Merge tag 'nfsd-5.11-1' of git://git.linux-nfs.org/projects/cel/cel-2.6
[linux-2.6-microblaze.git] / net / core / dev.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *      Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:        Ross Biro
7  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *      Additional Authors:
11  *              Florian la Roche <rzsfl@rz.uni-sb.de>
12  *              Alan Cox <gw4pts@gw4pts.ampr.org>
13  *              David Hinds <dahinds@users.sourceforge.net>
14  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *              Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *      Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *              Alan Cox        :       device private ioctl copies fields back.
24  *              Alan Cox        :       Transmit queue code does relevant
25  *                                      stunts to keep the queue safe.
26  *              Alan Cox        :       Fixed double lock.
27  *              Alan Cox        :       Fixed promisc NULL pointer trap
28  *              ????????        :       Support the full private ioctl range
29  *              Alan Cox        :       Moved ioctl permission check into
30  *                                      drivers
31  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
32  *              Alan Cox        :       100 backlog just doesn't cut it when
33  *                                      you start doing multicast video 8)
34  *              Alan Cox        :       Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *              Alan Cox        :       Took out transmit every packet pass
37  *                                      Saved a few bytes in the ioctl handler
38  *              Alan Cox        :       Network driver sets packet type before
39  *                                      calling netif_rx. Saves a function
40  *                                      call a packet.
41  *              Alan Cox        :       Hashed net_bh()
42  *              Richard Kooijman:       Timestamp fixes.
43  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
44  *              Alan Cox        :       Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *                                      changes.
47  *              Rudi Cilibrasi  :       Pass the right thing to
48  *                                      set_mac_address()
49  *              Dave Miller     :       32bit quantity for the device lock to
50  *                                      make it work out on a Sparc.
51  *              Bjorn Ekwall    :       Added KERNELD hack.
52  *              Alan Cox        :       Cleaned up the backlog initialise.
53  *              Craig Metz      :       SIOCGIFCONF fix if space for under
54  *                                      1 device.
55  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
56  *                                      is no device open function.
57  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
58  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
59  *              Cyrus Durgin    :       Cleaned for KMOD
60  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
61  *                                      A network device unload needs to purge
62  *                                      the backlog queue.
63  *      Paul Rusty Russell      :       SIOCSIFNAME
64  *              Pekka Riikonen  :       Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *                                      - netif_rx() feedback
69  */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/bpf.h>
95 #include <linux/bpf_trace.h>
96 #include <net/net_namespace.h>
97 #include <net/sock.h>
98 #include <net/busy_poll.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dsa.h>
102 #include <net/dst.h>
103 #include <net/dst_metadata.h>
104 #include <net/pkt_sched.h>
105 #include <net/pkt_cls.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/iw_handler.h>
115 #include <asm/current.h>
116 #include <linux/audit.h>
117 #include <linux/dmaengine.h>
118 #include <linux/err.h>
119 #include <linux/ctype.h>
120 #include <linux/if_arp.h>
121 #include <linux/if_vlan.h>
122 #include <linux/ip.h>
123 #include <net/ip.h>
124 #include <net/mpls.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/inetdevice.h>
133 #include <linux/cpu_rmap.h>
134 #include <linux/static_key.h>
135 #include <linux/hashtable.h>
136 #include <linux/vmalloc.h>
137 #include <linux/if_macvlan.h>
138 #include <linux/errqueue.h>
139 #include <linux/hrtimer.h>
140 #include <linux/netfilter_ingress.h>
141 #include <linux/crash_dump.h>
142 #include <linux/sctp.h>
143 #include <net/udp_tunnel.h>
144 #include <linux/net_namespace.h>
145 #include <linux/indirect_call_wrapper.h>
146 #include <net/devlink.h>
147 #include <linux/pm_runtime.h>
148 #include <linux/prandom.h>
149
150 #include "net-sysfs.h"
151
152 #define MAX_GRO_SKBS 8
153
154 /* This should be increased if a protocol with a bigger head is added. */
155 #define GRO_MAX_HEAD (MAX_HEADER + 128)
156
157 static DEFINE_SPINLOCK(ptype_lock);
158 static DEFINE_SPINLOCK(offload_lock);
159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160 struct list_head ptype_all __read_mostly;       /* Taps */
161 static struct list_head offload_base __read_mostly;
162
163 static int netif_rx_internal(struct sk_buff *skb);
164 static int call_netdevice_notifiers_info(unsigned long val,
165                                          struct netdev_notifier_info *info);
166 static int call_netdevice_notifiers_extack(unsigned long val,
167                                            struct net_device *dev,
168                                            struct netlink_ext_ack *extack);
169 static struct napi_struct *napi_by_id(unsigned int napi_id);
170
171 /*
172  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
173  * semaphore.
174  *
175  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
176  *
177  * Writers must hold the rtnl semaphore while they loop through the
178  * dev_base_head list, and hold dev_base_lock for writing when they do the
179  * actual updates.  This allows pure readers to access the list even
180  * while a writer is preparing to update it.
181  *
182  * To put it another way, dev_base_lock is held for writing only to
183  * protect against pure readers; the rtnl semaphore provides the
184  * protection against other writers.
185  *
186  * See, for example usages, register_netdevice() and
187  * unregister_netdevice(), which must be called with the rtnl
188  * semaphore held.
189  */
190 DEFINE_RWLOCK(dev_base_lock);
191 EXPORT_SYMBOL(dev_base_lock);
192
193 static DEFINE_MUTEX(ifalias_mutex);
194
195 /* protects napi_hash addition/deletion and napi_gen_id */
196 static DEFINE_SPINLOCK(napi_hash_lock);
197
198 static unsigned int napi_gen_id = NR_CPUS;
199 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
200
201 static DECLARE_RWSEM(devnet_rename_sem);
202
203 static inline void dev_base_seq_inc(struct net *net)
204 {
205         while (++net->dev_base_seq == 0)
206                 ;
207 }
208
209 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
210 {
211         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
212
213         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
214 }
215
216 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
217 {
218         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
219 }
220
221 static inline void rps_lock(struct softnet_data *sd)
222 {
223 #ifdef CONFIG_RPS
224         spin_lock(&sd->input_pkt_queue.lock);
225 #endif
226 }
227
228 static inline void rps_unlock(struct softnet_data *sd)
229 {
230 #ifdef CONFIG_RPS
231         spin_unlock(&sd->input_pkt_queue.lock);
232 #endif
233 }
234
235 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
236                                                        const char *name)
237 {
238         struct netdev_name_node *name_node;
239
240         name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
241         if (!name_node)
242                 return NULL;
243         INIT_HLIST_NODE(&name_node->hlist);
244         name_node->dev = dev;
245         name_node->name = name;
246         return name_node;
247 }
248
249 static struct netdev_name_node *
250 netdev_name_node_head_alloc(struct net_device *dev)
251 {
252         struct netdev_name_node *name_node;
253
254         name_node = netdev_name_node_alloc(dev, dev->name);
255         if (!name_node)
256                 return NULL;
257         INIT_LIST_HEAD(&name_node->list);
258         return name_node;
259 }
260
261 static void netdev_name_node_free(struct netdev_name_node *name_node)
262 {
263         kfree(name_node);
264 }
265
266 static void netdev_name_node_add(struct net *net,
267                                  struct netdev_name_node *name_node)
268 {
269         hlist_add_head_rcu(&name_node->hlist,
270                            dev_name_hash(net, name_node->name));
271 }
272
273 static void netdev_name_node_del(struct netdev_name_node *name_node)
274 {
275         hlist_del_rcu(&name_node->hlist);
276 }
277
278 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
279                                                         const char *name)
280 {
281         struct hlist_head *head = dev_name_hash(net, name);
282         struct netdev_name_node *name_node;
283
284         hlist_for_each_entry(name_node, head, hlist)
285                 if (!strcmp(name_node->name, name))
286                         return name_node;
287         return NULL;
288 }
289
290 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
291                                                             const char *name)
292 {
293         struct hlist_head *head = dev_name_hash(net, name);
294         struct netdev_name_node *name_node;
295
296         hlist_for_each_entry_rcu(name_node, head, hlist)
297                 if (!strcmp(name_node->name, name))
298                         return name_node;
299         return NULL;
300 }
301
302 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
303 {
304         struct netdev_name_node *name_node;
305         struct net *net = dev_net(dev);
306
307         name_node = netdev_name_node_lookup(net, name);
308         if (name_node)
309                 return -EEXIST;
310         name_node = netdev_name_node_alloc(dev, name);
311         if (!name_node)
312                 return -ENOMEM;
313         netdev_name_node_add(net, name_node);
314         /* The node that holds dev->name acts as a head of per-device list. */
315         list_add_tail(&name_node->list, &dev->name_node->list);
316
317         return 0;
318 }
319 EXPORT_SYMBOL(netdev_name_node_alt_create);
320
321 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
322 {
323         list_del(&name_node->list);
324         netdev_name_node_del(name_node);
325         kfree(name_node->name);
326         netdev_name_node_free(name_node);
327 }
328
329 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
330 {
331         struct netdev_name_node *name_node;
332         struct net *net = dev_net(dev);
333
334         name_node = netdev_name_node_lookup(net, name);
335         if (!name_node)
336                 return -ENOENT;
337         /* lookup might have found our primary name or a name belonging
338          * to another device.
339          */
340         if (name_node == dev->name_node || name_node->dev != dev)
341                 return -EINVAL;
342
343         __netdev_name_node_alt_destroy(name_node);
344
345         return 0;
346 }
347 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
348
349 static void netdev_name_node_alt_flush(struct net_device *dev)
350 {
351         struct netdev_name_node *name_node, *tmp;
352
353         list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
354                 __netdev_name_node_alt_destroy(name_node);
355 }
356
357 /* Device list insertion */
358 static void list_netdevice(struct net_device *dev)
359 {
360         struct net *net = dev_net(dev);
361
362         ASSERT_RTNL();
363
364         write_lock_bh(&dev_base_lock);
365         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
366         netdev_name_node_add(net, dev->name_node);
367         hlist_add_head_rcu(&dev->index_hlist,
368                            dev_index_hash(net, dev->ifindex));
369         write_unlock_bh(&dev_base_lock);
370
371         dev_base_seq_inc(net);
372 }
373
374 /* Device list removal
375  * caller must respect a RCU grace period before freeing/reusing dev
376  */
377 static void unlist_netdevice(struct net_device *dev)
378 {
379         ASSERT_RTNL();
380
381         /* Unlink dev from the device chain */
382         write_lock_bh(&dev_base_lock);
383         list_del_rcu(&dev->dev_list);
384         netdev_name_node_del(dev->name_node);
385         hlist_del_rcu(&dev->index_hlist);
386         write_unlock_bh(&dev_base_lock);
387
388         dev_base_seq_inc(dev_net(dev));
389 }
390
391 /*
392  *      Our notifier list
393  */
394
395 static RAW_NOTIFIER_HEAD(netdev_chain);
396
397 /*
398  *      Device drivers call our routines to queue packets here. We empty the
399  *      queue in the local softnet handler.
400  */
401
402 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
403 EXPORT_PER_CPU_SYMBOL(softnet_data);
404
405 #ifdef CONFIG_LOCKDEP
406 /*
407  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
408  * according to dev->type
409  */
410 static const unsigned short netdev_lock_type[] = {
411          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
412          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
413          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
414          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
415          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
416          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
417          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
418          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
419          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
420          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
421          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
422          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
423          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
424          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
425          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
426
427 static const char *const netdev_lock_name[] = {
428         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
429         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
430         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
431         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
432         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
433         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
434         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
435         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
436         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
437         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
438         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
439         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
440         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
441         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
442         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
443
444 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
445 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
446
447 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
448 {
449         int i;
450
451         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
452                 if (netdev_lock_type[i] == dev_type)
453                         return i;
454         /* the last key is used by default */
455         return ARRAY_SIZE(netdev_lock_type) - 1;
456 }
457
458 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
459                                                  unsigned short dev_type)
460 {
461         int i;
462
463         i = netdev_lock_pos(dev_type);
464         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
465                                    netdev_lock_name[i]);
466 }
467
468 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
469 {
470         int i;
471
472         i = netdev_lock_pos(dev->type);
473         lockdep_set_class_and_name(&dev->addr_list_lock,
474                                    &netdev_addr_lock_key[i],
475                                    netdev_lock_name[i]);
476 }
477 #else
478 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
479                                                  unsigned short dev_type)
480 {
481 }
482
483 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
484 {
485 }
486 #endif
487
488 /*******************************************************************************
489  *
490  *              Protocol management and registration routines
491  *
492  *******************************************************************************/
493
494
495 /*
496  *      Add a protocol ID to the list. Now that the input handler is
497  *      smarter we can dispense with all the messy stuff that used to be
498  *      here.
499  *
500  *      BEWARE!!! Protocol handlers, mangling input packets,
501  *      MUST BE last in hash buckets and checking protocol handlers
502  *      MUST start from promiscuous ptype_all chain in net_bh.
503  *      It is true now, do not change it.
504  *      Explanation follows: if protocol handler, mangling packet, will
505  *      be the first on list, it is not able to sense, that packet
506  *      is cloned and should be copied-on-write, so that it will
507  *      change it and subsequent readers will get broken packet.
508  *                                                      --ANK (980803)
509  */
510
511 static inline struct list_head *ptype_head(const struct packet_type *pt)
512 {
513         if (pt->type == htons(ETH_P_ALL))
514                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
515         else
516                 return pt->dev ? &pt->dev->ptype_specific :
517                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
518 }
519
520 /**
521  *      dev_add_pack - add packet handler
522  *      @pt: packet type declaration
523  *
524  *      Add a protocol handler to the networking stack. The passed &packet_type
525  *      is linked into kernel lists and may not be freed until it has been
526  *      removed from the kernel lists.
527  *
528  *      This call does not sleep therefore it can not
529  *      guarantee all CPU's that are in middle of receiving packets
530  *      will see the new packet type (until the next received packet).
531  */
532
533 void dev_add_pack(struct packet_type *pt)
534 {
535         struct list_head *head = ptype_head(pt);
536
537         spin_lock(&ptype_lock);
538         list_add_rcu(&pt->list, head);
539         spin_unlock(&ptype_lock);
540 }
541 EXPORT_SYMBOL(dev_add_pack);
542
543 /**
544  *      __dev_remove_pack        - remove packet handler
545  *      @pt: packet type declaration
546  *
547  *      Remove a protocol handler that was previously added to the kernel
548  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
549  *      from the kernel lists and can be freed or reused once this function
550  *      returns.
551  *
552  *      The packet type might still be in use by receivers
553  *      and must not be freed until after all the CPU's have gone
554  *      through a quiescent state.
555  */
556 void __dev_remove_pack(struct packet_type *pt)
557 {
558         struct list_head *head = ptype_head(pt);
559         struct packet_type *pt1;
560
561         spin_lock(&ptype_lock);
562
563         list_for_each_entry(pt1, head, list) {
564                 if (pt == pt1) {
565                         list_del_rcu(&pt->list);
566                         goto out;
567                 }
568         }
569
570         pr_warn("dev_remove_pack: %p not found\n", pt);
571 out:
572         spin_unlock(&ptype_lock);
573 }
574 EXPORT_SYMBOL(__dev_remove_pack);
575
576 /**
577  *      dev_remove_pack  - remove packet handler
578  *      @pt: packet type declaration
579  *
580  *      Remove a protocol handler that was previously added to the kernel
581  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
582  *      from the kernel lists and can be freed or reused once this function
583  *      returns.
584  *
585  *      This call sleeps to guarantee that no CPU is looking at the packet
586  *      type after return.
587  */
588 void dev_remove_pack(struct packet_type *pt)
589 {
590         __dev_remove_pack(pt);
591
592         synchronize_net();
593 }
594 EXPORT_SYMBOL(dev_remove_pack);
595
596
597 /**
598  *      dev_add_offload - register offload handlers
599  *      @po: protocol offload declaration
600  *
601  *      Add protocol offload handlers to the networking stack. The passed
602  *      &proto_offload is linked into kernel lists and may not be freed until
603  *      it has been removed from the kernel lists.
604  *
605  *      This call does not sleep therefore it can not
606  *      guarantee all CPU's that are in middle of receiving packets
607  *      will see the new offload handlers (until the next received packet).
608  */
609 void dev_add_offload(struct packet_offload *po)
610 {
611         struct packet_offload *elem;
612
613         spin_lock(&offload_lock);
614         list_for_each_entry(elem, &offload_base, list) {
615                 if (po->priority < elem->priority)
616                         break;
617         }
618         list_add_rcu(&po->list, elem->list.prev);
619         spin_unlock(&offload_lock);
620 }
621 EXPORT_SYMBOL(dev_add_offload);
622
623 /**
624  *      __dev_remove_offload     - remove offload handler
625  *      @po: packet offload declaration
626  *
627  *      Remove a protocol offload handler that was previously added to the
628  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
629  *      is removed from the kernel lists and can be freed or reused once this
630  *      function returns.
631  *
632  *      The packet type might still be in use by receivers
633  *      and must not be freed until after all the CPU's have gone
634  *      through a quiescent state.
635  */
636 static void __dev_remove_offload(struct packet_offload *po)
637 {
638         struct list_head *head = &offload_base;
639         struct packet_offload *po1;
640
641         spin_lock(&offload_lock);
642
643         list_for_each_entry(po1, head, list) {
644                 if (po == po1) {
645                         list_del_rcu(&po->list);
646                         goto out;
647                 }
648         }
649
650         pr_warn("dev_remove_offload: %p not found\n", po);
651 out:
652         spin_unlock(&offload_lock);
653 }
654
655 /**
656  *      dev_remove_offload       - remove packet offload handler
657  *      @po: packet offload declaration
658  *
659  *      Remove a packet offload handler that was previously added to the kernel
660  *      offload handlers by dev_add_offload(). The passed &offload_type is
661  *      removed from the kernel lists and can be freed or reused once this
662  *      function returns.
663  *
664  *      This call sleeps to guarantee that no CPU is looking at the packet
665  *      type after return.
666  */
667 void dev_remove_offload(struct packet_offload *po)
668 {
669         __dev_remove_offload(po);
670
671         synchronize_net();
672 }
673 EXPORT_SYMBOL(dev_remove_offload);
674
675 /******************************************************************************
676  *
677  *                    Device Boot-time Settings Routines
678  *
679  ******************************************************************************/
680
681 /* Boot time configuration table */
682 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
683
684 /**
685  *      netdev_boot_setup_add   - add new setup entry
686  *      @name: name of the device
687  *      @map: configured settings for the device
688  *
689  *      Adds new setup entry to the dev_boot_setup list.  The function
690  *      returns 0 on error and 1 on success.  This is a generic routine to
691  *      all netdevices.
692  */
693 static int netdev_boot_setup_add(char *name, struct ifmap *map)
694 {
695         struct netdev_boot_setup *s;
696         int i;
697
698         s = dev_boot_setup;
699         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
700                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
701                         memset(s[i].name, 0, sizeof(s[i].name));
702                         strlcpy(s[i].name, name, IFNAMSIZ);
703                         memcpy(&s[i].map, map, sizeof(s[i].map));
704                         break;
705                 }
706         }
707
708         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
709 }
710
711 /**
712  * netdev_boot_setup_check      - check boot time settings
713  * @dev: the netdevice
714  *
715  * Check boot time settings for the device.
716  * The found settings are set for the device to be used
717  * later in the device probing.
718  * Returns 0 if no settings found, 1 if they are.
719  */
720 int netdev_boot_setup_check(struct net_device *dev)
721 {
722         struct netdev_boot_setup *s = dev_boot_setup;
723         int i;
724
725         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
726                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
727                     !strcmp(dev->name, s[i].name)) {
728                         dev->irq = s[i].map.irq;
729                         dev->base_addr = s[i].map.base_addr;
730                         dev->mem_start = s[i].map.mem_start;
731                         dev->mem_end = s[i].map.mem_end;
732                         return 1;
733                 }
734         }
735         return 0;
736 }
737 EXPORT_SYMBOL(netdev_boot_setup_check);
738
739
740 /**
741  * netdev_boot_base     - get address from boot time settings
742  * @prefix: prefix for network device
743  * @unit: id for network device
744  *
745  * Check boot time settings for the base address of device.
746  * The found settings are set for the device to be used
747  * later in the device probing.
748  * Returns 0 if no settings found.
749  */
750 unsigned long netdev_boot_base(const char *prefix, int unit)
751 {
752         const struct netdev_boot_setup *s = dev_boot_setup;
753         char name[IFNAMSIZ];
754         int i;
755
756         sprintf(name, "%s%d", prefix, unit);
757
758         /*
759          * If device already registered then return base of 1
760          * to indicate not to probe for this interface
761          */
762         if (__dev_get_by_name(&init_net, name))
763                 return 1;
764
765         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
766                 if (!strcmp(name, s[i].name))
767                         return s[i].map.base_addr;
768         return 0;
769 }
770
771 /*
772  * Saves at boot time configured settings for any netdevice.
773  */
774 int __init netdev_boot_setup(char *str)
775 {
776         int ints[5];
777         struct ifmap map;
778
779         str = get_options(str, ARRAY_SIZE(ints), ints);
780         if (!str || !*str)
781                 return 0;
782
783         /* Save settings */
784         memset(&map, 0, sizeof(map));
785         if (ints[0] > 0)
786                 map.irq = ints[1];
787         if (ints[0] > 1)
788                 map.base_addr = ints[2];
789         if (ints[0] > 2)
790                 map.mem_start = ints[3];
791         if (ints[0] > 3)
792                 map.mem_end = ints[4];
793
794         /* Add new entry to the list */
795         return netdev_boot_setup_add(str, &map);
796 }
797
798 __setup("netdev=", netdev_boot_setup);
799
800 /*******************************************************************************
801  *
802  *                          Device Interface Subroutines
803  *
804  *******************************************************************************/
805
806 /**
807  *      dev_get_iflink  - get 'iflink' value of a interface
808  *      @dev: targeted interface
809  *
810  *      Indicates the ifindex the interface is linked to.
811  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
812  */
813
814 int dev_get_iflink(const struct net_device *dev)
815 {
816         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
817                 return dev->netdev_ops->ndo_get_iflink(dev);
818
819         return dev->ifindex;
820 }
821 EXPORT_SYMBOL(dev_get_iflink);
822
823 /**
824  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
825  *      @dev: targeted interface
826  *      @skb: The packet.
827  *
828  *      For better visibility of tunnel traffic OVS needs to retrieve
829  *      egress tunnel information for a packet. Following API allows
830  *      user to get this info.
831  */
832 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
833 {
834         struct ip_tunnel_info *info;
835
836         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
837                 return -EINVAL;
838
839         info = skb_tunnel_info_unclone(skb);
840         if (!info)
841                 return -ENOMEM;
842         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
843                 return -EINVAL;
844
845         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
846 }
847 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
848
849 /**
850  *      __dev_get_by_name       - find a device by its name
851  *      @net: the applicable net namespace
852  *      @name: name to find
853  *
854  *      Find an interface by name. Must be called under RTNL semaphore
855  *      or @dev_base_lock. If the name is found a pointer to the device
856  *      is returned. If the name is not found then %NULL is returned. The
857  *      reference counters are not incremented so the caller must be
858  *      careful with locks.
859  */
860
861 struct net_device *__dev_get_by_name(struct net *net, const char *name)
862 {
863         struct netdev_name_node *node_name;
864
865         node_name = netdev_name_node_lookup(net, name);
866         return node_name ? node_name->dev : NULL;
867 }
868 EXPORT_SYMBOL(__dev_get_by_name);
869
870 /**
871  * dev_get_by_name_rcu  - find a device by its name
872  * @net: the applicable net namespace
873  * @name: name to find
874  *
875  * Find an interface by name.
876  * If the name is found a pointer to the device is returned.
877  * If the name is not found then %NULL is returned.
878  * The reference counters are not incremented so the caller must be
879  * careful with locks. The caller must hold RCU lock.
880  */
881
882 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
883 {
884         struct netdev_name_node *node_name;
885
886         node_name = netdev_name_node_lookup_rcu(net, name);
887         return node_name ? node_name->dev : NULL;
888 }
889 EXPORT_SYMBOL(dev_get_by_name_rcu);
890
891 /**
892  *      dev_get_by_name         - find a device by its name
893  *      @net: the applicable net namespace
894  *      @name: name to find
895  *
896  *      Find an interface by name. This can be called from any
897  *      context and does its own locking. The returned handle has
898  *      the usage count incremented and the caller must use dev_put() to
899  *      release it when it is no longer needed. %NULL is returned if no
900  *      matching device is found.
901  */
902
903 struct net_device *dev_get_by_name(struct net *net, const char *name)
904 {
905         struct net_device *dev;
906
907         rcu_read_lock();
908         dev = dev_get_by_name_rcu(net, name);
909         if (dev)
910                 dev_hold(dev);
911         rcu_read_unlock();
912         return dev;
913 }
914 EXPORT_SYMBOL(dev_get_by_name);
915
916 /**
917  *      __dev_get_by_index - find a device by its ifindex
918  *      @net: the applicable net namespace
919  *      @ifindex: index of device
920  *
921  *      Search for an interface by index. Returns %NULL if the device
922  *      is not found or a pointer to the device. The device has not
923  *      had its reference counter increased so the caller must be careful
924  *      about locking. The caller must hold either the RTNL semaphore
925  *      or @dev_base_lock.
926  */
927
928 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
929 {
930         struct net_device *dev;
931         struct hlist_head *head = dev_index_hash(net, ifindex);
932
933         hlist_for_each_entry(dev, head, index_hlist)
934                 if (dev->ifindex == ifindex)
935                         return dev;
936
937         return NULL;
938 }
939 EXPORT_SYMBOL(__dev_get_by_index);
940
941 /**
942  *      dev_get_by_index_rcu - find a device by its ifindex
943  *      @net: the applicable net namespace
944  *      @ifindex: index of device
945  *
946  *      Search for an interface by index. Returns %NULL if the device
947  *      is not found or a pointer to the device. The device has not
948  *      had its reference counter increased so the caller must be careful
949  *      about locking. The caller must hold RCU lock.
950  */
951
952 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
953 {
954         struct net_device *dev;
955         struct hlist_head *head = dev_index_hash(net, ifindex);
956
957         hlist_for_each_entry_rcu(dev, head, index_hlist)
958                 if (dev->ifindex == ifindex)
959                         return dev;
960
961         return NULL;
962 }
963 EXPORT_SYMBOL(dev_get_by_index_rcu);
964
965
966 /**
967  *      dev_get_by_index - find a device by its ifindex
968  *      @net: the applicable net namespace
969  *      @ifindex: index of device
970  *
971  *      Search for an interface by index. Returns NULL if the device
972  *      is not found or a pointer to the device. The device returned has
973  *      had a reference added and the pointer is safe until the user calls
974  *      dev_put to indicate they have finished with it.
975  */
976
977 struct net_device *dev_get_by_index(struct net *net, int ifindex)
978 {
979         struct net_device *dev;
980
981         rcu_read_lock();
982         dev = dev_get_by_index_rcu(net, ifindex);
983         if (dev)
984                 dev_hold(dev);
985         rcu_read_unlock();
986         return dev;
987 }
988 EXPORT_SYMBOL(dev_get_by_index);
989
990 /**
991  *      dev_get_by_napi_id - find a device by napi_id
992  *      @napi_id: ID of the NAPI struct
993  *
994  *      Search for an interface by NAPI ID. Returns %NULL if the device
995  *      is not found or a pointer to the device. The device has not had
996  *      its reference counter increased so the caller must be careful
997  *      about locking. The caller must hold RCU lock.
998  */
999
1000 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1001 {
1002         struct napi_struct *napi;
1003
1004         WARN_ON_ONCE(!rcu_read_lock_held());
1005
1006         if (napi_id < MIN_NAPI_ID)
1007                 return NULL;
1008
1009         napi = napi_by_id(napi_id);
1010
1011         return napi ? napi->dev : NULL;
1012 }
1013 EXPORT_SYMBOL(dev_get_by_napi_id);
1014
1015 /**
1016  *      netdev_get_name - get a netdevice name, knowing its ifindex.
1017  *      @net: network namespace
1018  *      @name: a pointer to the buffer where the name will be stored.
1019  *      @ifindex: the ifindex of the interface to get the name from.
1020  */
1021 int netdev_get_name(struct net *net, char *name, int ifindex)
1022 {
1023         struct net_device *dev;
1024         int ret;
1025
1026         down_read(&devnet_rename_sem);
1027         rcu_read_lock();
1028
1029         dev = dev_get_by_index_rcu(net, ifindex);
1030         if (!dev) {
1031                 ret = -ENODEV;
1032                 goto out;
1033         }
1034
1035         strcpy(name, dev->name);
1036
1037         ret = 0;
1038 out:
1039         rcu_read_unlock();
1040         up_read(&devnet_rename_sem);
1041         return ret;
1042 }
1043
1044 /**
1045  *      dev_getbyhwaddr_rcu - find a device by its hardware address
1046  *      @net: the applicable net namespace
1047  *      @type: media type of device
1048  *      @ha: hardware address
1049  *
1050  *      Search for an interface by MAC address. Returns NULL if the device
1051  *      is not found or a pointer to the device.
1052  *      The caller must hold RCU or RTNL.
1053  *      The returned device has not had its ref count increased
1054  *      and the caller must therefore be careful about locking
1055  *
1056  */
1057
1058 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1059                                        const char *ha)
1060 {
1061         struct net_device *dev;
1062
1063         for_each_netdev_rcu(net, dev)
1064                 if (dev->type == type &&
1065                     !memcmp(dev->dev_addr, ha, dev->addr_len))
1066                         return dev;
1067
1068         return NULL;
1069 }
1070 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1071
1072 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1073 {
1074         struct net_device *dev, *ret = NULL;
1075
1076         rcu_read_lock();
1077         for_each_netdev_rcu(net, dev)
1078                 if (dev->type == type) {
1079                         dev_hold(dev);
1080                         ret = dev;
1081                         break;
1082                 }
1083         rcu_read_unlock();
1084         return ret;
1085 }
1086 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1087
1088 /**
1089  *      __dev_get_by_flags - find any device with given flags
1090  *      @net: the applicable net namespace
1091  *      @if_flags: IFF_* values
1092  *      @mask: bitmask of bits in if_flags to check
1093  *
1094  *      Search for any interface with the given flags. Returns NULL if a device
1095  *      is not found or a pointer to the device. Must be called inside
1096  *      rtnl_lock(), and result refcount is unchanged.
1097  */
1098
1099 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1100                                       unsigned short mask)
1101 {
1102         struct net_device *dev, *ret;
1103
1104         ASSERT_RTNL();
1105
1106         ret = NULL;
1107         for_each_netdev(net, dev) {
1108                 if (((dev->flags ^ if_flags) & mask) == 0) {
1109                         ret = dev;
1110                         break;
1111                 }
1112         }
1113         return ret;
1114 }
1115 EXPORT_SYMBOL(__dev_get_by_flags);
1116
1117 /**
1118  *      dev_valid_name - check if name is okay for network device
1119  *      @name: name string
1120  *
1121  *      Network device names need to be valid file names to
1122  *      allow sysfs to work.  We also disallow any kind of
1123  *      whitespace.
1124  */
1125 bool dev_valid_name(const char *name)
1126 {
1127         if (*name == '\0')
1128                 return false;
1129         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1130                 return false;
1131         if (!strcmp(name, ".") || !strcmp(name, ".."))
1132                 return false;
1133
1134         while (*name) {
1135                 if (*name == '/' || *name == ':' || isspace(*name))
1136                         return false;
1137                 name++;
1138         }
1139         return true;
1140 }
1141 EXPORT_SYMBOL(dev_valid_name);
1142
1143 /**
1144  *      __dev_alloc_name - allocate a name for a device
1145  *      @net: network namespace to allocate the device name in
1146  *      @name: name format string
1147  *      @buf:  scratch buffer and result name string
1148  *
1149  *      Passed a format string - eg "lt%d" it will try and find a suitable
1150  *      id. It scans list of devices to build up a free map, then chooses
1151  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1152  *      while allocating the name and adding the device in order to avoid
1153  *      duplicates.
1154  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1155  *      Returns the number of the unit assigned or a negative errno code.
1156  */
1157
1158 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1159 {
1160         int i = 0;
1161         const char *p;
1162         const int max_netdevices = 8*PAGE_SIZE;
1163         unsigned long *inuse;
1164         struct net_device *d;
1165
1166         if (!dev_valid_name(name))
1167                 return -EINVAL;
1168
1169         p = strchr(name, '%');
1170         if (p) {
1171                 /*
1172                  * Verify the string as this thing may have come from
1173                  * the user.  There must be either one "%d" and no other "%"
1174                  * characters.
1175                  */
1176                 if (p[1] != 'd' || strchr(p + 2, '%'))
1177                         return -EINVAL;
1178
1179                 /* Use one page as a bit array of possible slots */
1180                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1181                 if (!inuse)
1182                         return -ENOMEM;
1183
1184                 for_each_netdev(net, d) {
1185                         if (!sscanf(d->name, name, &i))
1186                                 continue;
1187                         if (i < 0 || i >= max_netdevices)
1188                                 continue;
1189
1190                         /*  avoid cases where sscanf is not exact inverse of printf */
1191                         snprintf(buf, IFNAMSIZ, name, i);
1192                         if (!strncmp(buf, d->name, IFNAMSIZ))
1193                                 set_bit(i, inuse);
1194                 }
1195
1196                 i = find_first_zero_bit(inuse, max_netdevices);
1197                 free_page((unsigned long) inuse);
1198         }
1199
1200         snprintf(buf, IFNAMSIZ, name, i);
1201         if (!__dev_get_by_name(net, buf))
1202                 return i;
1203
1204         /* It is possible to run out of possible slots
1205          * when the name is long and there isn't enough space left
1206          * for the digits, or if all bits are used.
1207          */
1208         return -ENFILE;
1209 }
1210
1211 static int dev_alloc_name_ns(struct net *net,
1212                              struct net_device *dev,
1213                              const char *name)
1214 {
1215         char buf[IFNAMSIZ];
1216         int ret;
1217
1218         BUG_ON(!net);
1219         ret = __dev_alloc_name(net, name, buf);
1220         if (ret >= 0)
1221                 strlcpy(dev->name, buf, IFNAMSIZ);
1222         return ret;
1223 }
1224
1225 /**
1226  *      dev_alloc_name - allocate a name for a device
1227  *      @dev: device
1228  *      @name: name format string
1229  *
1230  *      Passed a format string - eg "lt%d" it will try and find a suitable
1231  *      id. It scans list of devices to build up a free map, then chooses
1232  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1233  *      while allocating the name and adding the device in order to avoid
1234  *      duplicates.
1235  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1236  *      Returns the number of the unit assigned or a negative errno code.
1237  */
1238
1239 int dev_alloc_name(struct net_device *dev, const char *name)
1240 {
1241         return dev_alloc_name_ns(dev_net(dev), dev, name);
1242 }
1243 EXPORT_SYMBOL(dev_alloc_name);
1244
1245 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1246                               const char *name)
1247 {
1248         BUG_ON(!net);
1249
1250         if (!dev_valid_name(name))
1251                 return -EINVAL;
1252
1253         if (strchr(name, '%'))
1254                 return dev_alloc_name_ns(net, dev, name);
1255         else if (__dev_get_by_name(net, name))
1256                 return -EEXIST;
1257         else if (dev->name != name)
1258                 strlcpy(dev->name, name, IFNAMSIZ);
1259
1260         return 0;
1261 }
1262
1263 /**
1264  *      dev_change_name - change name of a device
1265  *      @dev: device
1266  *      @newname: name (or format string) must be at least IFNAMSIZ
1267  *
1268  *      Change name of a device, can pass format strings "eth%d".
1269  *      for wildcarding.
1270  */
1271 int dev_change_name(struct net_device *dev, const char *newname)
1272 {
1273         unsigned char old_assign_type;
1274         char oldname[IFNAMSIZ];
1275         int err = 0;
1276         int ret;
1277         struct net *net;
1278
1279         ASSERT_RTNL();
1280         BUG_ON(!dev_net(dev));
1281
1282         net = dev_net(dev);
1283
1284         /* Some auto-enslaved devices e.g. failover slaves are
1285          * special, as userspace might rename the device after
1286          * the interface had been brought up and running since
1287          * the point kernel initiated auto-enslavement. Allow
1288          * live name change even when these slave devices are
1289          * up and running.
1290          *
1291          * Typically, users of these auto-enslaving devices
1292          * don't actually care about slave name change, as
1293          * they are supposed to operate on master interface
1294          * directly.
1295          */
1296         if (dev->flags & IFF_UP &&
1297             likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1298                 return -EBUSY;
1299
1300         down_write(&devnet_rename_sem);
1301
1302         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1303                 up_write(&devnet_rename_sem);
1304                 return 0;
1305         }
1306
1307         memcpy(oldname, dev->name, IFNAMSIZ);
1308
1309         err = dev_get_valid_name(net, dev, newname);
1310         if (err < 0) {
1311                 up_write(&devnet_rename_sem);
1312                 return err;
1313         }
1314
1315         if (oldname[0] && !strchr(oldname, '%'))
1316                 netdev_info(dev, "renamed from %s\n", oldname);
1317
1318         old_assign_type = dev->name_assign_type;
1319         dev->name_assign_type = NET_NAME_RENAMED;
1320
1321 rollback:
1322         ret = device_rename(&dev->dev, dev->name);
1323         if (ret) {
1324                 memcpy(dev->name, oldname, IFNAMSIZ);
1325                 dev->name_assign_type = old_assign_type;
1326                 up_write(&devnet_rename_sem);
1327                 return ret;
1328         }
1329
1330         up_write(&devnet_rename_sem);
1331
1332         netdev_adjacent_rename_links(dev, oldname);
1333
1334         write_lock_bh(&dev_base_lock);
1335         netdev_name_node_del(dev->name_node);
1336         write_unlock_bh(&dev_base_lock);
1337
1338         synchronize_rcu();
1339
1340         write_lock_bh(&dev_base_lock);
1341         netdev_name_node_add(net, dev->name_node);
1342         write_unlock_bh(&dev_base_lock);
1343
1344         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1345         ret = notifier_to_errno(ret);
1346
1347         if (ret) {
1348                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1349                 if (err >= 0) {
1350                         err = ret;
1351                         down_write(&devnet_rename_sem);
1352                         memcpy(dev->name, oldname, IFNAMSIZ);
1353                         memcpy(oldname, newname, IFNAMSIZ);
1354                         dev->name_assign_type = old_assign_type;
1355                         old_assign_type = NET_NAME_RENAMED;
1356                         goto rollback;
1357                 } else {
1358                         pr_err("%s: name change rollback failed: %d\n",
1359                                dev->name, ret);
1360                 }
1361         }
1362
1363         return err;
1364 }
1365
1366 /**
1367  *      dev_set_alias - change ifalias of a device
1368  *      @dev: device
1369  *      @alias: name up to IFALIASZ
1370  *      @len: limit of bytes to copy from info
1371  *
1372  *      Set ifalias for a device,
1373  */
1374 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1375 {
1376         struct dev_ifalias *new_alias = NULL;
1377
1378         if (len >= IFALIASZ)
1379                 return -EINVAL;
1380
1381         if (len) {
1382                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1383                 if (!new_alias)
1384                         return -ENOMEM;
1385
1386                 memcpy(new_alias->ifalias, alias, len);
1387                 new_alias->ifalias[len] = 0;
1388         }
1389
1390         mutex_lock(&ifalias_mutex);
1391         new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1392                                         mutex_is_locked(&ifalias_mutex));
1393         mutex_unlock(&ifalias_mutex);
1394
1395         if (new_alias)
1396                 kfree_rcu(new_alias, rcuhead);
1397
1398         return len;
1399 }
1400 EXPORT_SYMBOL(dev_set_alias);
1401
1402 /**
1403  *      dev_get_alias - get ifalias of a device
1404  *      @dev: device
1405  *      @name: buffer to store name of ifalias
1406  *      @len: size of buffer
1407  *
1408  *      get ifalias for a device.  Caller must make sure dev cannot go
1409  *      away,  e.g. rcu read lock or own a reference count to device.
1410  */
1411 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1412 {
1413         const struct dev_ifalias *alias;
1414         int ret = 0;
1415
1416         rcu_read_lock();
1417         alias = rcu_dereference(dev->ifalias);
1418         if (alias)
1419                 ret = snprintf(name, len, "%s", alias->ifalias);
1420         rcu_read_unlock();
1421
1422         return ret;
1423 }
1424
1425 /**
1426  *      netdev_features_change - device changes features
1427  *      @dev: device to cause notification
1428  *
1429  *      Called to indicate a device has changed features.
1430  */
1431 void netdev_features_change(struct net_device *dev)
1432 {
1433         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1434 }
1435 EXPORT_SYMBOL(netdev_features_change);
1436
1437 /**
1438  *      netdev_state_change - device changes state
1439  *      @dev: device to cause notification
1440  *
1441  *      Called to indicate a device has changed state. This function calls
1442  *      the notifier chains for netdev_chain and sends a NEWLINK message
1443  *      to the routing socket.
1444  */
1445 void netdev_state_change(struct net_device *dev)
1446 {
1447         if (dev->flags & IFF_UP) {
1448                 struct netdev_notifier_change_info change_info = {
1449                         .info.dev = dev,
1450                 };
1451
1452                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1453                                               &change_info.info);
1454                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1455         }
1456 }
1457 EXPORT_SYMBOL(netdev_state_change);
1458
1459 /**
1460  * __netdev_notify_peers - notify network peers about existence of @dev,
1461  * to be called when rtnl lock is already held.
1462  * @dev: network device
1463  *
1464  * Generate traffic such that interested network peers are aware of
1465  * @dev, such as by generating a gratuitous ARP. This may be used when
1466  * a device wants to inform the rest of the network about some sort of
1467  * reconfiguration such as a failover event or virtual machine
1468  * migration.
