Merge tag 'gpio-v4.19-4' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw...
[linux-2.6-microblaze.git] / net / core / dev.c
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *              This program is free software; you can redistribute it and/or
5  *              modify it under the terms of the GNU General Public License
6  *              as published by the Free Software Foundation; either version
7  *              2 of the License, or (at your option) any later version.
8  *
9  *      Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:        Ross Biro
11  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *      Additional Authors:
15  *              Florian la Roche <rzsfl@rz.uni-sb.de>
16  *              Alan Cox <gw4pts@gw4pts.ampr.org>
17  *              David Hinds <dahinds@users.sourceforge.net>
18  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *              Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *      Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *              Alan Cox        :       device private ioctl copies fields back.
28  *              Alan Cox        :       Transmit queue code does relevant
29  *                                      stunts to keep the queue safe.
30  *              Alan Cox        :       Fixed double lock.
31  *              Alan Cox        :       Fixed promisc NULL pointer trap
32  *              ????????        :       Support the full private ioctl range
33  *              Alan Cox        :       Moved ioctl permission check into
34  *                                      drivers
35  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
36  *              Alan Cox        :       100 backlog just doesn't cut it when
37  *                                      you start doing multicast video 8)
38  *              Alan Cox        :       Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *              Alan Cox        :       Took out transmit every packet pass
41  *                                      Saved a few bytes in the ioctl handler
42  *              Alan Cox        :       Network driver sets packet type before
43  *                                      calling netif_rx. Saves a function
44  *                                      call a packet.
45  *              Alan Cox        :       Hashed net_bh()
46  *              Richard Kooijman:       Timestamp fixes.
47  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
48  *              Alan Cox        :       Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *                                      changes.
51  *              Rudi Cilibrasi  :       Pass the right thing to
52  *                                      set_mac_address()
53  *              Dave Miller     :       32bit quantity for the device lock to
54  *                                      make it work out on a Sparc.
55  *              Bjorn Ekwall    :       Added KERNELD hack.
56  *              Alan Cox        :       Cleaned up the backlog initialise.
57  *              Craig Metz      :       SIOCGIFCONF fix if space for under
58  *                                      1 device.
59  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
60  *                                      is no device open function.
61  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
62  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
63  *              Cyrus Durgin    :       Cleaned for KMOD
64  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
65  *                                      A network device unload needs to purge
66  *                                      the backlog queue.
67  *      Paul Rusty Russell      :       SIOCSIFNAME
68  *              Pekka Riikonen  :       Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *                                      - netif_rx() feedback
73  */
74
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/skbuff.h>
97 #include <linux/bpf.h>
98 #include <linux/bpf_trace.h>
99 #include <net/net_namespace.h>
100 #include <net/sock.h>
101 #include <net/busy_poll.h>
102 #include <linux/rtnetlink.h>
103 #include <linux/stat.h>
104 #include <net/dst.h>
105 #include <net/dst_metadata.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <linux/pci.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_ingress.h>
144 #include <linux/crash_dump.h>
145 #include <linux/sctp.h>
146 #include <net/udp_tunnel.h>
147 #include <linux/net_namespace.h>
148
149 #include "net-sysfs.h"
150
151 #define MAX_GRO_SKBS 8
152
153 /* This should be increased if a protocol with a bigger head is added. */
154 #define GRO_MAX_HEAD (MAX_HEADER + 128)
155
156 static DEFINE_SPINLOCK(ptype_lock);
157 static DEFINE_SPINLOCK(offload_lock);
158 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
159 struct list_head ptype_all __read_mostly;       /* Taps */
160 static struct list_head offload_base __read_mostly;
161
162 static int netif_rx_internal(struct sk_buff *skb);
163 static int call_netdevice_notifiers_info(unsigned long val,
164                                          struct netdev_notifier_info *info);
165 static struct napi_struct *napi_by_id(unsigned int napi_id);
166
167 /*
168  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
169  * semaphore.
170  *
171  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
172  *
173  * Writers must hold the rtnl semaphore while they loop through the
174  * dev_base_head list, and hold dev_base_lock for writing when they do the
175  * actual updates.  This allows pure readers to access the list even
176  * while a writer is preparing to update it.
177  *
178  * To put it another way, dev_base_lock is held for writing only to
179  * protect against pure readers; the rtnl semaphore provides the
180  * protection against other writers.
181  *
182  * See, for example usages, register_netdevice() and
183  * unregister_netdevice(), which must be called with the rtnl
184  * semaphore held.
185  */
186 DEFINE_RWLOCK(dev_base_lock);
187 EXPORT_SYMBOL(dev_base_lock);
188
189 static DEFINE_MUTEX(ifalias_mutex);
190
191 /* protects napi_hash addition/deletion and napi_gen_id */
192 static DEFINE_SPINLOCK(napi_hash_lock);
193
194 static unsigned int napi_gen_id = NR_CPUS;
195 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
196
197 static seqcount_t devnet_rename_seq;
198
199 static inline void dev_base_seq_inc(struct net *net)
200 {
201         while (++net->dev_base_seq == 0)
202                 ;
203 }
204
205 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
206 {
207         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
208
209         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
210 }
211
212 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
213 {
214         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
215 }
216
217 static inline void rps_lock(struct softnet_data *sd)
218 {
219 #ifdef CONFIG_RPS
220         spin_lock(&sd->input_pkt_queue.lock);
221 #endif
222 }
223
224 static inline void rps_unlock(struct softnet_data *sd)
225 {
226 #ifdef CONFIG_RPS
227         spin_unlock(&sd->input_pkt_queue.lock);
228 #endif
229 }
230
231 /* Device list insertion */
232 static void list_netdevice(struct net_device *dev)
233 {
234         struct net *net = dev_net(dev);
235
236         ASSERT_RTNL();
237
238         write_lock_bh(&dev_base_lock);
239         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
240         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
241         hlist_add_head_rcu(&dev->index_hlist,
242                            dev_index_hash(net, dev->ifindex));
243         write_unlock_bh(&dev_base_lock);
244
245         dev_base_seq_inc(net);
246 }
247
248 /* Device list removal
249  * caller must respect a RCU grace period before freeing/reusing dev
250  */
251 static void unlist_netdevice(struct net_device *dev)
252 {
253         ASSERT_RTNL();
254
255         /* Unlink dev from the device chain */
256         write_lock_bh(&dev_base_lock);
257         list_del_rcu(&dev->dev_list);
258         hlist_del_rcu(&dev->name_hlist);
259         hlist_del_rcu(&dev->index_hlist);
260         write_unlock_bh(&dev_base_lock);
261
262         dev_base_seq_inc(dev_net(dev));
263 }
264
265 /*
266  *      Our notifier list
267  */
268
269 static RAW_NOTIFIER_HEAD(netdev_chain);
270
271 /*
272  *      Device drivers call our routines to queue packets here. We empty the
273  *      queue in the local softnet handler.
274  */
275
276 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
277 EXPORT_PER_CPU_SYMBOL(softnet_data);
278
279 #ifdef CONFIG_LOCKDEP
280 /*
281  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
282  * according to dev->type
283  */
284 static const unsigned short netdev_lock_type[] = {
285          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
286          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
287          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
288          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
289          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
290          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
291          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
292          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
293          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
294          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
295          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
296          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
297          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
298          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
299          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
300
301 static const char *const netdev_lock_name[] = {
302         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
303         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
304         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
305         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
306         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
307         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
308         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
309         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
310         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
311         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
312         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
313         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
314         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
315         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
316         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
317
318 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
319 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
320
321 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
322 {
323         int i;
324
325         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
326                 if (netdev_lock_type[i] == dev_type)
327                         return i;
328         /* the last key is used by default */
329         return ARRAY_SIZE(netdev_lock_type) - 1;
330 }
331
332 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
333                                                  unsigned short dev_type)
334 {
335         int i;
336
337         i = netdev_lock_pos(dev_type);
338         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
339                                    netdev_lock_name[i]);
340 }
341
342 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
343 {
344         int i;
345
346         i = netdev_lock_pos(dev->type);
347         lockdep_set_class_and_name(&dev->addr_list_lock,
348                                    &netdev_addr_lock_key[i],
349                                    netdev_lock_name[i]);
350 }
351 #else
352 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
353                                                  unsigned short dev_type)
354 {
355 }
356 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
357 {
358 }
359 #endif
360
361 /*******************************************************************************
362  *
363  *              Protocol management and registration routines
364  *
365  *******************************************************************************/
366
367
368 /*
369  *      Add a protocol ID to the list. Now that the input handler is
370  *      smarter we can dispense with all the messy stuff that used to be
371  *      here.
372  *
373  *      BEWARE!!! Protocol handlers, mangling input packets,
374  *      MUST BE last in hash buckets and checking protocol handlers
375  *      MUST start from promiscuous ptype_all chain in net_bh.
376  *      It is true now, do not change it.
377  *      Explanation follows: if protocol handler, mangling packet, will
378  *      be the first on list, it is not able to sense, that packet
379  *      is cloned and should be copied-on-write, so that it will
380  *      change it and subsequent readers will get broken packet.
381  *                                                      --ANK (980803)
382  */
383
384 static inline struct list_head *ptype_head(const struct packet_type *pt)
385 {
386         if (pt->type == htons(ETH_P_ALL))
387                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
388         else
389                 return pt->dev ? &pt->dev->ptype_specific :
390                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
391 }
392
393 /**
394  *      dev_add_pack - add packet handler
395  *      @pt: packet type declaration
396  *
397  *      Add a protocol handler to the networking stack. The passed &packet_type
398  *      is linked into kernel lists and may not be freed until it has been
399  *      removed from the kernel lists.
400  *
401  *      This call does not sleep therefore it can not
402  *      guarantee all CPU's that are in middle of receiving packets
403  *      will see the new packet type (until the next received packet).
404  */
405
406 void dev_add_pack(struct packet_type *pt)
407 {
408         struct list_head *head = ptype_head(pt);
409
410         spin_lock(&ptype_lock);
411         list_add_rcu(&pt->list, head);
412         spin_unlock(&ptype_lock);
413 }
414 EXPORT_SYMBOL(dev_add_pack);
415
416 /**
417  *      __dev_remove_pack        - remove packet handler
418  *      @pt: packet type declaration
419  *
420  *      Remove a protocol handler that was previously added to the kernel
421  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
422  *      from the kernel lists and can be freed or reused once this function
423  *      returns.
424  *
425  *      The packet type might still be in use by receivers
426  *      and must not be freed until after all the CPU's have gone
427  *      through a quiescent state.
428  */
429 void __dev_remove_pack(struct packet_type *pt)
430 {
431         struct list_head *head = ptype_head(pt);
432         struct packet_type *pt1;
433
434         spin_lock(&ptype_lock);
435
436         list_for_each_entry(pt1, head, list) {
437                 if (pt == pt1) {
438                         list_del_rcu(&pt->list);
439                         goto out;
440                 }
441         }
442
443         pr_warn("dev_remove_pack: %p not found\n", pt);
444 out:
445         spin_unlock(&ptype_lock);
446 }
447 EXPORT_SYMBOL(__dev_remove_pack);
448
449 /**
450  *      dev_remove_pack  - remove packet handler
451  *      @pt: packet type declaration
452  *
453  *      Remove a protocol handler that was previously added to the kernel
454  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
455  *      from the kernel lists and can be freed or reused once this function
456  *      returns.
457  *
458  *      This call sleeps to guarantee that no CPU is looking at the packet
459  *      type after return.
460  */
461 void dev_remove_pack(struct packet_type *pt)
462 {
463         __dev_remove_pack(pt);
464
465         synchronize_net();
466 }
467 EXPORT_SYMBOL(dev_remove_pack);
468
469
470 /**
471  *      dev_add_offload - register offload handlers
472  *      @po: protocol offload declaration
473  *
474  *      Add protocol offload handlers to the networking stack. The passed
475  *      &proto_offload is linked into kernel lists and may not be freed until
476  *      it has been removed from the kernel lists.
477  *
478  *      This call does not sleep therefore it can not
479  *      guarantee all CPU's that are in middle of receiving packets
480  *      will see the new offload handlers (until the next received packet).
481  */
482 void dev_add_offload(struct packet_offload *po)
483 {
484         struct packet_offload *elem;
485
486         spin_lock(&offload_lock);
487         list_for_each_entry(elem, &offload_base, list) {
488                 if (po->priority < elem->priority)
489                         break;
490         }
491         list_add_rcu(&po->list, elem->list.prev);
492         spin_unlock(&offload_lock);
493 }
494 EXPORT_SYMBOL(dev_add_offload);
495
496 /**
497  *      __dev_remove_offload     - remove offload handler
498  *      @po: packet offload declaration
499  *
500  *      Remove a protocol offload handler that was previously added to the
501  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
502  *      is removed from the kernel lists and can be freed or reused once this
503  *      function returns.
504  *
505  *      The packet type might still be in use by receivers
506  *      and must not be freed until after all the CPU's have gone
507  *      through a quiescent state.
508  */
509 static void __dev_remove_offload(struct packet_offload *po)
510 {
511         struct list_head *head = &offload_base;
512         struct packet_offload *po1;
513
514         spin_lock(&offload_lock);
515
516         list_for_each_entry(po1, head, list) {
517                 if (po == po1) {
518                         list_del_rcu(&po->list);
519                         goto out;
520                 }
521         }
522
523         pr_warn("dev_remove_offload: %p not found\n", po);
524 out:
525         spin_unlock(&offload_lock);
526 }
527
528 /**
529  *      dev_remove_offload       - remove packet offload handler
530  *      @po: packet offload declaration
531  *
532  *      Remove a packet offload handler that was previously added to the kernel
533  *      offload handlers by dev_add_offload(). The passed &offload_type is
534  *      removed from the kernel lists and can be freed or reused once this
535  *      function returns.
536  *
537  *      This call sleeps to guarantee that no CPU is looking at the packet
538  *      type after return.
539  */
540 void dev_remove_offload(struct packet_offload *po)
541 {
542         __dev_remove_offload(po);
543
544         synchronize_net();
545 }
546 EXPORT_SYMBOL(dev_remove_offload);
547
548 /******************************************************************************
549  *
550  *                    Device Boot-time Settings Routines
551  *
552  ******************************************************************************/
553
554 /* Boot time configuration table */
555 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
556
557 /**
558  *      netdev_boot_setup_add   - add new setup entry
559  *      @name: name of the device
560  *      @map: configured settings for the device
561  *
562  *      Adds new setup entry to the dev_boot_setup list.  The function
563  *      returns 0 on error and 1 on success.  This is a generic routine to
564  *      all netdevices.
565  */
566 static int netdev_boot_setup_add(char *name, struct ifmap *map)
567 {
568         struct netdev_boot_setup *s;
569         int i;
570
571         s = dev_boot_setup;
572         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
573                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
574                         memset(s[i].name, 0, sizeof(s[i].name));
575                         strlcpy(s[i].name, name, IFNAMSIZ);
576                         memcpy(&s[i].map, map, sizeof(s[i].map));
577                         break;
578                 }
579         }
580
581         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
582 }
583
584 /**
585  * netdev_boot_setup_check      - check boot time settings
586  * @dev: the netdevice
587  *
588  * Check boot time settings for the device.
589  * The found settings are set for the device to be used
590  * later in the device probing.
591  * Returns 0 if no settings found, 1 if they are.
592  */
593 int netdev_boot_setup_check(struct net_device *dev)
594 {
595         struct netdev_boot_setup *s = dev_boot_setup;
596         int i;
597
598         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
599                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
600                     !strcmp(dev->name, s[i].name)) {
601                         dev->irq = s[i].map.irq;
602                         dev->base_addr = s[i].map.base_addr;
603                         dev->mem_start = s[i].map.mem_start;
604                         dev->mem_end = s[i].map.mem_end;
605                         return 1;
606                 }
607         }
608         return 0;
609 }
610 EXPORT_SYMBOL(netdev_boot_setup_check);
611
612
613 /**
614  * netdev_boot_base     - get address from boot time settings
615  * @prefix: prefix for network device
616  * @unit: id for network device
617  *
618  * Check boot time settings for the base address of device.
619  * The found settings are set for the device to be used
620  * later in the device probing.
621  * Returns 0 if no settings found.
622  */
623 unsigned long netdev_boot_base(const char *prefix, int unit)
624 {
625         const struct netdev_boot_setup *s = dev_boot_setup;
626         char name[IFNAMSIZ];
627         int i;
628
629         sprintf(name, "%s%d", prefix, unit);
630
631         /*
632          * If device already registered then return base of 1
633          * to indicate not to probe for this interface
634          */
635         if (__dev_get_by_name(&init_net, name))
636                 return 1;
637
638         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
639                 if (!strcmp(name, s[i].name))
640                         return s[i].map.base_addr;
641         return 0;
642 }
643
644 /*
645  * Saves at boot time configured settings for any netdevice.
646  */
647 int __init netdev_boot_setup(char *str)
648 {
649         int ints[5];
650         struct ifmap map;
651
652         str = get_options(str, ARRAY_SIZE(ints), ints);
653         if (!str || !*str)
654                 return 0;
655
656         /* Save settings */
657         memset(&map, 0, sizeof(map));
658         if (ints[0] > 0)
659                 map.irq = ints[1];
660         if (ints[0] > 1)
661                 map.base_addr = ints[2];
662         if (ints[0] > 2)
663                 map.mem_start = ints[3];
664         if (ints[0] > 3)
665                 map.mem_end = ints[4];
666
667         /* Add new entry to the list */
668         return netdev_boot_setup_add(str, &map);
669 }
670
671 __setup("netdev=", netdev_boot_setup);
672
673 /*******************************************************************************
674  *
675  *                          Device Interface Subroutines
676  *
677  *******************************************************************************/
678
679 /**
680  *      dev_get_iflink  - get 'iflink' value of a interface
681  *      @dev: targeted interface
682  *
683  *      Indicates the ifindex the interface is linked to.
684  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
685  */
686
687 int dev_get_iflink(const struct net_device *dev)
688 {
689         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
690                 return dev->netdev_ops->ndo_get_iflink(dev);
691
692         return dev->ifindex;
693 }
694 EXPORT_SYMBOL(dev_get_iflink);
695
696 /**
697  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
698  *      @dev: targeted interface
699  *      @skb: The packet.
700  *
701  *      For better visibility of tunnel traffic OVS needs to retrieve
702  *      egress tunnel information for a packet. Following API allows
703  *      user to get this info.
704  */
705 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
706 {
707         struct ip_tunnel_info *info;
708
709         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
710                 return -EINVAL;
711
712         info = skb_tunnel_info_unclone(skb);
713         if (!info)
714                 return -ENOMEM;
715         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
716                 return -EINVAL;
717
718         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
719 }
720 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
721
722 /**
723  *      __dev_get_by_name       - find a device by its name
724  *      @net: the applicable net namespace
725  *      @name: name to find
726  *
727  *      Find an interface by name. Must be called under RTNL semaphore
728  *      or @dev_base_lock. If the name is found a pointer to the device
729  *      is returned. If the name is not found then %NULL is returned. The
730  *      reference counters are not incremented so the caller must be
731  *      careful with locks.
732  */
733
734 struct net_device *__dev_get_by_name(struct net *net, const char *name)
735 {
736         struct net_device *dev;
737         struct hlist_head *head = dev_name_hash(net, name);
738
739         hlist_for_each_entry(dev, head, name_hlist)
740                 if (!strncmp(dev->name, name, IFNAMSIZ))
741                         return dev;
742
743         return NULL;
744 }
745 EXPORT_SYMBOL(__dev_get_by_name);
746
747 /**
748  * dev_get_by_name_rcu  - find a device by its name
749  * @net: the applicable net namespace
750  * @name: name to find
751  *
752  * Find an interface by name.
753  * If the name is found a pointer to the device is returned.
754  * If the name is not found then %NULL is returned.
755  * The reference counters are not incremented so the caller must be
756  * careful with locks. The caller must hold RCU lock.
757  */
758
759 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
760 {
761         struct net_device *dev;
762         struct hlist_head *head = dev_name_hash(net, name);
763
764         hlist_for_each_entry_rcu(dev, head, name_hlist)
765                 if (!strncmp(dev->name, name, IFNAMSIZ))
766                         return dev;
767
768         return NULL;
769 }
770 EXPORT_SYMBOL(dev_get_by_name_rcu);
771
772 /**
773  *      dev_get_by_name         - find a device by its name
774  *      @net: the applicable net namespace
775  *      @name: name to find
776  *
777  *      Find an interface by name. This can be called from any
778  *      context and does its own locking. The returned handle has
779  *      the usage count incremented and the caller must use dev_put() to
780  *      release it when it is no longer needed. %NULL is returned if no
781  *      matching device is found.
782  */
783
784 struct net_device *dev_get_by_name(struct net *net, const char *name)
785 {
786         struct net_device *dev;
787
788         rcu_read_lock();
789         dev = dev_get_by_name_rcu(net, name);
790         if (dev)
791                 dev_hold(dev);
792         rcu_read_unlock();
793         return dev;
794 }
795 EXPORT_SYMBOL(dev_get_by_name);
796
797 /**
798  *      __dev_get_by_index - find a device by its ifindex
799  *      @net: the applicable net namespace
800  *      @ifindex: index of device
801  *
802  *      Search for an interface by index. Returns %NULL if the device
803  *      is not found or a pointer to the device. The device has not
804  *      had its reference counter increased so the caller must be careful
805  *      about locking. The caller must hold either the RTNL semaphore
806  *      or @dev_base_lock.
807  */
808
809 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
810 {
811         struct net_device *dev;
812         struct hlist_head *head = dev_index_hash(net, ifindex);
813
814         hlist_for_each_entry(dev, head, index_hlist)
815                 if (dev->ifindex == ifindex)
816                         return dev;
817
818         return NULL;
819 }
820 EXPORT_SYMBOL(__dev_get_by_index);
821
822 /**
823  *      dev_get_by_index_rcu - find a device by its ifindex
824  *      @net: the applicable net namespace
825  *      @ifindex: index of device
826  *
827  *      Search for an interface by index. Returns %NULL if the device
828  *      is not found or a pointer to the device. The device has not
829  *      had its reference counter increased so the caller must be careful
830  *      about locking. The caller must hold RCU lock.
831  */
832
833 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
834 {
835         struct net_device *dev;
836         struct hlist_head *head = dev_index_hash(net, ifindex);
837
838         hlist_for_each_entry_rcu(dev, head, index_hlist)
839                 if (dev->ifindex == ifindex)
840                         return dev;
841
842         return NULL;
843 }
844 EXPORT_SYMBOL(dev_get_by_index_rcu);
845
846
847 /**
848  *      dev_get_by_index - find a device by its ifindex
849  *      @net: the applicable net namespace
850  *      @ifindex: index of device
851  *
852  *      Search for an interface by index. Returns NULL if the device
853  *      is not found or a pointer to the device. The device returned has
854  *      had a reference added and the pointer is safe until the user calls
855  *      dev_put to indicate they have finished with it.
856  */
857
858 struct net_device *dev_get_by_index(struct net *net, int ifindex)
859 {
860         struct net_device *dev;
861
862         rcu_read_lock();
863         dev = dev_get_by_index_rcu(net, ifindex);
864         if (dev)
865                 dev_hold(dev);
866         rcu_read_unlock();
867         return dev;
868 }
869 EXPORT_SYMBOL(dev_get_by_index);
870
871 /**
872  *      dev_get_by_napi_id - find a device by napi_id
873  *      @napi_id: ID of the NAPI struct
874  *
875  *      Search for an interface by NAPI ID. Returns %NULL if the device
876  *      is not found or a pointer to the device. The device has not had
877  *      its reference counter increased so the caller must be careful
878  *      about locking. The caller must hold RCU lock.
879  */
880
881 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
882 {
883         struct napi_struct *napi;
884
885         WARN_ON_ONCE(!rcu_read_lock_held());
886
887         if (napi_id < MIN_NAPI_ID)
888                 return NULL;
889
890         napi = napi_by_id(napi_id);
891
892         return napi ? napi->dev : NULL;
893 }
894 EXPORT_SYMBOL(dev_get_by_napi_id);
895
896 /**
897  *      netdev_get_name - get a netdevice name, knowing its ifindex.
898  *      @net: network namespace
899  *      @name: a pointer to the buffer where the name will be stored.
900  *      @ifindex: the ifindex of the interface to get the name from.
901  *
902  *      The use of raw_seqcount_begin() and cond_resched() before
903  *      retrying is required as we want to give the writers a chance
904  *      to complete when CONFIG_PREEMPT is not set.
905  */
906 int netdev_get_name(struct net *net, char *name, int ifindex)
907 {
908         struct net_device *dev;
909         unsigned int seq;
910
911 retry:
912         seq = raw_seqcount_begin(&devnet_rename_seq);
913         rcu_read_lock();
914         dev = dev_get_by_index_rcu(net, ifindex);
915         if (!dev) {
916                 rcu_read_unlock();
917                 return -ENODEV;
918         }
919
920         strcpy(name, dev->name);
921         rcu_read_unlock();
922         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
923                 cond_resched();
924                 goto retry;
925         }
926
927         return 0;
928 }
929
930 /**
931  *      dev_getbyhwaddr_rcu - find a device by its hardware address
932  *      @net: the applicable net namespace
933  *      @type: media type of device
934  *      @ha: hardware address
935  *
936  *      Search for an interface by MAC address. Returns NULL if the device
937  *      is not found or a pointer to the device.
938  *      The caller must hold RCU or RTNL.
939  *      The returned device has not had its ref count increased
940  *      and the caller must therefore be careful about locking
941  *
942  */
943
944 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
945                                        const char *ha)
946 {
947         struct net_device *dev;
948
949         for_each_netdev_rcu(net, dev)
950                 if (dev->type == type &&
951                     !memcmp(dev->dev_addr, ha, dev->addr_len))
952                         return dev;
953
954         return NULL;
955 }
956 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
957
958 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
959 {
960         struct net_device *dev;
961
962         ASSERT_RTNL();
963         for_each_netdev(net, dev)
964                 if (dev->type == type)
965                         return dev;
966
967         return NULL;
968 }
969 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
970
971 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
972 {
973         struct net_device *dev, *ret = NULL;
974
975         rcu_read_lock();
976         for_each_netdev_rcu(net, dev)
977                 if (dev->type == type) {
978                         dev_hold(dev);
979                         ret = dev;
980                         break;
981                 }
982         rcu_read_unlock();
983         return ret;
984 }
985 EXPORT_SYMBOL(dev_getfirstbyhwtype);
986
987 /**
988  *      __dev_get_by_flags - find any device with given flags
989  *      @net: the applicable net namespace
990  *      @if_flags: IFF_* values
991  *      @mask: bitmask of bits in if_flags to check
992  *
993  *      Search for any interface with the given flags. Returns NULL if a device
994  *      is not found or a pointer to the device. Must be called inside
995  *      rtnl_lock(), and result refcount is unchanged.
996  */
997
998 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
999                                       unsigned short mask)
1000 {
1001         struct net_device *dev, *ret;
1002
1003         ASSERT_RTNL();
1004
1005         ret = NULL;
1006         for_each_netdev(net, dev) {
1007                 if (((dev->flags ^ if_flags) & mask) == 0) {
1008                         ret = dev;
1009                         break;
1010                 }
1011         }
1012         return ret;
1013 }
1014 EXPORT_SYMBOL(__dev_get_by_flags);
1015
1016 /**
1017  *      dev_valid_name - check if name is okay for network device
1018  *      @name: name string
1019  *
1020  *      Network device names need to be valid file names to
1021  *      to allow sysfs to work.  We also disallow any kind of
1022  *      whitespace.
1023  */
1024 bool dev_valid_name(const char *name)
1025 {
1026         if (*name == '\0')
1027                 return false;
1028         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1029                 return false;
1030         if (!strcmp(name, ".") || !strcmp(name, ".."))
1031                 return false;
1032
1033         while (*name) {
1034                 if (*name == '/' || *name == ':' || isspace(*name))
1035                         return false;
1036                 name++;
1037         }
1038         return true;
1039 }
1040 EXPORT_SYMBOL(dev_valid_name);
1041
1042 /**
1043  *      __dev_alloc_name - allocate a name for a device
1044  *      @net: network namespace to allocate the device name in
1045  *      @name: name format string
1046  *      @buf:  scratch buffer and result name string
1047  *
1048  *      Passed a format string - eg "lt%d" it will try and find a suitable
1049  *      id. It scans list of devices to build up a free map, then chooses
1050  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1051  *      while allocating the name and adding the device in order to avoid
1052  *      duplicates.
1053  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1054  *      Returns the number of the unit assigned or a negative errno code.
1055  */
1056
1057 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1058 {
1059         int i = 0;
1060         const char *p;
1061         const int max_netdevices = 8*PAGE_SIZE;
1062         unsigned long *inuse;
1063         struct net_device *d;
1064
1065         if (!dev_valid_name(name))
1066                 return -EINVAL;
1067
1068         p = strchr(name, '%');
1069         if (p) {
1070                 /*
1071                  * Verify the string as this thing may have come from
1072                  * the user.  There must be either one "%d" and no other "%"
1073                  * characters.
1074                  */
1075                 if (p[1] != 'd' || strchr(p + 2, '%'))
1076                         return -EINVAL;
1077
1078                 /* Use one page as a bit array of possible slots */
1079                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1080                 if (!inuse)
1081                         return -ENOMEM;
1082
1083                 for_each_netdev(net, d) {
1084                         if (!sscanf(d->name, name, &i))
1085                                 continue;
1086                         if (i < 0 || i >= max_netdevices)
1087                                 continue;
1088
1089                         /*  avoid cases where sscanf is not exact inverse of printf */
1090                         snprintf(buf, IFNAMSIZ, name, i);
1091                         if (!strncmp(buf, d->name, IFNAMSIZ))
1092                                 set_bit(i, inuse);
1093                 }
1094
1095                 i = find_first_zero_bit(inuse, max_netdevices);
1096                 free_page((unsigned long) inuse);
1097         }
1098
1099         snprintf(buf, IFNAMSIZ, name, i);
1100         if (!__dev_get_by_name(net, buf))
1101                 return i;
1102
1103         /* It is possible to run out of possible slots
1104          * when the name is long and there isn't enough space left
1105          * for the digits, or if all bits are used.
1106          */
1107         return -ENFILE;
1108 }
1109
1110 static int dev_alloc_name_ns(struct net *net,
1111                              struct net_device *dev,
1112                              const char *name)
1113 {
1114         char buf[IFNAMSIZ];
1115         int ret;
1116
1117         BUG_ON(!net);
1118         ret = __dev_alloc_name(net, name, buf);
1119         if (ret >= 0)
1120                 strlcpy(dev->name, buf, IFNAMSIZ);
1121         return ret;
1122 }
1123
1124 /**
1125  *      dev_alloc_name - allocate a name for a device
1126  *      @dev: device
1127  *      @name: name format string
1128  *
1129  *      Passed a format string - eg "lt%d" it will try and find a suitable
1130  *      id. It scans list of devices to build up a free map, then chooses
1131  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1132  *      while allocating the name and adding the device in order to avoid
1133  *      duplicates.
1134  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1135  *      Returns the number of the unit assigned or a negative errno code.
1136  */
1137
1138 int dev_alloc_name(struct net_device *dev, const char *name)
1139 {
1140         return dev_alloc_name_ns(dev_net(dev), dev, name);
1141 }
1142 EXPORT_SYMBOL(dev_alloc_name);
1143
1144 int dev_get_valid_name(struct net *net, struct net_device *dev,
1145                        const char *name)
1146 {
1147         BUG_ON(!net);
1148
1149         if (!dev_valid_name(name))
1150                 return -EINVAL;
1151
1152         if (strchr(name, '%'))
1153                 return dev_alloc_name_ns(net, dev, name);
1154         else if (__dev_get_by_name(net, name))
1155                 return -EEXIST;
1156         else if (dev->name != name)
1157                 strlcpy(dev->name, name, IFNAMSIZ);
1158
1159         return 0;
1160 }
1161 EXPORT_SYMBOL(dev_get_valid_name);
1162
1163 /**
1164  *      dev_change_name - change name of a device
1165  *      @dev: device
1166  *      @newname: name (or format string) must be at least IFNAMSIZ
1167  *
1168  *      Change name of a device, can pass format strings "eth%d".
1169  *      for wildcarding.
1170  */
1171 int dev_change_name(struct net_device *dev, const char *newname)
1172 {
1173         unsigned char old_assign_type;
1174         char oldname[IFNAMSIZ];
1175         int err = 0;
1176         int ret;
1177         struct net *net;
1178
1179         ASSERT_RTNL();
1180         BUG_ON(!dev_net(dev));
1181
1182         net = dev_net(dev);
1183         if (dev->flags & IFF_UP)
1184                 return -EBUSY;
1185
1186         write_seqcount_begin(&devnet_rename_seq);
1187
1188         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1189                 write_seqcount_end(&devnet_rename_seq);
1190                 return 0;
1191         }
1192
1193         memcpy(oldname, dev->name, IFNAMSIZ);
1194
1195         err = dev_get_valid_name(net, dev, newname);
1196         if (err < 0) {
1197                 write_seqcount_end(&devnet_rename_seq);
1198                 return err;
1199         }
1200
1201         if (oldname[0] && !strchr(oldname, '%'))
1202                 netdev_info(dev, "renamed from %s\n", oldname);
1203
1204         old_assign_type = dev->name_assign_type;
1205         dev->name_assign_type = NET_NAME_RENAMED;
1206
1207 rollback:
1208         ret = device_rename(&dev->dev, dev->name);
1209         if (ret) {
1210                 memcpy(dev->name, oldname, IFNAMSIZ);
1211                 dev->name_assign_type = old_assign_type;
1212                 write_seqcount_end(&devnet_rename_seq);
1213                 return ret;
1214         }
1215
1216         write_seqcount_end(&devnet_rename_seq);
1217
1218         netdev_adjacent_rename_links(dev, oldname);
1219
1220         write_lock_bh(&dev_base_lock);
1221         hlist_del_rcu(&dev->name_hlist);
1222         write_unlock_bh(&dev_base_lock);
1223
1224         synchronize_rcu();
1225
1226         write_lock_bh(&dev_base_lock);
1227         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1228         write_unlock_bh(&dev_base_lock);
1229
1230         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1231         ret = notifier_to_errno(ret);
1232
1233         if (ret) {
1234                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1235                 if (err >= 0) {
1236                         err = ret;
1237                         write_seqcount_begin(&devnet_rename_seq);
1238                         memcpy(dev->name, oldname, IFNAMSIZ);
1239                         memcpy(oldname, newname, IFNAMSIZ);
1240                         dev->name_assign_type = old_assign_type;
1241                         old_assign_type = NET_NAME_RENAMED;
1242                         goto rollback;
1243                 } else {
1244                         pr_err("%s: name change rollback failed: %d\n",
1245                                dev->name, ret);
1246                 }
1247         }
1248
1249         return err;
1250 }
1251
1252 /**
1253  *      dev_set_alias - change ifalias of a device
1254  *      @dev: device
1255  *      @alias: name up to IFALIASZ
1256  *      @len: limit of bytes to copy from info
1257  *
1258  *      Set ifalias for a device,
1259  */
1260 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1261 {
1262         struct dev_ifalias *new_alias = NULL;
1263
1264         if (len >= IFALIASZ)
1265                 return -EINVAL;
1266
1267         if (len) {
1268                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1269                 if (!new_alias)
1270                         return -ENOMEM;
1271
1272                 memcpy(new_alias->ifalias, alias, len);
1273                 new_alias->ifalias[len] = 0;
1274         }
1275
1276         mutex_lock(&ifalias_mutex);
1277         rcu_swap_protected(dev->ifalias, new_alias,
1278                            mutex_is_locked(&ifalias_mutex));
1279         mutex_unlock(&ifalias_mutex);
1280
1281         if (new_alias)
1282                 kfree_rcu(new_alias, rcuhead);
1283
1284         return len;
1285 }
1286 EXPORT_SYMBOL(dev_set_alias);
1287
1288 /**
1289  *      dev_get_alias - get ifalias of a device
1290  *      @dev: device
1291  *      @name: buffer to store name of ifalias
1292  *      @len: size of buffer
1293  *
1294  *      get ifalias for a device.  Caller must make sure dev cannot go
1295  *      away,  e.g. rcu read lock or own a reference count to device.
