count = count;
2905         sb_dev->tc_to_txq[tc].offset = offset;
2906
2907         /* Provide a way for Tx queue to find the tc_to_txq map or
2908          * XPS map for itself.
2909          */
2910         while (count--)
2911                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2912
2913         return 0;
2914 }
2915 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2916
2917 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2918 {
2919         /* Do not use a multiqueue device to represent a subordinate channel */
2920         if (netif_is_multiqueue(dev))
2921                 return -ENODEV;
2922
2923         /* We allow channels 1 - 32767 to be used for subordinate channels.
2924          * Channel 0 is meant to be "native" mode and used only to represent
2925          * the main root device. We allow writing 0 to reset the device back
2926          * to normal mode after being used as a subordinate channel.
2927          */
2928         if (channel > S16_MAX)
2929                 return -EINVAL;
2930
2931         dev->num_tc = -channel;
2932
2933         return 0;
2934 }
2935 EXPORT_SYMBOL(netdev_set_sb_channel);
2936
2937 /*
2938  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2939  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2940  */
2941 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2942 {
2943         bool disabling;
2944         int rc;
2945
2946         disabling = txq < dev->real_num_tx_queues;
2947
2948         if (txq < 1 || txq > dev->num_tx_queues)
2949                 return -EINVAL;
2950
2951         if (dev->reg_state == NETREG_REGISTERED ||
2952             dev->reg_state == NETREG_UNREGISTERING) {
2953                 ASSERT_RTNL();
2954
2955                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2956                                                   txq);
2957                 if (rc)
2958                         return rc;
2959
2960                 if (dev->num_tc)
2961                         netif_setup_tc(dev, txq);
2962
2963                 dev->real_num_tx_queues = txq;
2964
2965                 if (disabling) {
2966                         synchronize_net();
2967                         qdisc_reset_all_tx_gt(dev, txq);
2968 #ifdef CONFIG_XPS
2969                         netif_reset_xps_queues_gt(dev, txq);
2970 #endif
2971                 }
2972         } else {
2973                 dev->real_num_tx_queues = txq;
2974         }
2975
2976         return 0;
2977 }
2978 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2979
2980 #ifdef CONFIG_SYSFS
2981 /**
2982  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2983  *      @dev: Network device
2984  *      @rxq: Actual number of RX queues
2985  *
2986  *      This must be called either with the rtnl_lock held or before
2987  *      registration of the net device.  Returns 0 on success, or a
2988  *      negative error code.  If called before registration, it always
2989  *      succeeds.
2990  */
2991 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2992 {
2993         int rc;
2994
2995         if (rxq < 1 || rxq > dev->num_rx_queues)
2996                 return -EINVAL;
2997
2998         if (dev->reg_state == NETREG_REGISTERED) {
2999                 ASSERT_RTNL();
3000
3001                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3002                                                   rxq);
3003                 if (rc)
3004                         return rc;
3005         }
3006
3007         dev->real_num_rx_queues = rxq;
3008         return 0;
3009 }
3010 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3011 #endif
3012
3013 /**
3014  * netif_get_num_default_rss_queues - default number of RSS queues
3015  *
3016  * This routine should set an upper limit on the number of RSS queues
3017  * used by default by multiqueue devices.
3018  */
3019 int netif_get_num_default_rss_queues(void)
3020 {
3021         return is_kdump_kernel() ?
3022                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3023 }
3024 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3025
3026 static void __netif_reschedule(struct Qdisc *q)
3027 {
3028         struct softnet_data *sd;
3029         unsigned long flags;
3030
3031         local_irq_save(flags);
3032         sd = this_cpu_ptr(&softnet_data);
3033         q->next_sched = NULL;
3034         *sd->output_queue_tailp = q;
3035         sd->output_queue_tailp = &q->next_sched;
3036         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3037         local_irq_restore(flags);
3038 }
3039
3040 void __netif_schedule(struct Qdisc *q)
3041 {
3042         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3043                 __netif_reschedule(q);
3044 }
3045 EXPORT_SYMBOL(__netif_schedule);
3046
3047 struct dev_kfree_skb_cb {
3048         enum skb_free_reason reason;
3049 };
3050
3051 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3052 {
3053         return (struct dev_kfree_skb_cb *)skb->cb;
3054 }
3055
3056 void netif_schedule_queue(struct netdev_queue *txq)
3057 {
3058         rcu_read_lock();
3059         if (!netif_xmit_stopped(txq)) {
3060                 struct Qdisc *q = rcu_dereference(txq->qdisc);
3061
3062                 __netif_schedule(q);
3063         }
3064         rcu_read_unlock();
3065 }
3066 EXPORT_SYMBOL(netif_schedule_queue);
3067
3068 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3069 {
3070         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3071                 struct Qdisc *q;
3072
3073                 rcu_read_lock();
3074                 q = rcu_dereference(dev_queue->qdisc);
3075                 __netif_schedule(q);
3076                 rcu_read_unlock();
3077         }
3078 }
3079 EXPORT_SYMBOL(netif_tx_wake_queue);
3080
3081 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3082 {
3083         unsigned long flags;
3084
3085         if (unlikely(!skb))
3086                 return;
3087
3088         if (likely(refcount_read(&skb->users) == 1)) {
3089                 smp_rmb();
3090                 refcount_set(&skb->users, 0);
3091         } else if (likely(!refcount_dec_and_test(&skb->users))) {
3092                 return;
3093         }
3094         get_kfree_skb_cb(skb)->reason = reason;
3095         local_irq_save(flags);
3096         skb->next = __this_cpu_read(softnet_data.completion_queue);
3097         __this_cpu_write(softnet_data.completion_queue, skb);
3098         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3099         local_irq_restore(flags);
3100 }
3101 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3102
3103 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3104 {
3105         if (in_irq() || irqs_disabled())
3106                 __dev_kfree_skb_irq(skb, reason);
3107         else
3108                 dev_kfree_skb(skb);
3109 }
3110 EXPORT_SYMBOL(__dev_kfree_skb_any);
3111
3112
3113 /**
3114  * netif_device_detach - mark device as removed
3115  * @dev: network device
3116  *
3117  * Mark device as removed from system and therefore no longer available.
3118  */
3119 void netif_device_detach(struct net_device *dev)
3120 {
3121         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3122             netif_running(dev)) {
3123                 netif_tx_stop_all_queues(dev);
3124         }
3125 }
3126 EXPORT_SYMBOL(netif_device_detach);
3127
3128 /**
3129  * netif_device_attach - mark device as attached
3130  * @dev: network device
3131  *
3132  * Mark device as attached from system and restart if needed.
3133  */
3134 void netif_device_attach(struct net_device *dev)
3135 {
3136         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3137             netif_running(dev)) {
3138                 netif_tx_wake_all_queues(dev);
3139                 __netdev_watchdog_up(dev);
3140         }
3141 }
3142 EXPORT_SYMBOL(netif_device_attach);
3143
3144 /*
3145  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3146  * to be used as a distribution range.
3147  */
3148 static u16 skb_tx_hash(const struct net_device *dev,
3149                        const struct net_device *sb_dev,
3150                        struct sk_buff *skb)
3151 {
3152         u32 hash;
3153         u16 qoffset = 0;
3154         u16 qcount = dev->real_num_tx_queues;
3155
3156         if (dev->num_tc) {
3157                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3158
3159                 qoffset = sb_dev->tc_to_txq[tc].offset;
3160                 qcount = sb_dev->tc_to_txq[tc].count;
3161         }
3162
3163         if (skb_rx_queue_recorded(skb)) {
3164                 hash = skb_get_rx_queue(skb);
3165                 if (hash >= qoffset)
3166                         hash -= qoffset;
3167                 while (unlikely(hash >= qcount))
3168                         hash -= qcount;
3169                 return hash + qoffset;
3170         }
3171
3172         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3173 }
3174
3175 static void skb_warn_bad_offload(const struct sk_buff *skb)
3176 {
3177         static const netdev_features_t null_features;
3178         struct net_device *dev = skb->dev;
3179         const char *name = "";
3180
3181         if (!net_ratelimit())
3182                 return;
3183
3184         if (dev) {
3185                 if (dev->dev.parent)
3186                         name = dev_driver_string(dev->dev.parent);
3187                 else
3188                         name = netdev_name(dev);
3189         }
3190         skb_dump(KERN_WARNING, skb, false);
3191         WARN(1, "%s: caps=(%pNF, %pNF)\n",
3192              name, dev ? &dev->features : &null_features,
3193              skb->sk ? &skb->sk->sk_route_caps : &null_features);
3194 }
3195
3196 /*
3197  * Invalidate hardware checksum when packet is to be mangled, and
3198  * complete checksum manually on outgoing path.
3199  */
3200 int skb_checksum_help(struct sk_buff *skb)
3201 {
3202         __wsum csum;
3203         int ret = 0, offset;
3204
3205         if (skb->ip_summed == CHECKSUM_COMPLETE)
3206                 goto out_set_summed;
3207
3208         if (unlikely(skb_shinfo(skb)->gso_size)) {
3209                 skb_warn_bad_offload(skb);
3210                 return -EINVAL;
3211         }
3212
3213         /* Before computing a checksum, we should make sure no frag could
3214          * be modified by an external entity : checksum could be wrong.
3215          */
3216         if (skb_has_shared_frag(skb)) {
3217                 ret = __skb_linearize(skb);
3218                 if (ret)
3219                         goto out;
3220         }
3221
3222         offset = skb_checksum_start_offset(skb);
3223         BUG_ON(offset >= skb_headlen(skb));
3224         csum = skb_checksum(skb, offset, skb->len - offset, 0);
3225
3226         offset += skb->csum_offset;
3227         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3228
3229         ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3230         if (ret)
3231                 goto out;
3232
3233         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3234 out_set_summed:
3235         skb->ip_summed = CHECKSUM_NONE;
3236 out:
3237         return ret;
3238 }
3239 EXPORT_SYMBOL(skb_checksum_help);
3240
3241 int skb_crc32c_csum_help(struct sk_buff *skb)
3242 {
3243         __le32 crc32c_csum;
3244         int ret = 0, offset, start;
3245
3246         if (skb->ip_summed != CHECKSUM_PARTIAL)
3247                 goto out;
3248
3249         if (unlikely(skb_is_gso(skb)))
3250                 goto out;
3251
3252         /* Before computing a checksum, we should make sure no frag could
3253          * be modified by an external entity : checksum could be wrong.
3254          */
3255         if (unlikely(skb_has_shared_frag(skb))) {
3256                 ret = __skb_linearize(skb);
3257                 if (ret)
3258                         goto out;
3259         }
3260         start = skb_checksum_start_offset(skb);
3261         offset = start + offsetof(struct sctphdr, checksum);
3262         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3263                 ret = -EINVAL;
3264                 goto out;
3265         }
3266
3267         ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3268         if (ret)
3269                 goto out;
3270
3271         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3272                                                   skb->len - start, ~(__u32)0,
3273                                                   crc32c_csum_stub));
3274         *(__le32 *)(skb->data + offset) = crc32c_csum;
3275         skb->ip_summed = CHECKSUM_NONE;
3276         skb->csum_not_inet = 0;
3277 out:
3278         return ret;
3279 }
3280
3281 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3282 {
3283         __be16 type = skb->protocol;
3284
3285         /* Tunnel gso handlers can set protocol to ethernet. */
3286         if (type == htons(ETH_P_TEB)) {
3287                 struct ethhdr *eth;
3288
3289                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3290                         return 0;
3291
3292                 eth = (struct ethhdr *)skb->data;
3293                 type = eth->h_proto;
3294         }
3295
3296         return __vlan_get_protocol(skb, type, depth);
3297 }
3298
3299 /**
3300  *      skb_mac_gso_segment - mac layer segmentation handler.
3301  *      @skb: buffer to segment
3302  *      @features: features for the output path (see dev->features)
3303  */
3304 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3305                                     netdev_features_t features)
3306 {
3307         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3308         struct packet_offload *ptype;
3309         int vlan_depth = skb->mac_len;
3310         __be16 type = skb_network_protocol(skb, &vlan_depth);
3311
3312         if (unlikely(!type))
3313                 return ERR_PTR(-EINVAL);
3314
3315         __skb_pull(skb, vlan_depth);
3316
3317         rcu_read_lock();
3318         list_for_each_entry_rcu(ptype, &offload_base, list) {
3319                 if (ptype->type == type && ptype->callbacks.gso_segment) {
3320                         segs = ptype->callbacks.gso_segment(skb, features);
3321                         break;
3322                 }
3323         }
3324         rcu_read_unlock();
3325
3326         __skb_push(skb, skb->data - skb_mac_header(skb));
3327
3328         return segs;
3329 }
3330 EXPORT_SYMBOL(skb_mac_gso_segment);
3331
3332
3333 /* openvswitch calls this on rx path, so we need a different check.
3334  */
3335 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3336 {
3337         if (tx_path)
3338                 return skb->ip_summed != CHECKSUM_PARTIAL &&
3339                        skb->ip_summed != CHECKSUM_UNNECESSARY;
3340
3341         return skb->ip_summed == CHECKSUM_NONE;
3342 }
3343
3344 /**
3345  *      __skb_gso_segment - Perform segmentation on skb.
3346  *      @skb: buffer to segment
3347  *      @features: features for the output path (see dev->features)
3348  *      @tx_path: whether it is called in TX path
3349  *
3350  *      This function segments the given skb and returns a list of segments.
3351  *
3352  *      It may return NULL if the skb requires no segmentation.  This is
3353  *      only possible when GSO is used for verifying header integrity.
3354  *
3355  *      Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3356  */
3357 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3358                                   netdev_features_t features, bool tx_path)
3359 {
3360         struct sk_buff *segs;
3361
3362         if (unlikely(skb_needs_check(skb, tx_path))) {
3363                 int err;
3364
3365                 /* We're going to init ->check field in TCP or UDP header */
3366                 err = skb_cow_head(skb, 0);
3367                 if (err < 0)
3368                         return ERR_PTR(err);
3369         }
3370
3371         /* Only report GSO partial support if it will enable us to
3372          * support segmentation on this frame without needing additional
3373          * work.
3374          */
3375         if (features & NETIF_F_GSO_PARTIAL) {
3376                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3377                 struct net_device *dev = skb->dev;
3378
3379                 partial_features |= dev->features & dev->gso_partial_features;
3380                 if (!skb_gso_ok(skb, features | partial_features))
3381                         features &= ~NETIF_F_GSO_PARTIAL;
3382         }
3383
3384         BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3385                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3386
3387         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3388         SKB_GSO_CB(skb)->encap_level = 0;
3389
3390         skb_reset_mac_header(skb);
3391         skb_reset_mac_len(skb);
3392
3393         segs = skb_mac_gso_segment(skb, features);
3394
3395         if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3396                 skb_warn_bad_offload(skb);
3397
3398         return segs;
3399 }
3400 EXPORT_SYMBOL(__skb_gso_segment);
3401
3402 /* Take action when hardware reception checksum errors are detected. */
3403 #ifdef CONFIG_BUG
3404 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3405 {
3406         if (net_ratelimit()) {
3407                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3408                 skb_dump(KERN_ERR, skb, true);
3409                 dump_stack();
3410         }
3411 }
3412 EXPORT_SYMBOL(netdev_rx_csum_fault);
3413 #endif
3414
3415 /* XXX: check that highmem exists at all on the given machine. */
3416 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3417 {
3418 #ifdef CONFIG_HIGHMEM
3419         int i;
3420
3421         if (!(dev->features & NETIF_F_HIGHDMA)) {
3422                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3423                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3424
3425                         if (PageHighMem(skb_frag_page(frag)))
3426                                 return 1;
3427                 }
3428         }
3429 #endif
3430         return 0;
3431 }
3432
3433 /* If MPLS offload request, verify we are testing hardware MPLS features
3434  * instead of standard features for the netdev.
3435  */
3436 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3437 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3438                                            netdev_features_t features,
3439                                            __be16 type)
3440 {
3441         if (eth_p_mpls(type))
3442                 features &= skb->dev->mpls_features;
3443
3444         return features;
3445 }
3446 #else
3447 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3448                                            netdev_features_t features,
3449                                            __be16 type)
3450 {
3451         return features;
3452 }
3453 #endif
3454
3455 static netdev_features_t harmonize_features(struct sk_buff *skb,
3456         netdev_features_t features)
3457 {
3458         __be16 type;
3459
3460         type = skb_network_protocol(skb, NULL);
3461         features = net_mpls_features(skb, features, type);
3462
3463         if (skb->ip_summed != CHECKSUM_NONE &&
3464             !can_checksum_protocol(features, type)) {
3465                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3466         }
3467         if (illegal_highdma(skb->dev, skb))
3468                 features &= ~NETIF_F_SG;
3469
3470         return features;
3471 }
3472
3473 netdev_features_t passthru_features_check(struct sk_buff *skb,
3474                                           struct net_device *dev,
3475                                           netdev_features_t features)
3476 {
3477         return features;
3478 }
3479 EXPORT_SYMBOL(passthru_features_check);
3480
3481 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3482                                              struct net_device *dev,
3483                                              netdev_features_t features)
3484 {
3485         return vlan_features_check(skb, features);
3486 }
3487
3488 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3489                                             struct net_device *dev,
3490                                             netdev_features_t features)
3491 {
3492         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3493
3494         if (gso_segs > dev->gso_max_segs)
3495                 return features & ~NETIF_F_GSO_MASK;
3496
3497         /* Support for GSO partial features requires software
3498          * intervention before we can actually process the packets
3499          * so we need to strip support for any partial features now
3500          * and we can pull them back in after we have partially
3501          * segmented the frame.
3502          */
3503         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3504                 features &= ~dev->gso_partial_features;
3505
3506         /* Make sure to clear the IPv4 ID mangling feature if the
3507          * IPv4 header has the potential to be fragmented.
3508          */
3509         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3510                 struct iphdr *iph = skb->encapsulation ?
3511                                     inner_ip_hdr(skb) : ip_hdr(skb);
3512
3513                 if (!(iph->frag_off & htons(IP_DF)))
3514                         features &= ~NETIF_F_TSO_MANGLEID;
3515         }
3516
3517         return features;
3518 }
3519
3520 netdev_features_t netif_skb_features(struct sk_buff *skb)
3521 {
3522         struct net_device *dev = skb->dev;
3523         netdev_features_t features = dev->features;
3524
3525         if (skb_is_gso(skb))
3526                 features = gso_features_check(skb, dev, features);
3527
3528         /* If encapsulation offload request, verify we are testing
3529          * hardware encapsulation features instead of standard
3530          * features for the netdev
3531          */
3532         if (skb->encapsulation)
3533                 features &= dev->hw_enc_features;
3534
3535         if (skb_vlan_tagged(skb))
3536                 features = netdev_intersect_features(features,
3537                                                      dev->vlan_features |
3538                                                      NETIF_F_HW_VLAN_CTAG_TX |
3539                                                      NETIF_F_HW_VLAN_STAG_TX);
3540
3541         if (dev->netdev_ops->ndo_features_check)
3542                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3543                                                                 features);
3544         else
3545                 features &= dflt_features_check(skb, dev, features);
3546
3547         return harmonize_features(skb, features);
3548 }
3549 EXPORT_SYMBOL(netif_skb_features);
3550
3551 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3552                     struct netdev_queue *txq, bool more)
3553 {
3554         unsigned int len;
3555         int rc;
3556
3557         if (dev_nit_active(dev))
3558                 dev_queue_xmit_nit(skb, dev);
3559
3560         len = skb->len;
3561         trace_net_dev_start_xmit(skb, dev);
3562         rc = netdev_start_xmit(skb, dev, txq, more);
3563         trace_net_dev_xmit(skb, rc, dev, len);
3564
3565         return rc;
3566 }
3567
3568 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3569                                     struct netdev_queue *txq, int *ret)
3570 {
3571         struct sk_buff *skb = first;
3572         int rc = NETDEV_TX_OK;
3573
3574         while (skb) {
3575                 struct sk_buff *next = skb->next;
3576
3577                 skb_mark_not_on_list(skb);
3578                 rc = xmit_one(skb, dev, txq, next != NULL);
3579                 if (unlikely(!dev_xmit_complete(rc))) {
3580                         skb->next = next;
3581                         goto out;
3582                 }
3583
3584                 skb = next;
3585                 if (netif_tx_queue_stopped(txq) && skb) {
3586                         rc = NETDEV_TX_BUSY;
3587                         break;
3588                 }
3589         }
3590
3591 out:
3592         *ret = rc;
3593         return skb;
3594 }
3595
3596 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3597                                           netdev_features_t features)
3598 {
3599         if (skb_vlan_tag_present(skb) &&
3600             !vlan_hw_offload_capable(features, skb->vlan_proto))
3601                 skb = __vlan_hwaccel_push_inside(skb);
3602         return skb;
3603 }
3604
3605 int skb_csum_hwoffload_help(struct sk_buff *skb,
3606                             const netdev_features_t features)
3607 {
3608         if (unlikely(skb->csum_not_inet))
3609                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3610                         skb_crc32c_csum_help(skb);
3611
3612         return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3613 }
3614 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3615
3616 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3617 {
3618         netdev_features_t features;
3619
3620         features = netif_skb_features(skb);
3621         skb = validate_xmit_vlan(skb, features);
3622         if (unlikely(!skb))
3623                 goto out_null;
3624
3625         skb = sk_validate_xmit_skb(skb, dev);
3626         if (unlikely(!skb))
3627                 goto out_null;
3628
3629         if (netif_needs_gso(skb, features)) {
3630                 struct sk_buff *segs;
3631
3632                 segs = skb_gso_segment(skb, features);
3633                 if (IS_ERR(segs)) {
3634                         goto out_kfree_skb;
3635                 } else if (segs) {
3636                         consume_skb(skb);
3637                         skb = segs;
3638                 }
3639         } else {
3640                 if (skb_needs_linearize(skb, features) &&
3641                     __skb_linearize(skb))
3642                         goto out_kfree_skb;
3643
3644                 /* If packet is not checksummed and device does not
3645                  * support checksumming for this protocol, complete
3646                  * checksumming here.
3647                  */
3648                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3649                         if (skb->encapsulation)
3650                                 skb_set_inner_transport_header(skb,
3651                                                                skb_checksum_start_offset(skb));
3652                         else
3653                                 skb_set_transport_header(skb,
3654                                                          skb_checksum_start_offset(skb));
3655                         if (skb_csum_hwoffload_help(skb, features))
3656                                 goto out_kfree_skb;
3657                 }
3658         }
3659
3660         skb = validate_xmit_xfrm(skb, features, again);
3661
3662         return skb;
3663
3664 out_kfree_skb:
3665         kfree_skb(skb);
3666 out_null:
3667         atomic_long_inc(&dev->tx_dropped);
3668         return NULL;
3669 }
3670
3671 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3672 {
3673         struct sk_buff *next, *head = NULL, *tail;
3674
3675         for (; skb != NULL; skb = next) {
3676                 next = skb->next;
3677                 skb_mark_not_on_list(skb);
3678
3679                 /* in case skb wont be segmented, point to itself */
3680                 skb->prev = skb;
3681
3682                 skb = validate_xmit_skb(skb, dev, again);
3683                 if (!skb)
3684                         continue;
3685
3686                 if (!head)
3687                         head = skb;
3688                 else
3689                         tail->next = skb;
3690                 /* If skb was segmented, skb->prev points to
3691                  * the last segment. If not, it still contains skb.
3692                  */
3693                 tail = skb->prev;
3694         }
3695         return head;
3696 }
3697 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3698
3699 static void qdisc_pkt_len_init(struct sk_buff *skb)
3700 {
3701         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3702
3703         qdisc_skb_cb(skb)->pkt_len = skb->len;
3704
3705         /* To get more precise estimation of bytes sent on wire,
3706          * we add to pkt_len the headers size of all segments
3707          */
3708         if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3709                 unsigned int hdr_len;
3710                 u16 gso_segs = shinfo->gso_segs;
3711
3712                 /* mac layer + network layer */
3713                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3714
3715                 /* + transport layer */
3716                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3717                         const struct tcphdr *th;
3718                         struct tcphdr _tcphdr;
3719
3720                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3721                                                 sizeof(_tcphdr), &_tcphdr);
3722                         if (likely(th))
3723                                 hdr_len += __tcp_hdrlen(th);
3724                 } else {
3725                         struct udphdr _udphdr;
3726
3727                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3728                                                sizeof(_udphdr), &_udphdr))
3729                                 hdr_len += sizeof(struct udphdr);
3730                 }
3731
3732                 if (shinfo->gso_type & SKB_GSO_DODGY)
3733                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3734                                                 shinfo->gso_size);
3735
3736                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3737         }
3738 }
3739
3740 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3741                                  struct net_device *dev,
3742                                  struct netdev_queue *txq)
3743 {
3744         spinlock_t *root_lock = qdisc_lock(q);
3745         struct sk_buff *to_free = NULL;
3746         bool contended;
3747         int rc;
3748
3749         qdisc_calculate_pkt_len(skb, q);
3750
3751         if (q->flags & TCQ_F_NOLOCK) {
3752                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3753                 qdisc_run(q);
3754
3755                 if (unlikely(to_free))
3756                         kfree_skb_list(to_free);
3757                 return rc;
3758         }
3759
3760         /*
3761          * Heuristic to force contended enqueues to serialize on a
3762          * separate lock before trying to get qdisc main lock.
3763          * This permits qdisc->running owner to get the lock more
3764          * often and dequeue packets faster.
3765          */
3766         contended = qdisc_is_running(q);
3767         if (unlikely(contended))
3768                 spin_lock(&q->busylock);
3769
3770         spin_lock(root_lock);
3771         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3772                 __qdisc_drop(skb, &to_free);
3773                 rc = NET_XMIT_DROP;
3774         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3775                    qdisc_run_begin(q)) {
3776                 /*
3777                  * This is a work-conserving queue; there are no old skbs
3778                  * waiting to be sent out; and the qdisc is not running -
3779                  * xmit the skb directly.
3780                  */
3781
3782                 qdisc_bstats_update(q, skb);
3783
3784                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3785                         if (unlikely(contended)) {
3786                                 spin_unlock(&q->busylock);
3787                                 contended = false;
3788                         }
3789                         __qdisc_run(q);
3790                 }
3791
3792                 qdisc_run_end(q);
3793                 rc = NET_XMIT_SUCCESS;
3794         } else {
3795                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3796                 if (qdisc_run_begin(q)) {
3797                         if (unlikely(contended)) {
3798                                 spin_unlock(&q->busylock);
3799                                 contended = false;
3800                         }
3801                         __qdisc_run(q);
3802                         qdisc_run_end(q);
3803                 }
3804         }
3805         spin_unlock(root_lock);
3806         if (unlikely(to_free))
3807                 kfree_skb_list(to_free);
3808         if (unlikely(contended))
3809                 spin_unlock(&q->busylock);
3810         return rc;
3811 }
3812
3813 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3814 static void skb_update_prio(struct sk_buff *skb)
3815 {
3816         const struct netprio_map *map;
3817         const struct sock *sk;
3818         unsigned int prioidx;
3819
3820         if (skb->priority)
3821                 return;
3822         map = rcu_dereference_bh(skb->dev->priomap);
3823         if (!map)
3824                 return;
3825         sk = skb_to_full_sk(skb);
3826         if (!sk)
3827                 return;
3828
3829         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3830
3831         if (prioidx < map->priomap_len)
3832                 skb->priority = map->priomap[prioidx];
3833 }
3834 #else
3835 #define skb_update_prio(skb)
3836 #endif
3837
3838 /**
3839  *      dev_loopback_xmit - loop back @skb
3840  *      @net: network namespace this loopback is happening in
3841  *      @sk:  sk needed to be a netfilter okfn
3842  *      @skb: buffer to transmit
3843  */
3844 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3845 {
3846         skb_reset_mac_header(skb);
3847         __skb_pull(skb, skb_network_offset(skb));
3848         skb->pkt_type = PACKET_LOOPBACK;
3849         skb->ip_summed = CHECKSUM_UNNECESSARY;
3850         WARN_ON(!skb_dst(skb));
3851         skb_dst_force(skb);
3852         netif_rx_ni(skb);
3853         return 0;
3854 }
3855 EXPORT_SYMBOL(dev_loopback_xmit);
3856
3857 #ifdef CONFIG_NET_EGRESS
3858 static struct sk_buff *
3859 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3860 {
3861         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3862         struct tcf_result cl_res;
3863
3864         if (!miniq)
3865                 return skb;
3866
3867         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3868         mini_qdisc_bstats_cpu_update(miniq, skb);
3869
3870         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3871         case TC_ACT_OK:
3872         case TC_ACT_RECLASSIFY:
3873                 skb->tc_index = TC_H_MIN(cl_res.classid);
3874                 break;
3875         case TC_ACT_SHOT:
3876                 mini_qdisc_qstats_cpu_drop(miniq);
3877                 *ret = NET_XMIT_DROP;
3878                 kfree_skb(skb);
3879                 return NULL;
3880         case TC_ACT_STOLEN:
3881         case TC_ACT_QUEUED:
3882         case TC_ACT_TRAP:
3883                 *ret = NET_XMIT_SUCCESS;
3884                 consume_skb(skb);
3885                 return NULL;
3886         case TC_ACT_REDIRECT:
3887                 /* No need to push/pop skb's mac_header here on egress! */
3888                 skb_do_redirect(skb);
3889                 *ret = NET_XMIT_SUCCESS;
3890                 return NULL;
3891         default:
3892                 break;
3893         }
3894
3895         return skb;
3896 }
3897 #endif /* CONFIG_NET_EGRESS */
3898
3899 #ifdef CONFIG_XPS
3900 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3901                                struct xps_dev_maps *dev_maps, unsigned int tci)
3902 {
3903         struct xps_map *map;
3904         int queue_index = -1;
3905
3906         if (dev->num_tc) {
3907                 tci *= dev->num_tc;
3908                 tci += netdev_get_prio_tc_map(dev, skb->priority);
3909         }
3910
3911         map = rcu_dereference(dev_maps->attr_map[tci]);
3912         if (map) {
3913                 if (map->len == 1)
3914                         queue_index = map->queues[0];
3915                 else
3916                         queue_index = map->queues[reciprocal_scale(
3917                                                 skb_get_hash(skb), map->len)];
3918                 if (unlikely(queue_index >= dev->real_num_tx_queues))
3919                         queue_index = -1;
3920         }
3921         return queue_index;
3922 }
3923 #endif
3924
3925 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3926                          struct sk_buff *skb)
3927 {
3928 #ifdef CONFIG_XPS
3929         struct xps_dev_maps *dev_maps;
3930         struct sock *sk = skb->sk;
3931         int queue_index = -1;
3932
3933         if (!static_key_false(&xps_needed))
3934                 return -1;
3935
3936         rcu_read_lock();
3937         if (!static_key_false(&xps_rxqs_needed))
3938                 goto get_cpus_map;
3939
3940         dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3941         if (dev_maps) {
3942                 int tci = sk_rx_queue_get(sk);
3943
3944                 if (tci >= 0 && tci < dev->num_rx_queues)
3945                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3946                                                           tci);
3947         }
3948
3949 get_cpus_map:
3950         if (queue_index < 0) {
3951                 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3952                 if (dev_maps) {
3953                         unsigned int tci = skb->sender_cpu - 1;
3954
3955                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3956                                                           tci);
3957                 }
3958         }
3959         rcu_read_unlock();
3960
3961         return queue_index;
3962 #else
3963         return -1;
3964 #endif
3965 }
3966
3967 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3968                      struct net_device *sb_dev)
3969 {
3970         return 0;
3971 }
3972 EXPORT_SYMBOL(dev_pick_tx_zero);
3973
3974 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3975                        struct net_device *sb_dev)
3976 {
3977         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3978 }
3979 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3980
3981 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3982                      struct net_device *sb_dev)
3983 {
3984         struct sock *sk = skb->sk;
3985         int queue_index = sk_tx_queue_get(sk);
3986
3987         sb_dev = sb_dev ? : dev;
3988
3989         if (queue_index < 0 || skb->ooo_okay ||
3990             queue_index >= dev->real_num_tx_queues) {
3991                 int new_index = get_xps_queue(dev, sb_dev, skb);
3992
3993                 if (new_index < 0)
3994                         new_index = skb_tx_hash(dev, sb_dev, skb);
3995
3996                 if (queue_index != new_index && sk &&
3997                     sk_fullsock(sk) &&
3998                     rcu_access_pointer(sk->sk_dst_cache))
3999                         sk_tx_queue_set(sk, new_index);
4000
4001                 queue_index = new_index;
4002         }
4003
4004         return queue_index;
4005 }
4006 EXPORT_SYMBOL(netdev_pick_tx);
4007
4008 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4009                                          struct sk_buff *skb,
4010                                          struct net_device *sb_dev)
4011 {
4012         int queue_index = 0;
4013
4014 #ifdef CONFIG_XPS
4015         u32 sender_cpu = skb->sender_cpu - 1;
4016
4017         if (sender_cpu >= (u32)NR_CPUS)
4018                 skb->sender_cpu = raw_smp_processor_id() + 1;
4019 #endif
4020
4021         if (dev->real_num_tx_queues != 1) {
4022                 const struct net_device_ops *ops = dev->netdev_ops;
4023
4024                 if (ops->ndo_select_queue)
4025                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4026                 else
4027                         queue_index = netdev_pick_tx(dev, skb, sb_dev);
4028
4029                 queue_index = netdev_cap_txqueue(dev, queue_index);
4030         }
4031
4032         skb_set_queue_mapping(skb, queue_index);
4033         return netdev_get_tx_queue(dev, queue_index);
4034 }
4035
4036 /**
4037  *      __dev_queue_xmit - transmit a buffer
4038  *      @skb: buffer to transmit
4039  *      @sb_dev: suboordinate device used for L2 forwarding offload
4040  *
4041  *      Queue a buffer for transmission to a network device. The caller must
4042  *      have set the device and priority and built the buffer before calling
4043  *      this function. The function can be called from an interrupt.
