dev: Defer free of skbs in flush_backlog
[linux-2.6-microblaze.git] / net / core / dev.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *      Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:        Ross Biro
7  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *      Additional Authors:
11  *              Florian la Roche <rzsfl@rz.uni-sb.de>
12  *              Alan Cox <gw4pts@gw4pts.ampr.org>
13  *              David Hinds <dahinds@users.sourceforge.net>
14  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *              Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *      Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *              Alan Cox        :       device private ioctl copies fields back.
24  *              Alan Cox        :       Transmit queue code does relevant
25  *                                      stunts to keep the queue safe.
26  *              Alan Cox        :       Fixed double lock.
27  *              Alan Cox        :       Fixed promisc NULL pointer trap
28  *              ????????        :       Support the full private ioctl range
29  *              Alan Cox        :       Moved ioctl permission check into
30  *                                      drivers
31  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
32  *              Alan Cox        :       100 backlog just doesn't cut it when
33  *                                      you start doing multicast video 8)
34  *              Alan Cox        :       Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *              Alan Cox        :       Took out transmit every packet pass
37  *                                      Saved a few bytes in the ioctl handler
38  *              Alan Cox        :       Network driver sets packet type before
39  *                                      calling netif_rx. Saves a function
40  *                                      call a packet.
41  *              Alan Cox        :       Hashed net_bh()
42  *              Richard Kooijman:       Timestamp fixes.
43  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
44  *              Alan Cox        :       Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *                                      changes.
47  *              Rudi Cilibrasi  :       Pass the right thing to
48  *                                      set_mac_address()
49  *              Dave Miller     :       32bit quantity for the device lock to
50  *                                      make it work out on a Sparc.
51  *              Bjorn Ekwall    :       Added KERNELD hack.
52  *              Alan Cox        :       Cleaned up the backlog initialise.
53  *              Craig Metz      :       SIOCGIFCONF fix if space for under
54  *                                      1 device.
55  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
56  *                                      is no device open function.
57  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
58  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
59  *              Cyrus Durgin    :       Cleaned for KMOD
60  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
61  *                                      A network device unload needs to purge
62  *                                      the backlog queue.
63  *      Paul Rusty Russell      :       SIOCSIFNAME
64  *              Pekka Riikonen  :       Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *                                      - netif_rx() feedback
69  */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/bpf.h>
95 #include <linux/bpf_trace.h>
96 #include <net/net_namespace.h>
97 #include <net/sock.h>
98 #include <net/busy_poll.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/dst_metadata.h>
103 #include <net/pkt_sched.h>
104 #include <net/pkt_cls.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/module.h>
110 #include <linux/netpoll.h>
111 #include <linux/rcupdate.h>
112 #include <linux/delay.h>
113 #include <net/iw_handler.h>
114 #include <asm/current.h>
115 #include <linux/audit.h>
116 #include <linux/dmaengine.h>
117 #include <linux/err.h>
118 #include <linux/ctype.h>
119 #include <linux/if_arp.h>
120 #include <linux/if_vlan.h>
121 #include <linux/ip.h>
122 #include <net/ip.h>
123 #include <net/mpls.h>
124 #include <linux/ipv6.h>
125 #include <linux/in.h>
126 #include <linux/jhash.h>
127 #include <linux/random.h>
128 #include <trace/events/napi.h>
129 #include <trace/events/net.h>
130 #include <trace/events/skb.h>
131 #include <linux/inetdevice.h>
132 #include <linux/cpu_rmap.h>
133 #include <linux/static_key.h>
134 #include <linux/hashtable.h>
135 #include <linux/vmalloc.h>
136 #include <linux/if_macvlan.h>
137 #include <linux/errqueue.h>
138 #include <linux/hrtimer.h>
139 #include <linux/netfilter_ingress.h>
140 #include <linux/crash_dump.h>
141 #include <linux/sctp.h>
142 #include <net/udp_tunnel.h>
143 #include <linux/net_namespace.h>
144 #include <linux/indirect_call_wrapper.h>
145 #include <net/devlink.h>
146
147 #include "net-sysfs.h"
148
149 #define MAX_GRO_SKBS 8
150
151 /* This should be increased if a protocol with a bigger head is added. */
152 #define GRO_MAX_HEAD (MAX_HEADER + 128)
153
154 static DEFINE_SPINLOCK(ptype_lock);
155 static DEFINE_SPINLOCK(offload_lock);
156 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
157 struct list_head ptype_all __read_mostly;       /* Taps */
158 static struct list_head offload_base __read_mostly;
159
160 static int netif_rx_internal(struct sk_buff *skb);
161 static int call_netdevice_notifiers_info(unsigned long val,
162                                          struct netdev_notifier_info *info);
163 static int call_netdevice_notifiers_extack(unsigned long val,
164                                            struct net_device *dev,
165                                            struct netlink_ext_ack *extack);
166 static struct napi_struct *napi_by_id(unsigned int napi_id);
167
168 /*
169  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
170  * semaphore.
171  *
172  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
173  *
174  * Writers must hold the rtnl semaphore while they loop through the
175  * dev_base_head list, and hold dev_base_lock for writing when they do the
176  * actual updates.  This allows pure readers to access the list even
177  * while a writer is preparing to update it.
178  *
179  * To put it another way, dev_base_lock is held for writing only to
180  * protect against pure readers; the rtnl semaphore provides the
181  * protection against other writers.
182  *
183  * See, for example usages, register_netdevice() and
184  * unregister_netdevice(), which must be called with the rtnl
185  * semaphore held.
186  */
187 DEFINE_RWLOCK(dev_base_lock);
188 EXPORT_SYMBOL(dev_base_lock);
189
190 static DEFINE_MUTEX(ifalias_mutex);
191
192 /* protects napi_hash addition/deletion and napi_gen_id */
193 static DEFINE_SPINLOCK(napi_hash_lock);
194
195 static unsigned int napi_gen_id = NR_CPUS;
196 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
197
198 static DECLARE_RWSEM(devnet_rename_sem);
199
200 static inline void dev_base_seq_inc(struct net *net)
201 {
202         while (++net->dev_base_seq == 0)
203                 ;
204 }
205
206 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
207 {
208         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
209
210         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
211 }
212
213 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
214 {
215         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
216 }
217
218 static inline void rps_lock(struct softnet_data *sd)
219 {
220 #ifdef CONFIG_RPS
221         spin_lock(&sd->input_pkt_queue.lock);
222 #endif
223 }
224
225 static inline void rps_unlock(struct softnet_data *sd)
226 {
227 #ifdef CONFIG_RPS
228         spin_unlock(&sd->input_pkt_queue.lock);
229 #endif
230 }
231
232 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
233                                                        const char *name)
234 {
235         struct netdev_name_node *name_node;
236
237         name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
238         if (!name_node)
239                 return NULL;
240         INIT_HLIST_NODE(&name_node->hlist);
241         name_node->dev = dev;
242         name_node->name = name;
243         return name_node;
244 }
245
246 static struct netdev_name_node *
247 netdev_name_node_head_alloc(struct net_device *dev)
248 {
249         struct netdev_name_node *name_node;
250
251         name_node = netdev_name_node_alloc(dev, dev->name);
252         if (!name_node)
253                 return NULL;
254         INIT_LIST_HEAD(&name_node->list);
255         return name_node;
256 }
257
258 static void netdev_name_node_free(struct netdev_name_node *name_node)
259 {
260         kfree(name_node);
261 }
262
263 static void netdev_name_node_add(struct net *net,
264                                  struct netdev_name_node *name_node)
265 {
266         hlist_add_head_rcu(&name_node->hlist,
267                            dev_name_hash(net, name_node->name));
268 }
269
270 static void netdev_name_node_del(struct netdev_name_node *name_node)
271 {
272         hlist_del_rcu(&name_node->hlist);
273 }
274
275 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
276                                                         const char *name)
277 {
278         struct hlist_head *head = dev_name_hash(net, name);
279         struct netdev_name_node *name_node;
280
281         hlist_for_each_entry(name_node, head, hlist)
282                 if (!strcmp(name_node->name, name))
283                         return name_node;
284         return NULL;
285 }
286
287 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
288                                                             const char *name)
289 {
290         struct hlist_head *head = dev_name_hash(net, name);
291         struct netdev_name_node *name_node;
292
293         hlist_for_each_entry_rcu(name_node, head, hlist)
294                 if (!strcmp(name_node->name, name))
295                         return name_node;
296         return NULL;
297 }
298
299 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
300 {
301         struct netdev_name_node *name_node;
302         struct net *net = dev_net(dev);
303
304         name_node = netdev_name_node_lookup(net, name);
305         if (name_node)
306                 return -EEXIST;
307         name_node = netdev_name_node_alloc(dev, name);
308         if (!name_node)
309                 return -ENOMEM;
310         netdev_name_node_add(net, name_node);
311         /* The node that holds dev->name acts as a head of per-device list. */
312         list_add_tail(&name_node->list, &dev->name_node->list);
313
314         return 0;
315 }
316 EXPORT_SYMBOL(netdev_name_node_alt_create);
317
318 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
319 {
320         list_del(&name_node->list);
321         netdev_name_node_del(name_node);
322         kfree(name_node->name);
323         netdev_name_node_free(name_node);
324 }
325
326 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
327 {
328         struct netdev_name_node *name_node;
329         struct net *net = dev_net(dev);
330
331         name_node = netdev_name_node_lookup(net, name);
332         if (!name_node)
333                 return -ENOENT;
334         /* lookup might have found our primary name or a name belonging
335          * to another device.
336          */
337         if (name_node == dev->name_node || name_node->dev != dev)
338                 return -EINVAL;
339
340         __netdev_name_node_alt_destroy(name_node);
341
342         return 0;
343 }
344 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
345
346 static void netdev_name_node_alt_flush(struct net_device *dev)
347 {
348         struct netdev_name_node *name_node, *tmp;
349
350         list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
351                 __netdev_name_node_alt_destroy(name_node);
352 }
353
354 /* Device list insertion */
355 static void list_netdevice(struct net_device *dev)
356 {
357         struct net *net = dev_net(dev);
358
359         ASSERT_RTNL();
360
361         write_lock_bh(&dev_base_lock);
362         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
363         netdev_name_node_add(net, dev->name_node);
364         hlist_add_head_rcu(&dev->index_hlist,
365                            dev_index_hash(net, dev->ifindex));
366         write_unlock_bh(&dev_base_lock);
367
368         dev_base_seq_inc(net);
369 }
370
371 /* Device list removal
372  * caller must respect a RCU grace period before freeing/reusing dev
373  */
374 static void unlist_netdevice(struct net_device *dev)
375 {
376         ASSERT_RTNL();
377
378         /* Unlink dev from the device chain */
379         write_lock_bh(&dev_base_lock);
380         list_del_rcu(&dev->dev_list);
381         netdev_name_node_del(dev->name_node);
382         hlist_del_rcu(&dev->index_hlist);
383         write_unlock_bh(&dev_base_lock);
384
385         dev_base_seq_inc(dev_net(dev));
386 }
387
388 /*
389  *      Our notifier list
390  */
391
392 static RAW_NOTIFIER_HEAD(netdev_chain);
393
394 /*
395  *      Device drivers call our routines to queue packets here. We empty the
396  *      queue in the local softnet handler.
397  */
398
399 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
400 EXPORT_PER_CPU_SYMBOL(softnet_data);
401
402 #ifdef CONFIG_LOCKDEP
403 /*
404  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
405  * according to dev->type
406  */
407 static const unsigned short netdev_lock_type[] = {
408          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
409          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
410          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
411          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
412          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
413          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
414          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
415          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
416          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
417          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
418          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
419          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
420          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
421          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
422          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
423
424 static const char *const netdev_lock_name[] = {
425         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
426         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
427         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
428         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
429         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
430         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
431         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
432         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
433         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
434         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
435         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
436         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
437         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
438         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
439         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
440
441 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
442 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
443
444 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
445 {
446         int i;
447
448         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
449                 if (netdev_lock_type[i] == dev_type)
450                         return i;
451         /* the last key is used by default */
452         return ARRAY_SIZE(netdev_lock_type) - 1;
453 }
454
455 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
456                                                  unsigned short dev_type)
457 {
458         int i;
459
460         i = netdev_lock_pos(dev_type);
461         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
462                                    netdev_lock_name[i]);
463 }
464
465 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
466 {
467         int i;
468
469         i = netdev_lock_pos(dev->type);
470         lockdep_set_class_and_name(&dev->addr_list_lock,
471                                    &netdev_addr_lock_key[i],
472                                    netdev_lock_name[i]);
473 }
474 #else
475 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
476                                                  unsigned short dev_type)
477 {
478 }
479
480 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
481 {
482 }
483 #endif
484
485 /*******************************************************************************
486  *
487  *              Protocol management and registration routines
488  *
489  *******************************************************************************/
490
491
492 /*
493  *      Add a protocol ID to the list. Now that the input handler is
494  *      smarter we can dispense with all the messy stuff that used to be
495  *      here.
496  *
497  *      BEWARE!!! Protocol handlers, mangling input packets,
498  *      MUST BE last in hash buckets and checking protocol handlers
499  *      MUST start from promiscuous ptype_all chain in net_bh.
500  *      It is true now, do not change it.
501  *      Explanation follows: if protocol handler, mangling packet, will
502  *      be the first on list, it is not able to sense, that packet
503  *      is cloned and should be copied-on-write, so that it will
504  *      change it and subsequent readers will get broken packet.
505  *                                                      --ANK (980803)
506  */
507
508 static inline struct list_head *ptype_head(const struct packet_type *pt)
509 {
510         if (pt->type == htons(ETH_P_ALL))
511                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
512         else
513                 return pt->dev ? &pt->dev->ptype_specific :
514                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
515 }
516
517 /**
518  *      dev_add_pack - add packet handler
519  *      @pt: packet type declaration
520  *
521  *      Add a protocol handler to the networking stack. The passed &packet_type
522  *      is linked into kernel lists and may not be freed until it has been
523  *      removed from the kernel lists.
524  *
525  *      This call does not sleep therefore it can not
526  *      guarantee all CPU's that are in middle of receiving packets
527  *      will see the new packet type (until the next received packet).
528  */
529
530 void dev_add_pack(struct packet_type *pt)
531 {
532         struct list_head *head = ptype_head(pt);
533
534         spin_lock(&ptype_lock);
535         list_add_rcu(&pt->list, head);
536         spin_unlock(&ptype_lock);
537 }
538 EXPORT_SYMBOL(dev_add_pack);
539
540 /**
541  *      __dev_remove_pack        - remove packet handler
542  *      @pt: packet type declaration
543  *
544  *      Remove a protocol handler that was previously added to the kernel
545  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
546  *      from the kernel lists and can be freed or reused once this function
547  *      returns.
548  *
549  *      The packet type might still be in use by receivers
550  *      and must not be freed until after all the CPU's have gone
551  *      through a quiescent state.
552  */
553 void __dev_remove_pack(struct packet_type *pt)
554 {
555         struct list_head *head = ptype_head(pt);
556         struct packet_type *pt1;
557
558         spin_lock(&ptype_lock);
559
560         list_for_each_entry(pt1, head, list) {
561                 if (pt == pt1) {
562                         list_del_rcu(&pt->list);
563                         goto out;
564                 }
565         }
566
567         pr_warn("dev_remove_pack: %p not found\n", pt);
568 out:
569         spin_unlock(&ptype_lock);
570 }
571 EXPORT_SYMBOL(__dev_remove_pack);
572
573 /**
574  *      dev_remove_pack  - remove packet handler
575  *      @pt: packet type declaration
576  *
577  *      Remove a protocol handler that was previously added to the kernel
578  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
579  *      from the kernel lists and can be freed or reused once this function
580  *      returns.
581  *
582  *      This call sleeps to guarantee that no CPU is looking at the packet
583  *      type after return.
584  */
585 void dev_remove_pack(struct packet_type *pt)
586 {
587         __dev_remove_pack(pt);
588
589         synchronize_net();
590 }
591 EXPORT_SYMBOL(dev_remove_pack);
592
593
594 /**
595  *      dev_add_offload - register offload handlers
596  *      @po: protocol offload declaration
597  *
598  *      Add protocol offload handlers to the networking stack. The passed
599  *      &proto_offload is linked into kernel lists and may not be freed until
600  *      it has been removed from the kernel lists.
601  *
602  *      This call does not sleep therefore it can not
603  *      guarantee all CPU's that are in middle of receiving packets
604  *      will see the new offload handlers (until the next received packet).
605  */
606 void dev_add_offload(struct packet_offload *po)
607 {
608         struct packet_offload *elem;
609
610         spin_lock(&offload_lock);
611         list_for_each_entry(elem, &offload_base, list) {
612                 if (po->priority < elem->priority)
613                         break;
614         }
615         list_add_rcu(&po->list, elem->list.prev);
616         spin_unlock(&offload_lock);
617 }
618 EXPORT_SYMBOL(dev_add_offload);
619
620 /**
621  *      __dev_remove_offload     - remove offload handler
622  *      @po: packet offload declaration
623  *
624  *      Remove a protocol offload handler that was previously added to the
625  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
626  *      is removed from the kernel lists and can be freed or reused once this
627  *      function returns.
628  *
629  *      The packet type might still be in use by receivers
630  *      and must not be freed until after all the CPU's have gone
631  *      through a quiescent state.
632  */
633 static void __dev_remove_offload(struct packet_offload *po)
634 {
635         struct list_head *head = &offload_base;
636         struct packet_offload *po1;
637
638         spin_lock(&offload_lock);
639
640         list_for_each_entry(po1, head, list) {
641                 if (po == po1) {
642                         list_del_rcu(&po->list);
643                         goto out;
644                 }
645         }
646
647         pr_warn("dev_remove_offload: %p not found\n", po);
648 out:
649         spin_unlock(&offload_lock);
650 }
651
652 /**
653  *      dev_remove_offload       - remove packet offload handler
654  *      @po: packet offload declaration
655  *
656  *      Remove a packet offload handler that was previously added to the kernel
657  *      offload handlers by dev_add_offload(). The passed &offload_type is
658  *      removed from the kernel lists and can be freed or reused once this
659  *      function returns.
660  *
661  *      This call sleeps to guarantee that no CPU is looking at the packet
662  *      type after return.
663  */
664 void dev_remove_offload(struct packet_offload *po)
665 {
666         __dev_remove_offload(po);
667
668         synchronize_net();
669 }
670 EXPORT_SYMBOL(dev_remove_offload);
671
672 /******************************************************************************
673  *
674  *                    Device Boot-time Settings Routines
675  *
676  ******************************************************************************/
677
678 /* Boot time configuration table */
679 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
680
681 /**
682  *      netdev_boot_setup_add   - add new setup entry
683  *      @name: name of the device
684  *      @map: configured settings for the device
685  *
686  *      Adds new setup entry to the dev_boot_setup list.  The function
687  *      returns 0 on error and 1 on success.  This is a generic routine to
688  *      all netdevices.
689  */
690 static int netdev_boot_setup_add(char *name, struct ifmap *map)
691 {
692         struct netdev_boot_setup *s;
693         int i;
694
695         s = dev_boot_setup;
696         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
697                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
698                         memset(s[i].name, 0, sizeof(s[i].name));
699                         strlcpy(s[i].name, name, IFNAMSIZ);
700                         memcpy(&s[i].map, map, sizeof(s[i].map));
701                         break;
702                 }
703         }
704
705         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
706 }
707
708 /**
709  * netdev_boot_setup_check      - check boot time settings
710  * @dev: the netdevice
711  *
712  * Check boot time settings for the device.
713  * The found settings are set for the device to be used
714  * later in the device probing.
715  * Returns 0 if no settings found, 1 if they are.
716  */
717 int netdev_boot_setup_check(struct net_device *dev)
718 {
719         struct netdev_boot_setup *s = dev_boot_setup;
720         int i;
721
722         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
723                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
724                     !strcmp(dev->name, s[i].name)) {
725                         dev->irq = s[i].map.irq;
726                         dev->base_addr = s[i].map.base_addr;
727                         dev->mem_start = s[i].map.mem_start;
728                         dev->mem_end = s[i].map.mem_end;
729                         return 1;
730                 }
731         }
732         return 0;
733 }
734 EXPORT_SYMBOL(netdev_boot_setup_check);
735
736
737 /**
738  * netdev_boot_base     - get address from boot time settings
739  * @prefix: prefix for network device
740  * @unit: id for network device
741  *
742  * Check boot time settings for the base address of device.
743  * The found settings are set for the device to be used
744  * later in the device probing.
745  * Returns 0 if no settings found.
746  */
747 unsigned long netdev_boot_base(const char *prefix, int unit)
748 {
749         const struct netdev_boot_setup *s = dev_boot_setup;
750         char name[IFNAMSIZ];
751         int i;
752
753         sprintf(name, "%s%d", prefix, unit);
754
755         /*
756          * If device already registered then return base of 1
757          * to indicate not to probe for this interface
758          */
759         if (__dev_get_by_name(&init_net, name))
760                 return 1;
761
762         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
763                 if (!strcmp(name, s[i].name))
764                         return s[i].map.base_addr;
765         return 0;
766 }
767
768 /*
769  * Saves at boot time configured settings for any netdevice.
770  */
771 int __init netdev_boot_setup(char *str)
772 {
773         int ints[5];
774         struct ifmap map;
775
776         str = get_options(str, ARRAY_SIZE(ints), ints);
777         if (!str || !*str)
778                 return 0;
779
780         /* Save settings */
781         memset(&map, 0, sizeof(map));
782         if (ints[0] > 0)
783                 map.irq = ints[1];
784         if (ints[0] > 1)
785                 map.base_addr = ints[2];
786         if (ints[0] > 2)
787                 map.mem_start = ints[3];
788         if (ints[0] > 3)
789                 map.mem_end = ints[4];
790
791         /* Add new entry to the list */
792         return netdev_boot_setup_add(str, &map);
793 }
794
795 __setup("netdev=", netdev_boot_setup);
796
797 /*******************************************************************************
798  *
799  *                          Device Interface Subroutines
800  *
801  *******************************************************************************/
802
803 /**
804  *      dev_get_iflink  - get 'iflink' value of a interface
805  *      @dev: targeted interface
806  *
807  *      Indicates the ifindex the interface is linked to.
808  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
809  */
810
811 int dev_get_iflink(const struct net_device *dev)
812 {
813         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
814                 return dev->netdev_ops->ndo_get_iflink(dev);
815
816         return dev->ifindex;
817 }
818 EXPORT_SYMBOL(dev_get_iflink);
819
820 /**
821  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
822  *      @dev: targeted interface
823  *      @skb: The packet.
824  *
825  *      For better visibility of tunnel traffic OVS needs to retrieve
826  *      egress tunnel information for a packet. Following API allows
827  *      user to get this info.
828  */
829 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
830 {
831         struct ip_tunnel_info *info;
832
833         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
834                 return -EINVAL;
835
836         info = skb_tunnel_info_unclone(skb);
837         if (!info)
838                 return -ENOMEM;
839         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
840                 return -EINVAL;
841
842         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
843 }
844 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
845
846 /**
847  *      __dev_get_by_name       - find a device by its name
848  *      @net: the applicable net namespace
849  *      @name: name to find
850  *
851  *      Find an interface by name. Must be called under RTNL semaphore
852  *      or @dev_base_lock. If the name is found a pointer to the device
853  *      is returned. If the name is not found then %NULL is returned. The
854  *      reference counters are not incremented so the caller must be
855  *      careful with locks.
856  */
857
858 struct net_device *__dev_get_by_name(struct net *net, const char *name)
859 {
860         struct netdev_name_node *node_name;
861
862         node_name = netdev_name_node_lookup(net, name);
863         return node_name ? node_name->dev : NULL;
864 }
865 EXPORT_SYMBOL(__dev_get_by_name);
866
867 /**
868  * dev_get_by_name_rcu  - find a device by its name
869  * @net: the applicable net namespace
870  * @name: name to find
871  *
872  * Find an interface by name.
873  * If the name is found a pointer to the device is returned.
874  * If the name is not found then %NULL is returned.
875  * The reference counters are not incremented so the caller must be
876  * careful with locks. The caller must hold RCU lock.
877  */
878
879 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
880 {
881         struct netdev_name_node *node_name;
882
883         node_name = netdev_name_node_lookup_rcu(net, name);
884         return node_name ? node_name->dev : NULL;
885 }
886 EXPORT_SYMBOL(dev_get_by_name_rcu);
887
888 /**
889  *      dev_get_by_name         - find a device by its name
890  *      @net: the applicable net namespace
891  *      @name: name to find
892  *
893  *      Find an interface by name. This can be called from any
894  *      context and does its own locking. The returned handle has
895  *      the usage count incremented and the caller must use dev_put() to
896  *      release it when it is no longer needed. %NULL is returned if no
897  *      matching device is found.
898  */
899
900 struct net_device *dev_get_by_name(struct net *net, const char *name)
901 {
902         struct net_device *dev;
903
904         rcu_read_lock();
905         dev = dev_get_by_name_rcu(net, name);
906         if (dev)
907                 dev_hold(dev);
908         rcu_read_unlock();
909         return dev;
910 }
911 EXPORT_SYMBOL(dev_get_by_name);
912
913 /**
914  *      __dev_get_by_index - find a device by its ifindex
915  *      @net: the applicable net namespace
916  *      @ifindex: index of device
917  *
918  *      Search for an interface by index. Returns %NULL if the device
919  *      is not found or a pointer to the device. The device has not
920  *      had its reference counter increased so the caller must be careful
921  *      about locking. The caller must hold either the RTNL semaphore
922  *      or @dev_base_lock.
923  */
924
925 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
926 {
927         struct net_device *dev;
928         struct hlist_head *head = dev_index_hash(net, ifindex);
929
930         hlist_for_each_entry(dev, head, index_hlist)
931                 if (dev->ifindex == ifindex)
932                         return dev;
933
934         return NULL;
935 }
936 EXPORT_SYMBOL(__dev_get_by_index);
937
938 /**
939  *      dev_get_by_index_rcu - find a device by its ifindex
940  *      @net: the applicable net namespace
941  *      @ifindex: index of device
942  *
943  *      Search for an interface by index. Returns %NULL if the device
944  *      is not found or a pointer to the device. The device has not
945  *      had its reference counter increased so the caller must be careful
946  *      about locking. The caller must hold RCU lock.
947  */
948
949 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
950 {
951         struct net_device *dev;
952         struct hlist_head *head = dev_index_hash(net, ifindex);
953
954         hlist_for_each_entry_rcu(dev, head, index_hlist)
955                 if (dev->ifindex == ifindex)
956                         return dev;
957
958         return NULL;
959 }
960 EXPORT_SYMBOL(dev_get_by_index_rcu);
961
962
963 /**
964  *      dev_get_by_index - find a device by its ifindex
965  *      @net: the applicable net namespace
966  *      @ifindex: index of device
967  *
968  *      Search for an interface by index. Returns NULL if the device
969  *      is not found or a pointer to the device. The device returned has
970  *      had a reference added and the pointer is safe until the user calls
971  *      dev_put to indicate they have finished with it.
972  */
973
974 struct net_device *dev_get_by_index(struct net *net, int ifindex)
975 {
976         struct net_device *dev;
977
978         rcu_read_lock();
979         dev = dev_get_by_index_rcu(net, ifindex);
980         if (dev)
981                 dev_hold(dev);
982         rcu_read_unlock();
983         return dev;
984 }
985 EXPORT_SYMBOL(dev_get_by_index);
986
987 /**
988  *      dev_get_by_napi_id - find a device by napi_id
989  *      @napi_id: ID of the NAPI struct
990  *
991  *      Search for an interface by NAPI ID. Returns %NULL if the device
992  *      is not found or a pointer to the device. The device has not had
993  *      its reference counter increased so the caller must be careful
994  *      about locking. The caller must hold RCU lock.
995  */
996
997 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
998 {
999         struct napi_struct *napi;
1000
1001         WARN_ON_ONCE(!rcu_read_lock_held());
1002
1003         if (napi_id < MIN_NAPI_ID)
1004                 return NULL;
1005
1006         napi = napi_by_id(napi_id);
1007
1008         return napi ? napi->dev : NULL;
1009 }
1010 EXPORT_SYMBOL(dev_get_by_napi_id);
1011
1012 /**
1013  *      netdev_get_name - get a netdevice name, knowing its ifindex.
1014  *      @net: network namespace
1015  *      @name: a pointer to the buffer where the name will be stored.
1016  *      @ifindex: the ifindex of the interface to get the name from.
1017  */
1018 int netdev_get_name(struct net *net, char *name, int ifindex)
1019 {
1020         struct net_device *dev;
1021         int ret;
1022
1023         down_read(&devnet_rename_sem);
1024         rcu_read_lock();
1025
1026         dev = dev_get_by_index_rcu(net, ifindex);
1027         if (!dev) {
1028                 ret = -ENODEV;
1029                 goto out;
1030         }
1031
1032         strcpy(name, dev->name);
1033
1034         ret = 0;
1035 out:
1036         rcu_read_unlock();
1037         up_read(&devnet_rename_sem);
1038         return ret;
1039 }
1040
1041 /**
1042  *      dev_getbyhwaddr_rcu - find a device by its hardware address
1043  *      @net: the applicable net namespace
1044  *      @type: media type of device
1045  *      @ha: hardware address
1046  *
1047  *      Search for an interface by MAC address. Returns NULL if the device
1048  *      is not found or a pointer to the device.
1049  *      The caller must hold RCU or RTNL.
1050  *      The returned device has not had its ref count increased
1051  *      and the caller must therefore be careful about locking
1052  *
1053  */
1054
1055 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1056                                        const char *ha)
1057 {
1058         struct net_device *dev;
1059
1060         for_each_netdev_rcu(net, dev)
1061                 if (dev->type == type &&
1062                     !memcmp(dev->dev_addr, ha, dev->addr_len))
1063                         return dev;
1064
1065         return NULL;
1066 }
1067 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1068
1069 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1070 {
1071         struct net_device *dev;
1072
1073         ASSERT_RTNL();
1074         for_each_netdev(net, dev)
1075                 if (dev->type == type)
1076                         return dev;
1077
1078         return NULL;
1079 }
1080 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
1081
1082 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1083 {
1084         struct net_device *dev, *ret = NULL;
1085
1086         rcu_read_lock();
1087         for_each_netdev_rcu(net, dev)
1088                 if (dev->type == type) {
1089                         dev_hold(dev);
1090                         ret = dev;
1091                         break;
1092                 }
1093         rcu_read_unlock();
1094         return ret;
1095 }
1096 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1097
1098 /**
1099  *      __dev_get_by_flags - find any device with given flags
1100  *      @net: the applicable net namespace
1101  *      @if_flags: IFF_* values
1102  *      @mask: bitmask of bits in if_flags to check
1103  *
1104  *      Search for any interface with the given flags. Returns NULL if a device
1105  *      is not found or a pointer to the device. Must be called inside
1106  *      rtnl_lock(), and result refcount is unchanged.
1107  */
1108
1109 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1110                                       unsigned short mask)
1111 {
1112         struct net_device *dev, *ret;
1113
1114         ASSERT_RTNL();
1115
1116         ret = NULL;
1117         for_each_netdev(net, dev) {
1118                 if (((dev->flags ^ if_flags) & mask) == 0) {
1119                         ret = dev;
1120                         break;
1121                 }
1122         }
1123         return ret;
1124 }
1125 EXPORT_SYMBOL(__dev_get_by_flags);
1126
1127 /**
1128  *      dev_valid_name - check if name is okay for network device
1129  *      @name: name string
1130  *
1131  *      Network device names need to be valid file names to
1132  *      to allow sysfs to work.  We also disallow any kind of
1133  *      whitespace.
1134  */
1135 bool dev_valid_name(const char *name)
1136 {
1137         if (*name == '\0')
1138                 return false;
1139         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1140                 return false;
1141         if (!strcmp(name, ".") || !strcmp(name, ".."))
1142                 return false;
1143
1144         while (*name) {
1145                 if (*name == '/' || *name == ':' || isspace(*name))
1146                         return false;
1147                 name++;
1148         }
1149         return true;
1150 }
1151 EXPORT_SYMBOL(dev_valid_name);
1152
1153 /**
1154  *      __dev_alloc_name - allocate a name for a device
1155  *      @net: network namespace to allocate the device name in
1156  *      @name: name format string
1157  *      @buf:  scratch buffer and result name string
1158  *
1159  *      Passed a format string - eg "lt%d" it will try and find a suitable
1160  *      id. It scans list of devices to build up a free map, then chooses
1161  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1162  *      while allocating the name and adding the device in order to avoid
1163  *      duplicates.
1164  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1165  *      Returns the number of the unit assigned or a negative errno code.
1166  */
1167
1168 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1169 {
1170         int i = 0;
1171         const char *p;
1172         const int max_netdevices = 8*PAGE_SIZE;
1173         unsigned long *inuse;
1174         struct net_device *d;
1175
1176         if (!dev_valid_name(name))
1177                 return -EINVAL;
1178
1179         p = strchr(name, '%');
1180         if (p) {
1181                 /*
1182                  * Verify the string as this thing may have come from
1183                  * the user.  There must be either one "%d" and no other "%"
1184                  * characters.
1185                  */
1186                 if (p[1] != 'd' || strchr(p + 2, '%'))
1187                         return -EINVAL;
1188
1189                 /* Use one page as a bit array of possible slots */
1190                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1191                 if (!inuse)
1192                         return -ENOMEM;
1193
1194                 for_each_netdev(net, d) {
1195                         if (!sscanf(d->name, name, &i))
1196                                 continue;
1197                         if (i < 0 || i >= max_netdevices)
1198                                 continue;
1199
1200                         /*  avoid cases where sscanf is not exact inverse of printf */
1201                         snprintf(buf, IFNAMSIZ, name, i);
1202                         if (!strncmp(buf, d->name, IFNAMSIZ))
1203                                 set_bit(i, inuse);
1204                 }
1205
1206                 i = find_first_zero_bit(inuse, max_netdevices);
1207                 free_page((unsigned long) inuse);
1208         }
1209
1210         snprintf(buf, IFNAMSIZ, name, i);
1211         if (!__dev_get_by_name(net, buf))
1212                 return i;
1213
1214         /* It is possible to run out of possible slots
1215          * when the name is long and there isn't enough space left
1216          * for the digits, or if all bits are used.
1217          */
1218         return -ENFILE;
1219 }
1220
1221 static int dev_alloc_name_ns(struct net *net,
1222                              struct net_device *dev,
1223                              const char *name)
1224 {
1225         char buf[IFNAMSIZ];
1226         int ret;
1227
1228         BUG_ON(!net);
1229         ret = __dev_alloc_name(net, name, buf);
1230         if (ret >= 0)
1231                 strlcpy(dev->name, buf, IFNAMSIZ);
1232         return ret;
1233 }
1234
1235 /**
1236  *      dev_alloc_name - allocate a name for a device
1237  *      @dev: device
1238  *      @name: name format string
1239  *
1240  *      Passed a format string - eg "lt%d" it will try and find a suitable
1241  *      id. It scans list of devices to build up a free map, then chooses
1242  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1243  *      while allocating the name and adding the device in order to avoid
1244  *      duplicates.
1245  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1246  *      Returns the number of the unit assigned or a negative errno code.
1247  */
1248
1249 int dev_alloc_name(struct net_device *dev, const char *name)
1250 {
1251         return dev_alloc_name_ns(dev_net(dev), dev, name);
1252 }
1253 EXPORT_SYMBOL(dev_alloc_name);
1254
1255 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1256                               const char *name)
1257 {
1258         BUG_ON(!net);
1259
1260         if (!dev_valid_name(name))
1261                 return -EINVAL;
1262
1263         if (strchr(name, '%'))
1264                 return dev_alloc_name_ns(net, dev, name);
1265         else if (__dev_get_by_name(net, name))
1266                 return -EEXIST;
1267         else if (dev->name != name)
1268                 strlcpy(dev->name, name, IFNAMSIZ);
1269
1270         return 0;
1271 }
1272
1273 /**
1274  *      dev_change_name - change name of a device
1275  *      @dev: device
1276  *      @newname: name (or format string) must be at least IFNAMSIZ
1277  *
1278  *      Change name of a device, can pass format strings "eth%d".