1296  */
1297 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1298 {
1299         const struct dev_ifalias *alias;
1300         int ret = 0;
1301
1302         rcu_read_lock();
1303         alias = rcu_dereference(dev->ifalias);
1304         if (alias)
1305                 ret = snprintf(name, len, "%s", alias->ifalias);
1306         rcu_read_unlock();
1307
1308         return ret;
1309 }
1310
1311 /**
1312  *      netdev_features_change - device changes features
1313  *      @dev: device to cause notification
1314  *
1315  *      Called to indicate a device has changed features.
1316  */
1317 void netdev_features_change(struct net_device *dev)
1318 {
1319         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1320 }
1321 EXPORT_SYMBOL(netdev_features_change);
1322
1323 /**
1324  *      netdev_state_change - device changes state
1325  *      @dev: device to cause notification
1326  *
1327  *      Called to indicate a device has changed state. This function calls
1328  *      the notifier chains for netdev_chain and sends a NEWLINK message
1329  *      to the routing socket.
1330  */
1331 void netdev_state_change(struct net_device *dev)
1332 {
1333         if (dev->flags & IFF_UP) {
1334                 struct netdev_notifier_change_info change_info = {
1335                         .info.dev = dev,
1336                 };
1337
1338                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1339                                               &change_info.info);
1340                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1341         }
1342 }
1343 EXPORT_SYMBOL(netdev_state_change);
1344
1345 /**
1346  * netdev_notify_peers - notify network peers about existence of @dev
1347  * @dev: network device
1348  *
1349  * Generate traffic such that interested network peers are aware of
1350  * @dev, such as by generating a gratuitous ARP. This may be used when
1351  * a device wants to inform the rest of the network about some sort of
1352  * reconfiguration such as a failover event or virtual machine
1353  * migration.
1354  */
1355 void netdev_notify_peers(struct net_device *dev)
1356 {
1357         rtnl_lock();
1358         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1359         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1360         rtnl_unlock();
1361 }
1362 EXPORT_SYMBOL(netdev_notify_peers);
1363
1364 static int __dev_open(struct net_device *dev)
1365 {
1366         const struct net_device_ops *ops = dev->netdev_ops;
1367         int ret;
1368
1369         ASSERT_RTNL();
1370
1371         if (!netif_device_present(dev))
1372                 return -ENODEV;
1373
1374         /* Block netpoll from trying to do any rx path servicing.
1375          * If we don't do this there is a chance ndo_poll_controller
1376          * or ndo_poll may be running while we open the device
1377          */
1378         netpoll_poll_disable(dev);
1379
1380         ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1381         ret = notifier_to_errno(ret);
1382         if (ret)
1383                 return ret;
1384
1385         set_bit(__LINK_STATE_START, &dev->state);
1386
1387         if (ops->ndo_validate_addr)
1388                 ret = ops->ndo_validate_addr(dev);
1389
1390         if (!ret && ops->ndo_open)
1391                 ret = ops->ndo_open(dev);
1392
1393         netpoll_poll_enable(dev);
1394
1395         if (ret)
1396                 clear_bit(__LINK_STATE_START, &dev->state);
1397         else {
1398                 dev->flags |= IFF_UP;
1399                 dev_set_rx_mode(dev);
1400                 dev_activate(dev);
1401                 add_device_randomness(dev->dev_addr, dev->addr_len);
1402         }
1403
1404         return ret;
1405 }
1406
1407 /**
1408  *      dev_open        - prepare an interface for use.
1409  *      @dev:   device to open
1410  *
1411  *      Takes a device from down to up state. The device's private open
1412  *      function is invoked and then the multicast lists are loaded. Finally
1413  *      the device is moved into the up state and a %NETDEV_UP message is
1414  *      sent to the netdev notifier chain.
1415  *
1416  *      Calling this function on an active interface is a nop. On a failure
1417  *      a negative errno code is returned.
1418  */
1419 int dev_open(struct net_device *dev)
1420 {
1421         int ret;
1422
1423         if (dev->flags & IFF_UP)
1424                 return 0;
1425
1426         ret = __dev_open(dev);
1427         if (ret < 0)
1428                 return ret;
1429
1430         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1431         call_netdevice_notifiers(NETDEV_UP, dev);
1432
1433         return ret;
1434 }
1435 EXPORT_SYMBOL(dev_open);
1436
1437 static void __dev_close_many(struct list_head *head)
1438 {
1439         struct net_device *dev;
1440
1441         ASSERT_RTNL();
1442         might_sleep();
1443
1444         list_for_each_entry(dev, head, close_list) {
1445                 /* Temporarily disable netpoll until the interface is down */
1446                 netpoll_poll_disable(dev);
1447
1448                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1449
1450                 clear_bit(__LINK_STATE_START, &dev->state);
1451
1452                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1453                  * can be even on different cpu. So just clear netif_running().
1454                  *
1455                  * dev->stop() will invoke napi_disable() on all of it's
1456                  * napi_struct instances on this device.
1457                  */
1458                 smp_mb__after_atomic(); /* Commit netif_running(). */
1459         }
1460
1461         dev_deactivate_many(head);
1462
1463         list_for_each_entry(dev, head, close_list) {
1464                 const struct net_device_ops *ops = dev->netdev_ops;
1465
1466                 /*
1467                  *      Call the device specific close. This cannot fail.
1468                  *      Only if device is UP
1469                  *
1470                  *      We allow it to be called even after a DETACH hot-plug
1471                  *      event.
1472                  */
1473                 if (ops->ndo_stop)
1474                         ops->ndo_stop(dev);
1475
1476                 dev->flags &= ~IFF_UP;
1477                 netpoll_poll_enable(dev);
1478         }
1479 }
1480
1481 static void __dev_close(struct net_device *dev)
1482 {
1483         LIST_HEAD(single);
1484
1485         list_add(&dev->close_list, &single);
1486         __dev_close_many(&single);
1487         list_del(&single);
1488 }
1489
1490 void dev_close_many(struct list_head *head, bool unlink)
1491 {
1492         struct net_device *dev, *tmp;
1493
1494         /* Remove the devices that don't need to be closed */
1495         list_for_each_entry_safe(dev, tmp, head, close_list)
1496                 if (!(dev->flags & IFF_UP))
1497                         list_del_init(&dev->close_list);
1498
1499         __dev_close_many(head);
1500
1501         list_for_each_entry_safe(dev, tmp, head, close_list) {
1502                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1503                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1504                 if (unlink)
1505                         list_del_init(&dev->close_list);
1506         }
1507 }
1508 EXPORT_SYMBOL(dev_close_many);
1509
1510 /**
1511  *      dev_close - shutdown an interface.
1512  *      @dev: device to shutdown
1513  *
1514  *      This function moves an active device into down state. A
1515  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1516  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1517  *      chain.
1518  */
1519 void dev_close(struct net_device *dev)
1520 {
1521         if (dev->flags & IFF_UP) {
1522                 LIST_HEAD(single);
1523
1524                 list_add(&dev->close_list, &single);
1525                 dev_close_many(&single, true);
1526                 list_del(&single);
1527         }
1528 }
1529 EXPORT_SYMBOL(dev_close);
1530
1531
1532 /**
1533  *      dev_disable_lro - disable Large Receive Offload on a device
1534  *      @dev: device
1535  *
1536  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1537  *      called under RTNL.  This is needed if received packets may be
1538  *      forwarded to another interface.
1539  */
1540 void dev_disable_lro(struct net_device *dev)
1541 {
1542         struct net_device *lower_dev;
1543         struct list_head *iter;
1544
1545         dev->wanted_features &= ~NETIF_F_LRO;
1546         netdev_update_features(dev);
1547
1548         if (unlikely(dev->features & NETIF_F_LRO))
1549                 netdev_WARN(dev, "failed to disable LRO!\n");
1550
1551         netdev_for_each_lower_dev(dev, lower_dev, iter)
1552                 dev_disable_lro(lower_dev);
1553 }
1554 EXPORT_SYMBOL(dev_disable_lro);
1555
1556 /**
1557  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1558  *      @dev: device
1559  *
1560  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1561  *      called under RTNL.  This is needed if Generic XDP is installed on
1562  *      the device.
1563  */
1564 static void dev_disable_gro_hw(struct net_device *dev)
1565 {
1566         dev->wanted_features &= ~NETIF_F_GRO_HW;
1567         netdev_update_features(dev);
1568
1569         if (unlikely(dev->features & NETIF_F_GRO_HW))
1570                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1571 }
1572
1573 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1574 {
1575 #define N(val)                                          \
1576         case NETDEV_##val:                              \
1577                 return "NETDEV_" __stringify(val);
1578         switch (cmd) {
1579         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1580         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1581         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1582         N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1583         N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1584         N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1585         N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1586         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1587         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1588         }
1589 #undef N
1590         return "UNKNOWN_NETDEV_EVENT";
1591 }
1592 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1593
1594 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1595                                    struct net_device *dev)
1596 {
1597         struct netdev_notifier_info info = {
1598                 .dev = dev,
1599         };
1600
1601         return nb->notifier_call(nb, val, &info);
1602 }
1603
1604 static int dev_boot_phase = 1;
1605
1606 /**
1607  * register_netdevice_notifier - register a network notifier block
1608  * @nb: notifier
1609  *
1610  * Register a notifier to be called when network device events occur.
1611  * The notifier passed is linked into the kernel structures and must
1612  * not be reused until it has been unregistered. A negative errno code
1613  * is returned on a failure.
1614  *
1615  * When registered all registration and up events are replayed
1616  * to the new notifier to allow device to have a race free
1617  * view of the network device list.
1618  */
1619
1620 int register_netdevice_notifier(struct notifier_block *nb)
1621 {
1622         struct net_device *dev;
1623         struct net_device *last;
1624         struct net *net;
1625         int err;
1626
1627         /* Close race with setup_net() and cleanup_net() */
1628         down_write(&pernet_ops_rwsem);
1629         rtnl_lock();
1630         err = raw_notifier_chain_register(&netdev_chain, nb);
1631         if (err)
1632                 goto unlock;
1633         if (dev_boot_phase)
1634                 goto unlock;
1635         for_each_net(net) {
1636                 for_each_netdev(net, dev) {
1637                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1638                         err = notifier_to_errno(err);
1639                         if (err)
1640                                 goto rollback;
1641
1642                         if (!(dev->flags & IFF_UP))
1643                                 continue;
1644
1645                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1646                 }
1647         }
1648
1649 unlock:
1650         rtnl_unlock();
1651         up_write(&pernet_ops_rwsem);
1652         return err;
1653
1654 rollback:
1655         last = dev;
1656         for_each_net(net) {
1657                 for_each_netdev(net, dev) {
1658                         if (dev == last)
1659                                 goto outroll;
1660
1661                         if (dev->flags & IFF_UP) {
1662                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1663                                                         dev);
1664                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1665                         }
1666                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1667                 }
1668         }
1669
1670 outroll:
1671         raw_notifier_chain_unregister(&netdev_chain, nb);
1672         goto unlock;
1673 }
1674 EXPORT_SYMBOL(register_netdevice_notifier);
1675
1676 /**
1677  * unregister_netdevice_notifier - unregister a network notifier block
1678  * @nb: notifier
1679  *
1680  * Unregister a notifier previously registered by
1681  * register_netdevice_notifier(). The notifier is unlinked into the
1682  * kernel structures and may then be reused. A negative errno code
1683  * is returned on a failure.
1684  *
1685  * After unregistering unregister and down device events are synthesized
1686  * for all devices on the device list to the removed notifier to remove
1687  * the need for special case cleanup code.
1688  */
1689
1690 int unregister_netdevice_notifier(struct notifier_block *nb)
1691 {
1692         struct net_device *dev;
1693         struct net *net;
1694         int err;
1695
1696         /* Close race with setup_net() and cleanup_net() */
1697         down_write(&pernet_ops_rwsem);
1698         rtnl_lock();
1699         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1700         if (err)
1701                 goto unlock;
1702
1703         for_each_net(net) {
1704                 for_each_netdev(net, dev) {
1705                         if (dev->flags & IFF_UP) {
1706                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1707                                                         dev);
1708                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1709                         }
1710                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1711                 }
1712         }
1713 unlock:
1714         rtnl_unlock();
1715         up_write(&pernet_ops_rwsem);
1716         return err;
1717 }
1718 EXPORT_SYMBOL(unregister_netdevice_notifier);
1719
1720 /**
1721  *      call_netdevice_notifiers_info - call all network notifier blocks
1722  *      @val: value passed unmodified to notifier function
1723  *      @info: notifier information data
1724  *
1725  *      Call all network notifier blocks.  Parameters and return value
1726  *      are as for raw_notifier_call_chain().
1727  */
1728
1729 static int call_netdevice_notifiers_info(unsigned long val,
1730                                          struct netdev_notifier_info *info)
1731 {
1732         ASSERT_RTNL();
1733         return raw_notifier_call_chain(&netdev_chain, val, info);
1734 }
1735
1736 /**
1737  *      call_netdevice_notifiers - call all network notifier blocks
1738  *      @val: value passed unmodified to notifier function
1739  *      @dev: net_device pointer passed unmodified to notifier function
1740  *
1741  *      Call all network notifier blocks.  Parameters and return value
1742  *      are as for raw_notifier_call_chain().
1743  */
1744
1745 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1746 {
1747         struct netdev_notifier_info info = {
1748                 .dev = dev,
1749         };
1750
1751         return call_netdevice_notifiers_info(val, &info);
1752 }
1753 EXPORT_SYMBOL(call_netdevice_notifiers);
1754
1755 /**
1756  *      call_netdevice_notifiers_mtu - call all network notifier blocks
1757  *      @val: value passed unmodified to notifier function
1758  *      @dev: net_device pointer passed unmodified to notifier function
1759  *      @arg: additional u32 argument passed to the notifier function
1760  *
1761  *      Call all network notifier blocks.  Parameters and return value
1762  *      are as for raw_notifier_call_chain().
1763  */
1764 static int call_netdevice_notifiers_mtu(unsigned long val,
1765                                         struct net_device *dev, u32 arg)
1766 {
1767         struct netdev_notifier_info_ext info = {
1768                 .info.dev = dev,
1769                 .ext.mtu = arg,
1770         };
1771
1772         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1773
1774         return call_netdevice_notifiers_info(val, &info.info);
1775 }
1776
1777 #ifdef CONFIG_NET_INGRESS
1778 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
1779
1780 void net_inc_ingress_queue(void)
1781 {
1782         static_branch_inc(&ingress_needed_key);
1783 }
1784 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1785
1786 void net_dec_ingress_queue(void)
1787 {
1788         static_branch_dec(&ingress_needed_key);
1789 }
1790 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1791 #endif
1792
1793 #ifdef CONFIG_NET_EGRESS
1794 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1795
1796 void net_inc_egress_queue(void)
1797 {
1798         static_branch_inc(&egress_needed_key);
1799 }
1800 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1801
1802 void net_dec_egress_queue(void)
1803 {
1804         static_branch_dec(&egress_needed_key);
1805 }
1806 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1807 #endif
1808
1809 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
1810 #ifdef HAVE_JUMP_LABEL
1811 static atomic_t netstamp_needed_deferred;
1812 static atomic_t netstamp_wanted;
1813 static void netstamp_clear(struct work_struct *work)
1814 {
1815         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1816         int wanted;
1817
1818         wanted = atomic_add_return(deferred, &netstamp_wanted);
1819         if (wanted > 0)
1820                 static_branch_enable(&netstamp_needed_key);
1821         else
1822                 static_branch_disable(&netstamp_needed_key);
1823 }
1824 static DECLARE_WORK(netstamp_work, netstamp_clear);
1825 #endif
1826
1827 void net_enable_timestamp(void)
1828 {
1829 #ifdef HAVE_JUMP_LABEL
1830         int wanted;
1831
1832         while (1) {
1833                 wanted = atomic_read(&netstamp_wanted);
1834                 if (wanted <= 0)
1835                         break;
1836                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1837                         return;
1838         }
1839         atomic_inc(&netstamp_needed_deferred);
1840         schedule_work(&netstamp_work);
1841 #else
1842         static_branch_inc(&netstamp_needed_key);
1843 #endif
1844 }
1845 EXPORT_SYMBOL(net_enable_timestamp);
1846
1847 void net_disable_timestamp(void)
1848 {
1849 #ifdef HAVE_JUMP_LABEL
1850         int wanted;
1851
1852         while (1) {
1853                 wanted = atomic_read(&netstamp_wanted);
1854                 if (wanted <= 1)
1855                         break;
1856                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1857                         return;
1858         }
1859         atomic_dec(&netstamp_needed_deferred);
1860         schedule_work(&netstamp_work);
1861 #else
1862         static_branch_dec(&netstamp_needed_key);
1863 #endif
1864 }
1865 EXPORT_SYMBOL(net_disable_timestamp);
1866
1867 static inline void net_timestamp_set(struct sk_buff *skb)
1868 {
1869         skb->tstamp = 0;
1870         if (static_branch_unlikely(&netstamp_needed_key))
1871                 __net_timestamp(skb);
1872 }
1873
1874 #define net_timestamp_check(COND, SKB)                          \
1875         if (static_branch_unlikely(&netstamp_needed_key)) {     \
1876                 if ((COND) && !(SKB)->tstamp)                   \
1877                         __net_timestamp(SKB);                   \
1878         }                                                       \
1879
1880 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1881 {
1882         unsigned int len;
1883
1884         if (!(dev->flags & IFF_UP))
1885                 return false;
1886
1887         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1888         if (skb->len <= len)
1889                 return true;
1890
1891         /* if TSO is enabled, we don't care about the length as the packet
1892          * could be forwarded without being segmented before
1893          */
1894         if (skb_is_gso(skb))
1895                 return true;
1896
1897         return false;
1898 }
1899 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1900
1901 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1902 {
1903         int ret = ____dev_forward_skb(dev, skb);
1904
1905         if (likely(!ret)) {
1906                 skb->protocol = eth_type_trans(skb, dev);
1907                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1908         }
1909
1910         return ret;
1911 }
1912 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1913
1914 /**
1915  * dev_forward_skb - loopback an skb to another netif
1916  *
1917  * @dev: destination network device
1918  * @skb: buffer to forward
1919  *
1920  * return values:
1921  *      NET_RX_SUCCESS  (no congestion)
1922  *      NET_RX_DROP     (packet was dropped, but freed)
1923  *
1924  * dev_forward_skb can be used for injecting an skb from the
1925  * start_xmit function of one device into the receive queue
1926  * of another device.
1927  *
1928  * The receiving device may be in another namespace, so
1929  * we have to clear all information in the skb that could
1930  * impact namespace isolation.
1931  */
1932 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1933 {
1934         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1935 }
1936 EXPORT_SYMBOL_GPL(dev_forward_skb);
1937
1938 static inline int deliver_skb(struct sk_buff *skb,
1939                               struct packet_type *pt_prev,
1940                               struct net_device *orig_dev)
1941 {
1942         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1943                 return -ENOMEM;
1944         refcount_inc(&skb->users);
1945         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1946 }
1947
1948 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1949                                           struct packet_type **pt,
1950                                           struct net_device *orig_dev,
1951                                           __be16 type,
1952                                           struct list_head *ptype_list)
1953 {
1954         struct packet_type *ptype, *pt_prev = *pt;
1955
1956         list_for_each_entry_rcu(ptype, ptype_list, list) {
1957                 if (ptype->type != type)
1958                         continue;
1959                 if (pt_prev)
1960                         deliver_skb(skb, pt_prev, orig_dev);
1961                 pt_prev = ptype;
1962         }
1963         *pt = pt_prev;
1964 }
1965
1966 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1967 {
1968         if (!ptype->af_packet_priv || !skb->sk)
1969                 return false;
1970
1971         if (ptype->id_match)
1972                 return ptype->id_match(ptype, skb->sk);
1973         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1974                 return true;
1975
1976         return false;
1977 }
1978
1979 /*
1980  *      Support routine. Sends outgoing frames to any network
1981  *      taps currently in use.
1982  */
1983
1984 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1985 {
1986         struct packet_type *ptype;
1987         struct sk_buff *skb2 = NULL;
1988         struct packet_type *pt_prev = NULL;
1989         struct list_head *ptype_list = &ptype_all;
1990
1991         rcu_read_lock();
1992 again:
1993         list_for_each_entry_rcu(ptype, ptype_list, list) {
1994                 /* Never send packets back to the socket
1995                  * they originated from - MvS (miquels@drinkel.ow.org)
1996                  */
1997                 if (skb_loop_sk(ptype, skb))
1998                         continue;
1999
2000                 if (pt_prev) {
2001                         deliver_skb(skb2, pt_prev, skb->dev);
2002                         pt_prev = ptype;
2003                         continue;
2004                 }
2005
2006                 /* need to clone skb, done only once */
2007                 skb2 = skb_clone(skb, GFP_ATOMIC);
2008                 if (!skb2)
2009                         goto out_unlock;
2010
2011                 net_timestamp_set(skb2);
2012
2013                 /* skb->nh should be correctly
2014                  * set by sender, so that the second statement is
2015                  * just protection against buggy protocols.
2016                  */
2017                 skb_reset_mac_header(skb2);
2018
2019                 if (skb_network_header(skb2) < skb2->data ||
2020                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2021                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2022                                              ntohs(skb2->protocol),
2023                                              dev->name);
2024                         skb_reset_network_header(skb2);
2025                 }
2026
2027                 skb2->transport_header = skb2->network_header;
2028                 skb2->pkt_type = PACKET_OUTGOING;
2029                 pt_prev = ptype;
2030         }
2031
2032         if (ptype_list == &ptype_all) {
2033                 ptype_list = &dev->ptype_all;
2034                 goto again;
2035         }
2036 out_unlock:
2037         if (pt_prev) {
2038                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2039                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2040                 else
2041                         kfree_skb(skb2);
2042         }
2043         rcu_read_unlock();
2044 }
2045 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2046
2047 /**
2048  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2049  * @dev: Network device
2050  * @txq: number of queues available
2051  *
2052  * If real_num_tx_queues is changed the tc mappings may no longer be
2053  * valid. To resolve this verify the tc mapping remains valid and if
2054  * not NULL the mapping. With no priorities mapping to this
2055  * offset/count pair it will no longer be used. In the worst case TC0
2056  * is invalid nothing can be done so disable priority mappings. If is
2057  * expected that drivers will fix this mapping if they can before
2058  * calling netif_set_real_num_tx_queues.
2059  */
2060 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2061 {
2062         int i;
2063         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2064
2065         /* If TC0 is invalidated disable TC mapping */
2066         if (tc->offset + tc->count > txq) {
2067                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2068                 dev->num_tc = 0;
2069                 return;
2070         }
2071
2072         /* Invalidated prio to tc mappings set to TC0 */
2073         for (i = 1; i < TC_BITMASK + 1; i++) {
2074                 int q = netdev_get_prio_tc_map(dev, i);
2075
2076                 tc = &dev->tc_to_txq[q];
2077                 if (tc->offset + tc->count > txq) {
2078                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2079                                 i, q);
2080                         netdev_set_prio_tc_map(dev, i, 0);
2081                 }
2082         }
2083 }
2084
2085 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2086 {
2087         if (dev->num_tc) {
2088                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2089                 int i;
2090
2091                 /* walk through the TCs and see if it falls into any of them */
2092                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2093                         if ((txq - tc->offset) < tc->count)
2094                                 return i;
2095                 }
2096
2097                 /* didn't find it, just return -1 to indicate no match */
2098                 return -1;
2099         }
2100
2101         return 0;
2102 }
2103 EXPORT_SYMBOL(netdev_txq_to_tc);
2104
2105 #ifdef CONFIG_XPS
2106 struct static_key xps_needed __read_mostly;
2107 EXPORT_SYMBOL(xps_needed);
2108 struct static_key xps_rxqs_needed __read_mostly;
2109 EXPORT_SYMBOL(xps_rxqs_needed);
2110 static DEFINE_MUTEX(xps_map_mutex);
2111 #define xmap_dereference(P)             \
2112         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2113
2114 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2115                              int tci, u16 index)
2116 {
2117         struct xps_map *map = NULL;
2118         int pos;
2119
2120         if (dev_maps)
2121                 map = xmap_dereference(dev_maps->attr_map[tci]);
2122         if (!map)
2123                 return false;
2124
2125         for (pos = map->len; pos--;) {
2126                 if (map->queues[pos] != index)
2127                         continue;
2128
2129                 if (map->len > 1) {
2130                         map->queues[pos] = map->queues[--map->len];
2131                         break;
2132                 }
2133
2134                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2135                 kfree_rcu(map, rcu);
2136                 return false;
2137         }
2138
2139         return true;
2140 }
2141
2142 static bool remove_xps_queue_cpu(struct net_device *dev,
2143                                  struct xps_dev_maps *dev_maps,
2144                                  int cpu, u16 offset, u16 count)
2145 {
2146         int num_tc = dev->num_tc ? : 1;
2147         bool active = false;
2148         int tci;
2149
2150         for (tci = cpu * num_tc; num_tc--; tci++) {
2151                 int i, j;
2152
2153                 for (i = count, j = offset; i--; j++) {
2154                         if (!remove_xps_queue(dev_maps, tci, j))
2155                                 break;
2156                 }
2157
2158                 active |= i < 0;
2159         }
2160
2161         return active;
2162 }
2163
2164 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2165                            struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2166                            u16 offset, u16 count, bool is_rxqs_map)
2167 {
2168         bool active = false;
2169         int i, j;
2170
2171         for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2172              j < nr_ids;)
2173                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2174                                                count);
2175         if (!active) {
2176                 if (is_rxqs_map) {
2177                         RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2178                 } else {
2179                         RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2180
2181                         for (i = offset + (count - 1); count--; i--)
2182                                 netdev_queue_numa_node_write(
2183                                         netdev_get_tx_queue(dev, i),
2184                                                         NUMA_NO_NODE);
2185                 }
2186                 kfree_rcu(dev_maps, rcu);
2187         }
2188 }
2189
2190 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2191                                    u16 count)
2192 {
2193         const unsigned long *possible_mask = NULL;
2194         struct xps_dev_maps *dev_maps;
2195         unsigned int nr_ids;
2196
2197         if (!static_key_false(&xps_needed))
2198                 return;
2199
2200         cpus_read_lock();
2201         mutex_lock(&xps_map_mutex);
2202
2203         if (static_key_false(&xps_rxqs_needed)) {
2204                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2205                 if (dev_maps) {
2206                         nr_ids = dev->num_rx_queues;
2207                         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2208                                        offset, count, true);
2209                 }
2210         }
2211
2212         dev_maps = xmap_dereference(dev->xps_cpus_map);
2213         if (!dev_maps)
2214                 goto out_no_maps;
2215
2216         if (num_possible_cpus() > 1)
2217                 possible_mask = cpumask_bits(cpu_possible_mask);
2218         nr_ids = nr_cpu_ids;
2219         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2220                        false);
2221
2222 out_no_maps:
2223         if (static_key_enabled(&xps_rxqs_needed))
2224                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2225
2226         static_key_slow_dec_cpuslocked(&xps_needed);
2227         mutex_unlock(&xps_map_mutex);
2228         cpus_read_unlock();
2229 }
2230
2231 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2232 {
2233         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2234 }
2235
2236 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2237                                       u16 index, bool is_rxqs_map)
2238 {
2239         struct xps_map *new_map;
2240         int alloc_len = XPS_MIN_MAP_ALLOC;
2241         int i, pos;
2242
2243         for (pos = 0; map && pos < map->len; pos++) {
2244                 if (map->queues[pos] != index)
2245                         continue;
2246                 return map;
2247         }
2248
2249         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2250         if (map) {
2251                 if (pos < map->alloc_len)
2252                         return map;
2253
2254                 alloc_len = map->alloc_len * 2;
2255         }
2256
2257         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2258          *  map
2259          */
2260         if (is_rxqs_map)
2261                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2262         else
2263                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2264                                        cpu_to_node(attr_index));
2265         if (!new_map)
2266                 return NULL;
2267
2268         for (i = 0; i < pos; i++)
2269                 new_map->queues[i] = map->queues[i];
2270         new_map->alloc_len = alloc_len;
2271         new_map->len = pos;
2272
2273         return new_map;
2274 }
2275
2276 /* Must be called under cpus_read_lock */
2277 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2278                           u16 index, bool is_rxqs_map)
2279 {
2280         const unsigned long *online_mask = NULL, *possible_mask = NULL;
2281         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2282         int i, j, tci, numa_node_id = -2;
2283         int maps_sz, num_tc = 1, tc = 0;
2284         struct xps_map *map, *new_map;
2285         bool active = false;
2286         unsigned int nr_ids;
2287
2288         if (dev->num_tc) {
2289                 /* Do not allow XPS on subordinate device directly */
2290                 num_tc = dev->num_tc;
2291                 if (num_tc < 0)
2292                         return -EINVAL;
2293
2294                 /* If queue belongs to subordinate dev use its map */
2295                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2296
2297                 tc = netdev_txq_to_tc(dev, index);
2298                 if (tc < 0)
2299                         return -EINVAL;
2300         }
2301
2302         mutex_lock(&xps_map_mutex);
2303         if (is_rxqs_map) {
2304                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2305                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2306                 nr_ids = dev->num_rx_queues;
2307         } else {
2308                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2309                 if (num_possible_cpus() > 1) {
2310                         online_mask = cpumask_bits(cpu_online_mask);
2311                         possible_mask = cpumask_bits(cpu_possible_mask);
2312                 }
2313                 dev_maps = xmap_dereference(dev->xps_cpus_map);
2314                 nr_ids = nr_cpu_ids;
2315         }
2316
2317         if (maps_sz < L1_CACHE_BYTES)
2318                 maps_sz = L1_CACHE_BYTES;
2319
2320         /* allocate memory for queue storage */
2321         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2322              j < nr_ids;) {
2323                 if (!new_dev_maps)
2324                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2325                 if (!new_dev_maps) {
2326                         mutex_unlock(&xps_map_mutex);
2327                         return -ENOMEM;
2328                 }
2329
2330                 tci = j * num_tc + tc;
2331                 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2332                                  NULL;
2333
2334                 map = expand_xps_map(map, j, index, is_rxqs_map);
2335                 if (!map)
2336                         goto error;
2337
2338                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2339         }
2340
2341         if (!new_dev_maps)
2342                 goto out_no_new_maps;
2343
2344         static_key_slow_inc_cpuslocked(&xps_needed);
2345         if (is_rxqs_map)
2346                 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2347
2348         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2349              j < nr_ids;) {
2350                 /* copy maps belonging to foreign traffic classes */
2351                 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2352                         /* fill in the new device map from the old device map */
2353                         map = xmap_dereference(dev_maps->attr_map[tci]);
2354                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2355                 }
2356
2357                 /* We need to explicitly update tci as prevous loop
2358                  * could break out early if dev_maps is NULL.
2359                  */
2360                 tci = j * num_tc + tc;
2361
2362                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2363                     netif_attr_test_online(j, online_mask, nr_ids)) {
2364                         /* add tx-queue to CPU/rx-queue maps */
2365                         int pos = 0;
2366
2367                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2368                         while ((pos < map->len) && (map->queues[pos] != index))
2369                                 pos++;
2370
2371                         if (pos == map->len)
2372                                 map->queues[map->len++] = index;
2373 #ifdef CONFIG_NUMA
2374                         if (!is_rxqs_map) {
2375                                 if (numa_node_id == -2)
2376                                         numa_node_id = cpu_to_node(j);
2377                                 else if (numa_node_id != cpu_to_node(j))
2378                                         numa_node_id = -1;
2379                         }
2380 #endif
2381                 } else if (dev_maps) {
2382                         /* fill in the new device map from the old device map */
2383                         map = xmap_dereference(dev_maps->attr_map[tci]);
2384                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2385                 }
2386
2387                 /* copy maps belonging to foreign traffic classes */
2388                 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2389                         /* fill in the new device map from the old device map */
2390                         map = xmap_dereference(dev_maps->attr_map[tci]);
2391                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2392                 }
2393         }
2394
2395         if (is_rxqs_map)
2396                 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2397         else
2398                 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2399
2400         /* Cleanup old maps */
2401         if (!dev_maps)
2402                 goto out_no_old_maps;
2403
2404         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2405              j < nr_ids;) {
2406                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2407                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2408                         map = xmap_dereference(dev_maps->attr_map[tci]);
2409                         if (map && map != new_map)
2410                                 kfree_rcu(map, rcu);
2411                 }
2412         }
2413
2414         kfree_rcu(dev_maps, rcu);
2415
2416 out_no_old_maps:
2417         dev_maps = new_dev_maps;
2418         active = true;
2419
2420 out_no_new_maps:
2421         if (!is_rxqs_map) {
2422                 /* update Tx queue numa node */
2423                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2424                                              (numa_node_id >= 0) ?
2425                                              numa_node_id : NUMA_NO_NODE);
2426         }
2427
2428         if (!dev_maps)
2429                 goto out_no_maps;
2430
2431         /* removes tx-queue from unused CPUs/rx-queues */
2432         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2433              j < nr_ids;) {
2434                 for (i = tc, tci = j * num_tc; i--; tci++)
2435                         active |= remove_xps_queue(dev_maps, tci, index);
2436                 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2437                     !netif_attr_test_online(j, online_mask, nr_ids))
2438                         active |= remove_xps_queue(dev_maps, tci, index);
2439                 for (i = num_tc - tc, tci++; --i; tci++)
2440                         active |= remove_xps_queue(dev_maps, tci, index);
2441         }
2442
2443         /* free map if not active */
2444         if (!active) {
2445                 if (is_rxqs_map)
2446                         RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2447                 else
2448                         RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2449                 kfree_rcu(dev_maps, rcu);
2450         }
2451
2452 out_no_maps:
2453         mutex_unlock(&xps_map_mutex);
2454
2455         return 0;
2456 error:
2457         /* remove any maps that we added */
2458         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2459              j < nr_ids;) {
2460                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2461                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2462                         map = dev_maps ?
2463                               xmap_dereference(dev_maps->attr_map[tci]) :
2464                               NULL;
2465                         if (new_map && new_map != map)
2466                                 kfree(new_map);
2467                 }
2468         }
2469
2470         mutex_unlock(&xps_map_mutex);
2471
2472         kfree(new_dev_maps);
2473         return -ENOMEM;
2474 }
2475 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2476
2477 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2478                         u16 index)
2479 {
2480         int ret;
2481
2482         cpus_read_lock();
2483         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2484         cpus_read_unlock();
2485
2486         return ret;
2487 }
2488 EXPORT_SYMBOL(netif_set_xps_queue);
2489
2490 #endif
2491 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2492 {
2493         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2494
2495         /* Unbind any subordinate channels */
2496         while (txq-- != &dev->_tx[0]) {
2497                 if (txq->sb_dev)
2498                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2499         }
2500 }
2501
2502 void netdev_reset_tc(struct net_device *dev)
2503 {
2504 #ifdef CONFIG_XPS
2505         netif_reset_xps_queues_gt(dev, 0);
2506 #endif
2507         netdev_unbind_all_sb_channels(dev);
2508
2509         /* Reset TC configuration of device */
2510         dev->num_tc = 0;
2511         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2512         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2513 }
2514 EXPORT_SYMBOL(netdev_reset_tc);
2515
2516 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2517 {
2518         if (tc >= dev->num_tc)
2519                 return -EINVAL;
2520
2521 #ifdef CONFIG_XPS
2522         netif_reset_xps_queues(dev, offset, count);
2523 #endif
2524         dev->tc_to_txq[tc].count = count;
2525         dev->tc_to_txq[tc].offset = offset;
2526         return 0;
2527 }
2528 EXPORT_SYMBOL(netdev_set_tc_queue);
2529
2530 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2531 {
2532         if (num_tc > TC_MAX_QUEUE)
2533                 return -EINVAL;
2534
2535 #ifdef CONFIG_XPS
2536         netif_reset_xps_queues_gt(dev, 0);
2537 #endif
2538         netdev_unbind_all_sb_channels(dev);
2539
2540         dev->num_tc = num_tc;
2541         return 0;
2542 }
2543 EXPORT_SYMBOL(netdev_set_num_tc);
2544
2545 void netdev_unbind_sb_channel(struct net_device *dev,
2546                               struct net_device *sb_dev)
2547 {
2548         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2549
2550 #ifdef CONFIG_XPS
2551         netif_reset_xps_queues_gt(sb_dev, 0);
2552 #endif
2553         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2554         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2555
2556         while (txq-- != &dev->_tx[0]) {
2557                 if (txq->sb_dev == sb_dev)
2558                         txq->sb_dev = NULL;
2559         }
2560 }
2561 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2562
2563 int netdev_bind_sb_channel_queue(struct net_device *dev,
2564                                  struct net_device *sb_dev,
2565                                  u8 tc, u16 count, u16 offset)
2566 {
2567         /* Make certain the sb_dev and dev are already configured */
2568         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2569                 return -EINVAL;
2570
2571         /* We cannot hand out queues we don't have */
2572         if ((offset + count) > dev->real_num_tx_queues)
2573                 return -EINVAL;
2574
2575         /* Record the mapping */
2576         sb_dev->tc_to_txq[tc].count = count;
2577         sb_dev->tc_to_txq[tc].offset = offset;
2578
2579         /* Provide a way for Tx queue to find the tc_to_txq map or
2580          * XPS map for itself.
