net: don't bother calling list RX functions on empty lists
[linux-2.6-microblaze.git] / net / core / dev.c
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *              This program is free software; you can redistribute it and/or
5  *              modify it under the terms of the GNU General Public License
6  *              as published by the Free Software Foundation; either version
7  *              2 of the License, or (at your option) any later version.
8  *
9  *      Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:        Ross Biro
11  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *      Additional Authors:
15  *              Florian la Roche <rzsfl@rz.uni-sb.de>
16  *              Alan Cox <gw4pts@gw4pts.ampr.org>
17  *              David Hinds <dahinds@users.sourceforge.net>
18  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *              Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *      Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *              Alan Cox        :       device private ioctl copies fields back.
28  *              Alan Cox        :       Transmit queue code does relevant
29  *                                      stunts to keep the queue safe.
30  *              Alan Cox        :       Fixed double lock.
31  *              Alan Cox        :       Fixed promisc NULL pointer trap
32  *              ????????        :       Support the full private ioctl range
33  *              Alan Cox        :       Moved ioctl permission check into
34  *                                      drivers
35  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
36  *              Alan Cox        :       100 backlog just doesn't cut it when
37  *                                      you start doing multicast video 8)
38  *              Alan Cox        :       Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *              Alan Cox        :       Took out transmit every packet pass
41  *                                      Saved a few bytes in the ioctl handler
42  *              Alan Cox        :       Network driver sets packet type before
43  *                                      calling netif_rx. Saves a function
44  *                                      call a packet.
45  *              Alan Cox        :       Hashed net_bh()
46  *              Richard Kooijman:       Timestamp fixes.
47  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
48  *              Alan Cox        :       Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *                                      changes.
51  *              Rudi Cilibrasi  :       Pass the right thing to
52  *                                      set_mac_address()
53  *              Dave Miller     :       32bit quantity for the device lock to
54  *                                      make it work out on a Sparc.
55  *              Bjorn Ekwall    :       Added KERNELD hack.
56  *              Alan Cox        :       Cleaned up the backlog initialise.
57  *              Craig Metz      :       SIOCGIFCONF fix if space for under
58  *                                      1 device.
59  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
60  *                                      is no device open function.
61  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
62  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
63  *              Cyrus Durgin    :       Cleaned for KMOD
64  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
65  *                                      A network device unload needs to purge
66  *                                      the backlog queue.
67  *      Paul Rusty Russell      :       SIOCSIFNAME
68  *              Pekka Riikonen  :       Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *                                      - netif_rx() feedback
73  */
74
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dst.h>
106 #include <net/dst_metadata.h>
107 #include <net/pkt_sched.h>
108 #include <net/pkt_cls.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <linux/pci.h>
136 #include <linux/inetdevice.h>
137 #include <linux/cpu_rmap.h>
138 #include <linux/static_key.h>
139 #include <linux/hashtable.h>
140 #include <linux/vmalloc.h>
141 #include <linux/if_macvlan.h>
142 #include <linux/errqueue.h>
143 #include <linux/hrtimer.h>
144 #include <linux/netfilter_ingress.h>
145 #include <linux/crash_dump.h>
146 #include <linux/sctp.h>
147 #include <net/udp_tunnel.h>
148 #include <linux/net_namespace.h>
149
150 #include "net-sysfs.h"
151
152 /* Instead of increasing this, you should create a hash table. */
153 #define MAX_GRO_SKBS 8
154
155 /* This should be increased if a protocol with a bigger head is added. */
156 #define GRO_MAX_HEAD (MAX_HEADER + 128)
157
158 static DEFINE_SPINLOCK(ptype_lock);
159 static DEFINE_SPINLOCK(offload_lock);
160 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
161 struct list_head ptype_all __read_mostly;       /* Taps */
162 static struct list_head offload_base __read_mostly;
163
164 static int netif_rx_internal(struct sk_buff *skb);
165 static int call_netdevice_notifiers_info(unsigned long val,
166                                          struct netdev_notifier_info *info);
167 static struct napi_struct *napi_by_id(unsigned int napi_id);
168
169 /*
170  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
171  * semaphore.
172  *
173  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
174  *
175  * Writers must hold the rtnl semaphore while they loop through the
176  * dev_base_head list, and hold dev_base_lock for writing when they do the
177  * actual updates.  This allows pure readers to access the list even
178  * while a writer is preparing to update it.
179  *
180  * To put it another way, dev_base_lock is held for writing only to
181  * protect against pure readers; the rtnl semaphore provides the
182  * protection against other writers.
183  *
184  * See, for example usages, register_netdevice() and
185  * unregister_netdevice(), which must be called with the rtnl
186  * semaphore held.
187  */
188 DEFINE_RWLOCK(dev_base_lock);
189 EXPORT_SYMBOL(dev_base_lock);
190
191 static DEFINE_MUTEX(ifalias_mutex);
192
193 /* protects napi_hash addition/deletion and napi_gen_id */
194 static DEFINE_SPINLOCK(napi_hash_lock);
195
196 static unsigned int napi_gen_id = NR_CPUS;
197 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
198
199 static seqcount_t devnet_rename_seq;
200
201 static inline void dev_base_seq_inc(struct net *net)
202 {
203         while (++net->dev_base_seq == 0)
204                 ;
205 }
206
207 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
208 {
209         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
210
211         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
212 }
213
214 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
215 {
216         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
217 }
218
219 static inline void rps_lock(struct softnet_data *sd)
220 {
221 #ifdef CONFIG_RPS
222         spin_lock(&sd->input_pkt_queue.lock);
223 #endif
224 }
225
226 static inline void rps_unlock(struct softnet_data *sd)
227 {
228 #ifdef CONFIG_RPS
229         spin_unlock(&sd->input_pkt_queue.lock);
230 #endif
231 }
232
233 /* Device list insertion */
234 static void list_netdevice(struct net_device *dev)
235 {
236         struct net *net = dev_net(dev);
237
238         ASSERT_RTNL();
239
240         write_lock_bh(&dev_base_lock);
241         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
242         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
243         hlist_add_head_rcu(&dev->index_hlist,
244                            dev_index_hash(net, dev->ifindex));
245         write_unlock_bh(&dev_base_lock);
246
247         dev_base_seq_inc(net);
248 }
249
250 /* Device list removal
251  * caller must respect a RCU grace period before freeing/reusing dev
252  */
253 static void unlist_netdevice(struct net_device *dev)
254 {
255         ASSERT_RTNL();
256
257         /* Unlink dev from the device chain */
258         write_lock_bh(&dev_base_lock);
259         list_del_rcu(&dev->dev_list);
260         hlist_del_rcu(&dev->name_hlist);
261         hlist_del_rcu(&dev->index_hlist);
262         write_unlock_bh(&dev_base_lock);
263
264         dev_base_seq_inc(dev_net(dev));
265 }
266
267 /*
268  *      Our notifier list
269  */
270
271 static RAW_NOTIFIER_HEAD(netdev_chain);
272
273 /*
274  *      Device drivers call our routines to queue packets here. We empty the
275  *      queue in the local softnet handler.
276  */
277
278 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
279 EXPORT_PER_CPU_SYMBOL(softnet_data);
280
281 #ifdef CONFIG_LOCKDEP
282 /*
283  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
284  * according to dev->type
285  */
286 static const unsigned short netdev_lock_type[] = {
287          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
288          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
289          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
290          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
291          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
292          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
293          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
294          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
295          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
296          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
297          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
298          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
299          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
300          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
301          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
302
303 static const char *const netdev_lock_name[] = {
304         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
305         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
306         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
307         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
308         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
309         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
310         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
311         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
312         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
313         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
314         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
315         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
316         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
317         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
318         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
319
320 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
321 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
322
323 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
324 {
325         int i;
326
327         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
328                 if (netdev_lock_type[i] == dev_type)
329                         return i;
330         /* the last key is used by default */
331         return ARRAY_SIZE(netdev_lock_type) - 1;
332 }
333
334 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
335                                                  unsigned short dev_type)
336 {
337         int i;
338
339         i = netdev_lock_pos(dev_type);
340         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
341                                    netdev_lock_name[i]);
342 }
343
344 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
345 {
346         int i;
347
348         i = netdev_lock_pos(dev->type);
349         lockdep_set_class_and_name(&dev->addr_list_lock,
350                                    &netdev_addr_lock_key[i],
351                                    netdev_lock_name[i]);
352 }
353 #else
354 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
355                                                  unsigned short dev_type)
356 {
357 }
358 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
359 {
360 }
361 #endif
362
363 /*******************************************************************************
364  *
365  *              Protocol management and registration routines
366  *
367  *******************************************************************************/
368
369
370 /*
371  *      Add a protocol ID to the list. Now that the input handler is
372  *      smarter we can dispense with all the messy stuff that used to be
373  *      here.
374  *
375  *      BEWARE!!! Protocol handlers, mangling input packets,
376  *      MUST BE last in hash buckets and checking protocol handlers
377  *      MUST start from promiscuous ptype_all chain in net_bh.
378  *      It is true now, do not change it.
379  *      Explanation follows: if protocol handler, mangling packet, will
380  *      be the first on list, it is not able to sense, that packet
381  *      is cloned and should be copied-on-write, so that it will
382  *      change it and subsequent readers will get broken packet.
383  *                                                      --ANK (980803)
384  */
385
386 static inline struct list_head *ptype_head(const struct packet_type *pt)
387 {
388         if (pt->type == htons(ETH_P_ALL))
389                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
390         else
391                 return pt->dev ? &pt->dev->ptype_specific :
392                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
393 }
394
395 /**
396  *      dev_add_pack - add packet handler
397  *      @pt: packet type declaration
398  *
399  *      Add a protocol handler to the networking stack. The passed &packet_type
400  *      is linked into kernel lists and may not be freed until it has been
401  *      removed from the kernel lists.
402  *
403  *      This call does not sleep therefore it can not
404  *      guarantee all CPU's that are in middle of receiving packets
405  *      will see the new packet type (until the next received packet).
406  */
407
408 void dev_add_pack(struct packet_type *pt)
409 {
410         struct list_head *head = ptype_head(pt);
411
412         spin_lock(&ptype_lock);
413         list_add_rcu(&pt->list, head);
414         spin_unlock(&ptype_lock);
415 }
416 EXPORT_SYMBOL(dev_add_pack);
417
418 /**
419  *      __dev_remove_pack        - remove packet handler
420  *      @pt: packet type declaration
421  *
422  *      Remove a protocol handler that was previously added to the kernel
423  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
424  *      from the kernel lists and can be freed or reused once this function
425  *      returns.
426  *
427  *      The packet type might still be in use by receivers
428  *      and must not be freed until after all the CPU's have gone
429  *      through a quiescent state.
430  */
431 void __dev_remove_pack(struct packet_type *pt)
432 {
433         struct list_head *head = ptype_head(pt);
434         struct packet_type *pt1;
435
436         spin_lock(&ptype_lock);
437
438         list_for_each_entry(pt1, head, list) {
439                 if (pt == pt1) {
440                         list_del_rcu(&pt->list);
441                         goto out;
442                 }
443         }
444
445         pr_warn("dev_remove_pack: %p not found\n", pt);
446 out:
447         spin_unlock(&ptype_lock);
448 }
449 EXPORT_SYMBOL(__dev_remove_pack);
450
451 /**
452  *      dev_remove_pack  - remove packet handler
453  *      @pt: packet type declaration
454  *
455  *      Remove a protocol handler that was previously added to the kernel
456  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
457  *      from the kernel lists and can be freed or reused once this function
458  *      returns.
459  *
460  *      This call sleeps to guarantee that no CPU is looking at the packet
461  *      type after return.
462  */
463 void dev_remove_pack(struct packet_type *pt)
464 {
465         __dev_remove_pack(pt);
466
467         synchronize_net();
468 }
469 EXPORT_SYMBOL(dev_remove_pack);
470
471
472 /**
473  *      dev_add_offload - register offload handlers
474  *      @po: protocol offload declaration
475  *
476  *      Add protocol offload handlers to the networking stack. The passed
477  *      &proto_offload is linked into kernel lists and may not be freed until
478  *      it has been removed from the kernel lists.
479  *
480  *      This call does not sleep therefore it can not
481  *      guarantee all CPU's that are in middle of receiving packets
482  *      will see the new offload handlers (until the next received packet).
483  */
484 void dev_add_offload(struct packet_offload *po)
485 {
486         struct packet_offload *elem;
487
488         spin_lock(&offload_lock);
489         list_for_each_entry(elem, &offload_base, list) {
490                 if (po->priority < elem->priority)
491                         break;
492         }
493         list_add_rcu(&po->list, elem->list.prev);
494         spin_unlock(&offload_lock);
495 }
496 EXPORT_SYMBOL(dev_add_offload);
497
498 /**
499  *      __dev_remove_offload     - remove offload handler
500  *      @po: packet offload declaration
501  *
502  *      Remove a protocol offload handler that was previously added to the
503  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
504  *      is removed from the kernel lists and can be freed or reused once this
505  *      function returns.
506  *
507  *      The packet type might still be in use by receivers
508  *      and must not be freed until after all the CPU's have gone
509  *      through a quiescent state.
510  */
511 static void __dev_remove_offload(struct packet_offload *po)
512 {
513         struct list_head *head = &offload_base;
514         struct packet_offload *po1;
515
516         spin_lock(&offload_lock);
517
518         list_for_each_entry(po1, head, list) {
519                 if (po == po1) {
520                         list_del_rcu(&po->list);
521                         goto out;
522                 }
523         }
524
525         pr_warn("dev_remove_offload: %p not found\n", po);
526 out:
527         spin_unlock(&offload_lock);
528 }
529
530 /**
531  *      dev_remove_offload       - remove packet offload handler
532  *      @po: packet offload declaration
533  *
534  *      Remove a packet offload handler that was previously added to the kernel
535  *      offload handlers by dev_add_offload(). The passed &offload_type is
536  *      removed from the kernel lists and can be freed or reused once this
537  *      function returns.
538  *
539  *      This call sleeps to guarantee that no CPU is looking at the packet
540  *      type after return.
541  */
542 void dev_remove_offload(struct packet_offload *po)
543 {
544         __dev_remove_offload(po);
545
546         synchronize_net();
547 }
548 EXPORT_SYMBOL(dev_remove_offload);
549
550 /******************************************************************************
551  *
552  *                    Device Boot-time Settings Routines
553  *
554  ******************************************************************************/
555
556 /* Boot time configuration table */
557 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
558
559 /**
560  *      netdev_boot_setup_add   - add new setup entry
561  *      @name: name of the device
562  *      @map: configured settings for the device
563  *
564  *      Adds new setup entry to the dev_boot_setup list.  The function
565  *      returns 0 on error and 1 on success.  This is a generic routine to
566  *      all netdevices.
567  */
568 static int netdev_boot_setup_add(char *name, struct ifmap *map)
569 {
570         struct netdev_boot_setup *s;
571         int i;
572
573         s = dev_boot_setup;
574         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
575                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
576                         memset(s[i].name, 0, sizeof(s[i].name));
577                         strlcpy(s[i].name, name, IFNAMSIZ);
578                         memcpy(&s[i].map, map, sizeof(s[i].map));
579                         break;
580                 }
581         }
582
583         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
584 }
585
586 /**
587  * netdev_boot_setup_check      - check boot time settings
588  * @dev: the netdevice
589  *
590  * Check boot time settings for the device.
591  * The found settings are set for the device to be used
592  * later in the device probing.
593  * Returns 0 if no settings found, 1 if they are.
594  */
595 int netdev_boot_setup_check(struct net_device *dev)
596 {
597         struct netdev_boot_setup *s = dev_boot_setup;
598         int i;
599
600         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
601                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
602                     !strcmp(dev->name, s[i].name)) {
603                         dev->irq = s[i].map.irq;
604                         dev->base_addr = s[i].map.base_addr;
605                         dev->mem_start = s[i].map.mem_start;
606                         dev->mem_end = s[i].map.mem_end;
607                         return 1;
608                 }
609         }
610         return 0;
611 }
612 EXPORT_SYMBOL(netdev_boot_setup_check);
613
614
615 /**
616  * netdev_boot_base     - get address from boot time settings
617  * @prefix: prefix for network device
618  * @unit: id for network device
619  *
620  * Check boot time settings for the base address of device.
621  * The found settings are set for the device to be used
622  * later in the device probing.
623  * Returns 0 if no settings found.
624  */
625 unsigned long netdev_boot_base(const char *prefix, int unit)
626 {
627         const struct netdev_boot_setup *s = dev_boot_setup;
628         char name[IFNAMSIZ];
629         int i;
630
631         sprintf(name, "%s%d", prefix, unit);
632
633         /*
634          * If device already registered then return base of 1
635          * to indicate not to probe for this interface
636          */
637         if (__dev_get_by_name(&init_net, name))
638                 return 1;
639
640         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
641                 if (!strcmp(name, s[i].name))
642                         return s[i].map.base_addr;
643         return 0;
644 }
645
646 /*
647  * Saves at boot time configured settings for any netdevice.
648  */
649 int __init netdev_boot_setup(char *str)
650 {
651         int ints[5];
652         struct ifmap map;
653
654         str = get_options(str, ARRAY_SIZE(ints), ints);
655         if (!str || !*str)
656                 return 0;
657
658         /* Save settings */
659         memset(&map, 0, sizeof(map));
660         if (ints[0] > 0)
661                 map.irq = ints[1];
662         if (ints[0] > 1)
663                 map.base_addr = ints[2];
664         if (ints[0] > 2)
665                 map.mem_start = ints[3];
666         if (ints[0] > 3)
667                 map.mem_end = ints[4];
668
669         /* Add new entry to the list */
670         return netdev_boot_setup_add(str, &map);
671 }
672
673 __setup("netdev=", netdev_boot_setup);
674
675 /*******************************************************************************
676  *
677  *                          Device Interface Subroutines
678  *
679  *******************************************************************************/
680
681 /**
682  *      dev_get_iflink  - get 'iflink' value of a interface
683  *      @dev: targeted interface
684  *
685  *      Indicates the ifindex the interface is linked to.
686  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
687  */
688
689 int dev_get_iflink(const struct net_device *dev)
690 {
691         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
692                 return dev->netdev_ops->ndo_get_iflink(dev);
693
694         return dev->ifindex;
695 }
696 EXPORT_SYMBOL(dev_get_iflink);
697
698 /**
699  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
700  *      @dev: targeted interface
701  *      @skb: The packet.
702  *
703  *      For better visibility of tunnel traffic OVS needs to retrieve
704  *      egress tunnel information for a packet. Following API allows
705  *      user to get this info.
706  */
707 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
708 {
709         struct ip_tunnel_info *info;
710
711         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
712                 return -EINVAL;
713
714         info = skb_tunnel_info_unclone(skb);
715         if (!info)
716                 return -ENOMEM;
717         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
718                 return -EINVAL;
719
720         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
721 }
722 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
723
724 /**
725  *      __dev_get_by_name       - find a device by its name
726  *      @net: the applicable net namespace
727  *      @name: name to find
728  *
729  *      Find an interface by name. Must be called under RTNL semaphore
730  *      or @dev_base_lock. If the name is found a pointer to the device
731  *      is returned. If the name is not found then %NULL is returned. The
732  *      reference counters are not incremented so the caller must be
733  *      careful with locks.
734  */
735
736 struct net_device *__dev_get_by_name(struct net *net, const char *name)
737 {
738         struct net_device *dev;
739         struct hlist_head *head = dev_name_hash(net, name);
740
741         hlist_for_each_entry(dev, head, name_hlist)
742                 if (!strncmp(dev->name, name, IFNAMSIZ))
743                         return dev;
744
745         return NULL;
746 }
747 EXPORT_SYMBOL(__dev_get_by_name);
748
749 /**
750  * dev_get_by_name_rcu  - find a device by its name
751  * @net: the applicable net namespace
752  * @name: name to find
753  *
754  * Find an interface by name.
755  * If the name is found a pointer to the device is returned.
756  * If the name is not found then %NULL is returned.
757  * The reference counters are not incremented so the caller must be
758  * careful with locks. The caller must hold RCU lock.
759  */
760
761 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
762 {
763         struct net_device *dev;
764         struct hlist_head *head = dev_name_hash(net, name);
765
766         hlist_for_each_entry_rcu(dev, head, name_hlist)
767                 if (!strncmp(dev->name, name, IFNAMSIZ))
768                         return dev;
769
770         return NULL;
771 }
772 EXPORT_SYMBOL(dev_get_by_name_rcu);
773
774 /**
775  *      dev_get_by_name         - find a device by its name
776  *      @net: the applicable net namespace
777  *      @name: name to find
778  *
779  *      Find an interface by name. This can be called from any
780  *      context and does its own locking. The returned handle has
781  *      the usage count incremented and the caller must use dev_put() to
782  *      release it when it is no longer needed. %NULL is returned if no
783  *      matching device is found.
784  */
785
786 struct net_device *dev_get_by_name(struct net *net, const char *name)
787 {
788         struct net_device *dev;
789
790         rcu_read_lock();
791         dev = dev_get_by_name_rcu(net, name);
792         if (dev)
793                 dev_hold(dev);
794         rcu_read_unlock();
795         return dev;
796 }
797 EXPORT_SYMBOL(dev_get_by_name);
798
799 /**
800  *      __dev_get_by_index - find a device by its ifindex
801  *      @net: the applicable net namespace
802  *      @ifindex: index of device
803  *
804  *      Search for an interface by index. Returns %NULL if the device
805  *      is not found or a pointer to the device. The device has not
806  *      had its reference counter increased so the caller must be careful
807  *      about locking. The caller must hold either the RTNL semaphore
808  *      or @dev_base_lock.
809  */
810
811 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
812 {
813         struct net_device *dev;
814         struct hlist_head *head = dev_index_hash(net, ifindex);
815
816         hlist_for_each_entry(dev, head, index_hlist)
817                 if (dev->ifindex == ifindex)
818                         return dev;
819
820         return NULL;
821 }
822 EXPORT_SYMBOL(__dev_get_by_index);
823
824 /**
825  *      dev_get_by_index_rcu - find a device by its ifindex
826  *      @net: the applicable net namespace
827  *      @ifindex: index of device
828  *
829  *      Search for an interface by index. Returns %NULL if the device
830  *      is not found or a pointer to the device. The device has not
831  *      had its reference counter increased so the caller must be careful
832  *      about locking. The caller must hold RCU lock.
833  */
834
835 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
836 {
837         struct net_device *dev;
838         struct hlist_head *head = dev_index_hash(net, ifindex);
839
840         hlist_for_each_entry_rcu(dev, head, index_hlist)
841                 if (dev->ifindex == ifindex)
842                         return dev;
843
844         return NULL;
845 }
846 EXPORT_SYMBOL(dev_get_by_index_rcu);
847
848
849 /**
850  *      dev_get_by_index - find a device by its ifindex
851  *      @net: the applicable net namespace
852  *      @ifindex: index of device
853  *
854  *      Search for an interface by index. Returns NULL if the device
855  *      is not found or a pointer to the device. The device returned has
856  *      had a reference added and the pointer is safe until the user calls
857  *      dev_put to indicate they have finished with it.
858  */
859
860 struct net_device *dev_get_by_index(struct net *net, int ifindex)
861 {
862         struct net_device *dev;
863
864         rcu_read_lock();
865         dev = dev_get_by_index_rcu(net, ifindex);
866         if (dev)
867                 dev_hold(dev);
868         rcu_read_unlock();
869         return dev;
870 }
871 EXPORT_SYMBOL(dev_get_by_index);
872
873 /**
874  *      dev_get_by_napi_id - find a device by napi_id
875  *      @napi_id: ID of the NAPI struct
876  *
877  *      Search for an interface by NAPI ID. Returns %NULL if the device
878  *      is not found or a pointer to the device. The device has not had
879  *      its reference counter increased so the caller must be careful
880  *      about locking. The caller must hold RCU lock.
881  */
882
883 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
884 {
885         struct napi_struct *napi;
886
887         WARN_ON_ONCE(!rcu_read_lock_held());
888
889         if (napi_id < MIN_NAPI_ID)
890                 return NULL;
891
892         napi = napi_by_id(napi_id);
893
894         return napi ? napi->dev : NULL;
895 }
896 EXPORT_SYMBOL(dev_get_by_napi_id);
897
898 /**
899  *      netdev_get_name - get a netdevice name, knowing its ifindex.
900  *      @net: network namespace
901  *      @name: a pointer to the buffer where the name will be stored.
902  *      @ifindex: the ifindex of the interface to get the name from.
903  *
904  *      The use of raw_seqcount_begin() and cond_resched() before
905  *      retrying is required as we want to give the writers a chance
906  *      to complete when CONFIG_PREEMPT is not set.
907  */
908 int netdev_get_name(struct net *net, char *name, int ifindex)
909 {
910         struct net_device *dev;
911         unsigned int seq;
912
913 retry:
914         seq = raw_seqcount_begin(&devnet_rename_seq);
915         rcu_read_lock();
916         dev = dev_get_by_index_rcu(net, ifindex);
917         if (!dev) {
918                 rcu_read_unlock();
919                 return -ENODEV;
920         }
921
922         strcpy(name, dev->name);
923         rcu_read_unlock();
924         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
925                 cond_resched();
926                 goto retry;
927         }
928
929         return 0;
930 }
931
932 /**
933  *      dev_getbyhwaddr_rcu - find a device by its hardware address
934  *      @net: the applicable net namespace
935  *      @type: media type of device
936  *      @ha: hardware address
937  *
938  *      Search for an interface by MAC address. Returns NULL if the device
939  *      is not found or a pointer to the device.
940  *      The caller must hold RCU or RTNL.
941  *      The returned device has not had its ref count increased
942  *      and the caller must therefore be careful about locking
943  *
944  */
945
946 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
947                                        const char *ha)
948 {
949         struct net_device *dev;
950
951         for_each_netdev_rcu(net, dev)
952                 if (dev->type == type &&
953                     !memcmp(dev->dev_addr, ha, dev->addr_len))
954                         return dev;
955
956         return NULL;
957 }
958 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
959
960 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
961 {
962         struct net_device *dev;
963
964         ASSERT_RTNL();
965         for_each_netdev(net, dev)
966                 if (dev->type == type)
967                         return dev;
968
969         return NULL;
970 }
971 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
972
973 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
974 {
975         struct net_device *dev, *ret = NULL;
976
977         rcu_read_lock();
978         for_each_netdev_rcu(net, dev)
979                 if (dev->type == type) {
980                         dev_hold(dev);
981                         ret = dev;
982                         break;
983                 }
984         rcu_read_unlock();
985         return ret;
986 }
987 EXPORT_SYMBOL(dev_getfirstbyhwtype);
988
989 /**
990  *      __dev_get_by_flags - find any device with given flags
991  *      @net: the applicable net namespace
992  *      @if_flags: IFF_* values
993  *      @mask: bitmask of bits in if_flags to check
994  *
995  *      Search for any interface with the given flags. Returns NULL if a device
996  *      is not found or a pointer to the device. Must be called inside
997  *      rtnl_lock(), and result refcount is unchanged.
998  */
999
1000 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1001                                       unsigned short mask)
1002 {
1003         struct net_device *dev, *ret;
1004
1005         ASSERT_RTNL();
1006
1007         ret = NULL;
1008         for_each_netdev(net, dev) {
1009                 if (((dev->flags ^ if_flags) & mask) == 0) {
1010                         ret = dev;
1011                         break;
1012                 }
1013         }
1014         return ret;
1015 }
1016 EXPORT_SYMBOL(__dev_get_by_flags);
1017
1018 /**
1019  *      dev_valid_name - check if name is okay for network device
1020  *      @name: name string
1021  *
1022  *      Network device names need to be valid file names to
1023  *      to allow sysfs to work.  We also disallow any kind of
1024  *      whitespace.
1025  */
1026 bool dev_valid_name(const char *name)
1027 {
1028         if (*name == '\0')
1029                 return false;
1030         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1031                 return false;
1032         if (!strcmp(name, ".") || !strcmp(name, ".."))
1033                 return false;
1034
1035         while (*name) {
1036                 if (*name == '/' || *name == ':' || isspace(*name))
1037                         return false;
1038                 name++;
1039         }
1040         return true;
1041 }
1042 EXPORT_SYMBOL(dev_valid_name);
1043
1044 /**
1045  *      __dev_alloc_name - allocate a name for a device
1046  *      @net: network namespace to allocate the device name in
1047  *      @name: name format string
1048  *      @buf:  scratch buffer and result name string
1049  *
1050  *      Passed a format string - eg "lt%d" it will try and find a suitable
1051  *      id. It scans list of devices to build up a free map, then chooses
1052  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1053  *      while allocating the name and adding the device in order to avoid
1054  *      duplicates.
1055  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1056  *      Returns the number of the unit assigned or a negative errno code.
1057  */
1058
1059 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1060 {
1061         int i = 0;
1062         const char *p;
1063         const int max_netdevices = 8*PAGE_SIZE;
1064         unsigned long *inuse;
1065         struct net_device *d;
1066
1067         if (!dev_valid_name(name))
1068                 return -EINVAL;
1069
1070         p = strchr(name, '%');
1071         if (p) {
1072                 /*
1073                  * Verify the string as this thing may have come from
1074                  * the user.  There must be either one "%d" and no other "%"
1075                  * characters.
1076                  */
1077                 if (p[1] != 'd' || strchr(p + 2, '%'))
1078                         return -EINVAL;
1079
1080                 /* Use one page as a bit array of possible slots */
1081                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1082                 if (!inuse)
1083                         return -ENOMEM;
1084
1085                 for_each_netdev(net, d) {
1086                         if (!sscanf(d->name, name, &i))
1087                                 continue;
1088                         if (i < 0 || i >= max_netdevices)
1089                                 continue;
1090
1091                         /*  avoid cases where sscanf is not exact inverse of printf */
1092                         snprintf(buf, IFNAMSIZ, name, i);
1093                         if (!strncmp(buf, d->name, IFNAMSIZ))
1094                                 set_bit(i, inuse);
1095                 }
1096
1097                 i = find_first_zero_bit(inuse, max_netdevices);
1098                 free_page((unsigned long) inuse);
1099         }
1100
1101         snprintf(buf, IFNAMSIZ, name, i);
1102         if (!__dev_get_by_name(net, buf))
1103                 return i;
1104
1105         /* It is possible to run out of possible slots
1106          * when the name is long and there isn't enough space left
1107          * for the digits, or if all bits are used.
1108          */
1109         return -ENFILE;
1110 }
1111
1112 static int dev_alloc_name_ns(struct net *net,
1113                              struct net_device *dev,
1114                              const char *name)
1115 {
1116         char buf[IFNAMSIZ];
1117         int ret;
1118
1119         BUG_ON(!net);
1120         ret = __dev_alloc_name(net, name, buf);
1121         if (ret >= 0)
1122                 strlcpy(dev->name, buf, IFNAMSIZ);
1123         return ret;
1124 }
1125
1126 /**
1127  *      dev_alloc_name - allocate a name for a device
1128  *      @dev: device
1129  *      @name: name format string
1130  *
1131  *      Passed a format string - eg "lt%d" it will try and find a suitable
1132  *      id. It scans list of devices to build up a free map, then chooses
1133  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1134  *      while allocating the name and adding the device in order to avoid
1135  *      duplicates.
1136  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1137  *      Returns the number of the unit assigned or a negative errno code.
1138  */
1139
1140 int dev_alloc_name(struct net_device *dev, const char *name)
1141 {
1142         return dev_alloc_name_ns(dev_net(dev), dev, name);
1143 }
1144 EXPORT_SYMBOL(dev_alloc_name);
1145
1146 int dev_get_valid_name(struct net *net, struct net_device *dev,
1147                        const char *name)
1148 {
1149         BUG_ON(!net);
1150
1151         if (!dev_valid_name(name))
1152                 return -EINVAL;
1153
1154         if (strchr(name, '%'))
1155                 return dev_alloc_name_ns(net, dev, name);
1156         else if (__dev_get_by_name(net, name))
1157                 return -EEXIST;
1158         else if (dev->name != name)
1159                 strlcpy(dev->name, name, IFNAMSIZ);
1160
1161         return 0;
1162 }
1163 EXPORT_SYMBOL(dev_get_valid_name);
1164
1165 /**
1166  *      dev_change_name - change name of a device
1167  *      @dev: device
1168  *      @newname: name (or format string) must be at least IFNAMSIZ
1169  *
1170  *      Change name of a device, can pass format strings "eth%d".
1171  *      for wildcarding.
1172  */
1173 int dev_change_name(struct net_device *dev, const char *newname)
1174 {
1175         unsigned char old_assign_type;
1176         char oldname[IFNAMSIZ];
1177         int err = 0;
1178         int ret;
1179         struct net *net;
1180
1181         ASSERT_RTNL();
1182         BUG_ON(!dev_net(dev));
1183
1184         net = dev_net(dev);
1185         if (dev->flags & IFF_UP)
1186                 return -EBUSY;
1187
1188         write_seqcount_begin(&devnet_rename_seq);
1189
1190         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1191                 write_seqcount_end(&devnet_rename_seq);
1192                 return 0;
1193         }
1194
1195         memcpy(oldname, dev->name, IFNAMSIZ);
1196
1197         err = dev_get_valid_name(net, dev, newname);
1198         if (err < 0) {
1199                 write_seqcount_end(&devnet_rename_seq);
1200                 return err;
1201         }
1202
1203         if (oldname[0] && !strchr(oldname, '%'))
1204                 netdev_info(dev, "renamed from %s\n", oldname);
1205
1206         old_assign_type = dev->name_assign_type;
1207         dev->name_assign_type = NET_NAME_RENAMED;
1208
1209 rollback:
1210         ret = device_rename(&dev->dev, dev->name);
1211         if (ret) {
1212                 memcpy(dev->name, oldname, IFNAMSIZ);
1213                 dev->name_assign_type = old_assign_type;
1214                 write_seqcount_end(&devnet_rename_seq);
1215                 return ret;
1216         }
1217
1218         write_seqcount_end(&devnet_rename_seq);
1219
1220         netdev_adjacent_rename_links(dev, oldname);
1221
1222         write_lock_bh(&dev_base_lock);
1223         hlist_del_rcu(&dev->name_hlist);
1224         write_unlock_bh(&dev_base_lock);
1225
1226         synchronize_rcu();
1227
1228         write_lock_bh(&dev_base_lock);
1229         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1230         write_unlock_bh(&dev_base_lock);
1231
1232         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1233         ret = notifier_to_errno(ret);
1234
1235         if (ret) {
1236                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1237                 if (err >= 0) {
1238                         err = ret;
1239                         write_seqcount_begin(&devnet_rename_seq);
1240                         memcpy(dev->name, oldname, IFNAMSIZ);
1241                         memcpy(oldname, newname, IFNAMSIZ);
1242                         dev->name_assign_type = old_assign_type;
1243                         old_assign_type = NET_NAME_RENAMED;
1244                         goto rollback;
1245                 } else {
1246                         pr_err("%s: name change rollback failed: %d\n",
1247                                dev->name, ret);
1248                 }
1249         }
1250
1251         return err;
1252 }
1253
1254 /**
1255  *      dev_set_alias - change ifalias of a device
1256  *      @dev: device
1257  *      @alias: name up to IFALIASZ
1258  *      @len: limit of bytes to copy from info
1259  *
1260  *      Set ifalias for a device,
1261  */
1262 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1263 {
1264         struct dev_ifalias *new_alias = NULL;
1265
1266         if (len >= IFALIASZ)
1267                 return -EINVAL;
1268
1269         if (len) {
1270                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1271                 if (!new_alias)
1272                         return -ENOMEM;
1273
1274                 memcpy(new_alias->ifalias, alias, len);
1275                 new_alias->ifalias[len] = 0;
1276         }
1277
1278         mutex_lock(&ifalias_mutex);
1279         rcu_swap_protected(dev->ifalias, new_alias,
1280                            mutex_is_locked(&ifalias_mutex));
1281         mutex_unlock(&ifalias_mutex);
1282
1283         if (new_alias)
1284                 kfree_rcu(new_alias, rcuhead);
1285
1286         return len;
1287 }
1288 EXPORT_SYMBOL(dev_set_alias);
1289
1290 /**
1291  *      dev_get_alias - get ifalias of a device
1292  *      @dev: device
1293  *      @name: buffer to store name of ifalias
1294  *      @len: size of buffer
1295  *
1296  *      get ifalias for a device.  Caller must make sure dev cannot go
1297  *      away,  e.g. rcu read lock or own a reference count to device.