1279  *      for wildcarding.
1280  */
1281 int dev_change_name(struct net_device *dev, const char *newname)
1282 {
1283         unsigned char old_assign_type;
1284         char oldname[IFNAMSIZ];
1285         int err = 0;
1286         int ret;
1287         struct net *net;
1288
1289         ASSERT_RTNL();
1290         BUG_ON(!dev_net(dev));
1291
1292         net = dev_net(dev);
1293
1294         /* Some auto-enslaved devices e.g. failover slaves are
1295          * special, as userspace might rename the device after
1296          * the interface had been brought up and running since
1297          * the point kernel initiated auto-enslavement. Allow
1298          * live name change even when these slave devices are
1299          * up and running.
1300          *
1301          * Typically, users of these auto-enslaving devices
1302          * don't actually care about slave name change, as
1303          * they are supposed to operate on master interface
1304          * directly.
1305          */
1306         if (dev->flags & IFF_UP &&
1307             likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1308                 return -EBUSY;
1309
1310         down_write(&devnet_rename_sem);
1311
1312         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1313                 up_write(&devnet_rename_sem);
1314                 return 0;
1315         }
1316
1317         memcpy(oldname, dev->name, IFNAMSIZ);
1318
1319         err = dev_get_valid_name(net, dev, newname);
1320         if (err < 0) {
1321                 up_write(&devnet_rename_sem);
1322                 return err;
1323         }
1324
1325         if (oldname[0] && !strchr(oldname, '%'))
1326                 netdev_info(dev, "renamed from %s\n", oldname);
1327
1328         old_assign_type = dev->name_assign_type;
1329         dev->name_assign_type = NET_NAME_RENAMED;
1330
1331 rollback:
1332         ret = device_rename(&dev->dev, dev->name);
1333         if (ret) {
1334                 memcpy(dev->name, oldname, IFNAMSIZ);
1335                 dev->name_assign_type = old_assign_type;
1336                 up_write(&devnet_rename_sem);
1337                 return ret;
1338         }
1339
1340         up_write(&devnet_rename_sem);
1341
1342         netdev_adjacent_rename_links(dev, oldname);
1343
1344         write_lock_bh(&dev_base_lock);
1345         netdev_name_node_del(dev->name_node);
1346         write_unlock_bh(&dev_base_lock);
1347
1348         synchronize_rcu();
1349
1350         write_lock_bh(&dev_base_lock);
1351         netdev_name_node_add(net, dev->name_node);
1352         write_unlock_bh(&dev_base_lock);
1353
1354         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1355         ret = notifier_to_errno(ret);
1356
1357         if (ret) {
1358                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1359                 if (err >= 0) {
1360                         err = ret;
1361                         down_write(&devnet_rename_sem);
1362                         memcpy(dev->name, oldname, IFNAMSIZ);
1363                         memcpy(oldname, newname, IFNAMSIZ);
1364                         dev->name_assign_type = old_assign_type;
1365                         old_assign_type = NET_NAME_RENAMED;
1366                         goto rollback;
1367                 } else {
1368                         pr_err("%s: name change rollback failed: %d\n",
1369                                dev->name, ret);
1370                 }
1371         }
1372
1373         return err;
1374 }
1375
1376 /**
1377  *      dev_set_alias - change ifalias of a device
1378  *      @dev: device
1379  *      @alias: name up to IFALIASZ
1380  *      @len: limit of bytes to copy from info
1381  *
1382  *      Set ifalias for a device,
1383  */
1384 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1385 {
1386         struct dev_ifalias *new_alias = NULL;
1387
1388         if (len >= IFALIASZ)
1389                 return -EINVAL;
1390
1391         if (len) {
1392                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1393                 if (!new_alias)
1394                         return -ENOMEM;
1395
1396                 memcpy(new_alias->ifalias, alias, len);
1397                 new_alias->ifalias[len] = 0;
1398         }
1399
1400         mutex_lock(&ifalias_mutex);
1401         new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1402                                         mutex_is_locked(&ifalias_mutex));
1403         mutex_unlock(&ifalias_mutex);
1404
1405         if (new_alias)
1406                 kfree_rcu(new_alias, rcuhead);
1407
1408         return len;
1409 }
1410 EXPORT_SYMBOL(dev_set_alias);
1411
1412 /**
1413  *      dev_get_alias - get ifalias of a device
1414  *      @dev: device
1415  *      @name: buffer to store name of ifalias
1416  *      @len: size of buffer
1417  *
1418  *      get ifalias for a device.  Caller must make sure dev cannot go
1419  *      away,  e.g. rcu read lock or own a reference count to device.
1420  */
1421 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1422 {
1423         const struct dev_ifalias *alias;
1424         int ret = 0;
1425
1426         rcu_read_lock();
1427         alias = rcu_dereference(dev->ifalias);
1428         if (alias)
1429                 ret = snprintf(name, len, "%s", alias->ifalias);
1430         rcu_read_unlock();
1431
1432         return ret;
1433 }
1434
1435 /**
1436  *      netdev_features_change - device changes features
1437  *      @dev: device to cause notification
1438  *
1439  *      Called to indicate a device has changed features.
1440  */
1441 void netdev_features_change(struct net_device *dev)
1442 {
1443         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1444 }
1445 EXPORT_SYMBOL(netdev_features_change);
1446
1447 /**
1448  *      netdev_state_change - device changes state
1449  *      @dev: device to cause notification
1450  *
1451  *      Called to indicate a device has changed state. This function calls
1452  *      the notifier chains for netdev_chain and sends a NEWLINK message
1453  *      to the routing socket.
1454  */
1455 void netdev_state_change(struct net_device *dev)
1456 {
1457         if (dev->flags & IFF_UP) {
1458                 struct netdev_notifier_change_info change_info = {
1459                         .info.dev = dev,
1460                 };
1461
1462                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1463                                               &change_info.info);
1464                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1465         }
1466 }
1467 EXPORT_SYMBOL(netdev_state_change);
1468
1469 /**
1470  * netdev_notify_peers - notify network peers about existence of @dev
1471  * @dev: network device
1472  *
1473  * Generate traffic such that interested network peers are aware of
1474  * @dev, such as by generating a gratuitous ARP. This may be used when
1475  * a device wants to inform the rest of the network about some sort of
1476  * reconfiguration such as a failover event or virtual machine
1477  * migration.
1478  */
1479 void netdev_notify_peers(struct net_device *dev)
1480 {
1481         rtnl_lock();
1482         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1483         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1484         rtnl_unlock();
1485 }
1486 EXPORT_SYMBOL(netdev_notify_peers);
1487
1488 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1489 {
1490         const struct net_device_ops *ops = dev->netdev_ops;
1491         int ret;
1492
1493         ASSERT_RTNL();
1494
1495         if (!netif_device_present(dev))
1496                 return -ENODEV;
1497
1498         /* Block netpoll from trying to do any rx path servicing.
1499          * If we don't do this there is a chance ndo_poll_controller
1500          * or ndo_poll may be running while we open the device
1501          */
1502         netpoll_poll_disable(dev);
1503
1504         ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1505         ret = notifier_to_errno(ret);
1506         if (ret)
1507                 return ret;
1508
1509         set_bit(__LINK_STATE_START, &dev->state);
1510
1511         if (ops->ndo_validate_addr)
1512                 ret = ops->ndo_validate_addr(dev);
1513
1514         if (!ret && ops->ndo_open)
1515                 ret = ops->ndo_open(dev);
1516
1517         netpoll_poll_enable(dev);
1518
1519         if (ret)
1520                 clear_bit(__LINK_STATE_START, &dev->state);
1521         else {
1522                 dev->flags |= IFF_UP;
1523                 dev_set_rx_mode(dev);
1524                 dev_activate(dev);
1525                 add_device_randomness(dev->dev_addr, dev->addr_len);
1526         }
1527
1528         return ret;
1529 }
1530
1531 /**
1532  *      dev_open        - prepare an interface for use.
1533  *      @dev: device to open
1534  *      @extack: netlink extended ack
1535  *
1536  *      Takes a device from down to up state. The device's private open
1537  *      function is invoked and then the multicast lists are loaded. Finally
1538  *      the device is moved into the up state and a %NETDEV_UP message is
1539  *      sent to the netdev notifier chain.
1540  *
1541  *      Calling this function on an active interface is a nop. On a failure
1542  *      a negative errno code is returned.
1543  */
1544 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1545 {
1546         int ret;
1547
1548         if (dev->flags & IFF_UP)
1549                 return 0;
1550
1551         ret = __dev_open(dev, extack);
1552         if (ret < 0)
1553                 return ret;
1554
1555         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1556         call_netdevice_notifiers(NETDEV_UP, dev);
1557
1558         return ret;
1559 }
1560 EXPORT_SYMBOL(dev_open);
1561
1562 static void __dev_close_many(struct list_head *head)
1563 {
1564         struct net_device *dev;
1565
1566         ASSERT_RTNL();
1567         might_sleep();
1568
1569         list_for_each_entry(dev, head, close_list) {
1570                 /* Temporarily disable netpoll until the interface is down */
1571                 netpoll_poll_disable(dev);
1572
1573                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1574
1575                 clear_bit(__LINK_STATE_START, &dev->state);
1576
1577                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1578                  * can be even on different cpu. So just clear netif_running().
1579                  *
1580                  * dev->stop() will invoke napi_disable() on all of it's
1581                  * napi_struct instances on this device.
1582                  */
1583                 smp_mb__after_atomic(); /* Commit netif_running(). */
1584         }
1585
1586         dev_deactivate_many(head);
1587
1588         list_for_each_entry(dev, head, close_list) {
1589                 const struct net_device_ops *ops = dev->netdev_ops;
1590
1591                 /*
1592                  *      Call the device specific close. This cannot fail.
1593                  *      Only if device is UP
1594                  *
1595                  *      We allow it to be called even after a DETACH hot-plug
1596                  *      event.
1597                  */
1598                 if (ops->ndo_stop)
1599                         ops->ndo_stop(dev);
1600
1601                 dev->flags &= ~IFF_UP;
1602                 netpoll_poll_enable(dev);
1603         }
1604 }
1605
1606 static void __dev_close(struct net_device *dev)
1607 {
1608         LIST_HEAD(single);
1609
1610         list_add(&dev->close_list, &single);
1611         __dev_close_many(&single);
1612         list_del(&single);
1613 }
1614
1615 void dev_close_many(struct list_head *head, bool unlink)
1616 {
1617         struct net_device *dev, *tmp;
1618
1619         /* Remove the devices that don't need to be closed */
1620         list_for_each_entry_safe(dev, tmp, head, close_list)
1621                 if (!(dev->flags & IFF_UP))
1622                         list_del_init(&dev->close_list);
1623
1624         __dev_close_many(head);
1625
1626         list_for_each_entry_safe(dev, tmp, head, close_list) {
1627                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1628                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1629                 if (unlink)
1630                         list_del_init(&dev->close_list);
1631         }
1632 }
1633 EXPORT_SYMBOL(dev_close_many);
1634
1635 /**
1636  *      dev_close - shutdown an interface.
1637  *      @dev: device to shutdown
1638  *
1639  *      This function moves an active device into down state. A
1640  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1641  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1642  *      chain.
1643  */
1644 void dev_close(struct net_device *dev)
1645 {
1646         if (dev->flags & IFF_UP) {
1647                 LIST_HEAD(single);
1648
1649                 list_add(&dev->close_list, &single);
1650                 dev_close_many(&single, true);
1651                 list_del(&single);
1652         }
1653 }
1654 EXPORT_SYMBOL(dev_close);
1655
1656
1657 /**
1658  *      dev_disable_lro - disable Large Receive Offload on a device
1659  *      @dev: device
1660  *
1661  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1662  *      called under RTNL.  This is needed if received packets may be
1663  *      forwarded to another interface.
1664  */
1665 void dev_disable_lro(struct net_device *dev)
1666 {
1667         struct net_device *lower_dev;
1668         struct list_head *iter;
1669
1670         dev->wanted_features &= ~NETIF_F_LRO;
1671         netdev_update_features(dev);
1672
1673         if (unlikely(dev->features & NETIF_F_LRO))
1674                 netdev_WARN(dev, "failed to disable LRO!\n");
1675
1676         netdev_for_each_lower_dev(dev, lower_dev, iter)
1677                 dev_disable_lro(lower_dev);
1678 }
1679 EXPORT_SYMBOL(dev_disable_lro);
1680
1681 /**
1682  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1683  *      @dev: device
1684  *
1685  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1686  *      called under RTNL.  This is needed if Generic XDP is installed on
1687  *      the device.
1688  */
1689 static void dev_disable_gro_hw(struct net_device *dev)
1690 {
1691         dev->wanted_features &= ~NETIF_F_GRO_HW;
1692         netdev_update_features(dev);
1693
1694         if (unlikely(dev->features & NETIF_F_GRO_HW))
1695                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1696 }
1697
1698 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1699 {
1700 #define N(val)                                          \
1701         case NETDEV_##val:                              \
1702                 return "NETDEV_" __stringify(val);
1703         switch (cmd) {
1704         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1705         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1706         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1707         N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1708         N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1709         N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1710         N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1711         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1712         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1713         N(PRE_CHANGEADDR)
1714         }
1715 #undef N
1716         return "UNKNOWN_NETDEV_EVENT";
1717 }
1718 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1719
1720 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1721                                    struct net_device *dev)
1722 {
1723         struct netdev_notifier_info info = {
1724                 .dev = dev,
1725         };
1726
1727         return nb->notifier_call(nb, val, &info);
1728 }
1729
1730 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1731                                              struct net_device *dev)
1732 {
1733         int err;
1734
1735         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1736         err = notifier_to_errno(err);
1737         if (err)
1738                 return err;
1739
1740         if (!(dev->flags & IFF_UP))
1741                 return 0;
1742
1743         call_netdevice_notifier(nb, NETDEV_UP, dev);
1744         return 0;
1745 }
1746
1747 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1748                                                 struct net_device *dev)
1749 {
1750         if (dev->flags & IFF_UP) {
1751                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1752                                         dev);
1753                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1754         }
1755         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1756 }
1757
1758 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1759                                                  struct net *net)
1760 {
1761         struct net_device *dev;
1762         int err;
1763
1764         for_each_netdev(net, dev) {
1765                 err = call_netdevice_register_notifiers(nb, dev);
1766                 if (err)
1767                         goto rollback;
1768         }
1769         return 0;
1770
1771 rollback:
1772         for_each_netdev_continue_reverse(net, dev)
1773                 call_netdevice_unregister_notifiers(nb, dev);
1774         return err;
1775 }
1776
1777 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1778                                                     struct net *net)
1779 {
1780         struct net_device *dev;
1781
1782         for_each_netdev(net, dev)
1783                 call_netdevice_unregister_notifiers(nb, dev);
1784 }
1785
1786 static int dev_boot_phase = 1;
1787
1788 /**
1789  * register_netdevice_notifier - register a network notifier block
1790  * @nb: notifier
1791  *
1792  * Register a notifier to be called when network device events occur.
1793  * The notifier passed is linked into the kernel structures and must
1794  * not be reused until it has been unregistered. A negative errno code
1795  * is returned on a failure.
1796  *
1797  * When registered all registration and up events are replayed
1798  * to the new notifier to allow device to have a race free
1799  * view of the network device list.
1800  */
1801
1802 int register_netdevice_notifier(struct notifier_block *nb)
1803 {
1804         struct net *net;
1805         int err;
1806
1807         /* Close race with setup_net() and cleanup_net() */
1808         down_write(&pernet_ops_rwsem);
1809         rtnl_lock();
1810         err = raw_notifier_chain_register(&netdev_chain, nb);
1811         if (err)
1812                 goto unlock;
1813         if (dev_boot_phase)
1814                 goto unlock;
1815         for_each_net(net) {
1816                 err = call_netdevice_register_net_notifiers(nb, net);
1817                 if (err)
1818                         goto rollback;
1819         }
1820
1821 unlock:
1822         rtnl_unlock();
1823         up_write(&pernet_ops_rwsem);
1824         return err;
1825
1826 rollback:
1827         for_each_net_continue_reverse(net)
1828                 call_netdevice_unregister_net_notifiers(nb, net);
1829
1830         raw_notifier_chain_unregister(&netdev_chain, nb);
1831         goto unlock;
1832 }
1833 EXPORT_SYMBOL(register_netdevice_notifier);
1834
1835 /**
1836  * unregister_netdevice_notifier - unregister a network notifier block
1837  * @nb: notifier
1838  *
1839  * Unregister a notifier previously registered by
1840  * register_netdevice_notifier(). The notifier is unlinked into the
1841  * kernel structures and may then be reused. A negative errno code
1842  * is returned on a failure.
1843  *
1844  * After unregistering unregister and down device events are synthesized
1845  * for all devices on the device list to the removed notifier to remove
1846  * the need for special case cleanup code.
1847  */
1848
1849 int unregister_netdevice_notifier(struct notifier_block *nb)
1850 {
1851         struct net *net;
1852         int err;
1853
1854         /* Close race with setup_net() and cleanup_net() */
1855         down_write(&pernet_ops_rwsem);
1856         rtnl_lock();
1857         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1858         if (err)
1859                 goto unlock;
1860
1861         for_each_net(net)
1862                 call_netdevice_unregister_net_notifiers(nb, net);
1863
1864 unlock:
1865         rtnl_unlock();
1866         up_write(&pernet_ops_rwsem);
1867         return err;
1868 }
1869 EXPORT_SYMBOL(unregister_netdevice_notifier);
1870
1871 static int __register_netdevice_notifier_net(struct net *net,
1872                                              struct notifier_block *nb,
1873                                              bool ignore_call_fail)
1874 {
1875         int err;
1876
1877         err = raw_notifier_chain_register(&net->netdev_chain, nb);
1878         if (err)
1879                 return err;
1880         if (dev_boot_phase)
1881                 return 0;
1882
1883         err = call_netdevice_register_net_notifiers(nb, net);
1884         if (err && !ignore_call_fail)
1885                 goto chain_unregister;
1886
1887         return 0;
1888
1889 chain_unregister:
1890         raw_notifier_chain_unregister(&net->netdev_chain, nb);
1891         return err;
1892 }
1893
1894 static int __unregister_netdevice_notifier_net(struct net *net,
1895                                                struct notifier_block *nb)
1896 {
1897         int err;
1898
1899         err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1900         if (err)
1901                 return err;
1902
1903         call_netdevice_unregister_net_notifiers(nb, net);
1904         return 0;
1905 }
1906
1907 /**
1908  * register_netdevice_notifier_net - register a per-netns network notifier block
1909  * @net: network namespace
1910  * @nb: notifier
1911  *
1912  * Register a notifier to be called when network device events occur.
1913  * The notifier passed is linked into the kernel structures and must
1914  * not be reused until it has been unregistered. A negative errno code
1915  * is returned on a failure.
1916  *
1917  * When registered all registration and up events are replayed
1918  * to the new notifier to allow device to have a race free
1919  * view of the network device list.
1920  */
1921
1922 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1923 {
1924         int err;
1925
1926         rtnl_lock();
1927         err = __register_netdevice_notifier_net(net, nb, false);
1928         rtnl_unlock();
1929         return err;
1930 }
1931 EXPORT_SYMBOL(register_netdevice_notifier_net);
1932
1933 /**
1934  * unregister_netdevice_notifier_net - unregister a per-netns
1935  *                                     network notifier block
1936  * @net: network namespace
1937  * @nb: notifier
1938  *
1939  * Unregister a notifier previously registered by
1940  * register_netdevice_notifier(). The notifier is unlinked into the
1941  * kernel structures and may then be reused. A negative errno code
1942  * is returned on a failure.
1943  *
1944  * After unregistering unregister and down device events are synthesized
1945  * for all devices on the device list to the removed notifier to remove
1946  * the need for special case cleanup code.
1947  */
1948
1949 int unregister_netdevice_notifier_net(struct net *net,
1950                                       struct notifier_block *nb)
1951 {
1952         int err;
1953
1954         rtnl_lock();
1955         err = __unregister_netdevice_notifier_net(net, nb);
1956         rtnl_unlock();
1957         return err;
1958 }
1959 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1960
1961 int register_netdevice_notifier_dev_net(struct net_device *dev,
1962                                         struct notifier_block *nb,
1963                                         struct netdev_net_notifier *nn)
1964 {
1965         int err;
1966
1967         rtnl_lock();
1968         err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1969         if (!err) {
1970                 nn->nb = nb;
1971                 list_add(&nn->list, &dev->net_notifier_list);
1972         }
1973         rtnl_unlock();
1974         return err;
1975 }
1976 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1977
1978 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1979                                           struct notifier_block *nb,
1980                                           struct netdev_net_notifier *nn)
1981 {
1982         int err;
1983
1984         rtnl_lock();
1985         list_del(&nn->list);
1986         err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1987         rtnl_unlock();
1988         return err;
1989 }
1990 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1991
1992 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1993                                              struct net *net)
1994 {
1995         struct netdev_net_notifier *nn;
1996
1997         list_for_each_entry(nn, &dev->net_notifier_list, list) {
1998                 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
1999                 __register_netdevice_notifier_net(net, nn->nb, true);
2000         }
2001 }
2002
2003 /**
2004  *      call_netdevice_notifiers_info - call all network notifier blocks
2005  *      @val: value passed unmodified to notifier function
2006  *      @info: notifier information data
2007  *
2008  *      Call all network notifier blocks.  Parameters and return value
2009  *      are as for raw_notifier_call_chain().
2010  */
2011
2012 static int call_netdevice_notifiers_info(unsigned long val,
2013                                          struct netdev_notifier_info *info)
2014 {
2015         struct net *net = dev_net(info->dev);
2016         int ret;
2017
2018         ASSERT_RTNL();
2019
2020         /* Run per-netns notifier block chain first, then run the global one.
2021          * Hopefully, one day, the global one is going to be removed after
2022          * all notifier block registrators get converted to be per-netns.
2023          */
2024         ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2025         if (ret & NOTIFY_STOP_MASK)
2026                 return ret;
2027         return raw_notifier_call_chain(&netdev_chain, val, info);
2028 }
2029
2030 static int call_netdevice_notifiers_extack(unsigned long val,
2031                                            struct net_device *dev,
2032                                            struct netlink_ext_ack *extack)
2033 {
2034         struct netdev_notifier_info info = {
2035                 .dev = dev,
2036                 .extack = extack,
2037         };
2038
2039         return call_netdevice_notifiers_info(val, &info);
2040 }
2041
2042 /**
2043  *      call_netdevice_notifiers - call all network notifier blocks
2044  *      @val: value passed unmodified to notifier function
2045  *      @dev: net_device pointer passed unmodified to notifier function
2046  *
2047  *      Call all network notifier blocks.  Parameters and return value
2048  *      are as for raw_notifier_call_chain().
2049  */
2050
2051 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2052 {
2053         return call_netdevice_notifiers_extack(val, dev, NULL);
2054 }
2055 EXPORT_SYMBOL(call_netdevice_notifiers);
2056
2057 /**
2058  *      call_netdevice_notifiers_mtu - call all network notifier blocks
2059  *      @val: value passed unmodified to notifier function
2060  *      @dev: net_device pointer passed unmodified to notifier function
2061  *      @arg: additional u32 argument passed to the notifier function
2062  *
2063  *      Call all network notifier blocks.  Parameters and return value
2064  *      are as for raw_notifier_call_chain().
2065  */
2066 static int call_netdevice_notifiers_mtu(unsigned long val,
2067                                         struct net_device *dev, u32 arg)
2068 {
2069         struct netdev_notifier_info_ext info = {
2070                 .info.dev = dev,
2071                 .ext.mtu = arg,
2072         };
2073
2074         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2075
2076         return call_netdevice_notifiers_info(val, &info.info);
2077 }
2078
2079 #ifdef CONFIG_NET_INGRESS
2080 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2081
2082 void net_inc_ingress_queue(void)
2083 {
2084         static_branch_inc(&ingress_needed_key);
2085 }
2086 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2087
2088 void net_dec_ingress_queue(void)
2089 {
2090         static_branch_dec(&ingress_needed_key);
2091 }
2092 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2093 #endif
2094
2095 #ifdef CONFIG_NET_EGRESS
2096 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2097
2098 void net_inc_egress_queue(void)
2099 {
2100         static_branch_inc(&egress_needed_key);
2101 }
2102 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2103
2104 void net_dec_egress_queue(void)
2105 {
2106         static_branch_dec(&egress_needed_key);
2107 }
2108 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2109 #endif
2110
2111 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2112 #ifdef CONFIG_JUMP_LABEL
2113 static atomic_t netstamp_needed_deferred;
2114 static atomic_t netstamp_wanted;
2115 static void netstamp_clear(struct work_struct *work)
2116 {
2117         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2118         int wanted;
2119
2120         wanted = atomic_add_return(deferred, &netstamp_wanted);
2121         if (wanted > 0)
2122                 static_branch_enable(&netstamp_needed_key);
2123         else
2124                 static_branch_disable(&netstamp_needed_key);
2125 }
2126 static DECLARE_WORK(netstamp_work, netstamp_clear);
2127 #endif
2128
2129 void net_enable_timestamp(void)
2130 {
2131 #ifdef CONFIG_JUMP_LABEL
2132         int wanted;
2133
2134         while (1) {
2135                 wanted = atomic_read(&netstamp_wanted);
2136                 if (wanted <= 0)
2137                         break;
2138                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2139                         return;
2140         }
2141         atomic_inc(&netstamp_needed_deferred);
2142         schedule_work(&netstamp_work);
2143 #else
2144         static_branch_inc(&netstamp_needed_key);
2145 #endif
2146 }
2147 EXPORT_SYMBOL(net_enable_timestamp);
2148
2149 void net_disable_timestamp(void)
2150 {
2151 #ifdef CONFIG_JUMP_LABEL
2152         int wanted;
2153
2154         while (1) {
2155                 wanted = atomic_read(&netstamp_wanted);
2156                 if (wanted <= 1)
2157                         break;
2158                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2159                         return;
2160         }
2161         atomic_dec(&netstamp_needed_deferred);
2162         schedule_work(&netstamp_work);
2163 #else
2164         static_branch_dec(&netstamp_needed_key);
2165 #endif
2166 }
2167 EXPORT_SYMBOL(net_disable_timestamp);
2168
2169 static inline void net_timestamp_set(struct sk_buff *skb)
2170 {
2171         skb->tstamp = 0;
2172         if (static_branch_unlikely(&netstamp_needed_key))
2173                 __net_timestamp(skb);
2174 }
2175
2176 #define net_timestamp_check(COND, SKB)                          \
2177         if (static_branch_unlikely(&netstamp_needed_key)) {     \
2178                 if ((COND) && !(SKB)->tstamp)                   \
2179                         __net_timestamp(SKB);                   \
2180         }                                                       \
2181
2182 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2183 {
2184         unsigned int len;
2185
2186         if (!(dev->flags & IFF_UP))
2187                 return false;
2188
2189         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
2190         if (skb->len <= len)
2191                 return true;
2192
2193         /* if TSO is enabled, we don't care about the length as the packet
2194          * could be forwarded without being segmented before
2195          */
2196         if (skb_is_gso(skb))
2197                 return true;
2198
2199         return false;
2200 }
2201 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2202
2203 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2204 {
2205         int ret = ____dev_forward_skb(dev, skb);
2206
2207         if (likely(!ret)) {
2208                 skb->protocol = eth_type_trans(skb, dev);
2209                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2210         }
2211
2212         return ret;
2213 }
2214 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2215
2216 /**
2217  * dev_forward_skb - loopback an skb to another netif
2218  *
2219  * @dev: destination network device
2220  * @skb: buffer to forward
2221  *
2222  * return values:
2223  *      NET_RX_SUCCESS  (no congestion)
2224  *      NET_RX_DROP     (packet was dropped, but freed)
2225  *
2226  * dev_forward_skb can be used for injecting an skb from the
2227  * start_xmit function of one device into the receive queue
2228  * of another device.
2229  *
2230  * The receiving device may be in another namespace, so
2231  * we have to clear all information in the skb that could
2232  * impact namespace isolation.
2233  */
2234 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2235 {
2236         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2237 }
2238 EXPORT_SYMBOL_GPL(dev_forward_skb);
2239
2240 static inline int deliver_skb(struct sk_buff *skb,
2241                               struct packet_type *pt_prev,
2242                               struct net_device *orig_dev)
2243 {
2244         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2245                 return -ENOMEM;
2246         refcount_inc(&skb->users);
2247         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2248 }
2249
2250 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2251                                           struct packet_type **pt,
2252                                           struct net_device *orig_dev,
2253                                           __be16 type,
2254                                           struct list_head *ptype_list)
2255 {
2256         struct packet_type *ptype, *pt_prev = *pt;
2257
2258         list_for_each_entry_rcu(ptype, ptype_list, list) {
2259                 if (ptype->type != type)
2260                         continue;
2261                 if (pt_prev)
2262                         deliver_skb(skb, pt_prev, orig_dev);
2263                 pt_prev = ptype;
2264         }
2265         *pt = pt_prev;
2266 }
2267
2268 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2269 {
2270         if (!ptype->af_packet_priv || !skb->sk)
2271                 return false;
2272
2273         if (ptype->id_match)
2274                 return ptype->id_match(ptype, skb->sk);
2275         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2276                 return true;
2277
2278         return false;
2279 }
2280
2281 /**
2282  * dev_nit_active - return true if any network interface taps are in use
2283  *
2284  * @dev: network device to check for the presence of taps
2285  */
2286 bool dev_nit_active(struct net_device *dev)
2287 {
2288         return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2289 }
2290 EXPORT_SYMBOL_GPL(dev_nit_active);
2291
2292 /*
2293  *      Support routine. Sends outgoing frames to any network
2294  *      taps currently in use.
2295  */
2296
2297 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2298 {
2299         struct packet_type *ptype;
2300         struct sk_buff *skb2 = NULL;
2301         struct packet_type *pt_prev = NULL;
2302         struct list_head *ptype_list = &ptype_all;
2303
2304         rcu_read_lock();
2305 again:
2306         list_for_each_entry_rcu(ptype, ptype_list, list) {
2307                 if (ptype->ignore_outgoing)
2308                         continue;
2309
2310                 /* Never send packets back to the socket
2311                  * they originated from - MvS (miquels@drinkel.ow.org)
2312                  */
2313                 if (skb_loop_sk(ptype, skb))
2314                         continue;
2315
2316                 if (pt_prev) {
2317                         deliver_skb(skb2, pt_prev, skb->dev);
2318                         pt_prev = ptype;
2319                         continue;
2320                 }
2321
2322                 /* need to clone skb, done only once */
2323                 skb2 = skb_clone(skb, GFP_ATOMIC);
2324                 if (!skb2)
2325                         goto out_unlock;
2326
2327                 net_timestamp_set(skb2);
2328
2329                 /* skb->nh should be correctly
2330                  * set by sender, so that the second statement is
2331                  * just protection against buggy protocols.
2332                  */
2333                 skb_reset_mac_header(skb2);
2334
2335                 if (skb_network_header(skb2) < skb2->data ||
2336                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2337                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2338                                              ntohs(skb2->protocol),
2339                                              dev->name);
2340                         skb_reset_network_header(skb2);
2341                 }
2342
2343                 skb2->transport_header = skb2->network_header;
2344                 skb2->pkt_type = PACKET_OUTGOING;
2345                 pt_prev = ptype;
2346         }
2347
2348         if (ptype_list == &ptype_all) {
2349                 ptype_list = &dev->ptype_all;
2350                 goto again;
2351         }
2352 out_unlock:
2353         if (pt_prev) {
2354                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2355                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2356                 else
2357                         kfree_skb(skb2);
2358         }
2359         rcu_read_unlock();
2360 }
2361 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2362
2363 /**
2364  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2365  * @dev: Network device
2366  * @txq: number of queues available
2367  *
2368  * If real_num_tx_queues is changed the tc mappings may no longer be
2369  * valid. To resolve this verify the tc mapping remains valid and if
2370  * not NULL the mapping. With no priorities mapping to this
2371  * offset/count pair it will no longer be used. In the worst case TC0
2372  * is invalid nothing can be done so disable priority mappings. If is
2373  * expected that drivers will fix this mapping if they can before
2374  * calling netif_set_real_num_tx_queues.