1469  */
1470 void __netdev_notify_peers(struct net_device *dev)
1471 {
1472         ASSERT_RTNL();
1473         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1474         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1475 }
1476 EXPORT_SYMBOL(__netdev_notify_peers);
1477
1478 /**
1479  * netdev_notify_peers - notify network peers about existence of @dev
1480  * @dev: network device
1481  *
1482  * Generate traffic such that interested network peers are aware of
1483  * @dev, such as by generating a gratuitous ARP. This may be used when
1484  * a device wants to inform the rest of the network about some sort of
1485  * reconfiguration such as a failover event or virtual machine
1486  * migration.
1487  */
1488 void netdev_notify_peers(struct net_device *dev)
1489 {
1490         rtnl_lock();
1491         __netdev_notify_peers(dev);
1492         rtnl_unlock();
1493 }
1494 EXPORT_SYMBOL(netdev_notify_peers);
1495
1496 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1497 {
1498         const struct net_device_ops *ops = dev->netdev_ops;
1499         int ret;
1500
1501         ASSERT_RTNL();
1502
1503         if (!netif_device_present(dev)) {
1504                 /* may be detached because parent is runtime-suspended */
1505                 if (dev->dev.parent)
1506                         pm_runtime_resume(dev->dev.parent);
1507                 if (!netif_device_present(dev))
1508                         return -ENODEV;
1509         }
1510
1511         /* Block netpoll from trying to do any rx path servicing.
1512          * If we don't do this there is a chance ndo_poll_controller
1513          * or ndo_poll may be running while we open the device
1514          */
1515         netpoll_poll_disable(dev);
1516
1517         ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1518         ret = notifier_to_errno(ret);
1519         if (ret)
1520                 return ret;
1521
1522         set_bit(__LINK_STATE_START, &dev->state);
1523
1524         if (ops->ndo_validate_addr)
1525                 ret = ops->ndo_validate_addr(dev);
1526
1527         if (!ret && ops->ndo_open)
1528                 ret = ops->ndo_open(dev);
1529
1530         netpoll_poll_enable(dev);
1531
1532         if (ret)
1533                 clear_bit(__LINK_STATE_START, &dev->state);
1534         else {
1535                 dev->flags |= IFF_UP;
1536                 dev_set_rx_mode(dev);
1537                 dev_activate(dev);
1538                 add_device_randomness(dev->dev_addr, dev->addr_len);
1539         }
1540
1541         return ret;
1542 }
1543
1544 /**
1545  *      dev_open        - prepare an interface for use.
1546  *      @dev: device to open
1547  *      @extack: netlink extended ack
1548  *
1549  *      Takes a device from down to up state. The device's private open
1550  *      function is invoked and then the multicast lists are loaded. Finally
1551  *      the device is moved into the up state and a %NETDEV_UP message is
1552  *      sent to the netdev notifier chain.
1553  *
1554  *      Calling this function on an active interface is a nop. On a failure
1555  *      a negative errno code is returned.
1556  */
1557 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1558 {
1559         int ret;
1560
1561         if (dev->flags & IFF_UP)
1562                 return 0;
1563
1564         ret = __dev_open(dev, extack);
1565         if (ret < 0)
1566                 return ret;
1567
1568         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1569         call_netdevice_notifiers(NETDEV_UP, dev);
1570
1571         return ret;
1572 }
1573 EXPORT_SYMBOL(dev_open);
1574
1575 static void __dev_close_many(struct list_head *head)
1576 {
1577         struct net_device *dev;
1578
1579         ASSERT_RTNL();
1580         might_sleep();
1581
1582         list_for_each_entry(dev, head, close_list) {
1583                 /* Temporarily disable netpoll until the interface is down */
1584                 netpoll_poll_disable(dev);
1585
1586                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1587
1588                 clear_bit(__LINK_STATE_START, &dev->state);
1589
1590                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1591                  * can be even on different cpu. So just clear netif_running().
1592                  *
1593                  * dev->stop() will invoke napi_disable() on all of it's
1594                  * napi_struct instances on this device.
1595                  */
1596                 smp_mb__after_atomic(); /* Commit netif_running(). */
1597         }
1598
1599         dev_deactivate_many(head);
1600
1601         list_for_each_entry(dev, head, close_list) {
1602                 const struct net_device_ops *ops = dev->netdev_ops;
1603
1604                 /*
1605                  *      Call the device specific close. This cannot fail.
1606                  *      Only if device is UP
1607                  *
1608                  *      We allow it to be called even after a DETACH hot-plug
1609                  *      event.
1610                  */
1611                 if (ops->ndo_stop)
1612                         ops->ndo_stop(dev);
1613
1614                 dev->flags &= ~IFF_UP;
1615                 netpoll_poll_enable(dev);
1616         }
1617 }
1618
1619 static void __dev_close(struct net_device *dev)
1620 {
1621         LIST_HEAD(single);
1622
1623         list_add(&dev->close_list, &single);
1624         __dev_close_many(&single);
1625         list_del(&single);
1626 }
1627
1628 void dev_close_many(struct list_head *head, bool unlink)
1629 {
1630         struct net_device *dev, *tmp;
1631
1632         /* Remove the devices that don't need to be closed */
1633         list_for_each_entry_safe(dev, tmp, head, close_list)
1634                 if (!(dev->flags & IFF_UP))
1635                         list_del_init(&dev->close_list);
1636
1637         __dev_close_many(head);
1638
1639         list_for_each_entry_safe(dev, tmp, head, close_list) {
1640                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1641                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1642                 if (unlink)
1643                         list_del_init(&dev->close_list);
1644         }
1645 }
1646 EXPORT_SYMBOL(dev_close_many);
1647
1648 /**
1649  *      dev_close - shutdown an interface.
1650  *      @dev: device to shutdown
1651  *
1652  *      This function moves an active device into down state. A
1653  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1654  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1655  *      chain.
1656  */
1657 void dev_close(struct net_device *dev)
1658 {
1659         if (dev->flags & IFF_UP) {
1660                 LIST_HEAD(single);
1661
1662                 list_add(&dev->close_list, &single);
1663                 dev_close_many(&single, true);
1664                 list_del(&single);
1665         }
1666 }
1667 EXPORT_SYMBOL(dev_close);
1668
1669
1670 /**
1671  *      dev_disable_lro - disable Large Receive Offload on a device
1672  *      @dev: device
1673  *
1674  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1675  *      called under RTNL.  This is needed if received packets may be
1676  *      forwarded to another interface.
1677  */
1678 void dev_disable_lro(struct net_device *dev)
1679 {
1680         struct net_device *lower_dev;
1681         struct list_head *iter;
1682
1683         dev->wanted_features &= ~NETIF_F_LRO;
1684         netdev_update_features(dev);
1685
1686         if (unlikely(dev->features & NETIF_F_LRO))
1687                 netdev_WARN(dev, "failed to disable LRO!\n");
1688
1689         netdev_for_each_lower_dev(dev, lower_dev, iter)
1690                 dev_disable_lro(lower_dev);
1691 }
1692 EXPORT_SYMBOL(dev_disable_lro);
1693
1694 /**
1695  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1696  *      @dev: device
1697  *
1698  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1699  *      called under RTNL.  This is needed if Generic XDP is installed on
1700  *      the device.
1701  */
1702 static void dev_disable_gro_hw(struct net_device *dev)
1703 {
1704         dev->wanted_features &= ~NETIF_F_GRO_HW;
1705         netdev_update_features(dev);
1706
1707         if (unlikely(dev->features & NETIF_F_GRO_HW))
1708                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1709 }
1710
1711 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1712 {
1713 #define N(val)                                          \
1714         case NETDEV_##val:                              \
1715                 return "NETDEV_" __stringify(val);
1716         switch (cmd) {
1717         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1718         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1719         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1720         N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1721         N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1722         N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1723         N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1724         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1725         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1726         N(PRE_CHANGEADDR)
1727         }
1728 #undef N
1729         return "UNKNOWN_NETDEV_EVENT";
1730 }
1731 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1732
1733 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1734                                    struct net_device *dev)
1735 {
1736         struct netdev_notifier_info info = {
1737                 .dev = dev,
1738         };
1739
1740         return nb->notifier_call(nb, val, &info);
1741 }
1742
1743 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1744                                              struct net_device *dev)
1745 {
1746         int err;
1747
1748         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1749         err = notifier_to_errno(err);
1750         if (err)
1751                 return err;
1752
1753         if (!(dev->flags & IFF_UP))
1754                 return 0;
1755
1756         call_netdevice_notifier(nb, NETDEV_UP, dev);
1757         return 0;
1758 }
1759
1760 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1761                                                 struct net_device *dev)
1762 {
1763         if (dev->flags & IFF_UP) {
1764                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1765                                         dev);
1766                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1767         }
1768         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1769 }
1770
1771 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1772                                                  struct net *net)
1773 {
1774         struct net_device *dev;
1775         int err;
1776
1777         for_each_netdev(net, dev) {
1778                 err = call_netdevice_register_notifiers(nb, dev);
1779                 if (err)
1780                         goto rollback;
1781         }
1782         return 0;
1783
1784 rollback:
1785         for_each_netdev_continue_reverse(net, dev)
1786                 call_netdevice_unregister_notifiers(nb, dev);
1787         return err;
1788 }
1789
1790 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1791                                                     struct net *net)
1792 {
1793         struct net_device *dev;
1794
1795         for_each_netdev(net, dev)
1796                 call_netdevice_unregister_notifiers(nb, dev);
1797 }
1798
1799 static int dev_boot_phase = 1;
1800
1801 /**
1802  * register_netdevice_notifier - register a network notifier block
1803  * @nb: notifier
1804  *
1805  * Register a notifier to be called when network device events occur.
1806  * The notifier passed is linked into the kernel structures and must
1807  * not be reused until it has been unregistered. A negative errno code
1808  * is returned on a failure.
1809  *
1810  * When registered all registration and up events are replayed
1811  * to the new notifier to allow device to have a race free
1812  * view of the network device list.
1813  */
1814
1815 int register_netdevice_notifier(struct notifier_block *nb)
1816 {
1817         struct net *net;
1818         int err;
1819
1820         /* Close race with setup_net() and cleanup_net() */
1821         down_write(&pernet_ops_rwsem);
1822         rtnl_lock();
1823         err = raw_notifier_chain_register(&netdev_chain, nb);
1824         if (err)
1825                 goto unlock;
1826         if (dev_boot_phase)
1827                 goto unlock;
1828         for_each_net(net) {
1829                 err = call_netdevice_register_net_notifiers(nb, net);
1830                 if (err)
1831                         goto rollback;
1832         }
1833
1834 unlock:
1835         rtnl_unlock();
1836         up_write(&pernet_ops_rwsem);
1837         return err;
1838
1839 rollback:
1840         for_each_net_continue_reverse(net)
1841                 call_netdevice_unregister_net_notifiers(nb, net);
1842
1843         raw_notifier_chain_unregister(&netdev_chain, nb);
1844         goto unlock;
1845 }
1846 EXPORT_SYMBOL(register_netdevice_notifier);
1847
1848 /**
1849  * unregister_netdevice_notifier - unregister a network notifier block
1850  * @nb: notifier
1851  *
1852  * Unregister a notifier previously registered by
1853  * register_netdevice_notifier(). The notifier is unlinked into the
1854  * kernel structures and may then be reused. A negative errno code
1855  * is returned on a failure.
1856  *
1857  * After unregistering unregister and down device events are synthesized
1858  * for all devices on the device list to the removed notifier to remove
1859  * the need for special case cleanup code.
1860  */
1861
1862 int unregister_netdevice_notifier(struct notifier_block *nb)
1863 {
1864         struct net *net;
1865         int err;
1866
1867         /* Close race with setup_net() and cleanup_net() */
1868         down_write(&pernet_ops_rwsem);
1869         rtnl_lock();
1870         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1871         if (err)
1872                 goto unlock;
1873
1874         for_each_net(net)
1875                 call_netdevice_unregister_net_notifiers(nb, net);
1876
1877 unlock:
1878         rtnl_unlock();
1879         up_write(&pernet_ops_rwsem);
1880         return err;
1881 }
1882 EXPORT_SYMBOL(unregister_netdevice_notifier);
1883
1884 static int __register_netdevice_notifier_net(struct net *net,
1885                                              struct notifier_block *nb,
1886                                              bool ignore_call_fail)
1887 {
1888         int err;
1889
1890         err = raw_notifier_chain_register(&net->netdev_chain, nb);
1891         if (err)
1892                 return err;
1893         if (dev_boot_phase)
1894                 return 0;
1895
1896         err = call_netdevice_register_net_notifiers(nb, net);
1897         if (err && !ignore_call_fail)
1898                 goto chain_unregister;
1899
1900         return 0;
1901
1902 chain_unregister:
1903         raw_notifier_chain_unregister(&net->netdev_chain, nb);
1904         return err;
1905 }
1906
1907 static int __unregister_netdevice_notifier_net(struct net *net,
1908                                                struct notifier_block *nb)
1909 {
1910         int err;
1911
1912         err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1913         if (err)
1914                 return err;
1915
1916         call_netdevice_unregister_net_notifiers(nb, net);
1917         return 0;
1918 }
1919
1920 /**
1921  * register_netdevice_notifier_net - register a per-netns network notifier block
1922  * @net: network namespace
1923  * @nb: notifier
1924  *
1925  * Register a notifier to be called when network device events occur.
1926  * The notifier passed is linked into the kernel structures and must
1927  * not be reused until it has been unregistered. A negative errno code
1928  * is returned on a failure.
1929  *
1930  * When registered all registration and up events are replayed
1931  * to the new notifier to allow device to have a race free
1932  * view of the network device list.
1933  */
1934
1935 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1936 {
1937         int err;
1938
1939         rtnl_lock();
1940         err = __register_netdevice_notifier_net(net, nb, false);
1941         rtnl_unlock();
1942         return err;
1943 }
1944 EXPORT_SYMBOL(register_netdevice_notifier_net);
1945
1946 /**
1947  * unregister_netdevice_notifier_net - unregister a per-netns
1948  *                                     network notifier block
1949  * @net: network namespace
1950  * @nb: notifier
1951  *
1952  * Unregister a notifier previously registered by
1953  * register_netdevice_notifier(). The notifier is unlinked into the
1954  * kernel structures and may then be reused. A negative errno code
1955  * is returned on a failure.
1956  *
1957  * After unregistering unregister and down device events are synthesized
1958  * for all devices on the device list to the removed notifier to remove
1959  * the need for special case cleanup code.
1960  */
1961
1962 int unregister_netdevice_notifier_net(struct net *net,
1963                                       struct notifier_block *nb)
1964 {
1965         int err;
1966
1967         rtnl_lock();
1968         err = __unregister_netdevice_notifier_net(net, nb);
1969         rtnl_unlock();
1970         return err;
1971 }
1972 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1973
1974 int register_netdevice_notifier_dev_net(struct net_device *dev,
1975                                         struct notifier_block *nb,
1976                                         struct netdev_net_notifier *nn)
1977 {
1978         int err;
1979
1980         rtnl_lock();
1981         err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1982         if (!err) {
1983                 nn->nb = nb;
1984                 list_add(&nn->list, &dev->net_notifier_list);
1985         }
1986         rtnl_unlock();
1987         return err;
1988 }
1989 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1990
1991 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1992                                           struct notifier_block *nb,
1993                                           struct netdev_net_notifier *nn)
1994 {
1995         int err;
1996
1997         rtnl_lock();
1998         list_del(&nn->list);
1999         err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2000         rtnl_unlock();
2001         return err;
2002 }
2003 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2004
2005 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2006                                              struct net *net)
2007 {
2008         struct netdev_net_notifier *nn;
2009
2010         list_for_each_entry(nn, &dev->net_notifier_list, list) {
2011                 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
2012                 __register_netdevice_notifier_net(net, nn->nb, true);
2013         }
2014 }
2015
2016 /**
2017  *      call_netdevice_notifiers_info - call all network notifier blocks
2018  *      @val: value passed unmodified to notifier function
2019  *      @info: notifier information data
2020  *
2021  *      Call all network notifier blocks.  Parameters and return value
2022  *      are as for raw_notifier_call_chain().
2023  */
2024
2025 static int call_netdevice_notifiers_info(unsigned long val,
2026                                          struct netdev_notifier_info *info)
2027 {
2028         struct net *net = dev_net(info->dev);
2029         int ret;
2030
2031         ASSERT_RTNL();
2032
2033         /* Run per-netns notifier block chain first, then run the global one.
2034          * Hopefully, one day, the global one is going to be removed after
2035          * all notifier block registrators get converted to be per-netns.
2036          */
2037         ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2038         if (ret & NOTIFY_STOP_MASK)
2039                 return ret;
2040         return raw_notifier_call_chain(&netdev_chain, val, info);
2041 }
2042
2043 static int call_netdevice_notifiers_extack(unsigned long val,
2044                                            struct net_device *dev,
2045                                            struct netlink_ext_ack *extack)
2046 {
2047         struct netdev_notifier_info info = {
2048                 .dev = dev,
2049                 .extack = extack,
2050         };
2051
2052         return call_netdevice_notifiers_info(val, &info);
2053 }
2054
2055 /**
2056  *      call_netdevice_notifiers - call all network notifier blocks
2057  *      @val: value passed unmodified to notifier function
2058  *      @dev: net_device pointer passed unmodified to notifier function
2059  *
2060  *      Call all network notifier blocks.  Parameters and return value
2061  *      are as for raw_notifier_call_chain().
2062  */
2063
2064 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2065 {
2066         return call_netdevice_notifiers_extack(val, dev, NULL);
2067 }
2068 EXPORT_SYMBOL(call_netdevice_notifiers);
2069
2070 /**
2071  *      call_netdevice_notifiers_mtu - call all network notifier blocks
2072  *      @val: value passed unmodified to notifier function
2073  *      @dev: net_device pointer passed unmodified to notifier function
2074  *      @arg: additional u32 argument passed to the notifier function
2075  *
2076  *      Call all network notifier blocks.  Parameters and return value
2077  *      are as for raw_notifier_call_chain().
2078  */
2079 static int call_netdevice_notifiers_mtu(unsigned long val,
2080                                         struct net_device *dev, u32 arg)
2081 {
2082         struct netdev_notifier_info_ext info = {
2083                 .info.dev = dev,
2084                 .ext.mtu = arg,
2085         };
2086
2087         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2088
2089         return call_netdevice_notifiers_info(val, &info.info);
2090 }
2091
2092 #ifdef CONFIG_NET_INGRESS
2093 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2094
2095 void net_inc_ingress_queue(void)
2096 {
2097         static_branch_inc(&ingress_needed_key);
2098 }
2099 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2100
2101 void net_dec_ingress_queue(void)
2102 {
2103         static_branch_dec(&ingress_needed_key);
2104 }
2105 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2106 #endif
2107
2108 #ifdef CONFIG_NET_EGRESS
2109 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2110
2111 void net_inc_egress_queue(void)
2112 {
2113         static_branch_inc(&egress_needed_key);
2114 }
2115 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2116
2117 void net_dec_egress_queue(void)
2118 {
2119         static_branch_dec(&egress_needed_key);
2120 }
2121 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2122 #endif
2123
2124 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2125 #ifdef CONFIG_JUMP_LABEL
2126 static atomic_t netstamp_needed_deferred;
2127 static atomic_t netstamp_wanted;
2128 static void netstamp_clear(struct work_struct *work)
2129 {
2130         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2131         int wanted;
2132
2133         wanted = atomic_add_return(deferred, &netstamp_wanted);
2134         if (wanted > 0)
2135                 static_branch_enable(&netstamp_needed_key);
2136         else
2137                 static_branch_disable(&netstamp_needed_key);
2138 }
2139 static DECLARE_WORK(netstamp_work, netstamp_clear);
2140 #endif
2141
2142 void net_enable_timestamp(void)
2143 {
2144 #ifdef CONFIG_JUMP_LABEL
2145         int wanted;
2146
2147         while (1) {
2148                 wanted = atomic_read(&netstamp_wanted);
2149                 if (wanted <= 0)
2150                         break;
2151                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2152                         return;
2153         }
2154         atomic_inc(&netstamp_needed_deferred);
2155         schedule_work(&netstamp_work);
2156 #else
2157         static_branch_inc(&netstamp_needed_key);
2158 #endif
2159 }
2160 EXPORT_SYMBOL(net_enable_timestamp);
2161
2162 void net_disable_timestamp(void)
2163 {
2164 #ifdef CONFIG_JUMP_LABEL
2165         int wanted;
2166
2167         while (1) {
2168                 wanted = atomic_read(&netstamp_wanted);
2169                 if (wanted <= 1)
2170                         break;
2171                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2172                         return;
2173         }
2174         atomic_dec(&netstamp_needed_deferred);
2175         schedule_work(&netstamp_work);
2176 #else
2177         static_branch_dec(&netstamp_needed_key);
2178 #endif
2179 }
2180 EXPORT_SYMBOL(net_disable_timestamp);
2181
2182 static inline void net_timestamp_set(struct sk_buff *skb)
2183 {
2184         skb->tstamp = 0;
2185         if (static_branch_unlikely(&netstamp_needed_key))
2186                 __net_timestamp(skb);
2187 }
2188
2189 #define net_timestamp_check(COND, SKB)                          \
2190         if (static_branch_unlikely(&netstamp_needed_key)) {     \
2191                 if ((COND) && !(SKB)->tstamp)                   \
2192                         __net_timestamp(SKB);                   \
2193         }                                                       \
2194
2195 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2196 {
2197         unsigned int len;
2198
2199         if (!(dev->flags & IFF_UP))
2200                 return false;
2201
2202         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
2203         if (skb->len <= len)
2204                 return true;
2205
2206         /* if TSO is enabled, we don't care about the length as the packet
2207          * could be forwarded without being segmented before
2208          */
2209         if (skb_is_gso(skb))
2210                 return true;
2211
2212         return false;
2213 }
2214 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2215
2216 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2217 {
2218         int ret = ____dev_forward_skb(dev, skb);
2219
2220         if (likely(!ret)) {
2221                 skb->protocol = eth_type_trans(skb, dev);
2222                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2223         }
2224
2225         return ret;
2226 }
2227 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2228
2229 /**
2230  * dev_forward_skb - loopback an skb to another netif
2231  *
2232  * @dev: destination network device
2233  * @skb: buffer to forward
2234  *
2235  * return values:
2236  *      NET_RX_SUCCESS  (no congestion)
2237  *      NET_RX_DROP     (packet was dropped, but freed)
2238  *
2239  * dev_forward_skb can be used for injecting an skb from the
2240  * start_xmit function of one device into the receive queue
2241  * of another device.
2242  *
2243  * The receiving device may be in another namespace, so
2244  * we have to clear all information in the skb that could
2245  * impact namespace isolation.
2246  */
2247 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2248 {
2249         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2250 }
2251 EXPORT_SYMBOL_GPL(dev_forward_skb);
2252
2253 static inline int deliver_skb(struct sk_buff *skb,
2254                               struct packet_type *pt_prev,
2255                               struct net_device *orig_dev)
2256 {
2257         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2258                 return -ENOMEM;
2259         refcount_inc(&skb->users);
2260         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2261 }
2262
2263 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2264                                           struct packet_type **pt,
2265                                           struct net_device *orig_dev,
2266                                           __be16 type,
2267                                           struct list_head *ptype_list)
2268 {
2269         struct packet_type *ptype, *pt_prev = *pt;
2270
2271         list_for_each_entry_rcu(ptype, ptype_list, list) {
2272                 if (ptype->type != type)
2273                         continue;
2274                 if (pt_prev)
2275                         deliver_skb(skb, pt_prev, orig_dev);
2276                 pt_prev = ptype;
2277         }
2278         *pt = pt_prev;
2279 }
2280
2281 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2282 {
2283         if (!ptype->af_packet_priv || !skb->sk)
2284                 return false;
2285
2286         if (ptype->id_match)
2287                 return ptype->id_match(ptype, skb->sk);
2288         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2289                 return true;
2290
2291         return false;
2292 }
2293
2294 /**
2295  * dev_nit_active - return true if any network interface taps are in use
2296  *
2297  * @dev: network device to check for the presence of taps
2298  */
2299 bool dev_nit_active(struct net_device *dev)
2300 {
2301         return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2302 }
2303 EXPORT_SYMBOL_GPL(dev_nit_active);
2304
2305 /*
2306  *      Support routine. Sends outgoing frames to any network
2307  *      taps currently in use.
2308  */
2309
2310 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2311 {
2312         struct packet_type *ptype;
2313         struct sk_buff *skb2 = NULL;
2314         struct packet_type *pt_prev = NULL;
2315         struct list_head *ptype_list = &ptype_all;
2316
2317         rcu_read_lock();
2318 again:
2319         list_for_each_entry_rcu(ptype, ptype_list, list) {
2320                 if (ptype->ignore_outgoing)
2321                         continue;
2322
2323                 /* Never send packets back to the socket
2324                  * they originated from - MvS (miquels@drinkel.ow.org)
2325                  */
2326                 if (skb_loop_sk(ptype, skb))
2327                         continue;
2328
2329                 if (pt_prev) {
2330                         deliver_skb(skb2, pt_prev, skb->dev);
2331                         pt_prev = ptype;
2332                         continue;
2333                 }
2334
2335                 /* need to clone skb, done only once */
2336                 skb2 = skb_clone(skb, GFP_ATOMIC);
2337                 if (!skb2)
2338                         goto out_unlock;
2339
2340                 net_timestamp_set(skb2);
2341
2342                 /* skb->nh should be correctly
2343                  * set by sender, so that the second statement is
2344                  * just protection against buggy protocols.
2345                  */
2346                 skb_reset_mac_header(skb2);
2347
2348                 if (skb_network_header(skb2) < skb2->data ||
2349                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2350                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2351                                              ntohs(skb2->protocol),
2352                                              dev->name);
2353                         skb_reset_network_header(skb2);
2354                 }
2355
2356                 skb2->transport_header = skb2->network_header;
2357                 skb2->pkt_type = PACKET_OUTGOING;
2358                 pt_prev = ptype;
2359         }
2360
2361         if (ptype_list == &ptype_all) {
2362                 ptype_list = &dev->ptype_all;
2363                 goto again;
2364         }
2365 out_unlock:
2366         if (pt_prev) {
2367                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2368                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2369                 else
2370                         kfree_skb(skb2);
2371         }
2372         rcu_read_unlock();
2373 }
2374 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2375
2376 /**
2377  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2378  * @dev: Network device
2379  * @txq: number of queues available
2380  *
2381  * If real_num_tx_queues is changed the tc mappings may no longer be
2382  * valid. To resolve this verify the tc mapping remains valid and if
2383  * not NULL the mapping. With no priorities mapping to this
2384  * offset/count pair it will no longer be used. In the worst case TC0
2385  * is invalid nothing can be done so disable priority mappings. If is
2386  * expected that drivers will fix this mapping if they can before
2387  * calling netif_set_real_num_tx_queues.
2388  */
2389 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2390 {
2391         int i;
2392         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2393
2394         /* If TC0 is invalidated disable TC mapping */
2395         if (tc->offset + tc->count > txq) {
2396                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2397                 dev->num_tc = 0;
2398                 return;
2399         }
2400
2401         /* Invalidated prio to tc mappings set to TC0 */
2402         for (i = 1; i < TC_BITMASK + 1; i++) {
2403                 int q = netdev_get_prio_tc_map(dev, i);
2404
2405                 tc = &dev->tc_to_txq[q];
2406                 if (tc->offset + tc->count > txq) {
2407                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2408                                 i, q);
2409                         netdev_set_prio_tc_map(dev, i, 0);
2410                 }
2411         }
2412 }
2413
2414 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2415 {
2416         if (dev->num_tc) {
2417                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2418                 int i;
2419
2420                 /* walk through the TCs and see if it falls into any of them */
2421                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2422                         if ((txq - tc->offset) < tc->count)
2423                                 return i;
2424                 }
2425
2426                 /* didn't find it, just return -1 to indicate no match */
2427                 return -1;
2428         }
2429
2430         return 0;
2431 }
2432 EXPORT_SYMBOL(netdev_txq_to_tc);
2433
2434 #ifdef CONFIG_XPS
2435 struct static_key xps_needed __read_mostly;
2436 EXPORT_SYMBOL(xps_needed);
2437 struct static_key xps_rxqs_needed __read_mostly;
2438 EXPORT_SYMBOL(xps_rxqs_needed);
2439 static DEFINE_MUTEX(xps_map_mutex);
2440 #define xmap_dereference(P)             \
2441         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2442
2443 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2444                              int tci, u16 index)
2445 {
2446         struct xps_map *map = NULL;
2447         int pos;
2448
2449         if (dev_maps)
2450                 map = xmap_dereference(dev_maps->attr_map[tci]);
2451         if (!map)
2452                 return false;
2453
2454         for (pos = map->len; pos--;) {
2455                 if (map->queues[pos] != index)
2456                         continue;
2457
2458                 if (map->len > 1) {
2459                         map->queues[pos] = map->queues[--map->len];
2460                         break;
2461                 }
2462
2463                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2464                 kfree_rcu(map, rcu);
2465                 return false;
2466         }
2467
2468         return true;
2469 }
2470
2471 static bool remove_xps_queue_cpu(struct net_device *dev,
2472                                  struct xps_dev_maps *dev_maps,
2473                                  int cpu, u16 offset, u16 count)
2474 {
2475         int num_tc = dev->num_tc ? : 1;
2476         bool active = false;
2477         int tci;
2478
2479         for (tci = cpu * num_tc; num_tc--; tci++) {
2480                 int i, j;
2481
2482                 for (i = count, j = offset; i--; j++) {
2483                         if (!remove_xps_queue(dev_maps, tci, j))
2484                                 break;
2485                 }
2486
2487                 active |= i < 0;
2488         }
2489
2490         return active;
2491 }
2492
2493 static void reset_xps_maps(struct net_device *dev,
2494                            struct xps_dev_maps *dev_maps,
2495                            bool is_rxqs_map)
2496 {
2497         if (is_rxqs_map) {
2498                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2499                 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2500         } else {
2501                 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2502         }
2503         static_key_slow_dec_cpuslocked(&xps_needed);
2504         kfree_rcu(dev_maps, rcu);
2505 }
2506
2507 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2508                            struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2509                            u16 offset, u16 count, bool is_rxqs_map)
2510 {
2511         bool active = false;
2512         int i, j;
2513
2514         for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2515              j < nr_ids;)
2516                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2517                                                count);
2518         if (!active)
2519                 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2520
2521         if (!is_rxqs_map) {
2522                 for (i = offset + (count - 1); count--; i--) {
2523                         netdev_queue_numa_node_write(
2524                                 netdev_get_tx_queue(dev, i),
2525                                 NUMA_NO_NODE);
2526                 }
2527         }
2528 }
2529
2530 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2531                                    u16 count)
2532 {
2533         const unsigned long *possible_mask = NULL;
2534         struct xps_dev_maps *dev_maps;
2535         unsigned int nr_ids;
2536
2537         if (!static_key_false(&xps_needed))
2538                 return;
2539
2540         cpus_read_lock();
2541         mutex_lock(&xps_map_mutex);
2542
2543         if (static_key_false(&xps_rxqs_needed)) {
2544                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2545                 if (dev_maps) {
2546                         nr_ids = dev->num_rx_queues;
2547                         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2548                                        offset, count, true);
2549                 }
2550         }
2551
2552         dev_maps = xmap_dereference(dev->xps_cpus_map);
2553         if (!dev_maps)
2554                 goto out_no_maps;
2555
2556         if (num_possible_cpus() > 1)
2557                 possible_mask = cpumask_bits(cpu_possible_mask);
2558         nr_ids = nr_cpu_ids;
2559         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2560                        false);
2561
2562 out_no_maps:
2563         mutex_unlock(&xps_map_mutex);
2564         cpus_read_unlock();
2565 }
2566
2567 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2568 {
2569         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2570 }
2571
2572 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2573                                       u16 index, bool is_rxqs_map)
2574 {
2575         struct xps_map *new_map;
2576         int alloc_len = XPS_MIN_MAP_ALLOC;
2577         int i, pos;
2578
2579         for (pos = 0; map && pos < map->len; pos++) {
2580                 if (map->queues[pos] != index)
2581                         continue;
2582                 return map;
2583         }
2584
2585         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2586         if (map) {
2587                 if (pos < map->alloc_len)
2588                         return map;
2589
2590                 alloc_len = map->alloc_len * 2;
2591         }
2592
2593         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2594          *  map
2595          */
2596         if (is_rxqs_map)
2597                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2598         else
2599                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2600                                        cpu_to_node(attr_index));
2601         if (!new_map)
2602                 return NULL;
2603
2604         for (i = 0; i < pos; i++)
2605                 new_map->queues[i] = map->queues[i];
2606         new_map->alloc_len = alloc_len;
2607         new_map->len = pos;
2608
2609         return new_map;
2610 }
2611
2612 /* Must be called under cpus_read_lock */
2613 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2614                           u16 index, bool is_rxqs_map)
2615 {
2616         const unsigned long *online_mask = NULL, *possible_mask = NULL;
2617         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2618         int i, j, tci, numa_node_id = -2;
2619         int maps_sz, num_tc = 1, tc = 0;
2620         struct xps_map *map, *new_map;
2621         bool active = false;
2622         unsigned int nr_ids;
2623
2624         if (dev->num_tc) {
2625                 /* Do not allow XPS on subordinate device directly */
2626                 num_tc = dev->num_tc;
2627                 if (num_tc < 0)
2628                         return -EINVAL;
2629
2630                 /* If queue belongs to subordinate dev use its map */
2631                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2632
2633                 tc = netdev_txq_to_tc(dev, index);
2634                 if (tc < 0)
2635                         return -EINVAL;
2636         }
2637
2638         mutex_lock(&xps_map_mutex);
2639         if (is_rxqs_map) {
2640                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2641                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2642                 nr_ids = dev->num_rx_queues;
2643         } else {
2644                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2645                 if (num_possible_cpus() > 1) {
2646                         online_mask = cpumask_bits(cpu_online_mask);
2647                         possible_mask = cpumask_bits(cpu_possible_mask);
2648                 }
2649                 dev_maps = xmap_dereference(dev->xps_cpus_map);
2650                 nr_ids = nr_cpu_ids;
2651         }
2652
2653         if (maps_sz < L1_CACHE_BYTES)
2654                 maps_sz = L1_CACHE_BYTES;
2655
2656         /* allocate memory for queue storage */
2657         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2658              j < nr_ids;) {
2659                 if (!new_dev_maps)
2660                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2661                 if (!new_dev_maps) {
2662                         mutex_unlock(&xps_map_mutex);
2663                         return -ENOMEM;
2664                 }
2665
2666                 tci = j * num_tc + tc;
2667                 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2668                                  NULL;
2669
2670                 map = expand_xps_map(map, j, index, is_rxqs_map);
2671                 if (!map)
2672                         goto error;
2673
2674                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2675         }
2676
2677         if (!new_dev_maps)
2678                 goto out_no_new_maps;
2679
2680         if (!dev_maps) {
2681                 /* Increment static keys at most once per type */
2682                 static_key_slow_inc_cpuslocked(&xps_needed);
2683                 if (is_rxqs_map)
2684                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2685         }
2686
2687         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2688              j < nr_ids;) {
2689                 /* copy maps belonging to foreign traffic classes */
2690                 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2691                         /* fill in the new device map from the old device map */
2692                         map = xmap_dereference(dev_maps->attr_map[tci]);
2693                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2694                 }
2695
2696                 /* We need to explicitly update tci as prevous loop
2697                  * could break out early if dev_maps is NULL.
2698                  */
2699                 tci = j * num_tc + tc;
2700
2701                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2702                     netif_attr_test_online(j, online_mask, nr_ids)) {
2703                         /* add tx-queue to CPU/rx-queue maps */
2704                         int pos = 0;
2705
2706                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2707                         while ((pos < map->len) && (map->queues[pos] != index))
2708                                 pos++;
2709
2710                         if (pos == map->len)
2711                                 map->queues[map->len++] = index;
2712 #ifdef CONFIG_NUMA
2713                         if (!is_rxqs_map) {
2714                                 if (numa_node_id == -2)
2715                                         numa_node_id = cpu_to_node(j);
2716                                 else if (numa_node_id != cpu_to_node(j))
2717                                         numa_node_id = -1;
2718                         }
2719 #endif
2720                 } else if (dev_maps) {
2721                         /* fill in the new device map from the old device map */
2722                         map = xmap_dereference(dev_maps->attr_map[tci]);
2723                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2724                 }
2725
2726                 /* copy maps belonging to foreign traffic classes */
2727                 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2728                         /* fill in the new device map from the old device map */
2729                         map = xmap_dereference(dev_maps->attr_map[tci]);
2730                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2731                 }
2732         }
2733
2734         if (is_rxqs_map)
2735                 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2736         else
2737                 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2738
2739         /* Cleanup old maps */
2740         if (!dev_maps)
2741                 goto out_no_old_maps;
2742
2743         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2744              j < nr_ids;) {
2745                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2746                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2747                         map = xmap_dereference(dev_maps->attr_map[tci]);
2748                         if (map && map != new_map)
2749                                 kfree_rcu(map, rcu);
2750                 }
2751         }
2752
2753         kfree_rcu(dev_maps, rcu);
2754
2755 out_no_old_maps:
2756         dev_maps = new_dev_maps;
2757         active = true;
2758
2759 out_no_new_maps:
2760         if (!is_rxqs_map) {
2761                 /* update Tx queue numa node */
2762                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2763                                              (numa_node_id >= 0) ?
2764                                              numa_node_id : NUMA_NO_NODE);
2765         }
2766
2767         if (!dev_maps)
2768                 goto out_no_maps;
2769
2770         /* removes tx-queue from unused CPUs/rx-queues */
2771         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2772              j < nr_ids;) {
2773                 for (i = tc, tci = j * num_tc; i--; tci++)
2774                         active |= remove_xps_queue(dev_maps, tci, index);
2775                 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2776                     !netif_attr_test_online(j, online_mask, nr_ids))
2777                         active |= remove_xps_queue(dev_maps, tci, index);
2778                 for (i = num_tc - tc, tci++; --i; tci++)
2779                         active |= remove_xps_queue(dev_maps, tci, index);
2780         }
2781
2782         /* free map if not active */
2783         if (!active)
2784                 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2785
2786 out_no_maps:
2787         mutex_unlock(&xps_map_mutex);
2788
2789         return 0;
2790 error:
2791         /* remove any maps that we added */
2792         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2793              j < nr_ids;) {
2794                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2795                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2796                         map = dev_maps ?
2797                               xmap_dereference(dev_maps->attr_map[tci]) :
2798                               NULL;
2799                         if (new_map && new_map != map)
2800                                 kfree(new_map);
2801                 }
2802         }
2803
2804         mutex_unlock(&xps_map_mutex);
2805
2806         kfree(new_dev_maps);
2807         return -ENOMEM;
2808 }
2809 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2810
2811 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2812                         u16 index)
2813 {
2814         int ret;
2815
2816         cpus_read_lock();
2817         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2818         cpus_read_unlock();
2819
2820         return ret;
2821 }
2822 EXPORT_SYMBOL(netif_set_xps_queue);
2823
2824 #endif
2825 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2826 {
2827         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2828
2829         /* Unbind any subordinate channels */
2830         while (txq-- != &dev->_tx[0]) {
2831                 if (txq->sb_dev)
2832                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2833         }
2834 }
2835
2836 void netdev_reset_tc(struct net_device *dev)
2837 {
2838 #ifdef CONFIG_XPS
2839         netif_reset_xps_queues_gt(dev, 0);
2840 #endif
2841         netdev_unbind_all_sb_channels(dev);
2842
2843         /* Reset TC configuration of device */
2844         dev->num_tc = 0;
2845         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2846         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2847 }
2848 EXPORT_SYMBOL(netdev_reset_tc);
2849
2850 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2851 {
2852         if (tc >= dev->num_tc)
2853                 return -EINVAL;
2854
2855 #ifdef CONFIG_XPS
2856         netif_reset_xps_queues(dev, offset, count);
2857 #endif
2858         dev->tc_to_txq[tc].count = count;
2859         dev->tc_to_txq[tc].offset = offset;
2860         return 0;
2861 }
2862 EXPORT_SYMBOL(netdev_set_tc_queue);
2863
2864 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2865 {
2866         if (num_tc > TC_MAX_QUEUE)
2867                 return -EINVAL;
2868
2869 #ifdef CONFIG_XPS
2870         netif_reset_xps_queues_gt(dev, 0);
2871 #endif
2872         netdev_unbind_all_sb_channels(dev);
2873
2874         dev->num_tc = num_tc;
2875         return 0;
2876 }
2877 EXPORT_SYMBOL(netdev_set_num_tc);
2878
2879 void netdev_unbind_sb_channel(struct net_device *dev,
2880                               struct net_device *sb_dev)
2881 {
2882         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2883
2884 #ifdef CONFIG_XPS
2885         netif_reset_xps_queues_gt(sb_dev, 0);
2886 #endif
2887         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2888         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2889
2890         while (txq-- != &dev->_tx[0]) {
2891                 if (txq->sb_dev == sb_dev)
2892                         txq->sb_dev = NULL;
2893         }
2894 }
2895 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2896
2897 int netdev_bind_sb_channel_queue(struct net_device *dev,
2898                                  struct net_device *sb_dev,
2899                                  u8 tc, u16 count, u16 offset)
2900 {
2901         /* Make certain the sb_dev and dev are already configured */
2902         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2903                 return -EINVAL;
2904
2905         /* We cannot hand out queues we don't have */
2906         if ((offset + count) > dev->real_num_tx_queues)
2907                 return -EINVAL;
2908
2909         /* Record the mapping */
2910         sb_dev->tc_to_txq[tc].count = count;
2911         sb_dev->tc_to_txq[tc].offset = offset;
2912
2913         /* Provide a way for Tx queue to find the tc_to_txq map or
2914          * XPS map for itself.
2915          */
2916         while (count--)
2917                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2918
2919         return 0;
2920 }
2921 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2922
2923 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2924 {
2925         /* Do not use a multiqueue device to represent a subordinate channel */
2926         if (netif_is_multiqueue(dev))
2927                 return -ENODEV;
2928
2929         /* We allow channels 1 - 32767 to be used for subordinate channels.