2581          */
2582         while (count--)
2583                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2584
2585         return 0;
2586 }
2587 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2588
2589 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2590 {
2591         /* Do not use a multiqueue device to represent a subordinate channel */
2592         if (netif_is_multiqueue(dev))
2593                 return -ENODEV;
2594
2595         /* We allow channels 1 - 32767 to be used for subordinate channels.
2596          * Channel 0 is meant to be "native" mode and used only to represent
2597          * the main root device. We allow writing 0 to reset the device back
2598          * to normal mode after being used as a subordinate channel.
2599          */
2600         if (channel > S16_MAX)
2601                 return -EINVAL;
2602
2603         dev->num_tc = -channel;
2604
2605         return 0;
2606 }
2607 EXPORT_SYMBOL(netdev_set_sb_channel);
2608
2609 /*
2610  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2611  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2612  */
2613 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2614 {
2615         bool disabling;
2616         int rc;
2617
2618         disabling = txq < dev->real_num_tx_queues;
2619
2620         if (txq < 1 || txq > dev->num_tx_queues)
2621                 return -EINVAL;
2622
2623         if (dev->reg_state == NETREG_REGISTERED ||
2624             dev->reg_state == NETREG_UNREGISTERING) {
2625                 ASSERT_RTNL();
2626
2627                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2628                                                   txq);
2629                 if (rc)
2630                         return rc;
2631
2632                 if (dev->num_tc)
2633                         netif_setup_tc(dev, txq);
2634
2635                 dev->real_num_tx_queues = txq;
2636
2637                 if (disabling) {
2638                         synchronize_net();
2639                         qdisc_reset_all_tx_gt(dev, txq);
2640 #ifdef CONFIG_XPS
2641                         netif_reset_xps_queues_gt(dev, txq);
2642 #endif
2643                 }
2644         } else {
2645                 dev->real_num_tx_queues = txq;
2646         }
2647
2648         return 0;
2649 }
2650 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2651
2652 #ifdef CONFIG_SYSFS
2653 /**
2654  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2655  *      @dev: Network device
2656  *      @rxq: Actual number of RX queues
2657  *
2658  *      This must be called either with the rtnl_lock held or before
2659  *      registration of the net device.  Returns 0 on success, or a
2660  *      negative error code.  If called before registration, it always
2661  *      succeeds.
2662  */
2663 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2664 {
2665         int rc;
2666
2667         if (rxq < 1 || rxq > dev->num_rx_queues)
2668                 return -EINVAL;
2669
2670         if (dev->reg_state == NETREG_REGISTERED) {
2671                 ASSERT_RTNL();
2672
2673                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2674                                                   rxq);
2675                 if (rc)
2676                         return rc;
2677         }
2678
2679         dev->real_num_rx_queues = rxq;
2680         return 0;
2681 }
2682 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2683 #endif
2684
2685 /**
2686  * netif_get_num_default_rss_queues - default number of RSS queues
2687  *
2688  * This routine should set an upper limit on the number of RSS queues
2689  * used by default by multiqueue devices.
2690  */
2691 int netif_get_num_default_rss_queues(void)
2692 {
2693         return is_kdump_kernel() ?
2694                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2695 }
2696 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2697
2698 static void __netif_reschedule(struct Qdisc *q)
2699 {
2700         struct softnet_data *sd;
2701         unsigned long flags;
2702
2703         local_irq_save(flags);
2704         sd = this_cpu_ptr(&softnet_data);
2705         q->next_sched = NULL;
2706         *sd->output_queue_tailp = q;
2707         sd->output_queue_tailp = &q->next_sched;
2708         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2709         local_irq_restore(flags);
2710 }
2711
2712 void __netif_schedule(struct Qdisc *q)
2713 {
2714         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2715                 __netif_reschedule(q);
2716 }
2717 EXPORT_SYMBOL(__netif_schedule);
2718
2719 struct dev_kfree_skb_cb {
2720         enum skb_free_reason reason;
2721 };
2722
2723 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2724 {
2725         return (struct dev_kfree_skb_cb *)skb->cb;
2726 }
2727
2728 void netif_schedule_queue(struct netdev_queue *txq)
2729 {
2730         rcu_read_lock();
2731         if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2732                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2733
2734                 __netif_schedule(q);
2735         }
2736         rcu_read_unlock();
2737 }
2738 EXPORT_SYMBOL(netif_schedule_queue);
2739
2740 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2741 {
2742         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2743                 struct Qdisc *q;
2744
2745                 rcu_read_lock();
2746                 q = rcu_dereference(dev_queue->qdisc);
2747                 __netif_schedule(q);
2748                 rcu_read_unlock();
2749         }
2750 }
2751 EXPORT_SYMBOL(netif_tx_wake_queue);
2752
2753 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2754 {
2755         unsigned long flags;
2756
2757         if (unlikely(!skb))
2758                 return;
2759
2760         if (likely(refcount_read(&skb->users) == 1)) {
2761                 smp_rmb();
2762                 refcount_set(&skb->users, 0);
2763         } else if (likely(!refcount_dec_and_test(&skb->users))) {
2764                 return;
2765         }
2766         get_kfree_skb_cb(skb)->reason = reason;
2767         local_irq_save(flags);
2768         skb->next = __this_cpu_read(softnet_data.completion_queue);
2769         __this_cpu_write(softnet_data.completion_queue, skb);
2770         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2771         local_irq_restore(flags);
2772 }
2773 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2774
2775 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2776 {
2777         if (in_irq() || irqs_disabled())
2778                 __dev_kfree_skb_irq(skb, reason);
2779         else
2780                 dev_kfree_skb(skb);
2781 }
2782 EXPORT_SYMBOL(__dev_kfree_skb_any);
2783
2784
2785 /**
2786  * netif_device_detach - mark device as removed
2787  * @dev: network device
2788  *
2789  * Mark device as removed from system and therefore no longer available.
2790  */
2791 void netif_device_detach(struct net_device *dev)
2792 {
2793         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2794             netif_running(dev)) {
2795                 netif_tx_stop_all_queues(dev);
2796         }
2797 }
2798 EXPORT_SYMBOL(netif_device_detach);
2799
2800 /**
2801  * netif_device_attach - mark device as attached
2802  * @dev: network device
2803  *
2804  * Mark device as attached from system and restart if needed.
2805  */
2806 void netif_device_attach(struct net_device *dev)
2807 {
2808         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2809             netif_running(dev)) {
2810                 netif_tx_wake_all_queues(dev);
2811                 __netdev_watchdog_up(dev);
2812         }
2813 }
2814 EXPORT_SYMBOL(netif_device_attach);
2815
2816 /*
2817  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2818  * to be used as a distribution range.
2819  */
2820 static u16 skb_tx_hash(const struct net_device *dev,
2821                        const struct net_device *sb_dev,
2822                        struct sk_buff *skb)
2823 {
2824         u32 hash;
2825         u16 qoffset = 0;
2826         u16 qcount = dev->real_num_tx_queues;
2827
2828         if (dev->num_tc) {
2829                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2830
2831                 qoffset = sb_dev->tc_to_txq[tc].offset;
2832                 qcount = sb_dev->tc_to_txq[tc].count;
2833         }
2834
2835         if (skb_rx_queue_recorded(skb)) {
2836                 hash = skb_get_rx_queue(skb);
2837                 while (unlikely(hash >= qcount))
2838                         hash -= qcount;
2839                 return hash + qoffset;
2840         }
2841
2842         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2843 }
2844
2845 static void skb_warn_bad_offload(const struct sk_buff *skb)
2846 {
2847         static const netdev_features_t null_features;
2848         struct net_device *dev = skb->dev;
2849         const char *name = "";
2850
2851         if (!net_ratelimit())
2852                 return;
2853
2854         if (dev) {
2855                 if (dev->dev.parent)
2856                         name = dev_driver_string(dev->dev.parent);
2857                 else
2858                         name = netdev_name(dev);
2859         }
2860         WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2861              "gso_type=%d ip_summed=%d\n",
2862              name, dev ? &dev->features : &null_features,
2863              skb->sk ? &skb->sk->sk_route_caps : &null_features,
2864              skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2865              skb_shinfo(skb)->gso_type, skb->ip_summed);
2866 }
2867
2868 /*
2869  * Invalidate hardware checksum when packet is to be mangled, and
2870  * complete checksum manually on outgoing path.
2871  */
2872 int skb_checksum_help(struct sk_buff *skb)
2873 {
2874         __wsum csum;
2875         int ret = 0, offset;
2876
2877         if (skb->ip_summed == CHECKSUM_COMPLETE)
2878                 goto out_set_summed;
2879
2880         if (unlikely(skb_shinfo(skb)->gso_size)) {
2881                 skb_warn_bad_offload(skb);
2882                 return -EINVAL;
2883         }
2884
2885         /* Before computing a checksum, we should make sure no frag could
2886          * be modified by an external entity : checksum could be wrong.
2887          */
2888         if (skb_has_shared_frag(skb)) {
2889                 ret = __skb_linearize(skb);
2890                 if (ret)
2891                         goto out;
2892         }
2893
2894         offset = skb_checksum_start_offset(skb);
2895         BUG_ON(offset >= skb_headlen(skb));
2896         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2897
2898         offset += skb->csum_offset;
2899         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2900
2901         if (skb_cloned(skb) &&
2902             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2903                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2904                 if (ret)
2905                         goto out;
2906         }
2907
2908         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2909 out_set_summed:
2910         skb->ip_summed = CHECKSUM_NONE;
2911 out:
2912         return ret;
2913 }
2914 EXPORT_SYMBOL(skb_checksum_help);
2915
2916 int skb_crc32c_csum_help(struct sk_buff *skb)
2917 {
2918         __le32 crc32c_csum;
2919         int ret = 0, offset, start;
2920
2921         if (skb->ip_summed != CHECKSUM_PARTIAL)
2922                 goto out;
2923
2924         if (unlikely(skb_is_gso(skb)))
2925                 goto out;
2926
2927         /* Before computing a checksum, we should make sure no frag could
2928          * be modified by an external entity : checksum could be wrong.
2929          */
2930         if (unlikely(skb_has_shared_frag(skb))) {
2931                 ret = __skb_linearize(skb);
2932                 if (ret)
2933                         goto out;
2934         }
2935         start = skb_checksum_start_offset(skb);
2936         offset = start + offsetof(struct sctphdr, checksum);
2937         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2938                 ret = -EINVAL;
2939                 goto out;
2940         }
2941         if (skb_cloned(skb) &&
2942             !skb_clone_writable(skb, offset + sizeof(__le32))) {
2943                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2944                 if (ret)
2945                         goto out;
2946         }
2947         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2948                                                   skb->len - start, ~(__u32)0,
2949                                                   crc32c_csum_stub));
2950         *(__le32 *)(skb->data + offset) = crc32c_csum;
2951         skb->ip_summed = CHECKSUM_NONE;
2952         skb->csum_not_inet = 0;
2953 out:
2954         return ret;
2955 }
2956
2957 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2958 {
2959         __be16 type = skb->protocol;
2960
2961         /* Tunnel gso handlers can set protocol to ethernet. */
2962         if (type == htons(ETH_P_TEB)) {
2963                 struct ethhdr *eth;
2964
2965                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2966                         return 0;
2967
2968                 eth = (struct ethhdr *)skb->data;
2969                 type = eth->h_proto;
2970         }
2971
2972         return __vlan_get_protocol(skb, type, depth);
2973 }
2974
2975 /**
2976  *      skb_mac_gso_segment - mac layer segmentation handler.
2977  *      @skb: buffer to segment
2978  *      @features: features for the output path (see dev->features)
2979  */
2980 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2981                                     netdev_features_t features)
2982 {
2983         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2984         struct packet_offload *ptype;
2985         int vlan_depth = skb->mac_len;
2986         __be16 type = skb_network_protocol(skb, &vlan_depth);
2987
2988         if (unlikely(!type))
2989                 return ERR_PTR(-EINVAL);
2990
2991         __skb_pull(skb, vlan_depth);
2992
2993         rcu_read_lock();
2994         list_for_each_entry_rcu(ptype, &offload_base, list) {
2995                 if (ptype->type == type && ptype->callbacks.gso_segment) {
2996                         segs = ptype->callbacks.gso_segment(skb, features);
2997                         break;
2998                 }
2999         }
3000         rcu_read_unlock();
3001
3002         __skb_push(skb, skb->data - skb_mac_header(skb));
3003
3004         return segs;
3005 }
3006 EXPORT_SYMBOL(skb_mac_gso_segment);
3007
3008
3009 /* openvswitch calls this on rx path, so we need a different check.
3010  */
3011 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3012 {
3013         if (tx_path)
3014                 return skb->ip_summed != CHECKSUM_PARTIAL &&
3015                        skb->ip_summed != CHECKSUM_UNNECESSARY;
3016
3017         return skb->ip_summed == CHECKSUM_NONE;
3018 }
3019
3020 /**
3021  *      __skb_gso_segment - Perform segmentation on skb.
3022  *      @skb: buffer to segment
3023  *      @features: features for the output path (see dev->features)
3024  *      @tx_path: whether it is called in TX path
3025  *
3026  *      This function segments the given skb and returns a list of segments.
3027  *
3028  *      It may return NULL if the skb requires no segmentation.  This is
3029  *      only possible when GSO is used for verifying header integrity.
3030  *
3031  *      Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
3032  */
3033 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3034                                   netdev_features_t features, bool tx_path)
3035 {
3036         struct sk_buff *segs;
3037
3038         if (unlikely(skb_needs_check(skb, tx_path))) {
3039                 int err;
3040
3041                 /* We're going to init ->check field in TCP or UDP header */
3042                 err = skb_cow_head(skb, 0);
3043                 if (err < 0)
3044                         return ERR_PTR(err);
3045         }
3046
3047         /* Only report GSO partial support if it will enable us to
3048          * support segmentation on this frame without needing additional
3049          * work.
3050          */
3051         if (features & NETIF_F_GSO_PARTIAL) {
3052                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3053                 struct net_device *dev = skb->dev;
3054
3055                 partial_features |= dev->features & dev->gso_partial_features;
3056                 if (!skb_gso_ok(skb, features | partial_features))
3057                         features &= ~NETIF_F_GSO_PARTIAL;
3058         }
3059
3060         BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3061                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3062
3063         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3064         SKB_GSO_CB(skb)->encap_level = 0;
3065
3066         skb_reset_mac_header(skb);
3067         skb_reset_mac_len(skb);
3068
3069         segs = skb_mac_gso_segment(skb, features);
3070
3071         if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3072                 skb_warn_bad_offload(skb);
3073
3074         return segs;
3075 }
3076 EXPORT_SYMBOL(__skb_gso_segment);
3077
3078 /* Take action when hardware reception checksum errors are detected. */
3079 #ifdef CONFIG_BUG
3080 void netdev_rx_csum_fault(struct net_device *dev)
3081 {
3082         if (net_ratelimit()) {
3083                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3084                 dump_stack();
3085         }
3086 }
3087 EXPORT_SYMBOL(netdev_rx_csum_fault);
3088 #endif
3089
3090 /* XXX: check that highmem exists at all on the given machine. */
3091 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3092 {
3093 #ifdef CONFIG_HIGHMEM
3094         int i;
3095
3096         if (!(dev->features & NETIF_F_HIGHDMA)) {
3097                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3098                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3099
3100                         if (PageHighMem(skb_frag_page(frag)))
3101                                 return 1;
3102                 }
3103         }
3104 #endif
3105         return 0;
3106 }
3107
3108 /* If MPLS offload request, verify we are testing hardware MPLS features
3109  * instead of standard features for the netdev.
3110  */
3111 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3112 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3113                                            netdev_features_t features,
3114                                            __be16 type)
3115 {
3116         if (eth_p_mpls(type))
3117                 features &= skb->dev->mpls_features;
3118
3119         return features;
3120 }
3121 #else
3122 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3123                                            netdev_features_t features,
3124                                            __be16 type)
3125 {
3126         return features;
3127 }
3128 #endif
3129
3130 static netdev_features_t harmonize_features(struct sk_buff *skb,
3131         netdev_features_t features)
3132 {
3133         int tmp;
3134         __be16 type;
3135
3136         type = skb_network_protocol(skb, &tmp);
3137         features = net_mpls_features(skb, features, type);
3138
3139         if (skb->ip_summed != CHECKSUM_NONE &&
3140             !can_checksum_protocol(features, type)) {
3141                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3142         }
3143         if (illegal_highdma(skb->dev, skb))
3144                 features &= ~NETIF_F_SG;
3145
3146         return features;
3147 }
3148
3149 netdev_features_t passthru_features_check(struct sk_buff *skb,
3150                                           struct net_device *dev,
3151                                           netdev_features_t features)
3152 {
3153         return features;
3154 }
3155 EXPORT_SYMBOL(passthru_features_check);
3156
3157 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3158                                              struct net_device *dev,
3159                                              netdev_features_t features)
3160 {
3161         return vlan_features_check(skb, features);
3162 }
3163
3164 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3165                                             struct net_device *dev,
3166                                             netdev_features_t features)
3167 {
3168         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3169
3170         if (gso_segs > dev->gso_max_segs)
3171                 return features & ~NETIF_F_GSO_MASK;
3172
3173         /* Support for GSO partial features requires software
3174          * intervention before we can actually process the packets
3175          * so we need to strip support for any partial features now
3176          * and we can pull them back in after we have partially
3177          * segmented the frame.
3178          */
3179         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3180                 features &= ~dev->gso_partial_features;
3181
3182         /* Make sure to clear the IPv4 ID mangling feature if the
3183          * IPv4 header has the potential to be fragmented.
3184          */
3185         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3186                 struct iphdr *iph = skb->encapsulation ?
3187                                     inner_ip_hdr(skb) : ip_hdr(skb);
3188
3189                 if (!(iph->frag_off & htons(IP_DF)))
3190                         features &= ~NETIF_F_TSO_MANGLEID;
3191         }
3192
3193         return features;
3194 }
3195
3196 netdev_features_t netif_skb_features(struct sk_buff *skb)
3197 {
3198         struct net_device *dev = skb->dev;
3199         netdev_features_t features = dev->features;
3200
3201         if (skb_is_gso(skb))
3202                 features = gso_features_check(skb, dev, features);
3203
3204         /* If encapsulation offload request, verify we are testing
3205          * hardware encapsulation features instead of standard
3206          * features for the netdev
3207          */
3208         if (skb->encapsulation)
3209                 features &= dev->hw_enc_features;
3210
3211         if (skb_vlan_tagged(skb))
3212                 features = netdev_intersect_features(features,
3213                                                      dev->vlan_features |
3214                                                      NETIF_F_HW_VLAN_CTAG_TX |
3215                                                      NETIF_F_HW_VLAN_STAG_TX);
3216
3217         if (dev->netdev_ops->ndo_features_check)
3218                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3219                                                                 features);
3220         else
3221                 features &= dflt_features_check(skb, dev, features);
3222
3223         return harmonize_features(skb, features);
3224 }
3225 EXPORT_SYMBOL(netif_skb_features);
3226
3227 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3228                     struct netdev_queue *txq, bool more)
3229 {
3230         unsigned int len;
3231         int rc;
3232
3233         if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
3234                 dev_queue_xmit_nit(skb, dev);
3235
3236         len = skb->len;
3237         trace_net_dev_start_xmit(skb, dev);
3238         rc = netdev_start_xmit(skb, dev, txq, more);
3239         trace_net_dev_xmit(skb, rc, dev, len);
3240
3241         return rc;
3242 }
3243
3244 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3245                                     struct netdev_queue *txq, int *ret)
3246 {
3247         struct sk_buff *skb = first;
3248         int rc = NETDEV_TX_OK;
3249
3250         while (skb) {
3251                 struct sk_buff *next = skb->next;
3252
3253                 skb->next = NULL;
3254                 rc = xmit_one(skb, dev, txq, next != NULL);
3255                 if (unlikely(!dev_xmit_complete(rc))) {
3256                         skb->next = next;
3257                         goto out;
3258                 }
3259
3260                 skb = next;
3261                 if (netif_xmit_stopped(txq) && skb) {
3262                         rc = NETDEV_TX_BUSY;
3263                         break;
3264                 }
3265         }
3266
3267 out:
3268         *ret = rc;
3269         return skb;
3270 }
3271
3272 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3273                                           netdev_features_t features)
3274 {
3275         if (skb_vlan_tag_present(skb) &&
3276             !vlan_hw_offload_capable(features, skb->vlan_proto))
3277                 skb = __vlan_hwaccel_push_inside(skb);
3278         return skb;
3279 }
3280
3281 int skb_csum_hwoffload_help(struct sk_buff *skb,
3282                             const netdev_features_t features)
3283 {
3284         if (unlikely(skb->csum_not_inet))
3285                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3286                         skb_crc32c_csum_help(skb);
3287
3288         return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3289 }
3290 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3291
3292 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3293 {
3294         netdev_features_t features;
3295
3296         features = netif_skb_features(skb);
3297         skb = validate_xmit_vlan(skb, features);
3298         if (unlikely(!skb))
3299                 goto out_null;
3300
3301         skb = sk_validate_xmit_skb(skb, dev);
3302         if (unlikely(!skb))
3303                 goto out_null;
3304
3305         if (netif_needs_gso(skb, features)) {
3306                 struct sk_buff *segs;
3307
3308                 segs = skb_gso_segment(skb, features);
3309                 if (IS_ERR(segs)) {
3310                         goto out_kfree_skb;
3311                 } else if (segs) {
3312                         consume_skb(skb);
3313                         skb = segs;
3314                 }
3315         } else {
3316                 if (skb_needs_linearize(skb, features) &&
3317                     __skb_linearize(skb))
3318                         goto out_kfree_skb;
3319
3320                 /* If packet is not checksummed and device does not
3321                  * support checksumming for this protocol, complete
3322                  * checksumming here.
3323                  */
3324                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3325                         if (skb->encapsulation)
3326                                 skb_set_inner_transport_header(skb,
3327                                                                skb_checksum_start_offset(skb));
3328                         else
3329                                 skb_set_transport_header(skb,
3330                                                          skb_checksum_start_offset(skb));
3331                         if (skb_csum_hwoffload_help(skb, features))
3332                                 goto out_kfree_skb;
3333                 }
3334         }
3335
3336         skb = validate_xmit_xfrm(skb, features, again);
3337
3338         return skb;
3339
3340 out_kfree_skb:
3341         kfree_skb(skb);
3342 out_null:
3343         atomic_long_inc(&dev->tx_dropped);
3344         return NULL;
3345 }
3346
3347 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3348 {
3349         struct sk_buff *next, *head = NULL, *tail;
3350
3351         for (; skb != NULL; skb = next) {
3352                 next = skb->next;
3353                 skb->next = NULL;
3354
3355                 /* in case skb wont be segmented, point to itself */
3356                 skb->prev = skb;
3357
3358                 skb = validate_xmit_skb(skb, dev, again);
3359                 if (!skb)
3360                         continue;
3361
3362                 if (!head)
3363                         head = skb;
3364                 else
3365                         tail->next = skb;
3366                 /* If skb was segmented, skb->prev points to
3367                  * the last segment. If not, it still contains skb.
3368                  */
3369                 tail = skb->prev;
3370         }
3371         return head;
3372 }
3373 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3374
3375 static void qdisc_pkt_len_init(struct sk_buff *skb)
3376 {
3377         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3378
3379         qdisc_skb_cb(skb)->pkt_len = skb->len;
3380
3381         /* To get more precise estimation of bytes sent on wire,
3382          * we add to pkt_len the headers size of all segments
3383          */
3384         if (shinfo->gso_size)  {
3385                 unsigned int hdr_len;
3386                 u16 gso_segs = shinfo->gso_segs;
3387
3388                 /* mac layer + network layer */
3389                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3390
3391                 /* + transport layer */
3392                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3393                         const struct tcphdr *th;
3394                         struct tcphdr _tcphdr;
3395
3396                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3397                                                 sizeof(_tcphdr), &_tcphdr);
3398                         if (likely(th))
3399                                 hdr_len += __tcp_hdrlen(th);
3400                 } else {
3401                         struct udphdr _udphdr;
3402
3403                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3404                                                sizeof(_udphdr), &_udphdr))
3405                                 hdr_len += sizeof(struct udphdr);
3406                 }
3407
3408                 if (shinfo->gso_type & SKB_GSO_DODGY)
3409                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3410                                                 shinfo->gso_size);
3411
3412                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3413         }
3414 }
3415
3416 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3417                                  struct net_device *dev,
3418                                  struct netdev_queue *txq)
3419 {
3420         spinlock_t *root_lock = qdisc_lock(q);
3421         struct sk_buff *to_free = NULL;
3422         bool contended;
3423         int rc;
3424
3425         qdisc_calculate_pkt_len(skb, q);
3426
3427         if (q->flags & TCQ_F_NOLOCK) {
3428                 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3429                         __qdisc_drop(skb, &to_free);
3430                         rc = NET_XMIT_DROP;
3431                 } else {
3432                         rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3433                         qdisc_run(q);
3434                 }
3435
3436                 if (unlikely(to_free))
3437                         kfree_skb_list(to_free);
3438                 return rc;
3439         }
3440
3441         /*
3442          * Heuristic to force contended enqueues to serialize on a
3443          * separate lock before trying to get qdisc main lock.
3444          * This permits qdisc->running owner to get the lock more
3445          * often and dequeue packets faster.
3446          */
3447         contended = qdisc_is_running(q);
3448         if (unlikely(contended))
3449                 spin_lock(&q->busylock);
3450
3451         spin_lock(root_lock);
3452         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3453                 __qdisc_drop(skb, &to_free);
3454                 rc = NET_XMIT_DROP;
3455         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3456                    qdisc_run_begin(q)) {
3457                 /*
3458                  * This is a work-conserving queue; there are no old skbs
3459                  * waiting to be sent out; and the qdisc is not running -
3460                  * xmit the skb directly.
3461                  */
3462
3463                 qdisc_bstats_update(q, skb);
3464
3465                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3466                         if (unlikely(contended)) {
3467                                 spin_unlock(&q->busylock);
3468                                 contended = false;
3469                         }
3470                         __qdisc_run(q);
3471                 }
3472
3473                 qdisc_run_end(q);
3474                 rc = NET_XMIT_SUCCESS;
3475         } else {
3476                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3477                 if (qdisc_run_begin(q)) {
3478                         if (unlikely(contended)) {
3479                                 spin_unlock(&q->busylock);
3480                                 contended = false;
3481                         }
3482                         __qdisc_run(q);
3483                         qdisc_run_end(q);
3484                 }
3485         }
3486         spin_unlock(root_lock);
3487         if (unlikely(to_free))
3488                 kfree_skb_list(to_free);
3489         if (unlikely(contended))
3490                 spin_unlock(&q->busylock);
3491         return rc;
3492 }
3493
3494 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3495 static void skb_update_prio(struct sk_buff *skb)
3496 {
3497         const struct netprio_map *map;
3498         const struct sock *sk;
3499         unsigned int prioidx;
3500
3501         if (skb->priority)
3502                 return;
3503         map = rcu_dereference_bh(skb->dev->priomap);
3504         if (!map)
3505                 return;
3506         sk = skb_to_full_sk(skb);
3507         if (!sk)
3508                 return;
3509
3510         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3511
3512         if (prioidx < map->priomap_len)
3513                 skb->priority = map->priomap[prioidx];
3514 }
3515 #else
3516 #define skb_update_prio(skb)
3517 #endif
3518
3519 DEFINE_PER_CPU(int, xmit_recursion);
3520 EXPORT_SYMBOL(xmit_recursion);
3521
3522 /**
3523  *      dev_loopback_xmit - loop back @skb
3524  *      @net: network namespace this loopback is happening in
3525  *      @sk:  sk needed to be a netfilter okfn
3526  *      @skb: buffer to transmit
3527  */
3528 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3529 {
3530         skb_reset_mac_header(skb);
3531         __skb_pull(skb, skb_network_offset(skb));
3532         skb->pkt_type = PACKET_LOOPBACK;
3533         skb->ip_summed = CHECKSUM_UNNECESSARY;
3534         WARN_ON(!skb_dst(skb));
3535         skb_dst_force(skb);
3536         netif_rx_ni(skb);
3537         return 0;
3538 }
3539 EXPORT_SYMBOL(dev_loopback_xmit);
3540
3541 #ifdef CONFIG_NET_EGRESS
3542 static struct sk_buff *
3543 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3544 {
3545         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3546         struct tcf_result cl_res;
3547
3548         if (!miniq)
3549                 return skb;
3550
3551         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3552         mini_qdisc_bstats_cpu_update(miniq, skb);
3553
3554         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3555         case TC_ACT_OK:
3556         case TC_ACT_RECLASSIFY:
3557                 skb->tc_index = TC_H_MIN(cl_res.classid);
3558                 break;
3559         case TC_ACT_SHOT:
3560                 mini_qdisc_qstats_cpu_drop(miniq);
3561                 *ret = NET_XMIT_DROP;
3562                 kfree_skb(skb);
3563                 return NULL;
3564         case TC_ACT_STOLEN:
3565         case TC_ACT_QUEUED:
3566         case TC_ACT_TRAP:
3567                 *ret = NET_XMIT_SUCCESS;
3568                 consume_skb(skb);
3569                 return NULL;
3570         case TC_ACT_REDIRECT:
3571                 /* No need to push/pop skb's mac_header here on egress! */
3572                 skb_do_redirect(skb);
3573                 *ret = NET_XMIT_SUCCESS;
3574                 return NULL;
3575         default:
3576                 break;
3577         }
3578
3579         return skb;
3580 }
3581 #endif /* CONFIG_NET_EGRESS */
3582
3583 #ifdef CONFIG_XPS
3584 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3585                                struct xps_dev_maps *dev_maps, unsigned int tci)
3586 {
3587         struct xps_map *map;
3588         int queue_index = -1;
3589
3590         if (dev->num_tc) {
3591                 tci *= dev->num_tc;
3592                 tci += netdev_get_prio_tc_map(dev, skb->priority);
3593         }
3594
3595         map = rcu_dereference(dev_maps->attr_map[tci]);
3596         if (map) {
3597                 if (map->len == 1)
3598                         queue_index = map->queues[0];
3599                 else
3600                         queue_index = map->queues[reciprocal_scale(
3601                                                 skb_get_hash(skb), map->len)];
3602                 if (unlikely(queue_index >= dev->real_num_tx_queues))
3603                         queue_index = -1;
3604         }
3605         return queue_index;
3606 }
3607 #endif
3608
3609 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3610                          struct sk_buff *skb)
3611 {
3612 #ifdef CONFIG_XPS
3613         struct xps_dev_maps *dev_maps;
3614         struct sock *sk = skb->sk;
3615         int queue_index = -1;
3616
3617         if (!static_key_false(&xps_needed))
3618                 return -1;
3619
3620         rcu_read_lock();
3621         if (!static_key_false(&xps_rxqs_needed))
3622                 goto get_cpus_map;
3623
3624         dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3625         if (dev_maps) {
3626                 int tci = sk_rx_queue_get(sk);
3627
3628                 if (tci >= 0 && tci < dev->num_rx_queues)
3629                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3630                                                           tci);
3631         }
3632
3633 get_cpus_map:
3634         if (queue_index < 0) {
3635                 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3636                 if (dev_maps) {
3637                         unsigned int tci = skb->sender_cpu - 1;
3638
3639                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3640                                                           tci);
3641                 }
3642         }
3643         rcu_read_unlock();
3644
3645         return queue_index;
3646 #else
3647         return -1;
3648 #endif
3649 }
3650
3651 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3652                      struct net_device *sb_dev,
3653                      select_queue_fallback_t fallback)
3654 {
3655         return 0;
3656 }
3657 EXPORT_SYMBOL(dev_pick_tx_zero);
3658
3659 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3660                        struct net_device *sb_dev,
3661                        select_queue_fallback_t fallback)
3662 {
3663         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3664 }
3665 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3666
3667 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3668                             struct net_device *sb_dev)
3669 {
3670         struct sock *sk = skb->sk;
3671         int queue_index = sk_tx_queue_get(sk);
3672
3673         sb_dev = sb_dev ? : dev;
3674
3675         if (queue_index < 0 || skb->ooo_okay ||
3676             queue_index >= dev->real_num_tx_queues) {
3677                 int new_index = get_xps_queue(dev, sb_dev, skb);
3678
3679                 if (new_index < 0)
3680                         new_index = skb_tx_hash(dev, sb_dev, skb);
3681
3682                 if (queue_index != new_index && sk &&
3683                     sk_fullsock(sk) &&
3684                     rcu_access_pointer(sk->sk_dst_cache))
3685                         sk_tx_queue_set(sk, new_index);
3686
3687                 queue_index = new_index;
3688         }
3689
3690         return queue_index;
3691 }
3692
3693 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3694                                     struct sk_buff *skb,
3695                                     struct net_device *sb_dev)
3696 {
3697         int queue_index = 0;
3698
3699 #ifdef CONFIG_XPS
3700         u32 sender_cpu = skb->sender_cpu - 1;
3701
3702         if (sender_cpu >= (u32)NR_CPUS)
3703                 skb->sender_cpu = raw_smp_processor_id() + 1;
3704 #endif
3705
3706         if (dev->real_num_tx_queues != 1) {
3707                 const struct net_device_ops *ops = dev->netdev_ops;
3708
3709                 if (ops->ndo_select_queue)
3710                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev,
3711                                                             __netdev_pick_tx);
3712                 else
3713                         queue_index = __netdev_pick_tx(dev, skb, sb_dev);
3714
3715                 queue_index = netdev_cap_txqueue(dev, queue_index);
3716         }
3717
3718         skb_set_queue_mapping(skb, queue_index);
3719         return netdev_get_tx_queue(dev, queue_index);
3720 }
3721
3722 /**
3723  *      __dev_queue_xmit - transmit a buffer
3724  *      @skb: buffer to transmit
3725  *      @sb_dev: suboordinate device used for L2 forwarding offload
3726  *
3727  *      Queue a buffer for transmission to a network device. The caller must
3728  *      have set the device and priority and built the buffer before calling
3729  *      this function. The function can be called from an interrupt.
3730  *
3731  *      A negative errno code is returned on a failure. A success does not
3732  *      guarantee the frame will be transmitted as it may be dropped due
3733  *      to congestion or traffic shaping.
3734  *
3735  * -----------------------------------------------------------------------------------
3736  *      I notice this method can also return errors from the queue disciplines,
3737  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3738  *      be positive.
3739  *
3740  *      Regardless of the return value, the skb is consumed, so it is currently
3741  *      difficult to retry a send to this method.  (You can bump the ref count
3742  *      before sending to hold a reference for retry if you are careful.)
3743  *
3744  *      When calling this method, interrupts MUST be enabled.  This is because
3745  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3746  *          --BLG
3747  */
3748 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
3749 {
3750         struct net_device *dev = skb->dev;
3751         struct netdev_queue *txq;
3752         struct Qdisc *q;
3753         int rc = -ENOMEM;
3754         bool again = false;
3755
3756         skb_reset_mac_header(skb);
3757
3758         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3759                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3760
3761         /* Disable soft irqs for various locks below. Also
3762          * stops preemption for RCU.