2375  */
2376 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2377 {
2378         int i;
2379         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2380
2381         /* If TC0 is invalidated disable TC mapping */
2382         if (tc->offset + tc->count > txq) {
2383                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2384                 dev->num_tc = 0;
2385                 return;
2386         }
2387
2388         /* Invalidated prio to tc mappings set to TC0 */
2389         for (i = 1; i < TC_BITMASK + 1; i++) {
2390                 int q = netdev_get_prio_tc_map(dev, i);
2391
2392                 tc = &dev->tc_to_txq[q];
2393                 if (tc->offset + tc->count > txq) {
2394                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2395                                 i, q);
2396                         netdev_set_prio_tc_map(dev, i, 0);
2397                 }
2398         }
2399 }
2400
2401 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2402 {
2403         if (dev->num_tc) {
2404                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2405                 int i;
2406
2407                 /* walk through the TCs and see if it falls into any of them */
2408                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2409                         if ((txq - tc->offset) < tc->count)
2410                                 return i;
2411                 }
2412
2413                 /* didn't find it, just return -1 to indicate no match */
2414                 return -1;
2415         }
2416
2417         return 0;
2418 }
2419 EXPORT_SYMBOL(netdev_txq_to_tc);
2420
2421 #ifdef CONFIG_XPS
2422 struct static_key xps_needed __read_mostly;
2423 EXPORT_SYMBOL(xps_needed);
2424 struct static_key xps_rxqs_needed __read_mostly;
2425 EXPORT_SYMBOL(xps_rxqs_needed);
2426 static DEFINE_MUTEX(xps_map_mutex);
2427 #define xmap_dereference(P)             \
2428         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2429
2430 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2431                              int tci, u16 index)
2432 {
2433         struct xps_map *map = NULL;
2434         int pos;
2435
2436         if (dev_maps)
2437                 map = xmap_dereference(dev_maps->attr_map[tci]);
2438         if (!map)
2439                 return false;
2440
2441         for (pos = map->len; pos--;) {
2442                 if (map->queues[pos] != index)
2443                         continue;
2444
2445                 if (map->len > 1) {
2446                         map->queues[pos] = map->queues[--map->len];
2447                         break;
2448                 }
2449
2450                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2451                 kfree_rcu(map, rcu);
2452                 return false;
2453         }
2454
2455         return true;
2456 }
2457
2458 static bool remove_xps_queue_cpu(struct net_device *dev,
2459                                  struct xps_dev_maps *dev_maps,
2460                                  int cpu, u16 offset, u16 count)
2461 {
2462         int num_tc = dev->num_tc ? : 1;
2463         bool active = false;
2464         int tci;
2465
2466         for (tci = cpu * num_tc; num_tc--; tci++) {
2467                 int i, j;
2468
2469                 for (i = count, j = offset; i--; j++) {
2470                         if (!remove_xps_queue(dev_maps, tci, j))
2471                                 break;
2472                 }
2473
2474                 active |= i < 0;
2475         }
2476
2477         return active;
2478 }
2479
2480 static void reset_xps_maps(struct net_device *dev,
2481                            struct xps_dev_maps *dev_maps,
2482                            bool is_rxqs_map)
2483 {
2484         if (is_rxqs_map) {
2485                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2486                 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2487         } else {
2488                 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2489         }
2490         static_key_slow_dec_cpuslocked(&xps_needed);
2491         kfree_rcu(dev_maps, rcu);
2492 }
2493
2494 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2495                            struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2496                            u16 offset, u16 count, bool is_rxqs_map)
2497 {
2498         bool active = false;
2499         int i, j;
2500
2501         for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2502              j < nr_ids;)
2503                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2504                                                count);
2505         if (!active)
2506                 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2507
2508         if (!is_rxqs_map) {
2509                 for (i = offset + (count - 1); count--; i--) {
2510                         netdev_queue_numa_node_write(
2511                                 netdev_get_tx_queue(dev, i),
2512                                 NUMA_NO_NODE);
2513                 }
2514         }
2515 }
2516
2517 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2518                                    u16 count)
2519 {
2520         const unsigned long *possible_mask = NULL;
2521         struct xps_dev_maps *dev_maps;
2522         unsigned int nr_ids;
2523
2524         if (!static_key_false(&xps_needed))
2525                 return;
2526
2527         cpus_read_lock();
2528         mutex_lock(&xps_map_mutex);
2529
2530         if (static_key_false(&xps_rxqs_needed)) {
2531                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2532                 if (dev_maps) {
2533                         nr_ids = dev->num_rx_queues;
2534                         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2535                                        offset, count, true);
2536                 }
2537         }
2538
2539         dev_maps = xmap_dereference(dev->xps_cpus_map);
2540         if (!dev_maps)
2541                 goto out_no_maps;
2542
2543         if (num_possible_cpus() > 1)
2544                 possible_mask = cpumask_bits(cpu_possible_mask);
2545         nr_ids = nr_cpu_ids;
2546         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2547                        false);
2548
2549 out_no_maps:
2550         mutex_unlock(&xps_map_mutex);
2551         cpus_read_unlock();
2552 }
2553
2554 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2555 {
2556         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2557 }
2558
2559 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2560                                       u16 index, bool is_rxqs_map)
2561 {
2562         struct xps_map *new_map;
2563         int alloc_len = XPS_MIN_MAP_ALLOC;
2564         int i, pos;
2565
2566         for (pos = 0; map && pos < map->len; pos++) {
2567                 if (map->queues[pos] != index)
2568                         continue;
2569                 return map;
2570         }
2571
2572         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2573         if (map) {
2574                 if (pos < map->alloc_len)
2575                         return map;
2576
2577                 alloc_len = map->alloc_len * 2;
2578         }
2579
2580         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2581          *  map
2582          */
2583         if (is_rxqs_map)
2584                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2585         else
2586                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2587                                        cpu_to_node(attr_index));
2588         if (!new_map)
2589                 return NULL;
2590
2591         for (i = 0; i < pos; i++)
2592                 new_map->queues[i] = map->queues[i];
2593         new_map->alloc_len = alloc_len;
2594         new_map->len = pos;
2595
2596         return new_map;
2597 }
2598
2599 /* Must be called under cpus_read_lock */
2600 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2601                           u16 index, bool is_rxqs_map)
2602 {
2603         const unsigned long *online_mask = NULL, *possible_mask = NULL;
2604         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2605         int i, j, tci, numa_node_id = -2;
2606         int maps_sz, num_tc = 1, tc = 0;
2607         struct xps_map *map, *new_map;
2608         bool active = false;
2609         unsigned int nr_ids;
2610
2611         if (dev->num_tc) {
2612                 /* Do not allow XPS on subordinate device directly */
2613                 num_tc = dev->num_tc;
2614                 if (num_tc < 0)
2615                         return -EINVAL;
2616
2617                 /* If queue belongs to subordinate dev use its map */
2618                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2619
2620                 tc = netdev_txq_to_tc(dev, index);
2621                 if (tc < 0)
2622                         return -EINVAL;
2623         }
2624
2625         mutex_lock(&xps_map_mutex);
2626         if (is_rxqs_map) {
2627                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2628                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2629                 nr_ids = dev->num_rx_queues;
2630         } else {
2631                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2632                 if (num_possible_cpus() > 1) {
2633                         online_mask = cpumask_bits(cpu_online_mask);
2634                         possible_mask = cpumask_bits(cpu_possible_mask);
2635                 }
2636                 dev_maps = xmap_dereference(dev->xps_cpus_map);
2637                 nr_ids = nr_cpu_ids;
2638         }
2639
2640         if (maps_sz < L1_CACHE_BYTES)
2641                 maps_sz = L1_CACHE_BYTES;
2642
2643         /* allocate memory for queue storage */
2644         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2645              j < nr_ids;) {
2646                 if (!new_dev_maps)
2647                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2648                 if (!new_dev_maps) {
2649                         mutex_unlock(&xps_map_mutex);
2650                         return -ENOMEM;
2651                 }
2652
2653                 tci = j * num_tc + tc;
2654                 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2655                                  NULL;
2656
2657                 map = expand_xps_map(map, j, index, is_rxqs_map);
2658                 if (!map)
2659                         goto error;
2660
2661                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2662         }
2663
2664         if (!new_dev_maps)
2665                 goto out_no_new_maps;
2666
2667         if (!dev_maps) {
2668                 /* Increment static keys at most once per type */
2669                 static_key_slow_inc_cpuslocked(&xps_needed);
2670                 if (is_rxqs_map)
2671                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2672         }
2673
2674         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2675              j < nr_ids;) {
2676                 /* copy maps belonging to foreign traffic classes */
2677                 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2678                         /* fill in the new device map from the old device map */
2679                         map = xmap_dereference(dev_maps->attr_map[tci]);
2680                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2681                 }
2682
2683                 /* We need to explicitly update tci as prevous loop
2684                  * could break out early if dev_maps is NULL.
2685                  */
2686                 tci = j * num_tc + tc;
2687
2688                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2689                     netif_attr_test_online(j, online_mask, nr_ids)) {
2690                         /* add tx-queue to CPU/rx-queue maps */
2691                         int pos = 0;
2692
2693                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2694                         while ((pos < map->len) && (map->queues[pos] != index))
2695                                 pos++;
2696
2697                         if (pos == map->len)
2698                                 map->queues[map->len++] = index;
2699 #ifdef CONFIG_NUMA
2700                         if (!is_rxqs_map) {
2701                                 if (numa_node_id == -2)
2702                                         numa_node_id = cpu_to_node(j);
2703                                 else if (numa_node_id != cpu_to_node(j))
2704                                         numa_node_id = -1;
2705                         }
2706 #endif
2707                 } else if (dev_maps) {
2708                         /* fill in the new device map from the old device map */
2709                         map = xmap_dereference(dev_maps->attr_map[tci]);
2710                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2711                 }
2712
2713                 /* copy maps belonging to foreign traffic classes */
2714                 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2715                         /* fill in the new device map from the old device map */
2716                         map = xmap_dereference(dev_maps->attr_map[tci]);
2717                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2718                 }
2719         }
2720
2721         if (is_rxqs_map)
2722                 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2723         else
2724                 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2725
2726         /* Cleanup old maps */
2727         if (!dev_maps)
2728                 goto out_no_old_maps;
2729
2730         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2731              j < nr_ids;) {
2732                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2733                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2734                         map = xmap_dereference(dev_maps->attr_map[tci]);
2735                         if (map && map != new_map)
2736                                 kfree_rcu(map, rcu);
2737                 }
2738         }
2739
2740         kfree_rcu(dev_maps, rcu);
2741
2742 out_no_old_maps:
2743         dev_maps = new_dev_maps;
2744         active = true;
2745
2746 out_no_new_maps:
2747         if (!is_rxqs_map) {
2748                 /* update Tx queue numa node */
2749                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2750                                              (numa_node_id >= 0) ?
2751                                              numa_node_id : NUMA_NO_NODE);
2752         }
2753
2754         if (!dev_maps)
2755                 goto out_no_maps;
2756
2757         /* removes tx-queue from unused CPUs/rx-queues */
2758         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2759              j < nr_ids;) {
2760                 for (i = tc, tci = j * num_tc; i--; tci++)
2761                         active |= remove_xps_queue(dev_maps, tci, index);
2762                 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2763                     !netif_attr_test_online(j, online_mask, nr_ids))
2764                         active |= remove_xps_queue(dev_maps, tci, index);
2765                 for (i = num_tc - tc, tci++; --i; tci++)
2766                         active |= remove_xps_queue(dev_maps, tci, index);
2767         }
2768
2769         /* free map if not active */
2770         if (!active)
2771                 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2772
2773 out_no_maps:
2774         mutex_unlock(&xps_map_mutex);
2775
2776         return 0;
2777 error:
2778         /* remove any maps that we added */
2779         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2780              j < nr_ids;) {
2781                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2782                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2783                         map = dev_maps ?
2784                               xmap_dereference(dev_maps->attr_map[tci]) :
2785                               NULL;
2786                         if (new_map && new_map != map)
2787                                 kfree(new_map);
2788                 }
2789         }
2790
2791         mutex_unlock(&xps_map_mutex);
2792
2793         kfree(new_dev_maps);
2794         return -ENOMEM;
2795 }
2796 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2797
2798 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2799                         u16 index)
2800 {
2801         int ret;
2802
2803         cpus_read_lock();
2804         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2805         cpus_read_unlock();
2806
2807         return ret;
2808 }
2809 EXPORT_SYMBOL(netif_set_xps_queue);
2810
2811 #endif
2812 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2813 {
2814         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2815
2816         /* Unbind any subordinate channels */
2817         while (txq-- != &dev->_tx[0]) {
2818                 if (txq->sb_dev)
2819                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2820         }
2821 }
2822
2823 void netdev_reset_tc(struct net_device *dev)
2824 {
2825 #ifdef CONFIG_XPS
2826         netif_reset_xps_queues_gt(dev, 0);
2827 #endif
2828         netdev_unbind_all_sb_channels(dev);
2829
2830         /* Reset TC configuration of device */
2831         dev->num_tc = 0;
2832         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2833         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2834 }
2835 EXPORT_SYMBOL(netdev_reset_tc);
2836
2837 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2838 {
2839         if (tc >= dev->num_tc)
2840                 return -EINVAL;
2841
2842 #ifdef CONFIG_XPS
2843         netif_reset_xps_queues(dev, offset, count);
2844 #endif
2845         dev->tc_to_txq[tc].count = count;
2846         dev->tc_to_txq[tc].offset = offset;
2847         return 0;
2848 }
2849 EXPORT_SYMBOL(netdev_set_tc_queue);
2850
2851 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2852 {
2853         if (num_tc > TC_MAX_QUEUE)
2854                 return -EINVAL;
2855
2856 #ifdef CONFIG_XPS
2857         netif_reset_xps_queues_gt(dev, 0);
2858 #endif
2859         netdev_unbind_all_sb_channels(dev);
2860
2861         dev->num_tc = num_tc;
2862         return 0;
2863 }
2864 EXPORT_SYMBOL(netdev_set_num_tc);
2865
2866 void netdev_unbind_sb_channel(struct net_device *dev,
2867                               struct net_device *sb_dev)
2868 {
2869         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2870
2871 #ifdef CONFIG_XPS
2872         netif_reset_xps_queues_gt(sb_dev, 0);
2873 #endif
2874         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2875         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2876
2877         while (txq-- != &dev->_tx[0]) {
2878                 if (txq->sb_dev == sb_dev)
2879                         txq->sb_dev = NULL;
2880         }
2881 }
2882 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2883
2884 int netdev_bind_sb_channel_queue(struct net_device *dev,
2885                                  struct net_device *sb_dev,
2886                                  u8 tc, u16 count, u16 offset)
2887 {
2888         /* Make certain the sb_dev and dev are already configured */
2889         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2890                 return -EINVAL;
2891
2892         /* We cannot hand out queues we don't have */
2893         if ((offset + count) > dev->real_num_tx_queues)
2894                 return -EINVAL;
2895
2896         /* Record the mapping */
2897         sb_dev->tc_to_txq[tc].count = count;
2898         sb_dev->tc_to_txq[tc].offset = offset;
2899
2900         /* Provide a way for Tx queue to find the tc_to_txq map or
2901          * XPS map for itself.
2902          */
2903         while (count--)
2904                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2905
2906         return 0;
2907 }
2908 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2909
2910 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2911 {
2912         /* Do not use a multiqueue device to represent a subordinate channel */
2913         if (netif_is_multiqueue(dev))
2914                 return -ENODEV;
2915
2916         /* We allow channels 1 - 32767 to be used for subordinate channels.
2917          * Channel 0 is meant to be "native" mode and used only to represent
2918          * the main root device. We allow writing 0 to reset the device back
2919          * to normal mode after being used as a subordinate channel.
2920          */
2921         if (channel > S16_MAX)
2922                 return -EINVAL;
2923
2924         dev->num_tc = -channel;
2925
2926         return 0;
2927 }
2928 EXPORT_SYMBOL(netdev_set_sb_channel);
2929
2930 /*
2931  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2932  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2933  */
2934 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2935 {
2936         bool disabling;
2937         int rc;
2938
2939         disabling = txq < dev->real_num_tx_queues;
2940
2941         if (txq < 1 || txq > dev->num_tx_queues)
2942                 return -EINVAL;
2943
2944         if (dev->reg_state == NETREG_REGISTERED ||
2945             dev->reg_state == NETREG_UNREGISTERING) {
2946                 ASSERT_RTNL();
2947
2948                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2949                                                   txq);
2950                 if (rc)
2951                         return rc;
2952
2953                 if (dev->num_tc)
2954                         netif_setup_tc(dev, txq);
2955
2956                 dev->real_num_tx_queues = txq;
2957
2958                 if (disabling) {
2959                         synchronize_net();
2960                         qdisc_reset_all_tx_gt(dev, txq);
2961 #ifdef CONFIG_XPS
2962                         netif_reset_xps_queues_gt(dev, txq);
2963 #endif
2964                 }
2965         } else {
2966                 dev->real_num_tx_queues = txq;
2967         }
2968
2969         return 0;
2970 }
2971 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2972
2973 #ifdef CONFIG_SYSFS
2974 /**
2975  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2976  *      @dev: Network device
2977  *      @rxq: Actual number of RX queues
2978  *
2979  *      This must be called either with the rtnl_lock held or before
2980  *      registration of the net device.  Returns 0 on success, or a
2981  *      negative error code.  If called before registration, it always
2982  *      succeeds.
2983  */
2984 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2985 {
2986         int rc;
2987
2988         if (rxq < 1 || rxq > dev->num_rx_queues)
2989                 return -EINVAL;
2990
2991         if (dev->reg_state == NETREG_REGISTERED) {
2992                 ASSERT_RTNL();
2993
2994                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2995                                                   rxq);
2996                 if (rc)
2997                         return rc;
2998         }
2999
3000         dev->real_num_rx_queues = rxq;
3001         return 0;
3002 }
3003 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3004 #endif
3005
3006 /**
3007  * netif_get_num_default_rss_queues - default number of RSS queues
3008  *
3009  * This routine should set an upper limit on the number of RSS queues
3010  * used by default by multiqueue devices.
3011  */
3012 int netif_get_num_default_rss_queues(void)
3013 {
3014         return is_kdump_kernel() ?
3015                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3016 }
3017 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3018
3019 static void __netif_reschedule(struct Qdisc *q)
3020 {
3021         struct softnet_data *sd;
3022         unsigned long flags;
3023
3024         local_irq_save(flags);
3025         sd = this_cpu_ptr(&softnet_data);
3026         q->next_sched = NULL;
3027         *sd->output_queue_tailp = q;
3028         sd->output_queue_tailp = &q->next_sched;
3029         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3030         local_irq_restore(flags);
3031 }
3032
3033 void __netif_schedule(struct Qdisc *q)
3034 {
3035         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3036                 __netif_reschedule(q);
3037 }
3038 EXPORT_SYMBOL(__netif_schedule);
3039
3040 struct dev_kfree_skb_cb {
3041         enum skb_free_reason reason;
3042 };
3043
3044 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3045 {
3046         return (struct dev_kfree_skb_cb *)skb->cb;
3047 }
3048
3049 void netif_schedule_queue(struct netdev_queue *txq)
3050 {
3051         rcu_read_lock();
3052         if (!netif_xmit_stopped(txq)) {
3053                 struct Qdisc *q = rcu_dereference(txq->qdisc);
3054
3055                 __netif_schedule(q);
3056         }
3057         rcu_read_unlock();
3058 }
3059 EXPORT_SYMBOL(netif_schedule_queue);
3060
3061 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3062 {
3063         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3064                 struct Qdisc *q;
3065
3066                 rcu_read_lock();
3067                 q = rcu_dereference(dev_queue->qdisc);
3068                 __netif_schedule(q);
3069                 rcu_read_unlock();
3070         }
3071 }
3072 EXPORT_SYMBOL(netif_tx_wake_queue);
3073
3074 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3075 {
3076         unsigned long flags;
3077
3078         if (unlikely(!skb))
3079                 return;
3080
3081         if (likely(refcount_read(&skb->users) == 1)) {
3082                 smp_rmb();
3083                 refcount_set(&skb->users, 0);
3084         } else if (likely(!refcount_dec_and_test(&skb->users))) {
3085                 return;
3086         }
3087         get_kfree_skb_cb(skb)->reason = reason;
3088         local_irq_save(flags);
3089         skb->next = __this_cpu_read(softnet_data.completion_queue);
3090         __this_cpu_write(softnet_data.completion_queue, skb);
3091         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3092         local_irq_restore(flags);
3093 }
3094 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3095
3096 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3097 {
3098         if (in_irq() || irqs_disabled())
3099                 __dev_kfree_skb_irq(skb, reason);
3100         else
3101                 dev_kfree_skb(skb);
3102 }
3103 EXPORT_SYMBOL(__dev_kfree_skb_any);
3104
3105
3106 /**
3107  * netif_device_detach - mark device as removed
3108  * @dev: network device
3109  *
3110  * Mark device as removed from system and therefore no longer available.
3111  */
3112 void netif_device_detach(struct net_device *dev)
3113 {
3114         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3115             netif_running(dev)) {
3116                 netif_tx_stop_all_queues(dev);
3117         }
3118 }
3119 EXPORT_SYMBOL(netif_device_detach);
3120
3121 /**
3122  * netif_device_attach - mark device as attached
3123  * @dev: network device
3124  *
3125  * Mark device as attached from system and restart if needed.
3126  */
3127 void netif_device_attach(struct net_device *dev)
3128 {
3129         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3130             netif_running(dev)) {
3131                 netif_tx_wake_all_queues(dev);
3132                 __netdev_watchdog_up(dev);
3133         }
3134 }
3135 EXPORT_SYMBOL(netif_device_attach);
3136
3137 /*
3138  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3139  * to be used as a distribution range.
3140  */
3141 static u16 skb_tx_hash(const struct net_device *dev,
3142                        const struct net_device *sb_dev,
3143                        struct sk_buff *skb)
3144 {
3145         u32 hash;
3146         u16 qoffset = 0;
3147         u16 qcount = dev->real_num_tx_queues;
3148
3149         if (dev->num_tc) {
3150                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3151
3152                 qoffset = sb_dev->tc_to_txq[tc].offset;
3153                 qcount = sb_dev->tc_to_txq[tc].count;
3154         }
3155
3156         if (skb_rx_queue_recorded(skb)) {
3157                 hash = skb_get_rx_queue(skb);
3158                 if (hash >= qoffset)
3159                         hash -= qoffset;
3160                 while (unlikely(hash >= qcount))
3161                         hash -= qcount;
3162                 return hash + qoffset;
3163         }
3164
3165         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3166 }
3167
3168 static void skb_warn_bad_offload(const struct sk_buff *skb)
3169 {
3170         static const netdev_features_t null_features;
3171         struct net_device *dev = skb->dev;
3172         const char *name = "";
3173
3174         if (!net_ratelimit())
3175                 return;
3176
3177         if (dev) {
3178                 if (dev->dev.parent)
3179                         name = dev_driver_string(dev->dev.parent);
3180                 else
3181                         name = netdev_name(dev);
3182         }
3183         skb_dump(KERN_WARNING, skb, false);
3184         WARN(1, "%s: caps=(%pNF, %pNF)\n",
3185              name, dev ? &dev->features : &null_features,
3186              skb->sk ? &skb->sk->sk_route_caps : &null_features);
3187 }
3188
3189 /*
3190  * Invalidate hardware checksum when packet is to be mangled, and
3191  * complete checksum manually on outgoing path.
3192  */
3193 int skb_checksum_help(struct sk_buff *skb)
3194 {
3195         __wsum csum;
3196         int ret = 0, offset;
3197
3198         if (skb->ip_summed == CHECKSUM_COMPLETE)
3199                 goto out_set_summed;
3200
3201         if (unlikely(skb_shinfo(skb)->gso_size)) {
3202                 skb_warn_bad_offload(skb);
3203                 return -EINVAL;
3204         }
3205
3206         /* Before computing a checksum, we should make sure no frag could
3207          * be modified by an external entity : checksum could be wrong.
3208          */
3209         if (skb_has_shared_frag(skb)) {
3210                 ret = __skb_linearize(skb);
3211                 if (ret)
3212                         goto out;
3213         }
3214
3215         offset = skb_checksum_start_offset(skb);
3216         BUG_ON(offset >= skb_headlen(skb));
3217         csum = skb_checksum(skb, offset, skb->len - offset, 0);
3218
3219         offset += skb->csum_offset;
3220         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3221
3222         ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3223         if (ret)
3224                 goto out;
3225
3226         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3227 out_set_summed:
3228         skb->ip_summed = CHECKSUM_NONE;
3229 out:
3230         return ret;
3231 }
3232 EXPORT_SYMBOL(skb_checksum_help);
3233
3234 int skb_crc32c_csum_help(struct sk_buff *skb)
3235 {
3236         __le32 crc32c_csum;
3237         int ret = 0, offset, start;
3238
3239         if (skb->ip_summed != CHECKSUM_PARTIAL)
3240                 goto out;
3241
3242         if (unlikely(skb_is_gso(skb)))
3243                 goto out;
3244
3245         /* Before computing a checksum, we should make sure no frag could
3246          * be modified by an external entity : checksum could be wrong.
3247          */
3248         if (unlikely(skb_has_shared_frag(skb))) {
3249                 ret = __skb_linearize(skb);
3250                 if (ret)
3251                         goto out;
3252         }
3253         start = skb_checksum_start_offset(skb);
3254         offset = start + offsetof(struct sctphdr, checksum);
3255         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3256                 ret = -EINVAL;
3257                 goto out;
3258         }
3259
3260         ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3261         if (ret)
3262                 goto out;
3263
3264         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3265                                                   skb->len - start, ~(__u32)0,
3266                                                   crc32c_csum_stub));
3267         *(__le32 *)(skb->data + offset) = crc32c_csum;
3268         skb->ip_summed = CHECKSUM_NONE;
3269         skb->csum_not_inet = 0;
3270 out:
3271         return ret;
3272 }
3273
3274 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3275 {
3276         __be16 type = skb->protocol;
3277
3278         /* Tunnel gso handlers can set protocol to ethernet. */
3279         if (type == htons(ETH_P_TEB)) {
3280                 struct ethhdr *eth;
3281
3282                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3283                         return 0;
3284
3285                 eth = (struct ethhdr *)skb->data;
3286                 type = eth->h_proto;
3287         }
3288
3289         return __vlan_get_protocol(skb, type, depth);
3290 }
3291
3292 /**
3293  *      skb_mac_gso_segment - mac layer segmentation handler.
3294  *      @skb: buffer to segment
3295  *      @features: features for the output path (see dev->features)
3296  */
3297 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3298                                     netdev_features_t features)
3299 {
3300         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3301         struct packet_offload *ptype;
3302         int vlan_depth = skb->mac_len;
3303         __be16 type = skb_network_protocol(skb, &vlan_depth);
3304
3305         if (unlikely(!type))
3306                 return ERR_PTR(-EINVAL);
3307
3308         __skb_pull(skb, vlan_depth);
3309
3310         rcu_read_lock();
3311         list_for_each_entry_rcu(ptype, &offload_base, list) {
3312                 if (ptype->type == type && ptype->callbacks.gso_segment) {
3313                         segs = ptype->callbacks.gso_segment(skb, features);
3314                         break;
3315                 }
3316         }
3317         rcu_read_unlock();
3318
3319         __skb_push(skb, skb->data - skb_mac_header(skb));
3320
3321         return segs;
3322 }
3323 EXPORT_SYMBOL(skb_mac_gso_segment);
3324
3325
3326 /* openvswitch calls this on rx path, so we need a different check.
3327  */
3328 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3329 {
3330         if (tx_path)
3331                 return skb->ip_summed != CHECKSUM_PARTIAL &&
3332                        skb->ip_summed != CHECKSUM_UNNECESSARY;
3333
3334         return skb->ip_summed == CHECKSUM_NONE;
3335 }
3336
3337 /**
3338  *      __skb_gso_segment - Perform segmentation on skb.
3339  *      @skb: buffer to segment
3340  *      @features: features for the output path (see dev->features)
3341  *      @tx_path: whether it is called in TX path
3342  *
3343  *      This function segments the given skb and returns a list of segments.
3344  *
3345  *      It may return NULL if the skb requires no segmentation.  This is
3346  *      only possible when GSO is used for verifying header integrity.
3347  *
3348  *      Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3349  */
3350 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3351                                   netdev_features_t features, bool tx_path)
3352 {
3353         struct sk_buff *segs;
3354
3355         if (unlikely(skb_needs_check(skb, tx_path))) {
3356                 int err;
3357
3358                 /* We're going to init ->check field in TCP or UDP header */
3359                 err = skb_cow_head(skb, 0);
3360                 if (err < 0)
3361                         return ERR_PTR(err);
3362         }
3363
3364         /* Only report GSO partial support if it will enable us to
3365          * support segmentation on this frame without needing additional
3366          * work.
3367          */
3368         if (features & NETIF_F_GSO_PARTIAL) {
3369                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3370                 struct net_device *dev = skb->dev;
3371
3372                 partial_features |= dev->features & dev->gso_partial_features;
3373                 if (!skb_gso_ok(skb, features | partial_features))
3374                         features &= ~NETIF_F_GSO_PARTIAL;
3375         }
3376
3377         BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3378                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3379
3380         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3381         SKB_GSO_CB(skb)->encap_level = 0;
3382
3383         skb_reset_mac_header(skb);
3384         skb_reset_mac_len(skb);
3385
3386         segs = skb_mac_gso_segment(skb, features);
3387
3388         if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3389                 skb_warn_bad_offload(skb);
3390
3391         return segs;
3392 }
3393 EXPORT_SYMBOL(__skb_gso_segment);
3394
3395 /* Take action when hardware reception checksum errors are detected. */
3396 #ifdef CONFIG_BUG
3397 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3398 {
3399         if (net_ratelimit()) {
3400                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3401                 skb_dump(KERN_ERR, skb, true);
3402                 dump_stack();
3403         }
3404 }
3405 EXPORT_SYMBOL(netdev_rx_csum_fault);
3406 #endif
3407
3408 /* XXX: check that highmem exists at all on the given machine. */
3409 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3410 {
3411 #ifdef CONFIG_HIGHMEM
3412         int i;
3413
3414         if (!(dev->features & NETIF_F_HIGHDMA)) {
3415                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3416                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3417
3418                         if (PageHighMem(skb_frag_page(frag)))
3419                                 return 1;
3420                 }
3421         }
3422 #endif
3423         return 0;
3424 }
3425
3426 /* If MPLS offload request, verify we are testing hardware MPLS features
3427  * instead of standard features for the netdev.
3428  */
3429 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3430 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3431                                            netdev_features_t features,
3432                                            __be16 type)
3433 {
3434         if (eth_p_mpls(type))
3435                 features &= skb->dev->mpls_features;
3436
3437         return features;
3438 }
3439 #else
3440 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3441                                            netdev_features_t features,
3442                                            __be16 type)
3443 {
3444         return features;
3445 }
3446 #endif
3447
3448 static netdev_features_t harmonize_features(struct sk_buff *skb,
3449         netdev_features_t features)
3450 {
3451         int tmp;
3452         __be16 type;
3453
3454         type = skb_network_protocol(skb, &tmp);
3455         features = net_mpls_features(skb, features, type);
3456
3457         if (skb->ip_summed != CHECKSUM_NONE &&
3458             !can_checksum_protocol(features, type)) {
3459                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3460         }
3461         if (illegal_highdma(skb->dev, skb))
3462                 features &= ~NETIF_F_SG;
3463
3464         return features;
3465 }
3466
3467 netdev_features_t passthru_features_check(struct sk_buff *skb,
3468                                           struct net_device *dev,
3469                                           netdev_features_t features)
3470 {
3471         return features;
3472 }
3473 EXPORT_SYMBOL(passthru_features_check);
3474
3475 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3476                                              struct net_device *dev,
3477                                              netdev_features_t features)
3478 {
3479         return vlan_features_check(skb, features);
3480 }
3481
3482 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3483                                             struct net_device *dev,
3484                                             netdev_features_t features)
3485 {
3486         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3487
3488         if (gso_segs > dev->gso_max_segs)
3489                 return features & ~NETIF_F_GSO_MASK;
3490
3491         /* Support for GSO partial features requires software
3492          * intervention before we can actually process the packets
3493          * so we need to strip support for any partial features now
3494          * and we can pull them back in after we have partially
3495          * segmented the frame.
3496          */
3497         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3498                 features &= ~dev->gso_partial_features;
3499
3500         /* Make sure to clear the IPv4 ID mangling feature if the
3501          * IPv4 header has the potential to be fragmented.
3502          */
3503         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3504                 struct iphdr *iph = skb->encapsulation ?
3505                                     inner_ip_hdr(skb) : ip_hdr(skb);
3506
3507                 if (!(iph->frag_off & htons(IP_DF)))
3508                         features &= ~NETIF_F_TSO_MANGLEID;
3509         }
3510
3511         return features;
3512 }
3513
3514 netdev_features_t netif_skb_features(struct sk_buff *skb)
3515 {
3516         struct net_device *dev = skb->dev;
3517         netdev_features_t features = dev->features;
3518
3519         if (skb_is_gso(skb))
3520                 features = gso_features_check(skb, dev, features);
3521
3522         /* If encapsulation offload request, verify we are testing
3523          * hardware encapsulation features instead of standard
3524          * features for the netdev
3525          */
3526         if (skb->encapsulation)
3527                 features &= dev->hw_enc_features;
3528
3529         if (skb_vlan_tagged(skb))
3530                 features = netdev_intersect_features(features,
3531                                                      dev->vlan_features |
3532                                                      NETIF_F_HW_VLAN_CTAG_TX |
3533                                                      NETIF_F_HW_VLAN_STAG_TX);
3534
3535         if (dev->netdev_ops->ndo_features_check)
3536                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3537                                                                 features);
3538         else
3539                 features &= dflt_features_check(skb, dev, features);
3540
3541         return harmonize_features(skb, features);
3542 }
3543 EXPORT_SYMBOL(netif_skb_features);
3544
3545 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3546                     struct netdev_queue *txq, bool more)
3547 {
3548         unsigned int len;
3549         int rc;
3550
3551         if (dev_nit_active(dev))
3552                 dev_queue_xmit_nit(skb, dev);
3553
3554         len = skb->len;
3555         trace_net_dev_start_xmit(skb, dev);
3556         rc = netdev_start_xmit(skb, dev, txq, more);
3557         trace_net_dev_xmit(skb, rc, dev, len);
3558
3559         return rc;
3560 }
3561
3562 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3563                                     struct netdev_queue *txq, int *ret)
3564 {
3565         struct sk_buff *skb = first;
3566         int rc = NETDEV_TX_OK;
3567
3568         while (skb) {
3569                 struct sk_buff *next = skb->next;
3570
3571                 skb_mark_not_on_list(skb);
3572                 rc = xmit_one(skb, dev, txq, next != NULL);
3573                 if (unlikely(!dev_xmit_complete(rc))) {
3574                         skb->next = next;
3575                         goto out;
3576                 }
3577
3578                 skb = next;
3579                 if (netif_tx_queue_stopped(txq) && skb) {
3580                         rc = NETDEV_TX_BUSY;
3581                         break;
3582                 }
3583         }
3584
3585 out:
3586         *ret = rc;
3587         return skb;
3588 }
3589
3590 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3591                                           netdev_features_t features)
3592 {
3593         if (skb_vlan_tag_present(skb) &&
3594             !vlan_hw_offload_capable(features, skb->vlan_proto))
3595                 skb = __vlan_hwaccel_push_inside(skb);
3596         return skb;
3597 }
3598
3599 int skb_csum_hwoffload_help(struct sk_buff *skb,
3600                             const netdev_features_t features)
3601 {
3602         if (unlikely(skb->csum_not_inet))
3603                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3604                         skb_crc32c_csum_help(skb);
3605
3606         return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3607 }
3608 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3609
3610 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3611 {
3612         netdev_features_t features;
3613
3614         features = netif_skb_features(skb);
3615         skb = validate_xmit_vlan(skb, features);
3616         if (unlikely(!skb))
3617                 goto out_null;
3618
3619         skb = sk_validate_xmit_skb(skb, dev);
3620         if (unlikely(!skb))
3621                 goto out_null;
3622
3623         if (netif_needs_gso(skb, features)) {
3624                 struct sk_buff *segs;
3625
3626                 segs = skb_gso_segment(skb, features);
3627                 if (IS_ERR(segs)) {
3628                         goto out_kfree_skb;
3629                 } else if (segs) {
3630                         consume_skb(skb);
3631                         skb = segs;
3632                 }
3633         } else {
3634                 if (skb_needs_linearize(skb, features) &&
3635                     __skb_linearize(skb))
3636                         goto out_kfree_skb;
3637
3638                 /* If packet is not checksummed and device does not
3639                  * support checksumming for this protocol, complete
3640                  * checksumming here.
3641                  */
3642                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3643                         if (skb->encapsulation)
3644                                 skb_set_inner_transport_header(skb,
3645                                                                skb_checksum_start_offset(skb));
3646                         else
3647                                 skb_set_transport_header(skb,
3648                                                          skb_checksum_start_offset(skb));
3649                         if (skb_csum_hwoffload_help(skb, features))
3650                                 goto out_kfree_skb;
3651                 }
3652         }
3653
3654         skb = validate_xmit_xfrm(skb, features, again);
3655
3656         return skb;
3657
3658 out_kfree_skb:
3659         kfree_skb(skb);
3660 out_null:
3661         atomic_long_inc(&dev->tx_dropped);
3662         return NULL;
3663 }
3664
3665 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3666 {
3667         struct sk_buff *next, *head = NULL, *tail;
3668
3669         for (; skb != NULL; skb = next) {
3670                 next = skb->next;
3671                 skb_mark_not_on_list(skb);
3672
3673                 /* in case skb wont be segmented, point to itself */
3674                 skb->prev = skb;
3675
3676                 skb = validate_xmit_skb(skb, dev, again);
3677                 if (!skb)
3678                         continue;
3679
3680                 if (!head)
3681                         head = skb;
3682                 else
3683                         tail->next = skb;
3684                 /* If skb was segmented, skb->prev points to
3685                  * the last segment. If not, it still contains skb.
3686                  */
3687                 tail = skb->prev;
3688         }
3689         return head;
3690 }
3691 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3692
3693 static void qdisc_pkt_len_init(struct sk_buff *skb)
3694 {
3695         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3696
3697         qdisc_skb_cb(skb)->pkt_len = skb->len;
3698
3699         /* To get more precise estimation of bytes sent on wire,
3700          * we add to pkt_len the headers size of all segments
3701          */
3702         if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3703                 unsigned int hdr_len;
3704                 u16 gso_segs = shinfo->gso_segs;
3705
3706                 /* mac layer + network layer */
3707                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3708
3709                 /* + transport layer */
3710                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3711                         const struct tcphdr *th;
3712                         struct tcphdr _tcphdr;
3713
3714                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3715                                                 sizeof(_tcphdr), &_tcphdr);
3716                         if (likely(th))
3717                                 hdr_len += __tcp_hdrlen(th);
3718                 } else {
3719                         struct udphdr _udphdr;
3720
3721                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3722                                                sizeof(_udphdr), &_udphdr))
3723                                 hdr_len += sizeof(struct udphdr);
3724                 }
3725
3726                 if (shinfo->gso_type & SKB_GSO_DODGY)
3727                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3728                                                 shinfo->gso_size);
3729
3730                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3731         }
3732 }
3733
3734 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3735                                  struct net_device *dev,
3736                                  struct netdev_queue *txq)
3737 {
3738         spinlock_t *root_lock = qdisc_lock(q);
3739         struct sk_buff *to_free = NULL;
3740         bool contended;
3741         int rc;
3742
3743         qdisc_calculate_pkt_len(skb, q);
3744
3745         if (q->flags & TCQ_F_NOLOCK) {
3746                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3747                 qdisc_run(q);
3748
3749                 if (unlikely(to_free))
3750                         kfree_skb_list(to_free);
3751                 return rc;
3752         }
3753
3754         /*
3755          * Heuristic to force contended enqueues to serialize on a
3756          * separate lock before trying to get qdisc main lock.