4044  *
4045  *      A negative errno code is returned on a failure. A success does not
4046  *      guarantee the frame will be transmitted as it may be dropped due
4047  *      to congestion or traffic shaping.
4048  *
4049  * -----------------------------------------------------------------------------------
4050  *      I notice this method can also return errors from the queue disciplines,
4051  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4052  *      be positive.
4053  *
4054  *      Regardless of the return value, the skb is consumed, so it is currently
4055  *      difficult to retry a send to this method.  (You can bump the ref count
4056  *      before sending to hold a reference for retry if you are careful.)
4057  *
4058  *      When calling this method, interrupts MUST be enabled.  This is because
4059  *      the BH enable code must have IRQs enabled so that it will not deadlock.
4060  *          --BLG
4061  */
4062 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4063 {
4064         struct net_device *dev = skb->dev;
4065         struct netdev_queue *txq;
4066         struct Qdisc *q;
4067         int rc = -ENOMEM;
4068         bool again = false;
4069
4070         skb_reset_mac_header(skb);
4071
4072         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4073                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
4074
4075         /* Disable soft irqs for various locks below. Also
4076          * stops preemption for RCU.
4077          */
4078         rcu_read_lock_bh();
4079
4080         skb_update_prio(skb);
4081
4082         qdisc_pkt_len_init(skb);
4083 #ifdef CONFIG_NET_CLS_ACT
4084         skb->tc_at_ingress = 0;
4085 # ifdef CONFIG_NET_EGRESS
4086         if (static_branch_unlikely(&egress_needed_key)) {
4087                 skb = sch_handle_egress(skb, &rc, dev);
4088                 if (!skb)
4089                         goto out;
4090         }
4091 # endif
4092 #endif
4093         /* If device/qdisc don't need skb->dst, release it right now while
4094          * its hot in this cpu cache.
4095          */
4096         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4097                 skb_dst_drop(skb);
4098         else
4099                 skb_dst_force(skb);
4100
4101         txq = netdev_core_pick_tx(dev, skb, sb_dev);
4102         q = rcu_dereference_bh(txq->qdisc);
4103
4104         trace_net_dev_queue(skb);
4105         if (q->enqueue) {
4106                 rc = __dev_xmit_skb(skb, q, dev, txq);
4107                 goto out;
4108         }
4109
4110         /* The device has no queue. Common case for software devices:
4111          * loopback, all the sorts of tunnels...
4112
4113          * Really, it is unlikely that netif_tx_lock protection is necessary
4114          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4115          * counters.)
4116          * However, it is possible, that they rely on protection
4117          * made by us here.
4118
4119          * Check this and shot the lock. It is not prone from deadlocks.
4120          *Either shot noqueue qdisc, it is even simpler 8)
4121          */
4122         if (dev->flags & IFF_UP) {
4123                 int cpu = smp_processor_id(); /* ok because BHs are off */
4124
4125                 if (txq->xmit_lock_owner != cpu) {
4126                         if (dev_xmit_recursion())
4127                                 goto recursion_alert;
4128
4129                         skb = validate_xmit_skb(skb, dev, &again);
4130                         if (!skb)
4131                                 goto out;
4132
4133                         HARD_TX_LOCK(dev, txq, cpu);
4134
4135                         if (!netif_xmit_stopped(txq)) {
4136                                 dev_xmit_recursion_inc();
4137                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4138                                 dev_xmit_recursion_dec();
4139                                 if (dev_xmit_complete(rc)) {
4140                                         HARD_TX_UNLOCK(dev, txq);
4141                                         goto out;
4142                                 }
4143                         }
4144                         HARD_TX_UNLOCK(dev, txq);
4145                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4146                                              dev->name);
4147                 } else {
4148                         /* Recursion is detected! It is possible,
4149                          * unfortunately
4150                          */
4151 recursion_alert:
4152                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4153                                              dev->name);
4154                 }
4155         }
4156
4157         rc = -ENETDOWN;
4158         rcu_read_unlock_bh();
4159
4160         atomic_long_inc(&dev->tx_dropped);
4161         kfree_skb_list(skb);
4162         return rc;
4163 out:
4164         rcu_read_unlock_bh();
4165         return rc;
4166 }
4167
4168 int dev_queue_xmit(struct sk_buff *skb)
4169 {
4170         return __dev_queue_xmit(skb, NULL);
4171 }
4172 EXPORT_SYMBOL(dev_queue_xmit);
4173
4174 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4175 {
4176         return __dev_queue_xmit(skb, sb_dev);
4177 }
4178 EXPORT_SYMBOL(dev_queue_xmit_accel);
4179
4180 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4181 {
4182         struct net_device *dev = skb->dev;
4183         struct sk_buff *orig_skb = skb;
4184         struct netdev_queue *txq;
4185         int ret = NETDEV_TX_BUSY;
4186         bool again = false;
4187
4188         if (unlikely(!netif_running(dev) ||
4189                      !netif_carrier_ok(dev)))
4190                 goto drop;
4191
4192         skb = validate_xmit_skb_list(skb, dev, &again);
4193         if (skb != orig_skb)
4194                 goto drop;
4195
4196         skb_set_queue_mapping(skb, queue_id);
4197         txq = skb_get_tx_queue(dev, skb);
4198
4199         local_bh_disable();
4200
4201         dev_xmit_recursion_inc();
4202         HARD_TX_LOCK(dev, txq, smp_processor_id());
4203         if (!netif_xmit_frozen_or_drv_stopped(txq))
4204                 ret = netdev_start_xmit(skb, dev, txq, false);
4205         HARD_TX_UNLOCK(dev, txq);
4206         dev_xmit_recursion_dec();
4207
4208         local_bh_enable();
4209
4210         if (!dev_xmit_complete(ret))
4211                 kfree_skb(skb);
4212
4213         return ret;
4214 drop:
4215         atomic_long_inc(&dev->tx_dropped);
4216         kfree_skb_list(skb);
4217         return NET_XMIT_DROP;
4218 }
4219 EXPORT_SYMBOL(dev_direct_xmit);
4220
4221 /*************************************************************************
4222  *                      Receiver routines
4223  *************************************************************************/
4224
4225 int netdev_max_backlog __read_mostly = 1000;
4226 EXPORT_SYMBOL(netdev_max_backlog);
4227
4228 int netdev_tstamp_prequeue __read_mostly = 1;
4229 int netdev_budget __read_mostly = 300;
4230 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4231 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4232 int weight_p __read_mostly = 64;           /* old backlog weight */
4233 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4234 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4235 int dev_rx_weight __read_mostly = 64;
4236 int dev_tx_weight __read_mostly = 64;
4237 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4238 int gro_normal_batch __read_mostly = 8;
4239
4240 /* Called with irq disabled */
4241 static inline void ____napi_schedule(struct softnet_data *sd,
4242                                      struct napi_struct *napi)
4243 {
4244         list_add_tail(&napi->poll_list, &sd->poll_list);
4245         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4246 }
4247
4248 #ifdef CONFIG_RPS
4249
4250 /* One global table that all flow-based protocols share. */
4251 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4252 EXPORT_SYMBOL(rps_sock_flow_table);
4253 u32 rps_cpu_mask __read_mostly;
4254 EXPORT_SYMBOL(rps_cpu_mask);
4255
4256 struct static_key_false rps_needed __read_mostly;
4257 EXPORT_SYMBOL(rps_needed);
4258 struct static_key_false rfs_needed __read_mostly;
4259 EXPORT_SYMBOL(rfs_needed);
4260
4261 static struct rps_dev_flow *
4262 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4263             struct rps_dev_flow *rflow, u16 next_cpu)
4264 {
4265         if (next_cpu < nr_cpu_ids) {
4266 #ifdef CONFIG_RFS_ACCEL
4267                 struct netdev_rx_queue *rxqueue;
4268                 struct rps_dev_flow_table *flow_table;
4269                 struct rps_dev_flow *old_rflow;
4270                 u32 flow_id;
4271                 u16 rxq_index;
4272                 int rc;
4273
4274                 /* Should we steer this flow to a different hardware queue? */
4275                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4276                     !(dev->features & NETIF_F_NTUPLE))
4277                         goto out;
4278                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4279                 if (rxq_index == skb_get_rx_queue(skb))
4280                         goto out;
4281
4282                 rxqueue = dev->_rx + rxq_index;
4283                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4284                 if (!flow_table)
4285                         goto out;
4286                 flow_id = skb_get_hash(skb) & flow_table->mask;
4287                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4288                                                         rxq_index, flow_id);
4289                 if (rc < 0)
4290                         goto out;
4291                 old_rflow = rflow;
4292                 rflow = &flow_table->flows[flow_id];
4293                 rflow->filter = rc;
4294                 if (old_rflow->filter == rflow->filter)
4295                         old_rflow->filter = RPS_NO_FILTER;
4296         out:
4297 #endif
4298                 rflow->last_qtail =
4299                         per_cpu(softnet_data, next_cpu).input_queue_head;
4300         }
4301
4302         rflow->cpu = next_cpu;
4303         return rflow;
4304 }
4305
4306 /*
4307  * get_rps_cpu is called from netif_receive_skb and returns the target
4308  * CPU from the RPS map of the receiving queue for a given skb.
4309  * rcu_read_lock must be held on entry.
4310  */
4311 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4312                        struct rps_dev_flow **rflowp)
4313 {
4314         const struct rps_sock_flow_table *sock_flow_table;
4315         struct netdev_rx_queue *rxqueue = dev->_rx;
4316         struct rps_dev_flow_table *flow_table;
4317         struct rps_map *map;
4318         int cpu = -1;
4319         u32 tcpu;
4320         u32 hash;
4321
4322         if (skb_rx_queue_recorded(skb)) {
4323                 u16 index = skb_get_rx_queue(skb);
4324
4325                 if (unlikely(index >= dev->real_num_rx_queues)) {
4326                         WARN_ONCE(dev->real_num_rx_queues > 1,
4327                                   "%s received packet on queue %u, but number "
4328                                   "of RX queues is %u\n",
4329                                   dev->name, index, dev->real_num_rx_queues);
4330                         goto done;
4331                 }
4332                 rxqueue += index;
4333         }
4334
4335         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4336
4337         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4338         map = rcu_dereference(rxqueue->rps_map);
4339         if (!flow_table && !map)
4340                 goto done;
4341
4342         skb_reset_network_header(skb);
4343         hash = skb_get_hash(skb);
4344         if (!hash)
4345                 goto done;
4346
4347         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4348         if (flow_table && sock_flow_table) {
4349                 struct rps_dev_flow *rflow;
4350                 u32 next_cpu;
4351                 u32 ident;
4352
4353                 /* First check into global flow table if there is a match */
4354                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4355                 if ((ident ^ hash) & ~rps_cpu_mask)
4356                         goto try_rps;
4357
4358                 next_cpu = ident & rps_cpu_mask;
4359
4360                 /* OK, now we know there is a match,
4361                  * we can look at the local (per receive queue) flow table
4362                  */
4363                 rflow = &flow_table->flows[hash & flow_table->mask];
4364                 tcpu = rflow->cpu;
4365
4366                 /*
4367                  * If the desired CPU (where last recvmsg was done) is
4368                  * different from current CPU (one in the rx-queue flow
4369                  * table entry), switch if one of the following holds:
4370                  *   - Current CPU is unset (>= nr_cpu_ids).
4371                  *   - Current CPU is offline.
4372                  *   - The current CPU's queue tail has advanced beyond the
4373                  *     last packet that was enqueued using this table entry.
4374                  *     This guarantees that all previous packets for the flow
4375                  *     have been dequeued, thus preserving in order delivery.
4376                  */
4377                 if (unlikely(tcpu != next_cpu) &&
4378                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4379                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4380                       rflow->last_qtail)) >= 0)) {
4381                         tcpu = next_cpu;
4382                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4383                 }
4384
4385                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4386                         *rflowp = rflow;
4387                         cpu = tcpu;
4388                         goto done;
4389                 }
4390         }
4391
4392 try_rps:
4393
4394         if (map) {
4395                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4396                 if (cpu_online(tcpu)) {
4397                         cpu = tcpu;
4398                         goto done;
4399                 }
4400         }
4401
4402 done:
4403         return cpu;
4404 }
4405
4406 #ifdef CONFIG_RFS_ACCEL
4407
4408 /**
4409  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4410  * @dev: Device on which the filter was set
4411  * @rxq_index: RX queue index
4412  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4413  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4414  *
4415  * Drivers that implement ndo_rx_flow_steer() should periodically call
4416  * this function for each installed filter and remove the filters for
4417  * which it returns %true.
4418  */
4419 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4420                          u32 flow_id, u16 filter_id)
4421 {
4422         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4423         struct rps_dev_flow_table *flow_table;
4424         struct rps_dev_flow *rflow;
4425         bool expire = true;
4426         unsigned int cpu;
4427
4428         rcu_read_lock();
4429         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4430         if (flow_table && flow_id <= flow_table->mask) {
4431                 rflow = &flow_table->flows[flow_id];
4432                 cpu = READ_ONCE(rflow->cpu);
4433                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4434                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4435                            rflow->last_qtail) <
4436                      (int)(10 * flow_table->mask)))
4437                         expire = false;
4438         }
4439         rcu_read_unlock();
4440         return expire;
4441 }
4442 EXPORT_SYMBOL(rps_may_expire_flow);
4443
4444 #endif /* CONFIG_RFS_ACCEL */
4445
4446 /* Called from hardirq (IPI) context */
4447 static void rps_trigger_softirq(void *data)
4448 {
4449         struct softnet_data *sd = data;
4450
4451         ____napi_schedule(sd, &sd->backlog);
4452         sd->received_rps++;
4453 }
4454
4455 #endif /* CONFIG_RPS */
4456
4457 /*
4458  * Check if this softnet_data structure is another cpu one
4459  * If yes, queue it to our IPI list and return 1
4460  * If no, return 0
4461  */
4462 static int rps_ipi_queued(struct softnet_data *sd)
4463 {
4464 #ifdef CONFIG_RPS
4465         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4466
4467         if (sd != mysd) {
4468                 sd->rps_ipi_next = mysd->rps_ipi_list;
4469                 mysd->rps_ipi_list = sd;
4470
4471                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4472                 return 1;
4473         }
4474 #endif /* CONFIG_RPS */
4475         return 0;
4476 }
4477
4478 #ifdef CONFIG_NET_FLOW_LIMIT
4479 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4480 #endif
4481
4482 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4483 {
4484 #ifdef CONFIG_NET_FLOW_LIMIT
4485         struct sd_flow_limit *fl;
4486         struct softnet_data *sd;
4487         unsigned int old_flow, new_flow;
4488
4489         if (qlen < (netdev_max_backlog >> 1))
4490                 return false;
4491
4492         sd = this_cpu_ptr(&softnet_data);
4493
4494         rcu_read_lock();
4495         fl = rcu_dereference(sd->flow_limit);
4496         if (fl) {
4497                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4498                 old_flow = fl->history[fl->history_head];
4499                 fl->history[fl->history_head] = new_flow;
4500
4501                 fl->history_head++;
4502                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4503
4504                 if (likely(fl->buckets[old_flow]))
4505                         fl->buckets[old_flow]--;
4506
4507                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4508                         fl->count++;
4509                         rcu_read_unlock();
4510                         return true;
4511                 }
4512         }
4513         rcu_read_unlock();
4514 #endif
4515         return false;
4516 }
4517
4518 /*
4519  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4520  * queue (may be a remote CPU queue).
4521  */
4522 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4523                               unsigned int *qtail)
4524 {
4525         struct softnet_data *sd;
4526         unsigned long flags;
4527         unsigned int qlen;
4528
4529         sd = &per_cpu(softnet_data, cpu);
4530
4531         local_irq_save(flags);
4532
4533         rps_lock(sd);
4534         if (!netif_running(skb->dev))
4535                 goto drop;
4536         qlen = skb_queue_len(&sd->input_pkt_queue);
4537         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4538                 if (qlen) {
4539 enqueue:
4540                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4541                         input_queue_tail_incr_save(sd, qtail);
4542                         rps_unlock(sd);
4543                         local_irq_restore(flags);
4544                         return NET_RX_SUCCESS;
4545                 }
4546
4547                 /* Schedule NAPI for backlog device
4548                  * We can use non atomic operation since we own the queue lock
4549                  */
4550                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4551                         if (!rps_ipi_queued(sd))
4552                                 ____napi_schedule(sd, &sd->backlog);
4553                 }
4554                 goto enqueue;
4555         }
4556
4557 drop:
4558         sd->dropped++;
4559         rps_unlock(sd);
4560
4561         local_irq_restore(flags);
4562
4563         atomic_long_inc(&skb->dev->rx_dropped);
4564         kfree_skb(skb);
4565         return NET_RX_DROP;
4566 }
4567
4568 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4569 {
4570         struct net_device *dev = skb->dev;
4571         struct netdev_rx_queue *rxqueue;
4572
4573         rxqueue = dev->_rx;
4574
4575         if (skb_rx_queue_recorded(skb)) {
4576                 u16 index = skb_get_rx_queue(skb);
4577
4578                 if (unlikely(index >= dev->real_num_rx_queues)) {
4579                         WARN_ONCE(dev->real_num_rx_queues > 1,
4580                                   "%s received packet on queue %u, but number "
4581                                   "of RX queues is %u\n",
4582                                   dev->name, index, dev->real_num_rx_queues);
4583
4584                         return rxqueue; /* Return first rxqueue */
4585                 }
4586                 rxqueue += index;
4587         }
4588         return rxqueue;
4589 }
4590
4591 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4592                                      struct xdp_buff *xdp,
4593                                      struct bpf_prog *xdp_prog)
4594 {
4595         struct netdev_rx_queue *rxqueue;
4596         void *orig_data, *orig_data_end;
4597         u32 metalen, act = XDP_DROP;
4598         __be16 orig_eth_type;
4599         struct ethhdr *eth;
4600         bool orig_bcast;
4601         int hlen, off;
4602         u32 mac_len;
4603
4604         /* Reinjected packets coming from act_mirred or similar should
4605          * not get XDP generic processing.
4606          */
4607         if (skb_is_redirected(skb))
4608                 return XDP_PASS;
4609
4610         /* XDP packets must be linear and must have sufficient headroom
4611          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4612          * native XDP provides, thus we need to do it here as well.
4613          */
4614         if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4615             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4616                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4617                 int troom = skb->tail + skb->data_len - skb->end;
4618
4619                 /* In case we have to go down the path and also linearize,
4620                  * then lets do the pskb_expand_head() work just once here.
4621                  */
4622                 if (pskb_expand_head(skb,
4623                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4624                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4625                         goto do_drop;
4626                 if (skb_linearize(skb))
4627                         goto do_drop;
4628         }
4629
4630         /* The XDP program wants to see the packet starting at the MAC
4631          * header.
4632          */
4633         mac_len = skb->data - skb_mac_header(skb);
4634         hlen = skb_headlen(skb) + mac_len;
4635         xdp->data = skb->data - mac_len;
4636         xdp->data_meta = xdp->data;
4637         xdp->data_end = xdp->data + hlen;
4638         xdp->data_hard_start = skb->data - skb_headroom(skb);
4639
4640         /* SKB "head" area always have tailroom for skb_shared_info */
4641         xdp->frame_sz  = (void *)skb_end_pointer(skb) - xdp->data_hard_start;
4642         xdp->frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4643
4644         orig_data_end = xdp->data_end;
4645         orig_data = xdp->data;
4646         eth = (struct ethhdr *)xdp->data;
4647         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4648         orig_eth_type = eth->h_proto;
4649
4650         rxqueue = netif_get_rxqueue(skb);
4651         xdp->rxq = &rxqueue->xdp_rxq;
4652
4653         act = bpf_prog_run_xdp(xdp_prog, xdp);
4654
4655         /* check if bpf_xdp_adjust_head was used */
4656         off = xdp->data - orig_data;
4657         if (off) {
4658                 if (off > 0)
4659                         __skb_pull(skb, off);
4660                 else if (off < 0)
4661                         __skb_push(skb, -off);
4662
4663                 skb->mac_header += off;
4664                 skb_reset_network_header(skb);
4665         }
4666
4667         /* check if bpf_xdp_adjust_tail was used */
4668         off = xdp->data_end - orig_data_end;
4669         if (off != 0) {
4670                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4671                 skb->len += off; /* positive on grow, negative on shrink */
4672         }
4673
4674         /* check if XDP changed eth hdr such SKB needs update */
4675         eth = (struct ethhdr *)xdp->data;
4676         if ((orig_eth_type != eth->h_proto) ||
4677             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4678                 __skb_push(skb, ETH_HLEN);
4679                 skb->protocol = eth_type_trans(skb, skb->dev);
4680         }
4681
4682         switch (act) {
4683         case XDP_REDIRECT:
4684         case XDP_TX:
4685                 __skb_push(skb, mac_len);
4686                 break;
4687         case XDP_PASS:
4688                 metalen = xdp->data - xdp->data_meta;
4689                 if (metalen)
4690                         skb_metadata_set(skb, metalen);
4691                 break;
4692         default:
4693                 bpf_warn_invalid_xdp_action(act);
4694                 fallthrough;
4695         case XDP_ABORTED:
4696                 trace_xdp_exception(skb->dev, xdp_prog, act);
4697                 fallthrough;
4698         case XDP_DROP:
4699         do_drop:
4700                 kfree_skb(skb);
4701                 break;
4702         }
4703
4704         return act;
4705 }
4706
4707 /* When doing generic XDP we have to bypass the qdisc layer and the
4708  * network taps in order to match in-driver-XDP behavior.
4709  */
4710 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4711 {
4712         struct net_device *dev = skb->dev;
4713         struct netdev_queue *txq;
4714         bool free_skb = true;
4715         int cpu, rc;
4716
4717         txq = netdev_core_pick_tx(dev, skb, NULL);
4718         cpu = smp_processor_id();
4719         HARD_TX_LOCK(dev, txq, cpu);
4720         if (!netif_xmit_stopped(txq)) {
4721                 rc = netdev_start_xmit(skb, dev, txq, 0);
4722                 if (dev_xmit_complete(rc))
4723                         free_skb = false;
4724         }
4725         HARD_TX_UNLOCK(dev, txq);
4726         if (free_skb) {
4727                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4728                 kfree_skb(skb);
4729         }
4730 }
4731
4732 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4733
4734 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4735 {
4736         if (xdp_prog) {
4737                 struct xdp_buff xdp;
4738                 u32 act;
4739                 int err;
4740
4741                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4742                 if (act != XDP_PASS) {
4743                         switch (act) {
4744                         case XDP_REDIRECT:
4745                                 err = xdp_do_generic_redirect(skb->dev, skb,
4746                                                               &xdp, xdp_prog);
4747                                 if (err)
4748                                         goto out_redir;
4749                                 break;
4750                         case XDP_TX:
4751                                 generic_xdp_tx(skb, xdp_prog);
4752                                 break;
4753                         }
4754                         return XDP_DROP;
4755                 }
4756         }
4757         return XDP_PASS;
4758 out_redir:
4759         kfree_skb(skb);
4760         return XDP_DROP;
4761 }
4762 EXPORT_SYMBOL_GPL(do_xdp_generic);
4763
4764 static int netif_rx_internal(struct sk_buff *skb)
4765 {
4766         int ret;
4767
4768         net_timestamp_check(netdev_tstamp_prequeue, skb);
4769
4770         trace_netif_rx(skb);
4771
4772 #ifdef CONFIG_RPS
4773         if (static_branch_unlikely(&rps_needed)) {
4774                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4775                 int cpu;
4776
4777                 preempt_disable();
4778                 rcu_read_lock();
4779
4780                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4781                 if (cpu < 0)
4782                         cpu = smp_processor_id();
4783
4784                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4785
4786                 rcu_read_unlock();
4787                 preempt_enable();
4788         } else
4789 #endif
4790         {
4791                 unsigned int qtail;
4792
4793                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4794                 put_cpu();
4795         }
4796         return ret;
4797 }
4798
4799 /**
4800  *      netif_rx        -       post buffer to the network code
4801  *      @skb: buffer to post
4802  *
4803  *      This function receives a packet from a device driver and queues it for
4804  *      the upper (protocol) levels to process.  It always succeeds. The buffer
4805  *      may be dropped during processing for congestion control or by the
4806  *      protocol layers.
4807  *
4808  *      return values:
4809  *      NET_RX_SUCCESS  (no congestion)
4810  *      NET_RX_DROP     (packet was dropped)
4811  *
4812  */
4813
4814 int netif_rx(struct sk_buff *skb)
4815 {
4816         int ret;
4817
4818         trace_netif_rx_entry(skb);
4819
4820         ret = netif_rx_internal(skb);
4821         trace_netif_rx_exit(ret);
4822
4823         return ret;
4824 }
4825 EXPORT_SYMBOL(netif_rx);
4826
4827 int netif_rx_ni(struct sk_buff *skb)
4828 {
4829         int err;
4830
4831         trace_netif_rx_ni_entry(skb);
4832
4833         preempt_disable();
4834         err = netif_rx_internal(skb);
4835         if (local_softirq_pending())
4836                 do_softirq();
4837         preempt_enable();
4838         trace_netif_rx_ni_exit(err);
4839
4840         return err;
4841 }
4842 EXPORT_SYMBOL(netif_rx_ni);
4843
4844 int netif_rx_any_context(struct sk_buff *skb)
4845 {
4846         /*
4847          * If invoked from contexts which do not invoke bottom half
4848          * processing either at return from interrupt or when softrqs are
4849          * reenabled, use netif_rx_ni() which invokes bottomhalf processing
4850          * directly.
4851          */
4852         if (in_interrupt())
4853                 return netif_rx(skb);
4854         else
4855                 return netif_rx_ni(skb);
4856 }
4857 EXPORT_SYMBOL(netif_rx_any_context);
4858
4859 static __latent_entropy void net_tx_action(struct softirq_action *h)
4860 {
4861         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4862
4863         if (sd->completion_queue) {
4864                 struct sk_buff *clist;
4865
4866                 local_irq_disable();
4867                 clist = sd->completion_queue;
4868                 sd->completion_queue = NULL;
4869                 local_irq_enable();
4870
4871                 while (clist) {
4872                         struct sk_buff *skb = clist;
4873
4874                         clist = clist->next;
4875
4876                         WARN_ON(refcount_read(&skb->users));
4877                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4878                                 trace_consume_skb(skb);
4879                         else
4880                                 trace_kfree_skb(skb, net_tx_action);
4881
4882                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4883                                 __kfree_skb(skb);
4884                         else
4885                                 __kfree_skb_defer(skb);
4886                 }
4887
4888                 __kfree_skb_flush();
4889         }
4890
4891         if (sd->output_queue) {
4892                 struct Qdisc *head;
4893
4894                 local_irq_disable();
4895                 head = sd->output_queue;
4896                 sd->output_queue = NULL;
4897                 sd->output_queue_tailp = &sd->output_queue;
4898                 local_irq_enable();
4899
4900                 while (head) {
4901                         struct Qdisc *q = head;
4902                         spinlock_t *root_lock = NULL;
4903
4904                         head = head->next_sched;
4905
4906                         if (!(q->flags & TCQ_F_NOLOCK)) {
4907                                 root_lock = qdisc_lock(q);
4908                                 spin_lock(root_lock);
4909                         }
4910                         /* We need to make sure head->next_sched is read
4911                          * before clearing __QDISC_STATE_SCHED
4912                          */
4913                         smp_mb__before_atomic();
4914                         clear_bit(__QDISC_STATE_SCHED, &q->state);
4915                         qdisc_run(q);
4916                         if (root_lock)
4917                                 spin_unlock(root_lock);
4918                 }
4919         }
4920
4921         xfrm_dev_backlog(sd);
4922 }
4923
4924 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4925 /* This hook is defined here for ATM LANE */
4926 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4927                              unsigned char *addr) __read_mostly;
4928 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4929 #endif
4930
4931 static inline struct sk_buff *
4932 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4933                    struct net_device *orig_dev)
4934 {
4935 #ifdef CONFIG_NET_CLS_ACT
4936         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4937         struct tcf_result cl_res;
4938
4939         /* If there's at least one ingress present somewhere (so
4940          * we get here via enabled static key), remaining devices
4941          * that are not configured with an ingress qdisc will bail
4942          * out here.