1298  */
1299 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1300 {
1301         const struct dev_ifalias *alias;
1302         int ret = 0;
1303
1304         rcu_read_lock();
1305         alias = rcu_dereference(dev->ifalias);
1306         if (alias)
1307                 ret = snprintf(name, len, "%s", alias->ifalias);
1308         rcu_read_unlock();
1309
1310         return ret;
1311 }
1312
1313 /**
1314  *      netdev_features_change - device changes features
1315  *      @dev: device to cause notification
1316  *
1317  *      Called to indicate a device has changed features.
1318  */
1319 void netdev_features_change(struct net_device *dev)
1320 {
1321         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1322 }
1323 EXPORT_SYMBOL(netdev_features_change);
1324
1325 /**
1326  *      netdev_state_change - device changes state
1327  *      @dev: device to cause notification
1328  *
1329  *      Called to indicate a device has changed state. This function calls
1330  *      the notifier chains for netdev_chain and sends a NEWLINK message
1331  *      to the routing socket.
1332  */
1333 void netdev_state_change(struct net_device *dev)
1334 {
1335         if (dev->flags & IFF_UP) {
1336                 struct netdev_notifier_change_info change_info = {
1337                         .info.dev = dev,
1338                 };
1339
1340                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1341                                               &change_info.info);
1342                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1343         }
1344 }
1345 EXPORT_SYMBOL(netdev_state_change);
1346
1347 /**
1348  * netdev_notify_peers - notify network peers about existence of @dev
1349  * @dev: network device
1350  *
1351  * Generate traffic such that interested network peers are aware of
1352  * @dev, such as by generating a gratuitous ARP. This may be used when
1353  * a device wants to inform the rest of the network about some sort of
1354  * reconfiguration such as a failover event or virtual machine
1355  * migration.
1356  */
1357 void netdev_notify_peers(struct net_device *dev)
1358 {
1359         rtnl_lock();
1360         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1361         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1362         rtnl_unlock();
1363 }
1364 EXPORT_SYMBOL(netdev_notify_peers);
1365
1366 static int __dev_open(struct net_device *dev)
1367 {
1368         const struct net_device_ops *ops = dev->netdev_ops;
1369         int ret;
1370
1371         ASSERT_RTNL();
1372
1373         if (!netif_device_present(dev))
1374                 return -ENODEV;
1375
1376         /* Block netpoll from trying to do any rx path servicing.
1377          * If we don't do this there is a chance ndo_poll_controller
1378          * or ndo_poll may be running while we open the device
1379          */
1380         netpoll_poll_disable(dev);
1381
1382         ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1383         ret = notifier_to_errno(ret);
1384         if (ret)
1385                 return ret;
1386
1387         set_bit(__LINK_STATE_START, &dev->state);
1388
1389         if (ops->ndo_validate_addr)
1390                 ret = ops->ndo_validate_addr(dev);
1391
1392         if (!ret && ops->ndo_open)
1393                 ret = ops->ndo_open(dev);
1394
1395         netpoll_poll_enable(dev);
1396
1397         if (ret)
1398                 clear_bit(__LINK_STATE_START, &dev->state);
1399         else {
1400                 dev->flags |= IFF_UP;
1401                 dev_set_rx_mode(dev);
1402                 dev_activate(dev);
1403                 add_device_randomness(dev->dev_addr, dev->addr_len);
1404         }
1405
1406         return ret;
1407 }
1408
1409 /**
1410  *      dev_open        - prepare an interface for use.
1411  *      @dev:   device to open
1412  *
1413  *      Takes a device from down to up state. The device's private open
1414  *      function is invoked and then the multicast lists are loaded. Finally
1415  *      the device is moved into the up state and a %NETDEV_UP message is
1416  *      sent to the netdev notifier chain.
1417  *
1418  *      Calling this function on an active interface is a nop. On a failure
1419  *      a negative errno code is returned.
1420  */
1421 int dev_open(struct net_device *dev)
1422 {
1423         int ret;
1424
1425         if (dev->flags & IFF_UP)
1426                 return 0;
1427
1428         ret = __dev_open(dev);
1429         if (ret < 0)
1430                 return ret;
1431
1432         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1433         call_netdevice_notifiers(NETDEV_UP, dev);
1434
1435         return ret;
1436 }
1437 EXPORT_SYMBOL(dev_open);
1438
1439 static void __dev_close_many(struct list_head *head)
1440 {
1441         struct net_device *dev;
1442
1443         ASSERT_RTNL();
1444         might_sleep();
1445
1446         list_for_each_entry(dev, head, close_list) {
1447                 /* Temporarily disable netpoll until the interface is down */
1448                 netpoll_poll_disable(dev);
1449
1450                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1451
1452                 clear_bit(__LINK_STATE_START, &dev->state);
1453
1454                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1455                  * can be even on different cpu. So just clear netif_running().
1456                  *
1457                  * dev->stop() will invoke napi_disable() on all of it's
1458                  * napi_struct instances on this device.
1459                  */
1460                 smp_mb__after_atomic(); /* Commit netif_running(). */
1461         }
1462
1463         dev_deactivate_many(head);
1464
1465         list_for_each_entry(dev, head, close_list) {
1466                 const struct net_device_ops *ops = dev->netdev_ops;
1467
1468                 /*
1469                  *      Call the device specific close. This cannot fail.
1470                  *      Only if device is UP
1471                  *
1472                  *      We allow it to be called even after a DETACH hot-plug
1473                  *      event.
1474                  */
1475                 if (ops->ndo_stop)
1476                         ops->ndo_stop(dev);
1477
1478                 dev->flags &= ~IFF_UP;
1479                 netpoll_poll_enable(dev);
1480         }
1481 }
1482
1483 static void __dev_close(struct net_device *dev)
1484 {
1485         LIST_HEAD(single);
1486
1487         list_add(&dev->close_list, &single);
1488         __dev_close_many(&single);
1489         list_del(&single);
1490 }
1491
1492 void dev_close_many(struct list_head *head, bool unlink)
1493 {
1494         struct net_device *dev, *tmp;
1495
1496         /* Remove the devices that don't need to be closed */
1497         list_for_each_entry_safe(dev, tmp, head, close_list)
1498                 if (!(dev->flags & IFF_UP))
1499                         list_del_init(&dev->close_list);
1500
1501         __dev_close_many(head);
1502
1503         list_for_each_entry_safe(dev, tmp, head, close_list) {
1504                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1505                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1506                 if (unlink)
1507                         list_del_init(&dev->close_list);
1508         }
1509 }
1510 EXPORT_SYMBOL(dev_close_many);
1511
1512 /**
1513  *      dev_close - shutdown an interface.
1514  *      @dev: device to shutdown
1515  *
1516  *      This function moves an active device into down state. A
1517  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1518  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1519  *      chain.
1520  */
1521 void dev_close(struct net_device *dev)
1522 {
1523         if (dev->flags & IFF_UP) {
1524                 LIST_HEAD(single);
1525
1526                 list_add(&dev->close_list, &single);
1527                 dev_close_many(&single, true);
1528                 list_del(&single);
1529         }
1530 }
1531 EXPORT_SYMBOL(dev_close);
1532
1533
1534 /**
1535  *      dev_disable_lro - disable Large Receive Offload on a device
1536  *      @dev: device
1537  *
1538  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1539  *      called under RTNL.  This is needed if received packets may be
1540  *      forwarded to another interface.
1541  */
1542 void dev_disable_lro(struct net_device *dev)
1543 {
1544         struct net_device *lower_dev;
1545         struct list_head *iter;
1546
1547         dev->wanted_features &= ~NETIF_F_LRO;
1548         netdev_update_features(dev);
1549
1550         if (unlikely(dev->features & NETIF_F_LRO))
1551                 netdev_WARN(dev, "failed to disable LRO!\n");
1552
1553         netdev_for_each_lower_dev(dev, lower_dev, iter)
1554                 dev_disable_lro(lower_dev);
1555 }
1556 EXPORT_SYMBOL(dev_disable_lro);
1557
1558 /**
1559  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1560  *      @dev: device
1561  *
1562  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1563  *      called under RTNL.  This is needed if Generic XDP is installed on
1564  *      the device.
1565  */
1566 static void dev_disable_gro_hw(struct net_device *dev)
1567 {
1568         dev->wanted_features &= ~NETIF_F_GRO_HW;
1569         netdev_update_features(dev);
1570
1571         if (unlikely(dev->features & NETIF_F_GRO_HW))
1572                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1573 }
1574
1575 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1576 {
1577 #define N(val)                                          \
1578         case NETDEV_##val:                              \
1579                 return "NETDEV_" __stringify(val);
1580         switch (cmd) {
1581         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1582         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1583         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1584         N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1585         N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1586         N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1587         N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1588         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1589         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1590         }
1591 #undef N
1592         return "UNKNOWN_NETDEV_EVENT";
1593 }
1594 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1595
1596 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1597                                    struct net_device *dev)
1598 {
1599         struct netdev_notifier_info info = {
1600                 .dev = dev,
1601         };
1602
1603         return nb->notifier_call(nb, val, &info);
1604 }
1605
1606 static int dev_boot_phase = 1;
1607
1608 /**
1609  * register_netdevice_notifier - register a network notifier block
1610  * @nb: notifier
1611  *
1612  * Register a notifier to be called when network device events occur.
1613  * The notifier passed is linked into the kernel structures and must
1614  * not be reused until it has been unregistered. A negative errno code
1615  * is returned on a failure.
1616  *
1617  * When registered all registration and up events are replayed
1618  * to the new notifier to allow device to have a race free
1619  * view of the network device list.
1620  */
1621
1622 int register_netdevice_notifier(struct notifier_block *nb)
1623 {
1624         struct net_device *dev;
1625         struct net_device *last;
1626         struct net *net;
1627         int err;
1628
1629         /* Close race with setup_net() and cleanup_net() */
1630         down_write(&pernet_ops_rwsem);
1631         rtnl_lock();
1632         err = raw_notifier_chain_register(&netdev_chain, nb);
1633         if (err)
1634                 goto unlock;
1635         if (dev_boot_phase)
1636                 goto unlock;
1637         for_each_net(net) {
1638                 for_each_netdev(net, dev) {
1639                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1640                         err = notifier_to_errno(err);
1641                         if (err)
1642                                 goto rollback;
1643
1644                         if (!(dev->flags & IFF_UP))
1645                                 continue;
1646
1647                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1648                 }
1649         }
1650
1651 unlock:
1652         rtnl_unlock();
1653         up_write(&pernet_ops_rwsem);
1654         return err;
1655
1656 rollback:
1657         last = dev;
1658         for_each_net(net) {
1659                 for_each_netdev(net, dev) {
1660                         if (dev == last)
1661                                 goto outroll;
1662
1663                         if (dev->flags & IFF_UP) {
1664                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1665                                                         dev);
1666                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1667                         }
1668                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1669                 }
1670         }
1671
1672 outroll:
1673         raw_notifier_chain_unregister(&netdev_chain, nb);
1674         goto unlock;
1675 }
1676 EXPORT_SYMBOL(register_netdevice_notifier);
1677
1678 /**
1679  * unregister_netdevice_notifier - unregister a network notifier block
1680  * @nb: notifier
1681  *
1682  * Unregister a notifier previously registered by
1683  * register_netdevice_notifier(). The notifier is unlinked into the
1684  * kernel structures and may then be reused. A negative errno code
1685  * is returned on a failure.
1686  *
1687  * After unregistering unregister and down device events are synthesized
1688  * for all devices on the device list to the removed notifier to remove
1689  * the need for special case cleanup code.
1690  */
1691
1692 int unregister_netdevice_notifier(struct notifier_block *nb)
1693 {
1694         struct net_device *dev;
1695         struct net *net;
1696         int err;
1697
1698         /* Close race with setup_net() and cleanup_net() */
1699         down_write(&pernet_ops_rwsem);
1700         rtnl_lock();
1701         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1702         if (err)
1703                 goto unlock;
1704
1705         for_each_net(net) {
1706                 for_each_netdev(net, dev) {
1707                         if (dev->flags & IFF_UP) {
1708                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1709                                                         dev);
1710                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1711                         }
1712                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1713                 }
1714         }
1715 unlock:
1716         rtnl_unlock();
1717         up_write(&pernet_ops_rwsem);
1718         return err;
1719 }
1720 EXPORT_SYMBOL(unregister_netdevice_notifier);
1721
1722 /**
1723  *      call_netdevice_notifiers_info - call all network notifier blocks
1724  *      @val: value passed unmodified to notifier function
1725  *      @info: notifier information data
1726  *
1727  *      Call all network notifier blocks.  Parameters and return value
1728  *      are as for raw_notifier_call_chain().
1729  */
1730
1731 static int call_netdevice_notifiers_info(unsigned long val,
1732                                          struct netdev_notifier_info *info)
1733 {
1734         ASSERT_RTNL();
1735         return raw_notifier_call_chain(&netdev_chain, val, info);
1736 }
1737
1738 /**
1739  *      call_netdevice_notifiers - call all network notifier blocks
1740  *      @val: value passed unmodified to notifier function
1741  *      @dev: net_device pointer passed unmodified to notifier function
1742  *
1743  *      Call all network notifier blocks.  Parameters and return value
1744  *      are as for raw_notifier_call_chain().
1745  */
1746
1747 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1748 {
1749         struct netdev_notifier_info info = {
1750                 .dev = dev,
1751         };
1752
1753         return call_netdevice_notifiers_info(val, &info);
1754 }
1755 EXPORT_SYMBOL(call_netdevice_notifiers);
1756
1757 #ifdef CONFIG_NET_INGRESS
1758 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
1759
1760 void net_inc_ingress_queue(void)
1761 {
1762         static_branch_inc(&ingress_needed_key);
1763 }
1764 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1765
1766 void net_dec_ingress_queue(void)
1767 {
1768         static_branch_dec(&ingress_needed_key);
1769 }
1770 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1771 #endif
1772
1773 #ifdef CONFIG_NET_EGRESS
1774 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1775
1776 void net_inc_egress_queue(void)
1777 {
1778         static_branch_inc(&egress_needed_key);
1779 }
1780 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1781
1782 void net_dec_egress_queue(void)
1783 {
1784         static_branch_dec(&egress_needed_key);
1785 }
1786 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1787 #endif
1788
1789 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
1790 #ifdef HAVE_JUMP_LABEL
1791 static atomic_t netstamp_needed_deferred;
1792 static atomic_t netstamp_wanted;
1793 static void netstamp_clear(struct work_struct *work)
1794 {
1795         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1796         int wanted;
1797
1798         wanted = atomic_add_return(deferred, &netstamp_wanted);
1799         if (wanted > 0)
1800                 static_branch_enable(&netstamp_needed_key);
1801         else
1802                 static_branch_disable(&netstamp_needed_key);
1803 }
1804 static DECLARE_WORK(netstamp_work, netstamp_clear);
1805 #endif
1806
1807 void net_enable_timestamp(void)
1808 {
1809 #ifdef HAVE_JUMP_LABEL
1810         int wanted;
1811
1812         while (1) {
1813                 wanted = atomic_read(&netstamp_wanted);
1814                 if (wanted <= 0)
1815                         break;
1816                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1817                         return;
1818         }
1819         atomic_inc(&netstamp_needed_deferred);
1820         schedule_work(&netstamp_work);
1821 #else
1822         static_branch_inc(&netstamp_needed_key);
1823 #endif
1824 }
1825 EXPORT_SYMBOL(net_enable_timestamp);
1826
1827 void net_disable_timestamp(void)
1828 {
1829 #ifdef HAVE_JUMP_LABEL
1830         int wanted;
1831
1832         while (1) {
1833                 wanted = atomic_read(&netstamp_wanted);
1834                 if (wanted <= 1)
1835                         break;
1836                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1837                         return;
1838         }
1839         atomic_dec(&netstamp_needed_deferred);
1840         schedule_work(&netstamp_work);
1841 #else
1842         static_branch_dec(&netstamp_needed_key);
1843 #endif
1844 }
1845 EXPORT_SYMBOL(net_disable_timestamp);
1846
1847 static inline void net_timestamp_set(struct sk_buff *skb)
1848 {
1849         skb->tstamp = 0;
1850         if (static_branch_unlikely(&netstamp_needed_key))
1851                 __net_timestamp(skb);
1852 }
1853
1854 #define net_timestamp_check(COND, SKB)                          \
1855         if (static_branch_unlikely(&netstamp_needed_key)) {     \
1856                 if ((COND) && !(SKB)->tstamp)                   \
1857                         __net_timestamp(SKB);                   \
1858         }                                                       \
1859
1860 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1861 {
1862         unsigned int len;
1863
1864         if (!(dev->flags & IFF_UP))
1865                 return false;
1866
1867         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1868         if (skb->len <= len)
1869                 return true;
1870
1871         /* if TSO is enabled, we don't care about the length as the packet
1872          * could be forwarded without being segmented before
1873          */
1874         if (skb_is_gso(skb))
1875                 return true;
1876
1877         return false;
1878 }
1879 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1880
1881 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1882 {
1883         int ret = ____dev_forward_skb(dev, skb);
1884
1885         if (likely(!ret)) {
1886                 skb->protocol = eth_type_trans(skb, dev);
1887                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1888         }
1889
1890         return ret;
1891 }
1892 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1893
1894 /**
1895  * dev_forward_skb - loopback an skb to another netif
1896  *
1897  * @dev: destination network device
1898  * @skb: buffer to forward
1899  *
1900  * return values:
1901  *      NET_RX_SUCCESS  (no congestion)
1902  *      NET_RX_DROP     (packet was dropped, but freed)
1903  *
1904  * dev_forward_skb can be used for injecting an skb from the
1905  * start_xmit function of one device into the receive queue
1906  * of another device.
1907  *
1908  * The receiving device may be in another namespace, so
1909  * we have to clear all information in the skb that could
1910  * impact namespace isolation.
1911  */
1912 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1913 {
1914         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1915 }
1916 EXPORT_SYMBOL_GPL(dev_forward_skb);
1917
1918 static inline int deliver_skb(struct sk_buff *skb,
1919                               struct packet_type *pt_prev,
1920                               struct net_device *orig_dev)
1921 {
1922         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1923                 return -ENOMEM;
1924         refcount_inc(&skb->users);
1925         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1926 }
1927
1928 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1929                                           struct packet_type **pt,
1930                                           struct net_device *orig_dev,
1931                                           __be16 type,
1932                                           struct list_head *ptype_list)
1933 {
1934         struct packet_type *ptype, *pt_prev = *pt;
1935
1936         list_for_each_entry_rcu(ptype, ptype_list, list) {
1937                 if (ptype->type != type)
1938                         continue;
1939                 if (pt_prev)
1940                         deliver_skb(skb, pt_prev, orig_dev);
1941                 pt_prev = ptype;
1942         }
1943         *pt = pt_prev;
1944 }
1945
1946 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1947 {
1948         if (!ptype->af_packet_priv || !skb->sk)
1949                 return false;
1950
1951         if (ptype->id_match)
1952                 return ptype->id_match(ptype, skb->sk);
1953         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1954                 return true;
1955
1956         return false;
1957 }
1958
1959 /*
1960  *      Support routine. Sends outgoing frames to any network
1961  *      taps currently in use.
1962  */
1963
1964 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1965 {
1966         struct packet_type *ptype;
1967         struct sk_buff *skb2 = NULL;
1968         struct packet_type *pt_prev = NULL;
1969         struct list_head *ptype_list = &ptype_all;
1970
1971         rcu_read_lock();
1972 again:
1973         list_for_each_entry_rcu(ptype, ptype_list, list) {
1974                 /* Never send packets back to the socket
1975                  * they originated from - MvS (miquels@drinkel.ow.org)
1976                  */
1977                 if (skb_loop_sk(ptype, skb))
1978                         continue;
1979
1980                 if (pt_prev) {
1981                         deliver_skb(skb2, pt_prev, skb->dev);
1982                         pt_prev = ptype;
1983                         continue;
1984                 }
1985
1986                 /* need to clone skb, done only once */
1987                 skb2 = skb_clone(skb, GFP_ATOMIC);
1988                 if (!skb2)
1989                         goto out_unlock;
1990
1991                 net_timestamp_set(skb2);
1992
1993                 /* skb->nh should be correctly
1994                  * set by sender, so that the second statement is
1995                  * just protection against buggy protocols.
1996                  */
1997                 skb_reset_mac_header(skb2);
1998
1999                 if (skb_network_header(skb2) < skb2->data ||
2000                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2001                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2002                                              ntohs(skb2->protocol),
2003                                              dev->name);
2004                         skb_reset_network_header(skb2);
2005                 }
2006
2007                 skb2->transport_header = skb2->network_header;
2008                 skb2->pkt_type = PACKET_OUTGOING;
2009                 pt_prev = ptype;
2010         }
2011
2012         if (ptype_list == &ptype_all) {
2013                 ptype_list = &dev->ptype_all;
2014                 goto again;
2015         }
2016 out_unlock:
2017         if (pt_prev) {
2018                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2019                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2020                 else
2021                         kfree_skb(skb2);
2022         }
2023         rcu_read_unlock();
2024 }
2025 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2026
2027 /**
2028  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2029  * @dev: Network device
2030  * @txq: number of queues available
2031  *
2032  * If real_num_tx_queues is changed the tc mappings may no longer be
2033  * valid. To resolve this verify the tc mapping remains valid and if
2034  * not NULL the mapping. With no priorities mapping to this
2035  * offset/count pair it will no longer be used. In the worst case TC0
2036  * is invalid nothing can be done so disable priority mappings. If is
2037  * expected that drivers will fix this mapping if they can before
2038  * calling netif_set_real_num_tx_queues.
2039  */
2040 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2041 {
2042         int i;
2043         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2044
2045         /* If TC0 is invalidated disable TC mapping */
2046         if (tc->offset + tc->count > txq) {
2047                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2048                 dev->num_tc = 0;
2049                 return;
2050         }
2051
2052         /* Invalidated prio to tc mappings set to TC0 */
2053         for (i = 1; i < TC_BITMASK + 1; i++) {
2054                 int q = netdev_get_prio_tc_map(dev, i);
2055
2056                 tc = &dev->tc_to_txq[q];
2057                 if (tc->offset + tc->count > txq) {
2058                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2059                                 i, q);
2060                         netdev_set_prio_tc_map(dev, i, 0);
2061                 }
2062         }
2063 }
2064
2065 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2066 {
2067         if (dev->num_tc) {
2068                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2069                 int i;
2070
2071                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2072                         if ((txq - tc->offset) < tc->count)
2073                                 return i;
2074                 }
2075
2076                 return -1;
2077         }
2078
2079         return 0;
2080 }
2081 EXPORT_SYMBOL(netdev_txq_to_tc);
2082
2083 #ifdef CONFIG_XPS
2084 struct static_key xps_needed __read_mostly;
2085 EXPORT_SYMBOL(xps_needed);
2086 struct static_key xps_rxqs_needed __read_mostly;
2087 EXPORT_SYMBOL(xps_rxqs_needed);
2088 static DEFINE_MUTEX(xps_map_mutex);
2089 #define xmap_dereference(P)             \
2090         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2091
2092 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2093                              int tci, u16 index)
2094 {
2095         struct xps_map *map = NULL;
2096         int pos;
2097
2098         if (dev_maps)
2099                 map = xmap_dereference(dev_maps->attr_map[tci]);
2100         if (!map)
2101                 return false;
2102
2103         for (pos = map->len; pos--;) {
2104                 if (map->queues[pos] != index)
2105                         continue;
2106
2107                 if (map->len > 1) {
2108                         map->queues[pos] = map->queues[--map->len];
2109                         break;
2110                 }
2111
2112                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2113                 kfree_rcu(map, rcu);
2114                 return false;
2115         }
2116
2117         return true;
2118 }
2119
2120 static bool remove_xps_queue_cpu(struct net_device *dev,
2121                                  struct xps_dev_maps *dev_maps,
2122                                  int cpu, u16 offset, u16 count)
2123 {
2124         int num_tc = dev->num_tc ? : 1;
2125         bool active = false;
2126         int tci;
2127
2128         for (tci = cpu * num_tc; num_tc--; tci++) {
2129                 int i, j;
2130
2131                 for (i = count, j = offset; i--; j++) {
2132                         if (!remove_xps_queue(dev_maps, tci, j))
2133                                 break;
2134                 }
2135
2136                 active |= i < 0;
2137         }
2138
2139         return active;
2140 }
2141
2142 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2143                            struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2144                            u16 offset, u16 count, bool is_rxqs_map)
2145 {
2146         bool active = false;
2147         int i, j;
2148
2149         for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2150              j < nr_ids;)
2151                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2152                                                count);
2153         if (!active) {
2154                 if (is_rxqs_map) {
2155                         RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2156                 } else {
2157                         RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2158
2159                         for (i = offset + (count - 1); count--; i--)
2160                                 netdev_queue_numa_node_write(
2161                                         netdev_get_tx_queue(dev, i),
2162                                                         NUMA_NO_NODE);
2163                 }
2164                 kfree_rcu(dev_maps, rcu);
2165         }
2166 }
2167
2168 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2169                                    u16 count)
2170 {
2171         const unsigned long *possible_mask = NULL;
2172         struct xps_dev_maps *dev_maps;
2173         unsigned int nr_ids;
2174
2175         if (!static_key_false(&xps_needed))
2176                 return;
2177
2178         mutex_lock(&xps_map_mutex);
2179
2180         if (static_key_false(&xps_rxqs_needed)) {
2181                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2182                 if (dev_maps) {
2183                         nr_ids = dev->num_rx_queues;
2184                         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2185                                        offset, count, true);
2186                 }
2187         }
2188
2189         dev_maps = xmap_dereference(dev->xps_cpus_map);
2190         if (!dev_maps)
2191                 goto out_no_maps;
2192
2193         if (num_possible_cpus() > 1)
2194                 possible_mask = cpumask_bits(cpu_possible_mask);
2195         nr_ids = nr_cpu_ids;
2196         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2197                        false);
2198
2199 out_no_maps:
2200         if (static_key_enabled(&xps_rxqs_needed))
2201                 static_key_slow_dec(&xps_rxqs_needed);
2202
2203         static_key_slow_dec(&xps_needed);
2204         mutex_unlock(&xps_map_mutex);
2205 }
2206
2207 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2208 {
2209         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2210 }
2211
2212 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2213                                       u16 index, bool is_rxqs_map)
2214 {
2215         struct xps_map *new_map;
2216         int alloc_len = XPS_MIN_MAP_ALLOC;
2217         int i, pos;
2218
2219         for (pos = 0; map && pos < map->len; pos++) {
2220                 if (map->queues[pos] != index)
2221                         continue;
2222                 return map;
2223         }
2224
2225         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2226         if (map) {
2227                 if (pos < map->alloc_len)
2228                         return map;
2229
2230                 alloc_len = map->alloc_len * 2;
2231         }
2232
2233         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2234          *  map
2235          */
2236         if (is_rxqs_map)
2237                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2238         else
2239                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2240                                        cpu_to_node(attr_index));
2241         if (!new_map)
2242                 return NULL;
2243
2244         for (i = 0; i < pos; i++)
2245                 new_map->queues[i] = map->queues[i];
2246         new_map->alloc_len = alloc_len;
2247         new_map->len = pos;
2248
2249         return new_map;
2250 }
2251
2252 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2253                           u16 index, bool is_rxqs_map)
2254 {
2255         const unsigned long *online_mask = NULL, *possible_mask = NULL;
2256         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2257         int i, j, tci, numa_node_id = -2;
2258         int maps_sz, num_tc = 1, tc = 0;
2259         struct xps_map *map, *new_map;
2260         bool active = false;
2261         unsigned int nr_ids;
2262
2263         if (dev->num_tc) {
2264                 num_tc = dev->num_tc;
2265                 tc = netdev_txq_to_tc(dev, index);
2266                 if (tc < 0)
2267                         return -EINVAL;
2268         }
2269
2270         mutex_lock(&xps_map_mutex);
2271         if (is_rxqs_map) {
2272                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2273                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2274                 nr_ids = dev->num_rx_queues;
2275         } else {
2276                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2277                 if (num_possible_cpus() > 1) {
2278                         online_mask = cpumask_bits(cpu_online_mask);
2279                         possible_mask = cpumask_bits(cpu_possible_mask);
2280                 }
2281                 dev_maps = xmap_dereference(dev->xps_cpus_map);
2282                 nr_ids = nr_cpu_ids;
2283         }
2284
2285         if (maps_sz < L1_CACHE_BYTES)
2286                 maps_sz = L1_CACHE_BYTES;
2287
2288         /* allocate memory for queue storage */
2289         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2290              j < nr_ids;) {
2291                 if (!new_dev_maps)
2292                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2293                 if (!new_dev_maps) {
2294                         mutex_unlock(&xps_map_mutex);
2295                         return -ENOMEM;
2296                 }
2297
2298                 tci = j * num_tc + tc;
2299                 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2300                                  NULL;
2301
2302                 map = expand_xps_map(map, j, index, is_rxqs_map);
2303                 if (!map)
2304                         goto error;
2305
2306                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2307         }
2308
2309         if (!new_dev_maps)
2310                 goto out_no_new_maps;
2311
2312         static_key_slow_inc(&xps_needed);
2313         if (is_rxqs_map)
2314                 static_key_slow_inc(&xps_rxqs_needed);
2315
2316         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2317              j < nr_ids;) {
2318                 /* copy maps belonging to foreign traffic classes */
2319                 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2320                         /* fill in the new device map from the old device map */
2321                         map = xmap_dereference(dev_maps->attr_map[tci]);
2322                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2323                 }
2324
2325                 /* We need to explicitly update tci as prevous loop
2326                  * could break out early if dev_maps is NULL.
2327                  */
2328                 tci = j * num_tc + tc;
2329
2330                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2331                     netif_attr_test_online(j, online_mask, nr_ids)) {
2332                         /* add tx-queue to CPU/rx-queue maps */
2333                         int pos = 0;
2334
2335                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2336                         while ((pos < map->len) && (map->queues[pos] != index))
2337                                 pos++;
2338
2339                         if (pos == map->len)
2340                                 map->queues[map->len++] = index;
2341 #ifdef CONFIG_NUMA
2342                         if (!is_rxqs_map) {
2343                                 if (numa_node_id == -2)
2344                                         numa_node_id = cpu_to_node(j);
2345                                 else if (numa_node_id != cpu_to_node(j))
2346                                         numa_node_id = -1;
2347                         }
2348 #endif
2349                 } else if (dev_maps) {
2350                         /* fill in the new device map from the old device map */
2351                         map = xmap_dereference(dev_maps->attr_map[tci]);
2352                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2353                 }
2354
2355                 /* copy maps belonging to foreign traffic classes */
2356                 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2357                         /* fill in the new device map from the old device map */
2358                         map = xmap_dereference(dev_maps->attr_map[tci]);
2359                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2360                 }
2361         }
2362
2363         if (is_rxqs_map)
2364                 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2365         else
2366                 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2367
2368         /* Cleanup old maps */
2369         if (!dev_maps)
2370                 goto out_no_old_maps;
2371
2372         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2373              j < nr_ids;) {
2374                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2375                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2376                         map = xmap_dereference(dev_maps->attr_map[tci]);
2377                         if (map && map != new_map)
2378                                 kfree_rcu(map, rcu);
2379                 }
2380         }
2381
2382         kfree_rcu(dev_maps, rcu);
2383
2384 out_no_old_maps:
2385         dev_maps = new_dev_maps;
2386         active = true;
2387
2388 out_no_new_maps:
2389         if (!is_rxqs_map) {
2390                 /* update Tx queue numa node */
2391                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2392                                              (numa_node_id >= 0) ?
2393                                              numa_node_id : NUMA_NO_NODE);
2394         }
2395
2396         if (!dev_maps)
2397                 goto out_no_maps;
2398
2399         /* removes tx-queue from unused CPUs/rx-queues */
2400         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2401              j < nr_ids;) {
2402                 for (i = tc, tci = j * num_tc; i--; tci++)
2403                         active |= remove_xps_queue(dev_maps, tci, index);
2404                 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2405                     !netif_attr_test_online(j, online_mask, nr_ids))
2406                         active |= remove_xps_queue(dev_maps, tci, index);
2407                 for (i = num_tc - tc, tci++; --i; tci++)
2408                         active |= remove_xps_queue(dev_maps, tci, index);
2409         }
2410
2411         /* free map if not active */
2412         if (!active) {
2413                 if (is_rxqs_map)
2414                         RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2415                 else
2416                         RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2417                 kfree_rcu(dev_maps, rcu);
2418         }
2419
2420 out_no_maps:
2421         mutex_unlock(&xps_map_mutex);
2422
2423         return 0;
2424 error:
2425         /* remove any maps that we added */
2426         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2427              j < nr_ids;) {
2428                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2429                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2430                         map = dev_maps ?
2431                               xmap_dereference(dev_maps->attr_map[tci]) :
2432                               NULL;
2433                         if (new_map && new_map != map)
2434                                 kfree(new_map);
2435                 }
2436         }
2437
2438         mutex_unlock(&xps_map_mutex);
2439
2440         kfree(new_dev_maps);
2441         return -ENOMEM;
2442 }
2443
2444 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2445                         u16 index)
2446 {
2447         return __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2448 }
2449 EXPORT_SYMBOL(netif_set_xps_queue);
2450
2451 #endif
2452 void netdev_reset_tc(struct net_device *dev)
2453 {
2454 #ifdef CONFIG_XPS
2455         netif_reset_xps_queues_gt(dev, 0);
2456 #endif
2457         dev->num_tc = 0;
2458         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2459         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2460 }
2461 EXPORT_SYMBOL(netdev_reset_tc);
2462
2463 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2464 {
2465         if (tc >= dev->num_tc)
2466                 return -EINVAL;
2467
2468 #ifdef CONFIG_XPS
2469         netif_reset_xps_queues(dev, offset, count);
2470 #endif
2471         dev->tc_to_txq[tc].count = count;
2472         dev->tc_to_txq[tc].offset = offset;
2473         return 0;
2474 }
2475 EXPORT_SYMBOL(netdev_set_tc_queue);
2476
2477 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2478 {
2479         if (num_tc > TC_MAX_QUEUE)
2480                 return -EINVAL;
2481
2482 #ifdef CONFIG_XPS
2483         netif_reset_xps_queues_gt(dev, 0);
2484 #endif
2485         dev->num_tc = num_tc;
2486         return 0;
2487 }
2488 EXPORT_SYMBOL(netdev_set_num_tc);
2489
2490 /*
2491  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2492  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2493  */
2494 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2495 {
2496         bool disabling;
2497         int rc;
2498
2499         disabling = txq < dev->real_num_tx_queues;
2500
2501         if (txq < 1 || txq > dev->num_tx_queues)
2502                 return -EINVAL;
2503
2504         if (dev->reg_state == NETREG_REGISTERED ||
2505             dev->reg_state == NETREG_UNREGISTERING) {
2506                 ASSERT_RTNL();
2507
2508                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2509                                                   txq);
2510                 if (rc)
2511                         return rc;
2512
2513                 if (dev->num_tc)
2514                         netif_setup_tc(dev, txq);
2515
2516                 dev->real_num_tx_queues = txq;
2517
2518                 if (disabling) {
2519                         synchronize_net();
2520                         qdisc_reset_all_tx_gt(dev, txq);
2521 #ifdef CONFIG_XPS
2522                         netif_reset_xps_queues_gt(dev, txq);
2523 #endif
2524                 }
2525         } else {
2526                 dev->real_num_tx_queues = txq;
2527         }
2528
2529         return 0;
2530 }
2531 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2532
2533 #ifdef CONFIG_SYSFS
2534 /**
2535  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2536  *      @dev: Network device
2537  *      @rxq: Actual number of RX queues
2538  *
2539  *      This must be called either with the rtnl_lock held or before
2540  *      registration of the net device.  Returns 0 on success, or a
2541  *      negative error code.  If called before registration, it always
2542  *      succeeds.