2930          * Channel 0 is meant to be "native" mode and used only to represent
2931          * the main root device. We allow writing 0 to reset the device back
2932          * to normal mode after being used as a subordinate channel.
2933          */
2934         if (channel > S16_MAX)
2935                 return -EINVAL;
2936
2937         dev->num_tc = -channel;
2938
2939         return 0;
2940 }
2941 EXPORT_SYMBOL(netdev_set_sb_channel);
2942
2943 /*
2944  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2945  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2946  */
2947 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2948 {
2949         bool disabling;
2950         int rc;
2951
2952         disabling = txq < dev->real_num_tx_queues;
2953
2954         if (txq < 1 || txq > dev->num_tx_queues)
2955                 return -EINVAL;
2956
2957         if (dev->reg_state == NETREG_REGISTERED ||
2958             dev->reg_state == NETREG_UNREGISTERING) {
2959                 ASSERT_RTNL();
2960
2961                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2962                                                   txq);
2963                 if (rc)
2964                         return rc;
2965
2966                 if (dev->num_tc)
2967                         netif_setup_tc(dev, txq);
2968
2969                 dev->real_num_tx_queues = txq;
2970
2971                 if (disabling) {
2972                         synchronize_net();
2973                         qdisc_reset_all_tx_gt(dev, txq);
2974 #ifdef CONFIG_XPS
2975                         netif_reset_xps_queues_gt(dev, txq);
2976 #endif
2977                 }
2978         } else {
2979                 dev->real_num_tx_queues = txq;
2980         }
2981
2982         return 0;
2983 }
2984 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2985
2986 #ifdef CONFIG_SYSFS
2987 /**
2988  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2989  *      @dev: Network device
2990  *      @rxq: Actual number of RX queues
2991  *
2992  *      This must be called either with the rtnl_lock held or before
2993  *      registration of the net device.  Returns 0 on success, or a
2994  *      negative error code.  If called before registration, it always
2995  *      succeeds.
2996  */
2997 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2998 {
2999         int rc;
3000
3001         if (rxq < 1 || rxq > dev->num_rx_queues)
3002                 return -EINVAL;
3003
3004         if (dev->reg_state == NETREG_REGISTERED) {
3005                 ASSERT_RTNL();
3006
3007                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3008                                                   rxq);
3009                 if (rc)
3010                         return rc;
3011         }
3012
3013         dev->real_num_rx_queues = rxq;
3014         return 0;
3015 }
3016 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3017 #endif
3018
3019 /**
3020  * netif_get_num_default_rss_queues - default number of RSS queues
3021  *
3022  * This routine should set an upper limit on the number of RSS queues
3023  * used by default by multiqueue devices.
3024  */
3025 int netif_get_num_default_rss_queues(void)
3026 {
3027         return is_kdump_kernel() ?
3028                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3029 }
3030 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3031
3032 static void __netif_reschedule(struct Qdisc *q)
3033 {
3034         struct softnet_data *sd;
3035         unsigned long flags;
3036
3037         local_irq_save(flags);
3038         sd = this_cpu_ptr(&softnet_data);
3039         q->next_sched = NULL;
3040         *sd->output_queue_tailp = q;
3041         sd->output_queue_tailp = &q->next_sched;
3042         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3043         local_irq_restore(flags);
3044 }
3045
3046 void __netif_schedule(struct Qdisc *q)
3047 {
3048         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3049                 __netif_reschedule(q);
3050 }
3051 EXPORT_SYMBOL(__netif_schedule);
3052
3053 struct dev_kfree_skb_cb {
3054         enum skb_free_reason reason;
3055 };
3056
3057 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3058 {
3059         return (struct dev_kfree_skb_cb *)skb->cb;
3060 }
3061
3062 void netif_schedule_queue(struct netdev_queue *txq)
3063 {
3064         rcu_read_lock();
3065         if (!netif_xmit_stopped(txq)) {
3066                 struct Qdisc *q = rcu_dereference(txq->qdisc);
3067
3068                 __netif_schedule(q);
3069         }
3070         rcu_read_unlock();
3071 }
3072 EXPORT_SYMBOL(netif_schedule_queue);
3073
3074 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3075 {
3076         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3077                 struct Qdisc *q;
3078
3079                 rcu_read_lock();
3080                 q = rcu_dereference(dev_queue->qdisc);
3081                 __netif_schedule(q);
3082                 rcu_read_unlock();
3083         }
3084 }
3085 EXPORT_SYMBOL(netif_tx_wake_queue);
3086
3087 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3088 {
3089         unsigned long flags;
3090
3091         if (unlikely(!skb))
3092                 return;
3093
3094         if (likely(refcount_read(&skb->users) == 1)) {
3095                 smp_rmb();
3096                 refcount_set(&skb->users, 0);
3097         } else if (likely(!refcount_dec_and_test(&skb->users))) {
3098                 return;
3099         }
3100         get_kfree_skb_cb(skb)->reason = reason;
3101         local_irq_save(flags);
3102         skb->next = __this_cpu_read(softnet_data.completion_queue);
3103         __this_cpu_write(softnet_data.completion_queue, skb);
3104         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3105         local_irq_restore(flags);
3106 }
3107 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3108
3109 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3110 {
3111         if (in_irq() || irqs_disabled())
3112                 __dev_kfree_skb_irq(skb, reason);
3113         else
3114                 dev_kfree_skb(skb);
3115 }
3116 EXPORT_SYMBOL(__dev_kfree_skb_any);
3117
3118
3119 /**
3120  * netif_device_detach - mark device as removed
3121  * @dev: network device
3122  *
3123  * Mark device as removed from system and therefore no longer available.
3124  */
3125 void netif_device_detach(struct net_device *dev)
3126 {
3127         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3128             netif_running(dev)) {
3129                 netif_tx_stop_all_queues(dev);
3130         }
3131 }
3132 EXPORT_SYMBOL(netif_device_detach);
3133
3134 /**
3135  * netif_device_attach - mark device as attached
3136  * @dev: network device
3137  *
3138  * Mark device as attached from system and restart if needed.
3139  */
3140 void netif_device_attach(struct net_device *dev)
3141 {
3142         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3143             netif_running(dev)) {
3144                 netif_tx_wake_all_queues(dev);
3145                 __netdev_watchdog_up(dev);
3146         }
3147 }
3148 EXPORT_SYMBOL(netif_device_attach);
3149
3150 /*
3151  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3152  * to be used as a distribution range.
3153  */
3154 static u16 skb_tx_hash(const struct net_device *dev,
3155                        const struct net_device *sb_dev,
3156                        struct sk_buff *skb)
3157 {
3158         u32 hash;
3159         u16 qoffset = 0;
3160         u16 qcount = dev->real_num_tx_queues;
3161
3162         if (dev->num_tc) {
3163                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3164
3165                 qoffset = sb_dev->tc_to_txq[tc].offset;
3166                 qcount = sb_dev->tc_to_txq[tc].count;
3167         }
3168
3169         if (skb_rx_queue_recorded(skb)) {
3170                 hash = skb_get_rx_queue(skb);
3171                 if (hash >= qoffset)
3172                         hash -= qoffset;
3173                 while (unlikely(hash >= qcount))
3174                         hash -= qcount;
3175                 return hash + qoffset;
3176         }
3177
3178         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3179 }
3180
3181 static void skb_warn_bad_offload(const struct sk_buff *skb)
3182 {
3183         static const netdev_features_t null_features;
3184         struct net_device *dev = skb->dev;
3185         const char *name = "";
3186
3187         if (!net_ratelimit())
3188                 return;
3189
3190         if (dev) {
3191                 if (dev->dev.parent)
3192                         name = dev_driver_string(dev->dev.parent);
3193                 else
3194                         name = netdev_name(dev);
3195         }
3196         skb_dump(KERN_WARNING, skb, false);
3197         WARN(1, "%s: caps=(%pNF, %pNF)\n",
3198              name, dev ? &dev->features : &null_features,
3199              skb->sk ? &skb->sk->sk_route_caps : &null_features);
3200 }
3201
3202 /*
3203  * Invalidate hardware checksum when packet is to be mangled, and
3204  * complete checksum manually on outgoing path.
3205  */
3206 int skb_checksum_help(struct sk_buff *skb)
3207 {
3208         __wsum csum;
3209         int ret = 0, offset;
3210
3211         if (skb->ip_summed == CHECKSUM_COMPLETE)
3212                 goto out_set_summed;
3213
3214         if (unlikely(skb_is_gso(skb))) {
3215                 skb_warn_bad_offload(skb);
3216                 return -EINVAL;
3217         }
3218
3219         /* Before computing a checksum, we should make sure no frag could
3220          * be modified by an external entity : checksum could be wrong.
3221          */
3222         if (skb_has_shared_frag(skb)) {
3223                 ret = __skb_linearize(skb);
3224                 if (ret)
3225                         goto out;
3226         }
3227
3228         offset = skb_checksum_start_offset(skb);
3229         BUG_ON(offset >= skb_headlen(skb));
3230         csum = skb_checksum(skb, offset, skb->len - offset, 0);
3231
3232         offset += skb->csum_offset;
3233         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3234
3235         ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3236         if (ret)
3237                 goto out;
3238
3239         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3240 out_set_summed:
3241         skb->ip_summed = CHECKSUM_NONE;
3242 out:
3243         return ret;
3244 }
3245 EXPORT_SYMBOL(skb_checksum_help);
3246
3247 int skb_crc32c_csum_help(struct sk_buff *skb)
3248 {
3249         __le32 crc32c_csum;
3250         int ret = 0, offset, start;
3251
3252         if (skb->ip_summed != CHECKSUM_PARTIAL)
3253                 goto out;
3254
3255         if (unlikely(skb_is_gso(skb)))
3256                 goto out;
3257
3258         /* Before computing a checksum, we should make sure no frag could
3259          * be modified by an external entity : checksum could be wrong.
3260          */
3261         if (unlikely(skb_has_shared_frag(skb))) {
3262                 ret = __skb_linearize(skb);
3263                 if (ret)
3264                         goto out;
3265         }
3266         start = skb_checksum_start_offset(skb);
3267         offset = start + offsetof(struct sctphdr, checksum);
3268         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3269                 ret = -EINVAL;
3270                 goto out;
3271         }
3272
3273         ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3274         if (ret)
3275                 goto out;
3276
3277         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3278                                                   skb->len - start, ~(__u32)0,
3279                                                   crc32c_csum_stub));
3280         *(__le32 *)(skb->data + offset) = crc32c_csum;
3281         skb->ip_summed = CHECKSUM_NONE;
3282         skb->csum_not_inet = 0;
3283 out:
3284         return ret;
3285 }
3286
3287 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3288 {
3289         __be16 type = skb->protocol;
3290
3291         /* Tunnel gso handlers can set protocol to ethernet. */
3292         if (type == htons(ETH_P_TEB)) {
3293                 struct ethhdr *eth;
3294
3295                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3296                         return 0;
3297
3298                 eth = (struct ethhdr *)skb->data;
3299                 type = eth->h_proto;
3300         }
3301
3302         return __vlan_get_protocol(skb, type, depth);
3303 }
3304
3305 /**
3306  *      skb_mac_gso_segment - mac layer segmentation handler.
3307  *      @skb: buffer to segment
3308  *      @features: features for the output path (see dev->features)
3309  */
3310 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3311                                     netdev_features_t features)
3312 {
3313         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3314         struct packet_offload *ptype;
3315         int vlan_depth = skb->mac_len;
3316         __be16 type = skb_network_protocol(skb, &vlan_depth);
3317
3318         if (unlikely(!type))
3319                 return ERR_PTR(-EINVAL);
3320
3321         __skb_pull(skb, vlan_depth);
3322
3323         rcu_read_lock();
3324         list_for_each_entry_rcu(ptype, &offload_base, list) {
3325                 if (ptype->type == type && ptype->callbacks.gso_segment) {
3326                         segs = ptype->callbacks.gso_segment(skb, features);
3327                         break;
3328                 }
3329         }
3330         rcu_read_unlock();
3331
3332         __skb_push(skb, skb->data - skb_mac_header(skb));
3333
3334         return segs;
3335 }
3336 EXPORT_SYMBOL(skb_mac_gso_segment);
3337
3338
3339 /* openvswitch calls this on rx path, so we need a different check.
3340  */
3341 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3342 {
3343         if (tx_path)
3344                 return skb->ip_summed != CHECKSUM_PARTIAL &&
3345                        skb->ip_summed != CHECKSUM_UNNECESSARY;
3346
3347         return skb->ip_summed == CHECKSUM_NONE;
3348 }
3349
3350 /**
3351  *      __skb_gso_segment - Perform segmentation on skb.
3352  *      @skb: buffer to segment
3353  *      @features: features for the output path (see dev->features)
3354  *      @tx_path: whether it is called in TX path
3355  *
3356  *      This function segments the given skb and returns a list of segments.
3357  *
3358  *      It may return NULL if the skb requires no segmentation.  This is
3359  *      only possible when GSO is used for verifying header integrity.
3360  *
3361  *      Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3362  */
3363 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3364                                   netdev_features_t features, bool tx_path)
3365 {
3366         struct sk_buff *segs;
3367
3368         if (unlikely(skb_needs_check(skb, tx_path))) {
3369                 int err;
3370
3371                 /* We're going to init ->check field in TCP or UDP header */
3372                 err = skb_cow_head(skb, 0);
3373                 if (err < 0)
3374                         return ERR_PTR(err);
3375         }
3376
3377         /* Only report GSO partial support if it will enable us to
3378          * support segmentation on this frame without needing additional
3379          * work.
3380          */
3381         if (features & NETIF_F_GSO_PARTIAL) {
3382                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3383                 struct net_device *dev = skb->dev;
3384
3385                 partial_features |= dev->features & dev->gso_partial_features;
3386                 if (!skb_gso_ok(skb, features | partial_features))
3387                         features &= ~NETIF_F_GSO_PARTIAL;
3388         }
3389
3390         BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3391                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3392
3393         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3394         SKB_GSO_CB(skb)->encap_level = 0;
3395
3396         skb_reset_mac_header(skb);
3397         skb_reset_mac_len(skb);
3398
3399         segs = skb_mac_gso_segment(skb, features);
3400
3401         if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3402                 skb_warn_bad_offload(skb);
3403
3404         return segs;
3405 }
3406 EXPORT_SYMBOL(__skb_gso_segment);
3407
3408 /* Take action when hardware reception checksum errors are detected. */
3409 #ifdef CONFIG_BUG
3410 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3411 {
3412         if (net_ratelimit()) {
3413                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3414                 skb_dump(KERN_ERR, skb, true);
3415                 dump_stack();
3416         }
3417 }
3418 EXPORT_SYMBOL(netdev_rx_csum_fault);
3419 #endif
3420
3421 /* XXX: check that highmem exists at all on the given machine. */
3422 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3423 {
3424 #ifdef CONFIG_HIGHMEM
3425         int i;
3426
3427         if (!(dev->features & NETIF_F_HIGHDMA)) {
3428                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3429                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3430
3431                         if (PageHighMem(skb_frag_page(frag)))
3432                                 return 1;
3433                 }
3434         }
3435 #endif
3436         return 0;
3437 }
3438
3439 /* If MPLS offload request, verify we are testing hardware MPLS features
3440  * instead of standard features for the netdev.
3441  */
3442 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3443 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3444                                            netdev_features_t features,
3445                                            __be16 type)
3446 {
3447         if (eth_p_mpls(type))
3448                 features &= skb->dev->mpls_features;
3449
3450         return features;
3451 }
3452 #else
3453 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3454                                            netdev_features_t features,
3455                                            __be16 type)
3456 {
3457         return features;
3458 }
3459 #endif
3460
3461 static netdev_features_t harmonize_features(struct sk_buff *skb,
3462         netdev_features_t features)
3463 {
3464         __be16 type;
3465
3466         type = skb_network_protocol(skb, NULL);
3467         features = net_mpls_features(skb, features, type);
3468
3469         if (skb->ip_summed != CHECKSUM_NONE &&
3470             !can_checksum_protocol(features, type)) {
3471                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3472         }
3473         if (illegal_highdma(skb->dev, skb))
3474                 features &= ~NETIF_F_SG;
3475
3476         return features;
3477 }
3478
3479 netdev_features_t passthru_features_check(struct sk_buff *skb,
3480                                           struct net_device *dev,
3481                                           netdev_features_t features)
3482 {
3483         return features;
3484 }
3485 EXPORT_SYMBOL(passthru_features_check);
3486
3487 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3488                                              struct net_device *dev,
3489                                              netdev_features_t features)
3490 {
3491         return vlan_features_check(skb, features);
3492 }
3493
3494 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3495                                             struct net_device *dev,
3496                                             netdev_features_t features)
3497 {
3498         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3499
3500         if (gso_segs > dev->gso_max_segs)
3501                 return features & ~NETIF_F_GSO_MASK;
3502
3503         if (!skb_shinfo(skb)->gso_type) {
3504                 skb_warn_bad_offload(skb);
3505                 return features & ~NETIF_F_GSO_MASK;
3506         }
3507
3508         /* Support for GSO partial features requires software
3509          * intervention before we can actually process the packets
3510          * so we need to strip support for any partial features now
3511          * and we can pull them back in after we have partially
3512          * segmented the frame.
3513          */
3514         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3515                 features &= ~dev->gso_partial_features;
3516
3517         /* Make sure to clear the IPv4 ID mangling feature if the
3518          * IPv4 header has the potential to be fragmented.
3519          */
3520         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3521                 struct iphdr *iph = skb->encapsulation ?
3522                                     inner_ip_hdr(skb) : ip_hdr(skb);
3523
3524                 if (!(iph->frag_off & htons(IP_DF)))
3525                         features &= ~NETIF_F_TSO_MANGLEID;
3526         }
3527
3528         return features;
3529 }
3530
3531 netdev_features_t netif_skb_features(struct sk_buff *skb)
3532 {
3533         struct net_device *dev = skb->dev;
3534         netdev_features_t features = dev->features;
3535
3536         if (skb_is_gso(skb))
3537                 features = gso_features_check(skb, dev, features);
3538
3539         /* If encapsulation offload request, verify we are testing
3540          * hardware encapsulation features instead of standard
3541          * features for the netdev
3542          */
3543         if (skb->encapsulation)
3544                 features &= dev->hw_enc_features;
3545
3546         if (skb_vlan_tagged(skb))
3547                 features = netdev_intersect_features(features,
3548                                                      dev->vlan_features |
3549                                                      NETIF_F_HW_VLAN_CTAG_TX |
3550                                                      NETIF_F_HW_VLAN_STAG_TX);
3551
3552         if (dev->netdev_ops->ndo_features_check)
3553                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3554                                                                 features);
3555         else
3556                 features &= dflt_features_check(skb, dev, features);
3557
3558         return harmonize_features(skb, features);
3559 }
3560 EXPORT_SYMBOL(netif_skb_features);
3561
3562 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3563                     struct netdev_queue *txq, bool more)
3564 {
3565         unsigned int len;
3566         int rc;
3567
3568         if (dev_nit_active(dev))
3569                 dev_queue_xmit_nit(skb, dev);
3570
3571         len = skb->len;
3572         PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3573         trace_net_dev_start_xmit(skb, dev);
3574         rc = netdev_start_xmit(skb, dev, txq, more);
3575         trace_net_dev_xmit(skb, rc, dev, len);
3576
3577         return rc;
3578 }
3579
3580 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3581                                     struct netdev_queue *txq, int *ret)
3582 {
3583         struct sk_buff *skb = first;
3584         int rc = NETDEV_TX_OK;
3585
3586         while (skb) {
3587                 struct sk_buff *next = skb->next;
3588
3589                 skb_mark_not_on_list(skb);
3590                 rc = xmit_one(skb, dev, txq, next != NULL);
3591                 if (unlikely(!dev_xmit_complete(rc))) {
3592                         skb->next = next;
3593                         goto out;
3594                 }
3595
3596                 skb = next;
3597                 if (netif_tx_queue_stopped(txq) && skb) {
3598                         rc = NETDEV_TX_BUSY;
3599                         break;
3600                 }
3601         }
3602
3603 out:
3604         *ret = rc;
3605         return skb;
3606 }
3607
3608 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3609                                           netdev_features_t features)
3610 {
3611         if (skb_vlan_tag_present(skb) &&
3612             !vlan_hw_offload_capable(features, skb->vlan_proto))
3613                 skb = __vlan_hwaccel_push_inside(skb);
3614         return skb;
3615 }
3616
3617 int skb_csum_hwoffload_help(struct sk_buff *skb,
3618                             const netdev_features_t features)
3619 {
3620         if (unlikely(skb->csum_not_inet))
3621                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3622                         skb_crc32c_csum_help(skb);
3623
3624         return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3625 }
3626 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3627
3628 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3629 {
3630         netdev_features_t features;
3631
3632         features = netif_skb_features(skb);
3633         skb = validate_xmit_vlan(skb, features);
3634         if (unlikely(!skb))
3635                 goto out_null;
3636
3637         skb = sk_validate_xmit_skb(skb, dev);
3638         if (unlikely(!skb))
3639                 goto out_null;
3640
3641         if (netif_needs_gso(skb, features)) {
3642                 struct sk_buff *segs;
3643
3644                 segs = skb_gso_segment(skb, features);
3645                 if (IS_ERR(segs)) {
3646                         goto out_kfree_skb;
3647                 } else if (segs) {
3648                         consume_skb(skb);
3649                         skb = segs;
3650                 }
3651         } else {
3652                 if (skb_needs_linearize(skb, features) &&
3653                     __skb_linearize(skb))
3654                         goto out_kfree_skb;
3655
3656                 /* If packet is not checksummed and device does not
3657                  * support checksumming for this protocol, complete
3658                  * checksumming here.
3659                  */
3660                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3661                         if (skb->encapsulation)
3662                                 skb_set_inner_transport_header(skb,
3663                                                                skb_checksum_start_offset(skb));
3664                         else
3665                                 skb_set_transport_header(skb,
3666                                                          skb_checksum_start_offset(skb));
3667                         if (skb_csum_hwoffload_help(skb, features))
3668                                 goto out_kfree_skb;
3669                 }
3670         }
3671
3672         skb = validate_xmit_xfrm(skb, features, again);
3673
3674         return skb;
3675
3676 out_kfree_skb:
3677         kfree_skb(skb);
3678 out_null:
3679         atomic_long_inc(&dev->tx_dropped);
3680         return NULL;
3681 }
3682
3683 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3684 {
3685         struct sk_buff *next, *head = NULL, *tail;
3686
3687         for (; skb != NULL; skb = next) {
3688                 next = skb->next;
3689                 skb_mark_not_on_list(skb);
3690
3691                 /* in case skb wont be segmented, point to itself */
3692                 skb->prev = skb;
3693
3694                 skb = validate_xmit_skb(skb, dev, again);
3695                 if (!skb)
3696                         continue;
3697
3698                 if (!head)
3699                         head = skb;
3700                 else
3701                         tail->next = skb;
3702                 /* If skb was segmented, skb->prev points to
3703                  * the last segment. If not, it still contains skb.
3704                  */
3705                 tail = skb->prev;
3706         }
3707         return head;
3708 }
3709 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3710
3711 static void qdisc_pkt_len_init(struct sk_buff *skb)
3712 {
3713         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3714
3715         qdisc_skb_cb(skb)->pkt_len = skb->len;
3716
3717         /* To get more precise estimation of bytes sent on wire,
3718          * we add to pkt_len the headers size of all segments
3719          */
3720         if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3721                 unsigned int hdr_len;
3722                 u16 gso_segs = shinfo->gso_segs;
3723
3724                 /* mac layer + network layer */
3725                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3726
3727                 /* + transport layer */
3728                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3729                         const struct tcphdr *th;
3730                         struct tcphdr _tcphdr;
3731
3732                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3733                                                 sizeof(_tcphdr), &_tcphdr);
3734                         if (likely(th))
3735                                 hdr_len += __tcp_hdrlen(th);
3736                 } else {
3737                         struct udphdr _udphdr;
3738
3739                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3740                                                sizeof(_udphdr), &_udphdr))
3741                                 hdr_len += sizeof(struct udphdr);
3742                 }
3743
3744                 if (shinfo->gso_type & SKB_GSO_DODGY)
3745                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3746                                                 shinfo->gso_size);
3747
3748                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3749         }
3750 }
3751
3752 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3753                                  struct net_device *dev,
3754                                  struct netdev_queue *txq)
3755 {
3756         spinlock_t *root_lock = qdisc_lock(q);
3757         struct sk_buff *to_free = NULL;
3758         bool contended;
3759         int rc;
3760
3761         qdisc_calculate_pkt_len(skb, q);
3762
3763         if (q->flags & TCQ_F_NOLOCK) {
3764                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3765                 qdisc_run(q);
3766
3767                 if (unlikely(to_free))
3768                         kfree_skb_list(to_free);
3769                 return rc;
3770         }
3771
3772         /*
3773          * Heuristic to force contended enqueues to serialize on a
3774          * separate lock before trying to get qdisc main lock.
3775          * This permits qdisc->running owner to get the lock more
3776          * often and dequeue packets faster.
3777          */
3778         contended = qdisc_is_running(q);
3779         if (unlikely(contended))
3780                 spin_lock(&q->busylock);
3781
3782         spin_lock(root_lock);
3783         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3784                 __qdisc_drop(skb, &to_free);
3785                 rc = NET_XMIT_DROP;
3786         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3787                    qdisc_run_begin(q)) {
3788                 /*
3789                  * This is a work-conserving queue; there are no old skbs
3790                  * waiting to be sent out; and the qdisc is not running -
3791                  * xmit the skb directly.
3792                  */
3793
3794                 qdisc_bstats_update(q, skb);
3795
3796                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3797                         if (unlikely(contended)) {
3798                                 spin_unlock(&q->busylock);
3799                                 contended = false;
3800                         }
3801                         __qdisc_run(q);
3802                 }
3803
3804                 qdisc_run_end(q);
3805                 rc = NET_XMIT_SUCCESS;
3806         } else {
3807                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3808                 if (qdisc_run_begin(q)) {
3809                         if (unlikely(contended)) {
3810                                 spin_unlock(&q->busylock);
3811                                 contended = false;
3812                         }
3813                         __qdisc_run(q);
3814                         qdisc_run_end(q);
3815                 }
3816         }
3817         spin_unlock(root_lock);
3818         if (unlikely(to_free))
3819                 kfree_skb_list(to_free);
3820         if (unlikely(contended))
3821                 spin_unlock(&q->busylock);
3822         return rc;
3823 }
3824
3825 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3826 static void skb_update_prio(struct sk_buff *skb)
3827 {
3828         const struct netprio_map *map;
3829         const struct sock *sk;
3830         unsigned int prioidx;
3831
3832         if (skb->priority)
3833                 return;
3834         map = rcu_dereference_bh(skb->dev->priomap);
3835         if (!map)
3836                 return;
3837         sk = skb_to_full_sk(skb);
3838         if (!sk)
3839                 return;
3840
3841         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3842
3843         if (prioidx < map->priomap_len)
3844                 skb->priority = map->priomap[prioidx];
3845 }
3846 #else
3847 #define skb_update_prio(skb)
3848 #endif
3849
3850 /**
3851  *      dev_loopback_xmit - loop back @skb
3852  *      @net: network namespace this loopback is happening in
3853  *      @sk:  sk needed to be a netfilter okfn
3854  *      @skb: buffer to transmit
3855  */
3856 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3857 {
3858         skb_reset_mac_header(skb);
3859         __skb_pull(skb, skb_network_offset(skb));
3860         skb->pkt_type = PACKET_LOOPBACK;
3861         skb->ip_summed = CHECKSUM_UNNECESSARY;
3862         WARN_ON(!skb_dst(skb));
3863         skb_dst_force(skb);
3864         netif_rx_ni(skb);
3865         return 0;
3866 }
3867 EXPORT_SYMBOL(dev_loopback_xmit);
3868
3869 #ifdef CONFIG_NET_EGRESS
3870 static struct sk_buff *
3871 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3872 {
3873         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3874         struct tcf_result cl_res;
3875
3876         if (!miniq)
3877                 return skb;
3878
3879         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3880         qdisc_skb_cb(skb)->mru = 0;
3881         mini_qdisc_bstats_cpu_update(miniq, skb);
3882
3883         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3884         case TC_ACT_OK:
3885         case TC_ACT_RECLASSIFY:
3886                 skb->tc_index = TC_H_MIN(cl_res.classid);
3887                 break;
3888         case TC_ACT_SHOT:
3889                 mini_qdisc_qstats_cpu_drop(miniq);
3890                 *ret = NET_XMIT_DROP;
3891                 kfree_skb(skb);
3892                 return NULL;
3893         case TC_ACT_STOLEN:
3894         case TC_ACT_QUEUED:
3895         case TC_ACT_TRAP:
3896                 *ret = NET_XMIT_SUCCESS;
3897                 consume_skb(skb);
3898                 return NULL;
3899         case TC_ACT_REDIRECT:
3900                 /* No need to push/pop skb's mac_header here on egress! */
3901                 skb_do_redirect(skb);
3902                 *ret = NET_XMIT_SUCCESS;
3903                 return NULL;
3904         default:
3905                 break;
3906         }
3907
3908         return skb;
3909 }
3910 #endif /* CONFIG_NET_EGRESS */
3911
3912 #ifdef CONFIG_XPS
3913 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3914                                struct xps_dev_maps *dev_maps, unsigned int tci)
3915 {
3916         struct xps_map *map;
3917         int queue_index = -1;
3918
3919         if (dev->num_tc) {
3920                 tci *= dev->num_tc;
3921                 tci += netdev_get_prio_tc_map(dev, skb->priority);
3922         }
3923
3924         map = rcu_dereference(dev_maps->attr_map[tci]);
3925         if (map) {
3926                 if (map->len == 1)
3927                         queue_index = map->queues[0];
3928                 else
3929                         queue_index = map->queues[reciprocal_scale(
3930                                                 skb_get_hash(skb), map->len)];
3931                 if (unlikely(queue_index >= dev->real_num_tx_queues))
3932                         queue_index = -1;
3933         }
3934         return queue_index;
3935 }
3936 #endif
3937
3938 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3939                          struct sk_buff *skb)
3940 {
3941 #ifdef CONFIG_XPS
3942         struct xps_dev_maps *dev_maps;
3943         struct sock *sk = skb->sk;
3944         int queue_index = -1;
3945
3946         if (!static_key_false(&xps_needed))
3947                 return -1;
3948
3949         rcu_read_lock();
3950         if (!static_key_false(&xps_rxqs_needed))
3951                 goto get_cpus_map;
3952
3953         dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3954         if (dev_maps) {
3955                 int tci = sk_rx_queue_get(sk);
3956
3957                 if (tci >= 0 && tci < dev->num_rx_queues)
3958                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3959                                                           tci);
3960         }
3961
3962 get_cpus_map:
3963         if (queue_index < 0) {
3964                 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3965                 if (dev_maps) {
3966                         unsigned int tci = skb->sender_cpu - 1;
3967
3968                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3969                                                           tci);
3970                 }
3971         }
3972         rcu_read_unlock();
3973
3974         return queue_index;
3975 #else
3976         return -1;
3977 #endif
3978 }
3979
3980 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3981                      struct net_device *sb_dev)
3982 {
3983         return 0;
3984 }
3985 EXPORT_SYMBOL(dev_pick_tx_zero);
3986
3987 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3988                        struct net_device *sb_dev)
3989 {
3990         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3991 }
3992 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3993
3994 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3995                      struct net_device *sb_dev)
3996 {
3997         struct sock *sk = skb->sk;
3998         int queue_index = sk_tx_queue_get(sk);
3999
4000         sb_dev = sb_dev ? : dev;
4001
4002         if (queue_index < 0 || skb->ooo_okay ||
4003             queue_index >= dev->real_num_tx_queues) {
4004                 int new_index = get_xps_queue(dev, sb_dev, skb);
4005
4006                 if (new_index < 0)
4007                         new_index = skb_tx_hash(dev, sb_dev, skb);
4008
4009                 if (queue_index != new_index && sk &&
4010                     sk_fullsock(sk) &&
4011                     rcu_access_pointer(sk->sk_dst_cache))
4012                         sk_tx_queue_set(sk, new_index);
4013
4014                 queue_index = new_index;
4015         }
4016
4017         return queue_index;
4018 }
4019 EXPORT_SYMBOL(netdev_pick_tx);
4020
4021 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4022                                          struct sk_buff *skb,
4023                                          struct net_device *sb_dev)
4024 {
4025         int queue_index = 0;
4026
4027 #ifdef CONFIG_XPS
4028         u32 sender_cpu = skb->sender_cpu - 1;
4029
4030         if (sender_cpu >= (u32)NR_CPUS)
4031                 skb->sender_cpu = raw_smp_processor_id() + 1;
4032 #endif
4033
4034         if (dev->real_num_tx_queues != 1) {
4035                 const struct net_device_ops *ops = dev->netdev_ops;
4036
4037                 if (ops->ndo_select_queue)
4038                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4039                 else
4040                         queue_index = netdev_pick_tx(dev, skb, sb_dev);
4041
4042                 queue_index = netdev_cap_txqueue(dev, queue_index);
4043         }
4044
4045         skb_set_queue_mapping(skb, queue_index);
4046         return netdev_get_tx_queue(dev, queue_index);
4047 }
4048
4049 /**
4050  *      __dev_queue_xmit - transmit a buffer
4051  *      @skb: buffer to transmit
4052  *      @sb_dev: suboordinate device used for L2 forwarding offload
4053  *
4054  *      Queue a buffer for transmission to a network device. The caller must
4055  *      have set the device and priority and built the buffer before calling
4056  *      this function. The function can be called from an interrupt.
4057  *
4058  *      A negative errno code is returned on a failure. A success does not
4059  *      guarantee the frame will be transmitted as it may be dropped due
4060  *      to congestion or traffic shaping.
4061  *
4062  * -----------------------------------------------------------------------------------
4063  *      I notice this method can also return errors from the queue disciplines,
4064  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4065  *      be positive.
4066  *
4067  *      Regardless of the return value, the skb is consumed, so it is currently
4068  *      difficult to retry a send to this method.  (You can bump the ref count
4069  *      before sending to hold a reference for retry if you are careful.)
4070  *
4071  *      When calling this method, interrupts MUST be enabled.  This is because
4072  *      the BH enable code must have IRQs enabled so that it will not deadlock.
4073  *          --BLG
4074  */
4075 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4076 {
4077         struct net_device *dev = skb->dev;
4078         struct netdev_queue *txq;
4079         struct Qdisc *q;
4080         int rc = -ENOMEM;
4081         bool again = false;
4082
4083         skb_reset_mac_header(skb);
4084
4085         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4086                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
4087
4088         /* Disable soft irqs for various locks below. Also
4089          * stops preemption for RCU.
4090          */
4091         rcu_read_lock_bh();
4092
4093         skb_update_prio(skb);
4094
4095         qdisc_pkt_len_init(skb);
4096 #ifdef CONFIG_NET_CLS_ACT
4097         skb->tc_at_ingress = 0;
4098 # ifdef CONFIG_NET_EGRESS
4099         if (static_branch_unlikely(&egress_needed_key)) {
4100                 skb = sch_handle_egress(skb, &rc, dev);
4101                 if (!skb)
4102                         goto out;
4103         }
4104 # endif
4105 #endif
4106         /* If device/qdisc don't need skb->dst, release it right now while
4107          * its hot in this cpu cache.
4108          */
4109         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4110                 skb_dst_drop(skb);
4111         else
4112                 skb_dst_force(skb);
4113
4114         txq = netdev_core_pick_tx(dev, skb, sb_dev);
4115         q = rcu_dereference_bh(txq->qdisc);
4116
4117         trace_net_dev_queue(skb);
4118         if (q->enqueue) {
4119                 rc = __dev_xmit_skb(skb, q, dev, txq);
4120                 goto out;
4121         }
4122
4123         /* The device has no queue. Common case for software devices:
4124          * loopback, all the sorts of tunnels...
4125
4126          * Really, it is unlikely that netif_tx_lock protection is necessary
4127          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4128          * counters.)
4129          * However, it is possible, that they rely on protection
4130          * made by us here.
4131
4132          * Check this and shot the lock. It is not prone from deadlocks.
4133          *Either shot noqueue qdisc, it is even simpler 8)
4134          */
4135         if (dev->flags & IFF_UP) {
4136                 int cpu = smp_processor_id(); /* ok because BHs are off */
4137
4138                 if (txq->xmit_lock_owner != cpu) {
4139                         if (dev_xmit_recursion())
4140                                 goto recursion_alert;
4141
4142                         skb = validate_xmit_skb(skb, dev, &again);
4143                         if (!skb)
4144                                 goto out;
4145
4146                         PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4147                         HARD_TX_LOCK(dev, txq, cpu);
4148
4149                         if (!netif_xmit_stopped(txq)) {
4150                                 dev_xmit_recursion_inc();
4151                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4152                                 dev_xmit_recursion_dec();
4153                                 if (dev_xmit_complete(rc)) {
4154                                         HARD_TX_UNLOCK(dev, txq);
4155                                         goto out;
4156                                 }
4157                         }
4158                         HARD_TX_UNLOCK(dev, txq);
4159                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4160                                              dev->name);
4161                 } else {
4162                         /* Recursion is detected! It is possible,
4163                          * unfortunately
4164                          */
4165 recursion_alert:
4166                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4167                                              dev->name);
4168                 }
4169         }
4170
4171         rc = -ENETDOWN;
4172         rcu_read_unlock_bh();
4173
4174         atomic_long_inc(&dev->tx_dropped);
4175         kfree_skb_list(skb);
4176         return rc;
4177 out:
4178         rcu_read_unlock_bh();
4179         return rc;
4180 }
4181
4182 int dev_queue_xmit(struct sk_buff *skb)
4183 {
4184         return __dev_queue_xmit(skb, NULL);
4185 }
4186 EXPORT_SYMBOL(dev_queue_xmit);
4187
4188 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4189 {
4190         return __dev_queue_xmit(skb, sb_dev);
4191 }
4192 EXPORT_SYMBOL(dev_queue_xmit_accel);
4193
4194 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4195 {
4196         struct net_device *dev = skb->dev;
4197         struct sk_buff *orig_skb = skb;
4198         struct netdev_queue *txq;
4199         int ret = NETDEV_TX_BUSY;
4200         bool again = false;
4201
4202         if (unlikely(!netif_running(dev) ||
4203                      !netif_carrier_ok(dev)))
4204                 goto drop;
4205
4206         skb = validate_xmit_skb_list(skb, dev, &again);
4207         if (skb != orig_skb)
4208                 goto drop;
4209
4210         skb_set_queue_mapping(skb, queue_id);
4211         txq = skb_get_tx_queue(dev, skb);
4212         PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4213
4214         local_bh_disable();
4215
4216         dev_xmit_recursion_inc();
4217         HARD_TX_LOCK(dev, txq, smp_processor_id());
4218         if (!netif_xmit_frozen_or_drv_stopped(txq))
4219                 ret = netdev_start_xmit(skb, dev, txq, false);
4220         HARD_TX_UNLOCK(dev, txq);
4221         dev_xmit_recursion_dec();
4222
4223         local_bh_enable();
4224         return ret;
4225 drop:
4226         atomic_long_inc(&dev->tx_dropped);
4227         kfree_skb_list(skb);
4228         return NET_XMIT_DROP;
4229 }
4230 EXPORT_SYMBOL(__dev_direct_xmit);
4231
4232 /*************************************************************************
4233  *                      Receiver routines
4234  *************************************************************************/
4235
4236 int netdev_max_backlog __read_mostly = 1000;
4237 EXPORT_SYMBOL(netdev_max_backlog);
4238
4239 int netdev_tstamp_prequeue __read_mostly = 1;
4240 int netdev_budget __read_mostly = 300;
4241 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4242 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4243 int weight_p __read_mostly = 64;           /* old backlog weight */
4244 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4245 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4246 int dev_rx_weight __read_mostly = 64;
4247 int dev_tx_weight __read_mostly = 64;
4248 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4249 int gro_normal_batch __read_mostly = 8;
4250
4251 /* Called with irq disabled */
4252 static inline void ____napi_schedule(struct softnet_data *sd,
4253                                      struct napi_struct *napi)
4254 {
4255         list_add_tail(&napi->poll_list, &sd->poll_list);
4256         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4257 }
4258
4259 #ifdef CONFIG_RPS
4260
4261 /* One global table that all flow-based protocols share. */
4262 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4263 EXPORT_SYMBOL(rps_sock_flow_table);
4264 u32 rps_cpu_mask __read_mostly;
4265 EXPORT_SYMBOL(rps_cpu_mask);
4266
4267 struct static_key_false rps_needed __read_mostly;
4268 EXPORT_SYMBOL(rps_needed);
4269 struct static_key_false rfs_needed __read_mostly;
4270 EXPORT_SYMBOL(rfs_needed);
4271
4272 static struct rps_dev_flow *
4273 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4274             struct rps_dev_flow *rflow, u16 next_cpu)
4275 {
4276         if (next_cpu < nr_cpu_ids) {
4277 #ifdef CONFIG_RFS_ACCEL
4278                 struct netdev_rx_queue *rxqueue;
4279                 struct rps_dev_flow_table *flow_table;
4280                 struct rps_dev_flow *old_rflow;
4281                 u32 flow_id;
4282                 u16 rxq_index;
4283                 int rc;
4284
4285                 /* Should we steer this flow to a different hardware queue? */
4286                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4287                     !(dev->features & NETIF_F_NTUPLE))
4288                         goto out;
4289                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4290                 if (rxq_index == skb_get_rx_queue(skb))
4291                         goto out;
4292
4293                 rxqueue = dev->_rx + rxq_index;
4294                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4295                 if (!flow_table)
4296                         goto out;
4297                 flow_id = skb_get_hash(skb) & flow_table->mask;
4298                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4299                                                         rxq_index, flow_id);
4300                 if (rc < 0)
4301                         goto out;
4302                 old_rflow = rflow;
4303                 rflow = &flow_table->flows[flow_id];
4304                 rflow->filter = rc;
4305                 if (old_rflow->filter == rflow->filter)
4306                         old_rflow->filter = RPS_NO_FILTER;
4307         out:
4308 #endif
4309                 rflow->last_qtail =
4310                         per_cpu(softnet_data, next_cpu).input_queue_head;
4311         }
4312
4313         rflow->cpu = next_cpu;
4314         return rflow;
4315 }
4316
4317 /*
4318  * get_rps_cpu is called from netif_receive_skb and returns the target
4319  * CPU from the RPS map of the receiving queue for a given skb.