3763          */
3764         rcu_read_lock_bh();
3765
3766         skb_update_prio(skb);
3767
3768         qdisc_pkt_len_init(skb);
3769 #ifdef CONFIG_NET_CLS_ACT
3770         skb->tc_at_ingress = 0;
3771 # ifdef CONFIG_NET_EGRESS
3772         if (static_branch_unlikely(&egress_needed_key)) {
3773                 skb = sch_handle_egress(skb, &rc, dev);
3774                 if (!skb)
3775                         goto out;
3776         }
3777 # endif
3778 #endif
3779         /* If device/qdisc don't need skb->dst, release it right now while
3780          * its hot in this cpu cache.
3781          */
3782         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3783                 skb_dst_drop(skb);
3784         else
3785                 skb_dst_force(skb);
3786
3787         txq = netdev_pick_tx(dev, skb, sb_dev);
3788         q = rcu_dereference_bh(txq->qdisc);
3789
3790         trace_net_dev_queue(skb);
3791         if (q->enqueue) {
3792                 rc = __dev_xmit_skb(skb, q, dev, txq);
3793                 goto out;
3794         }
3795
3796         /* The device has no queue. Common case for software devices:
3797          * loopback, all the sorts of tunnels...
3798
3799          * Really, it is unlikely that netif_tx_lock protection is necessary
3800          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3801          * counters.)
3802          * However, it is possible, that they rely on protection
3803          * made by us here.
3804
3805          * Check this and shot the lock. It is not prone from deadlocks.
3806          *Either shot noqueue qdisc, it is even simpler 8)
3807          */
3808         if (dev->flags & IFF_UP) {
3809                 int cpu = smp_processor_id(); /* ok because BHs are off */
3810
3811                 if (txq->xmit_lock_owner != cpu) {
3812                         if (unlikely(__this_cpu_read(xmit_recursion) >
3813                                      XMIT_RECURSION_LIMIT))
3814                                 goto recursion_alert;
3815
3816                         skb = validate_xmit_skb(skb, dev, &again);
3817                         if (!skb)
3818                                 goto out;
3819
3820                         HARD_TX_LOCK(dev, txq, cpu);
3821
3822                         if (!netif_xmit_stopped(txq)) {
3823                                 __this_cpu_inc(xmit_recursion);
3824                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3825                                 __this_cpu_dec(xmit_recursion);
3826                                 if (dev_xmit_complete(rc)) {
3827                                         HARD_TX_UNLOCK(dev, txq);
3828                                         goto out;
3829                                 }
3830                         }
3831                         HARD_TX_UNLOCK(dev, txq);
3832                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3833                                              dev->name);
3834                 } else {
3835                         /* Recursion is detected! It is possible,
3836                          * unfortunately
3837                          */
3838 recursion_alert:
3839                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3840                                              dev->name);
3841                 }
3842         }
3843
3844         rc = -ENETDOWN;
3845         rcu_read_unlock_bh();
3846
3847         atomic_long_inc(&dev->tx_dropped);
3848         kfree_skb_list(skb);
3849         return rc;
3850 out:
3851         rcu_read_unlock_bh();
3852         return rc;
3853 }
3854
3855 int dev_queue_xmit(struct sk_buff *skb)
3856 {
3857         return __dev_queue_xmit(skb, NULL);
3858 }
3859 EXPORT_SYMBOL(dev_queue_xmit);
3860
3861 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
3862 {
3863         return __dev_queue_xmit(skb, sb_dev);
3864 }
3865 EXPORT_SYMBOL(dev_queue_xmit_accel);
3866
3867 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3868 {
3869         struct net_device *dev = skb->dev;
3870         struct sk_buff *orig_skb = skb;
3871         struct netdev_queue *txq;
3872         int ret = NETDEV_TX_BUSY;
3873         bool again = false;
3874
3875         if (unlikely(!netif_running(dev) ||
3876                      !netif_carrier_ok(dev)))
3877                 goto drop;
3878
3879         skb = validate_xmit_skb_list(skb, dev, &again);
3880         if (skb != orig_skb)
3881                 goto drop;
3882
3883         skb_set_queue_mapping(skb, queue_id);
3884         txq = skb_get_tx_queue(dev, skb);
3885
3886         local_bh_disable();
3887
3888         HARD_TX_LOCK(dev, txq, smp_processor_id());
3889         if (!netif_xmit_frozen_or_drv_stopped(txq))
3890                 ret = netdev_start_xmit(skb, dev, txq, false);
3891         HARD_TX_UNLOCK(dev, txq);
3892
3893         local_bh_enable();
3894
3895         if (!dev_xmit_complete(ret))
3896                 kfree_skb(skb);
3897
3898         return ret;
3899 drop:
3900         atomic_long_inc(&dev->tx_dropped);
3901         kfree_skb_list(skb);
3902         return NET_XMIT_DROP;
3903 }
3904 EXPORT_SYMBOL(dev_direct_xmit);
3905
3906 /*************************************************************************
3907  *                      Receiver routines
3908  *************************************************************************/
3909
3910 int netdev_max_backlog __read_mostly = 1000;
3911 EXPORT_SYMBOL(netdev_max_backlog);
3912
3913 int netdev_tstamp_prequeue __read_mostly = 1;
3914 int netdev_budget __read_mostly = 300;
3915 unsigned int __read_mostly netdev_budget_usecs = 2000;
3916 int weight_p __read_mostly = 64;           /* old backlog weight */
3917 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3918 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3919 int dev_rx_weight __read_mostly = 64;
3920 int dev_tx_weight __read_mostly = 64;
3921
3922 /* Called with irq disabled */
3923 static inline void ____napi_schedule(struct softnet_data *sd,
3924                                      struct napi_struct *napi)
3925 {
3926         list_add_tail(&napi->poll_list, &sd->poll_list);
3927         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3928 }
3929
3930 #ifdef CONFIG_RPS
3931
3932 /* One global table that all flow-based protocols share. */
3933 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3934 EXPORT_SYMBOL(rps_sock_flow_table);
3935 u32 rps_cpu_mask __read_mostly;
3936 EXPORT_SYMBOL(rps_cpu_mask);
3937
3938 struct static_key rps_needed __read_mostly;
3939 EXPORT_SYMBOL(rps_needed);
3940 struct static_key rfs_needed __read_mostly;
3941 EXPORT_SYMBOL(rfs_needed);
3942
3943 static struct rps_dev_flow *
3944 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3945             struct rps_dev_flow *rflow, u16 next_cpu)
3946 {
3947         if (next_cpu < nr_cpu_ids) {
3948 #ifdef CONFIG_RFS_ACCEL
3949                 struct netdev_rx_queue *rxqueue;
3950                 struct rps_dev_flow_table *flow_table;
3951                 struct rps_dev_flow *old_rflow;
3952                 u32 flow_id;
3953                 u16 rxq_index;
3954                 int rc;
3955
3956                 /* Should we steer this flow to a different hardware queue? */
3957                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3958                     !(dev->features & NETIF_F_NTUPLE))
3959                         goto out;
3960                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3961                 if (rxq_index == skb_get_rx_queue(skb))
3962                         goto out;
3963
3964                 rxqueue = dev->_rx + rxq_index;
3965                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3966                 if (!flow_table)
3967                         goto out;
3968                 flow_id = skb_get_hash(skb) & flow_table->mask;
3969                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3970                                                         rxq_index, flow_id);
3971                 if (rc < 0)
3972                         goto out;
3973                 old_rflow = rflow;
3974                 rflow = &flow_table->flows[flow_id];
3975                 rflow->filter = rc;
3976                 if (old_rflow->filter == rflow->filter)
3977                         old_rflow->filter = RPS_NO_FILTER;
3978         out:
3979 #endif
3980                 rflow->last_qtail =
3981                         per_cpu(softnet_data, next_cpu).input_queue_head;
3982         }
3983
3984         rflow->cpu = next_cpu;
3985         return rflow;
3986 }
3987
3988 /*
3989  * get_rps_cpu is called from netif_receive_skb and returns the target
3990  * CPU from the RPS map of the receiving queue for a given skb.
3991  * rcu_read_lock must be held on entry.
3992  */
3993 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3994                        struct rps_dev_flow **rflowp)
3995 {
3996         const struct rps_sock_flow_table *sock_flow_table;
3997         struct netdev_rx_queue *rxqueue = dev->_rx;
3998         struct rps_dev_flow_table *flow_table;
3999         struct rps_map *map;
4000         int cpu = -1;
4001         u32 tcpu;
4002         u32 hash;
4003
4004         if (skb_rx_queue_recorded(skb)) {
4005                 u16 index = skb_get_rx_queue(skb);
4006
4007                 if (unlikely(index >= dev->real_num_rx_queues)) {
4008                         WARN_ONCE(dev->real_num_rx_queues > 1,
4009                                   "%s received packet on queue %u, but number "
4010                                   "of RX queues is %u\n",
4011                                   dev->name, index, dev->real_num_rx_queues);
4012                         goto done;
4013                 }
4014                 rxqueue += index;
4015         }
4016
4017         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4018
4019         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4020         map = rcu_dereference(rxqueue->rps_map);
4021         if (!flow_table && !map)
4022                 goto done;
4023
4024         skb_reset_network_header(skb);
4025         hash = skb_get_hash(skb);
4026         if (!hash)
4027                 goto done;
4028
4029         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4030         if (flow_table && sock_flow_table) {
4031                 struct rps_dev_flow *rflow;
4032                 u32 next_cpu;
4033                 u32 ident;
4034
4035                 /* First check into global flow table if there is a match */
4036                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4037                 if ((ident ^ hash) & ~rps_cpu_mask)
4038                         goto try_rps;
4039
4040                 next_cpu = ident & rps_cpu_mask;
4041
4042                 /* OK, now we know there is a match,
4043                  * we can look at the local (per receive queue) flow table
4044                  */
4045                 rflow = &flow_table->flows[hash & flow_table->mask];
4046                 tcpu = rflow->cpu;
4047
4048                 /*
4049                  * If the desired CPU (where last recvmsg was done) is
4050                  * different from current CPU (one in the rx-queue flow
4051                  * table entry), switch if one of the following holds:
4052                  *   - Current CPU is unset (>= nr_cpu_ids).
4053                  *   - Current CPU is offline.
4054                  *   - The current CPU's queue tail has advanced beyond the
4055                  *     last packet that was enqueued using this table entry.
4056                  *     This guarantees that all previous packets for the flow
4057                  *     have been dequeued, thus preserving in order delivery.
4058                  */
4059                 if (unlikely(tcpu != next_cpu) &&
4060                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4061                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4062                       rflow->last_qtail)) >= 0)) {
4063                         tcpu = next_cpu;
4064                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4065                 }
4066
4067                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4068                         *rflowp = rflow;
4069                         cpu = tcpu;
4070                         goto done;
4071                 }
4072         }
4073
4074 try_rps:
4075
4076         if (map) {
4077                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4078                 if (cpu_online(tcpu)) {
4079                         cpu = tcpu;
4080                         goto done;
4081                 }
4082         }
4083
4084 done:
4085         return cpu;
4086 }
4087
4088 #ifdef CONFIG_RFS_ACCEL
4089
4090 /**
4091  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4092  * @dev: Device on which the filter was set
4093  * @rxq_index: RX queue index
4094  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4095  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4096  *
4097  * Drivers that implement ndo_rx_flow_steer() should periodically call
4098  * this function for each installed filter and remove the filters for
4099  * which it returns %true.
4100  */
4101 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4102                          u32 flow_id, u16 filter_id)
4103 {
4104         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4105         struct rps_dev_flow_table *flow_table;
4106         struct rps_dev_flow *rflow;
4107         bool expire = true;
4108         unsigned int cpu;
4109
4110         rcu_read_lock();
4111         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4112         if (flow_table && flow_id <= flow_table->mask) {
4113                 rflow = &flow_table->flows[flow_id];
4114                 cpu = READ_ONCE(rflow->cpu);
4115                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4116                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4117                            rflow->last_qtail) <
4118                      (int)(10 * flow_table->mask)))
4119                         expire = false;
4120         }
4121         rcu_read_unlock();
4122         return expire;
4123 }
4124 EXPORT_SYMBOL(rps_may_expire_flow);
4125
4126 #endif /* CONFIG_RFS_ACCEL */
4127
4128 /* Called from hardirq (IPI) context */
4129 static void rps_trigger_softirq(void *data)
4130 {
4131         struct softnet_data *sd = data;
4132
4133         ____napi_schedule(sd, &sd->backlog);
4134         sd->received_rps++;
4135 }
4136
4137 #endif /* CONFIG_RPS */
4138
4139 /*
4140  * Check if this softnet_data structure is another cpu one
4141  * If yes, queue it to our IPI list and return 1
4142  * If no, return 0
4143  */
4144 static int rps_ipi_queued(struct softnet_data *sd)
4145 {
4146 #ifdef CONFIG_RPS
4147         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4148
4149         if (sd != mysd) {
4150                 sd->rps_ipi_next = mysd->rps_ipi_list;
4151                 mysd->rps_ipi_list = sd;
4152
4153                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4154                 return 1;
4155         }
4156 #endif /* CONFIG_RPS */
4157         return 0;
4158 }
4159
4160 #ifdef CONFIG_NET_FLOW_LIMIT
4161 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4162 #endif
4163
4164 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4165 {
4166 #ifdef CONFIG_NET_FLOW_LIMIT
4167         struct sd_flow_limit *fl;
4168         struct softnet_data *sd;
4169         unsigned int old_flow, new_flow;
4170
4171         if (qlen < (netdev_max_backlog >> 1))
4172                 return false;
4173
4174         sd = this_cpu_ptr(&softnet_data);
4175
4176         rcu_read_lock();
4177         fl = rcu_dereference(sd->flow_limit);
4178         if (fl) {
4179                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4180                 old_flow = fl->history[fl->history_head];
4181                 fl->history[fl->history_head] = new_flow;
4182
4183                 fl->history_head++;
4184                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4185
4186                 if (likely(fl->buckets[old_flow]))
4187                         fl->buckets[old_flow]--;
4188
4189                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4190                         fl->count++;
4191                         rcu_read_unlock();
4192                         return true;
4193                 }
4194         }
4195         rcu_read_unlock();
4196 #endif
4197         return false;
4198 }
4199
4200 /*
4201  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4202  * queue (may be a remote CPU queue).
4203  */
4204 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4205                               unsigned int *qtail)
4206 {
4207         struct softnet_data *sd;
4208         unsigned long flags;
4209         unsigned int qlen;
4210
4211         sd = &per_cpu(softnet_data, cpu);
4212
4213         local_irq_save(flags);
4214
4215         rps_lock(sd);
4216         if (!netif_running(skb->dev))
4217                 goto drop;
4218         qlen = skb_queue_len(&sd->input_pkt_queue);
4219         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4220                 if (qlen) {
4221 enqueue:
4222                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4223                         input_queue_tail_incr_save(sd, qtail);
4224                         rps_unlock(sd);
4225                         local_irq_restore(flags);
4226                         return NET_RX_SUCCESS;
4227                 }
4228
4229                 /* Schedule NAPI for backlog device
4230                  * We can use non atomic operation since we own the queue lock
4231                  */
4232                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4233                         if (!rps_ipi_queued(sd))
4234                                 ____napi_schedule(sd, &sd->backlog);
4235                 }
4236                 goto enqueue;
4237         }
4238
4239 drop:
4240         sd->dropped++;
4241         rps_unlock(sd);
4242
4243         local_irq_restore(flags);
4244
4245         atomic_long_inc(&skb->dev->rx_dropped);
4246         kfree_skb(skb);
4247         return NET_RX_DROP;
4248 }
4249
4250 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4251 {
4252         struct net_device *dev = skb->dev;
4253         struct netdev_rx_queue *rxqueue;
4254
4255         rxqueue = dev->_rx;
4256
4257         if (skb_rx_queue_recorded(skb)) {
4258                 u16 index = skb_get_rx_queue(skb);
4259
4260                 if (unlikely(index >= dev->real_num_rx_queues)) {
4261                         WARN_ONCE(dev->real_num_rx_queues > 1,
4262                                   "%s received packet on queue %u, but number "
4263                                   "of RX queues is %u\n",
4264                                   dev->name, index, dev->real_num_rx_queues);
4265
4266                         return rxqueue; /* Return first rxqueue */
4267                 }
4268                 rxqueue += index;
4269         }
4270         return rxqueue;
4271 }
4272
4273 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4274                                      struct xdp_buff *xdp,
4275                                      struct bpf_prog *xdp_prog)
4276 {
4277         struct netdev_rx_queue *rxqueue;
4278         void *orig_data, *orig_data_end;
4279         u32 metalen, act = XDP_DROP;
4280         int hlen, off;
4281         u32 mac_len;
4282
4283         /* Reinjected packets coming from act_mirred or similar should
4284          * not get XDP generic processing.
4285          */
4286         if (skb_cloned(skb) || skb_is_tc_redirected(skb))
4287                 return XDP_PASS;
4288
4289         /* XDP packets must be linear and must have sufficient headroom
4290          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4291          * native XDP provides, thus we need to do it here as well.
4292          */
4293         if (skb_is_nonlinear(skb) ||
4294             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4295                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4296                 int troom = skb->tail + skb->data_len - skb->end;
4297
4298                 /* In case we have to go down the path and also linearize,
4299                  * then lets do the pskb_expand_head() work just once here.
4300                  */
4301                 if (pskb_expand_head(skb,
4302                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4303                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4304                         goto do_drop;
4305                 if (skb_linearize(skb))
4306                         goto do_drop;
4307         }
4308
4309         /* The XDP program wants to see the packet starting at the MAC
4310          * header.
4311          */
4312         mac_len = skb->data - skb_mac_header(skb);
4313         hlen = skb_headlen(skb) + mac_len;
4314         xdp->data = skb->data - mac_len;
4315         xdp->data_meta = xdp->data;
4316         xdp->data_end = xdp->data + hlen;
4317         xdp->data_hard_start = skb->data - skb_headroom(skb);
4318         orig_data_end = xdp->data_end;
4319         orig_data = xdp->data;
4320
4321         rxqueue = netif_get_rxqueue(skb);
4322         xdp->rxq = &rxqueue->xdp_rxq;
4323
4324         act = bpf_prog_run_xdp(xdp_prog, xdp);
4325
4326         off = xdp->data - orig_data;
4327         if (off > 0)
4328                 __skb_pull(skb, off);
4329         else if (off < 0)
4330                 __skb_push(skb, -off);
4331         skb->mac_header += off;
4332
4333         /* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4334          * pckt.
4335          */
4336         off = orig_data_end - xdp->data_end;
4337         if (off != 0) {
4338                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4339                 skb->len -= off;
4340
4341         }
4342
4343         switch (act) {
4344         case XDP_REDIRECT:
4345         case XDP_TX:
4346                 __skb_push(skb, mac_len);
4347                 break;
4348         case XDP_PASS:
4349                 metalen = xdp->data - xdp->data_meta;
4350                 if (metalen)
4351                         skb_metadata_set(skb, metalen);
4352                 break;
4353         default:
4354                 bpf_warn_invalid_xdp_action(act);
4355                 /* fall through */
4356         case XDP_ABORTED:
4357                 trace_xdp_exception(skb->dev, xdp_prog, act);
4358                 /* fall through */
4359         case XDP_DROP:
4360         do_drop:
4361                 kfree_skb(skb);
4362                 break;
4363         }
4364
4365         return act;
4366 }
4367
4368 /* When doing generic XDP we have to bypass the qdisc layer and the
4369  * network taps in order to match in-driver-XDP behavior.
4370  */
4371 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4372 {
4373         struct net_device *dev = skb->dev;
4374         struct netdev_queue *txq;
4375         bool free_skb = true;
4376         int cpu, rc;
4377
4378         txq = netdev_pick_tx(dev, skb, NULL);
4379         cpu = smp_processor_id();
4380         HARD_TX_LOCK(dev, txq, cpu);
4381         if (!netif_xmit_stopped(txq)) {
4382                 rc = netdev_start_xmit(skb, dev, txq, 0);
4383                 if (dev_xmit_complete(rc))
4384                         free_skb = false;
4385         }
4386         HARD_TX_UNLOCK(dev, txq);
4387         if (free_skb) {
4388                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4389                 kfree_skb(skb);
4390         }
4391 }
4392 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4393
4394 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4395
4396 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4397 {
4398         if (xdp_prog) {
4399                 struct xdp_buff xdp;
4400                 u32 act;
4401                 int err;
4402
4403                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4404                 if (act != XDP_PASS) {
4405                         switch (act) {
4406                         case XDP_REDIRECT:
4407                                 err = xdp_do_generic_redirect(skb->dev, skb,
4408                                                               &xdp, xdp_prog);
4409                                 if (err)
4410                                         goto out_redir;
4411                                 break;
4412                         case XDP_TX:
4413                                 generic_xdp_tx(skb, xdp_prog);
4414                                 break;
4415                         }
4416                         return XDP_DROP;
4417                 }
4418         }
4419         return XDP_PASS;
4420 out_redir:
4421         kfree_skb(skb);
4422         return XDP_DROP;
4423 }
4424 EXPORT_SYMBOL_GPL(do_xdp_generic);
4425
4426 static int netif_rx_internal(struct sk_buff *skb)
4427 {
4428         int ret;
4429
4430         net_timestamp_check(netdev_tstamp_prequeue, skb);
4431
4432         trace_netif_rx(skb);
4433
4434         if (static_branch_unlikely(&generic_xdp_needed_key)) {
4435                 int ret;
4436
4437                 preempt_disable();
4438                 rcu_read_lock();
4439                 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4440                 rcu_read_unlock();
4441                 preempt_enable();
4442
4443                 /* Consider XDP consuming the packet a success from
4444                  * the netdev point of view we do not want to count
4445                  * this as an error.
4446                  */
4447                 if (ret != XDP_PASS)
4448                         return NET_RX_SUCCESS;
4449         }
4450
4451 #ifdef CONFIG_RPS
4452         if (static_key_false(&rps_needed)) {
4453                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4454                 int cpu;
4455
4456                 preempt_disable();
4457                 rcu_read_lock();
4458
4459                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4460                 if (cpu < 0)
4461                         cpu = smp_processor_id();
4462
4463                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4464
4465                 rcu_read_unlock();
4466                 preempt_enable();
4467         } else
4468 #endif
4469         {
4470                 unsigned int qtail;
4471
4472                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4473                 put_cpu();
4474         }
4475         return ret;
4476 }
4477
4478 /**
4479  *      netif_rx        -       post buffer to the network code
4480  *      @skb: buffer to post
4481  *
4482  *      This function receives a packet from a device driver and queues it for
4483  *      the upper (protocol) levels to process.  It always succeeds. The buffer
4484  *      may be dropped during processing for congestion control or by the
4485  *      protocol layers.
4486  *
4487  *      return values:
4488  *      NET_RX_SUCCESS  (no congestion)
4489  *      NET_RX_DROP     (packet was dropped)
4490  *
4491  */
4492
4493 int netif_rx(struct sk_buff *skb)
4494 {
4495         trace_netif_rx_entry(skb);
4496
4497         return netif_rx_internal(skb);
4498 }
4499 EXPORT_SYMBOL(netif_rx);
4500
4501 int netif_rx_ni(struct sk_buff *skb)
4502 {
4503         int err;
4504
4505         trace_netif_rx_ni_entry(skb);
4506
4507         preempt_disable();
4508         err = netif_rx_internal(skb);
4509         if (local_softirq_pending())
4510                 do_softirq();
4511         preempt_enable();
4512
4513         return err;
4514 }
4515 EXPORT_SYMBOL(netif_rx_ni);
4516
4517 static __latent_entropy void net_tx_action(struct softirq_action *h)
4518 {
4519         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4520
4521         if (sd->completion_queue) {
4522                 struct sk_buff *clist;
4523
4524                 local_irq_disable();
4525                 clist = sd->completion_queue;
4526                 sd->completion_queue = NULL;
4527                 local_irq_enable();
4528
4529                 while (clist) {
4530                         struct sk_buff *skb = clist;
4531
4532                         clist = clist->next;
4533
4534                         WARN_ON(refcount_read(&skb->users));
4535                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4536                                 trace_consume_skb(skb);
4537                         else
4538                                 trace_kfree_skb(skb, net_tx_action);
4539
4540                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4541                                 __kfree_skb(skb);
4542                         else
4543                                 __kfree_skb_defer(skb);
4544                 }
4545
4546                 __kfree_skb_flush();
4547         }
4548
4549         if (sd->output_queue) {
4550                 struct Qdisc *head;
4551
4552                 local_irq_disable();
4553                 head = sd->output_queue;
4554                 sd->output_queue = NULL;
4555                 sd->output_queue_tailp = &sd->output_queue;
4556                 local_irq_enable();
4557
4558                 while (head) {
4559                         struct Qdisc *q = head;
4560                         spinlock_t *root_lock = NULL;
4561
4562                         head = head->next_sched;
4563
4564                         if (!(q->flags & TCQ_F_NOLOCK)) {
4565                                 root_lock = qdisc_lock(q);
4566                                 spin_lock(root_lock);
4567                         }
4568                         /* We need to make sure head->next_sched is read
4569                          * before clearing __QDISC_STATE_SCHED
4570                          */
4571                         smp_mb__before_atomic();
4572                         clear_bit(__QDISC_STATE_SCHED, &q->state);
4573                         qdisc_run(q);
4574                         if (root_lock)
4575                                 spin_unlock(root_lock);
4576                 }
4577         }
4578
4579         xfrm_dev_backlog(sd);
4580 }
4581
4582 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4583 /* This hook is defined here for ATM LANE */
4584 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4585                              unsigned char *addr) __read_mostly;
4586 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4587 #endif
4588
4589 static inline struct sk_buff *
4590 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4591                    struct net_device *orig_dev)
4592 {
4593 #ifdef CONFIG_NET_CLS_ACT
4594         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4595         struct tcf_result cl_res;
4596
4597         /* If there's at least one ingress present somewhere (so
4598          * we get here via enabled static key), remaining devices
4599          * that are not configured with an ingress qdisc will bail
4600          * out here.
4601          */
4602         if (!miniq)
4603                 return skb;
4604
4605         if (*pt_prev) {
4606                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4607                 *pt_prev = NULL;
4608         }
4609
4610         qdisc_skb_cb(skb)->pkt_len = skb->len;
4611         skb->tc_at_ingress = 1;
4612         mini_qdisc_bstats_cpu_update(miniq, skb);
4613
4614         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4615         case TC_ACT_OK:
4616         case TC_ACT_RECLASSIFY:
4617                 skb->tc_index = TC_H_MIN(cl_res.classid);
4618                 break;
4619         case TC_ACT_SHOT:
4620                 mini_qdisc_qstats_cpu_drop(miniq);
4621                 kfree_skb(skb);
4622                 return NULL;
4623         case TC_ACT_STOLEN:
4624         case TC_ACT_QUEUED:
4625         case TC_ACT_TRAP:
4626                 consume_skb(skb);
4627                 return NULL;
4628         case TC_ACT_REDIRECT:
4629                 /* skb_mac_header check was done by cls/act_bpf, so
4630                  * we can safely push the L2 header back before
4631                  * redirecting to another netdev
4632                  */
4633                 __skb_push(skb, skb->mac_len);
4634                 skb_do_redirect(skb);
4635                 return NULL;
4636         case TC_ACT_REINSERT:
4637                 /* this does not scrub the packet, and updates stats on error */
4638                 skb_tc_reinsert(skb, &cl_res);
4639                 return NULL;
4640         default:
4641                 break;
4642         }
4643 #endif /* CONFIG_NET_CLS_ACT */
4644         return skb;
4645 }
4646
4647 /**
4648  *      netdev_is_rx_handler_busy - check if receive handler is registered
4649  *      @dev: device to check
4650  *
4651  *      Check if a receive handler is already registered for a given device.
4652  *      Return true if there one.
4653  *
4654  *      The caller must hold the rtnl_mutex.
4655  */
4656 bool netdev_is_rx_handler_busy(struct net_device *dev)
4657 {
4658         ASSERT_RTNL();
4659         return dev && rtnl_dereference(dev->rx_handler);
4660 }
4661 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4662
4663 /**
4664  *      netdev_rx_handler_register - register receive handler
4665  *      @dev: device to register a handler for
4666  *      @rx_handler: receive handler to register
4667  *      @rx_handler_data: data pointer that is used by rx handler
4668  *
4669  *      Register a receive handler for a device. This handler will then be
4670  *      called from __netif_receive_skb. A negative errno code is returned
4671  *      on a failure.
4672  *
4673  *      The caller must hold the rtnl_mutex.
4674  *
4675  *      For a general description of rx_handler, see enum rx_handler_result.
4676  */
4677 int netdev_rx_handler_register(struct net_device *dev,
4678                                rx_handler_func_t *rx_handler,
4679                                void *rx_handler_data)
4680 {
4681         if (netdev_is_rx_handler_busy(dev))
4682                 return -EBUSY;
4683
4684         if (dev->priv_flags & IFF_NO_RX_HANDLER)
4685                 return -EINVAL;
4686
4687         /* Note: rx_handler_data must be set before rx_handler */
4688         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4689         rcu_assign_pointer(dev->rx_handler, rx_handler);
4690
4691         return 0;
4692 }
4693 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4694
4695 /**
4696  *      netdev_rx_handler_unregister - unregister receive handler
4697  *      @dev: device to unregister a handler from
4698  *
4699  *      Unregister a receive handler from a device.
4700  *
4701  *      The caller must hold the rtnl_mutex.
4702  */
4703 void netdev_rx_handler_unregister(struct net_device *dev)
4704 {
4705
4706         ASSERT_RTNL();
4707         RCU_INIT_POINTER(dev->rx_handler, NULL);
4708         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4709          * section has a guarantee to see a non NULL rx_handler_data
4710          * as well.
4711          */
4712         synchronize_net();
4713         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4714 }
4715 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4716
4717 /*
4718  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4719  * the special handling of PFMEMALLOC skbs.
4720  */
4721 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4722 {
4723         switch (skb->protocol) {
4724         case htons(ETH_P_ARP):
4725         case htons(ETH_P_IP):
4726         case htons(ETH_P_IPV6):
4727         case htons(ETH_P_8021Q):
4728         case htons(ETH_P_8021AD):
4729                 return true;
4730         default:
4731                 return false;
4732         }
4733 }
4734
4735 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4736                              int *ret, struct net_device *orig_dev)
4737 {
4738 #ifdef CONFIG_NETFILTER_INGRESS
4739         if (nf_hook_ingress_active(skb)) {
4740                 int ingress_retval;
4741
4742                 if (*pt_prev) {
4743                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
4744                         *pt_prev = NULL;
4745                 }
4746
4747                 rcu_read_lock();
4748                 ingress_retval = nf_hook_ingress(skb);
4749                 rcu_read_unlock();
4750                 return ingress_retval;
4751         }
4752 #endif /* CONFIG_NETFILTER_INGRESS */
4753         return 0;
4754 }
4755
4756 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
4757                                     struct packet_type **ppt_prev)
4758 {
4759         struct packet_type *ptype, *pt_prev;
4760         rx_handler_func_t *rx_handler;
4761         struct net_device *orig_dev;
4762         bool deliver_exact = false;
4763         int ret = NET_RX_DROP;
4764         __be16 type;
4765
4766         net_timestamp_check(!netdev_tstamp_prequeue, skb);
4767
4768         trace_netif_receive_skb(skb);
4769
4770         orig_dev = skb->dev;
4771
4772         skb_reset_network_header(skb);
4773         if (!skb_transport_header_was_set(skb))
4774                 skb_reset_transport_header(skb);
4775         skb_reset_mac_len(skb);
4776
4777         pt_prev = NULL;
4778
4779 another_round:
4780         skb->skb_iif = skb->dev->ifindex;
4781
4782         __this_cpu_inc(softnet_data.processed);
4783
4784         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4785             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4786                 skb = skb_vlan_untag(skb);
4787                 if (unlikely(!skb))
4788                         goto out;
4789         }
4790
4791         if (skb_skip_tc_classify(skb))
4792                 goto skip_classify;
4793
4794         if (pfmemalloc)
4795                 goto skip_taps;
4796
4797         list_for_each_entry_rcu(ptype, &ptype_all, list) {
4798                 if (pt_prev)
4799                         ret = deliver_skb(skb, pt_prev, orig_dev);
4800                 pt_prev = ptype;
4801         }
4802
4803         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4804                 if (pt_prev)
4805                         ret = deliver_skb(skb, pt_prev, orig_dev);
4806                 pt_prev = ptype;
4807         }
4808
4809 skip_taps:
4810 #ifdef CONFIG_NET_INGRESS
4811         if (static_branch_unlikely(&ingress_needed_key)) {
4812                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4813                 if (!skb)
4814                         goto out;
4815
4816                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4817                         goto out;
4818         }
4819 #endif
4820         skb_reset_tc(skb);
4821 skip_classify:
4822         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4823                 goto drop;
4824
4825         if (skb_vlan_tag_present(skb)) {
4826                 if (pt_prev) {
4827                         ret = deliver_skb(skb, pt_prev, orig_dev);
4828                         pt_prev = NULL;
4829                 }
4830                 if (vlan_do_receive(&skb))
4831                         goto another_round;
4832                 else if (unlikely(!skb))
4833                         goto out;
4834         }
4835
4836         rx_handler = rcu_dereference(skb->dev->rx_handler);
4837         if (rx_handler) {
4838                 if (pt_prev) {
4839                         ret = deliver_skb(skb, pt_prev, orig_dev);
4840                         pt_prev = NULL;
4841                 }
4842                 switch (rx_handler(&skb)) {
4843                 case RX_HANDLER_CONSUMED:
4844                         ret = NET_RX_SUCCESS;
4845                         goto out;
4846                 case RX_HANDLER_ANOTHER:
4847                         goto another_round;
4848                 case RX_HANDLER_EXACT:
4849                         deliver_exact = true;
4850                 case RX_HANDLER_PASS:
4851                         break;
4852                 default:
4853                         BUG();
4854                 }
4855         }
4856
4857         if (unlikely(skb_vlan_tag_present(skb))) {
4858                 if (skb_vlan_tag_get_id(skb))
4859                         skb->pkt_type = PACKET_OTHERHOST;
4860                 /* Note: we might in the future use prio bits
4861                  * and set skb->priority like in vlan_do_receive()
4862                  * For the time being, just ignore Priority Code Point
4863                  */
4864                 skb->vlan_tci = 0;
4865         }
4866
4867         type = skb->protocol;
4868
4869         /* deliver only exact match when indicated */
4870         if (likely(!deliver_exact)) {
4871                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4872                                        &ptype_base[ntohs(type) &
4873                                                    PTYPE_HASH_MASK]);
4874         }
4875
4876         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4877                                &orig_dev->ptype_specific);
4878
4879         if (unlikely(skb->dev != orig_dev)) {
4880                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4881                                        &skb->dev->ptype_specific);
4882         }
4883
4884         if (pt_prev) {
4885                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4886                         goto drop;
4887                 *ppt_prev = pt_prev;
4888         } else {
4889 drop:
4890                 if (!deliver_exact)
4891                         atomic_long_inc(&skb->dev->rx_dropped);
4892                 else
4893                         atomic_long_inc(&skb->dev->rx_nohandler);
4894                 kfree_skb(skb);
4895                 /* Jamal, now you will not able to escape explaining
4896                  * me how you were going to use this. :-)
4897                  */
4898                 ret = NET_RX_DROP;
4899         }
4900
4901 out:
4902         return ret;
4903 }
4904
4905 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
4906 {
4907         struct net_device *orig_dev = skb->dev;
4908         struct packet_type *pt_prev = NULL;
4909         int ret;
4910
4911         ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
4912         if (pt_prev)
4913                 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4914         return ret;
4915 }
4916
4917 /**
4918  *      netif_receive_skb_core - special purpose version of netif_receive_skb
4919  *      @skb: buffer to process
4920  *
4921  *      More direct receive version of netif_receive_skb().  It should
4922  *      only be used by callers that have a need to skip RPS and Generic XDP.
4923  *      Caller must also take care of handling if (page_is_)pfmemalloc.
4924  *
4925  *      This function may only be called from softirq context and interrupts
4926  *      should be enabled.