4943          */
4944         if (!miniq)
4945                 return skb;
4946
4947         if (*pt_prev) {
4948                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4949                 *pt_prev = NULL;
4950         }
4951
4952         qdisc_skb_cb(skb)->pkt_len = skb->len;
4953         skb->tc_at_ingress = 1;
4954         mini_qdisc_bstats_cpu_update(miniq, skb);
4955
4956         switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
4957                                      &cl_res, false)) {
4958         case TC_ACT_OK:
4959         case TC_ACT_RECLASSIFY:
4960                 skb->tc_index = TC_H_MIN(cl_res.classid);
4961                 break;
4962         case TC_ACT_SHOT:
4963                 mini_qdisc_qstats_cpu_drop(miniq);
4964                 kfree_skb(skb);
4965                 return NULL;
4966         case TC_ACT_STOLEN:
4967         case TC_ACT_QUEUED:
4968         case TC_ACT_TRAP:
4969                 consume_skb(skb);
4970                 return NULL;
4971         case TC_ACT_REDIRECT:
4972                 /* skb_mac_header check was done by cls/act_bpf, so
4973                  * we can safely push the L2 header back before
4974                  * redirecting to another netdev
4975                  */
4976                 __skb_push(skb, skb->mac_len);
4977                 skb_do_redirect(skb);
4978                 return NULL;
4979         case TC_ACT_CONSUMED:
4980                 return NULL;
4981         default:
4982                 break;
4983         }
4984 #endif /* CONFIG_NET_CLS_ACT */
4985         return skb;
4986 }
4987
4988 /**
4989  *      netdev_is_rx_handler_busy - check if receive handler is registered
4990  *      @dev: device to check
4991  *
4992  *      Check if a receive handler is already registered for a given device.
4993  *      Return true if there one.
4994  *
4995  *      The caller must hold the rtnl_mutex.
4996  */
4997 bool netdev_is_rx_handler_busy(struct net_device *dev)
4998 {
4999         ASSERT_RTNL();
5000         return dev && rtnl_dereference(dev->rx_handler);
5001 }
5002 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5003
5004 /**
5005  *      netdev_rx_handler_register - register receive handler
5006  *      @dev: device to register a handler for
5007  *      @rx_handler: receive handler to register
5008  *      @rx_handler_data: data pointer that is used by rx handler
5009  *
5010  *      Register a receive handler for a device. This handler will then be
5011  *      called from __netif_receive_skb. A negative errno code is returned
5012  *      on a failure.
5013  *
5014  *      The caller must hold the rtnl_mutex.
5015  *
5016  *      For a general description of rx_handler, see enum rx_handler_result.
5017  */
5018 int netdev_rx_handler_register(struct net_device *dev,
5019                                rx_handler_func_t *rx_handler,
5020                                void *rx_handler_data)
5021 {
5022         if (netdev_is_rx_handler_busy(dev))
5023                 return -EBUSY;
5024
5025         if (dev->priv_flags & IFF_NO_RX_HANDLER)
5026                 return -EINVAL;
5027
5028         /* Note: rx_handler_data must be set before rx_handler */
5029         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5030         rcu_assign_pointer(dev->rx_handler, rx_handler);
5031
5032         return 0;
5033 }
5034 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5035
5036 /**
5037  *      netdev_rx_handler_unregister - unregister receive handler
5038  *      @dev: device to unregister a handler from
5039  *
5040  *      Unregister a receive handler from a device.
5041  *
5042  *      The caller must hold the rtnl_mutex.
5043  */
5044 void netdev_rx_handler_unregister(struct net_device *dev)
5045 {
5046
5047         ASSERT_RTNL();
5048         RCU_INIT_POINTER(dev->rx_handler, NULL);
5049         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5050          * section has a guarantee to see a non NULL rx_handler_data
5051          * as well.
5052          */
5053         synchronize_net();
5054         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5055 }
5056 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5057
5058 /*
5059  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5060  * the special handling of PFMEMALLOC skbs.
5061  */
5062 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5063 {
5064         switch (skb->protocol) {
5065         case htons(ETH_P_ARP):
5066         case htons(ETH_P_IP):
5067         case htons(ETH_P_IPV6):
5068         case htons(ETH_P_8021Q):
5069         case htons(ETH_P_8021AD):
5070                 return true;
5071         default:
5072                 return false;
5073         }
5074 }
5075
5076 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5077                              int *ret, struct net_device *orig_dev)
5078 {
5079         if (nf_hook_ingress_active(skb)) {
5080                 int ingress_retval;
5081
5082                 if (*pt_prev) {
5083                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
5084                         *pt_prev = NULL;
5085                 }
5086
5087                 rcu_read_lock();
5088                 ingress_retval = nf_hook_ingress(skb);
5089                 rcu_read_unlock();
5090                 return ingress_retval;
5091         }
5092         return 0;
5093 }
5094
5095 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5096                                     struct packet_type **ppt_prev)
5097 {
5098         struct packet_type *ptype, *pt_prev;
5099         rx_handler_func_t *rx_handler;
5100         struct sk_buff *skb = *pskb;
5101         struct net_device *orig_dev;
5102         bool deliver_exact = false;
5103         int ret = NET_RX_DROP;
5104         __be16 type;
5105
5106         net_timestamp_check(!netdev_tstamp_prequeue, skb);
5107
5108         trace_netif_receive_skb(skb);
5109
5110         orig_dev = skb->dev;
5111
5112         skb_reset_network_header(skb);
5113         if (!skb_transport_header_was_set(skb))
5114                 skb_reset_transport_header(skb);
5115         skb_reset_mac_len(skb);
5116
5117         pt_prev = NULL;
5118
5119 another_round:
5120         skb->skb_iif = skb->dev->ifindex;
5121
5122         __this_cpu_inc(softnet_data.processed);
5123
5124         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5125                 int ret2;
5126
5127                 preempt_disable();
5128                 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5129                 preempt_enable();
5130
5131                 if (ret2 != XDP_PASS) {
5132                         ret = NET_RX_DROP;
5133                         goto out;
5134                 }
5135                 skb_reset_mac_len(skb);
5136         }
5137
5138         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5139             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5140                 skb = skb_vlan_untag(skb);
5141                 if (unlikely(!skb))
5142                         goto out;
5143         }
5144
5145         if (skb_skip_tc_classify(skb))
5146                 goto skip_classify;
5147
5148         if (pfmemalloc)
5149                 goto skip_taps;
5150
5151         list_for_each_entry_rcu(ptype, &ptype_all, list) {
5152                 if (pt_prev)
5153                         ret = deliver_skb(skb, pt_prev, orig_dev);
5154                 pt_prev = ptype;
5155         }
5156
5157         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5158                 if (pt_prev)
5159                         ret = deliver_skb(skb, pt_prev, orig_dev);
5160                 pt_prev = ptype;
5161         }
5162
5163 skip_taps:
5164 #ifdef CONFIG_NET_INGRESS
5165         if (static_branch_unlikely(&ingress_needed_key)) {
5166                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
5167                 if (!skb)
5168                         goto out;
5169
5170                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5171                         goto out;
5172         }
5173 #endif
5174         skb_reset_redirect(skb);
5175 skip_classify:
5176         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5177                 goto drop;
5178
5179         if (skb_vlan_tag_present(skb)) {
5180                 if (pt_prev) {
5181                         ret = deliver_skb(skb, pt_prev, orig_dev);
5182                         pt_prev = NULL;
5183                 }
5184                 if (vlan_do_receive(&skb))
5185                         goto another_round;
5186                 else if (unlikely(!skb))
5187                         goto out;
5188         }
5189
5190         rx_handler = rcu_dereference(skb->dev->rx_handler);
5191         if (rx_handler) {
5192                 if (pt_prev) {
5193                         ret = deliver_skb(skb, pt_prev, orig_dev);
5194                         pt_prev = NULL;
5195                 }
5196                 switch (rx_handler(&skb)) {
5197                 case RX_HANDLER_CONSUMED:
5198                         ret = NET_RX_SUCCESS;
5199                         goto out;
5200                 case RX_HANDLER_ANOTHER:
5201                         goto another_round;
5202                 case RX_HANDLER_EXACT:
5203                         deliver_exact = true;
5204                 case RX_HANDLER_PASS:
5205                         break;
5206                 default:
5207                         BUG();
5208                 }
5209         }
5210
5211         if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5212 check_vlan_id:
5213                 if (skb_vlan_tag_get_id(skb)) {
5214                         /* Vlan id is non 0 and vlan_do_receive() above couldn't
5215                          * find vlan device.
5216                          */
5217                         skb->pkt_type = PACKET_OTHERHOST;
5218                 } else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5219                            skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5220                         /* Outer header is 802.1P with vlan 0, inner header is
5221                          * 802.1Q or 802.1AD and vlan_do_receive() above could
5222                          * not find vlan dev for vlan id 0.
5223                          */
5224                         __vlan_hwaccel_clear_tag(skb);
5225                         skb = skb_vlan_untag(skb);
5226                         if (unlikely(!skb))
5227                                 goto out;
5228                         if (vlan_do_receive(&skb))
5229                                 /* After stripping off 802.1P header with vlan 0
5230                                  * vlan dev is found for inner header.
5231                                  */
5232                                 goto another_round;
5233                         else if (unlikely(!skb))
5234                                 goto out;
5235                         else
5236                                 /* We have stripped outer 802.1P vlan 0 header.
5237                                  * But could not find vlan dev.
5238                                  * check again for vlan id to set OTHERHOST.
5239                                  */
5240                                 goto check_vlan_id;
5241                 }
5242                 /* Note: we might in the future use prio bits
5243                  * and set skb->priority like in vlan_do_receive()
5244                  * For the time being, just ignore Priority Code Point
5245                  */
5246                 __vlan_hwaccel_clear_tag(skb);
5247         }
5248
5249         type = skb->protocol;
5250
5251         /* deliver only exact match when indicated */
5252         if (likely(!deliver_exact)) {
5253                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5254                                        &ptype_base[ntohs(type) &
5255                                                    PTYPE_HASH_MASK]);
5256         }
5257
5258         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5259                                &orig_dev->ptype_specific);
5260
5261         if (unlikely(skb->dev != orig_dev)) {
5262                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5263                                        &skb->dev->ptype_specific);
5264         }
5265
5266         if (pt_prev) {
5267                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5268                         goto drop;
5269                 *ppt_prev = pt_prev;
5270         } else {
5271 drop:
5272                 if (!deliver_exact)
5273                         atomic_long_inc(&skb->dev->rx_dropped);
5274                 else
5275                         atomic_long_inc(&skb->dev->rx_nohandler);
5276                 kfree_skb(skb);
5277                 /* Jamal, now you will not able to escape explaining
5278                  * me how you were going to use this. :-)
5279                  */
5280                 ret = NET_RX_DROP;
5281         }
5282
5283 out:
5284         /* The invariant here is that if *ppt_prev is not NULL
5285          * then skb should also be non-NULL.
5286          *
5287          * Apparently *ppt_prev assignment above holds this invariant due to
5288          * skb dereferencing near it.
5289          */
5290         *pskb = skb;
5291         return ret;
5292 }
5293
5294 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5295 {
5296         struct net_device *orig_dev = skb->dev;
5297         struct packet_type *pt_prev = NULL;
5298         int ret;
5299
5300         ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5301         if (pt_prev)
5302                 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5303                                          skb->dev, pt_prev, orig_dev);
5304         return ret;
5305 }
5306
5307 /**
5308  *      netif_receive_skb_core - special purpose version of netif_receive_skb
5309  *      @skb: buffer to process
5310  *
5311  *      More direct receive version of netif_receive_skb().  It should
5312  *      only be used by callers that have a need to skip RPS and Generic XDP.
5313  *      Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5314  *
5315  *      This function may only be called from softirq context and interrupts
5316  *      should be enabled.
5317  *
5318  *      Return values (usually ignored):
5319  *      NET_RX_SUCCESS: no congestion
5320  *      NET_RX_DROP: packet was dropped
5321  */
5322 int netif_receive_skb_core(struct sk_buff *skb)
5323 {
5324         int ret;
5325
5326         rcu_read_lock();
5327         ret = __netif_receive_skb_one_core(skb, false);
5328         rcu_read_unlock();
5329
5330         return ret;
5331 }
5332 EXPORT_SYMBOL(netif_receive_skb_core);
5333
5334 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5335                                                   struct packet_type *pt_prev,
5336                                                   struct net_device *orig_dev)
5337 {
5338         struct sk_buff *skb, *next;
5339
5340         if (!pt_prev)
5341                 return;
5342         if (list_empty(head))
5343                 return;
5344         if (pt_prev->list_func != NULL)
5345                 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5346                                    ip_list_rcv, head, pt_prev, orig_dev);
5347         else
5348                 list_for_each_entry_safe(skb, next, head, list) {
5349                         skb_list_del_init(skb);
5350                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5351                 }
5352 }
5353
5354 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5355 {
5356         /* Fast-path assumptions:
5357          * - There is no RX handler.
5358          * - Only one packet_type matches.
5359          * If either of these fails, we will end up doing some per-packet
5360          * processing in-line, then handling the 'last ptype' for the whole
5361          * sublist.  This can't cause out-of-order delivery to any single ptype,
5362          * because the 'last ptype' must be constant across the sublist, and all
5363          * other ptypes are handled per-packet.
5364          */
5365         /* Current (common) ptype of sublist */
5366         struct packet_type *pt_curr = NULL;
5367         /* Current (common) orig_dev of sublist */
5368         struct net_device *od_curr = NULL;
5369         struct list_head sublist;
5370         struct sk_buff *skb, *next;
5371
5372         INIT_LIST_HEAD(&sublist);
5373         list_for_each_entry_safe(skb, next, head, list) {
5374                 struct net_device *orig_dev = skb->dev;
5375                 struct packet_type *pt_prev = NULL;
5376
5377                 skb_list_del_init(skb);
5378                 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5379                 if (!pt_prev)
5380                         continue;
5381                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5382                         /* dispatch old sublist */
5383                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5384                         /* start new sublist */
5385                         INIT_LIST_HEAD(&sublist);
5386                         pt_curr = pt_prev;
5387                         od_curr = orig_dev;
5388                 }
5389                 list_add_tail(&skb->list, &sublist);
5390         }
5391
5392         /* dispatch final sublist */
5393         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5394 }
5395
5396 static int __netif_receive_skb(struct sk_buff *skb)
5397 {
5398         int ret;
5399
5400         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5401                 unsigned int noreclaim_flag;
5402
5403                 /*
5404                  * PFMEMALLOC skbs are special, they should
5405                  * - be delivered to SOCK_MEMALLOC sockets only
5406                  * - stay away from userspace
5407                  * - have bounded memory usage
5408                  *
5409                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5410                  * context down to all allocation sites.
5411                  */
5412                 noreclaim_flag = memalloc_noreclaim_save();
5413                 ret = __netif_receive_skb_one_core(skb, true);
5414                 memalloc_noreclaim_restore(noreclaim_flag);
5415         } else
5416                 ret = __netif_receive_skb_one_core(skb, false);
5417
5418         return ret;
5419 }
5420
5421 static void __netif_receive_skb_list(struct list_head *head)
5422 {
5423         unsigned long noreclaim_flag = 0;
5424         struct sk_buff *skb, *next;
5425         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5426
5427         list_for_each_entry_safe(skb, next, head, list) {
5428                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5429                         struct list_head sublist;
5430
5431                         /* Handle the previous sublist */
5432                         list_cut_before(&sublist, head, &skb->list);
5433                         if (!list_empty(&sublist))
5434                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5435                         pfmemalloc = !pfmemalloc;
5436                         /* See comments in __netif_receive_skb */
5437                         if (pfmemalloc)
5438                                 noreclaim_flag = memalloc_noreclaim_save();
5439                         else
5440                                 memalloc_noreclaim_restore(noreclaim_flag);
5441                 }
5442         }
5443         /* Handle the remaining sublist */
5444         if (!list_empty(head))
5445                 __netif_receive_skb_list_core(head, pfmemalloc);
5446         /* Restore pflags */
5447         if (pfmemalloc)
5448                 memalloc_noreclaim_restore(noreclaim_flag);
5449 }
5450
5451 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5452 {
5453         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5454         struct bpf_prog *new = xdp->prog;
5455         int ret = 0;
5456
5457         if (new) {
5458                 u32 i;
5459
5460                 mutex_lock(&new->aux->used_maps_mutex);
5461
5462                 /* generic XDP does not work with DEVMAPs that can
5463                  * have a bpf_prog installed on an entry
5464                  */
5465                 for (i = 0; i < new->aux->used_map_cnt; i++) {
5466                         if (dev_map_can_have_prog(new->aux->used_maps[i]) ||
5467                             cpu_map_prog_allowed(new->aux->used_maps[i])) {
5468                                 mutex_unlock(&new->aux->used_maps_mutex);
5469                                 return -EINVAL;
5470                         }
5471                 }
5472
5473                 mutex_unlock(&new->aux->used_maps_mutex);
5474         }
5475
5476         switch (xdp->command) {
5477         case XDP_SETUP_PROG:
5478                 rcu_assign_pointer(dev->xdp_prog, new);
5479                 if (old)
5480                         bpf_prog_put(old);
5481
5482                 if (old && !new) {
5483                         static_branch_dec(&generic_xdp_needed_key);
5484                 } else if (new && !old) {
5485                         static_branch_inc(&generic_xdp_needed_key);
5486                         dev_disable_lro(dev);
5487                         dev_disable_gro_hw(dev);
5488                 }
5489                 break;
5490
5491         default:
5492                 ret = -EINVAL;
5493                 break;
5494         }
5495
5496         return ret;
5497 }
5498
5499 static int netif_receive_skb_internal(struct sk_buff *skb)
5500 {
5501         int ret;
5502
5503         net_timestamp_check(netdev_tstamp_prequeue, skb);
5504
5505         if (skb_defer_rx_timestamp(skb))
5506                 return NET_RX_SUCCESS;
5507
5508         rcu_read_lock();
5509 #ifdef CONFIG_RPS
5510         if (static_branch_unlikely(&rps_needed)) {
5511                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5512                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5513
5514                 if (cpu >= 0) {
5515                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5516                         rcu_read_unlock();
5517                         return ret;
5518                 }
5519         }
5520 #endif
5521         ret = __netif_receive_skb(skb);
5522         rcu_read_unlock();
5523         return ret;
5524 }
5525
5526 static void netif_receive_skb_list_internal(struct list_head *head)
5527 {
5528         struct sk_buff *skb, *next;
5529         struct list_head sublist;
5530
5531         INIT_LIST_HEAD(&sublist);
5532         list_for_each_entry_safe(skb, next, head, list) {
5533                 net_timestamp_check(netdev_tstamp_prequeue, skb);
5534                 skb_list_del_init(skb);
5535                 if (!skb_defer_rx_timestamp(skb))
5536                         list_add_tail(&skb->list, &sublist);
5537         }
5538         list_splice_init(&sublist, head);
5539
5540         rcu_read_lock();
5541 #ifdef CONFIG_RPS
5542         if (static_branch_unlikely(&rps_needed)) {
5543                 list_for_each_entry_safe(skb, next, head, list) {
5544                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5545                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5546
5547                         if (cpu >= 0) {
5548                                 /* Will be handled, remove from list */
5549                                 skb_list_del_init(skb);
5550                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5551                         }
5552                 }
5553         }
5554 #endif
5555         __netif_receive_skb_list(head);
5556         rcu_read_unlock();
5557 }
5558
5559 /**
5560  *      netif_receive_skb - process receive buffer from network
5561  *      @skb: buffer to process
5562  *
5563  *      netif_receive_skb() is the main receive data processing function.
5564  *      It always succeeds. The buffer may be dropped during processing
5565  *      for congestion control or by the protocol layers.
5566  *
5567  *      This function may only be called from softirq context and interrupts
5568  *      should be enabled.
5569  *
5570  *      Return values (usually ignored):
5571  *      NET_RX_SUCCESS: no congestion
5572  *      NET_RX_DROP: packet was dropped
5573  */
5574 int netif_receive_skb(struct sk_buff *skb)
5575 {
5576         int ret;
5577
5578         trace_netif_receive_skb_entry(skb);
5579
5580         ret = netif_receive_skb_internal(skb);
5581         trace_netif_receive_skb_exit(ret);
5582
5583         return ret;
5584 }
5585 EXPORT_SYMBOL(netif_receive_skb);
5586
5587 /**
5588  *      netif_receive_skb_list - process many receive buffers from network
5589  *      @head: list of skbs to process.
5590  *
5591  *      Since return value of netif_receive_skb() is normally ignored, and
5592  *      wouldn't be meaningful for a list, this function returns void.
5593  *
5594  *      This function may only be called from softirq context and interrupts
5595  *      should be enabled.
5596  */
5597 void netif_receive_skb_list(struct list_head *head)
5598 {
5599         struct sk_buff *skb;
5600
5601         if (list_empty(head))
5602                 return;
5603         if (trace_netif_receive_skb_list_entry_enabled()) {
5604                 list_for_each_entry(skb, head, list)
5605                         trace_netif_receive_skb_list_entry(skb);
5606         }
5607         netif_receive_skb_list_internal(head);
5608         trace_netif_receive_skb_list_exit(0);
5609 }
5610 EXPORT_SYMBOL(netif_receive_skb_list);
5611
5612 static DEFINE_PER_CPU(struct work_struct, flush_works);
5613
5614 /* Network device is going away, flush any packets still pending */
5615 static void flush_backlog(struct work_struct *work)
5616 {
5617         struct sk_buff *skb, *tmp;
5618         struct softnet_data *sd;
5619
5620         local_bh_disable();
5621         sd = this_cpu_ptr(&softnet_data);
5622
5623         local_irq_disable();
5624         rps_lock(sd);
5625         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5626                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5627                         __skb_unlink(skb, &sd->input_pkt_queue);
5628                         dev_kfree_skb_irq(skb);
5629                         input_queue_head_incr(sd);
5630                 }
5631         }
5632         rps_unlock(sd);
5633         local_irq_enable();
5634
5635         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5636                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5637                         __skb_unlink(skb, &sd->process_queue);
5638                         kfree_skb(skb);
5639                         input_queue_head_incr(sd);
5640                 }
5641         }
5642         local_bh_enable();
5643 }
5644
5645 static bool flush_required(int cpu)
5646 {
5647 #if IS_ENABLED(CONFIG_RPS)
5648         struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5649         bool do_flush;
5650
5651         local_irq_disable();
5652         rps_lock(sd);
5653
5654         /* as insertion into process_queue happens with the rps lock held,
5655          * process_queue access may race only with dequeue
5656          */
5657         do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5658                    !skb_queue_empty_lockless(&sd->process_queue);
5659         rps_unlock(sd);
5660         local_irq_enable();
5661
5662         return do_flush;
5663 #endif
5664         /* without RPS we can't safely check input_pkt_queue: during a
5665          * concurrent remote skb_queue_splice() we can detect as empty both
5666          * input_pkt_queue and process_queue even if the latter could end-up
5667          * containing a lot of packets.
5668          */
5669         return true;
5670 }
5671
5672 static void flush_all_backlogs(void)
5673 {
5674         static cpumask_t flush_cpus;
5675         unsigned int cpu;
5676
5677         /* since we are under rtnl lock protection we can use static data
5678          * for the cpumask and avoid allocating on stack the possibly
5679          * large mask
5680          */
5681         ASSERT_RTNL();
5682
5683         get_online_cpus();
5684
5685         cpumask_clear(&flush_cpus);
5686         for_each_online_cpu(cpu) {
5687                 if (flush_required(cpu)) {
5688                         queue_work_on(cpu, system_highpri_wq,
5689                                       per_cpu_ptr(&flush_works, cpu));
5690                         cpumask_set_cpu(cpu, &flush_cpus);
5691                 }
5692         }
5693
5694         /* we can have in flight packet[s] on the cpus we are not flushing,
5695          * synchronize_net() in rollback_registered_many() will take care of
5696          * them
5697          */
5698         for_each_cpu(cpu, &flush_cpus)
5699                 flush_work(per_cpu_ptr(&flush_works, cpu));
5700
5701         put_online_cpus();
5702 }
5703
5704 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5705 static void gro_normal_list(struct napi_struct *napi)
5706 {
5707         if (!napi->rx_count)
5708                 return;
5709         netif_receive_skb_list_internal(&napi->rx_list);
5710         INIT_LIST_HEAD(&napi->rx_list);
5711         napi->rx_count = 0;
5712 }
5713
5714 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5715  * pass the whole batch up to the stack.
5716  */
5717 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb)
5718 {
5719         list_add_tail(&skb->list, &napi->rx_list);
5720         if (++napi->rx_count >= gro_normal_batch)
5721                 gro_normal_list(napi);
5722 }
5723
5724 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5725 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
5726 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5727 {
5728         struct packet_offload *ptype;
5729         __be16 type = skb->protocol;
5730         struct list_head *head = &offload_base;
5731         int err = -ENOENT;
5732
5733         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5734
5735         if (NAPI_GRO_CB(skb)->count == 1) {
5736                 skb_shinfo(skb)->gso_size = 0;
5737                 goto out;
5738         }
5739
5740         rcu_read_lock();
5741         list_for_each_entry_rcu(ptype, head, list) {
5742                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5743                         continue;
5744
5745                 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5746                                          ipv6_gro_complete, inet_gro_complete,
5747                                          skb, 0);
5748                 break;
5749         }
5750         rcu_read_unlock();
5751
5752         if (err) {
5753                 WARN_ON(&ptype->list == head);
5754                 kfree_skb(skb);
5755                 return NET_RX_SUCCESS;
5756         }
5757
5758 out:
5759         gro_normal_one(napi, skb);
5760         return NET_RX_SUCCESS;
5761 }
5762
5763 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5764                                    bool flush_old)
5765 {
5766         struct list_head *head = &napi->gro_hash[index].list;
5767         struct sk_buff *skb, *p;
5768
5769         list_for_each_entry_safe_reverse(skb, p, head, list) {
5770                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5771                         return;
5772                 skb_list_del_init(skb);
5773                 napi_gro_complete(napi, skb);
5774                 napi->gro_hash[index].count--;
5775         }
5776
5777         if (!napi->gro_hash[index].count)
5778                 __clear_bit(index, &napi->gro_bitmask);
5779 }
5780
5781 /* napi->gro_hash[].list contains packets ordered by age.
5782  * youngest packets at the head of it.
5783  * Complete skbs in reverse order to reduce latencies.
5784  */
5785 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5786 {
5787         unsigned long bitmask = napi->gro_bitmask;
5788         unsigned int i, base = ~0U;
5789
5790         while ((i = ffs(bitmask)) != 0) {
5791                 bitmask >>= i;
5792                 base += i;
5793                 __napi_gro_flush_chain(napi, base, flush_old);
5794         }
5795 }
5796 EXPORT_SYMBOL(napi_gro_flush);
5797
5798 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5799                                           struct sk_buff *skb)
5800 {
5801         unsigned int maclen = skb->dev->hard_header_len;
5802         u32 hash = skb_get_hash_raw(skb);
5803         struct list_head *head;
5804         struct sk_buff *p;
5805
5806         head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5807         list_for_each_entry(p, head, list) {
5808                 unsigned long diffs;
5809
5810                 NAPI_GRO_CB(p)->flush = 0;
5811
5812                 if (hash != skb_get_hash_raw(p)) {
5813                         NAPI_GRO_CB(p)->same_flow = 0;
5814                         continue;
5815                 }
5816
5817                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5818                 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5819                 if (skb_vlan_tag_present(p))
5820                         diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5821                 diffs |= skb_metadata_dst_cmp(p, skb);
5822                 diffs |= skb_metadata_differs(p, skb);
5823                 if (maclen == ETH_HLEN)
5824                         diffs |= compare_ether_header(skb_mac_header(p),
5825                                                       skb_mac_header(skb));
5826                 else if (!diffs)
5827                         diffs = memcmp(skb_mac_header(p),
5828                                        skb_mac_header(skb),
5829                                        maclen);
5830                 NAPI_GRO_CB(p)->same_flow = !diffs;
5831         }
5832
5833         return head;
5834 }
5835
5836 static void skb_gro_reset_offset(struct sk_buff *skb)
5837 {
5838         const struct skb_shared_info *pinfo = skb_shinfo(skb);
5839         const skb_frag_t *frag0 = &pinfo->frags[0];
5840
5841         NAPI_GRO_CB(skb)->data_offset = 0;
5842         NAPI_GRO_CB(skb)->frag0 = NULL;
5843         NAPI_GRO_CB(skb)->frag0_len = 0;
5844
5845         if (!skb_headlen(skb) && pinfo->nr_frags &&
5846             !PageHighMem(skb_frag_page(frag0))) {
5847                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5848                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5849                                                     skb_frag_size(frag0),
5850                                                     skb->end - skb->tail);
5851         }
5852 }
5853
5854 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5855 {
5856         struct skb_shared_info *pinfo = skb_shinfo(skb);
5857
5858         BUG_ON(skb->end - skb->tail < grow);
5859
5860         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5861
5862         skb->data_len -= grow;
5863         skb->tail += grow;
5864
5865         skb_frag_off_add(&pinfo->frags[0], grow);
5866         skb_frag_size_sub(&pinfo->frags[0], grow);
5867
5868         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5869                 skb_frag_unref(skb, 0);
5870                 memmove(pinfo->frags, pinfo->frags + 1,
5871                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5872         }
5873 }
5874
5875 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
5876 {
5877         struct sk_buff *oldest;
5878
5879         oldest = list_last_entry(head, struct sk_buff, list);
5880
5881         /* We are called with head length >= MAX_GRO_SKBS, so this is
5882          * impossible.
5883          */
5884         if (WARN_ON_ONCE(!oldest))
5885                 return;
5886
5887         /* Do not adjust napi->gro_hash[].count, caller is adding a new
5888          * SKB to the chain.
