ASoC: qdsp6: Suggest more generic node names
[linux-2.6-microblaze.git] / net / core / dev.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *      Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:        Ross Biro
7  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *      Additional Authors:
11  *              Florian la Roche <rzsfl@rz.uni-sb.de>
12  *              Alan Cox <gw4pts@gw4pts.ampr.org>
13  *              David Hinds <dahinds@users.sourceforge.net>
14  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *              Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *      Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *              Alan Cox        :       device private ioctl copies fields back.
24  *              Alan Cox        :       Transmit queue code does relevant
25  *                                      stunts to keep the queue safe.
26  *              Alan Cox        :       Fixed double lock.
27  *              Alan Cox        :       Fixed promisc NULL pointer trap
28  *              ????????        :       Support the full private ioctl range
29  *              Alan Cox        :       Moved ioctl permission check into
30  *                                      drivers
31  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
32  *              Alan Cox        :       100 backlog just doesn't cut it when
33  *                                      you start doing multicast video 8)
34  *              Alan Cox        :       Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *              Alan Cox        :       Took out transmit every packet pass
37  *                                      Saved a few bytes in the ioctl handler
38  *              Alan Cox        :       Network driver sets packet type before
39  *                                      calling netif_rx. Saves a function
40  *                                      call a packet.
41  *              Alan Cox        :       Hashed net_bh()
42  *              Richard Kooijman:       Timestamp fixes.
43  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
44  *              Alan Cox        :       Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *                                      changes.
47  *              Rudi Cilibrasi  :       Pass the right thing to
48  *                                      set_mac_address()
49  *              Dave Miller     :       32bit quantity for the device lock to
50  *                                      make it work out on a Sparc.
51  *              Bjorn Ekwall    :       Added KERNELD hack.
52  *              Alan Cox        :       Cleaned up the backlog initialise.
53  *              Craig Metz      :       SIOCGIFCONF fix if space for under
54  *                                      1 device.
55  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
56  *                                      is no device open function.
57  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
58  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
59  *              Cyrus Durgin    :       Cleaned for KMOD
60  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
61  *                                      A network device unload needs to purge
62  *                                      the backlog queue.
63  *      Paul Rusty Russell      :       SIOCSIFNAME
64  *              Pekka Riikonen  :       Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *                                      - netif_rx() feedback
69  */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/string.h>
83 #include <linux/mm.h>
84 #include <linux/socket.h>
85 #include <linux/sockios.h>
86 #include <linux/errno.h>
87 #include <linux/interrupt.h>
88 #include <linux/if_ether.h>
89 #include <linux/netdevice.h>
90 #include <linux/etherdevice.h>
91 #include <linux/ethtool.h>
92 #include <linux/skbuff.h>
93 #include <linux/bpf.h>
94 #include <linux/bpf_trace.h>
95 #include <net/net_namespace.h>
96 #include <net/sock.h>
97 #include <net/busy_poll.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/stat.h>
100 #include <net/dst.h>
101 #include <net/dst_metadata.h>
102 #include <net/pkt_sched.h>
103 #include <net/pkt_cls.h>
104 #include <net/checksum.h>
105 #include <net/xfrm.h>
106 #include <linux/highmem.h>
107 #include <linux/init.h>
108 #include <linux/module.h>
109 #include <linux/netpoll.h>
110 #include <linux/rcupdate.h>
111 #include <linux/delay.h>
112 #include <net/iw_handler.h>
113 #include <asm/current.h>
114 #include <linux/audit.h>
115 #include <linux/dmaengine.h>
116 #include <linux/err.h>
117 #include <linux/ctype.h>
118 #include <linux/if_arp.h>
119 #include <linux/if_vlan.h>
120 #include <linux/ip.h>
121 #include <net/ip.h>
122 #include <net/mpls.h>
123 #include <linux/ipv6.h>
124 #include <linux/in.h>
125 #include <linux/jhash.h>
126 #include <linux/random.h>
127 #include <trace/events/napi.h>
128 #include <trace/events/net.h>
129 #include <trace/events/skb.h>
130 #include <linux/inetdevice.h>
131 #include <linux/cpu_rmap.h>
132 #include <linux/static_key.h>
133 #include <linux/hashtable.h>
134 #include <linux/vmalloc.h>
135 #include <linux/if_macvlan.h>
136 #include <linux/errqueue.h>
137 #include <linux/hrtimer.h>
138 #include <linux/netfilter_ingress.h>
139 #include <linux/crash_dump.h>
140 #include <linux/sctp.h>
141 #include <net/udp_tunnel.h>
142 #include <linux/net_namespace.h>
143 #include <linux/indirect_call_wrapper.h>
144 #include <net/devlink.h>
145
146 #include "net-sysfs.h"
147
148 #define MAX_GRO_SKBS 8
149
150 /* This should be increased if a protocol with a bigger head is added. */
151 #define GRO_MAX_HEAD (MAX_HEADER + 128)
152
153 static DEFINE_SPINLOCK(ptype_lock);
154 static DEFINE_SPINLOCK(offload_lock);
155 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
156 struct list_head ptype_all __read_mostly;       /* Taps */
157 static struct list_head offload_base __read_mostly;
158
159 static int netif_rx_internal(struct sk_buff *skb);
160 static int call_netdevice_notifiers_info(unsigned long val,
161                                          struct netdev_notifier_info *info);
162 static int call_netdevice_notifiers_extack(unsigned long val,
163                                            struct net_device *dev,
164                                            struct netlink_ext_ack *extack);
165 static struct napi_struct *napi_by_id(unsigned int napi_id);
166
167 /*
168  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
169  * semaphore.
170  *
171  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
172  *
173  * Writers must hold the rtnl semaphore while they loop through the
174  * dev_base_head list, and hold dev_base_lock for writing when they do the
175  * actual updates.  This allows pure readers to access the list even
176  * while a writer is preparing to update it.
177  *
178  * To put it another way, dev_base_lock is held for writing only to
179  * protect against pure readers; the rtnl semaphore provides the
180  * protection against other writers.
181  *
182  * See, for example usages, register_netdevice() and
183  * unregister_netdevice(), which must be called with the rtnl
184  * semaphore held.
185  */
186 DEFINE_RWLOCK(dev_base_lock);
187 EXPORT_SYMBOL(dev_base_lock);
188
189 static DEFINE_MUTEX(ifalias_mutex);
190
191 /* protects napi_hash addition/deletion and napi_gen_id */
192 static DEFINE_SPINLOCK(napi_hash_lock);
193
194 static unsigned int napi_gen_id = NR_CPUS;
195 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
196
197 static seqcount_t devnet_rename_seq;
198
199 static inline void dev_base_seq_inc(struct net *net)
200 {
201         while (++net->dev_base_seq == 0)
202                 ;
203 }
204
205 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
206 {
207         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
208
209         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
210 }
211
212 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
213 {
214         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
215 }
216
217 static inline void rps_lock(struct softnet_data *sd)
218 {
219 #ifdef CONFIG_RPS
220         spin_lock(&sd->input_pkt_queue.lock);
221 #endif
222 }
223
224 static inline void rps_unlock(struct softnet_data *sd)
225 {
226 #ifdef CONFIG_RPS
227         spin_unlock(&sd->input_pkt_queue.lock);
228 #endif
229 }
230
231 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
232                                                        const char *name)
233 {
234         struct netdev_name_node *name_node;
235
236         name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
237         if (!name_node)
238                 return NULL;
239         INIT_HLIST_NODE(&name_node->hlist);
240         name_node->dev = dev;
241         name_node->name = name;
242         return name_node;
243 }
244
245 static struct netdev_name_node *
246 netdev_name_node_head_alloc(struct net_device *dev)
247 {
248         struct netdev_name_node *name_node;
249
250         name_node = netdev_name_node_alloc(dev, dev->name);
251         if (!name_node)
252                 return NULL;
253         INIT_LIST_HEAD(&name_node->list);
254         return name_node;
255 }
256
257 static void netdev_name_node_free(struct netdev_name_node *name_node)
258 {
259         kfree(name_node);
260 }
261
262 static void netdev_name_node_add(struct net *net,
263                                  struct netdev_name_node *name_node)
264 {
265         hlist_add_head_rcu(&name_node->hlist,
266                            dev_name_hash(net, name_node->name));
267 }
268
269 static void netdev_name_node_del(struct netdev_name_node *name_node)
270 {
271         hlist_del_rcu(&name_node->hlist);
272 }
273
274 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
275                                                         const char *name)
276 {
277         struct hlist_head *head = dev_name_hash(net, name);
278         struct netdev_name_node *name_node;
279
280         hlist_for_each_entry(name_node, head, hlist)
281                 if (!strcmp(name_node->name, name))
282                         return name_node;
283         return NULL;
284 }
285
286 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
287                                                             const char *name)
288 {
289         struct hlist_head *head = dev_name_hash(net, name);
290         struct netdev_name_node *name_node;
291
292         hlist_for_each_entry_rcu(name_node, head, hlist)
293                 if (!strcmp(name_node->name, name))
294                         return name_node;
295         return NULL;
296 }
297
298 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
299 {
300         struct netdev_name_node *name_node;
301         struct net *net = dev_net(dev);
302
303         name_node = netdev_name_node_lookup(net, name);
304         if (name_node)
305                 return -EEXIST;
306         name_node = netdev_name_node_alloc(dev, name);
307         if (!name_node)
308                 return -ENOMEM;
309         netdev_name_node_add(net, name_node);
310         /* The node that holds dev->name acts as a head of per-device list. */
311         list_add_tail(&name_node->list, &dev->name_node->list);
312
313         return 0;
314 }
315 EXPORT_SYMBOL(netdev_name_node_alt_create);
316
317 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
318 {
319         list_del(&name_node->list);
320         netdev_name_node_del(name_node);
321         kfree(name_node->name);
322         netdev_name_node_free(name_node);
323 }
324
325 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
326 {
327         struct netdev_name_node *name_node;
328         struct net *net = dev_net(dev);
329
330         name_node = netdev_name_node_lookup(net, name);
331         if (!name_node)
332                 return -ENOENT;
333         /* lookup might have found our primary name or a name belonging
334          * to another device.
335          */
336         if (name_node == dev->name_node || name_node->dev != dev)
337                 return -EINVAL;
338
339         __netdev_name_node_alt_destroy(name_node);
340
341         return 0;
342 }
343 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
344
345 static void netdev_name_node_alt_flush(struct net_device *dev)
346 {
347         struct netdev_name_node *name_node, *tmp;
348
349         list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
350                 __netdev_name_node_alt_destroy(name_node);
351 }
352
353 /* Device list insertion */
354 static void list_netdevice(struct net_device *dev)
355 {
356         struct net *net = dev_net(dev);
357
358         ASSERT_RTNL();
359
360         write_lock_bh(&dev_base_lock);
361         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
362         netdev_name_node_add(net, dev->name_node);
363         hlist_add_head_rcu(&dev->index_hlist,
364                            dev_index_hash(net, dev->ifindex));
365         write_unlock_bh(&dev_base_lock);
366
367         dev_base_seq_inc(net);
368 }
369
370 /* Device list removal
371  * caller must respect a RCU grace period before freeing/reusing dev
372  */
373 static void unlist_netdevice(struct net_device *dev)
374 {
375         ASSERT_RTNL();
376
377         /* Unlink dev from the device chain */
378         write_lock_bh(&dev_base_lock);
379         list_del_rcu(&dev->dev_list);
380         netdev_name_node_del(dev->name_node);
381         hlist_del_rcu(&dev->index_hlist);
382         write_unlock_bh(&dev_base_lock);
383
384         dev_base_seq_inc(dev_net(dev));
385 }
386
387 /*
388  *      Our notifier list
389  */
390
391 static RAW_NOTIFIER_HEAD(netdev_chain);
392
393 /*
394  *      Device drivers call our routines to queue packets here. We empty the
395  *      queue in the local softnet handler.
396  */
397
398 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
399 EXPORT_PER_CPU_SYMBOL(softnet_data);
400
401 /*******************************************************************************
402  *
403  *              Protocol management and registration routines
404  *
405  *******************************************************************************/
406
407
408 /*
409  *      Add a protocol ID to the list. Now that the input handler is
410  *      smarter we can dispense with all the messy stuff that used to be
411  *      here.
412  *
413  *      BEWARE!!! Protocol handlers, mangling input packets,
414  *      MUST BE last in hash buckets and checking protocol handlers
415  *      MUST start from promiscuous ptype_all chain in net_bh.
416  *      It is true now, do not change it.
417  *      Explanation follows: if protocol handler, mangling packet, will
418  *      be the first on list, it is not able to sense, that packet
419  *      is cloned and should be copied-on-write, so that it will
420  *      change it and subsequent readers will get broken packet.
421  *                                                      --ANK (980803)
422  */
423
424 static inline struct list_head *ptype_head(const struct packet_type *pt)
425 {
426         if (pt->type == htons(ETH_P_ALL))
427                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
428         else
429                 return pt->dev ? &pt->dev->ptype_specific :
430                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
431 }
432
433 /**
434  *      dev_add_pack - add packet handler
435  *      @pt: packet type declaration
436  *
437  *      Add a protocol handler to the networking stack. The passed &packet_type
438  *      is linked into kernel lists and may not be freed until it has been
439  *      removed from the kernel lists.
440  *
441  *      This call does not sleep therefore it can not
442  *      guarantee all CPU's that are in middle of receiving packets
443  *      will see the new packet type (until the next received packet).
444  */
445
446 void dev_add_pack(struct packet_type *pt)
447 {
448         struct list_head *head = ptype_head(pt);
449
450         spin_lock(&ptype_lock);
451         list_add_rcu(&pt->list, head);
452         spin_unlock(&ptype_lock);
453 }
454 EXPORT_SYMBOL(dev_add_pack);
455
456 /**
457  *      __dev_remove_pack        - remove packet handler
458  *      @pt: packet type declaration
459  *
460  *      Remove a protocol handler that was previously added to the kernel
461  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
462  *      from the kernel lists and can be freed or reused once this function
463  *      returns.
464  *
465  *      The packet type might still be in use by receivers
466  *      and must not be freed until after all the CPU's have gone
467  *      through a quiescent state.
468  */
469 void __dev_remove_pack(struct packet_type *pt)
470 {
471         struct list_head *head = ptype_head(pt);
472         struct packet_type *pt1;
473
474         spin_lock(&ptype_lock);
475
476         list_for_each_entry(pt1, head, list) {
477                 if (pt == pt1) {
478                         list_del_rcu(&pt->list);
479                         goto out;
480                 }
481         }
482
483         pr_warn("dev_remove_pack: %p not found\n", pt);
484 out:
485         spin_unlock(&ptype_lock);
486 }
487 EXPORT_SYMBOL(__dev_remove_pack);
488
489 /**
490  *      dev_remove_pack  - remove packet handler
491  *      @pt: packet type declaration
492  *
493  *      Remove a protocol handler that was previously added to the kernel
494  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
495  *      from the kernel lists and can be freed or reused once this function
496  *      returns.
497  *
498  *      This call sleeps to guarantee that no CPU is looking at the packet
499  *      type after return.
500  */
501 void dev_remove_pack(struct packet_type *pt)
502 {
503         __dev_remove_pack(pt);
504
505         synchronize_net();
506 }
507 EXPORT_SYMBOL(dev_remove_pack);
508
509
510 /**
511  *      dev_add_offload - register offload handlers
512  *      @po: protocol offload declaration
513  *
514  *      Add protocol offload handlers to the networking stack. The passed
515  *      &proto_offload is linked into kernel lists and may not be freed until
516  *      it has been removed from the kernel lists.
517  *
518  *      This call does not sleep therefore it can not
519  *      guarantee all CPU's that are in middle of receiving packets
520  *      will see the new offload handlers (until the next received packet).
521  */
522 void dev_add_offload(struct packet_offload *po)
523 {
524         struct packet_offload *elem;
525
526         spin_lock(&offload_lock);
527         list_for_each_entry(elem, &offload_base, list) {
528                 if (po->priority < elem->priority)
529                         break;
530         }
531         list_add_rcu(&po->list, elem->list.prev);
532         spin_unlock(&offload_lock);
533 }
534 EXPORT_SYMBOL(dev_add_offload);
535
536 /**
537  *      __dev_remove_offload     - remove offload handler
538  *      @po: packet offload declaration
539  *
540  *      Remove a protocol offload handler that was previously added to the
541  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
542  *      is removed from the kernel lists and can be freed or reused once this
543  *      function returns.
544  *
545  *      The packet type might still be in use by receivers
546  *      and must not be freed until after all the CPU's have gone
547  *      through a quiescent state.
548  */
549 static void __dev_remove_offload(struct packet_offload *po)
550 {
551         struct list_head *head = &offload_base;
552         struct packet_offload *po1;
553
554         spin_lock(&offload_lock);
555
556         list_for_each_entry(po1, head, list) {
557                 if (po == po1) {
558                         list_del_rcu(&po->list);
559                         goto out;
560                 }
561         }
562
563         pr_warn("dev_remove_offload: %p not found\n", po);
564 out:
565         spin_unlock(&offload_lock);
566 }
567
568 /**
569  *      dev_remove_offload       - remove packet offload handler
570  *      @po: packet offload declaration
571  *
572  *      Remove a packet offload handler that was previously added to the kernel
573  *      offload handlers by dev_add_offload(). The passed &offload_type is
574  *      removed from the kernel lists and can be freed or reused once this
575  *      function returns.
576  *
577  *      This call sleeps to guarantee that no CPU is looking at the packet
578  *      type after return.
579  */
580 void dev_remove_offload(struct packet_offload *po)
581 {
582         __dev_remove_offload(po);
583
584         synchronize_net();
585 }
586 EXPORT_SYMBOL(dev_remove_offload);
587
588 /******************************************************************************
589  *
590  *                    Device Boot-time Settings Routines
591  *
592  ******************************************************************************/
593
594 /* Boot time configuration table */
595 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
596
597 /**
598  *      netdev_boot_setup_add   - add new setup entry
599  *      @name: name of the device
600  *      @map: configured settings for the device
601  *
602  *      Adds new setup entry to the dev_boot_setup list.  The function
603  *      returns 0 on error and 1 on success.  This is a generic routine to
604  *      all netdevices.
605  */
606 static int netdev_boot_setup_add(char *name, struct ifmap *map)
607 {
608         struct netdev_boot_setup *s;
609         int i;
610
611         s = dev_boot_setup;
612         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
613                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
614                         memset(s[i].name, 0, sizeof(s[i].name));
615                         strlcpy(s[i].name, name, IFNAMSIZ);
616                         memcpy(&s[i].map, map, sizeof(s[i].map));
617                         break;
618                 }
619         }
620
621         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
622 }
623
624 /**
625  * netdev_boot_setup_check      - check boot time settings
626  * @dev: the netdevice
627  *
628  * Check boot time settings for the device.
629  * The found settings are set for the device to be used
630  * later in the device probing.
631  * Returns 0 if no settings found, 1 if they are.
632  */
633 int netdev_boot_setup_check(struct net_device *dev)
634 {
635         struct netdev_boot_setup *s = dev_boot_setup;
636         int i;
637
638         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
639                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
640                     !strcmp(dev->name, s[i].name)) {
641                         dev->irq = s[i].map.irq;
642                         dev->base_addr = s[i].map.base_addr;
643                         dev->mem_start = s[i].map.mem_start;
644                         dev->mem_end = s[i].map.mem_end;
645                         return 1;
646                 }
647         }
648         return 0;
649 }
650 EXPORT_SYMBOL(netdev_boot_setup_check);
651
652
653 /**
654  * netdev_boot_base     - get address from boot time settings
655  * @prefix: prefix for network device
656  * @unit: id for network device
657  *
658  * Check boot time settings for the base address of device.
659  * The found settings are set for the device to be used
660  * later in the device probing.
661  * Returns 0 if no settings found.
662  */
663 unsigned long netdev_boot_base(const char *prefix, int unit)
664 {
665         const struct netdev_boot_setup *s = dev_boot_setup;
666         char name[IFNAMSIZ];
667         int i;
668
669         sprintf(name, "%s%d", prefix, unit);
670
671         /*
672          * If device already registered then return base of 1
673          * to indicate not to probe for this interface
674          */
675         if (__dev_get_by_name(&init_net, name))
676                 return 1;
677
678         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
679                 if (!strcmp(name, s[i].name))
680                         return s[i].map.base_addr;
681         return 0;
682 }
683
684 /*
685  * Saves at boot time configured settings for any netdevice.
686  */
687 int __init netdev_boot_setup(char *str)
688 {
689         int ints[5];
690         struct ifmap map;
691
692         str = get_options(str, ARRAY_SIZE(ints), ints);
693         if (!str || !*str)
694                 return 0;
695
696         /* Save settings */
697         memset(&map, 0, sizeof(map));
698         if (ints[0] > 0)
699                 map.irq = ints[1];
700         if (ints[0] > 1)
701                 map.base_addr = ints[2];
702         if (ints[0] > 2)
703                 map.mem_start = ints[3];
704         if (ints[0] > 3)
705                 map.mem_end = ints[4];
706
707         /* Add new entry to the list */
708         return netdev_boot_setup_add(str, &map);
709 }
710
711 __setup("netdev=", netdev_boot_setup);
712
713 /*******************************************************************************
714  *
715  *                          Device Interface Subroutines
716  *
717  *******************************************************************************/
718
719 /**
720  *      dev_get_iflink  - get 'iflink' value of a interface
721  *      @dev: targeted interface
722  *
723  *      Indicates the ifindex the interface is linked to.
724  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
725  */
726
727 int dev_get_iflink(const struct net_device *dev)
728 {
729         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
730                 return dev->netdev_ops->ndo_get_iflink(dev);
731
732         return dev->ifindex;
733 }
734 EXPORT_SYMBOL(dev_get_iflink);
735
736 /**
737  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
738  *      @dev: targeted interface
739  *      @skb: The packet.
740  *
741  *      For better visibility of tunnel traffic OVS needs to retrieve
742  *      egress tunnel information for a packet. Following API allows
743  *      user to get this info.
744  */
745 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
746 {
747         struct ip_tunnel_info *info;
748
749         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
750                 return -EINVAL;
751
752         info = skb_tunnel_info_unclone(skb);
753         if (!info)
754                 return -ENOMEM;
755         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
756                 return -EINVAL;
757
758         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
759 }
760 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
761
762 /**
763  *      __dev_get_by_name       - find a device by its name
764  *      @net: the applicable net namespace
765  *      @name: name to find
766  *
767  *      Find an interface by name. Must be called under RTNL semaphore
768  *      or @dev_base_lock. If the name is found a pointer to the device
769  *      is returned. If the name is not found then %NULL is returned. The
770  *      reference counters are not incremented so the caller must be
771  *      careful with locks.
772  */
773
774 struct net_device *__dev_get_by_name(struct net *net, const char *name)
775 {
776         struct netdev_name_node *node_name;
777
778         node_name = netdev_name_node_lookup(net, name);
779         return node_name ? node_name->dev : NULL;
780 }
781 EXPORT_SYMBOL(__dev_get_by_name);
782
783 /**
784  * dev_get_by_name_rcu  - find a device by its name
785  * @net: the applicable net namespace
786  * @name: name to find
787  *
788  * Find an interface by name.
789  * If the name is found a pointer to the device is returned.
790  * If the name is not found then %NULL is returned.
791  * The reference counters are not incremented so the caller must be
792  * careful with locks. The caller must hold RCU lock.
793  */
794
795 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
796 {
797         struct netdev_name_node *node_name;
798
799         node_name = netdev_name_node_lookup_rcu(net, name);
800         return node_name ? node_name->dev : NULL;
801 }
802 EXPORT_SYMBOL(dev_get_by_name_rcu);
803
804 /**
805  *      dev_get_by_name         - find a device by its name
806  *      @net: the applicable net namespace
807  *      @name: name to find
808  *
809  *      Find an interface by name. This can be called from any
810  *      context and does its own locking. The returned handle has
811  *      the usage count incremented and the caller must use dev_put() to
812  *      release it when it is no longer needed. %NULL is returned if no
813  *      matching device is found.
814  */
815
816 struct net_device *dev_get_by_name(struct net *net, const char *name)
817 {
818         struct net_device *dev;
819
820         rcu_read_lock();
821         dev = dev_get_by_name_rcu(net, name);
822         if (dev)
823                 dev_hold(dev);
824         rcu_read_unlock();
825         return dev;
826 }
827 EXPORT_SYMBOL(dev_get_by_name);
828
829 /**
830  *      __dev_get_by_index - find a device by its ifindex
831  *      @net: the applicable net namespace
832  *      @ifindex: index of device
833  *
834  *      Search for an interface by index. Returns %NULL if the device
835  *      is not found or a pointer to the device. The device has not
836  *      had its reference counter increased so the caller must be careful
837  *      about locking. The caller must hold either the RTNL semaphore
838  *      or @dev_base_lock.
839  */
840
841 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
842 {
843         struct net_device *dev;
844         struct hlist_head *head = dev_index_hash(net, ifindex);
845
846         hlist_for_each_entry(dev, head, index_hlist)
847                 if (dev->ifindex == ifindex)
848                         return dev;
849
850         return NULL;
851 }
852 EXPORT_SYMBOL(__dev_get_by_index);
853
854 /**
855  *      dev_get_by_index_rcu - find a device by its ifindex
856  *      @net: the applicable net namespace
857  *      @ifindex: index of device
858  *
859  *      Search for an interface by index. Returns %NULL if the device
860  *      is not found or a pointer to the device. The device has not
861  *      had its reference counter increased so the caller must be careful
862  *      about locking. The caller must hold RCU lock.
863  */
864
865 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
866 {
867         struct net_device *dev;
868         struct hlist_head *head = dev_index_hash(net, ifindex);
869
870         hlist_for_each_entry_rcu(dev, head, index_hlist)
871                 if (dev->ifindex == ifindex)
872                         return dev;
873
874         return NULL;
875 }
876 EXPORT_SYMBOL(dev_get_by_index_rcu);
877
878
879 /**
880  *      dev_get_by_index - find a device by its ifindex
881  *      @net: the applicable net namespace
882  *      @ifindex: index of device
883  *
884  *      Search for an interface by index. Returns NULL if the device
885  *      is not found or a pointer to the device. The device returned has
886  *      had a reference added and the pointer is safe until the user calls
887  *      dev_put to indicate they have finished with it.
888  */
889
890 struct net_device *dev_get_by_index(struct net *net, int ifindex)
891 {
892         struct net_device *dev;
893
894         rcu_read_lock();
895         dev = dev_get_by_index_rcu(net, ifindex);
896         if (dev)
897                 dev_hold(dev);
898         rcu_read_unlock();
899         return dev;
900 }
901 EXPORT_SYMBOL(dev_get_by_index);
902
903 /**
904  *      dev_get_by_napi_id - find a device by napi_id
905  *      @napi_id: ID of the NAPI struct
906  *
907  *      Search for an interface by NAPI ID. Returns %NULL if the device
908  *      is not found or a pointer to the device. The device has not had
909  *      its reference counter increased so the caller must be careful
910  *      about locking. The caller must hold RCU lock.
911  */
912
913 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
914 {
915         struct napi_struct *napi;
916
917         WARN_ON_ONCE(!rcu_read_lock_held());
918
919         if (napi_id < MIN_NAPI_ID)
920                 return NULL;
921
922         napi = napi_by_id(napi_id);
923
924         return napi ? napi->dev : NULL;
925 }
926 EXPORT_SYMBOL(dev_get_by_napi_id);
927
928 /**
929  *      netdev_get_name - get a netdevice name, knowing its ifindex.
930  *      @net: network namespace
931  *      @name: a pointer to the buffer where the name will be stored.
932  *      @ifindex: the ifindex of the interface to get the name from.
933  *
934  *      The use of raw_seqcount_begin() and cond_resched() before
935  *      retrying is required as we want to give the writers a chance
936  *      to complete when CONFIG_PREEMPTION is not set.
937  */
938 int netdev_get_name(struct net *net, char *name, int ifindex)
939 {
940         struct net_device *dev;
941         unsigned int seq;
942
943 retry:
944         seq = raw_seqcount_begin(&devnet_rename_seq);
945         rcu_read_lock();
946         dev = dev_get_by_index_rcu(net, ifindex);
947         if (!dev) {
948                 rcu_read_unlock();
949                 return -ENODEV;
950         }
951
952         strcpy(name, dev->name);
953         rcu_read_unlock();
954         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
955                 cond_resched();
956                 goto retry;
957         }
958
959         return 0;
960 }
961
962 /**
963  *      dev_getbyhwaddr_rcu - find a device by its hardware address
964  *      @net: the applicable net namespace
965  *      @type: media type of device
966  *      @ha: hardware address
967  *
968  *      Search for an interface by MAC address. Returns NULL if the device
969  *      is not found or a pointer to the device.
970  *      The caller must hold RCU or RTNL.
971  *      The returned device has not had its ref count increased
972  *      and the caller must therefore be careful about locking
973  *
974  */
975
976 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
977                                        const char *ha)
978 {
979         struct net_device *dev;
980
981         for_each_netdev_rcu(net, dev)
982                 if (dev->type == type &&
983                     !memcmp(dev->dev_addr, ha, dev->addr_len))
984                         return dev;
985
986         return NULL;
987 }
988 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
989
990 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
991 {
992         struct net_device *dev;
993
994         ASSERT_RTNL();
995         for_each_netdev(net, dev)
996                 if (dev->type == type)
997                         return dev;
998
999         return NULL;
1000 }
1001 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
1002
1003 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1004 {
1005         struct net_device *dev, *ret = NULL;
1006
1007         rcu_read_lock();
1008         for_each_netdev_rcu(net, dev)
1009                 if (dev->type == type) {
1010                         dev_hold(dev);
1011                         ret = dev;
1012                         break;
1013                 }
1014         rcu_read_unlock();
1015         return ret;
1016 }
1017 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1018
1019 /**
1020  *      __dev_get_by_flags - find any device with given flags
1021  *      @net: the applicable net namespace
1022  *      @if_flags: IFF_* values
1023  *      @mask: bitmask of bits in if_flags to check
1024  *
1025  *      Search for any interface with the given flags. Returns NULL if a device
1026  *      is not found or a pointer to the device. Must be called inside
1027  *      rtnl_lock(), and result refcount is unchanged.
1028  */
1029
1030 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1031                                       unsigned short mask)
1032 {
1033         struct net_device *dev, *ret;
1034
1035         ASSERT_RTNL();
1036
1037         ret = NULL;
1038         for_each_netdev(net, dev) {
1039                 if (((dev->flags ^ if_flags) & mask) == 0) {
1040                         ret = dev;
1041                         break;
1042                 }
1043         }
1044         return ret;
1045 }
1046 EXPORT_SYMBOL(__dev_get_by_flags);
1047
1048 /**
1049  *      dev_valid_name - check if name is okay for network device
1050  *      @name: name string
1051  *
1052  *      Network device names need to be valid file names to
1053  *      to allow sysfs to work.  We also disallow any kind of
1054  *      whitespace.
1055  */
1056 bool dev_valid_name(const char *name)
1057 {
1058         if (*name == '\0')
1059                 return false;
1060         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1061                 return false;
1062         if (!strcmp(name, ".") || !strcmp(name, ".."))
1063                 return false;
1064
1065         while (*name) {
1066                 if (*name == '/' || *name == ':' || isspace(*name))
1067                         return false;
1068                 name++;
1069         }
1070         return true;
1071 }
1072 EXPORT_SYMBOL(dev_valid_name);
1073
1074 /**
1075  *      __dev_alloc_name - allocate a name for a device
1076  *      @net: network namespace to allocate the device name in
1077  *      @name: name format string
1078  *      @buf:  scratch buffer and result name string
1079  *
1080  *      Passed a format string - eg "lt%d" it will try and find a suitable
1081  *      id. It scans list of devices to build up a free map, then chooses
1082  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1083  *      while allocating the name and adding the device in order to avoid
1084  *      duplicates.
1085  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1086  *      Returns the number of the unit assigned or a negative errno code.
1087  */
1088
1089 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1090 {
1091         int i = 0;
1092         const char *p;
1093         const int max_netdevices = 8*PAGE_SIZE;
1094         unsigned long *inuse;
1095         struct net_device *d;
1096
1097         if (!dev_valid_name(name))
1098                 return -EINVAL;
1099
1100         p = strchr(name, '%');
1101         if (p) {
1102                 /*
1103                  * Verify the string as this thing may have come from
1104                  * the user.  There must be either one "%d" and no other "%"
1105                  * characters.
1106                  */
1107                 if (p[1] != 'd' || strchr(p + 2, '%'))
1108                         return -EINVAL;
1109
1110                 /* Use one page as a bit array of possible slots */
1111                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1112                 if (!inuse)
1113                         return -ENOMEM;
1114
1115                 for_each_netdev(net, d) {
1116                         if (!sscanf(d->name, name, &i))
1117                                 continue;
1118                         if (i < 0 || i >= max_netdevices)
1119                                 continue;
1120
1121                         /*  avoid cases where sscanf is not exact inverse of printf */
1122                         snprintf(buf, IFNAMSIZ, name, i);
1123                         if (!strncmp(buf, d->name, IFNAMSIZ))
1124                                 set_bit(i, inuse);
1125                 }
1126
1127                 i = find_first_zero_bit(inuse, max_netdevices);
1128                 free_page((unsigned long) inuse);
1129         }
1130
1131         snprintf(buf, IFNAMSIZ, name, i);
1132         if (!__dev_get_by_name(net, buf))
1133                 return i;
1134
1135         /* It is possible to run out of possible slots
1136          * when the name is long and there isn't enough space left
1137          * for the digits, or if all bits are used.
1138          */
1139         return -ENFILE;
1140 }
1141
1142 static int dev_alloc_name_ns(struct net *net,
1143                              struct net_device *dev,
1144                              const char *name)
1145 {
1146         char buf[IFNAMSIZ];
1147         int ret;
1148
1149         BUG_ON(!net);
1150         ret = __dev_alloc_name(net, name, buf);
1151         if (ret >= 0)
1152                 strlcpy(dev->name, buf, IFNAMSIZ);
1153         return ret;
1154 }
1155
1156 /**
1157  *      dev_alloc_name - allocate a name for a device
1158  *      @dev: device
1159  *      @name: name format string
1160  *
1161  *      Passed a format string - eg "lt%d" it will try and find a suitable
1162  *      id. It scans list of devices to build up a free map, then chooses
1163  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1164  *      while allocating the name and adding the device in order to avoid
1165  *      duplicates.
1166  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1167  *      Returns the number of the unit assigned or a negative errno code.
1168  */
1169
1170 int dev_alloc_name(struct net_device *dev, const char *name)
1171 {
1172         return dev_alloc_name_ns(dev_net(dev), dev, name);
1173 }
1174 EXPORT_SYMBOL(dev_alloc_name);
1175
1176 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1177                               const char *name)
1178 {
1179         BUG_ON(!net);
1180
1181         if (!dev_valid_name(name))
1182                 return -EINVAL;
1183
1184         if (strchr(name, '%'))
1185                 return dev_alloc_name_ns(net, dev, name);
1186         else if (__dev_get_by_name(net, name))
1187                 return -EEXIST;
1188         else if (dev->name != name)
1189                 strlcpy(dev->name, name, IFNAMSIZ);
1190
1191         return 0;
1192 }
1193
1194 /**
1195  *      dev_change_name - change name of a device
1196  *      @dev: device
1197  *      @newname: name (or format string) must be at least IFNAMSIZ
1198  *
1199  *      Change name of a device, can pass format strings "eth%d".
1200  *      for wildcarding.
1201  */
1202 int dev_change_name(struct net_device *dev, const char *newname)
1203 {
1204         unsigned char old_assign_type;
1205         char oldname[IFNAMSIZ];
1206         int err = 0;
1207         int ret;
1208         struct net *net;
1209
1210         ASSERT_RTNL();
1211         BUG_ON(!dev_net(dev));
1212
1213         net = dev_net(dev);
1214
1215         /* Some auto-enslaved devices e.g. failover slaves are
1216          * special, as userspace might rename the device after
1217          * the interface had been brought up and running since
1218          * the point kernel initiated auto-enslavement. Allow
1219          * live name change even when these slave devices are
1220          * up and running.
1221          *
1222          * Typically, users of these auto-enslaving devices
1223          * don't actually care about slave name change, as
1224          * they are supposed to operate on master interface
1225          * directly.
1226          */
1227         if (dev->flags & IFF_UP &&
1228             likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1229                 return -EBUSY;
1230
1231         write_seqcount_begin(&devnet_rename_seq);
1232
1233         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1234                 write_seqcount_end(&devnet_rename_seq);
1235                 return 0;
1236         }
1237
1238         memcpy(oldname, dev->name, IFNAMSIZ);
1239
1240         err = dev_get_valid_name(net, dev, newname);
1241         if (err < 0) {
1242                 write_seqcount_end(&devnet_rename_seq);
1243                 return err;
1244         }
1245
1246         if (oldname[0] && !strchr(oldname, '%'))
1247                 netdev_info(dev, "renamed from %s\n", oldname);
1248
1249         old_assign_type = dev->name_assign_type;
1250         dev->name_assign_type = NET_NAME_RENAMED;
1251
1252 rollback:
1253         ret = device_rename(&dev->dev, dev->name);
1254         if (ret) {
1255                 memcpy(dev->name, oldname, IFNAMSIZ);
1256                 dev->name_assign_type = old_assign_type;
1257                 write_seqcount_end(&devnet_rename_seq);
1258                 return ret;
1259         }
1260
1261         write_seqcount_end(&devnet_rename_seq);
1262
1263         netdev_adjacent_rename_links(dev, oldname);
1264
1265         write_lock_bh(&dev_base_lock);
1266         netdev_name_node_del(dev->name_node);
1267         write_unlock_bh(&dev_base_lock);
1268
1269         synchronize_rcu();
1270
1271         write_lock_bh(&dev_base_lock);
1272         netdev_name_node_add(net, dev->name_node);
1273         write_unlock_bh(&dev_base_lock);
1274
1275         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1276         ret = notifier_to_errno(ret);
1277
1278         if (ret) {
1279                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1280                 if (err >= 0) {
1281                         err = ret;
1282                         write_seqcount_begin(&devnet_rename_seq);
1283                         memcpy(dev->name, oldname, IFNAMSIZ);
1284                         memcpy(oldname, newname, IFNAMSIZ);
1285                         dev->name_assign_type = old_assign_type;
1286                         old_assign_type = NET_NAME_RENAMED;
1287                         goto rollback;
1288                 } else {
1289                         pr_err("%s: name change rollback failed: %d\n",
1290                                dev->name, ret);
1291                 }
1292         }
1293
1294         return err;
1295 }
1296
1297 /**
1298  *      dev_set_alias - change ifalias of a device
1299  *      @dev: device
1300  *      @alias: name up to IFALIASZ
1301  *      @len: limit of bytes to copy from info
1302  *
1303  *      Set ifalias for a device,
1304  */
1305 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1306 {
1307         struct dev_ifalias *new_alias = NULL;
1308
1309         if (len >= IFALIASZ)
1310                 return -EINVAL;
1311
1312         if (len) {
1313                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1314                 if (!new_alias)
1315                         return -ENOMEM;
1316
1317                 memcpy(new_alias->ifalias, alias, len);
1318                 new_alias->ifalias[len] = 0;
1319         }
1320
1321         mutex_lock(&ifalias_mutex);
1322         new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1323                                         mutex_is_locked(&ifalias_mutex));
1324         mutex_unlock(&ifalias_mutex);
1325
1326         if (new_alias)
1327                 kfree_rcu(new_alias, rcuhead);
1328
1329         return len;
1330 }
1331 EXPORT_SYMBOL(dev_set_alias);
1332
1333 /**
1334  *      dev_get_alias - get ifalias of a device
1335  *      @dev: device
1336  *      @name: buffer to store name of ifalias
1337  *      @len: size of buffer
1338  *
1339  *      get ifalias for a device.  Caller must make sure dev cannot go
1340  *      away,  e.g. rcu read lock or own a reference count to device.