4320  * rcu_read_lock must be held on entry.
4321  */
4322 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4323                        struct rps_dev_flow **rflowp)
4324 {
4325         const struct rps_sock_flow_table *sock_flow_table;
4326         struct netdev_rx_queue *rxqueue = dev->_rx;
4327         struct rps_dev_flow_table *flow_table;
4328         struct rps_map *map;
4329         int cpu = -1;
4330         u32 tcpu;
4331         u32 hash;
4332
4333         if (skb_rx_queue_recorded(skb)) {
4334                 u16 index = skb_get_rx_queue(skb);
4335
4336                 if (unlikely(index >= dev->real_num_rx_queues)) {
4337                         WARN_ONCE(dev->real_num_rx_queues > 1,
4338                                   "%s received packet on queue %u, but number "
4339                                   "of RX queues is %u\n",
4340                                   dev->name, index, dev->real_num_rx_queues);
4341                         goto done;
4342                 }
4343                 rxqueue += index;
4344         }
4345
4346         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4347
4348         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4349         map = rcu_dereference(rxqueue->rps_map);
4350         if (!flow_table && !map)
4351                 goto done;
4352
4353         skb_reset_network_header(skb);
4354         hash = skb_get_hash(skb);
4355         if (!hash)
4356                 goto done;
4357
4358         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4359         if (flow_table && sock_flow_table) {
4360                 struct rps_dev_flow *rflow;
4361                 u32 next_cpu;
4362                 u32 ident;
4363
4364                 /* First check into global flow table if there is a match */
4365                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4366                 if ((ident ^ hash) & ~rps_cpu_mask)
4367                         goto try_rps;
4368
4369                 next_cpu = ident & rps_cpu_mask;
4370
4371                 /* OK, now we know there is a match,
4372                  * we can look at the local (per receive queue) flow table
4373                  */
4374                 rflow = &flow_table->flows[hash & flow_table->mask];
4375                 tcpu = rflow->cpu;
4376
4377                 /*
4378                  * If the desired CPU (where last recvmsg was done) is
4379                  * different from current CPU (one in the rx-queue flow
4380                  * table entry), switch if one of the following holds:
4381                  *   - Current CPU is unset (>= nr_cpu_ids).
4382                  *   - Current CPU is offline.
4383                  *   - The current CPU's queue tail has advanced beyond the
4384                  *     last packet that was enqueued using this table entry.
4385                  *     This guarantees that all previous packets for the flow
4386                  *     have been dequeued, thus preserving in order delivery.
4387                  */
4388                 if (unlikely(tcpu != next_cpu) &&
4389                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4390                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4391                       rflow->last_qtail)) >= 0)) {
4392                         tcpu = next_cpu;
4393                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4394                 }
4395
4396                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4397                         *rflowp = rflow;
4398                         cpu = tcpu;
4399                         goto done;
4400                 }
4401         }
4402
4403 try_rps:
4404
4405         if (map) {
4406                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4407                 if (cpu_online(tcpu)) {
4408                         cpu = tcpu;
4409                         goto done;
4410                 }
4411         }
4412
4413 done:
4414         return cpu;
4415 }
4416
4417 #ifdef CONFIG_RFS_ACCEL
4418
4419 /**
4420  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4421  * @dev: Device on which the filter was set
4422  * @rxq_index: RX queue index
4423  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4424  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4425  *
4426  * Drivers that implement ndo_rx_flow_steer() should periodically call
4427  * this function for each installed filter and remove the filters for
4428  * which it returns %true.
4429  */
4430 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4431                          u32 flow_id, u16 filter_id)
4432 {
4433         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4434         struct rps_dev_flow_table *flow_table;
4435         struct rps_dev_flow *rflow;
4436         bool expire = true;
4437         unsigned int cpu;
4438
4439         rcu_read_lock();
4440         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4441         if (flow_table && flow_id <= flow_table->mask) {
4442                 rflow = &flow_table->flows[flow_id];
4443                 cpu = READ_ONCE(rflow->cpu);
4444                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4445                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4446                            rflow->last_qtail) <
4447                      (int)(10 * flow_table->mask)))
4448                         expire = false;
4449         }
4450         rcu_read_unlock();
4451         return expire;
4452 }
4453 EXPORT_SYMBOL(rps_may_expire_flow);
4454
4455 #endif /* CONFIG_RFS_ACCEL */
4456
4457 /* Called from hardirq (IPI) context */
4458 static void rps_trigger_softirq(void *data)
4459 {
4460         struct softnet_data *sd = data;
4461
4462         ____napi_schedule(sd, &sd->backlog);
4463         sd->received_rps++;
4464 }
4465
4466 #endif /* CONFIG_RPS */
4467
4468 /*
4469  * Check if this softnet_data structure is another cpu one
4470  * If yes, queue it to our IPI list and return 1
4471  * If no, return 0
4472  */
4473 static int rps_ipi_queued(struct softnet_data *sd)
4474 {
4475 #ifdef CONFIG_RPS
4476         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4477
4478         if (sd != mysd) {
4479                 sd->rps_ipi_next = mysd->rps_ipi_list;
4480                 mysd->rps_ipi_list = sd;
4481
4482                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4483                 return 1;
4484         }
4485 #endif /* CONFIG_RPS */
4486         return 0;
4487 }
4488
4489 #ifdef CONFIG_NET_FLOW_LIMIT
4490 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4491 #endif
4492
4493 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4494 {
4495 #ifdef CONFIG_NET_FLOW_LIMIT
4496         struct sd_flow_limit *fl;
4497         struct softnet_data *sd;
4498         unsigned int old_flow, new_flow;
4499
4500         if (qlen < (netdev_max_backlog >> 1))
4501                 return false;
4502
4503         sd = this_cpu_ptr(&softnet_data);
4504
4505         rcu_read_lock();
4506         fl = rcu_dereference(sd->flow_limit);
4507         if (fl) {
4508                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4509                 old_flow = fl->history[fl->history_head];
4510                 fl->history[fl->history_head] = new_flow;
4511
4512                 fl->history_head++;
4513                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4514
4515                 if (likely(fl->buckets[old_flow]))
4516                         fl->buckets[old_flow]--;
4517
4518                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4519                         fl->count++;
4520                         rcu_read_unlock();
4521                         return true;
4522                 }
4523         }
4524         rcu_read_unlock();
4525 #endif
4526         return false;
4527 }
4528
4529 /*
4530  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4531  * queue (may be a remote CPU queue).
4532  */
4533 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4534                               unsigned int *qtail)
4535 {
4536         struct softnet_data *sd;
4537         unsigned long flags;
4538         unsigned int qlen;
4539
4540         sd = &per_cpu(softnet_data, cpu);
4541
4542         local_irq_save(flags);
4543
4544         rps_lock(sd);
4545         if (!netif_running(skb->dev))
4546                 goto drop;
4547         qlen = skb_queue_len(&sd->input_pkt_queue);
4548         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4549                 if (qlen) {
4550 enqueue:
4551                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4552                         input_queue_tail_incr_save(sd, qtail);
4553                         rps_unlock(sd);
4554                         local_irq_restore(flags);
4555                         return NET_RX_SUCCESS;
4556                 }
4557
4558                 /* Schedule NAPI for backlog device
4559                  * We can use non atomic operation since we own the queue lock
4560                  */
4561                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4562                         if (!rps_ipi_queued(sd))
4563                                 ____napi_schedule(sd, &sd->backlog);
4564                 }
4565                 goto enqueue;
4566         }
4567
4568 drop:
4569         sd->dropped++;
4570         rps_unlock(sd);
4571
4572         local_irq_restore(flags);
4573
4574         atomic_long_inc(&skb->dev->rx_dropped);
4575         kfree_skb(skb);
4576         return NET_RX_DROP;
4577 }
4578
4579 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4580 {
4581         struct net_device *dev = skb->dev;
4582         struct netdev_rx_queue *rxqueue;
4583
4584         rxqueue = dev->_rx;
4585
4586         if (skb_rx_queue_recorded(skb)) {
4587                 u16 index = skb_get_rx_queue(skb);
4588
4589                 if (unlikely(index >= dev->real_num_rx_queues)) {
4590                         WARN_ONCE(dev->real_num_rx_queues > 1,
4591                                   "%s received packet on queue %u, but number "
4592                                   "of RX queues is %u\n",
4593                                   dev->name, index, dev->real_num_rx_queues);
4594
4595                         return rxqueue; /* Return first rxqueue */
4596                 }
4597                 rxqueue += index;
4598         }
4599         return rxqueue;
4600 }
4601
4602 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4603                                      struct xdp_buff *xdp,
4604                                      struct bpf_prog *xdp_prog)
4605 {
4606         struct netdev_rx_queue *rxqueue;
4607         void *orig_data, *orig_data_end;
4608         u32 metalen, act = XDP_DROP;
4609         __be16 orig_eth_type;
4610         struct ethhdr *eth;
4611         bool orig_bcast;
4612         int hlen, off;
4613         u32 mac_len;
4614
4615         /* Reinjected packets coming from act_mirred or similar should
4616          * not get XDP generic processing.
4617          */
4618         if (skb_is_redirected(skb))
4619                 return XDP_PASS;
4620
4621         /* XDP packets must be linear and must have sufficient headroom
4622          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4623          * native XDP provides, thus we need to do it here as well.
4624          */
4625         if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4626             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4627                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4628                 int troom = skb->tail + skb->data_len - skb->end;
4629
4630                 /* In case we have to go down the path and also linearize,
4631                  * then lets do the pskb_expand_head() work just once here.
4632                  */
4633                 if (pskb_expand_head(skb,
4634                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4635                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4636                         goto do_drop;
4637                 if (skb_linearize(skb))
4638                         goto do_drop;
4639         }
4640
4641         /* The XDP program wants to see the packet starting at the MAC
4642          * header.
4643          */
4644         mac_len = skb->data - skb_mac_header(skb);
4645         hlen = skb_headlen(skb) + mac_len;
4646         xdp->data = skb->data - mac_len;
4647         xdp->data_meta = xdp->data;
4648         xdp->data_end = xdp->data + hlen;
4649         xdp->data_hard_start = skb->data - skb_headroom(skb);
4650
4651         /* SKB "head" area always have tailroom for skb_shared_info */
4652         xdp->frame_sz  = (void *)skb_end_pointer(skb) - xdp->data_hard_start;
4653         xdp->frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4654
4655         orig_data_end = xdp->data_end;
4656         orig_data = xdp->data;
4657         eth = (struct ethhdr *)xdp->data;
4658         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4659         orig_eth_type = eth->h_proto;
4660
4661         rxqueue = netif_get_rxqueue(skb);
4662         xdp->rxq = &rxqueue->xdp_rxq;
4663
4664         act = bpf_prog_run_xdp(xdp_prog, xdp);
4665
4666         /* check if bpf_xdp_adjust_head was used */
4667         off = xdp->data - orig_data;
4668         if (off) {
4669                 if (off > 0)
4670                         __skb_pull(skb, off);
4671                 else if (off < 0)
4672                         __skb_push(skb, -off);
4673
4674                 skb->mac_header += off;
4675                 skb_reset_network_header(skb);
4676         }
4677
4678         /* check if bpf_xdp_adjust_tail was used */
4679         off = xdp->data_end - orig_data_end;
4680         if (off != 0) {
4681                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4682                 skb->len += off; /* positive on grow, negative on shrink */
4683         }
4684
4685         /* check if XDP changed eth hdr such SKB needs update */
4686         eth = (struct ethhdr *)xdp->data;
4687         if ((orig_eth_type != eth->h_proto) ||
4688             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4689                 __skb_push(skb, ETH_HLEN);
4690                 skb->protocol = eth_type_trans(skb, skb->dev);
4691         }
4692
4693         switch (act) {
4694         case XDP_REDIRECT:
4695         case XDP_TX:
4696                 __skb_push(skb, mac_len);
4697                 break;
4698         case XDP_PASS:
4699                 metalen = xdp->data - xdp->data_meta;
4700                 if (metalen)
4701                         skb_metadata_set(skb, metalen);
4702                 break;
4703         default:
4704                 bpf_warn_invalid_xdp_action(act);
4705                 fallthrough;
4706         case XDP_ABORTED:
4707                 trace_xdp_exception(skb->dev, xdp_prog, act);
4708                 fallthrough;
4709         case XDP_DROP:
4710         do_drop:
4711                 kfree_skb(skb);
4712                 break;
4713         }
4714
4715         return act;
4716 }
4717
4718 /* When doing generic XDP we have to bypass the qdisc layer and the
4719  * network taps in order to match in-driver-XDP behavior.
4720  */
4721 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4722 {
4723         struct net_device *dev = skb->dev;
4724         struct netdev_queue *txq;
4725         bool free_skb = true;
4726         int cpu, rc;
4727
4728         txq = netdev_core_pick_tx(dev, skb, NULL);
4729         cpu = smp_processor_id();
4730         HARD_TX_LOCK(dev, txq, cpu);
4731         if (!netif_xmit_stopped(txq)) {
4732                 rc = netdev_start_xmit(skb, dev, txq, 0);
4733                 if (dev_xmit_complete(rc))
4734                         free_skb = false;
4735         }
4736         HARD_TX_UNLOCK(dev, txq);
4737         if (free_skb) {
4738                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4739                 kfree_skb(skb);
4740         }
4741 }
4742
4743 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4744
4745 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4746 {
4747         if (xdp_prog) {
4748                 struct xdp_buff xdp;
4749                 u32 act;
4750                 int err;
4751
4752                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4753                 if (act != XDP_PASS) {
4754                         switch (act) {
4755                         case XDP_REDIRECT:
4756                                 err = xdp_do_generic_redirect(skb->dev, skb,
4757                                                               &xdp, xdp_prog);
4758                                 if (err)
4759                                         goto out_redir;
4760                                 break;
4761                         case XDP_TX:
4762                                 generic_xdp_tx(skb, xdp_prog);
4763                                 break;
4764                         }
4765                         return XDP_DROP;
4766                 }
4767         }
4768         return XDP_PASS;
4769 out_redir:
4770         kfree_skb(skb);
4771         return XDP_DROP;
4772 }
4773 EXPORT_SYMBOL_GPL(do_xdp_generic);
4774
4775 static int netif_rx_internal(struct sk_buff *skb)
4776 {
4777         int ret;
4778
4779         net_timestamp_check(netdev_tstamp_prequeue, skb);
4780
4781         trace_netif_rx(skb);
4782
4783 #ifdef CONFIG_RPS
4784         if (static_branch_unlikely(&rps_needed)) {
4785                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4786                 int cpu;
4787
4788                 preempt_disable();
4789                 rcu_read_lock();
4790
4791                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4792                 if (cpu < 0)
4793                         cpu = smp_processor_id();
4794
4795                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4796
4797                 rcu_read_unlock();
4798                 preempt_enable();
4799         } else
4800 #endif
4801         {
4802                 unsigned int qtail;
4803
4804                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4805                 put_cpu();
4806         }
4807         return ret;
4808 }
4809
4810 /**
4811  *      netif_rx        -       post buffer to the network code
4812  *      @skb: buffer to post
4813  *
4814  *      This function receives a packet from a device driver and queues it for
4815  *      the upper (protocol) levels to process.  It always succeeds. The buffer
4816  *      may be dropped during processing for congestion control or by the
4817  *      protocol layers.
4818  *
4819  *      return values:
4820  *      NET_RX_SUCCESS  (no congestion)
4821  *      NET_RX_DROP     (packet was dropped)
4822  *
4823  */
4824
4825 int netif_rx(struct sk_buff *skb)
4826 {
4827         int ret;
4828
4829         trace_netif_rx_entry(skb);
4830
4831         ret = netif_rx_internal(skb);
4832         trace_netif_rx_exit(ret);
4833
4834         return ret;
4835 }
4836 EXPORT_SYMBOL(netif_rx);
4837
4838 int netif_rx_ni(struct sk_buff *skb)
4839 {
4840         int err;
4841
4842         trace_netif_rx_ni_entry(skb);
4843
4844         preempt_disable();
4845         err = netif_rx_internal(skb);
4846         if (local_softirq_pending())
4847                 do_softirq();
4848         preempt_enable();
4849         trace_netif_rx_ni_exit(err);
4850
4851         return err;
4852 }
4853 EXPORT_SYMBOL(netif_rx_ni);
4854
4855 int netif_rx_any_context(struct sk_buff *skb)
4856 {
4857         /*
4858          * If invoked from contexts which do not invoke bottom half
4859          * processing either at return from interrupt or when softrqs are
4860          * reenabled, use netif_rx_ni() which invokes bottomhalf processing
4861          * directly.
4862          */
4863         if (in_interrupt())
4864                 return netif_rx(skb);
4865         else
4866                 return netif_rx_ni(skb);
4867 }
4868 EXPORT_SYMBOL(netif_rx_any_context);
4869
4870 static __latent_entropy void net_tx_action(struct softirq_action *h)
4871 {
4872         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4873
4874         if (sd->completion_queue) {
4875                 struct sk_buff *clist;
4876
4877                 local_irq_disable();
4878                 clist = sd->completion_queue;
4879                 sd->completion_queue = NULL;
4880                 local_irq_enable();
4881
4882                 while (clist) {
4883                         struct sk_buff *skb = clist;
4884
4885                         clist = clist->next;
4886
4887                         WARN_ON(refcount_read(&skb->users));
4888                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4889                                 trace_consume_skb(skb);
4890                         else
4891                                 trace_kfree_skb(skb, net_tx_action);
4892
4893                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4894                                 __kfree_skb(skb);
4895                         else
4896                                 __kfree_skb_defer(skb);
4897                 }
4898
4899                 __kfree_skb_flush();
4900         }
4901
4902         if (sd->output_queue) {
4903                 struct Qdisc *head;
4904
4905                 local_irq_disable();
4906                 head = sd->output_queue;
4907                 sd->output_queue = NULL;
4908                 sd->output_queue_tailp = &sd->output_queue;
4909                 local_irq_enable();
4910
4911                 while (head) {
4912                         struct Qdisc *q = head;
4913                         spinlock_t *root_lock = NULL;
4914
4915                         head = head->next_sched;
4916
4917                         if (!(q->flags & TCQ_F_NOLOCK)) {
4918                                 root_lock = qdisc_lock(q);
4919                                 spin_lock(root_lock);
4920                         }
4921                         /* We need to make sure head->next_sched is read
4922                          * before clearing __QDISC_STATE_SCHED
4923                          */
4924                         smp_mb__before_atomic();
4925                         clear_bit(__QDISC_STATE_SCHED, &q->state);
4926                         qdisc_run(q);
4927                         if (root_lock)
4928                                 spin_unlock(root_lock);
4929                 }
4930         }
4931
4932         xfrm_dev_backlog(sd);
4933 }
4934
4935 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4936 /* This hook is defined here for ATM LANE */
4937 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4938                              unsigned char *addr) __read_mostly;
4939 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4940 #endif
4941
4942 static inline struct sk_buff *
4943 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4944                    struct net_device *orig_dev, bool *another)
4945 {
4946 #ifdef CONFIG_NET_CLS_ACT
4947         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4948         struct tcf_result cl_res;
4949
4950         /* If there's at least one ingress present somewhere (so
4951          * we get here via enabled static key), remaining devices
4952          * that are not configured with an ingress qdisc will bail
4953          * out here.
4954          */
4955         if (!miniq)
4956                 return skb;
4957
4958         if (*pt_prev) {
4959                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4960                 *pt_prev = NULL;
4961         }
4962
4963         qdisc_skb_cb(skb)->pkt_len = skb->len;
4964         qdisc_skb_cb(skb)->mru = 0;
4965         skb->tc_at_ingress = 1;
4966         mini_qdisc_bstats_cpu_update(miniq, skb);
4967
4968         switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
4969                                      &cl_res, false)) {
4970         case TC_ACT_OK:
4971         case TC_ACT_RECLASSIFY:
4972                 skb->tc_index = TC_H_MIN(cl_res.classid);
4973                 break;
4974         case TC_ACT_SHOT:
4975                 mini_qdisc_qstats_cpu_drop(miniq);
4976                 kfree_skb(skb);
4977                 return NULL;
4978         case TC_ACT_STOLEN:
4979         case TC_ACT_QUEUED:
4980         case TC_ACT_TRAP:
4981                 consume_skb(skb);
4982                 return NULL;
4983         case TC_ACT_REDIRECT:
4984                 /* skb_mac_header check was done by cls/act_bpf, so
4985                  * we can safely push the L2 header back before
4986                  * redirecting to another netdev
4987                  */
4988                 __skb_push(skb, skb->mac_len);
4989                 if (skb_do_redirect(skb) == -EAGAIN) {
4990                         __skb_pull(skb, skb->mac_len);
4991                         *another = true;
4992                         break;
4993                 }
4994                 return NULL;
4995         case TC_ACT_CONSUMED:
4996                 return NULL;
4997         default:
4998                 break;
4999         }
5000 #endif /* CONFIG_NET_CLS_ACT */
5001         return skb;
5002 }
5003
5004 /**
5005  *      netdev_is_rx_handler_busy - check if receive handler is registered
5006  *      @dev: device to check
5007  *
5008  *      Check if a receive handler is already registered for a given device.
5009  *      Return true if there one.
5010  *
5011  *      The caller must hold the rtnl_mutex.
5012  */
5013 bool netdev_is_rx_handler_busy(struct net_device *dev)
5014 {
5015         ASSERT_RTNL();
5016         return dev && rtnl_dereference(dev->rx_handler);
5017 }
5018 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5019
5020 /**
5021  *      netdev_rx_handler_register - register receive handler
5022  *      @dev: device to register a handler for
5023  *      @rx_handler: receive handler to register
5024  *      @rx_handler_data: data pointer that is used by rx handler
5025  *
5026  *      Register a receive handler for a device. This handler will then be
5027  *      called from __netif_receive_skb. A negative errno code is returned
5028  *      on a failure.
5029  *
5030  *      The caller must hold the rtnl_mutex.
5031  *
5032  *      For a general description of rx_handler, see enum rx_handler_result.
5033  */
5034 int netdev_rx_handler_register(struct net_device *dev,
5035                                rx_handler_func_t *rx_handler,
5036                                void *rx_handler_data)
5037 {
5038         if (netdev_is_rx_handler_busy(dev))
5039                 return -EBUSY;
5040
5041         if (dev->priv_flags & IFF_NO_RX_HANDLER)
5042                 return -EINVAL;
5043
5044         /* Note: rx_handler_data must be set before rx_handler */
5045         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5046         rcu_assign_pointer(dev->rx_handler, rx_handler);
5047
5048         return 0;
5049 }
5050 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5051
5052 /**
5053  *      netdev_rx_handler_unregister - unregister receive handler
5054  *      @dev: device to unregister a handler from
5055  *
5056  *      Unregister a receive handler from a device.
5057  *
5058  *      The caller must hold the rtnl_mutex.
5059  */
5060 void netdev_rx_handler_unregister(struct net_device *dev)
5061 {
5062
5063         ASSERT_RTNL();
5064         RCU_INIT_POINTER(dev->rx_handler, NULL);
5065         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5066          * section has a guarantee to see a non NULL rx_handler_data
5067          * as well.
5068          */
5069         synchronize_net();
5070         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5071 }
5072 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5073
5074 /*
5075  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5076  * the special handling of PFMEMALLOC skbs.
5077  */
5078 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5079 {
5080         switch (skb->protocol) {
5081         case htons(ETH_P_ARP):
5082         case htons(ETH_P_IP):
5083         case htons(ETH_P_IPV6):
5084         case htons(ETH_P_8021Q):
5085         case htons(ETH_P_8021AD):
5086                 return true;
5087         default:
5088                 return false;
5089         }
5090 }
5091
5092 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5093                              int *ret, struct net_device *orig_dev)
5094 {
5095         if (nf_hook_ingress_active(skb)) {
5096                 int ingress_retval;
5097
5098                 if (*pt_prev) {
5099                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
5100                         *pt_prev = NULL;
5101                 }
5102
5103                 rcu_read_lock();
5104                 ingress_retval = nf_hook_ingress(skb);
5105                 rcu_read_unlock();
5106                 return ingress_retval;
5107         }
5108         return 0;
5109 }
5110
5111 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5112                                     struct packet_type **ppt_prev)
5113 {
5114         struct packet_type *ptype, *pt_prev;
5115         rx_handler_func_t *rx_handler;
5116         struct sk_buff *skb = *pskb;
5117         struct net_device *orig_dev;
5118         bool deliver_exact = false;
5119         int ret = NET_RX_DROP;
5120         __be16 type;
5121
5122         net_timestamp_check(!netdev_tstamp_prequeue, skb);
5123
5124         trace_netif_receive_skb(skb);
5125
5126         orig_dev = skb->dev;
5127
5128         skb_reset_network_header(skb);
5129         if (!skb_transport_header_was_set(skb))
5130                 skb_reset_transport_header(skb);
5131         skb_reset_mac_len(skb);
5132
5133         pt_prev = NULL;
5134
5135 another_round:
5136         skb->skb_iif = skb->dev->ifindex;
5137
5138         __this_cpu_inc(softnet_data.processed);
5139
5140         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5141                 int ret2;
5142
5143                 preempt_disable();
5144                 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5145                 preempt_enable();
5146
5147                 if (ret2 != XDP_PASS) {
5148                         ret = NET_RX_DROP;
5149                         goto out;
5150                 }
5151                 skb_reset_mac_len(skb);
5152         }
5153
5154         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5155             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5156                 skb = skb_vlan_untag(skb);
5157                 if (unlikely(!skb))
5158                         goto out;
5159         }
5160
5161         if (skb_skip_tc_classify(skb))
5162                 goto skip_classify;
5163
5164         if (pfmemalloc)
5165                 goto skip_taps;
5166
5167         list_for_each_entry_rcu(ptype, &ptype_all, list) {
5168                 if (pt_prev)
5169                         ret = deliver_skb(skb, pt_prev, orig_dev);
5170                 pt_prev = ptype;
5171         }
5172
5173         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5174                 if (pt_prev)
5175                         ret = deliver_skb(skb, pt_prev, orig_dev);
5176                 pt_prev = ptype;
5177         }
5178
5179 skip_taps:
5180 #ifdef CONFIG_NET_INGRESS
5181         if (static_branch_unlikely(&ingress_needed_key)) {
5182                 bool another = false;
5183
5184                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5185                                          &another);
5186                 if (another)
5187                         goto another_round;
5188                 if (!skb)
5189                         goto out;
5190
5191                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5192                         goto out;
5193         }
5194 #endif
5195         skb_reset_redirect(skb);
5196 skip_classify:
5197         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5198                 goto drop;
5199
5200         if (skb_vlan_tag_present(skb)) {
5201                 if (pt_prev) {
5202                         ret = deliver_skb(skb, pt_prev, orig_dev);
5203                         pt_prev = NULL;
5204                 }
5205                 if (vlan_do_receive(&skb))
5206                         goto another_round;
5207                 else if (unlikely(!skb))
5208                         goto out;
5209         }
5210
5211         rx_handler = rcu_dereference(skb->dev->rx_handler);
5212         if (rx_handler) {
5213                 if (pt_prev) {
5214                         ret = deliver_skb(skb, pt_prev, orig_dev);
5215                         pt_prev = NULL;
5216                 }
5217                 switch (rx_handler(&skb)) {
5218                 case RX_HANDLER_CONSUMED:
5219                         ret = NET_RX_SUCCESS;
5220                         goto out;
5221                 case RX_HANDLER_ANOTHER:
5222                         goto another_round;
5223                 case RX_HANDLER_EXACT:
5224                         deliver_exact = true;
5225                 case RX_HANDLER_PASS:
5226                         break;
5227                 default:
5228                         BUG();
5229                 }
5230         }
5231
5232         if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5233 check_vlan_id:
5234                 if (skb_vlan_tag_get_id(skb)) {
5235                         /* Vlan id is non 0 and vlan_do_receive() above couldn't
5236                          * find vlan device.
5237                          */
5238                         skb->pkt_type = PACKET_OTHERHOST;
5239                 } else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5240                            skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5241                         /* Outer header is 802.1P with vlan 0, inner header is
5242                          * 802.1Q or 802.1AD and vlan_do_receive() above could
5243                          * not find vlan dev for vlan id 0.
5244                          */
5245                         __vlan_hwaccel_clear_tag(skb);
5246                         skb = skb_vlan_untag(skb);
5247                         if (unlikely(!skb))
5248                                 goto out;
5249                         if (vlan_do_receive(&skb))
5250                                 /* After stripping off 802.1P header with vlan 0
5251                                  * vlan dev is found for inner header.
5252                                  */
5253                                 goto another_round;
5254                         else if (unlikely(!skb))
5255                                 goto out;
5256                         else
5257                                 /* We have stripped outer 802.1P vlan 0 header.
5258                                  * But could not find vlan dev.
5259                                  * check again for vlan id to set OTHERHOST.
5260                                  */
5261                                 goto check_vlan_id;
5262                 }
5263                 /* Note: we might in the future use prio bits
5264                  * and set skb->priority like in vlan_do_receive()
5265                  * For the time being, just ignore Priority Code Point
5266                  */
5267                 __vlan_hwaccel_clear_tag(skb);
5268         }
5269
5270         type = skb->protocol;
5271
5272         /* deliver only exact match when indicated */
5273         if (likely(!deliver_exact)) {
5274                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5275                                        &ptype_base[ntohs(type) &
5276                                                    PTYPE_HASH_MASK]);
5277         }
5278
5279         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5280                                &orig_dev->ptype_specific);
5281
5282         if (unlikely(skb->dev != orig_dev)) {
5283                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5284                                        &skb->dev->ptype_specific);
5285         }
5286
5287         if (pt_prev) {
5288                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5289                         goto drop;
5290                 *ppt_prev = pt_prev;
5291         } else {
5292 drop:
5293                 if (!deliver_exact)
5294                         atomic_long_inc(&skb->dev->rx_dropped);
5295                 else
5296                         atomic_long_inc(&skb->dev->rx_nohandler);
5297                 kfree_skb(skb);
5298                 /* Jamal, now you will not able to escape explaining
5299                  * me how you were going to use this. :-)
5300                  */
5301                 ret = NET_RX_DROP;
5302         }
5303
5304 out:
5305         /* The invariant here is that if *ppt_prev is not NULL
5306          * then skb should also be non-NULL.
5307          *
5308          * Apparently *ppt_prev assignment above holds this invariant due to
5309          * skb dereferencing near it.
5310          */
5311         *pskb = skb;
5312         return ret;
5313 }
5314
5315 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5316 {
5317         struct net_device *orig_dev = skb->dev;
5318         struct packet_type *pt_prev = NULL;
5319         int ret;
5320
5321         ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5322         if (pt_prev)
5323                 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5324                                          skb->dev, pt_prev, orig_dev);
5325         return ret;
5326 }
5327
5328 /**
5329  *      netif_receive_skb_core - special purpose version of netif_receive_skb
5330  *      @skb: buffer to process
5331  *
5332  *      More direct receive version of netif_receive_skb().  It should
5333  *      only be used by callers that have a need to skip RPS and Generic XDP.
5334  *      Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5335  *
5336  *      This function may only be called from softirq context and interrupts
5337  *      should be enabled.
5338  *
5339  *      Return values (usually ignored):
5340  *      NET_RX_SUCCESS: no congestion
5341  *      NET_RX_DROP: packet was dropped
5342  */
5343 int netif_receive_skb_core(struct sk_buff *skb)
5344 {
5345         int ret;
5346
5347         rcu_read_lock();
5348         ret = __netif_receive_skb_one_core(skb, false);
5349         rcu_read_unlock();
5350
5351         return ret;
5352 }
5353 EXPORT_SYMBOL(netif_receive_skb_core);
5354
5355 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5356                                                   struct packet_type *pt_prev,
5357                                                   struct net_device *orig_dev)
5358 {
5359         struct sk_buff *skb, *next;
5360
5361         if (!pt_prev)
5362                 return;
5363         if (list_empty(head))
5364                 return;
5365         if (pt_prev->list_func != NULL)
5366                 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5367                                    ip_list_rcv, head, pt_prev, orig_dev);
5368         else
5369                 list_for_each_entry_safe(skb, next, head, list) {
5370                         skb_list_del_init(skb);
5371                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5372                 }
5373 }
5374
5375 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5376 {
5377         /* Fast-path assumptions:
5378          * - There is no RX handler.
5379          * - Only one packet_type matches.
5380          * If either of these fails, we will end up doing some per-packet
5381          * processing in-line, then handling the 'last ptype' for the whole
5382          * sublist.  This can't cause out-of-order delivery to any single ptype,
5383          * because the 'last ptype' must be constant across the sublist, and all
5384          * other ptypes are handled per-packet.
5385          */
5386         /* Current (common) ptype of sublist */
5387         struct packet_type *pt_curr = NULL;
5388         /* Current (common) orig_dev of sublist */
5389         struct net_device *od_curr = NULL;
5390         struct list_head sublist;
5391         struct sk_buff *skb, *next;
5392
5393         INIT_LIST_HEAD(&sublist);
5394         list_for_each_entry_safe(skb, next, head, list) {
5395                 struct net_device *orig_dev = skb->dev;
5396                 struct packet_type *pt_prev = NULL;
5397
5398                 skb_list_del_init(skb);
5399                 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5400                 if (!pt_prev)
5401                         continue;
5402                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5403                         /* dispatch old sublist */
5404                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5405                         /* start new sublist */
5406                         INIT_LIST_HEAD(&sublist);
5407                         pt_curr = pt_prev;
5408                         od_curr = orig_dev;
5409                 }
5410                 list_add_tail(&skb->list, &sublist);
5411         }
5412
5413         /* dispatch final sublist */
5414         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5415 }
5416
5417 static int __netif_receive_skb(struct sk_buff *skb)
5418 {
5419         int ret;
5420
5421         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5422                 unsigned int noreclaim_flag;
5423
5424                 /*
5425                  * PFMEMALLOC skbs are special, they should
5426                  * - be delivered to SOCK_MEMALLOC sockets only
5427                  * - stay away from userspace
5428                  * - have bounded memory usage
5429                  *
5430                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5431                  * context down to all allocation sites.
5432                  */
5433                 noreclaim_flag = memalloc_noreclaim_save();
5434                 ret = __netif_receive_skb_one_core(skb, true);
5435                 memalloc_noreclaim_restore(noreclaim_flag);
5436         } else
5437                 ret = __netif_receive_skb_one_core(skb, false);
5438
5439         return ret;
5440 }
5441
5442 static void __netif_receive_skb_list(struct list_head *head)
5443 {
5444         unsigned long noreclaim_flag = 0;
5445         struct sk_buff *skb, *next;
5446         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5447
5448         list_for_each_entry_safe(skb, next, head, list) {
5449                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5450                         struct list_head sublist;
5451
5452                         /* Handle the previous sublist */
5453                         list_cut_before(&sublist, head, &skb->list);
5454                         if (!list_empty(&sublist))
5455                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5456                         pfmemalloc = !pfmemalloc;
5457                         /* See comments in __netif_receive_skb */
5458                         if (pfmemalloc)
5459                                 noreclaim_flag = memalloc_noreclaim_save();
5460                         else
5461                                 memalloc_noreclaim_restore(noreclaim_flag);
5462                 }
5463         }
5464         /* Handle the remaining sublist */
5465         if (!list_empty(head))
5466                 __netif_receive_skb_list_core(head, pfmemalloc);
5467         /* Restore pflags */
5468         if (pfmemalloc)
5469                 memalloc_noreclaim_restore(noreclaim_flag);
5470 }
5471
5472 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5473 {
5474         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5475         struct bpf_prog *new = xdp->prog;
5476         int ret = 0;
5477
5478         if (new) {
5479                 u32 i;
5480
5481                 mutex_lock(&new->aux->used_maps_mutex);
5482
5483                 /* generic XDP does not work with DEVMAPs that can
5484                  * have a bpf_prog installed on an entry
5485                  */
5486                 for (i = 0; i < new->aux->used_map_cnt; i++) {
5487                         if (dev_map_can_have_prog(new->aux->used_maps[i]) ||
5488                             cpu_map_prog_allowed(new->aux->used_maps[i])) {
5489                                 mutex_unlock(&new->aux->used_maps_mutex);
5490                                 return -EINVAL;
5491                         }
5492                 }
5493
5494                 mutex_unlock(&new->aux->used_maps_mutex);
5495         }
5496
5497         switch (xdp->command) {
5498         case XDP_SETUP_PROG:
5499                 rcu_assign_pointer(dev->xdp_prog, new);
5500                 if (old)
5501                         bpf_prog_put(old);
5502
5503                 if (old && !new) {
5504                         static_branch_dec(&generic_xdp_needed_key);
5505                 } else if (new && !old) {
5506                         static_branch_inc(&generic_xdp_needed_key);
5507                         dev_disable_lro(dev);
5508                         dev_disable_gro_hw(dev);
5509                 }
5510                 break;
5511
5512         default:
5513                 ret = -EINVAL;
5514                 break;
5515         }
5516
5517         return ret;
5518 }
5519
5520 static int netif_receive_skb_internal(struct sk_buff *skb)
5521 {
5522         int ret;
5523
5524         net_timestamp_check(netdev_tstamp_prequeue, skb);
5525
5526         if (skb_defer_rx_timestamp(skb))
5527                 return NET_RX_SUCCESS;
5528
5529         rcu_read_lock();
5530 #ifdef CONFIG_RPS
5531         if (static_branch_unlikely(&rps_needed)) {
5532                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5533                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5534
5535                 if (cpu >= 0) {
5536                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5537                         rcu_read_unlock();
5538                         return ret;
5539                 }
5540         }
5541 #endif
5542         ret = __netif_receive_skb(skb);
5543         rcu_read_unlock();
5544         return ret;
5545 }
5546
5547 static void netif_receive_skb_list_internal(struct list_head *head)
5548 {
5549         struct sk_buff *skb, *next;
5550         struct list_head sublist;
5551
5552         INIT_LIST_HEAD(&sublist);
5553         list_for_each_entry_safe(skb, next, head, list) {
5554                 net_timestamp_check(netdev_tstamp_prequeue, skb);
5555                 skb_list_del_init(skb);
5556                 if (!skb_defer_rx_timestamp(skb))
5557                         list_add_tail(&skb->list, &sublist);
5558         }
5559         list_splice_init(&sublist, head);
5560
5561         rcu_read_lock();
5562 #ifdef CONFIG_RPS
5563         if (static_branch_unlikely(&rps_needed)) {
5564                 list_for_each_entry_safe(skb, next, head, list) {
5565                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5566                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5567
5568                         if (cpu >= 0) {
5569                                 /* Will be handled, remove from list */
5570                                 skb_list_del_init(skb);
5571                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5572                         }
5573                 }
5574         }
5575 #endif
5576         __netif_receive_skb_list(head);
5577         rcu_read_unlock();
5578 }
5579
5580 /**
5581  *      netif_receive_skb - process receive buffer from network
5582  *      @skb: buffer to process
5583  *
5584  *      netif_receive_skb() is the main receive data processing function.
5585  *      It always succeeds. The buffer may be dropped during processing
5586  *      for congestion control or by the protocol layers.
5587  *
5588  *      This function may only be called from softirq context and interrupts
5589  *      should be enabled.
5590  *
5591  *      Return values (usually ignored):
5592  *      NET_RX_SUCCESS: no congestion
5593  *      NET_RX_DROP: packet was dropped
5594  */
5595 int netif_receive_skb(struct sk_buff *skb)
5596 {
5597         int ret;
5598
5599         trace_netif_receive_skb_entry(skb);
5600
5601         ret = netif_receive_skb_internal(skb);
5602         trace_netif_receive_skb_exit(ret);
5603
5604         return ret;
5605 }
5606 EXPORT_SYMBOL(netif_receive_skb);
5607
5608 /**
5609  *      netif_receive_skb_list - process many receive buffers from network
5610  *      @head: list of skbs to process.
5611  *
5612  *      Since return value of netif_receive_skb() is normally ignored, and
5613  *      wouldn't be meaningful for a list, this function returns void.
5614  *
5615  *      This function may only be called from softirq context and interrupts
5616  *      should be enabled.
5617  */
5618 void netif_receive_skb_list(struct list_head *head)
5619 {
5620         struct sk_buff *skb;
5621
5622         if (list_empty(head))
5623                 return;
5624         if (trace_netif_receive_skb_list_entry_enabled()) {
5625                 list_for_each_entry(skb, head, list)
5626                         trace_netif_receive_skb_list_entry(skb);
5627         }
5628         netif_receive_skb_list_internal(head);
5629         trace_netif_receive_skb_list_exit(0);
5630 }
5631 EXPORT_SYMBOL(netif_receive_skb_list);
5632
5633 static DEFINE_PER_CPU(struct work_struct, flush_works);
5634
5635 /* Network device is going away, flush any packets still pending */
5636 static void flush_backlog(struct work_struct *work)
5637 {
5638         struct sk_buff *skb, *tmp;
5639         struct softnet_data *sd;
5640
5641         local_bh_disable();
5642         sd = this_cpu_ptr(&softnet_data);
5643
5644         local_irq_disable();
5645         rps_lock(sd);
5646         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5647                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5648                         __skb_unlink(skb, &sd->input_pkt_queue);
5649                         dev_kfree_skb_irq(skb);
5650                         input_queue_head_incr(sd);
5651                 }
5652         }
5653         rps_unlock(sd);
5654         local_irq_enable();
5655
5656         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5657                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5658                         __skb_unlink(skb, &sd->process_queue);
5659                         kfree_skb(skb);
5660                         input_queue_head_incr(sd);
5661                 }
5662         }
5663         local_bh_enable();
5664 }
5665
5666 static bool flush_required(int cpu)
5667 {
5668 #if IS_ENABLED(CONFIG_RPS)
5669         struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5670         bool do_flush;
5671
5672         local_irq_disable();
5673         rps_lock(sd);
5674
5675         /* as insertion into process_queue happens with the rps lock held,
5676          * process_queue access may race only with dequeue
5677          */
5678         do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5679                    !skb_queue_empty_lockless(&sd->process_queue);
5680         rps_unlock(sd);
5681         local_irq_enable();
5682
5683         return do_flush;
5684 #endif
5685         /* without RPS we can't safely check input_pkt_queue: during a
5686          * concurrent remote skb_queue_splice() we can detect as empty both
5687          * input_pkt_queue and process_queue even if the latter could end-up
5688          * containing a lot of packets.