4927  *
4928  *      Return values (usually ignored):
4929  *      NET_RX_SUCCESS: no congestion
4930  *      NET_RX_DROP: packet was dropped
4931  */
4932 int netif_receive_skb_core(struct sk_buff *skb)
4933 {
4934         int ret;
4935
4936         rcu_read_lock();
4937         ret = __netif_receive_skb_one_core(skb, false);
4938         rcu_read_unlock();
4939
4940         return ret;
4941 }
4942 EXPORT_SYMBOL(netif_receive_skb_core);
4943
4944 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
4945                                                   struct packet_type *pt_prev,
4946                                                   struct net_device *orig_dev)
4947 {
4948         struct sk_buff *skb, *next;
4949
4950         if (!pt_prev)
4951                 return;
4952         if (list_empty(head))
4953                 return;
4954         if (pt_prev->list_func != NULL)
4955                 pt_prev->list_func(head, pt_prev, orig_dev);
4956         else
4957                 list_for_each_entry_safe(skb, next, head, list)
4958                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4959 }
4960
4961 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
4962 {
4963         /* Fast-path assumptions:
4964          * - There is no RX handler.
4965          * - Only one packet_type matches.
4966          * If either of these fails, we will end up doing some per-packet
4967          * processing in-line, then handling the 'last ptype' for the whole
4968          * sublist.  This can't cause out-of-order delivery to any single ptype,
4969          * because the 'last ptype' must be constant across the sublist, and all
4970          * other ptypes are handled per-packet.
4971          */
4972         /* Current (common) ptype of sublist */
4973         struct packet_type *pt_curr = NULL;
4974         /* Current (common) orig_dev of sublist */
4975         struct net_device *od_curr = NULL;
4976         struct list_head sublist;
4977         struct sk_buff *skb, *next;
4978
4979         INIT_LIST_HEAD(&sublist);
4980         list_for_each_entry_safe(skb, next, head, list) {
4981                 struct net_device *orig_dev = skb->dev;
4982                 struct packet_type *pt_prev = NULL;
4983
4984                 list_del(&skb->list);
4985                 __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
4986                 if (!pt_prev)
4987                         continue;
4988                 if (pt_curr != pt_prev || od_curr != orig_dev) {
4989                         /* dispatch old sublist */
4990                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
4991                         /* start new sublist */
4992                         INIT_LIST_HEAD(&sublist);
4993                         pt_curr = pt_prev;
4994                         od_curr = orig_dev;
4995                 }
4996                 list_add_tail(&skb->list, &sublist);
4997         }
4998
4999         /* dispatch final sublist */
5000         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5001 }
5002
5003 static int __netif_receive_skb(struct sk_buff *skb)
5004 {
5005         int ret;
5006
5007         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5008                 unsigned int noreclaim_flag;
5009
5010                 /*
5011                  * PFMEMALLOC skbs are special, they should
5012                  * - be delivered to SOCK_MEMALLOC sockets only
5013                  * - stay away from userspace
5014                  * - have bounded memory usage
5015                  *
5016                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5017                  * context down to all allocation sites.
5018                  */
5019                 noreclaim_flag = memalloc_noreclaim_save();
5020                 ret = __netif_receive_skb_one_core(skb, true);
5021                 memalloc_noreclaim_restore(noreclaim_flag);
5022         } else
5023                 ret = __netif_receive_skb_one_core(skb, false);
5024
5025         return ret;
5026 }
5027
5028 static void __netif_receive_skb_list(struct list_head *head)
5029 {
5030         unsigned long noreclaim_flag = 0;
5031         struct sk_buff *skb, *next;
5032         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5033
5034         list_for_each_entry_safe(skb, next, head, list) {
5035                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5036                         struct list_head sublist;
5037
5038                         /* Handle the previous sublist */
5039                         list_cut_before(&sublist, head, &skb->list);
5040                         if (!list_empty(&sublist))
5041                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5042                         pfmemalloc = !pfmemalloc;
5043                         /* See comments in __netif_receive_skb */
5044                         if (pfmemalloc)
5045                                 noreclaim_flag = memalloc_noreclaim_save();
5046                         else
5047                                 memalloc_noreclaim_restore(noreclaim_flag);
5048                 }
5049         }
5050         /* Handle the remaining sublist */
5051         if (!list_empty(head))
5052                 __netif_receive_skb_list_core(head, pfmemalloc);
5053         /* Restore pflags */
5054         if (pfmemalloc)
5055                 memalloc_noreclaim_restore(noreclaim_flag);
5056 }
5057
5058 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5059 {
5060         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5061         struct bpf_prog *new = xdp->prog;
5062         int ret = 0;
5063
5064         switch (xdp->command) {
5065         case XDP_SETUP_PROG:
5066                 rcu_assign_pointer(dev->xdp_prog, new);
5067                 if (old)
5068                         bpf_prog_put(old);
5069
5070                 if (old && !new) {
5071                         static_branch_dec(&generic_xdp_needed_key);
5072                 } else if (new && !old) {
5073                         static_branch_inc(&generic_xdp_needed_key);
5074                         dev_disable_lro(dev);
5075                         dev_disable_gro_hw(dev);
5076                 }
5077                 break;
5078
5079         case XDP_QUERY_PROG:
5080                 xdp->prog_id = old ? old->aux->id : 0;
5081                 break;
5082
5083         default:
5084                 ret = -EINVAL;
5085                 break;
5086         }
5087
5088         return ret;
5089 }
5090
5091 static int netif_receive_skb_internal(struct sk_buff *skb)
5092 {
5093         int ret;
5094
5095         net_timestamp_check(netdev_tstamp_prequeue, skb);
5096
5097         if (skb_defer_rx_timestamp(skb))
5098                 return NET_RX_SUCCESS;
5099
5100         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5101                 int ret;
5102
5103                 preempt_disable();
5104                 rcu_read_lock();
5105                 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5106                 rcu_read_unlock();
5107                 preempt_enable();
5108
5109                 if (ret != XDP_PASS)
5110                         return NET_RX_DROP;
5111         }
5112
5113         rcu_read_lock();
5114 #ifdef CONFIG_RPS
5115         if (static_key_false(&rps_needed)) {
5116                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5117                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5118
5119                 if (cpu >= 0) {
5120                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5121                         rcu_read_unlock();
5122                         return ret;
5123                 }
5124         }
5125 #endif
5126         ret = __netif_receive_skb(skb);
5127         rcu_read_unlock();
5128         return ret;
5129 }
5130
5131 static void netif_receive_skb_list_internal(struct list_head *head)
5132 {
5133         struct bpf_prog *xdp_prog = NULL;
5134         struct sk_buff *skb, *next;
5135         struct list_head sublist;
5136
5137         INIT_LIST_HEAD(&sublist);
5138         list_for_each_entry_safe(skb, next, head, list) {
5139                 net_timestamp_check(netdev_tstamp_prequeue, skb);
5140                 list_del(&skb->list);
5141                 if (!skb_defer_rx_timestamp(skb))
5142                         list_add_tail(&skb->list, &sublist);
5143         }
5144         list_splice_init(&sublist, head);
5145
5146         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5147                 preempt_disable();
5148                 rcu_read_lock();
5149                 list_for_each_entry_safe(skb, next, head, list) {
5150                         xdp_prog = rcu_dereference(skb->dev->xdp_prog);
5151                         list_del(&skb->list);
5152                         if (do_xdp_generic(xdp_prog, skb) == XDP_PASS)
5153                                 list_add_tail(&skb->list, &sublist);
5154                 }
5155                 rcu_read_unlock();
5156                 preempt_enable();
5157                 /* Put passed packets back on main list */
5158                 list_splice_init(&sublist, head);
5159         }
5160
5161         rcu_read_lock();
5162 #ifdef CONFIG_RPS
5163         if (static_key_false(&rps_needed)) {
5164                 list_for_each_entry_safe(skb, next, head, list) {
5165                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5166                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5167
5168                         if (cpu >= 0) {
5169                                 /* Will be handled, remove from list */
5170                                 list_del(&skb->list);
5171                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5172                         }
5173                 }
5174         }
5175 #endif
5176         __netif_receive_skb_list(head);
5177         rcu_read_unlock();
5178 }
5179
5180 /**
5181  *      netif_receive_skb - process receive buffer from network
5182  *      @skb: buffer to process
5183  *
5184  *      netif_receive_skb() is the main receive data processing function.
5185  *      It always succeeds. The buffer may be dropped during processing
5186  *      for congestion control or by the protocol layers.
5187  *
5188  *      This function may only be called from softirq context and interrupts
5189  *      should be enabled.
5190  *
5191  *      Return values (usually ignored):
5192  *      NET_RX_SUCCESS: no congestion
5193  *      NET_RX_DROP: packet was dropped
5194  */
5195 int netif_receive_skb(struct sk_buff *skb)
5196 {
5197         trace_netif_receive_skb_entry(skb);
5198
5199         return netif_receive_skb_internal(skb);
5200 }
5201 EXPORT_SYMBOL(netif_receive_skb);
5202
5203 /**
5204  *      netif_receive_skb_list - process many receive buffers from network
5205  *      @head: list of skbs to process.
5206  *
5207  *      Since return value of netif_receive_skb() is normally ignored, and
5208  *      wouldn't be meaningful for a list, this function returns void.
5209  *
5210  *      This function may only be called from softirq context and interrupts
5211  *      should be enabled.
5212  */
5213 void netif_receive_skb_list(struct list_head *head)
5214 {
5215         struct sk_buff *skb;
5216
5217         if (list_empty(head))
5218                 return;
5219         list_for_each_entry(skb, head, list)
5220                 trace_netif_receive_skb_list_entry(skb);
5221         netif_receive_skb_list_internal(head);
5222 }
5223 EXPORT_SYMBOL(netif_receive_skb_list);
5224
5225 DEFINE_PER_CPU(struct work_struct, flush_works);
5226
5227 /* Network device is going away, flush any packets still pending */
5228 static void flush_backlog(struct work_struct *work)
5229 {
5230         struct sk_buff *skb, *tmp;
5231         struct softnet_data *sd;
5232
5233         local_bh_disable();
5234         sd = this_cpu_ptr(&softnet_data);
5235
5236         local_irq_disable();
5237         rps_lock(sd);
5238         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5239                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5240                         __skb_unlink(skb, &sd->input_pkt_queue);
5241                         kfree_skb(skb);
5242                         input_queue_head_incr(sd);
5243                 }
5244         }
5245         rps_unlock(sd);
5246         local_irq_enable();
5247
5248         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5249                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5250                         __skb_unlink(skb, &sd->process_queue);
5251                         kfree_skb(skb);
5252                         input_queue_head_incr(sd);
5253                 }
5254         }
5255         local_bh_enable();
5256 }
5257
5258 static void flush_all_backlogs(void)
5259 {
5260         unsigned int cpu;
5261
5262         get_online_cpus();
5263
5264         for_each_online_cpu(cpu)
5265                 queue_work_on(cpu, system_highpri_wq,
5266                               per_cpu_ptr(&flush_works, cpu));
5267
5268         for_each_online_cpu(cpu)
5269                 flush_work(per_cpu_ptr(&flush_works, cpu));
5270
5271         put_online_cpus();
5272 }
5273
5274 static int napi_gro_complete(struct sk_buff *skb)
5275 {
5276         struct packet_offload *ptype;
5277         __be16 type = skb->protocol;
5278         struct list_head *head = &offload_base;
5279         int err = -ENOENT;
5280
5281         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5282
5283         if (NAPI_GRO_CB(skb)->count == 1) {
5284                 skb_shinfo(skb)->gso_size = 0;
5285                 goto out;
5286         }
5287
5288         rcu_read_lock();
5289         list_for_each_entry_rcu(ptype, head, list) {
5290                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5291                         continue;
5292
5293                 err = ptype->callbacks.gro_complete(skb, 0);
5294                 break;
5295         }
5296         rcu_read_unlock();
5297
5298         if (err) {
5299                 WARN_ON(&ptype->list == head);
5300                 kfree_skb(skb);
5301                 return NET_RX_SUCCESS;
5302         }
5303
5304 out:
5305         return netif_receive_skb_internal(skb);
5306 }
5307
5308 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5309                                    bool flush_old)
5310 {
5311         struct list_head *head = &napi->gro_hash[index].list;
5312         struct sk_buff *skb, *p;
5313
5314         list_for_each_entry_safe_reverse(skb, p, head, list) {
5315                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5316                         return;
5317                 list_del(&skb->list);
5318                 skb->next = NULL;
5319                 napi_gro_complete(skb);
5320                 napi->gro_hash[index].count--;
5321         }
5322
5323         if (!napi->gro_hash[index].count)
5324                 __clear_bit(index, &napi->gro_bitmask);
5325 }
5326
5327 /* napi->gro_hash[].list contains packets ordered by age.
5328  * youngest packets at the head of it.
5329  * Complete skbs in reverse order to reduce latencies.
5330  */
5331 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5332 {
5333         u32 i;
5334
5335         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
5336                 if (test_bit(i, &napi->gro_bitmask))
5337                         __napi_gro_flush_chain(napi, i, flush_old);
5338         }
5339 }
5340 EXPORT_SYMBOL(napi_gro_flush);
5341
5342 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5343                                           struct sk_buff *skb)
5344 {
5345         unsigned int maclen = skb->dev->hard_header_len;
5346         u32 hash = skb_get_hash_raw(skb);
5347         struct list_head *head;
5348         struct sk_buff *p;
5349
5350         head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5351         list_for_each_entry(p, head, list) {
5352                 unsigned long diffs;
5353
5354                 NAPI_GRO_CB(p)->flush = 0;
5355
5356                 if (hash != skb_get_hash_raw(p)) {
5357                         NAPI_GRO_CB(p)->same_flow = 0;
5358                         continue;
5359                 }
5360
5361                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5362                 diffs |= p->vlan_tci ^ skb->vlan_tci;
5363                 diffs |= skb_metadata_dst_cmp(p, skb);
5364                 diffs |= skb_metadata_differs(p, skb);
5365                 if (maclen == ETH_HLEN)
5366                         diffs |= compare_ether_header(skb_mac_header(p),
5367                                                       skb_mac_header(skb));
5368                 else if (!diffs)
5369                         diffs = memcmp(skb_mac_header(p),
5370                                        skb_mac_header(skb),
5371                                        maclen);
5372                 NAPI_GRO_CB(p)->same_flow = !diffs;
5373         }
5374
5375         return head;
5376 }
5377
5378 static void skb_gro_reset_offset(struct sk_buff *skb)
5379 {
5380         const struct skb_shared_info *pinfo = skb_shinfo(skb);
5381         const skb_frag_t *frag0 = &pinfo->frags[0];
5382
5383         NAPI_GRO_CB(skb)->data_offset = 0;
5384         NAPI_GRO_CB(skb)->frag0 = NULL;
5385         NAPI_GRO_CB(skb)->frag0_len = 0;
5386
5387         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
5388             pinfo->nr_frags &&
5389             !PageHighMem(skb_frag_page(frag0))) {
5390                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5391                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5392                                                     skb_frag_size(frag0),
5393                                                     skb->end - skb->tail);
5394         }
5395 }
5396
5397 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5398 {
5399         struct skb_shared_info *pinfo = skb_shinfo(skb);
5400
5401         BUG_ON(skb->end - skb->tail < grow);
5402
5403         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5404
5405         skb->data_len -= grow;
5406         skb->tail += grow;
5407
5408         pinfo->frags[0].page_offset += grow;
5409         skb_frag_size_sub(&pinfo->frags[0], grow);
5410
5411         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5412                 skb_frag_unref(skb, 0);
5413                 memmove(pinfo->frags, pinfo->frags + 1,
5414                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5415         }
5416 }
5417
5418 static void gro_flush_oldest(struct list_head *head)
5419 {
5420         struct sk_buff *oldest;
5421
5422         oldest = list_last_entry(head, struct sk_buff, list);
5423
5424         /* We are called with head length >= MAX_GRO_SKBS, so this is
5425          * impossible.
5426          */
5427         if (WARN_ON_ONCE(!oldest))
5428                 return;
5429
5430         /* Do not adjust napi->gro_hash[].count, caller is adding a new
5431          * SKB to the chain.
5432          */
5433         list_del(&oldest->list);
5434         napi_gro_complete(oldest);
5435 }
5436
5437 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5438 {
5439         u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5440         struct list_head *head = &offload_base;
5441         struct packet_offload *ptype;
5442         __be16 type = skb->protocol;
5443         struct list_head *gro_head;
5444         struct sk_buff *pp = NULL;
5445         enum gro_result ret;
5446         int same_flow;
5447         int grow;
5448
5449         if (netif_elide_gro(skb->dev))
5450                 goto normal;
5451
5452         gro_head = gro_list_prepare(napi, skb);
5453
5454         rcu_read_lock();
5455         list_for_each_entry_rcu(ptype, head, list) {
5456                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5457                         continue;
5458
5459                 skb_set_network_header(skb, skb_gro_offset(skb));
5460                 skb_reset_mac_len(skb);
5461                 NAPI_GRO_CB(skb)->same_flow = 0;
5462                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5463                 NAPI_GRO_CB(skb)->free = 0;
5464                 NAPI_GRO_CB(skb)->encap_mark = 0;
5465                 NAPI_GRO_CB(skb)->recursion_counter = 0;
5466                 NAPI_GRO_CB(skb)->is_fou = 0;
5467                 NAPI_GRO_CB(skb)->is_atomic = 1;
5468                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5469
5470                 /* Setup for GRO checksum validation */
5471                 switch (skb->ip_summed) {
5472                 case CHECKSUM_COMPLETE:
5473                         NAPI_GRO_CB(skb)->csum = skb->csum;
5474                         NAPI_GRO_CB(skb)->csum_valid = 1;
5475                         NAPI_GRO_CB(skb)->csum_cnt = 0;
5476                         break;
5477                 case CHECKSUM_UNNECESSARY:
5478                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5479                         NAPI_GRO_CB(skb)->csum_valid = 0;
5480                         break;
5481                 default:
5482                         NAPI_GRO_CB(skb)->csum_cnt = 0;
5483                         NAPI_GRO_CB(skb)->csum_valid = 0;
5484                 }
5485
5486                 pp = ptype->callbacks.gro_receive(gro_head, skb);
5487                 break;
5488         }
5489         rcu_read_unlock();
5490
5491         if (&ptype->list == head)
5492                 goto normal;
5493
5494         if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5495                 ret = GRO_CONSUMED;
5496                 goto ok;
5497         }
5498
5499         same_flow = NAPI_GRO_CB(skb)->same_flow;
5500         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5501
5502         if (pp) {
5503                 list_del(&pp->list);
5504                 pp->next = NULL;
5505                 napi_gro_complete(pp);
5506                 napi->gro_hash[hash].count--;
5507         }
5508
5509         if (same_flow)
5510                 goto ok;
5511
5512         if (NAPI_GRO_CB(skb)->flush)
5513                 goto normal;
5514
5515         if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5516                 gro_flush_oldest(gro_head);
5517         } else {
5518                 napi->gro_hash[hash].count++;
5519         }
5520         NAPI_GRO_CB(skb)->count = 1;
5521         NAPI_GRO_CB(skb)->age = jiffies;
5522         NAPI_GRO_CB(skb)->last = skb;
5523         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5524         list_add(&skb->list, gro_head);
5525         ret = GRO_HELD;
5526
5527 pull:
5528         grow = skb_gro_offset(skb) - skb_headlen(skb);
5529         if (grow > 0)
5530                 gro_pull_from_frag0(skb, grow);
5531 ok:
5532         if (napi->gro_hash[hash].count) {
5533                 if (!test_bit(hash, &napi->gro_bitmask))
5534                         __set_bit(hash, &napi->gro_bitmask);
5535         } else if (test_bit(hash, &napi->gro_bitmask)) {
5536                 __clear_bit(hash, &napi->gro_bitmask);
5537         }
5538
5539         return ret;
5540
5541 normal:
5542         ret = GRO_NORMAL;
5543         goto pull;
5544 }
5545
5546 struct packet_offload *gro_find_receive_by_type(__be16 type)
5547 {
5548         struct list_head *offload_head = &offload_base;
5549         struct packet_offload *ptype;
5550
5551         list_for_each_entry_rcu(ptype, offload_head, list) {
5552                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5553                         continue;
5554                 return ptype;
5555         }
5556         return NULL;
5557 }
5558 EXPORT_SYMBOL(gro_find_receive_by_type);
5559
5560 struct packet_offload *gro_find_complete_by_type(__be16 type)
5561 {
5562         struct list_head *offload_head = &offload_base;
5563         struct packet_offload *ptype;
5564
5565         list_for_each_entry_rcu(ptype, offload_head, list) {
5566                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5567                         continue;
5568                 return ptype;
5569         }
5570         return NULL;
5571 }
5572 EXPORT_SYMBOL(gro_find_complete_by_type);
5573
5574 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5575 {
5576         skb_dst_drop(skb);
5577         secpath_reset(skb);
5578         kmem_cache_free(skbuff_head_cache, skb);
5579 }
5580
5581 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5582 {
5583         switch (ret) {
5584         case GRO_NORMAL:
5585                 if (netif_receive_skb_internal(skb))
5586                         ret = GRO_DROP;
5587                 break;
5588
5589         case GRO_DROP:
5590                 kfree_skb(skb);
5591                 break;
5592
5593         case GRO_MERGED_FREE:
5594                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5595                         napi_skb_free_stolen_head(skb);
5596                 else
5597                         __kfree_skb(skb);
5598                 break;
5599
5600         case GRO_HELD:
5601         case GRO_MERGED:
5602         case GRO_CONSUMED:
5603                 break;
5604         }
5605
5606         return ret;
5607 }
5608
5609 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5610 {
5611         skb_mark_napi_id(skb, napi);
5612         trace_napi_gro_receive_entry(skb);
5613
5614         skb_gro_reset_offset(skb);
5615
5616         return napi_skb_finish(dev_gro_receive(napi, skb), skb);
5617 }
5618 EXPORT_SYMBOL(napi_gro_receive);
5619
5620 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5621 {
5622         if (unlikely(skb->pfmemalloc)) {
5623                 consume_skb(skb);
5624                 return;
5625         }
5626         __skb_pull(skb, skb_headlen(skb));
5627         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5628         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5629         skb->vlan_tci = 0;
5630         skb->dev = napi->dev;
5631         skb->skb_iif = 0;
5632         skb->encapsulation = 0;
5633         skb_shinfo(skb)->gso_type = 0;
5634         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5635         secpath_reset(skb);
5636
5637         napi->skb = skb;
5638 }
5639
5640 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5641 {
5642         struct sk_buff *skb = napi->skb;
5643
5644         if (!skb) {
5645                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5646                 if (skb) {
5647                         napi->skb = skb;
5648                         skb_mark_napi_id(skb, napi);
5649                 }
5650         }
5651         return skb;
5652 }
5653 EXPORT_SYMBOL(napi_get_frags);
5654
5655 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5656                                       struct sk_buff *skb,
5657                                       gro_result_t ret)
5658 {
5659         switch (ret) {
5660         case GRO_NORMAL:
5661         case GRO_HELD:
5662                 __skb_push(skb, ETH_HLEN);
5663                 skb->protocol = eth_type_trans(skb, skb->dev);
5664                 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5665                         ret = GRO_DROP;
5666                 break;
5667
5668         case GRO_DROP:
5669                 napi_reuse_skb(napi, skb);
5670                 break;
5671
5672         case GRO_MERGED_FREE:
5673                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5674                         napi_skb_free_stolen_head(skb);
5675                 else
5676                         napi_reuse_skb(napi, skb);
5677                 break;
5678
5679         case GRO_MERGED:
5680         case GRO_CONSUMED:
5681                 break;
5682         }
5683
5684         return ret;
5685 }
5686
5687 /* Upper GRO stack assumes network header starts at gro_offset=0
5688  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5689  * We copy ethernet header into skb->data to have a common layout.
5690  */
5691 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5692 {
5693         struct sk_buff *skb = napi->skb;
5694         const struct ethhdr *eth;
5695         unsigned int hlen = sizeof(*eth);
5696
5697         napi->skb = NULL;
5698
5699         skb_reset_mac_header(skb);
5700         skb_gro_reset_offset(skb);
5701
5702         eth = skb_gro_header_fast(skb, 0);
5703         if (unlikely(skb_gro_header_hard(skb, hlen))) {
5704                 eth = skb_gro_header_slow(skb, hlen, 0);
5705                 if (unlikely(!eth)) {
5706                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5707                                              __func__, napi->dev->name);
5708                         napi_reuse_skb(napi, skb);
5709                         return NULL;
5710                 }
5711         } else {
5712                 gro_pull_from_frag0(skb, hlen);
5713                 NAPI_GRO_CB(skb)->frag0 += hlen;
5714                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
5715         }
5716         __skb_pull(skb, hlen);
5717
5718         /*
5719          * This works because the only protocols we care about don't require
5720          * special handling.
5721          * We'll fix it up properly in napi_frags_finish()
5722          */
5723         skb->protocol = eth->h_proto;
5724
5725         return skb;
5726 }
5727
5728 gro_result_t napi_gro_frags(struct napi_struct *napi)
5729 {
5730         struct sk_buff *skb = napi_frags_skb(napi);
5731
5732         if (!skb)
5733                 return GRO_DROP;
5734
5735         trace_napi_gro_frags_entry(skb);
5736
5737         return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5738 }
5739 EXPORT_SYMBOL(napi_gro_frags);
5740
5741 /* Compute the checksum from gro_offset and return the folded value
5742  * after adding in any pseudo checksum.
5743  */
5744 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5745 {
5746         __wsum wsum;
5747         __sum16 sum;
5748
5749         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5750
5751         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5752         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5753         if (likely(!sum)) {
5754                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5755                     !skb->csum_complete_sw)
5756                         netdev_rx_csum_fault(skb->dev);
5757         }
5758
5759         NAPI_GRO_CB(skb)->csum = wsum;
5760         NAPI_GRO_CB(skb)->csum_valid = 1;
5761
5762         return sum;
5763 }
5764 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5765
5766 static void net_rps_send_ipi(struct softnet_data *remsd)
5767 {
5768 #ifdef CONFIG_RPS
5769         while (remsd) {
5770                 struct softnet_data *next = remsd->rps_ipi_next;
5771
5772                 if (cpu_online(remsd->cpu))
5773                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
5774                 remsd = next;
5775         }
5776 #endif
5777 }
5778
5779 /*
5780  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5781  * Note: called with local irq disabled, but exits with local irq enabled.
5782  */
5783 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5784 {
5785 #ifdef CONFIG_RPS
5786         struct softnet_data *remsd = sd->rps_ipi_list;
5787
5788         if (remsd) {
5789                 sd->rps_ipi_list = NULL;
5790
5791                 local_irq_enable();
5792
5793                 /* Send pending IPI's to kick RPS processing on remote cpus. */
5794                 net_rps_send_ipi(remsd);
5795         } else
5796 #endif
5797                 local_irq_enable();
5798 }
5799
5800 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5801 {
5802 #ifdef CONFIG_RPS
5803         return sd->rps_ipi_list != NULL;
5804 #else
5805         return false;
5806 #endif
5807 }
5808
5809 static int process_backlog(struct napi_struct *napi, int quota)
5810 {
5811         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5812         bool again = true;
5813         int work = 0;
5814
5815         /* Check if we have pending ipi, its better to send them now,
5816          * not waiting net_rx_action() end.
5817          */
5818         if (sd_has_rps_ipi_waiting(sd)) {
5819                 local_irq_disable();
5820                 net_rps_action_and_irq_enable(sd);
5821         }
5822
5823         napi->weight = dev_rx_weight;
5824         while (again) {
5825                 struct sk_buff *skb;
5826
5827                 while ((skb = __skb_dequeue(&sd->process_queue))) {
5828                         rcu_read_lock();
5829                         __netif_receive_skb(skb);
5830                         rcu_read_unlock();
5831                         input_queue_head_incr(sd);
5832                         if (++work >= quota)
5833                                 return work;
5834
5835                 }
5836
5837                 local_irq_disable();
5838                 rps_lock(sd);
5839                 if (skb_queue_empty(&sd->input_pkt_queue)) {
5840                         /*
5841                          * Inline a custom version of __napi_complete().
5842                          * only current cpu owns and manipulates this napi,
5843                          * and NAPI_STATE_SCHED is the only possible flag set
5844                          * on backlog.
5845                          * We can use a plain write instead of clear_bit(),
5846                          * and we dont need an smp_mb() memory barrier.
5847                          */
5848                         napi->state = 0;
5849                         again = false;
5850                 } else {
5851                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
5852                                                    &sd->process_queue);
5853                 }
5854                 rps_unlock(sd);
5855                 local_irq_enable();
5856         }
5857
5858         return work;
5859 }
5860
5861 /**
5862  * __napi_schedule - schedule for receive
5863  * @n: entry to schedule
5864  *
5865  * The entry's receive function will be scheduled to run.
5866  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5867  */
5868 void __napi_schedule(struct napi_struct *n)
5869 {
5870         unsigned long flags;
5871
5872         local_irq_save(flags);
5873         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5874         local_irq_restore(flags);
5875 }
5876 EXPORT_SYMBOL(__napi_schedule);
5877
5878 /**
5879  *      napi_schedule_prep - check if napi can be scheduled
5880  *      @n: napi context
5881  *
5882  * Test if NAPI routine is already running, and if not mark
5883  * it as running.  This is used as a condition variable
5884  * insure only one NAPI poll instance runs.  We also make
5885  * sure there is no pending NAPI disable.
5886  */
5887 bool napi_schedule_prep(struct napi_struct *n)
5888 {
5889         unsigned long val, new;
5890
5891         do {
5892                 val = READ_ONCE(n->state);
5893                 if (unlikely(val & NAPIF_STATE_DISABLE))
5894                         return false;
5895                 new = val | NAPIF_STATE_SCHED;
5896
5897                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5898                  * This was suggested by Alexander Duyck, as compiler
5899                  * emits better code than :
5900                  * if (val & NAPIF_STATE_SCHED)
5901                  *     new |= NAPIF_STATE_MISSED;
5902                  */
5903                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5904                                                    NAPIF_STATE_MISSED;
5905         } while (cmpxchg(&n->state, val, new) != val);
5906
5907         return !(val & NAPIF_STATE_SCHED);
5908 }
5909 EXPORT_SYMBOL(napi_schedule_prep);
5910
5911 /**
5912  * __napi_schedule_irqoff - schedule for receive
5913  * @n: entry to schedule
5914  *
5915  * Variant of __napi_schedule() assuming hard irqs are masked
5916  */
5917 void __napi_schedule_irqoff(struct napi_struct *n)
5918 {
5919         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5920 }
5921 EXPORT_SYMBOL(__napi_schedule_irqoff);
5922
5923 bool napi_complete_done(struct napi_struct *n, int work_done)
5924 {
5925         unsigned long flags, val, new;
5926
5927         /*
5928          * 1) Don't let napi dequeue from the cpu poll list
5929          *    just in case its running on a different cpu.
5930          * 2) If we are busy polling, do nothing here, we have
5931          *    the guarantee we will be called later.
5932          */
5933         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5934                                  NAPIF_STATE_IN_BUSY_POLL)))
5935                 return false;
5936
5937         if (n->gro_bitmask) {
5938                 unsigned long timeout = 0;
5939
5940                 if (work_done)
5941                         timeout = n->dev->gro_flush_timeout;
5942
5943                 if (timeout)
5944                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
5945                                       HRTIMER_MODE_REL_PINNED);
5946                 else
5947                         napi_gro_flush(n, false);
5948         }
5949         if (unlikely(!list_empty(&n->poll_list))) {
5950                 /* If n->poll_list is not empty, we need to mask irqs */
5951                 local_irq_save(flags);
5952                 list_del_init(&n->poll_list);
5953                 local_irq_restore(flags);
5954         }
5955
5956         do {
5957                 val = READ_ONCE(n->state);
5958
5959                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5960
5961                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5962
5963                 /* If STATE_MISSED was set, leave STATE_SCHED set,
5964                  * because we will call napi->poll() one more time.
5965                  * This C code was suggested by Alexander Duyck to help gcc.
5966                  */
5967                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5968                                                     NAPIF_STATE_SCHED;
5969         } while (cmpxchg(&n->state, val, new) != val);
5970
5971         if (unlikely(val & NAPIF_STATE_MISSED)) {
5972                 __napi_schedule(n);
5973                 return false;
5974         }
5975
5976         return true;
5977 }
5978 EXPORT_SYMBOL(napi_complete_done);
5979
5980 /* must be called under rcu_read_lock(), as we dont take a reference */
5981 static struct napi_struct *napi_by_id(unsigned int napi_id)
5982 {
5983         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5984         struct napi_struct *napi;
5985
5986         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5987                 if (napi->napi_id == napi_id)
5988                         return napi;
5989
5990         return NULL;
5991 }
5992
5993 #if defined(CONFIG_NET_RX_BUSY_POLL)
5994
5995 #define BUSY_POLL_BUDGET 8
5996
5997 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5998 {
5999         int rc;
6000
6001         /* Busy polling means there is a high chance device driver hard irq
6002          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6003          * set in napi_schedule_prep().
6004          * Since we are about to call napi->poll() once more, we can safely
6005          * clear NAPI_STATE_MISSED.
6006          *
6007          * Note: x86 could use a single "lock and ..." instruction
6008          * to perform these two clear_bit()
6009          */
6010         clear_bit(NAPI_STATE_MISSED, &napi->state);
6011         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6012
6013         local_bh_disable();
6014
6015         /* All we really want here is to re-enable device interrupts.
6016          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6017          */
6018         rc = napi->poll(napi, BUSY_POLL_BUDGET);
6019         trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6020         netpoll_poll_unlock(have_poll_lock);
6021         if (rc == BUSY_POLL_BUDGET)
6022                 __napi_schedule(napi);
6023         local_bh_enable();
6024 }
6025
6026 void napi_busy_loop(unsigned int napi_id,
6027                     bool (*loop_end)(void *, unsigned long),
6028                     void *loop_end_arg)
6029 {
6030         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6031         int (*napi_poll)(struct napi_struct *napi, int budget);
6032         void *have_poll_lock = NULL;
6033         struct napi_struct *napi;
6034
6035 restart:
6036         napi_poll = NULL;
6037
6038         rcu_read_lock();
6039
6040         napi = napi_by_id(napi_id);
6041         if (!napi)
6042                 goto out;
6043
6044         preempt_disable();
6045         for (;;) {
6046                 int work = 0;
6047
6048                 local_bh_disable();
6049                 if (!napi_poll) {
6050                         unsigned long val = READ_ONCE(napi->state);
6051
6052                         /* If multiple threads are competing for this napi,
6053                          * we avoid dirtying napi->state as much as we can.