2543  */
2544 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2545 {
2546         int rc;
2547
2548         if (rxq < 1 || rxq > dev->num_rx_queues)
2549                 return -EINVAL;
2550
2551         if (dev->reg_state == NETREG_REGISTERED) {
2552                 ASSERT_RTNL();
2553
2554                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2555                                                   rxq);
2556                 if (rc)
2557                         return rc;
2558         }
2559
2560         dev->real_num_rx_queues = rxq;
2561         return 0;
2562 }
2563 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2564 #endif
2565
2566 /**
2567  * netif_get_num_default_rss_queues - default number of RSS queues
2568  *
2569  * This routine should set an upper limit on the number of RSS queues
2570  * used by default by multiqueue devices.
2571  */
2572 int netif_get_num_default_rss_queues(void)
2573 {
2574         return is_kdump_kernel() ?
2575                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2576 }
2577 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2578
2579 static void __netif_reschedule(struct Qdisc *q)
2580 {
2581         struct softnet_data *sd;
2582         unsigned long flags;
2583
2584         local_irq_save(flags);
2585         sd = this_cpu_ptr(&softnet_data);
2586         q->next_sched = NULL;
2587         *sd->output_queue_tailp = q;
2588         sd->output_queue_tailp = &q->next_sched;
2589         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2590         local_irq_restore(flags);
2591 }
2592
2593 void __netif_schedule(struct Qdisc *q)
2594 {
2595         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2596                 __netif_reschedule(q);
2597 }
2598 EXPORT_SYMBOL(__netif_schedule);
2599
2600 struct dev_kfree_skb_cb {
2601         enum skb_free_reason reason;
2602 };
2603
2604 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2605 {
2606         return (struct dev_kfree_skb_cb *)skb->cb;
2607 }
2608
2609 void netif_schedule_queue(struct netdev_queue *txq)
2610 {
2611         rcu_read_lock();
2612         if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2613                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2614
2615                 __netif_schedule(q);
2616         }
2617         rcu_read_unlock();
2618 }
2619 EXPORT_SYMBOL(netif_schedule_queue);
2620
2621 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2622 {
2623         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2624                 struct Qdisc *q;
2625
2626                 rcu_read_lock();
2627                 q = rcu_dereference(dev_queue->qdisc);
2628                 __netif_schedule(q);
2629                 rcu_read_unlock();
2630         }
2631 }
2632 EXPORT_SYMBOL(netif_tx_wake_queue);
2633
2634 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2635 {
2636         unsigned long flags;
2637
2638         if (unlikely(!skb))
2639                 return;
2640
2641         if (likely(refcount_read(&skb->users) == 1)) {
2642                 smp_rmb();
2643                 refcount_set(&skb->users, 0);
2644         } else if (likely(!refcount_dec_and_test(&skb->users))) {
2645                 return;
2646         }
2647         get_kfree_skb_cb(skb)->reason = reason;
2648         local_irq_save(flags);
2649         skb->next = __this_cpu_read(softnet_data.completion_queue);
2650         __this_cpu_write(softnet_data.completion_queue, skb);
2651         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2652         local_irq_restore(flags);
2653 }
2654 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2655
2656 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2657 {
2658         if (in_irq() || irqs_disabled())
2659                 __dev_kfree_skb_irq(skb, reason);
2660         else
2661                 dev_kfree_skb(skb);
2662 }
2663 EXPORT_SYMBOL(__dev_kfree_skb_any);
2664
2665
2666 /**
2667  * netif_device_detach - mark device as removed
2668  * @dev: network device
2669  *
2670  * Mark device as removed from system and therefore no longer available.
2671  */
2672 void netif_device_detach(struct net_device *dev)
2673 {
2674         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2675             netif_running(dev)) {
2676                 netif_tx_stop_all_queues(dev);
2677         }
2678 }
2679 EXPORT_SYMBOL(netif_device_detach);
2680
2681 /**
2682  * netif_device_attach - mark device as attached
2683  * @dev: network device
2684  *
2685  * Mark device as attached from system and restart if needed.
2686  */
2687 void netif_device_attach(struct net_device *dev)
2688 {
2689         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2690             netif_running(dev)) {
2691                 netif_tx_wake_all_queues(dev);
2692                 __netdev_watchdog_up(dev);
2693         }
2694 }
2695 EXPORT_SYMBOL(netif_device_attach);
2696
2697 /*
2698  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2699  * to be used as a distribution range.
2700  */
2701 static u16 skb_tx_hash(const struct net_device *dev, struct sk_buff *skb)
2702 {
2703         u32 hash;
2704         u16 qoffset = 0;
2705         u16 qcount = dev->real_num_tx_queues;
2706
2707         if (skb_rx_queue_recorded(skb)) {
2708                 hash = skb_get_rx_queue(skb);
2709                 while (unlikely(hash >= qcount))
2710                         hash -= qcount;
2711                 return hash;
2712         }
2713
2714         if (dev->num_tc) {
2715                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2716
2717                 qoffset = dev->tc_to_txq[tc].offset;
2718                 qcount = dev->tc_to_txq[tc].count;
2719         }
2720
2721         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2722 }
2723
2724 static void skb_warn_bad_offload(const struct sk_buff *skb)
2725 {
2726         static const netdev_features_t null_features;
2727         struct net_device *dev = skb->dev;
2728         const char *name = "";
2729
2730         if (!net_ratelimit())
2731                 return;
2732
2733         if (dev) {
2734                 if (dev->dev.parent)
2735                         name = dev_driver_string(dev->dev.parent);
2736                 else
2737                         name = netdev_name(dev);
2738         }
2739         WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2740              "gso_type=%d ip_summed=%d\n",
2741              name, dev ? &dev->features : &null_features,
2742              skb->sk ? &skb->sk->sk_route_caps : &null_features,
2743              skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2744              skb_shinfo(skb)->gso_type, skb->ip_summed);
2745 }
2746
2747 /*
2748  * Invalidate hardware checksum when packet is to be mangled, and
2749  * complete checksum manually on outgoing path.
2750  */
2751 int skb_checksum_help(struct sk_buff *skb)
2752 {
2753         __wsum csum;
2754         int ret = 0, offset;
2755
2756         if (skb->ip_summed == CHECKSUM_COMPLETE)
2757                 goto out_set_summed;
2758
2759         if (unlikely(skb_shinfo(skb)->gso_size)) {
2760                 skb_warn_bad_offload(skb);
2761                 return -EINVAL;
2762         }
2763
2764         /* Before computing a checksum, we should make sure no frag could
2765          * be modified by an external entity : checksum could be wrong.
2766          */
2767         if (skb_has_shared_frag(skb)) {
2768                 ret = __skb_linearize(skb);
2769                 if (ret)
2770                         goto out;
2771         }
2772
2773         offset = skb_checksum_start_offset(skb);
2774         BUG_ON(offset >= skb_headlen(skb));
2775         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2776
2777         offset += skb->csum_offset;
2778         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2779
2780         if (skb_cloned(skb) &&
2781             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2782                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2783                 if (ret)
2784                         goto out;
2785         }
2786
2787         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2788 out_set_summed:
2789         skb->ip_summed = CHECKSUM_NONE;
2790 out:
2791         return ret;
2792 }
2793 EXPORT_SYMBOL(skb_checksum_help);
2794
2795 int skb_crc32c_csum_help(struct sk_buff *skb)
2796 {
2797         __le32 crc32c_csum;
2798         int ret = 0, offset, start;
2799
2800         if (skb->ip_summed != CHECKSUM_PARTIAL)
2801                 goto out;
2802
2803         if (unlikely(skb_is_gso(skb)))
2804                 goto out;
2805
2806         /* Before computing a checksum, we should make sure no frag could
2807          * be modified by an external entity : checksum could be wrong.
2808          */
2809         if (unlikely(skb_has_shared_frag(skb))) {
2810                 ret = __skb_linearize(skb);
2811                 if (ret)
2812                         goto out;
2813         }
2814         start = skb_checksum_start_offset(skb);
2815         offset = start + offsetof(struct sctphdr, checksum);
2816         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2817                 ret = -EINVAL;
2818                 goto out;
2819         }
2820         if (skb_cloned(skb) &&
2821             !skb_clone_writable(skb, offset + sizeof(__le32))) {
2822                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2823                 if (ret)
2824                         goto out;
2825         }
2826         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2827                                                   skb->len - start, ~(__u32)0,
2828                                                   crc32c_csum_stub));
2829         *(__le32 *)(skb->data + offset) = crc32c_csum;
2830         skb->ip_summed = CHECKSUM_NONE;
2831         skb->csum_not_inet = 0;
2832 out:
2833         return ret;
2834 }
2835
2836 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2837 {
2838         __be16 type = skb->protocol;
2839
2840         /* Tunnel gso handlers can set protocol to ethernet. */
2841         if (type == htons(ETH_P_TEB)) {
2842                 struct ethhdr *eth;
2843
2844                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2845                         return 0;
2846
2847                 eth = (struct ethhdr *)skb->data;
2848                 type = eth->h_proto;
2849         }
2850
2851         return __vlan_get_protocol(skb, type, depth);
2852 }
2853
2854 /**
2855  *      skb_mac_gso_segment - mac layer segmentation handler.
2856  *      @skb: buffer to segment
2857  *      @features: features for the output path (see dev->features)
2858  */
2859 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2860                                     netdev_features_t features)
2861 {
2862         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2863         struct packet_offload *ptype;
2864         int vlan_depth = skb->mac_len;
2865         __be16 type = skb_network_protocol(skb, &vlan_depth);
2866
2867         if (unlikely(!type))
2868                 return ERR_PTR(-EINVAL);
2869
2870         __skb_pull(skb, vlan_depth);
2871
2872         rcu_read_lock();
2873         list_for_each_entry_rcu(ptype, &offload_base, list) {
2874                 if (ptype->type == type && ptype->callbacks.gso_segment) {
2875                         segs = ptype->callbacks.gso_segment(skb, features);
2876                         break;
2877                 }
2878         }
2879         rcu_read_unlock();
2880
2881         __skb_push(skb, skb->data - skb_mac_header(skb));
2882
2883         return segs;
2884 }
2885 EXPORT_SYMBOL(skb_mac_gso_segment);
2886
2887
2888 /* openvswitch calls this on rx path, so we need a different check.
2889  */
2890 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2891 {
2892         if (tx_path)
2893                 return skb->ip_summed != CHECKSUM_PARTIAL &&
2894                        skb->ip_summed != CHECKSUM_UNNECESSARY;
2895
2896         return skb->ip_summed == CHECKSUM_NONE;
2897 }
2898
2899 /**
2900  *      __skb_gso_segment - Perform segmentation on skb.
2901  *      @skb: buffer to segment
2902  *      @features: features for the output path (see dev->features)
2903  *      @tx_path: whether it is called in TX path
2904  *
2905  *      This function segments the given skb and returns a list of segments.
2906  *
2907  *      It may return NULL if the skb requires no segmentation.  This is
2908  *      only possible when GSO is used for verifying header integrity.
2909  *
2910  *      Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2911  */
2912 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2913                                   netdev_features_t features, bool tx_path)
2914 {
2915         struct sk_buff *segs;
2916
2917         if (unlikely(skb_needs_check(skb, tx_path))) {
2918                 int err;
2919
2920                 /* We're going to init ->check field in TCP or UDP header */
2921                 err = skb_cow_head(skb, 0);
2922                 if (err < 0)
2923                         return ERR_PTR(err);
2924         }
2925
2926         /* Only report GSO partial support if it will enable us to
2927          * support segmentation on this frame without needing additional
2928          * work.
2929          */
2930         if (features & NETIF_F_GSO_PARTIAL) {
2931                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2932                 struct net_device *dev = skb->dev;
2933
2934                 partial_features |= dev->features & dev->gso_partial_features;
2935                 if (!skb_gso_ok(skb, features | partial_features))
2936                         features &= ~NETIF_F_GSO_PARTIAL;
2937         }
2938
2939         BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2940                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2941
2942         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2943         SKB_GSO_CB(skb)->encap_level = 0;
2944
2945         skb_reset_mac_header(skb);
2946         skb_reset_mac_len(skb);
2947
2948         segs = skb_mac_gso_segment(skb, features);
2949
2950         if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
2951                 skb_warn_bad_offload(skb);
2952
2953         return segs;
2954 }
2955 EXPORT_SYMBOL(__skb_gso_segment);
2956
2957 /* Take action when hardware reception checksum errors are detected. */
2958 #ifdef CONFIG_BUG
2959 void netdev_rx_csum_fault(struct net_device *dev)
2960 {
2961         if (net_ratelimit()) {
2962                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2963                 dump_stack();
2964         }
2965 }
2966 EXPORT_SYMBOL(netdev_rx_csum_fault);
2967 #endif
2968
2969 /* XXX: check that highmem exists at all on the given machine. */
2970 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2971 {
2972 #ifdef CONFIG_HIGHMEM
2973         int i;
2974
2975         if (!(dev->features & NETIF_F_HIGHDMA)) {
2976                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2977                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2978
2979                         if (PageHighMem(skb_frag_page(frag)))
2980                                 return 1;
2981                 }
2982         }
2983 #endif
2984         return 0;
2985 }
2986
2987 /* If MPLS offload request, verify we are testing hardware MPLS features
2988  * instead of standard features for the netdev.
2989  */
2990 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2991 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2992                                            netdev_features_t features,
2993                                            __be16 type)
2994 {
2995         if (eth_p_mpls(type))
2996                 features &= skb->dev->mpls_features;
2997
2998         return features;
2999 }
3000 #else
3001 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3002                                            netdev_features_t features,
3003                                            __be16 type)
3004 {
3005         return features;
3006 }
3007 #endif
3008
3009 static netdev_features_t harmonize_features(struct sk_buff *skb,
3010         netdev_features_t features)
3011 {
3012         int tmp;
3013         __be16 type;
3014
3015         type = skb_network_protocol(skb, &tmp);
3016         features = net_mpls_features(skb, features, type);
3017
3018         if (skb->ip_summed != CHECKSUM_NONE &&
3019             !can_checksum_protocol(features, type)) {
3020                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3021         }
3022         if (illegal_highdma(skb->dev, skb))
3023                 features &= ~NETIF_F_SG;
3024
3025         return features;
3026 }
3027
3028 netdev_features_t passthru_features_check(struct sk_buff *skb,
3029                                           struct net_device *dev,
3030                                           netdev_features_t features)
3031 {
3032         return features;
3033 }
3034 EXPORT_SYMBOL(passthru_features_check);
3035
3036 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3037                                              struct net_device *dev,
3038                                              netdev_features_t features)
3039 {
3040         return vlan_features_check(skb, features);
3041 }
3042
3043 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3044                                             struct net_device *dev,
3045                                             netdev_features_t features)
3046 {
3047         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3048
3049         if (gso_segs > dev->gso_max_segs)
3050                 return features & ~NETIF_F_GSO_MASK;
3051
3052         /* Support for GSO partial features requires software
3053          * intervention before we can actually process the packets
3054          * so we need to strip support for any partial features now
3055          * and we can pull them back in after we have partially
3056          * segmented the frame.
3057          */
3058         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3059                 features &= ~dev->gso_partial_features;
3060
3061         /* Make sure to clear the IPv4 ID mangling feature if the
3062          * IPv4 header has the potential to be fragmented.
3063          */
3064         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3065                 struct iphdr *iph = skb->encapsulation ?
3066                                     inner_ip_hdr(skb) : ip_hdr(skb);
3067
3068                 if (!(iph->frag_off & htons(IP_DF)))
3069                         features &= ~NETIF_F_TSO_MANGLEID;
3070         }
3071
3072         return features;
3073 }
3074
3075 netdev_features_t netif_skb_features(struct sk_buff *skb)
3076 {
3077         struct net_device *dev = skb->dev;
3078         netdev_features_t features = dev->features;
3079
3080         if (skb_is_gso(skb))
3081                 features = gso_features_check(skb, dev, features);
3082
3083         /* If encapsulation offload request, verify we are testing
3084          * hardware encapsulation features instead of standard
3085          * features for the netdev
3086          */
3087         if (skb->encapsulation)
3088                 features &= dev->hw_enc_features;
3089
3090         if (skb_vlan_tagged(skb))
3091                 features = netdev_intersect_features(features,
3092                                                      dev->vlan_features |
3093                                                      NETIF_F_HW_VLAN_CTAG_TX |
3094                                                      NETIF_F_HW_VLAN_STAG_TX);
3095
3096         if (dev->netdev_ops->ndo_features_check)
3097                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3098                                                                 features);
3099         else
3100                 features &= dflt_features_check(skb, dev, features);
3101
3102         return harmonize_features(skb, features);
3103 }
3104 EXPORT_SYMBOL(netif_skb_features);
3105
3106 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3107                     struct netdev_queue *txq, bool more)
3108 {
3109         unsigned int len;
3110         int rc;
3111
3112         if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
3113                 dev_queue_xmit_nit(skb, dev);
3114
3115         len = skb->len;
3116         trace_net_dev_start_xmit(skb, dev);
3117         rc = netdev_start_xmit(skb, dev, txq, more);
3118         trace_net_dev_xmit(skb, rc, dev, len);
3119
3120         return rc;
3121 }
3122
3123 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3124                                     struct netdev_queue *txq, int *ret)
3125 {
3126         struct sk_buff *skb = first;
3127         int rc = NETDEV_TX_OK;
3128
3129         while (skb) {
3130                 struct sk_buff *next = skb->next;
3131
3132                 skb->next = NULL;
3133                 rc = xmit_one(skb, dev, txq, next != NULL);
3134                 if (unlikely(!dev_xmit_complete(rc))) {
3135                         skb->next = next;
3136                         goto out;
3137                 }
3138
3139                 skb = next;
3140                 if (netif_xmit_stopped(txq) && skb) {
3141                         rc = NETDEV_TX_BUSY;
3142                         break;
3143                 }
3144         }
3145
3146 out:
3147         *ret = rc;
3148         return skb;
3149 }
3150
3151 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3152                                           netdev_features_t features)
3153 {
3154         if (skb_vlan_tag_present(skb) &&
3155             !vlan_hw_offload_capable(features, skb->vlan_proto))
3156                 skb = __vlan_hwaccel_push_inside(skb);
3157         return skb;
3158 }
3159
3160 int skb_csum_hwoffload_help(struct sk_buff *skb,
3161                             const netdev_features_t features)
3162 {
3163         if (unlikely(skb->csum_not_inet))
3164                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3165                         skb_crc32c_csum_help(skb);
3166
3167         return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3168 }
3169 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3170
3171 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3172 {
3173         netdev_features_t features;
3174
3175         features = netif_skb_features(skb);
3176         skb = validate_xmit_vlan(skb, features);
3177         if (unlikely(!skb))
3178                 goto out_null;
3179
3180         skb = sk_validate_xmit_skb(skb, dev);
3181         if (unlikely(!skb))
3182                 goto out_null;
3183
3184         if (netif_needs_gso(skb, features)) {
3185                 struct sk_buff *segs;
3186
3187                 segs = skb_gso_segment(skb, features);
3188                 if (IS_ERR(segs)) {
3189                         goto out_kfree_skb;
3190                 } else if (segs) {
3191                         consume_skb(skb);
3192                         skb = segs;
3193                 }
3194         } else {
3195                 if (skb_needs_linearize(skb, features) &&
3196                     __skb_linearize(skb))
3197                         goto out_kfree_skb;
3198
3199                 /* If packet is not checksummed and device does not
3200                  * support checksumming for this protocol, complete
3201                  * checksumming here.
3202                  */
3203                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3204                         if (skb->encapsulation)
3205                                 skb_set_inner_transport_header(skb,
3206                                                                skb_checksum_start_offset(skb));
3207                         else
3208                                 skb_set_transport_header(skb,
3209                                                          skb_checksum_start_offset(skb));
3210                         if (skb_csum_hwoffload_help(skb, features))
3211                                 goto out_kfree_skb;
3212                 }
3213         }
3214
3215         skb = validate_xmit_xfrm(skb, features, again);
3216
3217         return skb;
3218
3219 out_kfree_skb:
3220         kfree_skb(skb);
3221 out_null:
3222         atomic_long_inc(&dev->tx_dropped);
3223         return NULL;
3224 }
3225
3226 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3227 {
3228         struct sk_buff *next, *head = NULL, *tail;
3229
3230         for (; skb != NULL; skb = next) {
3231                 next = skb->next;
3232                 skb->next = NULL;
3233
3234                 /* in case skb wont be segmented, point to itself */
3235                 skb->prev = skb;
3236
3237                 skb = validate_xmit_skb(skb, dev, again);
3238                 if (!skb)
3239                         continue;
3240
3241                 if (!head)
3242                         head = skb;
3243                 else
3244                         tail->next = skb;
3245                 /* If skb was segmented, skb->prev points to
3246                  * the last segment. If not, it still contains skb.
3247                  */
3248                 tail = skb->prev;
3249         }
3250         return head;
3251 }
3252 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3253
3254 static void qdisc_pkt_len_init(struct sk_buff *skb)
3255 {
3256         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3257
3258         qdisc_skb_cb(skb)->pkt_len = skb->len;
3259
3260         /* To get more precise estimation of bytes sent on wire,
3261          * we add to pkt_len the headers size of all segments
3262          */
3263         if (shinfo->gso_size)  {
3264                 unsigned int hdr_len;
3265                 u16 gso_segs = shinfo->gso_segs;
3266
3267                 /* mac layer + network layer */
3268                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3269
3270                 /* + transport layer */
3271                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3272                         const struct tcphdr *th;
3273                         struct tcphdr _tcphdr;
3274
3275                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3276                                                 sizeof(_tcphdr), &_tcphdr);
3277                         if (likely(th))
3278                                 hdr_len += __tcp_hdrlen(th);
3279                 } else {
3280                         struct udphdr _udphdr;
3281
3282                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3283                                                sizeof(_udphdr), &_udphdr))
3284                                 hdr_len += sizeof(struct udphdr);
3285                 }
3286
3287                 if (shinfo->gso_type & SKB_GSO_DODGY)
3288                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3289                                                 shinfo->gso_size);
3290
3291                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3292         }
3293 }
3294
3295 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3296                                  struct net_device *dev,
3297                                  struct netdev_queue *txq)
3298 {
3299         spinlock_t *root_lock = qdisc_lock(q);
3300         struct sk_buff *to_free = NULL;
3301         bool contended;
3302         int rc;
3303
3304         qdisc_calculate_pkt_len(skb, q);
3305
3306         if (q->flags & TCQ_F_NOLOCK) {
3307                 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3308                         __qdisc_drop(skb, &to_free);
3309                         rc = NET_XMIT_DROP;
3310                 } else {
3311                         rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3312                         qdisc_run(q);
3313                 }
3314
3315                 if (unlikely(to_free))
3316                         kfree_skb_list(to_free);
3317                 return rc;
3318         }
3319
3320         /*
3321          * Heuristic to force contended enqueues to serialize on a
3322          * separate lock before trying to get qdisc main lock.
3323          * This permits qdisc->running owner to get the lock more
3324          * often and dequeue packets faster.
3325          */
3326         contended = qdisc_is_running(q);
3327         if (unlikely(contended))
3328                 spin_lock(&q->busylock);
3329
3330         spin_lock(root_lock);
3331         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3332                 __qdisc_drop(skb, &to_free);
3333                 rc = NET_XMIT_DROP;
3334         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3335                    qdisc_run_begin(q)) {
3336                 /*
3337                  * This is a work-conserving queue; there are no old skbs
3338                  * waiting to be sent out; and the qdisc is not running -
3339                  * xmit the skb directly.
3340                  */
3341
3342                 qdisc_bstats_update(q, skb);
3343
3344                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3345                         if (unlikely(contended)) {
3346                                 spin_unlock(&q->busylock);
3347                                 contended = false;
3348                         }
3349                         __qdisc_run(q);
3350                 }
3351
3352                 qdisc_run_end(q);
3353                 rc = NET_XMIT_SUCCESS;
3354         } else {
3355                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3356                 if (qdisc_run_begin(q)) {
3357                         if (unlikely(contended)) {
3358                                 spin_unlock(&q->busylock);
3359                                 contended = false;
3360                         }
3361                         __qdisc_run(q);
3362                         qdisc_run_end(q);
3363                 }
3364         }
3365         spin_unlock(root_lock);
3366         if (unlikely(to_free))
3367                 kfree_skb_list(to_free);
3368         if (unlikely(contended))
3369                 spin_unlock(&q->busylock);
3370         return rc;
3371 }
3372
3373 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3374 static void skb_update_prio(struct sk_buff *skb)
3375 {
3376         const struct netprio_map *map;
3377         const struct sock *sk;
3378         unsigned int prioidx;
3379
3380         if (skb->priority)
3381                 return;
3382         map = rcu_dereference_bh(skb->dev->priomap);
3383         if (!map)
3384                 return;
3385         sk = skb_to_full_sk(skb);
3386         if (!sk)
3387                 return;
3388
3389         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3390
3391         if (prioidx < map->priomap_len)
3392                 skb->priority = map->priomap[prioidx];
3393 }
3394 #else
3395 #define skb_update_prio(skb)
3396 #endif
3397
3398 DEFINE_PER_CPU(int, xmit_recursion);
3399 EXPORT_SYMBOL(xmit_recursion);
3400
3401 /**
3402  *      dev_loopback_xmit - loop back @skb
3403  *      @net: network namespace this loopback is happening in
3404  *      @sk:  sk needed to be a netfilter okfn
3405  *      @skb: buffer to transmit
3406  */
3407 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3408 {
3409         skb_reset_mac_header(skb);
3410         __skb_pull(skb, skb_network_offset(skb));
3411         skb->pkt_type = PACKET_LOOPBACK;
3412         skb->ip_summed = CHECKSUM_UNNECESSARY;
3413         WARN_ON(!skb_dst(skb));
3414         skb_dst_force(skb);
3415         netif_rx_ni(skb);
3416         return 0;
3417 }
3418 EXPORT_SYMBOL(dev_loopback_xmit);
3419
3420 #ifdef CONFIG_NET_EGRESS
3421 static struct sk_buff *
3422 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3423 {
3424         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3425         struct tcf_result cl_res;
3426
3427         if (!miniq)
3428                 return skb;
3429
3430         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3431         mini_qdisc_bstats_cpu_update(miniq, skb);
3432
3433         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3434         case TC_ACT_OK:
3435         case TC_ACT_RECLASSIFY:
3436                 skb->tc_index = TC_H_MIN(cl_res.classid);
3437                 break;
3438         case TC_ACT_SHOT:
3439                 mini_qdisc_qstats_cpu_drop(miniq);
3440                 *ret = NET_XMIT_DROP;
3441                 kfree_skb(skb);
3442                 return NULL;
3443         case TC_ACT_STOLEN:
3444         case TC_ACT_QUEUED:
3445         case TC_ACT_TRAP:
3446                 *ret = NET_XMIT_SUCCESS;
3447                 consume_skb(skb);
3448                 return NULL;
3449         case TC_ACT_REDIRECT:
3450                 /* No need to push/pop skb's mac_header here on egress! */
3451                 skb_do_redirect(skb);
3452                 *ret = NET_XMIT_SUCCESS;
3453                 return NULL;
3454         default:
3455                 break;
3456         }
3457
3458         return skb;
3459 }
3460 #endif /* CONFIG_NET_EGRESS */
3461
3462 #ifdef CONFIG_XPS
3463 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3464                                struct xps_dev_maps *dev_maps, unsigned int tci)
3465 {
3466         struct xps_map *map;
3467         int queue_index = -1;
3468
3469         if (dev->num_tc) {
3470                 tci *= dev->num_tc;
3471                 tci += netdev_get_prio_tc_map(dev, skb->priority);
3472         }
3473
3474         map = rcu_dereference(dev_maps->attr_map[tci]);
3475         if (map) {
3476                 if (map->len == 1)
3477                         queue_index = map->queues[0];
3478                 else
3479                         queue_index = map->queues[reciprocal_scale(
3480                                                 skb_get_hash(skb), map->len)];
3481                 if (unlikely(queue_index >= dev->real_num_tx_queues))
3482                         queue_index = -1;
3483         }
3484         return queue_index;
3485 }
3486 #endif
3487
3488 static int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3489 {
3490 #ifdef CONFIG_XPS
3491         struct xps_dev_maps *dev_maps;
3492         struct sock *sk = skb->sk;
3493         int queue_index = -1;
3494
3495         if (!static_key_false(&xps_needed))
3496                 return -1;
3497
3498         rcu_read_lock();
3499         if (!static_key_false(&xps_rxqs_needed))
3500                 goto get_cpus_map;
3501
3502         dev_maps = rcu_dereference(dev->xps_rxqs_map);
3503         if (dev_maps) {
3504                 int tci = sk_rx_queue_get(sk);
3505
3506                 if (tci >= 0 && tci < dev->num_rx_queues)
3507                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3508                                                           tci);
3509         }
3510
3511 get_cpus_map:
3512         if (queue_index < 0) {
3513                 dev_maps = rcu_dereference(dev->xps_cpus_map);
3514                 if (dev_maps) {
3515                         unsigned int tci = skb->sender_cpu - 1;
3516
3517                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3518                                                           tci);
3519                 }
3520         }
3521         rcu_read_unlock();
3522
3523         return queue_index;
3524 #else
3525         return -1;
3526 #endif
3527 }
3528
3529 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3530 {
3531         struct sock *sk = skb->sk;
3532         int queue_index = sk_tx_queue_get(sk);
3533
3534         if (queue_index < 0 || skb->ooo_okay ||
3535             queue_index >= dev->real_num_tx_queues) {
3536                 int new_index = get_xps_queue(dev, skb);
3537
3538                 if (new_index < 0)
3539                         new_index = skb_tx_hash(dev, skb);
3540
3541                 if (queue_index != new_index && sk &&
3542                     sk_fullsock(sk) &&
3543                     rcu_access_pointer(sk->sk_dst_cache))
3544                         sk_tx_queue_set(sk, new_index);
3545
3546                 queue_index = new_index;
3547         }
3548
3549         return queue_index;
3550 }
3551
3552 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3553                                     struct sk_buff *skb,
3554                                     void *accel_priv)
3555 {
3556         int queue_index = 0;
3557
3558 #ifdef CONFIG_XPS
3559         u32 sender_cpu = skb->sender_cpu - 1;
3560
3561         if (sender_cpu >= (u32)NR_CPUS)
3562                 skb->sender_cpu = raw_smp_processor_id() + 1;
3563 #endif
3564
3565         if (dev->real_num_tx_queues != 1) {
3566                 const struct net_device_ops *ops = dev->netdev_ops;
3567
3568                 if (ops->ndo_select_queue)
3569                         queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3570                                                             __netdev_pick_tx);
3571                 else
3572                         queue_index = __netdev_pick_tx(dev, skb);
3573
3574                 queue_index = netdev_cap_txqueue(dev, queue_index);
3575         }
3576
3577         skb_set_queue_mapping(skb, queue_index);
3578         return netdev_get_tx_queue(dev, queue_index);
3579 }
3580
3581 /**
3582  *      __dev_queue_xmit - transmit a buffer
3583  *      @skb: buffer to transmit
3584  *      @accel_priv: private data used for L2 forwarding offload
3585  *
3586  *      Queue a buffer for transmission to a network device. The caller must
3587  *      have set the device and priority and built the buffer before calling
3588  *      this function. The function can be called from an interrupt.
3589  *
3590  *      A negative errno code is returned on a failure. A success does not
3591  *      guarantee the frame will be transmitted as it may be dropped due
3592  *      to congestion or traffic shaping.
3593  *
3594  * -----------------------------------------------------------------------------------
3595  *      I notice this method can also return errors from the queue disciplines,
3596  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3597  *      be positive.
3598  *
3599  *      Regardless of the return value, the skb is consumed, so it is currently
3600  *      difficult to retry a send to this method.  (You can bump the ref count
3601  *      before sending to hold a reference for retry if you are careful.)
3602  *
3603  *      When calling this method, interrupts MUST be enabled.  This is because
3604  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3605  *          --BLG
3606  */
3607 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3608 {
3609         struct net_device *dev = skb->dev;
3610         struct netdev_queue *txq;
3611         struct Qdisc *q;
3612         int rc = -ENOMEM;
3613         bool again = false;
3614
3615         skb_reset_mac_header(skb);
3616
3617         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3618                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3619
3620         /* Disable soft irqs for various locks below. Also
3621          * stops preemption for RCU.
3622          */
3623         rcu_read_lock_bh();
3624
3625         skb_update_prio(skb);
3626
3627         qdisc_pkt_len_init(skb);
3628 #ifdef CONFIG_NET_CLS_ACT
3629         skb->tc_at_ingress = 0;
3630 # ifdef CONFIG_NET_EGRESS
3631         if (static_branch_unlikely(&egress_needed_key)) {
3632                 skb = sch_handle_egress(skb, &rc, dev);
3633                 if (!skb)
3634                         goto out;
3635         }
3636 # endif
3637 #endif
3638         /* If device/qdisc don't need skb->dst, release it right now while
3639          * its hot in this cpu cache.
3640          */
3641         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3642                 skb_dst_drop(skb);
3643         else
3644                 skb_dst_force(skb);
3645
3646         txq = netdev_pick_tx(dev, skb, accel_priv);
3647         q = rcu_dereference_bh(txq->qdisc);
3648
3649         trace_net_dev_queue(skb);
3650         if (q->enqueue) {
3651                 rc = __dev_xmit_skb(skb, q, dev, txq);
3652                 goto out;
3653         }
3654
3655         /* The device has no queue. Common case for software devices:
3656          * loopback, all the sorts of tunnels...
3657
3658          * Really, it is unlikely that netif_tx_lock protection is necessary
3659          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3660          * counters.)
3661          * However, it is possible, that they rely on protection
3662          * made by us here.
3663
3664          * Check this and shot the lock. It is not prone from deadlocks.