3757          * This permits qdisc->running owner to get the lock more
3758          * often and dequeue packets faster.
3759          */
3760         contended = qdisc_is_running(q);
3761         if (unlikely(contended))
3762                 spin_lock(&q->busylock);
3763
3764         spin_lock(root_lock);
3765         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3766                 __qdisc_drop(skb, &to_free);
3767                 rc = NET_XMIT_DROP;
3768         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3769                    qdisc_run_begin(q)) {
3770                 /*
3771                  * This is a work-conserving queue; there are no old skbs
3772                  * waiting to be sent out; and the qdisc is not running -
3773                  * xmit the skb directly.
3774                  */
3775
3776                 qdisc_bstats_update(q, skb);
3777
3778                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3779                         if (unlikely(contended)) {
3780                                 spin_unlock(&q->busylock);
3781                                 contended = false;
3782                         }
3783                         __qdisc_run(q);
3784                 }
3785
3786                 qdisc_run_end(q);
3787                 rc = NET_XMIT_SUCCESS;
3788         } else {
3789                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3790                 if (qdisc_run_begin(q)) {
3791                         if (unlikely(contended)) {
3792                                 spin_unlock(&q->busylock);
3793                                 contended = false;
3794                         }
3795                         __qdisc_run(q);
3796                         qdisc_run_end(q);
3797                 }
3798         }
3799         spin_unlock(root_lock);
3800         if (unlikely(to_free))
3801                 kfree_skb_list(to_free);
3802         if (unlikely(contended))
3803                 spin_unlock(&q->busylock);
3804         return rc;
3805 }
3806
3807 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3808 static void skb_update_prio(struct sk_buff *skb)
3809 {
3810         const struct netprio_map *map;
3811         const struct sock *sk;
3812         unsigned int prioidx;
3813
3814         if (skb->priority)
3815                 return;
3816         map = rcu_dereference_bh(skb->dev->priomap);
3817         if (!map)
3818                 return;
3819         sk = skb_to_full_sk(skb);
3820         if (!sk)
3821                 return;
3822
3823         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3824
3825         if (prioidx < map->priomap_len)
3826                 skb->priority = map->priomap[prioidx];
3827 }
3828 #else
3829 #define skb_update_prio(skb)
3830 #endif
3831
3832 /**
3833  *      dev_loopback_xmit - loop back @skb
3834  *      @net: network namespace this loopback is happening in
3835  *      @sk:  sk needed to be a netfilter okfn
3836  *      @skb: buffer to transmit
3837  */
3838 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3839 {
3840         skb_reset_mac_header(skb);
3841         __skb_pull(skb, skb_network_offset(skb));
3842         skb->pkt_type = PACKET_LOOPBACK;
3843         skb->ip_summed = CHECKSUM_UNNECESSARY;
3844         WARN_ON(!skb_dst(skb));
3845         skb_dst_force(skb);
3846         netif_rx_ni(skb);
3847         return 0;
3848 }
3849 EXPORT_SYMBOL(dev_loopback_xmit);
3850
3851 #ifdef CONFIG_NET_EGRESS
3852 static struct sk_buff *
3853 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3854 {
3855         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3856         struct tcf_result cl_res;
3857
3858         if (!miniq)
3859                 return skb;
3860
3861         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3862         mini_qdisc_bstats_cpu_update(miniq, skb);
3863
3864         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3865         case TC_ACT_OK:
3866         case TC_ACT_RECLASSIFY:
3867                 skb->tc_index = TC_H_MIN(cl_res.classid);
3868                 break;
3869         case TC_ACT_SHOT:
3870                 mini_qdisc_qstats_cpu_drop(miniq);
3871                 *ret = NET_XMIT_DROP;
3872                 kfree_skb(skb);
3873                 return NULL;
3874         case TC_ACT_STOLEN:
3875         case TC_ACT_QUEUED:
3876         case TC_ACT_TRAP:
3877                 *ret = NET_XMIT_SUCCESS;
3878                 consume_skb(skb);
3879                 return NULL;
3880         case TC_ACT_REDIRECT:
3881                 /* No need to push/pop skb's mac_header here on egress! */
3882                 skb_do_redirect(skb);
3883                 *ret = NET_XMIT_SUCCESS;
3884                 return NULL;
3885         default:
3886                 break;
3887         }
3888
3889         return skb;
3890 }
3891 #endif /* CONFIG_NET_EGRESS */
3892
3893 #ifdef CONFIG_XPS
3894 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3895                                struct xps_dev_maps *dev_maps, unsigned int tci)
3896 {
3897         struct xps_map *map;
3898         int queue_index = -1;
3899
3900         if (dev->num_tc) {
3901                 tci *= dev->num_tc;
3902                 tci += netdev_get_prio_tc_map(dev, skb->priority);
3903         }
3904
3905         map = rcu_dereference(dev_maps->attr_map[tci]);
3906         if (map) {
3907                 if (map->len == 1)
3908                         queue_index = map->queues[0];
3909                 else
3910                         queue_index = map->queues[reciprocal_scale(
3911                                                 skb_get_hash(skb), map->len)];
3912                 if (unlikely(queue_index >= dev->real_num_tx_queues))
3913                         queue_index = -1;
3914         }
3915         return queue_index;
3916 }
3917 #endif
3918
3919 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3920                          struct sk_buff *skb)
3921 {
3922 #ifdef CONFIG_XPS
3923         struct xps_dev_maps *dev_maps;
3924         struct sock *sk = skb->sk;
3925         int queue_index = -1;
3926
3927         if (!static_key_false(&xps_needed))
3928                 return -1;
3929
3930         rcu_read_lock();
3931         if (!static_key_false(&xps_rxqs_needed))
3932                 goto get_cpus_map;
3933
3934         dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3935         if (dev_maps) {
3936                 int tci = sk_rx_queue_get(sk);
3937
3938                 if (tci >= 0 && tci < dev->num_rx_queues)
3939                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3940                                                           tci);
3941         }
3942
3943 get_cpus_map:
3944         if (queue_index < 0) {
3945                 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3946                 if (dev_maps) {
3947                         unsigned int tci = skb->sender_cpu - 1;
3948
3949                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3950                                                           tci);
3951                 }
3952         }
3953         rcu_read_unlock();
3954
3955         return queue_index;
3956 #else
3957         return -1;
3958 #endif
3959 }
3960
3961 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3962                      struct net_device *sb_dev)
3963 {
3964         return 0;
3965 }
3966 EXPORT_SYMBOL(dev_pick_tx_zero);
3967
3968 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3969                        struct net_device *sb_dev)
3970 {
3971         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3972 }
3973 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3974
3975 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3976                      struct net_device *sb_dev)
3977 {
3978         struct sock *sk = skb->sk;
3979         int queue_index = sk_tx_queue_get(sk);
3980
3981         sb_dev = sb_dev ? : dev;
3982
3983         if (queue_index < 0 || skb->ooo_okay ||
3984             queue_index >= dev->real_num_tx_queues) {
3985                 int new_index = get_xps_queue(dev, sb_dev, skb);
3986
3987                 if (new_index < 0)
3988                         new_index = skb_tx_hash(dev, sb_dev, skb);
3989
3990                 if (queue_index != new_index && sk &&
3991                     sk_fullsock(sk) &&
3992                     rcu_access_pointer(sk->sk_dst_cache))
3993                         sk_tx_queue_set(sk, new_index);
3994
3995                 queue_index = new_index;
3996         }
3997
3998         return queue_index;
3999 }
4000 EXPORT_SYMBOL(netdev_pick_tx);
4001
4002 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4003                                          struct sk_buff *skb,
4004                                          struct net_device *sb_dev)
4005 {
4006         int queue_index = 0;
4007
4008 #ifdef CONFIG_XPS
4009         u32 sender_cpu = skb->sender_cpu - 1;
4010
4011         if (sender_cpu >= (u32)NR_CPUS)
4012                 skb->sender_cpu = raw_smp_processor_id() + 1;
4013 #endif
4014
4015         if (dev->real_num_tx_queues != 1) {
4016                 const struct net_device_ops *ops = dev->netdev_ops;
4017
4018                 if (ops->ndo_select_queue)
4019                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4020                 else
4021                         queue_index = netdev_pick_tx(dev, skb, sb_dev);
4022
4023                 queue_index = netdev_cap_txqueue(dev, queue_index);
4024         }
4025
4026         skb_set_queue_mapping(skb, queue_index);
4027         return netdev_get_tx_queue(dev, queue_index);
4028 }
4029
4030 /**
4031  *      __dev_queue_xmit - transmit a buffer
4032  *      @skb: buffer to transmit
4033  *      @sb_dev: suboordinate device used for L2 forwarding offload
4034  *
4035  *      Queue a buffer for transmission to a network device. The caller must
4036  *      have set the device and priority and built the buffer before calling
4037  *      this function. The function can be called from an interrupt.
4038  *
4039  *      A negative errno code is returned on a failure. A success does not
4040  *      guarantee the frame will be transmitted as it may be dropped due
4041  *      to congestion or traffic shaping.
4042  *
4043  * -----------------------------------------------------------------------------------
4044  *      I notice this method can also return errors from the queue disciplines,
4045  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4046  *      be positive.
4047  *
4048  *      Regardless of the return value, the skb is consumed, so it is currently
4049  *      difficult to retry a send to this method.  (You can bump the ref count
4050  *      before sending to hold a reference for retry if you are careful.)
4051  *
4052  *      When calling this method, interrupts MUST be enabled.  This is because
4053  *      the BH enable code must have IRQs enabled so that it will not deadlock.
4054  *          --BLG
4055  */
4056 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4057 {
4058         struct net_device *dev = skb->dev;
4059         struct netdev_queue *txq;
4060         struct Qdisc *q;
4061         int rc = -ENOMEM;
4062         bool again = false;
4063
4064         skb_reset_mac_header(skb);
4065
4066         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4067                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
4068
4069         /* Disable soft irqs for various locks below. Also
4070          * stops preemption for RCU.
4071          */
4072         rcu_read_lock_bh();
4073
4074         skb_update_prio(skb);
4075
4076         qdisc_pkt_len_init(skb);
4077 #ifdef CONFIG_NET_CLS_ACT
4078         skb->tc_at_ingress = 0;
4079 # ifdef CONFIG_NET_EGRESS
4080         if (static_branch_unlikely(&egress_needed_key)) {
4081                 skb = sch_handle_egress(skb, &rc, dev);
4082                 if (!skb)
4083                         goto out;
4084         }
4085 # endif
4086 #endif
4087         /* If device/qdisc don't need skb->dst, release it right now while
4088          * its hot in this cpu cache.
4089          */
4090         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4091                 skb_dst_drop(skb);
4092         else
4093                 skb_dst_force(skb);
4094
4095         txq = netdev_core_pick_tx(dev, skb, sb_dev);
4096         q = rcu_dereference_bh(txq->qdisc);
4097
4098         trace_net_dev_queue(skb);
4099         if (q->enqueue) {
4100                 rc = __dev_xmit_skb(skb, q, dev, txq);
4101                 goto out;
4102         }
4103
4104         /* The device has no queue. Common case for software devices:
4105          * loopback, all the sorts of tunnels...
4106
4107          * Really, it is unlikely that netif_tx_lock protection is necessary
4108          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4109          * counters.)
4110          * However, it is possible, that they rely on protection
4111          * made by us here.
4112
4113          * Check this and shot the lock. It is not prone from deadlocks.
4114          *Either shot noqueue qdisc, it is even simpler 8)
4115          */
4116         if (dev->flags & IFF_UP) {
4117                 int cpu = smp_processor_id(); /* ok because BHs are off */
4118
4119                 if (txq->xmit_lock_owner != cpu) {
4120                         if (dev_xmit_recursion())
4121                                 goto recursion_alert;
4122
4123                         skb = validate_xmit_skb(skb, dev, &again);
4124                         if (!skb)
4125                                 goto out;
4126
4127                         HARD_TX_LOCK(dev, txq, cpu);
4128
4129                         if (!netif_xmit_stopped(txq)) {
4130                                 dev_xmit_recursion_inc();
4131                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4132                                 dev_xmit_recursion_dec();
4133                                 if (dev_xmit_complete(rc)) {
4134                                         HARD_TX_UNLOCK(dev, txq);
4135                                         goto out;
4136                                 }
4137                         }
4138                         HARD_TX_UNLOCK(dev, txq);
4139                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4140                                              dev->name);
4141                 } else {
4142                         /* Recursion is detected! It is possible,
4143                          * unfortunately
4144                          */
4145 recursion_alert:
4146                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4147                                              dev->name);
4148                 }
4149         }
4150
4151         rc = -ENETDOWN;
4152         rcu_read_unlock_bh();
4153
4154         atomic_long_inc(&dev->tx_dropped);
4155         kfree_skb_list(skb);
4156         return rc;
4157 out:
4158         rcu_read_unlock_bh();
4159         return rc;
4160 }
4161
4162 int dev_queue_xmit(struct sk_buff *skb)
4163 {
4164         return __dev_queue_xmit(skb, NULL);
4165 }
4166 EXPORT_SYMBOL(dev_queue_xmit);
4167
4168 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4169 {
4170         return __dev_queue_xmit(skb, sb_dev);
4171 }
4172 EXPORT_SYMBOL(dev_queue_xmit_accel);
4173
4174 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4175 {
4176         struct net_device *dev = skb->dev;
4177         struct sk_buff *orig_skb = skb;
4178         struct netdev_queue *txq;
4179         int ret = NETDEV_TX_BUSY;
4180         bool again = false;
4181
4182         if (unlikely(!netif_running(dev) ||
4183                      !netif_carrier_ok(dev)))
4184                 goto drop;
4185
4186         skb = validate_xmit_skb_list(skb, dev, &again);
4187         if (skb != orig_skb)
4188                 goto drop;
4189
4190         skb_set_queue_mapping(skb, queue_id);
4191         txq = skb_get_tx_queue(dev, skb);
4192
4193         local_bh_disable();
4194
4195         dev_xmit_recursion_inc();
4196         HARD_TX_LOCK(dev, txq, smp_processor_id());
4197         if (!netif_xmit_frozen_or_drv_stopped(txq))
4198                 ret = netdev_start_xmit(skb, dev, txq, false);
4199         HARD_TX_UNLOCK(dev, txq);
4200         dev_xmit_recursion_dec();
4201
4202         local_bh_enable();
4203
4204         if (!dev_xmit_complete(ret))
4205                 kfree_skb(skb);
4206
4207         return ret;
4208 drop:
4209         atomic_long_inc(&dev->tx_dropped);
4210         kfree_skb_list(skb);
4211         return NET_XMIT_DROP;
4212 }
4213 EXPORT_SYMBOL(dev_direct_xmit);
4214
4215 /*************************************************************************
4216  *                      Receiver routines
4217  *************************************************************************/
4218
4219 int netdev_max_backlog __read_mostly = 1000;
4220 EXPORT_SYMBOL(netdev_max_backlog);
4221
4222 int netdev_tstamp_prequeue __read_mostly = 1;
4223 int netdev_budget __read_mostly = 300;
4224 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4225 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4226 int weight_p __read_mostly = 64;           /* old backlog weight */
4227 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4228 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4229 int dev_rx_weight __read_mostly = 64;
4230 int dev_tx_weight __read_mostly = 64;
4231 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4232 int gro_normal_batch __read_mostly = 8;
4233
4234 /* Called with irq disabled */
4235 static inline void ____napi_schedule(struct softnet_data *sd,
4236                                      struct napi_struct *napi)
4237 {
4238         list_add_tail(&napi->poll_list, &sd->poll_list);
4239         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4240 }
4241
4242 #ifdef CONFIG_RPS
4243
4244 /* One global table that all flow-based protocols share. */
4245 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4246 EXPORT_SYMBOL(rps_sock_flow_table);
4247 u32 rps_cpu_mask __read_mostly;
4248 EXPORT_SYMBOL(rps_cpu_mask);
4249
4250 struct static_key_false rps_needed __read_mostly;
4251 EXPORT_SYMBOL(rps_needed);
4252 struct static_key_false rfs_needed __read_mostly;
4253 EXPORT_SYMBOL(rfs_needed);
4254
4255 static struct rps_dev_flow *
4256 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4257             struct rps_dev_flow *rflow, u16 next_cpu)
4258 {
4259         if (next_cpu < nr_cpu_ids) {
4260 #ifdef CONFIG_RFS_ACCEL
4261                 struct netdev_rx_queue *rxqueue;
4262                 struct rps_dev_flow_table *flow_table;
4263                 struct rps_dev_flow *old_rflow;
4264                 u32 flow_id;
4265                 u16 rxq_index;
4266                 int rc;
4267
4268                 /* Should we steer this flow to a different hardware queue? */
4269                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4270                     !(dev->features & NETIF_F_NTUPLE))
4271                         goto out;
4272                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4273                 if (rxq_index == skb_get_rx_queue(skb))
4274                         goto out;
4275
4276                 rxqueue = dev->_rx + rxq_index;
4277                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4278                 if (!flow_table)
4279                         goto out;
4280                 flow_id = skb_get_hash(skb) & flow_table->mask;
4281                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4282                                                         rxq_index, flow_id);
4283                 if (rc < 0)
4284                         goto out;
4285                 old_rflow = rflow;
4286                 rflow = &flow_table->flows[flow_id];
4287                 rflow->filter = rc;
4288                 if (old_rflow->filter == rflow->filter)
4289                         old_rflow->filter = RPS_NO_FILTER;
4290         out:
4291 #endif
4292                 rflow->last_qtail =
4293                         per_cpu(softnet_data, next_cpu).input_queue_head;
4294         }
4295
4296         rflow->cpu = next_cpu;
4297         return rflow;
4298 }
4299
4300 /*
4301  * get_rps_cpu is called from netif_receive_skb and returns the target
4302  * CPU from the RPS map of the receiving queue for a given skb.
4303  * rcu_read_lock must be held on entry.
4304  */
4305 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4306                        struct rps_dev_flow **rflowp)
4307 {
4308         const struct rps_sock_flow_table *sock_flow_table;
4309         struct netdev_rx_queue *rxqueue = dev->_rx;
4310         struct rps_dev_flow_table *flow_table;
4311         struct rps_map *map;
4312         int cpu = -1;
4313         u32 tcpu;
4314         u32 hash;
4315
4316         if (skb_rx_queue_recorded(skb)) {
4317                 u16 index = skb_get_rx_queue(skb);
4318
4319                 if (unlikely(index >= dev->real_num_rx_queues)) {
4320                         WARN_ONCE(dev->real_num_rx_queues > 1,
4321                                   "%s received packet on queue %u, but number "
4322                                   "of RX queues is %u\n",
4323                                   dev->name, index, dev->real_num_rx_queues);
4324                         goto done;
4325                 }
4326                 rxqueue += index;
4327         }
4328
4329         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4330
4331         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4332         map = rcu_dereference(rxqueue->rps_map);
4333         if (!flow_table && !map)
4334                 goto done;
4335
4336         skb_reset_network_header(skb);
4337         hash = skb_get_hash(skb);
4338         if (!hash)
4339                 goto done;
4340
4341         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4342         if (flow_table && sock_flow_table) {
4343                 struct rps_dev_flow *rflow;
4344                 u32 next_cpu;
4345                 u32 ident;
4346
4347                 /* First check into global flow table if there is a match */
4348                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4349                 if ((ident ^ hash) & ~rps_cpu_mask)
4350                         goto try_rps;
4351
4352                 next_cpu = ident & rps_cpu_mask;
4353
4354                 /* OK, now we know there is a match,
4355                  * we can look at the local (per receive queue) flow table
4356                  */
4357                 rflow = &flow_table->flows[hash & flow_table->mask];
4358                 tcpu = rflow->cpu;
4359
4360                 /*
4361                  * If the desired CPU (where last recvmsg was done) is
4362                  * different from current CPU (one in the rx-queue flow
4363                  * table entry), switch if one of the following holds:
4364                  *   - Current CPU is unset (>= nr_cpu_ids).
4365                  *   - Current CPU is offline.
4366                  *   - The current CPU's queue tail has advanced beyond the
4367                  *     last packet that was enqueued using this table entry.
4368                  *     This guarantees that all previous packets for the flow
4369                  *     have been dequeued, thus preserving in order delivery.
4370                  */
4371                 if (unlikely(tcpu != next_cpu) &&
4372                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4373                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4374                       rflow->last_qtail)) >= 0)) {
4375                         tcpu = next_cpu;
4376                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4377                 }
4378
4379                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4380                         *rflowp = rflow;
4381                         cpu = tcpu;
4382                         goto done;
4383                 }
4384         }
4385
4386 try_rps:
4387
4388         if (map) {
4389                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4390                 if (cpu_online(tcpu)) {
4391                         cpu = tcpu;
4392                         goto done;
4393                 }
4394         }
4395
4396 done:
4397         return cpu;
4398 }
4399
4400 #ifdef CONFIG_RFS_ACCEL
4401
4402 /**
4403  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4404  * @dev: Device on which the filter was set
4405  * @rxq_index: RX queue index
4406  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4407  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4408  *
4409  * Drivers that implement ndo_rx_flow_steer() should periodically call
4410  * this function for each installed filter and remove the filters for
4411  * which it returns %true.
4412  */
4413 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4414                          u32 flow_id, u16 filter_id)
4415 {
4416         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4417         struct rps_dev_flow_table *flow_table;
4418         struct rps_dev_flow *rflow;
4419         bool expire = true;
4420         unsigned int cpu;
4421
4422         rcu_read_lock();
4423         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4424         if (flow_table && flow_id <= flow_table->mask) {
4425                 rflow = &flow_table->flows[flow_id];
4426                 cpu = READ_ONCE(rflow->cpu);
4427                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4428                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4429                            rflow->last_qtail) <
4430                      (int)(10 * flow_table->mask)))
4431                         expire = false;
4432         }
4433         rcu_read_unlock();
4434         return expire;
4435 }
4436 EXPORT_SYMBOL(rps_may_expire_flow);
4437
4438 #endif /* CONFIG_RFS_ACCEL */
4439
4440 /* Called from hardirq (IPI) context */
4441 static void rps_trigger_softirq(void *data)
4442 {
4443         struct softnet_data *sd = data;
4444
4445         ____napi_schedule(sd, &sd->backlog);
4446         sd->received_rps++;
4447 }
4448
4449 #endif /* CONFIG_RPS */
4450
4451 /*
4452  * Check if this softnet_data structure is another cpu one
4453  * If yes, queue it to our IPI list and return 1
4454  * If no, return 0
4455  */
4456 static int rps_ipi_queued(struct softnet_data *sd)
4457 {
4458 #ifdef CONFIG_RPS
4459         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4460
4461         if (sd != mysd) {
4462                 sd->rps_ipi_next = mysd->rps_ipi_list;
4463                 mysd->rps_ipi_list = sd;
4464
4465                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4466                 return 1;
4467         }
4468 #endif /* CONFIG_RPS */
4469         return 0;
4470 }
4471
4472 #ifdef CONFIG_NET_FLOW_LIMIT
4473 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4474 #endif
4475
4476 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4477 {
4478 #ifdef CONFIG_NET_FLOW_LIMIT
4479         struct sd_flow_limit *fl;
4480         struct softnet_data *sd;
4481         unsigned int old_flow, new_flow;
4482
4483         if (qlen < (netdev_max_backlog >> 1))
4484                 return false;
4485
4486         sd = this_cpu_ptr(&softnet_data);
4487
4488         rcu_read_lock();
4489         fl = rcu_dereference(sd->flow_limit);
4490         if (fl) {
4491                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4492                 old_flow = fl->history[fl->history_head];
4493                 fl->history[fl->history_head] = new_flow;
4494
4495                 fl->history_head++;
4496                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4497
4498                 if (likely(fl->buckets[old_flow]))
4499                         fl->buckets[old_flow]--;
4500
4501                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4502                         fl->count++;
4503                         rcu_read_unlock();
4504                         return true;
4505                 }
4506         }
4507         rcu_read_unlock();
4508 #endif
4509         return false;
4510 }
4511
4512 /*
4513  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4514  * queue (may be a remote CPU queue).
4515  */
4516 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4517                               unsigned int *qtail)
4518 {
4519         struct softnet_data *sd;
4520         unsigned long flags;
4521         unsigned int qlen;
4522
4523         sd = &per_cpu(softnet_data, cpu);
4524
4525         local_irq_save(flags);
4526
4527         rps_lock(sd);
4528         if (!netif_running(skb->dev))
4529                 goto drop;
4530         qlen = skb_queue_len(&sd->input_pkt_queue);
4531         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4532                 if (qlen) {
4533 enqueue:
4534                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4535                         input_queue_tail_incr_save(sd, qtail);
4536                         rps_unlock(sd);
4537                         local_irq_restore(flags);
4538                         return NET_RX_SUCCESS;
4539                 }
4540
4541                 /* Schedule NAPI for backlog device
4542                  * We can use non atomic operation since we own the queue lock
4543                  */
4544                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4545                         if (!rps_ipi_queued(sd))
4546                                 ____napi_schedule(sd, &sd->backlog);
4547                 }
4548                 goto enqueue;
4549         }
4550
4551 drop:
4552         sd->dropped++;
4553         rps_unlock(sd);
4554
4555         local_irq_restore(flags);
4556
4557         atomic_long_inc(&skb->dev->rx_dropped);
4558         kfree_skb(skb);
4559         return NET_RX_DROP;
4560 }
4561
4562 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4563 {
4564         struct net_device *dev = skb->dev;
4565         struct netdev_rx_queue *rxqueue;
4566
4567         rxqueue = dev->_rx;
4568
4569         if (skb_rx_queue_recorded(skb)) {
4570                 u16 index = skb_get_rx_queue(skb);
4571
4572                 if (unlikely(index >= dev->real_num_rx_queues)) {
4573                         WARN_ONCE(dev->real_num_rx_queues > 1,
4574                                   "%s received packet on queue %u, but number "
4575                                   "of RX queues is %u\n",
4576                                   dev->name, index, dev->real_num_rx_queues);
4577
4578                         return rxqueue; /* Return first rxqueue */
4579                 }
4580                 rxqueue += index;
4581         }
4582         return rxqueue;
4583 }
4584
4585 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4586                                      struct xdp_buff *xdp,
4587                                      struct bpf_prog *xdp_prog)
4588 {
4589         struct netdev_rx_queue *rxqueue;
4590         void *orig_data, *orig_data_end;
4591         u32 metalen, act = XDP_DROP;
4592         __be16 orig_eth_type;
4593         struct ethhdr *eth;
4594         bool orig_bcast;
4595         int hlen, off;
4596         u32 mac_len;
4597
4598         /* Reinjected packets coming from act_mirred or similar should
4599          * not get XDP generic processing.
4600          */
4601         if (skb_is_redirected(skb))
4602                 return XDP_PASS;
4603
4604         /* XDP packets must be linear and must have sufficient headroom
4605          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4606          * native XDP provides, thus we need to do it here as well.
4607          */
4608         if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4609             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4610                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4611                 int troom = skb->tail + skb->data_len - skb->end;
4612
4613                 /* In case we have to go down the path and also linearize,
4614                  * then lets do the pskb_expand_head() work just once here.
4615                  */
4616                 if (pskb_expand_head(skb,
4617                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4618                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4619                         goto do_drop;
4620                 if (skb_linearize(skb))
4621                         goto do_drop;
4622         }
4623
4624         /* The XDP program wants to see the packet starting at the MAC
4625          * header.
4626          */
4627         mac_len = skb->data - skb_mac_header(skb);
4628         hlen = skb_headlen(skb) + mac_len;
4629         xdp->data = skb->data - mac_len;
4630         xdp->data_meta = xdp->data;
4631         xdp->data_end = xdp->data + hlen;
4632         xdp->data_hard_start = skb->data - skb_headroom(skb);
4633
4634         /* SKB "head" area always have tailroom for skb_shared_info */
4635         xdp->frame_sz  = (void *)skb_end_pointer(skb) - xdp->data_hard_start;
4636         xdp->frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4637
4638         orig_data_end = xdp->data_end;
4639         orig_data = xdp->data;
4640         eth = (struct ethhdr *)xdp->data;
4641         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4642         orig_eth_type = eth->h_proto;
4643
4644         rxqueue = netif_get_rxqueue(skb);
4645         xdp->rxq = &rxqueue->xdp_rxq;
4646
4647         act = bpf_prog_run_xdp(xdp_prog, xdp);
4648
4649         /* check if bpf_xdp_adjust_head was used */
4650         off = xdp->data - orig_data;
4651         if (off) {
4652                 if (off > 0)
4653                         __skb_pull(skb, off);
4654                 else if (off < 0)
4655                         __skb_push(skb, -off);
4656
4657                 skb->mac_header += off;
4658                 skb_reset_network_header(skb);
4659         }
4660
4661         /* check if bpf_xdp_adjust_tail was used */
4662         off = xdp->data_end - orig_data_end;
4663         if (off != 0) {
4664                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4665                 skb->len += off; /* positive on grow, negative on shrink */
4666         }
4667
4668         /* check if XDP changed eth hdr such SKB needs update */
4669         eth = (struct ethhdr *)xdp->data;
4670         if ((orig_eth_type != eth->h_proto) ||
4671             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4672                 __skb_push(skb, ETH_HLEN);
4673                 skb->protocol = eth_type_trans(skb, skb->dev);
4674         }
4675
4676         switch (act) {
4677         case XDP_REDIRECT:
4678         case XDP_TX:
4679                 __skb_push(skb, mac_len);
4680                 break;
4681         case XDP_PASS:
4682                 metalen = xdp->data - xdp->data_meta;
4683                 if (metalen)
4684                         skb_metadata_set(skb, metalen);
4685                 break;
4686         default:
4687                 bpf_warn_invalid_xdp_action(act);
4688                 /* fall through */
4689         case XDP_ABORTED:
4690                 trace_xdp_exception(skb->dev, xdp_prog, act);
4691                 /* fall through */
4692         case XDP_DROP:
4693         do_drop:
4694                 kfree_skb(skb);
4695                 break;
4696         }
4697
4698         return act;
4699 }
4700
4701 /* When doing generic XDP we have to bypass the qdisc layer and the
4702  * network taps in order to match in-driver-XDP behavior.
4703  */
4704 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4705 {
4706         struct net_device *dev = skb->dev;
4707         struct netdev_queue *txq;
4708         bool free_skb = true;
4709         int cpu, rc;
4710
4711         txq = netdev_core_pick_tx(dev, skb, NULL);
4712         cpu = smp_processor_id();
4713         HARD_TX_LOCK(dev, txq, cpu);
4714         if (!netif_xmit_stopped(txq)) {
4715                 rc = netdev_start_xmit(skb, dev, txq, 0);
4716                 if (dev_xmit_complete(rc))
4717                         free_skb = false;
4718         }
4719         HARD_TX_UNLOCK(dev, txq);
4720         if (free_skb) {
4721                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4722                 kfree_skb(skb);
4723         }
4724 }
4725
4726 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4727
4728 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4729 {
4730         if (xdp_prog) {
4731                 struct xdp_buff xdp;
4732                 u32 act;
4733                 int err;
4734
4735                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4736                 if (act != XDP_PASS) {
4737                         switch (act) {
4738                         case XDP_REDIRECT:
4739                                 err = xdp_do_generic_redirect(skb->dev, skb,
4740                                                               &xdp, xdp_prog);
4741                                 if (err)
4742                                         goto out_redir;
4743                                 break;
4744                         case XDP_TX:
4745                                 generic_xdp_tx(skb, xdp_prog);
4746                                 break;
4747                         }
4748                         return XDP_DROP;
4749                 }
4750         }
4751         return XDP_PASS;
4752 out_redir:
4753         kfree_skb(skb);
4754         return XDP_DROP;
4755 }
4756 EXPORT_SYMBOL_GPL(do_xdp_generic);
4757
4758 static int netif_rx_internal(struct sk_buff *skb)
4759 {
4760         int ret;
4761
4762         net_timestamp_check(netdev_tstamp_prequeue, skb);
4763
4764         trace_netif_rx(skb);
4765
4766 #ifdef CONFIG_RPS
4767         if (static_branch_unlikely(&rps_needed)) {
4768                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4769                 int cpu;
4770
4771                 preempt_disable();
4772                 rcu_read_lock();
4773
4774                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4775                 if (cpu < 0)
4776                         cpu = smp_processor_id();
4777
4778                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4779
4780                 rcu_read_unlock();
4781                 preempt_enable();
4782         } else
4783 #endif
4784         {
4785                 unsigned int qtail;
4786
4787                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4788                 put_cpu();
4789         }
4790         return ret;
4791 }
4792
4793 /**
4794  *      netif_rx        -       post buffer to the network code
4795  *      @skb: buffer to post
4796  *
4797  *      This function receives a packet from a device driver and queues it for
4798  *      the upper (protocol) levels to process.  It always succeeds. The buffer
4799  *      may be dropped during processing for congestion control or by the
4800  *      protocol layers.
4801  *
4802  *      return values:
4803  *      NET_RX_SUCCESS  (no congestion)
4804  *      NET_RX_DROP     (packet was dropped)
4805  *
4806  */
4807
4808 int netif_rx(struct sk_buff *skb)
4809 {
4810         int ret;
4811
4812         trace_netif_rx_entry(skb);
4813
4814         ret = netif_rx_internal(skb);
4815         trace_netif_rx_exit(ret);
4816
4817         return ret;
4818 }
4819 EXPORT_SYMBOL(netif_rx);
4820
4821 int netif_rx_ni(struct sk_buff *skb)
4822 {
4823         int err;
4824
4825         trace_netif_rx_ni_entry(skb);
4826
4827         preempt_disable();
4828         err = netif_rx_internal(skb);
4829         if (local_softirq_pending())
4830                 do_softirq();
4831         preempt_enable();
4832         trace_netif_rx_ni_exit(err);
4833
4834         return err;
4835 }
4836 EXPORT_SYMBOL(netif_rx_ni);
4837
4838 static __latent_entropy void net_tx_action(struct softirq_action *h)
4839 {
4840         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4841
4842         if (sd->completion_queue) {
4843                 struct sk_buff *clist;
4844
4845                 local_irq_disable();
4846                 clist = sd->completion_queue;
4847                 sd->completion_queue = NULL;
4848                 local_irq_enable();
4849
4850                 while (clist) {
4851                         struct sk_buff *skb = clist;
4852
4853                         clist = clist->next;
4854
4855                         WARN_ON(refcount_read(&skb->users));
4856                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4857                                 trace_consume_skb(skb);
4858                         else
4859                                 trace_kfree_skb(skb, net_tx_action);
4860
4861                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4862                                 __kfree_skb(skb);
4863                         else
4864                                 __kfree_skb_defer(skb);
4865                 }
4866
4867                 __kfree_skb_flush();
4868         }
4869
4870         if (sd->output_queue) {
4871                 struct Qdisc *head;
4872
4873                 local_irq_disable();
4874                 head = sd->output_queue;
4875                 sd->output_queue = NULL;
4876                 sd->output_queue_tailp = &sd->output_queue;
4877                 local_irq_enable();
4878
4879                 while (head) {
4880                         struct Qdisc *q = head;
4881                         spinlock_t *root_lock = NULL;
4882
4883                         head = head->next_sched;
4884
4885                         if (!(q->flags & TCQ_F_NOLOCK)) {
4886                                 root_lock = qdisc_lock(q);
4887                                 spin_lock(root_lock);
4888                         }
4889                         /* We need to make sure head->next_sched is read
4890                          * before clearing __QDISC_STATE_SCHED
4891                          */
4892                         smp_mb__before_atomic();
4893                         clear_bit(__QDISC_STATE_SCHED, &q->state);
4894                         qdisc_run(q);
4895                         if (root_lock)
4896                                 spin_unlock(root_lock);
4897                 }
4898         }
4899
4900         xfrm_dev_backlog(sd);
4901 }
4902
4903 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4904 /* This hook is defined here for ATM LANE */
4905 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4906                              unsigned char *addr) __read_mostly;
4907 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4908 #endif
4909
4910 static inline struct sk_buff *
4911 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4912                    struct net_device *orig_dev)
4913 {
4914 #ifdef CONFIG_NET_CLS_ACT
4915         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4916         struct tcf_result cl_res;
4917
4918         /* If there's at least one ingress present somewhere (so
4919          * we get here via enabled static key), remaining devices
4920          * that are not configured with an ingress qdisc will bail
4921          * out here.