5689          */
5690         return true;
5691 }
5692
5693 static void flush_all_backlogs(void)
5694 {
5695         static cpumask_t flush_cpus;
5696         unsigned int cpu;
5697
5698         /* since we are under rtnl lock protection we can use static data
5699          * for the cpumask and avoid allocating on stack the possibly
5700          * large mask
5701          */
5702         ASSERT_RTNL();
5703
5704         get_online_cpus();
5705
5706         cpumask_clear(&flush_cpus);
5707         for_each_online_cpu(cpu) {
5708                 if (flush_required(cpu)) {
5709                         queue_work_on(cpu, system_highpri_wq,
5710                                       per_cpu_ptr(&flush_works, cpu));
5711                         cpumask_set_cpu(cpu, &flush_cpus);
5712                 }
5713         }
5714
5715         /* we can have in flight packet[s] on the cpus we are not flushing,
5716          * synchronize_net() in rollback_registered_many() will take care of
5717          * them
5718          */
5719         for_each_cpu(cpu, &flush_cpus)
5720                 flush_work(per_cpu_ptr(&flush_works, cpu));
5721
5722         put_online_cpus();
5723 }
5724
5725 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5726 static void gro_normal_list(struct napi_struct *napi)
5727 {
5728         if (!napi->rx_count)
5729                 return;
5730         netif_receive_skb_list_internal(&napi->rx_list);
5731         INIT_LIST_HEAD(&napi->rx_list);
5732         napi->rx_count = 0;
5733 }
5734
5735 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5736  * pass the whole batch up to the stack.
5737  */
5738 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb)
5739 {
5740         list_add_tail(&skb->list, &napi->rx_list);
5741         if (++napi->rx_count >= gro_normal_batch)
5742                 gro_normal_list(napi);
5743 }
5744
5745 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5746 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
5747 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5748 {
5749         struct packet_offload *ptype;
5750         __be16 type = skb->protocol;
5751         struct list_head *head = &offload_base;
5752         int err = -ENOENT;
5753
5754         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5755
5756         if (NAPI_GRO_CB(skb)->count == 1) {
5757                 skb_shinfo(skb)->gso_size = 0;
5758                 goto out;
5759         }
5760
5761         rcu_read_lock();
5762         list_for_each_entry_rcu(ptype, head, list) {
5763                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5764                         continue;
5765
5766                 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5767                                          ipv6_gro_complete, inet_gro_complete,
5768                                          skb, 0);
5769                 break;
5770         }
5771         rcu_read_unlock();
5772
5773         if (err) {
5774                 WARN_ON(&ptype->list == head);
5775                 kfree_skb(skb);
5776                 return NET_RX_SUCCESS;
5777         }
5778
5779 out:
5780         gro_normal_one(napi, skb);
5781         return NET_RX_SUCCESS;
5782 }
5783
5784 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5785                                    bool flush_old)
5786 {
5787         struct list_head *head = &napi->gro_hash[index].list;
5788         struct sk_buff *skb, *p;
5789
5790         list_for_each_entry_safe_reverse(skb, p, head, list) {
5791                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5792                         return;
5793                 skb_list_del_init(skb);
5794                 napi_gro_complete(napi, skb);
5795                 napi->gro_hash[index].count--;
5796         }
5797
5798         if (!napi->gro_hash[index].count)
5799                 __clear_bit(index, &napi->gro_bitmask);
5800 }
5801
5802 /* napi->gro_hash[].list contains packets ordered by age.
5803  * youngest packets at the head of it.
5804  * Complete skbs in reverse order to reduce latencies.
5805  */
5806 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5807 {
5808         unsigned long bitmask = napi->gro_bitmask;
5809         unsigned int i, base = ~0U;
5810
5811         while ((i = ffs(bitmask)) != 0) {
5812                 bitmask >>= i;
5813                 base += i;
5814                 __napi_gro_flush_chain(napi, base, flush_old);
5815         }
5816 }
5817 EXPORT_SYMBOL(napi_gro_flush);
5818
5819 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5820                                           struct sk_buff *skb)
5821 {
5822         unsigned int maclen = skb->dev->hard_header_len;
5823         u32 hash = skb_get_hash_raw(skb);
5824         struct list_head *head;
5825         struct sk_buff *p;
5826
5827         head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5828         list_for_each_entry(p, head, list) {
5829                 unsigned long diffs;
5830
5831                 NAPI_GRO_CB(p)->flush = 0;
5832
5833                 if (hash != skb_get_hash_raw(p)) {
5834                         NAPI_GRO_CB(p)->same_flow = 0;
5835                         continue;
5836                 }
5837
5838                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5839                 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5840                 if (skb_vlan_tag_present(p))
5841                         diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5842                 diffs |= skb_metadata_dst_cmp(p, skb);
5843                 diffs |= skb_metadata_differs(p, skb);
5844                 if (maclen == ETH_HLEN)
5845                         diffs |= compare_ether_header(skb_mac_header(p),
5846                                                       skb_mac_header(skb));
5847                 else if (!diffs)
5848                         diffs = memcmp(skb_mac_header(p),
5849                                        skb_mac_header(skb),
5850                                        maclen);
5851                 NAPI_GRO_CB(p)->same_flow = !diffs;
5852         }
5853
5854         return head;
5855 }
5856
5857 static void skb_gro_reset_offset(struct sk_buff *skb)
5858 {
5859         const struct skb_shared_info *pinfo = skb_shinfo(skb);
5860         const skb_frag_t *frag0 = &pinfo->frags[0];
5861
5862         NAPI_GRO_CB(skb)->data_offset = 0;
5863         NAPI_GRO_CB(skb)->frag0 = NULL;
5864         NAPI_GRO_CB(skb)->frag0_len = 0;
5865
5866         if (!skb_headlen(skb) && pinfo->nr_frags &&
5867             !PageHighMem(skb_frag_page(frag0))) {
5868                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5869                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5870                                                     skb_frag_size(frag0),
5871                                                     skb->end - skb->tail);
5872         }
5873 }
5874
5875 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5876 {
5877         struct skb_shared_info *pinfo = skb_shinfo(skb);
5878
5879         BUG_ON(skb->end - skb->tail < grow);
5880
5881         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5882
5883         skb->data_len -= grow;
5884         skb->tail += grow;
5885
5886         skb_frag_off_add(&pinfo->frags[0], grow);
5887         skb_frag_size_sub(&pinfo->frags[0], grow);
5888
5889         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5890                 skb_frag_unref(skb, 0);
5891                 memmove(pinfo->frags, pinfo->frags + 1,
5892                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5893         }
5894 }
5895
5896 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
5897 {
5898         struct sk_buff *oldest;
5899
5900         oldest = list_last_entry(head, struct sk_buff, list);
5901
5902         /* We are called with head length >= MAX_GRO_SKBS, so this is
5903          * impossible.
5904          */
5905         if (WARN_ON_ONCE(!oldest))
5906                 return;
5907
5908         /* Do not adjust napi->gro_hash[].count, caller is adding a new
5909          * SKB to the chain.
5910          */
5911         skb_list_del_init(oldest);
5912         napi_gro_complete(napi, oldest);
5913 }
5914
5915 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5916                                                            struct sk_buff *));
5917 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5918                                                            struct sk_buff *));
5919 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5920 {
5921         u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5922         struct list_head *head = &offload_base;
5923         struct packet_offload *ptype;
5924         __be16 type = skb->protocol;
5925         struct list_head *gro_head;
5926         struct sk_buff *pp = NULL;
5927         enum gro_result ret;
5928         int same_flow;
5929         int grow;
5930
5931         if (netif_elide_gro(skb->dev))
5932                 goto normal;
5933
5934         gro_head = gro_list_prepare(napi, skb);
5935
5936         rcu_read_lock();
5937         list_for_each_entry_rcu(ptype, head, list) {
5938                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5939                         continue;
5940
5941                 skb_set_network_header(skb, skb_gro_offset(skb));
5942                 skb_reset_mac_len(skb);
5943                 NAPI_GRO_CB(skb)->same_flow = 0;
5944                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5945                 NAPI_GRO_CB(skb)->free = 0;
5946                 NAPI_GRO_CB(skb)->encap_mark = 0;
5947                 NAPI_GRO_CB(skb)->recursion_counter = 0;
5948                 NAPI_GRO_CB(skb)->is_fou = 0;
5949                 NAPI_GRO_CB(skb)->is_atomic = 1;
5950                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5951
5952                 /* Setup for GRO checksum validation */
5953                 switch (skb->ip_summed) {
5954                 case CHECKSUM_COMPLETE:
5955                         NAPI_GRO_CB(skb)->csum = skb->csum;
5956                         NAPI_GRO_CB(skb)->csum_valid = 1;
5957                         NAPI_GRO_CB(skb)->csum_cnt = 0;
5958                         break;
5959                 case CHECKSUM_UNNECESSARY:
5960                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5961                         NAPI_GRO_CB(skb)->csum_valid = 0;
5962                         break;
5963                 default:
5964                         NAPI_GRO_CB(skb)->csum_cnt = 0;
5965                         NAPI_GRO_CB(skb)->csum_valid = 0;
5966                 }
5967
5968                 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5969                                         ipv6_gro_receive, inet_gro_receive,
5970                                         gro_head, skb);
5971                 break;
5972         }
5973         rcu_read_unlock();
5974
5975         if (&ptype->list == head)
5976                 goto normal;
5977
5978         if (PTR_ERR(pp) == -EINPROGRESS) {
5979                 ret = GRO_CONSUMED;
5980                 goto ok;
5981         }
5982
5983         same_flow = NAPI_GRO_CB(skb)->same_flow;
5984         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5985
5986         if (pp) {
5987                 skb_list_del_init(pp);
5988                 napi_gro_complete(napi, pp);
5989                 napi->gro_hash[hash].count--;
5990         }
5991
5992         if (same_flow)
5993                 goto ok;
5994
5995         if (NAPI_GRO_CB(skb)->flush)
5996                 goto normal;
5997
5998         if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5999                 gro_flush_oldest(napi, gro_head);
6000         } else {
6001                 napi->gro_hash[hash].count++;
6002         }
6003         NAPI_GRO_CB(skb)->count = 1;
6004         NAPI_GRO_CB(skb)->age = jiffies;
6005         NAPI_GRO_CB(skb)->last = skb;
6006         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
6007         list_add(&skb->list, gro_head);
6008         ret = GRO_HELD;
6009
6010 pull:
6011         grow = skb_gro_offset(skb) - skb_headlen(skb);
6012         if (grow > 0)
6013                 gro_pull_from_frag0(skb, grow);
6014 ok:
6015         if (napi->gro_hash[hash].count) {
6016                 if (!test_bit(hash, &napi->gro_bitmask))
6017                         __set_bit(hash, &napi->gro_bitmask);
6018         } else if (test_bit(hash, &napi->gro_bitmask)) {
6019                 __clear_bit(hash, &napi->gro_bitmask);
6020         }
6021
6022         return ret;
6023
6024 normal:
6025         ret = GRO_NORMAL;
6026         goto pull;
6027 }
6028
6029 struct packet_offload *gro_find_receive_by_type(__be16 type)
6030 {
6031         struct list_head *offload_head = &offload_base;
6032         struct packet_offload *ptype;
6033
6034         list_for_each_entry_rcu(ptype, offload_head, list) {
6035                 if (ptype->type != type || !ptype->callbacks.gro_receive)
6036                         continue;
6037                 return ptype;
6038         }
6039         return NULL;
6040 }
6041 EXPORT_SYMBOL(gro_find_receive_by_type);
6042
6043 struct packet_offload *gro_find_complete_by_type(__be16 type)
6044 {
6045         struct list_head *offload_head = &offload_base;
6046         struct packet_offload *ptype;
6047
6048         list_for_each_entry_rcu(ptype, offload_head, list) {
6049                 if (ptype->type != type || !ptype->callbacks.gro_complete)
6050                         continue;
6051                 return ptype;
6052         }
6053         return NULL;
6054 }
6055 EXPORT_SYMBOL(gro_find_complete_by_type);
6056
6057 static void napi_skb_free_stolen_head(struct sk_buff *skb)
6058 {
6059         skb_dst_drop(skb);
6060         skb_ext_put(skb);
6061         kmem_cache_free(skbuff_head_cache, skb);
6062 }
6063
6064 static gro_result_t napi_skb_finish(struct napi_struct *napi,
6065                                     struct sk_buff *skb,
6066                                     gro_result_t ret)
6067 {
6068         switch (ret) {
6069         case GRO_NORMAL:
6070                 gro_normal_one(napi, skb);
6071                 break;
6072
6073         case GRO_DROP:
6074                 kfree_skb(skb);
6075                 break;
6076
6077         case GRO_MERGED_FREE:
6078                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6079                         napi_skb_free_stolen_head(skb);
6080                 else
6081                         __kfree_skb(skb);
6082                 break;
6083
6084         case GRO_HELD:
6085         case GRO_MERGED:
6086         case GRO_CONSUMED:
6087                 break;
6088         }
6089
6090         return ret;
6091 }
6092
6093 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6094 {
6095         gro_result_t ret;
6096
6097         skb_mark_napi_id(skb, napi);
6098         trace_napi_gro_receive_entry(skb);
6099
6100         skb_gro_reset_offset(skb);
6101
6102         ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6103         trace_napi_gro_receive_exit(ret);
6104
6105         return ret;
6106 }
6107 EXPORT_SYMBOL(napi_gro_receive);
6108
6109 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6110 {
6111         if (unlikely(skb->pfmemalloc)) {
6112                 consume_skb(skb);
6113                 return;
6114         }
6115         __skb_pull(skb, skb_headlen(skb));
6116         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
6117         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6118         __vlan_hwaccel_clear_tag(skb);
6119         skb->dev = napi->dev;
6120         skb->skb_iif = 0;
6121
6122         /* eth_type_trans() assumes pkt_type is PACKET_HOST */
6123         skb->pkt_type = PACKET_HOST;
6124
6125         skb->encapsulation = 0;
6126         skb_shinfo(skb)->gso_type = 0;
6127         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6128         skb_ext_reset(skb);
6129
6130         napi->skb = skb;
6131 }
6132
6133 struct sk_buff *napi_get_frags(struct napi_struct *napi)
6134 {
6135         struct sk_buff *skb = napi->skb;
6136
6137         if (!skb) {
6138                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6139                 if (skb) {
6140                         napi->skb = skb;
6141                         skb_mark_napi_id(skb, napi);
6142                 }
6143         }
6144         return skb;
6145 }
6146 EXPORT_SYMBOL(napi_get_frags);
6147
6148 static gro_result_t napi_frags_finish(struct napi_struct *napi,
6149                                       struct sk_buff *skb,
6150                                       gro_result_t ret)
6151 {
6152         switch (ret) {
6153         case GRO_NORMAL:
6154         case GRO_HELD:
6155                 __skb_push(skb, ETH_HLEN);
6156                 skb->protocol = eth_type_trans(skb, skb->dev);
6157                 if (ret == GRO_NORMAL)
6158                         gro_normal_one(napi, skb);
6159                 break;
6160
6161         case GRO_DROP:
6162                 napi_reuse_skb(napi, skb);
6163                 break;
6164
6165         case GRO_MERGED_FREE:
6166                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6167                         napi_skb_free_stolen_head(skb);
6168                 else
6169                         napi_reuse_skb(napi, skb);
6170                 break;
6171
6172         case GRO_MERGED:
6173         case GRO_CONSUMED:
6174                 break;
6175         }
6176
6177         return ret;
6178 }
6179
6180 /* Upper GRO stack assumes network header starts at gro_offset=0
6181  * Drivers could call both napi_gro_frags() and napi_gro_receive()
6182  * We copy ethernet header into skb->data to have a common layout.
6183  */
6184 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6185 {
6186         struct sk_buff *skb = napi->skb;
6187         const struct ethhdr *eth;
6188         unsigned int hlen = sizeof(*eth);
6189
6190         napi->skb = NULL;
6191
6192         skb_reset_mac_header(skb);
6193         skb_gro_reset_offset(skb);
6194
6195         if (unlikely(skb_gro_header_hard(skb, hlen))) {
6196                 eth = skb_gro_header_slow(skb, hlen, 0);
6197                 if (unlikely(!eth)) {
6198                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6199                                              __func__, napi->dev->name);
6200                         napi_reuse_skb(napi, skb);
6201                         return NULL;
6202                 }
6203         } else {
6204                 eth = (const struct ethhdr *)skb->data;
6205                 gro_pull_from_frag0(skb, hlen);
6206                 NAPI_GRO_CB(skb)->frag0 += hlen;
6207                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
6208         }
6209         __skb_pull(skb, hlen);
6210
6211         /*
6212          * This works because the only protocols we care about don't require
6213          * special handling.
6214          * We'll fix it up properly in napi_frags_finish()
6215          */
6216         skb->protocol = eth->h_proto;
6217
6218         return skb;
6219 }
6220
6221 gro_result_t napi_gro_frags(struct napi_struct *napi)
6222 {
6223         gro_result_t ret;
6224         struct sk_buff *skb = napi_frags_skb(napi);
6225
6226         if (!skb)
6227                 return GRO_DROP;
6228
6229         trace_napi_gro_frags_entry(skb);
6230
6231         ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6232         trace_napi_gro_frags_exit(ret);
6233
6234         return ret;
6235 }
6236 EXPORT_SYMBOL(napi_gro_frags);
6237
6238 /* Compute the checksum from gro_offset and return the folded value
6239  * after adding in any pseudo checksum.
6240  */
6241 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6242 {
6243         __wsum wsum;
6244         __sum16 sum;
6245
6246         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6247
6248         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6249         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6250         /* See comments in __skb_checksum_complete(). */
6251         if (likely(!sum)) {
6252                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6253                     !skb->csum_complete_sw)
6254                         netdev_rx_csum_fault(skb->dev, skb);
6255         }
6256
6257         NAPI_GRO_CB(skb)->csum = wsum;
6258         NAPI_GRO_CB(skb)->csum_valid = 1;
6259
6260         return sum;
6261 }
6262 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6263
6264 static void net_rps_send_ipi(struct softnet_data *remsd)
6265 {
6266 #ifdef CONFIG_RPS
6267         while (remsd) {
6268                 struct softnet_data *next = remsd->rps_ipi_next;
6269
6270                 if (cpu_online(remsd->cpu))
6271                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
6272                 remsd = next;
6273         }
6274 #endif
6275 }
6276
6277 /*
6278  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6279  * Note: called with local irq disabled, but exits with local irq enabled.
6280  */
6281 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6282 {
6283 #ifdef CONFIG_RPS
6284         struct softnet_data *remsd = sd->rps_ipi_list;
6285
6286         if (remsd) {
6287                 sd->rps_ipi_list = NULL;
6288
6289                 local_irq_enable();
6290
6291                 /* Send pending IPI's to kick RPS processing on remote cpus. */
6292                 net_rps_send_ipi(remsd);
6293         } else
6294 #endif
6295                 local_irq_enable();
6296 }
6297
6298 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6299 {
6300 #ifdef CONFIG_RPS
6301         return sd->rps_ipi_list != NULL;
6302 #else
6303         return false;
6304 #endif
6305 }
6306
6307 static int process_backlog(struct napi_struct *napi, int quota)
6308 {
6309         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6310         bool again = true;
6311         int work = 0;
6312
6313         /* Check if we have pending ipi, its better to send them now,
6314          * not waiting net_rx_action() end.
6315          */
6316         if (sd_has_rps_ipi_waiting(sd)) {
6317                 local_irq_disable();
6318                 net_rps_action_and_irq_enable(sd);
6319         }
6320
6321         napi->weight = dev_rx_weight;
6322         while (again) {
6323                 struct sk_buff *skb;
6324
6325                 while ((skb = __skb_dequeue(&sd->process_queue))) {
6326                         rcu_read_lock();
6327                         __netif_receive_skb(skb);
6328                         rcu_read_unlock();
6329                         input_queue_head_incr(sd);
6330                         if (++work >= quota)
6331                                 return work;
6332
6333                 }
6334
6335                 local_irq_disable();
6336                 rps_lock(sd);
6337                 if (skb_queue_empty(&sd->input_pkt_queue)) {
6338                         /*
6339                          * Inline a custom version of __napi_complete().
6340                          * only current cpu owns and manipulates this napi,
6341                          * and NAPI_STATE_SCHED is the only possible flag set
6342                          * on backlog.
6343                          * We can use a plain write instead of clear_bit(),
6344                          * and we dont need an smp_mb() memory barrier.
6345                          */
6346                         napi->state = 0;
6347                         again = false;
6348                 } else {
6349                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
6350                                                    &sd->process_queue);
6351                 }
6352                 rps_unlock(sd);
6353                 local_irq_enable();
6354         }
6355
6356         return work;
6357 }
6358
6359 /**
6360  * __napi_schedule - schedule for receive
6361  * @n: entry to schedule
6362  *
6363  * The entry's receive function will be scheduled to run.
6364  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6365  */
6366 void __napi_schedule(struct napi_struct *n)
6367 {
6368         unsigned long flags;
6369
6370         local_irq_save(flags);
6371         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6372         local_irq_restore(flags);
6373 }
6374 EXPORT_SYMBOL(__napi_schedule);
6375
6376 /**
6377  *      napi_schedule_prep - check if napi can be scheduled
6378  *      @n: napi context
6379  *
6380  * Test if NAPI routine is already running, and if not mark
6381  * it as running.  This is used as a condition variable to
6382  * insure only one NAPI poll instance runs.  We also make
6383  * sure there is no pending NAPI disable.
6384  */
6385 bool napi_schedule_prep(struct napi_struct *n)
6386 {
6387         unsigned long val, new;
6388
6389         do {
6390                 val = READ_ONCE(n->state);
6391                 if (unlikely(val & NAPIF_STATE_DISABLE))
6392                         return false;
6393                 new = val | NAPIF_STATE_SCHED;
6394
6395                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6396                  * This was suggested by Alexander Duyck, as compiler
6397                  * emits better code than :
6398                  * if (val & NAPIF_STATE_SCHED)
6399                  *     new |= NAPIF_STATE_MISSED;
6400                  */
6401                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6402                                                    NAPIF_STATE_MISSED;
6403         } while (cmpxchg(&n->state, val, new) != val);
6404
6405         return !(val & NAPIF_STATE_SCHED);
6406 }
6407 EXPORT_SYMBOL(napi_schedule_prep);
6408
6409 /**
6410  * __napi_schedule_irqoff - schedule for receive
6411  * @n: entry to schedule
6412  *
6413  * Variant of __napi_schedule() assuming hard irqs are masked
6414  */
6415 void __napi_schedule_irqoff(struct napi_struct *n)
6416 {
6417         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6418 }
6419 EXPORT_SYMBOL(__napi_schedule_irqoff);
6420
6421 bool napi_complete_done(struct napi_struct *n, int work_done)
6422 {
6423         unsigned long flags, val, new, timeout = 0;
6424         bool ret = true;
6425
6426         /*
6427          * 1) Don't let napi dequeue from the cpu poll list
6428          *    just in case its running on a different cpu.
6429          * 2) If we are busy polling, do nothing here, we have
6430          *    the guarantee we will be called later.
6431          */
6432         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6433                                  NAPIF_STATE_IN_BUSY_POLL)))
6434                 return false;
6435
6436         if (work_done) {
6437                 if (n->gro_bitmask)
6438                         timeout = READ_ONCE(n->dev->gro_flush_timeout);
6439                 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6440         }
6441         if (n->defer_hard_irqs_count > 0) {
6442                 n->defer_hard_irqs_count--;
6443                 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6444                 if (timeout)
6445                         ret = false;
6446         }
6447         if (n->gro_bitmask) {
6448                 /* When the NAPI instance uses a timeout and keeps postponing
6449                  * it, we need to bound somehow the time packets are kept in
6450                  * the GRO layer
6451                  */
6452                 napi_gro_flush(n, !!timeout);
6453         }
6454
6455         gro_normal_list(n);
6456
6457         if (unlikely(!list_empty(&n->poll_list))) {
6458                 /* If n->poll_list is not empty, we need to mask irqs */
6459                 local_irq_save(flags);
6460                 list_del_init(&n->poll_list);
6461                 local_irq_restore(flags);
6462         }
6463
6464         do {
6465                 val = READ_ONCE(n->state);
6466
6467                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6468
6469                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6470                               NAPIF_STATE_PREFER_BUSY_POLL);
6471
6472                 /* If STATE_MISSED was set, leave STATE_SCHED set,
6473                  * because we will call napi->poll() one more time.
6474                  * This C code was suggested by Alexander Duyck to help gcc.
6475                  */
6476                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6477                                                     NAPIF_STATE_SCHED;
6478         } while (cmpxchg(&n->state, val, new) != val);
6479
6480         if (unlikely(val & NAPIF_STATE_MISSED)) {
6481                 __napi_schedule(n);
6482                 return false;
6483         }
6484
6485         if (timeout)
6486                 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6487                               HRTIMER_MODE_REL_PINNED);
6488         return ret;
6489 }
6490 EXPORT_SYMBOL(napi_complete_done);
6491
6492 /* must be called under rcu_read_lock(), as we dont take a reference */
6493 static struct napi_struct *napi_by_id(unsigned int napi_id)
6494 {
6495         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6496         struct napi_struct *napi;
6497
6498         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6499                 if (napi->napi_id == napi_id)
6500                         return napi;
6501
6502         return NULL;
6503 }
6504
6505 #if defined(CONFIG_NET_RX_BUSY_POLL)
6506
6507 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6508 {
6509         if (!skip_schedule) {
6510                 gro_normal_list(napi);
6511                 __napi_schedule(napi);
6512                 return;
6513         }
6514
6515         if (napi->gro_bitmask) {
6516                 /* flush too old packets
6517                  * If HZ < 1000, flush all packets.
6518                  */
6519                 napi_gro_flush(napi, HZ >= 1000);
6520         }
6521
6522         gro_normal_list(napi);
6523         clear_bit(NAPI_STATE_SCHED, &napi->state);
6524 }
6525
6526 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6527                            u16 budget)
6528 {
6529         bool skip_schedule = false;
6530         unsigned long timeout;
6531         int rc;
6532
6533         /* Busy polling means there is a high chance device driver hard irq
6534          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6535          * set in napi_schedule_prep().
6536          * Since we are about to call napi->poll() once more, we can safely
6537          * clear NAPI_STATE_MISSED.
6538          *
6539          * Note: x86 could use a single "lock and ..." instruction
6540          * to perform these two clear_bit()
6541          */
6542         clear_bit(NAPI_STATE_MISSED, &napi->state);
6543         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6544
6545         local_bh_disable();
6546
6547         if (prefer_busy_poll) {
6548                 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6549                 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6550                 if (napi->defer_hard_irqs_count && timeout) {
6551                         hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6552                         skip_schedule = true;
6553                 }
6554         }
6555
6556         /* All we really want here is to re-enable device interrupts.
6557          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6558          */
6559         rc = napi->poll(napi, budget);
6560         /* We can't gro_normal_list() here, because napi->poll() might have
6561          * rearmed the napi (napi_complete_done()) in which case it could
6562          * already be running on another CPU.
6563          */
6564         trace_napi_poll(napi, rc, budget);
6565         netpoll_poll_unlock(have_poll_lock);
6566         if (rc == budget)
6567                 __busy_poll_stop(napi, skip_schedule);
6568         local_bh_enable();
6569 }
6570
6571 void napi_busy_loop(unsigned int napi_id,
6572                     bool (*loop_end)(void *, unsigned long),
6573                     void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6574 {
6575         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6576         int (*napi_poll)(struct napi_struct *napi, int budget);
6577         void *have_poll_lock = NULL;
6578         struct napi_struct *napi;
6579
6580 restart:
6581         napi_poll = NULL;
6582
6583         rcu_read_lock();
6584
6585         napi = napi_by_id(napi_id);
6586         if (!napi)
6587                 goto out;
6588
6589         preempt_disable();
6590         for (;;) {
6591                 int work = 0;
6592
6593                 local_bh_disable();
6594                 if (!napi_poll) {
6595                         unsigned long val = READ_ONCE(napi->state);
6596
6597                         /* If multiple threads are competing for this napi,
6598                          * we avoid dirtying napi->state as much as we can.
6599                          */
6600                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6601                                    NAPIF_STATE_IN_BUSY_POLL)) {
6602                                 if (prefer_busy_poll)
6603                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6604                                 goto count;
6605                         }
6606                         if (cmpxchg(&napi->state, val,
6607                                     val | NAPIF_STATE_IN_BUSY_POLL |
6608                                           NAPIF_STATE_SCHED) != val) {
6609                                 if (prefer_busy_poll)
6610                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6611                                 goto count;
6612                         }
6613                         have_poll_lock = netpoll_poll_lock(napi);
6614                         napi_poll = napi->poll;
6615                 }
6616                 work = napi_poll(napi, budget);
6617                 trace_napi_poll(napi, work, budget);
6618                 gro_normal_list(napi);
6619 count:
6620                 if (work > 0)
6621                         __NET_ADD_STATS(dev_net(napi->dev),
6622                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6623                 local_bh_enable();
6624
6625                 if (!loop_end || loop_end(loop_end_arg, start_time))
6626                         break;
6627
6628                 if (unlikely(need_resched())) {
6629                         if (napi_poll)
6630                                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6631                         preempt_enable();
6632                         rcu_read_unlock();
6633                         cond_resched();
6634                         if (loop_end(loop_end_arg, start_time))
6635                                 return;
6636                         goto restart;
6637                 }
6638                 cpu_relax();
6639         }
6640         if (napi_poll)
6641                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6642         preempt_enable();
6643 out:
6644         rcu_read_unlock();
6645 }
6646 EXPORT_SYMBOL(napi_busy_loop);
6647
6648 #endif /* CONFIG_NET_RX_BUSY_POLL */
6649
6650 static void napi_hash_add(struct napi_struct *napi)
6651 {
6652         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6653                 return;
6654
6655         spin_lock(&napi_hash_lock);
6656
6657         /* 0..NR_CPUS range is reserved for sender_cpu use */
6658         do {
6659                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6660                         napi_gen_id = MIN_NAPI_ID;
6661         } while (napi_by_id(napi_gen_id));
6662         napi->napi_id = napi_gen_id;
6663
6664         hlist_add_head_rcu(&napi->napi_hash_node,
6665                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6666
6667         spin_unlock(&napi_hash_lock);
6668 }
6669
6670 /* Warning : caller is responsible to make sure rcu grace period
6671  * is respected before freeing memory containing @napi
6672  */
6673 static void napi_hash_del(struct napi_struct *napi)
6674 {
6675         spin_lock(&napi_hash_lock);
6676
6677         hlist_del_init_rcu(&napi->napi_hash_node);
6678
6679         spin_unlock(&napi_hash_lock);
6680 }
6681
6682 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6683 {
6684         struct napi_struct *napi;
6685
6686         napi = container_of(timer, struct napi_struct, timer);
6687
6688         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6689          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6690          */
6691         if (!napi_disable_pending(napi) &&
6692             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6693                 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6694                 __napi_schedule_irqoff(napi);
6695         }
6696
6697         return HRTIMER_NORESTART;
6698 }
6699
6700 static void init_gro_hash(struct napi_struct *napi)
6701 {
6702         int i;
6703
6704         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6705                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6706                 napi->gro_hash[i].count = 0;
6707         }
6708         napi->gro_bitmask = 0;
6709 }
6710
6711 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6712                     int (*poll)(struct napi_struct *, int), int weight)
6713 {
6714         if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6715                 return;
6716
6717         INIT_LIST_HEAD(&napi->poll_list);
6718         INIT_HLIST_NODE(&napi->napi_hash_node);
6719         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6720         napi->timer.function = napi_watchdog;
6721         init_gro_hash(napi);
6722         napi->skb = NULL;
6723         INIT_LIST_HEAD(&napi->rx_list);
6724         napi->rx_count = 0;
6725         napi->poll = poll;
6726         if (weight > NAPI_POLL_WEIGHT)
6727                 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6728                                 weight);
6729         napi->weight = weight;
6730         napi->dev = dev;
6731 #ifdef CONFIG_NETPOLL
6732         napi->poll_owner = -1;
6733 #endif
6734         set_bit(NAPI_STATE_SCHED, &napi->state);
6735         set_bit(NAPI_STATE_NPSVC, &napi->state);
6736         list_add_rcu(&napi->dev_list, &dev->napi_list);
6737         napi_hash_add(napi);
6738 }
6739 EXPORT_SYMBOL(netif_napi_add);
6740
6741 void napi_disable(struct napi_struct *n)
6742 {
6743         might_sleep();
6744         set_bit(NAPI_STATE_DISABLE, &n->state);
6745
6746         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6747                 msleep(1);
6748         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6749                 msleep(1);
6750
6751         hrtimer_cancel(&n->timer);
6752
6753         clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
6754         clear_bit(NAPI_STATE_DISABLE, &n->state);
6755 }
6756 EXPORT_SYMBOL(napi_disable);
6757
6758 static void flush_gro_hash(struct napi_struct *napi)
6759 {
6760         int i;
6761
6762         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6763                 struct sk_buff *skb, *n;
6764
6765                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6766                         kfree_skb(skb);
6767                 napi->gro_hash[i].count = 0;
6768         }
6769 }
6770
6771 /* Must be called in process context */
6772 void __netif_napi_del(struct napi_struct *napi)
6773 {
6774         if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6775                 return;
6776
6777         napi_hash_del(napi);
6778         list_del_rcu(&napi->dev_list);
6779         napi_free_frags(napi);
6780
6781         flush_gro_hash(napi);
6782         napi->gro_bitmask = 0;
6783 }
6784 EXPORT_SYMBOL(__netif_napi_del);
6785
6786 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6787 {
6788         void *have;
6789         int work, weight;
6790
6791         list_del_init(&n->poll_list);
6792
6793         have = netpoll_poll_lock(n);
6794
6795         weight = n->weight;
6796
6797         /* This NAPI_STATE_SCHED test is for avoiding a race
6798          * with netpoll's poll_napi().  Only the entity which
6799          * obtains the lock and sees NAPI_STATE_SCHED set will
6800          * actually make the ->poll() call.  Therefore we avoid
6801          * accidentally calling ->poll() when NAPI is not scheduled.
6802          */
6803         work = 0;
6804         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6805                 work = n->poll(n, weight);
6806                 trace_napi_poll(n, work, weight);
6807         }
6808
6809         if (unlikely(work > weight))
6810                 pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6811                             n->poll, work, weight);
6812
6813         if (likely(work < weight))
6814                 goto out_unlock;
6815
6816         /* Drivers must not modify the NAPI state if they
6817          * consume the entire weight.  In such cases this code
6818          * still "owns" the NAPI instance and therefore can
6819          * move the instance around on the list at-will.
6820          */
6821         if (unlikely(napi_disable_pending(n))) {
6822                 napi_complete(n);
6823                 goto out_unlock;
6824         }
6825
6826         /* The NAPI context has more processing work, but busy-polling
6827          * is preferred. Exit early.
6828          */
6829         if (napi_prefer_busy_poll(n)) {
6830                 if (napi_complete_done(n, work)) {
6831                         /* If timeout is not set, we need to make sure
6832                          * that the NAPI is re-scheduled.
6833                          */
6834                         napi_schedule(n);
6835                 }
6836                 goto out_unlock;
6837         }
6838
6839         if (n->gro_bitmask) {
6840                 /* flush too old packets
6841                  * If HZ < 1000, flush all packets.
6842                  */
6843                 napi_gro_flush(n, HZ >= 1000);
6844         }
6845
6846         gro_normal_list(n);
6847
6848         /* Some drivers may have called napi_schedule
6849          * prior to exhausting their budget.
6850          */
6851         if (unlikely(!list_empty(&n->poll_list))) {
6852                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6853                              n->dev ? n->dev->name : "backlog");
6854                 goto out_unlock;
6855         }
6856
6857         list_add_tail(&n->poll_list, repoll);
6858
6859 out_unlock:
6860         netpoll_poll_unlock(have);
6861
6862         return work;
6863 }
6864
6865 static __latent_entropy void net_rx_action(struct softirq_action *h)
6866 {
6867         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6868         unsigned long time_limit = jiffies +
6869                 usecs_to_jiffies(netdev_budget_usecs);
6870         int budget = netdev_budget;
6871         LIST_HEAD(list);
6872         LIST_HEAD(repoll);
6873
6874         local_irq_disable();
6875         list_splice_init(&sd->poll_list, &list);
6876         local_irq_enable();
6877
6878         for (;;) {
6879                 struct napi_struct *n;
6880
6881                 if (list_empty(&list)) {
6882                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6883                                 goto out;
6884                         break;
6885                 }
6886
6887                 n = list_first_entry(&list, struct napi_struct, poll_list);
6888                 budget -= napi_poll(n, &repoll);
6889
6890                 /* If softirq window is exhausted then punt.
6891                  * Allow this to run for 2 jiffies since which will allow
6892                  * an average latency of 1.5/HZ.
6893                  */
6894                 if (unlikely(budget <= 0 ||
6895                              time_after_eq(jiffies, time_limit))) {
6896                         sd->time_squeeze++;
6897                         break;
6898                 }
6899         }
6900
6901         local_irq_disable();
6902
6903         list_splice_tail_init(&sd->poll_list, &list);
6904         list_splice_tail(&repoll, &list);
6905         list_splice(&list, &sd->poll_list);
6906         if (!list_empty(&sd->poll_list))
6907                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6908
6909         net_rps_action_and_irq_enable(sd);
6910 out:
6911         __kfree_skb_flush();
6912 }
6913
6914 struct netdev_adjacent {
6915         struct net_device *dev;
6916
6917         /* upper master flag, there can only be one master device per list */
6918         bool master;
6919
6920         /* lookup ignore flag */
6921         bool ignore;
6922
6923         /* counter for the number of times this device was added to us */
6924         u16 ref_nr;
6925
6926         /* private field for the users */
6927         void *private;
6928
6929         struct list_head list;
6930         struct rcu_head rcu;
6931 };
6932
6933 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6934                                                  struct list_head *adj_list)
6935 {
6936         struct netdev_adjacent *adj;
6937
6938         list_for_each_entry(adj, adj_list, list) {
6939                 if (adj->dev == adj_dev)
6940                         return adj;
6941         }
6942         return NULL;
6943 }
6944
6945 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6946                                     struct netdev_nested_priv *priv)
6947 {
6948         struct net_device *dev = (struct net_device *)priv->data;
6949
6950         return upper_dev == dev;
6951 }
6952
6953 /**
6954  * netdev_has_upper_dev - Check if device is linked to an upper device
6955  * @dev: device
6956  * @upper_dev: upper device to check
6957  *
6958  * Find out if a device is linked to specified upper device and return true
6959  * in case it is. Note that this checks only immediate upper device,
6960  * not through a complete stack of devices. The caller must hold the RTNL lock.
6961  */
6962 bool netdev_has_upper_dev(struct net_device *dev,
6963                           struct net_device *upper_dev)
6964 {
6965         struct netdev_nested_priv priv = {
6966                 .data = (void *)upper_dev,
6967         };
6968
6969         ASSERT_RTNL();
6970
6971         return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6972                                              &priv);
6973 }
6974 EXPORT_SYMBOL(netdev_has_upper_dev);
6975
6976 /**
6977  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6978  * @dev: device
6979  * @upper_dev: upper device to check
6980  *
6981  * Find out if a device is linked to specified upper device and return true
6982  * in case it is. Note that this checks the entire upper device chain.
6983  * The caller must hold rcu lock.
6984  */
6985
6986 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6987                                   struct net_device *upper_dev)
6988 {
6989         struct netdev_nested_priv priv = {
6990                 .data = (void *)upper_dev,
6991         };
6992
6993         return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6994                                                &priv);
6995 }
6996 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6997
6998 /**
6999  * netdev_has_any_upper_dev - Check if device is linked to some device
7000  * @dev: device
7001  *
7002  * Find out if a device is linked to an upper device and return true in case
7003  * it is. The caller must hold the RTNL lock.
7004  */
7005 bool netdev_has_any_upper_dev(struct net_device *dev)
7006 {
7007         ASSERT_RTNL();
7008
7009         return !list_empty(&dev->adj_list.upper);
7010 }
7011 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7012
7013 /**
7014  * netdev_master_upper_dev_get - Get master upper device
7015  * @dev: device
7016  *
7017  * Find a master upper device and return pointer to it or NULL in case
7018  * it's not there. The caller must hold the RTNL lock.
7019  */
7020 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7021 {
7022         struct netdev_adjacent *upper;
7023
7024         ASSERT_RTNL();
7025
7026         if (list_empty(&dev->adj_list.upper))
7027                 return NULL;
7028
7029         upper = list_first_entry(&dev->adj_list.upper,
7030                                  struct netdev_adjacent, list);
7031         if (likely(upper->master))
7032                 return upper->dev;
7033         return NULL;
7034 }
7035 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7036
7037 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7038 {
7039         struct netdev_adjacent *upper;
7040
7041         ASSERT_RTNL();
7042
7043         if (list_empty(&dev->adj_list.upper))
7044                 return NULL;
7045
7046         upper = list_first_entry(&dev->adj_list.upper,
7047                                  struct netdev_adjacent, list);
7048         if (likely(upper->master) && !upper->ignore)
7049                 return upper->dev;
7050         return NULL;
7051 }
7052
7053 /**
7054  * netdev_has_any_lower_dev - Check if device is linked to some device
7055  * @dev: device
7056  *
7057  * Find out if a device is linked to a lower device and return true in case
7058  * it is. The caller must hold the RTNL lock.