5889          */
5890         skb_list_del_init(oldest);
5891         napi_gro_complete(napi, oldest);
5892 }
5893
5894 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5895                                                            struct sk_buff *));
5896 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5897                                                            struct sk_buff *));
5898 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5899 {
5900         u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5901         struct list_head *head = &offload_base;
5902         struct packet_offload *ptype;
5903         __be16 type = skb->protocol;
5904         struct list_head *gro_head;
5905         struct sk_buff *pp = NULL;
5906         enum gro_result ret;
5907         int same_flow;
5908         int grow;
5909
5910         if (netif_elide_gro(skb->dev))
5911                 goto normal;
5912
5913         gro_head = gro_list_prepare(napi, skb);
5914
5915         rcu_read_lock();
5916         list_for_each_entry_rcu(ptype, head, list) {
5917                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5918                         continue;
5919
5920                 skb_set_network_header(skb, skb_gro_offset(skb));
5921                 skb_reset_mac_len(skb);
5922                 NAPI_GRO_CB(skb)->same_flow = 0;
5923                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5924                 NAPI_GRO_CB(skb)->free = 0;
5925                 NAPI_GRO_CB(skb)->encap_mark = 0;
5926                 NAPI_GRO_CB(skb)->recursion_counter = 0;
5927                 NAPI_GRO_CB(skb)->is_fou = 0;
5928                 NAPI_GRO_CB(skb)->is_atomic = 1;
5929                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5930
5931                 /* Setup for GRO checksum validation */
5932                 switch (skb->ip_summed) {
5933                 case CHECKSUM_COMPLETE:
5934                         NAPI_GRO_CB(skb)->csum = skb->csum;
5935                         NAPI_GRO_CB(skb)->csum_valid = 1;
5936                         NAPI_GRO_CB(skb)->csum_cnt = 0;
5937                         break;
5938                 case CHECKSUM_UNNECESSARY:
5939                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5940                         NAPI_GRO_CB(skb)->csum_valid = 0;
5941                         break;
5942                 default:
5943                         NAPI_GRO_CB(skb)->csum_cnt = 0;
5944                         NAPI_GRO_CB(skb)->csum_valid = 0;
5945                 }
5946
5947                 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5948                                         ipv6_gro_receive, inet_gro_receive,
5949                                         gro_head, skb);
5950                 break;
5951         }
5952         rcu_read_unlock();
5953
5954         if (&ptype->list == head)
5955                 goto normal;
5956
5957         if (PTR_ERR(pp) == -EINPROGRESS) {
5958                 ret = GRO_CONSUMED;
5959                 goto ok;
5960         }
5961
5962         same_flow = NAPI_GRO_CB(skb)->same_flow;
5963         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5964
5965         if (pp) {
5966                 skb_list_del_init(pp);
5967                 napi_gro_complete(napi, pp);
5968                 napi->gro_hash[hash].count--;
5969         }
5970
5971         if (same_flow)
5972                 goto ok;
5973
5974         if (NAPI_GRO_CB(skb)->flush)
5975                 goto normal;
5976
5977         if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5978                 gro_flush_oldest(napi, gro_head);
5979         } else {
5980                 napi->gro_hash[hash].count++;
5981         }
5982         NAPI_GRO_CB(skb)->count = 1;
5983         NAPI_GRO_CB(skb)->age = jiffies;
5984         NAPI_GRO_CB(skb)->last = skb;
5985         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5986         list_add(&skb->list, gro_head);
5987         ret = GRO_HELD;
5988
5989 pull:
5990         grow = skb_gro_offset(skb) - skb_headlen(skb);
5991         if (grow > 0)
5992                 gro_pull_from_frag0(skb, grow);
5993 ok:
5994         if (napi->gro_hash[hash].count) {
5995                 if (!test_bit(hash, &napi->gro_bitmask))
5996                         __set_bit(hash, &napi->gro_bitmask);
5997         } else if (test_bit(hash, &napi->gro_bitmask)) {
5998                 __clear_bit(hash, &napi->gro_bitmask);
5999         }
6000
6001         return ret;
6002
6003 normal:
6004         ret = GRO_NORMAL;
6005         goto pull;
6006 }
6007
6008 struct packet_offload *gro_find_receive_by_type(__be16 type)
6009 {
6010         struct list_head *offload_head = &offload_base;
6011         struct packet_offload *ptype;
6012
6013         list_for_each_entry_rcu(ptype, offload_head, list) {
6014                 if (ptype->type != type || !ptype->callbacks.gro_receive)
6015                         continue;
6016                 return ptype;
6017         }
6018         return NULL;
6019 }
6020 EXPORT_SYMBOL(gro_find_receive_by_type);
6021
6022 struct packet_offload *gro_find_complete_by_type(__be16 type)
6023 {
6024         struct list_head *offload_head = &offload_base;
6025         struct packet_offload *ptype;
6026
6027         list_for_each_entry_rcu(ptype, offload_head, list) {
6028                 if (ptype->type != type || !ptype->callbacks.gro_complete)
6029                         continue;
6030                 return ptype;
6031         }
6032         return NULL;
6033 }
6034 EXPORT_SYMBOL(gro_find_complete_by_type);
6035
6036 static void napi_skb_free_stolen_head(struct sk_buff *skb)
6037 {
6038         skb_dst_drop(skb);
6039         skb_ext_put(skb);
6040         kmem_cache_free(skbuff_head_cache, skb);
6041 }
6042
6043 static gro_result_t napi_skb_finish(struct napi_struct *napi,
6044                                     struct sk_buff *skb,
6045                                     gro_result_t ret)
6046 {
6047         switch (ret) {
6048         case GRO_NORMAL:
6049                 gro_normal_one(napi, skb);
6050                 break;
6051
6052         case GRO_DROP:
6053                 kfree_skb(skb);
6054                 break;
6055
6056         case GRO_MERGED_FREE:
6057                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6058                         napi_skb_free_stolen_head(skb);
6059                 else
6060                         __kfree_skb(skb);
6061                 break;
6062
6063         case GRO_HELD:
6064         case GRO_MERGED:
6065         case GRO_CONSUMED:
6066                 break;
6067         }
6068
6069         return ret;
6070 }
6071
6072 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6073 {
6074         gro_result_t ret;
6075
6076         skb_mark_napi_id(skb, napi);
6077         trace_napi_gro_receive_entry(skb);
6078
6079         skb_gro_reset_offset(skb);
6080
6081         ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6082         trace_napi_gro_receive_exit(ret);
6083
6084         return ret;
6085 }
6086 EXPORT_SYMBOL(napi_gro_receive);
6087
6088 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6089 {
6090         if (unlikely(skb->pfmemalloc)) {
6091                 consume_skb(skb);
6092                 return;
6093         }
6094         __skb_pull(skb, skb_headlen(skb));
6095         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
6096         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6097         __vlan_hwaccel_clear_tag(skb);
6098         skb->dev = napi->dev;
6099         skb->skb_iif = 0;
6100
6101         /* eth_type_trans() assumes pkt_type is PACKET_HOST */
6102         skb->pkt_type = PACKET_HOST;
6103
6104         skb->encapsulation = 0;
6105         skb_shinfo(skb)->gso_type = 0;
6106         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6107         skb_ext_reset(skb);
6108
6109         napi->skb = skb;
6110 }
6111
6112 struct sk_buff *napi_get_frags(struct napi_struct *napi)
6113 {
6114         struct sk_buff *skb = napi->skb;
6115
6116         if (!skb) {
6117                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6118                 if (skb) {
6119                         napi->skb = skb;
6120                         skb_mark_napi_id(skb, napi);
6121                 }
6122         }
6123         return skb;
6124 }
6125 EXPORT_SYMBOL(napi_get_frags);
6126
6127 static gro_result_t napi_frags_finish(struct napi_struct *napi,
6128                                       struct sk_buff *skb,
6129                                       gro_result_t ret)
6130 {
6131         switch (ret) {
6132         case GRO_NORMAL:
6133         case GRO_HELD:
6134                 __skb_push(skb, ETH_HLEN);
6135                 skb->protocol = eth_type_trans(skb, skb->dev);
6136                 if (ret == GRO_NORMAL)
6137                         gro_normal_one(napi, skb);
6138                 break;
6139
6140         case GRO_DROP:
6141                 napi_reuse_skb(napi, skb);
6142                 break;
6143
6144         case GRO_MERGED_FREE:
6145                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6146                         napi_skb_free_stolen_head(skb);
6147                 else
6148                         napi_reuse_skb(napi, skb);
6149                 break;
6150
6151         case GRO_MERGED:
6152         case GRO_CONSUMED:
6153                 break;
6154         }
6155
6156         return ret;
6157 }
6158
6159 /* Upper GRO stack assumes network header starts at gro_offset=0
6160  * Drivers could call both napi_gro_frags() and napi_gro_receive()
6161  * We copy ethernet header into skb->data to have a common layout.
6162  */
6163 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6164 {
6165         struct sk_buff *skb = napi->skb;
6166         const struct ethhdr *eth;
6167         unsigned int hlen = sizeof(*eth);
6168
6169         napi->skb = NULL;
6170
6171         skb_reset_mac_header(skb);
6172         skb_gro_reset_offset(skb);
6173
6174         if (unlikely(skb_gro_header_hard(skb, hlen))) {
6175                 eth = skb_gro_header_slow(skb, hlen, 0);
6176                 if (unlikely(!eth)) {
6177                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6178                                              __func__, napi->dev->name);
6179                         napi_reuse_skb(napi, skb);
6180                         return NULL;
6181                 }
6182         } else {
6183                 eth = (const struct ethhdr *)skb->data;
6184                 gro_pull_from_frag0(skb, hlen);
6185                 NAPI_GRO_CB(skb)->frag0 += hlen;
6186                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
6187         }
6188         __skb_pull(skb, hlen);
6189
6190         /*
6191          * This works because the only protocols we care about don't require
6192          * special handling.
6193          * We'll fix it up properly in napi_frags_finish()
6194          */
6195         skb->protocol = eth->h_proto;
6196
6197         return skb;
6198 }
6199
6200 gro_result_t napi_gro_frags(struct napi_struct *napi)
6201 {
6202         gro_result_t ret;
6203         struct sk_buff *skb = napi_frags_skb(napi);
6204
6205         if (!skb)
6206                 return GRO_DROP;
6207
6208         trace_napi_gro_frags_entry(skb);
6209
6210         ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6211         trace_napi_gro_frags_exit(ret);
6212
6213         return ret;
6214 }
6215 EXPORT_SYMBOL(napi_gro_frags);
6216
6217 /* Compute the checksum from gro_offset and return the folded value
6218  * after adding in any pseudo checksum.
6219  */
6220 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6221 {
6222         __wsum wsum;
6223         __sum16 sum;
6224
6225         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6226
6227         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6228         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6229         /* See comments in __skb_checksum_complete(). */
6230         if (likely(!sum)) {
6231                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6232                     !skb->csum_complete_sw)
6233                         netdev_rx_csum_fault(skb->dev, skb);
6234         }
6235
6236         NAPI_GRO_CB(skb)->csum = wsum;
6237         NAPI_GRO_CB(skb)->csum_valid = 1;
6238
6239         return sum;
6240 }
6241 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6242
6243 static void net_rps_send_ipi(struct softnet_data *remsd)
6244 {
6245 #ifdef CONFIG_RPS
6246         while (remsd) {
6247                 struct softnet_data *next = remsd->rps_ipi_next;
6248
6249                 if (cpu_online(remsd->cpu))
6250                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
6251                 remsd = next;
6252         }
6253 #endif
6254 }
6255
6256 /*
6257  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6258  * Note: called with local irq disabled, but exits with local irq enabled.
6259  */
6260 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6261 {
6262 #ifdef CONFIG_RPS
6263         struct softnet_data *remsd = sd->rps_ipi_list;
6264
6265         if (remsd) {
6266                 sd->rps_ipi_list = NULL;
6267
6268                 local_irq_enable();
6269
6270                 /* Send pending IPI's to kick RPS processing on remote cpus. */
6271                 net_rps_send_ipi(remsd);
6272         } else
6273 #endif
6274                 local_irq_enable();
6275 }
6276
6277 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6278 {
6279 #ifdef CONFIG_RPS
6280         return sd->rps_ipi_list != NULL;
6281 #else
6282         return false;
6283 #endif
6284 }
6285
6286 static int process_backlog(struct napi_struct *napi, int quota)
6287 {
6288         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6289         bool again = true;
6290         int work = 0;
6291
6292         /* Check if we have pending ipi, its better to send them now,
6293          * not waiting net_rx_action() end.
6294          */
6295         if (sd_has_rps_ipi_waiting(sd)) {
6296                 local_irq_disable();
6297                 net_rps_action_and_irq_enable(sd);
6298         }
6299
6300         napi->weight = dev_rx_weight;
6301         while (again) {
6302                 struct sk_buff *skb;
6303
6304                 while ((skb = __skb_dequeue(&sd->process_queue))) {
6305                         rcu_read_lock();
6306                         __netif_receive_skb(skb);
6307                         rcu_read_unlock();
6308                         input_queue_head_incr(sd);
6309                         if (++work >= quota)
6310                                 return work;
6311
6312                 }
6313
6314                 local_irq_disable();
6315                 rps_lock(sd);
6316                 if (skb_queue_empty(&sd->input_pkt_queue)) {
6317                         /*
6318                          * Inline a custom version of __napi_complete().
6319                          * only current cpu owns and manipulates this napi,
6320                          * and NAPI_STATE_SCHED is the only possible flag set
6321                          * on backlog.
6322                          * We can use a plain write instead of clear_bit(),
6323                          * and we dont need an smp_mb() memory barrier.
6324                          */
6325                         napi->state = 0;
6326                         again = false;
6327                 } else {
6328                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
6329                                                    &sd->process_queue);
6330                 }
6331                 rps_unlock(sd);
6332                 local_irq_enable();
6333         }
6334
6335         return work;
6336 }
6337
6338 /**
6339  * __napi_schedule - schedule for receive
6340  * @n: entry to schedule
6341  *
6342  * The entry's receive function will be scheduled to run.
6343  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6344  */
6345 void __napi_schedule(struct napi_struct *n)
6346 {
6347         unsigned long flags;
6348
6349         local_irq_save(flags);
6350         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6351         local_irq_restore(flags);
6352 }
6353 EXPORT_SYMBOL(__napi_schedule);
6354
6355 /**
6356  *      napi_schedule_prep - check if napi can be scheduled
6357  *      @n: napi context
6358  *
6359  * Test if NAPI routine is already running, and if not mark
6360  * it as running.  This is used as a condition variable to
6361  * insure only one NAPI poll instance runs.  We also make
6362  * sure there is no pending NAPI disable.
6363  */
6364 bool napi_schedule_prep(struct napi_struct *n)
6365 {
6366         unsigned long val, new;
6367
6368         do {
6369                 val = READ_ONCE(n->state);
6370                 if (unlikely(val & NAPIF_STATE_DISABLE))
6371                         return false;
6372                 new = val | NAPIF_STATE_SCHED;
6373
6374                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6375                  * This was suggested by Alexander Duyck, as compiler
6376                  * emits better code than :
6377                  * if (val & NAPIF_STATE_SCHED)
6378                  *     new |= NAPIF_STATE_MISSED;
6379                  */
6380                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6381                                                    NAPIF_STATE_MISSED;
6382         } while (cmpxchg(&n->state, val, new) != val);
6383
6384         return !(val & NAPIF_STATE_SCHED);
6385 }
6386 EXPORT_SYMBOL(napi_schedule_prep);
6387
6388 /**
6389  * __napi_schedule_irqoff - schedule for receive
6390  * @n: entry to schedule
6391  *
6392  * Variant of __napi_schedule() assuming hard irqs are masked
6393  */
6394 void __napi_schedule_irqoff(struct napi_struct *n)
6395 {
6396         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6397 }
6398 EXPORT_SYMBOL(__napi_schedule_irqoff);
6399
6400 bool napi_complete_done(struct napi_struct *n, int work_done)
6401 {
6402         unsigned long flags, val, new, timeout = 0;
6403         bool ret = true;
6404
6405         /*
6406          * 1) Don't let napi dequeue from the cpu poll list
6407          *    just in case its running on a different cpu.
6408          * 2) If we are busy polling, do nothing here, we have
6409          *    the guarantee we will be called later.
6410          */
6411         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6412                                  NAPIF_STATE_IN_BUSY_POLL)))
6413                 return false;
6414
6415         if (work_done) {
6416                 if (n->gro_bitmask)
6417                         timeout = READ_ONCE(n->dev->gro_flush_timeout);
6418                 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6419         }
6420         if (n->defer_hard_irqs_count > 0) {
6421                 n->defer_hard_irqs_count--;
6422                 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6423                 if (timeout)
6424                         ret = false;
6425         }
6426         if (n->gro_bitmask) {
6427                 /* When the NAPI instance uses a timeout and keeps postponing
6428                  * it, we need to bound somehow the time packets are kept in
6429                  * the GRO layer
6430                  */
6431                 napi_gro_flush(n, !!timeout);
6432         }
6433
6434         gro_normal_list(n);
6435
6436         if (unlikely(!list_empty(&n->poll_list))) {
6437                 /* If n->poll_list is not empty, we need to mask irqs */
6438                 local_irq_save(flags);
6439                 list_del_init(&n->poll_list);
6440                 local_irq_restore(flags);
6441         }
6442
6443         do {
6444                 val = READ_ONCE(n->state);
6445
6446                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6447
6448                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6449
6450                 /* If STATE_MISSED was set, leave STATE_SCHED set,
6451                  * because we will call napi->poll() one more time.
6452                  * This C code was suggested by Alexander Duyck to help gcc.
6453                  */
6454                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6455                                                     NAPIF_STATE_SCHED;
6456         } while (cmpxchg(&n->state, val, new) != val);
6457
6458         if (unlikely(val & NAPIF_STATE_MISSED)) {
6459                 __napi_schedule(n);
6460                 return false;
6461         }
6462
6463         if (timeout)
6464                 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6465                               HRTIMER_MODE_REL_PINNED);
6466         return ret;
6467 }
6468 EXPORT_SYMBOL(napi_complete_done);
6469
6470 /* must be called under rcu_read_lock(), as we dont take a reference */
6471 static struct napi_struct *napi_by_id(unsigned int napi_id)
6472 {
6473         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6474         struct napi_struct *napi;
6475
6476         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6477                 if (napi->napi_id == napi_id)
6478                         return napi;
6479
6480         return NULL;
6481 }
6482
6483 #if defined(CONFIG_NET_RX_BUSY_POLL)
6484
6485 #define BUSY_POLL_BUDGET 8
6486
6487 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6488 {
6489         int rc;
6490
6491         /* Busy polling means there is a high chance device driver hard irq
6492          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6493          * set in napi_schedule_prep().
6494          * Since we are about to call napi->poll() once more, we can safely
6495          * clear NAPI_STATE_MISSED.
6496          *
6497          * Note: x86 could use a single "lock and ..." instruction
6498          * to perform these two clear_bit()
6499          */
6500         clear_bit(NAPI_STATE_MISSED, &napi->state);
6501         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6502
6503         local_bh_disable();
6504
6505         /* All we really want here is to re-enable device interrupts.
6506          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6507          */
6508         rc = napi->poll(napi, BUSY_POLL_BUDGET);
6509         /* We can't gro_normal_list() here, because napi->poll() might have
6510          * rearmed the napi (napi_complete_done()) in which case it could
6511          * already be running on another CPU.
6512          */
6513         trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6514         netpoll_poll_unlock(have_poll_lock);
6515         if (rc == BUSY_POLL_BUDGET) {
6516                 /* As the whole budget was spent, we still own the napi so can
6517                  * safely handle the rx_list.
6518                  */
6519                 gro_normal_list(napi);
6520                 __napi_schedule(napi);
6521         }
6522         local_bh_enable();
6523 }
6524
6525 void napi_busy_loop(unsigned int napi_id,
6526                     bool (*loop_end)(void *, unsigned long),
6527                     void *loop_end_arg)
6528 {
6529         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6530         int (*napi_poll)(struct napi_struct *napi, int budget);
6531         void *have_poll_lock = NULL;
6532         struct napi_struct *napi;
6533
6534 restart:
6535         napi_poll = NULL;
6536
6537         rcu_read_lock();
6538
6539         napi = napi_by_id(napi_id);
6540         if (!napi)
6541                 goto out;
6542
6543         preempt_disable();
6544         for (;;) {
6545                 int work = 0;
6546
6547                 local_bh_disable();
6548                 if (!napi_poll) {
6549                         unsigned long val = READ_ONCE(napi->state);
6550
6551                         /* If multiple threads are competing for this napi,
6552                          * we avoid dirtying napi->state as much as we can.
6553                          */
6554                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6555                                    NAPIF_STATE_IN_BUSY_POLL))
6556                                 goto count;
6557                         if (cmpxchg(&napi->state, val,
6558                                     val | NAPIF_STATE_IN_BUSY_POLL |
6559                                           NAPIF_STATE_SCHED) != val)
6560                                 goto count;
6561                         have_poll_lock = netpoll_poll_lock(napi);
6562                         napi_poll = napi->poll;
6563                 }
6564                 work = napi_poll(napi, BUSY_POLL_BUDGET);
6565                 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6566                 gro_normal_list(napi);
6567 count:
6568                 if (work > 0)
6569                         __NET_ADD_STATS(dev_net(napi->dev),
6570                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6571                 local_bh_enable();
6572
6573                 if (!loop_end || loop_end(loop_end_arg, start_time))
6574                         break;
6575
6576                 if (unlikely(need_resched())) {
6577                         if (napi_poll)
6578                                 busy_poll_stop(napi, have_poll_lock);
6579                         preempt_enable();
6580                         rcu_read_unlock();
6581                         cond_resched();
6582                         if (loop_end(loop_end_arg, start_time))
6583                                 return;
6584                         goto restart;
6585                 }
6586                 cpu_relax();
6587         }
6588         if (napi_poll)
6589                 busy_poll_stop(napi, have_poll_lock);
6590         preempt_enable();
6591 out:
6592         rcu_read_unlock();
6593 }
6594 EXPORT_SYMBOL(napi_busy_loop);
6595
6596 #endif /* CONFIG_NET_RX_BUSY_POLL */
6597
6598 static void napi_hash_add(struct napi_struct *napi)
6599 {
6600         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6601                 return;
6602
6603         spin_lock(&napi_hash_lock);
6604
6605         /* 0..NR_CPUS range is reserved for sender_cpu use */
6606         do {
6607                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6608                         napi_gen_id = MIN_NAPI_ID;
6609         } while (napi_by_id(napi_gen_id));
6610         napi->napi_id = napi_gen_id;
6611
6612         hlist_add_head_rcu(&napi->napi_hash_node,
6613                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6614
6615         spin_unlock(&napi_hash_lock);
6616 }
6617
6618 /* Warning : caller is responsible to make sure rcu grace period
6619  * is respected before freeing memory containing @napi
6620  */
6621 static void napi_hash_del(struct napi_struct *napi)
6622 {
6623         spin_lock(&napi_hash_lock);
6624
6625         hlist_del_init_rcu(&napi->napi_hash_node);
6626
6627         spin_unlock(&napi_hash_lock);
6628 }
6629
6630 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6631 {
6632         struct napi_struct *napi;
6633
6634         napi = container_of(timer, struct napi_struct, timer);
6635
6636         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6637          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6638          */
6639         if (!napi_disable_pending(napi) &&
6640             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6641                 __napi_schedule_irqoff(napi);
6642
6643         return HRTIMER_NORESTART;
6644 }
6645
6646 static void init_gro_hash(struct napi_struct *napi)
6647 {
6648         int i;
6649
6650         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6651                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6652                 napi->gro_hash[i].count = 0;
6653         }
6654         napi->gro_bitmask = 0;
6655 }
6656
6657 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6658                     int (*poll)(struct napi_struct *, int), int weight)
6659 {
6660         if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6661                 return;
6662
6663         INIT_LIST_HEAD(&napi->poll_list);
6664         INIT_HLIST_NODE(&napi->napi_hash_node);
6665         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6666         napi->timer.function = napi_watchdog;
6667         init_gro_hash(napi);
6668         napi->skb = NULL;
6669         INIT_LIST_HEAD(&napi->rx_list);
6670         napi->rx_count = 0;
6671         napi->poll = poll;
6672         if (weight > NAPI_POLL_WEIGHT)
6673                 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6674                                 weight);
6675         napi->weight = weight;
6676         napi->dev = dev;
6677 #ifdef CONFIG_NETPOLL
6678         napi->poll_owner = -1;
6679 #endif
6680         set_bit(NAPI_STATE_SCHED, &napi->state);
6681         set_bit(NAPI_STATE_NPSVC, &napi->state);
6682         list_add_rcu(&napi->dev_list, &dev->napi_list);
6683         napi_hash_add(napi);
6684 }
6685 EXPORT_SYMBOL(netif_napi_add);
6686
6687 void napi_disable(struct napi_struct *n)
6688 {
6689         might_sleep();
6690         set_bit(NAPI_STATE_DISABLE, &n->state);
6691
6692         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6693                 msleep(1);
6694         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6695                 msleep(1);
6696
6697         hrtimer_cancel(&n->timer);
6698
6699         clear_bit(NAPI_STATE_DISABLE, &n->state);
6700 }
6701 EXPORT_SYMBOL(napi_disable);
6702
6703 static void flush_gro_hash(struct napi_struct *napi)
6704 {
6705         int i;
6706
6707         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6708                 struct sk_buff *skb, *n;
6709
6710                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6711                         kfree_skb(skb);
6712                 napi->gro_hash[i].count = 0;
6713         }
6714 }
6715
6716 /* Must be called in process context */
6717 void __netif_napi_del(struct napi_struct *napi)
6718 {
6719         if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6720                 return;
6721
6722         napi_hash_del(napi);
6723         list_del_rcu(&napi->dev_list);
6724         napi_free_frags(napi);
6725
6726         flush_gro_hash(napi);
6727         napi->gro_bitmask = 0;
6728 }
6729 EXPORT_SYMBOL(__netif_napi_del);
6730
6731 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6732 {
6733         void *have;
6734         int work, weight;
6735
6736         list_del_init(&n->poll_list);
6737
6738         have = netpoll_poll_lock(n);
6739
6740         weight = n->weight;
6741
6742         /* This NAPI_STATE_SCHED test is for avoiding a race
6743          * with netpoll's poll_napi().  Only the entity which
6744          * obtains the lock and sees NAPI_STATE_SCHED set will
6745          * actually make the ->poll() call.  Therefore we avoid
6746          * accidentally calling ->poll() when NAPI is not scheduled.
6747          */
6748         work = 0;
6749         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6750                 work = n->poll(n, weight);
6751                 trace_napi_poll(n, work, weight);
6752         }
6753
6754         if (unlikely(work > weight))
6755                 pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6756                             n->poll, work, weight);
6757
6758         if (likely(work < weight))
6759                 goto out_unlock;
6760
6761         /* Drivers must not modify the NAPI state if they
6762          * consume the entire weight.  In such cases this code
6763          * still "owns" the NAPI instance and therefore can
6764          * move the instance around on the list at-will.
6765          */
6766         if (unlikely(napi_disable_pending(n))) {
6767                 napi_complete(n);
6768                 goto out_unlock;
6769         }
6770
6771         if (n->gro_bitmask) {
6772                 /* flush too old packets
6773                  * If HZ < 1000, flush all packets.
6774                  */
6775                 napi_gro_flush(n, HZ >= 1000);
6776         }
6777
6778         gro_normal_list(n);
6779
6780         /* Some drivers may have called napi_schedule
6781          * prior to exhausting their budget.
6782          */
6783         if (unlikely(!list_empty(&n->poll_list))) {
6784                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6785                              n->dev ? n->dev->name : "backlog");
6786                 goto out_unlock;
6787         }
6788
6789         list_add_tail(&n->poll_list, repoll);
6790
6791 out_unlock:
6792         netpoll_poll_unlock(have);
6793
6794         return work;
6795 }
6796
6797 static __latent_entropy void net_rx_action(struct softirq_action *h)
6798 {
6799         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6800         unsigned long time_limit = jiffies +
6801                 usecs_to_jiffies(netdev_budget_usecs);
6802         int budget = netdev_budget;
6803         LIST_HEAD(list);
6804         LIST_HEAD(repoll);
6805
6806         local_irq_disable();
6807         list_splice_init(&sd->poll_list, &list);
6808         local_irq_enable();
6809
6810         for (;;) {
6811                 struct napi_struct *n;
6812
6813                 if (list_empty(&list)) {
6814                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6815                                 goto out;
6816                         break;
6817                 }
6818
6819                 n = list_first_entry(&list, struct napi_struct, poll_list);
6820                 budget -= napi_poll(n, &repoll);
6821
6822                 /* If softirq window is exhausted then punt.
6823                  * Allow this to run for 2 jiffies since which will allow
6824                  * an average latency of 1.5/HZ.
6825                  */
6826                 if (unlikely(budget <= 0 ||
6827                              time_after_eq(jiffies, time_limit))) {
6828                         sd->time_squeeze++;
6829                         break;
6830                 }
6831         }
6832
6833         local_irq_disable();
6834
6835         list_splice_tail_init(&sd->poll_list, &list);
6836         list_splice_tail(&repoll, &list);
6837         list_splice(&list, &sd->poll_list);
6838         if (!list_empty(&sd->poll_list))
6839                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6840
6841         net_rps_action_and_irq_enable(sd);
6842 out:
6843         __kfree_skb_flush();
6844 }
6845
6846 struct netdev_adjacent {
6847         struct net_device *dev;
6848
6849         /* upper master flag, there can only be one master device per list */
6850         bool master;
6851
6852         /* lookup ignore flag */
6853         bool ignore;
6854
6855         /* counter for the number of times this device was added to us */
6856         u16 ref_nr;
6857
6858         /* private field for the users */
6859         void *private;
6860
6861         struct list_head list;
6862         struct rcu_head rcu;
6863 };
6864
6865 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6866                                                  struct list_head *adj_list)
6867 {
6868         struct netdev_adjacent *adj;
6869
6870         list_for_each_entry(adj, adj_list, list) {
6871                 if (adj->dev == adj_dev)
6872                         return adj;
6873         }
6874         return NULL;
6875 }
6876
6877 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6878                                     struct netdev_nested_priv *priv)
6879 {
6880         struct net_device *dev = (struct net_device *)priv->data;
6881
6882         return upper_dev == dev;
6883 }
6884
6885 /**
6886  * netdev_has_upper_dev - Check if device is linked to an upper device
6887  * @dev: device
6888  * @upper_dev: upper device to check
6889  *
6890  * Find out if a device is linked to specified upper device and return true
6891  * in case it is. Note that this checks only immediate upper device,
6892  * not through a complete stack of devices. The caller must hold the RTNL lock.
6893  */
6894 bool netdev_has_upper_dev(struct net_device *dev,
6895                           struct net_device *upper_dev)
6896 {
6897         struct netdev_nested_priv priv = {
6898                 .data = (void *)upper_dev,
6899         };
6900
6901         ASSERT_RTNL();
6902
6903         return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6904                                              &priv);
6905 }
6906 EXPORT_SYMBOL(netdev_has_upper_dev);
6907
6908 /**
6909  * netdev_has_upper_dev_all - Check if device is linked to an upper device
6910  * @dev: device
6911  * @upper_dev: upper device to check
6912  *
6913  * Find out if a device is linked to specified upper device and return true
6914  * in case it is. Note that this checks the entire upper device chain.
6915  * The caller must hold rcu lock.
6916  */
6917
6918 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6919                                   struct net_device *upper_dev)
6920 {
6921         struct netdev_nested_priv priv = {
6922                 .data = (void *)upper_dev,
6923         };
6924
6925         return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6926                                                &priv);
6927 }
6928 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6929
6930 /**
6931  * netdev_has_any_upper_dev - Check if device is linked to some device
6932  * @dev: device
6933  *
6934  * Find out if a device is linked to an upper device and return true in case
6935  * it is. The caller must hold the RTNL lock.
6936  */
6937 bool netdev_has_any_upper_dev(struct net_device *dev)
6938 {
6939         ASSERT_RTNL();
6940
6941         return !list_empty(&dev->adj_list.upper);
6942 }
6943 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6944
6945 /**
6946  * netdev_master_upper_dev_get - Get master upper device
6947  * @dev: device
6948  *
6949  * Find a master upper device and return pointer to it or NULL in case
6950  * it's not there. The caller must hold the RTNL lock.