1341  */
1342 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1343 {
1344         const struct dev_ifalias *alias;
1345         int ret = 0;
1346
1347         rcu_read_lock();
1348         alias = rcu_dereference(dev->ifalias);
1349         if (alias)
1350                 ret = snprintf(name, len, "%s", alias->ifalias);
1351         rcu_read_unlock();
1352
1353         return ret;
1354 }
1355
1356 /**
1357  *      netdev_features_change - device changes features
1358  *      @dev: device to cause notification
1359  *
1360  *      Called to indicate a device has changed features.
1361  */
1362 void netdev_features_change(struct net_device *dev)
1363 {
1364         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1365 }
1366 EXPORT_SYMBOL(netdev_features_change);
1367
1368 /**
1369  *      netdev_state_change - device changes state
1370  *      @dev: device to cause notification
1371  *
1372  *      Called to indicate a device has changed state. This function calls
1373  *      the notifier chains for netdev_chain and sends a NEWLINK message
1374  *      to the routing socket.
1375  */
1376 void netdev_state_change(struct net_device *dev)
1377 {
1378         if (dev->flags & IFF_UP) {
1379                 struct netdev_notifier_change_info change_info = {
1380                         .info.dev = dev,
1381                 };
1382
1383                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1384                                               &change_info.info);
1385                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1386         }
1387 }
1388 EXPORT_SYMBOL(netdev_state_change);
1389
1390 /**
1391  * netdev_notify_peers - notify network peers about existence of @dev
1392  * @dev: network device
1393  *
1394  * Generate traffic such that interested network peers are aware of
1395  * @dev, such as by generating a gratuitous ARP. This may be used when
1396  * a device wants to inform the rest of the network about some sort of
1397  * reconfiguration such as a failover event or virtual machine
1398  * migration.
1399  */
1400 void netdev_notify_peers(struct net_device *dev)
1401 {
1402         rtnl_lock();
1403         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1404         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1405         rtnl_unlock();
1406 }
1407 EXPORT_SYMBOL(netdev_notify_peers);
1408
1409 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1410 {
1411         const struct net_device_ops *ops = dev->netdev_ops;
1412         int ret;
1413
1414         ASSERT_RTNL();
1415
1416         if (!netif_device_present(dev))
1417                 return -ENODEV;
1418
1419         /* Block netpoll from trying to do any rx path servicing.
1420          * If we don't do this there is a chance ndo_poll_controller
1421          * or ndo_poll may be running while we open the device
1422          */
1423         netpoll_poll_disable(dev);
1424
1425         ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1426         ret = notifier_to_errno(ret);
1427         if (ret)
1428                 return ret;
1429
1430         set_bit(__LINK_STATE_START, &dev->state);
1431
1432         if (ops->ndo_validate_addr)
1433                 ret = ops->ndo_validate_addr(dev);
1434
1435         if (!ret && ops->ndo_open)
1436                 ret = ops->ndo_open(dev);
1437
1438         netpoll_poll_enable(dev);
1439
1440         if (ret)
1441                 clear_bit(__LINK_STATE_START, &dev->state);
1442         else {
1443                 dev->flags |= IFF_UP;
1444                 dev_set_rx_mode(dev);
1445                 dev_activate(dev);
1446                 add_device_randomness(dev->dev_addr, dev->addr_len);
1447         }
1448
1449         return ret;
1450 }
1451
1452 /**
1453  *      dev_open        - prepare an interface for use.
1454  *      @dev: device to open
1455  *      @extack: netlink extended ack
1456  *
1457  *      Takes a device from down to up state. The device's private open
1458  *      function is invoked and then the multicast lists are loaded. Finally
1459  *      the device is moved into the up state and a %NETDEV_UP message is
1460  *      sent to the netdev notifier chain.
1461  *
1462  *      Calling this function on an active interface is a nop. On a failure
1463  *      a negative errno code is returned.
1464  */
1465 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1466 {
1467         int ret;
1468
1469         if (dev->flags & IFF_UP)
1470                 return 0;
1471
1472         ret = __dev_open(dev, extack);
1473         if (ret < 0)
1474                 return ret;
1475
1476         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1477         call_netdevice_notifiers(NETDEV_UP, dev);
1478
1479         return ret;
1480 }
1481 EXPORT_SYMBOL(dev_open);
1482
1483 static void __dev_close_many(struct list_head *head)
1484 {
1485         struct net_device *dev;
1486
1487         ASSERT_RTNL();
1488         might_sleep();
1489
1490         list_for_each_entry(dev, head, close_list) {
1491                 /* Temporarily disable netpoll until the interface is down */
1492                 netpoll_poll_disable(dev);
1493
1494                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1495
1496                 clear_bit(__LINK_STATE_START, &dev->state);
1497
1498                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1499                  * can be even on different cpu. So just clear netif_running().
1500                  *
1501                  * dev->stop() will invoke napi_disable() on all of it's
1502                  * napi_struct instances on this device.
1503                  */
1504                 smp_mb__after_atomic(); /* Commit netif_running(). */
1505         }
1506
1507         dev_deactivate_many(head);
1508
1509         list_for_each_entry(dev, head, close_list) {
1510                 const struct net_device_ops *ops = dev->netdev_ops;
1511
1512                 /*
1513                  *      Call the device specific close. This cannot fail.
1514                  *      Only if device is UP
1515                  *
1516                  *      We allow it to be called even after a DETACH hot-plug
1517                  *      event.
1518                  */
1519                 if (ops->ndo_stop)
1520                         ops->ndo_stop(dev);
1521
1522                 dev->flags &= ~IFF_UP;
1523                 netpoll_poll_enable(dev);
1524         }
1525 }
1526
1527 static void __dev_close(struct net_device *dev)
1528 {
1529         LIST_HEAD(single);
1530
1531         list_add(&dev->close_list, &single);
1532         __dev_close_many(&single);
1533         list_del(&single);
1534 }
1535
1536 void dev_close_many(struct list_head *head, bool unlink)
1537 {
1538         struct net_device *dev, *tmp;
1539
1540         /* Remove the devices that don't need to be closed */
1541         list_for_each_entry_safe(dev, tmp, head, close_list)
1542                 if (!(dev->flags & IFF_UP))
1543                         list_del_init(&dev->close_list);
1544
1545         __dev_close_many(head);
1546
1547         list_for_each_entry_safe(dev, tmp, head, close_list) {
1548                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1549                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1550                 if (unlink)
1551                         list_del_init(&dev->close_list);
1552         }
1553 }
1554 EXPORT_SYMBOL(dev_close_many);
1555
1556 /**
1557  *      dev_close - shutdown an interface.
1558  *      @dev: device to shutdown
1559  *
1560  *      This function moves an active device into down state. A
1561  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1562  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1563  *      chain.
1564  */
1565 void dev_close(struct net_device *dev)
1566 {
1567         if (dev->flags & IFF_UP) {
1568                 LIST_HEAD(single);
1569
1570                 list_add(&dev->close_list, &single);
1571                 dev_close_many(&single, true);
1572                 list_del(&single);
1573         }
1574 }
1575 EXPORT_SYMBOL(dev_close);
1576
1577
1578 /**
1579  *      dev_disable_lro - disable Large Receive Offload on a device
1580  *      @dev: device
1581  *
1582  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1583  *      called under RTNL.  This is needed if received packets may be
1584  *      forwarded to another interface.
1585  */
1586 void dev_disable_lro(struct net_device *dev)
1587 {
1588         struct net_device *lower_dev;
1589         struct list_head *iter;
1590
1591         dev->wanted_features &= ~NETIF_F_LRO;
1592         netdev_update_features(dev);
1593
1594         if (unlikely(dev->features & NETIF_F_LRO))
1595                 netdev_WARN(dev, "failed to disable LRO!\n");
1596
1597         netdev_for_each_lower_dev(dev, lower_dev, iter)
1598                 dev_disable_lro(lower_dev);
1599 }
1600 EXPORT_SYMBOL(dev_disable_lro);
1601
1602 /**
1603  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1604  *      @dev: device
1605  *
1606  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1607  *      called under RTNL.  This is needed if Generic XDP is installed on
1608  *      the device.
1609  */
1610 static void dev_disable_gro_hw(struct net_device *dev)
1611 {
1612         dev->wanted_features &= ~NETIF_F_GRO_HW;
1613         netdev_update_features(dev);
1614
1615         if (unlikely(dev->features & NETIF_F_GRO_HW))
1616                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1617 }
1618
1619 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1620 {
1621 #define N(val)                                          \
1622         case NETDEV_##val:                              \
1623                 return "NETDEV_" __stringify(val);
1624         switch (cmd) {
1625         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1626         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1627         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1628         N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1629         N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1630         N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1631         N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1632         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1633         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1634         N(PRE_CHANGEADDR)
1635         }
1636 #undef N
1637         return "UNKNOWN_NETDEV_EVENT";
1638 }
1639 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1640
1641 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1642                                    struct net_device *dev)
1643 {
1644         struct netdev_notifier_info info = {
1645                 .dev = dev,
1646         };
1647
1648         return nb->notifier_call(nb, val, &info);
1649 }
1650
1651 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1652                                              struct net_device *dev)
1653 {
1654         int err;
1655
1656         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1657         err = notifier_to_errno(err);
1658         if (err)
1659                 return err;
1660
1661         if (!(dev->flags & IFF_UP))
1662                 return 0;
1663
1664         call_netdevice_notifier(nb, NETDEV_UP, dev);
1665         return 0;
1666 }
1667
1668 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1669                                                 struct net_device *dev)
1670 {
1671         if (dev->flags & IFF_UP) {
1672                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1673                                         dev);
1674                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1675         }
1676         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1677 }
1678
1679 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1680                                                  struct net *net)
1681 {
1682         struct net_device *dev;
1683         int err;
1684
1685         for_each_netdev(net, dev) {
1686                 err = call_netdevice_register_notifiers(nb, dev);
1687                 if (err)
1688                         goto rollback;
1689         }
1690         return 0;
1691
1692 rollback:
1693         for_each_netdev_continue_reverse(net, dev)
1694                 call_netdevice_unregister_notifiers(nb, dev);
1695         return err;
1696 }
1697
1698 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1699                                                     struct net *net)
1700 {
1701         struct net_device *dev;
1702
1703         for_each_netdev(net, dev)
1704                 call_netdevice_unregister_notifiers(nb, dev);
1705 }
1706
1707 static int dev_boot_phase = 1;
1708
1709 /**
1710  * register_netdevice_notifier - register a network notifier block
1711  * @nb: notifier
1712  *
1713  * Register a notifier to be called when network device events occur.
1714  * The notifier passed is linked into the kernel structures and must
1715  * not be reused until it has been unregistered. A negative errno code
1716  * is returned on a failure.
1717  *
1718  * When registered all registration and up events are replayed
1719  * to the new notifier to allow device to have a race free
1720  * view of the network device list.
1721  */
1722
1723 int register_netdevice_notifier(struct notifier_block *nb)
1724 {
1725         struct net *net;
1726         int err;
1727
1728         /* Close race with setup_net() and cleanup_net() */
1729         down_write(&pernet_ops_rwsem);
1730         rtnl_lock();
1731         err = raw_notifier_chain_register(&netdev_chain, nb);
1732         if (err)
1733                 goto unlock;
1734         if (dev_boot_phase)
1735                 goto unlock;
1736         for_each_net(net) {
1737                 err = call_netdevice_register_net_notifiers(nb, net);
1738                 if (err)
1739                         goto rollback;
1740         }
1741
1742 unlock:
1743         rtnl_unlock();
1744         up_write(&pernet_ops_rwsem);
1745         return err;
1746
1747 rollback:
1748         for_each_net_continue_reverse(net)
1749                 call_netdevice_unregister_net_notifiers(nb, net);
1750
1751         raw_notifier_chain_unregister(&netdev_chain, nb);
1752         goto unlock;
1753 }
1754 EXPORT_SYMBOL(register_netdevice_notifier);
1755
1756 /**
1757  * unregister_netdevice_notifier - unregister a network notifier block
1758  * @nb: notifier
1759  *
1760  * Unregister a notifier previously registered by
1761  * register_netdevice_notifier(). The notifier is unlinked into the
1762  * kernel structures and may then be reused. A negative errno code
1763  * is returned on a failure.
1764  *
1765  * After unregistering unregister and down device events are synthesized
1766  * for all devices on the device list to the removed notifier to remove
1767  * the need for special case cleanup code.
1768  */
1769
1770 int unregister_netdevice_notifier(struct notifier_block *nb)
1771 {
1772         struct net *net;
1773         int err;
1774
1775         /* Close race with setup_net() and cleanup_net() */
1776         down_write(&pernet_ops_rwsem);
1777         rtnl_lock();
1778         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1779         if (err)
1780                 goto unlock;
1781
1782         for_each_net(net)
1783                 call_netdevice_unregister_net_notifiers(nb, net);
1784
1785 unlock:
1786         rtnl_unlock();
1787         up_write(&pernet_ops_rwsem);
1788         return err;
1789 }
1790 EXPORT_SYMBOL(unregister_netdevice_notifier);
1791
1792 static int __register_netdevice_notifier_net(struct net *net,
1793                                              struct notifier_block *nb,
1794                                              bool ignore_call_fail)
1795 {
1796         int err;
1797
1798         err = raw_notifier_chain_register(&net->netdev_chain, nb);
1799         if (err)
1800                 return err;
1801         if (dev_boot_phase)
1802                 return 0;
1803
1804         err = call_netdevice_register_net_notifiers(nb, net);
1805         if (err && !ignore_call_fail)
1806                 goto chain_unregister;
1807
1808         return 0;
1809
1810 chain_unregister:
1811         raw_notifier_chain_unregister(&net->netdev_chain, nb);
1812         return err;
1813 }
1814
1815 static int __unregister_netdevice_notifier_net(struct net *net,
1816                                                struct notifier_block *nb)
1817 {
1818         int err;
1819
1820         err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1821         if (err)
1822                 return err;
1823
1824         call_netdevice_unregister_net_notifiers(nb, net);
1825         return 0;
1826 }
1827
1828 /**
1829  * register_netdevice_notifier_net - register a per-netns network notifier block
1830  * @net: network namespace
1831  * @nb: notifier
1832  *
1833  * Register a notifier to be called when network device events occur.
1834  * The notifier passed is linked into the kernel structures and must
1835  * not be reused until it has been unregistered. A negative errno code
1836  * is returned on a failure.
1837  *
1838  * When registered all registration and up events are replayed
1839  * to the new notifier to allow device to have a race free
1840  * view of the network device list.
1841  */
1842
1843 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1844 {
1845         int err;
1846
1847         rtnl_lock();
1848         err = __register_netdevice_notifier_net(net, nb, false);
1849         rtnl_unlock();
1850         return err;
1851 }
1852 EXPORT_SYMBOL(register_netdevice_notifier_net);
1853
1854 /**
1855  * unregister_netdevice_notifier_net - unregister a per-netns
1856  *                                     network notifier block
1857  * @net: network namespace
1858  * @nb: notifier
1859  *
1860  * Unregister a notifier previously registered by
1861  * register_netdevice_notifier(). The notifier is unlinked into the
1862  * kernel structures and may then be reused. A negative errno code
1863  * is returned on a failure.
1864  *
1865  * After unregistering unregister and down device events are synthesized
1866  * for all devices on the device list to the removed notifier to remove
1867  * the need for special case cleanup code.
1868  */
1869
1870 int unregister_netdevice_notifier_net(struct net *net,
1871                                       struct notifier_block *nb)
1872 {
1873         int err;
1874
1875         rtnl_lock();
1876         err = __unregister_netdevice_notifier_net(net, nb);
1877         rtnl_unlock();
1878         return err;
1879 }
1880 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1881
1882 int register_netdevice_notifier_dev_net(struct net_device *dev,
1883                                         struct notifier_block *nb,
1884                                         struct netdev_net_notifier *nn)
1885 {
1886         int err;
1887
1888         rtnl_lock();
1889         err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1890         if (!err) {
1891                 nn->nb = nb;
1892                 list_add(&nn->list, &dev->net_notifier_list);
1893         }
1894         rtnl_unlock();
1895         return err;
1896 }
1897 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1898
1899 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1900                                           struct notifier_block *nb,
1901                                           struct netdev_net_notifier *nn)
1902 {
1903         int err;
1904
1905         rtnl_lock();
1906         list_del(&nn->list);
1907         err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1908         rtnl_unlock();
1909         return err;
1910 }
1911 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1912
1913 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1914                                              struct net *net)
1915 {
1916         struct netdev_net_notifier *nn;
1917
1918         list_for_each_entry(nn, &dev->net_notifier_list, list) {
1919                 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
1920                 __register_netdevice_notifier_net(net, nn->nb, true);
1921         }
1922 }
1923
1924 /**
1925  *      call_netdevice_notifiers_info - call all network notifier blocks
1926  *      @val: value passed unmodified to notifier function
1927  *      @info: notifier information data
1928  *
1929  *      Call all network notifier blocks.  Parameters and return value
1930  *      are as for raw_notifier_call_chain().
1931  */
1932
1933 static int call_netdevice_notifiers_info(unsigned long val,
1934                                          struct netdev_notifier_info *info)
1935 {
1936         struct net *net = dev_net(info->dev);
1937         int ret;
1938
1939         ASSERT_RTNL();
1940
1941         /* Run per-netns notifier block chain first, then run the global one.
1942          * Hopefully, one day, the global one is going to be removed after
1943          * all notifier block registrators get converted to be per-netns.
1944          */
1945         ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1946         if (ret & NOTIFY_STOP_MASK)
1947                 return ret;
1948         return raw_notifier_call_chain(&netdev_chain, val, info);
1949 }
1950
1951 static int call_netdevice_notifiers_extack(unsigned long val,
1952                                            struct net_device *dev,
1953                                            struct netlink_ext_ack *extack)
1954 {
1955         struct netdev_notifier_info info = {
1956                 .dev = dev,
1957                 .extack = extack,
1958         };
1959
1960         return call_netdevice_notifiers_info(val, &info);
1961 }
1962
1963 /**
1964  *      call_netdevice_notifiers - call all network notifier blocks
1965  *      @val: value passed unmodified to notifier function
1966  *      @dev: net_device pointer passed unmodified to notifier function
1967  *
1968  *      Call all network notifier blocks.  Parameters and return value
1969  *      are as for raw_notifier_call_chain().
1970  */
1971
1972 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1973 {
1974         return call_netdevice_notifiers_extack(val, dev, NULL);
1975 }
1976 EXPORT_SYMBOL(call_netdevice_notifiers);
1977
1978 /**
1979  *      call_netdevice_notifiers_mtu - call all network notifier blocks
1980  *      @val: value passed unmodified to notifier function
1981  *      @dev: net_device pointer passed unmodified to notifier function
1982  *      @arg: additional u32 argument passed to the notifier function
1983  *
1984  *      Call all network notifier blocks.  Parameters and return value
1985  *      are as for raw_notifier_call_chain().
1986  */
1987 static int call_netdevice_notifiers_mtu(unsigned long val,
1988                                         struct net_device *dev, u32 arg)
1989 {
1990         struct netdev_notifier_info_ext info = {
1991                 .info.dev = dev,
1992                 .ext.mtu = arg,
1993         };
1994
1995         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1996
1997         return call_netdevice_notifiers_info(val, &info.info);
1998 }
1999
2000 #ifdef CONFIG_NET_INGRESS
2001 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2002
2003 void net_inc_ingress_queue(void)
2004 {
2005         static_branch_inc(&ingress_needed_key);
2006 }
2007 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2008
2009 void net_dec_ingress_queue(void)
2010 {
2011         static_branch_dec(&ingress_needed_key);
2012 }
2013 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2014 #endif
2015
2016 #ifdef CONFIG_NET_EGRESS
2017 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2018
2019 void net_inc_egress_queue(void)
2020 {
2021         static_branch_inc(&egress_needed_key);
2022 }
2023 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2024
2025 void net_dec_egress_queue(void)
2026 {
2027         static_branch_dec(&egress_needed_key);
2028 }
2029 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2030 #endif
2031
2032 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2033 #ifdef CONFIG_JUMP_LABEL
2034 static atomic_t netstamp_needed_deferred;
2035 static atomic_t netstamp_wanted;
2036 static void netstamp_clear(struct work_struct *work)
2037 {
2038         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2039         int wanted;
2040
2041         wanted = atomic_add_return(deferred, &netstamp_wanted);
2042         if (wanted > 0)
2043                 static_branch_enable(&netstamp_needed_key);
2044         else
2045                 static_branch_disable(&netstamp_needed_key);
2046 }
2047 static DECLARE_WORK(netstamp_work, netstamp_clear);
2048 #endif
2049
2050 void net_enable_timestamp(void)
2051 {
2052 #ifdef CONFIG_JUMP_LABEL
2053         int wanted;
2054
2055         while (1) {
2056                 wanted = atomic_read(&netstamp_wanted);
2057                 if (wanted <= 0)
2058                         break;
2059                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2060                         return;
2061         }
2062         atomic_inc(&netstamp_needed_deferred);
2063         schedule_work(&netstamp_work);
2064 #else
2065         static_branch_inc(&netstamp_needed_key);
2066 #endif
2067 }
2068 EXPORT_SYMBOL(net_enable_timestamp);
2069
2070 void net_disable_timestamp(void)
2071 {
2072 #ifdef CONFIG_JUMP_LABEL
2073         int wanted;
2074
2075         while (1) {
2076                 wanted = atomic_read(&netstamp_wanted);
2077                 if (wanted <= 1)
2078                         break;
2079                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2080                         return;
2081         }
2082         atomic_dec(&netstamp_needed_deferred);
2083         schedule_work(&netstamp_work);
2084 #else
2085         static_branch_dec(&netstamp_needed_key);
2086 #endif
2087 }
2088 EXPORT_SYMBOL(net_disable_timestamp);
2089
2090 static inline void net_timestamp_set(struct sk_buff *skb)
2091 {
2092         skb->tstamp = 0;
2093         if (static_branch_unlikely(&netstamp_needed_key))
2094                 __net_timestamp(skb);
2095 }
2096
2097 #define net_timestamp_check(COND, SKB)                          \
2098         if (static_branch_unlikely(&netstamp_needed_key)) {     \
2099                 if ((COND) && !(SKB)->tstamp)                   \
2100                         __net_timestamp(SKB);                   \
2101         }                                                       \
2102
2103 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2104 {
2105         unsigned int len;
2106
2107         if (!(dev->flags & IFF_UP))
2108                 return false;
2109
2110         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
2111         if (skb->len <= len)
2112                 return true;
2113
2114         /* if TSO is enabled, we don't care about the length as the packet
2115          * could be forwarded without being segmented before
2116          */
2117         if (skb_is_gso(skb))
2118                 return true;
2119
2120         return false;
2121 }
2122 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2123
2124 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2125 {
2126         int ret = ____dev_forward_skb(dev, skb);
2127
2128         if (likely(!ret)) {
2129                 skb->protocol = eth_type_trans(skb, dev);
2130                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2131         }
2132
2133         return ret;
2134 }
2135 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2136
2137 /**
2138  * dev_forward_skb - loopback an skb to another netif
2139  *
2140  * @dev: destination network device
2141  * @skb: buffer to forward
2142  *
2143  * return values:
2144  *      NET_RX_SUCCESS  (no congestion)
2145  *      NET_RX_DROP     (packet was dropped, but freed)
2146  *
2147  * dev_forward_skb can be used for injecting an skb from the
2148  * start_xmit function of one device into the receive queue
2149  * of another device.
2150  *
2151  * The receiving device may be in another namespace, so
2152  * we have to clear all information in the skb that could
2153  * impact namespace isolation.
2154  */
2155 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2156 {
2157         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2158 }
2159 EXPORT_SYMBOL_GPL(dev_forward_skb);
2160
2161 static inline int deliver_skb(struct sk_buff *skb,
2162                               struct packet_type *pt_prev,
2163                               struct net_device *orig_dev)
2164 {
2165         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2166                 return -ENOMEM;
2167         refcount_inc(&skb->users);
2168         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2169 }
2170
2171 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2172                                           struct packet_type **pt,
2173                                           struct net_device *orig_dev,
2174                                           __be16 type,
2175                                           struct list_head *ptype_list)
2176 {
2177         struct packet_type *ptype, *pt_prev = *pt;
2178
2179         list_for_each_entry_rcu(ptype, ptype_list, list) {
2180                 if (ptype->type != type)
2181                         continue;
2182                 if (pt_prev)
2183                         deliver_skb(skb, pt_prev, orig_dev);
2184                 pt_prev = ptype;
2185         }
2186         *pt = pt_prev;
2187 }
2188
2189 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2190 {
2191         if (!ptype->af_packet_priv || !skb->sk)
2192                 return false;
2193
2194         if (ptype->id_match)
2195                 return ptype->id_match(ptype, skb->sk);
2196         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2197                 return true;
2198
2199         return false;
2200 }
2201
2202 /**
2203  * dev_nit_active - return true if any network interface taps are in use
2204  *
2205  * @dev: network device to check for the presence of taps
2206  */
2207 bool dev_nit_active(struct net_device *dev)
2208 {
2209         return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2210 }
2211 EXPORT_SYMBOL_GPL(dev_nit_active);
2212
2213 /*
2214  *      Support routine. Sends outgoing frames to any network
2215  *      taps currently in use.
2216  */
2217
2218 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2219 {
2220         struct packet_type *ptype;
2221         struct sk_buff *skb2 = NULL;
2222         struct packet_type *pt_prev = NULL;
2223         struct list_head *ptype_list = &ptype_all;
2224
2225         rcu_read_lock();
2226 again:
2227         list_for_each_entry_rcu(ptype, ptype_list, list) {
2228                 if (ptype->ignore_outgoing)
2229                         continue;
2230
2231                 /* Never send packets back to the socket
2232                  * they originated from - MvS (miquels@drinkel.ow.org)
2233                  */
2234                 if (skb_loop_sk(ptype, skb))
2235                         continue;
2236
2237                 if (pt_prev) {
2238                         deliver_skb(skb2, pt_prev, skb->dev);
2239                         pt_prev = ptype;
2240                         continue;
2241                 }
2242
2243                 /* need to clone skb, done only once */
2244                 skb2 = skb_clone(skb, GFP_ATOMIC);
2245                 if (!skb2)
2246                         goto out_unlock;
2247
2248                 net_timestamp_set(skb2);
2249
2250                 /* skb->nh should be correctly
2251                  * set by sender, so that the second statement is
2252                  * just protection against buggy protocols.
2253                  */
2254                 skb_reset_mac_header(skb2);
2255
2256                 if (skb_network_header(skb2) < skb2->data ||
2257                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2258                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2259                                              ntohs(skb2->protocol),
2260                                              dev->name);
2261                         skb_reset_network_header(skb2);
2262                 }
2263
2264                 skb2->transport_header = skb2->network_header;
2265                 skb2->pkt_type = PACKET_OUTGOING;
2266                 pt_prev = ptype;
2267         }
2268
2269         if (ptype_list == &ptype_all) {
2270                 ptype_list = &dev->ptype_all;
2271                 goto again;
2272         }
2273 out_unlock:
2274         if (pt_prev) {
2275                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2276                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2277                 else
2278                         kfree_skb(skb2);
2279         }
2280         rcu_read_unlock();
2281 }
2282 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2283
2284 /**
2285  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2286  * @dev: Network device
2287  * @txq: number of queues available
2288  *
2289  * If real_num_tx_queues is changed the tc mappings may no longer be
2290  * valid. To resolve this verify the tc mapping remains valid and if
2291  * not NULL the mapping. With no priorities mapping to this
2292  * offset/count pair it will no longer be used. In the worst case TC0
2293  * is invalid nothing can be done so disable priority mappings. If is
2294  * expected that drivers will fix this mapping if they can before
2295  * calling netif_set_real_num_tx_queues.
2296  */
2297 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2298 {
2299         int i;
2300         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2301
2302         /* If TC0 is invalidated disable TC mapping */
2303         if (tc->offset + tc->count > txq) {
2304                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2305                 dev->num_tc = 0;
2306                 return;
2307         }
2308
2309         /* Invalidated prio to tc mappings set to TC0 */
2310         for (i = 1; i < TC_BITMASK + 1; i++) {
2311                 int q = netdev_get_prio_tc_map(dev, i);
2312
2313                 tc = &dev->tc_to_txq[q];
2314                 if (tc->offset + tc->count > txq) {
2315                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2316                                 i, q);
2317                         netdev_set_prio_tc_map(dev, i, 0);
2318                 }
2319         }
2320 }
2321
2322 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2323 {
2324         if (dev->num_tc) {
2325                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2326                 int i;
2327
2328                 /* walk through the TCs and see if it falls into any of them */
2329                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2330                         if ((txq - tc->offset) < tc->count)
2331                                 return i;
2332                 }
2333
2334                 /* didn't find it, just return -1 to indicate no match */
2335                 return -1;
2336         }
2337
2338         return 0;
2339 }
2340 EXPORT_SYMBOL(netdev_txq_to_tc);
2341
2342 #ifdef CONFIG_XPS
2343 struct static_key xps_needed __read_mostly;
2344 EXPORT_SYMBOL(xps_needed);
2345 struct static_key xps_rxqs_needed __read_mostly;
2346 EXPORT_SYMBOL(xps_rxqs_needed);
2347 static DEFINE_MUTEX(xps_map_mutex);
2348 #define xmap_dereference(P)             \
2349         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2350
2351 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2352                              int tci, u16 index)
2353 {
2354         struct xps_map *map = NULL;
2355         int pos;
2356
2357         if (dev_maps)
2358                 map = xmap_dereference(dev_maps->attr_map[tci]);
2359         if (!map)
2360                 return false;
2361
2362         for (pos = map->len; pos--;) {
2363                 if (map->queues[pos] != index)
2364                         continue;
2365
2366                 if (map->len > 1) {
2367                         map->queues[pos] = map->queues[--map->len];
2368                         break;
2369                 }
2370
2371                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2372                 kfree_rcu(map, rcu);
2373                 return false;
2374         }
2375
2376         return true;
2377 }
2378
2379 static bool remove_xps_queue_cpu(struct net_device *dev,
2380                                  struct xps_dev_maps *dev_maps,
2381                                  int cpu, u16 offset, u16 count)
2382 {
2383         int num_tc = dev->num_tc ? : 1;
2384         bool active = false;
2385         int tci;
2386
2387         for (tci = cpu * num_tc; num_tc--; tci++) {
2388                 int i, j;
2389
2390                 for (i = count, j = offset; i--; j++) {
2391                         if (!remove_xps_queue(dev_maps, tci, j))
2392                                 break;
2393                 }
2394
2395                 active |= i < 0;
2396         }
2397
2398         return active;
2399 }
2400
2401 static void reset_xps_maps(struct net_device *dev,
2402                            struct xps_dev_maps *dev_maps,
2403                            bool is_rxqs_map)
2404 {
2405         if (is_rxqs_map) {
2406                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2407                 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2408         } else {
2409                 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2410         }
2411         static_key_slow_dec_cpuslocked(&xps_needed);
2412         kfree_rcu(dev_maps, rcu);
2413 }
2414
2415 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2416                            struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2417                            u16 offset, u16 count, bool is_rxqs_map)
2418 {
2419         bool active = false;
2420         int i, j;
2421
2422         for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2423              j < nr_ids;)
2424                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2425                                                count);
2426         if (!active)
2427                 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2428
2429         if (!is_rxqs_map) {
2430                 for (i = offset + (count - 1); count--; i--) {
2431                         netdev_queue_numa_node_write(
2432                                 netdev_get_tx_queue(dev, i),
2433                                 NUMA_NO_NODE);
2434                 }
2435         }
2436 }
2437
2438 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2439                                    u16 count)
2440 {
2441         const unsigned long *possible_mask = NULL;
2442         struct xps_dev_maps *dev_maps;
2443         unsigned int nr_ids;
2444
2445         if (!static_key_false(&xps_needed))
2446                 return;
2447
2448         cpus_read_lock();
2449         mutex_lock(&xps_map_mutex);
2450
2451         if (static_key_false(&xps_rxqs_needed)) {
2452                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2453                 if (dev_maps) {
2454                         nr_ids = dev->num_rx_queues;
2455                         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2456                                        offset, count, true);
2457                 }
2458         }
2459
2460         dev_maps = xmap_dereference(dev->xps_cpus_map);
2461         if (!dev_maps)
2462                 goto out_no_maps;
2463
2464         if (num_possible_cpus() > 1)
2465                 possible_mask = cpumask_bits(cpu_possible_mask);
2466         nr_ids = nr_cpu_ids;
2467         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2468                        false);
2469
2470 out_no_maps:
2471         mutex_unlock(&xps_map_mutex);
2472         cpus_read_unlock();
2473 }
2474
2475 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2476 {
2477         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2478 }
2479
2480 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2481                                       u16 index, bool is_rxqs_map)
2482 {
2483         struct xps_map *new_map;
2484         int alloc_len = XPS_MIN_MAP_ALLOC;
2485         int i, pos;
2486
2487         for (pos = 0; map && pos < map->len; pos++) {
2488                 if (map->queues[pos] != index)
2489                         continue;
2490                 return map;
2491         }
2492
2493         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2494         if (map) {
2495                 if (pos < map->alloc_len)
2496                         return map;
2497
2498                 alloc_len = map->alloc_len * 2;
2499         }
2500
2501         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2502          *  map
2503          */
2504         if (is_rxqs_map)
2505                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2506         else
2507                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2508                                        cpu_to_node(attr_index));
2509         if (!new_map)
2510                 return NULL;
2511
2512         for (i = 0; i < pos; i++)
2513                 new_map->queues[i] = map->queues[i];
2514         new_map->alloc_len = alloc_len;
2515         new_map->len = pos;
2516
2517         return new_map;
2518 }
2519
2520 /* Must be called under cpus_read_lock */
2521 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2522                           u16 index, bool is_rxqs_map)
2523 {
2524         const unsigned long *online_mask = NULL, *possible_mask = NULL;
2525         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2526         int i, j, tci, numa_node_id = -2;
2527         int maps_sz, num_tc = 1, tc = 0;
2528         struct xps_map *map, *new_map;
2529         bool active = false;
2530         unsigned int nr_ids;
2531
2532         if (dev->num_tc) {
2533                 /* Do not allow XPS on subordinate device directly */
2534                 num_tc = dev->num_tc;
2535                 if (num_tc < 0)
2536                         return -EINVAL;
2537
2538                 /* If queue belongs to subordinate dev use its map */
2539                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2540
2541                 tc = netdev_txq_to_tc(dev, index);
2542                 if (tc < 0)
2543                         return -EINVAL;
2544         }
2545
2546         mutex_lock(&xps_map_mutex);
2547         if (is_rxqs_map) {
2548                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2549                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2550                 nr_ids = dev->num_rx_queues;
2551         } else {
2552                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2553                 if (num_possible_cpus() > 1) {
2554                         online_mask = cpumask_bits(cpu_online_mask);
2555                         possible_mask = cpumask_bits(cpu_possible_mask);
2556                 }
2557                 dev_maps = xmap_dereference(dev->xps_cpus_map);
2558                 nr_ids = nr_cpu_ids;
2559         }
2560
2561         if (maps_sz < L1_CACHE_BYTES)
2562                 maps_sz = L1_CACHE_BYTES;
2563
2564         /* allocate memory for queue storage */
2565         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2566              j < nr_ids;) {
2567                 if (!new_dev_maps)
2568                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2569                 if (!new_dev_maps) {
2570                         mutex_unlock(&xps_map_mutex);
2571                         return -ENOMEM;
2572                 }
2573
2574                 tci = j * num_tc + tc;
2575                 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2576                                  NULL;
2577
2578                 map = expand_xps_map(map, j, index, is_rxqs_map);
2579                 if (!map)
2580                         goto error;
2581
2582                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2583         }
2584
2585         if (!new_dev_maps)
2586                 goto out_no_new_maps;
2587
2588         if (!dev_maps) {
2589                 /* Increment static keys at most once per type */
2590                 static_key_slow_inc_cpuslocked(&xps_needed);
2591                 if (is_rxqs_map)
2592                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2593         }
2594
2595         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2596              j < nr_ids;) {
2597                 /* copy maps belonging to foreign traffic classes */
2598                 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2599                         /* fill in the new device map from the old device map */
2600                         map = xmap_dereference(dev_maps->attr_map[tci]);
2601                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2602                 }
2603
2604                 /* We need to explicitly update tci as prevous loop
2605                  * could break out early if dev_maps is NULL.
2606                  */
2607                 tci = j * num_tc + tc;
2608
2609                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2610                     netif_attr_test_online(j, online_mask, nr_ids)) {
2611                         /* add tx-queue to CPU/rx-queue maps */
2612                         int pos = 0;
2613
2614                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2615                         while ((pos < map->len) && (map->queues[pos] != index))
2616                                 pos++;
2617
2618                         if (pos == map->len)
2619                                 map->queues[map->len++] = index;
2620 #ifdef CONFIG_NUMA
2621                         if (!is_rxqs_map) {
2622                                 if (numa_node_id == -2)
2623                                         numa_node_id = cpu_to_node(j);
2624                                 else if (numa_node_id != cpu_to_node(j))
2625                                         numa_node_id = -1;
2626                         }
2627 #endif
2628                 } else if (dev_maps) {
2629                         /* fill in the new device map from the old device map */
2630                         map = xmap_dereference(dev_maps->attr_map[tci]);
2631                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2632                 }
2633
2634                 /* copy maps belonging to foreign traffic classes */
2635                 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2636                         /* fill in the new device map from the old device map */
2637                         map = xmap_dereference(dev_maps->attr_map[tci]);
2638                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2639                 }
2640         }
2641
2642         if (is_rxqs_map)
2643                 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2644         else
2645                 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2646
2647         /* Cleanup old maps */
2648         if (!dev_maps)
2649                 goto out_no_old_maps;
2650
2651         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2652              j < nr_ids;) {
2653                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2654                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2655                         map = xmap_dereference(dev_maps->attr_map[tci]);
2656                         if (map && map != new_map)
2657                                 kfree_rcu(map, rcu);
2658                 }
2659         }
2660
2661         kfree_rcu(dev_maps, rcu);
2662
2663 out_no_old_maps:
2664         dev_maps = new_dev_maps;
2665         active = true;
2666
2667 out_no_new_maps:
2668         if (!is_rxqs_map) {
2669                 /* update Tx queue numa node */
2670                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2671                                              (numa_node_id >= 0) ?
2672                                              numa_node_id : NUMA_NO_NODE);
2673         }
2674
2675         if (!dev_maps)
2676                 goto out_no_maps;
2677
2678         /* removes tx-queue from unused CPUs/rx-queues */
2679         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2680              j < nr_ids;) {
2681                 for (i = tc, tci = j * num_tc; i--; tci++)
2682                         active |= remove_xps_queue(dev_maps, tci, index);
2683                 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2684                     !netif_attr_test_online(j, online_mask, nr_ids))
2685                         active |= remove_xps_queue(dev_maps, tci, index);
2686                 for (i = num_tc - tc, tci++; --i; tci++)
2687                         active |= remove_xps_queue(dev_maps, tci, index);
2688         }
2689
2690         /* free map if not active */
2691         if (!active)
2692                 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2693
2694 out_no_maps:
2695         mutex_unlock(&xps_map_mutex);
2696
2697         return 0;
2698 error:
2699         /* remove any maps that we added */
2700         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2701              j < nr_ids;) {
2702                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2703                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2704                         map = dev_maps ?