7059  */
7060 static bool netdev_has_any_lower_dev(struct net_device *dev)
7061 {
7062         ASSERT_RTNL();
7063
7064         return !list_empty(&dev->adj_list.lower);
7065 }
7066
7067 void *netdev_adjacent_get_private(struct list_head *adj_list)
7068 {
7069         struct netdev_adjacent *adj;
7070
7071         adj = list_entry(adj_list, struct netdev_adjacent, list);
7072
7073         return adj->private;
7074 }
7075 EXPORT_SYMBOL(netdev_adjacent_get_private);
7076
7077 /**
7078  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7079  * @dev: device
7080  * @iter: list_head ** of the current position
7081  *
7082  * Gets the next device from the dev's upper list, starting from iter
7083  * position. The caller must hold RCU read lock.
7084  */
7085 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7086                                                  struct list_head **iter)
7087 {
7088         struct netdev_adjacent *upper;
7089
7090         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7091
7092         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7093
7094         if (&upper->list == &dev->adj_list.upper)
7095                 return NULL;
7096
7097         *iter = &upper->list;
7098
7099         return upper->dev;
7100 }
7101 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7102
7103 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7104                                                   struct list_head **iter,
7105                                                   bool *ignore)
7106 {
7107         struct netdev_adjacent *upper;
7108
7109         upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7110
7111         if (&upper->list == &dev->adj_list.upper)
7112                 return NULL;
7113
7114         *iter = &upper->list;
7115         *ignore = upper->ignore;
7116
7117         return upper->dev;
7118 }
7119
7120 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7121                                                     struct list_head **iter)
7122 {
7123         struct netdev_adjacent *upper;
7124
7125         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7126
7127         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7128
7129         if (&upper->list == &dev->adj_list.upper)
7130                 return NULL;
7131
7132         *iter = &upper->list;
7133
7134         return upper->dev;
7135 }
7136
7137 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7138                                        int (*fn)(struct net_device *dev,
7139                                          struct netdev_nested_priv *priv),
7140                                        struct netdev_nested_priv *priv)
7141 {
7142         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7143         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7144         int ret, cur = 0;
7145         bool ignore;
7146
7147         now = dev;
7148         iter = &dev->adj_list.upper;
7149
7150         while (1) {
7151                 if (now != dev) {
7152                         ret = fn(now, priv);
7153                         if (ret)
7154                                 return ret;
7155                 }
7156
7157                 next = NULL;
7158                 while (1) {
7159                         udev = __netdev_next_upper_dev(now, &iter, &ignore);
7160                         if (!udev)
7161                                 break;
7162                         if (ignore)
7163                                 continue;
7164
7165                         next = udev;
7166                         niter = &udev->adj_list.upper;
7167                         dev_stack[cur] = now;
7168                         iter_stack[cur++] = iter;
7169                         break;
7170                 }
7171
7172                 if (!next) {
7173                         if (!cur)
7174                                 return 0;
7175                         next = dev_stack[--cur];
7176                         niter = iter_stack[cur];
7177                 }
7178
7179                 now = next;
7180                 iter = niter;
7181         }
7182
7183         return 0;
7184 }
7185
7186 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7187                                   int (*fn)(struct net_device *dev,
7188                                             struct netdev_nested_priv *priv),
7189                                   struct netdev_nested_priv *priv)
7190 {
7191         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7192         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7193         int ret, cur = 0;
7194
7195         now = dev;
7196         iter = &dev->adj_list.upper;
7197
7198         while (1) {
7199                 if (now != dev) {
7200                         ret = fn(now, priv);
7201                         if (ret)
7202                                 return ret;
7203                 }
7204
7205                 next = NULL;
7206                 while (1) {
7207                         udev = netdev_next_upper_dev_rcu(now, &iter);
7208                         if (!udev)
7209                                 break;
7210
7211                         next = udev;
7212                         niter = &udev->adj_list.upper;
7213                         dev_stack[cur] = now;
7214                         iter_stack[cur++] = iter;
7215                         break;
7216                 }
7217
7218                 if (!next) {
7219                         if (!cur)
7220                                 return 0;
7221                         next = dev_stack[--cur];
7222                         niter = iter_stack[cur];
7223                 }
7224
7225                 now = next;
7226                 iter = niter;
7227         }
7228
7229         return 0;
7230 }
7231 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7232
7233 static bool __netdev_has_upper_dev(struct net_device *dev,
7234                                    struct net_device *upper_dev)
7235 {
7236         struct netdev_nested_priv priv = {
7237                 .flags = 0,
7238                 .data = (void *)upper_dev,
7239         };
7240
7241         ASSERT_RTNL();
7242
7243         return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7244                                            &priv);
7245 }
7246
7247 /**
7248  * netdev_lower_get_next_private - Get the next ->private from the
7249  *                                 lower neighbour list
7250  * @dev: device
7251  * @iter: list_head ** of the current position
7252  *
7253  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7254  * list, starting from iter position. The caller must hold either hold the
7255  * RTNL lock or its own locking that guarantees that the neighbour lower
7256  * list will remain unchanged.
7257  */
7258 void *netdev_lower_get_next_private(struct net_device *dev,
7259                                     struct list_head **iter)
7260 {
7261         struct netdev_adjacent *lower;
7262
7263         lower = list_entry(*iter, struct netdev_adjacent, list);
7264
7265         if (&lower->list == &dev->adj_list.lower)
7266                 return NULL;
7267
7268         *iter = lower->list.next;
7269
7270         return lower->private;
7271 }
7272 EXPORT_SYMBOL(netdev_lower_get_next_private);
7273
7274 /**
7275  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7276  *                                     lower neighbour list, RCU
7277  *                                     variant
7278  * @dev: device
7279  * @iter: list_head ** of the current position
7280  *
7281  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7282  * list, starting from iter position. The caller must hold RCU read lock.
7283  */
7284 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7285                                         struct list_head **iter)
7286 {
7287         struct netdev_adjacent *lower;
7288
7289         WARN_ON_ONCE(!rcu_read_lock_held());
7290
7291         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7292
7293         if (&lower->list == &dev->adj_list.lower)
7294                 return NULL;
7295
7296         *iter = &lower->list;
7297
7298         return lower->private;
7299 }
7300 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7301
7302 /**
7303  * netdev_lower_get_next - Get the next device from the lower neighbour
7304  *                         list
7305  * @dev: device
7306  * @iter: list_head ** of the current position
7307  *
7308  * Gets the next netdev_adjacent from the dev's lower neighbour
7309  * list, starting from iter position. The caller must hold RTNL lock or
7310  * its own locking that guarantees that the neighbour lower
7311  * list will remain unchanged.
7312  */
7313 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7314 {
7315         struct netdev_adjacent *lower;
7316
7317         lower = list_entry(*iter, struct netdev_adjacent, list);
7318
7319         if (&lower->list == &dev->adj_list.lower)
7320                 return NULL;
7321
7322         *iter = lower->list.next;
7323
7324         return lower->dev;
7325 }
7326 EXPORT_SYMBOL(netdev_lower_get_next);
7327
7328 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7329                                                 struct list_head **iter)
7330 {
7331         struct netdev_adjacent *lower;
7332
7333         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7334
7335         if (&lower->list == &dev->adj_list.lower)
7336                 return NULL;
7337
7338         *iter = &lower->list;
7339
7340         return lower->dev;
7341 }
7342
7343 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7344                                                   struct list_head **iter,
7345                                                   bool *ignore)
7346 {
7347         struct netdev_adjacent *lower;
7348
7349         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7350
7351         if (&lower->list == &dev->adj_list.lower)
7352                 return NULL;
7353
7354         *iter = &lower->list;
7355         *ignore = lower->ignore;
7356
7357         return lower->dev;
7358 }
7359
7360 int netdev_walk_all_lower_dev(struct net_device *dev,
7361                               int (*fn)(struct net_device *dev,
7362                                         struct netdev_nested_priv *priv),
7363                               struct netdev_nested_priv *priv)
7364 {
7365         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7366         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7367         int ret, cur = 0;
7368
7369         now = dev;
7370         iter = &dev->adj_list.lower;
7371
7372         while (1) {
7373                 if (now != dev) {
7374                         ret = fn(now, priv);
7375                         if (ret)
7376                                 return ret;
7377                 }
7378
7379                 next = NULL;
7380                 while (1) {
7381                         ldev = netdev_next_lower_dev(now, &iter);
7382                         if (!ldev)
7383                                 break;
7384
7385                         next = ldev;
7386                         niter = &ldev->adj_list.lower;
7387                         dev_stack[cur] = now;
7388                         iter_stack[cur++] = iter;
7389                         break;
7390                 }
7391
7392                 if (!next) {
7393                         if (!cur)
7394                                 return 0;
7395                         next = dev_stack[--cur];
7396                         niter = iter_stack[cur];
7397                 }
7398
7399                 now = next;
7400                 iter = niter;
7401         }
7402
7403         return 0;
7404 }
7405 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7406
7407 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7408                                        int (*fn)(struct net_device *dev,
7409                                          struct netdev_nested_priv *priv),
7410                                        struct netdev_nested_priv *priv)
7411 {
7412         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7413         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7414         int ret, cur = 0;
7415         bool ignore;
7416
7417         now = dev;
7418         iter = &dev->adj_list.lower;
7419
7420         while (1) {
7421                 if (now != dev) {
7422                         ret = fn(now, priv);
7423                         if (ret)
7424                                 return ret;
7425                 }
7426
7427                 next = NULL;
7428                 while (1) {
7429                         ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7430                         if (!ldev)
7431                                 break;
7432                         if (ignore)
7433                                 continue;
7434
7435                         next = ldev;
7436                         niter = &ldev->adj_list.lower;
7437                         dev_stack[cur] = now;
7438                         iter_stack[cur++] = iter;
7439                         break;
7440                 }
7441
7442                 if (!next) {
7443                         if (!cur)
7444                                 return 0;
7445                         next = dev_stack[--cur];
7446                         niter = iter_stack[cur];
7447                 }
7448
7449                 now = next;
7450                 iter = niter;
7451         }
7452
7453         return 0;
7454 }
7455
7456 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7457                                              struct list_head **iter)
7458 {
7459         struct netdev_adjacent *lower;
7460
7461         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7462         if (&lower->list == &dev->adj_list.lower)
7463                 return NULL;
7464
7465         *iter = &lower->list;
7466
7467         return lower->dev;
7468 }
7469 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7470
7471 static u8 __netdev_upper_depth(struct net_device *dev)
7472 {
7473         struct net_device *udev;
7474         struct list_head *iter;
7475         u8 max_depth = 0;
7476         bool ignore;
7477
7478         for (iter = &dev->adj_list.upper,
7479              udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7480              udev;
7481              udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7482                 if (ignore)
7483                         continue;
7484                 if (max_depth < udev->upper_level)
7485                         max_depth = udev->upper_level;
7486         }
7487
7488         return max_depth;
7489 }
7490
7491 static u8 __netdev_lower_depth(struct net_device *dev)
7492 {
7493         struct net_device *ldev;
7494         struct list_head *iter;
7495         u8 max_depth = 0;
7496         bool ignore;
7497
7498         for (iter = &dev->adj_list.lower,
7499              ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7500              ldev;
7501              ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7502                 if (ignore)
7503                         continue;
7504                 if (max_depth < ldev->lower_level)
7505                         max_depth = ldev->lower_level;
7506         }
7507
7508         return max_depth;
7509 }
7510
7511 static int __netdev_update_upper_level(struct net_device *dev,
7512                                        struct netdev_nested_priv *__unused)
7513 {
7514         dev->upper_level = __netdev_upper_depth(dev) + 1;
7515         return 0;
7516 }
7517
7518 static int __netdev_update_lower_level(struct net_device *dev,
7519                                        struct netdev_nested_priv *priv)
7520 {
7521         dev->lower_level = __netdev_lower_depth(dev) + 1;
7522
7523 #ifdef CONFIG_LOCKDEP
7524         if (!priv)
7525                 return 0;
7526
7527         if (priv->flags & NESTED_SYNC_IMM)
7528                 dev->nested_level = dev->lower_level - 1;
7529         if (priv->flags & NESTED_SYNC_TODO)
7530                 net_unlink_todo(dev);
7531 #endif
7532         return 0;
7533 }
7534
7535 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7536                                   int (*fn)(struct net_device *dev,
7537                                             struct netdev_nested_priv *priv),
7538                                   struct netdev_nested_priv *priv)
7539 {
7540         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7541         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7542         int ret, cur = 0;
7543
7544         now = dev;
7545         iter = &dev->adj_list.lower;
7546
7547         while (1) {
7548                 if (now != dev) {
7549                         ret = fn(now, priv);
7550                         if (ret)
7551                                 return ret;
7552                 }
7553
7554                 next = NULL;
7555                 while (1) {
7556                         ldev = netdev_next_lower_dev_rcu(now, &iter);
7557                         if (!ldev)
7558                                 break;
7559
7560                         next = ldev;
7561                         niter = &ldev->adj_list.lower;
7562                         dev_stack[cur] = now;
7563                         iter_stack[cur++] = iter;
7564                         break;
7565                 }
7566
7567                 if (!next) {
7568                         if (!cur)
7569                                 return 0;
7570                         next = dev_stack[--cur];
7571                         niter = iter_stack[cur];
7572                 }
7573
7574                 now = next;
7575                 iter = niter;
7576         }
7577
7578         return 0;
7579 }
7580 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7581
7582 /**
7583  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7584  *                                     lower neighbour list, RCU
7585  *                                     variant
7586  * @dev: device
7587  *
7588  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7589  * list. The caller must hold RCU read lock.
7590  */
7591 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7592 {
7593         struct netdev_adjacent *lower;
7594
7595         lower = list_first_or_null_rcu(&dev->adj_list.lower,
7596                         struct netdev_adjacent, list);
7597         if (lower)
7598                 return lower->private;
7599         return NULL;
7600 }
7601 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7602
7603 /**
7604  * netdev_master_upper_dev_get_rcu - Get master upper device
7605  * @dev: device
7606  *
7607  * Find a master upper device and return pointer to it or NULL in case
7608  * it's not there. The caller must hold the RCU read lock.
7609  */
7610 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7611 {
7612         struct netdev_adjacent *upper;
7613
7614         upper = list_first_or_null_rcu(&dev->adj_list.upper,
7615                                        struct netdev_adjacent, list);
7616         if (upper && likely(upper->master))
7617                 return upper->dev;
7618         return NULL;
7619 }
7620 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7621
7622 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7623                               struct net_device *adj_dev,
7624                               struct list_head *dev_list)
7625 {
7626         char linkname[IFNAMSIZ+7];
7627
7628         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7629                 "upper_%s" : "lower_%s", adj_dev->name);
7630         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7631                                  linkname);
7632 }
7633 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7634                                char *name,
7635                                struct list_head *dev_list)
7636 {
7637         char linkname[IFNAMSIZ+7];
7638
7639         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7640                 "upper_%s" : "lower_%s", name);
7641         sysfs_remove_link(&(dev->dev.kobj), linkname);
7642 }
7643
7644 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7645                                                  struct net_device *adj_dev,
7646                                                  struct list_head *dev_list)
7647 {
7648         return (dev_list == &dev->adj_list.upper ||
7649                 dev_list == &dev->adj_list.lower) &&
7650                 net_eq(dev_net(dev), dev_net(adj_dev));
7651 }
7652
7653 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7654                                         struct net_device *adj_dev,
7655                                         struct list_head *dev_list,
7656                                         void *private, bool master)
7657 {
7658         struct netdev_adjacent *adj;
7659         int ret;
7660
7661         adj = __netdev_find_adj(adj_dev, dev_list);
7662
7663         if (adj) {
7664                 adj->ref_nr += 1;
7665                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7666                          dev->name, adj_dev->name, adj->ref_nr);
7667
7668                 return 0;
7669         }
7670
7671         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7672         if (!adj)
7673                 return -ENOMEM;
7674
7675         adj->dev = adj_dev;
7676         adj->master = master;
7677         adj->ref_nr = 1;
7678         adj->private = private;
7679         adj->ignore = false;
7680         dev_hold(adj_dev);
7681
7682         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7683                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7684
7685         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7686                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7687                 if (ret)
7688                         goto free_adj;
7689         }
7690
7691         /* Ensure that master link is always the first item in list. */
7692         if (master) {
7693                 ret = sysfs_create_link(&(dev->dev.kobj),
7694                                         &(adj_dev->dev.kobj), "master");
7695                 if (ret)
7696                         goto remove_symlinks;
7697
7698                 list_add_rcu(&adj->list, dev_list);
7699         } else {
7700                 list_add_tail_rcu(&adj->list, dev_list);
7701         }
7702
7703         return 0;
7704
7705 remove_symlinks:
7706         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7707                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7708 free_adj:
7709         kfree(adj);
7710         dev_put(adj_dev);
7711
7712         return ret;
7713 }
7714
7715 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7716                                          struct net_device *adj_dev,
7717                                          u16 ref_nr,
7718                                          struct list_head *dev_list)
7719 {
7720         struct netdev_adjacent *adj;
7721
7722         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7723                  dev->name, adj_dev->name, ref_nr);
7724
7725         adj = __netdev_find_adj(adj_dev, dev_list);
7726
7727         if (!adj) {
7728                 pr_err("Adjacency does not exist for device %s from %s\n",
7729                        dev->name, adj_dev->name);
7730                 WARN_ON(1);
7731                 return;
7732         }
7733
7734         if (adj->ref_nr > ref_nr) {
7735                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7736                          dev->name, adj_dev->name, ref_nr,
7737                          adj->ref_nr - ref_nr);
7738                 adj->ref_nr -= ref_nr;
7739                 return;
7740         }
7741
7742         if (adj->master)
7743                 sysfs_remove_link(&(dev->dev.kobj), "master");
7744
7745         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7746                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7747
7748         list_del_rcu(&adj->list);
7749         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7750                  adj_dev->name, dev->name, adj_dev->name);
7751         dev_put(adj_dev);
7752         kfree_rcu(adj, rcu);
7753 }
7754
7755 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7756                                             struct net_device *upper_dev,
7757                                             struct list_head *up_list,
7758                                             struct list_head *down_list,
7759                                             void *private, bool master)
7760 {
7761         int ret;
7762
7763         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7764                                            private, master);
7765         if (ret)
7766                 return ret;
7767
7768         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7769                                            private, false);
7770         if (ret) {
7771                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7772                 return ret;
7773         }
7774
7775         return 0;
7776 }
7777
7778 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7779                                                struct net_device *upper_dev,
7780                                                u16 ref_nr,
7781                                                struct list_head *up_list,
7782                                                struct list_head *down_list)
7783 {
7784         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7785         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7786 }
7787
7788 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7789                                                 struct net_device *upper_dev,
7790                                                 void *private, bool master)
7791 {
7792         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7793                                                 &dev->adj_list.upper,
7794                                                 &upper_dev->adj_list.lower,
7795                                                 private, master);
7796 }
7797
7798 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7799                                                    struct net_device *upper_dev)
7800 {
7801         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7802                                            &dev->adj_list.upper,
7803                                            &upper_dev->adj_list.lower);
7804 }
7805
7806 static int __netdev_upper_dev_link(struct net_device *dev,
7807                                    struct net_device *upper_dev, bool master,
7808                                    void *upper_priv, void *upper_info,
7809                                    struct netdev_nested_priv *priv,
7810                                    struct netlink_ext_ack *extack)
7811 {
7812         struct netdev_notifier_changeupper_info changeupper_info = {
7813                 .info = {
7814                         .dev = dev,
7815                         .extack = extack,
7816                 },
7817                 .upper_dev = upper_dev,
7818                 .master = master,
7819                 .linking = true,
7820                 .upper_info = upper_info,
7821         };
7822         struct net_device *master_dev;
7823         int ret = 0;
7824
7825         ASSERT_RTNL();
7826
7827         if (dev == upper_dev)
7828                 return -EBUSY;
7829
7830         /* To prevent loops, check if dev is not upper device to upper_dev. */
7831         if (__netdev_has_upper_dev(upper_dev, dev))
7832                 return -EBUSY;
7833
7834         if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7835                 return -EMLINK;
7836
7837         if (!master) {
7838                 if (__netdev_has_upper_dev(dev, upper_dev))
7839                         return -EEXIST;
7840         } else {
7841                 master_dev = __netdev_master_upper_dev_get(dev);
7842                 if (master_dev)
7843                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
7844         }
7845
7846         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7847                                             &changeupper_info.info);
7848         ret = notifier_to_errno(ret);
7849         if (ret)
7850                 return ret;
7851
7852         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7853                                                    master);
7854         if (ret)
7855                 return ret;
7856
7857         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7858                                             &changeupper_info.info);
7859         ret = notifier_to_errno(ret);
7860         if (ret)
7861                 goto rollback;
7862
7863         __netdev_update_upper_level(dev, NULL);
7864         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7865
7866         __netdev_update_lower_level(upper_dev, priv);
7867         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7868                                     priv);
7869
7870         return 0;
7871
7872 rollback:
7873         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7874
7875         return ret;
7876 }
7877
7878 /**
7879  * netdev_upper_dev_link - Add a link to the upper device
7880  * @dev: device
7881  * @upper_dev: new upper device
7882  * @extack: netlink extended ack
7883  *
7884  * Adds a link to device which is upper to this one. The caller must hold
7885  * the RTNL lock. On a failure a negative errno code is returned.
7886  * On success the reference counts are adjusted and the function
7887  * returns zero.
7888  */
7889 int netdev_upper_dev_link(struct net_device *dev,
7890                           struct net_device *upper_dev,
7891                           struct netlink_ext_ack *extack)
7892 {
7893         struct netdev_nested_priv priv = {
7894                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7895                 .data = NULL,
7896         };
7897
7898         return __netdev_upper_dev_link(dev, upper_dev, false,
7899                                        NULL, NULL, &priv, extack);
7900 }
7901 EXPORT_SYMBOL(netdev_upper_dev_link);
7902
7903 /**
7904  * netdev_master_upper_dev_link - Add a master link to the upper device
7905  * @dev: device
7906  * @upper_dev: new upper device
7907  * @upper_priv: upper device private
7908  * @upper_info: upper info to be passed down via notifier
7909  * @extack: netlink extended ack
7910  *
7911  * Adds a link to device which is upper to this one. In this case, only
7912  * one master upper device can be linked, although other non-master devices
7913  * might be linked as well. The caller must hold the RTNL lock.
7914  * On a failure a negative errno code is returned. On success the reference
7915  * counts are adjusted and the function returns zero.
7916  */
7917 int netdev_master_upper_dev_link(struct net_device *dev,
7918                                  struct net_device *upper_dev,
7919                                  void *upper_priv, void *upper_info,
7920                                  struct netlink_ext_ack *extack)
7921 {
7922         struct netdev_nested_priv priv = {
7923                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7924                 .data = NULL,
7925         };
7926
7927         return __netdev_upper_dev_link(dev, upper_dev, true,
7928                                        upper_priv, upper_info, &priv, extack);
7929 }
7930 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7931
7932 static void __netdev_upper_dev_unlink(struct net_device *dev,
7933                                       struct net_device *upper_dev,
7934                                       struct netdev_nested_priv *priv)
7935 {
7936         struct netdev_notifier_changeupper_info changeupper_info = {
7937                 .info = {
7938                         .dev = dev,
7939                 },
7940                 .upper_dev = upper_dev,
7941                 .linking = false,
7942         };
7943
7944         ASSERT_RTNL();
7945
7946         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7947
7948         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7949                                       &changeupper_info.info);
7950
7951         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7952
7953         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7954                                       &changeupper_info.info);
7955
7956         __netdev_update_upper_level(dev, NULL);
7957         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7958
7959         __netdev_update_lower_level(upper_dev, priv);
7960         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7961                                     priv);
7962 }
7963
7964 /**
7965  * netdev_upper_dev_unlink - Removes a link to upper device
7966  * @dev: device
7967  * @upper_dev: new upper device
7968  *
7969  * Removes a link to device which is upper to this one. The caller must hold
7970  * the RTNL lock.
7971  */
7972 void netdev_upper_dev_unlink(struct net_device *dev,
7973                              struct net_device *upper_dev)
7974 {
7975         struct netdev_nested_priv priv = {
7976                 .flags = NESTED_SYNC_TODO,
7977                 .data = NULL,
7978         };
7979
7980         __netdev_upper_dev_unlink(dev, upper_dev, &priv);
7981 }
7982 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7983
7984 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7985                                       struct net_device *lower_dev,
7986                                       bool val)
7987 {
7988         struct netdev_adjacent *adj;
7989
7990         adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7991         if (adj)
7992                 adj->ignore = val;
7993
7994         adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7995         if (adj)
7996                 adj->ignore = val;
7997 }
7998
7999 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8000                                         struct net_device *lower_dev)
8001 {
8002         __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8003 }
8004
8005 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8006                                        struct net_device *lower_dev)
8007 {
8008         __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8009 }
8010
8011 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8012                                    struct net_device *new_dev,
8013                                    struct net_device *dev,
8014                                    struct netlink_ext_ack *extack)
8015 {
8016         struct netdev_nested_priv priv = {
8017                 .flags = 0,
8018                 .data = NULL,
8019         };
8020         int err;
8021
8022         if (!new_dev)
8023                 return 0;
8024
8025         if (old_dev && new_dev != old_dev)
8026                 netdev_adjacent_dev_disable(dev, old_dev);
8027         err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8028                                       extack);
8029         if (err) {
8030                 if (old_dev && new_dev != old_dev)
8031                         netdev_adjacent_dev_enable(dev, old_dev);
8032                 return err;
8033         }
8034
8035         return 0;
8036 }
8037 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8038
8039 void netdev_adjacent_change_commit(struct net_device *old_dev,
8040                                    struct net_device *new_dev,
8041                                    struct net_device *dev)
8042 {
8043         struct netdev_nested_priv priv = {
8044                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8045                 .data = NULL,
8046         };
8047
8048         if (!new_dev || !old_dev)
8049                 return;
8050
8051         if (new_dev == old_dev)
8052                 return;
8053
8054         netdev_adjacent_dev_enable(dev, old_dev);
8055         __netdev_upper_dev_unlink(old_dev, dev, &priv);
8056 }
8057 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8058
8059 void netdev_adjacent_change_abort(struct net_device *old_dev,
8060                                   struct net_device *new_dev,
8061                                   struct net_device *dev)
8062 {
8063         struct netdev_nested_priv priv = {
8064                 .flags = 0,
8065                 .data = NULL,
8066         };
8067
8068         if (!new_dev)
8069                 return;
8070
8071         if (old_dev && new_dev != old_dev)
8072                 netdev_adjacent_dev_enable(dev, old_dev);
8073
8074         __netdev_upper_dev_unlink(new_dev, dev, &priv);
8075 }
8076 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8077
8078 /**
8079  * netdev_bonding_info_change - Dispatch event about slave change
8080  * @dev: device
8081  * @bonding_info: info to dispatch
8082  *
8083  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8084  * The caller must hold the RTNL lock.
8085  */
8086 void netdev_bonding_info_change(struct net_device *dev,
8087                                 struct netdev_bonding_info *bonding_info)
8088 {
8089         struct netdev_notifier_bonding_info info = {
8090                 .info.dev = dev,
8091         };
8092
8093         memcpy(&info.bonding_info, bonding_info,
8094                sizeof(struct netdev_bonding_info));
8095         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8096                                       &info.info);
8097 }
8098 EXPORT_SYMBOL(netdev_bonding_info_change);
8099
8100 /**
8101  * netdev_get_xmit_slave - Get the xmit slave of master device
8102  * @dev: device
8103  * @skb: The packet
8104  * @all_slaves: assume all the slaves are active
8105  *
8106  * The reference counters are not incremented so the caller must be
8107  * careful with locks. The caller must hold RCU lock.
8108  * %NULL is returned if no slave is found.
8109  */
8110
8111 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8112                                          struct sk_buff *skb,
8113                                          bool all_slaves)
8114 {
8115         const struct net_device_ops *ops = dev->netdev_ops;
8116
8117         if (!ops->ndo_get_xmit_slave)
8118                 return NULL;
8119         return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8120 }
8121 EXPORT_SYMBOL(netdev_get_xmit_slave);
8122
8123 static void netdev_adjacent_add_links(struct net_device *dev)
8124 {
8125         struct netdev_adjacent *iter;
8126
8127         struct net *net = dev_net(dev);
8128
8129         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8130                 if (!net_eq(net, dev_net(iter->dev)))
8131                         continue;
8132                 netdev_adjacent_sysfs_add(iter->dev, dev,
8133                                           &iter->dev->adj_list.lower);
8134                 netdev_adjacent_sysfs_add(dev, iter->dev,
8135                                           &dev->adj_list.upper);
8136         }
8137
8138         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8139                 if (!net_eq(net, dev_net(iter->dev)))
8140                         continue;
8141                 netdev_adjacent_sysfs_add(iter->dev, dev,
8142                                           &iter->dev->adj_list.upper);
8143                 netdev_adjacent_sysfs_add(dev, iter->dev,
8144                                           &dev->adj_list.lower);
8145         }
8146 }
8147
8148 static void netdev_adjacent_del_links(struct net_device *dev)
8149 {
8150         struct netdev_adjacent *iter;
8151
8152         struct net *net = dev_net(dev);
8153
8154         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8155                 if (!net_eq(net, dev_net(iter->dev)))
8156                         continue;
8157                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8158                                           &iter->dev->adj_list.lower);
8159                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8160                                           &dev->adj_list.upper);
8161         }
8162
8163         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8164                 if (!net_eq(net, dev_net(iter->dev)))
8165                         continue;
8166                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8167                                           &iter->dev->adj_list.upper);
8168                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8169                                           &dev->adj_list.lower);
8170         }
8171 }
8172
8173 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8174 {
8175         struct netdev_adjacent *iter;
8176
8177         struct net *net = dev_net(dev);
8178
8179         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8180                 if (!net_eq(net, dev_net(iter->dev)))
8181                         continue;
8182                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8183                                           &iter->dev->adj_list.lower);
8184                 netdev_adjacent_sysfs_add(iter->dev, dev,
8185                                           &iter->dev->adj_list.lower);
8186         }
8187
8188         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8189                 if (!net_eq(net, dev_net(iter->dev)))
8190                         continue;
8191                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8192                                           &iter->dev->adj_list.upper);
8193                 netdev_adjacent_sysfs_add(iter->dev, dev,
8194                                           &iter->dev->adj_list.upper);
8195         }
8196 }
8197
8198 void *netdev_lower_dev_get_private(struct net_device *dev,
8199                                    struct net_device *lower_dev)
8200 {
8201         struct netdev_adjacent *lower;
8202
8203         if (!lower_dev)
8204                 return NULL;
8205         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8206         if (!lower)
8207                 return NULL;
8208
8209         return lower->private;
8210 }
8211 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8212
8213
8214 /**
8215  * netdev_lower_state_changed - Dispatch event about lower device state change
8216  * @lower_dev: device
8217  * @lower_state_info: state to dispatch
8218  *
8219  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8220  * The caller must hold the RTNL lock.
8221  */
8222 void netdev_lower_state_changed(struct net_device *lower_dev,
8223                                 void *lower_state_info)
8224 {
8225         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8226                 .info.dev = lower_dev,
8227         };
8228
8229         ASSERT_RTNL();
8230         changelowerstate_info.lower_state_info = lower_state_info;
8231         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8232                                       &changelowerstate_info.info);
8233 }
8234 EXPORT_SYMBOL(netdev_lower_state_changed);
8235
8236 static void dev_change_rx_flags(struct net_device *dev, int flags)
8237 {
8238         const struct net_device_ops *ops = dev->netdev_ops;
8239
8240         if (ops->ndo_change_rx_flags)
8241                 ops->ndo_change_rx_flags(dev, flags);
8242 }
8243
8244 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8245 {
8246         unsigned int old_flags = dev->flags;
8247         kuid_t uid;
8248         kgid_t gid;
8249
8250         ASSERT_RTNL();
8251
8252         dev->flags |= IFF_PROMISC;
8253         dev->promiscuity += inc;
8254         if (dev->promiscuity == 0) {
8255                 /*
8256                  * Avoid overflow.
8257                  * If inc causes overflow, untouch promisc and return error.
8258                  */
8259                 if (inc < 0)
8260                         dev->flags &= ~IFF_PROMISC;
8261                 else {
8262                         dev->promiscuity -= inc;
8263                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8264                                 dev->name);
8265                         return -EOVERFLOW;
8266                 }
8267         }
8268         if (dev->flags != old_flags) {
8269                 pr_info("device %s %s promiscuous mode\n",
8270                         dev->name,
8271                         dev->flags & IFF_PROMISC ? "entered" : "left");
8272                 if (audit_enabled) {
8273                         current_uid_gid(&uid, &gid);
8274                         audit_log(audit_context(), GFP_ATOMIC,
8275                                   AUDIT_ANOM_PROMISCUOUS,
8276                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8277                                   dev->name, (dev->flags & IFF_PROMISC),
8278                                   (old_flags & IFF_PROMISC),
8279                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
8280                                   from_kuid(&init_user_ns, uid),
8281                                   from_kgid(&init_user_ns, gid),
8282                                   audit_get_sessionid(current));
8283                 }
8284
8285                 dev_change_rx_flags(dev, IFF_PROMISC);
8286         }
8287         if (notify)
8288                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
8289         return 0;
8290 }
8291
8292 /**
8293  *      dev_set_promiscuity     - update promiscuity count on a device
8294  *      @dev: device
8295  *      @inc: modifier
8296  *
8297  *      Add or remove promiscuity from a device. While the count in the device
8298  *      remains above zero the interface remains promiscuous. Once it hits zero
8299  *      the device reverts back to normal filtering operation. A negative inc
8300  *      value is used to drop promiscuity on the device.
8301  *      Return 0 if successful or a negative errno code on error.
8302  */
8303 int dev_set_promiscuity(struct net_device *dev, int inc)
8304 {
8305         unsigned int old_flags = dev->flags;
8306         int err;
8307
8308         err = __dev_set_promiscuity(dev, inc, true);
8309         if (err < 0)
8310                 return err;
8311         if (dev->flags != old_flags)
8312                 dev_set_rx_mode(dev);
8313         return err;
8314 }
8315 EXPORT_SYMBOL(dev_set_promiscuity);
8316
8317 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8318 {
8319         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8320
8321         ASSERT_RTNL();
8322
8323         dev->flags |= IFF_ALLMULTI;
8324         dev->allmulti += inc;
8325         if (dev->allmulti == 0) {
8326                 /*
8327                  * Avoid overflow.
8328                  * If inc causes overflow, untouch allmulti and return error.
8329                  */
8330                 if (inc < 0)
8331                         dev->flags &= ~IFF_ALLMULTI;
8332                 else {
8333                         dev->allmulti -= inc;
8334                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8335                                 dev->name);
8336                         return -EOVERFLOW;
8337                 }
8338         }
8339         if (dev->flags ^ old_flags) {
8340                 dev_change_rx_flags(dev, IFF_ALLMULTI);
8341                 dev_set_rx_mode(dev);
8342                 if (notify)
8343                         __dev_notify_flags(dev, old_flags,
8344                                            dev->gflags ^ old_gflags);
8345         }
8346         return 0;
8347 }
8348
8349 /**
8350  *      dev_set_allmulti        - update allmulti count on a device
8351  *      @dev: device
8352  *      @inc: modifier
8353  *
8354  *      Add or remove reception of all multicast frames to a device. While the
8355  *      count in the device remains above zero the interface remains listening
8356  *      to all interfaces. Once it hits zero the device reverts back to normal
8357  *      filtering operation. A negative @inc value is used to drop the counter
8358  *      when releasing a resource needing all multicasts.
8359  *      Return 0 if successful or a negative errno code on error.
8360  */
8361
8362 int dev_set_allmulti(struct net_device *dev, int inc)
8363 {
8364         return __dev_set_allmulti(dev, inc, true);
8365 }
8366 EXPORT_SYMBOL(dev_set_allmulti);
8367
8368 /*
8369  *      Upload unicast and multicast address lists to device and
8370  *      configure RX filtering. When the device doesn't support unicast
8371  *      filtering it is put in promiscuous mode while unicast addresses
8372  *      are present.
8373  */
8374 void __dev_set_rx_mode(struct net_device *dev)
8375 {
8376         const struct net_device_ops *ops = dev->netdev_ops;
8377
8378         /* dev_open will call this function so the list will stay sane. */
8379         if (!(dev->flags&IFF_UP))
8380                 return;
8381
8382         if (!netif_device_present(dev))
8383                 return;
8384
8385         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8386                 /* Unicast addresses changes may only happen under the rtnl,
8387                  * therefore calling __dev_set_promiscuity here is safe.
8388                  */
8389                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8390                         __dev_set_promiscuity(dev, 1, false);
8391                         dev->uc_promisc = true;
8392                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8393                         __dev_set_promiscuity(dev, -1, false);
8394                         dev->uc_promisc = false;
8395                 }
8396         }
8397
8398         if (ops->ndo_set_rx_mode)
8399                 ops->ndo_set_rx_mode(dev);
8400 }
8401
8402 void dev_set_rx_mode(struct net_device *dev)
8403 {
8404         netif_addr_lock_bh(dev);
8405         __dev_set_rx_mode(dev);
8406         netif_addr_unlock_bh(dev);
8407 }
8408
8409 /**
8410  *      dev_get_flags - get flags reported to userspace
8411  *      @dev: device
8412  *
8413  *      Get the combination of flag bits exported through APIs to userspace.
8414  */
8415 unsigned int dev_get_flags(const struct net_device *dev)
8416 {
8417         unsigned int flags;
8418
8419         flags = (dev->flags & ~(IFF_PROMISC |
8420                                 IFF_ALLMULTI |
8421                                 IFF_RUNNING |
8422                                 IFF_LOWER_UP |
8423                                 IFF_DORMANT)) |
8424                 (dev->gflags & (IFF_PROMISC |
8425                                 IFF_ALLMULTI));
8426
8427         if (netif_running(dev)) {
8428                 if (netif_oper_up(dev))
8429                         flags |= IFF_RUNNING;
8430                 if (netif_carrier_ok(dev))
8431                         flags |= IFF_LOWER_UP;
8432                 if (netif_dormant(dev))
8433                         flags |= IFF_DORMANT;
8434         }
8435
8436         return flags;
8437 }
8438 EXPORT_SYMBOL(dev_get_flags);
8439
8440 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8441                        struct netlink_ext_ack *extack)
8442 {
8443         unsigned int old_flags = dev->flags;
8444         int ret;
8445
8446         ASSERT_RTNL();
8447
8448         /*
8449          *      Set the flags on our device.
8450          */
8451
8452         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8453                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8454                                IFF_AUTOMEDIA)) |
8455                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8456                                     IFF_ALLMULTI));
8457
8458         /*
8459          *      Load in the correct multicast list now the flags have changed.
8460          */
8461
8462         if ((old_flags ^ flags) & IFF_MULTICAST)
8463                 dev_change_rx_flags(dev, IFF_MULTICAST);
8464
8465         dev_set_rx_mode(dev);
8466
8467         /*
8468          *      Have we downed the interface. We handle IFF_UP ourselves
8469          *      according to user attempts to set it, rather than blindly
8470          *      setting it.
8471          */
8472
8473         ret = 0;
8474         if ((old_flags ^ flags) & IFF_UP) {
8475                 if (old_flags & IFF_UP)
8476                         __dev_close(dev);
8477                 else
8478                         ret = __dev_open(dev, extack);
8479         }
8480
8481         if ((flags ^ dev->gflags) & IFF_PROMISC) {
8482                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8483                 unsigned int old_flags = dev->flags;
8484
8485                 dev->gflags ^= IFF_PROMISC;
8486
8487                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8488                         if (dev->flags != old_flags)
8489                                 dev_set_rx_mode(dev);
8490         }
8491
8492         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8493          * is important. Some (broken) drivers set IFF_PROMISC, when
8494          * IFF_ALLMULTI is requested not asking us and not reporting.
8495          */
8496         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8497                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8498
8499                 dev->gflags ^= IFF_ALLMULTI;
8500                 __dev_set_allmulti(dev, inc, false);
8501         }
8502
8503         return ret;
8504 }
8505
8506 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8507                         unsigned int gchanges)
8508 {
8509         unsigned int changes = dev->flags ^ old_flags;
8510
8511         if (gchanges)
8512                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8513
8514         if (changes & IFF_UP) {
8515                 if (dev->flags & IFF_UP)
8516                         call_netdevice_notifiers(NETDEV_UP, dev);
8517                 else
8518                         call_netdevice_notifiers(NETDEV_DOWN, dev);
8519         }
8520
8521         if (dev->flags & IFF_UP &&
8522             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8523                 struct netdev_notifier_change_info change_info = {
8524                         .info = {
8525                                 .dev = dev,
8526                         },
8527                         .flags_changed = changes,
8528                 };
8529
8530                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8531         }
8532 }
8533
8534 /**
8535  *      dev_change_flags - change device settings
8536  *      @dev: device
8537  *      @flags: device state flags
8538  *      @extack: netlink extended ack
8539  *
8540  *      Change settings on device based state flags. The flags are
8541  *      in the userspace exported format.