6951  */
6952 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6953 {
6954         struct netdev_adjacent *upper;
6955
6956         ASSERT_RTNL();
6957
6958         if (list_empty(&dev->adj_list.upper))
6959                 return NULL;
6960
6961         upper = list_first_entry(&dev->adj_list.upper,
6962                                  struct netdev_adjacent, list);
6963         if (likely(upper->master))
6964                 return upper->dev;
6965         return NULL;
6966 }
6967 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6968
6969 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6970 {
6971         struct netdev_adjacent *upper;
6972
6973         ASSERT_RTNL();
6974
6975         if (list_empty(&dev->adj_list.upper))
6976                 return NULL;
6977
6978         upper = list_first_entry(&dev->adj_list.upper,
6979                                  struct netdev_adjacent, list);
6980         if (likely(upper->master) && !upper->ignore)
6981                 return upper->dev;
6982         return NULL;
6983 }
6984
6985 /**
6986  * netdev_has_any_lower_dev - Check if device is linked to some device
6987  * @dev: device
6988  *
6989  * Find out if a device is linked to a lower device and return true in case
6990  * it is. The caller must hold the RTNL lock.
6991  */
6992 static bool netdev_has_any_lower_dev(struct net_device *dev)
6993 {
6994         ASSERT_RTNL();
6995
6996         return !list_empty(&dev->adj_list.lower);
6997 }
6998
6999 void *netdev_adjacent_get_private(struct list_head *adj_list)
7000 {
7001         struct netdev_adjacent *adj;
7002
7003         adj = list_entry(adj_list, struct netdev_adjacent, list);
7004
7005         return adj->private;
7006 }
7007 EXPORT_SYMBOL(netdev_adjacent_get_private);
7008
7009 /**
7010  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7011  * @dev: device
7012  * @iter: list_head ** of the current position
7013  *
7014  * Gets the next device from the dev's upper list, starting from iter
7015  * position. The caller must hold RCU read lock.
7016  */
7017 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7018                                                  struct list_head **iter)
7019 {
7020         struct netdev_adjacent *upper;
7021
7022         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7023
7024         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7025
7026         if (&upper->list == &dev->adj_list.upper)
7027                 return NULL;
7028
7029         *iter = &upper->list;
7030
7031         return upper->dev;
7032 }
7033 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7034
7035 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7036                                                   struct list_head **iter,
7037                                                   bool *ignore)
7038 {
7039         struct netdev_adjacent *upper;
7040
7041         upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7042
7043         if (&upper->list == &dev->adj_list.upper)
7044                 return NULL;
7045
7046         *iter = &upper->list;
7047         *ignore = upper->ignore;
7048
7049         return upper->dev;
7050 }
7051
7052 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7053                                                     struct list_head **iter)
7054 {
7055         struct netdev_adjacent *upper;
7056
7057         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7058
7059         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7060
7061         if (&upper->list == &dev->adj_list.upper)
7062                 return NULL;
7063
7064         *iter = &upper->list;
7065
7066         return upper->dev;
7067 }
7068
7069 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7070                                        int (*fn)(struct net_device *dev,
7071                                          struct netdev_nested_priv *priv),
7072                                        struct netdev_nested_priv *priv)
7073 {
7074         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7075         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7076         int ret, cur = 0;
7077         bool ignore;
7078
7079         now = dev;
7080         iter = &dev->adj_list.upper;
7081
7082         while (1) {
7083                 if (now != dev) {
7084                         ret = fn(now, priv);
7085                         if (ret)
7086                                 return ret;
7087                 }
7088
7089                 next = NULL;
7090                 while (1) {
7091                         udev = __netdev_next_upper_dev(now, &iter, &ignore);
7092                         if (!udev)
7093                                 break;
7094                         if (ignore)
7095                                 continue;
7096
7097                         next = udev;
7098                         niter = &udev->adj_list.upper;
7099                         dev_stack[cur] = now;
7100                         iter_stack[cur++] = iter;
7101                         break;
7102                 }
7103
7104                 if (!next) {
7105                         if (!cur)
7106                                 return 0;
7107                         next = dev_stack[--cur];
7108                         niter = iter_stack[cur];
7109                 }
7110
7111                 now = next;
7112                 iter = niter;
7113         }
7114
7115         return 0;
7116 }
7117
7118 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7119                                   int (*fn)(struct net_device *dev,
7120                                             struct netdev_nested_priv *priv),
7121                                   struct netdev_nested_priv *priv)
7122 {
7123         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7124         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7125         int ret, cur = 0;
7126
7127         now = dev;
7128         iter = &dev->adj_list.upper;
7129
7130         while (1) {
7131                 if (now != dev) {
7132                         ret = fn(now, priv);
7133                         if (ret)
7134                                 return ret;
7135                 }
7136
7137                 next = NULL;
7138                 while (1) {
7139                         udev = netdev_next_upper_dev_rcu(now, &iter);
7140                         if (!udev)
7141                                 break;
7142
7143                         next = udev;
7144                         niter = &udev->adj_list.upper;
7145                         dev_stack[cur] = now;
7146                         iter_stack[cur++] = iter;
7147                         break;
7148                 }
7149
7150                 if (!next) {
7151                         if (!cur)
7152                                 return 0;
7153                         next = dev_stack[--cur];
7154                         niter = iter_stack[cur];
7155                 }
7156
7157                 now = next;
7158                 iter = niter;
7159         }
7160
7161         return 0;
7162 }
7163 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7164
7165 static bool __netdev_has_upper_dev(struct net_device *dev,
7166                                    struct net_device *upper_dev)
7167 {
7168         struct netdev_nested_priv priv = {
7169                 .flags = 0,
7170                 .data = (void *)upper_dev,
7171         };
7172
7173         ASSERT_RTNL();
7174
7175         return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7176                                            &priv);
7177 }
7178
7179 /**
7180  * netdev_lower_get_next_private - Get the next ->private from the
7181  *                                 lower neighbour list
7182  * @dev: device
7183  * @iter: list_head ** of the current position
7184  *
7185  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7186  * list, starting from iter position. The caller must hold either hold the
7187  * RTNL lock or its own locking that guarantees that the neighbour lower
7188  * list will remain unchanged.
7189  */
7190 void *netdev_lower_get_next_private(struct net_device *dev,
7191                                     struct list_head **iter)
7192 {
7193         struct netdev_adjacent *lower;
7194
7195         lower = list_entry(*iter, struct netdev_adjacent, list);
7196
7197         if (&lower->list == &dev->adj_list.lower)
7198                 return NULL;
7199
7200         *iter = lower->list.next;
7201
7202         return lower->private;
7203 }
7204 EXPORT_SYMBOL(netdev_lower_get_next_private);
7205
7206 /**
7207  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7208  *                                     lower neighbour list, RCU
7209  *                                     variant
7210  * @dev: device
7211  * @iter: list_head ** of the current position
7212  *
7213  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7214  * list, starting from iter position. The caller must hold RCU read lock.
7215  */
7216 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7217                                         struct list_head **iter)
7218 {
7219         struct netdev_adjacent *lower;
7220
7221         WARN_ON_ONCE(!rcu_read_lock_held());
7222
7223         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7224
7225         if (&lower->list == &dev->adj_list.lower)
7226                 return NULL;
7227
7228         *iter = &lower->list;
7229
7230         return lower->private;
7231 }
7232 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7233
7234 /**
7235  * netdev_lower_get_next - Get the next device from the lower neighbour
7236  *                         list
7237  * @dev: device
7238  * @iter: list_head ** of the current position
7239  *
7240  * Gets the next netdev_adjacent from the dev's lower neighbour
7241  * list, starting from iter position. The caller must hold RTNL lock or
7242  * its own locking that guarantees that the neighbour lower
7243  * list will remain unchanged.
7244  */
7245 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7246 {
7247         struct netdev_adjacent *lower;
7248
7249         lower = list_entry(*iter, struct netdev_adjacent, list);
7250
7251         if (&lower->list == &dev->adj_list.lower)
7252                 return NULL;
7253
7254         *iter = lower->list.next;
7255
7256         return lower->dev;
7257 }
7258 EXPORT_SYMBOL(netdev_lower_get_next);
7259
7260 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7261                                                 struct list_head **iter)
7262 {
7263         struct netdev_adjacent *lower;
7264
7265         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7266
7267         if (&lower->list == &dev->adj_list.lower)
7268                 return NULL;
7269
7270         *iter = &lower->list;
7271
7272         return lower->dev;
7273 }
7274
7275 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7276                                                   struct list_head **iter,
7277                                                   bool *ignore)
7278 {
7279         struct netdev_adjacent *lower;
7280
7281         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7282
7283         if (&lower->list == &dev->adj_list.lower)
7284                 return NULL;
7285
7286         *iter = &lower->list;
7287         *ignore = lower->ignore;
7288
7289         return lower->dev;
7290 }
7291
7292 int netdev_walk_all_lower_dev(struct net_device *dev,
7293                               int (*fn)(struct net_device *dev,
7294                                         struct netdev_nested_priv *priv),
7295                               struct netdev_nested_priv *priv)
7296 {
7297         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7298         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7299         int ret, cur = 0;
7300
7301         now = dev;
7302         iter = &dev->adj_list.lower;
7303
7304         while (1) {
7305                 if (now != dev) {
7306                         ret = fn(now, priv);
7307                         if (ret)
7308                                 return ret;
7309                 }
7310
7311                 next = NULL;
7312                 while (1) {
7313                         ldev = netdev_next_lower_dev(now, &iter);
7314                         if (!ldev)
7315                                 break;
7316
7317                         next = ldev;
7318                         niter = &ldev->adj_list.lower;
7319                         dev_stack[cur] = now;
7320                         iter_stack[cur++] = iter;
7321                         break;
7322                 }
7323
7324                 if (!next) {
7325                         if (!cur)
7326                                 return 0;
7327                         next = dev_stack[--cur];
7328                         niter = iter_stack[cur];
7329                 }
7330
7331                 now = next;
7332                 iter = niter;
7333         }
7334
7335         return 0;
7336 }
7337 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7338
7339 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7340                                        int (*fn)(struct net_device *dev,
7341                                          struct netdev_nested_priv *priv),
7342                                        struct netdev_nested_priv *priv)
7343 {
7344         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7345         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7346         int ret, cur = 0;
7347         bool ignore;
7348
7349         now = dev;
7350         iter = &dev->adj_list.lower;
7351
7352         while (1) {
7353                 if (now != dev) {
7354                         ret = fn(now, priv);
7355                         if (ret)
7356                                 return ret;
7357                 }
7358
7359                 next = NULL;
7360                 while (1) {
7361                         ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7362                         if (!ldev)
7363                                 break;
7364                         if (ignore)
7365                                 continue;
7366
7367                         next = ldev;
7368                         niter = &ldev->adj_list.lower;
7369                         dev_stack[cur] = now;
7370                         iter_stack[cur++] = iter;
7371                         break;
7372                 }
7373
7374                 if (!next) {
7375                         if (!cur)
7376                                 return 0;
7377                         next = dev_stack[--cur];
7378                         niter = iter_stack[cur];
7379                 }
7380
7381                 now = next;
7382                 iter = niter;
7383         }
7384
7385         return 0;
7386 }
7387
7388 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7389                                              struct list_head **iter)
7390 {
7391         struct netdev_adjacent *lower;
7392
7393         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7394         if (&lower->list == &dev->adj_list.lower)
7395                 return NULL;
7396
7397         *iter = &lower->list;
7398
7399         return lower->dev;
7400 }
7401 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7402
7403 static u8 __netdev_upper_depth(struct net_device *dev)
7404 {
7405         struct net_device *udev;
7406         struct list_head *iter;
7407         u8 max_depth = 0;
7408         bool ignore;
7409
7410         for (iter = &dev->adj_list.upper,
7411              udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7412              udev;
7413              udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7414                 if (ignore)
7415                         continue;
7416                 if (max_depth < udev->upper_level)
7417                         max_depth = udev->upper_level;
7418         }
7419
7420         return max_depth;
7421 }
7422
7423 static u8 __netdev_lower_depth(struct net_device *dev)
7424 {
7425         struct net_device *ldev;
7426         struct list_head *iter;
7427         u8 max_depth = 0;
7428         bool ignore;
7429
7430         for (iter = &dev->adj_list.lower,
7431              ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7432              ldev;
7433              ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7434                 if (ignore)
7435                         continue;
7436                 if (max_depth < ldev->lower_level)
7437                         max_depth = ldev->lower_level;
7438         }
7439
7440         return max_depth;
7441 }
7442
7443 static int __netdev_update_upper_level(struct net_device *dev,
7444                                        struct netdev_nested_priv *__unused)
7445 {
7446         dev->upper_level = __netdev_upper_depth(dev) + 1;
7447         return 0;
7448 }
7449
7450 static int __netdev_update_lower_level(struct net_device *dev,
7451                                        struct netdev_nested_priv *priv)
7452 {
7453         dev->lower_level = __netdev_lower_depth(dev) + 1;
7454
7455 #ifdef CONFIG_LOCKDEP
7456         if (!priv)
7457                 return 0;
7458
7459         if (priv->flags & NESTED_SYNC_IMM)
7460                 dev->nested_level = dev->lower_level - 1;
7461         if (priv->flags & NESTED_SYNC_TODO)
7462                 net_unlink_todo(dev);
7463 #endif
7464         return 0;
7465 }
7466
7467 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7468                                   int (*fn)(struct net_device *dev,
7469                                             struct netdev_nested_priv *priv),
7470                                   struct netdev_nested_priv *priv)
7471 {
7472         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7473         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7474         int ret, cur = 0;
7475
7476         now = dev;
7477         iter = &dev->adj_list.lower;
7478
7479         while (1) {
7480                 if (now != dev) {
7481                         ret = fn(now, priv);
7482                         if (ret)
7483                                 return ret;
7484                 }
7485
7486                 next = NULL;
7487                 while (1) {
7488                         ldev = netdev_next_lower_dev_rcu(now, &iter);
7489                         if (!ldev)
7490                                 break;
7491
7492                         next = ldev;
7493                         niter = &ldev->adj_list.lower;
7494                         dev_stack[cur] = now;
7495                         iter_stack[cur++] = iter;
7496                         break;
7497                 }
7498
7499                 if (!next) {
7500                         if (!cur)
7501                                 return 0;
7502                         next = dev_stack[--cur];
7503                         niter = iter_stack[cur];
7504                 }
7505
7506                 now = next;
7507                 iter = niter;
7508         }
7509
7510         return 0;
7511 }
7512 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7513
7514 /**
7515  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7516  *                                     lower neighbour list, RCU
7517  *                                     variant
7518  * @dev: device
7519  *
7520  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7521  * list. The caller must hold RCU read lock.
7522  */
7523 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7524 {
7525         struct netdev_adjacent *lower;
7526
7527         lower = list_first_or_null_rcu(&dev->adj_list.lower,
7528                         struct netdev_adjacent, list);
7529         if (lower)
7530                 return lower->private;
7531         return NULL;
7532 }
7533 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7534
7535 /**
7536  * netdev_master_upper_dev_get_rcu - Get master upper device
7537  * @dev: device
7538  *
7539  * Find a master upper device and return pointer to it or NULL in case
7540  * it's not there. The caller must hold the RCU read lock.
7541  */
7542 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7543 {
7544         struct netdev_adjacent *upper;
7545
7546         upper = list_first_or_null_rcu(&dev->adj_list.upper,
7547                                        struct netdev_adjacent, list);
7548         if (upper && likely(upper->master))
7549                 return upper->dev;
7550         return NULL;
7551 }
7552 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7553
7554 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7555                               struct net_device *adj_dev,
7556                               struct list_head *dev_list)
7557 {
7558         char linkname[IFNAMSIZ+7];
7559
7560         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7561                 "upper_%s" : "lower_%s", adj_dev->name);
7562         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7563                                  linkname);
7564 }
7565 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7566                                char *name,
7567                                struct list_head *dev_list)
7568 {
7569         char linkname[IFNAMSIZ+7];
7570
7571         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7572                 "upper_%s" : "lower_%s", name);
7573         sysfs_remove_link(&(dev->dev.kobj), linkname);
7574 }
7575
7576 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7577                                                  struct net_device *adj_dev,
7578                                                  struct list_head *dev_list)
7579 {
7580         return (dev_list == &dev->adj_list.upper ||
7581                 dev_list == &dev->adj_list.lower) &&
7582                 net_eq(dev_net(dev), dev_net(adj_dev));
7583 }
7584
7585 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7586                                         struct net_device *adj_dev,
7587                                         struct list_head *dev_list,
7588                                         void *private, bool master)
7589 {
7590         struct netdev_adjacent *adj;
7591         int ret;
7592
7593         adj = __netdev_find_adj(adj_dev, dev_list);
7594
7595         if (adj) {
7596                 adj->ref_nr += 1;
7597                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7598                          dev->name, adj_dev->name, adj->ref_nr);
7599
7600                 return 0;
7601         }
7602
7603         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7604         if (!adj)
7605                 return -ENOMEM;
7606
7607         adj->dev = adj_dev;
7608         adj->master = master;
7609         adj->ref_nr = 1;
7610         adj->private = private;
7611         adj->ignore = false;
7612         dev_hold(adj_dev);
7613
7614         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7615                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7616
7617         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7618                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7619                 if (ret)
7620                         goto free_adj;
7621         }
7622
7623         /* Ensure that master link is always the first item in list. */
7624         if (master) {
7625                 ret = sysfs_create_link(&(dev->dev.kobj),
7626                                         &(adj_dev->dev.kobj), "master");
7627                 if (ret)
7628                         goto remove_symlinks;
7629
7630                 list_add_rcu(&adj->list, dev_list);
7631         } else {
7632                 list_add_tail_rcu(&adj->list, dev_list);
7633         }
7634
7635         return 0;
7636
7637 remove_symlinks:
7638         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7639                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7640 free_adj:
7641         kfree(adj);
7642         dev_put(adj_dev);
7643
7644         return ret;
7645 }
7646
7647 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7648                                          struct net_device *adj_dev,
7649                                          u16 ref_nr,
7650                                          struct list_head *dev_list)
7651 {
7652         struct netdev_adjacent *adj;
7653
7654         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7655                  dev->name, adj_dev->name, ref_nr);
7656
7657         adj = __netdev_find_adj(adj_dev, dev_list);
7658
7659         if (!adj) {
7660                 pr_err("Adjacency does not exist for device %s from %s\n",
7661                        dev->name, adj_dev->name);
7662                 WARN_ON(1);
7663                 return;
7664         }
7665
7666         if (adj->ref_nr > ref_nr) {
7667                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7668                          dev->name, adj_dev->name, ref_nr,
7669                          adj->ref_nr - ref_nr);
7670                 adj->ref_nr -= ref_nr;
7671                 return;
7672         }
7673
7674         if (adj->master)
7675                 sysfs_remove_link(&(dev->dev.kobj), "master");
7676
7677         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7678                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7679
7680         list_del_rcu(&adj->list);
7681         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7682                  adj_dev->name, dev->name, adj_dev->name);
7683         dev_put(adj_dev);
7684         kfree_rcu(adj, rcu);
7685 }
7686
7687 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7688                                             struct net_device *upper_dev,
7689                                             struct list_head *up_list,
7690                                             struct list_head *down_list,
7691                                             void *private, bool master)
7692 {
7693         int ret;
7694
7695         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7696                                            private, master);
7697         if (ret)
7698                 return ret;
7699
7700         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7701                                            private, false);
7702         if (ret) {
7703                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7704                 return ret;
7705         }
7706
7707         return 0;
7708 }
7709
7710 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7711                                                struct net_device *upper_dev,
7712                                                u16 ref_nr,
7713                                                struct list_head *up_list,
7714                                                struct list_head *down_list)
7715 {
7716         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7717         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7718 }
7719
7720 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7721                                                 struct net_device *upper_dev,
7722                                                 void *private, bool master)
7723 {
7724         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7725                                                 &dev->adj_list.upper,
7726                                                 &upper_dev->adj_list.lower,
7727                                                 private, master);
7728 }
7729
7730 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7731                                                    struct net_device *upper_dev)
7732 {
7733         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7734                                            &dev->adj_list.upper,
7735                                            &upper_dev->adj_list.lower);
7736 }
7737
7738 static int __netdev_upper_dev_link(struct net_device *dev,
7739                                    struct net_device *upper_dev, bool master,
7740                                    void *upper_priv, void *upper_info,
7741                                    struct netdev_nested_priv *priv,
7742                                    struct netlink_ext_ack *extack)
7743 {
7744         struct netdev_notifier_changeupper_info changeupper_info = {
7745                 .info = {
7746                         .dev = dev,
7747                         .extack = extack,
7748                 },
7749                 .upper_dev = upper_dev,
7750                 .master = master,
7751                 .linking = true,
7752                 .upper_info = upper_info,
7753         };
7754         struct net_device *master_dev;
7755         int ret = 0;
7756
7757         ASSERT_RTNL();
7758
7759         if (dev == upper_dev)
7760                 return -EBUSY;
7761
7762         /* To prevent loops, check if dev is not upper device to upper_dev. */
7763         if (__netdev_has_upper_dev(upper_dev, dev))
7764                 return -EBUSY;
7765
7766         if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7767                 return -EMLINK;
7768
7769         if (!master) {
7770                 if (__netdev_has_upper_dev(dev, upper_dev))
7771                         return -EEXIST;
7772         } else {
7773                 master_dev = __netdev_master_upper_dev_get(dev);
7774                 if (master_dev)
7775                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
7776         }
7777
7778         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7779                                             &changeupper_info.info);
7780         ret = notifier_to_errno(ret);
7781         if (ret)
7782                 return ret;
7783
7784         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7785                                                    master);
7786         if (ret)
7787                 return ret;
7788
7789         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7790                                             &changeupper_info.info);
7791         ret = notifier_to_errno(ret);
7792         if (ret)
7793                 goto rollback;
7794
7795         __netdev_update_upper_level(dev, NULL);
7796         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7797
7798         __netdev_update_lower_level(upper_dev, priv);
7799         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7800                                     priv);
7801
7802         return 0;
7803
7804 rollback:
7805         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7806
7807         return ret;
7808 }
7809
7810 /**
7811  * netdev_upper_dev_link - Add a link to the upper device
7812  * @dev: device
7813  * @upper_dev: new upper device
7814  * @extack: netlink extended ack
7815  *
7816  * Adds a link to device which is upper to this one. The caller must hold
7817  * the RTNL lock. On a failure a negative errno code is returned.
7818  * On success the reference counts are adjusted and the function
7819  * returns zero.
7820  */
7821 int netdev_upper_dev_link(struct net_device *dev,
7822                           struct net_device *upper_dev,
7823                           struct netlink_ext_ack *extack)
7824 {
7825         struct netdev_nested_priv priv = {
7826                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7827                 .data = NULL,
7828         };
7829
7830         return __netdev_upper_dev_link(dev, upper_dev, false,
7831                                        NULL, NULL, &priv, extack);
7832 }
7833 EXPORT_SYMBOL(netdev_upper_dev_link);
7834
7835 /**
7836  * netdev_master_upper_dev_link - Add a master link to the upper device
7837  * @dev: device
7838  * @upper_dev: new upper device
7839  * @upper_priv: upper device private
7840  * @upper_info: upper info to be passed down via notifier
7841  * @extack: netlink extended ack
7842  *
7843  * Adds a link to device which is upper to this one. In this case, only
7844  * one master upper device can be linked, although other non-master devices
7845  * might be linked as well. The caller must hold the RTNL lock.
7846  * On a failure a negative errno code is returned. On success the reference
7847  * counts are adjusted and the function returns zero.
7848  */
7849 int netdev_master_upper_dev_link(struct net_device *dev,
7850                                  struct net_device *upper_dev,
7851                                  void *upper_priv, void *upper_info,
7852                                  struct netlink_ext_ack *extack)
7853 {
7854         struct netdev_nested_priv priv = {
7855                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7856                 .data = NULL,
7857         };
7858
7859         return __netdev_upper_dev_link(dev, upper_dev, true,
7860                                        upper_priv, upper_info, &priv, extack);
7861 }
7862 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7863
7864 static void __netdev_upper_dev_unlink(struct net_device *dev,
7865                                       struct net_device *upper_dev,
7866                                       struct netdev_nested_priv *priv)
7867 {
7868         struct netdev_notifier_changeupper_info changeupper_info = {
7869                 .info = {
7870                         .dev = dev,
7871                 },
7872                 .upper_dev = upper_dev,
7873                 .linking = false,
7874         };
7875
7876         ASSERT_RTNL();
7877
7878         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7879
7880         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7881                                       &changeupper_info.info);
7882
7883         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7884
7885         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7886                                       &changeupper_info.info);
7887
7888         __netdev_update_upper_level(dev, NULL);
7889         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7890
7891         __netdev_update_lower_level(upper_dev, priv);
7892         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7893                                     priv);
7894 }
7895
7896 /**
7897  * netdev_upper_dev_unlink - Removes a link to upper device
7898  * @dev: device
7899  * @upper_dev: new upper device
7900  *
7901  * Removes a link to device which is upper to this one. The caller must hold
7902  * the RTNL lock.
7903  */
7904 void netdev_upper_dev_unlink(struct net_device *dev,
7905                              struct net_device *upper_dev)
7906 {
7907         struct netdev_nested_priv priv = {
7908                 .flags = NESTED_SYNC_TODO,
7909                 .data = NULL,
7910         };
7911
7912         __netdev_upper_dev_unlink(dev, upper_dev, &priv);
7913 }
7914 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7915
7916 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7917                                       struct net_device *lower_dev,
7918                                       bool val)
7919 {
7920         struct netdev_adjacent *adj;
7921
7922         adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7923         if (adj)
7924                 adj->ignore = val;
7925
7926         adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7927         if (adj)
7928                 adj->ignore = val;
7929 }
7930
7931 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7932                                         struct net_device *lower_dev)
7933 {
7934         __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7935 }
7936
7937 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7938                                        struct net_device *lower_dev)
7939 {
7940         __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7941 }
7942
7943 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7944                                    struct net_device *new_dev,
7945                                    struct net_device *dev,
7946                                    struct netlink_ext_ack *extack)
7947 {
7948         struct netdev_nested_priv priv = {
7949                 .flags = 0,
7950                 .data = NULL,
7951         };
7952         int err;
7953
7954         if (!new_dev)
7955                 return 0;
7956
7957         if (old_dev && new_dev != old_dev)
7958                 netdev_adjacent_dev_disable(dev, old_dev);
7959         err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7960                                       extack);
7961         if (err) {
7962                 if (old_dev && new_dev != old_dev)
7963                         netdev_adjacent_dev_enable(dev, old_dev);
7964                 return err;
7965         }
7966
7967         return 0;
7968 }
7969 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7970
7971 void netdev_adjacent_change_commit(struct net_device *old_dev,
7972                                    struct net_device *new_dev,
7973                                    struct net_device *dev)
7974 {
7975         struct netdev_nested_priv priv = {
7976                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7977                 .data = NULL,
7978         };
7979
7980         if (!new_dev || !old_dev)
7981                 return;
7982
7983         if (new_dev == old_dev)
7984                 return;
7985
7986         netdev_adjacent_dev_enable(dev, old_dev);
7987         __netdev_upper_dev_unlink(old_dev, dev, &priv);
7988 }
7989 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7990
7991 void netdev_adjacent_change_abort(struct net_device *old_dev,
7992                                   struct net_device *new_dev,
7993                                   struct net_device *dev)
7994 {
7995         struct netdev_nested_priv priv = {
7996                 .flags = 0,
7997                 .data = NULL,
7998         };
7999
8000         if (!new_dev)
8001                 return;
8002
8003         if (old_dev && new_dev != old_dev)
8004                 netdev_adjacent_dev_enable(dev, old_dev);
8005
8006         __netdev_upper_dev_unlink(new_dev, dev, &priv);
8007 }
8008 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8009
8010 /**
8011  * netdev_bonding_info_change - Dispatch event about slave change
8012  * @dev: device
8013  * @bonding_info: info to dispatch
8014  *
8015  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8016  * The caller must hold the RTNL lock.
8017  */
8018 void netdev_bonding_info_change(struct net_device *dev,
8019                                 struct netdev_bonding_info *bonding_info)
8020 {
8021         struct netdev_notifier_bonding_info info = {
8022                 .info.dev = dev,
8023         };
8024
8025         memcpy(&info.bonding_info, bonding_info,
8026                sizeof(struct netdev_bonding_info));
8027         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8028                                       &info.info);
8029 }
8030 EXPORT_SYMBOL(netdev_bonding_info_change);
8031
8032 /**
8033  * netdev_get_xmit_slave - Get the xmit slave of master device
8034  * @dev: device
8035  * @skb: The packet
8036  * @all_slaves: assume all the slaves are active
8037  *
8038  * The reference counters are not incremented so the caller must be
8039  * careful with locks. The caller must hold RCU lock.
8040  * %NULL is returned if no slave is found.
8041  */
8042
8043 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8044                                          struct sk_buff *skb,
8045                                          bool all_slaves)
8046 {
8047         const struct net_device_ops *ops = dev->netdev_ops;
8048
8049         if (!ops->ndo_get_xmit_slave)
8050                 return NULL;
8051         return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8052 }
8053 EXPORT_SYMBOL(netdev_get_xmit_slave);
8054
8055 static void netdev_adjacent_add_links(struct net_device *dev)
8056 {
8057         struct netdev_adjacent *iter;
8058
8059         struct net *net = dev_net(dev);
8060
8061         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8062                 if (!net_eq(net, dev_net(iter->dev)))
8063                         continue;
8064                 netdev_adjacent_sysfs_add(iter->dev, dev,
8065                                           &iter->dev->adj_list.lower);
8066                 netdev_adjacent_sysfs_add(dev, iter->dev,
8067                                           &dev->adj_list.upper);
8068         }
8069
8070         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8071                 if (!net_eq(net, dev_net(iter->dev)))
8072                         continue;
8073                 netdev_adjacent_sysfs_add(iter->dev, dev,
8074                                           &iter->dev->adj_list.upper);
8075                 netdev_adjacent_sysfs_add(dev, iter->dev,
8076                                           &dev->adj_list.lower);
8077         }
8078 }
8079
8080 static void netdev_adjacent_del_links(struct net_device *dev)
8081 {
8082         struct netdev_adjacent *iter;
8083
8084         struct net *net = dev_net(dev);
8085
8086         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8087                 if (!net_eq(net, dev_net(iter->dev)))
8088                         continue;
8089                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8090                                           &iter->dev->adj_list.lower);
8091                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8092                                           &dev->adj_list.upper);
8093         }
8094
8095         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8096                 if (!net_eq(net, dev_net(iter->dev)))
8097                         continue;
8098                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8099                                           &iter->dev->adj_list.upper);
8100                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8101                                           &dev->adj_list.lower);
8102         }
8103 }
8104
8105 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8106 {
8107         struct netdev_adjacent *iter;
8108
8109         struct net *net = dev_net(dev);
8110
8111         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8112                 if (!net_eq(net, dev_net(iter->dev)))
8113                         continue;
8114                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8115                                           &iter->dev->adj_list.lower);
8116                 netdev_adjacent_sysfs_add(iter->dev, dev,
8117                                           &iter->dev->adj_list.lower);
8118         }
8119
8120         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8121                 if (!net_eq(net, dev_net(iter->dev)))
8122                         continue;
8123                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8124                                           &iter->dev->adj_list.upper);
8125                 netdev_adjacent_sysfs_add(iter->dev, dev,
8126                                           &iter->dev->adj_list.upper);
8127         }
8128 }
8129
8130 void *netdev_lower_dev_get_private(struct net_device *dev,
8131                                    struct net_device *lower_dev)
8132 {
8133         struct netdev_adjacent *lower;
8134
8135         if (!lower_dev)
8136                 return NULL;
8137         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8138         if (!lower)
8139                 return NULL;
8140
8141         return lower->private;
8142 }
8143 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8144
8145
8146 /**
8147  * netdev_lower_change - Dispatch event about lower device state change
8148  * @lower_dev: device
8149  * @lower_state_info: state to dispatch
8150  *
8151  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8152  * The caller must hold the RTNL lock.