2705                               xmap_dereference(dev_maps->attr_map[tci]) :
2706                               NULL;
2707                         if (new_map && new_map != map)
2708                                 kfree(new_map);
2709                 }
2710         }
2711
2712         mutex_unlock(&xps_map_mutex);
2713
2714         kfree(new_dev_maps);
2715         return -ENOMEM;
2716 }
2717 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2718
2719 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2720                         u16 index)
2721 {
2722         int ret;
2723
2724         cpus_read_lock();
2725         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2726         cpus_read_unlock();
2727
2728         return ret;
2729 }
2730 EXPORT_SYMBOL(netif_set_xps_queue);
2731
2732 #endif
2733 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2734 {
2735         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2736
2737         /* Unbind any subordinate channels */
2738         while (txq-- != &dev->_tx[0]) {
2739                 if (txq->sb_dev)
2740                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2741         }
2742 }
2743
2744 void netdev_reset_tc(struct net_device *dev)
2745 {
2746 #ifdef CONFIG_XPS
2747         netif_reset_xps_queues_gt(dev, 0);
2748 #endif
2749         netdev_unbind_all_sb_channels(dev);
2750
2751         /* Reset TC configuration of device */
2752         dev->num_tc = 0;
2753         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2754         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2755 }
2756 EXPORT_SYMBOL(netdev_reset_tc);
2757
2758 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2759 {
2760         if (tc >= dev->num_tc)
2761                 return -EINVAL;
2762
2763 #ifdef CONFIG_XPS
2764         netif_reset_xps_queues(dev, offset, count);
2765 #endif
2766         dev->tc_to_txq[tc].count = count;
2767         dev->tc_to_txq[tc].offset = offset;
2768         return 0;
2769 }
2770 EXPORT_SYMBOL(netdev_set_tc_queue);
2771
2772 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2773 {
2774         if (num_tc > TC_MAX_QUEUE)
2775                 return -EINVAL;
2776
2777 #ifdef CONFIG_XPS
2778         netif_reset_xps_queues_gt(dev, 0);
2779 #endif
2780         netdev_unbind_all_sb_channels(dev);
2781
2782         dev->num_tc = num_tc;
2783         return 0;
2784 }
2785 EXPORT_SYMBOL(netdev_set_num_tc);
2786
2787 void netdev_unbind_sb_channel(struct net_device *dev,
2788                               struct net_device *sb_dev)
2789 {
2790         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2791
2792 #ifdef CONFIG_XPS
2793         netif_reset_xps_queues_gt(sb_dev, 0);
2794 #endif
2795         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2796         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2797
2798         while (txq-- != &dev->_tx[0]) {
2799                 if (txq->sb_dev == sb_dev)
2800                         txq->sb_dev = NULL;
2801         }
2802 }
2803 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2804
2805 int netdev_bind_sb_channel_queue(struct net_device *dev,
2806                                  struct net_device *sb_dev,
2807                                  u8 tc, u16 count, u16 offset)
2808 {
2809         /* Make certain the sb_dev and dev are already configured */
2810         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2811                 return -EINVAL;
2812
2813         /* We cannot hand out queues we don't have */
2814         if ((offset + count) > dev->real_num_tx_queues)
2815                 return -EINVAL;
2816
2817         /* Record the mapping */
2818         sb_dev->tc_to_txq[tc].count = count;
2819         sb_dev->tc_to_txq[tc].offset = offset;
2820
2821         /* Provide a way for Tx queue to find the tc_to_txq map or
2822          * XPS map for itself.
2823          */
2824         while (count--)
2825                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2826
2827         return 0;
2828 }
2829 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2830
2831 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2832 {
2833         /* Do not use a multiqueue device to represent a subordinate channel */
2834         if (netif_is_multiqueue(dev))
2835                 return -ENODEV;
2836
2837         /* We allow channels 1 - 32767 to be used for subordinate channels.
2838          * Channel 0 is meant to be "native" mode and used only to represent
2839          * the main root device. We allow writing 0 to reset the device back
2840          * to normal mode after being used as a subordinate channel.
2841          */
2842         if (channel > S16_MAX)
2843                 return -EINVAL;
2844
2845         dev->num_tc = -channel;
2846
2847         return 0;
2848 }
2849 EXPORT_SYMBOL(netdev_set_sb_channel);
2850
2851 /*
2852  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2853  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2854  */
2855 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2856 {
2857         bool disabling;
2858         int rc;
2859
2860         disabling = txq < dev->real_num_tx_queues;
2861
2862         if (txq < 1 || txq > dev->num_tx_queues)
2863                 return -EINVAL;
2864
2865         if (dev->reg_state == NETREG_REGISTERED ||
2866             dev->reg_state == NETREG_UNREGISTERING) {
2867                 ASSERT_RTNL();
2868
2869                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2870                                                   txq);
2871                 if (rc)
2872                         return rc;
2873
2874                 if (dev->num_tc)
2875                         netif_setup_tc(dev, txq);
2876
2877                 dev->real_num_tx_queues = txq;
2878
2879                 if (disabling) {
2880                         synchronize_net();
2881                         qdisc_reset_all_tx_gt(dev, txq);
2882 #ifdef CONFIG_XPS
2883                         netif_reset_xps_queues_gt(dev, txq);
2884 #endif
2885                 }
2886         } else {
2887                 dev->real_num_tx_queues = txq;
2888         }
2889
2890         return 0;
2891 }
2892 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2893
2894 #ifdef CONFIG_SYSFS
2895 /**
2896  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2897  *      @dev: Network device
2898  *      @rxq: Actual number of RX queues
2899  *
2900  *      This must be called either with the rtnl_lock held or before
2901  *      registration of the net device.  Returns 0 on success, or a
2902  *      negative error code.  If called before registration, it always
2903  *      succeeds.
2904  */
2905 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2906 {
2907         int rc;
2908
2909         if (rxq < 1 || rxq > dev->num_rx_queues)
2910                 return -EINVAL;
2911
2912         if (dev->reg_state == NETREG_REGISTERED) {
2913                 ASSERT_RTNL();
2914
2915                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2916                                                   rxq);
2917                 if (rc)
2918                         return rc;
2919         }
2920
2921         dev->real_num_rx_queues = rxq;
2922         return 0;
2923 }
2924 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2925 #endif
2926
2927 /**
2928  * netif_get_num_default_rss_queues - default number of RSS queues
2929  *
2930  * This routine should set an upper limit on the number of RSS queues
2931  * used by default by multiqueue devices.
2932  */
2933 int netif_get_num_default_rss_queues(void)
2934 {
2935         return is_kdump_kernel() ?
2936                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2937 }
2938 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2939
2940 static void __netif_reschedule(struct Qdisc *q)
2941 {
2942         struct softnet_data *sd;
2943         unsigned long flags;
2944
2945         local_irq_save(flags);
2946         sd = this_cpu_ptr(&softnet_data);
2947         q->next_sched = NULL;
2948         *sd->output_queue_tailp = q;
2949         sd->output_queue_tailp = &q->next_sched;
2950         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2951         local_irq_restore(flags);
2952 }
2953
2954 void __netif_schedule(struct Qdisc *q)
2955 {
2956         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2957                 __netif_reschedule(q);
2958 }
2959 EXPORT_SYMBOL(__netif_schedule);
2960
2961 struct dev_kfree_skb_cb {
2962         enum skb_free_reason reason;
2963 };
2964
2965 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2966 {
2967         return (struct dev_kfree_skb_cb *)skb->cb;
2968 }
2969
2970 void netif_schedule_queue(struct netdev_queue *txq)
2971 {
2972         rcu_read_lock();
2973         if (!netif_xmit_stopped(txq)) {
2974                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2975
2976                 __netif_schedule(q);
2977         }
2978         rcu_read_unlock();
2979 }
2980 EXPORT_SYMBOL(netif_schedule_queue);
2981
2982 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2983 {
2984         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2985                 struct Qdisc *q;
2986
2987                 rcu_read_lock();
2988                 q = rcu_dereference(dev_queue->qdisc);
2989                 __netif_schedule(q);
2990                 rcu_read_unlock();
2991         }
2992 }
2993 EXPORT_SYMBOL(netif_tx_wake_queue);
2994
2995 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2996 {
2997         unsigned long flags;
2998
2999         if (unlikely(!skb))
3000                 return;
3001
3002         if (likely(refcount_read(&skb->users) == 1)) {
3003                 smp_rmb();
3004                 refcount_set(&skb->users, 0);
3005         } else if (likely(!refcount_dec_and_test(&skb->users))) {
3006                 return;
3007         }
3008         get_kfree_skb_cb(skb)->reason = reason;
3009         local_irq_save(flags);
3010         skb->next = __this_cpu_read(softnet_data.completion_queue);
3011         __this_cpu_write(softnet_data.completion_queue, skb);
3012         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3013         local_irq_restore(flags);
3014 }
3015 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3016
3017 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3018 {
3019         if (in_irq() || irqs_disabled())
3020                 __dev_kfree_skb_irq(skb, reason);
3021         else
3022                 dev_kfree_skb(skb);
3023 }
3024 EXPORT_SYMBOL(__dev_kfree_skb_any);
3025
3026
3027 /**
3028  * netif_device_detach - mark device as removed
3029  * @dev: network device
3030  *
3031  * Mark device as removed from system and therefore no longer available.
3032  */
3033 void netif_device_detach(struct net_device *dev)
3034 {
3035         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3036             netif_running(dev)) {
3037                 netif_tx_stop_all_queues(dev);
3038         }
3039 }
3040 EXPORT_SYMBOL(netif_device_detach);
3041
3042 /**
3043  * netif_device_attach - mark device as attached
3044  * @dev: network device
3045  *
3046  * Mark device as attached from system and restart if needed.
3047  */
3048 void netif_device_attach(struct net_device *dev)
3049 {
3050         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3051             netif_running(dev)) {
3052                 netif_tx_wake_all_queues(dev);
3053                 __netdev_watchdog_up(dev);
3054         }
3055 }
3056 EXPORT_SYMBOL(netif_device_attach);
3057
3058 /*
3059  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3060  * to be used as a distribution range.
3061  */
3062 static u16 skb_tx_hash(const struct net_device *dev,
3063                        const struct net_device *sb_dev,
3064                        struct sk_buff *skb)
3065 {
3066         u32 hash;
3067         u16 qoffset = 0;
3068         u16 qcount = dev->real_num_tx_queues;
3069
3070         if (dev->num_tc) {
3071                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3072
3073                 qoffset = sb_dev->tc_to_txq[tc].offset;
3074                 qcount = sb_dev->tc_to_txq[tc].count;
3075         }
3076
3077         if (skb_rx_queue_recorded(skb)) {
3078                 hash = skb_get_rx_queue(skb);
3079                 if (hash >= qoffset)
3080                         hash -= qoffset;
3081                 while (unlikely(hash >= qcount))
3082                         hash -= qcount;
3083                 return hash + qoffset;
3084         }
3085
3086         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3087 }
3088
3089 static void skb_warn_bad_offload(const struct sk_buff *skb)
3090 {
3091         static const netdev_features_t null_features;
3092         struct net_device *dev = skb->dev;
3093         const char *name = "";
3094
3095         if (!net_ratelimit())
3096                 return;
3097
3098         if (dev) {
3099                 if (dev->dev.parent)
3100                         name = dev_driver_string(dev->dev.parent);
3101                 else
3102                         name = netdev_name(dev);
3103         }
3104         skb_dump(KERN_WARNING, skb, false);
3105         WARN(1, "%s: caps=(%pNF, %pNF)\n",
3106              name, dev ? &dev->features : &null_features,
3107              skb->sk ? &skb->sk->sk_route_caps : &null_features);
3108 }
3109
3110 /*
3111  * Invalidate hardware checksum when packet is to be mangled, and
3112  * complete checksum manually on outgoing path.
3113  */
3114 int skb_checksum_help(struct sk_buff *skb)
3115 {
3116         __wsum csum;
3117         int ret = 0, offset;
3118
3119         if (skb->ip_summed == CHECKSUM_COMPLETE)
3120                 goto out_set_summed;
3121
3122         if (unlikely(skb_shinfo(skb)->gso_size)) {
3123                 skb_warn_bad_offload(skb);
3124                 return -EINVAL;
3125         }
3126
3127         /* Before computing a checksum, we should make sure no frag could
3128          * be modified by an external entity : checksum could be wrong.
3129          */
3130         if (skb_has_shared_frag(skb)) {
3131                 ret = __skb_linearize(skb);
3132                 if (ret)
3133                         goto out;
3134         }
3135
3136         offset = skb_checksum_start_offset(skb);
3137         BUG_ON(offset >= skb_headlen(skb));
3138         csum = skb_checksum(skb, offset, skb->len - offset, 0);
3139
3140         offset += skb->csum_offset;
3141         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3142
3143         ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3144         if (ret)
3145                 goto out;
3146
3147         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3148 out_set_summed:
3149         skb->ip_summed = CHECKSUM_NONE;
3150 out:
3151         return ret;
3152 }
3153 EXPORT_SYMBOL(skb_checksum_help);
3154
3155 int skb_crc32c_csum_help(struct sk_buff *skb)
3156 {
3157         __le32 crc32c_csum;
3158         int ret = 0, offset, start;
3159
3160         if (skb->ip_summed != CHECKSUM_PARTIAL)
3161                 goto out;
3162
3163         if (unlikely(skb_is_gso(skb)))
3164                 goto out;
3165
3166         /* Before computing a checksum, we should make sure no frag could
3167          * be modified by an external entity : checksum could be wrong.
3168          */
3169         if (unlikely(skb_has_shared_frag(skb))) {
3170                 ret = __skb_linearize(skb);
3171                 if (ret)
3172                         goto out;
3173         }
3174         start = skb_checksum_start_offset(skb);
3175         offset = start + offsetof(struct sctphdr, checksum);
3176         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3177                 ret = -EINVAL;
3178                 goto out;
3179         }
3180
3181         ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3182         if (ret)
3183                 goto out;
3184
3185         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3186                                                   skb->len - start, ~(__u32)0,
3187                                                   crc32c_csum_stub));
3188         *(__le32 *)(skb->data + offset) = crc32c_csum;
3189         skb->ip_summed = CHECKSUM_NONE;
3190         skb->csum_not_inet = 0;
3191 out:
3192         return ret;
3193 }
3194
3195 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3196 {
3197         __be16 type = skb->protocol;
3198
3199         /* Tunnel gso handlers can set protocol to ethernet. */
3200         if (type == htons(ETH_P_TEB)) {
3201                 struct ethhdr *eth;
3202
3203                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3204                         return 0;
3205
3206                 eth = (struct ethhdr *)skb->data;
3207                 type = eth->h_proto;
3208         }
3209
3210         return __vlan_get_protocol(skb, type, depth);
3211 }
3212
3213 /**
3214  *      skb_mac_gso_segment - mac layer segmentation handler.
3215  *      @skb: buffer to segment
3216  *      @features: features for the output path (see dev->features)
3217  */
3218 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3219                                     netdev_features_t features)
3220 {
3221         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3222         struct packet_offload *ptype;
3223         int vlan_depth = skb->mac_len;
3224         __be16 type = skb_network_protocol(skb, &vlan_depth);
3225
3226         if (unlikely(!type))
3227                 return ERR_PTR(-EINVAL);
3228
3229         __skb_pull(skb, vlan_depth);
3230
3231         rcu_read_lock();
3232         list_for_each_entry_rcu(ptype, &offload_base, list) {
3233                 if (ptype->type == type && ptype->callbacks.gso_segment) {
3234                         segs = ptype->callbacks.gso_segment(skb, features);
3235                         break;
3236                 }
3237         }
3238         rcu_read_unlock();
3239
3240         __skb_push(skb, skb->data - skb_mac_header(skb));
3241
3242         return segs;
3243 }
3244 EXPORT_SYMBOL(skb_mac_gso_segment);
3245
3246
3247 /* openvswitch calls this on rx path, so we need a different check.
3248  */
3249 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3250 {
3251         if (tx_path)
3252                 return skb->ip_summed != CHECKSUM_PARTIAL &&
3253                        skb->ip_summed != CHECKSUM_UNNECESSARY;
3254
3255         return skb->ip_summed == CHECKSUM_NONE;
3256 }
3257
3258 /**
3259  *      __skb_gso_segment - Perform segmentation on skb.
3260  *      @skb: buffer to segment
3261  *      @features: features for the output path (see dev->features)
3262  *      @tx_path: whether it is called in TX path
3263  *
3264  *      This function segments the given skb and returns a list of segments.
3265  *
3266  *      It may return NULL if the skb requires no segmentation.  This is
3267  *      only possible when GSO is used for verifying header integrity.
3268  *
3269  *      Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3270  */
3271 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3272                                   netdev_features_t features, bool tx_path)
3273 {
3274         struct sk_buff *segs;
3275
3276         if (unlikely(skb_needs_check(skb, tx_path))) {
3277                 int err;
3278
3279                 /* We're going to init ->check field in TCP or UDP header */
3280                 err = skb_cow_head(skb, 0);
3281                 if (err < 0)
3282                         return ERR_PTR(err);
3283         }
3284
3285         /* Only report GSO partial support if it will enable us to
3286          * support segmentation on this frame without needing additional
3287          * work.
3288          */
3289         if (features & NETIF_F_GSO_PARTIAL) {
3290                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3291                 struct net_device *dev = skb->dev;
3292
3293                 partial_features |= dev->features & dev->gso_partial_features;
3294                 if (!skb_gso_ok(skb, features | partial_features))
3295                         features &= ~NETIF_F_GSO_PARTIAL;
3296         }
3297
3298         BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3299                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3300
3301         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3302         SKB_GSO_CB(skb)->encap_level = 0;
3303
3304         skb_reset_mac_header(skb);
3305         skb_reset_mac_len(skb);
3306
3307         segs = skb_mac_gso_segment(skb, features);
3308
3309         if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3310                 skb_warn_bad_offload(skb);
3311
3312         return segs;
3313 }
3314 EXPORT_SYMBOL(__skb_gso_segment);
3315
3316 /* Take action when hardware reception checksum errors are detected. */
3317 #ifdef CONFIG_BUG
3318 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3319 {
3320         if (net_ratelimit()) {
3321                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3322                 skb_dump(KERN_ERR, skb, true);
3323                 dump_stack();
3324         }
3325 }
3326 EXPORT_SYMBOL(netdev_rx_csum_fault);
3327 #endif
3328
3329 /* XXX: check that highmem exists at all on the given machine. */
3330 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3331 {
3332 #ifdef CONFIG_HIGHMEM
3333         int i;
3334
3335         if (!(dev->features & NETIF_F_HIGHDMA)) {
3336                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3337                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3338
3339                         if (PageHighMem(skb_frag_page(frag)))
3340                                 return 1;
3341                 }
3342         }
3343 #endif
3344         return 0;
3345 }
3346
3347 /* If MPLS offload request, verify we are testing hardware MPLS features
3348  * instead of standard features for the netdev.
3349  */
3350 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3351 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3352                                            netdev_features_t features,
3353                                            __be16 type)
3354 {
3355         if (eth_p_mpls(type))
3356                 features &= skb->dev->mpls_features;
3357
3358         return features;
3359 }
3360 #else
3361 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3362                                            netdev_features_t features,
3363                                            __be16 type)
3364 {
3365         return features;
3366 }
3367 #endif
3368
3369 static netdev_features_t harmonize_features(struct sk_buff *skb,
3370         netdev_features_t features)
3371 {
3372         int tmp;
3373         __be16 type;
3374
3375         type = skb_network_protocol(skb, &tmp);
3376         features = net_mpls_features(skb, features, type);
3377
3378         if (skb->ip_summed != CHECKSUM_NONE &&
3379             !can_checksum_protocol(features, type)) {
3380                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3381         }
3382         if (illegal_highdma(skb->dev, skb))
3383                 features &= ~NETIF_F_SG;
3384
3385         return features;
3386 }
3387
3388 netdev_features_t passthru_features_check(struct sk_buff *skb,
3389                                           struct net_device *dev,
3390                                           netdev_features_t features)
3391 {
3392         return features;
3393 }
3394 EXPORT_SYMBOL(passthru_features_check);
3395
3396 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3397                                              struct net_device *dev,
3398                                              netdev_features_t features)
3399 {
3400         return vlan_features_check(skb, features);
3401 }
3402
3403 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3404                                             struct net_device *dev,
3405                                             netdev_features_t features)
3406 {
3407         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3408
3409         if (gso_segs > dev->gso_max_segs)
3410                 return features & ~NETIF_F_GSO_MASK;
3411
3412         /* Support for GSO partial features requires software
3413          * intervention before we can actually process the packets
3414          * so we need to strip support for any partial features now
3415          * and we can pull them back in after we have partially
3416          * segmented the frame.
3417          */
3418         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3419                 features &= ~dev->gso_partial_features;
3420
3421         /* Make sure to clear the IPv4 ID mangling feature if the
3422          * IPv4 header has the potential to be fragmented.
3423          */
3424         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3425                 struct iphdr *iph = skb->encapsulation ?
3426                                     inner_ip_hdr(skb) : ip_hdr(skb);
3427
3428                 if (!(iph->frag_off & htons(IP_DF)))
3429                         features &= ~NETIF_F_TSO_MANGLEID;
3430         }
3431
3432         return features;
3433 }
3434
3435 netdev_features_t netif_skb_features(struct sk_buff *skb)
3436 {
3437         struct net_device *dev = skb->dev;
3438         netdev_features_t features = dev->features;
3439
3440         if (skb_is_gso(skb))
3441                 features = gso_features_check(skb, dev, features);
3442
3443         /* If encapsulation offload request, verify we are testing
3444          * hardware encapsulation features instead of standard
3445          * features for the netdev
3446          */
3447         if (skb->encapsulation)
3448                 features &= dev->hw_enc_features;
3449
3450         if (skb_vlan_tagged(skb))
3451                 features = netdev_intersect_features(features,
3452                                                      dev->vlan_features |
3453                                                      NETIF_F_HW_VLAN_CTAG_TX |
3454                                                      NETIF_F_HW_VLAN_STAG_TX);
3455
3456         if (dev->netdev_ops->ndo_features_check)
3457                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3458                                                                 features);
3459         else
3460                 features &= dflt_features_check(skb, dev, features);
3461
3462         return harmonize_features(skb, features);
3463 }
3464 EXPORT_SYMBOL(netif_skb_features);
3465
3466 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3467                     struct netdev_queue *txq, bool more)
3468 {
3469         unsigned int len;
3470         int rc;
3471
3472         if (dev_nit_active(dev))
3473                 dev_queue_xmit_nit(skb, dev);
3474
3475         len = skb->len;
3476         trace_net_dev_start_xmit(skb, dev);
3477         rc = netdev_start_xmit(skb, dev, txq, more);
3478         trace_net_dev_xmit(skb, rc, dev, len);
3479
3480         return rc;
3481 }
3482
3483 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3484                                     struct netdev_queue *txq, int *ret)
3485 {
3486         struct sk_buff *skb = first;
3487         int rc = NETDEV_TX_OK;
3488
3489         while (skb) {
3490                 struct sk_buff *next = skb->next;
3491
3492                 skb_mark_not_on_list(skb);
3493                 rc = xmit_one(skb, dev, txq, next != NULL);
3494                 if (unlikely(!dev_xmit_complete(rc))) {
3495                         skb->next = next;
3496                         goto out;
3497                 }
3498
3499                 skb = next;
3500                 if (netif_tx_queue_stopped(txq) && skb) {
3501                         rc = NETDEV_TX_BUSY;
3502                         break;
3503                 }
3504         }
3505
3506 out:
3507         *ret = rc;
3508         return skb;
3509 }
3510
3511 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3512                                           netdev_features_t features)
3513 {
3514         if (skb_vlan_tag_present(skb) &&
3515             !vlan_hw_offload_capable(features, skb->vlan_proto))
3516                 skb = __vlan_hwaccel_push_inside(skb);
3517         return skb;
3518 }
3519
3520 int skb_csum_hwoffload_help(struct sk_buff *skb,
3521                             const netdev_features_t features)
3522 {
3523         if (unlikely(skb->csum_not_inet))
3524                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3525                         skb_crc32c_csum_help(skb);
3526
3527         return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3528 }
3529 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3530
3531 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3532 {
3533         netdev_features_t features;
3534
3535         features = netif_skb_features(skb);
3536         skb = validate_xmit_vlan(skb, features);
3537         if (unlikely(!skb))
3538                 goto out_null;
3539
3540         skb = sk_validate_xmit_skb(skb, dev);
3541         if (unlikely(!skb))
3542                 goto out_null;
3543
3544         if (netif_needs_gso(skb, features)) {
3545                 struct sk_buff *segs;
3546
3547                 segs = skb_gso_segment(skb, features);
3548                 if (IS_ERR(segs)) {
3549                         goto out_kfree_skb;
3550                 } else if (segs) {
3551                         consume_skb(skb);
3552                         skb = segs;
3553                 }
3554         } else {
3555                 if (skb_needs_linearize(skb, features) &&
3556                     __skb_linearize(skb))
3557                         goto out_kfree_skb;
3558
3559                 /* If packet is not checksummed and device does not
3560                  * support checksumming for this protocol, complete
3561                  * checksumming here.
3562                  */
3563                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3564                         if (skb->encapsulation)
3565                                 skb_set_inner_transport_header(skb,
3566                                                                skb_checksum_start_offset(skb));
3567                         else
3568                                 skb_set_transport_header(skb,
3569                                                          skb_checksum_start_offset(skb));
3570                         if (skb_csum_hwoffload_help(skb, features))
3571                                 goto out_kfree_skb;
3572                 }
3573         }
3574
3575         skb = validate_xmit_xfrm(skb, features, again);
3576
3577         return skb;
3578
3579 out_kfree_skb:
3580         kfree_skb(skb);
3581 out_null:
3582         atomic_long_inc(&dev->tx_dropped);
3583         return NULL;
3584 }
3585
3586 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3587 {
3588         struct sk_buff *next, *head = NULL, *tail;
3589
3590         for (; skb != NULL; skb = next) {
3591                 next = skb->next;
3592                 skb_mark_not_on_list(skb);
3593
3594                 /* in case skb wont be segmented, point to itself */
3595                 skb->prev = skb;
3596
3597                 skb = validate_xmit_skb(skb, dev, again);
3598                 if (!skb)
3599                         continue;
3600
3601                 if (!head)
3602                         head = skb;
3603                 else
3604                         tail->next = skb;
3605                 /* If skb was segmented, skb->prev points to
3606                  * the last segment. If not, it still contains skb.
3607                  */
3608                 tail = skb->prev;
3609         }
3610         return head;
3611 }
3612 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3613
3614 static void qdisc_pkt_len_init(struct sk_buff *skb)
3615 {
3616         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3617
3618         qdisc_skb_cb(skb)->pkt_len = skb->len;
3619
3620         /* To get more precise estimation of bytes sent on wire,
3621          * we add to pkt_len the headers size of all segments
3622          */
3623         if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3624                 unsigned int hdr_len;
3625                 u16 gso_segs = shinfo->gso_segs;
3626
3627                 /* mac layer + network layer */
3628                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3629
3630                 /* + transport layer */
3631                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3632                         const struct tcphdr *th;
3633                         struct tcphdr _tcphdr;
3634
3635                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3636                                                 sizeof(_tcphdr), &_tcphdr);
3637                         if (likely(th))
3638                                 hdr_len += __tcp_hdrlen(th);
3639                 } else {
3640                         struct udphdr _udphdr;
3641
3642                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3643                                                sizeof(_udphdr), &_udphdr))
3644                                 hdr_len += sizeof(struct udphdr);
3645                 }
3646
3647                 if (shinfo->gso_type & SKB_GSO_DODGY)
3648                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3649                                                 shinfo->gso_size);
3650
3651                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3652         }
3653 }
3654
3655 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3656                                  struct net_device *dev,
3657                                  struct netdev_queue *txq)
3658 {
3659         spinlock_t *root_lock = qdisc_lock(q);
3660         struct sk_buff *to_free = NULL;
3661         bool contended;
3662         int rc;
3663
3664         qdisc_calculate_pkt_len(skb, q);
3665
3666         if (q->flags & TCQ_F_NOLOCK) {
3667                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3668                 qdisc_run(q);
3669
3670                 if (unlikely(to_free))
3671                         kfree_skb_list(to_free);
3672                 return rc;
3673         }
3674
3675         /*
3676          * Heuristic to force contended enqueues to serialize on a
3677          * separate lock before trying to get qdisc main lock.
3678          * This permits qdisc->running owner to get the lock more
3679          * often and dequeue packets faster.
3680          */
3681         contended = qdisc_is_running(q);
3682         if (unlikely(contended))
3683                 spin_lock(&q->busylock);
3684
3685         spin_lock(root_lock);
3686         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3687                 __qdisc_drop(skb, &to_free);
3688                 rc = NET_XMIT_DROP;
3689         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3690                    qdisc_run_begin(q)) {
3691                 /*
3692                  * This is a work-conserving queue; there are no old skbs
3693                  * waiting to be sent out; and the qdisc is not running -
3694                  * xmit the skb directly.
3695                  */
3696
3697                 qdisc_bstats_update(q, skb);
3698
3699                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3700                         if (unlikely(contended)) {
3701                                 spin_unlock(&q->busylock);
3702                                 contended = false;
3703                         }
3704                         __qdisc_run(q);
3705                 }
3706
3707                 qdisc_run_end(q);
3708                 rc = NET_XMIT_SUCCESS;
3709         } else {
3710                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3711                 if (qdisc_run_begin(q)) {
3712                         if (unlikely(contended)) {
3713                                 spin_unlock(&q->busylock);
3714                                 contended = false;
3715                         }
3716                         __qdisc_run(q);
3717                         qdisc_run_end(q);
3718                 }
3719         }
3720         spin_unlock(root_lock);
3721         if (unlikely(to_free))
3722                 kfree_skb_list(to_free);
3723         if (unlikely(contended))
3724                 spin_unlock(&q->busylock);
3725         return rc;
3726 }
3727
3728 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3729 static void skb_update_prio(struct sk_buff *skb)
3730 {
3731         const struct netprio_map *map;
3732         const struct sock *sk;
3733         unsigned int prioidx;
3734
3735         if (skb->priority)
3736                 return;
3737         map = rcu_dereference_bh(skb->dev->priomap);
3738         if (!map)
3739                 return;
3740         sk = skb_to_full_sk(skb);
3741         if (!sk)
3742                 return;
3743
3744         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3745
3746         if (prioidx < map->priomap_len)
3747                 skb->priority = map->priomap[prioidx];
3748 }
3749 #else
3750 #define skb_update_prio(skb)
3751 #endif
3752
3753 /**
3754  *      dev_loopback_xmit - loop back @skb
3755  *      @net: network namespace this loopback is happening in
3756  *      @sk:  sk needed to be a netfilter okfn
3757  *      @skb: buffer to transmit
3758  */
3759 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3760 {
3761         skb_reset_mac_header(skb);
3762         __skb_pull(skb, skb_network_offset(skb));
3763         skb->pkt_type = PACKET_LOOPBACK;
3764         skb->ip_summed = CHECKSUM_UNNECESSARY;
3765         WARN_ON(!skb_dst(skb));
3766         skb_dst_force(skb);
3767         netif_rx_ni(skb);
3768         return 0;
3769 }
3770 EXPORT_SYMBOL(dev_loopback_xmit);
3771
3772 #ifdef CONFIG_NET_EGRESS
3773 static struct sk_buff *
3774 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3775 {
3776         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3777         struct tcf_result cl_res;
3778
3779         if (!miniq)
3780                 return skb;
3781
3782         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3783         mini_qdisc_bstats_cpu_update(miniq, skb);
3784
3785         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3786         case TC_ACT_OK:
3787         case TC_ACT_RECLASSIFY:
3788                 skb->tc_index = TC_H_MIN(cl_res.classid);
3789                 break;
3790         case TC_ACT_SHOT:
3791                 mini_qdisc_qstats_cpu_drop(miniq);
3792                 *ret = NET_XMIT_DROP;
3793                 kfree_skb(skb);
3794                 return NULL;
3795         case TC_ACT_STOLEN:
3796         case TC_ACT_QUEUED:
3797         case TC_ACT_TRAP:
3798                 *ret = NET_XMIT_SUCCESS;
3799                 consume_skb(skb);
3800                 return NULL;
3801         case TC_ACT_REDIRECT:
3802                 /* No need to push/pop skb's mac_header here on egress! */
3803                 skb_do_redirect(skb);
3804                 *ret = NET_XMIT_SUCCESS;
3805                 return NULL;
3806         default:
3807                 break;
3808         }
3809
3810         return skb;
3811 }
3812 #endif /* CONFIG_NET_EGRESS */
3813
3814 #ifdef CONFIG_XPS
3815 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3816                                struct xps_dev_maps *dev_maps, unsigned int tci)
3817 {
3818         struct xps_map *map;
3819         int queue_index = -1;
3820
3821         if (dev->num_tc) {
3822                 tci *= dev->num_tc;
3823                 tci += netdev_get_prio_tc_map(dev, skb->priority);
3824         }
3825
3826         map = rcu_dereference(dev_maps->attr_map[tci]);
3827         if (map) {
3828                 if (map->len == 1)
3829                         queue_index = map->queues[0];
3830                 else
3831                         queue_index = map->queues[reciprocal_scale(
3832                                                 skb_get_hash(skb), map->len)];
3833                 if (unlikely(queue_index >= dev->real_num_tx_queues))
3834                         queue_index = -1;
3835         }
3836         return queue_index;
3837 }
3838 #endif
3839
3840 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3841                          struct sk_buff *skb)
3842 {
3843 #ifdef CONFIG_XPS
3844         struct xps_dev_maps *dev_maps;
3845         struct sock *sk = skb->sk;
3846         int queue_index = -1;
3847
3848         if (!static_key_false(&xps_needed))
3849                 return -1;
3850
3851         rcu_read_lock();
3852         if (!static_key_false(&xps_rxqs_needed))
3853                 goto get_cpus_map;
3854
3855         dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3856         if (dev_maps) {
3857                 int tci = sk_rx_queue_get(sk);
3858
3859                 if (tci >= 0 && tci < dev->num_rx_queues)
3860                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3861                                                           tci);
3862         }
3863
3864 get_cpus_map:
3865         if (queue_index < 0) {
3866                 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3867                 if (dev_maps) {
3868                         unsigned int tci = skb->sender_cpu - 1;
3869
3870                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3871                                                           tci);
3872                 }
3873         }
3874         rcu_read_unlock();
3875
3876         return queue_index;
3877 #else
3878         return -1;
3879 #endif
3880 }
3881
3882 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3883                      struct net_device *sb_dev)
3884 {
3885         return 0;
3886 }
3887 EXPORT_SYMBOL(dev_pick_tx_zero);
3888
3889 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3890                        struct net_device *sb_dev)
3891 {
3892         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3893 }
3894 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3895
3896 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3897                      struct net_device *sb_dev)
3898 {
3899         struct sock *sk = skb->sk;
3900         int queue_index = sk_tx_queue_get(sk);
3901
3902         sb_dev = sb_dev ? : dev;
3903
3904         if (queue_index < 0 || skb->ooo_okay ||
3905             queue_index >= dev->real_num_tx_queues) {
3906                 int new_index = get_xps_queue(dev, sb_dev, skb);
3907
3908                 if (new_index < 0)
3909                         new_index = skb_tx_hash(dev, sb_dev, skb);
3910
3911                 if (queue_index != new_index && sk &&
3912                     sk_fullsock(sk) &&
3913                     rcu_access_pointer(sk->sk_dst_cache))
3914                         sk_tx_queue_set(sk, new_index);
3915
3916                 queue_index = new_index;
3917         }
3918
3919         return queue_index;
3920 }
3921 EXPORT_SYMBOL(netdev_pick_tx);
3922
3923 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
3924                                          struct sk_buff *skb,
3925                                          struct net_device *sb_dev)
3926 {
3927         int queue_index = 0;
3928
3929 #ifdef CONFIG_XPS
3930         u32 sender_cpu = skb->sender_cpu - 1;
3931
3932         if (sender_cpu >= (u32)NR_CPUS)
3933                 skb->sender_cpu = raw_smp_processor_id() + 1;
3934 #endif
3935
3936         if (dev->real_num_tx_queues != 1) {
3937                 const struct net_device_ops *ops = dev->netdev_ops;
3938
3939                 if (ops->ndo_select_queue)
3940                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
3941                 else
3942                         queue_index = netdev_pick_tx(dev, skb, sb_dev);
3943
3944                 queue_index = netdev_cap_txqueue(dev, queue_index);
3945         }
3946
3947         skb_set_queue_mapping(skb, queue_index);
3948         return netdev_get_tx_queue(dev, queue_index);
3949 }
3950
3951 /**
3952  *      __dev_queue_xmit - transmit a buffer
3953  *      @skb: buffer to transmit
3954  *      @sb_dev: suboordinate device used for L2 forwarding offload
3955  *
3956  *      Queue a buffer for transmission to a network device. The caller must
3957  *      have set the device and priority and built the buffer before calling
3958  *      this function. The function can be called from an interrupt.
3959  *
3960  *      A negative errno code is returned on a failure. A success does not
3961  *      guarantee the frame will be transmitted as it may be dropped due
3962  *      to congestion or traffic shaping.
3963  *
3964  * -----------------------------------------------------------------------------------
3965  *      I notice this method can also return errors from the queue disciplines,
3966  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3967  *      be positive.
3968  *
3969  *      Regardless of the return value, the skb is consumed, so it is currently
3970  *      difficult to retry a send to this method.  (You can bump the ref count
3971  *      before sending to hold a reference for retry if you are careful.)
3972  *
3973  *      When calling this method, interrupts MUST be enabled.  This is because
3974  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3975  *          --BLG
3976  */
3977 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
3978 {
3979         struct net_device *dev = skb->dev;
3980         struct netdev_queue *txq;
3981         struct Qdisc *q;
3982         int rc = -ENOMEM;
3983         bool again = false;
3984
3985         skb_reset_mac_header(skb);
3986
3987         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3988                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3989
3990         /* Disable soft irqs for various locks below. Also
3991          * stops preemption for RCU.
3992          */
3993         rcu_read_lock_bh();
3994
3995         skb_update_prio(skb);
3996
3997         qdisc_pkt_len_init(skb);
3998 #ifdef CONFIG_NET_CLS_ACT
3999         skb->tc_at_ingress = 0;
4000 # ifdef CONFIG_NET_EGRESS
4001         if (static_branch_unlikely(&egress_needed_key)) {
4002                 skb = sch_handle_egress(skb, &rc, dev);
4003                 if (!skb)
4004                         goto out;
4005         }
4006 # endif
4007 #endif
4008         /* If device/qdisc don't need skb->dst, release it right now while
4009          * its hot in this cpu cache.
4010          */
4011         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4012                 skb_dst_drop(skb);
4013         else
4014                 skb_dst_force(skb);
4015
4016         txq = netdev_core_pick_tx(dev, skb, sb_dev);
4017         q = rcu_dereference_bh(txq->qdisc);
4018
4019         trace_net_dev_queue(skb);
4020         if (q->enqueue) {
4021                 rc = __dev_xmit_skb(skb, q, dev, txq);
4022                 goto out;
4023         }
4024
4025         /* The device has no queue. Common case for software devices:
4026          * loopback, all the sorts of tunnels...
4027
4028          * Really, it is unlikely that netif_tx_lock protection is necessary
4029          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4030          * counters.)
4031          * However, it is possible, that they rely on protection
4032          * made by us here.
4033
4034          * Check this and shot the lock. It is not prone from deadlocks.