6054                          */
6055                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6056                                    NAPIF_STATE_IN_BUSY_POLL))
6057                                 goto count;
6058                         if (cmpxchg(&napi->state, val,
6059                                     val | NAPIF_STATE_IN_BUSY_POLL |
6060                                           NAPIF_STATE_SCHED) != val)
6061                                 goto count;
6062                         have_poll_lock = netpoll_poll_lock(napi);
6063                         napi_poll = napi->poll;
6064                 }
6065                 work = napi_poll(napi, BUSY_POLL_BUDGET);
6066                 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6067 count:
6068                 if (work > 0)
6069                         __NET_ADD_STATS(dev_net(napi->dev),
6070                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6071                 local_bh_enable();
6072
6073                 if (!loop_end || loop_end(loop_end_arg, start_time))
6074                         break;
6075
6076                 if (unlikely(need_resched())) {
6077                         if (napi_poll)
6078                                 busy_poll_stop(napi, have_poll_lock);
6079                         preempt_enable();
6080                         rcu_read_unlock();
6081                         cond_resched();
6082                         if (loop_end(loop_end_arg, start_time))
6083                                 return;
6084                         goto restart;
6085                 }
6086                 cpu_relax();
6087         }
6088         if (napi_poll)
6089                 busy_poll_stop(napi, have_poll_lock);
6090         preempt_enable();
6091 out:
6092         rcu_read_unlock();
6093 }
6094 EXPORT_SYMBOL(napi_busy_loop);
6095
6096 #endif /* CONFIG_NET_RX_BUSY_POLL */
6097
6098 static void napi_hash_add(struct napi_struct *napi)
6099 {
6100         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6101             test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6102                 return;
6103
6104         spin_lock(&napi_hash_lock);
6105
6106         /* 0..NR_CPUS range is reserved for sender_cpu use */
6107         do {
6108                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6109                         napi_gen_id = MIN_NAPI_ID;
6110         } while (napi_by_id(napi_gen_id));
6111         napi->napi_id = napi_gen_id;
6112
6113         hlist_add_head_rcu(&napi->napi_hash_node,
6114                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6115
6116         spin_unlock(&napi_hash_lock);
6117 }
6118
6119 /* Warning : caller is responsible to make sure rcu grace period
6120  * is respected before freeing memory containing @napi
6121  */
6122 bool napi_hash_del(struct napi_struct *napi)
6123 {
6124         bool rcu_sync_needed = false;
6125
6126         spin_lock(&napi_hash_lock);
6127
6128         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6129                 rcu_sync_needed = true;
6130                 hlist_del_rcu(&napi->napi_hash_node);
6131         }
6132         spin_unlock(&napi_hash_lock);
6133         return rcu_sync_needed;
6134 }
6135 EXPORT_SYMBOL_GPL(napi_hash_del);
6136
6137 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6138 {
6139         struct napi_struct *napi;
6140
6141         napi = container_of(timer, struct napi_struct, timer);
6142
6143         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6144          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6145          */
6146         if (napi->gro_bitmask && !napi_disable_pending(napi) &&
6147             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6148                 __napi_schedule_irqoff(napi);
6149
6150         return HRTIMER_NORESTART;
6151 }
6152
6153 static void init_gro_hash(struct napi_struct *napi)
6154 {
6155         int i;
6156
6157         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6158                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6159                 napi->gro_hash[i].count = 0;
6160         }
6161         napi->gro_bitmask = 0;
6162 }
6163
6164 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6165                     int (*poll)(struct napi_struct *, int), int weight)
6166 {
6167         INIT_LIST_HEAD(&napi->poll_list);
6168         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6169         napi->timer.function = napi_watchdog;
6170         init_gro_hash(napi);
6171         napi->skb = NULL;
6172         napi->poll = poll;
6173         if (weight > NAPI_POLL_WEIGHT)
6174                 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
6175                             weight, dev->name);
6176         napi->weight = weight;
6177         list_add(&napi->dev_list, &dev->napi_list);
6178         napi->dev = dev;
6179 #ifdef CONFIG_NETPOLL
6180         napi->poll_owner = -1;
6181 #endif
6182         set_bit(NAPI_STATE_SCHED, &napi->state);
6183         napi_hash_add(napi);
6184 }
6185 EXPORT_SYMBOL(netif_napi_add);
6186
6187 void napi_disable(struct napi_struct *n)
6188 {
6189         might_sleep();
6190         set_bit(NAPI_STATE_DISABLE, &n->state);
6191
6192         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6193                 msleep(1);
6194         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6195                 msleep(1);
6196
6197         hrtimer_cancel(&n->timer);
6198
6199         clear_bit(NAPI_STATE_DISABLE, &n->state);
6200 }
6201 EXPORT_SYMBOL(napi_disable);
6202
6203 static void flush_gro_hash(struct napi_struct *napi)
6204 {
6205         int i;
6206
6207         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6208                 struct sk_buff *skb, *n;
6209
6210                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6211                         kfree_skb(skb);
6212                 napi->gro_hash[i].count = 0;
6213         }
6214 }
6215
6216 /* Must be called in process context */
6217 void netif_napi_del(struct napi_struct *napi)
6218 {
6219         might_sleep();
6220         if (napi_hash_del(napi))
6221                 synchronize_net();
6222         list_del_init(&napi->dev_list);
6223         napi_free_frags(napi);
6224
6225         flush_gro_hash(napi);
6226         napi->gro_bitmask = 0;
6227 }
6228 EXPORT_SYMBOL(netif_napi_del);
6229
6230 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6231 {
6232         void *have;
6233         int work, weight;
6234
6235         list_del_init(&n->poll_list);
6236
6237         have = netpoll_poll_lock(n);
6238
6239         weight = n->weight;
6240
6241         /* This NAPI_STATE_SCHED test is for avoiding a race
6242          * with netpoll's poll_napi().  Only the entity which
6243          * obtains the lock and sees NAPI_STATE_SCHED set will
6244          * actually make the ->poll() call.  Therefore we avoid
6245          * accidentally calling ->poll() when NAPI is not scheduled.
6246          */
6247         work = 0;
6248         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6249                 work = n->poll(n, weight);
6250                 trace_napi_poll(n, work, weight);
6251         }
6252
6253         WARN_ON_ONCE(work > weight);
6254
6255         if (likely(work < weight))
6256                 goto out_unlock;
6257
6258         /* Drivers must not modify the NAPI state if they
6259          * consume the entire weight.  In such cases this code
6260          * still "owns" the NAPI instance and therefore can
6261          * move the instance around on the list at-will.
6262          */
6263         if (unlikely(napi_disable_pending(n))) {
6264                 napi_complete(n);
6265                 goto out_unlock;
6266         }
6267
6268         if (n->gro_bitmask) {
6269                 /* flush too old packets
6270                  * If HZ < 1000, flush all packets.
6271                  */
6272                 napi_gro_flush(n, HZ >= 1000);
6273         }
6274
6275         /* Some drivers may have called napi_schedule
6276          * prior to exhausting their budget.
6277          */
6278         if (unlikely(!list_empty(&n->poll_list))) {
6279                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6280                              n->dev ? n->dev->name : "backlog");
6281                 goto out_unlock;
6282         }
6283
6284         list_add_tail(&n->poll_list, repoll);
6285
6286 out_unlock:
6287         netpoll_poll_unlock(have);
6288
6289         return work;
6290 }
6291
6292 static __latent_entropy void net_rx_action(struct softirq_action *h)
6293 {
6294         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6295         unsigned long time_limit = jiffies +
6296                 usecs_to_jiffies(netdev_budget_usecs);
6297         int budget = netdev_budget;
6298         LIST_HEAD(list);
6299         LIST_HEAD(repoll);
6300
6301         local_irq_disable();
6302         list_splice_init(&sd->poll_list, &list);
6303         local_irq_enable();
6304
6305         for (;;) {
6306                 struct napi_struct *n;
6307
6308                 if (list_empty(&list)) {
6309                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6310                                 goto out;
6311                         break;
6312                 }
6313
6314                 n = list_first_entry(&list, struct napi_struct, poll_list);
6315                 budget -= napi_poll(n, &repoll);
6316
6317                 /* If softirq window is exhausted then punt.
6318                  * Allow this to run for 2 jiffies since which will allow
6319                  * an average latency of 1.5/HZ.
6320                  */
6321                 if (unlikely(budget <= 0 ||
6322                              time_after_eq(jiffies, time_limit))) {
6323                         sd->time_squeeze++;
6324                         break;
6325                 }
6326         }
6327
6328         local_irq_disable();
6329
6330         list_splice_tail_init(&sd->poll_list, &list);
6331         list_splice_tail(&repoll, &list);
6332         list_splice(&list, &sd->poll_list);
6333         if (!list_empty(&sd->poll_list))
6334                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6335
6336         net_rps_action_and_irq_enable(sd);
6337 out:
6338         __kfree_skb_flush();
6339 }
6340
6341 struct netdev_adjacent {
6342         struct net_device *dev;
6343
6344         /* upper master flag, there can only be one master device per list */
6345         bool master;
6346
6347         /* counter for the number of times this device was added to us */
6348         u16 ref_nr;
6349
6350         /* private field for the users */
6351         void *private;
6352
6353         struct list_head list;
6354         struct rcu_head rcu;
6355 };
6356
6357 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6358                                                  struct list_head *adj_list)
6359 {
6360         struct netdev_adjacent *adj;
6361
6362         list_for_each_entry(adj, adj_list, list) {
6363                 if (adj->dev == adj_dev)
6364                         return adj;
6365         }
6366         return NULL;
6367 }
6368
6369 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6370 {
6371         struct net_device *dev = data;
6372
6373         return upper_dev == dev;
6374 }
6375
6376 /**
6377  * netdev_has_upper_dev - Check if device is linked to an upper device
6378  * @dev: device
6379  * @upper_dev: upper device to check
6380  *
6381  * Find out if a device is linked to specified upper device and return true
6382  * in case it is. Note that this checks only immediate upper device,
6383  * not through a complete stack of devices. The caller must hold the RTNL lock.
6384  */
6385 bool netdev_has_upper_dev(struct net_device *dev,
6386                           struct net_device *upper_dev)
6387 {
6388         ASSERT_RTNL();
6389
6390         return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6391                                              upper_dev);
6392 }
6393 EXPORT_SYMBOL(netdev_has_upper_dev);
6394
6395 /**
6396  * netdev_has_upper_dev_all - Check if device is linked to an upper device
6397  * @dev: device
6398  * @upper_dev: upper device to check
6399  *
6400  * Find out if a device is linked to specified upper device and return true
6401  * in case it is. Note that this checks the entire upper device chain.
6402  * The caller must hold rcu lock.
6403  */
6404
6405 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6406                                   struct net_device *upper_dev)
6407 {
6408         return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6409                                                upper_dev);
6410 }
6411 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6412
6413 /**
6414  * netdev_has_any_upper_dev - Check if device is linked to some device
6415  * @dev: device
6416  *
6417  * Find out if a device is linked to an upper device and return true in case
6418  * it is. The caller must hold the RTNL lock.
6419  */
6420 bool netdev_has_any_upper_dev(struct net_device *dev)
6421 {
6422         ASSERT_RTNL();
6423
6424         return !list_empty(&dev->adj_list.upper);
6425 }
6426 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6427
6428 /**
6429  * netdev_master_upper_dev_get - Get master upper device
6430  * @dev: device
6431  *
6432  * Find a master upper device and return pointer to it or NULL in case
6433  * it's not there. The caller must hold the RTNL lock.
6434  */
6435 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6436 {
6437         struct netdev_adjacent *upper;
6438
6439         ASSERT_RTNL();
6440
6441         if (list_empty(&dev->adj_list.upper))
6442                 return NULL;
6443
6444         upper = list_first_entry(&dev->adj_list.upper,
6445                                  struct netdev_adjacent, list);
6446         if (likely(upper->master))
6447                 return upper->dev;
6448         return NULL;
6449 }
6450 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6451
6452 /**
6453  * netdev_has_any_lower_dev - Check if device is linked to some device
6454  * @dev: device
6455  *
6456  * Find out if a device is linked to a lower device and return true in case
6457  * it is. The caller must hold the RTNL lock.
6458  */
6459 static bool netdev_has_any_lower_dev(struct net_device *dev)
6460 {
6461         ASSERT_RTNL();
6462
6463         return !list_empty(&dev->adj_list.lower);
6464 }
6465
6466 void *netdev_adjacent_get_private(struct list_head *adj_list)
6467 {
6468         struct netdev_adjacent *adj;
6469
6470         adj = list_entry(adj_list, struct netdev_adjacent, list);
6471
6472         return adj->private;
6473 }
6474 EXPORT_SYMBOL(netdev_adjacent_get_private);
6475
6476 /**
6477  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6478  * @dev: device
6479  * @iter: list_head ** of the current position
6480  *
6481  * Gets the next device from the dev's upper list, starting from iter
6482  * position. The caller must hold RCU read lock.
6483  */
6484 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6485                                                  struct list_head **iter)
6486 {
6487         struct netdev_adjacent *upper;
6488
6489         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6490
6491         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6492
6493         if (&upper->list == &dev->adj_list.upper)
6494                 return NULL;
6495
6496         *iter = &upper->list;
6497
6498         return upper->dev;
6499 }
6500 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6501
6502 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6503                                                     struct list_head **iter)
6504 {
6505         struct netdev_adjacent *upper;
6506
6507         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6508
6509         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6510
6511         if (&upper->list == &dev->adj_list.upper)
6512                 return NULL;
6513
6514         *iter = &upper->list;
6515
6516         return upper->dev;
6517 }
6518
6519 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6520                                   int (*fn)(struct net_device *dev,
6521                                             void *data),
6522                                   void *data)
6523 {
6524         struct net_device *udev;
6525         struct list_head *iter;
6526         int ret;
6527
6528         for (iter = &dev->adj_list.upper,
6529              udev = netdev_next_upper_dev_rcu(dev, &iter);
6530              udev;
6531              udev = netdev_next_upper_dev_rcu(dev, &iter)) {
6532                 /* first is the upper device itself */
6533                 ret = fn(udev, data);
6534                 if (ret)
6535                         return ret;
6536
6537                 /* then look at all of its upper devices */
6538                 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
6539                 if (ret)
6540                         return ret;
6541         }
6542
6543         return 0;
6544 }
6545 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6546
6547 /**
6548  * netdev_lower_get_next_private - Get the next ->private from the
6549  *                                 lower neighbour list
6550  * @dev: device
6551  * @iter: list_head ** of the current position
6552  *
6553  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6554  * list, starting from iter position. The caller must hold either hold the
6555  * RTNL lock or its own locking that guarantees that the neighbour lower
6556  * list will remain unchanged.
6557  */
6558 void *netdev_lower_get_next_private(struct net_device *dev,
6559                                     struct list_head **iter)
6560 {
6561         struct netdev_adjacent *lower;
6562
6563         lower = list_entry(*iter, struct netdev_adjacent, list);
6564
6565         if (&lower->list == &dev->adj_list.lower)
6566                 return NULL;
6567
6568         *iter = lower->list.next;
6569
6570         return lower->private;
6571 }
6572 EXPORT_SYMBOL(netdev_lower_get_next_private);
6573
6574 /**
6575  * netdev_lower_get_next_private_rcu - Get the next ->private from the
6576  *                                     lower neighbour list, RCU
6577  *                                     variant
6578  * @dev: device
6579  * @iter: list_head ** of the current position
6580  *
6581  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6582  * list, starting from iter position. The caller must hold RCU read lock.
6583  */
6584 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6585                                         struct list_head **iter)
6586 {
6587         struct netdev_adjacent *lower;
6588
6589         WARN_ON_ONCE(!rcu_read_lock_held());
6590
6591         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6592
6593         if (&lower->list == &dev->adj_list.lower)
6594                 return NULL;
6595
6596         *iter = &lower->list;
6597
6598         return lower->private;
6599 }
6600 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6601
6602 /**
6603  * netdev_lower_get_next - Get the next device from the lower neighbour
6604  *                         list
6605  * @dev: device
6606  * @iter: list_head ** of the current position
6607  *
6608  * Gets the next netdev_adjacent from the dev's lower neighbour
6609  * list, starting from iter position. The caller must hold RTNL lock or
6610  * its own locking that guarantees that the neighbour lower
6611  * list will remain unchanged.
6612  */
6613 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6614 {
6615         struct netdev_adjacent *lower;
6616
6617         lower = list_entry(*iter, struct netdev_adjacent, list);
6618
6619         if (&lower->list == &dev->adj_list.lower)
6620                 return NULL;
6621
6622         *iter = lower->list.next;
6623
6624         return lower->dev;
6625 }
6626 EXPORT_SYMBOL(netdev_lower_get_next);
6627
6628 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6629                                                 struct list_head **iter)
6630 {
6631         struct netdev_adjacent *lower;
6632
6633         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6634
6635         if (&lower->list == &dev->adj_list.lower)
6636                 return NULL;
6637
6638         *iter = &lower->list;
6639
6640         return lower->dev;
6641 }
6642
6643 int netdev_walk_all_lower_dev(struct net_device *dev,
6644                               int (*fn)(struct net_device *dev,
6645                                         void *data),
6646                               void *data)
6647 {
6648         struct net_device *ldev;
6649         struct list_head *iter;
6650         int ret;
6651
6652         for (iter = &dev->adj_list.lower,
6653              ldev = netdev_next_lower_dev(dev, &iter);
6654              ldev;
6655              ldev = netdev_next_lower_dev(dev, &iter)) {
6656                 /* first is the lower device itself */
6657                 ret = fn(ldev, data);
6658                 if (ret)
6659                         return ret;
6660
6661                 /* then look at all of its lower devices */
6662                 ret = netdev_walk_all_lower_dev(ldev, fn, data);
6663                 if (ret)
6664                         return ret;
6665         }
6666
6667         return 0;
6668 }
6669 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6670
6671 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6672                                                     struct list_head **iter)
6673 {
6674         struct netdev_adjacent *lower;
6675
6676         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6677         if (&lower->list == &dev->adj_list.lower)
6678                 return NULL;
6679
6680         *iter = &lower->list;
6681
6682         return lower->dev;
6683 }
6684
6685 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6686                                   int (*fn)(struct net_device *dev,
6687                                             void *data),
6688                                   void *data)
6689 {
6690         struct net_device *ldev;
6691         struct list_head *iter;
6692         int ret;
6693
6694         for (iter = &dev->adj_list.lower,
6695              ldev = netdev_next_lower_dev_rcu(dev, &iter);
6696              ldev;
6697              ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6698                 /* first is the lower device itself */
6699                 ret = fn(ldev, data);
6700                 if (ret)
6701                         return ret;
6702
6703                 /* then look at all of its lower devices */
6704                 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6705                 if (ret)
6706                         return ret;
6707         }
6708
6709         return 0;
6710 }
6711 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6712
6713 /**
6714  * netdev_lower_get_first_private_rcu - Get the first ->private from the
6715  *                                     lower neighbour list, RCU
6716  *                                     variant
6717  * @dev: device
6718  *
6719  * Gets the first netdev_adjacent->private from the dev's lower neighbour
6720  * list. The caller must hold RCU read lock.
6721  */
6722 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6723 {
6724         struct netdev_adjacent *lower;
6725
6726         lower = list_first_or_null_rcu(&dev->adj_list.lower,
6727                         struct netdev_adjacent, list);
6728         if (lower)
6729                 return lower->private;
6730         return NULL;
6731 }
6732 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6733
6734 /**
6735  * netdev_master_upper_dev_get_rcu - Get master upper device
6736  * @dev: device
6737  *
6738  * Find a master upper device and return pointer to it or NULL in case
6739  * it's not there. The caller must hold the RCU read lock.
6740  */
6741 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6742 {
6743         struct netdev_adjacent *upper;
6744
6745         upper = list_first_or_null_rcu(&dev->adj_list.upper,
6746                                        struct netdev_adjacent, list);
6747         if (upper && likely(upper->master))
6748                 return upper->dev;
6749         return NULL;
6750 }
6751 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6752
6753 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6754                               struct net_device *adj_dev,
6755                               struct list_head *dev_list)
6756 {
6757         char linkname[IFNAMSIZ+7];
6758
6759         sprintf(linkname, dev_list == &dev->adj_list.upper ?
6760                 "upper_%s" : "lower_%s", adj_dev->name);
6761         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6762                                  linkname);
6763 }
6764 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6765                                char *name,
6766                                struct list_head *dev_list)
6767 {
6768         char linkname[IFNAMSIZ+7];
6769
6770         sprintf(linkname, dev_list == &dev->adj_list.upper ?
6771                 "upper_%s" : "lower_%s", name);
6772         sysfs_remove_link(&(dev->dev.kobj), linkname);
6773 }
6774
6775 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6776                                                  struct net_device *adj_dev,
6777                                                  struct list_head *dev_list)
6778 {
6779         return (dev_list == &dev->adj_list.upper ||
6780                 dev_list == &dev->adj_list.lower) &&
6781                 net_eq(dev_net(dev), dev_net(adj_dev));
6782 }
6783
6784 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6785                                         struct net_device *adj_dev,
6786                                         struct list_head *dev_list,
6787                                         void *private, bool master)
6788 {
6789         struct netdev_adjacent *adj;
6790         int ret;
6791
6792         adj = __netdev_find_adj(adj_dev, dev_list);
6793
6794         if (adj) {
6795                 adj->ref_nr += 1;
6796                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6797                          dev->name, adj_dev->name, adj->ref_nr);
6798
6799                 return 0;
6800         }
6801
6802         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6803         if (!adj)
6804                 return -ENOMEM;
6805
6806         adj->dev = adj_dev;
6807         adj->master = master;
6808         adj->ref_nr = 1;
6809         adj->private = private;
6810         dev_hold(adj_dev);
6811
6812         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6813                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6814
6815         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6816                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6817                 if (ret)
6818                         goto free_adj;
6819         }
6820
6821         /* Ensure that master link is always the first item in list. */
6822         if (master) {
6823                 ret = sysfs_create_link(&(dev->dev.kobj),
6824                                         &(adj_dev->dev.kobj), "master");
6825                 if (ret)
6826                         goto remove_symlinks;
6827
6828                 list_add_rcu(&adj->list, dev_list);
6829         } else {
6830                 list_add_tail_rcu(&adj->list, dev_list);
6831         }
6832
6833         return 0;
6834
6835 remove_symlinks:
6836         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6837                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6838 free_adj:
6839         kfree(adj);
6840         dev_put(adj_dev);
6841
6842         return ret;
6843 }
6844
6845 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6846                                          struct net_device *adj_dev,
6847                                          u16 ref_nr,
6848                                          struct list_head *dev_list)
6849 {
6850         struct netdev_adjacent *adj;
6851
6852         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6853                  dev->name, adj_dev->name, ref_nr);
6854
6855         adj = __netdev_find_adj(adj_dev, dev_list);
6856
6857         if (!adj) {
6858                 pr_err("Adjacency does not exist for device %s from %s\n",
6859                        dev->name, adj_dev->name);
6860                 WARN_ON(1);
6861                 return;
6862         }
6863
6864         if (adj->ref_nr > ref_nr) {
6865                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6866                          dev->name, adj_dev->name, ref_nr,
6867                          adj->ref_nr - ref_nr);
6868                 adj->ref_nr -= ref_nr;
6869                 return;
6870         }
6871
6872         if (adj->master)
6873                 sysfs_remove_link(&(dev->dev.kobj), "master");
6874
6875         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6876                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6877
6878         list_del_rcu(&adj->list);
6879         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6880                  adj_dev->name, dev->name, adj_dev->name);
6881         dev_put(adj_dev);
6882         kfree_rcu(adj, rcu);
6883 }
6884
6885 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6886                                             struct net_device *upper_dev,
6887                                             struct list_head *up_list,
6888                                             struct list_head *down_list,
6889                                             void *private, bool master)
6890 {
6891         int ret;
6892
6893         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6894                                            private, master);
6895         if (ret)
6896                 return ret;
6897
6898         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6899                                            private, false);
6900         if (ret) {
6901                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6902                 return ret;
6903         }
6904
6905         return 0;
6906 }
6907
6908 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6909                                                struct net_device *upper_dev,
6910                                                u16 ref_nr,
6911                                                struct list_head *up_list,
6912                                                struct list_head *down_list)
6913 {
6914         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6915         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6916 }
6917
6918 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6919                                                 struct net_device *upper_dev,
6920                                                 void *private, bool master)
6921 {
6922         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6923                                                 &dev->adj_list.upper,
6924                                                 &upper_dev->adj_list.lower,
6925                                                 private, master);
6926 }
6927
6928 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6929                                                    struct net_device *upper_dev)
6930 {
6931         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6932                                            &dev->adj_list.upper,
6933                                            &upper_dev->adj_list.lower);
6934 }
6935
6936 static int __netdev_upper_dev_link(struct net_device *dev,
6937                                    struct net_device *upper_dev, bool master,
6938                                    void *upper_priv, void *upper_info,
6939                                    struct netlink_ext_ack *extack)
6940 {
6941         struct netdev_notifier_changeupper_info changeupper_info = {
6942                 .info = {
6943                         .dev = dev,
6944                         .extack = extack,
6945                 },
6946                 .upper_dev = upper_dev,
6947                 .master = master,
6948                 .linking = true,
6949                 .upper_info = upper_info,
6950         };
6951         struct net_device *master_dev;
6952         int ret = 0;
6953
6954         ASSERT_RTNL();
6955
6956         if (dev == upper_dev)
6957                 return -EBUSY;
6958
6959         /* To prevent loops, check if dev is not upper device to upper_dev. */
6960         if (netdev_has_upper_dev(upper_dev, dev))
6961                 return -EBUSY;
6962
6963         if (!master) {
6964                 if (netdev_has_upper_dev(dev, upper_dev))
6965                         return -EEXIST;
6966         } else {
6967                 master_dev = netdev_master_upper_dev_get(dev);
6968                 if (master_dev)
6969                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
6970         }
6971
6972         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6973                                             &changeupper_info.info);
6974         ret = notifier_to_errno(ret);
6975         if (ret)
6976                 return ret;
6977
6978         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
6979                                                    master);
6980         if (ret)
6981                 return ret;
6982
6983         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6984                                             &changeupper_info.info);
6985         ret = notifier_to_errno(ret);
6986         if (ret)
6987                 goto rollback;
6988
6989         return 0;
6990
6991 rollback:
6992         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6993
6994         return ret;
6995 }
6996
6997 /**
6998  * netdev_upper_dev_link - Add a link to the upper device
6999  * @dev: device
7000  * @upper_dev: new upper device
7001  * @extack: netlink extended ack
7002  *
7003  * Adds a link to device which is upper to this one. The caller must hold
7004  * the RTNL lock. On a failure a negative errno code is returned.
7005  * On success the reference counts are adjusted and the function
7006  * returns zero.
7007  */
7008 int netdev_upper_dev_link(struct net_device *dev,
7009                           struct net_device *upper_dev,
7010                           struct netlink_ext_ack *extack)
7011 {
7012         return __netdev_upper_dev_link(dev, upper_dev, false,
7013                                        NULL, NULL, extack);
7014 }
7015 EXPORT_SYMBOL(netdev_upper_dev_link);
7016
7017 /**
7018  * netdev_master_upper_dev_link - Add a master link to the upper device
7019  * @dev: device
7020  * @upper_dev: new upper device
7021  * @upper_priv: upper device private
7022  * @upper_info: upper info to be passed down via notifier
7023  * @extack: netlink extended ack
7024  *
7025  * Adds a link to device which is upper to this one. In this case, only
7026  * one master upper device can be linked, although other non-master devices
7027  * might be linked as well. The caller must hold the RTNL lock.
7028  * On a failure a negative errno code is returned. On success the reference
7029  * counts are adjusted and the function returns zero.
7030  */
7031 int netdev_master_upper_dev_link(struct net_device *dev,
7032                                  struct net_device *upper_dev,
7033                                  void *upper_priv, void *upper_info,
7034                                  struct netlink_ext_ack *extack)
7035 {
7036         return __netdev_upper_dev_link(dev, upper_dev, true,
7037                                        upper_priv, upper_info, extack);
7038 }
7039 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7040
7041 /**
7042  * netdev_upper_dev_unlink - Removes a link to upper device
7043  * @dev: device
7044  * @upper_dev: new upper device
7045  *
7046  * Removes a link to device which is upper to this one. The caller must hold
7047  * the RTNL lock.
7048  */
7049 void netdev_upper_dev_unlink(struct net_device *dev,
7050                              struct net_device *upper_dev)
7051 {
7052         struct netdev_notifier_changeupper_info changeupper_info = {
7053                 .info = {
7054                         .dev = dev,
7055                 },
7056                 .upper_dev = upper_dev,
7057                 .linking = false,
7058         };
7059
7060         ASSERT_RTNL();
7061
7062         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7063
7064         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7065                                       &changeupper_info.info);
7066
7067         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7068
7069         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7070                                       &changeupper_info.info);
7071 }
7072 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7073
7074 /**
7075  * netdev_bonding_info_change - Dispatch event about slave change
7076  * @dev: device
7077  * @bonding_info: info to dispatch
7078  *
7079  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7080  * The caller must hold the RTNL lock.
7081  */
7082 void netdev_bonding_info_change(struct net_device *dev,
7083                                 struct netdev_bonding_info *bonding_info)
7084 {
7085         struct netdev_notifier_bonding_info info = {
7086                 .info.dev = dev,
7087         };
7088
7089         memcpy(&info.bonding_info, bonding_info,
7090                sizeof(struct netdev_bonding_info));
7091         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7092                                       &info.info);
7093 }
7094 EXPORT_SYMBOL(netdev_bonding_info_change);
7095
7096 static void netdev_adjacent_add_links(struct net_device *dev)
7097 {
7098         struct netdev_adjacent *iter;
7099
7100         struct net *net = dev_net(dev);
7101
7102         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7103                 if (!net_eq(net, dev_net(iter->dev)))
7104                         continue;
7105                 netdev_adjacent_sysfs_add(iter->dev, dev,
7106                                           &iter->dev->adj_list.lower);
7107                 netdev_adjacent_sysfs_add(dev, iter->dev,
7108                                           &dev->adj_list.upper);
7109         }
7110
7111         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7112                 if (!net_eq(net, dev_net(iter->dev)))
7113                         continue;
7114                 netdev_adjacent_sysfs_add(iter->dev, dev,
7115                                           &iter->dev->adj_list.upper);
7116                 netdev_adjacent_sysfs_add(dev, iter->dev,
7117                                           &dev->adj_list.lower);
7118         }
7119 }
7120
7121 static void netdev_adjacent_del_links(struct net_device *dev)
7122 {
7123         struct netdev_adjacent *iter;
7124
7125         struct net *net = dev_net(dev);
7126
7127         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7128                 if (!net_eq(net, dev_net(iter->dev)))
7129                         continue;
7130                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7131                                           &iter->dev->adj_list.lower);
7132                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7133                                           &dev->adj_list.upper);
7134         }
7135
7136         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7137                 if (!net_eq(net, dev_net(iter->dev)))
7138                         continue;
7139                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7140                                           &iter->dev->adj_list.upper);
7141                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7142                                           &dev->adj_list.lower);
7143         }
7144 }
7145
7146 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7147 {
7148         struct netdev_adjacent *iter;
7149
7150         struct net *net = dev_net(dev);
7151
7152         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7153                 if (!net_eq(net, dev_net(iter->dev)))
7154                         continue;
7155                 netdev_adjacent_sysfs_del(iter->dev, oldname,
7156                                           &iter->dev->adj_list.lower);
7157                 netdev_adjacent_sysfs_add(iter->dev, dev,
7158                                           &iter->dev->adj_list.lower);
7159         }
7160
7161         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7162                 if (!net_eq(net, dev_net(iter->dev)))
7163                         continue;
7164                 netdev_adjacent_sysfs_del(iter->dev, oldname,
7165                                           &iter->dev->adj_list.upper);
7166                 netdev_adjacent_sysfs_add(iter->dev, dev,
7167                                           &iter->dev->adj_list.upper);
7168         }
7169 }
7170
7171 void *netdev_lower_dev_get_private(struct net_device *dev,
7172                                    struct net_device *lower_dev)
7173 {
7174         struct netdev_adjacent *lower;
7175
7176         if (!lower_dev)
7177                 return NULL;
7178         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7179         if (!lower)
7180                 return NULL;
7181
7182         return lower->private;
7183 }
7184 EXPORT_SYMBOL(netdev_lower_dev_get_private);
7185
7186
7187 int dev_get_nest_level(struct net_device *dev)
7188 {
7189         struct net_device *lower = NULL;
7190         struct list_head *iter;
7191         int max_nest = -1;
7192         int nest;
7193
7194         ASSERT_RTNL();
7195
7196         netdev_for_each_lower_dev(dev, lower, iter) {
7197                 nest = dev_get_nest_level(lower);
7198                 if (max_nest < nest)
7199                         max_nest = nest;
7200         }
7201
7202         return max_nest + 1;
7203 }
7204 EXPORT_SYMBOL(dev_get_nest_level);
7205
7206 /**
7207  * netdev_lower_change - Dispatch event about lower device state change
7208  * @lower_dev: device
7209  * @lower_state_info: state to dispatch
7210  *
7211  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7212  * The caller must hold the RTNL lock.
7213  */
7214 void netdev_lower_state_changed(struct net_device *lower_dev,
7215                                 void *lower_state_info)
7216 {
7217         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7218                 .info.dev = lower_dev,
7219         };
7220
7221         ASSERT_RTNL();
7222         changelowerstate_info.lower_state_info = lower_state_info;
7223         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7224                                       &changelowerstate_info.info);
7225 }
7226 EXPORT_SYMBOL(netdev_lower_state_changed);
7227
7228 static void dev_change_rx_flags(struct net_device *dev, int flags)
7229 {
7230         const struct net_device_ops *ops = dev->netdev_ops;
7231
7232         if (ops->ndo_change_rx_flags)
7233                 ops->ndo_change_rx_flags(dev, flags);
7234 }
7235
7236 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7237 {
7238         unsigned int old_flags = dev->flags;
7239         kuid_t uid;
7240         kgid_t gid;
7241
7242         ASSERT_RTNL();
7243
7244         dev->flags |= IFF_PROMISC;
7245         dev->promiscuity += inc;
7246         if (dev->promiscuity == 0) {
7247                 /*
7248                  * Avoid overflow.
7249                  * If inc causes overflow, untouch promisc and return error.
7250                  */
7251                 if (inc < 0)
7252                         dev->flags &= ~IFF_PROMISC;
7253                 else {
7254                         dev->promiscuity -= inc;
7255                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7256                                 dev->name);
7257                         return -EOVERFLOW;
7258                 }
7259         }
7260         if (dev->flags != old_flags) {
7261                 pr_info("device %s %s promiscuous mode\n",
7262                         dev->name,
7263                         dev->flags & IFF_PROMISC ? "entered" : "left");
7264                 if (audit_enabled) {
7265                         current_uid_gid(&uid, &gid);
7266                         audit_log(audit_context(), GFP_ATOMIC,
7267                                   AUDIT_ANOM_PROMISCUOUS,
7268                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7269                                   dev->name, (dev->flags & IFF_PROMISC),
7270                                   (old_flags & IFF_PROMISC),
7271                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
7272                                   from_kuid(&init_user_ns, uid),
7273                                   from_kgid(&init_user_ns, gid),
7274                                   audit_get_sessionid(current));
7275                 }
7276
7277                 dev_change_rx_flags(dev, IFF_PROMISC);
7278         }
7279         if (notify)
7280                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
7281         return 0;
7282 }
7283
7284 /**
7285  *      dev_set_promiscuity     - update promiscuity count on a device
7286  *      @dev: device
7287  *      @inc: modifier
7288  *
7289  *      Add or remove promiscuity from a device. While the count in the device
7290  *      remains above zero the interface remains promiscuous. Once it hits zero
7291  *      the device reverts back to normal filtering operation. A negative inc
7292  *      value is used to drop promiscuity on the device.
7293  *      Return 0 if successful or a negative errno code on error.
7294  */
7295 int dev_set_promiscuity(struct net_device *dev, int inc)
7296 {
7297         unsigned int old_flags = dev->flags;
7298         int err;
7299
7300         err = __dev_set_promiscuity(dev, inc, true);
7301         if (err < 0)
7302                 return err;
7303         if (dev->flags != old_flags)
7304                 dev_set_rx_mode(dev);
7305         return err;
7306 }
7307 EXPORT_SYMBOL(dev_set_promiscuity);
7308
7309 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7310 {
7311         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7312
7313         ASSERT_RTNL();
7314
7315         dev->flags |= IFF_ALLMULTI;
7316         dev->allmulti += inc;
7317         if (dev->allmulti == 0) {
7318                 /*
7319                  * Avoid overflow.
7320                  * If inc causes overflow, untouch allmulti and return error.
7321                  */
7322                 if (inc < 0)
7323                         dev->flags &= ~IFF_ALLMULTI;
7324                 else {
7325                         dev->allmulti -= inc;
7326                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7327                                 dev->name);
7328                         return -EOVERFLOW;
7329                 }
7330         }
7331         if (dev->flags ^ old_flags) {
7332                 dev_change_rx_flags(dev, IFF_ALLMULTI);
7333                 dev_set_rx_mode(dev);
7334                 if (notify)
7335                         __dev_notify_flags(dev, old_flags,
7336                                            dev->gflags ^ old_gflags);
7337         }
7338         return 0;
7339 }
7340
7341 /**
7342  *      dev_set_allmulti        - update allmulti count on a device
7343  *      @dev: device
7344  *      @inc: modifier
7345  *
7346  *      Add or remove reception of all multicast frames to a device. While the
7347  *      count in the device remains above zero the interface remains listening
7348  *      to all interfaces. Once it hits zero the device reverts back to normal
7349  *      filtering operation. A negative @inc value is used to drop the counter
7350  *      when releasing a resource needing all multicasts.