8542  */
8543 int dev_change_flags(struct net_device *dev, unsigned int flags,
8544                      struct netlink_ext_ack *extack)
8545 {
8546         int ret;
8547         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8548
8549         ret = __dev_change_flags(dev, flags, extack);
8550         if (ret < 0)
8551                 return ret;
8552
8553         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8554         __dev_notify_flags(dev, old_flags, changes);
8555         return ret;
8556 }
8557 EXPORT_SYMBOL(dev_change_flags);
8558
8559 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8560 {
8561         const struct net_device_ops *ops = dev->netdev_ops;
8562
8563         if (ops->ndo_change_mtu)
8564                 return ops->ndo_change_mtu(dev, new_mtu);
8565
8566         /* Pairs with all the lockless reads of dev->mtu in the stack */
8567         WRITE_ONCE(dev->mtu, new_mtu);
8568         return 0;
8569 }
8570 EXPORT_SYMBOL(__dev_set_mtu);
8571
8572 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8573                      struct netlink_ext_ack *extack)
8574 {
8575         /* MTU must be positive, and in range */
8576         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8577                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8578                 return -EINVAL;
8579         }
8580
8581         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8582                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8583                 return -EINVAL;
8584         }
8585         return 0;
8586 }
8587
8588 /**
8589  *      dev_set_mtu_ext - Change maximum transfer unit
8590  *      @dev: device
8591  *      @new_mtu: new transfer unit
8592  *      @extack: netlink extended ack
8593  *
8594  *      Change the maximum transfer size of the network device.
8595  */
8596 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8597                     struct netlink_ext_ack *extack)
8598 {
8599         int err, orig_mtu;
8600
8601         if (new_mtu == dev->mtu)
8602                 return 0;
8603
8604         err = dev_validate_mtu(dev, new_mtu, extack);
8605         if (err)
8606                 return err;
8607
8608         if (!netif_device_present(dev))
8609                 return -ENODEV;
8610
8611         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8612         err = notifier_to_errno(err);
8613         if (err)
8614                 return err;
8615
8616         orig_mtu = dev->mtu;
8617         err = __dev_set_mtu(dev, new_mtu);
8618
8619         if (!err) {
8620                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8621                                                    orig_mtu);
8622                 err = notifier_to_errno(err);
8623                 if (err) {
8624                         /* setting mtu back and notifying everyone again,
8625                          * so that they have a chance to revert changes.
8626                          */
8627                         __dev_set_mtu(dev, orig_mtu);
8628                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8629                                                      new_mtu);
8630                 }
8631         }
8632         return err;
8633 }
8634
8635 int dev_set_mtu(struct net_device *dev, int new_mtu)
8636 {
8637         struct netlink_ext_ack extack;
8638         int err;
8639
8640         memset(&extack, 0, sizeof(extack));
8641         err = dev_set_mtu_ext(dev, new_mtu, &extack);
8642         if (err && extack._msg)
8643                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8644         return err;
8645 }
8646 EXPORT_SYMBOL(dev_set_mtu);
8647
8648 /**
8649  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
8650  *      @dev: device
8651  *      @new_len: new tx queue length
8652  */
8653 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8654 {
8655         unsigned int orig_len = dev->tx_queue_len;
8656         int res;
8657
8658         if (new_len != (unsigned int)new_len)
8659                 return -ERANGE;
8660
8661         if (new_len != orig_len) {
8662                 dev->tx_queue_len = new_len;
8663                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8664                 res = notifier_to_errno(res);
8665                 if (res)
8666                         goto err_rollback;
8667                 res = dev_qdisc_change_tx_queue_len(dev);
8668                 if (res)
8669                         goto err_rollback;
8670         }
8671
8672         return 0;
8673
8674 err_rollback:
8675         netdev_err(dev, "refused to change device tx_queue_len\n");
8676         dev->tx_queue_len = orig_len;
8677         return res;
8678 }
8679
8680 /**
8681  *      dev_set_group - Change group this device belongs to
8682  *      @dev: device
8683  *      @new_group: group this device should belong to
8684  */
8685 void dev_set_group(struct net_device *dev, int new_group)
8686 {
8687         dev->group = new_group;
8688 }
8689 EXPORT_SYMBOL(dev_set_group);
8690
8691 /**
8692  *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8693  *      @dev: device
8694  *      @addr: new address
8695  *      @extack: netlink extended ack
8696  */
8697 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8698                               struct netlink_ext_ack *extack)
8699 {
8700         struct netdev_notifier_pre_changeaddr_info info = {
8701                 .info.dev = dev,
8702                 .info.extack = extack,
8703                 .dev_addr = addr,
8704         };
8705         int rc;
8706
8707         rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8708         return notifier_to_errno(rc);
8709 }
8710 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8711
8712 /**
8713  *      dev_set_mac_address - Change Media Access Control Address
8714  *      @dev: device
8715  *      @sa: new address
8716  *      @extack: netlink extended ack
8717  *
8718  *      Change the hardware (MAC) address of the device
8719  */
8720 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8721                         struct netlink_ext_ack *extack)
8722 {
8723         const struct net_device_ops *ops = dev->netdev_ops;
8724         int err;
8725
8726         if (!ops->ndo_set_mac_address)
8727                 return -EOPNOTSUPP;
8728         if (sa->sa_family != dev->type)
8729                 return -EINVAL;
8730         if (!netif_device_present(dev))
8731                 return -ENODEV;
8732         err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8733         if (err)
8734                 return err;
8735         err = ops->ndo_set_mac_address(dev, sa);
8736         if (err)
8737                 return err;
8738         dev->addr_assign_type = NET_ADDR_SET;
8739         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8740         add_device_randomness(dev->dev_addr, dev->addr_len);
8741         return 0;
8742 }
8743 EXPORT_SYMBOL(dev_set_mac_address);
8744
8745 /**
8746  *      dev_change_carrier - Change device carrier
8747  *      @dev: device
8748  *      @new_carrier: new value
8749  *
8750  *      Change device carrier
8751  */
8752 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8753 {
8754         const struct net_device_ops *ops = dev->netdev_ops;
8755
8756         if (!ops->ndo_change_carrier)
8757                 return -EOPNOTSUPP;
8758         if (!netif_device_present(dev))
8759                 return -ENODEV;
8760         return ops->ndo_change_carrier(dev, new_carrier);
8761 }
8762 EXPORT_SYMBOL(dev_change_carrier);
8763
8764 /**
8765  *      dev_get_phys_port_id - Get device physical port ID
8766  *      @dev: device
8767  *      @ppid: port ID
8768  *
8769  *      Get device physical port ID
8770  */
8771 int dev_get_phys_port_id(struct net_device *dev,
8772                          struct netdev_phys_item_id *ppid)
8773 {
8774         const struct net_device_ops *ops = dev->netdev_ops;
8775
8776         if (!ops->ndo_get_phys_port_id)
8777                 return -EOPNOTSUPP;
8778         return ops->ndo_get_phys_port_id(dev, ppid);
8779 }
8780 EXPORT_SYMBOL(dev_get_phys_port_id);
8781
8782 /**
8783  *      dev_get_phys_port_name - Get device physical port name
8784  *      @dev: device
8785  *      @name: port name
8786  *      @len: limit of bytes to copy to name
8787  *
8788  *      Get device physical port name
8789  */
8790 int dev_get_phys_port_name(struct net_device *dev,
8791                            char *name, size_t len)
8792 {
8793         const struct net_device_ops *ops = dev->netdev_ops;
8794         int err;
8795
8796         if (ops->ndo_get_phys_port_name) {
8797                 err = ops->ndo_get_phys_port_name(dev, name, len);
8798                 if (err != -EOPNOTSUPP)
8799                         return err;
8800         }
8801         return devlink_compat_phys_port_name_get(dev, name, len);
8802 }
8803 EXPORT_SYMBOL(dev_get_phys_port_name);
8804
8805 /**
8806  *      dev_get_port_parent_id - Get the device's port parent identifier
8807  *      @dev: network device
8808  *      @ppid: pointer to a storage for the port's parent identifier
8809  *      @recurse: allow/disallow recursion to lower devices
8810  *
8811  *      Get the devices's port parent identifier
8812  */
8813 int dev_get_port_parent_id(struct net_device *dev,
8814                            struct netdev_phys_item_id *ppid,
8815                            bool recurse)
8816 {
8817         const struct net_device_ops *ops = dev->netdev_ops;
8818         struct netdev_phys_item_id first = { };
8819         struct net_device *lower_dev;
8820         struct list_head *iter;
8821         int err;
8822
8823         if (ops->ndo_get_port_parent_id) {
8824                 err = ops->ndo_get_port_parent_id(dev, ppid);
8825                 if (err != -EOPNOTSUPP)
8826                         return err;
8827         }
8828
8829         err = devlink_compat_switch_id_get(dev, ppid);
8830         if (!err || err != -EOPNOTSUPP)
8831                 return err;
8832
8833         if (!recurse)
8834                 return -EOPNOTSUPP;
8835
8836         netdev_for_each_lower_dev(dev, lower_dev, iter) {
8837                 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
8838                 if (err)
8839                         break;
8840                 if (!first.id_len)
8841                         first = *ppid;
8842                 else if (memcmp(&first, ppid, sizeof(*ppid)))
8843                         return -EOPNOTSUPP;
8844         }
8845
8846         return err;
8847 }
8848 EXPORT_SYMBOL(dev_get_port_parent_id);
8849
8850 /**
8851  *      netdev_port_same_parent_id - Indicate if two network devices have
8852  *      the same port parent identifier
8853  *      @a: first network device
8854  *      @b: second network device
8855  */
8856 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8857 {
8858         struct netdev_phys_item_id a_id = { };
8859         struct netdev_phys_item_id b_id = { };
8860
8861         if (dev_get_port_parent_id(a, &a_id, true) ||
8862             dev_get_port_parent_id(b, &b_id, true))
8863                 return false;
8864
8865         return netdev_phys_item_id_same(&a_id, &b_id);
8866 }
8867 EXPORT_SYMBOL(netdev_port_same_parent_id);
8868
8869 /**
8870  *      dev_change_proto_down - update protocol port state information
8871  *      @dev: device
8872  *      @proto_down: new value
8873  *
8874  *      This info can be used by switch drivers to set the phys state of the
8875  *      port.
8876  */
8877 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8878 {
8879         const struct net_device_ops *ops = dev->netdev_ops;
8880
8881         if (!ops->ndo_change_proto_down)
8882                 return -EOPNOTSUPP;
8883         if (!netif_device_present(dev))
8884                 return -ENODEV;
8885         return ops->ndo_change_proto_down(dev, proto_down);
8886 }
8887 EXPORT_SYMBOL(dev_change_proto_down);
8888
8889 /**
8890  *      dev_change_proto_down_generic - generic implementation for
8891  *      ndo_change_proto_down that sets carrier according to
8892  *      proto_down.
8893  *
8894  *      @dev: device
8895  *      @proto_down: new value
8896  */
8897 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8898 {
8899         if (proto_down)
8900                 netif_carrier_off(dev);
8901         else
8902                 netif_carrier_on(dev);
8903         dev->proto_down = proto_down;
8904         return 0;
8905 }
8906 EXPORT_SYMBOL(dev_change_proto_down_generic);
8907
8908 /**
8909  *      dev_change_proto_down_reason - proto down reason
8910  *
8911  *      @dev: device
8912  *      @mask: proto down mask
8913  *      @value: proto down value
8914  */
8915 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
8916                                   u32 value)
8917 {
8918         int b;
8919
8920         if (!mask) {
8921                 dev->proto_down_reason = value;
8922         } else {
8923                 for_each_set_bit(b, &mask, 32) {
8924                         if (value & (1 << b))
8925                                 dev->proto_down_reason |= BIT(b);
8926                         else
8927                                 dev->proto_down_reason &= ~BIT(b);
8928                 }
8929         }
8930 }
8931 EXPORT_SYMBOL(dev_change_proto_down_reason);
8932
8933 struct bpf_xdp_link {
8934         struct bpf_link link;
8935         struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
8936         int flags;
8937 };
8938
8939 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
8940 {
8941         if (flags & XDP_FLAGS_HW_MODE)
8942                 return XDP_MODE_HW;
8943         if (flags & XDP_FLAGS_DRV_MODE)
8944                 return XDP_MODE_DRV;
8945         if (flags & XDP_FLAGS_SKB_MODE)
8946                 return XDP_MODE_SKB;
8947         return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
8948 }
8949
8950 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
8951 {
8952         switch (mode) {
8953         case XDP_MODE_SKB:
8954                 return generic_xdp_install;
8955         case XDP_MODE_DRV:
8956         case XDP_MODE_HW:
8957                 return dev->netdev_ops->ndo_bpf;
8958         default:
8959                 return NULL;
8960         }
8961 }
8962
8963 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
8964                                          enum bpf_xdp_mode mode)
8965 {
8966         return dev->xdp_state[mode].link;
8967 }
8968
8969 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
8970                                      enum bpf_xdp_mode mode)
8971 {
8972         struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
8973
8974         if (link)
8975                 return link->link.prog;
8976         return dev->xdp_state[mode].prog;
8977 }
8978
8979 static u8 dev_xdp_prog_count(struct net_device *dev)
8980 {
8981         u8 count = 0;
8982         int i;
8983
8984         for (i = 0; i < __MAX_XDP_MODE; i++)
8985                 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
8986                         count++;
8987         return count;
8988 }
8989
8990 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
8991 {
8992         struct bpf_prog *prog = dev_xdp_prog(dev, mode);
8993
8994         return prog ? prog->aux->id : 0;
8995 }
8996
8997 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
8998                              struct bpf_xdp_link *link)
8999 {
9000         dev->xdp_state[mode].link = link;
9001         dev->xdp_state[mode].prog = NULL;
9002 }
9003
9004 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9005                              struct bpf_prog *prog)
9006 {
9007         dev->xdp_state[mode].link = NULL;
9008         dev->xdp_state[mode].prog = prog;
9009 }
9010
9011 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9012                            bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9013                            u32 flags, struct bpf_prog *prog)
9014 {
9015         struct netdev_bpf xdp;
9016         int err;
9017
9018         memset(&xdp, 0, sizeof(xdp));
9019         xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9020         xdp.extack = extack;
9021         xdp.flags = flags;
9022         xdp.prog = prog;
9023
9024         /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9025          * "moved" into driver), so they don't increment it on their own, but
9026          * they do decrement refcnt when program is detached or replaced.
9027          * Given net_device also owns link/prog, we need to bump refcnt here
9028          * to prevent drivers from underflowing it.
9029          */
9030         if (prog)
9031                 bpf_prog_inc(prog);
9032         err = bpf_op(dev, &xdp);
9033         if (err) {
9034                 if (prog)
9035                         bpf_prog_put(prog);
9036                 return err;
9037         }
9038
9039         if (mode != XDP_MODE_HW)
9040                 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9041
9042         return 0;
9043 }
9044
9045 static void dev_xdp_uninstall(struct net_device *dev)
9046 {
9047         struct bpf_xdp_link *link;
9048         struct bpf_prog *prog;
9049         enum bpf_xdp_mode mode;
9050         bpf_op_t bpf_op;
9051
9052         ASSERT_RTNL();
9053
9054         for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9055                 prog = dev_xdp_prog(dev, mode);
9056                 if (!prog)
9057                         continue;
9058
9059                 bpf_op = dev_xdp_bpf_op(dev, mode);
9060                 if (!bpf_op)
9061                         continue;
9062
9063                 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9064
9065                 /* auto-detach link from net device */
9066                 link = dev_xdp_link(dev, mode);
9067                 if (link)
9068                         link->dev = NULL;
9069                 else
9070                         bpf_prog_put(prog);
9071
9072                 dev_xdp_set_link(dev, mode, NULL);
9073         }
9074 }
9075
9076 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9077                           struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9078                           struct bpf_prog *old_prog, u32 flags)
9079 {
9080         unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9081         struct bpf_prog *cur_prog;
9082         enum bpf_xdp_mode mode;
9083         bpf_op_t bpf_op;
9084         int err;
9085
9086         ASSERT_RTNL();
9087
9088         /* either link or prog attachment, never both */
9089         if (link && (new_prog || old_prog))
9090                 return -EINVAL;
9091         /* link supports only XDP mode flags */
9092         if (link && (flags & ~XDP_FLAGS_MODES)) {
9093                 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9094                 return -EINVAL;
9095         }
9096         /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9097         if (num_modes > 1) {
9098                 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9099                 return -EINVAL;
9100         }
9101         /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9102         if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9103                 NL_SET_ERR_MSG(extack,
9104                                "More than one program loaded, unset mode is ambiguous");
9105                 return -EINVAL;
9106         }
9107         /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9108         if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9109                 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9110                 return -EINVAL;
9111         }
9112
9113         mode = dev_xdp_mode(dev, flags);
9114         /* can't replace attached link */
9115         if (dev_xdp_link(dev, mode)) {
9116                 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9117                 return -EBUSY;
9118         }
9119
9120         cur_prog = dev_xdp_prog(dev, mode);
9121         /* can't replace attached prog with link */
9122         if (link && cur_prog) {
9123                 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9124                 return -EBUSY;
9125         }
9126         if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9127                 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9128                 return -EEXIST;
9129         }
9130
9131         /* put effective new program into new_prog */
9132         if (link)
9133                 new_prog = link->link.prog;
9134
9135         if (new_prog) {
9136                 bool offload = mode == XDP_MODE_HW;
9137                 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9138                                                ? XDP_MODE_DRV : XDP_MODE_SKB;
9139
9140                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9141                         NL_SET_ERR_MSG(extack, "XDP program already attached");
9142                         return -EBUSY;
9143                 }
9144                 if (!offload && dev_xdp_prog(dev, other_mode)) {
9145                         NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9146                         return -EEXIST;
9147                 }
9148                 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9149                         NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9150                         return -EINVAL;
9151                 }
9152                 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9153                         NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9154                         return -EINVAL;
9155                 }
9156                 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9157                         NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9158                         return -EINVAL;
9159                 }
9160         }
9161
9162         /* don't call drivers if the effective program didn't change */
9163         if (new_prog != cur_prog) {
9164                 bpf_op = dev_xdp_bpf_op(dev, mode);
9165                 if (!bpf_op) {
9166                         NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9167                         return -EOPNOTSUPP;
9168                 }
9169
9170                 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9171                 if (err)
9172                         return err;
9173         }
9174
9175         if (link)
9176                 dev_xdp_set_link(dev, mode, link);
9177         else
9178                 dev_xdp_set_prog(dev, mode, new_prog);
9179         if (cur_prog)
9180                 bpf_prog_put(cur_prog);
9181
9182         return 0;
9183 }
9184
9185 static int dev_xdp_attach_link(struct net_device *dev,
9186                                struct netlink_ext_ack *extack,
9187                                struct bpf_xdp_link *link)
9188 {
9189         return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9190 }
9191
9192 static int dev_xdp_detach_link(struct net_device *dev,
9193                                struct netlink_ext_ack *extack,
9194                                struct bpf_xdp_link *link)
9195 {
9196         enum bpf_xdp_mode mode;
9197         bpf_op_t bpf_op;
9198
9199         ASSERT_RTNL();
9200
9201         mode = dev_xdp_mode(dev, link->flags);
9202         if (dev_xdp_link(dev, mode) != link)
9203                 return -EINVAL;
9204
9205         bpf_op = dev_xdp_bpf_op(dev, mode);
9206         WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9207         dev_xdp_set_link(dev, mode, NULL);
9208         return 0;
9209 }
9210
9211 static void bpf_xdp_link_release(struct bpf_link *link)
9212 {
9213         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9214
9215         rtnl_lock();
9216
9217         /* if racing with net_device's tear down, xdp_link->dev might be
9218          * already NULL, in which case link was already auto-detached
9219          */
9220         if (xdp_link->dev) {
9221                 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9222                 xdp_link->dev = NULL;
9223         }
9224
9225         rtnl_unlock();
9226 }
9227
9228 static int bpf_xdp_link_detach(struct bpf_link *link)
9229 {
9230         bpf_xdp_link_release(link);
9231         return 0;
9232 }
9233
9234 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9235 {
9236         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9237
9238         kfree(xdp_link);
9239 }
9240
9241 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9242                                      struct seq_file *seq)
9243 {
9244         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9245         u32 ifindex = 0;
9246
9247         rtnl_lock();
9248         if (xdp_link->dev)
9249                 ifindex = xdp_link->dev->ifindex;
9250         rtnl_unlock();
9251
9252         seq_printf(seq, "ifindex:\t%u\n", ifindex);
9253 }
9254
9255 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9256                                        struct bpf_link_info *info)
9257 {
9258         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9259         u32 ifindex = 0;
9260
9261         rtnl_lock();
9262         if (xdp_link->dev)
9263                 ifindex = xdp_link->dev->ifindex;
9264         rtnl_unlock();
9265
9266         info->xdp.ifindex = ifindex;
9267         return 0;
9268 }
9269
9270 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9271                                struct bpf_prog *old_prog)
9272 {
9273         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9274         enum bpf_xdp_mode mode;
9275         bpf_op_t bpf_op;
9276         int err = 0;
9277
9278         rtnl_lock();
9279
9280         /* link might have been auto-released already, so fail */
9281         if (!xdp_link->dev) {
9282                 err = -ENOLINK;
9283                 goto out_unlock;
9284         }
9285
9286         if (old_prog && link->prog != old_prog) {
9287                 err = -EPERM;
9288                 goto out_unlock;
9289         }
9290         old_prog = link->prog;
9291         if (old_prog == new_prog) {
9292                 /* no-op, don't disturb drivers */
9293                 bpf_prog_put(new_prog);
9294                 goto out_unlock;
9295         }
9296
9297         mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9298         bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9299         err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9300                               xdp_link->flags, new_prog);
9301         if (err)
9302                 goto out_unlock;
9303
9304         old_prog = xchg(&link->prog, new_prog);
9305         bpf_prog_put(old_prog);
9306
9307 out_unlock:
9308         rtnl_unlock();
9309         return err;
9310 }
9311
9312 static const struct bpf_link_ops bpf_xdp_link_lops = {
9313         .release = bpf_xdp_link_release,
9314         .dealloc = bpf_xdp_link_dealloc,
9315         .detach = bpf_xdp_link_detach,
9316         .show_fdinfo = bpf_xdp_link_show_fdinfo,
9317         .fill_link_info = bpf_xdp_link_fill_link_info,
9318         .update_prog = bpf_xdp_link_update,
9319 };
9320
9321 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9322 {
9323         struct net *net = current->nsproxy->net_ns;
9324         struct bpf_link_primer link_primer;
9325         struct bpf_xdp_link *link;
9326         struct net_device *dev;
9327         int err, fd;
9328
9329         dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9330         if (!dev)
9331                 return -EINVAL;
9332
9333         link = kzalloc(sizeof(*link), GFP_USER);
9334         if (!link) {
9335                 err = -ENOMEM;
9336                 goto out_put_dev;
9337         }
9338
9339         bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9340         link->dev = dev;
9341         link->flags = attr->link_create.flags;
9342
9343         err = bpf_link_prime(&link->link, &link_primer);
9344         if (err) {
9345                 kfree(link);
9346                 goto out_put_dev;
9347         }
9348
9349         rtnl_lock();
9350         err = dev_xdp_attach_link(dev, NULL, link);
9351         rtnl_unlock();
9352
9353         if (err) {
9354                 bpf_link_cleanup(&link_primer);
9355                 goto out_put_dev;
9356         }
9357
9358         fd = bpf_link_settle(&link_primer);
9359         /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9360         dev_put(dev);
9361         return fd;
9362
9363 out_put_dev:
9364         dev_put(dev);
9365         return err;
9366 }
9367
9368 /**
9369  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
9370  *      @dev: device
9371  *      @extack: netlink extended ack
9372  *      @fd: new program fd or negative value to clear
9373  *      @expected_fd: old program fd that userspace expects to replace or clear
9374  *      @flags: xdp-related flags
9375  *
9376  *      Set or clear a bpf program for a device
9377  */
9378 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9379                       int fd, int expected_fd, u32 flags)
9380 {
9381         enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9382         struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9383         int err;
9384
9385         ASSERT_RTNL();
9386
9387         if (fd >= 0) {
9388                 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9389                                                  mode != XDP_MODE_SKB);
9390                 if (IS_ERR(new_prog))
9391                         return PTR_ERR(new_prog);
9392         }
9393
9394         if (expected_fd >= 0) {
9395                 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9396                                                  mode != XDP_MODE_SKB);
9397                 if (IS_ERR(old_prog)) {
9398                         err = PTR_ERR(old_prog);
9399                         old_prog = NULL;
9400                         goto err_out;
9401                 }
9402         }
9403
9404         err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9405
9406 err_out:
9407         if (err && new_prog)
9408                 bpf_prog_put(new_prog);
9409         if (old_prog)
9410                 bpf_prog_put(old_prog);
9411         return err;
9412 }
9413
9414 /**
9415  *      dev_new_index   -       allocate an ifindex
9416  *      @net: the applicable net namespace
9417  *
9418  *      Returns a suitable unique value for a new device interface
9419  *      number.  The caller must hold the rtnl semaphore or the
9420  *      dev_base_lock to be sure it remains unique.
9421  */
9422 static int dev_new_index(struct net *net)
9423 {
9424         int ifindex = net->ifindex;
9425
9426         for (;;) {
9427                 if (++ifindex <= 0)
9428                         ifindex = 1;
9429                 if (!__dev_get_by_index(net, ifindex))
9430                         return net->ifindex = ifindex;
9431         }
9432 }
9433
9434 /* Delayed registration/unregisteration */
9435 static LIST_HEAD(net_todo_list);
9436 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9437
9438 static void net_set_todo(struct net_device *dev)
9439 {
9440         list_add_tail(&dev->todo_list, &net_todo_list);
9441         dev_net(dev)->dev_unreg_count++;
9442 }
9443
9444 static void rollback_registered_many(struct list_head *head)
9445 {
9446         struct net_device *dev, *tmp;
9447         LIST_HEAD(close_head);
9448
9449         BUG_ON(dev_boot_phase);
9450         ASSERT_RTNL();
9451
9452         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9453                 /* Some devices call without registering
9454                  * for initialization unwind. Remove those
9455                  * devices and proceed with the remaining.
9456                  */
9457                 if (dev->reg_state == NETREG_UNINITIALIZED) {
9458                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
9459                                  dev->name, dev);
9460
9461                         WARN_ON(1);
9462                         list_del(&dev->unreg_list);
9463                         continue;
9464                 }
9465                 dev->dismantle = true;
9466                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
9467         }
9468
9469         /* If device is running, close it first. */
9470         list_for_each_entry(dev, head, unreg_list)
9471                 list_add_tail(&dev->close_list, &close_head);
9472         dev_close_many(&close_head, true);
9473
9474         list_for_each_entry(dev, head, unreg_list) {
9475                 /* And unlink it from device chain. */
9476                 unlist_netdevice(dev);
9477
9478                 dev->reg_state = NETREG_UNREGISTERING;
9479         }
9480         flush_all_backlogs();
9481
9482         synchronize_net();
9483
9484         list_for_each_entry(dev, head, unreg_list) {
9485                 struct sk_buff *skb = NULL;
9486
9487                 /* Shutdown queueing discipline. */
9488                 dev_shutdown(dev);
9489
9490                 dev_xdp_uninstall(dev);
9491
9492                 /* Notify protocols, that we are about to destroy
9493                  * this device. They should clean all the things.
9494                  */
9495                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9496
9497                 if (!dev->rtnl_link_ops ||
9498                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
9499                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
9500                                                      GFP_KERNEL, NULL, 0);
9501
9502                 /*
9503                  *      Flush the unicast and multicast chains
9504                  */
9505                 dev_uc_flush(dev);
9506                 dev_mc_flush(dev);
9507
9508                 netdev_name_node_alt_flush(dev);
9509                 netdev_name_node_free(dev->name_node);
9510
9511                 if (dev->netdev_ops->ndo_uninit)
9512                         dev->netdev_ops->ndo_uninit(dev);
9513
9514                 if (skb)
9515                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
9516
9517                 /* Notifier chain MUST detach us all upper devices. */
9518                 WARN_ON(netdev_has_any_upper_dev(dev));
9519                 WARN_ON(netdev_has_any_lower_dev(dev));
9520
9521                 /* Remove entries from kobject tree */
9522                 netdev_unregister_kobject(dev);
9523 #ifdef CONFIG_XPS
9524                 /* Remove XPS queueing entries */
9525                 netif_reset_xps_queues_gt(dev, 0);
9526 #endif
9527         }
9528
9529         synchronize_net();
9530
9531         list_for_each_entry(dev, head, unreg_list)
9532                 dev_put(dev);
9533 }
9534
9535 static void rollback_registered(struct net_device *dev)
9536 {
9537         LIST_HEAD(single);
9538
9539         list_add(&dev->unreg_list, &single);
9540         rollback_registered_many(&single);
9541         list_del(&single);
9542 }
9543
9544 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9545         struct net_device *upper, netdev_features_t features)
9546 {
9547         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9548         netdev_features_t feature;
9549         int feature_bit;
9550
9551         for_each_netdev_feature(upper_disables, feature_bit) {
9552                 feature = __NETIF_F_BIT(feature_bit);
9553                 if (!(upper->wanted_features & feature)
9554                     && (features & feature)) {
9555                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9556                                    &feature, upper->name);
9557                         features &= ~feature;
9558                 }
9559         }
9560
9561         return features;
9562 }
9563
9564 static void netdev_sync_lower_features(struct net_device *upper,
9565         struct net_device *lower, netdev_features_t features)
9566 {
9567         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9568         netdev_features_t feature;
9569         int feature_bit;
9570
9571         for_each_netdev_feature(upper_disables, feature_bit) {
9572                 feature = __NETIF_F_BIT(feature_bit);
9573                 if (!(features & feature) && (lower->features & feature)) {
9574                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9575                                    &feature, lower->name);
9576                         lower->wanted_features &= ~feature;
9577                         __netdev_update_features(lower);
9578
9579                         if (unlikely(lower->features & feature))
9580                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9581                                             &feature, lower->name);
9582                         else
9583                                 netdev_features_change(lower);
9584                 }
9585         }
9586 }
9587
9588 static netdev_features_t netdev_fix_features(struct net_device *dev,
9589         netdev_features_t features)
9590 {
9591         /* Fix illegal checksum combinations */
9592         if ((features & NETIF_F_HW_CSUM) &&
9593             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9594                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9595                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9596         }
9597
9598         /* TSO requires that SG is present as well. */
9599         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9600                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9601                 features &= ~NETIF_F_ALL_TSO;
9602         }
9603
9604         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9605                                         !(features & NETIF_F_IP_CSUM)) {
9606                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9607                 features &= ~NETIF_F_TSO;
9608                 features &= ~NETIF_F_TSO_ECN;
9609         }
9610
9611         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9612                                          !(features & NETIF_F_IPV6_CSUM)) {
9613                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9614                 features &= ~NETIF_F_TSO6;
9615         }
9616
9617         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9618         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9619                 features &= ~NETIF_F_TSO_MANGLEID;
9620
9621         /* TSO ECN requires that TSO is present as well. */
9622         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9623                 features &= ~NETIF_F_TSO_ECN;
9624
9625         /* Software GSO depends on SG. */
9626         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9627                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9628                 features &= ~NETIF_F_GSO;
9629         }
9630
9631         /* GSO partial features require GSO partial be set */
9632         if ((features & dev->gso_partial_features) &&
9633             !(features & NETIF_F_GSO_PARTIAL)) {
9634                 netdev_dbg(dev,
9635                            "Dropping partially supported GSO features since no GSO partial.\n");
9636                 features &= ~dev->gso_partial_features;
9637         }
9638
9639         if (!(features & NETIF_F_RXCSUM)) {
9640                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9641                  * successfully merged by hardware must also have the
9642                  * checksum verified by hardware.  If the user does not
9643                  * want to enable RXCSUM, logically, we should disable GRO_HW.
9644                  */
9645                 if (features & NETIF_F_GRO_HW) {
9646                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9647                         features &= ~NETIF_F_GRO_HW;
9648                 }
9649         }
9650
9651         /* LRO/HW-GRO features cannot be combined with RX-FCS */
9652         if (features & NETIF_F_RXFCS) {
9653                 if (features & NETIF_F_LRO) {
9654                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9655                         features &= ~NETIF_F_LRO;
9656                 }
9657
9658                 if (features & NETIF_F_GRO_HW) {
9659                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9660                         features &= ~NETIF_F_GRO_HW;
9661                 }
9662         }
9663
9664         if ((features & NETIF_F_HW_TLS_TX) && !(features & NETIF_F_HW_CSUM)) {
9665                 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9666                 features &= ~NETIF_F_HW_TLS_TX;
9667         }
9668
9669         return features;
9670 }
9671
9672 int __netdev_update_features(struct net_device *dev)
9673 {
9674         struct net_device *upper, *lower;
9675         netdev_features_t features;
9676         struct list_head *iter;
9677         int err = -1;
9678
9679         ASSERT_RTNL();
9680
9681         features = netdev_get_wanted_features(dev);
9682
9683         if (dev->netdev_ops->ndo_fix_features)
9684                 features = dev->netdev_ops->ndo_fix_features(dev, features);
9685
9686         /* driver might be less strict about feature dependencies */
9687         features = netdev_fix_features(dev, features);
9688
9689         /* some features can't be enabled if they're off on an upper device */
9690         netdev_for_each_upper_dev_rcu(dev, upper, iter)
9691                 features = netdev_sync_upper_features(dev, upper, features);
9692
9693         if (dev->features == features)
9694                 goto sync_lower;
9695
9696         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9697                 &dev->features, &features);
9698
9699         if (dev->netdev_ops->ndo_set_features)
9700                 err = dev->netdev_ops->ndo_set_features(dev, features);
9701         else
9702                 err = 0;
9703
9704         if (unlikely(err < 0)) {
9705                 netdev_err(dev,
9706                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
9707                         err, &features, &dev->features);
9708                 /* return non-0 since some features might have changed and
9709                  * it's better to fire a spurious notification than miss it
9710                  */
9711                 return -1;
9712         }
9713
9714 sync_lower:
9715         /* some features must be disabled on lower devices when disabled
9716          * on an upper device (think: bonding master or bridge)
9717          */
9718         netdev_for_each_lower_dev(dev, lower, iter)
9719                 netdev_sync_lower_features(dev, lower, features);
9720
9721         if (!err) {
9722                 netdev_features_t diff = features ^ dev->features;
9723
9724                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9725                         /* udp_tunnel_{get,drop}_rx_info both need
9726                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9727                          * device, or they won't do anything.
9728                          * Thus we need to update dev->features
9729                          * *before* calling udp_tunnel_get_rx_info,
9730                          * but *after* calling udp_tunnel_drop_rx_info.
9731                          */
9732                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9733                                 dev->features = features;
9734                                 udp_tunnel_get_rx_info(dev);
9735                         } else {
9736                                 udp_tunnel_drop_rx_info(dev);
9737                         }
9738                 }
9739
9740                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9741                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9742                                 dev->features = features;
9743                                 err |= vlan_get_rx_ctag_filter_info(dev);
9744                         } else {
9745                                 vlan_drop_rx_ctag_filter_info(dev);
9746                         }
9747                 }
9748
9749                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9750                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9751                                 dev->features = features;
9752                                 err |= vlan_get_rx_stag_filter_info(dev);
9753                         } else {
9754                                 vlan_drop_rx_stag_filter_info(dev);
9755                         }
9756                 }
9757
9758                 dev->features = features;
9759         }
9760
9761         return err < 0 ? 0 : 1;
9762 }
9763
9764 /**
9765  *      netdev_update_features - recalculate device features
9766  *      @dev: the device to check
9767  *
9768  *      Recalculate dev->features set and send notifications if it
9769  *      has changed. Should be called after driver or hardware dependent
9770  *      conditions might have changed that influence the features.
9771  */
9772 void netdev_update_features(struct net_device *dev)
9773 {
9774         if (__netdev_update_features(dev))
9775                 netdev_features_change(dev);
9776 }
9777 EXPORT_SYMBOL(netdev_update_features);
9778
9779 /**
9780  *      netdev_change_features - recalculate device features
9781  *      @dev: the device to check
9782  *
9783  *      Recalculate dev->features set and send notifications even
9784  *      if they have not changed. Should be called instead of
9785  *      netdev_update_features() if also dev->vlan_features might
9786  *      have changed to allow the changes to be propagated to stacked
9787  *      VLAN devices.
9788  */
9789 void netdev_change_features(struct net_device *dev)
9790 {
9791         __netdev_update_features(dev);
9792         netdev_features_change(dev);
9793 }
9794 EXPORT_SYMBOL(netdev_change_features);
9795
9796 /**
9797  *      netif_stacked_transfer_operstate -      transfer operstate
9798  *      @rootdev: the root or lower level device to transfer state from
9799  *      @dev: the device to transfer operstate to
9800  *
9801  *      Transfer operational state from root to device. This is normally
9802  *      called when a stacking relationship exists between the root
9803  *      device and the device(a leaf device).
9804  */
9805 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9806                                         struct net_device *dev)
9807 {
9808         if (rootdev->operstate == IF_OPER_DORMANT)
9809                 netif_dormant_on(dev);
9810         else
9811                 netif_dormant_off(dev);
9812
9813         if (rootdev->operstate == IF_OPER_TESTING)
9814                 netif_testing_on(dev);
9815         else
9816                 netif_testing_off(dev);
9817
9818         if (netif_carrier_ok(rootdev))
9819                 netif_carrier_on(dev);
9820         else
9821                 netif_carrier_off(dev);
9822 }
9823 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9824
9825 static int netif_alloc_rx_queues(struct net_device *dev)
9826 {
9827         unsigned int i, count = dev->num_rx_queues;
9828         struct netdev_rx_queue *rx;
9829         size_t sz = count * sizeof(*rx);
9830         int err = 0;
9831
9832         BUG_ON(count < 1);
9833
9834         rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9835         if (!rx)
9836                 return -ENOMEM;
9837
9838         dev->_rx = rx;
9839
9840         for (i = 0; i < count; i++) {
9841                 rx[i].dev = dev;
9842
9843                 /* XDP RX-queue setup */
9844                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9845                 if (err < 0)
9846                         goto err_rxq_info;
9847         }
9848         return 0;
9849
9850 err_rxq_info:
9851         /* Rollback successful reg's and free other resources */
9852         while (i--)
9853                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9854         kvfree(dev->_rx);
9855         dev->_rx = NULL;
9856         return err;
9857 }
9858
9859 static void netif_free_rx_queues(struct net_device *dev)
9860 {
9861         unsigned int i, count = dev->num_rx_queues;
9862
9863         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9864         if (!dev->_rx)
9865                 return;
9866
9867         for (i = 0; i < count; i++)
9868                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9869
9870         kvfree(dev->_rx);
9871 }
9872
9873 static void netdev_init_one_queue(struct net_device *dev,
9874                                   struct netdev_queue *queue, void *_unused)
9875 {
9876         /* Initialize queue lock */
9877         spin_lock_init(&queue->_xmit_lock);
9878         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9879         queue->xmit_lock_owner = -1;
9880         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9881         queue->dev = dev;
9882 #ifdef CONFIG_BQL
9883         dql_init(&queue->dql, HZ);
9884 #endif
9885 }
9886
9887 static void netif_free_tx_queues(struct net_device *dev)
9888 {
9889         kvfree(dev->_tx);
9890 }
9891
9892 static int netif_alloc_netdev_queues(struct net_device *dev)
9893 {
9894         unsigned int count = dev->num_tx_queues;
9895         struct netdev_queue *tx;
9896         size_t sz = count * sizeof(*tx);
9897
9898         if (count < 1 || count > 0xffff)
9899                 return -EINVAL;
9900
9901         tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9902         if (!tx)
9903                 return -ENOMEM;
9904
9905         dev->_tx = tx;
9906
9907         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9908         spin_lock_init(&dev->tx_global_lock);
9909
9910         return 0;
9911 }
9912
9913 void netif_tx_stop_all_queues(struct net_device *dev)
9914 {
9915         unsigned int i;
9916
9917         for (i = 0; i < dev->num_tx_queues; i++) {
9918                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9919
9920                 netif_tx_stop_queue(txq);
9921         }
9922 }
9923 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9924
9925 /**
9926  *      register_netdevice      - register a network device
9927  *      @dev: device to register
9928  *
9929  *      Take a completed network device structure and add it to the kernel
9930  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9931  *      chain. 0 is returned on success. A negative errno code is returned
9932  *      on a failure to set up the device, or if the name is a duplicate.
9933  *
9934  *      Callers must hold the rtnl semaphore. You may want
9935  *      register_netdev() instead of this.
9936  *
9937  *      BUGS:
9938  *      The locking appears insufficient to guarantee two parallel registers
9939  *      will not get the same name.
9940  */
9941
9942 int register_netdevice(struct net_device *dev)
9943 {
9944         int ret;
9945         struct net *net = dev_net(dev);
9946
9947         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9948                      NETDEV_FEATURE_COUNT);
9949         BUG_ON(dev_boot_phase);
9950         ASSERT_RTNL();
9951
9952         might_sleep();
9953
9954         /* When net_device's are persistent, this will be fatal. */
9955         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9956         BUG_ON(!net);
9957
9958         ret = ethtool_check_ops(dev->ethtool_ops);
9959         if (ret)
9960                 return ret;
9961
9962         spin_lock_init(&dev->addr_list_lock);
9963         netdev_set_addr_lockdep_class(dev);
9964
9965         ret = dev_get_valid_name(net, dev, dev->name);
9966         if (ret < 0)
9967                 goto out;
9968
9969         ret = -ENOMEM;
9970         dev->name_node = netdev_name_node_head_alloc(dev);
9971         if (!dev->name_node)
9972                 goto out;
9973
9974         /* Init, if this function is available */
9975         if (dev->netdev_ops->ndo_init) {
9976                 ret = dev->netdev_ops->ndo_init(dev);
9977                 if (ret) {
9978                         if (ret > 0)
9979                                 ret = -EIO;
9980                         goto err_free_name;
9981                 }
9982         }
9983
9984         if (((dev->hw_features | dev->features) &
9985              NETIF_F_HW_VLAN_CTAG_FILTER) &&
9986             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9987              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9988                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9989                 ret = -EINVAL;
9990                 goto err_uninit;
9991         }
9992
9993         ret = -EBUSY;
9994         if (!dev->ifindex)
9995                 dev->ifindex = dev_new_index(net);
9996         else if (__dev_get_by_index(net, dev->ifindex))
9997                 goto err_uninit;
9998
9999         /* Transfer changeable features to wanted_features and enable
10000          * software offloads (GSO and GRO).