4035          *Either shot noqueue qdisc, it is even simpler 8)
4036          */
4037         if (dev->flags & IFF_UP) {
4038                 int cpu = smp_processor_id(); /* ok because BHs are off */
4039
4040                 if (txq->xmit_lock_owner != cpu) {
4041                         if (dev_xmit_recursion())
4042                                 goto recursion_alert;
4043
4044                         skb = validate_xmit_skb(skb, dev, &again);
4045                         if (!skb)
4046                                 goto out;
4047
4048                         HARD_TX_LOCK(dev, txq, cpu);
4049
4050                         if (!netif_xmit_stopped(txq)) {
4051                                 dev_xmit_recursion_inc();
4052                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4053                                 dev_xmit_recursion_dec();
4054                                 if (dev_xmit_complete(rc)) {
4055                                         HARD_TX_UNLOCK(dev, txq);
4056                                         goto out;
4057                                 }
4058                         }
4059                         HARD_TX_UNLOCK(dev, txq);
4060                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4061                                              dev->name);
4062                 } else {
4063                         /* Recursion is detected! It is possible,
4064                          * unfortunately
4065                          */
4066 recursion_alert:
4067                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4068                                              dev->name);
4069                 }
4070         }
4071
4072         rc = -ENETDOWN;
4073         rcu_read_unlock_bh();
4074
4075         atomic_long_inc(&dev->tx_dropped);
4076         kfree_skb_list(skb);
4077         return rc;
4078 out:
4079         rcu_read_unlock_bh();
4080         return rc;
4081 }
4082
4083 int dev_queue_xmit(struct sk_buff *skb)
4084 {
4085         return __dev_queue_xmit(skb, NULL);
4086 }
4087 EXPORT_SYMBOL(dev_queue_xmit);
4088
4089 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4090 {
4091         return __dev_queue_xmit(skb, sb_dev);
4092 }
4093 EXPORT_SYMBOL(dev_queue_xmit_accel);
4094
4095 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4096 {
4097         struct net_device *dev = skb->dev;
4098         struct sk_buff *orig_skb = skb;
4099         struct netdev_queue *txq;
4100         int ret = NETDEV_TX_BUSY;
4101         bool again = false;
4102
4103         if (unlikely(!netif_running(dev) ||
4104                      !netif_carrier_ok(dev)))
4105                 goto drop;
4106
4107         skb = validate_xmit_skb_list(skb, dev, &again);
4108         if (skb != orig_skb)
4109                 goto drop;
4110
4111         skb_set_queue_mapping(skb, queue_id);
4112         txq = skb_get_tx_queue(dev, skb);
4113
4114         local_bh_disable();
4115
4116         HARD_TX_LOCK(dev, txq, smp_processor_id());
4117         if (!netif_xmit_frozen_or_drv_stopped(txq))
4118                 ret = netdev_start_xmit(skb, dev, txq, false);
4119         HARD_TX_UNLOCK(dev, txq);
4120
4121         local_bh_enable();
4122
4123         if (!dev_xmit_complete(ret))
4124                 kfree_skb(skb);
4125
4126         return ret;
4127 drop:
4128         atomic_long_inc(&dev->tx_dropped);
4129         kfree_skb_list(skb);
4130         return NET_XMIT_DROP;
4131 }
4132 EXPORT_SYMBOL(dev_direct_xmit);
4133
4134 /*************************************************************************
4135  *                      Receiver routines
4136  *************************************************************************/
4137
4138 int netdev_max_backlog __read_mostly = 1000;
4139 EXPORT_SYMBOL(netdev_max_backlog);
4140
4141 int netdev_tstamp_prequeue __read_mostly = 1;
4142 int netdev_budget __read_mostly = 300;
4143 unsigned int __read_mostly netdev_budget_usecs = 2000;
4144 int weight_p __read_mostly = 64;           /* old backlog weight */
4145 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4146 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4147 int dev_rx_weight __read_mostly = 64;
4148 int dev_tx_weight __read_mostly = 64;
4149 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4150 int gro_normal_batch __read_mostly = 8;
4151
4152 /* Called with irq disabled */
4153 static inline void ____napi_schedule(struct softnet_data *sd,
4154                                      struct napi_struct *napi)
4155 {
4156         list_add_tail(&napi->poll_list, &sd->poll_list);
4157         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4158 }
4159
4160 #ifdef CONFIG_RPS
4161
4162 /* One global table that all flow-based protocols share. */
4163 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4164 EXPORT_SYMBOL(rps_sock_flow_table);
4165 u32 rps_cpu_mask __read_mostly;
4166 EXPORT_SYMBOL(rps_cpu_mask);
4167
4168 struct static_key_false rps_needed __read_mostly;
4169 EXPORT_SYMBOL(rps_needed);
4170 struct static_key_false rfs_needed __read_mostly;
4171 EXPORT_SYMBOL(rfs_needed);
4172
4173 static struct rps_dev_flow *
4174 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4175             struct rps_dev_flow *rflow, u16 next_cpu)
4176 {
4177         if (next_cpu < nr_cpu_ids) {
4178 #ifdef CONFIG_RFS_ACCEL
4179                 struct netdev_rx_queue *rxqueue;
4180                 struct rps_dev_flow_table *flow_table;
4181                 struct rps_dev_flow *old_rflow;
4182                 u32 flow_id;
4183                 u16 rxq_index;
4184                 int rc;
4185
4186                 /* Should we steer this flow to a different hardware queue? */
4187                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4188                     !(dev->features & NETIF_F_NTUPLE))
4189                         goto out;
4190                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4191                 if (rxq_index == skb_get_rx_queue(skb))
4192                         goto out;
4193
4194                 rxqueue = dev->_rx + rxq_index;
4195                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4196                 if (!flow_table)
4197                         goto out;
4198                 flow_id = skb_get_hash(skb) & flow_table->mask;
4199                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4200                                                         rxq_index, flow_id);
4201                 if (rc < 0)
4202                         goto out;
4203                 old_rflow = rflow;
4204                 rflow = &flow_table->flows[flow_id];
4205                 rflow->filter = rc;
4206                 if (old_rflow->filter == rflow->filter)
4207                         old_rflow->filter = RPS_NO_FILTER;
4208         out:
4209 #endif
4210                 rflow->last_qtail =
4211                         per_cpu(softnet_data, next_cpu).input_queue_head;
4212         }
4213
4214         rflow->cpu = next_cpu;
4215         return rflow;
4216 }
4217
4218 /*
4219  * get_rps_cpu is called from netif_receive_skb and returns the target
4220  * CPU from the RPS map of the receiving queue for a given skb.
4221  * rcu_read_lock must be held on entry.
4222  */
4223 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4224                        struct rps_dev_flow **rflowp)
4225 {
4226         const struct rps_sock_flow_table *sock_flow_table;
4227         struct netdev_rx_queue *rxqueue = dev->_rx;
4228         struct rps_dev_flow_table *flow_table;
4229         struct rps_map *map;
4230         int cpu = -1;
4231         u32 tcpu;
4232         u32 hash;
4233
4234         if (skb_rx_queue_recorded(skb)) {
4235                 u16 index = skb_get_rx_queue(skb);
4236
4237                 if (unlikely(index >= dev->real_num_rx_queues)) {
4238                         WARN_ONCE(dev->real_num_rx_queues > 1,
4239                                   "%s received packet on queue %u, but number "
4240                                   "of RX queues is %u\n",
4241                                   dev->name, index, dev->real_num_rx_queues);
4242                         goto done;
4243                 }
4244                 rxqueue += index;
4245         }
4246
4247         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4248
4249         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4250         map = rcu_dereference(rxqueue->rps_map);
4251         if (!flow_table && !map)
4252                 goto done;
4253
4254         skb_reset_network_header(skb);
4255         hash = skb_get_hash(skb);
4256         if (!hash)
4257                 goto done;
4258
4259         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4260         if (flow_table && sock_flow_table) {
4261                 struct rps_dev_flow *rflow;
4262                 u32 next_cpu;
4263                 u32 ident;
4264
4265                 /* First check into global flow table if there is a match */
4266                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4267                 if ((ident ^ hash) & ~rps_cpu_mask)
4268                         goto try_rps;
4269
4270                 next_cpu = ident & rps_cpu_mask;
4271
4272                 /* OK, now we know there is a match,
4273                  * we can look at the local (per receive queue) flow table
4274                  */
4275                 rflow = &flow_table->flows[hash & flow_table->mask];
4276                 tcpu = rflow->cpu;
4277
4278                 /*
4279                  * If the desired CPU (where last recvmsg was done) is
4280                  * different from current CPU (one in the rx-queue flow
4281                  * table entry), switch if one of the following holds:
4282                  *   - Current CPU is unset (>= nr_cpu_ids).
4283                  *   - Current CPU is offline.
4284                  *   - The current CPU's queue tail has advanced beyond the
4285                  *     last packet that was enqueued using this table entry.
4286                  *     This guarantees that all previous packets for the flow
4287                  *     have been dequeued, thus preserving in order delivery.
4288                  */
4289                 if (unlikely(tcpu != next_cpu) &&
4290                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4291                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4292                       rflow->last_qtail)) >= 0)) {
4293                         tcpu = next_cpu;
4294                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4295                 }
4296
4297                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4298                         *rflowp = rflow;
4299                         cpu = tcpu;
4300                         goto done;
4301                 }
4302         }
4303
4304 try_rps:
4305
4306         if (map) {
4307                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4308                 if (cpu_online(tcpu)) {
4309                         cpu = tcpu;
4310                         goto done;
4311                 }
4312         }
4313
4314 done:
4315         return cpu;
4316 }
4317
4318 #ifdef CONFIG_RFS_ACCEL
4319
4320 /**
4321  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4322  * @dev: Device on which the filter was set
4323  * @rxq_index: RX queue index
4324  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4325  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4326  *
4327  * Drivers that implement ndo_rx_flow_steer() should periodically call
4328  * this function for each installed filter and remove the filters for
4329  * which it returns %true.
4330  */
4331 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4332                          u32 flow_id, u16 filter_id)
4333 {
4334         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4335         struct rps_dev_flow_table *flow_table;
4336         struct rps_dev_flow *rflow;
4337         bool expire = true;
4338         unsigned int cpu;
4339
4340         rcu_read_lock();
4341         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4342         if (flow_table && flow_id <= flow_table->mask) {
4343                 rflow = &flow_table->flows[flow_id];
4344                 cpu = READ_ONCE(rflow->cpu);
4345                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4346                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4347                            rflow->last_qtail) <
4348                      (int)(10 * flow_table->mask)))
4349                         expire = false;
4350         }
4351         rcu_read_unlock();
4352         return expire;
4353 }
4354 EXPORT_SYMBOL(rps_may_expire_flow);
4355
4356 #endif /* CONFIG_RFS_ACCEL */
4357
4358 /* Called from hardirq (IPI) context */
4359 static void rps_trigger_softirq(void *data)
4360 {
4361         struct softnet_data *sd = data;
4362
4363         ____napi_schedule(sd, &sd->backlog);
4364         sd->received_rps++;
4365 }
4366
4367 #endif /* CONFIG_RPS */
4368
4369 /*
4370  * Check if this softnet_data structure is another cpu one
4371  * If yes, queue it to our IPI list and return 1
4372  * If no, return 0
4373  */
4374 static int rps_ipi_queued(struct softnet_data *sd)
4375 {
4376 #ifdef CONFIG_RPS
4377         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4378
4379         if (sd != mysd) {
4380                 sd->rps_ipi_next = mysd->rps_ipi_list;
4381                 mysd->rps_ipi_list = sd;
4382
4383                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4384                 return 1;
4385         }
4386 #endif /* CONFIG_RPS */
4387         return 0;
4388 }
4389
4390 #ifdef CONFIG_NET_FLOW_LIMIT
4391 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4392 #endif
4393
4394 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4395 {
4396 #ifdef CONFIG_NET_FLOW_LIMIT
4397         struct sd_flow_limit *fl;
4398         struct softnet_data *sd;
4399         unsigned int old_flow, new_flow;
4400
4401         if (qlen < (netdev_max_backlog >> 1))
4402                 return false;
4403
4404         sd = this_cpu_ptr(&softnet_data);
4405
4406         rcu_read_lock();
4407         fl = rcu_dereference(sd->flow_limit);
4408         if (fl) {
4409                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4410                 old_flow = fl->history[fl->history_head];
4411                 fl->history[fl->history_head] = new_flow;
4412
4413                 fl->history_head++;
4414                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4415
4416                 if (likely(fl->buckets[old_flow]))
4417                         fl->buckets[old_flow]--;
4418
4419                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4420                         fl->count++;
4421                         rcu_read_unlock();
4422                         return true;
4423                 }
4424         }
4425         rcu_read_unlock();
4426 #endif
4427         return false;
4428 }
4429
4430 /*
4431  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4432  * queue (may be a remote CPU queue).
4433  */
4434 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4435                               unsigned int *qtail)
4436 {
4437         struct softnet_data *sd;
4438         unsigned long flags;
4439         unsigned int qlen;
4440
4441         sd = &per_cpu(softnet_data, cpu);
4442
4443         local_irq_save(flags);
4444
4445         rps_lock(sd);
4446         if (!netif_running(skb->dev))
4447                 goto drop;
4448         qlen = skb_queue_len(&sd->input_pkt_queue);
4449         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4450                 if (qlen) {
4451 enqueue:
4452                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4453                         input_queue_tail_incr_save(sd, qtail);
4454                         rps_unlock(sd);
4455                         local_irq_restore(flags);
4456                         return NET_RX_SUCCESS;
4457                 }
4458
4459                 /* Schedule NAPI for backlog device
4460                  * We can use non atomic operation since we own the queue lock
4461                  */
4462                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4463                         if (!rps_ipi_queued(sd))
4464                                 ____napi_schedule(sd, &sd->backlog);
4465                 }
4466                 goto enqueue;
4467         }
4468
4469 drop:
4470         sd->dropped++;
4471         rps_unlock(sd);
4472
4473         local_irq_restore(flags);
4474
4475         atomic_long_inc(&skb->dev->rx_dropped);
4476         kfree_skb(skb);
4477         return NET_RX_DROP;
4478 }
4479
4480 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4481 {
4482         struct net_device *dev = skb->dev;
4483         struct netdev_rx_queue *rxqueue;
4484
4485         rxqueue = dev->_rx;
4486
4487         if (skb_rx_queue_recorded(skb)) {
4488                 u16 index = skb_get_rx_queue(skb);
4489
4490                 if (unlikely(index >= dev->real_num_rx_queues)) {
4491                         WARN_ONCE(dev->real_num_rx_queues > 1,
4492                                   "%s received packet on queue %u, but number "
4493                                   "of RX queues is %u\n",
4494                                   dev->name, index, dev->real_num_rx_queues);
4495
4496                         return rxqueue; /* Return first rxqueue */
4497                 }
4498                 rxqueue += index;
4499         }
4500         return rxqueue;
4501 }
4502
4503 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4504                                      struct xdp_buff *xdp,
4505                                      struct bpf_prog *xdp_prog)
4506 {
4507         struct netdev_rx_queue *rxqueue;
4508         void *orig_data, *orig_data_end;
4509         u32 metalen, act = XDP_DROP;
4510         __be16 orig_eth_type;
4511         struct ethhdr *eth;
4512         bool orig_bcast;
4513         int hlen, off;
4514         u32 mac_len;
4515
4516         /* Reinjected packets coming from act_mirred or similar should
4517          * not get XDP generic processing.
4518          */
4519         if (skb_is_redirected(skb))
4520                 return XDP_PASS;
4521
4522         /* XDP packets must be linear and must have sufficient headroom
4523          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4524          * native XDP provides, thus we need to do it here as well.
4525          */
4526         if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4527             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4528                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4529                 int troom = skb->tail + skb->data_len - skb->end;
4530
4531                 /* In case we have to go down the path and also linearize,
4532                  * then lets do the pskb_expand_head() work just once here.
4533                  */
4534                 if (pskb_expand_head(skb,
4535                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4536                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4537                         goto do_drop;
4538                 if (skb_linearize(skb))
4539                         goto do_drop;
4540         }
4541
4542         /* The XDP program wants to see the packet starting at the MAC
4543          * header.
4544          */
4545         mac_len = skb->data - skb_mac_header(skb);
4546         hlen = skb_headlen(skb) + mac_len;
4547         xdp->data = skb->data - mac_len;
4548         xdp->data_meta = xdp->data;
4549         xdp->data_end = xdp->data + hlen;
4550         xdp->data_hard_start = skb->data - skb_headroom(skb);
4551         orig_data_end = xdp->data_end;
4552         orig_data = xdp->data;
4553         eth = (struct ethhdr *)xdp->data;
4554         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4555         orig_eth_type = eth->h_proto;
4556
4557         rxqueue = netif_get_rxqueue(skb);
4558         xdp->rxq = &rxqueue->xdp_rxq;
4559
4560         act = bpf_prog_run_xdp(xdp_prog, xdp);
4561
4562         /* check if bpf_xdp_adjust_head was used */
4563         off = xdp->data - orig_data;
4564         if (off) {
4565                 if (off > 0)
4566                         __skb_pull(skb, off);
4567                 else if (off < 0)
4568                         __skb_push(skb, -off);
4569
4570                 skb->mac_header += off;
4571                 skb_reset_network_header(skb);
4572         }
4573
4574         /* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4575          * pckt.
4576          */
4577         off = orig_data_end - xdp->data_end;
4578         if (off != 0) {
4579                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4580                 skb->len -= off;
4581
4582         }
4583
4584         /* check if XDP changed eth hdr such SKB needs update */
4585         eth = (struct ethhdr *)xdp->data;
4586         if ((orig_eth_type != eth->h_proto) ||
4587             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4588                 __skb_push(skb, ETH_HLEN);
4589                 skb->protocol = eth_type_trans(skb, skb->dev);
4590         }
4591
4592         switch (act) {
4593         case XDP_REDIRECT:
4594         case XDP_TX:
4595                 __skb_push(skb, mac_len);
4596                 break;
4597         case XDP_PASS:
4598                 metalen = xdp->data - xdp->data_meta;
4599                 if (metalen)
4600                         skb_metadata_set(skb, metalen);
4601                 break;
4602         default:
4603                 bpf_warn_invalid_xdp_action(act);
4604                 /* fall through */
4605         case XDP_ABORTED:
4606                 trace_xdp_exception(skb->dev, xdp_prog, act);
4607                 /* fall through */
4608         case XDP_DROP:
4609         do_drop:
4610                 kfree_skb(skb);
4611                 break;
4612         }
4613
4614         return act;
4615 }
4616
4617 /* When doing generic XDP we have to bypass the qdisc layer and the
4618  * network taps in order to match in-driver-XDP behavior.
4619  */
4620 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4621 {
4622         struct net_device *dev = skb->dev;
4623         struct netdev_queue *txq;
4624         bool free_skb = true;
4625         int cpu, rc;
4626
4627         txq = netdev_core_pick_tx(dev, skb, NULL);
4628         cpu = smp_processor_id();
4629         HARD_TX_LOCK(dev, txq, cpu);
4630         if (!netif_xmit_stopped(txq)) {
4631                 rc = netdev_start_xmit(skb, dev, txq, 0);
4632                 if (dev_xmit_complete(rc))
4633                         free_skb = false;
4634         }
4635         HARD_TX_UNLOCK(dev, txq);
4636         if (free_skb) {
4637                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4638                 kfree_skb(skb);
4639         }
4640 }
4641
4642 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4643
4644 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4645 {
4646         if (xdp_prog) {
4647                 struct xdp_buff xdp;
4648                 u32 act;
4649                 int err;
4650
4651                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4652                 if (act != XDP_PASS) {
4653                         switch (act) {
4654                         case XDP_REDIRECT:
4655                                 err = xdp_do_generic_redirect(skb->dev, skb,
4656                                                               &xdp, xdp_prog);
4657                                 if (err)
4658                                         goto out_redir;
4659                                 break;
4660                         case XDP_TX:
4661                                 generic_xdp_tx(skb, xdp_prog);
4662                                 break;
4663                         }
4664                         return XDP_DROP;
4665                 }
4666         }
4667         return XDP_PASS;
4668 out_redir:
4669         kfree_skb(skb);
4670         return XDP_DROP;
4671 }
4672 EXPORT_SYMBOL_GPL(do_xdp_generic);
4673
4674 static int netif_rx_internal(struct sk_buff *skb)
4675 {
4676         int ret;
4677
4678         net_timestamp_check(netdev_tstamp_prequeue, skb);
4679
4680         trace_netif_rx(skb);
4681
4682 #ifdef CONFIG_RPS
4683         if (static_branch_unlikely(&rps_needed)) {
4684                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4685                 int cpu;
4686
4687                 preempt_disable();
4688                 rcu_read_lock();
4689
4690                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4691                 if (cpu < 0)
4692                         cpu = smp_processor_id();
4693
4694                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4695
4696                 rcu_read_unlock();
4697                 preempt_enable();
4698         } else
4699 #endif
4700         {
4701                 unsigned int qtail;
4702
4703                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4704                 put_cpu();
4705         }
4706         return ret;
4707 }
4708
4709 /**
4710  *      netif_rx        -       post buffer to the network code
4711  *      @skb: buffer to post
4712  *
4713  *      This function receives a packet from a device driver and queues it for
4714  *      the upper (protocol) levels to process.  It always succeeds. The buffer
4715  *      may be dropped during processing for congestion control or by the
4716  *      protocol layers.
4717  *
4718  *      return values:
4719  *      NET_RX_SUCCESS  (no congestion)
4720  *      NET_RX_DROP     (packet was dropped)
4721  *
4722  */
4723
4724 int netif_rx(struct sk_buff *skb)
4725 {
4726         int ret;
4727
4728         trace_netif_rx_entry(skb);
4729
4730         ret = netif_rx_internal(skb);
4731         trace_netif_rx_exit(ret);
4732
4733         return ret;
4734 }
4735 EXPORT_SYMBOL(netif_rx);
4736
4737 int netif_rx_ni(struct sk_buff *skb)
4738 {
4739         int err;
4740
4741         trace_netif_rx_ni_entry(skb);
4742
4743         preempt_disable();
4744         err = netif_rx_internal(skb);
4745         if (local_softirq_pending())
4746                 do_softirq();
4747         preempt_enable();
4748         trace_netif_rx_ni_exit(err);
4749
4750         return err;
4751 }
4752 EXPORT_SYMBOL(netif_rx_ni);
4753
4754 static __latent_entropy void net_tx_action(struct softirq_action *h)
4755 {
4756         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4757
4758         if (sd->completion_queue) {
4759                 struct sk_buff *clist;
4760
4761                 local_irq_disable();
4762                 clist = sd->completion_queue;
4763                 sd->completion_queue = NULL;
4764                 local_irq_enable();
4765
4766                 while (clist) {
4767                         struct sk_buff *skb = clist;
4768
4769                         clist = clist->next;
4770
4771                         WARN_ON(refcount_read(&skb->users));
4772                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4773                                 trace_consume_skb(skb);
4774                         else
4775                                 trace_kfree_skb(skb, net_tx_action);
4776
4777                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4778                                 __kfree_skb(skb);
4779                         else
4780                                 __kfree_skb_defer(skb);
4781                 }
4782
4783                 __kfree_skb_flush();
4784         }
4785
4786         if (sd->output_queue) {
4787                 struct Qdisc *head;
4788
4789                 local_irq_disable();
4790                 head = sd->output_queue;
4791                 sd->output_queue = NULL;
4792                 sd->output_queue_tailp = &sd->output_queue;
4793                 local_irq_enable();
4794
4795                 while (head) {
4796                         struct Qdisc *q = head;
4797                         spinlock_t *root_lock = NULL;
4798
4799                         head = head->next_sched;
4800
4801                         if (!(q->flags & TCQ_F_NOLOCK)) {
4802                                 root_lock = qdisc_lock(q);
4803                                 spin_lock(root_lock);
4804                         }
4805                         /* We need to make sure head->next_sched is read
4806                          * before clearing __QDISC_STATE_SCHED
4807                          */
4808                         smp_mb__before_atomic();
4809                         clear_bit(__QDISC_STATE_SCHED, &q->state);
4810                         qdisc_run(q);
4811                         if (root_lock)
4812                                 spin_unlock(root_lock);
4813                 }
4814         }
4815
4816         xfrm_dev_backlog(sd);
4817 }
4818
4819 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4820 /* This hook is defined here for ATM LANE */
4821 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4822                              unsigned char *addr) __read_mostly;
4823 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4824 #endif
4825
4826 static inline struct sk_buff *
4827 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4828                    struct net_device *orig_dev)
4829 {
4830 #ifdef CONFIG_NET_CLS_ACT
4831         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4832         struct tcf_result cl_res;
4833
4834         /* If there's at least one ingress present somewhere (so
4835          * we get here via enabled static key), remaining devices
4836          * that are not configured with an ingress qdisc will bail
4837          * out here.
4838          */
4839         if (!miniq)
4840                 return skb;
4841
4842         if (*pt_prev) {
4843                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4844                 *pt_prev = NULL;
4845         }
4846
4847         qdisc_skb_cb(skb)->pkt_len = skb->len;
4848         skb->tc_at_ingress = 1;
4849         mini_qdisc_bstats_cpu_update(miniq, skb);
4850
4851         switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
4852                                      &cl_res, false)) {
4853         case TC_ACT_OK:
4854         case TC_ACT_RECLASSIFY:
4855                 skb->tc_index = TC_H_MIN(cl_res.classid);
4856                 break;
4857         case TC_ACT_SHOT:
4858                 mini_qdisc_qstats_cpu_drop(miniq);
4859                 kfree_skb(skb);
4860                 return NULL;
4861         case TC_ACT_STOLEN:
4862         case TC_ACT_QUEUED:
4863         case TC_ACT_TRAP:
4864                 consume_skb(skb);
4865                 return NULL;
4866         case TC_ACT_REDIRECT:
4867                 /* skb_mac_header check was done by cls/act_bpf, so
4868                  * we can safely push the L2 header back before
4869                  * redirecting to another netdev
4870                  */
4871                 __skb_push(skb, skb->mac_len);
4872                 skb_do_redirect(skb);
4873                 return NULL;
4874         case TC_ACT_CONSUMED:
4875                 return NULL;
4876         default:
4877                 break;
4878         }
4879 #endif /* CONFIG_NET_CLS_ACT */
4880         return skb;
4881 }
4882
4883 /**
4884  *      netdev_is_rx_handler_busy - check if receive handler is registered
4885  *      @dev: device to check
4886  *
4887  *      Check if a receive handler is already registered for a given device.
4888  *      Return true if there one.
4889  *
4890  *      The caller must hold the rtnl_mutex.
4891  */
4892 bool netdev_is_rx_handler_busy(struct net_device *dev)
4893 {
4894         ASSERT_RTNL();
4895         return dev && rtnl_dereference(dev->rx_handler);
4896 }
4897 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4898
4899 /**
4900  *      netdev_rx_handler_register - register receive handler
4901  *      @dev: device to register a handler for
4902  *      @rx_handler: receive handler to register
4903  *      @rx_handler_data: data pointer that is used by rx handler
4904  *
4905  *      Register a receive handler for a device. This handler will then be
4906  *      called from __netif_receive_skb. A negative errno code is returned
4907  *      on a failure.
4908  *
4909  *      The caller must hold the rtnl_mutex.
4910  *
4911  *      For a general description of rx_handler, see enum rx_handler_result.
4912  */
4913 int netdev_rx_handler_register(struct net_device *dev,
4914                                rx_handler_func_t *rx_handler,
4915                                void *rx_handler_data)
4916 {
4917         if (netdev_is_rx_handler_busy(dev))
4918                 return -EBUSY;
4919
4920         if (dev->priv_flags & IFF_NO_RX_HANDLER)
4921                 return -EINVAL;
4922
4923         /* Note: rx_handler_data must be set before rx_handler */
4924         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4925         rcu_assign_pointer(dev->rx_handler, rx_handler);
4926
4927         return 0;
4928 }
4929 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4930
4931 /**
4932  *      netdev_rx_handler_unregister - unregister receive handler
4933  *      @dev: device to unregister a handler from
4934  *
4935  *      Unregister a receive handler from a device.
4936  *
4937  *      The caller must hold the rtnl_mutex.
4938  */
4939 void netdev_rx_handler_unregister(struct net_device *dev)
4940 {
4941
4942         ASSERT_RTNL();
4943         RCU_INIT_POINTER(dev->rx_handler, NULL);
4944         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4945          * section has a guarantee to see a non NULL rx_handler_data
4946          * as well.
4947          */
4948         synchronize_net();
4949         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4950 }
4951 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4952
4953 /*
4954  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4955  * the special handling of PFMEMALLOC skbs.
4956  */
4957 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4958 {
4959         switch (skb->protocol) {
4960         case htons(ETH_P_ARP):
4961         case htons(ETH_P_IP):
4962         case htons(ETH_P_IPV6):
4963         case htons(ETH_P_8021Q):
4964         case htons(ETH_P_8021AD):
4965                 return true;
4966         default:
4967                 return false;
4968         }
4969 }
4970
4971 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4972                              int *ret, struct net_device *orig_dev)
4973 {
4974         if (nf_hook_ingress_active(skb)) {
4975                 int ingress_retval;
4976
4977                 if (*pt_prev) {
4978                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
4979                         *pt_prev = NULL;
4980                 }
4981
4982                 rcu_read_lock();
4983                 ingress_retval = nf_hook_ingress(skb);
4984                 rcu_read_unlock();
4985                 return ingress_retval;
4986         }
4987         return 0;
4988 }
4989
4990 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
4991                                     struct packet_type **ppt_prev)
4992 {
4993         struct packet_type *ptype, *pt_prev;
4994         rx_handler_func_t *rx_handler;
4995         struct net_device *orig_dev;
4996         bool deliver_exact = false;
4997         int ret = NET_RX_DROP;
4998         __be16 type;
4999
5000         net_timestamp_check(!netdev_tstamp_prequeue, skb);
5001
5002         trace_netif_receive_skb(skb);
5003
5004         orig_dev = skb->dev;
5005
5006         skb_reset_network_header(skb);
5007         if (!skb_transport_header_was_set(skb))
5008                 skb_reset_transport_header(skb);
5009         skb_reset_mac_len(skb);
5010
5011         pt_prev = NULL;
5012
5013 another_round:
5014         skb->skb_iif = skb->dev->ifindex;
5015
5016         __this_cpu_inc(softnet_data.processed);
5017
5018         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5019                 int ret2;
5020
5021                 preempt_disable();
5022                 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5023                 preempt_enable();
5024
5025                 if (ret2 != XDP_PASS)
5026                         return NET_RX_DROP;
5027                 skb_reset_mac_len(skb);
5028         }
5029
5030         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5031             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5032                 skb = skb_vlan_untag(skb);
5033                 if (unlikely(!skb))
5034                         goto out;
5035         }
5036
5037         if (skb_skip_tc_classify(skb))
5038                 goto skip_classify;
5039
5040         if (pfmemalloc)
5041                 goto skip_taps;
5042
5043         list_for_each_entry_rcu(ptype, &ptype_all, list) {
5044                 if (pt_prev)
5045                         ret = deliver_skb(skb, pt_prev, orig_dev);
5046                 pt_prev = ptype;
5047         }
5048
5049         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5050                 if (pt_prev)
5051                         ret = deliver_skb(skb, pt_prev, orig_dev);
5052                 pt_prev = ptype;
5053         }
5054
5055 skip_taps:
5056 #ifdef CONFIG_NET_INGRESS
5057         if (static_branch_unlikely(&ingress_needed_key)) {
5058                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
5059                 if (!skb)
5060                         goto out;
5061
5062                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5063                         goto out;
5064         }
5065 #endif
5066         skb_reset_redirect(skb);
5067 skip_classify:
5068         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5069                 goto drop;
5070
5071         if (skb_vlan_tag_present(skb)) {
5072                 if (pt_prev) {
5073                         ret = deliver_skb(skb, pt_prev, orig_dev);
5074                         pt_prev = NULL;
5075                 }
5076                 if (vlan_do_receive(&skb))
5077                         goto another_round;
5078                 else if (unlikely(!skb))
5079                         goto out;
5080         }
5081
5082         rx_handler = rcu_dereference(skb->dev->rx_handler);
5083         if (rx_handler) {
5084                 if (pt_prev) {
5085                         ret = deliver_skb(skb, pt_prev, orig_dev);
5086                         pt_prev = NULL;
5087                 }
5088                 switch (rx_handler(&skb)) {
5089                 case RX_HANDLER_CONSUMED:
5090                         ret = NET_RX_SUCCESS;
5091                         goto out;
5092                 case RX_HANDLER_ANOTHER:
5093                         goto another_round;
5094                 case RX_HANDLER_EXACT:
5095                         deliver_exact = true;
5096                 case RX_HANDLER_PASS:
5097                         break;
5098                 default:
5099                         BUG();
5100                 }
5101         }
5102
5103         if (unlikely(skb_vlan_tag_present(skb))) {
5104 check_vlan_id:
5105                 if (skb_vlan_tag_get_id(skb)) {
5106                         /* Vlan id is non 0 and vlan_do_receive() above couldn't
5107                          * find vlan device.
5108                          */
5109                         skb->pkt_type = PACKET_OTHERHOST;
5110                 } else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5111                            skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5112                         /* Outer header is 802.1P with vlan 0, inner header is
5113                          * 802.1Q or 802.1AD and vlan_do_receive() above could
5114                          * not find vlan dev for vlan id 0.
5115                          */
5116                         __vlan_hwaccel_clear_tag(skb);
5117                         skb = skb_vlan_untag(skb);
5118                         if (unlikely(!skb))
5119                                 goto out;
5120                         if (vlan_do_receive(&skb))
5121                                 /* After stripping off 802.1P header with vlan 0
5122                                  * vlan dev is found for inner header.
5123                                  */
5124                                 goto another_round;
5125                         else if (unlikely(!skb))
5126                                 goto out;
5127                         else
5128                                 /* We have stripped outer 802.1P vlan 0 header.
5129                                  * But could not find vlan dev.
5130                                  * check again for vlan id to set OTHERHOST.
5131                                  */
5132                                 goto check_vlan_id;
5133                 }
5134                 /* Note: we might in the future use prio bits
5135                  * and set skb->priority like in vlan_do_receive()
5136                  * For the time being, just ignore Priority Code Point
5137                  */
5138                 __vlan_hwaccel_clear_tag(skb);
5139         }
5140
5141         type = skb->protocol;
5142
5143         /* deliver only exact match when indicated */
5144         if (likely(!deliver_exact)) {
5145                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5146                                        &ptype_base[ntohs(type) &
5147                                                    PTYPE_HASH_MASK]);
5148         }
5149
5150         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5151                                &orig_dev->ptype_specific);
5152
5153         if (unlikely(skb->dev != orig_dev)) {
5154                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5155                                        &skb->dev->ptype_specific);
5156         }
5157
5158         if (pt_prev) {
5159                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5160                         goto drop;
5161                 *ppt_prev = pt_prev;
5162         } else {
5163 drop:
5164                 if (!deliver_exact)
5165                         atomic_long_inc(&skb->dev->rx_dropped);
5166                 else
5167                         atomic_long_inc(&skb->dev->rx_nohandler);
5168                 kfree_skb(skb);
5169                 /* Jamal, now you will not able to escape explaining
5170                  * me how you were going to use this. :-)
5171                  */
5172                 ret = NET_RX_DROP;
5173         }
5174
5175 out:
5176         return ret;
5177 }
5178
5179 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5180 {
5181         struct net_device *orig_dev = skb->dev;
5182         struct packet_type *pt_prev = NULL;
5183         int ret;
5184
5185         ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5186         if (pt_prev)
5187                 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5188                                          skb->dev, pt_prev, orig_dev);
5189         return ret;
5190 }
5191
5192 /**
5193  *      netif_receive_skb_core - special purpose version of netif_receive_skb
5194  *      @skb: buffer to process
5195  *
5196  *      More direct receive version of netif_receive_skb().  It should
5197  *      only be used by callers that have a need to skip RPS and Generic XDP.
5198  *      Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5199  *
5200  *      This function may only be called from softirq context and interrupts
5201  *      should be enabled.
5202  *
5203  *      Return values (usually ignored):
5204  *      NET_RX_SUCCESS: no congestion
5205  *      NET_RX_DROP: packet was dropped
5206  */
5207 int netif_receive_skb_core(struct sk_buff *skb)
5208 {
5209         int ret;
5210
5211         rcu_read_lock();
5212         ret = __netif_receive_skb_one_core(skb, false);
5213         rcu_read_unlock();
5214
5215         return ret;
5216 }
5217 EXPORT_SYMBOL(netif_receive_skb_core);
5218
5219 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5220                                                   struct packet_type *pt_prev,
5221                                                   struct net_device *orig_dev)
5222 {
5223         struct sk_buff *skb, *next;
5224
5225         if (!pt_prev)
5226                 return;
5227         if (list_empty(head))
5228                 return;
5229         if (pt_prev->list_func != NULL)
5230                 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5231                                    ip_list_rcv, head, pt_prev, orig_dev);
5232         else
5233                 list_for_each_entry_safe(skb, next, head, list) {
5234                         skb_list_del_init(skb);
5235                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5236                 }
5237 }
5238
5239 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5240 {
5241         /* Fast-path assumptions:
5242          * - There is no RX handler.
5243          * - Only one packet_type matches.
5244          * If either of these fails, we will end up doing some per-packet
5245          * processing in-line, then handling the 'last ptype' for the whole
5246          * sublist.  This can't cause out-of-order delivery to any single ptype,
5247          * because the 'last ptype' must be constant across the sublist, and all
5248          * other ptypes are handled per-packet.
5249          */
5250         /* Current (common) ptype of sublist */
5251         struct packet_type *pt_curr = NULL;
5252         /* Current (common) orig_dev of sublist */
5253         struct net_device *od_curr = NULL;
5254         struct list_head sublist;
5255         struct sk_buff *skb, *next;
5256
5257         INIT_LIST_HEAD(&sublist);
5258         list_for_each_entry_safe(skb, next, head, list) {
5259                 struct net_device *orig_dev = skb->dev;
5260                 struct packet_type *pt_prev = NULL;
5261
5262                 skb_list_del_init(skb);
5263                 __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5264                 if (!pt_prev)
5265                         continue;
5266                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5267                         /* dispatch old sublist */
5268                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5269                         /* start new sublist */
5270                         INIT_LIST_HEAD(&sublist);
5271                         pt_curr = pt_prev;
5272                         od_curr = orig_dev;
5273                 }
5274                 list_add_tail(&skb->list, &sublist);
5275         }
5276
5277         /* dispatch final sublist */
5278         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5279 }
5280
5281 static int __netif_receive_skb(struct sk_buff *skb)
5282 {
5283         int ret;
5284
5285         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5286                 unsigned int noreclaim_flag;
5287
5288                 /*
5289                  * PFMEMALLOC skbs are special, they should
5290                  * - be delivered to SOCK_MEMALLOC sockets only
5291                  * - stay away from userspace
5292                  * - have bounded memory usage
5293                  *
5294                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5295                  * context down to all allocation sites.