8153  */
8154 void netdev_lower_state_changed(struct net_device *lower_dev,
8155                                 void *lower_state_info)
8156 {
8157         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8158                 .info.dev = lower_dev,
8159         };
8160
8161         ASSERT_RTNL();
8162         changelowerstate_info.lower_state_info = lower_state_info;
8163         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8164                                       &changelowerstate_info.info);
8165 }
8166 EXPORT_SYMBOL(netdev_lower_state_changed);
8167
8168 static void dev_change_rx_flags(struct net_device *dev, int flags)
8169 {
8170         const struct net_device_ops *ops = dev->netdev_ops;
8171
8172         if (ops->ndo_change_rx_flags)
8173                 ops->ndo_change_rx_flags(dev, flags);
8174 }
8175
8176 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8177 {
8178         unsigned int old_flags = dev->flags;
8179         kuid_t uid;
8180         kgid_t gid;
8181
8182         ASSERT_RTNL();
8183
8184         dev->flags |= IFF_PROMISC;
8185         dev->promiscuity += inc;
8186         if (dev->promiscuity == 0) {
8187                 /*
8188                  * Avoid overflow.
8189                  * If inc causes overflow, untouch promisc and return error.
8190                  */
8191                 if (inc < 0)
8192                         dev->flags &= ~IFF_PROMISC;
8193                 else {
8194                         dev->promiscuity -= inc;
8195                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8196                                 dev->name);
8197                         return -EOVERFLOW;
8198                 }
8199         }
8200         if (dev->flags != old_flags) {
8201                 pr_info("device %s %s promiscuous mode\n",
8202                         dev->name,
8203                         dev->flags & IFF_PROMISC ? "entered" : "left");
8204                 if (audit_enabled) {
8205                         current_uid_gid(&uid, &gid);
8206                         audit_log(audit_context(), GFP_ATOMIC,
8207                                   AUDIT_ANOM_PROMISCUOUS,
8208                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8209                                   dev->name, (dev->flags & IFF_PROMISC),
8210                                   (old_flags & IFF_PROMISC),
8211                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
8212                                   from_kuid(&init_user_ns, uid),
8213                                   from_kgid(&init_user_ns, gid),
8214                                   audit_get_sessionid(current));
8215                 }
8216
8217                 dev_change_rx_flags(dev, IFF_PROMISC);
8218         }
8219         if (notify)
8220                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
8221         return 0;
8222 }
8223
8224 /**
8225  *      dev_set_promiscuity     - update promiscuity count on a device
8226  *      @dev: device
8227  *      @inc: modifier
8228  *
8229  *      Add or remove promiscuity from a device. While the count in the device
8230  *      remains above zero the interface remains promiscuous. Once it hits zero
8231  *      the device reverts back to normal filtering operation. A negative inc
8232  *      value is used to drop promiscuity on the device.
8233  *      Return 0 if successful or a negative errno code on error.
8234  */
8235 int dev_set_promiscuity(struct net_device *dev, int inc)
8236 {
8237         unsigned int old_flags = dev->flags;
8238         int err;
8239
8240         err = __dev_set_promiscuity(dev, inc, true);
8241         if (err < 0)
8242                 return err;
8243         if (dev->flags != old_flags)
8244                 dev_set_rx_mode(dev);
8245         return err;
8246 }
8247 EXPORT_SYMBOL(dev_set_promiscuity);
8248
8249 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8250 {
8251         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8252
8253         ASSERT_RTNL();
8254
8255         dev->flags |= IFF_ALLMULTI;
8256         dev->allmulti += inc;
8257         if (dev->allmulti == 0) {
8258                 /*
8259                  * Avoid overflow.
8260                  * If inc causes overflow, untouch allmulti and return error.
8261                  */
8262                 if (inc < 0)
8263                         dev->flags &= ~IFF_ALLMULTI;
8264                 else {
8265                         dev->allmulti -= inc;
8266                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8267                                 dev->name);
8268                         return -EOVERFLOW;
8269                 }
8270         }
8271         if (dev->flags ^ old_flags) {
8272                 dev_change_rx_flags(dev, IFF_ALLMULTI);
8273                 dev_set_rx_mode(dev);
8274                 if (notify)
8275                         __dev_notify_flags(dev, old_flags,
8276                                            dev->gflags ^ old_gflags);
8277         }
8278         return 0;
8279 }
8280
8281 /**
8282  *      dev_set_allmulti        - update allmulti count on a device
8283  *      @dev: device
8284  *      @inc: modifier
8285  *
8286  *      Add or remove reception of all multicast frames to a device. While the
8287  *      count in the device remains above zero the interface remains listening
8288  *      to all interfaces. Once it hits zero the device reverts back to normal
8289  *      filtering operation. A negative @inc value is used to drop the counter
8290  *      when releasing a resource needing all multicasts.
8291  *      Return 0 if successful or a negative errno code on error.
8292  */
8293
8294 int dev_set_allmulti(struct net_device *dev, int inc)
8295 {
8296         return __dev_set_allmulti(dev, inc, true);
8297 }
8298 EXPORT_SYMBOL(dev_set_allmulti);
8299
8300 /*
8301  *      Upload unicast and multicast address lists to device and
8302  *      configure RX filtering. When the device doesn't support unicast
8303  *      filtering it is put in promiscuous mode while unicast addresses
8304  *      are present.
8305  */
8306 void __dev_set_rx_mode(struct net_device *dev)
8307 {
8308         const struct net_device_ops *ops = dev->netdev_ops;
8309
8310         /* dev_open will call this function so the list will stay sane. */
8311         if (!(dev->flags&IFF_UP))
8312                 return;
8313
8314         if (!netif_device_present(dev))
8315                 return;
8316
8317         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8318                 /* Unicast addresses changes may only happen under the rtnl,
8319                  * therefore calling __dev_set_promiscuity here is safe.
8320                  */
8321                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8322                         __dev_set_promiscuity(dev, 1, false);
8323                         dev->uc_promisc = true;
8324                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8325                         __dev_set_promiscuity(dev, -1, false);
8326                         dev->uc_promisc = false;
8327                 }
8328         }
8329
8330         if (ops->ndo_set_rx_mode)
8331                 ops->ndo_set_rx_mode(dev);
8332 }
8333
8334 void dev_set_rx_mode(struct net_device *dev)
8335 {
8336         netif_addr_lock_bh(dev);
8337         __dev_set_rx_mode(dev);
8338         netif_addr_unlock_bh(dev);
8339 }
8340
8341 /**
8342  *      dev_get_flags - get flags reported to userspace
8343  *      @dev: device
8344  *
8345  *      Get the combination of flag bits exported through APIs to userspace.
8346  */
8347 unsigned int dev_get_flags(const struct net_device *dev)
8348 {
8349         unsigned int flags;
8350
8351         flags = (dev->flags & ~(IFF_PROMISC |
8352                                 IFF_ALLMULTI |
8353                                 IFF_RUNNING |
8354                                 IFF_LOWER_UP |
8355                                 IFF_DORMANT)) |
8356                 (dev->gflags & (IFF_PROMISC |
8357                                 IFF_ALLMULTI));
8358
8359         if (netif_running(dev)) {
8360                 if (netif_oper_up(dev))
8361                         flags |= IFF_RUNNING;
8362                 if (netif_carrier_ok(dev))
8363                         flags |= IFF_LOWER_UP;
8364                 if (netif_dormant(dev))
8365                         flags |= IFF_DORMANT;
8366         }
8367
8368         return flags;
8369 }
8370 EXPORT_SYMBOL(dev_get_flags);
8371
8372 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8373                        struct netlink_ext_ack *extack)
8374 {
8375         unsigned int old_flags = dev->flags;
8376         int ret;
8377
8378         ASSERT_RTNL();
8379
8380         /*
8381          *      Set the flags on our device.
8382          */
8383
8384         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8385                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8386                                IFF_AUTOMEDIA)) |
8387                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8388                                     IFF_ALLMULTI));
8389
8390         /*
8391          *      Load in the correct multicast list now the flags have changed.
8392          */
8393
8394         if ((old_flags ^ flags) & IFF_MULTICAST)
8395                 dev_change_rx_flags(dev, IFF_MULTICAST);
8396
8397         dev_set_rx_mode(dev);
8398
8399         /*
8400          *      Have we downed the interface. We handle IFF_UP ourselves
8401          *      according to user attempts to set it, rather than blindly
8402          *      setting it.
8403          */
8404
8405         ret = 0;
8406         if ((old_flags ^ flags) & IFF_UP) {
8407                 if (old_flags & IFF_UP)
8408                         __dev_close(dev);
8409                 else
8410                         ret = __dev_open(dev, extack);
8411         }
8412
8413         if ((flags ^ dev->gflags) & IFF_PROMISC) {
8414                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8415                 unsigned int old_flags = dev->flags;
8416
8417                 dev->gflags ^= IFF_PROMISC;
8418
8419                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8420                         if (dev->flags != old_flags)
8421                                 dev_set_rx_mode(dev);
8422         }
8423
8424         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8425          * is important. Some (broken) drivers set IFF_PROMISC, when
8426          * IFF_ALLMULTI is requested not asking us and not reporting.
8427          */
8428         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8429                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8430
8431                 dev->gflags ^= IFF_ALLMULTI;
8432                 __dev_set_allmulti(dev, inc, false);
8433         }
8434
8435         return ret;
8436 }
8437
8438 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8439                         unsigned int gchanges)
8440 {
8441         unsigned int changes = dev->flags ^ old_flags;
8442
8443         if (gchanges)
8444                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8445
8446         if (changes & IFF_UP) {
8447                 if (dev->flags & IFF_UP)
8448                         call_netdevice_notifiers(NETDEV_UP, dev);
8449                 else
8450                         call_netdevice_notifiers(NETDEV_DOWN, dev);
8451         }
8452
8453         if (dev->flags & IFF_UP &&
8454             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8455                 struct netdev_notifier_change_info change_info = {
8456                         .info = {
8457                                 .dev = dev,
8458                         },
8459                         .flags_changed = changes,
8460                 };
8461
8462                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8463         }
8464 }
8465
8466 /**
8467  *      dev_change_flags - change device settings
8468  *      @dev: device
8469  *      @flags: device state flags
8470  *      @extack: netlink extended ack
8471  *
8472  *      Change settings on device based state flags. The flags are
8473  *      in the userspace exported format.
8474  */
8475 int dev_change_flags(struct net_device *dev, unsigned int flags,
8476                      struct netlink_ext_ack *extack)
8477 {
8478         int ret;
8479         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8480
8481         ret = __dev_change_flags(dev, flags, extack);
8482         if (ret < 0)
8483                 return ret;
8484
8485         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8486         __dev_notify_flags(dev, old_flags, changes);
8487         return ret;
8488 }
8489 EXPORT_SYMBOL(dev_change_flags);
8490
8491 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8492 {
8493         const struct net_device_ops *ops = dev->netdev_ops;
8494
8495         if (ops->ndo_change_mtu)
8496                 return ops->ndo_change_mtu(dev, new_mtu);
8497
8498         /* Pairs with all the lockless reads of dev->mtu in the stack */
8499         WRITE_ONCE(dev->mtu, new_mtu);
8500         return 0;
8501 }
8502 EXPORT_SYMBOL(__dev_set_mtu);
8503
8504 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8505                      struct netlink_ext_ack *extack)
8506 {
8507         /* MTU must be positive, and in range */
8508         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8509                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8510                 return -EINVAL;
8511         }
8512
8513         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8514                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8515                 return -EINVAL;
8516         }
8517         return 0;
8518 }
8519
8520 /**
8521  *      dev_set_mtu_ext - Change maximum transfer unit
8522  *      @dev: device
8523  *      @new_mtu: new transfer unit
8524  *      @extack: netlink extended ack
8525  *
8526  *      Change the maximum transfer size of the network device.
8527  */
8528 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8529                     struct netlink_ext_ack *extack)
8530 {
8531         int err, orig_mtu;
8532
8533         if (new_mtu == dev->mtu)
8534                 return 0;
8535
8536         err = dev_validate_mtu(dev, new_mtu, extack);
8537         if (err)
8538                 return err;
8539
8540         if (!netif_device_present(dev))
8541                 return -ENODEV;
8542
8543         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8544         err = notifier_to_errno(err);
8545         if (err)
8546                 return err;
8547
8548         orig_mtu = dev->mtu;
8549         err = __dev_set_mtu(dev, new_mtu);
8550
8551         if (!err) {
8552                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8553                                                    orig_mtu);
8554                 err = notifier_to_errno(err);
8555                 if (err) {
8556                         /* setting mtu back and notifying everyone again,
8557                          * so that they have a chance to revert changes.
8558                          */
8559                         __dev_set_mtu(dev, orig_mtu);
8560                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8561                                                      new_mtu);
8562                 }
8563         }
8564         return err;
8565 }
8566
8567 int dev_set_mtu(struct net_device *dev, int new_mtu)
8568 {
8569         struct netlink_ext_ack extack;
8570         int err;
8571
8572         memset(&extack, 0, sizeof(extack));
8573         err = dev_set_mtu_ext(dev, new_mtu, &extack);
8574         if (err && extack._msg)
8575                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8576         return err;
8577 }
8578 EXPORT_SYMBOL(dev_set_mtu);
8579
8580 /**
8581  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
8582  *      @dev: device
8583  *      @new_len: new tx queue length
8584  */
8585 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8586 {
8587         unsigned int orig_len = dev->tx_queue_len;
8588         int res;
8589
8590         if (new_len != (unsigned int)new_len)
8591                 return -ERANGE;
8592
8593         if (new_len != orig_len) {
8594                 dev->tx_queue_len = new_len;
8595                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8596                 res = notifier_to_errno(res);
8597                 if (res)
8598                         goto err_rollback;
8599                 res = dev_qdisc_change_tx_queue_len(dev);
8600                 if (res)
8601                         goto err_rollback;
8602         }
8603
8604         return 0;
8605
8606 err_rollback:
8607         netdev_err(dev, "refused to change device tx_queue_len\n");
8608         dev->tx_queue_len = orig_len;
8609         return res;
8610 }
8611
8612 /**
8613  *      dev_set_group - Change group this device belongs to
8614  *      @dev: device
8615  *      @new_group: group this device should belong to
8616  */
8617 void dev_set_group(struct net_device *dev, int new_group)
8618 {
8619         dev->group = new_group;
8620 }
8621 EXPORT_SYMBOL(dev_set_group);
8622
8623 /**
8624  *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8625  *      @dev: device
8626  *      @addr: new address
8627  *      @extack: netlink extended ack
8628  */
8629 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8630                               struct netlink_ext_ack *extack)
8631 {
8632         struct netdev_notifier_pre_changeaddr_info info = {
8633                 .info.dev = dev,
8634                 .info.extack = extack,
8635                 .dev_addr = addr,
8636         };
8637         int rc;
8638
8639         rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8640         return notifier_to_errno(rc);
8641 }
8642 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8643
8644 /**
8645  *      dev_set_mac_address - Change Media Access Control Address
8646  *      @dev: device
8647  *      @sa: new address
8648  *      @extack: netlink extended ack
8649  *
8650  *      Change the hardware (MAC) address of the device
8651  */
8652 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8653                         struct netlink_ext_ack *extack)
8654 {
8655         const struct net_device_ops *ops = dev->netdev_ops;
8656         int err;
8657
8658         if (!ops->ndo_set_mac_address)
8659                 return -EOPNOTSUPP;
8660         if (sa->sa_family != dev->type)
8661                 return -EINVAL;
8662         if (!netif_device_present(dev))
8663                 return -ENODEV;
8664         err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8665         if (err)
8666                 return err;
8667         err = ops->ndo_set_mac_address(dev, sa);
8668         if (err)
8669                 return err;
8670         dev->addr_assign_type = NET_ADDR_SET;
8671         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8672         add_device_randomness(dev->dev_addr, dev->addr_len);
8673         return 0;
8674 }
8675 EXPORT_SYMBOL(dev_set_mac_address);
8676
8677 /**
8678  *      dev_change_carrier - Change device carrier
8679  *      @dev: device
8680  *      @new_carrier: new value
8681  *
8682  *      Change device carrier
8683  */
8684 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8685 {
8686         const struct net_device_ops *ops = dev->netdev_ops;
8687
8688         if (!ops->ndo_change_carrier)
8689                 return -EOPNOTSUPP;
8690         if (!netif_device_present(dev))
8691                 return -ENODEV;
8692         return ops->ndo_change_carrier(dev, new_carrier);
8693 }
8694 EXPORT_SYMBOL(dev_change_carrier);
8695
8696 /**
8697  *      dev_get_phys_port_id - Get device physical port ID
8698  *      @dev: device
8699  *      @ppid: port ID
8700  *
8701  *      Get device physical port ID
8702  */
8703 int dev_get_phys_port_id(struct net_device *dev,
8704                          struct netdev_phys_item_id *ppid)
8705 {
8706         const struct net_device_ops *ops = dev->netdev_ops;
8707
8708         if (!ops->ndo_get_phys_port_id)
8709                 return -EOPNOTSUPP;
8710         return ops->ndo_get_phys_port_id(dev, ppid);
8711 }
8712 EXPORT_SYMBOL(dev_get_phys_port_id);
8713
8714 /**
8715  *      dev_get_phys_port_name - Get device physical port name
8716  *      @dev: device
8717  *      @name: port name
8718  *      @len: limit of bytes to copy to name
8719  *
8720  *      Get device physical port name
8721  */
8722 int dev_get_phys_port_name(struct net_device *dev,
8723                            char *name, size_t len)
8724 {
8725         const struct net_device_ops *ops = dev->netdev_ops;
8726         int err;
8727
8728         if (ops->ndo_get_phys_port_name) {
8729                 err = ops->ndo_get_phys_port_name(dev, name, len);
8730                 if (err != -EOPNOTSUPP)
8731                         return err;
8732         }
8733         return devlink_compat_phys_port_name_get(dev, name, len);
8734 }
8735 EXPORT_SYMBOL(dev_get_phys_port_name);
8736
8737 /**
8738  *      dev_get_port_parent_id - Get the device's port parent identifier
8739  *      @dev: network device
8740  *      @ppid: pointer to a storage for the port's parent identifier
8741  *      @recurse: allow/disallow recursion to lower devices
8742  *
8743  *      Get the devices's port parent identifier
8744  */
8745 int dev_get_port_parent_id(struct net_device *dev,
8746                            struct netdev_phys_item_id *ppid,
8747                            bool recurse)
8748 {
8749         const struct net_device_ops *ops = dev->netdev_ops;
8750         struct netdev_phys_item_id first = { };
8751         struct net_device *lower_dev;
8752         struct list_head *iter;
8753         int err;
8754
8755         if (ops->ndo_get_port_parent_id) {
8756                 err = ops->ndo_get_port_parent_id(dev, ppid);
8757                 if (err != -EOPNOTSUPP)
8758                         return err;
8759         }
8760
8761         err = devlink_compat_switch_id_get(dev, ppid);
8762         if (!err || err != -EOPNOTSUPP)
8763                 return err;
8764
8765         if (!recurse)
8766                 return -EOPNOTSUPP;
8767
8768         netdev_for_each_lower_dev(dev, lower_dev, iter) {
8769                 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
8770                 if (err)
8771                         break;
8772                 if (!first.id_len)
8773                         first = *ppid;
8774                 else if (memcmp(&first, ppid, sizeof(*ppid)))
8775                         return -EOPNOTSUPP;
8776         }
8777
8778         return err;
8779 }
8780 EXPORT_SYMBOL(dev_get_port_parent_id);
8781
8782 /**
8783  *      netdev_port_same_parent_id - Indicate if two network devices have
8784  *      the same port parent identifier
8785  *      @a: first network device
8786  *      @b: second network device
8787  */
8788 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8789 {
8790         struct netdev_phys_item_id a_id = { };
8791         struct netdev_phys_item_id b_id = { };
8792
8793         if (dev_get_port_parent_id(a, &a_id, true) ||
8794             dev_get_port_parent_id(b, &b_id, true))
8795                 return false;
8796
8797         return netdev_phys_item_id_same(&a_id, &b_id);
8798 }
8799 EXPORT_SYMBOL(netdev_port_same_parent_id);
8800
8801 /**
8802  *      dev_change_proto_down - update protocol port state information
8803  *      @dev: device
8804  *      @proto_down: new value
8805  *
8806  *      This info can be used by switch drivers to set the phys state of the
8807  *      port.
8808  */
8809 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8810 {
8811         const struct net_device_ops *ops = dev->netdev_ops;
8812
8813         if (!ops->ndo_change_proto_down)
8814                 return -EOPNOTSUPP;
8815         if (!netif_device_present(dev))
8816                 return -ENODEV;
8817         return ops->ndo_change_proto_down(dev, proto_down);
8818 }
8819 EXPORT_SYMBOL(dev_change_proto_down);
8820
8821 /**
8822  *      dev_change_proto_down_generic - generic implementation for
8823  *      ndo_change_proto_down that sets carrier according to
8824  *      proto_down.
8825  *
8826  *      @dev: device
8827  *      @proto_down: new value
8828  */
8829 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8830 {
8831         if (proto_down)
8832                 netif_carrier_off(dev);
8833         else
8834                 netif_carrier_on(dev);
8835         dev->proto_down = proto_down;
8836         return 0;
8837 }
8838 EXPORT_SYMBOL(dev_change_proto_down_generic);
8839
8840 /**
8841  *      dev_change_proto_down_reason - proto down reason
8842  *
8843  *      @dev: device
8844  *      @mask: proto down mask
8845  *      @value: proto down value
8846  */
8847 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
8848                                   u32 value)
8849 {
8850         int b;
8851
8852         if (!mask) {
8853                 dev->proto_down_reason = value;
8854         } else {
8855                 for_each_set_bit(b, &mask, 32) {
8856                         if (value & (1 << b))
8857                                 dev->proto_down_reason |= BIT(b);
8858                         else
8859                                 dev->proto_down_reason &= ~BIT(b);
8860                 }
8861         }
8862 }
8863 EXPORT_SYMBOL(dev_change_proto_down_reason);
8864
8865 struct bpf_xdp_link {
8866         struct bpf_link link;
8867         struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
8868         int flags;
8869 };
8870
8871 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
8872 {
8873         if (flags & XDP_FLAGS_HW_MODE)
8874                 return XDP_MODE_HW;
8875         if (flags & XDP_FLAGS_DRV_MODE)
8876                 return XDP_MODE_DRV;
8877         if (flags & XDP_FLAGS_SKB_MODE)
8878                 return XDP_MODE_SKB;
8879         return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
8880 }
8881
8882 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
8883 {
8884         switch (mode) {
8885         case XDP_MODE_SKB:
8886                 return generic_xdp_install;
8887         case XDP_MODE_DRV:
8888         case XDP_MODE_HW:
8889                 return dev->netdev_ops->ndo_bpf;
8890         default:
8891                 return NULL;
8892         };
8893 }
8894
8895 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
8896                                          enum bpf_xdp_mode mode)
8897 {
8898         return dev->xdp_state[mode].link;
8899 }
8900
8901 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
8902                                      enum bpf_xdp_mode mode)
8903 {
8904         struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
8905
8906         if (link)
8907                 return link->link.prog;
8908         return dev->xdp_state[mode].prog;
8909 }
8910
8911 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
8912 {
8913         struct bpf_prog *prog = dev_xdp_prog(dev, mode);
8914
8915         return prog ? prog->aux->id : 0;
8916 }
8917
8918 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
8919                              struct bpf_xdp_link *link)
8920 {
8921         dev->xdp_state[mode].link = link;
8922         dev->xdp_state[mode].prog = NULL;
8923 }
8924
8925 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
8926                              struct bpf_prog *prog)
8927 {
8928         dev->xdp_state[mode].link = NULL;
8929         dev->xdp_state[mode].prog = prog;
8930 }
8931
8932 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
8933                            bpf_op_t bpf_op, struct netlink_ext_ack *extack,
8934                            u32 flags, struct bpf_prog *prog)
8935 {
8936         struct netdev_bpf xdp;
8937         int err;
8938
8939         memset(&xdp, 0, sizeof(xdp));
8940         xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
8941         xdp.extack = extack;
8942         xdp.flags = flags;
8943         xdp.prog = prog;
8944
8945         /* Drivers assume refcnt is already incremented (i.e, prog pointer is
8946          * "moved" into driver), so they don't increment it on their own, but
8947          * they do decrement refcnt when program is detached or replaced.
8948          * Given net_device also owns link/prog, we need to bump refcnt here
8949          * to prevent drivers from underflowing it.
8950          */
8951         if (prog)
8952                 bpf_prog_inc(prog);
8953         err = bpf_op(dev, &xdp);
8954         if (err) {
8955                 if (prog)
8956                         bpf_prog_put(prog);
8957                 return err;
8958         }
8959
8960         if (mode != XDP_MODE_HW)
8961                 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
8962
8963         return 0;
8964 }
8965
8966 static void dev_xdp_uninstall(struct net_device *dev)
8967 {
8968         struct bpf_xdp_link *link;
8969         struct bpf_prog *prog;
8970         enum bpf_xdp_mode mode;
8971         bpf_op_t bpf_op;
8972
8973         ASSERT_RTNL();
8974
8975         for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
8976                 prog = dev_xdp_prog(dev, mode);
8977                 if (!prog)
8978                         continue;
8979
8980                 bpf_op = dev_xdp_bpf_op(dev, mode);
8981                 if (!bpf_op)
8982                         continue;
8983
8984                 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
8985
8986                 /* auto-detach link from net device */
8987                 link = dev_xdp_link(dev, mode);
8988                 if (link)
8989                         link->dev = NULL;
8990                 else
8991                         bpf_prog_put(prog);
8992
8993                 dev_xdp_set_link(dev, mode, NULL);
8994         }
8995 }
8996
8997 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
8998                           struct bpf_xdp_link *link, struct bpf_prog *new_prog,
8999                           struct bpf_prog *old_prog, u32 flags)
9000 {
9001         struct bpf_prog *cur_prog;
9002         enum bpf_xdp_mode mode;
9003         bpf_op_t bpf_op;
9004         int err;
9005
9006         ASSERT_RTNL();
9007
9008         /* either link or prog attachment, never both */
9009         if (link && (new_prog || old_prog))
9010                 return -EINVAL;
9011         /* link supports only XDP mode flags */
9012         if (link && (flags & ~XDP_FLAGS_MODES)) {
9013                 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9014                 return -EINVAL;
9015         }
9016         /* just one XDP mode bit should be set, zero defaults to SKB mode */
9017         if (hweight32(flags & XDP_FLAGS_MODES) > 1) {
9018                 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9019                 return -EINVAL;
9020         }
9021         /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9022         if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9023                 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9024                 return -EINVAL;
9025         }
9026
9027         mode = dev_xdp_mode(dev, flags);
9028         /* can't replace attached link */
9029         if (dev_xdp_link(dev, mode)) {
9030                 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9031                 return -EBUSY;
9032         }
9033
9034         cur_prog = dev_xdp_prog(dev, mode);
9035         /* can't replace attached prog with link */
9036         if (link && cur_prog) {
9037                 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9038                 return -EBUSY;
9039         }
9040         if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9041                 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9042                 return -EEXIST;
9043         }
9044
9045         /* put effective new program into new_prog */
9046         if (link)
9047                 new_prog = link->link.prog;
9048
9049         if (new_prog) {
9050                 bool offload = mode == XDP_MODE_HW;
9051                 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9052                                                ? XDP_MODE_DRV : XDP_MODE_SKB;
9053
9054                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9055                         NL_SET_ERR_MSG(extack, "XDP program already attached");
9056                         return -EBUSY;
9057                 }
9058                 if (!offload && dev_xdp_prog(dev, other_mode)) {
9059                         NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9060                         return -EEXIST;
9061                 }
9062                 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9063                         NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9064                         return -EINVAL;
9065                 }
9066                 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9067                         NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9068                         return -EINVAL;
9069                 }
9070                 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9071                         NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9072                         return -EINVAL;
9073                 }
9074         }
9075
9076         /* don't call drivers if the effective program didn't change */
9077         if (new_prog != cur_prog) {
9078                 bpf_op = dev_xdp_bpf_op(dev, mode);
9079                 if (!bpf_op) {
9080                         NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9081                         return -EOPNOTSUPP;
9082                 }
9083
9084                 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9085                 if (err)
9086                         return err;
9087         }
9088
9089         if (link)
9090                 dev_xdp_set_link(dev, mode, link);
9091         else
9092                 dev_xdp_set_prog(dev, mode, new_prog);
9093         if (cur_prog)
9094                 bpf_prog_put(cur_prog);
9095
9096         return 0;
9097 }
9098
9099 static int dev_xdp_attach_link(struct net_device *dev,
9100                                struct netlink_ext_ack *extack,
9101                                struct bpf_xdp_link *link)
9102 {
9103         return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9104 }
9105
9106 static int dev_xdp_detach_link(struct net_device *dev,
9107                                struct netlink_ext_ack *extack,
9108                                struct bpf_xdp_link *link)
9109 {
9110         enum bpf_xdp_mode mode;
9111         bpf_op_t bpf_op;
9112
9113         ASSERT_RTNL();
9114
9115         mode = dev_xdp_mode(dev, link->flags);
9116         if (dev_xdp_link(dev, mode) != link)
9117                 return -EINVAL;
9118
9119         bpf_op = dev_xdp_bpf_op(dev, mode);
9120         WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9121         dev_xdp_set_link(dev, mode, NULL);
9122         return 0;
9123 }
9124
9125 static void bpf_xdp_link_release(struct bpf_link *link)
9126 {
9127         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9128
9129         rtnl_lock();
9130
9131         /* if racing with net_device's tear down, xdp_link->dev might be
9132          * already NULL, in which case link was already auto-detached
9133          */
9134         if (xdp_link->dev) {
9135                 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9136                 xdp_link->dev = NULL;
9137         }
9138
9139         rtnl_unlock();
9140 }
9141
9142 static int bpf_xdp_link_detach(struct bpf_link *link)
9143 {
9144         bpf_xdp_link_release(link);
9145         return 0;
9146 }
9147
9148 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9149 {
9150         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9151
9152         kfree(xdp_link);
9153 }
9154
9155 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9156                                      struct seq_file *seq)
9157 {
9158         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9159         u32 ifindex = 0;
9160
9161         rtnl_lock();
9162         if (xdp_link->dev)
9163                 ifindex = xdp_link->dev->ifindex;
9164         rtnl_unlock();
9165
9166         seq_printf(seq, "ifindex:\t%u\n", ifindex);
9167 }
9168
9169 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9170                                        struct bpf_link_info *info)
9171 {
9172         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9173         u32 ifindex = 0;
9174
9175         rtnl_lock();
9176         if (xdp_link->dev)
9177                 ifindex = xdp_link->dev->ifindex;
9178         rtnl_unlock();
9179
9180         info->xdp.ifindex = ifindex;
9181         return 0;
9182 }
9183
9184 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9185                                struct bpf_prog *old_prog)
9186 {
9187         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9188         enum bpf_xdp_mode mode;
9189         bpf_op_t bpf_op;
9190         int err = 0;
9191
9192         rtnl_lock();
9193
9194         /* link might have been auto-released already, so fail */
9195         if (!xdp_link->dev) {
9196                 err = -ENOLINK;
9197                 goto out_unlock;
9198         }
9199
9200         if (old_prog && link->prog != old_prog) {
9201                 err = -EPERM;
9202                 goto out_unlock;
9203         }
9204         old_prog = link->prog;
9205         if (old_prog == new_prog) {
9206                 /* no-op, don't disturb drivers */
9207                 bpf_prog_put(new_prog);
9208                 goto out_unlock;
9209         }
9210
9211         mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9212         bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9213         err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9214                               xdp_link->flags, new_prog);
9215         if (err)
9216                 goto out_unlock;
9217
9218         old_prog = xchg(&link->prog, new_prog);
9219         bpf_prog_put(old_prog);
9220
9221 out_unlock:
9222         rtnl_unlock();
9223         return err;
9224 }
9225
9226 static const struct bpf_link_ops bpf_xdp_link_lops = {
9227         .release = bpf_xdp_link_release,
9228         .dealloc = bpf_xdp_link_dealloc,
9229         .detach = bpf_xdp_link_detach,
9230         .show_fdinfo = bpf_xdp_link_show_fdinfo,
9231         .fill_link_info = bpf_xdp_link_fill_link_info,
9232         .update_prog = bpf_xdp_link_update,
9233 };
9234
9235 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9236 {
9237         struct net *net = current->nsproxy->net_ns;
9238         struct bpf_link_primer link_primer;
9239         struct bpf_xdp_link *link;
9240         struct net_device *dev;
9241         int err, fd;
9242
9243         dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9244         if (!dev)
9245                 return -EINVAL;
9246
9247         link = kzalloc(sizeof(*link), GFP_USER);
9248         if (!link) {
9249                 err = -ENOMEM;
9250                 goto out_put_dev;
9251         }
9252
9253         bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9254         link->dev = dev;
9255         link->flags = attr->link_create.flags;
9256
9257         err = bpf_link_prime(&link->link, &link_primer);
9258         if (err) {
9259                 kfree(link);
9260                 goto out_put_dev;
9261         }
9262
9263         rtnl_lock();
9264         err = dev_xdp_attach_link(dev, NULL, link);
9265         rtnl_unlock();
9266
9267         if (err) {
9268                 bpf_link_cleanup(&link_primer);
9269                 goto out_put_dev;
9270         }
9271
9272         fd = bpf_link_settle(&link_primer);
9273         /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9274         dev_put(dev);
9275         return fd;
9276
9277 out_put_dev:
9278         dev_put(dev);
9279         return err;
9280 }
9281
9282 /**
9283  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
9284  *      @dev: device
9285  *      @extack: netlink extended ack
9286  *      @fd: new program fd or negative value to clear
9287  *      @expected_fd: old program fd that userspace expects to replace or clear
9288  *      @flags: xdp-related flags
9289  *
9290  *      Set or clear a bpf program for a device
9291  */
9292 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9293                       int fd, int expected_fd, u32 flags)
9294 {
9295         enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9296         struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9297         int err;
9298
9299         ASSERT_RTNL();
9300
9301         if (fd >= 0) {
9302                 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9303                                                  mode != XDP_MODE_SKB);
9304                 if (IS_ERR(new_prog))
9305                         return PTR_ERR(new_prog);
9306         }
9307
9308         if (expected_fd >= 0) {
9309                 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9310                                                  mode != XDP_MODE_SKB);
9311                 if (IS_ERR(old_prog)) {
9312                         err = PTR_ERR(old_prog);
9313                         old_prog = NULL;
9314                         goto err_out;
9315                 }
9316         }
9317
9318         err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9319
9320 err_out:
9321         if (err && new_prog)
9322                 bpf_prog_put(new_prog);
9323         if (old_prog)
9324                 bpf_prog_put(old_prog);
9325         return err;
9326 }
9327
9328 /**
9329  *      dev_new_index   -       allocate an ifindex
9330  *      @net: the applicable net namespace
9331  *
9332  *      Returns a suitable unique value for a new device interface
9333  *      number.  The caller must hold the rtnl semaphore or the
9334  *      dev_base_lock to be sure it remains unique.