4922          */
4923         if (!miniq)
4924                 return skb;
4925
4926         if (*pt_prev) {
4927                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4928                 *pt_prev = NULL;
4929         }
4930
4931         qdisc_skb_cb(skb)->pkt_len = skb->len;
4932         skb->tc_at_ingress = 1;
4933         mini_qdisc_bstats_cpu_update(miniq, skb);
4934
4935         switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
4936                                      &cl_res, false)) {
4937         case TC_ACT_OK:
4938         case TC_ACT_RECLASSIFY:
4939                 skb->tc_index = TC_H_MIN(cl_res.classid);
4940                 break;
4941         case TC_ACT_SHOT:
4942                 mini_qdisc_qstats_cpu_drop(miniq);
4943                 kfree_skb(skb);
4944                 return NULL;
4945         case TC_ACT_STOLEN:
4946         case TC_ACT_QUEUED:
4947         case TC_ACT_TRAP:
4948                 consume_skb(skb);
4949                 return NULL;
4950         case TC_ACT_REDIRECT:
4951                 /* skb_mac_header check was done by cls/act_bpf, so
4952                  * we can safely push the L2 header back before
4953                  * redirecting to another netdev
4954                  */
4955                 __skb_push(skb, skb->mac_len);
4956                 skb_do_redirect(skb);
4957                 return NULL;
4958         case TC_ACT_CONSUMED:
4959                 return NULL;
4960         default:
4961                 break;
4962         }
4963 #endif /* CONFIG_NET_CLS_ACT */
4964         return skb;
4965 }
4966
4967 /**
4968  *      netdev_is_rx_handler_busy - check if receive handler is registered
4969  *      @dev: device to check
4970  *
4971  *      Check if a receive handler is already registered for a given device.
4972  *      Return true if there one.
4973  *
4974  *      The caller must hold the rtnl_mutex.
4975  */
4976 bool netdev_is_rx_handler_busy(struct net_device *dev)
4977 {
4978         ASSERT_RTNL();
4979         return dev && rtnl_dereference(dev->rx_handler);
4980 }
4981 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4982
4983 /**
4984  *      netdev_rx_handler_register - register receive handler
4985  *      @dev: device to register a handler for
4986  *      @rx_handler: receive handler to register
4987  *      @rx_handler_data: data pointer that is used by rx handler
4988  *
4989  *      Register a receive handler for a device. This handler will then be
4990  *      called from __netif_receive_skb. A negative errno code is returned
4991  *      on a failure.
4992  *
4993  *      The caller must hold the rtnl_mutex.
4994  *
4995  *      For a general description of rx_handler, see enum rx_handler_result.
4996  */
4997 int netdev_rx_handler_register(struct net_device *dev,
4998                                rx_handler_func_t *rx_handler,
4999                                void *rx_handler_data)
5000 {
5001         if (netdev_is_rx_handler_busy(dev))
5002                 return -EBUSY;
5003
5004         if (dev->priv_flags & IFF_NO_RX_HANDLER)
5005                 return -EINVAL;
5006
5007         /* Note: rx_handler_data must be set before rx_handler */
5008         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5009         rcu_assign_pointer(dev->rx_handler, rx_handler);
5010
5011         return 0;
5012 }
5013 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5014
5015 /**
5016  *      netdev_rx_handler_unregister - unregister receive handler
5017  *      @dev: device to unregister a handler from
5018  *
5019  *      Unregister a receive handler from a device.
5020  *
5021  *      The caller must hold the rtnl_mutex.
5022  */
5023 void netdev_rx_handler_unregister(struct net_device *dev)
5024 {
5025
5026         ASSERT_RTNL();
5027         RCU_INIT_POINTER(dev->rx_handler, NULL);
5028         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5029          * section has a guarantee to see a non NULL rx_handler_data
5030          * as well.
5031          */
5032         synchronize_net();
5033         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5034 }
5035 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5036
5037 /*
5038  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5039  * the special handling of PFMEMALLOC skbs.
5040  */
5041 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5042 {
5043         switch (skb->protocol) {
5044         case htons(ETH_P_ARP):
5045         case htons(ETH_P_IP):
5046         case htons(ETH_P_IPV6):
5047         case htons(ETH_P_8021Q):
5048         case htons(ETH_P_8021AD):
5049                 return true;
5050         default:
5051                 return false;
5052         }
5053 }
5054
5055 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5056                              int *ret, struct net_device *orig_dev)
5057 {
5058         if (nf_hook_ingress_active(skb)) {
5059                 int ingress_retval;
5060
5061                 if (*pt_prev) {
5062                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
5063                         *pt_prev = NULL;
5064                 }
5065
5066                 rcu_read_lock();
5067                 ingress_retval = nf_hook_ingress(skb);
5068                 rcu_read_unlock();
5069                 return ingress_retval;
5070         }
5071         return 0;
5072 }
5073
5074 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5075                                     struct packet_type **ppt_prev)
5076 {
5077         struct packet_type *ptype, *pt_prev;
5078         rx_handler_func_t *rx_handler;
5079         struct sk_buff *skb = *pskb;
5080         struct net_device *orig_dev;
5081         bool deliver_exact = false;
5082         int ret = NET_RX_DROP;
5083         __be16 type;
5084
5085         net_timestamp_check(!netdev_tstamp_prequeue, skb);
5086
5087         trace_netif_receive_skb(skb);
5088
5089         orig_dev = skb->dev;
5090
5091         skb_reset_network_header(skb);
5092         if (!skb_transport_header_was_set(skb))
5093                 skb_reset_transport_header(skb);
5094         skb_reset_mac_len(skb);
5095
5096         pt_prev = NULL;
5097
5098 another_round:
5099         skb->skb_iif = skb->dev->ifindex;
5100
5101         __this_cpu_inc(softnet_data.processed);
5102
5103         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5104                 int ret2;
5105
5106                 preempt_disable();
5107                 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5108                 preempt_enable();
5109
5110                 if (ret2 != XDP_PASS) {
5111                         ret = NET_RX_DROP;
5112                         goto out;
5113                 }
5114                 skb_reset_mac_len(skb);
5115         }
5116
5117         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5118             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5119                 skb = skb_vlan_untag(skb);
5120                 if (unlikely(!skb))
5121                         goto out;
5122         }
5123
5124         if (skb_skip_tc_classify(skb))
5125                 goto skip_classify;
5126
5127         if (pfmemalloc)
5128                 goto skip_taps;
5129
5130         list_for_each_entry_rcu(ptype, &ptype_all, list) {
5131                 if (pt_prev)
5132                         ret = deliver_skb(skb, pt_prev, orig_dev);
5133                 pt_prev = ptype;
5134         }
5135
5136         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5137                 if (pt_prev)
5138                         ret = deliver_skb(skb, pt_prev, orig_dev);
5139                 pt_prev = ptype;
5140         }
5141
5142 skip_taps:
5143 #ifdef CONFIG_NET_INGRESS
5144         if (static_branch_unlikely(&ingress_needed_key)) {
5145                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
5146                 if (!skb)
5147                         goto out;
5148
5149                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5150                         goto out;
5151         }
5152 #endif
5153         skb_reset_redirect(skb);
5154 skip_classify:
5155         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5156                 goto drop;
5157
5158         if (skb_vlan_tag_present(skb)) {
5159                 if (pt_prev) {
5160                         ret = deliver_skb(skb, pt_prev, orig_dev);
5161                         pt_prev = NULL;
5162                 }
5163                 if (vlan_do_receive(&skb))
5164                         goto another_round;
5165                 else if (unlikely(!skb))
5166                         goto out;
5167         }
5168
5169         rx_handler = rcu_dereference(skb->dev->rx_handler);
5170         if (rx_handler) {
5171                 if (pt_prev) {
5172                         ret = deliver_skb(skb, pt_prev, orig_dev);
5173                         pt_prev = NULL;
5174                 }
5175                 switch (rx_handler(&skb)) {
5176                 case RX_HANDLER_CONSUMED:
5177                         ret = NET_RX_SUCCESS;
5178                         goto out;
5179                 case RX_HANDLER_ANOTHER:
5180                         goto another_round;
5181                 case RX_HANDLER_EXACT:
5182                         deliver_exact = true;
5183                 case RX_HANDLER_PASS:
5184                         break;
5185                 default:
5186                         BUG();
5187                 }
5188         }
5189
5190         if (unlikely(skb_vlan_tag_present(skb))) {
5191 check_vlan_id:
5192                 if (skb_vlan_tag_get_id(skb)) {
5193                         /* Vlan id is non 0 and vlan_do_receive() above couldn't
5194                          * find vlan device.
5195                          */
5196                         skb->pkt_type = PACKET_OTHERHOST;
5197                 } else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5198                            skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5199                         /* Outer header is 802.1P with vlan 0, inner header is
5200                          * 802.1Q or 802.1AD and vlan_do_receive() above could
5201                          * not find vlan dev for vlan id 0.
5202                          */
5203                         __vlan_hwaccel_clear_tag(skb);
5204                         skb = skb_vlan_untag(skb);
5205                         if (unlikely(!skb))
5206                                 goto out;
5207                         if (vlan_do_receive(&skb))
5208                                 /* After stripping off 802.1P header with vlan 0
5209                                  * vlan dev is found for inner header.
5210                                  */
5211                                 goto another_round;
5212                         else if (unlikely(!skb))
5213                                 goto out;
5214                         else
5215                                 /* We have stripped outer 802.1P vlan 0 header.
5216                                  * But could not find vlan dev.
5217                                  * check again for vlan id to set OTHERHOST.
5218                                  */
5219                                 goto check_vlan_id;
5220                 }
5221                 /* Note: we might in the future use prio bits
5222                  * and set skb->priority like in vlan_do_receive()
5223                  * For the time being, just ignore Priority Code Point
5224                  */
5225                 __vlan_hwaccel_clear_tag(skb);
5226         }
5227
5228         type = skb->protocol;
5229
5230         /* deliver only exact match when indicated */
5231         if (likely(!deliver_exact)) {
5232                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5233                                        &ptype_base[ntohs(type) &
5234                                                    PTYPE_HASH_MASK]);
5235         }
5236
5237         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5238                                &orig_dev->ptype_specific);
5239
5240         if (unlikely(skb->dev != orig_dev)) {
5241                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5242                                        &skb->dev->ptype_specific);
5243         }
5244
5245         if (pt_prev) {
5246                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5247                         goto drop;
5248                 *ppt_prev = pt_prev;
5249         } else {
5250 drop:
5251                 if (!deliver_exact)
5252                         atomic_long_inc(&skb->dev->rx_dropped);
5253                 else
5254                         atomic_long_inc(&skb->dev->rx_nohandler);
5255                 kfree_skb(skb);
5256                 /* Jamal, now you will not able to escape explaining
5257                  * me how you were going to use this. :-)
5258                  */
5259                 ret = NET_RX_DROP;
5260         }
5261
5262 out:
5263         /* The invariant here is that if *ppt_prev is not NULL
5264          * then skb should also be non-NULL.
5265          *
5266          * Apparently *ppt_prev assignment above holds this invariant due to
5267          * skb dereferencing near it.
5268          */
5269         *pskb = skb;
5270         return ret;
5271 }
5272
5273 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5274 {
5275         struct net_device *orig_dev = skb->dev;
5276         struct packet_type *pt_prev = NULL;
5277         int ret;
5278
5279         ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5280         if (pt_prev)
5281                 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5282                                          skb->dev, pt_prev, orig_dev);
5283         return ret;
5284 }
5285
5286 /**
5287  *      netif_receive_skb_core - special purpose version of netif_receive_skb
5288  *      @skb: buffer to process
5289  *
5290  *      More direct receive version of netif_receive_skb().  It should
5291  *      only be used by callers that have a need to skip RPS and Generic XDP.
5292  *      Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5293  *
5294  *      This function may only be called from softirq context and interrupts
5295  *      should be enabled.
5296  *
5297  *      Return values (usually ignored):
5298  *      NET_RX_SUCCESS: no congestion
5299  *      NET_RX_DROP: packet was dropped
5300  */
5301 int netif_receive_skb_core(struct sk_buff *skb)
5302 {
5303         int ret;
5304
5305         rcu_read_lock();
5306         ret = __netif_receive_skb_one_core(skb, false);
5307         rcu_read_unlock();
5308
5309         return ret;
5310 }
5311 EXPORT_SYMBOL(netif_receive_skb_core);
5312
5313 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5314                                                   struct packet_type *pt_prev,
5315                                                   struct net_device *orig_dev)
5316 {
5317         struct sk_buff *skb, *next;
5318
5319         if (!pt_prev)
5320                 return;
5321         if (list_empty(head))
5322                 return;
5323         if (pt_prev->list_func != NULL)
5324                 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5325                                    ip_list_rcv, head, pt_prev, orig_dev);
5326         else
5327                 list_for_each_entry_safe(skb, next, head, list) {
5328                         skb_list_del_init(skb);
5329                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5330                 }
5331 }
5332
5333 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5334 {
5335         /* Fast-path assumptions:
5336          * - There is no RX handler.
5337          * - Only one packet_type matches.
5338          * If either of these fails, we will end up doing some per-packet
5339          * processing in-line, then handling the 'last ptype' for the whole
5340          * sublist.  This can't cause out-of-order delivery to any single ptype,
5341          * because the 'last ptype' must be constant across the sublist, and all
5342          * other ptypes are handled per-packet.
5343          */
5344         /* Current (common) ptype of sublist */
5345         struct packet_type *pt_curr = NULL;
5346         /* Current (common) orig_dev of sublist */
5347         struct net_device *od_curr = NULL;
5348         struct list_head sublist;
5349         struct sk_buff *skb, *next;
5350
5351         INIT_LIST_HEAD(&sublist);
5352         list_for_each_entry_safe(skb, next, head, list) {
5353                 struct net_device *orig_dev = skb->dev;
5354                 struct packet_type *pt_prev = NULL;
5355
5356                 skb_list_del_init(skb);
5357                 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5358                 if (!pt_prev)
5359                         continue;
5360                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5361                         /* dispatch old sublist */
5362                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5363                         /* start new sublist */
5364                         INIT_LIST_HEAD(&sublist);
5365                         pt_curr = pt_prev;
5366                         od_curr = orig_dev;
5367                 }
5368                 list_add_tail(&skb->list, &sublist);
5369         }
5370
5371         /* dispatch final sublist */
5372         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5373 }
5374
5375 static int __netif_receive_skb(struct sk_buff *skb)
5376 {
5377         int ret;
5378
5379         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5380                 unsigned int noreclaim_flag;
5381
5382                 /*
5383                  * PFMEMALLOC skbs are special, they should
5384                  * - be delivered to SOCK_MEMALLOC sockets only
5385                  * - stay away from userspace
5386                  * - have bounded memory usage
5387                  *
5388                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5389                  * context down to all allocation sites.
5390                  */
5391                 noreclaim_flag = memalloc_noreclaim_save();
5392                 ret = __netif_receive_skb_one_core(skb, true);
5393                 memalloc_noreclaim_restore(noreclaim_flag);
5394         } else
5395                 ret = __netif_receive_skb_one_core(skb, false);
5396
5397         return ret;
5398 }
5399
5400 static void __netif_receive_skb_list(struct list_head *head)
5401 {
5402         unsigned long noreclaim_flag = 0;
5403         struct sk_buff *skb, *next;
5404         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5405
5406         list_for_each_entry_safe(skb, next, head, list) {
5407                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5408                         struct list_head sublist;
5409
5410                         /* Handle the previous sublist */
5411                         list_cut_before(&sublist, head, &skb->list);
5412                         if (!list_empty(&sublist))
5413                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5414                         pfmemalloc = !pfmemalloc;
5415                         /* See comments in __netif_receive_skb */
5416                         if (pfmemalloc)
5417                                 noreclaim_flag = memalloc_noreclaim_save();
5418                         else
5419                                 memalloc_noreclaim_restore(noreclaim_flag);
5420                 }
5421         }
5422         /* Handle the remaining sublist */
5423         if (!list_empty(head))
5424                 __netif_receive_skb_list_core(head, pfmemalloc);
5425         /* Restore pflags */
5426         if (pfmemalloc)
5427                 memalloc_noreclaim_restore(noreclaim_flag);
5428 }
5429
5430 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5431 {
5432         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5433         struct bpf_prog *new = xdp->prog;
5434         int ret = 0;
5435
5436         if (new) {
5437                 u32 i;
5438
5439                 /* generic XDP does not work with DEVMAPs that can
5440                  * have a bpf_prog installed on an entry
5441                  */
5442                 for (i = 0; i < new->aux->used_map_cnt; i++) {
5443                         if (dev_map_can_have_prog(new->aux->used_maps[i]))
5444                                 return -EINVAL;
5445                 }
5446         }
5447
5448         switch (xdp->command) {
5449         case XDP_SETUP_PROG:
5450                 rcu_assign_pointer(dev->xdp_prog, new);
5451                 if (old)
5452                         bpf_prog_put(old);
5453
5454                 if (old && !new) {
5455                         static_branch_dec(&generic_xdp_needed_key);
5456                 } else if (new && !old) {
5457                         static_branch_inc(&generic_xdp_needed_key);
5458                         dev_disable_lro(dev);
5459                         dev_disable_gro_hw(dev);
5460                 }
5461                 break;
5462
5463         case XDP_QUERY_PROG:
5464                 xdp->prog_id = old ? old->aux->id : 0;
5465                 break;
5466
5467         default:
5468                 ret = -EINVAL;
5469                 break;
5470         }
5471
5472         return ret;
5473 }
5474
5475 static int netif_receive_skb_internal(struct sk_buff *skb)
5476 {
5477         int ret;
5478
5479         net_timestamp_check(netdev_tstamp_prequeue, skb);
5480
5481         if (skb_defer_rx_timestamp(skb))
5482                 return NET_RX_SUCCESS;
5483
5484         rcu_read_lock();
5485 #ifdef CONFIG_RPS
5486         if (static_branch_unlikely(&rps_needed)) {
5487                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5488                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5489
5490                 if (cpu >= 0) {
5491                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5492                         rcu_read_unlock();
5493                         return ret;
5494                 }
5495         }
5496 #endif
5497         ret = __netif_receive_skb(skb);
5498         rcu_read_unlock();
5499         return ret;
5500 }
5501
5502 static void netif_receive_skb_list_internal(struct list_head *head)
5503 {
5504         struct sk_buff *skb, *next;
5505         struct list_head sublist;
5506
5507         INIT_LIST_HEAD(&sublist);
5508         list_for_each_entry_safe(skb, next, head, list) {
5509                 net_timestamp_check(netdev_tstamp_prequeue, skb);
5510                 skb_list_del_init(skb);
5511                 if (!skb_defer_rx_timestamp(skb))
5512                         list_add_tail(&skb->list, &sublist);
5513         }
5514         list_splice_init(&sublist, head);
5515
5516         rcu_read_lock();
5517 #ifdef CONFIG_RPS
5518         if (static_branch_unlikely(&rps_needed)) {
5519                 list_for_each_entry_safe(skb, next, head, list) {
5520                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5521                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5522
5523                         if (cpu >= 0) {
5524                                 /* Will be handled, remove from list */
5525                                 skb_list_del_init(skb);
5526                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5527                         }
5528                 }
5529         }
5530 #endif
5531         __netif_receive_skb_list(head);
5532         rcu_read_unlock();
5533 }
5534
5535 /**
5536  *      netif_receive_skb - process receive buffer from network
5537  *      @skb: buffer to process
5538  *
5539  *      netif_receive_skb() is the main receive data processing function.
5540  *      It always succeeds. The buffer may be dropped during processing
5541  *      for congestion control or by the protocol layers.
5542  *
5543  *      This function may only be called from softirq context and interrupts
5544  *      should be enabled.
5545  *
5546  *      Return values (usually ignored):
5547  *      NET_RX_SUCCESS: no congestion
5548  *      NET_RX_DROP: packet was dropped
5549  */
5550 int netif_receive_skb(struct sk_buff *skb)
5551 {
5552         int ret;
5553
5554         trace_netif_receive_skb_entry(skb);
5555
5556         ret = netif_receive_skb_internal(skb);
5557         trace_netif_receive_skb_exit(ret);
5558
5559         return ret;
5560 }
5561 EXPORT_SYMBOL(netif_receive_skb);
5562
5563 /**
5564  *      netif_receive_skb_list - process many receive buffers from network
5565  *      @head: list of skbs to process.
5566  *
5567  *      Since return value of netif_receive_skb() is normally ignored, and
5568  *      wouldn't be meaningful for a list, this function returns void.
5569  *
5570  *      This function may only be called from softirq context and interrupts
5571  *      should be enabled.
5572  */
5573 void netif_receive_skb_list(struct list_head *head)
5574 {
5575         struct sk_buff *skb;
5576
5577         if (list_empty(head))
5578                 return;
5579         if (trace_netif_receive_skb_list_entry_enabled()) {
5580                 list_for_each_entry(skb, head, list)
5581                         trace_netif_receive_skb_list_entry(skb);
5582         }
5583         netif_receive_skb_list_internal(head);
5584         trace_netif_receive_skb_list_exit(0);
5585 }
5586 EXPORT_SYMBOL(netif_receive_skb_list);
5587
5588 DEFINE_PER_CPU(struct work_struct, flush_works);
5589
5590 /* Network device is going away, flush any packets still pending */
5591 static void flush_backlog(struct work_struct *work)
5592 {
5593         struct sk_buff *skb, *tmp;
5594         struct softnet_data *sd;
5595
5596         local_bh_disable();
5597         sd = this_cpu_ptr(&softnet_data);
5598
5599         local_irq_disable();
5600         rps_lock(sd);
5601         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5602                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5603                         __skb_unlink(skb, &sd->input_pkt_queue);
5604                         dev_kfree_skb_irq(skb);
5605                         input_queue_head_incr(sd);
5606                 }
5607         }
5608         rps_unlock(sd);
5609         local_irq_enable();
5610
5611         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5612                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5613                         __skb_unlink(skb, &sd->process_queue);
5614                         kfree_skb(skb);
5615                         input_queue_head_incr(sd);
5616                 }
5617         }
5618         local_bh_enable();
5619 }
5620
5621 static void flush_all_backlogs(void)
5622 {
5623         unsigned int cpu;
5624
5625         get_online_cpus();
5626
5627         for_each_online_cpu(cpu)
5628                 queue_work_on(cpu, system_highpri_wq,
5629                               per_cpu_ptr(&flush_works, cpu));
5630
5631         for_each_online_cpu(cpu)
5632                 flush_work(per_cpu_ptr(&flush_works, cpu));
5633
5634         put_online_cpus();
5635 }
5636
5637 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5638 static void gro_normal_list(struct napi_struct *napi)
5639 {
5640         if (!napi->rx_count)
5641                 return;
5642         netif_receive_skb_list_internal(&napi->rx_list);
5643         INIT_LIST_HEAD(&napi->rx_list);
5644         napi->rx_count = 0;
5645 }
5646
5647 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5648  * pass the whole batch up to the stack.
5649  */
5650 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb)
5651 {
5652         list_add_tail(&skb->list, &napi->rx_list);
5653         if (++napi->rx_count >= gro_normal_batch)
5654                 gro_normal_list(napi);
5655 }
5656
5657 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5658 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
5659 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5660 {
5661         struct packet_offload *ptype;
5662         __be16 type = skb->protocol;
5663         struct list_head *head = &offload_base;
5664         int err = -ENOENT;
5665
5666         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5667
5668         if (NAPI_GRO_CB(skb)->count == 1) {
5669                 skb_shinfo(skb)->gso_size = 0;
5670                 goto out;
5671         }
5672
5673         rcu_read_lock();
5674         list_for_each_entry_rcu(ptype, head, list) {
5675                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5676                         continue;
5677
5678                 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5679                                          ipv6_gro_complete, inet_gro_complete,
5680                                          skb, 0);
5681                 break;
5682         }
5683         rcu_read_unlock();
5684
5685         if (err) {
5686                 WARN_ON(&ptype->list == head);
5687                 kfree_skb(skb);
5688                 return NET_RX_SUCCESS;
5689         }
5690
5691 out:
5692         gro_normal_one(napi, skb);
5693         return NET_RX_SUCCESS;
5694 }
5695
5696 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5697                                    bool flush_old)
5698 {
5699         struct list_head *head = &napi->gro_hash[index].list;
5700         struct sk_buff *skb, *p;
5701
5702         list_for_each_entry_safe_reverse(skb, p, head, list) {
5703                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5704                         return;
5705                 skb_list_del_init(skb);
5706                 napi_gro_complete(napi, skb);
5707                 napi->gro_hash[index].count--;
5708         }
5709
5710         if (!napi->gro_hash[index].count)
5711                 __clear_bit(index, &napi->gro_bitmask);
5712 }
5713
5714 /* napi->gro_hash[].list contains packets ordered by age.
5715  * youngest packets at the head of it.
5716  * Complete skbs in reverse order to reduce latencies.
5717  */
5718 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5719 {
5720         unsigned long bitmask = napi->gro_bitmask;
5721         unsigned int i, base = ~0U;
5722
5723         while ((i = ffs(bitmask)) != 0) {
5724                 bitmask >>= i;
5725                 base += i;
5726                 __napi_gro_flush_chain(napi, base, flush_old);
5727         }
5728 }
5729 EXPORT_SYMBOL(napi_gro_flush);
5730
5731 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5732                                           struct sk_buff *skb)
5733 {
5734         unsigned int maclen = skb->dev->hard_header_len;
5735         u32 hash = skb_get_hash_raw(skb);
5736         struct list_head *head;
5737         struct sk_buff *p;
5738
5739         head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5740         list_for_each_entry(p, head, list) {
5741                 unsigned long diffs;
5742
5743                 NAPI_GRO_CB(p)->flush = 0;
5744
5745                 if (hash != skb_get_hash_raw(p)) {
5746                         NAPI_GRO_CB(p)->same_flow = 0;
5747                         continue;
5748                 }
5749
5750                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5751                 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5752                 if (skb_vlan_tag_present(p))
5753                         diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5754                 diffs |= skb_metadata_dst_cmp(p, skb);
5755                 diffs |= skb_metadata_differs(p, skb);
5756                 if (maclen == ETH_HLEN)
5757                         diffs |= compare_ether_header(skb_mac_header(p),
5758                                                       skb_mac_header(skb));
5759                 else if (!diffs)
5760                         diffs = memcmp(skb_mac_header(p),
5761                                        skb_mac_header(skb),
5762                                        maclen);
5763                 NAPI_GRO_CB(p)->same_flow = !diffs;
5764         }
5765
5766         return head;
5767 }
5768
5769 static void skb_gro_reset_offset(struct sk_buff *skb)
5770 {
5771         const struct skb_shared_info *pinfo = skb_shinfo(skb);
5772         const skb_frag_t *frag0 = &pinfo->frags[0];
5773
5774         NAPI_GRO_CB(skb)->data_offset = 0;
5775         NAPI_GRO_CB(skb)->frag0 = NULL;
5776         NAPI_GRO_CB(skb)->frag0_len = 0;
5777
5778         if (!skb_headlen(skb) && pinfo->nr_frags &&
5779             !PageHighMem(skb_frag_page(frag0))) {
5780                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5781                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5782                                                     skb_frag_size(frag0),
5783                                                     skb->end - skb->tail);
5784         }
5785 }
5786
5787 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5788 {
5789         struct skb_shared_info *pinfo = skb_shinfo(skb);
5790
5791         BUG_ON(skb->end - skb->tail < grow);
5792
5793         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5794
5795         skb->data_len -= grow;
5796         skb->tail += grow;
5797
5798         skb_frag_off_add(&pinfo->frags[0], grow);
5799         skb_frag_size_sub(&pinfo->frags[0], grow);
5800
5801         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5802                 skb_frag_unref(skb, 0);
5803                 memmove(pinfo->frags, pinfo->frags + 1,
5804                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5805         }
5806 }
5807
5808 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
5809 {
5810         struct sk_buff *oldest;
5811
5812         oldest = list_last_entry(head, struct sk_buff, list);
5813
5814         /* We are called with head length >= MAX_GRO_SKBS, so this is
5815          * impossible.
5816          */
5817         if (WARN_ON_ONCE(!oldest))
5818                 return;
5819
5820         /* Do not adjust napi->gro_hash[].count, caller is adding a new
5821          * SKB to the chain.
5822          */
5823         skb_list_del_init(oldest);
5824         napi_gro_complete(napi, oldest);
5825 }
5826
5827 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5828                                                            struct sk_buff *));
5829 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5830                                                            struct sk_buff *));
5831 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5832 {
5833         u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5834         struct list_head *head = &offload_base;
5835         struct packet_offload *ptype;
5836         __be16 type = skb->protocol;
5837         struct list_head *gro_head;
5838         struct sk_buff *pp = NULL;
5839         enum gro_result ret;
5840         int same_flow;
5841         int grow;
5842
5843         if (netif_elide_gro(skb->dev))
5844                 goto normal;
5845
5846         gro_head = gro_list_prepare(napi, skb);
5847
5848         rcu_read_lock();
5849         list_for_each_entry_rcu(ptype, head, list) {
5850                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5851                         continue;
5852
5853                 skb_set_network_header(skb, skb_gro_offset(skb));
5854                 skb_reset_mac_len(skb);
5855                 NAPI_GRO_CB(skb)->same_flow = 0;
5856                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5857                 NAPI_GRO_CB(skb)->free = 0;
5858                 NAPI_GRO_CB(skb)->encap_mark = 0;
5859                 NAPI_GRO_CB(skb)->recursion_counter = 0;
5860                 NAPI_GRO_CB(skb)->is_fou = 0;
5861                 NAPI_GRO_CB(skb)->is_atomic = 1;
5862                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5863
5864                 /* Setup for GRO checksum validation */
5865                 switch (skb->ip_summed) {
5866                 case CHECKSUM_COMPLETE:
5867                         NAPI_GRO_CB(skb)->csum = skb->csum;
5868                         NAPI_GRO_CB(skb)->csum_valid = 1;
5869                         NAPI_GRO_CB(skb)->csum_cnt = 0;
5870                         break;
5871                 case CHECKSUM_UNNECESSARY:
5872                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5873                         NAPI_GRO_CB(skb)->csum_valid = 0;
5874                         break;
5875                 default:
5876                         NAPI_GRO_CB(skb)->csum_cnt = 0;
5877                         NAPI_GRO_CB(skb)->csum_valid = 0;
5878                 }
5879
5880                 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5881                                         ipv6_gro_receive, inet_gro_receive,
5882                                         gro_head, skb);
5883                 break;
5884         }
5885         rcu_read_unlock();
5886
5887         if (&ptype->list == head)
5888                 goto normal;
5889
5890         if (PTR_ERR(pp) == -EINPROGRESS) {
5891                 ret = GRO_CONSUMED;
5892                 goto ok;
5893         }
5894
5895         same_flow = NAPI_GRO_CB(skb)->same_flow;
5896         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5897
5898         if (pp) {
5899                 skb_list_del_init(pp);
5900                 napi_gro_complete(napi, pp);
5901                 napi->gro_hash[hash].count--;
5902         }
5903
5904         if (same_flow)
5905                 goto ok;
5906
5907         if (NAPI_GRO_CB(skb)->flush)
5908                 goto normal;
5909
5910         if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5911                 gro_flush_oldest(napi, gro_head);
5912         } else {
5913                 napi->gro_hash[hash].count++;
5914         }
5915         NAPI_GRO_CB(skb)->count = 1;
5916         NAPI_GRO_CB(skb)->age = jiffies;
5917         NAPI_GRO_CB(skb)->last = skb;
5918         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5919         list_add(&skb->list, gro_head);
5920         ret = GRO_HELD;
5921
5922 pull:
5923         grow = skb_gro_offset(skb) - skb_headlen(skb);
5924         if (grow > 0)
5925                 gro_pull_from_frag0(skb, grow);
5926 ok:
5927         if (napi->gro_hash[hash].count) {
5928                 if (!test_bit(hash, &napi->gro_bitmask))
5929                         __set_bit(hash, &napi->gro_bitmask);
5930         } else if (test_bit(hash, &napi->gro_bitmask)) {
5931                 __clear_bit(hash, &napi->gro_bitmask);
5932         }
5933
5934         return ret;
5935
5936 normal:
5937         ret = GRO_NORMAL;
5938         goto pull;
5939 }
5940
5941 struct packet_offload *gro_find_receive_by_type(__be16 type)
5942 {
5943         struct list_head *offload_head = &offload_base;
5944         struct packet_offload *ptype;
5945
5946         list_for_each_entry_rcu(ptype, offload_head, list) {
5947                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5948                         continue;
5949                 return ptype;
5950         }
5951         return NULL;
5952 }
5953 EXPORT_SYMBOL(gro_find_receive_by_type);
5954
5955 struct packet_offload *gro_find_complete_by_type(__be16 type)
5956 {
5957         struct list_head *offload_head = &offload_base;
5958         struct packet_offload *ptype;
5959
5960         list_for_each_entry_rcu(ptype, offload_head, list) {
5961                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5962                         continue;
5963                 return ptype;
5964         }
5965         return NULL;
5966 }
5967 EXPORT_SYMBOL(gro_find_complete_by_type);
5968
5969 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5970 {
5971         skb_dst_drop(skb);
5972         skb_ext_put(skb);
5973         kmem_cache_free(skbuff_head_cache, skb);
5974 }
5975
5976 static gro_result_t napi_skb_finish(struct napi_struct *napi,
5977                                     struct sk_buff *skb,
5978                                     gro_result_t ret)
5979 {
5980         switch (ret) {
5981         case GRO_NORMAL:
5982                 gro_normal_one(napi, skb);
5983                 break;
5984
5985         case GRO_DROP:
5986                 kfree_skb(skb);
5987                 break;
5988
5989         case GRO_MERGED_FREE:
5990                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5991                         napi_skb_free_stolen_head(skb);
5992                 else
5993                         __kfree_skb(skb);
5994                 break;
5995
5996         case GRO_HELD:
5997         case GRO_MERGED:
5998         case GRO_CONSUMED:
5999                 break;
6000         }
6001
6002         return ret;
6003 }
6004
6005 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6006 {
6007         gro_result_t ret;
6008
6009         skb_mark_napi_id(skb, napi);
6010         trace_napi_gro_receive_entry(skb);
6011
6012         skb_gro_reset_offset(skb);
6013
6014         ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6015         trace_napi_gro_receive_exit(ret);
6016
6017         return ret;
6018 }
6019 EXPORT_SYMBOL(napi_gro_receive);
6020
6021 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6022 {
6023         if (unlikely(skb->pfmemalloc)) {
6024                 consume_skb(skb);
6025                 return;
6026         }
6027         __skb_pull(skb, skb_headlen(skb));
6028         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
6029         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6030         __vlan_hwaccel_clear_tag(skb);
6031         skb->dev = napi->dev;
6032         skb->skb_iif = 0;
6033
6034         /* eth_type_trans() assumes pkt_type is PACKET_HOST */
6035         skb->pkt_type = PACKET_HOST;
6036
6037         skb->encapsulation = 0;
6038         skb_shinfo(skb)->gso_type = 0;
6039         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6040         skb_ext_reset(skb);
6041
6042         napi->skb = skb;
6043 }
6044
6045 struct sk_buff *napi_get_frags(struct napi_struct *napi)
6046 {
6047         struct sk_buff *skb = napi->skb;
6048
6049         if (!skb) {
6050                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6051                 if (skb) {
6052                         napi->skb = skb;
6053                         skb_mark_napi_id(skb, napi);
6054                 }
6055         }
6056         return skb;
6057 }
6058 EXPORT_SYMBOL(napi_get_frags);
6059
6060 static gro_result_t napi_frags_finish(struct napi_struct *napi,
6061                                       struct sk_buff *skb,
6062                                       gro_result_t ret)
6063 {
6064         switch (ret) {
6065         case GRO_NORMAL:
6066         case GRO_HELD:
6067                 __skb_push(skb, ETH_HLEN);
6068                 skb->protocol = eth_type_trans(skb, skb->dev);
6069                 if (ret == GRO_NORMAL)
6070                         gro_normal_one(napi, skb);
6071                 break;
6072
6073         case GRO_DROP:
6074                 napi_reuse_skb(napi, skb);
6075                 break;
6076
6077         case GRO_MERGED_FREE:
6078                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6079                         napi_skb_free_stolen_head(skb);
6080                 else
6081                         napi_reuse_skb(napi, skb);
6082                 break;
6083
6084         case GRO_MERGED:
6085         case GRO_CONSUMED:
6086                 break;
6087         }
6088
6089         return ret;
6090 }
6091
6092 /* Upper GRO stack assumes network header starts at gro_offset=0
6093  * Drivers could call both napi_gro_frags() and napi_gro_receive()
6094  * We copy ethernet header into skb->data to have a common layout.