5296                  */
5297                 noreclaim_flag = memalloc_noreclaim_save();
5298                 ret = __netif_receive_skb_one_core(skb, true);
5299                 memalloc_noreclaim_restore(noreclaim_flag);
5300         } else
5301                 ret = __netif_receive_skb_one_core(skb, false);
5302
5303         return ret;
5304 }
5305
5306 static void __netif_receive_skb_list(struct list_head *head)
5307 {
5308         unsigned long noreclaim_flag = 0;
5309         struct sk_buff *skb, *next;
5310         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5311
5312         list_for_each_entry_safe(skb, next, head, list) {
5313                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5314                         struct list_head sublist;
5315
5316                         /* Handle the previous sublist */
5317                         list_cut_before(&sublist, head, &skb->list);
5318                         if (!list_empty(&sublist))
5319                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5320                         pfmemalloc = !pfmemalloc;
5321                         /* See comments in __netif_receive_skb */
5322                         if (pfmemalloc)
5323                                 noreclaim_flag = memalloc_noreclaim_save();
5324                         else
5325                                 memalloc_noreclaim_restore(noreclaim_flag);
5326                 }
5327         }
5328         /* Handle the remaining sublist */
5329         if (!list_empty(head))
5330                 __netif_receive_skb_list_core(head, pfmemalloc);
5331         /* Restore pflags */
5332         if (pfmemalloc)
5333                 memalloc_noreclaim_restore(noreclaim_flag);
5334 }
5335
5336 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5337 {
5338         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5339         struct bpf_prog *new = xdp->prog;
5340         int ret = 0;
5341
5342         switch (xdp->command) {
5343         case XDP_SETUP_PROG:
5344                 rcu_assign_pointer(dev->xdp_prog, new);
5345                 if (old)
5346                         bpf_prog_put(old);
5347
5348                 if (old && !new) {
5349                         static_branch_dec(&generic_xdp_needed_key);
5350                 } else if (new && !old) {
5351                         static_branch_inc(&generic_xdp_needed_key);
5352                         dev_disable_lro(dev);
5353                         dev_disable_gro_hw(dev);
5354                 }
5355                 break;
5356
5357         case XDP_QUERY_PROG:
5358                 xdp->prog_id = old ? old->aux->id : 0;
5359                 break;
5360
5361         default:
5362                 ret = -EINVAL;
5363                 break;
5364         }
5365
5366         return ret;
5367 }
5368
5369 static int netif_receive_skb_internal(struct sk_buff *skb)
5370 {
5371         int ret;
5372
5373         net_timestamp_check(netdev_tstamp_prequeue, skb);
5374
5375         if (skb_defer_rx_timestamp(skb))
5376                 return NET_RX_SUCCESS;
5377
5378         rcu_read_lock();
5379 #ifdef CONFIG_RPS
5380         if (static_branch_unlikely(&rps_needed)) {
5381                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5382                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5383
5384                 if (cpu >= 0) {
5385                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5386                         rcu_read_unlock();
5387                         return ret;
5388                 }
5389         }
5390 #endif
5391         ret = __netif_receive_skb(skb);
5392         rcu_read_unlock();
5393         return ret;
5394 }
5395
5396 static void netif_receive_skb_list_internal(struct list_head *head)
5397 {
5398         struct sk_buff *skb, *next;
5399         struct list_head sublist;
5400
5401         INIT_LIST_HEAD(&sublist);
5402         list_for_each_entry_safe(skb, next, head, list) {
5403                 net_timestamp_check(netdev_tstamp_prequeue, skb);
5404                 skb_list_del_init(skb);
5405                 if (!skb_defer_rx_timestamp(skb))
5406                         list_add_tail(&skb->list, &sublist);
5407         }
5408         list_splice_init(&sublist, head);
5409
5410         rcu_read_lock();
5411 #ifdef CONFIG_RPS
5412         if (static_branch_unlikely(&rps_needed)) {
5413                 list_for_each_entry_safe(skb, next, head, list) {
5414                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5415                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5416
5417                         if (cpu >= 0) {
5418                                 /* Will be handled, remove from list */
5419                                 skb_list_del_init(skb);
5420                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5421                         }
5422                 }
5423         }
5424 #endif
5425         __netif_receive_skb_list(head);
5426         rcu_read_unlock();
5427 }
5428
5429 /**
5430  *      netif_receive_skb - process receive buffer from network
5431  *      @skb: buffer to process
5432  *
5433  *      netif_receive_skb() is the main receive data processing function.
5434  *      It always succeeds. The buffer may be dropped during processing
5435  *      for congestion control or by the protocol layers.
5436  *
5437  *      This function may only be called from softirq context and interrupts
5438  *      should be enabled.
5439  *
5440  *      Return values (usually ignored):
5441  *      NET_RX_SUCCESS: no congestion
5442  *      NET_RX_DROP: packet was dropped
5443  */
5444 int netif_receive_skb(struct sk_buff *skb)
5445 {
5446         int ret;
5447
5448         trace_netif_receive_skb_entry(skb);
5449
5450         ret = netif_receive_skb_internal(skb);
5451         trace_netif_receive_skb_exit(ret);
5452
5453         return ret;
5454 }
5455 EXPORT_SYMBOL(netif_receive_skb);
5456
5457 /**
5458  *      netif_receive_skb_list - process many receive buffers from network
5459  *      @head: list of skbs to process.
5460  *
5461  *      Since return value of netif_receive_skb() is normally ignored, and
5462  *      wouldn't be meaningful for a list, this function returns void.
5463  *
5464  *      This function may only be called from softirq context and interrupts
5465  *      should be enabled.
5466  */
5467 void netif_receive_skb_list(struct list_head *head)
5468 {
5469         struct sk_buff *skb;
5470
5471         if (list_empty(head))
5472                 return;
5473         if (trace_netif_receive_skb_list_entry_enabled()) {
5474                 list_for_each_entry(skb, head, list)
5475                         trace_netif_receive_skb_list_entry(skb);
5476         }
5477         netif_receive_skb_list_internal(head);
5478         trace_netif_receive_skb_list_exit(0);
5479 }
5480 EXPORT_SYMBOL(netif_receive_skb_list);
5481
5482 DEFINE_PER_CPU(struct work_struct, flush_works);
5483
5484 /* Network device is going away, flush any packets still pending */
5485 static void flush_backlog(struct work_struct *work)
5486 {
5487         struct sk_buff *skb, *tmp;
5488         struct softnet_data *sd;
5489
5490         local_bh_disable();
5491         sd = this_cpu_ptr(&softnet_data);
5492
5493         local_irq_disable();
5494         rps_lock(sd);
5495         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5496                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5497                         __skb_unlink(skb, &sd->input_pkt_queue);
5498                         kfree_skb(skb);
5499                         input_queue_head_incr(sd);
5500                 }
5501         }
5502         rps_unlock(sd);
5503         local_irq_enable();
5504
5505         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5506                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5507                         __skb_unlink(skb, &sd->process_queue);
5508                         kfree_skb(skb);
5509                         input_queue_head_incr(sd);
5510                 }
5511         }
5512         local_bh_enable();
5513 }
5514
5515 static void flush_all_backlogs(void)
5516 {
5517         unsigned int cpu;
5518
5519         get_online_cpus();
5520
5521         for_each_online_cpu(cpu)
5522                 queue_work_on(cpu, system_highpri_wq,
5523                               per_cpu_ptr(&flush_works, cpu));
5524
5525         for_each_online_cpu(cpu)
5526                 flush_work(per_cpu_ptr(&flush_works, cpu));
5527
5528         put_online_cpus();
5529 }
5530
5531 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5532 static void gro_normal_list(struct napi_struct *napi)
5533 {
5534         if (!napi->rx_count)
5535                 return;
5536         netif_receive_skb_list_internal(&napi->rx_list);
5537         INIT_LIST_HEAD(&napi->rx_list);
5538         napi->rx_count = 0;
5539 }
5540
5541 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5542  * pass the whole batch up to the stack.
5543  */
5544 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb)
5545 {
5546         list_add_tail(&skb->list, &napi->rx_list);
5547         if (++napi->rx_count >= gro_normal_batch)
5548                 gro_normal_list(napi);
5549 }
5550
5551 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5552 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
5553 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5554 {
5555         struct packet_offload *ptype;
5556         __be16 type = skb->protocol;
5557         struct list_head *head = &offload_base;
5558         int err = -ENOENT;
5559
5560         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5561
5562         if (NAPI_GRO_CB(skb)->count == 1) {
5563                 skb_shinfo(skb)->gso_size = 0;
5564                 goto out;
5565         }
5566
5567         rcu_read_lock();
5568         list_for_each_entry_rcu(ptype, head, list) {
5569                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5570                         continue;
5571
5572                 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5573                                          ipv6_gro_complete, inet_gro_complete,
5574                                          skb, 0);
5575                 break;
5576         }
5577         rcu_read_unlock();
5578
5579         if (err) {
5580                 WARN_ON(&ptype->list == head);
5581                 kfree_skb(skb);
5582                 return NET_RX_SUCCESS;
5583         }
5584
5585 out:
5586         gro_normal_one(napi, skb);
5587         return NET_RX_SUCCESS;
5588 }
5589
5590 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5591                                    bool flush_old)
5592 {
5593         struct list_head *head = &napi->gro_hash[index].list;
5594         struct sk_buff *skb, *p;
5595
5596         list_for_each_entry_safe_reverse(skb, p, head, list) {
5597                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5598                         return;
5599                 skb_list_del_init(skb);
5600                 napi_gro_complete(napi, skb);
5601                 napi->gro_hash[index].count--;
5602         }
5603
5604         if (!napi->gro_hash[index].count)
5605                 __clear_bit(index, &napi->gro_bitmask);
5606 }
5607
5608 /* napi->gro_hash[].list contains packets ordered by age.
5609  * youngest packets at the head of it.
5610  * Complete skbs in reverse order to reduce latencies.
5611  */
5612 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5613 {
5614         unsigned long bitmask = napi->gro_bitmask;
5615         unsigned int i, base = ~0U;
5616
5617         while ((i = ffs(bitmask)) != 0) {
5618                 bitmask >>= i;
5619                 base += i;
5620                 __napi_gro_flush_chain(napi, base, flush_old);
5621         }
5622 }
5623 EXPORT_SYMBOL(napi_gro_flush);
5624
5625 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5626                                           struct sk_buff *skb)
5627 {
5628         unsigned int maclen = skb->dev->hard_header_len;
5629         u32 hash = skb_get_hash_raw(skb);
5630         struct list_head *head;
5631         struct sk_buff *p;
5632
5633         head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5634         list_for_each_entry(p, head, list) {
5635                 unsigned long diffs;
5636
5637                 NAPI_GRO_CB(p)->flush = 0;
5638
5639                 if (hash != skb_get_hash_raw(p)) {
5640                         NAPI_GRO_CB(p)->same_flow = 0;
5641                         continue;
5642                 }
5643
5644                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5645                 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5646                 if (skb_vlan_tag_present(p))
5647                         diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5648                 diffs |= skb_metadata_dst_cmp(p, skb);
5649                 diffs |= skb_metadata_differs(p, skb);
5650                 if (maclen == ETH_HLEN)
5651                         diffs |= compare_ether_header(skb_mac_header(p),
5652                                                       skb_mac_header(skb));
5653                 else if (!diffs)
5654                         diffs = memcmp(skb_mac_header(p),
5655                                        skb_mac_header(skb),
5656                                        maclen);
5657                 NAPI_GRO_CB(p)->same_flow = !diffs;
5658         }
5659
5660         return head;
5661 }
5662
5663 static void skb_gro_reset_offset(struct sk_buff *skb)
5664 {
5665         const struct skb_shared_info *pinfo = skb_shinfo(skb);
5666         const skb_frag_t *frag0 = &pinfo->frags[0];
5667
5668         NAPI_GRO_CB(skb)->data_offset = 0;
5669         NAPI_GRO_CB(skb)->frag0 = NULL;
5670         NAPI_GRO_CB(skb)->frag0_len = 0;
5671
5672         if (!skb_headlen(skb) && pinfo->nr_frags &&
5673             !PageHighMem(skb_frag_page(frag0))) {
5674                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5675                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5676                                                     skb_frag_size(frag0),
5677                                                     skb->end - skb->tail);
5678         }
5679 }
5680
5681 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5682 {
5683         struct skb_shared_info *pinfo = skb_shinfo(skb);
5684
5685         BUG_ON(skb->end - skb->tail < grow);
5686
5687         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5688
5689         skb->data_len -= grow;
5690         skb->tail += grow;
5691
5692         skb_frag_off_add(&pinfo->frags[0], grow);
5693         skb_frag_size_sub(&pinfo->frags[0], grow);
5694
5695         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5696                 skb_frag_unref(skb, 0);
5697                 memmove(pinfo->frags, pinfo->frags + 1,
5698                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5699         }
5700 }
5701
5702 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
5703 {
5704         struct sk_buff *oldest;
5705
5706         oldest = list_last_entry(head, struct sk_buff, list);
5707
5708         /* We are called with head length >= MAX_GRO_SKBS, so this is
5709          * impossible.
5710          */
5711         if (WARN_ON_ONCE(!oldest))
5712                 return;
5713
5714         /* Do not adjust napi->gro_hash[].count, caller is adding a new
5715          * SKB to the chain.
5716          */
5717         skb_list_del_init(oldest);
5718         napi_gro_complete(napi, oldest);
5719 }
5720
5721 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5722                                                            struct sk_buff *));
5723 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5724                                                            struct sk_buff *));
5725 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5726 {
5727         u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5728         struct list_head *head = &offload_base;
5729         struct packet_offload *ptype;
5730         __be16 type = skb->protocol;
5731         struct list_head *gro_head;
5732         struct sk_buff *pp = NULL;
5733         enum gro_result ret;
5734         int same_flow;
5735         int grow;
5736
5737         if (netif_elide_gro(skb->dev))
5738                 goto normal;
5739
5740         gro_head = gro_list_prepare(napi, skb);
5741
5742         rcu_read_lock();
5743         list_for_each_entry_rcu(ptype, head, list) {
5744                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5745                         continue;
5746
5747                 skb_set_network_header(skb, skb_gro_offset(skb));
5748                 skb_reset_mac_len(skb);
5749                 NAPI_GRO_CB(skb)->same_flow = 0;
5750                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5751                 NAPI_GRO_CB(skb)->free = 0;
5752                 NAPI_GRO_CB(skb)->encap_mark = 0;
5753                 NAPI_GRO_CB(skb)->recursion_counter = 0;
5754                 NAPI_GRO_CB(skb)->is_fou = 0;
5755                 NAPI_GRO_CB(skb)->is_atomic = 1;
5756                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5757
5758                 /* Setup for GRO checksum validation */
5759                 switch (skb->ip_summed) {
5760                 case CHECKSUM_COMPLETE:
5761                         NAPI_GRO_CB(skb)->csum = skb->csum;
5762                         NAPI_GRO_CB(skb)->csum_valid = 1;
5763                         NAPI_GRO_CB(skb)->csum_cnt = 0;
5764                         break;
5765                 case CHECKSUM_UNNECESSARY:
5766                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5767                         NAPI_GRO_CB(skb)->csum_valid = 0;
5768                         break;
5769                 default:
5770                         NAPI_GRO_CB(skb)->csum_cnt = 0;
5771                         NAPI_GRO_CB(skb)->csum_valid = 0;
5772                 }
5773
5774                 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5775                                         ipv6_gro_receive, inet_gro_receive,
5776                                         gro_head, skb);
5777                 break;
5778         }
5779         rcu_read_unlock();
5780
5781         if (&ptype->list == head)
5782                 goto normal;
5783
5784         if (PTR_ERR(pp) == -EINPROGRESS) {
5785                 ret = GRO_CONSUMED;
5786                 goto ok;
5787         }
5788
5789         same_flow = NAPI_GRO_CB(skb)->same_flow;
5790         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5791
5792         if (pp) {
5793                 skb_list_del_init(pp);
5794                 napi_gro_complete(napi, pp);
5795                 napi->gro_hash[hash].count--;
5796         }
5797
5798         if (same_flow)
5799                 goto ok;
5800
5801         if (NAPI_GRO_CB(skb)->flush)
5802                 goto normal;
5803
5804         if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5805                 gro_flush_oldest(napi, gro_head);
5806         } else {
5807                 napi->gro_hash[hash].count++;
5808         }
5809         NAPI_GRO_CB(skb)->count = 1;
5810         NAPI_GRO_CB(skb)->age = jiffies;
5811         NAPI_GRO_CB(skb)->last = skb;
5812         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5813         list_add(&skb->list, gro_head);
5814         ret = GRO_HELD;
5815
5816 pull:
5817         grow = skb_gro_offset(skb) - skb_headlen(skb);
5818         if (grow > 0)
5819                 gro_pull_from_frag0(skb, grow);
5820 ok:
5821         if (napi->gro_hash[hash].count) {
5822                 if (!test_bit(hash, &napi->gro_bitmask))
5823                         __set_bit(hash, &napi->gro_bitmask);
5824         } else if (test_bit(hash, &napi->gro_bitmask)) {
5825                 __clear_bit(hash, &napi->gro_bitmask);
5826         }
5827
5828         return ret;
5829
5830 normal:
5831         ret = GRO_NORMAL;
5832         goto pull;
5833 }
5834
5835 struct packet_offload *gro_find_receive_by_type(__be16 type)
5836 {
5837         struct list_head *offload_head = &offload_base;
5838         struct packet_offload *ptype;
5839
5840         list_for_each_entry_rcu(ptype, offload_head, list) {
5841                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5842                         continue;
5843                 return ptype;
5844         }
5845         return NULL;
5846 }
5847 EXPORT_SYMBOL(gro_find_receive_by_type);
5848
5849 struct packet_offload *gro_find_complete_by_type(__be16 type)
5850 {
5851         struct list_head *offload_head = &offload_base;
5852         struct packet_offload *ptype;
5853
5854         list_for_each_entry_rcu(ptype, offload_head, list) {
5855                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5856                         continue;
5857                 return ptype;
5858         }
5859         return NULL;
5860 }
5861 EXPORT_SYMBOL(gro_find_complete_by_type);
5862
5863 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5864 {
5865         skb_dst_drop(skb);
5866         skb_ext_put(skb);
5867         kmem_cache_free(skbuff_head_cache, skb);
5868 }
5869
5870 static gro_result_t napi_skb_finish(struct napi_struct *napi,
5871                                     struct sk_buff *skb,
5872                                     gro_result_t ret)
5873 {
5874         switch (ret) {
5875         case GRO_NORMAL:
5876                 gro_normal_one(napi, skb);
5877                 break;
5878
5879         case GRO_DROP:
5880                 kfree_skb(skb);
5881                 break;
5882
5883         case GRO_MERGED_FREE:
5884                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5885                         napi_skb_free_stolen_head(skb);
5886                 else
5887                         __kfree_skb(skb);
5888                 break;
5889
5890         case GRO_HELD:
5891         case GRO_MERGED:
5892         case GRO_CONSUMED:
5893                 break;
5894         }
5895
5896         return ret;
5897 }
5898
5899 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5900 {
5901         gro_result_t ret;
5902
5903         skb_mark_napi_id(skb, napi);
5904         trace_napi_gro_receive_entry(skb);
5905
5906         skb_gro_reset_offset(skb);
5907
5908         ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
5909         trace_napi_gro_receive_exit(ret);
5910
5911         return ret;
5912 }
5913 EXPORT_SYMBOL(napi_gro_receive);
5914
5915 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5916 {
5917         if (unlikely(skb->pfmemalloc)) {
5918                 consume_skb(skb);
5919                 return;
5920         }
5921         __skb_pull(skb, skb_headlen(skb));
5922         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5923         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5924         __vlan_hwaccel_clear_tag(skb);
5925         skb->dev = napi->dev;
5926         skb->skb_iif = 0;
5927
5928         /* eth_type_trans() assumes pkt_type is PACKET_HOST */
5929         skb->pkt_type = PACKET_HOST;
5930
5931         skb->encapsulation = 0;
5932         skb_shinfo(skb)->gso_type = 0;
5933         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5934         skb_ext_reset(skb);
5935
5936         napi->skb = skb;
5937 }
5938
5939 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5940 {
5941         struct sk_buff *skb = napi->skb;
5942
5943         if (!skb) {
5944                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5945                 if (skb) {
5946                         napi->skb = skb;
5947                         skb_mark_napi_id(skb, napi);
5948                 }
5949         }
5950         return skb;
5951 }
5952 EXPORT_SYMBOL(napi_get_frags);
5953
5954 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5955                                       struct sk_buff *skb,
5956                                       gro_result_t ret)
5957 {
5958         switch (ret) {
5959         case GRO_NORMAL:
5960         case GRO_HELD:
5961                 __skb_push(skb, ETH_HLEN);
5962                 skb->protocol = eth_type_trans(skb, skb->dev);
5963                 if (ret == GRO_NORMAL)
5964                         gro_normal_one(napi, skb);
5965                 break;
5966
5967         case GRO_DROP:
5968                 napi_reuse_skb(napi, skb);
5969                 break;
5970
5971         case GRO_MERGED_FREE:
5972                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5973                         napi_skb_free_stolen_head(skb);
5974                 else
5975                         napi_reuse_skb(napi, skb);
5976                 break;
5977
5978         case GRO_MERGED:
5979         case GRO_CONSUMED:
5980                 break;
5981         }
5982
5983         return ret;
5984 }
5985
5986 /* Upper GRO stack assumes network header starts at gro_offset=0
5987  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5988  * We copy ethernet header into skb->data to have a common layout.
5989  */
5990 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5991 {
5992         struct sk_buff *skb = napi->skb;
5993         const struct ethhdr *eth;
5994         unsigned int hlen = sizeof(*eth);
5995
5996         napi->skb = NULL;
5997
5998         skb_reset_mac_header(skb);
5999         skb_gro_reset_offset(skb);
6000
6001         if (unlikely(skb_gro_header_hard(skb, hlen))) {
6002                 eth = skb_gro_header_slow(skb, hlen, 0);
6003                 if (unlikely(!eth)) {
6004                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6005                                              __func__, napi->dev->name);
6006                         napi_reuse_skb(napi, skb);
6007                         return NULL;
6008                 }
6009         } else {
6010                 eth = (const struct ethhdr *)skb->data;
6011                 gro_pull_from_frag0(skb, hlen);
6012                 NAPI_GRO_CB(skb)->frag0 += hlen;
6013                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
6014         }
6015         __skb_pull(skb, hlen);
6016
6017         /*
6018          * This works because the only protocols we care about don't require
6019          * special handling.
6020          * We'll fix it up properly in napi_frags_finish()
6021          */
6022         skb->protocol = eth->h_proto;
6023
6024         return skb;
6025 }
6026
6027 gro_result_t napi_gro_frags(struct napi_struct *napi)
6028 {
6029         gro_result_t ret;
6030         struct sk_buff *skb = napi_frags_skb(napi);
6031
6032         if (!skb)
6033                 return GRO_DROP;
6034
6035         trace_napi_gro_frags_entry(skb);
6036
6037         ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6038         trace_napi_gro_frags_exit(ret);
6039
6040         return ret;
6041 }
6042 EXPORT_SYMBOL(napi_gro_frags);
6043
6044 /* Compute the checksum from gro_offset and return the folded value
6045  * after adding in any pseudo checksum.
6046  */
6047 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6048 {
6049         __wsum wsum;
6050         __sum16 sum;
6051
6052         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6053
6054         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6055         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6056         /* See comments in __skb_checksum_complete(). */
6057         if (likely(!sum)) {
6058                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6059                     !skb->csum_complete_sw)
6060                         netdev_rx_csum_fault(skb->dev, skb);
6061         }
6062
6063         NAPI_GRO_CB(skb)->csum = wsum;
6064         NAPI_GRO_CB(skb)->csum_valid = 1;
6065
6066         return sum;
6067 }
6068 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6069
6070 static void net_rps_send_ipi(struct softnet_data *remsd)
6071 {
6072 #ifdef CONFIG_RPS
6073         while (remsd) {
6074                 struct softnet_data *next = remsd->rps_ipi_next;
6075
6076                 if (cpu_online(remsd->cpu))
6077                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
6078                 remsd = next;
6079         }
6080 #endif
6081 }
6082
6083 /*
6084  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6085  * Note: called with local irq disabled, but exits with local irq enabled.
6086  */
6087 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6088 {
6089 #ifdef CONFIG_RPS
6090         struct softnet_data *remsd = sd->rps_ipi_list;
6091
6092         if (remsd) {
6093                 sd->rps_ipi_list = NULL;
6094
6095                 local_irq_enable();
6096
6097                 /* Send pending IPI's to kick RPS processing on remote cpus. */
6098                 net_rps_send_ipi(remsd);
6099         } else
6100 #endif
6101                 local_irq_enable();
6102 }
6103
6104 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6105 {
6106 #ifdef CONFIG_RPS
6107         return sd->rps_ipi_list != NULL;
6108 #else
6109         return false;
6110 #endif
6111 }
6112
6113 static int process_backlog(struct napi_struct *napi, int quota)
6114 {
6115         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6116         bool again = true;
6117         int work = 0;
6118
6119         /* Check if we have pending ipi, its better to send them now,
6120          * not waiting net_rx_action() end.
6121          */
6122         if (sd_has_rps_ipi_waiting(sd)) {
6123                 local_irq_disable();
6124                 net_rps_action_and_irq_enable(sd);
6125         }
6126
6127         napi->weight = dev_rx_weight;
6128         while (again) {
6129                 struct sk_buff *skb;
6130
6131                 while ((skb = __skb_dequeue(&sd->process_queue))) {
6132                         rcu_read_lock();
6133                         __netif_receive_skb(skb);
6134                         rcu_read_unlock();
6135                         input_queue_head_incr(sd);
6136                         if (++work >= quota)
6137                                 return work;
6138
6139                 }
6140
6141                 local_irq_disable();
6142                 rps_lock(sd);
6143                 if (skb_queue_empty(&sd->input_pkt_queue)) {
6144                         /*
6145                          * Inline a custom version of __napi_complete().
6146                          * only current cpu owns and manipulates this napi,
6147                          * and NAPI_STATE_SCHED is the only possible flag set
6148                          * on backlog.
6149                          * We can use a plain write instead of clear_bit(),
6150                          * and we dont need an smp_mb() memory barrier.
6151                          */
6152                         napi->state = 0;
6153                         again = false;
6154                 } else {
6155                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
6156                                                    &sd->process_queue);
6157                 }
6158                 rps_unlock(sd);
6159                 local_irq_enable();
6160         }
6161
6162         return work;
6163 }
6164
6165 /**
6166  * __napi_schedule - schedule for receive
6167  * @n: entry to schedule
6168  *
6169  * The entry's receive function will be scheduled to run.
6170  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6171  */
6172 void __napi_schedule(struct napi_struct *n)
6173 {
6174         unsigned long flags;
6175
6176         local_irq_save(flags);
6177         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6178         local_irq_restore(flags);
6179 }
6180 EXPORT_SYMBOL(__napi_schedule);
6181
6182 /**
6183  *      napi_schedule_prep - check if napi can be scheduled
6184  *      @n: napi context
6185  *
6186  * Test if NAPI routine is already running, and if not mark
6187  * it as running.  This is used as a condition variable
6188  * insure only one NAPI poll instance runs.  We also make
6189  * sure there is no pending NAPI disable.
6190  */
6191 bool napi_schedule_prep(struct napi_struct *n)
6192 {
6193         unsigned long val, new;
6194
6195         do {
6196                 val = READ_ONCE(n->state);
6197                 if (unlikely(val & NAPIF_STATE_DISABLE))
6198                         return false;
6199                 new = val | NAPIF_STATE_SCHED;
6200
6201                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6202                  * This was suggested by Alexander Duyck, as compiler
6203                  * emits better code than :
6204                  * if (val & NAPIF_STATE_SCHED)
6205                  *     new |= NAPIF_STATE_MISSED;
6206                  */
6207                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6208                                                    NAPIF_STATE_MISSED;
6209         } while (cmpxchg(&n->state, val, new) != val);
6210
6211         return !(val & NAPIF_STATE_SCHED);
6212 }
6213 EXPORT_SYMBOL(napi_schedule_prep);
6214
6215 /**
6216  * __napi_schedule_irqoff - schedule for receive
6217  * @n: entry to schedule
6218  *
6219  * Variant of __napi_schedule() assuming hard irqs are masked
6220  */
6221 void __napi_schedule_irqoff(struct napi_struct *n)
6222 {
6223         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6224 }
6225 EXPORT_SYMBOL(__napi_schedule_irqoff);
6226
6227 bool napi_complete_done(struct napi_struct *n, int work_done)
6228 {
6229         unsigned long flags, val, new;
6230
6231         /*
6232          * 1) Don't let napi dequeue from the cpu poll list
6233          *    just in case its running on a different cpu.
6234          * 2) If we are busy polling, do nothing here, we have
6235          *    the guarantee we will be called later.
6236          */
6237         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6238                                  NAPIF_STATE_IN_BUSY_POLL)))
6239                 return false;
6240
6241         if (n->gro_bitmask) {
6242                 unsigned long timeout = 0;
6243
6244                 if (work_done)
6245                         timeout = n->dev->gro_flush_timeout;
6246
6247                 /* When the NAPI instance uses a timeout and keeps postponing
6248                  * it, we need to bound somehow the time packets are kept in
6249                  * the GRO layer
6250                  */
6251                 napi_gro_flush(n, !!timeout);
6252                 if (timeout)
6253                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
6254                                       HRTIMER_MODE_REL_PINNED);
6255         }
6256
6257         gro_normal_list(n);
6258
6259         if (unlikely(!list_empty(&n->poll_list))) {
6260                 /* If n->poll_list is not empty, we need to mask irqs */
6261                 local_irq_save(flags);
6262                 list_del_init(&n->poll_list);
6263                 local_irq_restore(flags);
6264         }
6265
6266         do {
6267                 val = READ_ONCE(n->state);
6268
6269                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6270
6271                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6272
6273                 /* If STATE_MISSED was set, leave STATE_SCHED set,
6274                  * because we will call napi->poll() one more time.
6275                  * This C code was suggested by Alexander Duyck to help gcc.
6276                  */
6277                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6278                                                     NAPIF_STATE_SCHED;
6279         } while (cmpxchg(&n->state, val, new) != val);
6280
6281         if (unlikely(val & NAPIF_STATE_MISSED)) {
6282                 __napi_schedule(n);
6283                 return false;
6284         }
6285
6286         return true;
6287 }
6288 EXPORT_SYMBOL(napi_complete_done);
6289
6290 /* must be called under rcu_read_lock(), as we dont take a reference */
6291 static struct napi_struct *napi_by_id(unsigned int napi_id)
6292 {
6293         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6294         struct napi_struct *napi;
6295
6296         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6297                 if (napi->napi_id == napi_id)
6298                         return napi;
6299
6300         return NULL;
6301 }
6302
6303 #if defined(CONFIG_NET_RX_BUSY_POLL)
6304
6305 #define BUSY_POLL_BUDGET 8
6306
6307 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6308 {
6309         int rc;
6310
6311         /* Busy polling means there is a high chance device driver hard irq
6312          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6313          * set in napi_schedule_prep().
6314          * Since we are about to call napi->poll() once more, we can safely
6315          * clear NAPI_STATE_MISSED.
6316          *
6317          * Note: x86 could use a single "lock and ..." instruction
6318          * to perform these two clear_bit()
6319          */
6320         clear_bit(NAPI_STATE_MISSED, &napi->state);
6321         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6322
6323         local_bh_disable();
6324
6325         /* All we really want here is to re-enable device interrupts.
6326          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6327          */
6328         rc = napi->poll(napi, BUSY_POLL_BUDGET);
6329         /* We can't gro_normal_list() here, because napi->poll() might have
6330          * rearmed the napi (napi_complete_done()) in which case it could
6331          * already be running on another CPU.
6332          */
6333         trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6334         netpoll_poll_unlock(have_poll_lock);
6335         if (rc == BUSY_POLL_BUDGET) {
6336                 /* As the whole budget was spent, we still own the napi so can
6337                  * safely handle the rx_list.
6338                  */
6339                 gro_normal_list(napi);
6340                 __napi_schedule(napi);
6341         }
6342         local_bh_enable();
6343 }
6344
6345 void napi_busy_loop(unsigned int napi_id,
6346                     bool (*loop_end)(void *, unsigned long),
6347                     void *loop_end_arg)
6348 {
6349         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6350         int (*napi_poll)(struct napi_struct *napi, int budget);
6351         void *have_poll_lock = NULL;
6352         struct napi_struct *napi;
6353
6354 restart:
6355         napi_poll = NULL;
6356
6357         rcu_read_lock();
6358
6359         napi = napi_by_id(napi_id);
6360         if (!napi)
6361                 goto out;
6362
6363         preempt_disable();
6364         for (;;) {
6365                 int work = 0;
6366
6367                 local_bh_disable();
6368                 if (!napi_poll) {
6369                         unsigned long val = READ_ONCE(napi->state);
6370
6371                         /* If multiple threads are competing for this napi,
6372                          * we avoid dirtying napi->state as much as we can.
6373                          */
6374                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6375                                    NAPIF_STATE_IN_BUSY_POLL))
6376                                 goto count;
6377                         if (cmpxchg(&napi->state, val,
6378                                     val | NAPIF_STATE_IN_BUSY_POLL |
6379                                           NAPIF_STATE_SCHED) != val)
6380                                 goto count;
6381                         have_poll_lock = netpoll_poll_lock(napi);
6382                         napi_poll = napi->poll;
6383                 }
6384                 work = napi_poll(napi, BUSY_POLL_BUDGET);
6385                 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6386                 gro_normal_list(napi);
6387 count:
6388                 if (work > 0)
6389                         __NET_ADD_STATS(dev_net(napi->dev),
6390                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6391                 local_bh_enable();
6392
6393                 if (!loop_end || loop_end(loop_end_arg, start_time))
6394                         break;
6395
6396                 if (unlikely(need_resched())) {
6397                         if (napi_poll)
6398                                 busy_poll_stop(napi, have_poll_lock);
6399                         preempt_enable();
6400                         rcu_read_unlock();
6401                         cond_resched();
6402                         if (loop_end(loop_end_arg, start_time))
6403                                 return;
6404                         goto restart;
6405                 }
6406                 cpu_relax();
6407         }
6408         if (napi_poll)
6409                 busy_poll_stop(napi, have_poll_lock);
6410         preempt_enable();
6411 out:
6412         rcu_read_unlock();
6413 }
6414 EXPORT_SYMBOL(napi_busy_loop);
6415
6416 #endif /* CONFIG_NET_RX_BUSY_POLL */
6417
6418 static void napi_hash_add(struct napi_struct *napi)
6419 {
6420         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6421             test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6422                 return;
6423
6424         spin_lock(&napi_hash_lock);
6425
6426         /* 0..NR_CPUS range is reserved for sender_cpu use */
6427         do {
6428                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6429                         napi_gen_id = MIN_NAPI_ID;
6430         } while (napi_by_id(napi_gen_id));
6431         napi->napi_id = napi_gen_id;
6432
6433         hlist_add_head_rcu(&napi->napi_hash_node,
6434                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6435
6436         spin_unlock(&napi_hash_lock);
6437 }
6438
6439 /* Warning : caller is responsible to make sure rcu grace period
6440  * is respected before freeing memory containing @napi
6441  */
6442 bool napi_hash_del(struct napi_struct *napi)
6443 {
6444         bool rcu_sync_needed = false;
6445
6446         spin_lock(&napi_hash_lock);
6447
6448         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6449                 rcu_sync_needed = true;
6450                 hlist_del_rcu(&napi->napi_hash_node);
6451         }
6452         spin_unlock(&napi_hash_lock);
6453         return rcu_sync_needed;
6454 }
6455 EXPORT_SYMBOL_GPL(napi_hash_del);
6456
6457 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6458 {
6459         struct napi_struct *napi;
6460
6461         napi = container_of(timer, struct napi_struct, timer);
6462
6463         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6464          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6465          */
6466         if (napi->gro_bitmask && !napi_disable_pending(napi) &&
6467             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6468                 __napi_schedule_irqoff(napi);
6469
6470         return HRTIMER_NORESTART;
6471 }
6472
6473 static void init_gro_hash(struct napi_struct *napi)
6474 {
6475         int i;
6476
6477         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6478                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6479                 napi->gro_hash[i].count = 0;
6480         }
6481         napi->gro_bitmask = 0;
6482 }
6483
6484 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6485                     int (*poll)(struct napi_struct *, int), int weight)
6486 {
6487         INIT_LIST_HEAD(&napi->poll_list);
6488         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6489         napi->timer.function = napi_watchdog;
6490         init_gro_hash(napi);
6491         napi->skb = NULL;
6492         INIT_LIST_HEAD(&napi->rx_list);
6493         napi->rx_count = 0;
6494         napi->poll = poll;
6495         if (weight > NAPI_POLL_WEIGHT)
6496                 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6497                                 weight);
6498         napi->weight = weight;
6499         list_add(&napi->dev_list, &dev->napi_list);
6500         napi->dev = dev;
6501 #ifdef CONFIG_NETPOLL
6502         napi->poll_owner = -1;
6503 #endif
6504         set_bit(NAPI_STATE_SCHED, &napi->state);
6505         napi_hash_add(napi);
6506 }
6507 EXPORT_SYMBOL(netif_napi_add);
6508
6509 void napi_disable(struct napi_struct *n)
6510 {
6511         might_sleep();
6512         set_bit(NAPI_STATE_DISABLE, &n->state);
6513
6514         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6515                 msleep(1);
6516         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6517                 msleep(1);
6518
6519         hrtimer_cancel(&n->timer);
6520
6521         clear_bit(NAPI_STATE_DISABLE, &n->state);
6522 }
6523 EXPORT_SYMBOL(napi_disable);
6524
6525 static void flush_gro_hash(struct napi_struct *napi)
6526 {
6527         int i;
6528
6529         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6530                 struct sk_buff *skb, *n;
6531
6532                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6533                         kfree_skb(skb);
6534                 napi->gro_hash[i].count = 0;
6535         }
6536 }
6537
6538 /* Must be called in process context */
6539 void netif_napi_del(struct napi_struct *napi)
6540 {
6541         might_sleep();
6542         if (napi_hash_del(napi))
6543                 synchronize_net();
6544         list_del_init(&napi->dev_list);
6545         napi_free_frags(napi);
6546
6547         flush_gro_hash(napi);
6548         napi->gro_bitmask = 0;
6549 }
6550 EXPORT_SYMBOL(netif_napi_del);
6551
6552 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6553 {
6554         void *have;
6555         int work, weight;
6556
6557         list_del_init(&n->poll_list);
6558
6559         have = netpoll_poll_lock(n);
6560
6561         weight = n->weight;
6562
6563         /* This NAPI_STATE_SCHED test is for avoiding a race
6564          * with netpoll's poll_napi().  Only the entity which
6565          * obtains the lock and sees NAPI_STATE_SCHED set will
6566          * actually make the ->poll() call.  Therefore we avoid
6567          * accidentally calling ->poll() when NAPI is not scheduled.
6568          */
6569         work = 0;
6570         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6571                 work = n->poll(n, weight);
6572                 trace_napi_poll(n, work, weight);
6573         }
6574
6575         WARN_ON_ONCE(work > weight);
6576
6577         if (likely(work < weight))
6578                 goto out_unlock;
6579
6580         /* Drivers must not modify the NAPI state if they
6581          * consume the entire weight.  In such cases this code
6582          * still "owns" the NAPI instance and therefore can
6583          * move the instance around on the list at-will.
6584          */
6585         if (unlikely(napi_disable_pending(n))) {
6586                 napi_complete(n);
6587                 goto out_unlock;
6588         }
6589
6590         if (n->gro_bitmask) {
6591                 /* flush too old packets
6592                  * If HZ < 1000, flush all packets.
6593                  */
6594                 napi_gro_flush(n, HZ >= 1000);
6595         }
6596
6597         gro_normal_list(n);
6598
6599         /* Some drivers may have called napi_schedule
6600          * prior to exhausting their budget.