7351  *      Return 0 if successful or a negative errno code on error.
7352  */
7353
7354 int dev_set_allmulti(struct net_device *dev, int inc)
7355 {
7356         return __dev_set_allmulti(dev, inc, true);
7357 }
7358 EXPORT_SYMBOL(dev_set_allmulti);
7359
7360 /*
7361  *      Upload unicast and multicast address lists to device and
7362  *      configure RX filtering. When the device doesn't support unicast
7363  *      filtering it is put in promiscuous mode while unicast addresses
7364  *      are present.
7365  */
7366 void __dev_set_rx_mode(struct net_device *dev)
7367 {
7368         const struct net_device_ops *ops = dev->netdev_ops;
7369
7370         /* dev_open will call this function so the list will stay sane. */
7371         if (!(dev->flags&IFF_UP))
7372                 return;
7373
7374         if (!netif_device_present(dev))
7375                 return;
7376
7377         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
7378                 /* Unicast addresses changes may only happen under the rtnl,
7379                  * therefore calling __dev_set_promiscuity here is safe.
7380                  */
7381                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
7382                         __dev_set_promiscuity(dev, 1, false);
7383                         dev->uc_promisc = true;
7384                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
7385                         __dev_set_promiscuity(dev, -1, false);
7386                         dev->uc_promisc = false;
7387                 }
7388         }
7389
7390         if (ops->ndo_set_rx_mode)
7391                 ops->ndo_set_rx_mode(dev);
7392 }
7393
7394 void dev_set_rx_mode(struct net_device *dev)
7395 {
7396         netif_addr_lock_bh(dev);
7397         __dev_set_rx_mode(dev);
7398         netif_addr_unlock_bh(dev);
7399 }
7400
7401 /**
7402  *      dev_get_flags - get flags reported to userspace
7403  *      @dev: device
7404  *
7405  *      Get the combination of flag bits exported through APIs to userspace.
7406  */
7407 unsigned int dev_get_flags(const struct net_device *dev)
7408 {
7409         unsigned int flags;
7410
7411         flags = (dev->flags & ~(IFF_PROMISC |
7412                                 IFF_ALLMULTI |
7413                                 IFF_RUNNING |
7414                                 IFF_LOWER_UP |
7415                                 IFF_DORMANT)) |
7416                 (dev->gflags & (IFF_PROMISC |
7417                                 IFF_ALLMULTI));
7418
7419         if (netif_running(dev)) {
7420                 if (netif_oper_up(dev))
7421                         flags |= IFF_RUNNING;
7422                 if (netif_carrier_ok(dev))
7423                         flags |= IFF_LOWER_UP;
7424                 if (netif_dormant(dev))
7425                         flags |= IFF_DORMANT;
7426         }
7427
7428         return flags;
7429 }
7430 EXPORT_SYMBOL(dev_get_flags);
7431
7432 int __dev_change_flags(struct net_device *dev, unsigned int flags)
7433 {
7434         unsigned int old_flags = dev->flags;
7435         int ret;
7436
7437         ASSERT_RTNL();
7438
7439         /*
7440          *      Set the flags on our device.
7441          */
7442
7443         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
7444                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
7445                                IFF_AUTOMEDIA)) |
7446                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
7447                                     IFF_ALLMULTI));
7448
7449         /*
7450          *      Load in the correct multicast list now the flags have changed.
7451          */
7452
7453         if ((old_flags ^ flags) & IFF_MULTICAST)
7454                 dev_change_rx_flags(dev, IFF_MULTICAST);
7455
7456         dev_set_rx_mode(dev);
7457
7458         /*
7459          *      Have we downed the interface. We handle IFF_UP ourselves
7460          *      according to user attempts to set it, rather than blindly
7461          *      setting it.
7462          */
7463
7464         ret = 0;
7465         if ((old_flags ^ flags) & IFF_UP) {
7466                 if (old_flags & IFF_UP)
7467                         __dev_close(dev);
7468                 else
7469                         ret = __dev_open(dev);
7470         }
7471
7472         if ((flags ^ dev->gflags) & IFF_PROMISC) {
7473                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
7474                 unsigned int old_flags = dev->flags;
7475
7476                 dev->gflags ^= IFF_PROMISC;
7477
7478                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
7479                         if (dev->flags != old_flags)
7480                                 dev_set_rx_mode(dev);
7481         }
7482
7483         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
7484          * is important. Some (broken) drivers set IFF_PROMISC, when
7485          * IFF_ALLMULTI is requested not asking us and not reporting.
7486          */
7487         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
7488                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
7489
7490                 dev->gflags ^= IFF_ALLMULTI;
7491                 __dev_set_allmulti(dev, inc, false);
7492         }
7493
7494         return ret;
7495 }
7496
7497 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
7498                         unsigned int gchanges)
7499 {
7500         unsigned int changes = dev->flags ^ old_flags;
7501
7502         if (gchanges)
7503                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
7504
7505         if (changes & IFF_UP) {
7506                 if (dev->flags & IFF_UP)
7507                         call_netdevice_notifiers(NETDEV_UP, dev);
7508                 else
7509                         call_netdevice_notifiers(NETDEV_DOWN, dev);
7510         }
7511
7512         if (dev->flags & IFF_UP &&
7513             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
7514                 struct netdev_notifier_change_info change_info = {
7515                         .info = {
7516                                 .dev = dev,
7517                         },
7518                         .flags_changed = changes,
7519                 };
7520
7521                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
7522         }
7523 }
7524
7525 /**
7526  *      dev_change_flags - change device settings
7527  *      @dev: device
7528  *      @flags: device state flags
7529  *
7530  *      Change settings on device based state flags. The flags are
7531  *      in the userspace exported format.
7532  */
7533 int dev_change_flags(struct net_device *dev, unsigned int flags)
7534 {
7535         int ret;
7536         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
7537
7538         ret = __dev_change_flags(dev, flags);
7539         if (ret < 0)
7540                 return ret;
7541
7542         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
7543         __dev_notify_flags(dev, old_flags, changes);
7544         return ret;
7545 }
7546 EXPORT_SYMBOL(dev_change_flags);
7547
7548 int __dev_set_mtu(struct net_device *dev, int new_mtu)
7549 {
7550         const struct net_device_ops *ops = dev->netdev_ops;
7551
7552         if (ops->ndo_change_mtu)
7553                 return ops->ndo_change_mtu(dev, new_mtu);
7554
7555         dev->mtu = new_mtu;
7556         return 0;
7557 }
7558 EXPORT_SYMBOL(__dev_set_mtu);
7559
7560 /**
7561  *      dev_set_mtu_ext - Change maximum transfer unit
7562  *      @dev: device
7563  *      @new_mtu: new transfer unit
7564  *      @extack: netlink extended ack
7565  *
7566  *      Change the maximum transfer size of the network device.
7567  */
7568 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
7569                     struct netlink_ext_ack *extack)
7570 {
7571         int err, orig_mtu;
7572
7573         if (new_mtu == dev->mtu)
7574                 return 0;
7575
7576         /* MTU must be positive, and in range */
7577         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7578                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
7579                 return -EINVAL;
7580         }
7581
7582         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7583                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
7584                 return -EINVAL;
7585         }
7586
7587         if (!netif_device_present(dev))
7588                 return -ENODEV;
7589
7590         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7591         err = notifier_to_errno(err);
7592         if (err)
7593                 return err;
7594
7595         orig_mtu = dev->mtu;
7596         err = __dev_set_mtu(dev, new_mtu);
7597
7598         if (!err) {
7599                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7600                                                    orig_mtu);
7601                 err = notifier_to_errno(err);
7602                 if (err) {
7603                         /* setting mtu back and notifying everyone again,
7604                          * so that they have a chance to revert changes.
7605                          */
7606                         __dev_set_mtu(dev, orig_mtu);
7607                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7608                                                      new_mtu);
7609                 }
7610         }
7611         return err;
7612 }
7613
7614 int dev_set_mtu(struct net_device *dev, int new_mtu)
7615 {
7616         struct netlink_ext_ack extack;
7617         int err;
7618
7619         memset(&extack, 0, sizeof(extack));
7620         err = dev_set_mtu_ext(dev, new_mtu, &extack);
7621         if (err && extack._msg)
7622                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
7623         return err;
7624 }
7625 EXPORT_SYMBOL(dev_set_mtu);
7626
7627 /**
7628  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
7629  *      @dev: device
7630  *      @new_len: new tx queue length
7631  */
7632 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7633 {
7634         unsigned int orig_len = dev->tx_queue_len;
7635         int res;
7636
7637         if (new_len != (unsigned int)new_len)
7638                 return -ERANGE;
7639
7640         if (new_len != orig_len) {
7641                 dev->tx_queue_len = new_len;
7642                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7643                 res = notifier_to_errno(res);
7644                 if (res)
7645                         goto err_rollback;
7646                 res = dev_qdisc_change_tx_queue_len(dev);
7647                 if (res)
7648                         goto err_rollback;
7649         }
7650
7651         return 0;
7652
7653 err_rollback:
7654         netdev_err(dev, "refused to change device tx_queue_len\n");
7655         dev->tx_queue_len = orig_len;
7656         return res;
7657 }
7658
7659 /**
7660  *      dev_set_group - Change group this device belongs to
7661  *      @dev: device
7662  *      @new_group: group this device should belong to
7663  */
7664 void dev_set_group(struct net_device *dev, int new_group)
7665 {
7666         dev->group = new_group;
7667 }
7668 EXPORT_SYMBOL(dev_set_group);
7669
7670 /**
7671  *      dev_set_mac_address - Change Media Access Control Address
7672  *      @dev: device
7673  *      @sa: new address
7674  *
7675  *      Change the hardware (MAC) address of the device
7676  */
7677 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
7678 {
7679         const struct net_device_ops *ops = dev->netdev_ops;
7680         int err;
7681
7682         if (!ops->ndo_set_mac_address)
7683                 return -EOPNOTSUPP;
7684         if (sa->sa_family != dev->type)
7685                 return -EINVAL;
7686         if (!netif_device_present(dev))
7687                 return -ENODEV;
7688         err = ops->ndo_set_mac_address(dev, sa);
7689         if (err)
7690                 return err;
7691         dev->addr_assign_type = NET_ADDR_SET;
7692         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7693         add_device_randomness(dev->dev_addr, dev->addr_len);
7694         return 0;
7695 }
7696 EXPORT_SYMBOL(dev_set_mac_address);
7697
7698 /**
7699  *      dev_change_carrier - Change device carrier
7700  *      @dev: device
7701  *      @new_carrier: new value
7702  *
7703  *      Change device carrier
7704  */
7705 int dev_change_carrier(struct net_device *dev, bool new_carrier)
7706 {
7707         const struct net_device_ops *ops = dev->netdev_ops;
7708
7709         if (!ops->ndo_change_carrier)
7710                 return -EOPNOTSUPP;
7711         if (!netif_device_present(dev))
7712                 return -ENODEV;
7713         return ops->ndo_change_carrier(dev, new_carrier);
7714 }
7715 EXPORT_SYMBOL(dev_change_carrier);
7716
7717 /**
7718  *      dev_get_phys_port_id - Get device physical port ID
7719  *      @dev: device
7720  *      @ppid: port ID
7721  *
7722  *      Get device physical port ID
7723  */
7724 int dev_get_phys_port_id(struct net_device *dev,
7725                          struct netdev_phys_item_id *ppid)
7726 {
7727         const struct net_device_ops *ops = dev->netdev_ops;
7728
7729         if (!ops->ndo_get_phys_port_id)
7730                 return -EOPNOTSUPP;
7731         return ops->ndo_get_phys_port_id(dev, ppid);
7732 }
7733 EXPORT_SYMBOL(dev_get_phys_port_id);
7734
7735 /**
7736  *      dev_get_phys_port_name - Get device physical port name
7737  *      @dev: device
7738  *      @name: port name
7739  *      @len: limit of bytes to copy to name
7740  *
7741  *      Get device physical port name
7742  */
7743 int dev_get_phys_port_name(struct net_device *dev,
7744                            char *name, size_t len)
7745 {
7746         const struct net_device_ops *ops = dev->netdev_ops;
7747
7748         if (!ops->ndo_get_phys_port_name)
7749                 return -EOPNOTSUPP;
7750         return ops->ndo_get_phys_port_name(dev, name, len);
7751 }
7752 EXPORT_SYMBOL(dev_get_phys_port_name);
7753
7754 /**
7755  *      dev_change_proto_down - update protocol port state information
7756  *      @dev: device
7757  *      @proto_down: new value
7758  *
7759  *      This info can be used by switch drivers to set the phys state of the
7760  *      port.
7761  */
7762 int dev_change_proto_down(struct net_device *dev, bool proto_down)
7763 {
7764         const struct net_device_ops *ops = dev->netdev_ops;
7765
7766         if (!ops->ndo_change_proto_down)
7767                 return -EOPNOTSUPP;
7768         if (!netif_device_present(dev))
7769                 return -ENODEV;
7770         return ops->ndo_change_proto_down(dev, proto_down);
7771 }
7772 EXPORT_SYMBOL(dev_change_proto_down);
7773
7774 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
7775                     enum bpf_netdev_command cmd)
7776 {
7777         struct netdev_bpf xdp;
7778
7779         if (!bpf_op)
7780                 return 0;
7781
7782         memset(&xdp, 0, sizeof(xdp));
7783         xdp.command = cmd;
7784
7785         /* Query must always succeed. */
7786         WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
7787
7788         return xdp.prog_id;
7789 }
7790
7791 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
7792                            struct netlink_ext_ack *extack, u32 flags,
7793                            struct bpf_prog *prog)
7794 {
7795         struct netdev_bpf xdp;
7796
7797         memset(&xdp, 0, sizeof(xdp));
7798         if (flags & XDP_FLAGS_HW_MODE)
7799                 xdp.command = XDP_SETUP_PROG_HW;
7800         else
7801                 xdp.command = XDP_SETUP_PROG;
7802         xdp.extack = extack;
7803         xdp.flags = flags;
7804         xdp.prog = prog;
7805
7806         return bpf_op(dev, &xdp);
7807 }
7808
7809 static void dev_xdp_uninstall(struct net_device *dev)
7810 {
7811         struct netdev_bpf xdp;
7812         bpf_op_t ndo_bpf;
7813
7814         /* Remove generic XDP */
7815         WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
7816
7817         /* Remove from the driver */
7818         ndo_bpf = dev->netdev_ops->ndo_bpf;
7819         if (!ndo_bpf)
7820                 return;
7821
7822         memset(&xdp, 0, sizeof(xdp));
7823         xdp.command = XDP_QUERY_PROG;
7824         WARN_ON(ndo_bpf(dev, &xdp));
7825         if (xdp.prog_id)
7826                 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
7827                                         NULL));
7828
7829         /* Remove HW offload */
7830         memset(&xdp, 0, sizeof(xdp));
7831         xdp.command = XDP_QUERY_PROG_HW;
7832         if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
7833                 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
7834                                         NULL));
7835 }
7836
7837 /**
7838  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
7839  *      @dev: device
7840  *      @extack: netlink extended ack
7841  *      @fd: new program fd or negative value to clear
7842  *      @flags: xdp-related flags
7843  *
7844  *      Set or clear a bpf program for a device
7845  */
7846 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7847                       int fd, u32 flags)
7848 {
7849         const struct net_device_ops *ops = dev->netdev_ops;
7850         enum bpf_netdev_command query;
7851         struct bpf_prog *prog = NULL;
7852         bpf_op_t bpf_op, bpf_chk;
7853         int err;
7854
7855         ASSERT_RTNL();
7856
7857         query = flags & XDP_FLAGS_HW_MODE ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
7858
7859         bpf_op = bpf_chk = ops->ndo_bpf;
7860         if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
7861                 return -EOPNOTSUPP;
7862         if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
7863                 bpf_op = generic_xdp_install;
7864         if (bpf_op == bpf_chk)
7865                 bpf_chk = generic_xdp_install;
7866
7867         if (fd >= 0) {
7868                 if (__dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG) ||
7869                     __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG_HW))
7870                         return -EEXIST;
7871                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
7872                     __dev_xdp_query(dev, bpf_op, query))
7873                         return -EBUSY;
7874
7875                 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
7876                                              bpf_op == ops->ndo_bpf);
7877                 if (IS_ERR(prog))
7878                         return PTR_ERR(prog);
7879
7880                 if (!(flags & XDP_FLAGS_HW_MODE) &&
7881                     bpf_prog_is_dev_bound(prog->aux)) {
7882                         NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
7883                         bpf_prog_put(prog);
7884                         return -EINVAL;
7885                 }
7886         }
7887
7888         err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
7889         if (err < 0 && prog)
7890                 bpf_prog_put(prog);
7891
7892         return err;
7893 }
7894
7895 /**
7896  *      dev_new_index   -       allocate an ifindex
7897  *      @net: the applicable net namespace
7898  *
7899  *      Returns a suitable unique value for a new device interface
7900  *      number.  The caller must hold the rtnl semaphore or the
7901  *      dev_base_lock to be sure it remains unique.
7902  */
7903 static int dev_new_index(struct net *net)
7904 {
7905         int ifindex = net->ifindex;
7906
7907         for (;;) {
7908                 if (++ifindex <= 0)
7909                         ifindex = 1;
7910                 if (!__dev_get_by_index(net, ifindex))
7911                         return net->ifindex = ifindex;
7912         }
7913 }
7914
7915 /* Delayed registration/unregisteration */
7916 static LIST_HEAD(net_todo_list);
7917 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
7918
7919 static void net_set_todo(struct net_device *dev)
7920 {
7921         list_add_tail(&dev->todo_list, &net_todo_list);
7922         dev_net(dev)->dev_unreg_count++;
7923 }
7924
7925 static void rollback_registered_many(struct list_head *head)
7926 {
7927         struct net_device *dev, *tmp;
7928         LIST_HEAD(close_head);
7929
7930         BUG_ON(dev_boot_phase);
7931         ASSERT_RTNL();
7932
7933         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
7934                 /* Some devices call without registering
7935                  * for initialization unwind. Remove those
7936                  * devices and proceed with the remaining.
7937                  */
7938                 if (dev->reg_state == NETREG_UNINITIALIZED) {
7939                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7940                                  dev->name, dev);
7941
7942                         WARN_ON(1);
7943                         list_del(&dev->unreg_list);
7944                         continue;
7945                 }
7946                 dev->dismantle = true;
7947                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
7948         }
7949
7950         /* If device is running, close it first. */
7951         list_for_each_entry(dev, head, unreg_list)
7952                 list_add_tail(&dev->close_list, &close_head);
7953         dev_close_many(&close_head, true);
7954
7955         list_for_each_entry(dev, head, unreg_list) {
7956                 /* And unlink it from device chain. */
7957                 unlist_netdevice(dev);
7958
7959                 dev->reg_state = NETREG_UNREGISTERING;
7960         }
7961         flush_all_backlogs();
7962
7963         synchronize_net();
7964
7965         list_for_each_entry(dev, head, unreg_list) {
7966                 struct sk_buff *skb = NULL;
7967
7968                 /* Shutdown queueing discipline. */
7969                 dev_shutdown(dev);
7970
7971                 dev_xdp_uninstall(dev);
7972
7973                 /* Notify protocols, that we are about to destroy
7974                  * this device. They should clean all the things.
7975                  */
7976                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7977
7978                 if (!dev->rtnl_link_ops ||
7979                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7980                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
7981                                                      GFP_KERNEL, NULL, 0);
7982
7983                 /*
7984                  *      Flush the unicast and multicast chains
7985                  */
7986                 dev_uc_flush(dev);
7987                 dev_mc_flush(dev);
7988
7989                 if (dev->netdev_ops->ndo_uninit)
7990                         dev->netdev_ops->ndo_uninit(dev);
7991
7992                 if (skb)
7993                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
7994
7995                 /* Notifier chain MUST detach us all upper devices. */
7996                 WARN_ON(netdev_has_any_upper_dev(dev));
7997                 WARN_ON(netdev_has_any_lower_dev(dev));
7998
7999                 /* Remove entries from kobject tree */
8000                 netdev_unregister_kobject(dev);
8001 #ifdef CONFIG_XPS
8002                 /* Remove XPS queueing entries */
8003                 netif_reset_xps_queues_gt(dev, 0);
8004 #endif
8005         }
8006
8007         synchronize_net();
8008
8009         list_for_each_entry(dev, head, unreg_list)
8010                 dev_put(dev);
8011 }
8012
8013 static void rollback_registered(struct net_device *dev)
8014 {
8015         LIST_HEAD(single);
8016
8017         list_add(&dev->unreg_list, &single);
8018         rollback_registered_many(&single);
8019         list_del(&single);
8020 }
8021
8022 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8023         struct net_device *upper, netdev_features_t features)
8024 {
8025         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8026         netdev_features_t feature;
8027         int feature_bit;
8028
8029         for_each_netdev_feature(&upper_disables, feature_bit) {
8030                 feature = __NETIF_F_BIT(feature_bit);
8031                 if (!(upper->wanted_features & feature)
8032                     && (features & feature)) {
8033                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8034                                    &feature, upper->name);
8035                         features &= ~feature;
8036                 }
8037         }
8038
8039         return features;
8040 }
8041
8042 static void netdev_sync_lower_features(struct net_device *upper,
8043         struct net_device *lower, netdev_features_t features)
8044 {
8045         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8046         netdev_features_t feature;
8047         int feature_bit;
8048
8049         for_each_netdev_feature(&upper_disables, feature_bit) {
8050                 feature = __NETIF_F_BIT(feature_bit);
8051                 if (!(features & feature) && (lower->features & feature)) {
8052                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8053                                    &feature, lower->name);
8054                         lower->wanted_features &= ~feature;
8055                         netdev_update_features(lower);
8056
8057                         if (unlikely(lower->features & feature))
8058                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8059                                             &feature, lower->name);
8060                 }
8061         }
8062 }
8063
8064 static netdev_features_t netdev_fix_features(struct net_device *dev,
8065         netdev_features_t features)
8066 {
8067         /* Fix illegal checksum combinations */
8068         if ((features & NETIF_F_HW_CSUM) &&
8069             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
8070                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
8071                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8072         }
8073
8074         /* TSO requires that SG is present as well. */
8075         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
8076                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
8077                 features &= ~NETIF_F_ALL_TSO;
8078         }
8079
8080         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8081                                         !(features & NETIF_F_IP_CSUM)) {
8082                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8083                 features &= ~NETIF_F_TSO;
8084                 features &= ~NETIF_F_TSO_ECN;
8085         }
8086
8087         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8088                                          !(features & NETIF_F_IPV6_CSUM)) {
8089                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8090                 features &= ~NETIF_F_TSO6;
8091         }
8092
8093         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8094         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8095                 features &= ~NETIF_F_TSO_MANGLEID;
8096
8097         /* TSO ECN requires that TSO is present as well. */
8098         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8099                 features &= ~NETIF_F_TSO_ECN;
8100
8101         /* Software GSO depends on SG. */
8102         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
8103                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
8104                 features &= ~NETIF_F_GSO;
8105         }
8106
8107         /* GSO partial features require GSO partial be set */
8108         if ((features & dev->gso_partial_features) &&
8109             !(features & NETIF_F_GSO_PARTIAL)) {
8110                 netdev_dbg(dev,
8111                            "Dropping partially supported GSO features since no GSO partial.\n");
8112                 features &= ~dev->gso_partial_features;
8113         }
8114
8115         if (!(features & NETIF_F_RXCSUM)) {
8116                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8117                  * successfully merged by hardware must also have the
8118                  * checksum verified by hardware.  If the user does not
8119                  * want to enable RXCSUM, logically, we should disable GRO_HW.
8120                  */
8121                 if (features & NETIF_F_GRO_HW) {
8122                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8123                         features &= ~NETIF_F_GRO_HW;
8124                 }
8125         }
8126
8127         /* LRO/HW-GRO features cannot be combined with RX-FCS */
8128         if (features & NETIF_F_RXFCS) {
8129                 if (features & NETIF_F_LRO) {
8130                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8131                         features &= ~NETIF_F_LRO;
8132                 }
8133
8134                 if (features & NETIF_F_GRO_HW) {
8135                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8136                         features &= ~NETIF_F_GRO_HW;
8137                 }
8138         }
8139
8140         return features;
8141 }
8142
8143 int __netdev_update_features(struct net_device *dev)
8144 {
8145         struct net_device *upper, *lower;
8146         netdev_features_t features;
8147         struct list_head *iter;
8148         int err = -1;
8149
8150         ASSERT_RTNL();
8151
8152         features = netdev_get_wanted_features(dev);
8153
8154         if (dev->netdev_ops->ndo_fix_features)
8155                 features = dev->netdev_ops->ndo_fix_features(dev, features);
8156
8157         /* driver might be less strict about feature dependencies */
8158         features = netdev_fix_features(dev, features);
8159
8160         /* some features can't be enabled if they're off an an upper device */
8161         netdev_for_each_upper_dev_rcu(dev, upper, iter)
8162                 features = netdev_sync_upper_features(dev, upper, features);
8163
8164         if (dev->features == features)
8165                 goto sync_lower;
8166
8167         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
8168                 &dev->features, &features);
8169
8170         if (dev->netdev_ops->ndo_set_features)
8171                 err = dev->netdev_ops->ndo_set_features(dev, features);
8172         else
8173                 err = 0;
8174
8175         if (unlikely(err < 0)) {
8176                 netdev_err(dev,
8177                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
8178                         err, &features, &dev->features);
8179                 /* return non-0 since some features might have changed and
8180                  * it's better to fire a spurious notification than miss it
8181                  */
8182                 return -1;
8183         }
8184
8185 sync_lower:
8186         /* some features must be disabled on lower devices when disabled
8187          * on an upper device (think: bonding master or bridge)
8188          */
8189         netdev_for_each_lower_dev(dev, lower, iter)
8190                 netdev_sync_lower_features(dev, lower, features);
8191
8192         if (!err) {
8193                 netdev_features_t diff = features ^ dev->features;
8194
8195                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
8196                         /* udp_tunnel_{get,drop}_rx_info both need
8197                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
8198                          * device, or they won't do anything.
8199                          * Thus we need to update dev->features
8200                          * *before* calling udp_tunnel_get_rx_info,
8201                          * but *after* calling udp_tunnel_drop_rx_info.
8202                          */
8203                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
8204                                 dev->features = features;
8205                                 udp_tunnel_get_rx_info(dev);
8206                         } else {
8207                                 udp_tunnel_drop_rx_info(dev);
8208                         }
8209                 }
8210
8211                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
8212                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
8213                                 dev->features = features;
8214                                 err |= vlan_get_rx_ctag_filter_info(dev);
8215                         } else {
8216                                 vlan_drop_rx_ctag_filter_info(dev);
8217                         }
8218                 }
8219
8220                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
8221                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
8222                                 dev->features = features;
8223                                 err |= vlan_get_rx_stag_filter_info(dev);
8224                         } else {
8225                                 vlan_drop_rx_stag_filter_info(dev);
8226                         }
8227                 }
8228
8229                 dev->features = features;
8230         }
8231
8232         return err < 0 ? 0 : 1;
8233 }
8234
8235 /**
8236  *      netdev_update_features - recalculate device features
8237  *      @dev: the device to check
8238  *
8239  *      Recalculate dev->features set and send notifications if it
8240  *      has changed. Should be called after driver or hardware dependent
8241  *      conditions might have changed that influence the features.
8242  */
8243 void netdev_update_features(struct net_device *dev)
8244 {
8245         if (__netdev_update_features(dev))
8246                 netdev_features_change(dev);
8247 }
8248 EXPORT_SYMBOL(netdev_update_features);
8249
8250 /**
8251  *      netdev_change_features - recalculate device features
8252  *      @dev: the device to check
8253  *
8254  *      Recalculate dev->features set and send notifications even
8255  *      if they have not changed. Should be called instead of
8256  *      netdev_update_features() if also dev->vlan_features might
8257  *      have changed to allow the changes to be propagated to stacked
8258  *      VLAN devices.
8259  */
8260 void netdev_change_features(struct net_device *dev)
8261 {
8262         __netdev_update_features(dev);
8263         netdev_features_change(dev);
8264 }
8265 EXPORT_SYMBOL(netdev_change_features);
8266
8267 /**
8268  *      netif_stacked_transfer_operstate -      transfer operstate
8269  *      @rootdev: the root or lower level device to transfer state from
8270  *      @dev: the device to transfer operstate to
8271  *
8272  *      Transfer operational state from root to device. This is normally
8273  *      called when a stacking relationship exists between the root
8274  *      device and the device(a leaf device).
8275  */
8276 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
8277                                         struct net_device *dev)
8278 {
8279         if (rootdev->operstate == IF_OPER_DORMANT)
8280                 netif_dormant_on(dev);
8281         else
8282                 netif_dormant_off(dev);
8283
8284         if (netif_carrier_ok(rootdev))
8285                 netif_carrier_on(dev);
8286         else
8287                 netif_carrier_off(dev);
8288 }
8289 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
8290
8291 static int netif_alloc_rx_queues(struct net_device *dev)
8292 {
8293         unsigned int i, count = dev->num_rx_queues;
8294         struct netdev_rx_queue *rx;
8295         size_t sz = count * sizeof(*rx);
8296         int err = 0;
8297
8298         BUG_ON(count < 1);
8299
8300         rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8301         if (!rx)
8302                 return -ENOMEM;
8303
8304         dev->_rx = rx;
8305
8306         for (i = 0; i < count; i++) {
8307                 rx[i].dev = dev;
8308
8309                 /* XDP RX-queue setup */
8310                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
8311                 if (err < 0)
8312                         goto err_rxq_info;
8313         }
8314         return 0;
8315
8316 err_rxq_info:
8317         /* Rollback successful reg's and free other resources */
8318         while (i--)
8319                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
8320         kvfree(dev->_rx);
8321         dev->_rx = NULL;
8322         return err;
8323 }
8324
8325 static void netif_free_rx_queues(struct net_device *dev)
8326 {
8327         unsigned int i, count = dev->num_rx_queues;
8328
8329         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
8330         if (!dev->_rx)
8331                 return;
8332
8333         for (i = 0; i < count; i++)
8334                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
8335
8336         kvfree(dev->_rx);
8337 }
8338
8339 static void netdev_init_one_queue(struct net_device *dev,
8340                                   struct netdev_queue *queue, void *_unused)
8341 {
8342         /* Initialize queue lock */
8343         spin_lock_init(&queue->_xmit_lock);
8344         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
8345         queue->xmit_lock_owner = -1;
8346         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
8347         queue->dev = dev;
8348 #ifdef CONFIG_BQL
8349         dql_init(&queue->dql, HZ);
8350 #endif
8351 }
8352
8353 static void netif_free_tx_queues(struct net_device *dev)
8354 {
8355         kvfree(dev->_tx);
8356 }
8357
8358 static int netif_alloc_netdev_queues(struct net_device *dev)
8359 {
8360         unsigned int count = dev->num_tx_queues;
8361         struct netdev_queue *tx;
8362         size_t sz = count * sizeof(*tx);
8363
8364         if (count < 1 || count > 0xffff)
8365                 return -EINVAL;
8366
8367         tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8368         if (!tx)
8369                 return -ENOMEM;
8370
8371         dev->_tx = tx;
8372
8373         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
8374         spin_lock_init(&dev->tx_global_lock);
8375
8376         return 0;
8377 }
8378
8379 void netif_tx_stop_all_queues(struct net_device *dev)
8380 {
8381         unsigned int i;
8382
8383         for (i = 0; i < dev->num_tx_queues; i++) {
8384                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
8385
8386                 netif_tx_stop_queue(txq);
8387         }
8388 }
8389 EXPORT_SYMBOL(netif_tx_stop_all_queues);
8390
8391 /**
8392  *      register_netdevice      - register a network device
8393  *      @dev: device to register
8394  *
8395  *      Take a completed network device structure and add it to the kernel
8396  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8397  *      chain. 0 is returned on success. A negative errno code is returned
8398  *      on a failure to set up the device, or if the name is a duplicate.
8399  *
8400  *      Callers must hold the rtnl semaphore. You may want
8401  *      register_netdev() instead of this.
8402  *
8403  *      BUGS:
8404  *      The locking appears insufficient to guarantee two parallel registers
8405  *      will not get the same name.
8406  */
8407
8408 int register_netdevice(struct net_device *dev)
8409 {
8410         int ret;
8411         struct net *net = dev_net(dev);
8412
8413         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
8414                      NETDEV_FEATURE_COUNT);
8415         BUG_ON(dev_boot_phase);
8416         ASSERT_RTNL();
8417
8418         might_sleep();
8419
8420         /* When net_device's are persistent, this will be fatal. */
8421         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
8422         BUG_ON(!net);
8423
8424         spin_lock_init(&dev->addr_list_lock);
8425         netdev_set_addr_lockdep_class(dev);
8426
8427         ret = dev_get_valid_name(net, dev, dev->name);
8428         if (ret < 0)
8429                 goto out;
8430
8431         /* Init, if this function is available */
8432         if (dev->netdev_ops->ndo_init) {
8433                 ret = dev->netdev_ops->ndo_init(dev);
8434                 if (ret) {
8435                         if (ret > 0)
8436                                 ret = -EIO;
8437                         goto out;
8438                 }
8439         }
8440
8441         if (((dev->hw_features | dev->features) &
8442              NETIF_F_HW_VLAN_CTAG_FILTER) &&
8443             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
8444              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
8445                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
8446                 ret = -EINVAL;
8447                 goto err_uninit;
8448         }
8449
8450         ret = -EBUSY;
8451         if (!dev->ifindex)
8452                 dev->ifindex = dev_new_index(net);
8453         else if (__dev_get_by_index(net, dev->ifindex))
8454                 goto err_uninit;
8455
8456         /* Transfer changeable features to wanted_features and enable
8457          * software offloads (GSO and GRO).
8458          */
8459         dev->hw_features |= NETIF_F_SOFT_FEATURES;
8460         dev->features |= NETIF_F_SOFT_FEATURES;
8461
8462         if (dev->netdev_ops->ndo_udp_tunnel_add) {
8463                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8464                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8465         }
8466
8467         dev->wanted_features = dev->features & dev->hw_features;
8468
8469         if (!(dev->flags & IFF_LOOPBACK))
8470                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
8471
8472         /* If IPv4 TCP segmentation offload is supported we should also
8473          * allow the device to enable segmenting the frame with the option
8474          * of ignoring a static IP ID value.  This doesn't enable the
8475          * feature itself but allows the user to enable it later.
8476          */
8477         if (dev->hw_features & NETIF_F_TSO)
8478                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
8479         if (dev->vlan_features & NETIF_F_TSO)
8480                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
8481         if (dev->mpls_features & NETIF_F_TSO)
8482                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
8483         if (dev->hw_enc_features & NETIF_F_TSO)
8484                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
8485
8486         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
8487          */
8488         dev->vlan_features |= NETIF_F_HIGHDMA;
8489
8490         /* Make NETIF_F_SG inheritable to tunnel devices.
8491          */
8492         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
8493
8494         /* Make NETIF_F_SG inheritable to MPLS.
8495          */
8496         dev->mpls_features |= NETIF_F_SG;
8497
8498         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
8499         ret = notifier_to_errno(ret);
8500         if (ret)
8501                 goto err_uninit;
8502
8503         ret = netdev_register_kobject(dev);
8504         if (ret)
8505                 goto err_uninit;
8506         dev->reg_state = NETREG_REGISTERED;
8507
8508         __netdev_update_features(dev);
8509
8510         /*
8511          *      Default initial state at registry is that the
8512          *      device is present.
8513          */
8514
8515         set_bit(__LINK_STATE_PRESENT, &dev->state);
8516
8517         linkwatch_init_dev(dev);
8518
8519         dev_init_scheduler(dev);
8520         dev_hold(dev);
8521         list_netdevice(dev);
8522         add_device_randomness(dev->dev_addr, dev->addr_len);
8523
8524         /* If the device has permanent device address, driver should
8525          * set dev_addr and also addr_assign_type should be set to
8526          * NET_ADDR_PERM (default value).