6095  */
6096 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6097 {
6098         struct sk_buff *skb = napi->skb;
6099         const struct ethhdr *eth;
6100         unsigned int hlen = sizeof(*eth);
6101
6102         napi->skb = NULL;
6103
6104         skb_reset_mac_header(skb);
6105         skb_gro_reset_offset(skb);
6106
6107         if (unlikely(skb_gro_header_hard(skb, hlen))) {
6108                 eth = skb_gro_header_slow(skb, hlen, 0);
6109                 if (unlikely(!eth)) {
6110                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6111                                              __func__, napi->dev->name);
6112                         napi_reuse_skb(napi, skb);
6113                         return NULL;
6114                 }
6115         } else {
6116                 eth = (const struct ethhdr *)skb->data;
6117                 gro_pull_from_frag0(skb, hlen);
6118                 NAPI_GRO_CB(skb)->frag0 += hlen;
6119                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
6120         }
6121         __skb_pull(skb, hlen);
6122
6123         /*
6124          * This works because the only protocols we care about don't require
6125          * special handling.
6126          * We'll fix it up properly in napi_frags_finish()
6127          */
6128         skb->protocol = eth->h_proto;
6129
6130         return skb;
6131 }
6132
6133 gro_result_t napi_gro_frags(struct napi_struct *napi)
6134 {
6135         gro_result_t ret;
6136         struct sk_buff *skb = napi_frags_skb(napi);
6137
6138         if (!skb)
6139                 return GRO_DROP;
6140
6141         trace_napi_gro_frags_entry(skb);
6142
6143         ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6144         trace_napi_gro_frags_exit(ret);
6145
6146         return ret;
6147 }
6148 EXPORT_SYMBOL(napi_gro_frags);
6149
6150 /* Compute the checksum from gro_offset and return the folded value
6151  * after adding in any pseudo checksum.
6152  */
6153 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6154 {
6155         __wsum wsum;
6156         __sum16 sum;
6157
6158         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6159
6160         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6161         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6162         /* See comments in __skb_checksum_complete(). */
6163         if (likely(!sum)) {
6164                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6165                     !skb->csum_complete_sw)
6166                         netdev_rx_csum_fault(skb->dev, skb);
6167         }
6168
6169         NAPI_GRO_CB(skb)->csum = wsum;
6170         NAPI_GRO_CB(skb)->csum_valid = 1;
6171
6172         return sum;
6173 }
6174 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6175
6176 static void net_rps_send_ipi(struct softnet_data *remsd)
6177 {
6178 #ifdef CONFIG_RPS
6179         while (remsd) {
6180                 struct softnet_data *next = remsd->rps_ipi_next;
6181
6182                 if (cpu_online(remsd->cpu))
6183                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
6184                 remsd = next;
6185         }
6186 #endif
6187 }
6188
6189 /*
6190  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6191  * Note: called with local irq disabled, but exits with local irq enabled.
6192  */
6193 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6194 {
6195 #ifdef CONFIG_RPS
6196         struct softnet_data *remsd = sd->rps_ipi_list;
6197
6198         if (remsd) {
6199                 sd->rps_ipi_list = NULL;
6200
6201                 local_irq_enable();
6202
6203                 /* Send pending IPI's to kick RPS processing on remote cpus. */
6204                 net_rps_send_ipi(remsd);
6205         } else
6206 #endif
6207                 local_irq_enable();
6208 }
6209
6210 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6211 {
6212 #ifdef CONFIG_RPS
6213         return sd->rps_ipi_list != NULL;
6214 #else
6215         return false;
6216 #endif
6217 }
6218
6219 static int process_backlog(struct napi_struct *napi, int quota)
6220 {
6221         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6222         bool again = true;
6223         int work = 0;
6224
6225         /* Check if we have pending ipi, its better to send them now,
6226          * not waiting net_rx_action() end.
6227          */
6228         if (sd_has_rps_ipi_waiting(sd)) {
6229                 local_irq_disable();
6230                 net_rps_action_and_irq_enable(sd);
6231         }
6232
6233         napi->weight = dev_rx_weight;
6234         while (again) {
6235                 struct sk_buff *skb;
6236
6237                 while ((skb = __skb_dequeue(&sd->process_queue))) {
6238                         rcu_read_lock();
6239                         __netif_receive_skb(skb);
6240                         rcu_read_unlock();
6241                         input_queue_head_incr(sd);
6242                         if (++work >= quota)
6243                                 return work;
6244
6245                 }
6246
6247                 local_irq_disable();
6248                 rps_lock(sd);
6249                 if (skb_queue_empty(&sd->input_pkt_queue)) {
6250                         /*
6251                          * Inline a custom version of __napi_complete().
6252                          * only current cpu owns and manipulates this napi,
6253                          * and NAPI_STATE_SCHED is the only possible flag set
6254                          * on backlog.
6255                          * We can use a plain write instead of clear_bit(),
6256                          * and we dont need an smp_mb() memory barrier.
6257                          */
6258                         napi->state = 0;
6259                         again = false;
6260                 } else {
6261                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
6262                                                    &sd->process_queue);
6263                 }
6264                 rps_unlock(sd);
6265                 local_irq_enable();
6266         }
6267
6268         return work;
6269 }
6270
6271 /**
6272  * __napi_schedule - schedule for receive
6273  * @n: entry to schedule
6274  *
6275  * The entry's receive function will be scheduled to run.
6276  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6277  */
6278 void __napi_schedule(struct napi_struct *n)
6279 {
6280         unsigned long flags;
6281
6282         local_irq_save(flags);
6283         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6284         local_irq_restore(flags);
6285 }
6286 EXPORT_SYMBOL(__napi_schedule);
6287
6288 /**
6289  *      napi_schedule_prep - check if napi can be scheduled
6290  *      @n: napi context
6291  *
6292  * Test if NAPI routine is already running, and if not mark
6293  * it as running.  This is used as a condition variable
6294  * insure only one NAPI poll instance runs.  We also make
6295  * sure there is no pending NAPI disable.
6296  */
6297 bool napi_schedule_prep(struct napi_struct *n)
6298 {
6299         unsigned long val, new;
6300
6301         do {
6302                 val = READ_ONCE(n->state);
6303                 if (unlikely(val & NAPIF_STATE_DISABLE))
6304                         return false;
6305                 new = val | NAPIF_STATE_SCHED;
6306
6307                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6308                  * This was suggested by Alexander Duyck, as compiler
6309                  * emits better code than :
6310                  * if (val & NAPIF_STATE_SCHED)
6311                  *     new |= NAPIF_STATE_MISSED;
6312                  */
6313                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6314                                                    NAPIF_STATE_MISSED;
6315         } while (cmpxchg(&n->state, val, new) != val);
6316
6317         return !(val & NAPIF_STATE_SCHED);
6318 }
6319 EXPORT_SYMBOL(napi_schedule_prep);
6320
6321 /**
6322  * __napi_schedule_irqoff - schedule for receive
6323  * @n: entry to schedule
6324  *
6325  * Variant of __napi_schedule() assuming hard irqs are masked
6326  */
6327 void __napi_schedule_irqoff(struct napi_struct *n)
6328 {
6329         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6330 }
6331 EXPORT_SYMBOL(__napi_schedule_irqoff);
6332
6333 bool napi_complete_done(struct napi_struct *n, int work_done)
6334 {
6335         unsigned long flags, val, new, timeout = 0;
6336         bool ret = true;
6337
6338         /*
6339          * 1) Don't let napi dequeue from the cpu poll list
6340          *    just in case its running on a different cpu.
6341          * 2) If we are busy polling, do nothing here, we have
6342          *    the guarantee we will be called later.
6343          */
6344         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6345                                  NAPIF_STATE_IN_BUSY_POLL)))
6346                 return false;
6347
6348         if (work_done) {
6349                 if (n->gro_bitmask)
6350                         timeout = READ_ONCE(n->dev->gro_flush_timeout);
6351                 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6352         }
6353         if (n->defer_hard_irqs_count > 0) {
6354                 n->defer_hard_irqs_count--;
6355                 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6356                 if (timeout)
6357                         ret = false;
6358         }
6359         if (n->gro_bitmask) {
6360                 /* When the NAPI instance uses a timeout and keeps postponing
6361                  * it, we need to bound somehow the time packets are kept in
6362                  * the GRO layer
6363                  */
6364                 napi_gro_flush(n, !!timeout);
6365         }
6366
6367         gro_normal_list(n);
6368
6369         if (unlikely(!list_empty(&n->poll_list))) {
6370                 /* If n->poll_list is not empty, we need to mask irqs */
6371                 local_irq_save(flags);
6372                 list_del_init(&n->poll_list);
6373                 local_irq_restore(flags);
6374         }
6375
6376         do {
6377                 val = READ_ONCE(n->state);
6378
6379                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6380
6381                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6382
6383                 /* If STATE_MISSED was set, leave STATE_SCHED set,
6384                  * because we will call napi->poll() one more time.
6385                  * This C code was suggested by Alexander Duyck to help gcc.
6386                  */
6387                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6388                                                     NAPIF_STATE_SCHED;
6389         } while (cmpxchg(&n->state, val, new) != val);
6390
6391         if (unlikely(val & NAPIF_STATE_MISSED)) {
6392                 __napi_schedule(n);
6393                 return false;
6394         }
6395
6396         if (timeout)
6397                 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6398                               HRTIMER_MODE_REL_PINNED);
6399         return ret;
6400 }
6401 EXPORT_SYMBOL(napi_complete_done);
6402
6403 /* must be called under rcu_read_lock(), as we dont take a reference */
6404 static struct napi_struct *napi_by_id(unsigned int napi_id)
6405 {
6406         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6407         struct napi_struct *napi;
6408
6409         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6410                 if (napi->napi_id == napi_id)
6411                         return napi;
6412
6413         return NULL;
6414 }
6415
6416 #if defined(CONFIG_NET_RX_BUSY_POLL)
6417
6418 #define BUSY_POLL_BUDGET 8
6419
6420 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6421 {
6422         int rc;
6423
6424         /* Busy polling means there is a high chance device driver hard irq
6425          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6426          * set in napi_schedule_prep().
6427          * Since we are about to call napi->poll() once more, we can safely
6428          * clear NAPI_STATE_MISSED.
6429          *
6430          * Note: x86 could use a single "lock and ..." instruction
6431          * to perform these two clear_bit()
6432          */
6433         clear_bit(NAPI_STATE_MISSED, &napi->state);
6434         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6435
6436         local_bh_disable();
6437
6438         /* All we really want here is to re-enable device interrupts.
6439          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6440          */
6441         rc = napi->poll(napi, BUSY_POLL_BUDGET);
6442         /* We can't gro_normal_list() here, because napi->poll() might have
6443          * rearmed the napi (napi_complete_done()) in which case it could
6444          * already be running on another CPU.
6445          */
6446         trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6447         netpoll_poll_unlock(have_poll_lock);
6448         if (rc == BUSY_POLL_BUDGET) {
6449                 /* As the whole budget was spent, we still own the napi so can
6450                  * safely handle the rx_list.
6451                  */
6452                 gro_normal_list(napi);
6453                 __napi_schedule(napi);
6454         }
6455         local_bh_enable();
6456 }
6457
6458 void napi_busy_loop(unsigned int napi_id,
6459                     bool (*loop_end)(void *, unsigned long),
6460                     void *loop_end_arg)
6461 {
6462         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6463         int (*napi_poll)(struct napi_struct *napi, int budget);
6464         void *have_poll_lock = NULL;
6465         struct napi_struct *napi;
6466
6467 restart:
6468         napi_poll = NULL;
6469
6470         rcu_read_lock();
6471
6472         napi = napi_by_id(napi_id);
6473         if (!napi)
6474                 goto out;
6475
6476         preempt_disable();
6477         for (;;) {
6478                 int work = 0;
6479
6480                 local_bh_disable();
6481                 if (!napi_poll) {
6482                         unsigned long val = READ_ONCE(napi->state);
6483
6484                         /* If multiple threads are competing for this napi,
6485                          * we avoid dirtying napi->state as much as we can.
6486                          */
6487                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6488                                    NAPIF_STATE_IN_BUSY_POLL))
6489                                 goto count;
6490                         if (cmpxchg(&napi->state, val,
6491                                     val | NAPIF_STATE_IN_BUSY_POLL |
6492                                           NAPIF_STATE_SCHED) != val)
6493                                 goto count;
6494                         have_poll_lock = netpoll_poll_lock(napi);
6495                         napi_poll = napi->poll;
6496                 }
6497                 work = napi_poll(napi, BUSY_POLL_BUDGET);
6498                 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6499                 gro_normal_list(napi);
6500 count:
6501                 if (work > 0)
6502                         __NET_ADD_STATS(dev_net(napi->dev),
6503                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6504                 local_bh_enable();
6505
6506                 if (!loop_end || loop_end(loop_end_arg, start_time))
6507                         break;
6508
6509                 if (unlikely(need_resched())) {
6510                         if (napi_poll)
6511                                 busy_poll_stop(napi, have_poll_lock);
6512                         preempt_enable();
6513                         rcu_read_unlock();
6514                         cond_resched();
6515                         if (loop_end(loop_end_arg, start_time))
6516                                 return;
6517                         goto restart;
6518                 }
6519                 cpu_relax();
6520         }
6521         if (napi_poll)
6522                 busy_poll_stop(napi, have_poll_lock);
6523         preempt_enable();
6524 out:
6525         rcu_read_unlock();
6526 }
6527 EXPORT_SYMBOL(napi_busy_loop);
6528
6529 #endif /* CONFIG_NET_RX_BUSY_POLL */
6530
6531 static void napi_hash_add(struct napi_struct *napi)
6532 {
6533         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6534             test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6535                 return;
6536
6537         spin_lock(&napi_hash_lock);
6538
6539         /* 0..NR_CPUS range is reserved for sender_cpu use */
6540         do {
6541                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6542                         napi_gen_id = MIN_NAPI_ID;
6543         } while (napi_by_id(napi_gen_id));
6544         napi->napi_id = napi_gen_id;
6545
6546         hlist_add_head_rcu(&napi->napi_hash_node,
6547                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6548
6549         spin_unlock(&napi_hash_lock);
6550 }
6551
6552 /* Warning : caller is responsible to make sure rcu grace period
6553  * is respected before freeing memory containing @napi
6554  */
6555 bool napi_hash_del(struct napi_struct *napi)
6556 {
6557         bool rcu_sync_needed = false;
6558
6559         spin_lock(&napi_hash_lock);
6560
6561         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6562                 rcu_sync_needed = true;
6563                 hlist_del_rcu(&napi->napi_hash_node);
6564         }
6565         spin_unlock(&napi_hash_lock);
6566         return rcu_sync_needed;
6567 }
6568 EXPORT_SYMBOL_GPL(napi_hash_del);
6569
6570 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6571 {
6572         struct napi_struct *napi;
6573
6574         napi = container_of(timer, struct napi_struct, timer);
6575
6576         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6577          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6578          */
6579         if (!napi_disable_pending(napi) &&
6580             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6581                 __napi_schedule_irqoff(napi);
6582
6583         return HRTIMER_NORESTART;
6584 }
6585
6586 static void init_gro_hash(struct napi_struct *napi)
6587 {
6588         int i;
6589
6590         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6591                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6592                 napi->gro_hash[i].count = 0;
6593         }
6594         napi->gro_bitmask = 0;
6595 }
6596
6597 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6598                     int (*poll)(struct napi_struct *, int), int weight)
6599 {
6600         INIT_LIST_HEAD(&napi->poll_list);
6601         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6602         napi->timer.function = napi_watchdog;
6603         init_gro_hash(napi);
6604         napi->skb = NULL;
6605         INIT_LIST_HEAD(&napi->rx_list);
6606         napi->rx_count = 0;
6607         napi->poll = poll;
6608         if (weight > NAPI_POLL_WEIGHT)
6609                 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6610                                 weight);
6611         napi->weight = weight;
6612         list_add(&napi->dev_list, &dev->napi_list);
6613         napi->dev = dev;
6614 #ifdef CONFIG_NETPOLL
6615         napi->poll_owner = -1;
6616 #endif
6617         set_bit(NAPI_STATE_SCHED, &napi->state);
6618         napi_hash_add(napi);
6619 }
6620 EXPORT_SYMBOL(netif_napi_add);
6621
6622 void napi_disable(struct napi_struct *n)
6623 {
6624         might_sleep();
6625         set_bit(NAPI_STATE_DISABLE, &n->state);
6626
6627         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6628                 msleep(1);
6629         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6630                 msleep(1);
6631
6632         hrtimer_cancel(&n->timer);
6633
6634         clear_bit(NAPI_STATE_DISABLE, &n->state);
6635 }
6636 EXPORT_SYMBOL(napi_disable);
6637
6638 static void flush_gro_hash(struct napi_struct *napi)
6639 {
6640         int i;
6641
6642         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6643                 struct sk_buff *skb, *n;
6644
6645                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6646                         kfree_skb(skb);
6647                 napi->gro_hash[i].count = 0;
6648         }
6649 }
6650
6651 /* Must be called in process context */
6652 void netif_napi_del(struct napi_struct *napi)
6653 {
6654         might_sleep();
6655         if (napi_hash_del(napi))
6656                 synchronize_net();
6657         list_del_init(&napi->dev_list);
6658         napi_free_frags(napi);
6659
6660         flush_gro_hash(napi);
6661         napi->gro_bitmask = 0;
6662 }
6663 EXPORT_SYMBOL(netif_napi_del);
6664
6665 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6666 {
6667         void *have;
6668         int work, weight;
6669
6670         list_del_init(&n->poll_list);
6671
6672         have = netpoll_poll_lock(n);
6673
6674         weight = n->weight;
6675
6676         /* This NAPI_STATE_SCHED test is for avoiding a race
6677          * with netpoll's poll_napi().  Only the entity which
6678          * obtains the lock and sees NAPI_STATE_SCHED set will
6679          * actually make the ->poll() call.  Therefore we avoid
6680          * accidentally calling ->poll() when NAPI is not scheduled.
6681          */
6682         work = 0;
6683         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6684                 work = n->poll(n, weight);
6685                 trace_napi_poll(n, work, weight);
6686         }
6687
6688         WARN_ON_ONCE(work > weight);
6689
6690         if (likely(work < weight))
6691                 goto out_unlock;
6692
6693         /* Drivers must not modify the NAPI state if they
6694          * consume the entire weight.  In such cases this code
6695          * still "owns" the NAPI instance and therefore can
6696          * move the instance around on the list at-will.
6697          */
6698         if (unlikely(napi_disable_pending(n))) {
6699                 napi_complete(n);
6700                 goto out_unlock;
6701         }
6702
6703         if (n->gro_bitmask) {
6704                 /* flush too old packets
6705                  * If HZ < 1000, flush all packets.
6706                  */
6707                 napi_gro_flush(n, HZ >= 1000);
6708         }
6709
6710         gro_normal_list(n);
6711
6712         /* Some drivers may have called napi_schedule
6713          * prior to exhausting their budget.
6714          */
6715         if (unlikely(!list_empty(&n->poll_list))) {
6716                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6717                              n->dev ? n->dev->name : "backlog");
6718                 goto out_unlock;
6719         }
6720
6721         list_add_tail(&n->poll_list, repoll);
6722
6723 out_unlock:
6724         netpoll_poll_unlock(have);
6725
6726         return work;
6727 }
6728
6729 static __latent_entropy void net_rx_action(struct softirq_action *h)
6730 {
6731         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6732         unsigned long time_limit = jiffies +
6733                 usecs_to_jiffies(netdev_budget_usecs);
6734         int budget = netdev_budget;
6735         LIST_HEAD(list);
6736         LIST_HEAD(repoll);
6737
6738         local_irq_disable();
6739         list_splice_init(&sd->poll_list, &list);
6740         local_irq_enable();
6741
6742         for (;;) {
6743                 struct napi_struct *n;
6744
6745                 if (list_empty(&list)) {
6746                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6747                                 goto out;
6748                         break;
6749                 }
6750
6751                 n = list_first_entry(&list, struct napi_struct, poll_list);
6752                 budget -= napi_poll(n, &repoll);
6753
6754                 /* If softirq window is exhausted then punt.
6755                  * Allow this to run for 2 jiffies since which will allow
6756                  * an average latency of 1.5/HZ.
6757                  */
6758                 if (unlikely(budget <= 0 ||
6759                              time_after_eq(jiffies, time_limit))) {
6760                         sd->time_squeeze++;
6761                         break;
6762                 }
6763         }
6764
6765         local_irq_disable();
6766
6767         list_splice_tail_init(&sd->poll_list, &list);
6768         list_splice_tail(&repoll, &list);
6769         list_splice(&list, &sd->poll_list);
6770         if (!list_empty(&sd->poll_list))
6771                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6772
6773         net_rps_action_and_irq_enable(sd);
6774 out:
6775         __kfree_skb_flush();
6776 }
6777
6778 struct netdev_adjacent {
6779         struct net_device *dev;
6780
6781         /* upper master flag, there can only be one master device per list */
6782         bool master;
6783
6784         /* lookup ignore flag */
6785         bool ignore;
6786
6787         /* counter for the number of times this device was added to us */
6788         u16 ref_nr;
6789
6790         /* private field for the users */
6791         void *private;
6792
6793         struct list_head list;
6794         struct rcu_head rcu;
6795 };
6796
6797 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6798                                                  struct list_head *adj_list)
6799 {
6800         struct netdev_adjacent *adj;
6801
6802         list_for_each_entry(adj, adj_list, list) {
6803                 if (adj->dev == adj_dev)
6804                         return adj;
6805         }
6806         return NULL;
6807 }
6808
6809 static int ____netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6810 {
6811         struct net_device *dev = data;
6812
6813         return upper_dev == dev;
6814 }
6815
6816 /**
6817  * netdev_has_upper_dev - Check if device is linked to an upper device
6818  * @dev: device
6819  * @upper_dev: upper device to check
6820  *
6821  * Find out if a device is linked to specified upper device and return true
6822  * in case it is. Note that this checks only immediate upper device,
6823  * not through a complete stack of devices. The caller must hold the RTNL lock.
6824  */
6825 bool netdev_has_upper_dev(struct net_device *dev,
6826                           struct net_device *upper_dev)
6827 {
6828         ASSERT_RTNL();
6829
6830         return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6831                                              upper_dev);
6832 }
6833 EXPORT_SYMBOL(netdev_has_upper_dev);
6834
6835 /**
6836  * netdev_has_upper_dev_all - Check if device is linked to an upper device
6837  * @dev: device
6838  * @upper_dev: upper device to check
6839  *
6840  * Find out if a device is linked to specified upper device and return true
6841  * in case it is. Note that this checks the entire upper device chain.
6842  * The caller must hold rcu lock.
6843  */
6844
6845 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6846                                   struct net_device *upper_dev)
6847 {
6848         return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6849                                                upper_dev);
6850 }
6851 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6852
6853 /**
6854  * netdev_has_any_upper_dev - Check if device is linked to some device
6855  * @dev: device
6856  *
6857  * Find out if a device is linked to an upper device and return true in case
6858  * it is. The caller must hold the RTNL lock.
6859  */
6860 bool netdev_has_any_upper_dev(struct net_device *dev)
6861 {
6862         ASSERT_RTNL();
6863
6864         return !list_empty(&dev->adj_list.upper);
6865 }
6866 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6867
6868 /**
6869  * netdev_master_upper_dev_get - Get master upper device
6870  * @dev: device
6871  *
6872  * Find a master upper device and return pointer to it or NULL in case
6873  * it's not there. The caller must hold the RTNL lock.
6874  */
6875 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6876 {
6877         struct netdev_adjacent *upper;
6878
6879         ASSERT_RTNL();
6880
6881         if (list_empty(&dev->adj_list.upper))
6882                 return NULL;
6883
6884         upper = list_first_entry(&dev->adj_list.upper,
6885                                  struct netdev_adjacent, list);
6886         if (likely(upper->master))
6887                 return upper->dev;
6888         return NULL;
6889 }
6890 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6891
6892 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6893 {
6894         struct netdev_adjacent *upper;
6895
6896         ASSERT_RTNL();
6897
6898         if (list_empty(&dev->adj_list.upper))
6899                 return NULL;
6900
6901         upper = list_first_entry(&dev->adj_list.upper,
6902                                  struct netdev_adjacent, list);
6903         if (likely(upper->master) && !upper->ignore)
6904                 return upper->dev;
6905         return NULL;
6906 }
6907
6908 /**
6909  * netdev_has_any_lower_dev - Check if device is linked to some device
6910  * @dev: device
6911  *
6912  * Find out if a device is linked to a lower device and return true in case
6913  * it is. The caller must hold the RTNL lock.
6914  */
6915 static bool netdev_has_any_lower_dev(struct net_device *dev)
6916 {
6917         ASSERT_RTNL();
6918
6919         return !list_empty(&dev->adj_list.lower);
6920 }
6921
6922 void *netdev_adjacent_get_private(struct list_head *adj_list)
6923 {
6924         struct netdev_adjacent *adj;
6925
6926         adj = list_entry(adj_list, struct netdev_adjacent, list);
6927
6928         return adj->private;
6929 }
6930 EXPORT_SYMBOL(netdev_adjacent_get_private);
6931
6932 /**
6933  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6934  * @dev: device
6935  * @iter: list_head ** of the current position
6936  *
6937  * Gets the next device from the dev's upper list, starting from iter
6938  * position. The caller must hold RCU read lock.
6939  */
6940 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6941                                                  struct list_head **iter)
6942 {
6943         struct netdev_adjacent *upper;
6944
6945         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6946
6947         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6948
6949         if (&upper->list == &dev->adj_list.upper)
6950                 return NULL;
6951
6952         *iter = &upper->list;
6953
6954         return upper->dev;
6955 }
6956 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6957
6958 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6959                                                   struct list_head **iter,
6960                                                   bool *ignore)
6961 {
6962         struct netdev_adjacent *upper;
6963
6964         upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6965
6966         if (&upper->list == &dev->adj_list.upper)
6967                 return NULL;
6968
6969         *iter = &upper->list;
6970         *ignore = upper->ignore;
6971
6972         return upper->dev;
6973 }
6974
6975 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6976                                                     struct list_head **iter)
6977 {
6978         struct netdev_adjacent *upper;
6979
6980         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6981
6982         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6983
6984         if (&upper->list == &dev->adj_list.upper)
6985                 return NULL;
6986
6987         *iter = &upper->list;
6988
6989         return upper->dev;
6990 }
6991
6992 static int __netdev_walk_all_upper_dev(struct net_device *dev,
6993                                        int (*fn)(struct net_device *dev,
6994                                                  void *data),
6995                                        void *data)
6996 {
6997         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6998         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6999         int ret, cur = 0;
7000         bool ignore;
7001
7002         now = dev;
7003         iter = &dev->adj_list.upper;
7004
7005         while (1) {
7006                 if (now != dev) {
7007                         ret = fn(now, data);
7008                         if (ret)
7009                                 return ret;
7010                 }
7011
7012                 next = NULL;
7013                 while (1) {
7014                         udev = __netdev_next_upper_dev(now, &iter, &ignore);
7015                         if (!udev)
7016                                 break;
7017                         if (ignore)
7018                                 continue;
7019
7020                         next = udev;
7021                         niter = &udev->adj_list.upper;
7022                         dev_stack[cur] = now;
7023                         iter_stack[cur++] = iter;
7024                         break;
7025                 }
7026
7027                 if (!next) {
7028                         if (!cur)
7029                                 return 0;
7030                         next = dev_stack[--cur];
7031                         niter = iter_stack[cur];
7032                 }
7033
7034                 now = next;
7035                 iter = niter;
7036         }
7037
7038         return 0;
7039 }
7040
7041 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7042                                   int (*fn)(struct net_device *dev,
7043                                             void *data),
7044                                   void *data)
7045 {
7046         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7047         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7048         int ret, cur = 0;
7049
7050         now = dev;
7051         iter = &dev->adj_list.upper;
7052
7053         while (1) {
7054                 if (now != dev) {
7055                         ret = fn(now, data);
7056                         if (ret)
7057                                 return ret;
7058                 }
7059
7060                 next = NULL;
7061                 while (1) {
7062                         udev = netdev_next_upper_dev_rcu(now, &iter);
7063                         if (!udev)
7064                                 break;
7065
7066                         next = udev;
7067                         niter = &udev->adj_list.upper;
7068                         dev_stack[cur] = now;
7069                         iter_stack[cur++] = iter;
7070                         break;
7071                 }
7072
7073                 if (!next) {
7074                         if (!cur)
7075                                 return 0;
7076                         next = dev_stack[--cur];
7077                         niter = iter_stack[cur];
7078                 }
7079
7080                 now = next;
7081                 iter = niter;
7082         }
7083
7084         return 0;
7085 }
7086 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7087
7088 static bool __netdev_has_upper_dev(struct net_device *dev,
7089                                    struct net_device *upper_dev)
7090 {
7091         ASSERT_RTNL();
7092
7093         return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7094                                            upper_dev);
7095 }
7096
7097 /**
7098  * netdev_lower_get_next_private - Get the next ->private from the
7099  *                                 lower neighbour list
7100  * @dev: device
7101  * @iter: list_head ** of the current position
7102  *
7103  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7104  * list, starting from iter position. The caller must hold either hold the
7105  * RTNL lock or its own locking that guarantees that the neighbour lower
7106  * list will remain unchanged.
7107  */
7108 void *netdev_lower_get_next_private(struct net_device *dev,
7109                                     struct list_head **iter)
7110 {
7111         struct netdev_adjacent *lower;
7112
7113         lower = list_entry(*iter, struct netdev_adjacent, list);
7114
7115         if (&lower->list == &dev->adj_list.lower)
7116                 return NULL;
7117
7118         *iter = lower->list.next;
7119
7120         return lower->private;
7121 }
7122 EXPORT_SYMBOL(netdev_lower_get_next_private);
7123
7124 /**
7125  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7126  *                                     lower neighbour list, RCU
7127  *                                     variant
7128  * @dev: device
7129  * @iter: list_head ** of the current position
7130  *
7131  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7132  * list, starting from iter position. The caller must hold RCU read lock.
7133  */
7134 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7135                                         struct list_head **iter)
7136 {
7137         struct netdev_adjacent *lower;
7138
7139         WARN_ON_ONCE(!rcu_read_lock_held());
7140
7141         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7142
7143         if (&lower->list == &dev->adj_list.lower)
7144                 return NULL;
7145
7146         *iter = &lower->list;
7147
7148         return lower->private;
7149 }
7150 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7151
7152 /**
7153  * netdev_lower_get_next - Get the next device from the lower neighbour
7154  *                         list
7155  * @dev: device
7156  * @iter: list_head ** of the current position
7157  *
7158  * Gets the next netdev_adjacent from the dev's lower neighbour
7159  * list, starting from iter position. The caller must hold RTNL lock or
7160  * its own locking that guarantees that the neighbour lower
7161  * list will remain unchanged.
7162  */
7163 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7164 {
7165         struct netdev_adjacent *lower;
7166
7167         lower = list_entry(*iter, struct netdev_adjacent, list);
7168
7169         if (&lower->list == &dev->adj_list.lower)
7170                 return NULL;
7171
7172         *iter = lower->list.next;
7173
7174         return lower->dev;
7175 }
7176 EXPORT_SYMBOL(netdev_lower_get_next);
7177
7178 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7179                                                 struct list_head **iter)
7180 {
7181         struct netdev_adjacent *lower;
7182
7183         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7184
7185         if (&lower->list == &dev->adj_list.lower)
7186                 return NULL;
7187
7188         *iter = &lower->list;
7189
7190         return lower->dev;
7191 }
7192
7193 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7194                                                   struct list_head **iter,
7195                                                   bool *ignore)
7196 {
7197         struct netdev_adjacent *lower;
7198
7199         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7200
7201         if (&lower->list == &dev->adj_list.lower)
7202                 return NULL;
7203
7204         *iter = &lower->list;
7205         *ignore = lower->ignore;
7206
7207         return lower->dev;
7208 }
7209
7210 int netdev_walk_all_lower_dev(struct net_device *dev,
7211                               int (*fn)(struct net_device *dev,
7212                                         void *data),
7213                               void *data)
7214 {
7215         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7216         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7217         int ret, cur = 0;
7218
7219         now = dev;
7220         iter = &dev->adj_list.lower;
7221
7222         while (1) {
7223                 if (now != dev) {
7224                         ret = fn(now, data);
7225                         if (ret)
7226                                 return ret;
7227                 }
7228
7229                 next = NULL;
7230                 while (1) {
7231                         ldev = netdev_next_lower_dev(now, &iter);
7232                         if (!ldev)
7233                                 break;
7234
7235                         next = ldev;
7236                         niter = &ldev->adj_list.lower;
7237                         dev_stack[cur] = now;
7238                         iter_stack[cur++] = iter;
7239                         break;
7240                 }
7241
7242                 if (!next) {
7243                         if (!cur)
7244                                 return 0;
7245                         next = dev_stack[--cur];
7246                         niter = iter_stack[cur];
7247                 }
7248
7249                 now = next;
7250                 iter = niter;
7251         }
7252
7253         return 0;
7254 }
7255 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7256
7257 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7258                                        int (*fn)(struct net_device *dev,
7259                                                  void *data),
7260                                        void *data)
7261 {
7262         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7263         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7264         int ret, cur = 0;
7265         bool ignore;
7266
7267         now = dev;
7268         iter = &dev->adj_list.lower;
7269
7270         while (1) {
7271                 if (now != dev) {
7272                         ret = fn(now, data);
7273                         if (ret)
7274                                 return ret;
7275                 }
7276
7277                 next = NULL;
7278                 while (1) {
7279                         ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7280                         if (!ldev)
7281                                 break;
7282                         if (ignore)
7283                                 continue;
7284
7285                         next = ldev;
7286                         niter = &ldev->adj_list.lower;
7287                         dev_stack[cur] = now;
7288                         iter_stack[cur++] = iter;
7289                         break;
7290                 }
7291
7292                 if (!next) {
7293                         if (!cur)
7294                                 return 0;
7295                         next = dev_stack[--cur];
7296                         niter = iter_stack[cur];
7297                 }
7298
7299                 now = next;
7300                 iter = niter;
7301         }
7302
7303         return 0;
7304 }
7305
7306 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7307                                              struct list_head **iter)
7308 {
7309         struct netdev_adjacent *lower;
7310
7311         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7312         if (&lower->list == &dev->adj_list.lower)
7313                 return NULL;
7314
7315         *iter = &lower->list;
7316
7317         return lower->dev;
7318 }
7319 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7320
7321 static u8 __netdev_upper_depth(struct net_device *dev)
7322 {
7323         struct net_device *udev;
7324         struct list_head *iter;
7325         u8 max_depth = 0;
7326         bool ignore;
7327
7328         for (iter = &dev->adj_list.upper,
7329              udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7330              udev;
7331              udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7332                 if (ignore)
7333                         continue;
7334                 if (max_depth < udev->upper_level)
7335                         max_depth = udev->upper_level;
7336         }
7337
7338         return max_depth;
7339 }
7340
7341 static u8 __netdev_lower_depth(struct net_device *dev)
7342 {
7343         struct net_device *ldev;
7344         struct list_head *iter;
7345         u8 max_depth = 0;
7346         bool ignore;
7347
7348         for (iter = &dev->adj_list.lower,
7349              ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7350              ldev;
7351              ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7352                 if (ignore)
7353                         continue;
7354                 if (max_depth < ldev->lower_level)
7355                         max_depth = ldev->lower_level;
7356         }
7357
7358         return max_depth;
7359 }
7360
7361 static int __netdev_update_upper_level(struct net_device *dev, void *data)
7362 {
7363         dev->upper_level = __netdev_upper_depth(dev) + 1;
7364         return 0;
7365 }
7366
7367 static int __netdev_update_lower_level(struct net_device *dev, void *data)
7368 {
7369         dev->lower_level = __netdev_lower_depth(dev) + 1;
7370         return 0;
7371 }
7372
7373 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7374                                   int (*fn)(struct net_device *dev,
7375                                             void *data),
7376                                   void *data)
7377 {
7378         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7379         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7380         int ret, cur = 0;
7381
7382         now = dev;
7383         iter = &dev->adj_list.lower;
7384
7385         while (1) {
7386                 if (now != dev) {
7387                         ret = fn(now, data);
7388                         if (ret)
7389                                 return ret;
7390                 }
7391
7392                 next = NULL;
7393                 while (1) {
7394                         ldev = netdev_next_lower_dev_rcu(now, &iter);
7395                         if (!ldev)
7396                                 break;
7397
7398                         next = ldev;
7399                         niter = &ldev->adj_list.lower;
7400                         dev_stack[cur] = now;
7401                         iter_stack[cur++] = iter;
7402                         break;
7403                 }
7404
7405                 if (!next) {
7406                         if (!cur)
7407                                 return 0;
7408                         next = dev_stack[--cur];
7409                         niter = iter_stack[cur];
7410                 }
7411
7412                 now = next;
7413                 iter = niter;
7414         }
7415
7416         return 0;
7417 }
7418 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7419
7420 /**
7421  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7422  *                                     lower neighbour list, RCU
7423  *                                     variant
7424  * @dev: device
7425  *
7426  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7427  * list. The caller must hold RCU read lock.