3665          *Either shot noqueue qdisc, it is even simpler 8)
3666          */
3667         if (dev->flags & IFF_UP) {
3668                 int cpu = smp_processor_id(); /* ok because BHs are off */
3669
3670                 if (txq->xmit_lock_owner != cpu) {
3671                         if (unlikely(__this_cpu_read(xmit_recursion) >
3672                                      XMIT_RECURSION_LIMIT))
3673                                 goto recursion_alert;
3674
3675                         skb = validate_xmit_skb(skb, dev, &again);
3676                         if (!skb)
3677                                 goto out;
3678
3679                         HARD_TX_LOCK(dev, txq, cpu);
3680
3681                         if (!netif_xmit_stopped(txq)) {
3682                                 __this_cpu_inc(xmit_recursion);
3683                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3684                                 __this_cpu_dec(xmit_recursion);
3685                                 if (dev_xmit_complete(rc)) {
3686                                         HARD_TX_UNLOCK(dev, txq);
3687                                         goto out;
3688                                 }
3689                         }
3690                         HARD_TX_UNLOCK(dev, txq);
3691                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3692                                              dev->name);
3693                 } else {
3694                         /* Recursion is detected! It is possible,
3695                          * unfortunately
3696                          */
3697 recursion_alert:
3698                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3699                                              dev->name);
3700                 }
3701         }
3702
3703         rc = -ENETDOWN;
3704         rcu_read_unlock_bh();
3705
3706         atomic_long_inc(&dev->tx_dropped);
3707         kfree_skb_list(skb);
3708         return rc;
3709 out:
3710         rcu_read_unlock_bh();
3711         return rc;
3712 }
3713
3714 int dev_queue_xmit(struct sk_buff *skb)
3715 {
3716         return __dev_queue_xmit(skb, NULL);
3717 }
3718 EXPORT_SYMBOL(dev_queue_xmit);
3719
3720 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3721 {
3722         return __dev_queue_xmit(skb, accel_priv);
3723 }
3724 EXPORT_SYMBOL(dev_queue_xmit_accel);
3725
3726 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3727 {
3728         struct net_device *dev = skb->dev;
3729         struct sk_buff *orig_skb = skb;
3730         struct netdev_queue *txq;
3731         int ret = NETDEV_TX_BUSY;
3732         bool again = false;
3733
3734         if (unlikely(!netif_running(dev) ||
3735                      !netif_carrier_ok(dev)))
3736                 goto drop;
3737
3738         skb = validate_xmit_skb_list(skb, dev, &again);
3739         if (skb != orig_skb)
3740                 goto drop;
3741
3742         skb_set_queue_mapping(skb, queue_id);
3743         txq = skb_get_tx_queue(dev, skb);
3744
3745         local_bh_disable();
3746
3747         HARD_TX_LOCK(dev, txq, smp_processor_id());
3748         if (!netif_xmit_frozen_or_drv_stopped(txq))
3749                 ret = netdev_start_xmit(skb, dev, txq, false);
3750         HARD_TX_UNLOCK(dev, txq);
3751
3752         local_bh_enable();
3753
3754         if (!dev_xmit_complete(ret))
3755                 kfree_skb(skb);
3756
3757         return ret;
3758 drop:
3759         atomic_long_inc(&dev->tx_dropped);
3760         kfree_skb_list(skb);
3761         return NET_XMIT_DROP;
3762 }
3763 EXPORT_SYMBOL(dev_direct_xmit);
3764
3765 /*************************************************************************
3766  *                      Receiver routines
3767  *************************************************************************/
3768
3769 int netdev_max_backlog __read_mostly = 1000;
3770 EXPORT_SYMBOL(netdev_max_backlog);
3771
3772 int netdev_tstamp_prequeue __read_mostly = 1;
3773 int netdev_budget __read_mostly = 300;
3774 unsigned int __read_mostly netdev_budget_usecs = 2000;
3775 int weight_p __read_mostly = 64;           /* old backlog weight */
3776 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3777 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3778 int dev_rx_weight __read_mostly = 64;
3779 int dev_tx_weight __read_mostly = 64;
3780
3781 /* Called with irq disabled */
3782 static inline void ____napi_schedule(struct softnet_data *sd,
3783                                      struct napi_struct *napi)
3784 {
3785         list_add_tail(&napi->poll_list, &sd->poll_list);
3786         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3787 }
3788
3789 #ifdef CONFIG_RPS
3790
3791 /* One global table that all flow-based protocols share. */
3792 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3793 EXPORT_SYMBOL(rps_sock_flow_table);
3794 u32 rps_cpu_mask __read_mostly;
3795 EXPORT_SYMBOL(rps_cpu_mask);
3796
3797 struct static_key rps_needed __read_mostly;
3798 EXPORT_SYMBOL(rps_needed);
3799 struct static_key rfs_needed __read_mostly;
3800 EXPORT_SYMBOL(rfs_needed);
3801
3802 static struct rps_dev_flow *
3803 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3804             struct rps_dev_flow *rflow, u16 next_cpu)
3805 {
3806         if (next_cpu < nr_cpu_ids) {
3807 #ifdef CONFIG_RFS_ACCEL
3808                 struct netdev_rx_queue *rxqueue;
3809                 struct rps_dev_flow_table *flow_table;
3810                 struct rps_dev_flow *old_rflow;
3811                 u32 flow_id;
3812                 u16 rxq_index;
3813                 int rc;
3814
3815                 /* Should we steer this flow to a different hardware queue? */
3816                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3817                     !(dev->features & NETIF_F_NTUPLE))
3818                         goto out;
3819                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3820                 if (rxq_index == skb_get_rx_queue(skb))
3821                         goto out;
3822
3823                 rxqueue = dev->_rx + rxq_index;
3824                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3825                 if (!flow_table)
3826                         goto out;
3827                 flow_id = skb_get_hash(skb) & flow_table->mask;
3828                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3829                                                         rxq_index, flow_id);
3830                 if (rc < 0)
3831                         goto out;
3832                 old_rflow = rflow;
3833                 rflow = &flow_table->flows[flow_id];
3834                 rflow->filter = rc;
3835                 if (old_rflow->filter == rflow->filter)
3836                         old_rflow->filter = RPS_NO_FILTER;
3837         out:
3838 #endif
3839                 rflow->last_qtail =
3840                         per_cpu(softnet_data, next_cpu).input_queue_head;
3841         }
3842
3843         rflow->cpu = next_cpu;
3844         return rflow;
3845 }
3846
3847 /*
3848  * get_rps_cpu is called from netif_receive_skb and returns the target
3849  * CPU from the RPS map of the receiving queue for a given skb.
3850  * rcu_read_lock must be held on entry.
3851  */
3852 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3853                        struct rps_dev_flow **rflowp)
3854 {
3855         const struct rps_sock_flow_table *sock_flow_table;
3856         struct netdev_rx_queue *rxqueue = dev->_rx;
3857         struct rps_dev_flow_table *flow_table;
3858         struct rps_map *map;
3859         int cpu = -1;
3860         u32 tcpu;
3861         u32 hash;
3862
3863         if (skb_rx_queue_recorded(skb)) {
3864                 u16 index = skb_get_rx_queue(skb);
3865
3866                 if (unlikely(index >= dev->real_num_rx_queues)) {
3867                         WARN_ONCE(dev->real_num_rx_queues > 1,
3868                                   "%s received packet on queue %u, but number "
3869                                   "of RX queues is %u\n",
3870                                   dev->name, index, dev->real_num_rx_queues);
3871                         goto done;
3872                 }
3873                 rxqueue += index;
3874         }
3875
3876         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3877
3878         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3879         map = rcu_dereference(rxqueue->rps_map);
3880         if (!flow_table && !map)
3881                 goto done;
3882
3883         skb_reset_network_header(skb);
3884         hash = skb_get_hash(skb);
3885         if (!hash)
3886                 goto done;
3887
3888         sock_flow_table = rcu_dereference(rps_sock_flow_table);
3889         if (flow_table && sock_flow_table) {
3890                 struct rps_dev_flow *rflow;
3891                 u32 next_cpu;
3892                 u32 ident;
3893
3894                 /* First check into global flow table if there is a match */
3895                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3896                 if ((ident ^ hash) & ~rps_cpu_mask)
3897                         goto try_rps;
3898
3899                 next_cpu = ident & rps_cpu_mask;
3900
3901                 /* OK, now we know there is a match,
3902                  * we can look at the local (per receive queue) flow table
3903                  */
3904                 rflow = &flow_table->flows[hash & flow_table->mask];
3905                 tcpu = rflow->cpu;
3906
3907                 /*
3908                  * If the desired CPU (where last recvmsg was done) is
3909                  * different from current CPU (one in the rx-queue flow
3910                  * table entry), switch if one of the following holds:
3911                  *   - Current CPU is unset (>= nr_cpu_ids).
3912                  *   - Current CPU is offline.
3913                  *   - The current CPU's queue tail has advanced beyond the
3914                  *     last packet that was enqueued using this table entry.
3915                  *     This guarantees that all previous packets for the flow
3916                  *     have been dequeued, thus preserving in order delivery.
3917                  */
3918                 if (unlikely(tcpu != next_cpu) &&
3919                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3920                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3921                       rflow->last_qtail)) >= 0)) {
3922                         tcpu = next_cpu;
3923                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3924                 }
3925
3926                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3927                         *rflowp = rflow;
3928                         cpu = tcpu;
3929                         goto done;
3930                 }
3931         }
3932
3933 try_rps:
3934
3935         if (map) {
3936                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3937                 if (cpu_online(tcpu)) {
3938                         cpu = tcpu;
3939                         goto done;
3940                 }
3941         }
3942
3943 done:
3944         return cpu;
3945 }
3946
3947 #ifdef CONFIG_RFS_ACCEL
3948
3949 /**
3950  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3951  * @dev: Device on which the filter was set
3952  * @rxq_index: RX queue index
3953  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3954  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3955  *
3956  * Drivers that implement ndo_rx_flow_steer() should periodically call
3957  * this function for each installed filter and remove the filters for
3958  * which it returns %true.
3959  */
3960 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3961                          u32 flow_id, u16 filter_id)
3962 {
3963         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3964         struct rps_dev_flow_table *flow_table;
3965         struct rps_dev_flow *rflow;
3966         bool expire = true;
3967         unsigned int cpu;
3968
3969         rcu_read_lock();
3970         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3971         if (flow_table && flow_id <= flow_table->mask) {
3972                 rflow = &flow_table->flows[flow_id];
3973                 cpu = READ_ONCE(rflow->cpu);
3974                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3975                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3976                            rflow->last_qtail) <
3977                      (int)(10 * flow_table->mask)))
3978                         expire = false;
3979         }
3980         rcu_read_unlock();
3981         return expire;
3982 }
3983 EXPORT_SYMBOL(rps_may_expire_flow);
3984
3985 #endif /* CONFIG_RFS_ACCEL */
3986
3987 /* Called from hardirq (IPI) context */
3988 static void rps_trigger_softirq(void *data)
3989 {
3990         struct softnet_data *sd = data;
3991
3992         ____napi_schedule(sd, &sd->backlog);
3993         sd->received_rps++;
3994 }
3995
3996 #endif /* CONFIG_RPS */
3997
3998 /*
3999  * Check if this softnet_data structure is another cpu one
4000  * If yes, queue it to our IPI list and return 1
4001  * If no, return 0
4002  */
4003 static int rps_ipi_queued(struct softnet_data *sd)
4004 {
4005 #ifdef CONFIG_RPS
4006         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4007
4008         if (sd != mysd) {
4009                 sd->rps_ipi_next = mysd->rps_ipi_list;
4010                 mysd->rps_ipi_list = sd;
4011
4012                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4013                 return 1;
4014         }
4015 #endif /* CONFIG_RPS */
4016         return 0;
4017 }
4018
4019 #ifdef CONFIG_NET_FLOW_LIMIT
4020 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4021 #endif
4022
4023 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4024 {
4025 #ifdef CONFIG_NET_FLOW_LIMIT
4026         struct sd_flow_limit *fl;
4027         struct softnet_data *sd;
4028         unsigned int old_flow, new_flow;
4029
4030         if (qlen < (netdev_max_backlog >> 1))
4031                 return false;
4032
4033         sd = this_cpu_ptr(&softnet_data);
4034
4035         rcu_read_lock();
4036         fl = rcu_dereference(sd->flow_limit);
4037         if (fl) {
4038                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4039                 old_flow = fl->history[fl->history_head];
4040                 fl->history[fl->history_head] = new_flow;
4041
4042                 fl->history_head++;
4043                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4044
4045                 if (likely(fl->buckets[old_flow]))
4046                         fl->buckets[old_flow]--;
4047
4048                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4049                         fl->count++;
4050                         rcu_read_unlock();
4051                         return true;
4052                 }
4053         }
4054         rcu_read_unlock();
4055 #endif
4056         return false;
4057 }
4058
4059 /*
4060  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4061  * queue (may be a remote CPU queue).
4062  */
4063 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4064                               unsigned int *qtail)
4065 {
4066         struct softnet_data *sd;
4067         unsigned long flags;
4068         unsigned int qlen;
4069
4070         sd = &per_cpu(softnet_data, cpu);
4071
4072         local_irq_save(flags);
4073
4074         rps_lock(sd);
4075         if (!netif_running(skb->dev))
4076                 goto drop;
4077         qlen = skb_queue_len(&sd->input_pkt_queue);
4078         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4079                 if (qlen) {
4080 enqueue:
4081                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4082                         input_queue_tail_incr_save(sd, qtail);
4083                         rps_unlock(sd);
4084                         local_irq_restore(flags);
4085                         return NET_RX_SUCCESS;
4086                 }
4087
4088                 /* Schedule NAPI for backlog device
4089                  * We can use non atomic operation since we own the queue lock
4090                  */
4091                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4092                         if (!rps_ipi_queued(sd))
4093                                 ____napi_schedule(sd, &sd->backlog);
4094                 }
4095                 goto enqueue;
4096         }
4097
4098 drop:
4099         sd->dropped++;
4100         rps_unlock(sd);
4101
4102         local_irq_restore(flags);
4103
4104         atomic_long_inc(&skb->dev->rx_dropped);
4105         kfree_skb(skb);
4106         return NET_RX_DROP;
4107 }
4108
4109 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4110 {
4111         struct net_device *dev = skb->dev;
4112         struct netdev_rx_queue *rxqueue;
4113
4114         rxqueue = dev->_rx;
4115
4116         if (skb_rx_queue_recorded(skb)) {
4117                 u16 index = skb_get_rx_queue(skb);
4118
4119                 if (unlikely(index >= dev->real_num_rx_queues)) {
4120                         WARN_ONCE(dev->real_num_rx_queues > 1,
4121                                   "%s received packet on queue %u, but number "
4122                                   "of RX queues is %u\n",
4123                                   dev->name, index, dev->real_num_rx_queues);
4124
4125                         return rxqueue; /* Return first rxqueue */
4126                 }
4127                 rxqueue += index;
4128         }
4129         return rxqueue;
4130 }
4131
4132 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4133                                      struct xdp_buff *xdp,
4134                                      struct bpf_prog *xdp_prog)
4135 {
4136         struct netdev_rx_queue *rxqueue;
4137         void *orig_data, *orig_data_end;
4138         u32 metalen, act = XDP_DROP;
4139         int hlen, off;
4140         u32 mac_len;
4141
4142         /* Reinjected packets coming from act_mirred or similar should
4143          * not get XDP generic processing.
4144          */
4145         if (skb_cloned(skb))
4146                 return XDP_PASS;
4147
4148         /* XDP packets must be linear and must have sufficient headroom
4149          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4150          * native XDP provides, thus we need to do it here as well.
4151          */
4152         if (skb_is_nonlinear(skb) ||
4153             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4154                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4155                 int troom = skb->tail + skb->data_len - skb->end;
4156
4157                 /* In case we have to go down the path and also linearize,
4158                  * then lets do the pskb_expand_head() work just once here.
4159                  */
4160                 if (pskb_expand_head(skb,
4161                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4162                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4163                         goto do_drop;
4164                 if (skb_linearize(skb))
4165                         goto do_drop;
4166         }
4167
4168         /* The XDP program wants to see the packet starting at the MAC
4169          * header.
4170          */
4171         mac_len = skb->data - skb_mac_header(skb);
4172         hlen = skb_headlen(skb) + mac_len;
4173         xdp->data = skb->data - mac_len;
4174         xdp->data_meta = xdp->data;
4175         xdp->data_end = xdp->data + hlen;
4176         xdp->data_hard_start = skb->data - skb_headroom(skb);
4177         orig_data_end = xdp->data_end;
4178         orig_data = xdp->data;
4179
4180         rxqueue = netif_get_rxqueue(skb);
4181         xdp->rxq = &rxqueue->xdp_rxq;
4182
4183         act = bpf_prog_run_xdp(xdp_prog, xdp);
4184
4185         off = xdp->data - orig_data;
4186         if (off > 0)
4187                 __skb_pull(skb, off);
4188         else if (off < 0)
4189                 __skb_push(skb, -off);
4190         skb->mac_header += off;
4191
4192         /* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4193          * pckt.
4194          */
4195         off = orig_data_end - xdp->data_end;
4196         if (off != 0) {
4197                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4198                 skb->len -= off;
4199
4200         }
4201
4202         switch (act) {
4203         case XDP_REDIRECT:
4204         case XDP_TX:
4205                 __skb_push(skb, mac_len);
4206                 break;
4207         case XDP_PASS:
4208                 metalen = xdp->data - xdp->data_meta;
4209                 if (metalen)
4210                         skb_metadata_set(skb, metalen);
4211                 break;
4212         default:
4213                 bpf_warn_invalid_xdp_action(act);
4214                 /* fall through */
4215         case XDP_ABORTED:
4216                 trace_xdp_exception(skb->dev, xdp_prog, act);
4217                 /* fall through */
4218         case XDP_DROP:
4219         do_drop:
4220                 kfree_skb(skb);
4221                 break;
4222         }
4223
4224         return act;
4225 }
4226
4227 /* When doing generic XDP we have to bypass the qdisc layer and the
4228  * network taps in order to match in-driver-XDP behavior.
4229  */
4230 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4231 {
4232         struct net_device *dev = skb->dev;
4233         struct netdev_queue *txq;
4234         bool free_skb = true;
4235         int cpu, rc;
4236
4237         txq = netdev_pick_tx(dev, skb, NULL);
4238         cpu = smp_processor_id();
4239         HARD_TX_LOCK(dev, txq, cpu);
4240         if (!netif_xmit_stopped(txq)) {
4241                 rc = netdev_start_xmit(skb, dev, txq, 0);
4242                 if (dev_xmit_complete(rc))
4243                         free_skb = false;
4244         }
4245         HARD_TX_UNLOCK(dev, txq);
4246         if (free_skb) {
4247                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4248                 kfree_skb(skb);
4249         }
4250 }
4251 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4252
4253 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4254
4255 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4256 {
4257         if (xdp_prog) {
4258                 struct xdp_buff xdp;
4259                 u32 act;
4260                 int err;
4261
4262                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4263                 if (act != XDP_PASS) {
4264                         switch (act) {
4265                         case XDP_REDIRECT:
4266                                 err = xdp_do_generic_redirect(skb->dev, skb,
4267                                                               &xdp, xdp_prog);
4268                                 if (err)
4269                                         goto out_redir;
4270                                 break;
4271                         case XDP_TX:
4272                                 generic_xdp_tx(skb, xdp_prog);
4273                                 break;
4274                         }
4275                         return XDP_DROP;
4276                 }
4277         }
4278         return XDP_PASS;
4279 out_redir:
4280         kfree_skb(skb);
4281         return XDP_DROP;
4282 }
4283 EXPORT_SYMBOL_GPL(do_xdp_generic);
4284
4285 static int netif_rx_internal(struct sk_buff *skb)
4286 {
4287         int ret;
4288
4289         net_timestamp_check(netdev_tstamp_prequeue, skb);
4290
4291         trace_netif_rx(skb);
4292
4293         if (static_branch_unlikely(&generic_xdp_needed_key)) {
4294                 int ret;
4295
4296                 preempt_disable();
4297                 rcu_read_lock();
4298                 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4299                 rcu_read_unlock();
4300                 preempt_enable();
4301
4302                 /* Consider XDP consuming the packet a success from
4303                  * the netdev point of view we do not want to count
4304                  * this as an error.
4305                  */
4306                 if (ret != XDP_PASS)
4307                         return NET_RX_SUCCESS;
4308         }
4309
4310 #ifdef CONFIG_RPS
4311         if (static_key_false(&rps_needed)) {
4312                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4313                 int cpu;
4314
4315                 preempt_disable();
4316                 rcu_read_lock();
4317
4318                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4319                 if (cpu < 0)
4320                         cpu = smp_processor_id();
4321
4322                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4323
4324                 rcu_read_unlock();
4325                 preempt_enable();
4326         } else
4327 #endif
4328         {
4329                 unsigned int qtail;
4330
4331                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4332                 put_cpu();
4333         }
4334         return ret;
4335 }
4336
4337 /**
4338  *      netif_rx        -       post buffer to the network code
4339  *      @skb: buffer to post
4340  *
4341  *      This function receives a packet from a device driver and queues it for
4342  *      the upper (protocol) levels to process.  It always succeeds. The buffer
4343  *      may be dropped during processing for congestion control or by the
4344  *      protocol layers.
4345  *
4346  *      return values:
4347  *      NET_RX_SUCCESS  (no congestion)
4348  *      NET_RX_DROP     (packet was dropped)
4349  *
4350  */
4351
4352 int netif_rx(struct sk_buff *skb)
4353 {
4354         trace_netif_rx_entry(skb);
4355
4356         return netif_rx_internal(skb);
4357 }
4358 EXPORT_SYMBOL(netif_rx);
4359
4360 int netif_rx_ni(struct sk_buff *skb)
4361 {
4362         int err;
4363
4364         trace_netif_rx_ni_entry(skb);
4365
4366         preempt_disable();
4367         err = netif_rx_internal(skb);
4368         if (local_softirq_pending())
4369                 do_softirq();
4370         preempt_enable();
4371
4372         return err;
4373 }
4374 EXPORT_SYMBOL(netif_rx_ni);
4375
4376 static __latent_entropy void net_tx_action(struct softirq_action *h)
4377 {
4378         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4379
4380         if (sd->completion_queue) {
4381                 struct sk_buff *clist;
4382
4383                 local_irq_disable();
4384                 clist = sd->completion_queue;
4385                 sd->completion_queue = NULL;
4386                 local_irq_enable();
4387
4388                 while (clist) {
4389                         struct sk_buff *skb = clist;
4390
4391                         clist = clist->next;
4392
4393                         WARN_ON(refcount_read(&skb->users));
4394                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4395                                 trace_consume_skb(skb);
4396                         else
4397                                 trace_kfree_skb(skb, net_tx_action);
4398
4399                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4400                                 __kfree_skb(skb);
4401                         else
4402                                 __kfree_skb_defer(skb);
4403                 }
4404
4405                 __kfree_skb_flush();
4406         }
4407
4408         if (sd->output_queue) {
4409                 struct Qdisc *head;
4410
4411                 local_irq_disable();
4412                 head = sd->output_queue;
4413                 sd->output_queue = NULL;
4414                 sd->output_queue_tailp = &sd->output_queue;
4415                 local_irq_enable();
4416
4417                 while (head) {
4418                         struct Qdisc *q = head;
4419                         spinlock_t *root_lock = NULL;
4420
4421                         head = head->next_sched;
4422
4423                         if (!(q->flags & TCQ_F_NOLOCK)) {
4424                                 root_lock = qdisc_lock(q);
4425                                 spin_lock(root_lock);
4426                         }
4427                         /* We need to make sure head->next_sched is read
4428                          * before clearing __QDISC_STATE_SCHED
4429                          */
4430                         smp_mb__before_atomic();
4431                         clear_bit(__QDISC_STATE_SCHED, &q->state);
4432                         qdisc_run(q);
4433                         if (root_lock)
4434                                 spin_unlock(root_lock);
4435                 }
4436         }
4437
4438         xfrm_dev_backlog(sd);
4439 }
4440
4441 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4442 /* This hook is defined here for ATM LANE */
4443 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4444                              unsigned char *addr) __read_mostly;
4445 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4446 #endif
4447
4448 static inline struct sk_buff *
4449 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4450                    struct net_device *orig_dev)
4451 {
4452 #ifdef CONFIG_NET_CLS_ACT
4453         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4454         struct tcf_result cl_res;
4455
4456         /* If there's at least one ingress present somewhere (so
4457          * we get here via enabled static key), remaining devices
4458          * that are not configured with an ingress qdisc will bail
4459          * out here.
4460          */
4461         if (!miniq)
4462                 return skb;
4463
4464         if (*pt_prev) {
4465                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4466                 *pt_prev = NULL;
4467         }
4468
4469         qdisc_skb_cb(skb)->pkt_len = skb->len;
4470         skb->tc_at_ingress = 1;
4471         mini_qdisc_bstats_cpu_update(miniq, skb);
4472
4473         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4474         case TC_ACT_OK:
4475         case TC_ACT_RECLASSIFY:
4476                 skb->tc_index = TC_H_MIN(cl_res.classid);
4477                 break;
4478         case TC_ACT_SHOT:
4479                 mini_qdisc_qstats_cpu_drop(miniq);
4480                 kfree_skb(skb);
4481                 return NULL;
4482         case TC_ACT_STOLEN:
4483         case TC_ACT_QUEUED:
4484         case TC_ACT_TRAP:
4485                 consume_skb(skb);
4486                 return NULL;
4487         case TC_ACT_REDIRECT:
4488                 /* skb_mac_header check was done by cls/act_bpf, so
4489                  * we can safely push the L2 header back before
4490                  * redirecting to another netdev
4491                  */
4492                 __skb_push(skb, skb->mac_len);
4493                 skb_do_redirect(skb);
4494                 return NULL;
4495         default:
4496                 break;
4497         }
4498 #endif /* CONFIG_NET_CLS_ACT */
4499         return skb;
4500 }
4501
4502 /**
4503  *      netdev_is_rx_handler_busy - check if receive handler is registered
4504  *      @dev: device to check
4505  *
4506  *      Check if a receive handler is already registered for a given device.
4507  *      Return true if there one.
4508  *
4509  *      The caller must hold the rtnl_mutex.
4510  */
4511 bool netdev_is_rx_handler_busy(struct net_device *dev)
4512 {
4513         ASSERT_RTNL();
4514         return dev && rtnl_dereference(dev->rx_handler);
4515 }
4516 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4517
4518 /**
4519  *      netdev_rx_handler_register - register receive handler
4520  *      @dev: device to register a handler for
4521  *      @rx_handler: receive handler to register
4522  *      @rx_handler_data: data pointer that is used by rx handler
4523  *
4524  *      Register a receive handler for a device. This handler will then be
4525  *      called from __netif_receive_skb. A negative errno code is returned
4526  *      on a failure.
4527  *
4528  *      The caller must hold the rtnl_mutex.
4529  *
4530  *      For a general description of rx_handler, see enum rx_handler_result.
4531  */
4532 int netdev_rx_handler_register(struct net_device *dev,
4533                                rx_handler_func_t *rx_handler,
4534                                void *rx_handler_data)
4535 {
4536         if (netdev_is_rx_handler_busy(dev))
4537                 return -EBUSY;
4538
4539         if (dev->priv_flags & IFF_NO_RX_HANDLER)
4540                 return -EINVAL;
4541
4542         /* Note: rx_handler_data must be set before rx_handler */
4543         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4544         rcu_assign_pointer(dev->rx_handler, rx_handler);
4545
4546         return 0;
4547 }
4548 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4549
4550 /**
4551  *      netdev_rx_handler_unregister - unregister receive handler
4552  *      @dev: device to unregister a handler from
4553  *
4554  *      Unregister a receive handler from a device.
4555  *
4556  *      The caller must hold the rtnl_mutex.
4557  */
4558 void netdev_rx_handler_unregister(struct net_device *dev)
4559 {
4560
4561         ASSERT_RTNL();
4562         RCU_INIT_POINTER(dev->rx_handler, NULL);
4563         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4564          * section has a guarantee to see a non NULL rx_handler_data
4565          * as well.
4566          */
4567         synchronize_net();
4568         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4569 }
4570 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4571
4572 /*
4573  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4574  * the special handling of PFMEMALLOC skbs.
4575  */
4576 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4577 {
4578         switch (skb->protocol) {
4579         case htons(ETH_P_ARP):
4580         case htons(ETH_P_IP):
4581         case htons(ETH_P_IPV6):
4582         case htons(ETH_P_8021Q):
4583         case htons(ETH_P_8021AD):
4584                 return true;
4585         default:
4586                 return false;
4587         }
4588 }
4589
4590 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4591                              int *ret, struct net_device *orig_dev)
4592 {
4593 #ifdef CONFIG_NETFILTER_INGRESS
4594         if (nf_hook_ingress_active(skb)) {
4595                 int ingress_retval;
4596
4597                 if (*pt_prev) {
4598                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
4599                         *pt_prev = NULL;
4600                 }
4601
4602                 rcu_read_lock();
4603                 ingress_retval = nf_hook_ingress(skb);
4604                 rcu_read_unlock();
4605                 return ingress_retval;
4606         }
4607 #endif /* CONFIG_NETFILTER_INGRESS */
4608         return 0;
4609 }
4610
4611 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
4612                                     struct packet_type **ppt_prev)
4613 {
4614         struct packet_type *ptype, *pt_prev;
4615         rx_handler_func_t *rx_handler;
4616         struct net_device *orig_dev;
4617         bool deliver_exact = false;
4618         int ret = NET_RX_DROP;
4619         __be16 type;
4620
4621         net_timestamp_check(!netdev_tstamp_prequeue, skb);
4622
4623         trace_netif_receive_skb(skb);
4624
4625         orig_dev = skb->dev;
4626
4627         skb_reset_network_header(skb);
4628         if (!skb_transport_header_was_set(skb))
4629                 skb_reset_transport_header(skb);
4630         skb_reset_mac_len(skb);
4631
4632         pt_prev = NULL;
4633
4634 another_round:
4635         skb->skb_iif = skb->dev->ifindex;
4636
4637         __this_cpu_inc(softnet_data.processed);
4638
4639         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4640             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4641                 skb = skb_vlan_untag(skb);
4642                 if (unlikely(!skb))
4643                         goto out;
4644         }
4645
4646         if (skb_skip_tc_classify(skb))
4647                 goto skip_classify;
4648
4649         if (pfmemalloc)
4650                 goto skip_taps;
4651
4652         list_for_each_entry_rcu(ptype, &ptype_all, list) {
4653                 if (pt_prev)
4654                         ret = deliver_skb(skb, pt_prev, orig_dev);
4655                 pt_prev = ptype;
4656         }
4657
4658         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4659                 if (pt_prev)
4660                         ret = deliver_skb(skb, pt_prev, orig_dev);
4661                 pt_prev = ptype;
4662         }
4663
4664 skip_taps:
4665 #ifdef CONFIG_NET_INGRESS
4666         if (static_branch_unlikely(&ingress_needed_key)) {
4667                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4668                 if (!skb)
4669                         goto out;
4670
4671                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4672                         goto out;
4673         }
4674 #endif
4675         skb_reset_tc(skb);
4676 skip_classify:
4677         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4678                 goto drop;
4679
4680         if (skb_vlan_tag_present(skb)) {
4681                 if (pt_prev) {
4682                         ret = deliver_skb(skb, pt_prev, orig_dev);
4683                         pt_prev = NULL;
4684                 }
4685                 if (vlan_do_receive(&skb))
4686                         goto another_round;
4687                 else if (unlikely(!skb))
4688                         goto out;
4689         }
4690
4691         rx_handler = rcu_dereference(skb->dev->rx_handler);
4692         if (rx_handler) {
4693                 if (pt_prev) {
4694                         ret = deliver_skb(skb, pt_prev, orig_dev);
4695                         pt_prev = NULL;
4696                 }
4697                 switch (rx_handler(&skb)) {
4698                 case RX_HANDLER_CONSUMED:
4699                         ret = NET_RX_SUCCESS;
4700                         goto out;
4701                 case RX_HANDLER_ANOTHER:
4702                         goto another_round;
4703                 case RX_HANDLER_EXACT:
4704                         deliver_exact = true;
4705                 case RX_HANDLER_PASS:
4706                         break;
4707                 default:
4708                         BUG();
4709                 }
4710         }
4711
4712         if (unlikely(skb_vlan_tag_present(skb))) {
4713                 if (skb_vlan_tag_get_id(skb))
4714                         skb->pkt_type = PACKET_OTHERHOST;
4715                 /* Note: we might in the future use prio bits
4716                  * and set skb->priority like in vlan_do_receive()
4717                  * For the time being, just ignore Priority Code Point
4718                  */
4719                 skb->vlan_tci = 0;
4720         }
4721
4722         type = skb->protocol;
4723
4724         /* deliver only exact match when indicated */
4725         if (likely(!deliver_exact)) {
4726                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4727                                        &ptype_base[ntohs(type) &
4728                                                    PTYPE_HASH_MASK]);
4729         }
4730
4731         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4732                                &orig_dev->ptype_specific);
4733
4734         if (unlikely(skb->dev != orig_dev)) {
4735                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4736                                        &skb->dev->ptype_specific);
4737         }
4738
4739         if (pt_prev) {
4740                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4741                         goto drop;
4742                 *ppt_prev = pt_prev;
4743         } else {
4744 drop:
4745                 if (!deliver_exact)
4746                         atomic_long_inc(&skb->dev->rx_dropped);
4747                 else
4748                         atomic_long_inc(&skb->dev->rx_nohandler);
4749                 kfree_skb(skb);
4750                 /* Jamal, now you will not able to escape explaining
4751                  * me how you were going to use this. :-)
4752                  */
4753                 ret = NET_RX_DROP;
4754         }
4755
4756 out:
4757         return ret;
4758 }
4759
4760 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
4761 {
4762         struct net_device *orig_dev = skb->dev;
4763         struct packet_type *pt_prev = NULL;
4764         int ret;
4765
4766         ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
4767         if (pt_prev)
4768                 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4769         return ret;
4770 }
4771
4772 /**
4773  *      netif_receive_skb_core - special purpose version of netif_receive_skb
4774  *      @skb: buffer to process
4775  *
4776  *      More direct receive version of netif_receive_skb().  It should
4777  *      only be used by callers that have a need to skip RPS and Generic XDP.
4778  *      Caller must also take care of handling if (page_is_)pfmemalloc.
4779  *
4780  *      This function may only be called from softirq context and interrupts
4781  *      should be enabled.
4782  *
4783  *      Return values (usually ignored):
4784  *      NET_RX_SUCCESS: no congestion
4785  *      NET_RX_DROP: packet was dropped
4786  */
4787 int netif_receive_skb_core(struct sk_buff *skb)
4788 {
4789         int ret;
4790
4791         rcu_read_lock();
4792         ret = __netif_receive_skb_one_core(skb, false);
4793         rcu_read_unlock();
4794
4795         return ret;
4796 }
4797 EXPORT_SYMBOL(netif_receive_skb_core);
4798
4799 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
4800                                                   struct packet_type *pt_prev,
4801                                                   struct net_device *orig_dev)
4802 {
4803         struct sk_buff *skb, *next;
4804
4805         if (!pt_prev)
4806                 return;
4807         if (list_empty(head))
4808                 return;
4809         if (pt_prev->list_func != NULL)
4810                 pt_prev->list_func(head, pt_prev, orig_dev);
4811         else
4812                 list_for_each_entry_safe(skb, next, head, list)
4813                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4814 }
4815
4816 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
4817 {
4818         /* Fast-path assumptions:
4819          * - There is no RX handler.
4820          * - Only one packet_type matches.
4821          * If either of these fails, we will end up doing some per-packet
4822          * processing in-line, then handling the 'last ptype' for the whole
4823          * sublist.  This can't cause out-of-order delivery to any single ptype,
4824          * because the 'last ptype' must be constant across the sublist, and all
4825          * other ptypes are handled per-packet.