8527          */
8528         if (dev->addr_assign_type == NET_ADDR_PERM)
8529                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
8530
8531         /* Notify protocols, that a new device appeared. */
8532         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
8533         ret = notifier_to_errno(ret);
8534         if (ret) {
8535                 rollback_registered(dev);
8536                 dev->reg_state = NETREG_UNREGISTERED;
8537         }
8538         /*
8539          *      Prevent userspace races by waiting until the network
8540          *      device is fully setup before sending notifications.
8541          */
8542         if (!dev->rtnl_link_ops ||
8543             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8544                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8545
8546 out:
8547         return ret;
8548
8549 err_uninit:
8550         if (dev->netdev_ops->ndo_uninit)
8551                 dev->netdev_ops->ndo_uninit(dev);
8552         if (dev->priv_destructor)
8553                 dev->priv_destructor(dev);
8554         goto out;
8555 }
8556 EXPORT_SYMBOL(register_netdevice);
8557
8558 /**
8559  *      init_dummy_netdev       - init a dummy network device for NAPI
8560  *      @dev: device to init
8561  *
8562  *      This takes a network device structure and initialize the minimum
8563  *      amount of fields so it can be used to schedule NAPI polls without
8564  *      registering a full blown interface. This is to be used by drivers
8565  *      that need to tie several hardware interfaces to a single NAPI
8566  *      poll scheduler due to HW limitations.
8567  */
8568 int init_dummy_netdev(struct net_device *dev)
8569 {
8570         /* Clear everything. Note we don't initialize spinlocks
8571          * are they aren't supposed to be taken by any of the
8572          * NAPI code and this dummy netdev is supposed to be
8573          * only ever used for NAPI polls
8574          */
8575         memset(dev, 0, sizeof(struct net_device));
8576
8577         /* make sure we BUG if trying to hit standard
8578          * register/unregister code path
8579          */
8580         dev->reg_state = NETREG_DUMMY;
8581
8582         /* NAPI wants this */
8583         INIT_LIST_HEAD(&dev->napi_list);
8584
8585         /* a dummy interface is started by default */
8586         set_bit(__LINK_STATE_PRESENT, &dev->state);
8587         set_bit(__LINK_STATE_START, &dev->state);
8588
8589         /* Note : We dont allocate pcpu_refcnt for dummy devices,
8590          * because users of this 'device' dont need to change
8591          * its refcount.
8592          */
8593
8594         return 0;
8595 }
8596 EXPORT_SYMBOL_GPL(init_dummy_netdev);
8597
8598
8599 /**
8600  *      register_netdev - register a network device
8601  *      @dev: device to register
8602  *
8603  *      Take a completed network device structure and add it to the kernel
8604  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8605  *      chain. 0 is returned on success. A negative errno code is returned
8606  *      on a failure to set up the device, or if the name is a duplicate.
8607  *
8608  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
8609  *      and expands the device name if you passed a format string to
8610  *      alloc_netdev.
8611  */
8612 int register_netdev(struct net_device *dev)
8613 {
8614         int err;
8615
8616         if (rtnl_lock_killable())
8617                 return -EINTR;
8618         err = register_netdevice(dev);
8619         rtnl_unlock();
8620         return err;
8621 }
8622 EXPORT_SYMBOL(register_netdev);
8623
8624 int netdev_refcnt_read(const struct net_device *dev)
8625 {
8626         int i, refcnt = 0;
8627
8628         for_each_possible_cpu(i)
8629                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8630         return refcnt;
8631 }
8632 EXPORT_SYMBOL(netdev_refcnt_read);
8633
8634 /**
8635  * netdev_wait_allrefs - wait until all references are gone.
8636  * @dev: target net_device
8637  *
8638  * This is called when unregistering network devices.
8639  *
8640  * Any protocol or device that holds a reference should register
8641  * for netdevice notification, and cleanup and put back the
8642  * reference if they receive an UNREGISTER event.
8643  * We can get stuck here if buggy protocols don't correctly
8644  * call dev_put.
8645  */
8646 static void netdev_wait_allrefs(struct net_device *dev)
8647 {
8648         unsigned long rebroadcast_time, warning_time;
8649         int refcnt;
8650
8651         linkwatch_forget_dev(dev);
8652
8653         rebroadcast_time = warning_time = jiffies;
8654         refcnt = netdev_refcnt_read(dev);
8655
8656         while (refcnt != 0) {
8657                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
8658                         rtnl_lock();
8659
8660                         /* Rebroadcast unregister notification */
8661                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8662
8663                         __rtnl_unlock();
8664                         rcu_barrier();
8665                         rtnl_lock();
8666
8667                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8668                                      &dev->state)) {
8669                                 /* We must not have linkwatch events
8670                                  * pending on unregister. If this
8671                                  * happens, we simply run the queue
8672                                  * unscheduled, resulting in a noop
8673                                  * for this device.
8674                                  */
8675                                 linkwatch_run_queue();
8676                         }
8677
8678                         __rtnl_unlock();
8679
8680                         rebroadcast_time = jiffies;
8681                 }
8682
8683                 msleep(250);
8684
8685                 refcnt = netdev_refcnt_read(dev);
8686
8687                 if (time_after(jiffies, warning_time + 10 * HZ)) {
8688                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8689                                  dev->name, refcnt);
8690                         warning_time = jiffies;
8691                 }
8692         }
8693 }
8694
8695 /* The sequence is:
8696  *
8697  *      rtnl_lock();
8698  *      ...
8699  *      register_netdevice(x1);
8700  *      register_netdevice(x2);
8701  *      ...
8702  *      unregister_netdevice(y1);
8703  *      unregister_netdevice(y2);
8704  *      ...
8705  *      rtnl_unlock();
8706  *      free_netdev(y1);
8707  *      free_netdev(y2);
8708  *
8709  * We are invoked by rtnl_unlock().
8710  * This allows us to deal with problems:
8711  * 1) We can delete sysfs objects which invoke hotplug
8712  *    without deadlocking with linkwatch via keventd.
8713  * 2) Since we run with the RTNL semaphore not held, we can sleep
8714  *    safely in order to wait for the netdev refcnt to drop to zero.
8715  *
8716  * We must not return until all unregister events added during
8717  * the interval the lock was held have been completed.
8718  */
8719 void netdev_run_todo(void)
8720 {
8721         struct list_head list;
8722
8723         /* Snapshot list, allow later requests */
8724         list_replace_init(&net_todo_list, &list);
8725
8726         __rtnl_unlock();
8727
8728
8729         /* Wait for rcu callbacks to finish before next phase */
8730         if (!list_empty(&list))
8731                 rcu_barrier();
8732
8733         while (!list_empty(&list)) {
8734                 struct net_device *dev
8735                         = list_first_entry(&list, struct net_device, todo_list);
8736                 list_del(&dev->todo_list);
8737
8738                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
8739                         pr_err("network todo '%s' but state %d\n",
8740                                dev->name, dev->reg_state);
8741                         dump_stack();
8742                         continue;
8743                 }
8744
8745                 dev->reg_state = NETREG_UNREGISTERED;
8746
8747                 netdev_wait_allrefs(dev);
8748
8749                 /* paranoia */
8750                 BUG_ON(netdev_refcnt_read(dev));
8751                 BUG_ON(!list_empty(&dev->ptype_all));
8752                 BUG_ON(!list_empty(&dev->ptype_specific));
8753                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
8754                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
8755 #if IS_ENABLED(CONFIG_DECNET)
8756                 WARN_ON(dev->dn_ptr);
8757 #endif
8758                 if (dev->priv_destructor)
8759                         dev->priv_destructor(dev);
8760                 if (dev->needs_free_netdev)
8761                         free_netdev(dev);
8762
8763                 /* Report a network device has been unregistered */
8764                 rtnl_lock();
8765                 dev_net(dev)->dev_unreg_count--;
8766                 __rtnl_unlock();
8767                 wake_up(&netdev_unregistering_wq);
8768
8769                 /* Free network device */
8770                 kobject_put(&dev->dev.kobj);
8771         }
8772 }
8773
8774 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
8775  * all the same fields in the same order as net_device_stats, with only
8776  * the type differing, but rtnl_link_stats64 may have additional fields
8777  * at the end for newer counters.
8778  */
8779 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
8780                              const struct net_device_stats *netdev_stats)
8781 {
8782 #if BITS_PER_LONG == 64
8783         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
8784         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
8785         /* zero out counters that only exist in rtnl_link_stats64 */
8786         memset((char *)stats64 + sizeof(*netdev_stats), 0,
8787                sizeof(*stats64) - sizeof(*netdev_stats));
8788 #else
8789         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
8790         const unsigned long *src = (const unsigned long *)netdev_stats;
8791         u64 *dst = (u64 *)stats64;
8792
8793         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
8794         for (i = 0; i < n; i++)
8795                 dst[i] = src[i];
8796         /* zero out counters that only exist in rtnl_link_stats64 */
8797         memset((char *)stats64 + n * sizeof(u64), 0,
8798                sizeof(*stats64) - n * sizeof(u64));
8799 #endif
8800 }
8801 EXPORT_SYMBOL(netdev_stats_to_stats64);
8802
8803 /**
8804  *      dev_get_stats   - get network device statistics
8805  *      @dev: device to get statistics from
8806  *      @storage: place to store stats
8807  *
8808  *      Get network statistics from device. Return @storage.
8809  *      The device driver may provide its own method by setting
8810  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
8811  *      otherwise the internal statistics structure is used.
8812  */
8813 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
8814                                         struct rtnl_link_stats64 *storage)
8815 {
8816         const struct net_device_ops *ops = dev->netdev_ops;
8817
8818         if (ops->ndo_get_stats64) {
8819                 memset(storage, 0, sizeof(*storage));
8820                 ops->ndo_get_stats64(dev, storage);
8821         } else if (ops->ndo_get_stats) {
8822                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
8823         } else {
8824                 netdev_stats_to_stats64(storage, &dev->stats);
8825         }
8826         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
8827         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
8828         storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
8829         return storage;
8830 }
8831 EXPORT_SYMBOL(dev_get_stats);
8832
8833 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
8834 {
8835         struct netdev_queue *queue = dev_ingress_queue(dev);
8836
8837 #ifdef CONFIG_NET_CLS_ACT
8838         if (queue)
8839                 return queue;
8840         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
8841         if (!queue)
8842                 return NULL;
8843         netdev_init_one_queue(dev, queue, NULL);
8844         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
8845         queue->qdisc_sleeping = &noop_qdisc;
8846         rcu_assign_pointer(dev->ingress_queue, queue);
8847 #endif
8848         return queue;
8849 }
8850
8851 static const struct ethtool_ops default_ethtool_ops;
8852
8853 void netdev_set_default_ethtool_ops(struct net_device *dev,
8854                                     const struct ethtool_ops *ops)
8855 {
8856         if (dev->ethtool_ops == &default_ethtool_ops)
8857                 dev->ethtool_ops = ops;
8858 }
8859 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
8860
8861 void netdev_freemem(struct net_device *dev)
8862 {
8863         char *addr = (char *)dev - dev->padded;
8864
8865         kvfree(addr);
8866 }
8867
8868 /**
8869  * alloc_netdev_mqs - allocate network device
8870  * @sizeof_priv: size of private data to allocate space for
8871  * @name: device name format string
8872  * @name_assign_type: origin of device name
8873  * @setup: callback to initialize device
8874  * @txqs: the number of TX subqueues to allocate
8875  * @rxqs: the number of RX subqueues to allocate
8876  *
8877  * Allocates a struct net_device with private data area for driver use
8878  * and performs basic initialization.  Also allocates subqueue structs
8879  * for each queue on the device.
8880  */
8881 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
8882                 unsigned char name_assign_type,
8883                 void (*setup)(struct net_device *),
8884                 unsigned int txqs, unsigned int rxqs)
8885 {
8886         struct net_device *dev;
8887         unsigned int alloc_size;
8888         struct net_device *p;
8889
8890         BUG_ON(strlen(name) >= sizeof(dev->name));
8891
8892         if (txqs < 1) {
8893                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
8894                 return NULL;
8895         }
8896
8897         if (rxqs < 1) {
8898                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
8899                 return NULL;
8900         }
8901
8902         alloc_size = sizeof(struct net_device);
8903         if (sizeof_priv) {
8904                 /* ensure 32-byte alignment of private area */
8905                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
8906                 alloc_size += sizeof_priv;
8907         }
8908         /* ensure 32-byte alignment of whole construct */
8909         alloc_size += NETDEV_ALIGN - 1;
8910
8911         p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8912         if (!p)
8913                 return NULL;
8914
8915         dev = PTR_ALIGN(p, NETDEV_ALIGN);
8916         dev->padded = (char *)dev - (char *)p;
8917
8918         dev->pcpu_refcnt = alloc_percpu(int);
8919         if (!dev->pcpu_refcnt)
8920                 goto free_dev;
8921
8922         if (dev_addr_init(dev))
8923                 goto free_pcpu;
8924
8925         dev_mc_init(dev);
8926         dev_uc_init(dev);
8927
8928         dev_net_set(dev, &init_net);
8929
8930         dev->gso_max_size = GSO_MAX_SIZE;
8931         dev->gso_max_segs = GSO_MAX_SEGS;
8932
8933         INIT_LIST_HEAD(&dev->napi_list);
8934         INIT_LIST_HEAD(&dev->unreg_list);
8935         INIT_LIST_HEAD(&dev->close_list);
8936         INIT_LIST_HEAD(&dev->link_watch_list);
8937         INIT_LIST_HEAD(&dev->adj_list.upper);
8938         INIT_LIST_HEAD(&dev->adj_list.lower);
8939         INIT_LIST_HEAD(&dev->ptype_all);
8940         INIT_LIST_HEAD(&dev->ptype_specific);
8941 #ifdef CONFIG_NET_SCHED
8942         hash_init(dev->qdisc_hash);
8943 #endif
8944         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8945         setup(dev);
8946
8947         if (!dev->tx_queue_len) {
8948                 dev->priv_flags |= IFF_NO_QUEUE;
8949                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
8950         }
8951
8952         dev->num_tx_queues = txqs;
8953         dev->real_num_tx_queues = txqs;
8954         if (netif_alloc_netdev_queues(dev))
8955                 goto free_all;
8956
8957         dev->num_rx_queues = rxqs;
8958         dev->real_num_rx_queues = rxqs;
8959         if (netif_alloc_rx_queues(dev))
8960                 goto free_all;
8961
8962         strcpy(dev->name, name);
8963         dev->name_assign_type = name_assign_type;
8964         dev->group = INIT_NETDEV_GROUP;
8965         if (!dev->ethtool_ops)
8966                 dev->ethtool_ops = &default_ethtool_ops;
8967
8968         nf_hook_ingress_init(dev);
8969
8970         return dev;
8971
8972 free_all:
8973         free_netdev(dev);
8974         return NULL;
8975
8976 free_pcpu:
8977         free_percpu(dev->pcpu_refcnt);
8978 free_dev:
8979         netdev_freemem(dev);
8980         return NULL;
8981 }
8982 EXPORT_SYMBOL(alloc_netdev_mqs);
8983
8984 /**
8985  * free_netdev - free network device
8986  * @dev: device
8987  *
8988  * This function does the last stage of destroying an allocated device
8989  * interface. The reference to the device object is released. If this
8990  * is the last reference then it will be freed.Must be called in process
8991  * context.
8992  */
8993 void free_netdev(struct net_device *dev)
8994 {
8995         struct napi_struct *p, *n;
8996
8997         might_sleep();
8998         netif_free_tx_queues(dev);
8999         netif_free_rx_queues(dev);
9000
9001         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
9002
9003         /* Flush device addresses */
9004         dev_addr_flush(dev);
9005
9006         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
9007                 netif_napi_del(p);
9008
9009         free_percpu(dev->pcpu_refcnt);
9010         dev->pcpu_refcnt = NULL;
9011
9012         /*  Compatibility with error handling in drivers */
9013         if (dev->reg_state == NETREG_UNINITIALIZED) {
9014                 netdev_freemem(dev);
9015                 return;
9016         }
9017
9018         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
9019         dev->reg_state = NETREG_RELEASED;
9020
9021         /* will free via device release */
9022         put_device(&dev->dev);
9023 }
9024 EXPORT_SYMBOL(free_netdev);
9025
9026 /**
9027  *      synchronize_net -  Synchronize with packet receive processing
9028  *
9029  *      Wait for packets currently being received to be done.
9030  *      Does not block later packets from starting.
9031  */
9032 void synchronize_net(void)
9033 {
9034         might_sleep();
9035         if (rtnl_is_locked())
9036                 synchronize_rcu_expedited();
9037         else
9038                 synchronize_rcu();
9039 }
9040 EXPORT_SYMBOL(synchronize_net);
9041
9042 /**
9043  *      unregister_netdevice_queue - remove device from the kernel
9044  *      @dev: device
9045  *      @head: list
9046  *
9047  *      This function shuts down a device interface and removes it
9048  *      from the kernel tables.
9049  *      If head not NULL, device is queued to be unregistered later.
9050  *
9051  *      Callers must hold the rtnl semaphore.  You may want
9052  *      unregister_netdev() instead of this.
9053  */
9054
9055 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
9056 {
9057         ASSERT_RTNL();
9058
9059         if (head) {
9060                 list_move_tail(&dev->unreg_list, head);
9061         } else {
9062                 rollback_registered(dev);
9063                 /* Finish processing unregister after unlock */
9064                 net_set_todo(dev);
9065         }
9066 }
9067 EXPORT_SYMBOL(unregister_netdevice_queue);
9068
9069 /**
9070  *      unregister_netdevice_many - unregister many devices
9071  *      @head: list of devices
9072  *
9073  *  Note: As most callers use a stack allocated list_head,
9074  *  we force a list_del() to make sure stack wont be corrupted later.
9075  */
9076 void unregister_netdevice_many(struct list_head *head)
9077 {
9078         struct net_device *dev;
9079
9080         if (!list_empty(head)) {
9081                 rollback_registered_many(head);
9082                 list_for_each_entry(dev, head, unreg_list)
9083                         net_set_todo(dev);
9084                 list_del(head);
9085         }
9086 }
9087 EXPORT_SYMBOL(unregister_netdevice_many);
9088
9089 /**
9090  *      unregister_netdev - remove device from the kernel
9091  *      @dev: device
9092  *
9093  *      This function shuts down a device interface and removes it
9094  *      from the kernel tables.
9095  *
9096  *      This is just a wrapper for unregister_netdevice that takes
9097  *      the rtnl semaphore.  In general you want to use this and not
9098  *      unregister_netdevice.
9099  */
9100 void unregister_netdev(struct net_device *dev)
9101 {
9102         rtnl_lock();
9103         unregister_netdevice(dev);
9104         rtnl_unlock();
9105 }
9106 EXPORT_SYMBOL(unregister_netdev);
9107
9108 /**
9109  *      dev_change_net_namespace - move device to different nethost namespace
9110  *      @dev: device
9111  *      @net: network namespace
9112  *      @pat: If not NULL name pattern to try if the current device name
9113  *            is already taken in the destination network namespace.
9114  *
9115  *      This function shuts down a device interface and moves it
9116  *      to a new network namespace. On success 0 is returned, on
9117  *      a failure a netagive errno code is returned.
9118  *
9119  *      Callers must hold the rtnl semaphore.
9120  */
9121
9122 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
9123 {
9124         int err, new_nsid, new_ifindex;
9125
9126         ASSERT_RTNL();
9127
9128         /* Don't allow namespace local devices to be moved. */
9129         err = -EINVAL;
9130         if (dev->features & NETIF_F_NETNS_LOCAL)
9131                 goto out;
9132
9133         /* Ensure the device has been registrered */
9134         if (dev->reg_state != NETREG_REGISTERED)
9135                 goto out;
9136
9137         /* Get out if there is nothing todo */
9138         err = 0;
9139         if (net_eq(dev_net(dev), net))
9140                 goto out;
9141
9142         /* Pick the destination device name, and ensure
9143          * we can use it in the destination network namespace.
9144          */
9145         err = -EEXIST;
9146         if (__dev_get_by_name(net, dev->name)) {
9147                 /* We get here if we can't use the current device name */
9148                 if (!pat)
9149                         goto out;
9150                 err = dev_get_valid_name(net, dev, pat);
9151                 if (err < 0)
9152                         goto out;
9153         }
9154
9155         /*
9156          * And now a mini version of register_netdevice unregister_netdevice.
9157          */
9158
9159         /* If device is running close it first. */
9160         dev_close(dev);
9161
9162         /* And unlink it from device chain */
9163         unlist_netdevice(dev);
9164
9165         synchronize_net();
9166
9167         /* Shutdown queueing discipline. */
9168         dev_shutdown(dev);
9169
9170         /* Notify protocols, that we are about to destroy
9171          * this device. They should clean all the things.
9172          *
9173          * Note that dev->reg_state stays at NETREG_REGISTERED.
9174          * This is wanted because this way 8021q and macvlan know
9175          * the device is just moving and can keep their slaves up.
9176          */
9177         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9178         rcu_barrier();
9179
9180         new_nsid = peernet2id_alloc(dev_net(dev), net);
9181         /* If there is an ifindex conflict assign a new one */
9182         if (__dev_get_by_index(net, dev->ifindex))
9183                 new_ifindex = dev_new_index(net);
9184         else
9185                 new_ifindex = dev->ifindex;
9186
9187         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
9188                             new_ifindex);
9189
9190         /*
9191          *      Flush the unicast and multicast chains
9192          */
9193         dev_uc_flush(dev);
9194         dev_mc_flush(dev);
9195
9196         /* Send a netdev-removed uevent to the old namespace */
9197         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
9198         netdev_adjacent_del_links(dev);
9199
9200         /* Actually switch the network namespace */
9201         dev_net_set(dev, net);
9202         dev->ifindex = new_ifindex;
9203
9204         /* Send a netdev-add uevent to the new namespace */
9205         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
9206         netdev_adjacent_add_links(dev);
9207
9208         /* Fixup kobjects */
9209         err = device_rename(&dev->dev, dev->name);
9210         WARN_ON(err);
9211
9212         /* Add the device back in the hashes */
9213         list_netdevice(dev);
9214
9215         /* Notify protocols, that a new device appeared. */
9216         call_netdevice_notifiers(NETDEV_REGISTER, dev);
9217
9218         /*
9219          *      Prevent userspace races by waiting until the network
9220          *      device is fully setup before sending notifications.
9221          */
9222         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9223
9224         synchronize_net();
9225         err = 0;
9226 out:
9227         return err;
9228 }
9229 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
9230
9231 static int dev_cpu_dead(unsigned int oldcpu)
9232 {
9233         struct sk_buff **list_skb;
9234         struct sk_buff *skb;
9235         unsigned int cpu;
9236         struct softnet_data *sd, *oldsd, *remsd = NULL;
9237
9238         local_irq_disable();
9239         cpu = smp_processor_id();
9240         sd = &per_cpu(softnet_data, cpu);
9241         oldsd = &per_cpu(softnet_data, oldcpu);
9242
9243         /* Find end of our completion_queue. */
9244         list_skb = &sd->completion_queue;
9245         while (*list_skb)
9246                 list_skb = &(*list_skb)->next;
9247         /* Append completion queue from offline CPU. */
9248         *list_skb = oldsd->completion_queue;
9249         oldsd->completion_queue = NULL;
9250
9251         /* Append output queue from offline CPU. */
9252         if (oldsd->output_queue) {
9253                 *sd->output_queue_tailp = oldsd->output_queue;
9254                 sd->output_queue_tailp = oldsd->output_queue_tailp;
9255                 oldsd->output_queue = NULL;
9256                 oldsd->output_queue_tailp = &oldsd->output_queue;
9257         }
9258         /* Append NAPI poll list from offline CPU, with one exception :
9259          * process_backlog() must be called by cpu owning percpu backlog.
9260          * We properly handle process_queue & input_pkt_queue later.
9261          */
9262         while (!list_empty(&oldsd->poll_list)) {
9263                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
9264                                                             struct napi_struct,
9265                                                             poll_list);
9266
9267                 list_del_init(&napi->poll_list);
9268                 if (napi->poll == process_backlog)
9269                         napi->state = 0;
9270                 else
9271                         ____napi_schedule(sd, napi);
9272         }
9273
9274         raise_softirq_irqoff(NET_TX_SOFTIRQ);
9275         local_irq_enable();
9276
9277 #ifdef CONFIG_RPS
9278         remsd = oldsd->rps_ipi_list;
9279         oldsd->rps_ipi_list = NULL;
9280 #endif
9281         /* send out pending IPI's on offline CPU */
9282         net_rps_send_ipi(remsd);
9283
9284         /* Process offline CPU's input_pkt_queue */
9285         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
9286                 netif_rx_ni(skb);
9287                 input_queue_head_incr(oldsd);
9288         }
9289         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
9290                 netif_rx_ni(skb);
9291                 input_queue_head_incr(oldsd);
9292         }
9293
9294         return 0;
9295 }
9296
9297 /**
9298  *      netdev_increment_features - increment feature set by one
9299  *      @all: current feature set
9300  *      @one: new feature set
9301  *      @mask: mask feature set
9302  *
9303  *      Computes a new feature set after adding a device with feature set
9304  *      @one to the master device with current feature set @all.  Will not
9305  *      enable anything that is off in @mask. Returns the new feature set.
9306  */
9307 netdev_features_t netdev_increment_features(netdev_features_t all,
9308         netdev_features_t one, netdev_features_t mask)
9309 {
9310         if (mask & NETIF_F_HW_CSUM)
9311                 mask |= NETIF_F_CSUM_MASK;
9312         mask |= NETIF_F_VLAN_CHALLENGED;
9313
9314         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
9315         all &= one | ~NETIF_F_ALL_FOR_ALL;
9316
9317         /* If one device supports hw checksumming, set for all. */
9318         if (all & NETIF_F_HW_CSUM)
9319                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
9320
9321         return all;
9322 }
9323 EXPORT_SYMBOL(netdev_increment_features);
9324
9325 static struct hlist_head * __net_init netdev_create_hash(void)
9326 {
9327         int i;
9328         struct hlist_head *hash;
9329
9330         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
9331         if (hash != NULL)
9332                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
9333                         INIT_HLIST_HEAD(&hash[i]);
9334
9335         return hash;
9336 }
9337
9338 /* Initialize per network namespace state */
9339 static int __net_init netdev_init(struct net *net)
9340 {
9341         BUILD_BUG_ON(GRO_HASH_BUCKETS >
9342                      8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask));
9343
9344         if (net != &init_net)
9345                 INIT_LIST_HEAD(&net->dev_base_head);
9346
9347         net->dev_name_head = netdev_create_hash();
9348         if (net->dev_name_head == NULL)
9349                 goto err_name;
9350
9351         net->dev_index_head = netdev_create_hash();
9352         if (net->dev_index_head == NULL)
9353                 goto err_idx;
9354
9355         return 0;
9356
9357 err_idx:
9358         kfree(net->dev_name_head);
9359 err_name:
9360         return -ENOMEM;
9361 }
9362
9363 /**
9364  *      netdev_drivername - network driver for the device
9365  *      @dev: network device
9366  *
9367  *      Determine network driver for device.
9368  */
9369 const char *netdev_drivername(const struct net_device *dev)
9370 {
9371         const struct device_driver *driver;
9372         const struct device *parent;
9373         const char *empty = "";
9374
9375         parent = dev->dev.parent;
9376         if (!parent)
9377                 return empty;
9378
9379         driver = parent->driver;
9380         if (driver && driver->name)
9381                 return driver->name;
9382         return empty;
9383 }
9384
9385 static void __netdev_printk(const char *level, const struct net_device *dev,
9386                             struct va_format *vaf)
9387 {
9388         if (dev && dev->dev.parent) {
9389                 dev_printk_emit(level[1] - '0',
9390                                 dev->dev.parent,
9391                                 "%s %s %s%s: %pV",
9392                                 dev_driver_string(dev->dev.parent),
9393                                 dev_name(dev->dev.parent),
9394                                 netdev_name(dev), netdev_reg_state(dev),
9395                                 vaf);
9396         } else if (dev) {
9397                 printk("%s%s%s: %pV",
9398                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
9399         } else {
9400                 printk("%s(NULL net_device): %pV", level, vaf);
9401         }
9402 }
9403
9404 void netdev_printk(const char *level, const struct net_device *dev,
9405                    const char *format, ...)
9406 {
9407         struct va_format vaf;
9408         va_list args;
9409
9410         va_start(args, format);
9411
9412         vaf.fmt = format;
9413         vaf.va = &args;
9414
9415         __netdev_printk(level, dev, &vaf);
9416
9417         va_end(args);
9418 }
9419 EXPORT_SYMBOL(netdev_printk);
9420
9421 #define define_netdev_printk_level(func, level)                 \
9422 void func(const struct net_device *dev, const char *fmt, ...)   \
9423 {                                                               \
9424         struct va_format vaf;                                   \
9425         va_list args;                                           \
9426                                                                 \
9427         va_start(args, fmt);                                    \
9428                                                                 \
9429         vaf.fmt = fmt;                                          \
9430         vaf.va = &args;                                         \
9431                                                                 \
9432         __netdev_printk(level, dev, &vaf);                      \
9433                                                                 \
9434         va_end(args);                                           \
9435 }                                                               \
9436 EXPORT_SYMBOL(func);
9437
9438 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
9439 define_netdev_printk_level(netdev_alert, KERN_ALERT);
9440 define_netdev_printk_level(netdev_crit, KERN_CRIT);
9441 define_netdev_printk_level(netdev_err, KERN_ERR);
9442 define_netdev_printk_level(netdev_warn, KERN_WARNING);
9443 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
9444 define_netdev_printk_level(netdev_info, KERN_INFO);
9445
9446 static void __net_exit netdev_exit(struct net *net)
9447 {
9448         kfree(net->dev_name_head);
9449         kfree(net->dev_index_head);
9450         if (net != &init_net)
9451                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
9452 }
9453
9454 static struct pernet_operations __net_initdata netdev_net_ops = {
9455         .init = netdev_init,
9456         .exit = netdev_exit,
9457 };
9458
9459 static void __net_exit default_device_exit(struct net *net)
9460 {
9461         struct net_device *dev, *aux;
9462         /*
9463          * Push all migratable network devices back to the
9464          * initial network namespace
9465          */
9466         rtnl_lock();
9467         for_each_netdev_safe(net, dev, aux) {
9468                 int err;
9469                 char fb_name[IFNAMSIZ];
9470
9471                 /* Ignore unmoveable devices (i.e. loopback) */
9472                 if (dev->features & NETIF_F_NETNS_LOCAL)
9473                         continue;
9474
9475                 /* Leave virtual devices for the generic cleanup */
9476                 if (dev->rtnl_link_ops)
9477                         continue;
9478
9479                 /* Push remaining network devices to init_net */
9480                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
9481                 err = dev_change_net_namespace(dev, &init_net, fb_name);
9482                 if (err) {
9483                         pr_emerg("%s: failed to move %s to init_net: %d\n",
9484                                  __func__, dev->name, err);
9485                         BUG();
9486                 }
9487         }
9488         rtnl_unlock();
9489 }
9490
9491 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
9492 {
9493         /* Return with the rtnl_lock held when there are no network
9494          * devices unregistering in any network namespace in net_list.
9495          */
9496         struct net *net;
9497         bool unregistering;
9498         DEFINE_WAIT_FUNC(wait, woken_wake_function);
9499
9500         add_wait_queue(&netdev_unregistering_wq, &wait);
9501         for (;;) {
9502                 unregistering = false;
9503                 rtnl_lock();
9504                 list_for_each_entry(net, net_list, exit_list) {
9505                         if (net->dev_unreg_count > 0) {
9506                                 unregistering = true;
9507                                 break;
9508                         }
9509                 }
9510                 if (!unregistering)
9511                         break;
9512                 __rtnl_unlock();
9513
9514                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
9515         }
9516         remove_wait_queue(&netdev_unregistering_wq, &wait);
9517 }
9518
9519 static void __net_exit default_device_exit_batch(struct list_head *net_list)
9520 {
9521         /* At exit all network devices most be removed from a network
9522          * namespace.  Do this in the reverse order of registration.
9523          * Do this across as many network namespaces as possible to
9524          * improve batching efficiency.
9525          */
9526         struct net_device *dev;
9527         struct net *net;
9528         LIST_HEAD(dev_kill_list);
9529
9530         /* To prevent network device cleanup code from dereferencing
9531          * loopback devices or network devices that have been freed
9532          * wait here for all pending unregistrations to complete,
9533          * before unregistring the loopback device and allowing the
9534          * network namespace be freed.
9535          *
9536          * The netdev todo list containing all network devices
9537          * unregistrations that happen in default_device_exit_batch
9538          * will run in the rtnl_unlock() at the end of
9539          * default_device_exit_batch.
9540          */
9541         rtnl_lock_unregistering(net_list);
9542         list_for_each_entry(net, net_list, exit_list) {
9543                 for_each_netdev_reverse(net, dev) {
9544                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
9545                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
9546                         else
9547                                 unregister_netdevice_queue(dev, &dev_kill_list);
9548                 }
9549         }
9550         unregister_netdevice_many(&dev_kill_list);
9551         rtnl_unlock();
9552 }
9553
9554 static struct pernet_operations __net_initdata default_device_ops = {
9555         .exit = default_device_exit,
9556         .exit_batch = default_device_exit_batch,
9557 };
9558
9559 /*
9560  *      Initialize the DEV module. At boot time this walks the device list and
9561  *      unhooks any devices that fail to initialise (normally hardware not
9562  *      present) and leaves us with a valid list of present and active devices.
9563  *
9564  */
9565
9566 /*
9567  *       This is called single threaded during boot, so no need
9568  *       to take the rtnl semaphore.
9569  */
9570 static int __init net_dev_init(void)
9571 {
9572         int i, rc = -ENOMEM;
9573
9574         BUG_ON(!dev_boot_phase);
9575
9576         if (dev_proc_init())
9577                 goto out;
9578
9579         if (netdev_kobject_init())
9580                 goto out;
9581
9582         INIT_LIST_HEAD(&ptype_all);
9583         for (i = 0; i < PTYPE_HASH_SIZE; i++)
9584                 INIT_LIST_HEAD(&ptype_base[i]);
9585
9586         INIT_LIST_HEAD(&offload_base);
9587
9588         if (register_pernet_subsys(&netdev_net_ops))
9589                 goto out;
9590
9591         /*
9592          *      Initialise the packet receive queues.
9593          */
9594
9595         for_each_possible_cpu(i) {
9596                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
9597                 struct softnet_data *sd = &per_cpu(softnet_data, i);
9598
9599                 INIT_WORK(flush, flush_backlog);
9600
9601                 skb_queue_head_init(&sd->input_pkt_queue);
9602                 skb_queue_head_init(&sd->process_queue);
9603 #ifdef CONFIG_XFRM_OFFLOAD
9604                 skb_queue_head_init(&sd->xfrm_backlog);
9605 #endif
9606                 INIT_LIST_HEAD(&sd->poll_list);
9607                 sd->output_queue_tailp = &sd->output_queue;
9608 #ifdef CONFIG_RPS
9609                 sd->csd.func = rps_trigger_softirq;
9610                 sd->csd.info = sd;
9611                 sd->cpu = i;
9612 #endif
9613
9614                 init_gro_hash(&sd->backlog);
9615                 sd->backlog.poll = process_backlog;
9616                 sd->backlog.weight = weight_p;
9617         }
9618
9619         dev_boot_phase = 0;
9620
9621         /* The loopback device is special if any other network devices
9622          * is present in a network namespace the loopback device must
9623          * be present. Since we now dynamically allocate and free the
9624          * loopback device ensure this invariant is maintained by
9625          * keeping the loopback device as the first device on the
9626          * list of network devices.  Ensuring the loopback devices
9627          * is the first device that appears and the last network device
9628          * that disappears.
9629          */
9630         if (register_pernet_device(&loopback_net_ops))
9631                 goto out;
9632
9633         if (register_pernet_device(&default_device_ops))
9634                 goto out;
9635
9636         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9637         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
9638
9639         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9640                                        NULL, dev_cpu_dead);
9641         WARN_ON(rc < 0);
9642         rc = 0;
9643 out:
9644         return rc;
9645 }
9646
9647 subsys_initcall(net_dev_init);