6601          */
6602         if (unlikely(!list_empty(&n->poll_list))) {
6603                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6604                              n->dev ? n->dev->name : "backlog");
6605                 goto out_unlock;
6606         }
6607
6608         list_add_tail(&n->poll_list, repoll);
6609
6610 out_unlock:
6611         netpoll_poll_unlock(have);
6612
6613         return work;
6614 }
6615
6616 static __latent_entropy void net_rx_action(struct softirq_action *h)
6617 {
6618         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6619         unsigned long time_limit = jiffies +
6620                 usecs_to_jiffies(netdev_budget_usecs);
6621         int budget = netdev_budget;
6622         LIST_HEAD(list);
6623         LIST_HEAD(repoll);
6624
6625         local_irq_disable();
6626         list_splice_init(&sd->poll_list, &list);
6627         local_irq_enable();
6628
6629         for (;;) {
6630                 struct napi_struct *n;
6631
6632                 if (list_empty(&list)) {
6633                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6634                                 goto out;
6635                         break;
6636                 }
6637
6638                 n = list_first_entry(&list, struct napi_struct, poll_list);
6639                 budget -= napi_poll(n, &repoll);
6640
6641                 /* If softirq window is exhausted then punt.
6642                  * Allow this to run for 2 jiffies since which will allow
6643                  * an average latency of 1.5/HZ.
6644                  */
6645                 if (unlikely(budget <= 0 ||
6646                              time_after_eq(jiffies, time_limit))) {
6647                         sd->time_squeeze++;
6648                         break;
6649                 }
6650         }
6651
6652         local_irq_disable();
6653
6654         list_splice_tail_init(&sd->poll_list, &list);
6655         list_splice_tail(&repoll, &list);
6656         list_splice(&list, &sd->poll_list);
6657         if (!list_empty(&sd->poll_list))
6658                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6659
6660         net_rps_action_and_irq_enable(sd);
6661 out:
6662         __kfree_skb_flush();
6663 }
6664
6665 struct netdev_adjacent {
6666         struct net_device *dev;
6667
6668         /* upper master flag, there can only be one master device per list */
6669         bool master;
6670
6671         /* lookup ignore flag */
6672         bool ignore;
6673
6674         /* counter for the number of times this device was added to us */
6675         u16 ref_nr;
6676
6677         /* private field for the users */
6678         void *private;
6679
6680         struct list_head list;
6681         struct rcu_head rcu;
6682 };
6683
6684 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6685                                                  struct list_head *adj_list)
6686 {
6687         struct netdev_adjacent *adj;
6688
6689         list_for_each_entry(adj, adj_list, list) {
6690                 if (adj->dev == adj_dev)
6691                         return adj;
6692         }
6693         return NULL;
6694 }
6695
6696 static int ____netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6697 {
6698         struct net_device *dev = data;
6699
6700         return upper_dev == dev;
6701 }
6702
6703 /**
6704  * netdev_has_upper_dev - Check if device is linked to an upper device
6705  * @dev: device
6706  * @upper_dev: upper device to check
6707  *
6708  * Find out if a device is linked to specified upper device and return true
6709  * in case it is. Note that this checks only immediate upper device,
6710  * not through a complete stack of devices. The caller must hold the RTNL lock.
6711  */
6712 bool netdev_has_upper_dev(struct net_device *dev,
6713                           struct net_device *upper_dev)
6714 {
6715         ASSERT_RTNL();
6716
6717         return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6718                                              upper_dev);
6719 }
6720 EXPORT_SYMBOL(netdev_has_upper_dev);
6721
6722 /**
6723  * netdev_has_upper_dev_all - Check if device is linked to an upper device
6724  * @dev: device
6725  * @upper_dev: upper device to check
6726  *
6727  * Find out if a device is linked to specified upper device and return true
6728  * in case it is. Note that this checks the entire upper device chain.
6729  * The caller must hold rcu lock.
6730  */
6731
6732 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6733                                   struct net_device *upper_dev)
6734 {
6735         return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6736                                                upper_dev);
6737 }
6738 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6739
6740 /**
6741  * netdev_has_any_upper_dev - Check if device is linked to some device
6742  * @dev: device
6743  *
6744  * Find out if a device is linked to an upper device and return true in case
6745  * it is. The caller must hold the RTNL lock.
6746  */
6747 bool netdev_has_any_upper_dev(struct net_device *dev)
6748 {
6749         ASSERT_RTNL();
6750
6751         return !list_empty(&dev->adj_list.upper);
6752 }
6753 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6754
6755 /**
6756  * netdev_master_upper_dev_get - Get master upper device
6757  * @dev: device
6758  *
6759  * Find a master upper device and return pointer to it or NULL in case
6760  * it's not there. The caller must hold the RTNL lock.
6761  */
6762 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6763 {
6764         struct netdev_adjacent *upper;
6765
6766         ASSERT_RTNL();
6767
6768         if (list_empty(&dev->adj_list.upper))
6769                 return NULL;
6770
6771         upper = list_first_entry(&dev->adj_list.upper,
6772                                  struct netdev_adjacent, list);
6773         if (likely(upper->master))
6774                 return upper->dev;
6775         return NULL;
6776 }
6777 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6778
6779 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6780 {
6781         struct netdev_adjacent *upper;
6782
6783         ASSERT_RTNL();
6784
6785         if (list_empty(&dev->adj_list.upper))
6786                 return NULL;
6787
6788         upper = list_first_entry(&dev->adj_list.upper,
6789                                  struct netdev_adjacent, list);
6790         if (likely(upper->master) && !upper->ignore)
6791                 return upper->dev;
6792         return NULL;
6793 }
6794
6795 /**
6796  * netdev_has_any_lower_dev - Check if device is linked to some device
6797  * @dev: device
6798  *
6799  * Find out if a device is linked to a lower device and return true in case
6800  * it is. The caller must hold the RTNL lock.
6801  */
6802 static bool netdev_has_any_lower_dev(struct net_device *dev)
6803 {
6804         ASSERT_RTNL();
6805
6806         return !list_empty(&dev->adj_list.lower);
6807 }
6808
6809 void *netdev_adjacent_get_private(struct list_head *adj_list)
6810 {
6811         struct netdev_adjacent *adj;
6812
6813         adj = list_entry(adj_list, struct netdev_adjacent, list);
6814
6815         return adj->private;
6816 }
6817 EXPORT_SYMBOL(netdev_adjacent_get_private);
6818
6819 /**
6820  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6821  * @dev: device
6822  * @iter: list_head ** of the current position
6823  *
6824  * Gets the next device from the dev's upper list, starting from iter
6825  * position. The caller must hold RCU read lock.
6826  */
6827 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6828                                                  struct list_head **iter)
6829 {
6830         struct netdev_adjacent *upper;
6831
6832         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6833
6834         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6835
6836         if (&upper->list == &dev->adj_list.upper)
6837                 return NULL;
6838
6839         *iter = &upper->list;
6840
6841         return upper->dev;
6842 }
6843 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6844
6845 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6846                                                   struct list_head **iter,
6847                                                   bool *ignore)
6848 {
6849         struct netdev_adjacent *upper;
6850
6851         upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6852
6853         if (&upper->list == &dev->adj_list.upper)
6854                 return NULL;
6855
6856         *iter = &upper->list;
6857         *ignore = upper->ignore;
6858
6859         return upper->dev;
6860 }
6861
6862 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6863                                                     struct list_head **iter)
6864 {
6865         struct netdev_adjacent *upper;
6866
6867         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6868
6869         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6870
6871         if (&upper->list == &dev->adj_list.upper)
6872                 return NULL;
6873
6874         *iter = &upper->list;
6875
6876         return upper->dev;
6877 }
6878
6879 static int __netdev_walk_all_upper_dev(struct net_device *dev,
6880                                        int (*fn)(struct net_device *dev,
6881                                                  void *data),
6882                                        void *data)
6883 {
6884         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6885         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6886         int ret, cur = 0;
6887         bool ignore;
6888
6889         now = dev;
6890         iter = &dev->adj_list.upper;
6891
6892         while (1) {
6893                 if (now != dev) {
6894                         ret = fn(now, data);
6895                         if (ret)
6896                                 return ret;
6897                 }
6898
6899                 next = NULL;
6900                 while (1) {
6901                         udev = __netdev_next_upper_dev(now, &iter, &ignore);
6902                         if (!udev)
6903                                 break;
6904                         if (ignore)
6905                                 continue;
6906
6907                         next = udev;
6908                         niter = &udev->adj_list.upper;
6909                         dev_stack[cur] = now;
6910                         iter_stack[cur++] = iter;
6911                         break;
6912                 }
6913
6914                 if (!next) {
6915                         if (!cur)
6916                                 return 0;
6917                         next = dev_stack[--cur];
6918                         niter = iter_stack[cur];
6919                 }
6920
6921                 now = next;
6922                 iter = niter;
6923         }
6924
6925         return 0;
6926 }
6927
6928 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6929                                   int (*fn)(struct net_device *dev,
6930                                             void *data),
6931                                   void *data)
6932 {
6933         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6934         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6935         int ret, cur = 0;
6936
6937         now = dev;
6938         iter = &dev->adj_list.upper;
6939
6940         while (1) {
6941                 if (now != dev) {
6942                         ret = fn(now, data);
6943                         if (ret)
6944                                 return ret;
6945                 }
6946
6947                 next = NULL;
6948                 while (1) {
6949                         udev = netdev_next_upper_dev_rcu(now, &iter);
6950                         if (!udev)
6951                                 break;
6952
6953                         next = udev;
6954                         niter = &udev->adj_list.upper;
6955                         dev_stack[cur] = now;
6956                         iter_stack[cur++] = iter;
6957                         break;
6958                 }
6959
6960                 if (!next) {
6961                         if (!cur)
6962                                 return 0;
6963                         next = dev_stack[--cur];
6964                         niter = iter_stack[cur];
6965                 }
6966
6967                 now = next;
6968                 iter = niter;
6969         }
6970
6971         return 0;
6972 }
6973 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6974
6975 static bool __netdev_has_upper_dev(struct net_device *dev,
6976                                    struct net_device *upper_dev)
6977 {
6978         ASSERT_RTNL();
6979
6980         return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
6981                                            upper_dev);
6982 }
6983
6984 /**
6985  * netdev_lower_get_next_private - Get the next ->private from the
6986  *                                 lower neighbour list
6987  * @dev: device
6988  * @iter: list_head ** of the current position
6989  *
6990  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6991  * list, starting from iter position. The caller must hold either hold the
6992  * RTNL lock or its own locking that guarantees that the neighbour lower
6993  * list will remain unchanged.
6994  */
6995 void *netdev_lower_get_next_private(struct net_device *dev,
6996                                     struct list_head **iter)
6997 {
6998         struct netdev_adjacent *lower;
6999
7000         lower = list_entry(*iter, struct netdev_adjacent, list);
7001
7002         if (&lower->list == &dev->adj_list.lower)
7003                 return NULL;
7004
7005         *iter = lower->list.next;
7006
7007         return lower->private;
7008 }
7009 EXPORT_SYMBOL(netdev_lower_get_next_private);
7010
7011 /**
7012  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7013  *                                     lower neighbour list, RCU
7014  *                                     variant
7015  * @dev: device
7016  * @iter: list_head ** of the current position
7017  *
7018  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7019  * list, starting from iter position. The caller must hold RCU read lock.
7020  */
7021 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7022                                         struct list_head **iter)
7023 {
7024         struct netdev_adjacent *lower;
7025
7026         WARN_ON_ONCE(!rcu_read_lock_held());
7027
7028         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7029
7030         if (&lower->list == &dev->adj_list.lower)
7031                 return NULL;
7032
7033         *iter = &lower->list;
7034
7035         return lower->private;
7036 }
7037 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7038
7039 /**
7040  * netdev_lower_get_next - Get the next device from the lower neighbour
7041  *                         list
7042  * @dev: device
7043  * @iter: list_head ** of the current position
7044  *
7045  * Gets the next netdev_adjacent from the dev's lower neighbour
7046  * list, starting from iter position. The caller must hold RTNL lock or
7047  * its own locking that guarantees that the neighbour lower
7048  * list will remain unchanged.
7049  */
7050 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7051 {
7052         struct netdev_adjacent *lower;
7053
7054         lower = list_entry(*iter, struct netdev_adjacent, list);
7055
7056         if (&lower->list == &dev->adj_list.lower)
7057                 return NULL;
7058
7059         *iter = lower->list.next;
7060
7061         return lower->dev;
7062 }
7063 EXPORT_SYMBOL(netdev_lower_get_next);
7064
7065 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7066                                                 struct list_head **iter)
7067 {
7068         struct netdev_adjacent *lower;
7069
7070         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7071
7072         if (&lower->list == &dev->adj_list.lower)
7073                 return NULL;
7074
7075         *iter = &lower->list;
7076
7077         return lower->dev;
7078 }
7079
7080 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7081                                                   struct list_head **iter,
7082                                                   bool *ignore)
7083 {
7084         struct netdev_adjacent *lower;
7085
7086         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7087
7088         if (&lower->list == &dev->adj_list.lower)
7089                 return NULL;
7090
7091         *iter = &lower->list;
7092         *ignore = lower->ignore;
7093
7094         return lower->dev;
7095 }
7096
7097 int netdev_walk_all_lower_dev(struct net_device *dev,
7098                               int (*fn)(struct net_device *dev,
7099                                         void *data),
7100                               void *data)
7101 {
7102         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7103         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7104         int ret, cur = 0;
7105
7106         now = dev;
7107         iter = &dev->adj_list.lower;
7108
7109         while (1) {
7110                 if (now != dev) {
7111                         ret = fn(now, data);
7112                         if (ret)
7113                                 return ret;
7114                 }
7115
7116                 next = NULL;
7117                 while (1) {
7118                         ldev = netdev_next_lower_dev(now, &iter);
7119                         if (!ldev)
7120                                 break;
7121
7122                         next = ldev;
7123                         niter = &ldev->adj_list.lower;
7124                         dev_stack[cur] = now;
7125                         iter_stack[cur++] = iter;
7126                         break;
7127                 }
7128
7129                 if (!next) {
7130                         if (!cur)
7131                                 return 0;
7132                         next = dev_stack[--cur];
7133                         niter = iter_stack[cur];
7134                 }
7135
7136                 now = next;
7137                 iter = niter;
7138         }
7139
7140         return 0;
7141 }
7142 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7143
7144 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7145                                        int (*fn)(struct net_device *dev,
7146                                                  void *data),
7147                                        void *data)
7148 {
7149         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7150         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7151         int ret, cur = 0;
7152         bool ignore;
7153
7154         now = dev;
7155         iter = &dev->adj_list.lower;
7156
7157         while (1) {
7158                 if (now != dev) {
7159                         ret = fn(now, data);
7160                         if (ret)
7161                                 return ret;
7162                 }
7163
7164                 next = NULL;
7165                 while (1) {
7166                         ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7167                         if (!ldev)
7168                                 break;
7169                         if (ignore)
7170                                 continue;
7171
7172                         next = ldev;
7173                         niter = &ldev->adj_list.lower;
7174                         dev_stack[cur] = now;
7175                         iter_stack[cur++] = iter;
7176                         break;
7177                 }
7178
7179                 if (!next) {
7180                         if (!cur)
7181                                 return 0;
7182                         next = dev_stack[--cur];
7183                         niter = iter_stack[cur];
7184                 }
7185
7186                 now = next;
7187                 iter = niter;
7188         }
7189
7190         return 0;
7191 }
7192
7193 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7194                                              struct list_head **iter)
7195 {
7196         struct netdev_adjacent *lower;
7197
7198         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7199         if (&lower->list == &dev->adj_list.lower)
7200                 return NULL;
7201
7202         *iter = &lower->list;
7203
7204         return lower->dev;
7205 }
7206 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7207
7208 static u8 __netdev_upper_depth(struct net_device *dev)
7209 {
7210         struct net_device *udev;
7211         struct list_head *iter;
7212         u8 max_depth = 0;
7213         bool ignore;
7214
7215         for (iter = &dev->adj_list.upper,
7216              udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7217              udev;
7218              udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7219                 if (ignore)
7220                         continue;
7221                 if (max_depth < udev->upper_level)
7222                         max_depth = udev->upper_level;
7223         }
7224
7225         return max_depth;
7226 }
7227
7228 static u8 __netdev_lower_depth(struct net_device *dev)
7229 {
7230         struct net_device *ldev;
7231         struct list_head *iter;
7232         u8 max_depth = 0;
7233         bool ignore;
7234
7235         for (iter = &dev->adj_list.lower,
7236              ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7237              ldev;
7238              ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7239                 if (ignore)
7240                         continue;
7241                 if (max_depth < ldev->lower_level)
7242                         max_depth = ldev->lower_level;
7243         }
7244
7245         return max_depth;
7246 }
7247
7248 static int __netdev_update_upper_level(struct net_device *dev, void *data)
7249 {
7250         dev->upper_level = __netdev_upper_depth(dev) + 1;
7251         return 0;
7252 }
7253
7254 static int __netdev_update_lower_level(struct net_device *dev, void *data)
7255 {
7256         dev->lower_level = __netdev_lower_depth(dev) + 1;
7257         return 0;
7258 }
7259
7260 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7261                                   int (*fn)(struct net_device *dev,
7262                                             void *data),
7263                                   void *data)
7264 {
7265         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7266         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7267         int ret, cur = 0;
7268
7269         now = dev;
7270         iter = &dev->adj_list.lower;
7271
7272         while (1) {
7273                 if (now != dev) {
7274                         ret = fn(now, data);
7275                         if (ret)
7276                                 return ret;
7277                 }
7278
7279                 next = NULL;
7280                 while (1) {
7281                         ldev = netdev_next_lower_dev_rcu(now, &iter);
7282                         if (!ldev)
7283                                 break;
7284
7285                         next = ldev;
7286                         niter = &ldev->adj_list.lower;
7287                         dev_stack[cur] = now;
7288                         iter_stack[cur++] = iter;
7289                         break;
7290                 }
7291
7292                 if (!next) {
7293                         if (!cur)
7294                                 return 0;
7295                         next = dev_stack[--cur];
7296                         niter = iter_stack[cur];
7297                 }
7298
7299                 now = next;
7300                 iter = niter;
7301         }
7302
7303         return 0;
7304 }
7305 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7306
7307 /**
7308  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7309  *                                     lower neighbour list, RCU
7310  *                                     variant
7311  * @dev: device
7312  *
7313  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7314  * list. The caller must hold RCU read lock.
7315  */
7316 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7317 {
7318         struct netdev_adjacent *lower;
7319
7320         lower = list_first_or_null_rcu(&dev->adj_list.lower,
7321                         struct netdev_adjacent, list);
7322         if (lower)
7323                 return lower->private;
7324         return NULL;
7325 }
7326 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7327
7328 /**
7329  * netdev_master_upper_dev_get_rcu - Get master upper device
7330  * @dev: device
7331  *
7332  * Find a master upper device and return pointer to it or NULL in case
7333  * it's not there. The caller must hold the RCU read lock.
7334  */
7335 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7336 {
7337         struct netdev_adjacent *upper;
7338
7339         upper = list_first_or_null_rcu(&dev->adj_list.upper,
7340                                        struct netdev_adjacent, list);
7341         if (upper && likely(upper->master))
7342                 return upper->dev;
7343         return NULL;
7344 }
7345 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7346
7347 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7348                               struct net_device *adj_dev,
7349                               struct list_head *dev_list)
7350 {
7351         char linkname[IFNAMSIZ+7];
7352
7353         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7354                 "upper_%s" : "lower_%s", adj_dev->name);
7355         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7356                                  linkname);
7357 }
7358 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7359                                char *name,
7360                                struct list_head *dev_list)
7361 {
7362         char linkname[IFNAMSIZ+7];
7363
7364         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7365                 "upper_%s" : "lower_%s", name);
7366         sysfs_remove_link(&(dev->dev.kobj), linkname);
7367 }
7368
7369 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7370                                                  struct net_device *adj_dev,
7371                                                  struct list_head *dev_list)
7372 {
7373         return (dev_list == &dev->adj_list.upper ||
7374                 dev_list == &dev->adj_list.lower) &&
7375                 net_eq(dev_net(dev), dev_net(adj_dev));
7376 }
7377
7378 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7379                                         struct net_device *adj_dev,
7380                                         struct list_head *dev_list,
7381                                         void *private, bool master)
7382 {
7383         struct netdev_adjacent *adj;
7384         int ret;
7385
7386         adj = __netdev_find_adj(adj_dev, dev_list);
7387
7388         if (adj) {
7389                 adj->ref_nr += 1;
7390                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7391                          dev->name, adj_dev->name, adj->ref_nr);
7392
7393                 return 0;
7394         }
7395
7396         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7397         if (!adj)
7398                 return -ENOMEM;
7399
7400         adj->dev = adj_dev;
7401         adj->master = master;
7402         adj->ref_nr = 1;
7403         adj->private = private;
7404         adj->ignore = false;
7405         dev_hold(adj_dev);
7406
7407         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7408                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7409
7410         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7411                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7412                 if (ret)
7413                         goto free_adj;
7414         }
7415
7416         /* Ensure that master link is always the first item in list. */
7417         if (master) {
7418                 ret = sysfs_create_link(&(dev->dev.kobj),
7419                                         &(adj_dev->dev.kobj), "master");
7420                 if (ret)
7421                         goto remove_symlinks;
7422
7423                 list_add_rcu(&adj->list, dev_list);
7424         } else {
7425                 list_add_tail_rcu(&adj->list, dev_list);
7426         }
7427
7428         return 0;
7429
7430 remove_symlinks:
7431         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7432                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7433 free_adj:
7434         kfree(adj);
7435         dev_put(adj_dev);
7436
7437         return ret;
7438 }
7439
7440 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7441                                          struct net_device *adj_dev,
7442                                          u16 ref_nr,
7443                                          struct list_head *dev_list)
7444 {
7445         struct netdev_adjacent *adj;
7446
7447         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7448                  dev->name, adj_dev->name, ref_nr);
7449
7450         adj = __netdev_find_adj(adj_dev, dev_list);
7451
7452         if (!adj) {
7453                 pr_err("Adjacency does not exist for device %s from %s\n",
7454                        dev->name, adj_dev->name);
7455                 WARN_ON(1);
7456                 return;
7457         }
7458
7459         if (adj->ref_nr > ref_nr) {
7460                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7461                          dev->name, adj_dev->name, ref_nr,
7462                          adj->ref_nr - ref_nr);
7463                 adj->ref_nr -= ref_nr;
7464                 return;
7465         }
7466
7467         if (adj->master)
7468                 sysfs_remove_link(&(dev->dev.kobj), "master");
7469
7470         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7471                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7472
7473         list_del_rcu(&adj->list);
7474         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7475                  adj_dev->name, dev->name, adj_dev->name);
7476         dev_put(adj_dev);
7477         kfree_rcu(adj, rcu);
7478 }
7479
7480 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7481                                             struct net_device *upper_dev,
7482                                             struct list_head *up_list,
7483                                             struct list_head *down_list,
7484                                             void *private, bool master)
7485 {
7486         int ret;
7487
7488         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7489                                            private, master);
7490         if (ret)
7491                 return ret;
7492
7493         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7494                                            private, false);
7495         if (ret) {
7496                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7497                 return ret;
7498         }
7499
7500         return 0;
7501 }
7502
7503 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7504                                                struct net_device *upper_dev,
7505                                                u16 ref_nr,
7506                                                struct list_head *up_list,
7507                                                struct list_head *down_list)
7508 {
7509         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7510         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7511 }
7512
7513 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7514                                                 struct net_device *upper_dev,
7515                                                 void *private, bool master)
7516 {
7517         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7518                                                 &dev->adj_list.upper,
7519                                                 &upper_dev->adj_list.lower,
7520                                                 private, master);
7521 }
7522
7523 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7524                                                    struct net_device *upper_dev)
7525 {
7526         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7527                                            &dev->adj_list.upper,
7528                                            &upper_dev->adj_list.lower);
7529 }
7530
7531 static int __netdev_upper_dev_link(struct net_device *dev,
7532                                    struct net_device *upper_dev, bool master,
7533                                    void *upper_priv, void *upper_info,
7534                                    struct netlink_ext_ack *extack)
7535 {
7536         struct netdev_notifier_changeupper_info changeupper_info = {
7537                 .info = {
7538                         .dev = dev,
7539                         .extack = extack,
7540                 },
7541                 .upper_dev = upper_dev,
7542                 .master = master,
7543                 .linking = true,
7544                 .upper_info = upper_info,
7545         };
7546         struct net_device *master_dev;
7547         int ret = 0;
7548
7549         ASSERT_RTNL();
7550
7551         if (dev == upper_dev)
7552                 return -EBUSY;
7553
7554         /* To prevent loops, check if dev is not upper device to upper_dev. */
7555         if (__netdev_has_upper_dev(upper_dev, dev))
7556                 return -EBUSY;
7557
7558         if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7559                 return -EMLINK;
7560
7561         if (!master) {
7562                 if (__netdev_has_upper_dev(dev, upper_dev))
7563                         return -EEXIST;
7564         } else {
7565                 master_dev = __netdev_master_upper_dev_get(dev);
7566                 if (master_dev)
7567                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
7568         }
7569
7570         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7571                                             &changeupper_info.info);
7572         ret = notifier_to_errno(ret);
7573         if (ret)
7574                 return ret;
7575
7576         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7577                                                    master);
7578         if (ret)
7579                 return ret;
7580
7581         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7582                                             &changeupper_info.info);
7583         ret = notifier_to_errno(ret);
7584         if (ret)
7585                 goto rollback;
7586
7587         __netdev_update_upper_level(dev, NULL);
7588         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7589
7590         __netdev_update_lower_level(upper_dev, NULL);
7591         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7592                                     NULL);
7593
7594         return 0;
7595
7596 rollback:
7597         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7598
7599         return ret;
7600 }
7601
7602 /**
7603  * netdev_upper_dev_link - Add a link to the upper device
7604  * @dev: device
7605  * @upper_dev: new upper device
7606  * @extack: netlink extended ack
7607  *
7608  * Adds a link to device which is upper to this one. The caller must hold
7609  * the RTNL lock. On a failure a negative errno code is returned.
7610  * On success the reference counts are adjusted and the function
7611  * returns zero.
7612  */
7613 int netdev_upper_dev_link(struct net_device *dev,
7614                           struct net_device *upper_dev,
7615                           struct netlink_ext_ack *extack)
7616 {
7617         return __netdev_upper_dev_link(dev, upper_dev, false,
7618                                        NULL, NULL, extack);
7619 }
7620 EXPORT_SYMBOL(netdev_upper_dev_link);
7621
7622 /**
7623  * netdev_master_upper_dev_link - Add a master link to the upper device
7624  * @dev: device
7625  * @upper_dev: new upper device
7626  * @upper_priv: upper device private
7627  * @upper_info: upper info to be passed down via notifier
7628  * @extack: netlink extended ack
7629  *
7630  * Adds a link to device which is upper to this one. In this case, only
7631  * one master upper device can be linked, although other non-master devices
7632  * might be linked as well. The caller must hold the RTNL lock.
7633  * On a failure a negative errno code is returned. On success the reference
7634  * counts are adjusted and the function returns zero.
7635  */
7636 int netdev_master_upper_dev_link(struct net_device *dev,
7637                                  struct net_device *upper_dev,
7638                                  void *upper_priv, void *upper_info,
7639                                  struct netlink_ext_ack *extack)
7640 {
7641         return __netdev_upper_dev_link(dev, upper_dev, true,
7642                                        upper_priv, upper_info, extack);
7643 }
7644 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7645
7646 /**
7647  * netdev_upper_dev_unlink - Removes a link to upper device
7648  * @dev: device
7649  * @upper_dev: new upper device
7650  *
7651  * Removes a link to device which is upper to this one. The caller must hold
7652  * the RTNL lock.
7653  */
7654 void netdev_upper_dev_unlink(struct net_device *dev,
7655                              struct net_device *upper_dev)
7656 {
7657         struct netdev_notifier_changeupper_info changeupper_info = {
7658                 .info = {
7659                         .dev = dev,
7660                 },
7661                 .upper_dev = upper_dev,
7662                 .linking = false,
7663         };
7664
7665         ASSERT_RTNL();
7666
7667         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7668
7669         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7670                                       &changeupper_info.info);
7671
7672         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7673
7674         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7675                                       &changeupper_info.info);
7676
7677         __netdev_update_upper_level(dev, NULL);
7678         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7679
7680         __netdev_update_lower_level(upper_dev, NULL);
7681         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7682                                     NULL);
7683 }
7684 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7685
7686 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7687                                       struct net_device *lower_dev,
7688                                       bool val)
7689 {
7690         struct netdev_adjacent *adj;
7691
7692         adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7693         if (adj)
7694                 adj->ignore = val;
7695
7696         adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7697         if (adj)
7698                 adj->ignore = val;
7699 }
7700
7701 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7702                                         struct net_device *lower_dev)
7703 {
7704         __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7705 }
7706
7707 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7708                                        struct net_device *lower_dev)
7709 {
7710         __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7711 }
7712
7713 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7714                                    struct net_device *new_dev,
7715                                    struct net_device *dev,
7716                                    struct netlink_ext_ack *extack)
7717 {
7718         int err;
7719
7720         if (!new_dev)
7721                 return 0;
7722
7723         if (old_dev && new_dev != old_dev)
7724                 netdev_adjacent_dev_disable(dev, old_dev);
7725
7726         err = netdev_upper_dev_link(new_dev, dev, extack);
7727         if (err) {
7728                 if (old_dev && new_dev != old_dev)
7729                         netdev_adjacent_dev_enable(dev, old_dev);
7730                 return err;
7731         }
7732
7733         return 0;
7734 }
7735 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7736
7737 void netdev_adjacent_change_commit(struct net_device *old_dev,
7738                                    struct net_device *new_dev,
7739                                    struct net_device *dev)
7740 {
7741         if (!new_dev || !old_dev)
7742                 return;
7743
7744         if (new_dev == old_dev)
7745                 return;
7746
7747         netdev_adjacent_dev_enable(dev, old_dev);
7748         netdev_upper_dev_unlink(old_dev, dev);
7749 }
7750 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7751
7752 void netdev_adjacent_change_abort(struct net_device *old_dev,
7753                                   struct net_device *new_dev,
7754                                   struct net_device *dev)
7755 {
7756         if (!new_dev)
7757                 return;
7758
7759         if (old_dev && new_dev != old_dev)
7760                 netdev_adjacent_dev_enable(dev, old_dev);
7761
7762         netdev_upper_dev_unlink(new_dev, dev);
7763 }
7764 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7765
7766 /**
7767  * netdev_bonding_info_change - Dispatch event about slave change
7768  * @dev: device
7769  * @bonding_info: info to dispatch
7770  *
7771  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7772  * The caller must hold the RTNL lock.
7773  */
7774 void netdev_bonding_info_change(struct net_device *dev,
7775                                 struct netdev_bonding_info *bonding_info)
7776 {
7777         struct netdev_notifier_bonding_info info = {
7778                 .info.dev = dev,
7779         };
7780
7781         memcpy(&info.bonding_info, bonding_info,
7782                sizeof(struct netdev_bonding_info));
7783         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7784                                       &info.info);
7785 }
7786 EXPORT_SYMBOL(netdev_bonding_info_change);
7787
7788 static void netdev_adjacent_add_links(struct net_device *dev)
7789 {
7790         struct netdev_adjacent *iter;
7791
7792         struct net *net = dev_net(dev);
7793
7794         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7795                 if (!net_eq(net, dev_net(iter->dev)))
7796                         continue;
7797                 netdev_adjacent_sysfs_add(iter->dev, dev,
7798                                           &iter->dev->adj_list.lower);
7799                 netdev_adjacent_sysfs_add(dev, iter->dev,
7800                                           &dev->adj_list.upper);
7801         }
7802
7803         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7804                 if (!net_eq(net, dev_net(iter->dev)))
7805                         continue;
7806                 netdev_adjacent_sysfs_add(iter->dev, dev,
7807                                           &iter->dev->adj_list.upper);
7808                 netdev_adjacent_sysfs_add(dev, iter->dev,
7809                                           &dev->adj_list.lower);
7810         }
7811 }
7812
7813 static void netdev_adjacent_del_links(struct net_device *dev)
7814 {
7815         struct netdev_adjacent *iter;
7816
7817         struct net *net = dev_net(dev);
7818
7819         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7820                 if (!net_eq(net, dev_net(iter->dev)))
7821                         continue;
7822                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7823                                           &iter->dev->adj_list.lower);
7824                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7825                                           &dev->adj_list.upper);
7826         }
7827
7828         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7829                 if (!net_eq(net, dev_net(iter->dev)))
7830                         continue;
7831                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7832                                           &iter->dev->adj_list.upper);
7833                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7834                                           &dev->adj_list.lower);
7835         }
7836 }
7837
7838 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7839 {
7840         struct netdev_adjacent *iter;
7841
7842         struct net *net = dev_net(dev);
7843
7844         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7845                 if (!net_eq(net, dev_net(iter->dev)))
7846                         continue;
7847                 netdev_adjacent_sysfs_del(iter->dev, oldname,
7848                                           &iter->dev->adj_list.lower);
7849                 netdev_adjacent_sysfs_add(iter->dev, dev,
7850                                           &iter->dev->adj_list.lower);
7851         }
7852
7853         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7854                 if (!net_eq(net, dev_net(iter->dev)))
7855                         continue;
7856                 netdev_adjacent_sysfs_del(iter->dev, oldname,
7857                                           &iter->dev->adj_list.upper);
7858                 netdev_adjacent_sysfs_add(iter->dev, dev,
7859                                           &iter->dev->adj_list.upper);
7860         }
7861 }
7862
7863 void *netdev_lower_dev_get_private(struct net_device *dev,
7864                                    struct net_device *lower_dev)
7865 {
7866         struct netdev_adjacent *lower;
7867
7868         if (!lower_dev)
7869                 return NULL;
7870         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7871         if (!lower)
7872                 return NULL;
7873
7874         return lower->private;
7875 }
7876 EXPORT_SYMBOL(netdev_lower_dev_get_private);
7877
7878
7879 /**
7880  * netdev_lower_change - Dispatch event about lower device state change
7881  * @lower_dev: device
7882  * @lower_state_info: state to dispatch
7883  *
7884  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7885  * The caller must hold the RTNL lock.
7886  */
7887 void netdev_lower_state_changed(struct net_device *lower_dev,
7888                                 void *lower_state_info)
7889 {
7890         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7891                 .info.dev = lower_dev,
7892         };
7893
7894         ASSERT_RTNL();
7895         changelowerstate_info.lower_state_info = lower_state_info;
7896         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7897                                       &changelowerstate_info.info);
7898 }
7899 EXPORT_SYMBOL(netdev_lower_state_changed);
7900
7901 static void dev_change_rx_flags(struct net_device *dev, int flags)
7902 {
7903         const struct net_device_ops *ops = dev->netdev_ops;
7904
7905         if (ops->ndo_change_rx_flags)
7906                 ops->ndo_change_rx_flags(dev, flags);
7907 }
7908
7909 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7910 {
7911         unsigned int old_flags = dev->flags;
7912         kuid_t uid;
7913         kgid_t gid;
7914
7915         ASSERT_RTNL();
7916
7917         dev->flags |= IFF_PROMISC;
7918         dev->promiscuity += inc;
7919         if (dev->promiscuity == 0) {
7920                 /*
7921                  * Avoid overflow.
7922                  * If inc causes overflow, untouch promisc and return error.
7923                  */
7924                 if (inc < 0)
7925                         dev->flags &= ~IFF_PROMISC;
7926                 else {
7927                         dev->promiscuity -= inc;
7928                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7929                                 dev->name);
7930                         return -EOVERFLOW;
7931                 }
7932         }
7933         if (dev->flags != old_flags) {
7934                 pr_info("device %s %s promiscuous mode\n",
7935                         dev->name,
7936                         dev->flags & IFF_PROMISC ? "entered" : "left");
7937                 if (audit_enabled) {
7938                         current_uid_gid(&uid, &gid);
7939                         audit_log(audit_context(), GFP_ATOMIC,
7940                                   AUDIT_ANOM_PROMISCUOUS,
7941                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7942                                   dev->name, (dev->flags & IFF_PROMISC),
7943                                   (old_flags & IFF_PROMISC),
7944                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
7945                                   from_kuid(&init_user_ns, uid),
7946                                   from_kgid(&init_user_ns, gid),
7947                                   audit_get_sessionid(current));
7948                 }
7949
7950                 dev_change_rx_flags(dev, IFF_PROMISC);
7951         }
7952         if (notify)
7953                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
7954         return 0;
7955 }
7956
7957 /**
7958  *      dev_set_promiscuity     - update promiscuity count on a device
7959  *      @dev: device
7960  *      @inc: modifier
7961  *
7962  *      Add or remove promiscuity from a device. While the count in the device
7963  *      remains above zero the interface remains promiscuous. Once it hits zero
7964  *      the device reverts back to normal filtering operation. A negative inc
7965  *      value is used to drop promiscuity on the device.
7966  *      Return 0 if successful or a negative errno code on error.
7967  */
7968 int dev_set_promiscuity(struct net_device *dev, int inc)
7969 {
7970         unsigned int old_flags = dev->flags;
7971         int err;
7972
7973         err = __dev_set_promiscuity(dev, inc, true);
7974         if (err < 0)
7975                 return err;
7976         if (dev->flags != old_flags)
7977                 dev_set_rx_mode(dev);
7978         return err;
7979 }
7980 EXPORT_SYMBOL(dev_set_promiscuity);
7981
7982 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7983 {
7984         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7985
7986         ASSERT_RTNL();
7987
7988         dev->flags |= IFF_ALLMULTI;
7989         dev->allmulti += inc;
7990         if (dev->allmulti == 0) {
7991                 /*
7992                  * Avoid overflow.
7993                  * If inc causes overflow, untouch allmulti and return error.
7994                  */
7995                 if (inc < 0)
7996                         dev->flags &= ~IFF_ALLMULTI;
7997                 else {
7998                         dev->allmulti -= inc;
7999                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8000                                 dev->name);
8001                         return -EOVERFLOW;
8002                 }
8003         }
8004         if (dev->flags ^ old_flags) {
8005                 dev_change_rx_flags(dev, IFF_ALLMULTI);
8006                 dev_set_rx_mode(dev);
8007                 if (notify)
8008                         __dev_notify_flags(dev, old_flags,
8009                                            dev->gflags ^ old_gflags);
8010         }
8011         return 0;
8012 }
8013
8014 /**
8015  *      dev_set_allmulti        - update allmulti count on a device
8016  *      @dev: device
8017  *      @inc: modifier
8018  *
8019  *      Add or remove reception of all multicast frames to a device. While the
8020  *      count in the device remains above zero the interface remains listening
8021  *      to all interfaces. Once it hits zero the device reverts back to normal
8022  *      filtering operation. A negative @inc value is used to drop the counter
8023  *      when releasing a resource needing all multicasts.
8024  *      Return 0 if successful or a negative errno code on error.
8025  */
8026
8027 int dev_set_allmulti(struct net_device *dev, int inc)
8028 {
8029         return __dev_set_allmulti(dev, inc, true);
8030 }
8031 EXPORT_SYMBOL(dev_set_allmulti);
8032
8033 /*
8034  *      Upload unicast and multicast address lists to device and
8035  *      configure RX filtering. When the device doesn't support unicast
8036  *      filtering it is put in promiscuous mode while unicast addresses
8037  *      are present.
8038  */
8039 void __dev_set_rx_mode(struct net_device *dev)
8040 {
8041         const struct net_device_ops *ops = dev->netdev_ops;
8042
8043         /* dev_open will call this function so the list will stay sane. */
8044         if (!(dev->flags&IFF_UP))
8045                 return;
8046
8047         if (!netif_device_present(dev))
8048                 return;
8049
8050         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8051                 /* Unicast addresses changes may only happen under the rtnl,
8052                  * therefore calling __dev_set_promiscuity here is safe.