4826          */
4827         /* Current (common) ptype of sublist */
4828         struct packet_type *pt_curr = NULL;
4829         /* Current (common) orig_dev of sublist */
4830         struct net_device *od_curr = NULL;
4831         struct list_head sublist;
4832         struct sk_buff *skb, *next;
4833
4834         list_for_each_entry_safe(skb, next, head, list) {
4835                 struct net_device *orig_dev = skb->dev;
4836                 struct packet_type *pt_prev = NULL;
4837
4838                 __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
4839                 if (pt_curr != pt_prev || od_curr != orig_dev) {
4840                         /* dispatch old sublist */
4841                         list_cut_before(&sublist, head, &skb->list);
4842                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
4843                         /* start new sublist */
4844                         pt_curr = pt_prev;
4845                         od_curr = orig_dev;
4846                 }
4847         }
4848
4849         /* dispatch final sublist */
4850         __netif_receive_skb_list_ptype(head, pt_curr, od_curr);
4851 }
4852
4853 static int __netif_receive_skb(struct sk_buff *skb)
4854 {
4855         int ret;
4856
4857         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4858                 unsigned int noreclaim_flag;
4859
4860                 /*
4861                  * PFMEMALLOC skbs are special, they should
4862                  * - be delivered to SOCK_MEMALLOC sockets only
4863                  * - stay away from userspace
4864                  * - have bounded memory usage
4865                  *
4866                  * Use PF_MEMALLOC as this saves us from propagating the allocation
4867                  * context down to all allocation sites.
4868                  */
4869                 noreclaim_flag = memalloc_noreclaim_save();
4870                 ret = __netif_receive_skb_one_core(skb, true);
4871                 memalloc_noreclaim_restore(noreclaim_flag);
4872         } else
4873                 ret = __netif_receive_skb_one_core(skb, false);
4874
4875         return ret;
4876 }
4877
4878 static void __netif_receive_skb_list(struct list_head *head)
4879 {
4880         unsigned long noreclaim_flag = 0;
4881         struct sk_buff *skb, *next;
4882         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
4883
4884         list_for_each_entry_safe(skb, next, head, list) {
4885                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
4886                         struct list_head sublist;
4887
4888                         /* Handle the previous sublist */
4889                         list_cut_before(&sublist, head, &skb->list);
4890                         if (!list_empty(&sublist))
4891                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
4892                         pfmemalloc = !pfmemalloc;
4893                         /* See comments in __netif_receive_skb */
4894                         if (pfmemalloc)
4895                                 noreclaim_flag = memalloc_noreclaim_save();
4896                         else
4897                                 memalloc_noreclaim_restore(noreclaim_flag);
4898                 }
4899         }
4900         /* Handle the remaining sublist */
4901         if (!list_empty(head))
4902                 __netif_receive_skb_list_core(head, pfmemalloc);
4903         /* Restore pflags */
4904         if (pfmemalloc)
4905                 memalloc_noreclaim_restore(noreclaim_flag);
4906 }
4907
4908 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
4909 {
4910         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
4911         struct bpf_prog *new = xdp->prog;
4912         int ret = 0;
4913
4914         switch (xdp->command) {
4915         case XDP_SETUP_PROG:
4916                 rcu_assign_pointer(dev->xdp_prog, new);
4917                 if (old)
4918                         bpf_prog_put(old);
4919
4920                 if (old && !new) {
4921                         static_branch_dec(&generic_xdp_needed_key);
4922                 } else if (new && !old) {
4923                         static_branch_inc(&generic_xdp_needed_key);
4924                         dev_disable_lro(dev);
4925                         dev_disable_gro_hw(dev);
4926                 }
4927                 break;
4928
4929         case XDP_QUERY_PROG:
4930                 xdp->prog_attached = !!old;
4931                 xdp->prog_id = old ? old->aux->id : 0;
4932                 break;
4933
4934         default:
4935                 ret = -EINVAL;
4936                 break;
4937         }
4938
4939         return ret;
4940 }
4941
4942 static int netif_receive_skb_internal(struct sk_buff *skb)
4943 {
4944         int ret;
4945
4946         net_timestamp_check(netdev_tstamp_prequeue, skb);
4947
4948         if (skb_defer_rx_timestamp(skb))
4949                 return NET_RX_SUCCESS;
4950
4951         if (static_branch_unlikely(&generic_xdp_needed_key)) {
4952                 int ret;
4953
4954                 preempt_disable();
4955                 rcu_read_lock();
4956                 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4957                 rcu_read_unlock();
4958                 preempt_enable();
4959
4960                 if (ret != XDP_PASS)
4961                         return NET_RX_DROP;
4962         }
4963
4964         rcu_read_lock();
4965 #ifdef CONFIG_RPS
4966         if (static_key_false(&rps_needed)) {
4967                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4968                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4969
4970                 if (cpu >= 0) {
4971                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4972                         rcu_read_unlock();
4973                         return ret;
4974                 }
4975         }
4976 #endif
4977         ret = __netif_receive_skb(skb);
4978         rcu_read_unlock();
4979         return ret;
4980 }
4981
4982 static void netif_receive_skb_list_internal(struct list_head *head)
4983 {
4984         struct bpf_prog *xdp_prog = NULL;
4985         struct sk_buff *skb, *next;
4986
4987         list_for_each_entry_safe(skb, next, head, list) {
4988                 net_timestamp_check(netdev_tstamp_prequeue, skb);
4989                 if (skb_defer_rx_timestamp(skb))
4990                         /* Handled, remove from list */
4991                         list_del(&skb->list);
4992         }
4993
4994         if (static_branch_unlikely(&generic_xdp_needed_key)) {
4995                 preempt_disable();
4996                 rcu_read_lock();
4997                 list_for_each_entry_safe(skb, next, head, list) {
4998                         xdp_prog = rcu_dereference(skb->dev->xdp_prog);
4999                         if (do_xdp_generic(xdp_prog, skb) != XDP_PASS)
5000                                 /* Dropped, remove from list */
5001                                 list_del(&skb->list);
5002                 }
5003                 rcu_read_unlock();
5004                 preempt_enable();
5005         }
5006
5007         rcu_read_lock();
5008 #ifdef CONFIG_RPS
5009         if (static_key_false(&rps_needed)) {
5010                 list_for_each_entry_safe(skb, next, head, list) {
5011                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5012                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5013
5014                         if (cpu >= 0) {
5015                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5016                                 /* Handled, remove from list */
5017                                 list_del(&skb->list);
5018                         }
5019                 }
5020         }
5021 #endif
5022         __netif_receive_skb_list(head);
5023         rcu_read_unlock();
5024 }
5025
5026 /**
5027  *      netif_receive_skb - process receive buffer from network
5028  *      @skb: buffer to process
5029  *
5030  *      netif_receive_skb() is the main receive data processing function.
5031  *      It always succeeds. The buffer may be dropped during processing
5032  *      for congestion control or by the protocol layers.
5033  *
5034  *      This function may only be called from softirq context and interrupts
5035  *      should be enabled.
5036  *
5037  *      Return values (usually ignored):
5038  *      NET_RX_SUCCESS: no congestion
5039  *      NET_RX_DROP: packet was dropped
5040  */
5041 int netif_receive_skb(struct sk_buff *skb)
5042 {
5043         trace_netif_receive_skb_entry(skb);
5044
5045         return netif_receive_skb_internal(skb);
5046 }
5047 EXPORT_SYMBOL(netif_receive_skb);
5048
5049 /**
5050  *      netif_receive_skb_list - process many receive buffers from network
5051  *      @head: list of skbs to process.
5052  *
5053  *      Since return value of netif_receive_skb() is normally ignored, and
5054  *      wouldn't be meaningful for a list, this function returns void.
5055  *
5056  *      This function may only be called from softirq context and interrupts
5057  *      should be enabled.
5058  */
5059 void netif_receive_skb_list(struct list_head *head)
5060 {
5061         struct sk_buff *skb;
5062
5063         if (list_empty(head))
5064                 return;
5065         list_for_each_entry(skb, head, list)
5066                 trace_netif_receive_skb_list_entry(skb);
5067         netif_receive_skb_list_internal(head);
5068 }
5069 EXPORT_SYMBOL(netif_receive_skb_list);
5070
5071 DEFINE_PER_CPU(struct work_struct, flush_works);
5072
5073 /* Network device is going away, flush any packets still pending */
5074 static void flush_backlog(struct work_struct *work)
5075 {
5076         struct sk_buff *skb, *tmp;
5077         struct softnet_data *sd;
5078
5079         local_bh_disable();
5080         sd = this_cpu_ptr(&softnet_data);
5081
5082         local_irq_disable();
5083         rps_lock(sd);
5084         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5085                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5086                         __skb_unlink(skb, &sd->input_pkt_queue);
5087                         kfree_skb(skb);
5088                         input_queue_head_incr(sd);
5089                 }
5090         }
5091         rps_unlock(sd);
5092         local_irq_enable();
5093
5094         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5095                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5096                         __skb_unlink(skb, &sd->process_queue);
5097                         kfree_skb(skb);
5098                         input_queue_head_incr(sd);
5099                 }
5100         }
5101         local_bh_enable();
5102 }
5103
5104 static void flush_all_backlogs(void)
5105 {
5106         unsigned int cpu;
5107
5108         get_online_cpus();
5109
5110         for_each_online_cpu(cpu)
5111                 queue_work_on(cpu, system_highpri_wq,
5112                               per_cpu_ptr(&flush_works, cpu));
5113
5114         for_each_online_cpu(cpu)
5115                 flush_work(per_cpu_ptr(&flush_works, cpu));
5116
5117         put_online_cpus();
5118 }
5119
5120 static int napi_gro_complete(struct sk_buff *skb)
5121 {
5122         struct packet_offload *ptype;
5123         __be16 type = skb->protocol;
5124         struct list_head *head = &offload_base;
5125         int err = -ENOENT;
5126
5127         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5128
5129         if (NAPI_GRO_CB(skb)->count == 1) {
5130                 skb_shinfo(skb)->gso_size = 0;
5131                 goto out;
5132         }
5133
5134         rcu_read_lock();
5135         list_for_each_entry_rcu(ptype, head, list) {
5136                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5137                         continue;
5138
5139                 err = ptype->callbacks.gro_complete(skb, 0);
5140                 break;
5141         }
5142         rcu_read_unlock();
5143
5144         if (err) {
5145                 WARN_ON(&ptype->list == head);
5146                 kfree_skb(skb);
5147                 return NET_RX_SUCCESS;
5148         }
5149
5150 out:
5151         return netif_receive_skb_internal(skb);
5152 }
5153
5154 static void __napi_gro_flush_chain(struct napi_struct *napi, struct list_head *head,
5155                                    bool flush_old)
5156 {
5157         struct sk_buff *skb, *p;
5158
5159         list_for_each_entry_safe_reverse(skb, p, head, list) {
5160                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5161                         return;
5162                 list_del_init(&skb->list);
5163                 napi_gro_complete(skb);
5164                 napi->gro_count--;
5165         }
5166 }
5167
5168 /* napi->gro_hash contains packets ordered by age.
5169  * youngest packets at the head of it.
5170  * Complete skbs in reverse order to reduce latencies.
5171  */
5172 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5173 {
5174         int i;
5175
5176         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
5177                 struct list_head *head = &napi->gro_hash[i];
5178
5179                 __napi_gro_flush_chain(napi, head, flush_old);
5180         }
5181 }
5182 EXPORT_SYMBOL(napi_gro_flush);
5183
5184 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5185                                           struct sk_buff *skb)
5186 {
5187         unsigned int maclen = skb->dev->hard_header_len;
5188         u32 hash = skb_get_hash_raw(skb);
5189         struct list_head *head;
5190         struct sk_buff *p;
5191
5192         head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)];
5193         list_for_each_entry(p, head, list) {
5194                 unsigned long diffs;
5195
5196                 NAPI_GRO_CB(p)->flush = 0;
5197
5198                 if (hash != skb_get_hash_raw(p)) {
5199                         NAPI_GRO_CB(p)->same_flow = 0;
5200                         continue;
5201                 }
5202
5203                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5204                 diffs |= p->vlan_tci ^ skb->vlan_tci;
5205                 diffs |= skb_metadata_dst_cmp(p, skb);
5206                 diffs |= skb_metadata_differs(p, skb);
5207                 if (maclen == ETH_HLEN)
5208                         diffs |= compare_ether_header(skb_mac_header(p),
5209                                                       skb_mac_header(skb));
5210                 else if (!diffs)
5211                         diffs = memcmp(skb_mac_header(p),
5212                                        skb_mac_header(skb),
5213                                        maclen);
5214                 NAPI_GRO_CB(p)->same_flow = !diffs;
5215         }
5216
5217         return head;
5218 }
5219
5220 static void skb_gro_reset_offset(struct sk_buff *skb)
5221 {
5222         const struct skb_shared_info *pinfo = skb_shinfo(skb);
5223         const skb_frag_t *frag0 = &pinfo->frags[0];
5224
5225         NAPI_GRO_CB(skb)->data_offset = 0;
5226         NAPI_GRO_CB(skb)->frag0 = NULL;
5227         NAPI_GRO_CB(skb)->frag0_len = 0;
5228
5229         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
5230             pinfo->nr_frags &&
5231             !PageHighMem(skb_frag_page(frag0))) {
5232                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5233                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5234                                                     skb_frag_size(frag0),
5235                                                     skb->end - skb->tail);
5236         }
5237 }
5238
5239 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5240 {
5241         struct skb_shared_info *pinfo = skb_shinfo(skb);
5242
5243         BUG_ON(skb->end - skb->tail < grow);
5244
5245         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5246
5247         skb->data_len -= grow;
5248         skb->tail += grow;
5249
5250         pinfo->frags[0].page_offset += grow;
5251         skb_frag_size_sub(&pinfo->frags[0], grow);
5252
5253         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5254                 skb_frag_unref(skb, 0);
5255                 memmove(pinfo->frags, pinfo->frags + 1,
5256                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5257         }
5258 }
5259
5260 static void gro_flush_oldest(struct napi_struct *napi)
5261 {
5262         struct sk_buff *oldest = NULL;
5263         unsigned long age = jiffies;
5264         int i;
5265
5266         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
5267                 struct list_head *head = &napi->gro_hash[i];
5268                 struct sk_buff *skb;
5269
5270                 if (list_empty(head))
5271                         continue;
5272
5273                 skb = list_last_entry(head, struct sk_buff, list);
5274                 if (!oldest || time_before(NAPI_GRO_CB(skb)->age, age)) {
5275                         oldest = skb;
5276                         age = NAPI_GRO_CB(skb)->age;
5277                 }
5278         }
5279
5280         /* We are called with napi->gro_count >= MAX_GRO_SKBS, so this is
5281          * impossible.
5282          */
5283         if (WARN_ON_ONCE(!oldest))
5284                 return;
5285
5286         /* Do not adjust napi->gro_count, caller is adding a new SKB to
5287          * the chain.
5288          */
5289         list_del(&oldest->list);
5290         napi_gro_complete(oldest);
5291 }
5292
5293 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5294 {
5295         struct list_head *head = &offload_base;
5296         struct packet_offload *ptype;
5297         __be16 type = skb->protocol;
5298         struct list_head *gro_head;
5299         struct sk_buff *pp = NULL;
5300         enum gro_result ret;
5301         int same_flow;
5302         int grow;
5303
5304         if (netif_elide_gro(skb->dev))
5305                 goto normal;
5306
5307         gro_head = gro_list_prepare(napi, skb);
5308
5309         rcu_read_lock();
5310         list_for_each_entry_rcu(ptype, head, list) {
5311                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5312                         continue;
5313
5314                 skb_set_network_header(skb, skb_gro_offset(skb));
5315                 skb_reset_mac_len(skb);
5316                 NAPI_GRO_CB(skb)->same_flow = 0;
5317                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5318                 NAPI_GRO_CB(skb)->free = 0;
5319                 NAPI_GRO_CB(skb)->encap_mark = 0;
5320                 NAPI_GRO_CB(skb)->recursion_counter = 0;
5321                 NAPI_GRO_CB(skb)->is_fou = 0;
5322                 NAPI_GRO_CB(skb)->is_atomic = 1;
5323                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5324
5325                 /* Setup for GRO checksum validation */
5326                 switch (skb->ip_summed) {
5327                 case CHECKSUM_COMPLETE:
5328                         NAPI_GRO_CB(skb)->csum = skb->csum;
5329                         NAPI_GRO_CB(skb)->csum_valid = 1;
5330                         NAPI_GRO_CB(skb)->csum_cnt = 0;
5331                         break;
5332                 case CHECKSUM_UNNECESSARY:
5333                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5334                         NAPI_GRO_CB(skb)->csum_valid = 0;
5335                         break;
5336                 default:
5337                         NAPI_GRO_CB(skb)->csum_cnt = 0;
5338                         NAPI_GRO_CB(skb)->csum_valid = 0;
5339                 }
5340
5341                 pp = ptype->callbacks.gro_receive(gro_head, skb);
5342                 break;
5343         }
5344         rcu_read_unlock();
5345
5346         if (&ptype->list == head)
5347                 goto normal;
5348
5349         if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5350                 ret = GRO_CONSUMED;
5351                 goto ok;
5352         }
5353
5354         same_flow = NAPI_GRO_CB(skb)->same_flow;
5355         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5356
5357         if (pp) {
5358                 list_del_init(&pp->list);
5359                 napi_gro_complete(pp);
5360                 napi->gro_count--;
5361         }
5362
5363         if (same_flow)
5364                 goto ok;
5365
5366         if (NAPI_GRO_CB(skb)->flush)
5367                 goto normal;
5368
5369         if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
5370                 gro_flush_oldest(napi);
5371         } else {
5372                 napi->gro_count++;
5373         }
5374         NAPI_GRO_CB(skb)->count = 1;
5375         NAPI_GRO_CB(skb)->age = jiffies;
5376         NAPI_GRO_CB(skb)->last = skb;
5377         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5378         list_add(&skb->list, gro_head);
5379         ret = GRO_HELD;
5380
5381 pull:
5382         grow = skb_gro_offset(skb) - skb_headlen(skb);
5383         if (grow > 0)
5384                 gro_pull_from_frag0(skb, grow);
5385 ok:
5386         return ret;
5387
5388 normal:
5389         ret = GRO_NORMAL;
5390         goto pull;
5391 }
5392
5393 struct packet_offload *gro_find_receive_by_type(__be16 type)
5394 {
5395         struct list_head *offload_head = &offload_base;
5396         struct packet_offload *ptype;
5397
5398         list_for_each_entry_rcu(ptype, offload_head, list) {
5399                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5400                         continue;
5401                 return ptype;
5402         }
5403         return NULL;
5404 }
5405 EXPORT_SYMBOL(gro_find_receive_by_type);
5406
5407 struct packet_offload *gro_find_complete_by_type(__be16 type)
5408 {
5409         struct list_head *offload_head = &offload_base;
5410         struct packet_offload *ptype;
5411
5412         list_for_each_entry_rcu(ptype, offload_head, list) {
5413                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5414                         continue;
5415                 return ptype;
5416         }
5417         return NULL;
5418 }
5419 EXPORT_SYMBOL(gro_find_complete_by_type);
5420
5421 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5422 {
5423         skb_dst_drop(skb);
5424         secpath_reset(skb);
5425         kmem_cache_free(skbuff_head_cache, skb);
5426 }
5427
5428 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5429 {
5430         switch (ret) {
5431         case GRO_NORMAL:
5432                 if (netif_receive_skb_internal(skb))
5433                         ret = GRO_DROP;
5434                 break;
5435
5436         case GRO_DROP:
5437                 kfree_skb(skb);
5438                 break;
5439
5440         case GRO_MERGED_FREE:
5441                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5442                         napi_skb_free_stolen_head(skb);
5443                 else
5444                         __kfree_skb(skb);
5445                 break;
5446
5447         case GRO_HELD:
5448         case GRO_MERGED:
5449         case GRO_CONSUMED:
5450                 break;
5451         }
5452
5453         return ret;
5454 }
5455
5456 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5457 {
5458         skb_mark_napi_id(skb, napi);
5459         trace_napi_gro_receive_entry(skb);
5460
5461         skb_gro_reset_offset(skb);
5462
5463         return napi_skb_finish(dev_gro_receive(napi, skb), skb);
5464 }
5465 EXPORT_SYMBOL(napi_gro_receive);
5466
5467 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5468 {
5469         if (unlikely(skb->pfmemalloc)) {
5470                 consume_skb(skb);
5471                 return;
5472         }
5473         __skb_pull(skb, skb_headlen(skb));
5474         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5475         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5476         skb->vlan_tci = 0;
5477         skb->dev = napi->dev;
5478         skb->skb_iif = 0;
5479         skb->encapsulation = 0;
5480         skb_shinfo(skb)->gso_type = 0;
5481         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5482         secpath_reset(skb);
5483
5484         napi->skb = skb;
5485 }
5486
5487 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5488 {
5489         struct sk_buff *skb = napi->skb;
5490
5491         if (!skb) {
5492                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5493                 if (skb) {
5494                         napi->skb = skb;
5495                         skb_mark_napi_id(skb, napi);
5496                 }
5497         }
5498         return skb;
5499 }
5500 EXPORT_SYMBOL(napi_get_frags);
5501
5502 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5503                                       struct sk_buff *skb,
5504                                       gro_result_t ret)
5505 {
5506         switch (ret) {
5507         case GRO_NORMAL:
5508         case GRO_HELD:
5509                 __skb_push(skb, ETH_HLEN);
5510                 skb->protocol = eth_type_trans(skb, skb->dev);
5511                 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5512                         ret = GRO_DROP;
5513                 break;
5514
5515         case GRO_DROP:
5516                 napi_reuse_skb(napi, skb);
5517                 break;
5518
5519         case GRO_MERGED_FREE:
5520                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5521                         napi_skb_free_stolen_head(skb);
5522                 else
5523                         napi_reuse_skb(napi, skb);
5524                 break;
5525
5526         case GRO_MERGED:
5527         case GRO_CONSUMED:
5528                 break;
5529         }
5530
5531         return ret;
5532 }
5533
5534 /* Upper GRO stack assumes network header starts at gro_offset=0
5535  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5536  * We copy ethernet header into skb->data to have a common layout.
5537  */
5538 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5539 {
5540         struct sk_buff *skb = napi->skb;
5541         const struct ethhdr *eth;
5542         unsigned int hlen = sizeof(*eth);
5543
5544         napi->skb = NULL;
5545
5546         skb_reset_mac_header(skb);
5547         skb_gro_reset_offset(skb);
5548
5549         eth = skb_gro_header_fast(skb, 0);
5550         if (unlikely(skb_gro_header_hard(skb, hlen))) {
5551                 eth = skb_gro_header_slow(skb, hlen, 0);
5552                 if (unlikely(!eth)) {
5553                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5554                                              __func__, napi->dev->name);
5555                         napi_reuse_skb(napi, skb);
5556                         return NULL;
5557                 }
5558         } else {
5559                 gro_pull_from_frag0(skb, hlen);
5560                 NAPI_GRO_CB(skb)->frag0 += hlen;
5561                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
5562         }
5563         __skb_pull(skb, hlen);
5564
5565         /*
5566          * This works because the only protocols we care about don't require
5567          * special handling.
5568          * We'll fix it up properly in napi_frags_finish()
5569          */
5570         skb->protocol = eth->h_proto;
5571
5572         return skb;
5573 }
5574
5575 gro_result_t napi_gro_frags(struct napi_struct *napi)
5576 {
5577         struct sk_buff *skb = napi_frags_skb(napi);
5578
5579         if (!skb)
5580                 return GRO_DROP;
5581
5582         trace_napi_gro_frags_entry(skb);
5583
5584         return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5585 }
5586 EXPORT_SYMBOL(napi_gro_frags);
5587
5588 /* Compute the checksum from gro_offset and return the folded value
5589  * after adding in any pseudo checksum.
5590  */
5591 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5592 {
5593         __wsum wsum;
5594         __sum16 sum;
5595
5596         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5597
5598         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5599         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5600         if (likely(!sum)) {
5601                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5602                     !skb->csum_complete_sw)
5603                         netdev_rx_csum_fault(skb->dev);
5604         }
5605
5606         NAPI_GRO_CB(skb)->csum = wsum;
5607         NAPI_GRO_CB(skb)->csum_valid = 1;
5608
5609         return sum;
5610 }
5611 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5612
5613 static void net_rps_send_ipi(struct softnet_data *remsd)
5614 {
5615 #ifdef CONFIG_RPS
5616         while (remsd) {
5617                 struct softnet_data *next = remsd->rps_ipi_next;
5618
5619                 if (cpu_online(remsd->cpu))
5620                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
5621                 remsd = next;
5622         }
5623 #endif
5624 }
5625
5626 /*
5627  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5628  * Note: called with local irq disabled, but exits with local irq enabled.
5629  */
5630 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5631 {
5632 #ifdef CONFIG_RPS
5633         struct softnet_data *remsd = sd->rps_ipi_list;
5634
5635         if (remsd) {
5636                 sd->rps_ipi_list = NULL;
5637
5638                 local_irq_enable();
5639
5640                 /* Send pending IPI's to kick RPS processing on remote cpus. */
5641                 net_rps_send_ipi(remsd);
5642         } else
5643 #endif
5644                 local_irq_enable();
5645 }
5646
5647 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5648 {
5649 #ifdef CONFIG_RPS
5650         return sd->rps_ipi_list != NULL;
5651 #else
5652         return false;
5653 #endif
5654 }
5655
5656 static int process_backlog(struct napi_struct *napi, int quota)
5657 {
5658         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5659         bool again = true;
5660         int work = 0;
5661
5662         /* Check if we have pending ipi, its better to send them now,
5663          * not waiting net_rx_action() end.
5664          */
5665         if (sd_has_rps_ipi_waiting(sd)) {
5666                 local_irq_disable();
5667                 net_rps_action_and_irq_enable(sd);
5668         }
5669
5670         napi->weight = dev_rx_weight;
5671         while (again) {
5672                 struct sk_buff *skb;
5673
5674                 while ((skb = __skb_dequeue(&sd->process_queue))) {
5675                         rcu_read_lock();
5676                         __netif_receive_skb(skb);
5677                         rcu_read_unlock();
5678                         input_queue_head_incr(sd);
5679                         if (++work >= quota)
5680                                 return work;
5681
5682                 }
5683
5684                 local_irq_disable();
5685                 rps_lock(sd);
5686                 if (skb_queue_empty(&sd->input_pkt_queue)) {
5687                         /*
5688                          * Inline a custom version of __napi_complete().
5689                          * only current cpu owns and manipulates this napi,
5690                          * and NAPI_STATE_SCHED is the only possible flag set
5691                          * on backlog.
5692                          * We can use a plain write instead of clear_bit(),
5693                          * and we dont need an smp_mb() memory barrier.
5694                          */
5695                         napi->state = 0;
5696                         again = false;
5697                 } else {
5698                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
5699                                                    &sd->process_queue);
5700                 }
5701                 rps_unlock(sd);
5702                 local_irq_enable();
5703         }
5704
5705         return work;
5706 }
5707
5708 /**
5709  * __napi_schedule - schedule for receive
5710  * @n: entry to schedule
5711  *
5712  * The entry's receive function will be scheduled to run.
5713  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5714  */
5715 void __napi_schedule(struct napi_struct *n)
5716 {
5717         unsigned long flags;
5718
5719         local_irq_save(flags);
5720         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5721         local_irq_restore(flags);
5722 }
5723 EXPORT_SYMBOL(__napi_schedule);
5724
5725 /**
5726  *      napi_schedule_prep - check if napi can be scheduled
5727  *      @n: napi context
5728  *
5729  * Test if NAPI routine is already running, and if not mark
5730  * it as running.  This is used as a condition variable
5731  * insure only one NAPI poll instance runs.  We also make
5732  * sure there is no pending NAPI disable.
5733  */
5734 bool napi_schedule_prep(struct napi_struct *n)
5735 {
5736         unsigned long val, new;
5737
5738         do {
5739                 val = READ_ONCE(n->state);
5740                 if (unlikely(val & NAPIF_STATE_DISABLE))
5741                         return false;
5742                 new = val | NAPIF_STATE_SCHED;
5743
5744                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5745                  * This was suggested by Alexander Duyck, as compiler
5746                  * emits better code than :
5747                  * if (val & NAPIF_STATE_SCHED)
5748                  *     new |= NAPIF_STATE_MISSED;
5749                  */
5750                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5751                                                    NAPIF_STATE_MISSED;
5752         } while (cmpxchg(&n->state, val, new) != val);
5753
5754         return !(val & NAPIF_STATE_SCHED);
5755 }
5756 EXPORT_SYMBOL(napi_schedule_prep);
5757
5758 /**
5759  * __napi_schedule_irqoff - schedule for receive
5760  * @n: entry to schedule
5761  *
5762  * Variant of __napi_schedule() assuming hard irqs are masked
5763  */
5764 void __napi_schedule_irqoff(struct napi_struct *n)
5765 {
5766         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5767 }
5768 EXPORT_SYMBOL(__napi_schedule_irqoff);
5769
5770 bool napi_complete_done(struct napi_struct *n, int work_done)
5771 {
5772         unsigned long flags, val, new;
5773
5774         /*
5775          * 1) Don't let napi dequeue from the cpu poll list
5776          *    just in case its running on a different cpu.
5777          * 2) If we are busy polling, do nothing here, we have
5778          *    the guarantee we will be called later.
5779          */
5780         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5781                                  NAPIF_STATE_IN_BUSY_POLL)))
5782                 return false;
5783
5784         if (n->gro_count) {
5785                 unsigned long timeout = 0;
5786
5787                 if (work_done)
5788                         timeout = n->dev->gro_flush_timeout;
5789
5790                 if (timeout)
5791                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
5792                                       HRTIMER_MODE_REL_PINNED);
5793                 else
5794                         napi_gro_flush(n, false);
5795         }
5796         if (unlikely(!list_empty(&n->poll_list))) {
5797                 /* If n->poll_list is not empty, we need to mask irqs */
5798                 local_irq_save(flags);
5799                 list_del_init(&n->poll_list);
5800                 local_irq_restore(flags);
5801         }
5802
5803         do {
5804                 val = READ_ONCE(n->state);
5805
5806                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5807
5808                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5809
5810                 /* If STATE_MISSED was set, leave STATE_SCHED set,
5811                  * because we will call napi->poll() one more time.
5812                  * This C code was suggested by Alexander Duyck to help gcc.
5813                  */
5814                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5815                                                     NAPIF_STATE_SCHED;
5816         } while (cmpxchg(&n->state, val, new) != val);
5817
5818         if (unlikely(val & NAPIF_STATE_MISSED)) {
5819                 __napi_schedule(n);
5820                 return false;
5821         }
5822
5823         return true;
5824 }
5825 EXPORT_SYMBOL(napi_complete_done);
5826
5827 /* must be called under rcu_read_lock(), as we dont take a reference */
5828 static struct napi_struct *napi_by_id(unsigned int napi_id)
5829 {
5830         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5831         struct napi_struct *napi;
5832
5833         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5834                 if (napi->napi_id == napi_id)
5835                         return napi;
5836
5837         return NULL;
5838 }
5839
5840 #if defined(CONFIG_NET_RX_BUSY_POLL)
5841
5842 #define BUSY_POLL_BUDGET 8
5843
5844 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5845 {
5846         int rc;
5847
5848         /* Busy polling means there is a high chance device driver hard irq
5849          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5850          * set in napi_schedule_prep().
5851          * Since we are about to call napi->poll() once more, we can safely
5852          * clear NAPI_STATE_MISSED.
5853          *
5854          * Note: x86 could use a single "lock and ..." instruction
5855          * to perform these two clear_bit()
5856          */
5857         clear_bit(NAPI_STATE_MISSED, &napi->state);
5858         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5859
5860         local_bh_disable();
5861
5862         /* All we really want here is to re-enable device interrupts.
5863          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5864          */
5865         rc = napi->poll(napi, BUSY_POLL_BUDGET);
5866         trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5867         netpoll_poll_unlock(have_poll_lock);
5868         if (rc == BUSY_POLL_BUDGET)
5869                 __napi_schedule(napi);
5870         local_bh_enable();
5871 }
5872
5873 void napi_busy_loop(unsigned int napi_id,
5874                     bool (*loop_end)(void *, unsigned long),
5875                     void *loop_end_arg)
5876 {
5877         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
5878         int (*napi_poll)(struct napi_struct *napi, int budget);
5879         void *have_poll_lock = NULL;
5880         struct napi_struct *napi;
5881
5882 restart:
5883         napi_poll = NULL;
5884
5885         rcu_read_lock();
5886
5887         napi = napi_by_id(napi_id);
5888         if (!napi)
5889                 goto out;
5890
5891         preempt_disable();
5892         for (;;) {
5893                 int work = 0;
5894
5895                 local_bh_disable();
5896                 if (!napi_poll) {
5897                         unsigned long val = READ_ONCE(napi->state);
5898
5899                         /* If multiple threads are competing for this napi,
5900                          * we avoid dirtying napi->state as much as we can.