9335  */
9336 static int dev_new_index(struct net *net)
9337 {
9338         int ifindex = net->ifindex;
9339
9340         for (;;) {
9341                 if (++ifindex <= 0)
9342                         ifindex = 1;
9343                 if (!__dev_get_by_index(net, ifindex))
9344                         return net->ifindex = ifindex;
9345         }
9346 }
9347
9348 /* Delayed registration/unregisteration */
9349 static LIST_HEAD(net_todo_list);
9350 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9351
9352 static void net_set_todo(struct net_device *dev)
9353 {
9354         list_add_tail(&dev->todo_list, &net_todo_list);
9355         dev_net(dev)->dev_unreg_count++;
9356 }
9357
9358 static void rollback_registered_many(struct list_head *head)
9359 {
9360         struct net_device *dev, *tmp;
9361         LIST_HEAD(close_head);
9362
9363         BUG_ON(dev_boot_phase);
9364         ASSERT_RTNL();
9365
9366         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9367                 /* Some devices call without registering
9368                  * for initialization unwind. Remove those
9369                  * devices and proceed with the remaining.
9370                  */
9371                 if (dev->reg_state == NETREG_UNINITIALIZED) {
9372                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
9373                                  dev->name, dev);
9374
9375                         WARN_ON(1);
9376                         list_del(&dev->unreg_list);
9377                         continue;
9378                 }
9379                 dev->dismantle = true;
9380                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
9381         }
9382
9383         /* If device is running, close it first. */
9384         list_for_each_entry(dev, head, unreg_list)
9385                 list_add_tail(&dev->close_list, &close_head);
9386         dev_close_many(&close_head, true);
9387
9388         list_for_each_entry(dev, head, unreg_list) {
9389                 /* And unlink it from device chain. */
9390                 unlist_netdevice(dev);
9391
9392                 dev->reg_state = NETREG_UNREGISTERING;
9393         }
9394         flush_all_backlogs();
9395
9396         synchronize_net();
9397
9398         list_for_each_entry(dev, head, unreg_list) {
9399                 struct sk_buff *skb = NULL;
9400
9401                 /* Shutdown queueing discipline. */
9402                 dev_shutdown(dev);
9403
9404                 dev_xdp_uninstall(dev);
9405
9406                 /* Notify protocols, that we are about to destroy
9407                  * this device. They should clean all the things.
9408                  */
9409                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9410
9411                 if (!dev->rtnl_link_ops ||
9412                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
9413                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
9414                                                      GFP_KERNEL, NULL, 0);
9415
9416                 /*
9417                  *      Flush the unicast and multicast chains
9418                  */
9419                 dev_uc_flush(dev);
9420                 dev_mc_flush(dev);
9421
9422                 netdev_name_node_alt_flush(dev);
9423                 netdev_name_node_free(dev->name_node);
9424
9425                 if (dev->netdev_ops->ndo_uninit)
9426                         dev->netdev_ops->ndo_uninit(dev);
9427
9428                 if (skb)
9429                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
9430
9431                 /* Notifier chain MUST detach us all upper devices. */
9432                 WARN_ON(netdev_has_any_upper_dev(dev));
9433                 WARN_ON(netdev_has_any_lower_dev(dev));
9434
9435                 /* Remove entries from kobject tree */
9436                 netdev_unregister_kobject(dev);
9437 #ifdef CONFIG_XPS
9438                 /* Remove XPS queueing entries */
9439                 netif_reset_xps_queues_gt(dev, 0);
9440 #endif
9441         }
9442
9443         synchronize_net();
9444
9445         list_for_each_entry(dev, head, unreg_list)
9446                 dev_put(dev);
9447 }
9448
9449 static void rollback_registered(struct net_device *dev)
9450 {
9451         LIST_HEAD(single);
9452
9453         list_add(&dev->unreg_list, &single);
9454         rollback_registered_many(&single);
9455         list_del(&single);
9456 }
9457
9458 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9459         struct net_device *upper, netdev_features_t features)
9460 {
9461         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9462         netdev_features_t feature;
9463         int feature_bit;
9464
9465         for_each_netdev_feature(upper_disables, feature_bit) {
9466                 feature = __NETIF_F_BIT(feature_bit);
9467                 if (!(upper->wanted_features & feature)
9468                     && (features & feature)) {
9469                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9470                                    &feature, upper->name);
9471                         features &= ~feature;
9472                 }
9473         }
9474
9475         return features;
9476 }
9477
9478 static void netdev_sync_lower_features(struct net_device *upper,
9479         struct net_device *lower, netdev_features_t features)
9480 {
9481         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9482         netdev_features_t feature;
9483         int feature_bit;
9484
9485         for_each_netdev_feature(upper_disables, feature_bit) {
9486                 feature = __NETIF_F_BIT(feature_bit);
9487                 if (!(features & feature) && (lower->features & feature)) {
9488                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9489                                    &feature, lower->name);
9490                         lower->wanted_features &= ~feature;
9491                         __netdev_update_features(lower);
9492
9493                         if (unlikely(lower->features & feature))
9494                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9495                                             &feature, lower->name);
9496                         else
9497                                 netdev_features_change(lower);
9498                 }
9499         }
9500 }
9501
9502 static netdev_features_t netdev_fix_features(struct net_device *dev,
9503         netdev_features_t features)
9504 {
9505         /* Fix illegal checksum combinations */
9506         if ((features & NETIF_F_HW_CSUM) &&
9507             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9508                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9509                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9510         }
9511
9512         /* TSO requires that SG is present as well. */
9513         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9514                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9515                 features &= ~NETIF_F_ALL_TSO;
9516         }
9517
9518         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9519                                         !(features & NETIF_F_IP_CSUM)) {
9520                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9521                 features &= ~NETIF_F_TSO;
9522                 features &= ~NETIF_F_TSO_ECN;
9523         }
9524
9525         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9526                                          !(features & NETIF_F_IPV6_CSUM)) {
9527                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9528                 features &= ~NETIF_F_TSO6;
9529         }
9530
9531         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9532         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9533                 features &= ~NETIF_F_TSO_MANGLEID;
9534
9535         /* TSO ECN requires that TSO is present as well. */
9536         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9537                 features &= ~NETIF_F_TSO_ECN;
9538
9539         /* Software GSO depends on SG. */
9540         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9541                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9542                 features &= ~NETIF_F_GSO;
9543         }
9544
9545         /* GSO partial features require GSO partial be set */
9546         if ((features & dev->gso_partial_features) &&
9547             !(features & NETIF_F_GSO_PARTIAL)) {
9548                 netdev_dbg(dev,
9549                            "Dropping partially supported GSO features since no GSO partial.\n");
9550                 features &= ~dev->gso_partial_features;
9551         }
9552
9553         if (!(features & NETIF_F_RXCSUM)) {
9554                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9555                  * successfully merged by hardware must also have the
9556                  * checksum verified by hardware.  If the user does not
9557                  * want to enable RXCSUM, logically, we should disable GRO_HW.
9558                  */
9559                 if (features & NETIF_F_GRO_HW) {
9560                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9561                         features &= ~NETIF_F_GRO_HW;
9562                 }
9563         }
9564
9565         /* LRO/HW-GRO features cannot be combined with RX-FCS */
9566         if (features & NETIF_F_RXFCS) {
9567                 if (features & NETIF_F_LRO) {
9568                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9569                         features &= ~NETIF_F_LRO;
9570                 }
9571
9572                 if (features & NETIF_F_GRO_HW) {
9573                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9574                         features &= ~NETIF_F_GRO_HW;
9575                 }
9576         }
9577
9578         return features;
9579 }
9580
9581 int __netdev_update_features(struct net_device *dev)
9582 {
9583         struct net_device *upper, *lower;
9584         netdev_features_t features;
9585         struct list_head *iter;
9586         int err = -1;
9587
9588         ASSERT_RTNL();
9589
9590         features = netdev_get_wanted_features(dev);
9591
9592         if (dev->netdev_ops->ndo_fix_features)
9593                 features = dev->netdev_ops->ndo_fix_features(dev, features);
9594
9595         /* driver might be less strict about feature dependencies */
9596         features = netdev_fix_features(dev, features);
9597
9598         /* some features can't be enabled if they're off on an upper device */
9599         netdev_for_each_upper_dev_rcu(dev, upper, iter)
9600                 features = netdev_sync_upper_features(dev, upper, features);
9601
9602         if (dev->features == features)
9603                 goto sync_lower;
9604
9605         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9606                 &dev->features, &features);
9607
9608         if (dev->netdev_ops->ndo_set_features)
9609                 err = dev->netdev_ops->ndo_set_features(dev, features);
9610         else
9611                 err = 0;
9612
9613         if (unlikely(err < 0)) {
9614                 netdev_err(dev,
9615                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
9616                         err, &features, &dev->features);
9617                 /* return non-0 since some features might have changed and
9618                  * it's better to fire a spurious notification than miss it
9619                  */
9620                 return -1;
9621         }
9622
9623 sync_lower:
9624         /* some features must be disabled on lower devices when disabled
9625          * on an upper device (think: bonding master or bridge)
9626          */
9627         netdev_for_each_lower_dev(dev, lower, iter)
9628                 netdev_sync_lower_features(dev, lower, features);
9629
9630         if (!err) {
9631                 netdev_features_t diff = features ^ dev->features;
9632
9633                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9634                         /* udp_tunnel_{get,drop}_rx_info both need
9635                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9636                          * device, or they won't do anything.
9637                          * Thus we need to update dev->features
9638                          * *before* calling udp_tunnel_get_rx_info,
9639                          * but *after* calling udp_tunnel_drop_rx_info.
9640                          */
9641                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9642                                 dev->features = features;
9643                                 udp_tunnel_get_rx_info(dev);
9644                         } else {
9645                                 udp_tunnel_drop_rx_info(dev);
9646                         }
9647                 }
9648
9649                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9650                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9651                                 dev->features = features;
9652                                 err |= vlan_get_rx_ctag_filter_info(dev);
9653                         } else {
9654                                 vlan_drop_rx_ctag_filter_info(dev);
9655                         }
9656                 }
9657
9658                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9659                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9660                                 dev->features = features;
9661                                 err |= vlan_get_rx_stag_filter_info(dev);
9662                         } else {
9663                                 vlan_drop_rx_stag_filter_info(dev);
9664                         }
9665                 }
9666
9667                 dev->features = features;
9668         }
9669
9670         return err < 0 ? 0 : 1;
9671 }
9672
9673 /**
9674  *      netdev_update_features - recalculate device features
9675  *      @dev: the device to check
9676  *
9677  *      Recalculate dev->features set and send notifications if it
9678  *      has changed. Should be called after driver or hardware dependent
9679  *      conditions might have changed that influence the features.
9680  */
9681 void netdev_update_features(struct net_device *dev)
9682 {
9683         if (__netdev_update_features(dev))
9684                 netdev_features_change(dev);
9685 }
9686 EXPORT_SYMBOL(netdev_update_features);
9687
9688 /**
9689  *      netdev_change_features - recalculate device features
9690  *      @dev: the device to check
9691  *
9692  *      Recalculate dev->features set and send notifications even
9693  *      if they have not changed. Should be called instead of
9694  *      netdev_update_features() if also dev->vlan_features might
9695  *      have changed to allow the changes to be propagated to stacked
9696  *      VLAN devices.
9697  */
9698 void netdev_change_features(struct net_device *dev)
9699 {
9700         __netdev_update_features(dev);
9701         netdev_features_change(dev);
9702 }
9703 EXPORT_SYMBOL(netdev_change_features);
9704
9705 /**
9706  *      netif_stacked_transfer_operstate -      transfer operstate
9707  *      @rootdev: the root or lower level device to transfer state from
9708  *      @dev: the device to transfer operstate to
9709  *
9710  *      Transfer operational state from root to device. This is normally
9711  *      called when a stacking relationship exists between the root
9712  *      device and the device(a leaf device).
9713  */
9714 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9715                                         struct net_device *dev)
9716 {
9717         if (rootdev->operstate == IF_OPER_DORMANT)
9718                 netif_dormant_on(dev);
9719         else
9720                 netif_dormant_off(dev);
9721
9722         if (rootdev->operstate == IF_OPER_TESTING)
9723                 netif_testing_on(dev);
9724         else
9725                 netif_testing_off(dev);
9726
9727         if (netif_carrier_ok(rootdev))
9728                 netif_carrier_on(dev);
9729         else
9730                 netif_carrier_off(dev);
9731 }
9732 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9733
9734 static int netif_alloc_rx_queues(struct net_device *dev)
9735 {
9736         unsigned int i, count = dev->num_rx_queues;
9737         struct netdev_rx_queue *rx;
9738         size_t sz = count * sizeof(*rx);
9739         int err = 0;
9740
9741         BUG_ON(count < 1);
9742
9743         rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9744         if (!rx)
9745                 return -ENOMEM;
9746
9747         dev->_rx = rx;
9748
9749         for (i = 0; i < count; i++) {
9750                 rx[i].dev = dev;
9751
9752                 /* XDP RX-queue setup */
9753                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
9754                 if (err < 0)
9755                         goto err_rxq_info;
9756         }
9757         return 0;
9758
9759 err_rxq_info:
9760         /* Rollback successful reg's and free other resources */
9761         while (i--)
9762                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9763         kvfree(dev->_rx);
9764         dev->_rx = NULL;
9765         return err;
9766 }
9767
9768 static void netif_free_rx_queues(struct net_device *dev)
9769 {
9770         unsigned int i, count = dev->num_rx_queues;
9771
9772         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9773         if (!dev->_rx)
9774                 return;
9775
9776         for (i = 0; i < count; i++)
9777                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9778
9779         kvfree(dev->_rx);
9780 }
9781
9782 static void netdev_init_one_queue(struct net_device *dev,
9783                                   struct netdev_queue *queue, void *_unused)
9784 {
9785         /* Initialize queue lock */
9786         spin_lock_init(&queue->_xmit_lock);
9787         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9788         queue->xmit_lock_owner = -1;
9789         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9790         queue->dev = dev;
9791 #ifdef CONFIG_BQL
9792         dql_init(&queue->dql, HZ);
9793 #endif
9794 }
9795
9796 static void netif_free_tx_queues(struct net_device *dev)
9797 {
9798         kvfree(dev->_tx);
9799 }
9800
9801 static int netif_alloc_netdev_queues(struct net_device *dev)
9802 {
9803         unsigned int count = dev->num_tx_queues;
9804         struct netdev_queue *tx;
9805         size_t sz = count * sizeof(*tx);
9806
9807         if (count < 1 || count > 0xffff)
9808                 return -EINVAL;
9809
9810         tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9811         if (!tx)
9812                 return -ENOMEM;
9813
9814         dev->_tx = tx;
9815
9816         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9817         spin_lock_init(&dev->tx_global_lock);
9818
9819         return 0;
9820 }
9821
9822 void netif_tx_stop_all_queues(struct net_device *dev)
9823 {
9824         unsigned int i;
9825
9826         for (i = 0; i < dev->num_tx_queues; i++) {
9827                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9828
9829                 netif_tx_stop_queue(txq);
9830         }
9831 }
9832 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9833
9834 /**
9835  *      register_netdevice      - register a network device
9836  *      @dev: device to register
9837  *
9838  *      Take a completed network device structure and add it to the kernel
9839  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9840  *      chain. 0 is returned on success. A negative errno code is returned
9841  *      on a failure to set up the device, or if the name is a duplicate.
9842  *
9843  *      Callers must hold the rtnl semaphore. You may want
9844  *      register_netdev() instead of this.
9845  *
9846  *      BUGS:
9847  *      The locking appears insufficient to guarantee two parallel registers
9848  *      will not get the same name.
9849  */
9850
9851 int register_netdevice(struct net_device *dev)
9852 {
9853         int ret;
9854         struct net *net = dev_net(dev);
9855
9856         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9857                      NETDEV_FEATURE_COUNT);
9858         BUG_ON(dev_boot_phase);
9859         ASSERT_RTNL();
9860
9861         might_sleep();
9862
9863         /* When net_device's are persistent, this will be fatal. */
9864         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9865         BUG_ON(!net);
9866
9867         ret = ethtool_check_ops(dev->ethtool_ops);
9868         if (ret)
9869                 return ret;
9870
9871         spin_lock_init(&dev->addr_list_lock);
9872         netdev_set_addr_lockdep_class(dev);
9873
9874         ret = dev_get_valid_name(net, dev, dev->name);
9875         if (ret < 0)
9876                 goto out;
9877
9878         ret = -ENOMEM;
9879         dev->name_node = netdev_name_node_head_alloc(dev);
9880         if (!dev->name_node)
9881                 goto out;
9882
9883         /* Init, if this function is available */
9884         if (dev->netdev_ops->ndo_init) {
9885                 ret = dev->netdev_ops->ndo_init(dev);
9886                 if (ret) {
9887                         if (ret > 0)
9888                                 ret = -EIO;
9889                         goto err_free_name;
9890                 }
9891         }
9892
9893         if (((dev->hw_features | dev->features) &
9894              NETIF_F_HW_VLAN_CTAG_FILTER) &&
9895             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9896              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9897                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9898                 ret = -EINVAL;
9899                 goto err_uninit;
9900         }
9901
9902         ret = -EBUSY;
9903         if (!dev->ifindex)
9904                 dev->ifindex = dev_new_index(net);
9905         else if (__dev_get_by_index(net, dev->ifindex))
9906                 goto err_uninit;
9907
9908         /* Transfer changeable features to wanted_features and enable
9909          * software offloads (GSO and GRO).
9910          */
9911         dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
9912         dev->features |= NETIF_F_SOFT_FEATURES;
9913
9914         if (dev->netdev_ops->ndo_udp_tunnel_add) {
9915                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9916                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9917         }
9918
9919         dev->wanted_features = dev->features & dev->hw_features;
9920
9921         if (!(dev->flags & IFF_LOOPBACK))
9922                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
9923
9924         /* If IPv4 TCP segmentation offload is supported we should also
9925          * allow the device to enable segmenting the frame with the option
9926          * of ignoring a static IP ID value.  This doesn't enable the
9927          * feature itself but allows the user to enable it later.
9928          */
9929         if (dev->hw_features & NETIF_F_TSO)
9930                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
9931         if (dev->vlan_features & NETIF_F_TSO)
9932                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
9933         if (dev->mpls_features & NETIF_F_TSO)
9934                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
9935         if (dev->hw_enc_features & NETIF_F_TSO)
9936                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
9937
9938         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
9939          */
9940         dev->vlan_features |= NETIF_F_HIGHDMA;
9941
9942         /* Make NETIF_F_SG inheritable to tunnel devices.
9943          */
9944         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
9945
9946         /* Make NETIF_F_SG inheritable to MPLS.
9947          */
9948         dev->mpls_features |= NETIF_F_SG;
9949
9950         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
9951         ret = notifier_to_errno(ret);
9952         if (ret)
9953                 goto err_uninit;
9954
9955         ret = netdev_register_kobject(dev);
9956         if (ret) {
9957                 dev->reg_state = NETREG_UNREGISTERED;
9958                 goto err_uninit;
9959         }
9960         dev->reg_state = NETREG_REGISTERED;
9961
9962         __netdev_update_features(dev);
9963
9964         /*
9965          *      Default initial state at registry is that the
9966          *      device is present.
9967          */
9968
9969         set_bit(__LINK_STATE_PRESENT, &dev->state);
9970
9971         linkwatch_init_dev(dev);
9972
9973         dev_init_scheduler(dev);
9974         dev_hold(dev);
9975         list_netdevice(dev);
9976         add_device_randomness(dev->dev_addr, dev->addr_len);
9977
9978         /* If the device has permanent device address, driver should
9979          * set dev_addr and also addr_assign_type should be set to
9980          * NET_ADDR_PERM (default value).
9981          */
9982         if (dev->addr_assign_type == NET_ADDR_PERM)
9983                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
9984
9985         /* Notify protocols, that a new device appeared. */
9986         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
9987         ret = notifier_to_errno(ret);
9988         if (ret) {
9989                 rollback_registered(dev);
9990                 rcu_barrier();
9991
9992                 dev->reg_state = NETREG_UNREGISTERED;
9993                 /* We should put the kobject that hold in
9994                  * netdev_unregister_kobject(), otherwise
9995                  * the net device cannot be freed when
9996                  * driver calls free_netdev(), because the
9997                  * kobject is being hold.
9998                  */
9999                 kobject_put(&dev->dev.kobj);
10000         }
10001         /*
10002          *      Prevent userspace races by waiting until the network
10003          *      device is fully setup before sending notifications.
10004          */
10005         if (!dev->rtnl_link_ops ||
10006             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10007                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10008
10009 out:
10010         return ret;
10011
10012 err_uninit:
10013         if (dev->netdev_ops->ndo_uninit)
10014                 dev->netdev_ops->ndo_uninit(dev);
10015         if (dev->priv_destructor)
10016                 dev->priv_destructor(dev);
10017 err_free_name:
10018         netdev_name_node_free(dev->name_node);
10019         goto out;
10020 }
10021 EXPORT_SYMBOL(register_netdevice);
10022
10023 /**
10024  *      init_dummy_netdev       - init a dummy network device for NAPI
10025  *      @dev: device to init
10026  *
10027  *      This takes a network device structure and initialize the minimum
10028  *      amount of fields so it can be used to schedule NAPI polls without
10029  *      registering a full blown interface. This is to be used by drivers
10030  *      that need to tie several hardware interfaces to a single NAPI
10031  *      poll scheduler due to HW limitations.
10032  */
10033 int init_dummy_netdev(struct net_device *dev)
10034 {
10035         /* Clear everything. Note we don't initialize spinlocks
10036          * are they aren't supposed to be taken by any of the
10037          * NAPI code and this dummy netdev is supposed to be
10038          * only ever used for NAPI polls
10039          */
10040         memset(dev, 0, sizeof(struct net_device));
10041
10042         /* make sure we BUG if trying to hit standard
10043          * register/unregister code path
10044          */
10045         dev->reg_state = NETREG_DUMMY;
10046
10047         /* NAPI wants this */
10048         INIT_LIST_HEAD(&dev->napi_list);
10049
10050         /* a dummy interface is started by default */
10051         set_bit(__LINK_STATE_PRESENT, &dev->state);
10052         set_bit(__LINK_STATE_START, &dev->state);
10053
10054         /* napi_busy_loop stats accounting wants this */
10055         dev_net_set(dev, &init_net);
10056
10057         /* Note : We dont allocate pcpu_refcnt for dummy devices,
10058          * because users of this 'device' dont need to change
10059          * its refcount.
10060          */
10061
10062         return 0;
10063 }
10064 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10065
10066
10067 /**
10068  *      register_netdev - register a network device
10069  *      @dev: device to register
10070  *
10071  *      Take a completed network device structure and add it to the kernel
10072  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10073  *      chain. 0 is returned on success. A negative errno code is returned
10074  *      on a failure to set up the device, or if the name is a duplicate.
10075  *
10076  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
10077  *      and expands the device name if you passed a format string to
10078  *      alloc_netdev.
10079  */
10080 int register_netdev(struct net_device *dev)
10081 {
10082         int err;
10083
10084         if (rtnl_lock_killable())
10085                 return -EINTR;
10086         err = register_netdevice(dev);
10087         rtnl_unlock();
10088         return err;
10089 }
10090 EXPORT_SYMBOL(register_netdev);
10091
10092 int netdev_refcnt_read(const struct net_device *dev)
10093 {
10094         int i, refcnt = 0;
10095
10096         for_each_possible_cpu(i)
10097                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10098         return refcnt;
10099 }
10100 EXPORT_SYMBOL(netdev_refcnt_read);
10101
10102 #define WAIT_REFS_MIN_MSECS 1
10103 #define WAIT_REFS_MAX_MSECS 250
10104 /**
10105  * netdev_wait_allrefs - wait until all references are gone.
10106  * @dev: target net_device
10107  *
10108  * This is called when unregistering network devices.
10109  *
10110  * Any protocol or device that holds a reference should register
10111  * for netdevice notification, and cleanup and put back the
10112  * reference if they receive an UNREGISTER event.
10113  * We can get stuck here if buggy protocols don't correctly
10114  * call dev_put.
10115  */
10116 static void netdev_wait_allrefs(struct net_device *dev)
10117 {
10118         unsigned long rebroadcast_time, warning_time;
10119         int wait = 0, refcnt;
10120
10121         linkwatch_forget_dev(dev);
10122
10123         rebroadcast_time = warning_time = jiffies;
10124         refcnt = netdev_refcnt_read(dev);
10125
10126         while (refcnt != 0) {
10127                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10128                         rtnl_lock();
10129
10130                         /* Rebroadcast unregister notification */
10131                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10132
10133                         __rtnl_unlock();
10134                         rcu_barrier();
10135                         rtnl_lock();
10136
10137                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10138                                      &dev->state)) {
10139                                 /* We must not have linkwatch events
10140                                  * pending on unregister. If this
10141                                  * happens, we simply run the queue
10142                                  * unscheduled, resulting in a noop
10143                                  * for this device.
10144                                  */
10145                                 linkwatch_run_queue();
10146                         }
10147
10148                         __rtnl_unlock();
10149
10150                         rebroadcast_time = jiffies;
10151                 }
10152
10153                 if (!wait) {
10154                         rcu_barrier();
10155                         wait = WAIT_REFS_MIN_MSECS;
10156                 } else {
10157                         msleep(wait);
10158                         wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10159                 }
10160
10161                 refcnt = netdev_refcnt_read(dev);
10162
10163                 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
10164                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10165                                  dev->name, refcnt);
10166                         warning_time = jiffies;
10167                 }
10168         }
10169 }
10170
10171 /* The sequence is:
10172  *
10173  *      rtnl_lock();
10174  *      ...
10175  *      register_netdevice(x1);
10176  *      register_netdevice(x2);
10177  *      ...
10178  *      unregister_netdevice(y1);
10179  *      unregister_netdevice(y2);
10180  *      ...
10181  *      rtnl_unlock();
10182  *      free_netdev(y1);
10183  *      free_netdev(y2);
10184  *
10185  * We are invoked by rtnl_unlock().
10186  * This allows us to deal with problems:
10187  * 1) We can delete sysfs objects which invoke hotplug
10188  *    without deadlocking with linkwatch via keventd.
10189  * 2) Since we run with the RTNL semaphore not held, we can sleep
10190  *    safely in order to wait for the netdev refcnt to drop to zero.
10191  *
10192  * We must not return until all unregister events added during
10193  * the interval the lock was held have been completed.