7428  */
7429 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7430 {
7431         struct netdev_adjacent *lower;
7432
7433         lower = list_first_or_null_rcu(&dev->adj_list.lower,
7434                         struct netdev_adjacent, list);
7435         if (lower)
7436                 return lower->private;
7437         return NULL;
7438 }
7439 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7440
7441 /**
7442  * netdev_master_upper_dev_get_rcu - Get master upper device
7443  * @dev: device
7444  *
7445  * Find a master upper device and return pointer to it or NULL in case
7446  * it's not there. The caller must hold the RCU read lock.
7447  */
7448 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7449 {
7450         struct netdev_adjacent *upper;
7451
7452         upper = list_first_or_null_rcu(&dev->adj_list.upper,
7453                                        struct netdev_adjacent, list);
7454         if (upper && likely(upper->master))
7455                 return upper->dev;
7456         return NULL;
7457 }
7458 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7459
7460 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7461                               struct net_device *adj_dev,
7462                               struct list_head *dev_list)
7463 {
7464         char linkname[IFNAMSIZ+7];
7465
7466         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7467                 "upper_%s" : "lower_%s", adj_dev->name);
7468         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7469                                  linkname);
7470 }
7471 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7472                                char *name,
7473                                struct list_head *dev_list)
7474 {
7475         char linkname[IFNAMSIZ+7];
7476
7477         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7478                 "upper_%s" : "lower_%s", name);
7479         sysfs_remove_link(&(dev->dev.kobj), linkname);
7480 }
7481
7482 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7483                                                  struct net_device *adj_dev,
7484                                                  struct list_head *dev_list)
7485 {
7486         return (dev_list == &dev->adj_list.upper ||
7487                 dev_list == &dev->adj_list.lower) &&
7488                 net_eq(dev_net(dev), dev_net(adj_dev));
7489 }
7490
7491 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7492                                         struct net_device *adj_dev,
7493                                         struct list_head *dev_list,
7494                                         void *private, bool master)
7495 {
7496         struct netdev_adjacent *adj;
7497         int ret;
7498
7499         adj = __netdev_find_adj(adj_dev, dev_list);
7500
7501         if (adj) {
7502                 adj->ref_nr += 1;
7503                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7504                          dev->name, adj_dev->name, adj->ref_nr);
7505
7506                 return 0;
7507         }
7508
7509         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7510         if (!adj)
7511                 return -ENOMEM;
7512
7513         adj->dev = adj_dev;
7514         adj->master = master;
7515         adj->ref_nr = 1;
7516         adj->private = private;
7517         adj->ignore = false;
7518         dev_hold(adj_dev);
7519
7520         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7521                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7522
7523         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7524                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7525                 if (ret)
7526                         goto free_adj;
7527         }
7528
7529         /* Ensure that master link is always the first item in list. */
7530         if (master) {
7531                 ret = sysfs_create_link(&(dev->dev.kobj),
7532                                         &(adj_dev->dev.kobj), "master");
7533                 if (ret)
7534                         goto remove_symlinks;
7535
7536                 list_add_rcu(&adj->list, dev_list);
7537         } else {
7538                 list_add_tail_rcu(&adj->list, dev_list);
7539         }
7540
7541         return 0;
7542
7543 remove_symlinks:
7544         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7545                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7546 free_adj:
7547         kfree(adj);
7548         dev_put(adj_dev);
7549
7550         return ret;
7551 }
7552
7553 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7554                                          struct net_device *adj_dev,
7555                                          u16 ref_nr,
7556                                          struct list_head *dev_list)
7557 {
7558         struct netdev_adjacent *adj;
7559
7560         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7561                  dev->name, adj_dev->name, ref_nr);
7562
7563         adj = __netdev_find_adj(adj_dev, dev_list);
7564
7565         if (!adj) {
7566                 pr_err("Adjacency does not exist for device %s from %s\n",
7567                        dev->name, adj_dev->name);
7568                 WARN_ON(1);
7569                 return;
7570         }
7571
7572         if (adj->ref_nr > ref_nr) {
7573                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7574                          dev->name, adj_dev->name, ref_nr,
7575                          adj->ref_nr - ref_nr);
7576                 adj->ref_nr -= ref_nr;
7577                 return;
7578         }
7579
7580         if (adj->master)
7581                 sysfs_remove_link(&(dev->dev.kobj), "master");
7582
7583         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7584                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7585
7586         list_del_rcu(&adj->list);
7587         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7588                  adj_dev->name, dev->name, adj_dev->name);
7589         dev_put(adj_dev);
7590         kfree_rcu(adj, rcu);
7591 }
7592
7593 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7594                                             struct net_device *upper_dev,
7595                                             struct list_head *up_list,
7596                                             struct list_head *down_list,
7597                                             void *private, bool master)
7598 {
7599         int ret;
7600
7601         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7602                                            private, master);
7603         if (ret)
7604                 return ret;
7605
7606         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7607                                            private, false);
7608         if (ret) {
7609                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7610                 return ret;
7611         }
7612
7613         return 0;
7614 }
7615
7616 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7617                                                struct net_device *upper_dev,
7618                                                u16 ref_nr,
7619                                                struct list_head *up_list,
7620                                                struct list_head *down_list)
7621 {
7622         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7623         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7624 }
7625
7626 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7627                                                 struct net_device *upper_dev,
7628                                                 void *private, bool master)
7629 {
7630         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7631                                                 &dev->adj_list.upper,
7632                                                 &upper_dev->adj_list.lower,
7633                                                 private, master);
7634 }
7635
7636 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7637                                                    struct net_device *upper_dev)
7638 {
7639         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7640                                            &dev->adj_list.upper,
7641                                            &upper_dev->adj_list.lower);
7642 }
7643
7644 static int __netdev_upper_dev_link(struct net_device *dev,
7645                                    struct net_device *upper_dev, bool master,
7646                                    void *upper_priv, void *upper_info,
7647                                    struct netlink_ext_ack *extack)
7648 {
7649         struct netdev_notifier_changeupper_info changeupper_info = {
7650                 .info = {
7651                         .dev = dev,
7652                         .extack = extack,
7653                 },
7654                 .upper_dev = upper_dev,
7655                 .master = master,
7656                 .linking = true,
7657                 .upper_info = upper_info,
7658         };
7659         struct net_device *master_dev;
7660         int ret = 0;
7661
7662         ASSERT_RTNL();
7663
7664         if (dev == upper_dev)
7665                 return -EBUSY;
7666
7667         /* To prevent loops, check if dev is not upper device to upper_dev. */
7668         if (__netdev_has_upper_dev(upper_dev, dev))
7669                 return -EBUSY;
7670
7671         if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7672                 return -EMLINK;
7673
7674         if (!master) {
7675                 if (__netdev_has_upper_dev(dev, upper_dev))
7676                         return -EEXIST;
7677         } else {
7678                 master_dev = __netdev_master_upper_dev_get(dev);
7679                 if (master_dev)
7680                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
7681         }
7682
7683         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7684                                             &changeupper_info.info);
7685         ret = notifier_to_errno(ret);
7686         if (ret)
7687                 return ret;
7688
7689         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7690                                                    master);
7691         if (ret)
7692                 return ret;
7693
7694         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7695                                             &changeupper_info.info);
7696         ret = notifier_to_errno(ret);
7697         if (ret)
7698                 goto rollback;
7699
7700         __netdev_update_upper_level(dev, NULL);
7701         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7702
7703         __netdev_update_lower_level(upper_dev, NULL);
7704         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7705                                     NULL);
7706
7707         return 0;
7708
7709 rollback:
7710         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7711
7712         return ret;
7713 }
7714
7715 /**
7716  * netdev_upper_dev_link - Add a link to the upper device
7717  * @dev: device
7718  * @upper_dev: new upper device
7719  * @extack: netlink extended ack
7720  *
7721  * Adds a link to device which is upper to this one. The caller must hold
7722  * the RTNL lock. On a failure a negative errno code is returned.
7723  * On success the reference counts are adjusted and the function
7724  * returns zero.
7725  */
7726 int netdev_upper_dev_link(struct net_device *dev,
7727                           struct net_device *upper_dev,
7728                           struct netlink_ext_ack *extack)
7729 {
7730         return __netdev_upper_dev_link(dev, upper_dev, false,
7731                                        NULL, NULL, extack);
7732 }
7733 EXPORT_SYMBOL(netdev_upper_dev_link);
7734
7735 /**
7736  * netdev_master_upper_dev_link - Add a master link to the upper device
7737  * @dev: device
7738  * @upper_dev: new upper device
7739  * @upper_priv: upper device private
7740  * @upper_info: upper info to be passed down via notifier
7741  * @extack: netlink extended ack
7742  *
7743  * Adds a link to device which is upper to this one. In this case, only
7744  * one master upper device can be linked, although other non-master devices
7745  * might be linked as well. The caller must hold the RTNL lock.
7746  * On a failure a negative errno code is returned. On success the reference
7747  * counts are adjusted and the function returns zero.
7748  */
7749 int netdev_master_upper_dev_link(struct net_device *dev,
7750                                  struct net_device *upper_dev,
7751                                  void *upper_priv, void *upper_info,
7752                                  struct netlink_ext_ack *extack)
7753 {
7754         return __netdev_upper_dev_link(dev, upper_dev, true,
7755                                        upper_priv, upper_info, extack);
7756 }
7757 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7758
7759 /**
7760  * netdev_upper_dev_unlink - Removes a link to upper device
7761  * @dev: device
7762  * @upper_dev: new upper device
7763  *
7764  * Removes a link to device which is upper to this one. The caller must hold
7765  * the RTNL lock.
7766  */
7767 void netdev_upper_dev_unlink(struct net_device *dev,
7768                              struct net_device *upper_dev)
7769 {
7770         struct netdev_notifier_changeupper_info changeupper_info = {
7771                 .info = {
7772                         .dev = dev,
7773                 },
7774                 .upper_dev = upper_dev,
7775                 .linking = false,
7776         };
7777
7778         ASSERT_RTNL();
7779
7780         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7781
7782         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7783                                       &changeupper_info.info);
7784
7785         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7786
7787         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7788                                       &changeupper_info.info);
7789
7790         __netdev_update_upper_level(dev, NULL);
7791         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7792
7793         __netdev_update_lower_level(upper_dev, NULL);
7794         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7795                                     NULL);
7796 }
7797 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7798
7799 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7800                                       struct net_device *lower_dev,
7801                                       bool val)
7802 {
7803         struct netdev_adjacent *adj;
7804
7805         adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7806         if (adj)
7807                 adj->ignore = val;
7808
7809         adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7810         if (adj)
7811                 adj->ignore = val;
7812 }
7813
7814 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7815                                         struct net_device *lower_dev)
7816 {
7817         __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7818 }
7819
7820 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7821                                        struct net_device *lower_dev)
7822 {
7823         __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7824 }
7825
7826 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7827                                    struct net_device *new_dev,
7828                                    struct net_device *dev,
7829                                    struct netlink_ext_ack *extack)
7830 {
7831         int err;
7832
7833         if (!new_dev)
7834                 return 0;
7835
7836         if (old_dev && new_dev != old_dev)
7837                 netdev_adjacent_dev_disable(dev, old_dev);
7838
7839         err = netdev_upper_dev_link(new_dev, dev, extack);
7840         if (err) {
7841                 if (old_dev && new_dev != old_dev)
7842                         netdev_adjacent_dev_enable(dev, old_dev);
7843                 return err;
7844         }
7845
7846         return 0;
7847 }
7848 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7849
7850 void netdev_adjacent_change_commit(struct net_device *old_dev,
7851                                    struct net_device *new_dev,
7852                                    struct net_device *dev)
7853 {
7854         if (!new_dev || !old_dev)
7855                 return;
7856
7857         if (new_dev == old_dev)
7858                 return;
7859
7860         netdev_adjacent_dev_enable(dev, old_dev);
7861         netdev_upper_dev_unlink(old_dev, dev);
7862 }
7863 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7864
7865 void netdev_adjacent_change_abort(struct net_device *old_dev,
7866                                   struct net_device *new_dev,
7867                                   struct net_device *dev)
7868 {
7869         if (!new_dev)
7870                 return;
7871
7872         if (old_dev && new_dev != old_dev)
7873                 netdev_adjacent_dev_enable(dev, old_dev);
7874
7875         netdev_upper_dev_unlink(new_dev, dev);
7876 }
7877 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7878
7879 /**
7880  * netdev_bonding_info_change - Dispatch event about slave change
7881  * @dev: device
7882  * @bonding_info: info to dispatch
7883  *
7884  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7885  * The caller must hold the RTNL lock.
7886  */
7887 void netdev_bonding_info_change(struct net_device *dev,
7888                                 struct netdev_bonding_info *bonding_info)
7889 {
7890         struct netdev_notifier_bonding_info info = {
7891                 .info.dev = dev,
7892         };
7893
7894         memcpy(&info.bonding_info, bonding_info,
7895                sizeof(struct netdev_bonding_info));
7896         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7897                                       &info.info);
7898 }
7899 EXPORT_SYMBOL(netdev_bonding_info_change);
7900
7901 /**
7902  * netdev_get_xmit_slave - Get the xmit slave of master device
7903  * @skb: The packet
7904  * @all_slaves: assume all the slaves are active
7905  *
7906  * The reference counters are not incremented so the caller must be
7907  * careful with locks. The caller must hold RCU lock.
7908  * %NULL is returned if no slave is found.
7909  */
7910
7911 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
7912                                          struct sk_buff *skb,
7913                                          bool all_slaves)
7914 {
7915         const struct net_device_ops *ops = dev->netdev_ops;
7916
7917         if (!ops->ndo_get_xmit_slave)
7918                 return NULL;
7919         return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
7920 }
7921 EXPORT_SYMBOL(netdev_get_xmit_slave);
7922
7923 static void netdev_adjacent_add_links(struct net_device *dev)
7924 {
7925         struct netdev_adjacent *iter;
7926
7927         struct net *net = dev_net(dev);
7928
7929         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7930                 if (!net_eq(net, dev_net(iter->dev)))
7931                         continue;
7932                 netdev_adjacent_sysfs_add(iter->dev, dev,
7933                                           &iter->dev->adj_list.lower);
7934                 netdev_adjacent_sysfs_add(dev, iter->dev,
7935                                           &dev->adj_list.upper);
7936         }
7937
7938         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7939                 if (!net_eq(net, dev_net(iter->dev)))
7940                         continue;
7941                 netdev_adjacent_sysfs_add(iter->dev, dev,
7942                                           &iter->dev->adj_list.upper);
7943                 netdev_adjacent_sysfs_add(dev, iter->dev,
7944                                           &dev->adj_list.lower);
7945         }
7946 }
7947
7948 static void netdev_adjacent_del_links(struct net_device *dev)
7949 {
7950         struct netdev_adjacent *iter;
7951
7952         struct net *net = dev_net(dev);
7953
7954         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7955                 if (!net_eq(net, dev_net(iter->dev)))
7956                         continue;
7957                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7958                                           &iter->dev->adj_list.lower);
7959                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7960                                           &dev->adj_list.upper);
7961         }
7962
7963         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7964                 if (!net_eq(net, dev_net(iter->dev)))
7965                         continue;
7966                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7967                                           &iter->dev->adj_list.upper);
7968                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7969                                           &dev->adj_list.lower);
7970         }
7971 }
7972
7973 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7974 {
7975         struct netdev_adjacent *iter;
7976
7977         struct net *net = dev_net(dev);
7978
7979         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7980                 if (!net_eq(net, dev_net(iter->dev)))
7981                         continue;
7982                 netdev_adjacent_sysfs_del(iter->dev, oldname,
7983                                           &iter->dev->adj_list.lower);
7984                 netdev_adjacent_sysfs_add(iter->dev, dev,
7985                                           &iter->dev->adj_list.lower);
7986         }
7987
7988         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7989                 if (!net_eq(net, dev_net(iter->dev)))
7990                         continue;
7991                 netdev_adjacent_sysfs_del(iter->dev, oldname,
7992                                           &iter->dev->adj_list.upper);
7993                 netdev_adjacent_sysfs_add(iter->dev, dev,
7994                                           &iter->dev->adj_list.upper);
7995         }
7996 }
7997
7998 void *netdev_lower_dev_get_private(struct net_device *dev,
7999                                    struct net_device *lower_dev)
8000 {
8001         struct netdev_adjacent *lower;
8002
8003         if (!lower_dev)
8004                 return NULL;
8005         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8006         if (!lower)
8007                 return NULL;
8008
8009         return lower->private;
8010 }
8011 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8012
8013
8014 /**
8015  * netdev_lower_change - Dispatch event about lower device state change
8016  * @lower_dev: device
8017  * @lower_state_info: state to dispatch
8018  *
8019  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8020  * The caller must hold the RTNL lock.
8021  */
8022 void netdev_lower_state_changed(struct net_device *lower_dev,
8023                                 void *lower_state_info)
8024 {
8025         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8026                 .info.dev = lower_dev,
8027         };
8028
8029         ASSERT_RTNL();
8030         changelowerstate_info.lower_state_info = lower_state_info;
8031         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8032                                       &changelowerstate_info.info);
8033 }
8034 EXPORT_SYMBOL(netdev_lower_state_changed);
8035
8036 static void dev_change_rx_flags(struct net_device *dev, int flags)
8037 {
8038         const struct net_device_ops *ops = dev->netdev_ops;
8039
8040         if (ops->ndo_change_rx_flags)
8041                 ops->ndo_change_rx_flags(dev, flags);
8042 }
8043
8044 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8045 {
8046         unsigned int old_flags = dev->flags;
8047         kuid_t uid;
8048         kgid_t gid;
8049
8050         ASSERT_RTNL();
8051
8052         dev->flags |= IFF_PROMISC;
8053         dev->promiscuity += inc;
8054         if (dev->promiscuity == 0) {
8055                 /*
8056                  * Avoid overflow.
8057                  * If inc causes overflow, untouch promisc and return error.
8058                  */
8059                 if (inc < 0)
8060                         dev->flags &= ~IFF_PROMISC;
8061                 else {
8062                         dev->promiscuity -= inc;
8063                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8064                                 dev->name);
8065                         return -EOVERFLOW;
8066                 }
8067         }
8068         if (dev->flags != old_flags) {
8069                 pr_info("device %s %s promiscuous mode\n",
8070                         dev->name,
8071                         dev->flags & IFF_PROMISC ? "entered" : "left");
8072                 if (audit_enabled) {
8073                         current_uid_gid(&uid, &gid);
8074                         audit_log(audit_context(), GFP_ATOMIC,
8075                                   AUDIT_ANOM_PROMISCUOUS,
8076                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8077                                   dev->name, (dev->flags & IFF_PROMISC),
8078                                   (old_flags & IFF_PROMISC),
8079                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
8080                                   from_kuid(&init_user_ns, uid),
8081                                   from_kgid(&init_user_ns, gid),
8082                                   audit_get_sessionid(current));
8083                 }
8084
8085                 dev_change_rx_flags(dev, IFF_PROMISC);
8086         }
8087         if (notify)
8088                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
8089         return 0;
8090 }
8091
8092 /**
8093  *      dev_set_promiscuity     - update promiscuity count on a device
8094  *      @dev: device
8095  *      @inc: modifier
8096  *
8097  *      Add or remove promiscuity from a device. While the count in the device
8098  *      remains above zero the interface remains promiscuous. Once it hits zero
8099  *      the device reverts back to normal filtering operation. A negative inc
8100  *      value is used to drop promiscuity on the device.
8101  *      Return 0 if successful or a negative errno code on error.
8102  */
8103 int dev_set_promiscuity(struct net_device *dev, int inc)
8104 {
8105         unsigned int old_flags = dev->flags;
8106         int err;
8107
8108         err = __dev_set_promiscuity(dev, inc, true);
8109         if (err < 0)
8110                 return err;
8111         if (dev->flags != old_flags)
8112                 dev_set_rx_mode(dev);
8113         return err;
8114 }
8115 EXPORT_SYMBOL(dev_set_promiscuity);
8116
8117 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8118 {
8119         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8120
8121         ASSERT_RTNL();
8122
8123         dev->flags |= IFF_ALLMULTI;
8124         dev->allmulti += inc;
8125         if (dev->allmulti == 0) {
8126                 /*
8127                  * Avoid overflow.
8128                  * If inc causes overflow, untouch allmulti and return error.
8129                  */
8130                 if (inc < 0)
8131                         dev->flags &= ~IFF_ALLMULTI;
8132                 else {
8133                         dev->allmulti -= inc;
8134                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8135                                 dev->name);
8136                         return -EOVERFLOW;
8137                 }
8138         }
8139         if (dev->flags ^ old_flags) {
8140                 dev_change_rx_flags(dev, IFF_ALLMULTI);
8141                 dev_set_rx_mode(dev);
8142                 if (notify)
8143                         __dev_notify_flags(dev, old_flags,
8144                                            dev->gflags ^ old_gflags);
8145         }
8146         return 0;
8147 }
8148
8149 /**
8150  *      dev_set_allmulti        - update allmulti count on a device
8151  *      @dev: device
8152  *      @inc: modifier
8153  *
8154  *      Add or remove reception of all multicast frames to a device. While the
8155  *      count in the device remains above zero the interface remains listening
8156  *      to all interfaces. Once it hits zero the device reverts back to normal
8157  *      filtering operation. A negative @inc value is used to drop the counter
8158  *      when releasing a resource needing all multicasts.
8159  *      Return 0 if successful or a negative errno code on error.
8160  */
8161
8162 int dev_set_allmulti(struct net_device *dev, int inc)
8163 {
8164         return __dev_set_allmulti(dev, inc, true);
8165 }
8166 EXPORT_SYMBOL(dev_set_allmulti);
8167
8168 /*
8169  *      Upload unicast and multicast address lists to device and
8170  *      configure RX filtering. When the device doesn't support unicast
8171  *      filtering it is put in promiscuous mode while unicast addresses
8172  *      are present.
8173  */
8174 void __dev_set_rx_mode(struct net_device *dev)
8175 {
8176         const struct net_device_ops *ops = dev->netdev_ops;
8177
8178         /* dev_open will call this function so the list will stay sane. */
8179         if (!(dev->flags&IFF_UP))
8180                 return;
8181
8182         if (!netif_device_present(dev))
8183                 return;
8184
8185         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8186                 /* Unicast addresses changes may only happen under the rtnl,
8187                  * therefore calling __dev_set_promiscuity here is safe.
8188                  */
8189                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8190                         __dev_set_promiscuity(dev, 1, false);
8191                         dev->uc_promisc = true;
8192                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8193                         __dev_set_promiscuity(dev, -1, false);
8194                         dev->uc_promisc = false;
8195                 }
8196         }
8197
8198         if (ops->ndo_set_rx_mode)
8199                 ops->ndo_set_rx_mode(dev);
8200 }
8201
8202 void dev_set_rx_mode(struct net_device *dev)
8203 {
8204         netif_addr_lock_bh(dev);
8205         __dev_set_rx_mode(dev);
8206         netif_addr_unlock_bh(dev);
8207 }
8208
8209 /**
8210  *      dev_get_flags - get flags reported to userspace
8211  *      @dev: device
8212  *
8213  *      Get the combination of flag bits exported through APIs to userspace.
8214  */
8215 unsigned int dev_get_flags(const struct net_device *dev)
8216 {
8217         unsigned int flags;
8218
8219         flags = (dev->flags & ~(IFF_PROMISC |
8220                                 IFF_ALLMULTI |
8221                                 IFF_RUNNING |
8222                                 IFF_LOWER_UP |
8223                                 IFF_DORMANT)) |
8224                 (dev->gflags & (IFF_PROMISC |
8225                                 IFF_ALLMULTI));
8226
8227         if (netif_running(dev)) {
8228                 if (netif_oper_up(dev))
8229                         flags |= IFF_RUNNING;
8230                 if (netif_carrier_ok(dev))
8231                         flags |= IFF_LOWER_UP;
8232                 if (netif_dormant(dev))
8233                         flags |= IFF_DORMANT;
8234         }
8235
8236         return flags;
8237 }
8238 EXPORT_SYMBOL(dev_get_flags);
8239
8240 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8241                        struct netlink_ext_ack *extack)
8242 {
8243         unsigned int old_flags = dev->flags;
8244         int ret;
8245
8246         ASSERT_RTNL();
8247
8248         /*
8249          *      Set the flags on our device.
8250          */
8251
8252         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8253                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8254                                IFF_AUTOMEDIA)) |
8255                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8256                                     IFF_ALLMULTI));
8257
8258         /*
8259          *      Load in the correct multicast list now the flags have changed.
8260          */
8261
8262         if ((old_flags ^ flags) & IFF_MULTICAST)
8263                 dev_change_rx_flags(dev, IFF_MULTICAST);
8264
8265         dev_set_rx_mode(dev);
8266
8267         /*
8268          *      Have we downed the interface. We handle IFF_UP ourselves
8269          *      according to user attempts to set it, rather than blindly
8270          *      setting it.
8271          */
8272
8273         ret = 0;
8274         if ((old_flags ^ flags) & IFF_UP) {
8275                 if (old_flags & IFF_UP)
8276                         __dev_close(dev);
8277                 else
8278                         ret = __dev_open(dev, extack);
8279         }
8280
8281         if ((flags ^ dev->gflags) & IFF_PROMISC) {
8282                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8283                 unsigned int old_flags = dev->flags;
8284
8285                 dev->gflags ^= IFF_PROMISC;
8286
8287                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8288                         if (dev->flags != old_flags)
8289                                 dev_set_rx_mode(dev);
8290         }
8291
8292         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8293          * is important. Some (broken) drivers set IFF_PROMISC, when
8294          * IFF_ALLMULTI is requested not asking us and not reporting.
8295          */
8296         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8297                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8298
8299                 dev->gflags ^= IFF_ALLMULTI;
8300                 __dev_set_allmulti(dev, inc, false);
8301         }
8302
8303         return ret;
8304 }
8305
8306 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8307                         unsigned int gchanges)
8308 {
8309         unsigned int changes = dev->flags ^ old_flags;
8310
8311         if (gchanges)
8312                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8313
8314         if (changes & IFF_UP) {
8315                 if (dev->flags & IFF_UP)
8316                         call_netdevice_notifiers(NETDEV_UP, dev);
8317                 else
8318                         call_netdevice_notifiers(NETDEV_DOWN, dev);
8319         }
8320
8321         if (dev->flags & IFF_UP &&
8322             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8323                 struct netdev_notifier_change_info change_info = {
8324                         .info = {
8325                                 .dev = dev,
8326                         },
8327                         .flags_changed = changes,
8328                 };
8329
8330                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8331         }
8332 }
8333
8334 /**
8335  *      dev_change_flags - change device settings
8336  *      @dev: device
8337  *      @flags: device state flags
8338  *      @extack: netlink extended ack
8339  *
8340  *      Change settings on device based state flags. The flags are
8341  *      in the userspace exported format.
8342  */
8343 int dev_change_flags(struct net_device *dev, unsigned int flags,
8344                      struct netlink_ext_ack *extack)
8345 {
8346         int ret;
8347         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8348
8349         ret = __dev_change_flags(dev, flags, extack);
8350         if (ret < 0)
8351                 return ret;
8352
8353         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8354         __dev_notify_flags(dev, old_flags, changes);
8355         return ret;
8356 }
8357 EXPORT_SYMBOL(dev_change_flags);
8358
8359 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8360 {
8361         const struct net_device_ops *ops = dev->netdev_ops;
8362
8363         if (ops->ndo_change_mtu)
8364                 return ops->ndo_change_mtu(dev, new_mtu);
8365
8366         /* Pairs with all the lockless reads of dev->mtu in the stack */
8367         WRITE_ONCE(dev->mtu, new_mtu);
8368         return 0;
8369 }
8370 EXPORT_SYMBOL(__dev_set_mtu);
8371
8372 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8373                      struct netlink_ext_ack *extack)
8374 {
8375         /* MTU must be positive, and in range */
8376         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8377                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8378                 return -EINVAL;
8379         }
8380
8381         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8382                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8383                 return -EINVAL;
8384         }
8385         return 0;
8386 }
8387
8388 /**
8389  *      dev_set_mtu_ext - Change maximum transfer unit
8390  *      @dev: device
8391  *      @new_mtu: new transfer unit
8392  *      @extack: netlink extended ack
8393  *
8394  *      Change the maximum transfer size of the network device.
8395  */
8396 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8397                     struct netlink_ext_ack *extack)
8398 {
8399         int err, orig_mtu;
8400
8401         if (new_mtu == dev->mtu)
8402                 return 0;
8403
8404         err = dev_validate_mtu(dev, new_mtu, extack);
8405         if (err)
8406                 return err;
8407
8408         if (!netif_device_present(dev))
8409                 return -ENODEV;
8410
8411         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8412         err = notifier_to_errno(err);
8413         if (err)
8414                 return err;
8415
8416         orig_mtu = dev->mtu;
8417         err = __dev_set_mtu(dev, new_mtu);
8418
8419         if (!err) {
8420                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8421                                                    orig_mtu);
8422                 err = notifier_to_errno(err);
8423                 if (err) {
8424                         /* setting mtu back and notifying everyone again,
8425                          * so that they have a chance to revert changes.
8426                          */
8427                         __dev_set_mtu(dev, orig_mtu);
8428                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8429                                                      new_mtu);
8430                 }
8431         }
8432         return err;
8433 }
8434
8435 int dev_set_mtu(struct net_device *dev, int new_mtu)
8436 {
8437         struct netlink_ext_ack extack;
8438         int err;
8439
8440         memset(&extack, 0, sizeof(extack));
8441         err = dev_set_mtu_ext(dev, new_mtu, &extack);
8442         if (err && extack._msg)
8443                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8444         return err;
8445 }
8446 EXPORT_SYMBOL(dev_set_mtu);
8447
8448 /**
8449  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
8450  *      @dev: device
8451  *      @new_len: new tx queue length
8452  */
8453 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8454 {
8455         unsigned int orig_len = dev->tx_queue_len;
8456         int res;
8457
8458         if (new_len != (unsigned int)new_len)
8459                 return -ERANGE;
8460
8461         if (new_len != orig_len) {
8462                 dev->tx_queue_len = new_len;
8463                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8464                 res = notifier_to_errno(res);
8465                 if (res)
8466                         goto err_rollback;
8467                 res = dev_qdisc_change_tx_queue_len(dev);
8468                 if (res)
8469                         goto err_rollback;
8470         }
8471
8472         return 0;
8473
8474 err_rollback:
8475         netdev_err(dev, "refused to change device tx_queue_len\n");
8476         dev->tx_queue_len = orig_len;
8477         return res;
8478 }
8479
8480 /**
8481  *      dev_set_group - Change group this device belongs to
8482  *      @dev: device
8483  *      @new_group: group this device should belong to
8484  */
8485 void dev_set_group(struct net_device *dev, int new_group)
8486 {
8487         dev->group = new_group;
8488 }
8489 EXPORT_SYMBOL(dev_set_group);
8490
8491 /**
8492  *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8493  *      @dev: device
8494  *      @addr: new address
8495  *      @extack: netlink extended ack
8496  */
8497 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8498                               struct netlink_ext_ack *extack)
8499 {
8500         struct netdev_notifier_pre_changeaddr_info info = {
8501                 .info.dev = dev,
8502                 .info.extack = extack,
8503                 .dev_addr = addr,
8504         };
8505         int rc;
8506
8507         rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8508         return notifier_to_errno(rc);
8509 }
8510 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8511
8512 /**
8513  *      dev_set_mac_address - Change Media Access Control Address
8514  *      @dev: device
8515  *      @sa: new address
8516  *      @extack: netlink extended ack
8517  *
8518  *      Change the hardware (MAC) address of the device
8519  */
8520 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8521                         struct netlink_ext_ack *extack)
8522 {
8523         const struct net_device_ops *ops = dev->netdev_ops;
8524         int err;
8525
8526         if (!ops->ndo_set_mac_address)
8527                 return -EOPNOTSUPP;
8528         if (sa->sa_family != dev->type)
8529                 return -EINVAL;
8530         if (!netif_device_present(dev))
8531                 return -ENODEV;
8532         err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8533         if (err)
8534                 return err;
8535         err = ops->ndo_set_mac_address(dev, sa);
8536         if (err)
8537                 return err;
8538         dev->addr_assign_type = NET_ADDR_SET;
8539         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8540         add_device_randomness(dev->dev_addr, dev->addr_len);
8541         return 0;
8542 }
8543 EXPORT_SYMBOL(dev_set_mac_address);
8544
8545 /**
8546  *      dev_change_carrier - Change device carrier
8547  *      @dev: device
8548  *      @new_carrier: new value
8549  *
8550  *      Change device carrier
8551  */
8552 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8553 {
8554         const struct net_device_ops *ops = dev->netdev_ops;
8555
8556         if (!ops->ndo_change_carrier)
8557                 return -EOPNOTSUPP;
8558         if (!netif_device_present(dev))
8559                 return -ENODEV;
8560         return ops->ndo_change_carrier(dev, new_carrier);
8561 }
8562 EXPORT_SYMBOL(dev_change_carrier);
8563
8564 /**
8565  *      dev_get_phys_port_id - Get device physical port ID
8566  *      @dev: device
8567  *      @ppid: port ID
8568  *
8569  *      Get device physical port ID
8570  */
8571 int dev_get_phys_port_id(struct net_device *dev,
8572                          struct netdev_phys_item_id *ppid)
8573 {
8574         const struct net_device_ops *ops = dev->netdev_ops;
8575
8576         if (!ops->ndo_get_phys_port_id)
8577                 return -EOPNOTSUPP;
8578         return ops->ndo_get_phys_port_id(dev, ppid);
8579 }
8580 EXPORT_SYMBOL(dev_get_phys_port_id);
8581
8582 /**
8583  *      dev_get_phys_port_name - Get device physical port name
8584  *      @dev: device
8585  *      @name: port name
8586  *      @len: limit of bytes to copy to name
8587  *
8588  *      Get device physical port name
8589  */
8590 int dev_get_phys_port_name(struct net_device *dev,
8591                            char *name, size_t len)
8592 {
8593         const struct net_device_ops *ops = dev->netdev_ops;
8594         int err;
8595
8596         if (ops->ndo_get_phys_port_name) {
8597                 err = ops->ndo_get_phys_port_name(dev, name, len);
8598                 if (err != -EOPNOTSUPP)
8599                         return err;
8600         }
8601         return devlink_compat_phys_port_name_get(dev, name, len);
8602 }
8603 EXPORT_SYMBOL(dev_get_phys_port_name);
8604
8605 /**
8606  *      dev_get_port_parent_id - Get the device's port parent identifier
8607  *      @dev: network device
8608  *      @ppid: pointer to a storage for the port's parent identifier
8609  *      @recurse: allow/disallow recursion to lower devices
8610  *
8611  *      Get the devices's port parent identifier
8612  */
8613 int dev_get_port_parent_id(struct net_device *dev,
8614                            struct netdev_phys_item_id *ppid,
8615                            bool recurse)
8616 {
8617         const struct net_device_ops *ops = dev->netdev_ops;
8618         struct netdev_phys_item_id first = { };
8619         struct net_device *lower_dev;
8620         struct list_head *iter;
8621         int err;
8622
8623         if (ops->ndo_get_port_parent_id) {
8624                 err = ops->ndo_get_port_parent_id(dev, ppid);
8625                 if (err != -EOPNOTSUPP)
8626                         return err;
8627         }
8628
8629         err = devlink_compat_switch_id_get(dev, ppid);
8630         if (!err || err != -EOPNOTSUPP)
8631                 return err;
8632
8633         if (!recurse)
8634                 return -EOPNOTSUPP;
8635
8636         netdev_for_each_lower_dev(dev, lower_dev, iter) {
8637                 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
8638                 if (err)
8639                         break;
8640                 if (!first.id_len)
8641                         first = *ppid;
8642                 else if (memcmp(&first, ppid, sizeof(*ppid)))
8643                         return -ENODATA;
8644         }
8645
8646         return err;
8647 }
8648 EXPORT_SYMBOL(dev_get_port_parent_id);
8649
8650 /**
8651  *      netdev_port_same_parent_id - Indicate if two network devices have
8652  *      the same port parent identifier
8653  *      @a: first network device
8654  *      @b: second network device
8655  */
8656 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8657 {
8658         struct netdev_phys_item_id a_id = { };
8659         struct netdev_phys_item_id b_id = { };
8660
8661         if (dev_get_port_parent_id(a, &a_id, true) ||
8662             dev_get_port_parent_id(b, &b_id, true))
8663                 return false;
8664
8665         return netdev_phys_item_id_same(&a_id, &b_id);
8666 }
8667 EXPORT_SYMBOL(netdev_port_same_parent_id);
8668
8669 /**
8670  *      dev_change_proto_down - update protocol port state information
8671  *      @dev: device
8672  *      @proto_down: new value
8673  *
8674  *      This info can be used by switch drivers to set the phys state of the
8675  *      port.