5901                          */
5902                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5903                                    NAPIF_STATE_IN_BUSY_POLL))
5904                                 goto count;
5905                         if (cmpxchg(&napi->state, val,
5906                                     val | NAPIF_STATE_IN_BUSY_POLL |
5907                                           NAPIF_STATE_SCHED) != val)
5908                                 goto count;
5909                         have_poll_lock = netpoll_poll_lock(napi);
5910                         napi_poll = napi->poll;
5911                 }
5912                 work = napi_poll(napi, BUSY_POLL_BUDGET);
5913                 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
5914 count:
5915                 if (work > 0)
5916                         __NET_ADD_STATS(dev_net(napi->dev),
5917                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
5918                 local_bh_enable();
5919
5920                 if (!loop_end || loop_end(loop_end_arg, start_time))
5921                         break;
5922
5923                 if (unlikely(need_resched())) {
5924                         if (napi_poll)
5925                                 busy_poll_stop(napi, have_poll_lock);
5926                         preempt_enable();
5927                         rcu_read_unlock();
5928                         cond_resched();
5929                         if (loop_end(loop_end_arg, start_time))
5930                                 return;
5931                         goto restart;
5932                 }
5933                 cpu_relax();
5934         }
5935         if (napi_poll)
5936                 busy_poll_stop(napi, have_poll_lock);
5937         preempt_enable();
5938 out:
5939         rcu_read_unlock();
5940 }
5941 EXPORT_SYMBOL(napi_busy_loop);
5942
5943 #endif /* CONFIG_NET_RX_BUSY_POLL */
5944
5945 static void napi_hash_add(struct napi_struct *napi)
5946 {
5947         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5948             test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5949                 return;
5950
5951         spin_lock(&napi_hash_lock);
5952
5953         /* 0..NR_CPUS range is reserved for sender_cpu use */
5954         do {
5955                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
5956                         napi_gen_id = MIN_NAPI_ID;
5957         } while (napi_by_id(napi_gen_id));
5958         napi->napi_id = napi_gen_id;
5959
5960         hlist_add_head_rcu(&napi->napi_hash_node,
5961                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5962
5963         spin_unlock(&napi_hash_lock);
5964 }
5965
5966 /* Warning : caller is responsible to make sure rcu grace period
5967  * is respected before freeing memory containing @napi
5968  */
5969 bool napi_hash_del(struct napi_struct *napi)
5970 {
5971         bool rcu_sync_needed = false;
5972
5973         spin_lock(&napi_hash_lock);
5974
5975         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5976                 rcu_sync_needed = true;
5977                 hlist_del_rcu(&napi->napi_hash_node);
5978         }
5979         spin_unlock(&napi_hash_lock);
5980         return rcu_sync_needed;
5981 }
5982 EXPORT_SYMBOL_GPL(napi_hash_del);
5983
5984 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5985 {
5986         struct napi_struct *napi;
5987
5988         napi = container_of(timer, struct napi_struct, timer);
5989
5990         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
5991          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5992          */
5993         if (napi->gro_count && !napi_disable_pending(napi) &&
5994             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5995                 __napi_schedule_irqoff(napi);
5996
5997         return HRTIMER_NORESTART;
5998 }
5999
6000 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6001                     int (*poll)(struct napi_struct *, int), int weight)
6002 {
6003         int i;
6004
6005         INIT_LIST_HEAD(&napi->poll_list);
6006         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6007         napi->timer.function = napi_watchdog;
6008         napi->gro_count = 0;
6009         for (i = 0; i < GRO_HASH_BUCKETS; i++)
6010                 INIT_LIST_HEAD(&napi->gro_hash[i]);
6011         napi->skb = NULL;
6012         napi->poll = poll;
6013         if (weight > NAPI_POLL_WEIGHT)
6014                 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
6015                             weight, dev->name);
6016         napi->weight = weight;
6017         list_add(&napi->dev_list, &dev->napi_list);
6018         napi->dev = dev;
6019 #ifdef CONFIG_NETPOLL
6020         napi->poll_owner = -1;
6021 #endif
6022         set_bit(NAPI_STATE_SCHED, &napi->state);
6023         napi_hash_add(napi);
6024 }
6025 EXPORT_SYMBOL(netif_napi_add);
6026
6027 void napi_disable(struct napi_struct *n)
6028 {
6029         might_sleep();
6030         set_bit(NAPI_STATE_DISABLE, &n->state);
6031
6032         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6033                 msleep(1);
6034         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6035                 msleep(1);
6036
6037         hrtimer_cancel(&n->timer);
6038
6039         clear_bit(NAPI_STATE_DISABLE, &n->state);
6040 }
6041 EXPORT_SYMBOL(napi_disable);
6042
6043 static void flush_gro_hash(struct napi_struct *napi)
6044 {
6045         int i;
6046
6047         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6048                 struct sk_buff *skb, *n;
6049
6050                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i], list)
6051                         kfree_skb(skb);
6052         }
6053 }
6054
6055 /* Must be called in process context */
6056 void netif_napi_del(struct napi_struct *napi)
6057 {
6058         might_sleep();
6059         if (napi_hash_del(napi))
6060                 synchronize_net();
6061         list_del_init(&napi->dev_list);
6062         napi_free_frags(napi);
6063
6064         flush_gro_hash(napi);
6065         napi->gro_count = 0;
6066 }
6067 EXPORT_SYMBOL(netif_napi_del);
6068
6069 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6070 {
6071         void *have;
6072         int work, weight;
6073
6074         list_del_init(&n->poll_list);
6075
6076         have = netpoll_poll_lock(n);
6077
6078         weight = n->weight;
6079
6080         /* This NAPI_STATE_SCHED test is for avoiding a race
6081          * with netpoll's poll_napi().  Only the entity which
6082          * obtains the lock and sees NAPI_STATE_SCHED set will
6083          * actually make the ->poll() call.  Therefore we avoid
6084          * accidentally calling ->poll() when NAPI is not scheduled.
6085          */
6086         work = 0;
6087         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6088                 work = n->poll(n, weight);
6089                 trace_napi_poll(n, work, weight);
6090         }
6091
6092         WARN_ON_ONCE(work > weight);
6093
6094         if (likely(work < weight))
6095                 goto out_unlock;
6096
6097         /* Drivers must not modify the NAPI state if they
6098          * consume the entire weight.  In such cases this code
6099          * still "owns" the NAPI instance and therefore can
6100          * move the instance around on the list at-will.
6101          */
6102         if (unlikely(napi_disable_pending(n))) {
6103                 napi_complete(n);
6104                 goto out_unlock;
6105         }
6106
6107         if (n->gro_count) {
6108                 /* flush too old packets
6109                  * If HZ < 1000, flush all packets.
6110                  */
6111                 napi_gro_flush(n, HZ >= 1000);
6112         }
6113
6114         /* Some drivers may have called napi_schedule
6115          * prior to exhausting their budget.
6116          */
6117         if (unlikely(!list_empty(&n->poll_list))) {
6118                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6119                              n->dev ? n->dev->name : "backlog");
6120                 goto out_unlock;
6121         }
6122
6123         list_add_tail(&n->poll_list, repoll);
6124
6125 out_unlock:
6126         netpoll_poll_unlock(have);
6127
6128         return work;
6129 }
6130
6131 static __latent_entropy void net_rx_action(struct softirq_action *h)
6132 {
6133         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6134         unsigned long time_limit = jiffies +
6135                 usecs_to_jiffies(netdev_budget_usecs);
6136         int budget = netdev_budget;
6137         LIST_HEAD(list);
6138         LIST_HEAD(repoll);
6139
6140         local_irq_disable();
6141         list_splice_init(&sd->poll_list, &list);
6142         local_irq_enable();
6143
6144         for (;;) {
6145                 struct napi_struct *n;
6146
6147                 if (list_empty(&list)) {
6148                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6149                                 goto out;
6150                         break;
6151                 }
6152
6153                 n = list_first_entry(&list, struct napi_struct, poll_list);
6154                 budget -= napi_poll(n, &repoll);
6155
6156                 /* If softirq window is exhausted then punt.
6157                  * Allow this to run for 2 jiffies since which will allow
6158                  * an average latency of 1.5/HZ.
6159                  */
6160                 if (unlikely(budget <= 0 ||
6161                              time_after_eq(jiffies, time_limit))) {
6162                         sd->time_squeeze++;
6163                         break;
6164                 }
6165         }
6166
6167         local_irq_disable();
6168
6169         list_splice_tail_init(&sd->poll_list, &list);
6170         list_splice_tail(&repoll, &list);
6171         list_splice(&list, &sd->poll_list);
6172         if (!list_empty(&sd->poll_list))
6173                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6174
6175         net_rps_action_and_irq_enable(sd);
6176 out:
6177         __kfree_skb_flush();
6178 }
6179
6180 struct netdev_adjacent {
6181         struct net_device *dev;
6182
6183         /* upper master flag, there can only be one master device per list */
6184         bool master;
6185
6186         /* counter for the number of times this device was added to us */
6187         u16 ref_nr;
6188
6189         /* private field for the users */
6190         void *private;
6191
6192         struct list_head list;
6193         struct rcu_head rcu;
6194 };
6195
6196 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6197                                                  struct list_head *adj_list)
6198 {
6199         struct netdev_adjacent *adj;
6200
6201         list_for_each_entry(adj, adj_list, list) {
6202                 if (adj->dev == adj_dev)
6203                         return adj;
6204         }
6205         return NULL;
6206 }
6207
6208 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6209 {
6210         struct net_device *dev = data;
6211
6212         return upper_dev == dev;
6213 }
6214
6215 /**
6216  * netdev_has_upper_dev - Check if device is linked to an upper device
6217  * @dev: device
6218  * @upper_dev: upper device to check
6219  *
6220  * Find out if a device is linked to specified upper device and return true
6221  * in case it is. Note that this checks only immediate upper device,
6222  * not through a complete stack of devices. The caller must hold the RTNL lock.
6223  */
6224 bool netdev_has_upper_dev(struct net_device *dev,
6225                           struct net_device *upper_dev)
6226 {
6227         ASSERT_RTNL();
6228
6229         return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6230                                              upper_dev);
6231 }
6232 EXPORT_SYMBOL(netdev_has_upper_dev);
6233
6234 /**
6235  * netdev_has_upper_dev_all - Check if device is linked to an upper device
6236  * @dev: device
6237  * @upper_dev: upper device to check
6238  *
6239  * Find out if a device is linked to specified upper device and return true
6240  * in case it is. Note that this checks the entire upper device chain.
6241  * The caller must hold rcu lock.
6242  */
6243
6244 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6245                                   struct net_device *upper_dev)
6246 {
6247         return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6248                                                upper_dev);
6249 }
6250 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6251
6252 /**
6253  * netdev_has_any_upper_dev - Check if device is linked to some device
6254  * @dev: device
6255  *
6256  * Find out if a device is linked to an upper device and return true in case
6257  * it is. The caller must hold the RTNL lock.
6258  */
6259 bool netdev_has_any_upper_dev(struct net_device *dev)
6260 {
6261         ASSERT_RTNL();
6262
6263         return !list_empty(&dev->adj_list.upper);
6264 }
6265 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6266
6267 /**
6268  * netdev_master_upper_dev_get - Get master upper device
6269  * @dev: device
6270  *
6271  * Find a master upper device and return pointer to it or NULL in case
6272  * it's not there. The caller must hold the RTNL lock.
6273  */
6274 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6275 {
6276         struct netdev_adjacent *upper;
6277
6278         ASSERT_RTNL();
6279
6280         if (list_empty(&dev->adj_list.upper))
6281                 return NULL;
6282
6283         upper = list_first_entry(&dev->adj_list.upper,
6284                                  struct netdev_adjacent, list);
6285         if (likely(upper->master))
6286                 return upper->dev;
6287         return NULL;
6288 }
6289 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6290
6291 /**
6292  * netdev_has_any_lower_dev - Check if device is linked to some device
6293  * @dev: device
6294  *
6295  * Find out if a device is linked to a lower device and return true in case
6296  * it is. The caller must hold the RTNL lock.
6297  */
6298 static bool netdev_has_any_lower_dev(struct net_device *dev)
6299 {
6300         ASSERT_RTNL();
6301
6302         return !list_empty(&dev->adj_list.lower);
6303 }
6304
6305 void *netdev_adjacent_get_private(struct list_head *adj_list)
6306 {
6307         struct netdev_adjacent *adj;
6308
6309         adj = list_entry(adj_list, struct netdev_adjacent, list);
6310
6311         return adj->private;
6312 }
6313 EXPORT_SYMBOL(netdev_adjacent_get_private);
6314
6315 /**
6316  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6317  * @dev: device
6318  * @iter: list_head ** of the current position
6319  *
6320  * Gets the next device from the dev's upper list, starting from iter
6321  * position. The caller must hold RCU read lock.
6322  */
6323 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6324                                                  struct list_head **iter)
6325 {
6326         struct netdev_adjacent *upper;
6327
6328         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6329
6330         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6331
6332         if (&upper->list == &dev->adj_list.upper)
6333                 return NULL;
6334
6335         *iter = &upper->list;
6336
6337         return upper->dev;
6338 }
6339 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6340
6341 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6342                                                     struct list_head **iter)
6343 {
6344         struct netdev_adjacent *upper;
6345
6346         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6347
6348         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6349
6350         if (&upper->list == &dev->adj_list.upper)
6351                 return NULL;
6352
6353         *iter = &upper->list;
6354
6355         return upper->dev;
6356 }
6357
6358 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6359                                   int (*fn)(struct net_device *dev,
6360                                             void *data),
6361                                   void *data)
6362 {
6363         struct net_device *udev;
6364         struct list_head *iter;
6365         int ret;
6366
6367         for (iter = &dev->adj_list.upper,
6368              udev = netdev_next_upper_dev_rcu(dev, &iter);
6369              udev;
6370              udev = netdev_next_upper_dev_rcu(dev, &iter)) {
6371                 /* first is the upper device itself */
6372                 ret = fn(udev, data);
6373                 if (ret)
6374                         return ret;
6375
6376                 /* then look at all of its upper devices */
6377                 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
6378                 if (ret)
6379                         return ret;
6380         }
6381
6382         return 0;
6383 }
6384 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6385
6386 /**
6387  * netdev_lower_get_next_private - Get the next ->private from the
6388  *                                 lower neighbour list
6389  * @dev: device
6390  * @iter: list_head ** of the current position
6391  *
6392  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6393  * list, starting from iter position. The caller must hold either hold the
6394  * RTNL lock or its own locking that guarantees that the neighbour lower
6395  * list will remain unchanged.
6396  */
6397 void *netdev_lower_get_next_private(struct net_device *dev,
6398                                     struct list_head **iter)
6399 {
6400         struct netdev_adjacent *lower;
6401
6402         lower = list_entry(*iter, struct netdev_adjacent, list);
6403
6404         if (&lower->list == &dev->adj_list.lower)
6405                 return NULL;
6406
6407         *iter = lower->list.next;
6408
6409         return lower->private;
6410 }
6411 EXPORT_SYMBOL(netdev_lower_get_next_private);
6412
6413 /**
6414  * netdev_lower_get_next_private_rcu - Get the next ->private from the
6415  *                                     lower neighbour list, RCU
6416  *                                     variant
6417  * @dev: device
6418  * @iter: list_head ** of the current position
6419  *
6420  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6421  * list, starting from iter position. The caller must hold RCU read lock.
6422  */
6423 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6424                                         struct list_head **iter)
6425 {
6426         struct netdev_adjacent *lower;
6427
6428         WARN_ON_ONCE(!rcu_read_lock_held());
6429
6430         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6431
6432         if (&lower->list == &dev->adj_list.lower)
6433                 return NULL;
6434
6435         *iter = &lower->list;
6436
6437         return lower->private;
6438 }
6439 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6440
6441 /**
6442  * netdev_lower_get_next - Get the next device from the lower neighbour
6443  *                         list
6444  * @dev: device
6445  * @iter: list_head ** of the current position
6446  *
6447  * Gets the next netdev_adjacent from the dev's lower neighbour
6448  * list, starting from iter position. The caller must hold RTNL lock or
6449  * its own locking that guarantees that the neighbour lower
6450  * list will remain unchanged.
6451  */
6452 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6453 {
6454         struct netdev_adjacent *lower;
6455
6456         lower = list_entry(*iter, struct netdev_adjacent, list);
6457
6458         if (&lower->list == &dev->adj_list.lower)
6459                 return NULL;
6460
6461         *iter = lower->list.next;
6462
6463         return lower->dev;
6464 }
6465 EXPORT_SYMBOL(netdev_lower_get_next);
6466
6467 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6468                                                 struct list_head **iter)
6469 {
6470         struct netdev_adjacent *lower;
6471
6472         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6473
6474         if (&lower->list == &dev->adj_list.lower)
6475                 return NULL;
6476
6477         *iter = &lower->list;
6478
6479         return lower->dev;
6480 }
6481
6482 int netdev_walk_all_lower_dev(struct net_device *dev,
6483                               int (*fn)(struct net_device *dev,
6484                                         void *data),
6485                               void *data)
6486 {
6487         struct net_device *ldev;
6488         struct list_head *iter;
6489         int ret;
6490
6491         for (iter = &dev->adj_list.lower,
6492              ldev = netdev_next_lower_dev(dev, &iter);
6493              ldev;
6494              ldev = netdev_next_lower_dev(dev, &iter)) {
6495                 /* first is the lower device itself */
6496                 ret = fn(ldev, data);
6497                 if (ret)
6498                         return ret;
6499
6500                 /* then look at all of its lower devices */
6501                 ret = netdev_walk_all_lower_dev(ldev, fn, data);
6502                 if (ret)
6503                         return ret;
6504         }
6505
6506         return 0;
6507 }
6508 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6509
6510 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6511                                                     struct list_head **iter)
6512 {
6513         struct netdev_adjacent *lower;
6514
6515         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6516         if (&lower->list == &dev->adj_list.lower)
6517                 return NULL;
6518
6519         *iter = &lower->list;
6520
6521         return lower->dev;
6522 }
6523
6524 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6525                                   int (*fn)(struct net_device *dev,
6526                                             void *data),
6527                                   void *data)
6528 {
6529         struct net_device *ldev;
6530         struct list_head *iter;
6531         int ret;
6532
6533         for (iter = &dev->adj_list.lower,
6534              ldev = netdev_next_lower_dev_rcu(dev, &iter);
6535              ldev;
6536              ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6537                 /* first is the lower device itself */
6538                 ret = fn(ldev, data);
6539                 if (ret)
6540                         return ret;
6541
6542                 /* then look at all of its lower devices */
6543                 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6544                 if (ret)
6545                         return ret;
6546         }
6547
6548         return 0;
6549 }
6550 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6551
6552 /**
6553  * netdev_lower_get_first_private_rcu - Get the first ->private from the
6554  *                                     lower neighbour list, RCU
6555  *                                     variant
6556  * @dev: device
6557  *
6558  * Gets the first netdev_adjacent->private from the dev's lower neighbour
6559  * list. The caller must hold RCU read lock.
6560  */
6561 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6562 {
6563         struct netdev_adjacent *lower;
6564
6565         lower = list_first_or_null_rcu(&dev->adj_list.lower,
6566                         struct netdev_adjacent, list);
6567         if (lower)
6568                 return lower->private;
6569         return NULL;
6570 }
6571 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6572
6573 /**
6574  * netdev_master_upper_dev_get_rcu - Get master upper device
6575  * @dev: device
6576  *
6577  * Find a master upper device and return pointer to it or NULL in case
6578  * it's not there. The caller must hold the RCU read lock.
6579  */
6580 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6581 {
6582         struct netdev_adjacent *upper;
6583
6584         upper = list_first_or_null_rcu(&dev->adj_list.upper,
6585                                        struct netdev_adjacent, list);
6586         if (upper && likely(upper->master))
6587                 return upper->dev;
6588         return NULL;
6589 }
6590 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6591
6592 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6593                               struct net_device *adj_dev,
6594                               struct list_head *dev_list)
6595 {
6596         char linkname[IFNAMSIZ+7];
6597
6598         sprintf(linkname, dev_list == &dev->adj_list.upper ?
6599                 "upper_%s" : "lower_%s", adj_dev->name);
6600         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6601                                  linkname);
6602 }
6603 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6604                                char *name,
6605                                struct list_head *dev_list)
6606 {
6607         char linkname[IFNAMSIZ+7];
6608
6609         sprintf(linkname, dev_list == &dev->adj_list.upper ?
6610                 "upper_%s" : "lower_%s", name);
6611         sysfs_remove_link(&(dev->dev.kobj), linkname);
6612 }
6613
6614 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6615                                                  struct net_device *adj_dev,
6616                                                  struct list_head *dev_list)
6617 {
6618         return (dev_list == &dev->adj_list.upper ||
6619                 dev_list == &dev->adj_list.lower) &&
6620                 net_eq(dev_net(dev), dev_net(adj_dev));
6621 }
6622
6623 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6624                                         struct net_device *adj_dev,
6625                                         struct list_head *dev_list,
6626                                         void *private, bool master)
6627 {
6628         struct netdev_adjacent *adj;
6629         int ret;
6630
6631         adj = __netdev_find_adj(adj_dev, dev_list);
6632
6633         if (adj) {
6634                 adj->ref_nr += 1;
6635                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6636                          dev->name, adj_dev->name, adj->ref_nr);
6637
6638                 return 0;
6639         }
6640
6641         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6642         if (!adj)
6643                 return -ENOMEM;
6644
6645         adj->dev = adj_dev;
6646         adj->master = master;
6647         adj->ref_nr = 1;
6648         adj->private = private;
6649         dev_hold(adj_dev);
6650
6651         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6652                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6653
6654         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6655                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6656                 if (ret)
6657                         goto free_adj;
6658         }
6659
6660         /* Ensure that master link is always the first item in list. */
6661         if (master) {
6662                 ret = sysfs_create_link(&(dev->dev.kobj),
6663                                         &(adj_dev->dev.kobj), "master");
6664                 if (ret)
6665                         goto remove_symlinks;
6666
6667                 list_add_rcu(&adj->list, dev_list);
6668         } else {
6669                 list_add_tail_rcu(&adj->list, dev_list);
6670         }
6671
6672         return 0;
6673
6674 remove_symlinks:
6675         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6676                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6677 free_adj:
6678         kfree(adj);
6679         dev_put(adj_dev);
6680
6681         return ret;
6682 }
6683
6684 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6685                                          struct net_device *adj_dev,
6686                                          u16 ref_nr,
6687                                          struct list_head *dev_list)
6688 {
6689         struct netdev_adjacent *adj;
6690
6691         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6692                  dev->name, adj_dev->name, ref_nr);
6693
6694         adj = __netdev_find_adj(adj_dev, dev_list);
6695
6696         if (!adj) {
6697                 pr_err("Adjacency does not exist for device %s from %s\n",
6698                        dev->name, adj_dev->name);
6699                 WARN_ON(1);
6700                 return;
6701         }
6702
6703         if (adj->ref_nr > ref_nr) {
6704                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6705                          dev->name, adj_dev->name, ref_nr,
6706                          adj->ref_nr - ref_nr);
6707                 adj->ref_nr -= ref_nr;
6708                 return;
6709         }
6710
6711         if (adj->master)
6712                 sysfs_remove_link(&(dev->dev.kobj), "master");
6713
6714         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6715                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6716
6717         list_del_rcu(&adj->list);
6718         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6719                  adj_dev->name, dev->name, adj_dev->name);
6720         dev_put(adj_dev);
6721         kfree_rcu(adj, rcu);
6722 }
6723
6724 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6725                                             struct net_device *upper_dev,
6726                                             struct list_head *up_list,
6727                                             struct list_head *down_list,
6728                                             void *private, bool master)
6729 {
6730         int ret;
6731
6732         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6733                                            private, master);
6734         if (ret)
6735                 return ret;
6736
6737         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6738                                            private, false);
6739         if (ret) {
6740                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6741                 return ret;
6742         }
6743
6744         return 0;
6745 }
6746
6747 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6748                                                struct net_device *upper_dev,
6749                                                u16 ref_nr,
6750                                                struct list_head *up_list,
6751                                                struct list_head *down_list)
6752 {
6753         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6754         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6755 }
6756
6757 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6758                                                 struct net_device *upper_dev,
6759                                                 void *private, bool master)
6760 {
6761         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6762                                                 &dev->adj_list.upper,
6763                                                 &upper_dev->adj_list.lower,
6764                                                 private, master);
6765 }
6766
6767 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6768                                                    struct net_device *upper_dev)
6769 {
6770         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6771                                            &dev->adj_list.upper,
6772                                            &upper_dev->adj_list.lower);
6773 }
6774
6775 static int __netdev_upper_dev_link(struct net_device *dev,
6776                                    struct net_device *upper_dev, bool master,
6777                                    void *upper_priv, void *upper_info,
6778                                    struct netlink_ext_ack *extack)
6779 {
6780         struct netdev_notifier_changeupper_info changeupper_info = {
6781                 .info = {
6782                         .dev = dev,
6783                         .extack = extack,
6784                 },
6785                 .upper_dev = upper_dev,
6786                 .master = master,
6787                 .linking = true,
6788                 .upper_info = upper_info,
6789         };
6790         struct net_device *master_dev;
6791         int ret = 0;
6792
6793         ASSERT_RTNL();
6794
6795         if (dev == upper_dev)
6796                 return -EBUSY;
6797
6798         /* To prevent loops, check if dev is not upper device to upper_dev. */
6799         if (netdev_has_upper_dev(upper_dev, dev))
6800                 return -EBUSY;
6801
6802         if (!master) {
6803                 if (netdev_has_upper_dev(dev, upper_dev))
6804                         return -EEXIST;
6805         } else {
6806                 master_dev = netdev_master_upper_dev_get(dev);
6807                 if (master_dev)
6808                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
6809         }
6810
6811         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6812                                             &changeupper_info.info);
6813         ret = notifier_to_errno(ret);
6814         if (ret)
6815                 return ret;
6816
6817         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
6818                                                    master);
6819         if (ret)
6820                 return ret;
6821
6822         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6823                                             &changeupper_info.info);
6824         ret = notifier_to_errno(ret);
6825         if (ret)
6826                 goto rollback;
6827
6828         return 0;
6829
6830 rollback:
6831         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6832
6833         return ret;
6834 }
6835
6836 /**
6837  * netdev_upper_dev_link - Add a link to the upper device
6838  * @dev: device
6839  * @upper_dev: new upper device
6840  * @extack: netlink extended ack
6841  *
6842  * Adds a link to device which is upper to this one. The caller must hold
6843  * the RTNL lock. On a failure a negative errno code is returned.
6844  * On success the reference counts are adjusted and the function
6845  * returns zero.
6846  */
6847 int netdev_upper_dev_link(struct net_device *dev,
6848                           struct net_device *upper_dev,
6849                           struct netlink_ext_ack *extack)
6850 {
6851         return __netdev_upper_dev_link(dev, upper_dev, false,
6852                                        NULL, NULL, extack);
6853 }
6854 EXPORT_SYMBOL(netdev_upper_dev_link);
6855
6856 /**
6857  * netdev_master_upper_dev_link - Add a master link to the upper device
6858  * @dev: device
6859  * @upper_dev: new upper device
6860  * @upper_priv: upper device private
6861  * @upper_info: upper info to be passed down via notifier
6862  * @extack: netlink extended ack
6863  *
6864  * Adds a link to device which is upper to this one. In this case, only
6865  * one master upper device can be linked, although other non-master devices
6866  * might be linked as well. The caller must hold the RTNL lock.
6867  * On a failure a negative errno code is returned. On success the reference
6868  * counts are adjusted and the function returns zero.
6869  */
6870 int netdev_master_upper_dev_link(struct net_device *dev,
6871                                  struct net_device *upper_dev,
6872                                  void *upper_priv, void *upper_info,
6873                                  struct netlink_ext_ack *extack)
6874 {
6875         return __netdev_upper_dev_link(dev, upper_dev, true,
6876                                        upper_priv, upper_info, extack);
6877 }
6878 EXPORT_SYMBOL(netdev_master_upper_dev_link);
6879
6880 /**
6881  * netdev_upper_dev_unlink - Removes a link to upper device
6882  * @dev: device
6883  * @upper_dev: new upper device
6884  *
6885  * Removes a link to device which is upper to this one. The caller must hold
6886  * the RTNL lock.
6887  */
6888 void netdev_upper_dev_unlink(struct net_device *dev,
6889                              struct net_device *upper_dev)
6890 {
6891         struct netdev_notifier_changeupper_info changeupper_info = {
6892                 .info = {
6893                         .dev = dev,
6894                 },
6895                 .upper_dev = upper_dev,
6896                 .linking = false,
6897         };
6898
6899         ASSERT_RTNL();
6900
6901         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
6902
6903         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6904                                       &changeupper_info.info);
6905
6906         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6907
6908         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6909                                       &changeupper_info.info);
6910 }
6911 EXPORT_SYMBOL(netdev_upper_dev_unlink);
6912
6913 /**
6914  * netdev_bonding_info_change - Dispatch event about slave change
6915  * @dev: device
6916  * @bonding_info: info to dispatch
6917  *
6918  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6919  * The caller must hold the RTNL lock.
6920  */
6921 void netdev_bonding_info_change(struct net_device *dev,
6922                                 struct netdev_bonding_info *bonding_info)
6923 {
6924         struct netdev_notifier_bonding_info info = {
6925                 .info.dev = dev,
6926         };
6927
6928         memcpy(&info.bonding_info, bonding_info,
6929                sizeof(struct netdev_bonding_info));
6930         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
6931                                       &info.info);
6932 }
6933 EXPORT_SYMBOL(netdev_bonding_info_change);
6934
6935 static void netdev_adjacent_add_links(struct net_device *dev)
6936 {
6937         struct netdev_adjacent *iter;
6938
6939         struct net *net = dev_net(dev);
6940
6941         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6942                 if (!net_eq(net, dev_net(iter->dev)))
6943                         continue;
6944                 netdev_adjacent_sysfs_add(iter->dev, dev,
6945                                           &iter->dev->adj_list.lower);
6946                 netdev_adjacent_sysfs_add(dev, iter->dev,
6947                                           &dev->adj_list.upper);
6948         }
6949
6950         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6951                 if (!net_eq(net, dev_net(iter->dev)))
6952                         continue;
6953                 netdev_adjacent_sysfs_add(iter->dev, dev,
6954                                           &iter->dev->adj_list.upper);
6955                 netdev_adjacent_sysfs_add(dev, iter->dev,
6956                                           &dev->adj_list.lower);
6957         }
6958 }
6959
6960 static void netdev_adjacent_del_links(struct net_device *dev)
6961 {
6962         struct netdev_adjacent *iter;
6963
6964         struct net *net = dev_net(dev);
6965
6966         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6967                 if (!net_eq(net, dev_net(iter->dev)))
6968                         continue;
6969                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6970                                           &iter->dev->adj_list.lower);
6971                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6972                                           &dev->adj_list.upper);
6973         }
6974
6975         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6976                 if (!net_eq(net, dev_net(iter->dev)))
6977                         continue;
6978                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6979                                           &iter->dev->adj_list.upper);
6980                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6981                                           &dev->adj_list.lower);
6982         }
6983 }
6984
6985 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6986 {
6987         struct netdev_adjacent *iter;
6988
6989         struct net *net = dev_net(dev);
6990
6991         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6992                 if (!net_eq(net, dev_net(iter->dev)))
6993                         continue;
6994                 netdev_adjacent_sysfs_del(iter->dev, oldname,
6995                                           &iter->dev->adj_list.lower);
6996                 netdev_adjacent_sysfs_add(iter->dev, dev,
6997                                           &iter->dev->adj_list.lower);
6998         }
6999
7000         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7001                 if (!net_eq(net, dev_net(iter->dev)))
7002                         continue;
7003                 netdev_adjacent_sysfs_del(iter->dev, oldname,
7004                                           &iter->dev->adj_list.upper);
7005                 netdev_adjacent_sysfs_add(iter->dev, dev,
7006                                           &iter->dev->adj_list.upper);
7007         }
7008 }
7009
7010 void *netdev_lower_dev_get_private(struct net_device *dev,
7011                                    struct net_device *lower_dev)
7012 {
7013         struct netdev_adjacent *lower;
7014
7015         if (!lower_dev)
7016                 return NULL;
7017         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7018         if (!lower)
7019                 return NULL;
7020
7021         return lower->private;
7022 }
7023 EXPORT_SYMBOL(netdev_lower_dev_get_private);
7024
7025
7026 int dev_get_nest_level(struct net_device *dev)
7027 {
7028         struct net_device *lower = NULL;
7029         struct list_head *iter;
7030         int max_nest = -1;
7031         int nest;
7032
7033         ASSERT_RTNL();
7034
7035         netdev_for_each_lower_dev(dev, lower, iter) {
7036                 nest = dev_get_nest_level(lower);
7037                 if (max_nest < nest)
7038                         max_nest = nest;
7039         }
7040
7041         return max_nest + 1;
7042 }
7043 EXPORT_SYMBOL(dev_get_nest_level);
7044
7045 /**
7046  * netdev_lower_change - Dispatch event about lower device state change
7047  * @lower_dev: device
7048  * @lower_state_info: state to dispatch
7049  *
7050  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7051  * The caller must hold the RTNL lock.
7052  */
7053 void netdev_lower_state_changed(struct net_device *lower_dev,
7054                                 void *lower_state_info)
7055 {
7056         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7057                 .info.dev = lower_dev,
7058         };
7059
7060         ASSERT_RTNL();
7061         changelowerstate_info.lower_state_info = lower_state_info;
7062         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7063                                       &changelowerstate_info.info);
7064 }
7065 EXPORT_SYMBOL(netdev_lower_state_changed);
7066
7067 static void dev_change_rx_flags(struct net_device *dev, int flags)
7068 {
7069         const struct net_device_ops *ops = dev->netdev_ops;
7070
7071         if (ops->ndo_change_rx_flags)
7072                 ops->ndo_change_rx_flags(dev, flags);
7073 }
7074
7075 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7076 {
7077         unsigned int old_flags = dev->flags;
7078         kuid_t uid;
7079         kgid_t gid;
7080
7081         ASSERT_RTNL();
7082
7083         dev->flags |= IFF_PROMISC;
7084         dev->promiscuity += inc;
7085         if (dev->promiscuity == 0) {
7086                 /*
7087                  * Avoid overflow.
7088                  * If inc causes overflow, untouch promisc and return error.
7089                  */
7090                 if (inc < 0)
7091                         dev->flags &= ~IFF_PROMISC;
7092                 else {
7093                         dev->promiscuity -= inc;
7094                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7095                                 dev->name);
7096                         return -EOVERFLOW;
7097                 }
7098         }
7099         if (dev->flags != old_flags) {
7100                 pr_info("device %s %s promiscuous mode\n",
7101                         dev->name,
7102                         dev->flags & IFF_PROMISC ? "entered" : "left");
7103                 if (audit_enabled) {
7104                         current_uid_gid(&uid, &gid);
7105                         audit_log(audit_context(), GFP_ATOMIC,
7106                                   AUDIT_ANOM_PROMISCUOUS,
7107                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7108                                   dev->name, (dev->flags & IFF_PROMISC),
7109                                   (old_flags & IFF_PROMISC),
7110                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
7111                                   from_kuid(&init_user_ns, uid),
7112                                   from_kgid(&init_user_ns, gid),
7113                                   audit_get_sessionid(current));
7114                 }
7115
7116                 dev_change_rx_flags(dev, IFF_PROMISC);
7117         }
7118         if (notify)
7119                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
7120         return 0;
7121 }
7122
7123 /**
7124  *      dev_set_promiscuity     - update promiscuity count on a device
7125  *      @dev: device
7126  *      @inc: modifier
7127  *
7128  *      Add or remove promiscuity from a device. While the count in the device
7129  *      remains above zero the interface remains promiscuous. Once it hits zero
7130  *      the device reverts back to normal filtering operation. A negative inc
7131  *      value is used to drop promiscuity on the device.
7132  *      Return 0 if successful or a negative errno code on error.
7133  */
7134 int dev_set_promiscuity(struct net_device *dev, int inc)
7135 {
7136         unsigned int old_flags = dev->flags;
7137         int err;
7138
7139         err = __dev_set_promiscuity(dev, inc, true);
7140         if (err < 0)
7141                 return err;
7142         if (dev->flags != old_flags)
7143                 dev_set_rx_mode(dev);
7144         return err;
7145 }
7146 EXPORT_SYMBOL(dev_set_promiscuity);
7147
7148 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7149 {
7150         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7151
7152         ASSERT_RTNL();
7153
7154         dev->flags |= IFF_ALLMULTI;
7155         dev->allmulti += inc;
7156         if (dev->allmulti == 0) {
7157                 /*
7158                  * Avoid overflow.
7159                  * If inc causes overflow, untouch allmulti and return error.
7160                  */
7161                 if (inc < 0)
7162                         dev->flags &= ~IFF_ALLMULTI;
7163                 else {
7164                         dev->allmulti -= inc;
7165                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7166                                 dev->name);
7167                         return -EOVERFLOW;
7168                 }
7169         }
7170         if (dev->flags ^ old_flags) {
7171                 dev_change_rx_flags(dev, IFF_ALLMULTI);
7172                 dev_set_rx_mode(dev);
7173                 if (notify)
7174                         __dev_notify_flags(dev, old_flags,
7175                                            dev->gflags ^ old_gflags);
7176         }
7177         return 0;
7178 }
7179
7180 /**
7181  *      dev_set_allmulti        - update allmulti count on a device
7182  *      @dev: device
7183  *      @inc: modifier
7184  *
7185  *      Add or remove reception of all multicast frames to a device. While the
7186  *      count in the device remains above zero the interface remains listening
7187  *      to all interfaces. Once it hits zero the device reverts back to normal
7188  *      filtering operation. A negative @inc value is used to drop the counter
7189  *      when releasing a resource needing all multicasts.
7190  *      Return 0 if successful or a negative errno code on error.
7191  */
7192
7193 int dev_set_allmulti(struct net_device *dev, int inc)
7194 {
7195         return __dev_set_allmulti(dev, inc, true);
7196 }
7197 EXPORT_SYMBOL(dev_set_allmulti);
7198
7199 /*
7200  *      Upload unicast and multicast address lists to device and
7201  *      configure RX filtering. When the device doesn't support unicast
7202  *      filtering it is put in promiscuous mode while unicast addresses
7203  *      are present.