8053                  */
8054                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8055                         __dev_set_promiscuity(dev, 1, false);
8056                         dev->uc_promisc = true;
8057                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8058                         __dev_set_promiscuity(dev, -1, false);
8059                         dev->uc_promisc = false;
8060                 }
8061         }
8062
8063         if (ops->ndo_set_rx_mode)
8064                 ops->ndo_set_rx_mode(dev);
8065 }
8066
8067 void dev_set_rx_mode(struct net_device *dev)
8068 {
8069         netif_addr_lock_bh(dev);
8070         __dev_set_rx_mode(dev);
8071         netif_addr_unlock_bh(dev);
8072 }
8073
8074 /**
8075  *      dev_get_flags - get flags reported to userspace
8076  *      @dev: device
8077  *
8078  *      Get the combination of flag bits exported through APIs to userspace.
8079  */
8080 unsigned int dev_get_flags(const struct net_device *dev)
8081 {
8082         unsigned int flags;
8083
8084         flags = (dev->flags & ~(IFF_PROMISC |
8085                                 IFF_ALLMULTI |
8086                                 IFF_RUNNING |
8087                                 IFF_LOWER_UP |
8088                                 IFF_DORMANT)) |
8089                 (dev->gflags & (IFF_PROMISC |
8090                                 IFF_ALLMULTI));
8091
8092         if (netif_running(dev)) {
8093                 if (netif_oper_up(dev))
8094                         flags |= IFF_RUNNING;
8095                 if (netif_carrier_ok(dev))
8096                         flags |= IFF_LOWER_UP;
8097                 if (netif_dormant(dev))
8098                         flags |= IFF_DORMANT;
8099         }
8100
8101         return flags;
8102 }
8103 EXPORT_SYMBOL(dev_get_flags);
8104
8105 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8106                        struct netlink_ext_ack *extack)
8107 {
8108         unsigned int old_flags = dev->flags;
8109         int ret;
8110
8111         ASSERT_RTNL();
8112
8113         /*
8114          *      Set the flags on our device.
8115          */
8116
8117         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8118                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8119                                IFF_AUTOMEDIA)) |
8120                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8121                                     IFF_ALLMULTI));
8122
8123         /*
8124          *      Load in the correct multicast list now the flags have changed.
8125          */
8126
8127         if ((old_flags ^ flags) & IFF_MULTICAST)
8128                 dev_change_rx_flags(dev, IFF_MULTICAST);
8129
8130         dev_set_rx_mode(dev);
8131
8132         /*
8133          *      Have we downed the interface. We handle IFF_UP ourselves
8134          *      according to user attempts to set it, rather than blindly
8135          *      setting it.
8136          */
8137
8138         ret = 0;
8139         if ((old_flags ^ flags) & IFF_UP) {
8140                 if (old_flags & IFF_UP)
8141                         __dev_close(dev);
8142                 else
8143                         ret = __dev_open(dev, extack);
8144         }
8145
8146         if ((flags ^ dev->gflags) & IFF_PROMISC) {
8147                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8148                 unsigned int old_flags = dev->flags;
8149
8150                 dev->gflags ^= IFF_PROMISC;
8151
8152                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8153                         if (dev->flags != old_flags)
8154                                 dev_set_rx_mode(dev);
8155         }
8156
8157         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8158          * is important. Some (broken) drivers set IFF_PROMISC, when
8159          * IFF_ALLMULTI is requested not asking us and not reporting.
8160          */
8161         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8162                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8163
8164                 dev->gflags ^= IFF_ALLMULTI;
8165                 __dev_set_allmulti(dev, inc, false);
8166         }
8167
8168         return ret;
8169 }
8170
8171 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8172                         unsigned int gchanges)
8173 {
8174         unsigned int changes = dev->flags ^ old_flags;
8175
8176         if (gchanges)
8177                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8178
8179         if (changes & IFF_UP) {
8180                 if (dev->flags & IFF_UP)
8181                         call_netdevice_notifiers(NETDEV_UP, dev);
8182                 else
8183                         call_netdevice_notifiers(NETDEV_DOWN, dev);
8184         }
8185
8186         if (dev->flags & IFF_UP &&
8187             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8188                 struct netdev_notifier_change_info change_info = {
8189                         .info = {
8190                                 .dev = dev,
8191                         },
8192                         .flags_changed = changes,
8193                 };
8194
8195                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8196         }
8197 }
8198
8199 /**
8200  *      dev_change_flags - change device settings
8201  *      @dev: device
8202  *      @flags: device state flags
8203  *      @extack: netlink extended ack
8204  *
8205  *      Change settings on device based state flags. The flags are
8206  *      in the userspace exported format.
8207  */
8208 int dev_change_flags(struct net_device *dev, unsigned int flags,
8209                      struct netlink_ext_ack *extack)
8210 {
8211         int ret;
8212         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8213
8214         ret = __dev_change_flags(dev, flags, extack);
8215         if (ret < 0)
8216                 return ret;
8217
8218         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8219         __dev_notify_flags(dev, old_flags, changes);
8220         return ret;
8221 }
8222 EXPORT_SYMBOL(dev_change_flags);
8223
8224 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8225 {
8226         const struct net_device_ops *ops = dev->netdev_ops;
8227
8228         if (ops->ndo_change_mtu)
8229                 return ops->ndo_change_mtu(dev, new_mtu);
8230
8231         /* Pairs with all the lockless reads of dev->mtu in the stack */
8232         WRITE_ONCE(dev->mtu, new_mtu);
8233         return 0;
8234 }
8235 EXPORT_SYMBOL(__dev_set_mtu);
8236
8237 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8238                      struct netlink_ext_ack *extack)
8239 {
8240         /* MTU must be positive, and in range */
8241         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8242                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8243                 return -EINVAL;
8244         }
8245
8246         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8247                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8248                 return -EINVAL;
8249         }
8250         return 0;
8251 }
8252
8253 /**
8254  *      dev_set_mtu_ext - Change maximum transfer unit
8255  *      @dev: device
8256  *      @new_mtu: new transfer unit
8257  *      @extack: netlink extended ack
8258  *
8259  *      Change the maximum transfer size of the network device.
8260  */
8261 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8262                     struct netlink_ext_ack *extack)
8263 {
8264         int err, orig_mtu;
8265
8266         if (new_mtu == dev->mtu)
8267                 return 0;
8268
8269         err = dev_validate_mtu(dev, new_mtu, extack);
8270         if (err)
8271                 return err;
8272
8273         if (!netif_device_present(dev))
8274                 return -ENODEV;
8275
8276         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8277         err = notifier_to_errno(err);
8278         if (err)
8279                 return err;
8280
8281         orig_mtu = dev->mtu;
8282         err = __dev_set_mtu(dev, new_mtu);
8283
8284         if (!err) {
8285                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8286                                                    orig_mtu);
8287                 err = notifier_to_errno(err);
8288                 if (err) {
8289                         /* setting mtu back and notifying everyone again,
8290                          * so that they have a chance to revert changes.
8291                          */
8292                         __dev_set_mtu(dev, orig_mtu);
8293                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8294                                                      new_mtu);
8295                 }
8296         }
8297         return err;
8298 }
8299
8300 int dev_set_mtu(struct net_device *dev, int new_mtu)
8301 {
8302         struct netlink_ext_ack extack;
8303         int err;
8304
8305         memset(&extack, 0, sizeof(extack));
8306         err = dev_set_mtu_ext(dev, new_mtu, &extack);
8307         if (err && extack._msg)
8308                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8309         return err;
8310 }
8311 EXPORT_SYMBOL(dev_set_mtu);
8312
8313 /**
8314  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
8315  *      @dev: device
8316  *      @new_len: new tx queue length
8317  */
8318 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8319 {
8320         unsigned int orig_len = dev->tx_queue_len;
8321         int res;
8322
8323         if (new_len != (unsigned int)new_len)
8324                 return -ERANGE;
8325
8326         if (new_len != orig_len) {
8327                 dev->tx_queue_len = new_len;
8328                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8329                 res = notifier_to_errno(res);
8330                 if (res)
8331                         goto err_rollback;
8332                 res = dev_qdisc_change_tx_queue_len(dev);
8333                 if (res)
8334                         goto err_rollback;
8335         }
8336
8337         return 0;
8338
8339 err_rollback:
8340         netdev_err(dev, "refused to change device tx_queue_len\n");
8341         dev->tx_queue_len = orig_len;
8342         return res;
8343 }
8344
8345 /**
8346  *      dev_set_group - Change group this device belongs to
8347  *      @dev: device
8348  *      @new_group: group this device should belong to
8349  */
8350 void dev_set_group(struct net_device *dev, int new_group)
8351 {
8352         dev->group = new_group;
8353 }
8354 EXPORT_SYMBOL(dev_set_group);
8355
8356 /**
8357  *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8358  *      @dev: device
8359  *      @addr: new address
8360  *      @extack: netlink extended ack
8361  */
8362 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8363                               struct netlink_ext_ack *extack)
8364 {
8365         struct netdev_notifier_pre_changeaddr_info info = {
8366                 .info.dev = dev,
8367                 .info.extack = extack,
8368                 .dev_addr = addr,
8369         };
8370         int rc;
8371
8372         rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8373         return notifier_to_errno(rc);
8374 }
8375 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8376
8377 /**
8378  *      dev_set_mac_address - Change Media Access Control Address
8379  *      @dev: device
8380  *      @sa: new address
8381  *      @extack: netlink extended ack
8382  *
8383  *      Change the hardware (MAC) address of the device
8384  */
8385 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8386                         struct netlink_ext_ack *extack)
8387 {
8388         const struct net_device_ops *ops = dev->netdev_ops;
8389         int err;
8390
8391         if (!ops->ndo_set_mac_address)
8392                 return -EOPNOTSUPP;
8393         if (sa->sa_family != dev->type)
8394                 return -EINVAL;
8395         if (!netif_device_present(dev))
8396                 return -ENODEV;
8397         err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8398         if (err)
8399                 return err;
8400         err = ops->ndo_set_mac_address(dev, sa);
8401         if (err)
8402                 return err;
8403         dev->addr_assign_type = NET_ADDR_SET;
8404         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8405         add_device_randomness(dev->dev_addr, dev->addr_len);
8406         return 0;
8407 }
8408 EXPORT_SYMBOL(dev_set_mac_address);
8409
8410 /**
8411  *      dev_change_carrier - Change device carrier
8412  *      @dev: device
8413  *      @new_carrier: new value
8414  *
8415  *      Change device carrier
8416  */
8417 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8418 {
8419         const struct net_device_ops *ops = dev->netdev_ops;
8420
8421         if (!ops->ndo_change_carrier)
8422                 return -EOPNOTSUPP;
8423         if (!netif_device_present(dev))
8424                 return -ENODEV;
8425         return ops->ndo_change_carrier(dev, new_carrier);
8426 }
8427 EXPORT_SYMBOL(dev_change_carrier);
8428
8429 /**
8430  *      dev_get_phys_port_id - Get device physical port ID
8431  *      @dev: device
8432  *      @ppid: port ID
8433  *
8434  *      Get device physical port ID
8435  */
8436 int dev_get_phys_port_id(struct net_device *dev,
8437                          struct netdev_phys_item_id *ppid)
8438 {
8439         const struct net_device_ops *ops = dev->netdev_ops;
8440
8441         if (!ops->ndo_get_phys_port_id)
8442                 return -EOPNOTSUPP;
8443         return ops->ndo_get_phys_port_id(dev, ppid);
8444 }
8445 EXPORT_SYMBOL(dev_get_phys_port_id);
8446
8447 /**
8448  *      dev_get_phys_port_name - Get device physical port name
8449  *      @dev: device
8450  *      @name: port name
8451  *      @len: limit of bytes to copy to name
8452  *
8453  *      Get device physical port name
8454  */
8455 int dev_get_phys_port_name(struct net_device *dev,
8456                            char *name, size_t len)
8457 {
8458         const struct net_device_ops *ops = dev->netdev_ops;
8459         int err;
8460
8461         if (ops->ndo_get_phys_port_name) {
8462                 err = ops->ndo_get_phys_port_name(dev, name, len);
8463                 if (err != -EOPNOTSUPP)
8464                         return err;
8465         }
8466         return devlink_compat_phys_port_name_get(dev, name, len);
8467 }
8468 EXPORT_SYMBOL(dev_get_phys_port_name);
8469
8470 /**
8471  *      dev_get_port_parent_id - Get the device's port parent identifier
8472  *      @dev: network device
8473  *      @ppid: pointer to a storage for the port's parent identifier
8474  *      @recurse: allow/disallow recursion to lower devices
8475  *
8476  *      Get the devices's port parent identifier
8477  */
8478 int dev_get_port_parent_id(struct net_device *dev,
8479                            struct netdev_phys_item_id *ppid,
8480                            bool recurse)
8481 {
8482         const struct net_device_ops *ops = dev->netdev_ops;
8483         struct netdev_phys_item_id first = { };
8484         struct net_device *lower_dev;
8485         struct list_head *iter;
8486         int err;
8487
8488         if (ops->ndo_get_port_parent_id) {
8489                 err = ops->ndo_get_port_parent_id(dev, ppid);
8490                 if (err != -EOPNOTSUPP)
8491                         return err;
8492         }
8493
8494         err = devlink_compat_switch_id_get(dev, ppid);
8495         if (!err || err != -EOPNOTSUPP)
8496                 return err;
8497
8498         if (!recurse)
8499                 return -EOPNOTSUPP;
8500
8501         netdev_for_each_lower_dev(dev, lower_dev, iter) {
8502                 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
8503                 if (err)
8504                         break;
8505                 if (!first.id_len)
8506                         first = *ppid;
8507                 else if (memcmp(&first, ppid, sizeof(*ppid)))
8508                         return -ENODATA;
8509         }
8510
8511         return err;
8512 }
8513 EXPORT_SYMBOL(dev_get_port_parent_id);
8514
8515 /**
8516  *      netdev_port_same_parent_id - Indicate if two network devices have
8517  *      the same port parent identifier
8518  *      @a: first network device
8519  *      @b: second network device
8520  */
8521 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8522 {
8523         struct netdev_phys_item_id a_id = { };
8524         struct netdev_phys_item_id b_id = { };
8525
8526         if (dev_get_port_parent_id(a, &a_id, true) ||
8527             dev_get_port_parent_id(b, &b_id, true))
8528                 return false;
8529
8530         return netdev_phys_item_id_same(&a_id, &b_id);
8531 }
8532 EXPORT_SYMBOL(netdev_port_same_parent_id);
8533
8534 /**
8535  *      dev_change_proto_down - update protocol port state information
8536  *      @dev: device
8537  *      @proto_down: new value
8538  *
8539  *      This info can be used by switch drivers to set the phys state of the
8540  *      port.
8541  */
8542 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8543 {
8544         const struct net_device_ops *ops = dev->netdev_ops;
8545
8546         if (!ops->ndo_change_proto_down)
8547                 return -EOPNOTSUPP;
8548         if (!netif_device_present(dev))
8549                 return -ENODEV;
8550         return ops->ndo_change_proto_down(dev, proto_down);
8551 }
8552 EXPORT_SYMBOL(dev_change_proto_down);
8553
8554 /**
8555  *      dev_change_proto_down_generic - generic implementation for
8556  *      ndo_change_proto_down that sets carrier according to
8557  *      proto_down.
8558  *
8559  *      @dev: device
8560  *      @proto_down: new value
8561  */
8562 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8563 {
8564         if (proto_down)
8565                 netif_carrier_off(dev);
8566         else
8567                 netif_carrier_on(dev);
8568         dev->proto_down = proto_down;
8569         return 0;
8570 }
8571 EXPORT_SYMBOL(dev_change_proto_down_generic);
8572
8573 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
8574                     enum bpf_netdev_command cmd)
8575 {
8576         struct netdev_bpf xdp;
8577
8578         if (!bpf_op)
8579                 return 0;
8580
8581         memset(&xdp, 0, sizeof(xdp));
8582         xdp.command = cmd;
8583
8584         /* Query must always succeed. */
8585         WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
8586
8587         return xdp.prog_id;
8588 }
8589
8590 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
8591                            struct netlink_ext_ack *extack, u32 flags,
8592                            struct bpf_prog *prog)
8593 {
8594         bool non_hw = !(flags & XDP_FLAGS_HW_MODE);
8595         struct bpf_prog *prev_prog = NULL;
8596         struct netdev_bpf xdp;
8597         int err;
8598
8599         if (non_hw) {
8600                 prev_prog = bpf_prog_by_id(__dev_xdp_query(dev, bpf_op,
8601                                                            XDP_QUERY_PROG));
8602                 if (IS_ERR(prev_prog))
8603                         prev_prog = NULL;
8604         }
8605
8606         memset(&xdp, 0, sizeof(xdp));
8607         if (flags & XDP_FLAGS_HW_MODE)
8608                 xdp.command = XDP_SETUP_PROG_HW;
8609         else
8610                 xdp.command = XDP_SETUP_PROG;
8611         xdp.extack = extack;
8612         xdp.flags = flags;
8613         xdp.prog = prog;
8614
8615         err = bpf_op(dev, &xdp);
8616         if (!err && non_hw)
8617                 bpf_prog_change_xdp(prev_prog, prog);
8618
8619         if (prev_prog)
8620                 bpf_prog_put(prev_prog);
8621
8622         return err;
8623 }
8624
8625 static void dev_xdp_uninstall(struct net_device *dev)
8626 {
8627         struct netdev_bpf xdp;
8628         bpf_op_t ndo_bpf;
8629
8630         /* Remove generic XDP */
8631         WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
8632
8633         /* Remove from the driver */
8634         ndo_bpf = dev->netdev_ops->ndo_bpf;
8635         if (!ndo_bpf)
8636                 return;
8637
8638         memset(&xdp, 0, sizeof(xdp));
8639         xdp.command = XDP_QUERY_PROG;
8640         WARN_ON(ndo_bpf(dev, &xdp));
8641         if (xdp.prog_id)
8642                 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8643                                         NULL));
8644
8645         /* Remove HW offload */
8646         memset(&xdp, 0, sizeof(xdp));
8647         xdp.command = XDP_QUERY_PROG_HW;
8648         if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
8649                 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8650                                         NULL));
8651 }
8652
8653 /**
8654  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
8655  *      @dev: device
8656  *      @extack: netlink extended ack
8657  *      @fd: new program fd or negative value to clear
8658  *      @expected_fd: old program fd that userspace expects to replace or clear
8659  *      @flags: xdp-related flags
8660  *
8661  *      Set or clear a bpf program for a device
8662  */
8663 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
8664                       int fd, int expected_fd, u32 flags)
8665 {
8666         const struct net_device_ops *ops = dev->netdev_ops;
8667         enum bpf_netdev_command query;
8668         u32 prog_id, expected_id = 0;
8669         struct bpf_prog *prog = NULL;
8670         bpf_op_t bpf_op, bpf_chk;
8671         bool offload;
8672         int err;
8673
8674         ASSERT_RTNL();
8675
8676         offload = flags & XDP_FLAGS_HW_MODE;
8677         query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
8678
8679         bpf_op = bpf_chk = ops->ndo_bpf;
8680         if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) {
8681                 NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode");
8682                 return -EOPNOTSUPP;
8683         }
8684         if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
8685                 bpf_op = generic_xdp_install;
8686         if (bpf_op == bpf_chk)
8687                 bpf_chk = generic_xdp_install;
8688
8689         prog_id = __dev_xdp_query(dev, bpf_op, query);
8690         if (flags & XDP_FLAGS_REPLACE) {
8691                 if (expected_fd >= 0) {
8692                         prog = bpf_prog_get_type_dev(expected_fd,
8693                                                      BPF_PROG_TYPE_XDP,
8694                                                      bpf_op == ops->ndo_bpf);
8695                         if (IS_ERR(prog))
8696                                 return PTR_ERR(prog);
8697                         expected_id = prog->aux->id;
8698                         bpf_prog_put(prog);
8699                 }
8700
8701                 if (prog_id != expected_id) {
8702                         NL_SET_ERR_MSG(extack, "Active program does not match expected");
8703                         return -EEXIST;
8704                 }
8705         }
8706         if (fd >= 0) {
8707                 if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) {
8708                         NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time");
8709                         return -EEXIST;
8710                 }
8711
8712                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && prog_id) {
8713                         NL_SET_ERR_MSG(extack, "XDP program already attached");
8714                         return -EBUSY;
8715                 }
8716
8717                 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
8718                                              bpf_op == ops->ndo_bpf);
8719                 if (IS_ERR(prog))
8720                         return PTR_ERR(prog);
8721
8722                 if (!offload && bpf_prog_is_dev_bound(prog->aux)) {
8723                         NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
8724                         bpf_prog_put(prog);
8725                         return -EINVAL;
8726                 }
8727
8728                 /* prog->aux->id may be 0 for orphaned device-bound progs */
8729                 if (prog->aux->id && prog->aux->id == prog_id) {
8730                         bpf_prog_put(prog);
8731                         return 0;
8732                 }
8733         } else {
8734                 if (!prog_id)
8735                         return 0;
8736         }
8737
8738         err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
8739         if (err < 0 && prog)
8740                 bpf_prog_put(prog);
8741
8742         return err;
8743 }
8744
8745 /**
8746  *      dev_new_index   -       allocate an ifindex
8747  *      @net: the applicable net namespace
8748  *
8749  *      Returns a suitable unique value for a new device interface
8750  *      number.  The caller must hold the rtnl semaphore or the
8751  *      dev_base_lock to be sure it remains unique.
8752  */
8753 static int dev_new_index(struct net *net)
8754 {
8755         int ifindex = net->ifindex;
8756
8757         for (;;) {
8758                 if (++ifindex <= 0)
8759                         ifindex = 1;
8760                 if (!__dev_get_by_index(net, ifindex))
8761                         return net->ifindex = ifindex;
8762         }
8763 }
8764
8765 /* Delayed registration/unregisteration */
8766 static LIST_HEAD(net_todo_list);
8767 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
8768
8769 static void net_set_todo(struct net_device *dev)
8770 {
8771         list_add_tail(&dev->todo_list, &net_todo_list);
8772         dev_net(dev)->dev_unreg_count++;
8773 }
8774
8775 static void rollback_registered_many(struct list_head *head)
8776 {
8777         struct net_device *dev, *tmp;
8778         LIST_HEAD(close_head);
8779
8780         BUG_ON(dev_boot_phase);
8781         ASSERT_RTNL();
8782
8783         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
8784                 /* Some devices call without registering
8785                  * for initialization unwind. Remove those
8786                  * devices and proceed with the remaining.
8787                  */
8788                 if (dev->reg_state == NETREG_UNINITIALIZED) {
8789                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8790                                  dev->name, dev);
8791
8792                         WARN_ON(1);
8793                         list_del(&dev->unreg_list);
8794                         continue;
8795                 }
8796                 dev->dismantle = true;
8797                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
8798         }
8799
8800         /* If device is running, close it first. */
8801         list_for_each_entry(dev, head, unreg_list)
8802                 list_add_tail(&dev->close_list, &close_head);
8803         dev_close_many(&close_head, true);
8804
8805         list_for_each_entry(dev, head, unreg_list) {
8806                 /* And unlink it from device chain. */
8807                 unlist_netdevice(dev);
8808
8809                 dev->reg_state = NETREG_UNREGISTERING;
8810         }
8811         flush_all_backlogs();
8812
8813         synchronize_net();
8814
8815         list_for_each_entry(dev, head, unreg_list) {
8816                 struct sk_buff *skb = NULL;
8817
8818                 /* Shutdown queueing discipline. */
8819                 dev_shutdown(dev);
8820
8821                 dev_xdp_uninstall(dev);
8822
8823                 /* Notify protocols, that we are about to destroy
8824                  * this device. They should clean all the things.
8825                  */
8826                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8827
8828                 if (!dev->rtnl_link_ops ||
8829                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8830                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
8831                                                      GFP_KERNEL, NULL, 0);
8832
8833                 /*
8834                  *      Flush the unicast and multicast chains
8835                  */
8836                 dev_uc_flush(dev);
8837                 dev_mc_flush(dev);
8838
8839                 netdev_name_node_alt_flush(dev);
8840                 netdev_name_node_free(dev->name_node);
8841
8842                 if (dev->netdev_ops->ndo_uninit)
8843                         dev->netdev_ops->ndo_uninit(dev);
8844
8845                 if (skb)
8846                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
8847
8848                 /* Notifier chain MUST detach us all upper devices. */
8849                 WARN_ON(netdev_has_any_upper_dev(dev));
8850                 WARN_ON(netdev_has_any_lower_dev(dev));
8851
8852                 /* Remove entries from kobject tree */
8853                 netdev_unregister_kobject(dev);
8854 #ifdef CONFIG_XPS
8855                 /* Remove XPS queueing entries */
8856                 netif_reset_xps_queues_gt(dev, 0);
8857 #endif
8858         }
8859
8860         synchronize_net();
8861
8862         list_for_each_entry(dev, head, unreg_list)
8863                 dev_put(dev);
8864 }
8865
8866 static void rollback_registered(struct net_device *dev)
8867 {
8868         LIST_HEAD(single);
8869
8870         list_add(&dev->unreg_list, &single);
8871         rollback_registered_many(&single);
8872         list_del(&single);
8873 }
8874
8875 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8876         struct net_device *upper, netdev_features_t features)
8877 {
8878         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8879         netdev_features_t feature;
8880         int feature_bit;
8881
8882         for_each_netdev_feature(upper_disables, feature_bit) {
8883                 feature = __NETIF_F_BIT(feature_bit);
8884                 if (!(upper->wanted_features & feature)
8885                     && (features & feature)) {
8886                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8887                                    &feature, upper->name);
8888                         features &= ~feature;
8889                 }
8890         }
8891
8892         return features;
8893 }
8894
8895 static void netdev_sync_lower_features(struct net_device *upper,
8896         struct net_device *lower, netdev_features_t features)
8897 {
8898         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8899         netdev_features_t feature;
8900         int feature_bit;
8901
8902         for_each_netdev_feature(upper_disables, feature_bit) {
8903                 feature = __NETIF_F_BIT(feature_bit);
8904                 if (!(features & feature) && (lower->features & feature)) {
8905                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8906                                    &feature, lower->name);
8907                         lower->wanted_features &= ~feature;
8908                         netdev_update_features(lower);
8909
8910                         if (unlikely(lower->features & feature))
8911                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8912                                             &feature, lower->name);
8913                 }
8914         }
8915 }
8916
8917 static netdev_features_t netdev_fix_features(struct net_device *dev,
8918         netdev_features_t features)
8919 {
8920         /* Fix illegal checksum combinations */
8921         if ((features & NETIF_F_HW_CSUM) &&
8922             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
8923                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
8924                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8925         }
8926
8927         /* TSO requires that SG is present as well. */
8928         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
8929                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
8930                 features &= ~NETIF_F_ALL_TSO;
8931         }
8932
8933         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8934                                         !(features & NETIF_F_IP_CSUM)) {
8935                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8936                 features &= ~NETIF_F_TSO;
8937                 features &= ~NETIF_F_TSO_ECN;
8938         }
8939
8940         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8941                                          !(features & NETIF_F_IPV6_CSUM)) {
8942                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8943                 features &= ~NETIF_F_TSO6;
8944         }
8945
8946         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8947         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8948                 features &= ~NETIF_F_TSO_MANGLEID;
8949
8950         /* TSO ECN requires that TSO is present as well. */
8951         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8952                 features &= ~NETIF_F_TSO_ECN;
8953
8954         /* Software GSO depends on SG. */
8955         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
8956                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
8957                 features &= ~NETIF_F_GSO;
8958         }
8959
8960         /* GSO partial features require GSO partial be set */
8961         if ((features & dev->gso_partial_features) &&
8962             !(features & NETIF_F_GSO_PARTIAL)) {
8963                 netdev_dbg(dev,
8964                            "Dropping partially supported GSO features since no GSO partial.\n");
8965                 features &= ~dev->gso_partial_features;
8966         }
8967
8968         if (!(features & NETIF_F_RXCSUM)) {
8969                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8970                  * successfully merged by hardware must also have the
8971                  * checksum verified by hardware.  If the user does not
8972                  * want to enable RXCSUM, logically, we should disable GRO_HW.
8973                  */
8974                 if (features & NETIF_F_GRO_HW) {
8975                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8976                         features &= ~NETIF_F_GRO_HW;
8977                 }
8978         }
8979
8980         /* LRO/HW-GRO features cannot be combined with RX-FCS */
8981         if (features & NETIF_F_RXFCS) {
8982                 if (features & NETIF_F_LRO) {
8983                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8984                         features &= ~NETIF_F_LRO;
8985                 }
8986
8987                 if (features & NETIF_F_GRO_HW) {
8988                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8989                         features &= ~NETIF_F_GRO_HW;
8990                 }
8991         }
8992
8993         return features;
8994 }
8995
8996 int __netdev_update_features(struct net_device *dev)
8997 {
8998         struct net_device *upper, *lower;
8999         netdev_features_t features;
9000         struct list_head *iter;
9001         int err = -1;
9002
9003         ASSERT_RTNL();
9004
9005         features = netdev_get_wanted_features(dev);
9006
9007         if (dev->netdev_ops->ndo_fix_features)
9008                 features = dev->netdev_ops->ndo_fix_features(dev, features);
9009
9010         /* driver might be less strict about feature dependencies */
9011         features = netdev_fix_features(dev, features);
9012
9013         /* some features can't be enabled if they're off an an upper device */
9014         netdev_for_each_upper_dev_rcu(dev, upper, iter)
9015                 features = netdev_sync_upper_features(dev, upper, features);
9016
9017         if (dev->features == features)
9018                 goto sync_lower;
9019
9020         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9021                 &dev->features, &features);
9022
9023         if (dev->netdev_ops->ndo_set_features)
9024                 err = dev->netdev_ops->ndo_set_features(dev, features);
9025         else
9026                 err = 0;
9027
9028         if (unlikely(err < 0)) {
9029                 netdev_err(dev,
9030                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
9031                         err, &features, &dev->features);
9032                 /* return non-0 since some features might have changed and
9033                  * it's better to fire a spurious notification than miss it
9034                  */
9035                 return -1;
9036         }
9037
9038 sync_lower:
9039         /* some features must be disabled on lower devices when disabled
9040          * on an upper device (think: bonding master or bridge)
9041          */
9042         netdev_for_each_lower_dev(dev, lower, iter)
9043                 netdev_sync_lower_features(dev, lower, features);
9044
9045         if (!err) {
9046                 netdev_features_t diff = features ^ dev->features;
9047
9048                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9049                         /* udp_tunnel_{get,drop}_rx_info both need
9050                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9051                          * device, or they won't do anything.
9052                          * Thus we need to update dev->features
9053                          * *before* calling udp_tunnel_get_rx_info,
9054                          * but *after* calling udp_tunnel_drop_rx_info.
9055                          */
9056                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9057                                 dev->features = features;
9058                                 udp_tunnel_get_rx_info(dev);
9059                         } else {
9060                                 udp_tunnel_drop_rx_info(dev);
9061                         }
9062                 }
9063
9064                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9065                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9066                                 dev->features = features;
9067                                 err |= vlan_get_rx_ctag_filter_info(dev);
9068                         } else {
9069                                 vlan_drop_rx_ctag_filter_info(dev);
9070                         }
9071                 }
9072
9073                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9074                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9075                                 dev->features = features;
9076                                 err |= vlan_get_rx_stag_filter_info(dev);
9077                         } else {
9078                                 vlan_drop_rx_stag_filter_info(dev);
9079                         }
9080                 }
9081
9082                 dev->features = features;
9083         }
9084
9085         return err < 0 ? 0 : 1;
9086 }
9087
9088 /**
9089  *      netdev_update_features - recalculate device features
9090  *      @dev: the device to check
9091  *
9092  *      Recalculate dev->features set and send notifications if it
9093  *      has changed. Should be called after driver or hardware dependent
9094  *      conditions might have changed that influence the features.
9095  */
9096 void netdev_update_features(struct net_device *dev)
9097 {
9098         if (__netdev_update_features(dev))
9099                 netdev_features_change(dev);
9100 }
9101 EXPORT_SYMBOL(netdev_update_features);
9102
9103 /**
9104  *      netdev_change_features - recalculate device features
9105  *      @dev: the device to check
9106  *
9107  *      Recalculate dev->features set and send notifications even
9108  *      if they have not changed. Should be called instead of
9109  *      netdev_update_features() if also dev->vlan_features might
9110  *      have changed to allow the changes to be propagated to stacked
9111  *      VLAN devices.
9112  */
9113 void netdev_change_features(struct net_device *dev)
9114 {
9115         __netdev_update_features(dev);
9116         netdev_features_change(dev);
9117 }
9118 EXPORT_SYMBOL(netdev_change_features);
9119
9120 /**
9121  *      netif_stacked_transfer_operstate -      transfer operstate
9122  *      @rootdev: the root or lower level device to transfer state from
9123  *      @dev: the device to transfer operstate to
9124  *
9125  *      Transfer operational state from root to device. This is normally
9126  *      called when a stacking relationship exists between the root
9127  *      device and the device(a leaf device).
9128  */
9129 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9130                                         struct net_device *dev)
9131 {
9132         if (rootdev->operstate == IF_OPER_DORMANT)
9133                 netif_dormant_on(dev);
9134         else
9135                 netif_dormant_off(dev);
9136
9137         if (netif_carrier_ok(rootdev))
9138                 netif_carrier_on(dev);
9139         else
9140                 netif_carrier_off(dev);
9141 }
9142 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9143
9144 static int netif_alloc_rx_queues(struct net_device *dev)
9145 {
9146         unsigned int i, count = dev->num_rx_queues;
9147         struct netdev_rx_queue *rx;
9148         size_t sz = count * sizeof(*rx);
9149         int err = 0;
9150
9151         BUG_ON(count < 1);
9152
9153         rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9154         if (!rx)
9155                 return -ENOMEM;
9156
9157         dev->_rx = rx;
9158
9159         for (i = 0; i < count; i++) {
9160                 rx[i].dev = dev;
9161
9162                 /* XDP RX-queue setup */
9163                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
9164                 if (err < 0)
9165                         goto err_rxq_info;
9166         }
9167         return 0;
9168
9169 err_rxq_info:
9170         /* Rollback successful reg's and free other resources */
9171         while (i--)
9172                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9173         kvfree(dev->_rx);
9174         dev->_rx = NULL;
9175         return err;
9176 }
9177
9178 static void netif_free_rx_queues(struct net_device *dev)
9179 {
9180         unsigned int i, count = dev->num_rx_queues;
9181
9182         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9183         if (!dev->_rx)
9184                 return;
9185
9186         for (i = 0; i < count; i++)
9187                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9188
9189         kvfree(dev->_rx);
9190 }
9191
9192 static void netdev_init_one_queue(struct net_device *dev,
9193                                   struct netdev_queue *queue, void *_unused)
9194 {
9195         /* Initialize queue lock */
9196         spin_lock_init(&queue->_xmit_lock);
9197         lockdep_set_class(&queue->_xmit_lock, &dev->qdisc_xmit_lock_key);
9198         queue->xmit_lock_owner = -1;
9199         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9200         queue->dev = dev;
9201 #ifdef CONFIG_BQL
9202         dql_init(&queue->dql, HZ);
9203 #endif
9204 }
9205
9206 static void netif_free_tx_queues(struct net_device *dev)
9207 {
9208         kvfree(dev->_tx);
9209 }
9210
9211 static int netif_alloc_netdev_queues(struct net_device *dev)
9212 {
9213         unsigned int count = dev->num_tx_queues;
9214         struct netdev_queue *tx;
9215         size_t sz = count * sizeof(*tx);
9216
9217         if (count < 1 || count > 0xffff)
9218                 return -EINVAL;
9219
9220         tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9221         if (!tx)
9222                 return -ENOMEM;
9223
9224         dev->_tx = tx;
9225
9226         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9227         spin_lock_init(&dev->tx_global_lock);
9228
9229         return 0;
9230 }
9231
9232 void netif_tx_stop_all_queues(struct net_device *dev)
9233 {
9234         unsigned int i;
9235
9236         for (i = 0; i < dev->num_tx_queues; i++) {
9237                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9238
9239                 netif_tx_stop_queue(txq);
9240         }
9241 }
9242 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9243
9244 static void netdev_register_lockdep_key(struct net_device *dev)
9245 {
9246         lockdep_register_key(&dev->qdisc_tx_busylock_key);
9247         lockdep_register_key(&dev->qdisc_running_key);
9248         lockdep_register_key(&dev->qdisc_xmit_lock_key);
9249         lockdep_register_key(&dev->addr_list_lock_key);
9250 }
9251
9252 static void netdev_unregister_lockdep_key(struct net_device *dev)
9253 {
9254         lockdep_unregister_key(&dev->qdisc_tx_busylock_key);
9255         lockdep_unregister_key(&dev->qdisc_running_key);
9256         lockdep_unregister_key(&dev->qdisc_xmit_lock_key);
9257         lockdep_unregister_key(&dev->addr_list_lock_key);
9258 }
9259
9260 void netdev_update_lockdep_key(struct net_device *dev)
9261 {
9262         lockdep_unregister_key(&dev->addr_list_lock_key);
9263         lockdep_register_key(&dev->addr_list_lock_key);
9264
9265         lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key);
9266 }
9267 EXPORT_SYMBOL(netdev_update_lockdep_key);
9268
9269 /**
9270  *      register_netdevice      - register a network device
9271  *      @dev: device to register
9272  *
9273  *      Take a completed network device structure and add it to the kernel
9274  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9275  *      chain. 0 is returned on success. A negative errno code is returned
9276  *      on a failure to set up the device, or if the name is a duplicate.
9277  *
9278  *      Callers must hold the rtnl semaphore. You may want
9279  *      register_netdev() instead of this.
9280  *
9281  *      BUGS:
9282  *      The locking appears insufficient to guarantee two parallel registers
9283  *      will not get the same name.
9284  */
9285
9286 int register_netdevice(struct net_device *dev)
9287 {
9288         int ret;
9289         struct net *net = dev_net(dev);
9290
9291         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9292                      NETDEV_FEATURE_COUNT);
9293         BUG_ON(dev_boot_phase);
9294         ASSERT_RTNL();
9295
9296         might_sleep();
9297
9298         /* When net_device's are persistent, this will be fatal. */
9299         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9300         BUG_ON(!net);
9301
9302         ret = ethtool_check_ops(dev->ethtool_ops);
9303         if (ret)
9304                 return ret;
9305
9306         spin_lock_init(&dev->addr_list_lock);
9307         lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key);
9308
9309         ret = dev_get_valid_name(net, dev, dev->name);
9310         if (ret < 0)
9311                 goto out;
9312
9313         ret = -ENOMEM;
9314         dev->name_node = netdev_name_node_head_alloc(dev);
9315         if (!dev->name_node)
9316                 goto out;
9317
9318         /* Init, if this function is available */
9319         if (dev->netdev_ops->ndo_init) {
9320                 ret = dev->netdev_ops->ndo_init(dev);
9321                 if (ret) {
9322                         if (ret > 0)
9323                                 ret = -EIO;
9324                         goto err_free_name;
9325                 }
9326         }
9327
9328         if (((dev->hw_features | dev->features) &
9329              NETIF_F_HW_VLAN_CTAG_FILTER) &&
9330             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9331              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9332                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9333                 ret = -EINVAL;
9334                 goto err_uninit;
9335         }
9336
9337         ret = -EBUSY;
9338         if (!dev->ifindex)
9339                 dev->ifindex = dev_new_index(net);
9340         else if (__dev_get_by_index(net, dev->ifindex))
9341                 goto err_uninit;
9342
9343         /* Transfer changeable features to wanted_features and enable
9344          * software offloads (GSO and GRO).