10001          */
10002         dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10003         dev->features |= NETIF_F_SOFT_FEATURES;
10004
10005         if (dev->netdev_ops->ndo_udp_tunnel_add) {
10006                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10007                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10008         }
10009
10010         dev->wanted_features = dev->features & dev->hw_features;
10011
10012         if (!(dev->flags & IFF_LOOPBACK))
10013                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10014
10015         /* If IPv4 TCP segmentation offload is supported we should also
10016          * allow the device to enable segmenting the frame with the option
10017          * of ignoring a static IP ID value.  This doesn't enable the
10018          * feature itself but allows the user to enable it later.
10019          */
10020         if (dev->hw_features & NETIF_F_TSO)
10021                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10022         if (dev->vlan_features & NETIF_F_TSO)
10023                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10024         if (dev->mpls_features & NETIF_F_TSO)
10025                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10026         if (dev->hw_enc_features & NETIF_F_TSO)
10027                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10028
10029         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10030          */
10031         dev->vlan_features |= NETIF_F_HIGHDMA;
10032
10033         /* Make NETIF_F_SG inheritable to tunnel devices.
10034          */
10035         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10036
10037         /* Make NETIF_F_SG inheritable to MPLS.
10038          */
10039         dev->mpls_features |= NETIF_F_SG;
10040
10041         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10042         ret = notifier_to_errno(ret);
10043         if (ret)
10044                 goto err_uninit;
10045
10046         ret = netdev_register_kobject(dev);
10047         if (ret) {
10048                 dev->reg_state = NETREG_UNREGISTERED;
10049                 goto err_uninit;
10050         }
10051         dev->reg_state = NETREG_REGISTERED;
10052
10053         __netdev_update_features(dev);
10054
10055         /*
10056          *      Default initial state at registry is that the
10057          *      device is present.
10058          */
10059
10060         set_bit(__LINK_STATE_PRESENT, &dev->state);
10061
10062         linkwatch_init_dev(dev);
10063
10064         dev_init_scheduler(dev);
10065         dev_hold(dev);
10066         list_netdevice(dev);
10067         add_device_randomness(dev->dev_addr, dev->addr_len);
10068
10069         /* If the device has permanent device address, driver should
10070          * set dev_addr and also addr_assign_type should be set to
10071          * NET_ADDR_PERM (default value).
10072          */
10073         if (dev->addr_assign_type == NET_ADDR_PERM)
10074                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10075
10076         /* Notify protocols, that a new device appeared. */
10077         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10078         ret = notifier_to_errno(ret);
10079         if (ret) {
10080                 rollback_registered(dev);
10081                 rcu_barrier();
10082
10083                 dev->reg_state = NETREG_UNREGISTERED;
10084                 /* We should put the kobject that hold in
10085                  * netdev_unregister_kobject(), otherwise
10086                  * the net device cannot be freed when
10087                  * driver calls free_netdev(), because the
10088                  * kobject is being hold.
10089                  */
10090                 kobject_put(&dev->dev.kobj);
10091         }
10092         /*
10093          *      Prevent userspace races by waiting until the network
10094          *      device is fully setup before sending notifications.
10095          */
10096         if (!dev->rtnl_link_ops ||
10097             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10098                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10099
10100 out:
10101         return ret;
10102
10103 err_uninit:
10104         if (dev->netdev_ops->ndo_uninit)
10105                 dev->netdev_ops->ndo_uninit(dev);
10106         if (dev->priv_destructor)
10107                 dev->priv_destructor(dev);
10108 err_free_name:
10109         netdev_name_node_free(dev->name_node);
10110         goto out;
10111 }
10112 EXPORT_SYMBOL(register_netdevice);
10113
10114 /**
10115  *      init_dummy_netdev       - init a dummy network device for NAPI
10116  *      @dev: device to init
10117  *
10118  *      This takes a network device structure and initialize the minimum
10119  *      amount of fields so it can be used to schedule NAPI polls without
10120  *      registering a full blown interface. This is to be used by drivers
10121  *      that need to tie several hardware interfaces to a single NAPI
10122  *      poll scheduler due to HW limitations.
10123  */
10124 int init_dummy_netdev(struct net_device *dev)
10125 {
10126         /* Clear everything. Note we don't initialize spinlocks
10127          * are they aren't supposed to be taken by any of the
10128          * NAPI code and this dummy netdev is supposed to be
10129          * only ever used for NAPI polls
10130          */
10131         memset(dev, 0, sizeof(struct net_device));
10132
10133         /* make sure we BUG if trying to hit standard
10134          * register/unregister code path
10135          */
10136         dev->reg_state = NETREG_DUMMY;
10137
10138         /* NAPI wants this */
10139         INIT_LIST_HEAD(&dev->napi_list);
10140
10141         /* a dummy interface is started by default */
10142         set_bit(__LINK_STATE_PRESENT, &dev->state);
10143         set_bit(__LINK_STATE_START, &dev->state);
10144
10145         /* napi_busy_loop stats accounting wants this */
10146         dev_net_set(dev, &init_net);
10147
10148         /* Note : We dont allocate pcpu_refcnt for dummy devices,
10149          * because users of this 'device' dont need to change
10150          * its refcount.
10151          */
10152
10153         return 0;
10154 }
10155 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10156
10157
10158 /**
10159  *      register_netdev - register a network device
10160  *      @dev: device to register
10161  *
10162  *      Take a completed network device structure and add it to the kernel
10163  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10164  *      chain. 0 is returned on success. A negative errno code is returned
10165  *      on a failure to set up the device, or if the name is a duplicate.
10166  *
10167  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
10168  *      and expands the device name if you passed a format string to
10169  *      alloc_netdev.
10170  */
10171 int register_netdev(struct net_device *dev)
10172 {
10173         int err;
10174
10175         if (rtnl_lock_killable())
10176                 return -EINTR;
10177         err = register_netdevice(dev);
10178         rtnl_unlock();
10179         return err;
10180 }
10181 EXPORT_SYMBOL(register_netdev);
10182
10183 int netdev_refcnt_read(const struct net_device *dev)
10184 {
10185         int i, refcnt = 0;
10186
10187         for_each_possible_cpu(i)
10188                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10189         return refcnt;
10190 }
10191 EXPORT_SYMBOL(netdev_refcnt_read);
10192
10193 #define WAIT_REFS_MIN_MSECS 1
10194 #define WAIT_REFS_MAX_MSECS 250
10195 /**
10196  * netdev_wait_allrefs - wait until all references are gone.
10197  * @dev: target net_device
10198  *
10199  * This is called when unregistering network devices.
10200  *
10201  * Any protocol or device that holds a reference should register
10202  * for netdevice notification, and cleanup and put back the
10203  * reference if they receive an UNREGISTER event.
10204  * We can get stuck here if buggy protocols don't correctly
10205  * call dev_put.
10206  */
10207 static void netdev_wait_allrefs(struct net_device *dev)
10208 {
10209         unsigned long rebroadcast_time, warning_time;
10210         int wait = 0, refcnt;
10211
10212         linkwatch_forget_dev(dev);
10213
10214         rebroadcast_time = warning_time = jiffies;
10215         refcnt = netdev_refcnt_read(dev);
10216
10217         while (refcnt != 0) {
10218                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10219                         rtnl_lock();
10220
10221                         /* Rebroadcast unregister notification */
10222                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10223
10224                         __rtnl_unlock();
10225                         rcu_barrier();
10226                         rtnl_lock();
10227
10228                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10229                                      &dev->state)) {
10230                                 /* We must not have linkwatch events
10231                                  * pending on unregister. If this
10232                                  * happens, we simply run the queue
10233                                  * unscheduled, resulting in a noop
10234                                  * for this device.
10235                                  */
10236                                 linkwatch_run_queue();
10237                         }
10238
10239                         __rtnl_unlock();
10240
10241                         rebroadcast_time = jiffies;
10242                 }
10243
10244                 if (!wait) {
10245                         rcu_barrier();
10246                         wait = WAIT_REFS_MIN_MSECS;
10247                 } else {
10248                         msleep(wait);
10249                         wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10250                 }
10251
10252                 refcnt = netdev_refcnt_read(dev);
10253
10254                 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
10255                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10256                                  dev->name, refcnt);
10257                         warning_time = jiffies;
10258                 }
10259         }
10260 }
10261
10262 /* The sequence is:
10263  *
10264  *      rtnl_lock();
10265  *      ...
10266  *      register_netdevice(x1);
10267  *      register_netdevice(x2);
10268  *      ...
10269  *      unregister_netdevice(y1);
10270  *      unregister_netdevice(y2);
10271  *      ...
10272  *      rtnl_unlock();
10273  *      free_netdev(y1);
10274  *      free_netdev(y2);
10275  *
10276  * We are invoked by rtnl_unlock().
10277  * This allows us to deal with problems:
10278  * 1) We can delete sysfs objects which invoke hotplug
10279  *    without deadlocking with linkwatch via keventd.
10280  * 2) Since we run with the RTNL semaphore not held, we can sleep
10281  *    safely in order to wait for the netdev refcnt to drop to zero.
10282  *
10283  * We must not return until all unregister events added during
10284  * the interval the lock was held have been completed.
10285  */
10286 void netdev_run_todo(void)
10287 {
10288         struct list_head list;
10289 #ifdef CONFIG_LOCKDEP
10290         struct list_head unlink_list;
10291
10292         list_replace_init(&net_unlink_list, &unlink_list);
10293
10294         while (!list_empty(&unlink_list)) {
10295                 struct net_device *dev = list_first_entry(&unlink_list,
10296                                                           struct net_device,
10297                                                           unlink_list);
10298                 list_del_init(&dev->unlink_list);
10299                 dev->nested_level = dev->lower_level - 1;
10300         }
10301 #endif
10302
10303         /* Snapshot list, allow later requests */
10304         list_replace_init(&net_todo_list, &list);
10305
10306         __rtnl_unlock();
10307
10308
10309         /* Wait for rcu callbacks to finish before next phase */
10310         if (!list_empty(&list))
10311                 rcu_barrier();
10312
10313         while (!list_empty(&list)) {
10314                 struct net_device *dev
10315                         = list_first_entry(&list, struct net_device, todo_list);
10316                 list_del(&dev->todo_list);
10317
10318                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10319                         pr_err("network todo '%s' but state %d\n",
10320                                dev->name, dev->reg_state);
10321                         dump_stack();
10322                         continue;
10323                 }
10324
10325                 dev->reg_state = NETREG_UNREGISTERED;
10326
10327                 netdev_wait_allrefs(dev);
10328
10329                 /* paranoia */
10330                 BUG_ON(netdev_refcnt_read(dev));
10331                 BUG_ON(!list_empty(&dev->ptype_all));
10332                 BUG_ON(!list_empty(&dev->ptype_specific));
10333                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10334                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10335 #if IS_ENABLED(CONFIG_DECNET)
10336                 WARN_ON(dev->dn_ptr);
10337 #endif
10338                 if (dev->priv_destructor)
10339                         dev->priv_destructor(dev);
10340                 if (dev->needs_free_netdev)
10341                         free_netdev(dev);
10342
10343                 /* Report a network device has been unregistered */
10344                 rtnl_lock();
10345                 dev_net(dev)->dev_unreg_count--;
10346                 __rtnl_unlock();
10347                 wake_up(&netdev_unregistering_wq);
10348
10349                 /* Free network device */
10350                 kobject_put(&dev->dev.kobj);
10351         }
10352 }
10353
10354 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10355  * all the same fields in the same order as net_device_stats, with only
10356  * the type differing, but rtnl_link_stats64 may have additional fields
10357  * at the end for newer counters.
10358  */
10359 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10360                              const struct net_device_stats *netdev_stats)
10361 {
10362 #if BITS_PER_LONG == 64
10363         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10364         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10365         /* zero out counters that only exist in rtnl_link_stats64 */
10366         memset((char *)stats64 + sizeof(*netdev_stats), 0,
10367                sizeof(*stats64) - sizeof(*netdev_stats));
10368 #else
10369         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10370         const unsigned long *src = (const unsigned long *)netdev_stats;
10371         u64 *dst = (u64 *)stats64;
10372
10373         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10374         for (i = 0; i < n; i++)
10375                 dst[i] = src[i];
10376         /* zero out counters that only exist in rtnl_link_stats64 */
10377         memset((char *)stats64 + n * sizeof(u64), 0,
10378                sizeof(*stats64) - n * sizeof(u64));
10379 #endif
10380 }
10381 EXPORT_SYMBOL(netdev_stats_to_stats64);
10382
10383 /**
10384  *      dev_get_stats   - get network device statistics
10385  *      @dev: device to get statistics from
10386  *      @storage: place to store stats
10387  *
10388  *      Get network statistics from device. Return @storage.
10389  *      The device driver may provide its own method by setting
10390  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10391  *      otherwise the internal statistics structure is used.
10392  */
10393 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10394                                         struct rtnl_link_stats64 *storage)
10395 {
10396         const struct net_device_ops *ops = dev->netdev_ops;
10397
10398         if (ops->ndo_get_stats64) {
10399                 memset(storage, 0, sizeof(*storage));
10400                 ops->ndo_get_stats64(dev, storage);
10401         } else if (ops->ndo_get_stats) {
10402                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10403         } else {
10404                 netdev_stats_to_stats64(storage, &dev->stats);
10405         }
10406         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10407         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10408         storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10409         return storage;
10410 }
10411 EXPORT_SYMBOL(dev_get_stats);
10412
10413 /**
10414  *      dev_fetch_sw_netstats - get per-cpu network device statistics
10415  *      @s: place to store stats
10416  *      @netstats: per-cpu network stats to read from
10417  *
10418  *      Read per-cpu network statistics and populate the related fields in @s.
10419  */
10420 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10421                            const struct pcpu_sw_netstats __percpu *netstats)
10422 {
10423         int cpu;
10424
10425         for_each_possible_cpu(cpu) {
10426                 const struct pcpu_sw_netstats *stats;
10427                 struct pcpu_sw_netstats tmp;
10428                 unsigned int start;
10429
10430                 stats = per_cpu_ptr(netstats, cpu);
10431                 do {
10432                         start = u64_stats_fetch_begin_irq(&stats->syncp);
10433                         tmp.rx_packets = stats->rx_packets;
10434                         tmp.rx_bytes   = stats->rx_bytes;
10435                         tmp.tx_packets = stats->tx_packets;
10436                         tmp.tx_bytes   = stats->tx_bytes;
10437                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10438
10439                 s->rx_packets += tmp.rx_packets;
10440                 s->rx_bytes   += tmp.rx_bytes;
10441                 s->tx_packets += tmp.tx_packets;
10442                 s->tx_bytes   += tmp.tx_bytes;
10443         }
10444 }
10445 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10446
10447 /**
10448  *      dev_get_tstats64 - ndo_get_stats64 implementation
10449  *      @dev: device to get statistics from
10450  *      @s: place to store stats
10451  *
10452  *      Populate @s from dev->stats and dev->tstats. Can be used as
10453  *      ndo_get_stats64() callback.
10454  */
10455 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10456 {
10457         netdev_stats_to_stats64(s, &dev->stats);
10458         dev_fetch_sw_netstats(s, dev->tstats);
10459 }
10460 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10461
10462 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10463 {
10464         struct netdev_queue *queue = dev_ingress_queue(dev);
10465
10466 #ifdef CONFIG_NET_CLS_ACT
10467         if (queue)
10468                 return queue;
10469         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10470         if (!queue)
10471                 return NULL;
10472         netdev_init_one_queue(dev, queue, NULL);
10473         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10474         queue->qdisc_sleeping = &noop_qdisc;
10475         rcu_assign_pointer(dev->ingress_queue, queue);
10476 #endif
10477         return queue;
10478 }
10479
10480 static const struct ethtool_ops default_ethtool_ops;
10481
10482 void netdev_set_default_ethtool_ops(struct net_device *dev,
10483                                     const struct ethtool_ops *ops)
10484 {
10485         if (dev->ethtool_ops == &default_ethtool_ops)
10486                 dev->ethtool_ops = ops;
10487 }
10488 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10489
10490 void netdev_freemem(struct net_device *dev)
10491 {
10492         char *addr = (char *)dev - dev->padded;
10493
10494         kvfree(addr);
10495 }
10496
10497 /**
10498  * alloc_netdev_mqs - allocate network device
10499  * @sizeof_priv: size of private data to allocate space for
10500  * @name: device name format string
10501  * @name_assign_type: origin of device name
10502  * @setup: callback to initialize device
10503  * @txqs: the number of TX subqueues to allocate
10504  * @rxqs: the number of RX subqueues to allocate
10505  *
10506  * Allocates a struct net_device with private data area for driver use
10507  * and performs basic initialization.  Also allocates subqueue structs
10508  * for each queue on the device.
10509  */
10510 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10511                 unsigned char name_assign_type,
10512                 void (*setup)(struct net_device *),
10513                 unsigned int txqs, unsigned int rxqs)
10514 {
10515         struct net_device *dev;
10516         unsigned int alloc_size;
10517         struct net_device *p;
10518
10519         BUG_ON(strlen(name) >= sizeof(dev->name));
10520
10521         if (txqs < 1) {
10522                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10523                 return NULL;
10524         }
10525
10526         if (rxqs < 1) {
10527                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10528                 return NULL;
10529         }
10530
10531         alloc_size = sizeof(struct net_device);
10532         if (sizeof_priv) {
10533                 /* ensure 32-byte alignment of private area */
10534                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10535                 alloc_size += sizeof_priv;
10536         }
10537         /* ensure 32-byte alignment of whole construct */
10538         alloc_size += NETDEV_ALIGN - 1;
10539
10540         p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10541         if (!p)
10542                 return NULL;
10543
10544         dev = PTR_ALIGN(p, NETDEV_ALIGN);
10545         dev->padded = (char *)dev - (char *)p;
10546
10547         dev->pcpu_refcnt = alloc_percpu(int);
10548         if (!dev->pcpu_refcnt)
10549                 goto free_dev;
10550
10551         if (dev_addr_init(dev))
10552                 goto free_pcpu;
10553
10554         dev_mc_init(dev);
10555         dev_uc_init(dev);
10556
10557         dev_net_set(dev, &init_net);
10558
10559         dev->gso_max_size = GSO_MAX_SIZE;
10560         dev->gso_max_segs = GSO_MAX_SEGS;
10561         dev->upper_level = 1;
10562         dev->lower_level = 1;
10563 #ifdef CONFIG_LOCKDEP
10564         dev->nested_level = 0;
10565         INIT_LIST_HEAD(&dev->unlink_list);
10566 #endif
10567
10568         INIT_LIST_HEAD(&dev->napi_list);
10569         INIT_LIST_HEAD(&dev->unreg_list);
10570         INIT_LIST_HEAD(&dev->close_list);
10571         INIT_LIST_HEAD(&dev->link_watch_list);
10572         INIT_LIST_HEAD(&dev->adj_list.upper);
10573         INIT_LIST_HEAD(&dev->adj_list.lower);
10574         INIT_LIST_HEAD(&dev->ptype_all);
10575         INIT_LIST_HEAD(&dev->ptype_specific);
10576         INIT_LIST_HEAD(&dev->net_notifier_list);
10577 #ifdef CONFIG_NET_SCHED
10578         hash_init(dev->qdisc_hash);
10579 #endif
10580         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10581         setup(dev);
10582
10583         if (!dev->tx_queue_len) {
10584                 dev->priv_flags |= IFF_NO_QUEUE;
10585                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10586         }
10587
10588         dev->num_tx_queues = txqs;
10589         dev->real_num_tx_queues = txqs;
10590         if (netif_alloc_netdev_queues(dev))
10591                 goto free_all;
10592
10593         dev->num_rx_queues = rxqs;
10594         dev->real_num_rx_queues = rxqs;
10595         if (netif_alloc_rx_queues(dev))
10596                 goto free_all;
10597
10598         strcpy(dev->name, name);
10599         dev->name_assign_type = name_assign_type;
10600         dev->group = INIT_NETDEV_GROUP;
10601         if (!dev->ethtool_ops)
10602                 dev->ethtool_ops = &default_ethtool_ops;
10603
10604         nf_hook_ingress_init(dev);
10605
10606         return dev;
10607
10608 free_all:
10609         free_netdev(dev);
10610         return NULL;
10611
10612 free_pcpu:
10613         free_percpu(dev->pcpu_refcnt);
10614 free_dev:
10615         netdev_freemem(dev);
10616         return NULL;
10617 }
10618 EXPORT_SYMBOL(alloc_netdev_mqs);
10619
10620 /**
10621  * free_netdev - free network device
10622  * @dev: device
10623  *
10624  * This function does the last stage of destroying an allocated device
10625  * interface. The reference to the device object is released. If this
10626  * is the last reference then it will be freed.Must be called in process
10627  * context.
10628  */
10629 void free_netdev(struct net_device *dev)
10630 {
10631         struct napi_struct *p, *n;
10632
10633         might_sleep();
10634         netif_free_tx_queues(dev);
10635         netif_free_rx_queues(dev);
10636
10637         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10638
10639         /* Flush device addresses */
10640         dev_addr_flush(dev);
10641
10642         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10643                 netif_napi_del(p);
10644
10645         free_percpu(dev->pcpu_refcnt);
10646         dev->pcpu_refcnt = NULL;
10647         free_percpu(dev->xdp_bulkq);
10648         dev->xdp_bulkq = NULL;
10649
10650         /*  Compatibility with error handling in drivers */
10651         if (dev->reg_state == NETREG_UNINITIALIZED) {
10652                 netdev_freemem(dev);
10653                 return;
10654         }
10655
10656         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10657         dev->reg_state = NETREG_RELEASED;
10658
10659         /* will free via device release */
10660         put_device(&dev->dev);
10661 }
10662 EXPORT_SYMBOL(free_netdev);
10663
10664 /**
10665  *      synchronize_net -  Synchronize with packet receive processing
10666  *
10667  *      Wait for packets currently being received to be done.
10668  *      Does not block later packets from starting.
10669  */
10670 void synchronize_net(void)
10671 {
10672         might_sleep();
10673         if (rtnl_is_locked())
10674                 synchronize_rcu_expedited();
10675         else
10676                 synchronize_rcu();
10677 }
10678 EXPORT_SYMBOL(synchronize_net);
10679
10680 /**
10681  *      unregister_netdevice_queue - remove device from the kernel
10682  *      @dev: device
10683  *      @head: list
10684  *
10685  *      This function shuts down a device interface and removes it
10686  *      from the kernel tables.
10687  *      If head not NULL, device is queued to be unregistered later.
10688  *
10689  *      Callers must hold the rtnl semaphore.  You may want
10690  *      unregister_netdev() instead of this.
10691  */
10692
10693 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10694 {
10695         ASSERT_RTNL();
10696
10697         if (head) {
10698                 list_move_tail(&dev->unreg_list, head);
10699         } else {
10700                 rollback_registered(dev);
10701                 /* Finish processing unregister after unlock */
10702                 net_set_todo(dev);
10703         }
10704 }
10705 EXPORT_SYMBOL(unregister_netdevice_queue);
10706
10707 /**
10708  *      unregister_netdevice_many - unregister many devices
10709  *      @head: list of devices
10710  *
10711  *  Note: As most callers use a stack allocated list_head,
10712  *  we force a list_del() to make sure stack wont be corrupted later.
10713  */
10714 void unregister_netdevice_many(struct list_head *head)
10715 {
10716         struct net_device *dev;
10717
10718         if (!list_empty(head)) {
10719                 rollback_registered_many(head);
10720                 list_for_each_entry(dev, head, unreg_list)
10721                         net_set_todo(dev);
10722                 list_del(head);
10723         }
10724 }
10725 EXPORT_SYMBOL(unregister_netdevice_many);
10726
10727 /**
10728  *      unregister_netdev - remove device from the kernel
10729  *      @dev: device
10730  *
10731  *      This function shuts down a device interface and removes it
10732  *      from the kernel tables.
10733  *
10734  *      This is just a wrapper for unregister_netdevice that takes
10735  *      the rtnl semaphore.  In general you want to use this and not
10736  *      unregister_netdevice.
10737  */
10738 void unregister_netdev(struct net_device *dev)
10739 {
10740         rtnl_lock();
10741         unregister_netdevice(dev);
10742         rtnl_unlock();
10743 }
10744 EXPORT_SYMBOL(unregister_netdev);
10745
10746 /**
10747  *      dev_change_net_namespace - move device to different nethost namespace
10748  *      @dev: device
10749  *      @net: network namespace
10750  *      @pat: If not NULL name pattern to try if the current device name
10751  *            is already taken in the destination network namespace.
10752  *
10753  *      This function shuts down a device interface and moves it
10754  *      to a new network namespace. On success 0 is returned, on
10755  *      a failure a netagive errno code is returned.
10756  *
10757  *      Callers must hold the rtnl semaphore.
10758  */
10759
10760 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
10761 {
10762         struct net *net_old = dev_net(dev);
10763         int err, new_nsid, new_ifindex;
10764
10765         ASSERT_RTNL();
10766
10767         /* Don't allow namespace local devices to be moved. */
10768         err = -EINVAL;
10769         if (dev->features & NETIF_F_NETNS_LOCAL)
10770                 goto out;
10771
10772         /* Ensure the device has been registrered */
10773         if (dev->reg_state != NETREG_REGISTERED)
10774                 goto out;
10775
10776         /* Get out if there is nothing todo */
10777         err = 0;
10778         if (net_eq(net_old, net))
10779                 goto out;
10780
10781         /* Pick the destination device name, and ensure
10782          * we can use it in the destination network namespace.
10783          */
10784         err = -EEXIST;
10785         if (__dev_get_by_name(net, dev->name)) {
10786                 /* We get here if we can't use the current device name */
10787                 if (!pat)
10788                         goto out;
10789                 err = dev_get_valid_name(net, dev, pat);
10790                 if (err < 0)
10791                         goto out;
10792         }
10793
10794         /*
10795          * And now a mini version of register_netdevice unregister_netdevice.
10796          */
10797
10798         /* If device is running close it first. */
10799         dev_close(dev);
10800
10801         /* And unlink it from device chain */
10802         unlist_netdevice(dev);
10803
10804         synchronize_net();
10805
10806         /* Shutdown queueing discipline. */
10807         dev_shutdown(dev);
10808
10809         /* Notify protocols, that we are about to destroy
10810          * this device. They should clean all the things.
10811          *
10812          * Note that dev->reg_state stays at NETREG_REGISTERED.
10813          * This is wanted because this way 8021q and macvlan know
10814          * the device is just moving and can keep their slaves up.
10815          */
10816         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10817         rcu_barrier();
10818
10819         new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10820         /* If there is an ifindex conflict assign a new one */
10821         if (__dev_get_by_index(net, dev->ifindex))
10822                 new_ifindex = dev_new_index(net);
10823         else
10824                 new_ifindex = dev->ifindex;
10825
10826         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10827                             new_ifindex);
10828
10829         /*
10830          *      Flush the unicast and multicast chains
10831          */
10832         dev_uc_flush(dev);
10833         dev_mc_flush(dev);
10834
10835         /* Send a netdev-removed uevent to the old namespace */
10836         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
10837         netdev_adjacent_del_links(dev);
10838
10839         /* Move per-net netdevice notifiers that are following the netdevice */
10840         move_netdevice_notifiers_dev_net(dev, net);
10841
10842         /* Actually switch the network namespace */
10843         dev_net_set(dev, net);
10844         dev->ifindex = new_ifindex;
10845
10846         /* Send a netdev-add uevent to the new namespace */
10847         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
10848         netdev_adjacent_add_links(dev);
10849
10850         /* Fixup kobjects */
10851         err = device_rename(&dev->dev, dev->name);
10852         WARN_ON(err);
10853
10854         /* Adapt owner in case owning user namespace of target network
10855          * namespace is different from the original one.
10856          */
10857         err = netdev_change_owner(dev, net_old, net);
10858         WARN_ON(err);
10859
10860         /* Add the device back in the hashes */
10861         list_netdevice(dev);
10862
10863         /* Notify protocols, that a new device appeared. */
10864         call_netdevice_notifiers(NETDEV_REGISTER, dev);
10865
10866         /*
10867          *      Prevent userspace races by waiting until the network
10868          *      device is fully setup before sending notifications.
10869          */
10870         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10871
10872         synchronize_net();
10873         err = 0;
10874 out:
10875         return err;
10876 }
10877 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
10878
10879 static int dev_cpu_dead(unsigned int oldcpu)
10880 {
10881         struct sk_buff **list_skb;
10882         struct sk_buff *skb;
10883         unsigned int cpu;
10884         struct softnet_data *sd, *oldsd, *remsd = NULL;
10885
10886         local_irq_disable();
10887         cpu = smp_processor_id();
10888         sd = &per_cpu(softnet_data, cpu);
10889         oldsd = &per_cpu(softnet_data, oldcpu);
10890
10891         /* Find end of our completion_queue. */
10892         list_skb = &sd->completion_queue;
10893         while (*list_skb)
10894                 list_skb = &(*list_skb)->next;
10895         /* Append completion queue from offline CPU. */
10896         *list_skb = oldsd->completion_queue;
10897         oldsd->completion_queue = NULL;
10898
10899         /* Append output queue from offline CPU. */
10900         if (oldsd->output_queue) {
10901                 *sd->output_queue_tailp = oldsd->output_queue;
10902                 sd->output_queue_tailp = oldsd->output_queue_tailp;
10903                 oldsd->output_queue = NULL;
10904                 oldsd->output_queue_tailp = &oldsd->output_queue;
10905         }
10906         /* Append NAPI poll list from offline CPU, with one exception :
10907          * process_backlog() must be called by cpu owning percpu backlog.
10908          * We properly handle process_queue & input_pkt_queue later.
10909          */
10910         while (!list_empty(&oldsd->poll_list)) {
10911                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10912                                                             struct napi_struct,
10913                                                             poll_list);
10914
10915                 list_del_init(&napi->poll_list);
10916                 if (napi->poll == process_backlog)
10917                         napi->state = 0;
10918                 else
10919                         ____napi_schedule(sd, napi);
10920         }
10921
10922         raise_softirq_irqoff(NET_TX_SOFTIRQ);
10923         local_irq_enable();
10924
10925 #ifdef CONFIG_RPS
10926         remsd = oldsd->rps_ipi_list;
10927         oldsd->rps_ipi_list = NULL;
10928 #endif
10929         /* send out pending IPI's on offline CPU */
10930         net_rps_send_ipi(remsd);
10931
10932         /* Process offline CPU's input_pkt_queue */
10933         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
10934                 netif_rx_ni(skb);
10935                 input_queue_head_incr(oldsd);
10936         }
10937         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
10938                 netif_rx_ni(skb);
10939                 input_queue_head_incr(oldsd);
10940         }
10941
10942         return 0;
10943 }
10944
10945 /**
10946  *      netdev_increment_features - increment feature set by one
10947  *      @all: current feature set
10948  *      @one: new feature set
10949  *      @mask: mask feature set
10950  *
10951  *      Computes a new feature set after adding a device with feature set
10952  *      @one to the master device with current feature set @all.  Will not
10953  *      enable anything that is off in @mask. Returns the new feature set.
10954  */
10955 netdev_features_t netdev_increment_features(netdev_features_t all,
10956         netdev_features_t one, netdev_features_t mask)
10957 {
10958         if (mask & NETIF_F_HW_CSUM)
10959                 mask |= NETIF_F_CSUM_MASK;
10960         mask |= NETIF_F_VLAN_CHALLENGED;
10961
10962         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
10963         all &= one | ~NETIF_F_ALL_FOR_ALL;
10964
10965         /* If one device supports hw checksumming, set for all. */
10966         if (all & NETIF_F_HW_CSUM)
10967                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
10968
10969         return all;
10970 }
10971 EXPORT_SYMBOL(netdev_increment_features);
10972
10973 static struct hlist_head * __net_init netdev_create_hash(void)
10974 {
10975         int i;
10976         struct hlist_head *hash;
10977
10978         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
10979         if (hash != NULL)
10980                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
10981                         INIT_HLIST_HEAD(&hash[i]);
10982
10983         return hash;
10984 }
10985
10986 /* Initialize per network namespace state */
10987 static int __net_init netdev_init(struct net *net)
10988 {
10989         BUILD_BUG_ON(GRO_HASH_BUCKETS >
10990                      8 * sizeof_field(struct napi_struct, gro_bitmask));
10991
10992         if (net != &init_net)
10993                 INIT_LIST_HEAD(&net->dev_base_head);
10994
10995         net->dev_name_head = netdev_create_hash();
10996         if (net->dev_name_head == NULL)
10997                 goto err_name;
10998
10999         net->dev_index_head = netdev_create_hash();
11000         if (net->dev_index_head == NULL)
11001                 goto err_idx;
11002
11003         RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11004
11005         return 0;
11006
11007 err_idx:
11008         kfree(net->dev_name_head);
11009 err_name:
11010         return -ENOMEM;
11011 }
11012
11013 /**
11014  *      netdev_drivername - network driver for the device
11015  *      @dev: network device
11016  *
11017  *      Determine network driver for device.
11018  */
11019 const char *netdev_drivername(const struct net_device *dev)
11020 {
11021         const struct device_driver *driver;
11022         const struct device *parent;
11023         const char *empty = "";
11024
11025         parent = dev->dev.parent;
11026         if (!parent)
11027                 return empty;
11028
11029         driver = parent->driver;
11030         if (driver && driver->name)
11031                 return driver->name;
11032         return empty;
11033 }
11034
11035 static void __netdev_printk(const char *level, const struct net_device *dev,
11036                             struct va_format *vaf)
11037 {
11038         if (dev && dev->dev.parent) {
11039                 dev_printk_emit(level[1] - '0',
11040                                 dev->dev.parent,
11041                                 "%s %s %s%s: %pV",
11042                                 dev_driver_string(dev->dev.parent),
11043                                 dev_name(dev->dev.parent),
11044                                 netdev_name(dev), netdev_reg_state(dev),
11045                                 vaf);
11046         } else if (dev) {
11047                 printk("%s%s%s: %pV",
11048                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
11049         } else {
11050                 printk("%s(NULL net_device): %pV", level, vaf);
11051         }
11052 }
11053
11054 void netdev_printk(const char *level, const struct net_device *dev,
11055                    const char *format, ...)
11056 {
11057         struct va_format vaf;
11058         va_list args;
11059
11060         va_start(args, format);
11061
11062         vaf.fmt = format;
11063         vaf.va = &args;
11064
11065         __netdev_printk(level, dev, &vaf);
11066
11067         va_end(args);
11068 }
11069 EXPORT_SYMBOL(netdev_printk);
11070
11071 #define define_netdev_printk_level(func, level)                 \
11072 void func(const struct net_device *dev, const char *fmt, ...)   \
11073 {                                                               \
11074         struct va_format vaf;                                   \
11075         va_list args;                                           \
11076                                                                 \
11077         va_start(args, fmt);                                    \
11078                                                                 \
11079         vaf.fmt = fmt;                                          \
11080         vaf.va = &args;                                         \
11081                                                                 \
11082         __netdev_printk(level, dev, &vaf);                      \
11083                                                                 \
11084         va_end(args);                                           \
11085 }                                                               \
11086 EXPORT_SYMBOL(func);
11087
11088 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11089 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11090 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11091 define_netdev_printk_level(netdev_err, KERN_ERR);
11092 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11093 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11094 define_netdev_printk_level(netdev_info, KERN_INFO);
11095
11096 static void __net_exit netdev_exit(struct net *net)
11097 {
11098         kfree(net->dev_name_head);
11099         kfree(net->dev_index_head);
11100         if (net != &init_net)
11101                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11102 }
11103
11104 static struct pernet_operations __net_initdata netdev_net_ops = {
11105         .init = netdev_init,
11106         .exit = netdev_exit,
11107 };
11108
11109 static void __net_exit default_device_exit(struct net *net)
11110 {
11111         struct net_device *dev, *aux;
11112         /*
11113          * Push all migratable network devices back to the
11114          * initial network namespace
11115          */
11116         rtnl_lock();
11117         for_each_netdev_safe(net, dev, aux) {
11118                 int err;
11119                 char fb_name[IFNAMSIZ];
11120
11121                 /* Ignore unmoveable devices (i.e. loopback) */
11122                 if (dev->features & NETIF_F_NETNS_LOCAL)
11123                         continue;
11124
11125                 /* Leave virtual devices for the generic cleanup */
11126                 if (dev->rtnl_link_ops)
11127                         continue;
11128
11129                 /* Push remaining network devices to init_net */
11130                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11131                 if (__dev_get_by_name(&init_net, fb_name))
11132                         snprintf(fb_name, IFNAMSIZ, "dev%%d");
11133                 err = dev_change_net_namespace(dev, &init_net, fb_name);
11134                 if (err) {
11135                         pr_emerg("%s: failed to move %s to init_net: %d\n",
11136                                  __func__, dev->name, err);
11137                         BUG();
11138                 }
11139         }
11140         rtnl_unlock();
11141 }
11142
11143 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11144 {
11145         /* Return with the rtnl_lock held when there are no network
11146          * devices unregistering in any network namespace in net_list.
11147          */
11148         struct net *net;
11149         bool unregistering;
11150         DEFINE_WAIT_FUNC(wait, woken_wake_function);
11151
11152         add_wait_queue(&netdev_unregistering_wq, &wait);
11153         for (;;) {
11154                 unregistering = false;
11155                 rtnl_lock();
11156                 list_for_each_entry(net, net_list, exit_list) {
11157                         if (net->dev_unreg_count > 0) {
11158                                 unregistering = true;
11159                                 break;
11160                         }
11161                 }
11162                 if (!unregistering)
11163                         break;
11164                 __rtnl_unlock();
11165
11166                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
11167         }
11168         remove_wait_queue(&netdev_unregistering_wq, &wait);
11169 }
11170
11171 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11172 {
11173         /* At exit all network devices most be removed from a network
11174          * namespace.  Do this in the reverse order of registration.
11175          * Do this across as many network namespaces as possible to
11176          * improve batching efficiency.
11177          */
11178         struct net_device *dev;
11179         struct net *net;
11180         LIST_HEAD(dev_kill_list);
11181
11182         /* To prevent network device cleanup code from dereferencing
11183          * loopback devices or network devices that have been freed
11184          * wait here for all pending unregistrations to complete,
11185          * before unregistring the loopback device and allowing the
11186          * network namespace be freed.
11187          *
11188          * The netdev todo list containing all network devices
11189          * unregistrations that happen in default_device_exit_batch
11190          * will run in the rtnl_unlock() at the end of
11191          * default_device_exit_batch.
11192          */
11193         rtnl_lock_unregistering(net_list);
11194         list_for_each_entry(net, net_list, exit_list) {
11195                 for_each_netdev_reverse(net, dev) {
11196                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11197                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11198                         else
11199                                 unregister_netdevice_queue(dev, &dev_kill_list);
11200                 }
11201         }
11202         unregister_netdevice_many(&dev_kill_list);
11203         rtnl_unlock();
11204 }
11205
11206 static struct pernet_operations __net_initdata default_device_ops = {
11207         .exit = default_device_exit,
11208         .exit_batch = default_device_exit_batch,
11209 };
11210
11211 /*
11212  *      Initialize the DEV module. At boot time this walks the device list and
11213  *      unhooks any devices that fail to initialise (normally hardware not
11214  *      present) and leaves us with a valid list of present and active devices.
11215  *
11216  */
11217
11218 /*
11219  *       This is called single threaded during boot, so no need
11220  *       to take the rtnl semaphore.
11221  */
11222 static int __init net_dev_init(void)
11223 {
11224         int i, rc = -ENOMEM;
11225
11226         BUG_ON(!dev_boot_phase);
11227
11228         if (dev_proc_init())
11229                 goto out;
11230
11231         if (netdev_kobject_init())
11232                 goto out;
11233
11234         INIT_LIST_HEAD(&ptype_all);
11235         for (i = 0; i < PTYPE_HASH_SIZE; i++)
11236                 INIT_LIST_HEAD(&ptype_base[i]);
11237
11238         INIT_LIST_HEAD(&offload_base);
11239
11240         if (register_pernet_subsys(&netdev_net_ops))
11241                 goto out;
11242
11243         /*
11244          *      Initialise the packet receive queues.
11245          */
11246
11247         for_each_possible_cpu(i) {
11248                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11249                 struct softnet_data *sd = &per_cpu(softnet_data, i);
11250
11251                 INIT_WORK(flush, flush_backlog);
11252
11253                 skb_queue_head_init(&sd->input_pkt_queue);
11254                 skb_queue_head_init(&sd->process_queue);
11255 #ifdef CONFIG_XFRM_OFFLOAD
11256                 skb_queue_head_init(&sd->xfrm_backlog);
11257 #endif
11258                 INIT_LIST_HEAD(&sd->poll_list);
11259                 sd->output_queue_tailp = &sd->output_queue;
11260 #ifdef CONFIG_RPS
11261                 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11262                 sd->cpu = i;
11263 #endif
11264
11265                 init_gro_hash(&sd->backlog);
11266                 sd->backlog.poll = process_backlog;
11267                 sd->backlog.weight = weight_p;
11268         }
11269
11270         dev_boot_phase = 0;
11271
11272         /* The loopback device is special if any other network devices
11273          * is present in a network namespace the loopback device must
11274          * be present. Since we now dynamically allocate and free the
11275          * loopback device ensure this invariant is maintained by
11276          * keeping the loopback device as the first device on the
11277          * list of network devices.  Ensuring the loopback devices
11278          * is the first device that appears and the last network device
11279          * that disappears.
11280          */
11281         if (register_pernet_device(&loopback_net_ops))
11282                 goto out;
11283
11284         if (register_pernet_device(&default_device_ops))
11285                 goto out;
11286
11287         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11288         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11289
11290         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11291                                        NULL, dev_cpu_dead);
11292         WARN_ON(rc < 0);
11293         rc = 0;
11294 out:
11295         return rc;
11296 }
11297
11298 subsys_initcall(net_dev_init);