7204  */
7205 void __dev_set_rx_mode(struct net_device *dev)
7206 {
7207         const struct net_device_ops *ops = dev->netdev_ops;
7208
7209         /* dev_open will call this function so the list will stay sane. */
7210         if (!(dev->flags&IFF_UP))
7211                 return;
7212
7213         if (!netif_device_present(dev))
7214                 return;
7215
7216         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
7217                 /* Unicast addresses changes may only happen under the rtnl,
7218                  * therefore calling __dev_set_promiscuity here is safe.
7219                  */
7220                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
7221                         __dev_set_promiscuity(dev, 1, false);
7222                         dev->uc_promisc = true;
7223                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
7224                         __dev_set_promiscuity(dev, -1, false);
7225                         dev->uc_promisc = false;
7226                 }
7227         }
7228
7229         if (ops->ndo_set_rx_mode)
7230                 ops->ndo_set_rx_mode(dev);
7231 }
7232
7233 void dev_set_rx_mode(struct net_device *dev)
7234 {
7235         netif_addr_lock_bh(dev);
7236         __dev_set_rx_mode(dev);
7237         netif_addr_unlock_bh(dev);
7238 }
7239
7240 /**
7241  *      dev_get_flags - get flags reported to userspace
7242  *      @dev: device
7243  *
7244  *      Get the combination of flag bits exported through APIs to userspace.
7245  */
7246 unsigned int dev_get_flags(const struct net_device *dev)
7247 {
7248         unsigned int flags;
7249
7250         flags = (dev->flags & ~(IFF_PROMISC |
7251                                 IFF_ALLMULTI |
7252                                 IFF_RUNNING |
7253                                 IFF_LOWER_UP |
7254                                 IFF_DORMANT)) |
7255                 (dev->gflags & (IFF_PROMISC |
7256                                 IFF_ALLMULTI));
7257
7258         if (netif_running(dev)) {
7259                 if (netif_oper_up(dev))
7260                         flags |= IFF_RUNNING;
7261                 if (netif_carrier_ok(dev))
7262                         flags |= IFF_LOWER_UP;
7263                 if (netif_dormant(dev))
7264                         flags |= IFF_DORMANT;
7265         }
7266
7267         return flags;
7268 }
7269 EXPORT_SYMBOL(dev_get_flags);
7270
7271 int __dev_change_flags(struct net_device *dev, unsigned int flags)
7272 {
7273         unsigned int old_flags = dev->flags;
7274         int ret;
7275
7276         ASSERT_RTNL();
7277
7278         /*
7279          *      Set the flags on our device.
7280          */
7281
7282         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
7283                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
7284                                IFF_AUTOMEDIA)) |
7285                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
7286                                     IFF_ALLMULTI));
7287
7288         /*
7289          *      Load in the correct multicast list now the flags have changed.
7290          */
7291
7292         if ((old_flags ^ flags) & IFF_MULTICAST)
7293                 dev_change_rx_flags(dev, IFF_MULTICAST);
7294
7295         dev_set_rx_mode(dev);
7296
7297         /*
7298          *      Have we downed the interface. We handle IFF_UP ourselves
7299          *      according to user attempts to set it, rather than blindly
7300          *      setting it.
7301          */
7302
7303         ret = 0;
7304         if ((old_flags ^ flags) & IFF_UP) {
7305                 if (old_flags & IFF_UP)
7306                         __dev_close(dev);
7307                 else
7308                         ret = __dev_open(dev);
7309         }
7310
7311         if ((flags ^ dev->gflags) & IFF_PROMISC) {
7312                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
7313                 unsigned int old_flags = dev->flags;
7314
7315                 dev->gflags ^= IFF_PROMISC;
7316
7317                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
7318                         if (dev->flags != old_flags)
7319                                 dev_set_rx_mode(dev);
7320         }
7321
7322         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
7323          * is important. Some (broken) drivers set IFF_PROMISC, when
7324          * IFF_ALLMULTI is requested not asking us and not reporting.
7325          */
7326         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
7327                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
7328
7329                 dev->gflags ^= IFF_ALLMULTI;
7330                 __dev_set_allmulti(dev, inc, false);
7331         }
7332
7333         return ret;
7334 }
7335
7336 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
7337                         unsigned int gchanges)
7338 {
7339         unsigned int changes = dev->flags ^ old_flags;
7340
7341         if (gchanges)
7342                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
7343
7344         if (changes & IFF_UP) {
7345                 if (dev->flags & IFF_UP)
7346                         call_netdevice_notifiers(NETDEV_UP, dev);
7347                 else
7348                         call_netdevice_notifiers(NETDEV_DOWN, dev);
7349         }
7350
7351         if (dev->flags & IFF_UP &&
7352             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
7353                 struct netdev_notifier_change_info change_info = {
7354                         .info = {
7355                                 .dev = dev,
7356                         },
7357                         .flags_changed = changes,
7358                 };
7359
7360                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
7361         }
7362 }
7363
7364 /**
7365  *      dev_change_flags - change device settings
7366  *      @dev: device
7367  *      @flags: device state flags
7368  *
7369  *      Change settings on device based state flags. The flags are
7370  *      in the userspace exported format.
7371  */
7372 int dev_change_flags(struct net_device *dev, unsigned int flags)
7373 {
7374         int ret;
7375         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
7376
7377         ret = __dev_change_flags(dev, flags);
7378         if (ret < 0)
7379                 return ret;
7380
7381         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
7382         __dev_notify_flags(dev, old_flags, changes);
7383         return ret;
7384 }
7385 EXPORT_SYMBOL(dev_change_flags);
7386
7387 int __dev_set_mtu(struct net_device *dev, int new_mtu)
7388 {
7389         const struct net_device_ops *ops = dev->netdev_ops;
7390
7391         if (ops->ndo_change_mtu)
7392                 return ops->ndo_change_mtu(dev, new_mtu);
7393
7394         dev->mtu = new_mtu;
7395         return 0;
7396 }
7397 EXPORT_SYMBOL(__dev_set_mtu);
7398
7399 /**
7400  *      dev_set_mtu - Change maximum transfer unit
7401  *      @dev: device
7402  *      @new_mtu: new transfer unit
7403  *
7404  *      Change the maximum transfer size of the network device.
7405  */
7406 int dev_set_mtu(struct net_device *dev, int new_mtu)
7407 {
7408         int err, orig_mtu;
7409
7410         if (new_mtu == dev->mtu)
7411                 return 0;
7412
7413         /* MTU must be positive, and in range */
7414         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7415                 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
7416                                     dev->name, new_mtu, dev->min_mtu);
7417                 return -EINVAL;
7418         }
7419
7420         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7421                 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
7422                                     dev->name, new_mtu, dev->max_mtu);
7423                 return -EINVAL;
7424         }
7425
7426         if (!netif_device_present(dev))
7427                 return -ENODEV;
7428
7429         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7430         err = notifier_to_errno(err);
7431         if (err)
7432                 return err;
7433
7434         orig_mtu = dev->mtu;
7435         err = __dev_set_mtu(dev, new_mtu);
7436
7437         if (!err) {
7438                 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
7439                 err = notifier_to_errno(err);
7440                 if (err) {
7441                         /* setting mtu back and notifying everyone again,
7442                          * so that they have a chance to revert changes.
7443                          */
7444                         __dev_set_mtu(dev, orig_mtu);
7445                         call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
7446                 }
7447         }
7448         return err;
7449 }
7450 EXPORT_SYMBOL(dev_set_mtu);
7451
7452 /**
7453  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
7454  *      @dev: device
7455  *      @new_len: new tx queue length
7456  */
7457 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7458 {
7459         unsigned int orig_len = dev->tx_queue_len;
7460         int res;
7461
7462         if (new_len != (unsigned int)new_len)
7463                 return -ERANGE;
7464
7465         if (new_len != orig_len) {
7466                 dev->tx_queue_len = new_len;
7467                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7468                 res = notifier_to_errno(res);
7469                 if (res) {
7470                         netdev_err(dev,
7471                                    "refused to change device tx_queue_len\n");
7472                         dev->tx_queue_len = orig_len;
7473                         return res;
7474                 }
7475                 return dev_qdisc_change_tx_queue_len(dev);
7476         }
7477
7478         return 0;
7479 }
7480
7481 /**
7482  *      dev_set_group - Change group this device belongs to
7483  *      @dev: device
7484  *      @new_group: group this device should belong to
7485  */
7486 void dev_set_group(struct net_device *dev, int new_group)
7487 {
7488         dev->group = new_group;
7489 }
7490 EXPORT_SYMBOL(dev_set_group);
7491
7492 /**
7493  *      dev_set_mac_address - Change Media Access Control Address
7494  *      @dev: device
7495  *      @sa: new address
7496  *
7497  *      Change the hardware (MAC) address of the device
7498  */
7499 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
7500 {
7501         const struct net_device_ops *ops = dev->netdev_ops;
7502         int err;
7503
7504         if (!ops->ndo_set_mac_address)
7505                 return -EOPNOTSUPP;
7506         if (sa->sa_family != dev->type)
7507                 return -EINVAL;
7508         if (!netif_device_present(dev))
7509                 return -ENODEV;
7510         err = ops->ndo_set_mac_address(dev, sa);
7511         if (err)
7512                 return err;
7513         dev->addr_assign_type = NET_ADDR_SET;
7514         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7515         add_device_randomness(dev->dev_addr, dev->addr_len);
7516         return 0;
7517 }
7518 EXPORT_SYMBOL(dev_set_mac_address);
7519
7520 /**
7521  *      dev_change_carrier - Change device carrier
7522  *      @dev: device
7523  *      @new_carrier: new value
7524  *
7525  *      Change device carrier
7526  */
7527 int dev_change_carrier(struct net_device *dev, bool new_carrier)
7528 {
7529         const struct net_device_ops *ops = dev->netdev_ops;
7530
7531         if (!ops->ndo_change_carrier)
7532                 return -EOPNOTSUPP;
7533         if (!netif_device_present(dev))
7534                 return -ENODEV;
7535         return ops->ndo_change_carrier(dev, new_carrier);
7536 }
7537 EXPORT_SYMBOL(dev_change_carrier);
7538
7539 /**
7540  *      dev_get_phys_port_id - Get device physical port ID
7541  *      @dev: device
7542  *      @ppid: port ID
7543  *
7544  *      Get device physical port ID
7545  */
7546 int dev_get_phys_port_id(struct net_device *dev,
7547                          struct netdev_phys_item_id *ppid)
7548 {
7549         const struct net_device_ops *ops = dev->netdev_ops;
7550
7551         if (!ops->ndo_get_phys_port_id)
7552                 return -EOPNOTSUPP;
7553         return ops->ndo_get_phys_port_id(dev, ppid);
7554 }
7555 EXPORT_SYMBOL(dev_get_phys_port_id);
7556
7557 /**
7558  *      dev_get_phys_port_name - Get device physical port name
7559  *      @dev: device
7560  *      @name: port name
7561  *      @len: limit of bytes to copy to name
7562  *
7563  *      Get device physical port name
7564  */
7565 int dev_get_phys_port_name(struct net_device *dev,
7566                            char *name, size_t len)
7567 {
7568         const struct net_device_ops *ops = dev->netdev_ops;
7569
7570         if (!ops->ndo_get_phys_port_name)
7571                 return -EOPNOTSUPP;
7572         return ops->ndo_get_phys_port_name(dev, name, len);
7573 }
7574 EXPORT_SYMBOL(dev_get_phys_port_name);
7575
7576 /**
7577  *      dev_change_proto_down - update protocol port state information
7578  *      @dev: device
7579  *      @proto_down: new value
7580  *
7581  *      This info can be used by switch drivers to set the phys state of the
7582  *      port.
7583  */
7584 int dev_change_proto_down(struct net_device *dev, bool proto_down)
7585 {
7586         const struct net_device_ops *ops = dev->netdev_ops;
7587
7588         if (!ops->ndo_change_proto_down)
7589                 return -EOPNOTSUPP;
7590         if (!netif_device_present(dev))
7591                 return -ENODEV;
7592         return ops->ndo_change_proto_down(dev, proto_down);
7593 }
7594 EXPORT_SYMBOL(dev_change_proto_down);
7595
7596 void __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
7597                      struct netdev_bpf *xdp)
7598 {
7599         memset(xdp, 0, sizeof(*xdp));
7600         xdp->command = XDP_QUERY_PROG;
7601
7602         /* Query must always succeed. */
7603         WARN_ON(bpf_op(dev, xdp) < 0);
7604 }
7605
7606 static u8 __dev_xdp_attached(struct net_device *dev, bpf_op_t bpf_op)
7607 {
7608         struct netdev_bpf xdp;
7609
7610         __dev_xdp_query(dev, bpf_op, &xdp);
7611
7612         return xdp.prog_attached;
7613 }
7614
7615 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
7616                            struct netlink_ext_ack *extack, u32 flags,
7617                            struct bpf_prog *prog)
7618 {
7619         struct netdev_bpf xdp;
7620
7621         memset(&xdp, 0, sizeof(xdp));
7622         if (flags & XDP_FLAGS_HW_MODE)
7623                 xdp.command = XDP_SETUP_PROG_HW;
7624         else
7625                 xdp.command = XDP_SETUP_PROG;
7626         xdp.extack = extack;
7627         xdp.flags = flags;
7628         xdp.prog = prog;
7629
7630         return bpf_op(dev, &xdp);
7631 }
7632
7633 static void dev_xdp_uninstall(struct net_device *dev)
7634 {
7635         struct netdev_bpf xdp;
7636         bpf_op_t ndo_bpf;
7637
7638         /* Remove generic XDP */
7639         WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
7640
7641         /* Remove from the driver */
7642         ndo_bpf = dev->netdev_ops->ndo_bpf;
7643         if (!ndo_bpf)
7644                 return;
7645
7646         __dev_xdp_query(dev, ndo_bpf, &xdp);
7647         if (xdp.prog_attached == XDP_ATTACHED_NONE)
7648                 return;
7649
7650         /* Program removal should always succeed */
7651         WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, NULL));
7652 }
7653
7654 /**
7655  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
7656  *      @dev: device
7657  *      @extack: netlink extended ack
7658  *      @fd: new program fd or negative value to clear
7659  *      @flags: xdp-related flags
7660  *
7661  *      Set or clear a bpf program for a device
7662  */
7663 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7664                       int fd, u32 flags)
7665 {
7666         const struct net_device_ops *ops = dev->netdev_ops;
7667         struct bpf_prog *prog = NULL;
7668         bpf_op_t bpf_op, bpf_chk;
7669         int err;
7670
7671         ASSERT_RTNL();
7672
7673         bpf_op = bpf_chk = ops->ndo_bpf;
7674         if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
7675                 return -EOPNOTSUPP;
7676         if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
7677                 bpf_op = generic_xdp_install;
7678         if (bpf_op == bpf_chk)
7679                 bpf_chk = generic_xdp_install;
7680
7681         if (fd >= 0) {
7682                 if (bpf_chk && __dev_xdp_attached(dev, bpf_chk))
7683                         return -EEXIST;
7684                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
7685                     __dev_xdp_attached(dev, bpf_op))
7686                         return -EBUSY;
7687
7688                 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
7689                                              bpf_op == ops->ndo_bpf);
7690                 if (IS_ERR(prog))
7691                         return PTR_ERR(prog);
7692
7693                 if (!(flags & XDP_FLAGS_HW_MODE) &&
7694                     bpf_prog_is_dev_bound(prog->aux)) {
7695                         NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
7696                         bpf_prog_put(prog);
7697                         return -EINVAL;
7698                 }
7699         }
7700
7701         err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
7702         if (err < 0 && prog)
7703                 bpf_prog_put(prog);
7704
7705         return err;
7706 }
7707
7708 /**
7709  *      dev_new_index   -       allocate an ifindex
7710  *      @net: the applicable net namespace
7711  *
7712  *      Returns a suitable unique value for a new device interface
7713  *      number.  The caller must hold the rtnl semaphore or the
7714  *      dev_base_lock to be sure it remains unique.
7715  */
7716 static int dev_new_index(struct net *net)
7717 {
7718         int ifindex = net->ifindex;
7719
7720         for (;;) {
7721                 if (++ifindex <= 0)
7722                         ifindex = 1;
7723                 if (!__dev_get_by_index(net, ifindex))
7724                         return net->ifindex = ifindex;
7725         }
7726 }
7727
7728 /* Delayed registration/unregisteration */
7729 static LIST_HEAD(net_todo_list);
7730 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
7731
7732 static void net_set_todo(struct net_device *dev)
7733 {
7734         list_add_tail(&dev->todo_list, &net_todo_list);
7735         dev_net(dev)->dev_unreg_count++;
7736 }
7737
7738 static void rollback_registered_many(struct list_head *head)
7739 {
7740         struct net_device *dev, *tmp;
7741         LIST_HEAD(close_head);
7742
7743         BUG_ON(dev_boot_phase);
7744         ASSERT_RTNL();
7745
7746         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
7747                 /* Some devices call without registering
7748                  * for initialization unwind. Remove those
7749                  * devices and proceed with the remaining.
7750                  */
7751                 if (dev->reg_state == NETREG_UNINITIALIZED) {
7752                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7753                                  dev->name, dev);
7754
7755                         WARN_ON(1);
7756                         list_del(&dev->unreg_list);
7757                         continue;
7758                 }
7759                 dev->dismantle = true;
7760                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
7761         }
7762
7763         /* If device is running, close it first. */
7764         list_for_each_entry(dev, head, unreg_list)
7765                 list_add_tail(&dev->close_list, &close_head);
7766         dev_close_many(&close_head, true);
7767
7768         list_for_each_entry(dev, head, unreg_list) {
7769                 /* And unlink it from device chain. */
7770                 unlist_netdevice(dev);
7771
7772                 dev->reg_state = NETREG_UNREGISTERING;
7773         }
7774         flush_all_backlogs();
7775
7776         synchronize_net();
7777
7778         list_for_each_entry(dev, head, unreg_list) {
7779                 struct sk_buff *skb = NULL;
7780
7781                 /* Shutdown queueing discipline. */
7782                 dev_shutdown(dev);
7783
7784                 dev_xdp_uninstall(dev);
7785
7786                 /* Notify protocols, that we are about to destroy
7787                  * this device. They should clean all the things.
7788                  */
7789                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7790
7791                 if (!dev->rtnl_link_ops ||
7792                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7793                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
7794                                                      GFP_KERNEL, NULL, 0);
7795
7796                 /*
7797                  *      Flush the unicast and multicast chains
7798                  */
7799                 dev_uc_flush(dev);
7800                 dev_mc_flush(dev);
7801
7802                 if (dev->netdev_ops->ndo_uninit)
7803                         dev->netdev_ops->ndo_uninit(dev);
7804
7805                 if (skb)
7806                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
7807
7808                 /* Notifier chain MUST detach us all upper devices. */
7809                 WARN_ON(netdev_has_any_upper_dev(dev));
7810                 WARN_ON(netdev_has_any_lower_dev(dev));
7811
7812                 /* Remove entries from kobject tree */
7813                 netdev_unregister_kobject(dev);
7814 #ifdef CONFIG_XPS
7815                 /* Remove XPS queueing entries */
7816                 netif_reset_xps_queues_gt(dev, 0);
7817 #endif
7818         }
7819
7820         synchronize_net();
7821
7822         list_for_each_entry(dev, head, unreg_list)
7823                 dev_put(dev);
7824 }
7825
7826 static void rollback_registered(struct net_device *dev)
7827 {
7828         LIST_HEAD(single);
7829
7830         list_add(&dev->unreg_list, &single);
7831         rollback_registered_many(&single);
7832         list_del(&single);
7833 }
7834
7835 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
7836         struct net_device *upper, netdev_features_t features)
7837 {
7838         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7839         netdev_features_t feature;
7840         int feature_bit;
7841
7842         for_each_netdev_feature(&upper_disables, feature_bit) {
7843                 feature = __NETIF_F_BIT(feature_bit);
7844                 if (!(upper->wanted_features & feature)
7845                     && (features & feature)) {
7846                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
7847                                    &feature, upper->name);
7848                         features &= ~feature;
7849                 }
7850         }
7851
7852         return features;
7853 }
7854
7855 static void netdev_sync_lower_features(struct net_device *upper,
7856         struct net_device *lower, netdev_features_t features)
7857 {
7858         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7859         netdev_features_t feature;
7860         int feature_bit;
7861
7862         for_each_netdev_feature(&upper_disables, feature_bit) {
7863                 feature = __NETIF_F_BIT(feature_bit);
7864                 if (!(features & feature) && (lower->features & feature)) {
7865                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
7866                                    &feature, lower->name);
7867                         lower->wanted_features &= ~feature;
7868                         netdev_update_features(lower);
7869
7870                         if (unlikely(lower->features & feature))
7871                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
7872                                             &feature, lower->name);
7873                 }
7874         }
7875 }
7876
7877 static netdev_features_t netdev_fix_features(struct net_device *dev,
7878         netdev_features_t features)
7879 {
7880         /* Fix illegal checksum combinations */
7881         if ((features & NETIF_F_HW_CSUM) &&
7882             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
7883                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
7884                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
7885         }
7886
7887         /* TSO requires that SG is present as well. */
7888         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
7889                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
7890                 features &= ~NETIF_F_ALL_TSO;
7891         }
7892
7893         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
7894                                         !(features & NETIF_F_IP_CSUM)) {
7895                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
7896                 features &= ~NETIF_F_TSO;
7897                 features &= ~NETIF_F_TSO_ECN;
7898         }
7899
7900         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
7901                                          !(features & NETIF_F_IPV6_CSUM)) {
7902                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
7903                 features &= ~NETIF_F_TSO6;
7904         }
7905
7906         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
7907         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
7908                 features &= ~NETIF_F_TSO_MANGLEID;
7909
7910         /* TSO ECN requires that TSO is present as well. */
7911         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
7912                 features &= ~NETIF_F_TSO_ECN;
7913
7914         /* Software GSO depends on SG. */
7915         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
7916                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
7917                 features &= ~NETIF_F_GSO;
7918         }
7919
7920         /* GSO partial features require GSO partial be set */
7921         if ((features & dev->gso_partial_features) &&
7922             !(features & NETIF_F_GSO_PARTIAL)) {
7923                 netdev_dbg(dev,
7924                            "Dropping partially supported GSO features since no GSO partial.\n");
7925                 features &= ~dev->gso_partial_features;
7926         }
7927
7928         if (!(features & NETIF_F_RXCSUM)) {
7929                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
7930                  * successfully merged by hardware must also have the
7931                  * checksum verified by hardware.  If the user does not
7932                  * want to enable RXCSUM, logically, we should disable GRO_HW.
7933                  */
7934                 if (features & NETIF_F_GRO_HW) {
7935                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
7936                         features &= ~NETIF_F_GRO_HW;
7937                 }
7938         }
7939
7940         /* LRO/HW-GRO features cannot be combined with RX-FCS */
7941         if (features & NETIF_F_RXFCS) {
7942                 if (features & NETIF_F_LRO) {
7943                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
7944                         features &= ~NETIF_F_LRO;
7945                 }
7946
7947                 if (features & NETIF_F_GRO_HW) {
7948                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
7949                         features &= ~NETIF_F_GRO_HW;
7950                 }
7951         }
7952
7953         return features;
7954 }
7955
7956 int __netdev_update_features(struct net_device *dev)
7957 {
7958         struct net_device *upper, *lower;
7959         netdev_features_t features;
7960         struct list_head *iter;
7961         int err = -1;
7962
7963         ASSERT_RTNL();
7964
7965         features = netdev_get_wanted_features(dev);
7966
7967         if (dev->netdev_ops->ndo_fix_features)
7968                 features = dev->netdev_ops->ndo_fix_features(dev, features);
7969
7970         /* driver might be less strict about feature dependencies */
7971         features = netdev_fix_features(dev, features);
7972
7973         /* some features can't be enabled if they're off an an upper device */
7974         netdev_for_each_upper_dev_rcu(dev, upper, iter)
7975                 features = netdev_sync_upper_features(dev, upper, features);
7976
7977         if (dev->features == features)
7978                 goto sync_lower;
7979
7980         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7981                 &dev->features, &features);
7982
7983         if (dev->netdev_ops->ndo_set_features)
7984                 err = dev->netdev_ops->ndo_set_features(dev, features);
7985         else
7986                 err = 0;
7987
7988         if (unlikely(err < 0)) {
7989                 netdev_err(dev,
7990                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
7991                         err, &features, &dev->features);
7992                 /* return non-0 since some features might have changed and
7993                  * it's better to fire a spurious notification than miss it
7994                  */
7995                 return -1;
7996         }
7997
7998 sync_lower:
7999         /* some features must be disabled on lower devices when disabled
8000          * on an upper device (think: bonding master or bridge)
8001          */
8002         netdev_for_each_lower_dev(dev, lower, iter)
8003                 netdev_sync_lower_features(dev, lower, features);
8004
8005         if (!err) {
8006                 netdev_features_t diff = features ^ dev->features;
8007
8008                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
8009                         /* udp_tunnel_{get,drop}_rx_info both need
8010                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
8011                          * device, or they won't do anything.
8012                          * Thus we need to update dev->features
8013                          * *before* calling udp_tunnel_get_rx_info,
8014                          * but *after* calling udp_tunnel_drop_rx_info.
8015                          */
8016                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
8017                                 dev->features = features;
8018                                 udp_tunnel_get_rx_info(dev);
8019                         } else {
8020                                 udp_tunnel_drop_rx_info(dev);
8021                         }
8022                 }
8023
8024                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
8025                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
8026                                 dev->features = features;
8027                                 err |= vlan_get_rx_ctag_filter_info(dev);
8028                         } else {
8029                                 vlan_drop_rx_ctag_filter_info(dev);
8030                         }
8031                 }
8032
8033                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
8034                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
8035                                 dev->features = features;
8036                                 err |= vlan_get_rx_stag_filter_info(dev);
8037                         } else {
8038                                 vlan_drop_rx_stag_filter_info(dev);
8039                         }
8040                 }
8041
8042                 dev->features = features;
8043         }
8044
8045         return err < 0 ? 0 : 1;
8046 }
8047
8048 /**
8049  *      netdev_update_features - recalculate device features
8050  *      @dev: the device to check
8051  *
8052  *      Recalculate dev->features set and send notifications if it
8053  *      has changed. Should be called after driver or hardware dependent
8054  *      conditions might have changed that influence the features.
8055  */
8056 void netdev_update_features(struct net_device *dev)
8057 {
8058         if (__netdev_update_features(dev))
8059                 netdev_features_change(dev);
8060 }
8061 EXPORT_SYMBOL(netdev_update_features);
8062
8063 /**
8064  *      netdev_change_features - recalculate device features
8065  *      @dev: the device to check
8066  *
8067  *      Recalculate dev->features set and send notifications even
8068  *      if they have not changed. Should be called instead of
8069  *      netdev_update_features() if also dev->vlan_features might
8070  *      have changed to allow the changes to be propagated to stacked
8071  *      VLAN devices.
8072  */
8073 void netdev_change_features(struct net_device *dev)
8074 {
8075         __netdev_update_features(dev);
8076         netdev_features_change(dev);
8077 }
8078 EXPORT_SYMBOL(netdev_change_features);
8079
8080 /**
8081  *      netif_stacked_transfer_operstate -      transfer operstate
8082  *      @rootdev: the root or lower level device to transfer state from
8083  *      @dev: the device to transfer operstate to
8084  *
8085  *      Transfer operational state from root to device. This is normally
8086  *      called when a stacking relationship exists between the root
8087  *      device and the device(a leaf device).
8088  */
8089 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
8090                                         struct net_device *dev)
8091 {
8092         if (rootdev->operstate == IF_OPER_DORMANT)
8093                 netif_dormant_on(dev);
8094         else
8095                 netif_dormant_off(dev);
8096
8097         if (netif_carrier_ok(rootdev))
8098                 netif_carrier_on(dev);
8099         else
8100                 netif_carrier_off(dev);
8101 }
8102 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
8103
8104 static int netif_alloc_rx_queues(struct net_device *dev)
8105 {
8106         unsigned int i, count = dev->num_rx_queues;
8107         struct netdev_rx_queue *rx;
8108         size_t sz = count * sizeof(*rx);
8109         int err = 0;
8110
8111         BUG_ON(count < 1);
8112
8113         rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8114         if (!rx)
8115                 return -ENOMEM;
8116
8117         dev->_rx = rx;
8118
8119         for (i = 0; i < count; i++) {
8120                 rx[i].dev = dev;
8121
8122                 /* XDP RX-queue setup */
8123                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
8124                 if (err < 0)
8125                         goto err_rxq_info;
8126         }
8127         return 0;
8128
8129 err_rxq_info:
8130         /* Rollback successful reg's and free other resources */
8131         while (i--)
8132                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
8133         kvfree(dev->_rx);
8134         dev->_rx = NULL;
8135         return err;
8136 }
8137
8138 static void netif_free_rx_queues(struct net_device *dev)
8139 {
8140         unsigned int i, count = dev->num_rx_queues;
8141
8142         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
8143         if (!dev->_rx)
8144                 return;
8145
8146         for (i = 0; i < count; i++)
8147                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
8148
8149         kvfree(dev->_rx);
8150 }
8151
8152 static void netdev_init_one_queue(struct net_device *dev,
8153                                   struct netdev_queue *queue, void *_unused)
8154 {
8155         /* Initialize queue lock */
8156         spin_lock_init(&queue->_xmit_lock);
8157         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
8158         queue->xmit_lock_owner = -1;
8159         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
8160         queue->dev = dev;
8161 #ifdef CONFIG_BQL
8162         dql_init(&queue->dql, HZ);
8163 #endif
8164 }
8165
8166 static void netif_free_tx_queues(struct net_device *dev)
8167 {
8168         kvfree(dev->_tx);
8169 }
8170
8171 static int netif_alloc_netdev_queues(struct net_device *dev)
8172 {
8173         unsigned int count = dev->num_tx_queues;
8174         struct netdev_queue *tx;
8175         size_t sz = count * sizeof(*tx);
8176
8177         if (count < 1 || count > 0xffff)
8178                 return -EINVAL;
8179
8180         tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8181         if (!tx)
8182                 return -ENOMEM;
8183
8184         dev->_tx = tx;
8185
8186         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
8187         spin_lock_init(&dev->tx_global_lock);
8188
8189         return 0;
8190 }
8191
8192 void netif_tx_stop_all_queues(struct net_device *dev)
8193 {
8194         unsigned int i;
8195
8196         for (i = 0; i < dev->num_tx_queues; i++) {
8197                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
8198
8199                 netif_tx_stop_queue(txq);
8200         }
8201 }
8202 EXPORT_SYMBOL(netif_tx_stop_all_queues);
8203
8204 /**
8205  *      register_netdevice      - register a network device
8206  *      @dev: device to register
8207  *
8208  *      Take a completed network device structure and add it to the kernel
8209  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8210  *      chain. 0 is returned on success. A negative errno code is returned
8211  *      on a failure to set up the device, or if the name is a duplicate.
8212  *
8213  *      Callers must hold the rtnl semaphore. You may want
8214  *      register_netdev() instead of this.
8215  *
8216  *      BUGS:
8217  *      The locking appears insufficient to guarantee two parallel registers
8218  *      will not get the same name.
8219  */
8220
8221 int register_netdevice(struct net_device *dev)
8222 {
8223         int ret;
8224         struct net *net = dev_net(dev);
8225
8226         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
8227                      NETDEV_FEATURE_COUNT);
8228         BUG_ON(dev_boot_phase);
8229         ASSERT_RTNL();
8230
8231         might_sleep();
8232
8233         /* When net_device's are persistent, this will be fatal. */
8234         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
8235         BUG_ON(!net);
8236
8237         spin_lock_init(&dev->addr_list_lock);
8238         netdev_set_addr_lockdep_class(dev);
8239
8240         ret = dev_get_valid_name(net, dev, dev->name);
8241         if (ret < 0)
8242                 goto out;
8243
8244         /* Init, if this function is available */
8245         if (dev->netdev_ops->ndo_init) {
8246                 ret = dev->netdev_ops->ndo_init(dev);
8247                 if (ret) {
8248                         if (ret > 0)
8249                                 ret = -EIO;
8250                         goto out;
8251                 }
8252         }
8253
8254         if (((dev->hw_features | dev->features) &
8255              NETIF_F_HW_VLAN_CTAG_FILTER) &&
8256             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
8257              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
8258                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
8259                 ret = -EINVAL;
8260                 goto err_uninit;
8261         }
8262
8263         ret = -EBUSY;
8264         if (!dev->ifindex)
8265                 dev->ifindex = dev_new_index(net);
8266         else if (__dev_get_by_index(net, dev->ifindex))
8267                 goto err_uninit;
8268
8269         /* Transfer changeable features to wanted_features and enable
8270          * software offloads (GSO and GRO).
8271          */
8272         dev->hw_features |= NETIF_F_SOFT_FEATURES;
8273         dev->features |= NETIF_F_SOFT_FEATURES;
8274
8275         if (dev->netdev_ops->ndo_udp_tunnel_add) {
8276                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8277                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8278         }
8279
8280         dev->wanted_features = dev->features & dev->hw_features;
8281
8282         if (!(dev->flags & IFF_LOOPBACK))
8283                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
8284
8285         /* If IPv4 TCP segmentation offload is supported we should also
8286          * allow the device to enable segmenting the frame with the option
8287          * of ignoring a static IP ID value.  This doesn't enable the
8288          * feature itself but allows the user to enable it later.
8289          */
8290         if (dev->hw_features & NETIF_F_TSO)
8291                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
8292         if (dev->vlan_features & NETIF_F_TSO)
8293                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
8294         if (dev->mpls_features & NETIF_F_TSO)
8295                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
8296         if (dev->hw_enc_features & NETIF_F_TSO)
8297                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
8298
8299         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
8300          */
8301         dev->vlan_features |= NETIF_F_HIGHDMA;
8302
8303         /* Make NETIF_F_SG inheritable to tunnel devices.
8304          */
8305         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
8306
8307         /* Make NETIF_F_SG inheritable to MPLS.
8308          */
8309         dev->mpls_features |= NETIF_F_SG;
8310
8311         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
8312         ret = notifier_to_errno(ret);
8313         if (ret)
8314                 goto err_uninit;
8315
8316         ret = netdev_register_kobject(dev);
8317         if (ret)
8318                 goto err_uninit;
8319         dev->reg_state = NETREG_REGISTERED;
8320
8321         __netdev_update_features(dev);
8322
8323         /*
8324          *      Default initial state at registry is that the
8325          *      device is present.
8326          */
8327
8328         set_bit(__LINK_STATE_PRESENT, &dev->state);
8329
8330         linkwatch_init_dev(dev);
8331
8332         dev_init_scheduler(dev);
8333         dev_hold(dev);
8334         list_netdevice(dev);
8335         add_device_randomness(dev->dev_addr, dev->addr_len);
8336
8337         /* If the device has permanent device address, driver should
8338          * set dev_addr and also addr_assign_type should be set to
8339          * NET_ADDR_PERM (default value).
8340          */
8341         if (dev->addr_assign_type == NET_ADDR_PERM)
8342                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
8343
8344         /* Notify protocols, that a new device appeared. */
8345         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
8346         ret = notifier_to_errno(ret);
8347         if (ret) {
8348                 rollback_registered(dev);
8349                 dev->reg_state = NETREG_UNREGISTERED;
8350         }
8351         /*
8352          *      Prevent userspace races by waiting until the network
8353          *      device is fully setup before sending notifications.