9345          */
9346         dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
9347         dev->features |= NETIF_F_SOFT_FEATURES;
9348
9349         if (dev->netdev_ops->ndo_udp_tunnel_add) {
9350                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9351                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9352         }
9353
9354         dev->wanted_features = dev->features & dev->hw_features;
9355
9356         if (!(dev->flags & IFF_LOOPBACK))
9357                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
9358
9359         /* If IPv4 TCP segmentation offload is supported we should also
9360          * allow the device to enable segmenting the frame with the option
9361          * of ignoring a static IP ID value.  This doesn't enable the
9362          * feature itself but allows the user to enable it later.
9363          */
9364         if (dev->hw_features & NETIF_F_TSO)
9365                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
9366         if (dev->vlan_features & NETIF_F_TSO)
9367                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
9368         if (dev->mpls_features & NETIF_F_TSO)
9369                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
9370         if (dev->hw_enc_features & NETIF_F_TSO)
9371                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
9372
9373         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
9374          */
9375         dev->vlan_features |= NETIF_F_HIGHDMA;
9376
9377         /* Make NETIF_F_SG inheritable to tunnel devices.
9378          */
9379         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
9380
9381         /* Make NETIF_F_SG inheritable to MPLS.
9382          */
9383         dev->mpls_features |= NETIF_F_SG;
9384
9385         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
9386         ret = notifier_to_errno(ret);
9387         if (ret)
9388                 goto err_uninit;
9389
9390         ret = netdev_register_kobject(dev);
9391         if (ret) {
9392                 dev->reg_state = NETREG_UNREGISTERED;
9393                 goto err_uninit;
9394         }
9395         dev->reg_state = NETREG_REGISTERED;
9396
9397         __netdev_update_features(dev);
9398
9399         /*
9400          *      Default initial state at registry is that the
9401          *      device is present.
9402          */
9403
9404         set_bit(__LINK_STATE_PRESENT, &dev->state);
9405
9406         linkwatch_init_dev(dev);
9407
9408         dev_init_scheduler(dev);
9409         dev_hold(dev);
9410         list_netdevice(dev);
9411         add_device_randomness(dev->dev_addr, dev->addr_len);
9412
9413         /* If the device has permanent device address, driver should
9414          * set dev_addr and also addr_assign_type should be set to
9415          * NET_ADDR_PERM (default value).
9416          */
9417         if (dev->addr_assign_type == NET_ADDR_PERM)
9418                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
9419
9420         /* Notify protocols, that a new device appeared. */
9421         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
9422         ret = notifier_to_errno(ret);
9423         if (ret) {
9424                 rollback_registered(dev);
9425                 rcu_barrier();
9426
9427                 dev->reg_state = NETREG_UNREGISTERED;
9428         }
9429         /*
9430          *      Prevent userspace races by waiting until the network
9431          *      device is fully setup before sending notifications.
9432          */
9433         if (!dev->rtnl_link_ops ||
9434             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
9435                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9436
9437 out:
9438         return ret;
9439
9440 err_uninit:
9441         if (dev->netdev_ops->ndo_uninit)
9442                 dev->netdev_ops->ndo_uninit(dev);
9443         if (dev->priv_destructor)
9444                 dev->priv_destructor(dev);
9445 err_free_name:
9446         netdev_name_node_free(dev->name_node);
9447         goto out;
9448 }
9449 EXPORT_SYMBOL(register_netdevice);
9450
9451 /**
9452  *      init_dummy_netdev       - init a dummy network device for NAPI
9453  *      @dev: device to init
9454  *
9455  *      This takes a network device structure and initialize the minimum
9456  *      amount of fields so it can be used to schedule NAPI polls without
9457  *      registering a full blown interface. This is to be used by drivers
9458  *      that need to tie several hardware interfaces to a single NAPI
9459  *      poll scheduler due to HW limitations.
9460  */
9461 int init_dummy_netdev(struct net_device *dev)
9462 {
9463         /* Clear everything. Note we don't initialize spinlocks
9464          * are they aren't supposed to be taken by any of the
9465          * NAPI code and this dummy netdev is supposed to be
9466          * only ever used for NAPI polls
9467          */
9468         memset(dev, 0, sizeof(struct net_device));
9469
9470         /* make sure we BUG if trying to hit standard
9471          * register/unregister code path
9472          */
9473         dev->reg_state = NETREG_DUMMY;
9474
9475         /* NAPI wants this */
9476         INIT_LIST_HEAD(&dev->napi_list);
9477
9478         /* a dummy interface is started by default */
9479         set_bit(__LINK_STATE_PRESENT, &dev->state);
9480         set_bit(__LINK_STATE_START, &dev->state);
9481
9482         /* napi_busy_loop stats accounting wants this */
9483         dev_net_set(dev, &init_net);
9484
9485         /* Note : We dont allocate pcpu_refcnt for dummy devices,
9486          * because users of this 'device' dont need to change
9487          * its refcount.
9488          */
9489
9490         return 0;
9491 }
9492 EXPORT_SYMBOL_GPL(init_dummy_netdev);
9493
9494
9495 /**
9496  *      register_netdev - register a network device
9497  *      @dev: device to register
9498  *
9499  *      Take a completed network device structure and add it to the kernel
9500  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9501  *      chain. 0 is returned on success. A negative errno code is returned
9502  *      on a failure to set up the device, or if the name is a duplicate.
9503  *
9504  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
9505  *      and expands the device name if you passed a format string to
9506  *      alloc_netdev.
9507  */
9508 int register_netdev(struct net_device *dev)
9509 {
9510         int err;
9511
9512         if (rtnl_lock_killable())
9513                 return -EINTR;
9514         err = register_netdevice(dev);
9515         rtnl_unlock();
9516         return err;
9517 }
9518 EXPORT_SYMBOL(register_netdev);
9519
9520 int netdev_refcnt_read(const struct net_device *dev)
9521 {
9522         int i, refcnt = 0;
9523
9524         for_each_possible_cpu(i)
9525                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
9526         return refcnt;
9527 }
9528 EXPORT_SYMBOL(netdev_refcnt_read);
9529
9530 /**
9531  * netdev_wait_allrefs - wait until all references are gone.
9532  * @dev: target net_device
9533  *
9534  * This is called when unregistering network devices.
9535  *
9536  * Any protocol or device that holds a reference should register
9537  * for netdevice notification, and cleanup and put back the
9538  * reference if they receive an UNREGISTER event.
9539  * We can get stuck here if buggy protocols don't correctly
9540  * call dev_put.
9541  */
9542 static void netdev_wait_allrefs(struct net_device *dev)
9543 {
9544         unsigned long rebroadcast_time, warning_time;
9545         int refcnt;
9546
9547         linkwatch_forget_dev(dev);
9548
9549         rebroadcast_time = warning_time = jiffies;
9550         refcnt = netdev_refcnt_read(dev);
9551
9552         while (refcnt != 0) {
9553                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
9554                         rtnl_lock();
9555
9556                         /* Rebroadcast unregister notification */
9557                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9558
9559                         __rtnl_unlock();
9560                         rcu_barrier();
9561                         rtnl_lock();
9562
9563                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
9564                                      &dev->state)) {
9565                                 /* We must not have linkwatch events
9566                                  * pending on unregister. If this
9567                                  * happens, we simply run the queue
9568                                  * unscheduled, resulting in a noop
9569                                  * for this device.
9570                                  */
9571                                 linkwatch_run_queue();
9572                         }
9573
9574                         __rtnl_unlock();
9575
9576                         rebroadcast_time = jiffies;
9577                 }
9578
9579                 msleep(250);
9580
9581                 refcnt = netdev_refcnt_read(dev);
9582
9583                 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
9584                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
9585                                  dev->name, refcnt);
9586                         warning_time = jiffies;
9587                 }
9588         }
9589 }
9590
9591 /* The sequence is:
9592  *
9593  *      rtnl_lock();
9594  *      ...
9595  *      register_netdevice(x1);
9596  *      register_netdevice(x2);
9597  *      ...
9598  *      unregister_netdevice(y1);
9599  *      unregister_netdevice(y2);
9600  *      ...
9601  *      rtnl_unlock();
9602  *      free_netdev(y1);
9603  *      free_netdev(y2);
9604  *
9605  * We are invoked by rtnl_unlock().
9606  * This allows us to deal with problems:
9607  * 1) We can delete sysfs objects which invoke hotplug
9608  *    without deadlocking with linkwatch via keventd.
9609  * 2) Since we run with the RTNL semaphore not held, we can sleep
9610  *    safely in order to wait for the netdev refcnt to drop to zero.
9611  *
9612  * We must not return until all unregister events added during
9613  * the interval the lock was held have been completed.
9614  */
9615 void netdev_run_todo(void)
9616 {
9617         struct list_head list;
9618
9619         /* Snapshot list, allow later requests */
9620         list_replace_init(&net_todo_list, &list);
9621
9622         __rtnl_unlock();
9623
9624
9625         /* Wait for rcu callbacks to finish before next phase */
9626         if (!list_empty(&list))
9627                 rcu_barrier();
9628
9629         while (!list_empty(&list)) {
9630                 struct net_device *dev
9631                         = list_first_entry(&list, struct net_device, todo_list);
9632                 list_del(&dev->todo_list);
9633
9634                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
9635                         pr_err("network todo '%s' but state %d\n",
9636                                dev->name, dev->reg_state);
9637                         dump_stack();
9638                         continue;
9639                 }
9640
9641                 dev->reg_state = NETREG_UNREGISTERED;
9642
9643                 netdev_wait_allrefs(dev);
9644
9645                 /* paranoia */
9646                 BUG_ON(netdev_refcnt_read(dev));
9647                 BUG_ON(!list_empty(&dev->ptype_all));
9648                 BUG_ON(!list_empty(&dev->ptype_specific));
9649                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
9650                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
9651 #if IS_ENABLED(CONFIG_DECNET)
9652                 WARN_ON(dev->dn_ptr);
9653 #endif
9654                 if (dev->priv_destructor)
9655                         dev->priv_destructor(dev);
9656                 if (dev->needs_free_netdev)
9657                         free_netdev(dev);
9658
9659                 /* Report a network device has been unregistered */
9660                 rtnl_lock();
9661                 dev_net(dev)->dev_unreg_count--;
9662                 __rtnl_unlock();
9663                 wake_up(&netdev_unregistering_wq);
9664
9665                 /* Free network device */
9666                 kobject_put(&dev->dev.kobj);
9667         }
9668 }
9669
9670 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
9671  * all the same fields in the same order as net_device_stats, with only
9672  * the type differing, but rtnl_link_stats64 may have additional fields
9673  * at the end for newer counters.
9674  */
9675 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
9676                              const struct net_device_stats *netdev_stats)
9677 {
9678 #if BITS_PER_LONG == 64
9679         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9680         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9681         /* zero out counters that only exist in rtnl_link_stats64 */
9682         memset((char *)stats64 + sizeof(*netdev_stats), 0,
9683                sizeof(*stats64) - sizeof(*netdev_stats));
9684 #else
9685         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
9686         const unsigned long *src = (const unsigned long *)netdev_stats;
9687         u64 *dst = (u64 *)stats64;
9688
9689         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
9690         for (i = 0; i < n; i++)
9691                 dst[i] = src[i];
9692         /* zero out counters that only exist in rtnl_link_stats64 */
9693         memset((char *)stats64 + n * sizeof(u64), 0,
9694                sizeof(*stats64) - n * sizeof(u64));
9695 #endif
9696 }
9697 EXPORT_SYMBOL(netdev_stats_to_stats64);
9698
9699 /**
9700  *      dev_get_stats   - get network device statistics
9701  *      @dev: device to get statistics from
9702  *      @storage: place to store stats
9703  *
9704  *      Get network statistics from device. Return @storage.
9705  *      The device driver may provide its own method by setting
9706  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
9707  *      otherwise the internal statistics structure is used.
9708  */
9709 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
9710                                         struct rtnl_link_stats64 *storage)
9711 {
9712         const struct net_device_ops *ops = dev->netdev_ops;
9713
9714         if (ops->ndo_get_stats64) {
9715                 memset(storage, 0, sizeof(*storage));
9716                 ops->ndo_get_stats64(dev, storage);
9717         } else if (ops->ndo_get_stats) {
9718                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
9719         } else {
9720                 netdev_stats_to_stats64(storage, &dev->stats);
9721         }
9722         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
9723         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
9724         storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
9725         return storage;
9726 }
9727 EXPORT_SYMBOL(dev_get_stats);
9728
9729 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
9730 {
9731         struct netdev_queue *queue = dev_ingress_queue(dev);
9732
9733 #ifdef CONFIG_NET_CLS_ACT
9734         if (queue)
9735                 return queue;
9736         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
9737         if (!queue)
9738                 return NULL;
9739         netdev_init_one_queue(dev, queue, NULL);
9740         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
9741         queue->qdisc_sleeping = &noop_qdisc;
9742         rcu_assign_pointer(dev->ingress_queue, queue);
9743 #endif
9744         return queue;
9745 }
9746
9747 static const struct ethtool_ops default_ethtool_ops;
9748
9749 void netdev_set_default_ethtool_ops(struct net_device *dev,
9750                                     const struct ethtool_ops *ops)
9751 {
9752         if (dev->ethtool_ops == &default_ethtool_ops)
9753                 dev->ethtool_ops = ops;
9754 }
9755 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
9756
9757 void netdev_freemem(struct net_device *dev)
9758 {
9759         char *addr = (char *)dev - dev->padded;
9760
9761         kvfree(addr);
9762 }
9763
9764 /**
9765  * alloc_netdev_mqs - allocate network device
9766  * @sizeof_priv: size of private data to allocate space for
9767  * @name: device name format string
9768  * @name_assign_type: origin of device name
9769  * @setup: callback to initialize device
9770  * @txqs: the number of TX subqueues to allocate
9771  * @rxqs: the number of RX subqueues to allocate
9772  *
9773  * Allocates a struct net_device with private data area for driver use
9774  * and performs basic initialization.  Also allocates subqueue structs
9775  * for each queue on the device.
9776  */
9777 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
9778                 unsigned char name_assign_type,
9779                 void (*setup)(struct net_device *),
9780                 unsigned int txqs, unsigned int rxqs)
9781 {
9782         struct net_device *dev;
9783         unsigned int alloc_size;
9784         struct net_device *p;
9785
9786         BUG_ON(strlen(name) >= sizeof(dev->name));
9787
9788         if (txqs < 1) {
9789                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
9790                 return NULL;
9791         }
9792
9793         if (rxqs < 1) {
9794                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
9795                 return NULL;
9796         }
9797
9798         alloc_size = sizeof(struct net_device);
9799         if (sizeof_priv) {
9800                 /* ensure 32-byte alignment of private area */
9801                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
9802                 alloc_size += sizeof_priv;
9803         }
9804         /* ensure 32-byte alignment of whole construct */
9805         alloc_size += NETDEV_ALIGN - 1;
9806
9807         p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9808         if (!p)
9809                 return NULL;
9810
9811         dev = PTR_ALIGN(p, NETDEV_ALIGN);
9812         dev->padded = (char *)dev - (char *)p;
9813
9814         dev->pcpu_refcnt = alloc_percpu(int);
9815         if (!dev->pcpu_refcnt)
9816                 goto free_dev;
9817
9818         if (dev_addr_init(dev))
9819                 goto free_pcpu;
9820
9821         dev_mc_init(dev);
9822         dev_uc_init(dev);
9823
9824         dev_net_set(dev, &init_net);
9825
9826         netdev_register_lockdep_key(dev);
9827
9828         dev->gso_max_size = GSO_MAX_SIZE;
9829         dev->gso_max_segs = GSO_MAX_SEGS;
9830         dev->upper_level = 1;
9831         dev->lower_level = 1;
9832
9833         INIT_LIST_HEAD(&dev->napi_list);
9834         INIT_LIST_HEAD(&dev->unreg_list);
9835         INIT_LIST_HEAD(&dev->close_list);
9836         INIT_LIST_HEAD(&dev->link_watch_list);
9837         INIT_LIST_HEAD(&dev->adj_list.upper);
9838         INIT_LIST_HEAD(&dev->adj_list.lower);
9839         INIT_LIST_HEAD(&dev->ptype_all);
9840         INIT_LIST_HEAD(&dev->ptype_specific);
9841         INIT_LIST_HEAD(&dev->net_notifier_list);
9842 #ifdef CONFIG_NET_SCHED
9843         hash_init(dev->qdisc_hash);
9844 #endif
9845         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
9846         setup(dev);
9847
9848         if (!dev->tx_queue_len) {
9849                 dev->priv_flags |= IFF_NO_QUEUE;
9850                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
9851         }
9852
9853         dev->num_tx_queues = txqs;
9854         dev->real_num_tx_queues = txqs;
9855         if (netif_alloc_netdev_queues(dev))
9856                 goto free_all;
9857
9858         dev->num_rx_queues = rxqs;
9859         dev->real_num_rx_queues = rxqs;
9860         if (netif_alloc_rx_queues(dev))
9861                 goto free_all;
9862
9863         strcpy(dev->name, name);
9864         dev->name_assign_type = name_assign_type;
9865         dev->group = INIT_NETDEV_GROUP;
9866         if (!dev->ethtool_ops)
9867                 dev->ethtool_ops = &default_ethtool_ops;
9868
9869         nf_hook_ingress_init(dev);
9870
9871         return dev;
9872
9873 free_all:
9874         free_netdev(dev);
9875         return NULL;
9876
9877 free_pcpu:
9878         free_percpu(dev->pcpu_refcnt);
9879 free_dev:
9880         netdev_freemem(dev);
9881         return NULL;
9882 }
9883 EXPORT_SYMBOL(alloc_netdev_mqs);
9884
9885 /**
9886  * free_netdev - free network device
9887  * @dev: device
9888  *
9889  * This function does the last stage of destroying an allocated device
9890  * interface. The reference to the device object is released. If this
9891  * is the last reference then it will be freed.Must be called in process
9892  * context.
9893  */
9894 void free_netdev(struct net_device *dev)
9895 {
9896         struct napi_struct *p, *n;
9897
9898         might_sleep();
9899         netif_free_tx_queues(dev);
9900         netif_free_rx_queues(dev);
9901
9902         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
9903
9904         /* Flush device addresses */
9905         dev_addr_flush(dev);
9906
9907         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
9908                 netif_napi_del(p);
9909
9910         free_percpu(dev->pcpu_refcnt);
9911         dev->pcpu_refcnt = NULL;
9912         free_percpu(dev->xdp_bulkq);
9913         dev->xdp_bulkq = NULL;
9914
9915         netdev_unregister_lockdep_key(dev);
9916
9917         /*  Compatibility with error handling in drivers */
9918         if (dev->reg_state == NETREG_UNINITIALIZED) {
9919                 netdev_freemem(dev);
9920                 return;
9921         }
9922
9923         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
9924         dev->reg_state = NETREG_RELEASED;
9925
9926         /* will free via device release */
9927         put_device(&dev->dev);
9928 }
9929 EXPORT_SYMBOL(free_netdev);
9930
9931 /**
9932  *      synchronize_net -  Synchronize with packet receive processing
9933  *
9934  *      Wait for packets currently being received to be done.
9935  *      Does not block later packets from starting.
9936  */
9937 void synchronize_net(void)
9938 {
9939         might_sleep();
9940         if (rtnl_is_locked())
9941                 synchronize_rcu_expedited();
9942         else
9943                 synchronize_rcu();
9944 }
9945 EXPORT_SYMBOL(synchronize_net);
9946
9947 /**
9948  *      unregister_netdevice_queue - remove device from the kernel
9949  *      @dev: device
9950  *      @head: list
9951  *
9952  *      This function shuts down a device interface and removes it
9953  *      from the kernel tables.
9954  *      If head not NULL, device is queued to be unregistered later.
9955  *
9956  *      Callers must hold the rtnl semaphore.  You may want
9957  *      unregister_netdev() instead of this.
9958  */
9959
9960 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
9961 {
9962         ASSERT_RTNL();
9963
9964         if (head) {
9965                 list_move_tail(&dev->unreg_list, head);
9966         } else {
9967                 rollback_registered(dev);
9968                 /* Finish processing unregister after unlock */
9969                 net_set_todo(dev);
9970         }
9971 }
9972 EXPORT_SYMBOL(unregister_netdevice_queue);
9973
9974 /**
9975  *      unregister_netdevice_many - unregister many devices
9976  *      @head: list of devices
9977  *
9978  *  Note: As most callers use a stack allocated list_head,
9979  *  we force a list_del() to make sure stack wont be corrupted later.
9980  */
9981 void unregister_netdevice_many(struct list_head *head)
9982 {
9983         struct net_device *dev;
9984
9985         if (!list_empty(head)) {
9986                 rollback_registered_many(head);
9987                 list_for_each_entry(dev, head, unreg_list)
9988                         net_set_todo(dev);
9989                 list_del(head);
9990         }
9991 }
9992 EXPORT_SYMBOL(unregister_netdevice_many);
9993
9994 /**
9995  *      unregister_netdev - remove device from the kernel
9996  *      @dev: device
9997  *
9998  *      This function shuts down a device interface and removes it
9999  *      from the kernel tables.
10000  *
10001  *      This is just a wrapper for unregister_netdevice that takes
10002  *      the rtnl semaphore.  In general you want to use this and not
10003  *      unregister_netdevice.
10004  */
10005 void unregister_netdev(struct net_device *dev)
10006 {
10007         rtnl_lock();
10008         unregister_netdevice(dev);
10009         rtnl_unlock();
10010 }
10011 EXPORT_SYMBOL(unregister_netdev);
10012
10013 /**
10014  *      dev_change_net_namespace - move device to different nethost namespace
10015  *      @dev: device
10016  *      @net: network namespace
10017  *      @pat: If not NULL name pattern to try if the current device name
10018  *            is already taken in the destination network namespace.
10019  *
10020  *      This function shuts down a device interface and moves it
10021  *      to a new network namespace. On success 0 is returned, on
10022  *      a failure a netagive errno code is returned.
10023  *
10024  *      Callers must hold the rtnl semaphore.
10025  */
10026
10027 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
10028 {
10029         struct net *net_old = dev_net(dev);
10030         int err, new_nsid, new_ifindex;
10031
10032         ASSERT_RTNL();
10033
10034         /* Don't allow namespace local devices to be moved. */
10035         err = -EINVAL;
10036         if (dev->features & NETIF_F_NETNS_LOCAL)
10037                 goto out;
10038
10039         /* Ensure the device has been registrered */
10040         if (dev->reg_state != NETREG_REGISTERED)
10041                 goto out;
10042
10043         /* Get out if there is nothing todo */
10044         err = 0;
10045         if (net_eq(net_old, net))
10046                 goto out;
10047
10048         /* Pick the destination device name, and ensure
10049          * we can use it in the destination network namespace.
10050          */
10051         err = -EEXIST;
10052         if (__dev_get_by_name(net, dev->name)) {
10053                 /* We get here if we can't use the current device name */
10054                 if (!pat)
10055                         goto out;
10056                 err = dev_get_valid_name(net, dev, pat);
10057                 if (err < 0)
10058                         goto out;
10059         }
10060
10061         /*
10062          * And now a mini version of register_netdevice unregister_netdevice.
10063          */
10064
10065         /* If device is running close it first. */
10066         dev_close(dev);
10067
10068         /* And unlink it from device chain */
10069         unlist_netdevice(dev);
10070
10071         synchronize_net();
10072
10073         /* Shutdown queueing discipline. */
10074         dev_shutdown(dev);
10075
10076         /* Notify protocols, that we are about to destroy
10077          * this device. They should clean all the things.
10078          *
10079          * Note that dev->reg_state stays at NETREG_REGISTERED.
10080          * This is wanted because this way 8021q and macvlan know
10081          * the device is just moving and can keep their slaves up.
10082          */
10083         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10084         rcu_barrier();
10085
10086         new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10087         /* If there is an ifindex conflict assign a new one */
10088         if (__dev_get_by_index(net, dev->ifindex))
10089                 new_ifindex = dev_new_index(net);
10090         else
10091                 new_ifindex = dev->ifindex;
10092
10093         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10094                             new_ifindex);
10095
10096         /*
10097          *      Flush the unicast and multicast chains
10098          */
10099         dev_uc_flush(dev);
10100         dev_mc_flush(dev);
10101
10102         /* Send a netdev-removed uevent to the old namespace */
10103         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
10104         netdev_adjacent_del_links(dev);
10105
10106         /* Move per-net netdevice notifiers that are following the netdevice */
10107         move_netdevice_notifiers_dev_net(dev, net);
10108
10109         /* Actually switch the network namespace */
10110         dev_net_set(dev, net);
10111         dev->ifindex = new_ifindex;
10112
10113         /* Send a netdev-add uevent to the new namespace */
10114         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
10115         netdev_adjacent_add_links(dev);
10116
10117         /* Fixup kobjects */
10118         err = device_rename(&dev->dev, dev->name);
10119         WARN_ON(err);
10120
10121         /* Adapt owner in case owning user namespace of target network
10122          * namespace is different from the original one.
10123          */
10124         err = netdev_change_owner(dev, net_old, net);
10125         WARN_ON(err);
10126
10127         /* Add the device back in the hashes */
10128         list_netdevice(dev);
10129
10130         /* Notify protocols, that a new device appeared. */
10131         call_netdevice_notifiers(NETDEV_REGISTER, dev);
10132
10133         /*
10134          *      Prevent userspace races by waiting until the network
10135          *      device is fully setup before sending notifications.
10136          */
10137         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10138
10139         synchronize_net();
10140         err = 0;
10141 out:
10142         return err;
10143 }
10144 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
10145
10146 static int dev_cpu_dead(unsigned int oldcpu)
10147 {
10148         struct sk_buff **list_skb;
10149         struct sk_buff *skb;
10150         unsigned int cpu;
10151         struct softnet_data *sd, *oldsd, *remsd = NULL;
10152
10153         local_irq_disable();
10154         cpu = smp_processor_id();
10155         sd = &per_cpu(softnet_data, cpu);
10156         oldsd = &per_cpu(softnet_data, oldcpu);
10157
10158         /* Find end of our completion_queue. */
10159         list_skb = &sd->completion_queue;
10160         while (*list_skb)
10161                 list_skb = &(*list_skb)->next;
10162         /* Append completion queue from offline CPU. */
10163         *list_skb = oldsd->completion_queue;
10164         oldsd->completion_queue = NULL;
10165
10166         /* Append output queue from offline CPU. */
10167         if (oldsd->output_queue) {
10168                 *sd->output_queue_tailp = oldsd->output_queue;
10169                 sd->output_queue_tailp = oldsd->output_queue_tailp;
10170                 oldsd->output_queue = NULL;
10171                 oldsd->output_queue_tailp = &oldsd->output_queue;
10172         }
10173         /* Append NAPI poll list from offline CPU, with one exception :
10174          * process_backlog() must be called by cpu owning percpu backlog.
10175          * We properly handle process_queue & input_pkt_queue later.
10176          */
10177         while (!list_empty(&oldsd->poll_list)) {
10178                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10179                                                             struct napi_struct,
10180                                                             poll_list);
10181
10182                 list_del_init(&napi->poll_list);
10183                 if (napi->poll == process_backlog)
10184                         napi->state = 0;
10185                 else
10186                         ____napi_schedule(sd, napi);
10187         }
10188
10189         raise_softirq_irqoff(NET_TX_SOFTIRQ);
10190         local_irq_enable();
10191
10192 #ifdef CONFIG_RPS
10193         remsd = oldsd->rps_ipi_list;
10194         oldsd->rps_ipi_list = NULL;
10195 #endif
10196         /* send out pending IPI's on offline CPU */
10197         net_rps_send_ipi(remsd);
10198
10199         /* Process offline CPU's input_pkt_queue */
10200         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
10201                 netif_rx_ni(skb);
10202                 input_queue_head_incr(oldsd);
10203         }
10204         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
10205                 netif_rx_ni(skb);
10206                 input_queue_head_incr(oldsd);
10207         }
10208
10209         return 0;
10210 }
10211
10212 /**
10213  *      netdev_increment_features - increment feature set by one
10214  *      @all: current feature set
10215  *      @one: new feature set
10216  *      @mask: mask feature set
10217  *
10218  *      Computes a new feature set after adding a device with feature set
10219  *      @one to the master device with current feature set @all.  Will not
10220  *      enable anything that is off in @mask. Returns the new feature set.
10221  */
10222 netdev_features_t netdev_increment_features(netdev_features_t all,
10223         netdev_features_t one, netdev_features_t mask)
10224 {
10225         if (mask & NETIF_F_HW_CSUM)
10226                 mask |= NETIF_F_CSUM_MASK;
10227         mask |= NETIF_F_VLAN_CHALLENGED;
10228
10229         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
10230         all &= one | ~NETIF_F_ALL_FOR_ALL;
10231
10232         /* If one device supports hw checksumming, set for all. */
10233         if (all & NETIF_F_HW_CSUM)
10234                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
10235
10236         return all;
10237 }
10238 EXPORT_SYMBOL(netdev_increment_features);
10239
10240 static struct hlist_head * __net_init netdev_create_hash(void)
10241 {
10242         int i;
10243         struct hlist_head *hash;
10244
10245         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
10246         if (hash != NULL)
10247                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
10248                         INIT_HLIST_HEAD(&hash[i]);
10249
10250         return hash;
10251 }
10252
10253 /* Initialize per network namespace state */
10254 static int __net_init netdev_init(struct net *net)
10255 {
10256         BUILD_BUG_ON(GRO_HASH_BUCKETS >
10257                      8 * sizeof_field(struct napi_struct, gro_bitmask));
10258
10259         if (net != &init_net)
10260                 INIT_LIST_HEAD(&net->dev_base_head);
10261
10262         net->dev_name_head = netdev_create_hash();
10263         if (net->dev_name_head == NULL)
10264                 goto err_name;
10265
10266         net->dev_index_head = netdev_create_hash();
10267         if (net->dev_index_head == NULL)
10268                 goto err_idx;
10269
10270         RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
10271
10272         return 0;
10273
10274 err_idx:
10275         kfree(net->dev_name_head);
10276 err_name:
10277         return -ENOMEM;
10278 }
10279
10280 /**
10281  *      netdev_drivername - network driver for the device
10282  *      @dev: network device
10283  *
10284  *      Determine network driver for device.
10285  */
10286 const char *netdev_drivername(const struct net_device *dev)
10287 {
10288         const struct device_driver *driver;
10289         const struct device *parent;
10290         const char *empty = "";
10291
10292         parent = dev->dev.parent;
10293         if (!parent)
10294                 return empty;
10295
10296         driver = parent->driver;
10297         if (driver && driver->name)
10298                 return driver->name;
10299         return empty;
10300 }
10301
10302 static void __netdev_printk(const char *level, const struct net_device *dev,
10303                             struct va_format *vaf)
10304 {
10305         if (dev && dev->dev.parent) {
10306                 dev_printk_emit(level[1] - '0',
10307                                 dev->dev.parent,
10308                                 "%s %s %s%s: %pV",
10309                                 dev_driver_string(dev->dev.parent),
10310                                 dev_name(dev->dev.parent),
10311                                 netdev_name(dev), netdev_reg_state(dev),
10312                                 vaf);
10313         } else if (dev) {
10314                 printk("%s%s%s: %pV",
10315                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
10316         } else {
10317                 printk("%s(NULL net_device): %pV", level, vaf);
10318         }
10319 }
10320
10321 void netdev_printk(const char *level, const struct net_device *dev,
10322                    const char *format, ...)
10323 {
10324         struct va_format vaf;
10325         va_list args;
10326
10327         va_start(args, format);
10328
10329         vaf.fmt = format;
10330         vaf.va = &args;
10331
10332         __netdev_printk(level, dev, &vaf);
10333
10334         va_end(args);
10335 }
10336 EXPORT_SYMBOL(netdev_printk);
10337
10338 #define define_netdev_printk_level(func, level)                 \
10339 void func(const struct net_device *dev, const char *fmt, ...)   \
10340 {                                                               \
10341         struct va_format vaf;                                   \
10342         va_list args;                                           \
10343                                                                 \
10344         va_start(args, fmt);                                    \
10345                                                                 \
10346         vaf.fmt = fmt;                                          \
10347         vaf.va = &args;                                         \
10348                                                                 \
10349         __netdev_printk(level, dev, &vaf);                      \
10350                                                                 \
10351         va_end(args);                                           \
10352 }                                                               \
10353 EXPORT_SYMBOL(func);
10354
10355 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
10356 define_netdev_printk_level(netdev_alert, KERN_ALERT);
10357 define_netdev_printk_level(netdev_crit, KERN_CRIT);
10358 define_netdev_printk_level(netdev_err, KERN_ERR);
10359 define_netdev_printk_level(netdev_warn, KERN_WARNING);
10360 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
10361 define_netdev_printk_level(netdev_info, KERN_INFO);
10362
10363 static void __net_exit netdev_exit(struct net *net)
10364 {
10365         kfree(net->dev_name_head);
10366         kfree(net->dev_index_head);
10367         if (net != &init_net)
10368                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
10369 }
10370
10371 static struct pernet_operations __net_initdata netdev_net_ops = {
10372         .init = netdev_init,
10373         .exit = netdev_exit,
10374 };
10375
10376 static void __net_exit default_device_exit(struct net *net)
10377 {
10378         struct net_device *dev, *aux;
10379         /*
10380          * Push all migratable network devices back to the
10381          * initial network namespace
10382          */
10383         rtnl_lock();
10384         for_each_netdev_safe(net, dev, aux) {
10385                 int err;
10386                 char fb_name[IFNAMSIZ];
10387
10388                 /* Ignore unmoveable devices (i.e. loopback) */
10389                 if (dev->features & NETIF_F_NETNS_LOCAL)
10390                         continue;
10391
10392                 /* Leave virtual devices for the generic cleanup */
10393                 if (dev->rtnl_link_ops)
10394                         continue;
10395
10396                 /* Push remaining network devices to init_net */
10397                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
10398                 if (__dev_get_by_name(&init_net, fb_name))
10399                         snprintf(fb_name, IFNAMSIZ, "dev%%d");
10400                 err = dev_change_net_namespace(dev, &init_net, fb_name);
10401                 if (err) {
10402                         pr_emerg("%s: failed to move %s to init_net: %d\n",
10403                                  __func__, dev->name, err);
10404                         BUG();
10405                 }
10406         }
10407         rtnl_unlock();
10408 }
10409
10410 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
10411 {
10412         /* Return with the rtnl_lock held when there are no network
10413          * devices unregistering in any network namespace in net_list.
10414          */
10415         struct net *net;
10416         bool unregistering;
10417         DEFINE_WAIT_FUNC(wait, woken_wake_function);
10418
10419         add_wait_queue(&netdev_unregistering_wq, &wait);
10420         for (;;) {
10421                 unregistering = false;
10422                 rtnl_lock();
10423                 list_for_each_entry(net, net_list, exit_list) {
10424                         if (net->dev_unreg_count > 0) {
10425                                 unregistering = true;
10426                                 break;
10427                         }
10428                 }
10429                 if (!unregistering)
10430                         break;
10431                 __rtnl_unlock();
10432
10433                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
10434         }
10435         remove_wait_queue(&netdev_unregistering_wq, &wait);
10436 }
10437
10438 static void __net_exit default_device_exit_batch(struct list_head *net_list)
10439 {
10440         /* At exit all network devices most be removed from a network
10441          * namespace.  Do this in the reverse order of registration.
10442          * Do this across as many network namespaces as possible to
10443          * improve batching efficiency.
10444          */
10445         struct net_device *dev;
10446         struct net *net;
10447         LIST_HEAD(dev_kill_list);
10448
10449         /* To prevent network device cleanup code from dereferencing
10450          * loopback devices or network devices that have been freed
10451          * wait here for all pending unregistrations to complete,
10452          * before unregistring the loopback device and allowing the
10453          * network namespace be freed.
10454          *
10455          * The netdev todo list containing all network devices
10456          * unregistrations that happen in default_device_exit_batch
10457          * will run in the rtnl_unlock() at the end of
10458          * default_device_exit_batch.
10459          */
10460         rtnl_lock_unregistering(net_list);
10461         list_for_each_entry(net, net_list, exit_list) {
10462                 for_each_netdev_reverse(net, dev) {
10463                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
10464                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
10465                         else
10466                                 unregister_netdevice_queue(dev, &dev_kill_list);
10467                 }
10468         }
10469         unregister_netdevice_many(&dev_kill_list);
10470         rtnl_unlock();
10471 }
10472
10473 static struct pernet_operations __net_initdata default_device_ops = {
10474         .exit = default_device_exit,
10475         .exit_batch = default_device_exit_batch,
10476 };
10477
10478 /*
10479  *      Initialize the DEV module. At boot time this walks the device list and
10480  *      unhooks any devices that fail to initialise (normally hardware not
10481  *      present) and leaves us with a valid list of present and active devices.
10482  *
10483  */
10484
10485 /*
10486  *       This is called single threaded during boot, so no need
10487  *       to take the rtnl semaphore.
10488  */
10489 static int __init net_dev_init(void)
10490 {
10491         int i, rc = -ENOMEM;
10492
10493         BUG_ON(!dev_boot_phase);
10494
10495         if (dev_proc_init())
10496                 goto out;
10497
10498         if (netdev_kobject_init())
10499                 goto out;
10500
10501         INIT_LIST_HEAD(&ptype_all);
10502         for (i = 0; i < PTYPE_HASH_SIZE; i++)
10503                 INIT_LIST_HEAD(&ptype_base[i]);
10504
10505         INIT_LIST_HEAD(&offload_base);
10506
10507         if (register_pernet_subsys(&netdev_net_ops))
10508                 goto out;
10509
10510         /*
10511          *      Initialise the packet receive queues.
10512          */
10513
10514         for_each_possible_cpu(i) {
10515                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
10516                 struct softnet_data *sd = &per_cpu(softnet_data, i);
10517
10518                 INIT_WORK(flush, flush_backlog);
10519
10520                 skb_queue_head_init(&sd->input_pkt_queue);
10521                 skb_queue_head_init(&sd->process_queue);
10522 #ifdef CONFIG_XFRM_OFFLOAD
10523                 skb_queue_head_init(&sd->xfrm_backlog);
10524 #endif
10525                 INIT_LIST_HEAD(&sd->poll_list);
10526                 sd->output_queue_tailp = &sd->output_queue;
10527 #ifdef CONFIG_RPS
10528                 sd->csd.func = rps_trigger_softirq;
10529                 sd->csd.info = sd;
10530                 sd->cpu = i;
10531 #endif
10532
10533                 init_gro_hash(&sd->backlog);
10534                 sd->backlog.poll = process_backlog;
10535                 sd->backlog.weight = weight_p;
10536         }
10537
10538         dev_boot_phase = 0;
10539
10540         /* The loopback device is special if any other network devices
10541          * is present in a network namespace the loopback device must
10542          * be present. Since we now dynamically allocate and free the
10543          * loopback device ensure this invariant is maintained by
10544          * keeping the loopback device as the first device on the
10545          * list of network devices.  Ensuring the loopback devices
10546          * is the first device that appears and the last network device
10547          * that disappears.
10548          */
10549         if (register_pernet_device(&loopback_net_ops))
10550                 goto out;
10551
10552         if (register_pernet_device(&default_device_ops))
10553                 goto out;
10554
10555         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
10556         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
10557
10558         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
10559                                        NULL, dev_cpu_dead);
10560         WARN_ON(rc < 0);
10561         rc = 0;
10562 out:
10563         return rc;
10564 }
10565
10566 subsys_initcall(net_dev_init);