10194  */
10195 void netdev_run_todo(void)
10196 {
10197         struct list_head list;
10198 #ifdef CONFIG_LOCKDEP
10199         struct list_head unlink_list;
10200
10201         list_replace_init(&net_unlink_list, &unlink_list);
10202
10203         while (!list_empty(&unlink_list)) {
10204                 struct net_device *dev = list_first_entry(&unlink_list,
10205                                                           struct net_device,
10206                                                           unlink_list);
10207                 list_del(&dev->unlink_list);
10208                 dev->nested_level = dev->lower_level - 1;
10209         }
10210 #endif
10211
10212         /* Snapshot list, allow later requests */
10213         list_replace_init(&net_todo_list, &list);
10214
10215         __rtnl_unlock();
10216
10217
10218         /* Wait for rcu callbacks to finish before next phase */
10219         if (!list_empty(&list))
10220                 rcu_barrier();
10221
10222         while (!list_empty(&list)) {
10223                 struct net_device *dev
10224                         = list_first_entry(&list, struct net_device, todo_list);
10225                 list_del(&dev->todo_list);
10226
10227                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10228                         pr_err("network todo '%s' but state %d\n",
10229                                dev->name, dev->reg_state);
10230                         dump_stack();
10231                         continue;
10232                 }
10233
10234                 dev->reg_state = NETREG_UNREGISTERED;
10235
10236                 netdev_wait_allrefs(dev);
10237
10238                 /* paranoia */
10239                 BUG_ON(netdev_refcnt_read(dev));
10240                 BUG_ON(!list_empty(&dev->ptype_all));
10241                 BUG_ON(!list_empty(&dev->ptype_specific));
10242                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10243                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10244 #if IS_ENABLED(CONFIG_DECNET)
10245                 WARN_ON(dev->dn_ptr);
10246 #endif
10247                 if (dev->priv_destructor)
10248                         dev->priv_destructor(dev);
10249                 if (dev->needs_free_netdev)
10250                         free_netdev(dev);
10251
10252                 /* Report a network device has been unregistered */
10253                 rtnl_lock();
10254                 dev_net(dev)->dev_unreg_count--;
10255                 __rtnl_unlock();
10256                 wake_up(&netdev_unregistering_wq);
10257
10258                 /* Free network device */
10259                 kobject_put(&dev->dev.kobj);
10260         }
10261 }
10262
10263 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10264  * all the same fields in the same order as net_device_stats, with only
10265  * the type differing, but rtnl_link_stats64 may have additional fields
10266  * at the end for newer counters.
10267  */
10268 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10269                              const struct net_device_stats *netdev_stats)
10270 {
10271 #if BITS_PER_LONG == 64
10272         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10273         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10274         /* zero out counters that only exist in rtnl_link_stats64 */
10275         memset((char *)stats64 + sizeof(*netdev_stats), 0,
10276                sizeof(*stats64) - sizeof(*netdev_stats));
10277 #else
10278         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10279         const unsigned long *src = (const unsigned long *)netdev_stats;
10280         u64 *dst = (u64 *)stats64;
10281
10282         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10283         for (i = 0; i < n; i++)
10284                 dst[i] = src[i];
10285         /* zero out counters that only exist in rtnl_link_stats64 */
10286         memset((char *)stats64 + n * sizeof(u64), 0,
10287                sizeof(*stats64) - n * sizeof(u64));
10288 #endif
10289 }
10290 EXPORT_SYMBOL(netdev_stats_to_stats64);
10291
10292 /**
10293  *      dev_get_stats   - get network device statistics
10294  *      @dev: device to get statistics from
10295  *      @storage: place to store stats
10296  *
10297  *      Get network statistics from device. Return @storage.
10298  *      The device driver may provide its own method by setting
10299  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10300  *      otherwise the internal statistics structure is used.
10301  */
10302 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10303                                         struct rtnl_link_stats64 *storage)
10304 {
10305         const struct net_device_ops *ops = dev->netdev_ops;
10306
10307         if (ops->ndo_get_stats64) {
10308                 memset(storage, 0, sizeof(*storage));
10309                 ops->ndo_get_stats64(dev, storage);
10310         } else if (ops->ndo_get_stats) {
10311                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10312         } else {
10313                 netdev_stats_to_stats64(storage, &dev->stats);
10314         }
10315         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10316         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10317         storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10318         return storage;
10319 }
10320 EXPORT_SYMBOL(dev_get_stats);
10321
10322 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10323 {
10324         struct netdev_queue *queue = dev_ingress_queue(dev);
10325
10326 #ifdef CONFIG_NET_CLS_ACT
10327         if (queue)
10328                 return queue;
10329         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10330         if (!queue)
10331                 return NULL;
10332         netdev_init_one_queue(dev, queue, NULL);
10333         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10334         queue->qdisc_sleeping = &noop_qdisc;
10335         rcu_assign_pointer(dev->ingress_queue, queue);
10336 #endif
10337         return queue;
10338 }
10339
10340 static const struct ethtool_ops default_ethtool_ops;
10341
10342 void netdev_set_default_ethtool_ops(struct net_device *dev,
10343                                     const struct ethtool_ops *ops)
10344 {
10345         if (dev->ethtool_ops == &default_ethtool_ops)
10346                 dev->ethtool_ops = ops;
10347 }
10348 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10349
10350 void netdev_freemem(struct net_device *dev)
10351 {
10352         char *addr = (char *)dev - dev->padded;
10353
10354         kvfree(addr);
10355 }
10356
10357 /**
10358  * alloc_netdev_mqs - allocate network device
10359  * @sizeof_priv: size of private data to allocate space for
10360  * @name: device name format string
10361  * @name_assign_type: origin of device name
10362  * @setup: callback to initialize device
10363  * @txqs: the number of TX subqueues to allocate
10364  * @rxqs: the number of RX subqueues to allocate
10365  *
10366  * Allocates a struct net_device with private data area for driver use
10367  * and performs basic initialization.  Also allocates subqueue structs
10368  * for each queue on the device.
10369  */
10370 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10371                 unsigned char name_assign_type,
10372                 void (*setup)(struct net_device *),
10373                 unsigned int txqs, unsigned int rxqs)
10374 {
10375         struct net_device *dev;
10376         unsigned int alloc_size;
10377         struct net_device *p;
10378
10379         BUG_ON(strlen(name) >= sizeof(dev->name));
10380
10381         if (txqs < 1) {
10382                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10383                 return NULL;
10384         }
10385
10386         if (rxqs < 1) {
10387                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10388                 return NULL;
10389         }
10390
10391         alloc_size = sizeof(struct net_device);
10392         if (sizeof_priv) {
10393                 /* ensure 32-byte alignment of private area */
10394                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10395                 alloc_size += sizeof_priv;
10396         }
10397         /* ensure 32-byte alignment of whole construct */
10398         alloc_size += NETDEV_ALIGN - 1;
10399
10400         p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10401         if (!p)
10402                 return NULL;
10403
10404         dev = PTR_ALIGN(p, NETDEV_ALIGN);
10405         dev->padded = (char *)dev - (char *)p;
10406
10407         dev->pcpu_refcnt = alloc_percpu(int);
10408         if (!dev->pcpu_refcnt)
10409                 goto free_dev;
10410
10411         if (dev_addr_init(dev))
10412                 goto free_pcpu;
10413
10414         dev_mc_init(dev);
10415         dev_uc_init(dev);
10416
10417         dev_net_set(dev, &init_net);
10418
10419         dev->gso_max_size = GSO_MAX_SIZE;
10420         dev->gso_max_segs = GSO_MAX_SEGS;
10421         dev->upper_level = 1;
10422         dev->lower_level = 1;
10423 #ifdef CONFIG_LOCKDEP
10424         dev->nested_level = 0;
10425         INIT_LIST_HEAD(&dev->unlink_list);
10426 #endif
10427
10428         INIT_LIST_HEAD(&dev->napi_list);
10429         INIT_LIST_HEAD(&dev->unreg_list);
10430         INIT_LIST_HEAD(&dev->close_list);
10431         INIT_LIST_HEAD(&dev->link_watch_list);
10432         INIT_LIST_HEAD(&dev->adj_list.upper);
10433         INIT_LIST_HEAD(&dev->adj_list.lower);
10434         INIT_LIST_HEAD(&dev->ptype_all);
10435         INIT_LIST_HEAD(&dev->ptype_specific);
10436         INIT_LIST_HEAD(&dev->net_notifier_list);
10437 #ifdef CONFIG_NET_SCHED
10438         hash_init(dev->qdisc_hash);
10439 #endif
10440         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10441         setup(dev);
10442
10443         if (!dev->tx_queue_len) {
10444                 dev->priv_flags |= IFF_NO_QUEUE;
10445                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10446         }
10447
10448         dev->num_tx_queues = txqs;
10449         dev->real_num_tx_queues = txqs;
10450         if (netif_alloc_netdev_queues(dev))
10451                 goto free_all;
10452
10453         dev->num_rx_queues = rxqs;
10454         dev->real_num_rx_queues = rxqs;
10455         if (netif_alloc_rx_queues(dev))
10456                 goto free_all;
10457
10458         strcpy(dev->name, name);
10459         dev->name_assign_type = name_assign_type;
10460         dev->group = INIT_NETDEV_GROUP;
10461         if (!dev->ethtool_ops)
10462                 dev->ethtool_ops = &default_ethtool_ops;
10463
10464         nf_hook_ingress_init(dev);
10465
10466         return dev;
10467
10468 free_all:
10469         free_netdev(dev);
10470         return NULL;
10471
10472 free_pcpu:
10473         free_percpu(dev->pcpu_refcnt);
10474 free_dev:
10475         netdev_freemem(dev);
10476         return NULL;
10477 }
10478 EXPORT_SYMBOL(alloc_netdev_mqs);
10479
10480 /**
10481  * free_netdev - free network device
10482  * @dev: device
10483  *
10484  * This function does the last stage of destroying an allocated device
10485  * interface. The reference to the device object is released. If this
10486  * is the last reference then it will be freed.Must be called in process
10487  * context.
10488  */
10489 void free_netdev(struct net_device *dev)
10490 {
10491         struct napi_struct *p, *n;
10492
10493         might_sleep();
10494         netif_free_tx_queues(dev);
10495         netif_free_rx_queues(dev);
10496
10497         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10498
10499         /* Flush device addresses */
10500         dev_addr_flush(dev);
10501
10502         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10503                 netif_napi_del(p);
10504
10505         free_percpu(dev->pcpu_refcnt);
10506         dev->pcpu_refcnt = NULL;
10507         free_percpu(dev->xdp_bulkq);
10508         dev->xdp_bulkq = NULL;
10509
10510         /*  Compatibility with error handling in drivers */
10511         if (dev->reg_state == NETREG_UNINITIALIZED) {
10512                 netdev_freemem(dev);
10513                 return;
10514         }
10515
10516         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10517         dev->reg_state = NETREG_RELEASED;
10518
10519         /* will free via device release */
10520         put_device(&dev->dev);
10521 }
10522 EXPORT_SYMBOL(free_netdev);
10523
10524 /**
10525  *      synchronize_net -  Synchronize with packet receive processing
10526  *
10527  *      Wait for packets currently being received to be done.
10528  *      Does not block later packets from starting.
10529  */
10530 void synchronize_net(void)
10531 {
10532         might_sleep();
10533         if (rtnl_is_locked())
10534                 synchronize_rcu_expedited();
10535         else
10536                 synchronize_rcu();
10537 }
10538 EXPORT_SYMBOL(synchronize_net);
10539
10540 /**
10541  *      unregister_netdevice_queue - remove device from the kernel
10542  *      @dev: device
10543  *      @head: list
10544  *
10545  *      This function shuts down a device interface and removes it
10546  *      from the kernel tables.
10547  *      If head not NULL, device is queued to be unregistered later.
10548  *
10549  *      Callers must hold the rtnl semaphore.  You may want
10550  *      unregister_netdev() instead of this.
10551  */
10552
10553 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10554 {
10555         ASSERT_RTNL();
10556
10557         if (head) {
10558                 list_move_tail(&dev->unreg_list, head);
10559         } else {
10560                 rollback_registered(dev);
10561                 /* Finish processing unregister after unlock */
10562                 net_set_todo(dev);
10563         }
10564 }
10565 EXPORT_SYMBOL(unregister_netdevice_queue);
10566
10567 /**
10568  *      unregister_netdevice_many - unregister many devices
10569  *      @head: list of devices
10570  *
10571  *  Note: As most callers use a stack allocated list_head,
10572  *  we force a list_del() to make sure stack wont be corrupted later.
10573  */
10574 void unregister_netdevice_many(struct list_head *head)
10575 {
10576         struct net_device *dev;
10577
10578         if (!list_empty(head)) {
10579                 rollback_registered_many(head);
10580                 list_for_each_entry(dev, head, unreg_list)
10581                         net_set_todo(dev);
10582                 list_del(head);
10583         }
10584 }
10585 EXPORT_SYMBOL(unregister_netdevice_many);
10586
10587 /**
10588  *      unregister_netdev - remove device from the kernel
10589  *      @dev: device
10590  *
10591  *      This function shuts down a device interface and removes it
10592  *      from the kernel tables.
10593  *
10594  *      This is just a wrapper for unregister_netdevice that takes
10595  *      the rtnl semaphore.  In general you want to use this and not
10596  *      unregister_netdevice.
10597  */
10598 void unregister_netdev(struct net_device *dev)
10599 {
10600         rtnl_lock();
10601         unregister_netdevice(dev);
10602         rtnl_unlock();
10603 }
10604 EXPORT_SYMBOL(unregister_netdev);
10605
10606 /**
10607  *      dev_change_net_namespace - move device to different nethost namespace
10608  *      @dev: device
10609  *      @net: network namespace
10610  *      @pat: If not NULL name pattern to try if the current device name
10611  *            is already taken in the destination network namespace.
10612  *
10613  *      This function shuts down a device interface and moves it
10614  *      to a new network namespace. On success 0 is returned, on
10615  *      a failure a netagive errno code is returned.
10616  *
10617  *      Callers must hold the rtnl semaphore.
10618  */
10619
10620 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
10621 {
10622         struct net *net_old = dev_net(dev);
10623         int err, new_nsid, new_ifindex;
10624
10625         ASSERT_RTNL();
10626
10627         /* Don't allow namespace local devices to be moved. */
10628         err = -EINVAL;
10629         if (dev->features & NETIF_F_NETNS_LOCAL)
10630                 goto out;
10631
10632         /* Ensure the device has been registrered */
10633         if (dev->reg_state != NETREG_REGISTERED)
10634                 goto out;
10635
10636         /* Get out if there is nothing todo */
10637         err = 0;
10638         if (net_eq(net_old, net))
10639                 goto out;
10640
10641         /* Pick the destination device name, and ensure
10642          * we can use it in the destination network namespace.
10643          */
10644         err = -EEXIST;
10645         if (__dev_get_by_name(net, dev->name)) {
10646                 /* We get here if we can't use the current device name */
10647                 if (!pat)
10648                         goto out;
10649                 err = dev_get_valid_name(net, dev, pat);
10650                 if (err < 0)
10651                         goto out;
10652         }
10653
10654         /*
10655          * And now a mini version of register_netdevice unregister_netdevice.
10656          */
10657
10658         /* If device is running close it first. */
10659         dev_close(dev);
10660
10661         /* And unlink it from device chain */
10662         unlist_netdevice(dev);
10663
10664         synchronize_net();
10665
10666         /* Shutdown queueing discipline. */
10667         dev_shutdown(dev);
10668
10669         /* Notify protocols, that we are about to destroy
10670          * this device. They should clean all the things.
10671          *
10672          * Note that dev->reg_state stays at NETREG_REGISTERED.
10673          * This is wanted because this way 8021q and macvlan know
10674          * the device is just moving and can keep their slaves up.
10675          */
10676         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10677         rcu_barrier();
10678
10679         new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10680         /* If there is an ifindex conflict assign a new one */
10681         if (__dev_get_by_index(net, dev->ifindex))
10682                 new_ifindex = dev_new_index(net);
10683         else
10684                 new_ifindex = dev->ifindex;
10685
10686         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10687                             new_ifindex);
10688
10689         /*
10690          *      Flush the unicast and multicast chains
10691          */
10692         dev_uc_flush(dev);
10693         dev_mc_flush(dev);
10694
10695         /* Send a netdev-removed uevent to the old namespace */
10696         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
10697         netdev_adjacent_del_links(dev);
10698
10699         /* Move per-net netdevice notifiers that are following the netdevice */
10700         move_netdevice_notifiers_dev_net(dev, net);
10701
10702         /* Actually switch the network namespace */
10703         dev_net_set(dev, net);
10704         dev->ifindex = new_ifindex;
10705
10706         /* Send a netdev-add uevent to the new namespace */
10707         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
10708         netdev_adjacent_add_links(dev);
10709
10710         /* Fixup kobjects */
10711         err = device_rename(&dev->dev, dev->name);
10712         WARN_ON(err);
10713
10714         /* Adapt owner in case owning user namespace of target network
10715          * namespace is different from the original one.
10716          */
10717         err = netdev_change_owner(dev, net_old, net);
10718         WARN_ON(err);
10719
10720         /* Add the device back in the hashes */
10721         list_netdevice(dev);
10722
10723         /* Notify protocols, that a new device appeared. */
10724         call_netdevice_notifiers(NETDEV_REGISTER, dev);
10725
10726         /*
10727          *      Prevent userspace races by waiting until the network
10728          *      device is fully setup before sending notifications.
10729          */
10730         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10731
10732         synchronize_net();
10733         err = 0;
10734 out:
10735         return err;
10736 }
10737 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
10738
10739 static int dev_cpu_dead(unsigned int oldcpu)
10740 {
10741         struct sk_buff **list_skb;
10742         struct sk_buff *skb;
10743         unsigned int cpu;
10744         struct softnet_data *sd, *oldsd, *remsd = NULL;
10745
10746         local_irq_disable();
10747         cpu = smp_processor_id();
10748         sd = &per_cpu(softnet_data, cpu);
10749         oldsd = &per_cpu(softnet_data, oldcpu);
10750
10751         /* Find end of our completion_queue. */
10752         list_skb = &sd->completion_queue;
10753         while (*list_skb)
10754                 list_skb = &(*list_skb)->next;
10755         /* Append completion queue from offline CPU. */
10756         *list_skb = oldsd->completion_queue;
10757         oldsd->completion_queue = NULL;
10758
10759         /* Append output queue from offline CPU. */
10760         if (oldsd->output_queue) {
10761                 *sd->output_queue_tailp = oldsd->output_queue;
10762                 sd->output_queue_tailp = oldsd->output_queue_tailp;
10763                 oldsd->output_queue = NULL;
10764                 oldsd->output_queue_tailp = &oldsd->output_queue;
10765         }
10766         /* Append NAPI poll list from offline CPU, with one exception :
10767          * process_backlog() must be called by cpu owning percpu backlog.
10768          * We properly handle process_queue & input_pkt_queue later.
10769          */
10770         while (!list_empty(&oldsd->poll_list)) {
10771                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10772                                                             struct napi_struct,
10773                                                             poll_list);
10774
10775                 list_del_init(&napi->poll_list);
10776                 if (napi->poll == process_backlog)
10777                         napi->state = 0;
10778                 else
10779                         ____napi_schedule(sd, napi);
10780         }
10781
10782         raise_softirq_irqoff(NET_TX_SOFTIRQ);
10783         local_irq_enable();
10784
10785 #ifdef CONFIG_RPS
10786         remsd = oldsd->rps_ipi_list;
10787         oldsd->rps_ipi_list = NULL;
10788 #endif
10789         /* send out pending IPI's on offline CPU */
10790         net_rps_send_ipi(remsd);
10791
10792         /* Process offline CPU's input_pkt_queue */
10793         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
10794                 netif_rx_ni(skb);
10795                 input_queue_head_incr(oldsd);
10796         }
10797         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
10798                 netif_rx_ni(skb);
10799                 input_queue_head_incr(oldsd);
10800         }
10801
10802         return 0;
10803 }
10804
10805 /**
10806  *      netdev_increment_features - increment feature set by one
10807  *      @all: current feature set
10808  *      @one: new feature set
10809  *      @mask: mask feature set
10810  *
10811  *      Computes a new feature set after adding a device with feature set
10812  *      @one to the master device with current feature set @all.  Will not
10813  *      enable anything that is off in @mask. Returns the new feature set.
10814  */
10815 netdev_features_t netdev_increment_features(netdev_features_t all,
10816         netdev_features_t one, netdev_features_t mask)
10817 {
10818         if (mask & NETIF_F_HW_CSUM)
10819                 mask |= NETIF_F_CSUM_MASK;
10820         mask |= NETIF_F_VLAN_CHALLENGED;
10821
10822         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
10823         all &= one | ~NETIF_F_ALL_FOR_ALL;
10824
10825         /* If one device supports hw checksumming, set for all. */
10826         if (all & NETIF_F_HW_CSUM)
10827                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
10828
10829         return all;
10830 }
10831 EXPORT_SYMBOL(netdev_increment_features);
10832
10833 static struct hlist_head * __net_init netdev_create_hash(void)
10834 {
10835         int i;
10836         struct hlist_head *hash;
10837
10838         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
10839         if (hash != NULL)
10840                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
10841                         INIT_HLIST_HEAD(&hash[i]);
10842
10843         return hash;
10844 }
10845
10846 /* Initialize per network namespace state */
10847 static int __net_init netdev_init(struct net *net)
10848 {
10849         BUILD_BUG_ON(GRO_HASH_BUCKETS >
10850                      8 * sizeof_field(struct napi_struct, gro_bitmask));
10851
10852         if (net != &init_net)
10853                 INIT_LIST_HEAD(&net->dev_base_head);
10854
10855         net->dev_name_head = netdev_create_hash();
10856         if (net->dev_name_head == NULL)
10857                 goto err_name;
10858
10859         net->dev_index_head = netdev_create_hash();
10860         if (net->dev_index_head == NULL)
10861                 goto err_idx;
10862
10863         RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
10864
10865         return 0;
10866
10867 err_idx:
10868         kfree(net->dev_name_head);
10869 err_name:
10870         return -ENOMEM;
10871 }
10872
10873 /**
10874  *      netdev_drivername - network driver for the device
10875  *      @dev: network device
10876  *
10877  *      Determine network driver for device.
10878  */
10879 const char *netdev_drivername(const struct net_device *dev)
10880 {
10881         const struct device_driver *driver;
10882         const struct device *parent;
10883         const char *empty = "";
10884
10885         parent = dev->dev.parent;
10886         if (!parent)
10887                 return empty;
10888
10889         driver = parent->driver;
10890         if (driver && driver->name)
10891                 return driver->name;
10892         return empty;
10893 }
10894
10895 static void __netdev_printk(const char *level, const struct net_device *dev,
10896                             struct va_format *vaf)
10897 {
10898         if (dev && dev->dev.parent) {
10899                 dev_printk_emit(level[1] - '0',
10900                                 dev->dev.parent,
10901                                 "%s %s %s%s: %pV",
10902                                 dev_driver_string(dev->dev.parent),
10903                                 dev_name(dev->dev.parent),
10904                                 netdev_name(dev), netdev_reg_state(dev),
10905                                 vaf);
10906         } else if (dev) {
10907                 printk("%s%s%s: %pV",
10908                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
10909         } else {
10910                 printk("%s(NULL net_device): %pV", level, vaf);
10911         }
10912 }
10913
10914 void netdev_printk(const char *level, const struct net_device *dev,
10915                    const char *format, ...)
10916 {
10917         struct va_format vaf;
10918         va_list args;
10919
10920         va_start(args, format);
10921
10922         vaf.fmt = format;
10923         vaf.va = &args;
10924
10925         __netdev_printk(level, dev, &vaf);
10926
10927         va_end(args);
10928 }
10929 EXPORT_SYMBOL(netdev_printk);
10930
10931 #define define_netdev_printk_level(func, level)                 \
10932 void func(const struct net_device *dev, const char *fmt, ...)   \
10933 {                                                               \
10934         struct va_format vaf;                                   \
10935         va_list args;                                           \
10936                                                                 \
10937         va_start(args, fmt);                                    \
10938                                                                 \
10939         vaf.fmt = fmt;                                          \
10940         vaf.va = &args;                                         \
10941                                                                 \
10942         __netdev_printk(level, dev, &vaf);                      \
10943                                                                 \
10944         va_end(args);                                           \
10945 }                                                               \
10946 EXPORT_SYMBOL(func);
10947
10948 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
10949 define_netdev_printk_level(netdev_alert, KERN_ALERT);
10950 define_netdev_printk_level(netdev_crit, KERN_CRIT);
10951 define_netdev_printk_level(netdev_err, KERN_ERR);
10952 define_netdev_printk_level(netdev_warn, KERN_WARNING);
10953 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
10954 define_netdev_printk_level(netdev_info, KERN_INFO);
10955
10956 static void __net_exit netdev_exit(struct net *net)
10957 {
10958         kfree(net->dev_name_head);
10959         kfree(net->dev_index_head);
10960         if (net != &init_net)
10961                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
10962 }
10963
10964 static struct pernet_operations __net_initdata netdev_net_ops = {
10965         .init = netdev_init,
10966         .exit = netdev_exit,
10967 };
10968
10969 static void __net_exit default_device_exit(struct net *net)
10970 {
10971         struct net_device *dev, *aux;
10972         /*
10973          * Push all migratable network devices back to the
10974          * initial network namespace
10975          */
10976         rtnl_lock();
10977         for_each_netdev_safe(net, dev, aux) {
10978                 int err;
10979                 char fb_name[IFNAMSIZ];
10980
10981                 /* Ignore unmoveable devices (i.e. loopback) */
10982                 if (dev->features & NETIF_F_NETNS_LOCAL)
10983                         continue;
10984
10985                 /* Leave virtual devices for the generic cleanup */
10986                 if (dev->rtnl_link_ops)
10987                         continue;
10988
10989                 /* Push remaining network devices to init_net */
10990                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
10991                 if (__dev_get_by_name(&init_net, fb_name))
10992                         snprintf(fb_name, IFNAMSIZ, "dev%%d");
10993                 err = dev_change_net_namespace(dev, &init_net, fb_name);
10994                 if (err) {
10995                         pr_emerg("%s: failed to move %s to init_net: %d\n",
10996                                  __func__, dev->name, err);
10997                         BUG();
10998                 }
10999         }
11000         rtnl_unlock();
11001 }
11002
11003 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11004 {
11005         /* Return with the rtnl_lock held when there are no network
11006          * devices unregistering in any network namespace in net_list.
11007          */
11008         struct net *net;
11009         bool unregistering;
11010         DEFINE_WAIT_FUNC(wait, woken_wake_function);
11011
11012         add_wait_queue(&netdev_unregistering_wq, &wait);
11013         for (;;) {
11014                 unregistering = false;
11015                 rtnl_lock();
11016                 list_for_each_entry(net, net_list, exit_list) {
11017                         if (net->dev_unreg_count > 0) {
11018                                 unregistering = true;
11019                                 break;
11020                         }
11021                 }
11022                 if (!unregistering)
11023                         break;
11024                 __rtnl_unlock();
11025
11026                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
11027         }
11028         remove_wait_queue(&netdev_unregistering_wq, &wait);
11029 }
11030
11031 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11032 {
11033         /* At exit all network devices most be removed from a network
11034          * namespace.  Do this in the reverse order of registration.
11035          * Do this across as many network namespaces as possible to
11036          * improve batching efficiency.
11037          */
11038         struct net_device *dev;
11039         struct net *net;
11040         LIST_HEAD(dev_kill_list);
11041
11042         /* To prevent network device cleanup code from dereferencing
11043          * loopback devices or network devices that have been freed
11044          * wait here for all pending unregistrations to complete,
11045          * before unregistring the loopback device and allowing the
11046          * network namespace be freed.
11047          *
11048          * The netdev todo list containing all network devices
11049          * unregistrations that happen in default_device_exit_batch
11050          * will run in the rtnl_unlock() at the end of
11051          * default_device_exit_batch.
11052          */
11053         rtnl_lock_unregistering(net_list);
11054         list_for_each_entry(net, net_list, exit_list) {
11055                 for_each_netdev_reverse(net, dev) {
11056                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11057                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11058                         else
11059                                 unregister_netdevice_queue(dev, &dev_kill_list);
11060                 }
11061         }
11062         unregister_netdevice_many(&dev_kill_list);
11063         rtnl_unlock();
11064 }
11065
11066 static struct pernet_operations __net_initdata default_device_ops = {
11067         .exit = default_device_exit,
11068         .exit_batch = default_device_exit_batch,
11069 };
11070
11071 /*
11072  *      Initialize the DEV module. At boot time this walks the device list and
11073  *      unhooks any devices that fail to initialise (normally hardware not
11074  *      present) and leaves us with a valid list of present and active devices.
11075  *
11076  */
11077
11078 /*
11079  *       This is called single threaded during boot, so no need
11080  *       to take the rtnl semaphore.
11081  */
11082 static int __init net_dev_init(void)
11083 {
11084         int i, rc = -ENOMEM;
11085
11086         BUG_ON(!dev_boot_phase);
11087
11088         if (dev_proc_init())
11089                 goto out;
11090
11091         if (netdev_kobject_init())
11092                 goto out;
11093
11094         INIT_LIST_HEAD(&ptype_all);
11095         for (i = 0; i < PTYPE_HASH_SIZE; i++)
11096                 INIT_LIST_HEAD(&ptype_base[i]);
11097
11098         INIT_LIST_HEAD(&offload_base);
11099
11100         if (register_pernet_subsys(&netdev_net_ops))
11101                 goto out;
11102
11103         /*
11104          *      Initialise the packet receive queues.
11105          */
11106
11107         for_each_possible_cpu(i) {
11108                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11109                 struct softnet_data *sd = &per_cpu(softnet_data, i);
11110
11111                 INIT_WORK(flush, flush_backlog);
11112
11113                 skb_queue_head_init(&sd->input_pkt_queue);
11114                 skb_queue_head_init(&sd->process_queue);
11115 #ifdef CONFIG_XFRM_OFFLOAD
11116                 skb_queue_head_init(&sd->xfrm_backlog);
11117 #endif
11118                 INIT_LIST_HEAD(&sd->poll_list);
11119                 sd->output_queue_tailp = &sd->output_queue;
11120 #ifdef CONFIG_RPS
11121                 sd->csd.func = rps_trigger_softirq;
11122                 sd->csd.info = sd;
11123                 sd->cpu = i;
11124 #endif
11125
11126                 init_gro_hash(&sd->backlog);
11127                 sd->backlog.poll = process_backlog;
11128                 sd->backlog.weight = weight_p;
11129         }
11130
11131         dev_boot_phase = 0;
11132
11133         /* The loopback device is special if any other network devices
11134          * is present in a network namespace the loopback device must
11135          * be present. Since we now dynamically allocate and free the
11136          * loopback device ensure this invariant is maintained by
11137          * keeping the loopback device as the first device on the
11138          * list of network devices.  Ensuring the loopback devices
11139          * is the first device that appears and the last network device
11140          * that disappears.
11141          */
11142         if (register_pernet_device(&loopback_net_ops))
11143                 goto out;
11144
11145         if (register_pernet_device(&default_device_ops))
11146                 goto out;
11147
11148         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11149         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11150
11151         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11152                                        NULL, dev_cpu_dead);
11153         WARN_ON(rc < 0);
11154         rc = 0;
11155 out:
11156         return rc;
11157 }
11158
11159 subsys_initcall(net_dev_init);