8354          */
8355         if (!dev->rtnl_link_ops ||
8356             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8357                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8358
8359 out:
8360         return ret;
8361
8362 err_uninit:
8363         if (dev->netdev_ops->ndo_uninit)
8364                 dev->netdev_ops->ndo_uninit(dev);
8365         if (dev->priv_destructor)
8366                 dev->priv_destructor(dev);
8367         goto out;
8368 }
8369 EXPORT_SYMBOL(register_netdevice);
8370
8371 /**
8372  *      init_dummy_netdev       - init a dummy network device for NAPI
8373  *      @dev: device to init
8374  *
8375  *      This takes a network device structure and initialize the minimum
8376  *      amount of fields so it can be used to schedule NAPI polls without
8377  *      registering a full blown interface. This is to be used by drivers
8378  *      that need to tie several hardware interfaces to a single NAPI
8379  *      poll scheduler due to HW limitations.
8380  */
8381 int init_dummy_netdev(struct net_device *dev)
8382 {
8383         /* Clear everything. Note we don't initialize spinlocks
8384          * are they aren't supposed to be taken by any of the
8385          * NAPI code and this dummy netdev is supposed to be
8386          * only ever used for NAPI polls
8387          */
8388         memset(dev, 0, sizeof(struct net_device));
8389
8390         /* make sure we BUG if trying to hit standard
8391          * register/unregister code path
8392          */
8393         dev->reg_state = NETREG_DUMMY;
8394
8395         /* NAPI wants this */
8396         INIT_LIST_HEAD(&dev->napi_list);
8397
8398         /* a dummy interface is started by default */
8399         set_bit(__LINK_STATE_PRESENT, &dev->state);
8400         set_bit(__LINK_STATE_START, &dev->state);
8401
8402         /* Note : We dont allocate pcpu_refcnt for dummy devices,
8403          * because users of this 'device' dont need to change
8404          * its refcount.
8405          */
8406
8407         return 0;
8408 }
8409 EXPORT_SYMBOL_GPL(init_dummy_netdev);
8410
8411
8412 /**
8413  *      register_netdev - register a network device
8414  *      @dev: device to register
8415  *
8416  *      Take a completed network device structure and add it to the kernel
8417  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8418  *      chain. 0 is returned on success. A negative errno code is returned
8419  *      on a failure to set up the device, or if the name is a duplicate.
8420  *
8421  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
8422  *      and expands the device name if you passed a format string to
8423  *      alloc_netdev.
8424  */
8425 int register_netdev(struct net_device *dev)
8426 {
8427         int err;
8428
8429         if (rtnl_lock_killable())
8430                 return -EINTR;
8431         err = register_netdevice(dev);
8432         rtnl_unlock();
8433         return err;
8434 }
8435 EXPORT_SYMBOL(register_netdev);
8436
8437 int netdev_refcnt_read(const struct net_device *dev)
8438 {
8439         int i, refcnt = 0;
8440
8441         for_each_possible_cpu(i)
8442                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8443         return refcnt;
8444 }
8445 EXPORT_SYMBOL(netdev_refcnt_read);
8446
8447 /**
8448  * netdev_wait_allrefs - wait until all references are gone.
8449  * @dev: target net_device
8450  *
8451  * This is called when unregistering network devices.
8452  *
8453  * Any protocol or device that holds a reference should register
8454  * for netdevice notification, and cleanup and put back the
8455  * reference if they receive an UNREGISTER event.
8456  * We can get stuck here if buggy protocols don't correctly
8457  * call dev_put.
8458  */
8459 static void netdev_wait_allrefs(struct net_device *dev)
8460 {
8461         unsigned long rebroadcast_time, warning_time;
8462         int refcnt;
8463
8464         linkwatch_forget_dev(dev);
8465
8466         rebroadcast_time = warning_time = jiffies;
8467         refcnt = netdev_refcnt_read(dev);
8468
8469         while (refcnt != 0) {
8470                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
8471                         rtnl_lock();
8472
8473                         /* Rebroadcast unregister notification */
8474                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8475
8476                         __rtnl_unlock();
8477                         rcu_barrier();
8478                         rtnl_lock();
8479
8480                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8481                                      &dev->state)) {
8482                                 /* We must not have linkwatch events
8483                                  * pending on unregister. If this
8484                                  * happens, we simply run the queue
8485                                  * unscheduled, resulting in a noop
8486                                  * for this device.
8487                                  */
8488                                 linkwatch_run_queue();
8489                         }
8490
8491                         __rtnl_unlock();
8492
8493                         rebroadcast_time = jiffies;
8494                 }
8495
8496                 msleep(250);
8497
8498                 refcnt = netdev_refcnt_read(dev);
8499
8500                 if (time_after(jiffies, warning_time + 10 * HZ)) {
8501                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8502                                  dev->name, refcnt);
8503                         warning_time = jiffies;
8504                 }
8505         }
8506 }
8507
8508 /* The sequence is:
8509  *
8510  *      rtnl_lock();
8511  *      ...
8512  *      register_netdevice(x1);
8513  *      register_netdevice(x2);
8514  *      ...
8515  *      unregister_netdevice(y1);
8516  *      unregister_netdevice(y2);
8517  *      ...
8518  *      rtnl_unlock();
8519  *      free_netdev(y1);
8520  *      free_netdev(y2);
8521  *
8522  * We are invoked by rtnl_unlock().
8523  * This allows us to deal with problems:
8524  * 1) We can delete sysfs objects which invoke hotplug
8525  *    without deadlocking with linkwatch via keventd.
8526  * 2) Since we run with the RTNL semaphore not held, we can sleep
8527  *    safely in order to wait for the netdev refcnt to drop to zero.
8528  *
8529  * We must not return until all unregister events added during
8530  * the interval the lock was held have been completed.
8531  */
8532 void netdev_run_todo(void)
8533 {
8534         struct list_head list;
8535
8536         /* Snapshot list, allow later requests */
8537         list_replace_init(&net_todo_list, &list);
8538
8539         __rtnl_unlock();
8540
8541
8542         /* Wait for rcu callbacks to finish before next phase */
8543         if (!list_empty(&list))
8544                 rcu_barrier();
8545
8546         while (!list_empty(&list)) {
8547                 struct net_device *dev
8548                         = list_first_entry(&list, struct net_device, todo_list);
8549                 list_del(&dev->todo_list);
8550
8551                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
8552                         pr_err("network todo '%s' but state %d\n",
8553                                dev->name, dev->reg_state);
8554                         dump_stack();
8555                         continue;
8556                 }
8557
8558                 dev->reg_state = NETREG_UNREGISTERED;
8559
8560                 netdev_wait_allrefs(dev);
8561
8562                 /* paranoia */
8563                 BUG_ON(netdev_refcnt_read(dev));
8564                 BUG_ON(!list_empty(&dev->ptype_all));
8565                 BUG_ON(!list_empty(&dev->ptype_specific));
8566                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
8567                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
8568 #if IS_ENABLED(CONFIG_DECNET)
8569                 WARN_ON(dev->dn_ptr);
8570 #endif
8571                 if (dev->priv_destructor)
8572                         dev->priv_destructor(dev);
8573                 if (dev->needs_free_netdev)
8574                         free_netdev(dev);
8575
8576                 /* Report a network device has been unregistered */
8577                 rtnl_lock();
8578                 dev_net(dev)->dev_unreg_count--;
8579                 __rtnl_unlock();
8580                 wake_up(&netdev_unregistering_wq);
8581
8582                 /* Free network device */
8583                 kobject_put(&dev->dev.kobj);
8584         }
8585 }
8586
8587 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
8588  * all the same fields in the same order as net_device_stats, with only
8589  * the type differing, but rtnl_link_stats64 may have additional fields
8590  * at the end for newer counters.
8591  */
8592 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
8593                              const struct net_device_stats *netdev_stats)
8594 {
8595 #if BITS_PER_LONG == 64
8596         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
8597         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
8598         /* zero out counters that only exist in rtnl_link_stats64 */
8599         memset((char *)stats64 + sizeof(*netdev_stats), 0,
8600                sizeof(*stats64) - sizeof(*netdev_stats));
8601 #else
8602         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
8603         const unsigned long *src = (const unsigned long *)netdev_stats;
8604         u64 *dst = (u64 *)stats64;
8605
8606         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
8607         for (i = 0; i < n; i++)
8608                 dst[i] = src[i];
8609         /* zero out counters that only exist in rtnl_link_stats64 */
8610         memset((char *)stats64 + n * sizeof(u64), 0,
8611                sizeof(*stats64) - n * sizeof(u64));
8612 #endif
8613 }
8614 EXPORT_SYMBOL(netdev_stats_to_stats64);
8615
8616 /**
8617  *      dev_get_stats   - get network device statistics
8618  *      @dev: device to get statistics from
8619  *      @storage: place to store stats
8620  *
8621  *      Get network statistics from device. Return @storage.
8622  *      The device driver may provide its own method by setting
8623  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
8624  *      otherwise the internal statistics structure is used.
8625  */
8626 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
8627                                         struct rtnl_link_stats64 *storage)
8628 {
8629         const struct net_device_ops *ops = dev->netdev_ops;
8630
8631         if (ops->ndo_get_stats64) {
8632                 memset(storage, 0, sizeof(*storage));
8633                 ops->ndo_get_stats64(dev, storage);
8634         } else if (ops->ndo_get_stats) {
8635                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
8636         } else {
8637                 netdev_stats_to_stats64(storage, &dev->stats);
8638         }
8639         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
8640         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
8641         storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
8642         return storage;
8643 }
8644 EXPORT_SYMBOL(dev_get_stats);
8645
8646 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
8647 {
8648         struct netdev_queue *queue = dev_ingress_queue(dev);
8649
8650 #ifdef CONFIG_NET_CLS_ACT
8651         if (queue)
8652                 return queue;
8653         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
8654         if (!queue)
8655                 return NULL;
8656         netdev_init_one_queue(dev, queue, NULL);
8657         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
8658         queue->qdisc_sleeping = &noop_qdisc;
8659         rcu_assign_pointer(dev->ingress_queue, queue);
8660 #endif
8661         return queue;
8662 }
8663
8664 static const struct ethtool_ops default_ethtool_ops;
8665
8666 void netdev_set_default_ethtool_ops(struct net_device *dev,
8667                                     const struct ethtool_ops *ops)
8668 {
8669         if (dev->ethtool_ops == &default_ethtool_ops)
8670                 dev->ethtool_ops = ops;
8671 }
8672 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
8673
8674 void netdev_freemem(struct net_device *dev)
8675 {
8676         char *addr = (char *)dev - dev->padded;
8677
8678         kvfree(addr);
8679 }
8680
8681 /**
8682  * alloc_netdev_mqs - allocate network device
8683  * @sizeof_priv: size of private data to allocate space for
8684  * @name: device name format string
8685  * @name_assign_type: origin of device name
8686  * @setup: callback to initialize device
8687  * @txqs: the number of TX subqueues to allocate
8688  * @rxqs: the number of RX subqueues to allocate
8689  *
8690  * Allocates a struct net_device with private data area for driver use
8691  * and performs basic initialization.  Also allocates subqueue structs
8692  * for each queue on the device.
8693  */
8694 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
8695                 unsigned char name_assign_type,
8696                 void (*setup)(struct net_device *),
8697                 unsigned int txqs, unsigned int rxqs)
8698 {
8699         struct net_device *dev;
8700         unsigned int alloc_size;
8701         struct net_device *p;
8702
8703         BUG_ON(strlen(name) >= sizeof(dev->name));
8704
8705         if (txqs < 1) {
8706                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
8707                 return NULL;
8708         }
8709
8710         if (rxqs < 1) {
8711                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
8712                 return NULL;
8713         }
8714
8715         alloc_size = sizeof(struct net_device);
8716         if (sizeof_priv) {
8717                 /* ensure 32-byte alignment of private area */
8718                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
8719                 alloc_size += sizeof_priv;
8720         }
8721         /* ensure 32-byte alignment of whole construct */
8722         alloc_size += NETDEV_ALIGN - 1;
8723
8724         p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8725         if (!p)
8726                 return NULL;
8727
8728         dev = PTR_ALIGN(p, NETDEV_ALIGN);
8729         dev->padded = (char *)dev - (char *)p;
8730
8731         dev->pcpu_refcnt = alloc_percpu(int);
8732         if (!dev->pcpu_refcnt)
8733                 goto free_dev;
8734
8735         if (dev_addr_init(dev))
8736                 goto free_pcpu;
8737
8738         dev_mc_init(dev);
8739         dev_uc_init(dev);
8740
8741         dev_net_set(dev, &init_net);
8742
8743         dev->gso_max_size = GSO_MAX_SIZE;
8744         dev->gso_max_segs = GSO_MAX_SEGS;
8745
8746         INIT_LIST_HEAD(&dev->napi_list);
8747         INIT_LIST_HEAD(&dev->unreg_list);
8748         INIT_LIST_HEAD(&dev->close_list);
8749         INIT_LIST_HEAD(&dev->link_watch_list);
8750         INIT_LIST_HEAD(&dev->adj_list.upper);
8751         INIT_LIST_HEAD(&dev->adj_list.lower);
8752         INIT_LIST_HEAD(&dev->ptype_all);
8753         INIT_LIST_HEAD(&dev->ptype_specific);
8754 #ifdef CONFIG_NET_SCHED
8755         hash_init(dev->qdisc_hash);
8756 #endif
8757         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8758         setup(dev);
8759
8760         if (!dev->tx_queue_len) {
8761                 dev->priv_flags |= IFF_NO_QUEUE;
8762                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
8763         }
8764
8765         dev->num_tx_queues = txqs;
8766         dev->real_num_tx_queues = txqs;
8767         if (netif_alloc_netdev_queues(dev))
8768                 goto free_all;
8769
8770         dev->num_rx_queues = rxqs;
8771         dev->real_num_rx_queues = rxqs;
8772         if (netif_alloc_rx_queues(dev))
8773                 goto free_all;
8774
8775         strcpy(dev->name, name);
8776         dev->name_assign_type = name_assign_type;
8777         dev->group = INIT_NETDEV_GROUP;
8778         if (!dev->ethtool_ops)
8779                 dev->ethtool_ops = &default_ethtool_ops;
8780
8781         nf_hook_ingress_init(dev);
8782
8783         return dev;
8784
8785 free_all:
8786         free_netdev(dev);
8787         return NULL;
8788
8789 free_pcpu:
8790         free_percpu(dev->pcpu_refcnt);
8791 free_dev:
8792         netdev_freemem(dev);
8793         return NULL;
8794 }
8795 EXPORT_SYMBOL(alloc_netdev_mqs);
8796
8797 /**
8798  * free_netdev - free network device
8799  * @dev: device
8800  *
8801  * This function does the last stage of destroying an allocated device
8802  * interface. The reference to the device object is released. If this
8803  * is the last reference then it will be freed.Must be called in process
8804  * context.
8805  */
8806 void free_netdev(struct net_device *dev)
8807 {
8808         struct napi_struct *p, *n;
8809
8810         might_sleep();
8811         netif_free_tx_queues(dev);
8812         netif_free_rx_queues(dev);
8813
8814         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
8815
8816         /* Flush device addresses */
8817         dev_addr_flush(dev);
8818
8819         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
8820                 netif_napi_del(p);
8821
8822         free_percpu(dev->pcpu_refcnt);
8823         dev->pcpu_refcnt = NULL;
8824
8825         /*  Compatibility with error handling in drivers */
8826         if (dev->reg_state == NETREG_UNINITIALIZED) {
8827                 netdev_freemem(dev);
8828                 return;
8829         }
8830
8831         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
8832         dev->reg_state = NETREG_RELEASED;
8833
8834         /* will free via device release */
8835         put_device(&dev->dev);
8836 }
8837 EXPORT_SYMBOL(free_netdev);
8838
8839 /**
8840  *      synchronize_net -  Synchronize with packet receive processing
8841  *
8842  *      Wait for packets currently being received to be done.
8843  *      Does not block later packets from starting.
8844  */
8845 void synchronize_net(void)
8846 {
8847         might_sleep();
8848         if (rtnl_is_locked())
8849                 synchronize_rcu_expedited();
8850         else
8851                 synchronize_rcu();
8852 }
8853 EXPORT_SYMBOL(synchronize_net);
8854
8855 /**
8856  *      unregister_netdevice_queue - remove device from the kernel
8857  *      @dev: device
8858  *      @head: list
8859  *
8860  *      This function shuts down a device interface and removes it
8861  *      from the kernel tables.
8862  *      If head not NULL, device is queued to be unregistered later.
8863  *
8864  *      Callers must hold the rtnl semaphore.  You may want
8865  *      unregister_netdev() instead of this.
8866  */
8867
8868 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
8869 {
8870         ASSERT_RTNL();
8871
8872         if (head) {
8873                 list_move_tail(&dev->unreg_list, head);
8874         } else {
8875                 rollback_registered(dev);
8876                 /* Finish processing unregister after unlock */
8877                 net_set_todo(dev);
8878         }
8879 }
8880 EXPORT_SYMBOL(unregister_netdevice_queue);
8881
8882 /**
8883  *      unregister_netdevice_many - unregister many devices
8884  *      @head: list of devices
8885  *
8886  *  Note: As most callers use a stack allocated list_head,
8887  *  we force a list_del() to make sure stack wont be corrupted later.
8888  */
8889 void unregister_netdevice_many(struct list_head *head)
8890 {
8891         struct net_device *dev;
8892
8893         if (!list_empty(head)) {
8894                 rollback_registered_many(head);
8895                 list_for_each_entry(dev, head, unreg_list)
8896                         net_set_todo(dev);
8897                 list_del(head);
8898         }
8899 }
8900 EXPORT_SYMBOL(unregister_netdevice_many);
8901
8902 /**
8903  *      unregister_netdev - remove device from the kernel
8904  *      @dev: device
8905  *
8906  *      This function shuts down a device interface and removes it
8907  *      from the kernel tables.
8908  *
8909  *      This is just a wrapper for unregister_netdevice that takes
8910  *      the rtnl semaphore.  In general you want to use this and not
8911  *      unregister_netdevice.
8912  */
8913 void unregister_netdev(struct net_device *dev)
8914 {
8915         rtnl_lock();
8916         unregister_netdevice(dev);
8917         rtnl_unlock();
8918 }
8919 EXPORT_SYMBOL(unregister_netdev);
8920
8921 /**
8922  *      dev_change_net_namespace - move device to different nethost namespace
8923  *      @dev: device
8924  *      @net: network namespace
8925  *      @pat: If not NULL name pattern to try if the current device name
8926  *            is already taken in the destination network namespace.
8927  *
8928  *      This function shuts down a device interface and moves it
8929  *      to a new network namespace. On success 0 is returned, on
8930  *      a failure a netagive errno code is returned.
8931  *
8932  *      Callers must hold the rtnl semaphore.
8933  */
8934
8935 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
8936 {
8937         int err, new_nsid, new_ifindex;
8938
8939         ASSERT_RTNL();
8940
8941         /* Don't allow namespace local devices to be moved. */
8942         err = -EINVAL;
8943         if (dev->features & NETIF_F_NETNS_LOCAL)
8944                 goto out;
8945
8946         /* Ensure the device has been registrered */
8947         if (dev->reg_state != NETREG_REGISTERED)
8948                 goto out;
8949
8950         /* Get out if there is nothing todo */
8951         err = 0;
8952         if (net_eq(dev_net(dev), net))
8953                 goto out;
8954
8955         /* Pick the destination device name, and ensure
8956          * we can use it in the destination network namespace.
8957          */
8958         err = -EEXIST;
8959         if (__dev_get_by_name(net, dev->name)) {
8960                 /* We get here if we can't use the current device name */
8961                 if (!pat)
8962                         goto out;
8963                 err = dev_get_valid_name(net, dev, pat);
8964                 if (err < 0)
8965                         goto out;
8966         }
8967
8968         /*
8969          * And now a mini version of register_netdevice unregister_netdevice.
8970          */
8971
8972         /* If device is running close it first. */
8973         dev_close(dev);
8974
8975         /* And unlink it from device chain */
8976         unlist_netdevice(dev);
8977
8978         synchronize_net();
8979
8980         /* Shutdown queueing discipline. */
8981         dev_shutdown(dev);
8982
8983         /* Notify protocols, that we are about to destroy
8984          * this device. They should clean all the things.
8985          *
8986          * Note that dev->reg_state stays at NETREG_REGISTERED.
8987          * This is wanted because this way 8021q and macvlan know
8988          * the device is just moving and can keep their slaves up.
8989          */
8990         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8991         rcu_barrier();
8992
8993         new_nsid = peernet2id_alloc(dev_net(dev), net);
8994         /* If there is an ifindex conflict assign a new one */
8995         if (__dev_get_by_index(net, dev->ifindex))
8996                 new_ifindex = dev_new_index(net);
8997         else
8998                 new_ifindex = dev->ifindex;
8999
9000         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
9001                             new_ifindex);
9002
9003         /*
9004          *      Flush the unicast and multicast chains
9005          */
9006         dev_uc_flush(dev);
9007         dev_mc_flush(dev);
9008
9009         /* Send a netdev-removed uevent to the old namespace */
9010         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
9011         netdev_adjacent_del_links(dev);
9012
9013         /* Actually switch the network namespace */
9014         dev_net_set(dev, net);
9015         dev->ifindex = new_ifindex;
9016
9017         /* Send a netdev-add uevent to the new namespace */
9018         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
9019         netdev_adjacent_add_links(dev);
9020
9021         /* Fixup kobjects */
9022         err = device_rename(&dev->dev, dev->name);
9023         WARN_ON(err);
9024
9025         /* Add the device back in the hashes */
9026         list_netdevice(dev);
9027
9028         /* Notify protocols, that a new device appeared. */
9029         call_netdevice_notifiers(NETDEV_REGISTER, dev);
9030
9031         /*
9032          *      Prevent userspace races by waiting until the network
9033          *      device is fully setup before sending notifications.
9034          */
9035         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9036
9037         synchronize_net();
9038         err = 0;
9039 out:
9040         return err;
9041 }
9042 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
9043
9044 static int dev_cpu_dead(unsigned int oldcpu)
9045 {
9046         struct sk_buff **list_skb;
9047         struct sk_buff *skb;
9048         unsigned int cpu;
9049         struct softnet_data *sd, *oldsd, *remsd = NULL;
9050
9051         local_irq_disable();
9052         cpu = smp_processor_id();
9053         sd = &per_cpu(softnet_data, cpu);
9054         oldsd = &per_cpu(softnet_data, oldcpu);
9055
9056         /* Find end of our completion_queue. */
9057         list_skb = &sd->completion_queue;
9058         while (*list_skb)
9059                 list_skb = &(*list_skb)->next;
9060         /* Append completion queue from offline CPU. */
9061         *list_skb = oldsd->completion_queue;
9062         oldsd->completion_queue = NULL;
9063
9064         /* Append output queue from offline CPU. */
9065         if (oldsd->output_queue) {
9066                 *sd->output_queue_tailp = oldsd->output_queue;
9067                 sd->output_queue_tailp = oldsd->output_queue_tailp;
9068                 oldsd->output_queue = NULL;
9069                 oldsd->output_queue_tailp = &oldsd->output_queue;
9070         }
9071         /* Append NAPI poll list from offline CPU, with one exception :
9072          * process_backlog() must be called by cpu owning percpu backlog.
9073          * We properly handle process_queue & input_pkt_queue later.
9074          */
9075         while (!list_empty(&oldsd->poll_list)) {
9076                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
9077                                                             struct napi_struct,
9078                                                             poll_list);
9079
9080                 list_del_init(&napi->poll_list);
9081                 if (napi->poll == process_backlog)
9082                         napi->state = 0;
9083                 else
9084                         ____napi_schedule(sd, napi);
9085         }
9086
9087         raise_softirq_irqoff(NET_TX_SOFTIRQ);
9088         local_irq_enable();
9089
9090 #ifdef CONFIG_RPS
9091         remsd = oldsd->rps_ipi_list;
9092         oldsd->rps_ipi_list = NULL;
9093 #endif
9094         /* send out pending IPI's on offline CPU */
9095         net_rps_send_ipi(remsd);
9096
9097         /* Process offline CPU's input_pkt_queue */
9098         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
9099                 netif_rx_ni(skb);
9100                 input_queue_head_incr(oldsd);
9101         }
9102         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
9103                 netif_rx_ni(skb);
9104                 input_queue_head_incr(oldsd);
9105         }
9106
9107         return 0;
9108 }
9109
9110 /**
9111  *      netdev_increment_features - increment feature set by one
9112  *      @all: current feature set
9113  *      @one: new feature set
9114  *      @mask: mask feature set
9115  *
9116  *      Computes a new feature set after adding a device with feature set
9117  *      @one to the master device with current feature set @all.  Will not
9118  *      enable anything that is off in @mask. Returns the new feature set.
9119  */
9120 netdev_features_t netdev_increment_features(netdev_features_t all,
9121         netdev_features_t one, netdev_features_t mask)
9122 {
9123         if (mask & NETIF_F_HW_CSUM)
9124                 mask |= NETIF_F_CSUM_MASK;
9125         mask |= NETIF_F_VLAN_CHALLENGED;
9126
9127         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
9128         all &= one | ~NETIF_F_ALL_FOR_ALL;
9129
9130         /* If one device supports hw checksumming, set for all. */
9131         if (all & NETIF_F_HW_CSUM)
9132                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
9133
9134         return all;
9135 }
9136 EXPORT_SYMBOL(netdev_increment_features);
9137
9138 static struct hlist_head * __net_init netdev_create_hash(void)
9139 {
9140         int i;
9141         struct hlist_head *hash;
9142
9143         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
9144         if (hash != NULL)
9145                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
9146                         INIT_HLIST_HEAD(&hash[i]);
9147
9148         return hash;
9149 }
9150
9151 /* Initialize per network namespace state */
9152 static int __net_init netdev_init(struct net *net)
9153 {
9154         if (net != &init_net)
9155                 INIT_LIST_HEAD(&net->dev_base_head);
9156
9157         net->dev_name_head = netdev_create_hash();
9158         if (net->dev_name_head == NULL)
9159                 goto err_name;
9160
9161         net->dev_index_head = netdev_create_hash();
9162         if (net->dev_index_head == NULL)
9163                 goto err_idx;
9164
9165         return 0;
9166
9167 err_idx:
9168         kfree(net->dev_name_head);
9169 err_name:
9170         return -ENOMEM;
9171 }
9172
9173 /**
9174  *      netdev_drivername - network driver for the device
9175  *      @dev: network device
9176  *
9177  *      Determine network driver for device.
9178  */
9179 const char *netdev_drivername(const struct net_device *dev)
9180 {
9181         const struct device_driver *driver;
9182         const struct device *parent;
9183         const char *empty = "";
9184
9185         parent = dev->dev.parent;
9186         if (!parent)
9187                 return empty;
9188
9189         driver = parent->driver;
9190         if (driver && driver->name)
9191                 return driver->name;
9192         return empty;
9193 }
9194
9195 static void __netdev_printk(const char *level, const struct net_device *dev,
9196                             struct va_format *vaf)
9197 {
9198         if (dev && dev->dev.parent) {
9199                 dev_printk_emit(level[1] - '0',
9200                                 dev->dev.parent,
9201                                 "%s %s %s%s: %pV",
9202                                 dev_driver_string(dev->dev.parent),
9203                                 dev_name(dev->dev.parent),
9204                                 netdev_name(dev), netdev_reg_state(dev),
9205                                 vaf);
9206         } else if (dev) {
9207                 printk("%s%s%s: %pV",
9208                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
9209         } else {
9210                 printk("%s(NULL net_device): %pV", level, vaf);
9211         }
9212 }
9213
9214 void netdev_printk(const char *level, const struct net_device *dev,
9215                    const char *format, ...)
9216 {
9217         struct va_format vaf;
9218         va_list args;
9219
9220         va_start(args, format);
9221
9222         vaf.fmt = format;
9223         vaf.va = &args;
9224
9225         __netdev_printk(level, dev, &vaf);
9226
9227         va_end(args);
9228 }
9229 EXPORT_SYMBOL(netdev_printk);
9230
9231 #define define_netdev_printk_level(func, level)                 \
9232 void func(const struct net_device *dev, const char *fmt, ...)   \
9233 {                                                               \
9234         struct va_format vaf;                                   \
9235         va_list args;                                           \
9236                                                                 \
9237         va_start(args, fmt);                                    \
9238                                                                 \
9239         vaf.fmt = fmt;                                          \
9240         vaf.va = &args;                                         \
9241                                                                 \
9242         __netdev_printk(level, dev, &vaf);                      \
9243                                                                 \
9244         va_end(args);                                           \
9245 }                                                               \
9246 EXPORT_SYMBOL(func);
9247
9248 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
9249 define_netdev_printk_level(netdev_alert, KERN_ALERT);
9250 define_netdev_printk_level(netdev_crit, KERN_CRIT);
9251 define_netdev_printk_level(netdev_err, KERN_ERR);
9252 define_netdev_printk_level(netdev_warn, KERN_WARNING);
9253 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
9254 define_netdev_printk_level(netdev_info, KERN_INFO);
9255
9256 static void __net_exit netdev_exit(struct net *net)
9257 {
9258         kfree(net->dev_name_head);
9259         kfree(net->dev_index_head);
9260         if (net != &init_net)
9261                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
9262 }
9263
9264 static struct pernet_operations __net_initdata netdev_net_ops = {
9265         .init = netdev_init,
9266         .exit = netdev_exit,
9267 };
9268
9269 static void __net_exit default_device_exit(struct net *net)
9270 {
9271         struct net_device *dev, *aux;
9272         /*
9273          * Push all migratable network devices back to the
9274          * initial network namespace
9275          */
9276         rtnl_lock();
9277         for_each_netdev_safe(net, dev, aux) {
9278                 int err;
9279                 char fb_name[IFNAMSIZ];
9280
9281                 /* Ignore unmoveable devices (i.e. loopback) */
9282                 if (dev->features & NETIF_F_NETNS_LOCAL)
9283                         continue;
9284
9285                 /* Leave virtual devices for the generic cleanup */
9286                 if (dev->rtnl_link_ops)
9287                         continue;
9288
9289                 /* Push remaining network devices to init_net */
9290                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
9291                 err = dev_change_net_namespace(dev, &init_net, fb_name);
9292                 if (err) {
9293                         pr_emerg("%s: failed to move %s to init_net: %d\n",
9294                                  __func__, dev->name, err);
9295                         BUG();
9296                 }
9297         }
9298         rtnl_unlock();
9299 }
9300
9301 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
9302 {
9303         /* Return with the rtnl_lock held when there are no network
9304          * devices unregistering in any network namespace in net_list.
9305          */
9306         struct net *net;
9307         bool unregistering;
9308         DEFINE_WAIT_FUNC(wait, woken_wake_function);
9309
9310         add_wait_queue(&netdev_unregistering_wq, &wait);
9311         for (;;) {
9312                 unregistering = false;
9313                 rtnl_lock();
9314                 list_for_each_entry(net, net_list, exit_list) {
9315                         if (net->dev_unreg_count > 0) {
9316                                 unregistering = true;
9317                                 break;
9318                         }
9319                 }
9320                 if (!unregistering)
9321                         break;
9322                 __rtnl_unlock();
9323
9324                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
9325         }
9326         remove_wait_queue(&netdev_unregistering_wq, &wait);
9327 }
9328
9329 static void __net_exit default_device_exit_batch(struct list_head *net_list)
9330 {
9331         /* At exit all network devices most be removed from a network
9332          * namespace.  Do this in the reverse order of registration.
9333          * Do this across as many network namespaces as possible to
9334          * improve batching efficiency.
9335          */
9336         struct net_device *dev;
9337         struct net *net;
9338         LIST_HEAD(dev_kill_list);
9339
9340         /* To prevent network device cleanup code from dereferencing
9341          * loopback devices or network devices that have been freed
9342          * wait here for all pending unregistrations to complete,
9343          * before unregistring the loopback device and allowing the
9344          * network namespace be freed.
9345          *
9346          * The netdev todo list containing all network devices
9347          * unregistrations that happen in default_device_exit_batch
9348          * will run in the rtnl_unlock() at the end of
9349          * default_device_exit_batch.
9350          */
9351         rtnl_lock_unregistering(net_list);
9352         list_for_each_entry(net, net_list, exit_list) {
9353                 for_each_netdev_reverse(net, dev) {
9354                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
9355                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
9356                         else
9357                                 unregister_netdevice_queue(dev, &dev_kill_list);
9358                 }
9359         }
9360         unregister_netdevice_many(&dev_kill_list);
9361         rtnl_unlock();
9362 }
9363
9364 static struct pernet_operations __net_initdata default_device_ops = {
9365         .exit = default_device_exit,
9366         .exit_batch = default_device_exit_batch,
9367 };
9368
9369 /*
9370  *      Initialize the DEV module. At boot time this walks the device list and
9371  *      unhooks any devices that fail to initialise (normally hardware not
9372  *      present) and leaves us with a valid list of present and active devices.
9373  *
9374  */
9375
9376 /*
9377  *       This is called single threaded during boot, so no need
9378  *       to take the rtnl semaphore.
9379  */
9380 static int __init net_dev_init(void)
9381 {
9382         int i, rc = -ENOMEM;
9383
9384         BUG_ON(!dev_boot_phase);
9385
9386         if (dev_proc_init())
9387                 goto out;
9388
9389         if (netdev_kobject_init())
9390                 goto out;
9391
9392         INIT_LIST_HEAD(&ptype_all);
9393         for (i = 0; i < PTYPE_HASH_SIZE; i++)
9394                 INIT_LIST_HEAD(&ptype_base[i]);
9395
9396         INIT_LIST_HEAD(&offload_base);
9397
9398         if (register_pernet_subsys(&netdev_net_ops))
9399                 goto out;
9400
9401         /*
9402          *      Initialise the packet receive queues.
9403          */
9404
9405         for_each_possible_cpu(i) {
9406                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
9407                 struct softnet_data *sd = &per_cpu(softnet_data, i);
9408
9409                 INIT_WORK(flush, flush_backlog);
9410
9411                 skb_queue_head_init(&sd->input_pkt_queue);
9412                 skb_queue_head_init(&sd->process_queue);
9413 #ifdef CONFIG_XFRM_OFFLOAD
9414                 skb_queue_head_init(&sd->xfrm_backlog);
9415 #endif
9416                 INIT_LIST_HEAD(&sd->poll_list);
9417                 sd->output_queue_tailp = &sd->output_queue;
9418 #ifdef CONFIG_RPS
9419                 sd->csd.func = rps_trigger_softirq;
9420                 sd->csd.info = sd;
9421                 sd->cpu = i;
9422 #endif
9423
9424                 sd->backlog.poll = process_backlog;
9425                 sd->backlog.weight = weight_p;
9426         }
9427
9428         dev_boot_phase = 0;
9429
9430         /* The loopback device is special if any other network devices
9431          * is present in a network namespace the loopback device must
9432          * be present. Since we now dynamically allocate and free the
9433          * loopback device ensure this invariant is maintained by
9434          * keeping the loopback device as the first device on the
9435          * list of network devices.  Ensuring the loopback devices
9436          * is the first device that appears and the last network device
9437          * that disappears.
9438          */
9439         if (register_pernet_device(&loopback_net_ops))
9440                 goto out;
9441
9442         if (register_pernet_device(&default_device_ops))
9443                 goto out;
9444
9445         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9446         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
9447
9448         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9449                                        NULL, dev_cpu_dead);
9450         WARN_ON(rc < 0);
9451         rc = 0;
9452 out:
9453         return rc;
9454 }
9455
9456 subsys_initcall(net_dev_init);