8676  */
8677 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8678 {
8679         const struct net_device_ops *ops = dev->netdev_ops;
8680
8681         if (!ops->ndo_change_proto_down)
8682                 return -EOPNOTSUPP;
8683         if (!netif_device_present(dev))
8684                 return -ENODEV;
8685         return ops->ndo_change_proto_down(dev, proto_down);
8686 }
8687 EXPORT_SYMBOL(dev_change_proto_down);
8688
8689 /**
8690  *      dev_change_proto_down_generic - generic implementation for
8691  *      ndo_change_proto_down that sets carrier according to
8692  *      proto_down.
8693  *
8694  *      @dev: device
8695  *      @proto_down: new value
8696  */
8697 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8698 {
8699         if (proto_down)
8700                 netif_carrier_off(dev);
8701         else
8702                 netif_carrier_on(dev);
8703         dev->proto_down = proto_down;
8704         return 0;
8705 }
8706 EXPORT_SYMBOL(dev_change_proto_down_generic);
8707
8708 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
8709                     enum bpf_netdev_command cmd)
8710 {
8711         struct netdev_bpf xdp;
8712
8713         if (!bpf_op)
8714                 return 0;
8715
8716         memset(&xdp, 0, sizeof(xdp));
8717         xdp.command = cmd;
8718
8719         /* Query must always succeed. */
8720         WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
8721
8722         return xdp.prog_id;
8723 }
8724
8725 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
8726                            struct netlink_ext_ack *extack, u32 flags,
8727                            struct bpf_prog *prog)
8728 {
8729         bool non_hw = !(flags & XDP_FLAGS_HW_MODE);
8730         struct bpf_prog *prev_prog = NULL;
8731         struct netdev_bpf xdp;
8732         int err;
8733
8734         if (non_hw) {
8735                 prev_prog = bpf_prog_by_id(__dev_xdp_query(dev, bpf_op,
8736                                                            XDP_QUERY_PROG));
8737                 if (IS_ERR(prev_prog))
8738                         prev_prog = NULL;
8739         }
8740
8741         memset(&xdp, 0, sizeof(xdp));
8742         if (flags & XDP_FLAGS_HW_MODE)
8743                 xdp.command = XDP_SETUP_PROG_HW;
8744         else
8745                 xdp.command = XDP_SETUP_PROG;
8746         xdp.extack = extack;
8747         xdp.flags = flags;
8748         xdp.prog = prog;
8749
8750         err = bpf_op(dev, &xdp);
8751         if (!err && non_hw)
8752                 bpf_prog_change_xdp(prev_prog, prog);
8753
8754         if (prev_prog)
8755                 bpf_prog_put(prev_prog);
8756
8757         return err;
8758 }
8759
8760 static void dev_xdp_uninstall(struct net_device *dev)
8761 {
8762         struct netdev_bpf xdp;
8763         bpf_op_t ndo_bpf;
8764
8765         /* Remove generic XDP */
8766         WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
8767
8768         /* Remove from the driver */
8769         ndo_bpf = dev->netdev_ops->ndo_bpf;
8770         if (!ndo_bpf)
8771                 return;
8772
8773         memset(&xdp, 0, sizeof(xdp));
8774         xdp.command = XDP_QUERY_PROG;
8775         WARN_ON(ndo_bpf(dev, &xdp));
8776         if (xdp.prog_id)
8777                 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8778                                         NULL));
8779
8780         /* Remove HW offload */
8781         memset(&xdp, 0, sizeof(xdp));
8782         xdp.command = XDP_QUERY_PROG_HW;
8783         if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
8784                 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8785                                         NULL));
8786 }
8787
8788 /**
8789  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
8790  *      @dev: device
8791  *      @extack: netlink extended ack
8792  *      @fd: new program fd or negative value to clear
8793  *      @expected_fd: old program fd that userspace expects to replace or clear
8794  *      @flags: xdp-related flags
8795  *
8796  *      Set or clear a bpf program for a device
8797  */
8798 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
8799                       int fd, int expected_fd, u32 flags)
8800 {
8801         const struct net_device_ops *ops = dev->netdev_ops;
8802         enum bpf_netdev_command query;
8803         u32 prog_id, expected_id = 0;
8804         bpf_op_t bpf_op, bpf_chk;
8805         struct bpf_prog *prog;
8806         bool offload;
8807         int err;
8808
8809         ASSERT_RTNL();
8810
8811         offload = flags & XDP_FLAGS_HW_MODE;
8812         query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
8813
8814         bpf_op = bpf_chk = ops->ndo_bpf;
8815         if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) {
8816                 NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode");
8817                 return -EOPNOTSUPP;
8818         }
8819         if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
8820                 bpf_op = generic_xdp_install;
8821         if (bpf_op == bpf_chk)
8822                 bpf_chk = generic_xdp_install;
8823
8824         prog_id = __dev_xdp_query(dev, bpf_op, query);
8825         if (flags & XDP_FLAGS_REPLACE) {
8826                 if (expected_fd >= 0) {
8827                         prog = bpf_prog_get_type_dev(expected_fd,
8828                                                      BPF_PROG_TYPE_XDP,
8829                                                      bpf_op == ops->ndo_bpf);
8830                         if (IS_ERR(prog))
8831                                 return PTR_ERR(prog);
8832                         expected_id = prog->aux->id;
8833                         bpf_prog_put(prog);
8834                 }
8835
8836                 if (prog_id != expected_id) {
8837                         NL_SET_ERR_MSG(extack, "Active program does not match expected");
8838                         return -EEXIST;
8839                 }
8840         }
8841         if (fd >= 0) {
8842                 if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) {
8843                         NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time");
8844                         return -EEXIST;
8845                 }
8846
8847                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && prog_id) {
8848                         NL_SET_ERR_MSG(extack, "XDP program already attached");
8849                         return -EBUSY;
8850                 }
8851
8852                 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
8853                                              bpf_op == ops->ndo_bpf);
8854                 if (IS_ERR(prog))
8855                         return PTR_ERR(prog);
8856
8857                 if (!offload && bpf_prog_is_dev_bound(prog->aux)) {
8858                         NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
8859                         bpf_prog_put(prog);
8860                         return -EINVAL;
8861                 }
8862
8863                 if (prog->expected_attach_type == BPF_XDP_DEVMAP) {
8864                         NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
8865                         bpf_prog_put(prog);
8866                         return -EINVAL;
8867                 }
8868
8869                 /* prog->aux->id may be 0 for orphaned device-bound progs */
8870                 if (prog->aux->id && prog->aux->id == prog_id) {
8871                         bpf_prog_put(prog);
8872                         return 0;
8873                 }
8874         } else {
8875                 if (!prog_id)
8876                         return 0;
8877                 prog = NULL;
8878         }
8879
8880         err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
8881         if (err < 0 && prog)
8882                 bpf_prog_put(prog);
8883
8884         return err;
8885 }
8886
8887 /**
8888  *      dev_new_index   -       allocate an ifindex
8889  *      @net: the applicable net namespace
8890  *
8891  *      Returns a suitable unique value for a new device interface
8892  *      number.  The caller must hold the rtnl semaphore or the
8893  *      dev_base_lock to be sure it remains unique.
8894  */
8895 static int dev_new_index(struct net *net)
8896 {
8897         int ifindex = net->ifindex;
8898
8899         for (;;) {
8900                 if (++ifindex <= 0)
8901                         ifindex = 1;
8902                 if (!__dev_get_by_index(net, ifindex))
8903                         return net->ifindex = ifindex;
8904         }
8905 }
8906
8907 /* Delayed registration/unregisteration */
8908 static LIST_HEAD(net_todo_list);
8909 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
8910
8911 static void net_set_todo(struct net_device *dev)
8912 {
8913         list_add_tail(&dev->todo_list, &net_todo_list);
8914         dev_net(dev)->dev_unreg_count++;
8915 }
8916
8917 static void rollback_registered_many(struct list_head *head)
8918 {
8919         struct net_device *dev, *tmp;
8920         LIST_HEAD(close_head);
8921
8922         BUG_ON(dev_boot_phase);
8923         ASSERT_RTNL();
8924
8925         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
8926                 /* Some devices call without registering
8927                  * for initialization unwind. Remove those
8928                  * devices and proceed with the remaining.
8929                  */
8930                 if (dev->reg_state == NETREG_UNINITIALIZED) {
8931                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8932                                  dev->name, dev);
8933
8934                         WARN_ON(1);
8935                         list_del(&dev->unreg_list);
8936                         continue;
8937                 }
8938                 dev->dismantle = true;
8939                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
8940         }
8941
8942         /* If device is running, close it first. */
8943         list_for_each_entry(dev, head, unreg_list)
8944                 list_add_tail(&dev->close_list, &close_head);
8945         dev_close_many(&close_head, true);
8946
8947         list_for_each_entry(dev, head, unreg_list) {
8948                 /* And unlink it from device chain. */
8949                 unlist_netdevice(dev);
8950
8951                 dev->reg_state = NETREG_UNREGISTERING;
8952         }
8953         flush_all_backlogs();
8954
8955         synchronize_net();
8956
8957         list_for_each_entry(dev, head, unreg_list) {
8958                 struct sk_buff *skb = NULL;
8959
8960                 /* Shutdown queueing discipline. */
8961                 dev_shutdown(dev);
8962
8963                 dev_xdp_uninstall(dev);
8964
8965                 /* Notify protocols, that we are about to destroy
8966                  * this device. They should clean all the things.
8967                  */
8968                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8969
8970                 if (!dev->rtnl_link_ops ||
8971                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8972                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
8973                                                      GFP_KERNEL, NULL, 0);
8974
8975                 /*
8976                  *      Flush the unicast and multicast chains
8977                  */
8978                 dev_uc_flush(dev);
8979                 dev_mc_flush(dev);
8980
8981                 netdev_name_node_alt_flush(dev);
8982                 netdev_name_node_free(dev->name_node);
8983
8984                 if (dev->netdev_ops->ndo_uninit)
8985                         dev->netdev_ops->ndo_uninit(dev);
8986
8987                 if (skb)
8988                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
8989
8990                 /* Notifier chain MUST detach us all upper devices. */
8991                 WARN_ON(netdev_has_any_upper_dev(dev));
8992                 WARN_ON(netdev_has_any_lower_dev(dev));
8993
8994                 /* Remove entries from kobject tree */
8995                 netdev_unregister_kobject(dev);
8996 #ifdef CONFIG_XPS
8997                 /* Remove XPS queueing entries */
8998                 netif_reset_xps_queues_gt(dev, 0);
8999 #endif
9000         }
9001
9002         synchronize_net();
9003
9004         list_for_each_entry(dev, head, unreg_list)
9005                 dev_put(dev);
9006 }
9007
9008 static void rollback_registered(struct net_device *dev)
9009 {
9010         LIST_HEAD(single);
9011
9012         list_add(&dev->unreg_list, &single);
9013         rollback_registered_many(&single);
9014         list_del(&single);
9015 }
9016
9017 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9018         struct net_device *upper, netdev_features_t features)
9019 {
9020         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9021         netdev_features_t feature;
9022         int feature_bit;
9023
9024         for_each_netdev_feature(upper_disables, feature_bit) {
9025                 feature = __NETIF_F_BIT(feature_bit);
9026                 if (!(upper->wanted_features & feature)
9027                     && (features & feature)) {
9028                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9029                                    &feature, upper->name);
9030                         features &= ~feature;
9031                 }
9032         }
9033
9034         return features;
9035 }
9036
9037 static void netdev_sync_lower_features(struct net_device *upper,
9038         struct net_device *lower, netdev_features_t features)
9039 {
9040         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9041         netdev_features_t feature;
9042         int feature_bit;
9043
9044         for_each_netdev_feature(upper_disables, feature_bit) {
9045                 feature = __NETIF_F_BIT(feature_bit);
9046                 if (!(features & feature) && (lower->features & feature)) {
9047                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9048                                    &feature, lower->name);
9049                         lower->wanted_features &= ~feature;
9050                         __netdev_update_features(lower);
9051
9052                         if (unlikely(lower->features & feature))
9053                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9054                                             &feature, lower->name);
9055                         else
9056                                 netdev_features_change(lower);
9057                 }
9058         }
9059 }
9060
9061 static netdev_features_t netdev_fix_features(struct net_device *dev,
9062         netdev_features_t features)
9063 {
9064         /* Fix illegal checksum combinations */
9065         if ((features & NETIF_F_HW_CSUM) &&
9066             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9067                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9068                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9069         }
9070
9071         /* TSO requires that SG is present as well. */
9072         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9073                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9074                 features &= ~NETIF_F_ALL_TSO;
9075         }
9076
9077         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9078                                         !(features & NETIF_F_IP_CSUM)) {
9079                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9080                 features &= ~NETIF_F_TSO;
9081                 features &= ~NETIF_F_TSO_ECN;
9082         }
9083
9084         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9085                                          !(features & NETIF_F_IPV6_CSUM)) {
9086                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9087                 features &= ~NETIF_F_TSO6;
9088         }
9089
9090         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9091         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9092                 features &= ~NETIF_F_TSO_MANGLEID;
9093
9094         /* TSO ECN requires that TSO is present as well. */
9095         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9096                 features &= ~NETIF_F_TSO_ECN;
9097
9098         /* Software GSO depends on SG. */
9099         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9100                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9101                 features &= ~NETIF_F_GSO;
9102         }
9103
9104         /* GSO partial features require GSO partial be set */
9105         if ((features & dev->gso_partial_features) &&
9106             !(features & NETIF_F_GSO_PARTIAL)) {
9107                 netdev_dbg(dev,
9108                            "Dropping partially supported GSO features since no GSO partial.\n");
9109                 features &= ~dev->gso_partial_features;
9110         }
9111
9112         if (!(features & NETIF_F_RXCSUM)) {
9113                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9114                  * successfully merged by hardware must also have the
9115                  * checksum verified by hardware.  If the user does not
9116                  * want to enable RXCSUM, logically, we should disable GRO_HW.
9117                  */
9118                 if (features & NETIF_F_GRO_HW) {
9119                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9120                         features &= ~NETIF_F_GRO_HW;
9121                 }
9122         }
9123
9124         /* LRO/HW-GRO features cannot be combined with RX-FCS */
9125         if (features & NETIF_F_RXFCS) {
9126                 if (features & NETIF_F_LRO) {
9127                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9128                         features &= ~NETIF_F_LRO;
9129                 }
9130
9131                 if (features & NETIF_F_GRO_HW) {
9132                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9133                         features &= ~NETIF_F_GRO_HW;
9134                 }
9135         }
9136
9137         return features;
9138 }
9139
9140 int __netdev_update_features(struct net_device *dev)
9141 {
9142         struct net_device *upper, *lower;
9143         netdev_features_t features;
9144         struct list_head *iter;
9145         int err = -1;
9146
9147         ASSERT_RTNL();
9148
9149         features = netdev_get_wanted_features(dev);
9150
9151         if (dev->netdev_ops->ndo_fix_features)
9152                 features = dev->netdev_ops->ndo_fix_features(dev, features);
9153
9154         /* driver might be less strict about feature dependencies */
9155         features = netdev_fix_features(dev, features);
9156
9157         /* some features can't be enabled if they're off an an upper device */
9158         netdev_for_each_upper_dev_rcu(dev, upper, iter)
9159                 features = netdev_sync_upper_features(dev, upper, features);
9160
9161         if (dev->features == features)
9162                 goto sync_lower;
9163
9164         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9165                 &dev->features, &features);
9166
9167         if (dev->netdev_ops->ndo_set_features)
9168                 err = dev->netdev_ops->ndo_set_features(dev, features);
9169         else
9170                 err = 0;
9171
9172         if (unlikely(err < 0)) {
9173                 netdev_err(dev,
9174                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
9175                         err, &features, &dev->features);
9176                 /* return non-0 since some features might have changed and
9177                  * it's better to fire a spurious notification than miss it
9178                  */
9179                 return -1;
9180         }
9181
9182 sync_lower:
9183         /* some features must be disabled on lower devices when disabled
9184          * on an upper device (think: bonding master or bridge)
9185          */
9186         netdev_for_each_lower_dev(dev, lower, iter)
9187                 netdev_sync_lower_features(dev, lower, features);
9188
9189         if (!err) {
9190                 netdev_features_t diff = features ^ dev->features;
9191
9192                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9193                         /* udp_tunnel_{get,drop}_rx_info both need
9194                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9195                          * device, or they won't do anything.
9196                          * Thus we need to update dev->features
9197                          * *before* calling udp_tunnel_get_rx_info,
9198                          * but *after* calling udp_tunnel_drop_rx_info.
9199                          */
9200                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9201                                 dev->features = features;
9202                                 udp_tunnel_get_rx_info(dev);
9203                         } else {
9204                                 udp_tunnel_drop_rx_info(dev);
9205                         }
9206                 }
9207
9208                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9209                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9210                                 dev->features = features;
9211                                 err |= vlan_get_rx_ctag_filter_info(dev);
9212                         } else {
9213                                 vlan_drop_rx_ctag_filter_info(dev);
9214                         }
9215                 }
9216
9217                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9218                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9219                                 dev->features = features;
9220                                 err |= vlan_get_rx_stag_filter_info(dev);
9221                         } else {
9222                                 vlan_drop_rx_stag_filter_info(dev);
9223                         }
9224                 }
9225
9226                 dev->features = features;
9227         }
9228
9229         return err < 0 ? 0 : 1;
9230 }
9231
9232 /**
9233  *      netdev_update_features - recalculate device features
9234  *      @dev: the device to check
9235  *
9236  *      Recalculate dev->features set and send notifications if it
9237  *      has changed. Should be called after driver or hardware dependent
9238  *      conditions might have changed that influence the features.
9239  */
9240 void netdev_update_features(struct net_device *dev)
9241 {
9242         if (__netdev_update_features(dev))
9243                 netdev_features_change(dev);
9244 }
9245 EXPORT_SYMBOL(netdev_update_features);
9246
9247 /**
9248  *      netdev_change_features - recalculate device features
9249  *      @dev: the device to check
9250  *
9251  *      Recalculate dev->features set and send notifications even
9252  *      if they have not changed. Should be called instead of
9253  *      netdev_update_features() if also dev->vlan_features might
9254  *      have changed to allow the changes to be propagated to stacked
9255  *      VLAN devices.
9256  */
9257 void netdev_change_features(struct net_device *dev)
9258 {
9259         __netdev_update_features(dev);
9260         netdev_features_change(dev);
9261 }
9262 EXPORT_SYMBOL(netdev_change_features);
9263
9264 /**
9265  *      netif_stacked_transfer_operstate -      transfer operstate
9266  *      @rootdev: the root or lower level device to transfer state from
9267  *      @dev: the device to transfer operstate to
9268  *
9269  *      Transfer operational state from root to device. This is normally
9270  *      called when a stacking relationship exists between the root
9271  *      device and the device(a leaf device).
9272  */
9273 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9274                                         struct net_device *dev)
9275 {
9276         if (rootdev->operstate == IF_OPER_DORMANT)
9277                 netif_dormant_on(dev);
9278         else
9279                 netif_dormant_off(dev);
9280
9281         if (rootdev->operstate == IF_OPER_TESTING)
9282                 netif_testing_on(dev);
9283         else
9284                 netif_testing_off(dev);
9285
9286         if (netif_carrier_ok(rootdev))
9287                 netif_carrier_on(dev);
9288         else
9289                 netif_carrier_off(dev);
9290 }
9291 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9292
9293 static int netif_alloc_rx_queues(struct net_device *dev)
9294 {
9295         unsigned int i, count = dev->num_rx_queues;
9296         struct netdev_rx_queue *rx;
9297         size_t sz = count * sizeof(*rx);
9298         int err = 0;
9299
9300         BUG_ON(count < 1);
9301
9302         rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9303         if (!rx)
9304                 return -ENOMEM;
9305
9306         dev->_rx = rx;
9307
9308         for (i = 0; i < count; i++) {
9309                 rx[i].dev = dev;
9310
9311                 /* XDP RX-queue setup */
9312                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
9313                 if (err < 0)
9314                         goto err_rxq_info;
9315         }
9316         return 0;
9317
9318 err_rxq_info:
9319         /* Rollback successful reg's and free other resources */
9320         while (i--)
9321                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9322         kvfree(dev->_rx);
9323         dev->_rx = NULL;
9324         return err;
9325 }
9326
9327 static void netif_free_rx_queues(struct net_device *dev)
9328 {
9329         unsigned int i, count = dev->num_rx_queues;
9330
9331         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9332         if (!dev->_rx)
9333                 return;
9334
9335         for (i = 0; i < count; i++)
9336                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9337
9338         kvfree(dev->_rx);
9339 }
9340
9341 static void netdev_init_one_queue(struct net_device *dev,
9342                                   struct netdev_queue *queue, void *_unused)
9343 {
9344         /* Initialize queue lock */
9345         spin_lock_init(&queue->_xmit_lock);
9346         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9347         queue->xmit_lock_owner = -1;
9348         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9349         queue->dev = dev;
9350 #ifdef CONFIG_BQL
9351         dql_init(&queue->dql, HZ);
9352 #endif
9353 }
9354
9355 static void netif_free_tx_queues(struct net_device *dev)
9356 {
9357         kvfree(dev->_tx);
9358 }
9359
9360 static int netif_alloc_netdev_queues(struct net_device *dev)
9361 {
9362         unsigned int count = dev->num_tx_queues;
9363         struct netdev_queue *tx;
9364         size_t sz = count * sizeof(*tx);
9365
9366         if (count < 1 || count > 0xffff)
9367                 return -EINVAL;
9368
9369         tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9370         if (!tx)
9371                 return -ENOMEM;
9372
9373         dev->_tx = tx;
9374
9375         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9376         spin_lock_init(&dev->tx_global_lock);
9377
9378         return 0;
9379 }
9380
9381 void netif_tx_stop_all_queues(struct net_device *dev)
9382 {
9383         unsigned int i;
9384
9385         for (i = 0; i < dev->num_tx_queues; i++) {
9386                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9387
9388                 netif_tx_stop_queue(txq);
9389         }
9390 }
9391 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9392
9393 /**
9394  *      register_netdevice      - register a network device
9395  *      @dev: device to register
9396  *
9397  *      Take a completed network device structure and add it to the kernel
9398  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9399  *      chain. 0 is returned on success. A negative errno code is returned
9400  *      on a failure to set up the device, or if the name is a duplicate.
9401  *
9402  *      Callers must hold the rtnl semaphore. You may want
9403  *      register_netdev() instead of this.
9404  *
9405  *      BUGS:
9406  *      The locking appears insufficient to guarantee two parallel registers
9407  *      will not get the same name.
9408  */
9409
9410 int register_netdevice(struct net_device *dev)
9411 {
9412         int ret;
9413         struct net *net = dev_net(dev);
9414
9415         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9416                      NETDEV_FEATURE_COUNT);
9417         BUG_ON(dev_boot_phase);
9418         ASSERT_RTNL();
9419
9420         might_sleep();
9421
9422         /* When net_device's are persistent, this will be fatal. */
9423         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9424         BUG_ON(!net);
9425
9426         ret = ethtool_check_ops(dev->ethtool_ops);
9427         if (ret)
9428                 return ret;
9429
9430         spin_lock_init(&dev->addr_list_lock);
9431         netdev_set_addr_lockdep_class(dev);
9432
9433         ret = dev_get_valid_name(net, dev, dev->name);
9434         if (ret < 0)
9435                 goto out;
9436
9437         ret = -ENOMEM;
9438         dev->name_node = netdev_name_node_head_alloc(dev);
9439         if (!dev->name_node)
9440                 goto out;
9441
9442         /* Init, if this function is available */
9443         if (dev->netdev_ops->ndo_init) {
9444                 ret = dev->netdev_ops->ndo_init(dev);
9445                 if (ret) {
9446                         if (ret > 0)
9447                                 ret = -EIO;
9448                         goto err_free_name;
9449                 }
9450         }
9451
9452         if (((dev->hw_features | dev->features) &
9453              NETIF_F_HW_VLAN_CTAG_FILTER) &&
9454             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9455              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9456                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9457                 ret = -EINVAL;
9458                 goto err_uninit;
9459         }
9460
9461         ret = -EBUSY;
9462         if (!dev->ifindex)
9463                 dev->ifindex = dev_new_index(net);
9464         else if (__dev_get_by_index(net, dev->ifindex))
9465                 goto err_uninit;
9466
9467         /* Transfer changeable features to wanted_features and enable
9468          * software offloads (GSO and GRO).
9469          */
9470         dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
9471         dev->features |= NETIF_F_SOFT_FEATURES;
9472
9473         if (dev->netdev_ops->ndo_udp_tunnel_add) {
9474                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9475                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9476         }
9477
9478         dev->wanted_features = dev->features & dev->hw_features;
9479
9480         if (!(dev->flags & IFF_LOOPBACK))
9481                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
9482
9483         /* If IPv4 TCP segmentation offload is supported we should also
9484          * allow the device to enable segmenting the frame with the option
9485          * of ignoring a static IP ID value.  This doesn't enable the
9486          * feature itself but allows the user to enable it later.
9487          */
9488         if (dev->hw_features & NETIF_F_TSO)
9489                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
9490         if (dev->vlan_features & NETIF_F_TSO)
9491                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
9492         if (dev->mpls_features & NETIF_F_TSO)
9493                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
9494         if (dev->hw_enc_features & NETIF_F_TSO)
9495                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
9496
9497         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
9498          */
9499         dev->vlan_features |= NETIF_F_HIGHDMA;
9500
9501         /* Make NETIF_F_SG inheritable to tunnel devices.
9502          */
9503         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
9504
9505         /* Make NETIF_F_SG inheritable to MPLS.
9506          */
9507         dev->mpls_features |= NETIF_F_SG;
9508
9509         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
9510         ret = notifier_to_errno(ret);
9511         if (ret)
9512                 goto err_uninit;
9513
9514         ret = netdev_register_kobject(dev);
9515         if (ret) {
9516                 dev->reg_state = NETREG_UNREGISTERED;
9517                 goto err_uninit;
9518         }
9519         dev->reg_state = NETREG_REGISTERED;
9520
9521         __netdev_update_features(dev);
9522
9523         /*
9524          *      Default initial state at registry is that the
9525          *      device is present.
9526          */
9527
9528         set_bit(__LINK_STATE_PRESENT, &dev->state);
9529
9530         linkwatch_init_dev(dev);
9531
9532         dev_init_scheduler(dev);
9533         dev_hold(dev);
9534         list_netdevice(dev);
9535         add_device_randomness(dev->dev_addr, dev->addr_len);
9536
9537         /* If the device has permanent device address, driver should
9538          * set dev_addr and also addr_assign_type should be set to
9539          * NET_ADDR_PERM (default value).
9540          */
9541         if (dev->addr_assign_type == NET_ADDR_PERM)
9542                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
9543
9544         /* Notify protocols, that a new device appeared. */
9545         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
9546         ret = notifier_to_errno(ret);
9547         if (ret) {
9548                 rollback_registered(dev);
9549                 rcu_barrier();
9550
9551                 dev->reg_state = NETREG_UNREGISTERED;
9552                 /* We should put the kobject that hold in
9553                  * netdev_unregister_kobject(), otherwise
9554                  * the net device cannot be freed when
9555                  * driver calls free_netdev(), because the
9556                  * kobject is being hold.
9557                  */
9558                 kobject_put(&dev->dev.kobj);
9559         }
9560         /*
9561          *      Prevent userspace races by waiting until the network
9562          *      device is fully setup before sending notifications.
9563          */
9564         if (!dev->rtnl_link_ops ||
9565             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
9566                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9567
9568 out:
9569         return ret;
9570
9571 err_uninit:
9572         if (dev->netdev_ops->ndo_uninit)
9573                 dev->netdev_ops->ndo_uninit(dev);
9574         if (dev->priv_destructor)
9575                 dev->priv_destructor(dev);
9576 err_free_name:
9577         netdev_name_node_free(dev->name_node);
9578         goto out;
9579 }
9580 EXPORT_SYMBOL(register_netdevice);
9581
9582 /**
9583  *      init_dummy_netdev       - init a dummy network device for NAPI
9584  *      @dev: device to init
9585  *
9586  *      This takes a network device structure and initialize the minimum
9587  *      amount of fields so it can be used to schedule NAPI polls without
9588  *      registering a full blown interface. This is to be used by drivers
9589  *      that need to tie several hardware interfaces to a single NAPI
9590  *      poll scheduler due to HW limitations.
9591  */
9592 int init_dummy_netdev(struct net_device *dev)
9593 {
9594         /* Clear everything. Note we don't initialize spinlocks
9595          * are they aren't supposed to be taken by any of the
9596          * NAPI code and this dummy netdev is supposed to be
9597          * only ever used for NAPI polls
9598          */
9599         memset(dev, 0, sizeof(struct net_device));
9600
9601         /* make sure we BUG if trying to hit standard
9602          * register/unregister code path
9603          */
9604         dev->reg_state = NETREG_DUMMY;
9605
9606         /* NAPI wants this */
9607         INIT_LIST_HEAD(&dev->napi_list);
9608
9609         /* a dummy interface is started by default */
9610         set_bit(__LINK_STATE_PRESENT, &dev->state);
9611         set_bit(__LINK_STATE_START, &dev->state);
9612
9613         /* napi_busy_loop stats accounting wants this */
9614         dev_net_set(dev, &init_net);
9615
9616         /* Note : We dont allocate pcpu_refcnt for dummy devices,
9617          * because users of this 'device' dont need to change
9618          * its refcount.
9619          */
9620
9621         return 0;
9622 }
9623 EXPORT_SYMBOL_GPL(init_dummy_netdev);
9624
9625
9626 /**
9627  *      register_netdev - register a network device
9628  *      @dev: device to register
9629  *
9630  *      Take a completed network device structure and add it to the kernel
9631  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9632  *      chain. 0 is returned on success. A negative errno code is returned
9633  *      on a failure to set up the device, or if the name is a duplicate.
9634  *
9635  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
9636  *      and expands the device name if you passed a format string to
9637  *      alloc_netdev.
9638  */
9639 int register_netdev(struct net_device *dev)
9640 {
9641         int err;
9642
9643         if (rtnl_lock_killable())
9644                 return -EINTR;
9645         err = register_netdevice(dev);
9646         rtnl_unlock();
9647         return err;
9648 }
9649 EXPORT_SYMBOL(register_netdev);
9650
9651 int netdev_refcnt_read(const struct net_device *dev)
9652 {
9653         int i, refcnt = 0;
9654
9655         for_each_possible_cpu(i)
9656                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
9657         return refcnt;
9658 }
9659 EXPORT_SYMBOL(netdev_refcnt_read);
9660
9661 /**
9662  * netdev_wait_allrefs - wait until all references are gone.
9663  * @dev: target net_device
9664  *
9665  * This is called when unregistering network devices.
9666  *
9667  * Any protocol or device that holds a reference should register
9668  * for netdevice notification, and cleanup and put back the
9669  * reference if they receive an UNREGISTER event.
9670  * We can get stuck here if buggy protocols don't correctly
9671  * call dev_put.
9672  */
9673 static void netdev_wait_allrefs(struct net_device *dev)
9674 {
9675         unsigned long rebroadcast_time, warning_time;
9676         int refcnt;
9677
9678         linkwatch_forget_dev(dev);
9679
9680         rebroadcast_time = warning_time = jiffies;
9681         refcnt = netdev_refcnt_read(dev);
9682
9683         while (refcnt != 0) {
9684                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
9685                         rtnl_lock();
9686
9687                         /* Rebroadcast unregister notification */
9688                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9689
9690                         __rtnl_unlock();
9691                         rcu_barrier();
9692                         rtnl_lock();
9693
9694                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
9695                                      &dev->state)) {
9696                                 /* We must not have linkwatch events
9697                                  * pending on unregister. If this
9698                                  * happens, we simply run the queue
9699                                  * unscheduled, resulting in a noop
9700                                  * for this device.
9701                                  */
9702                                 linkwatch_run_queue();
9703                         }
9704
9705                         __rtnl_unlock();
9706
9707                         rebroadcast_time = jiffies;
9708                 }
9709
9710                 msleep(250);
9711
9712                 refcnt = netdev_refcnt_read(dev);
9713
9714                 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
9715                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
9716                                  dev->name, refcnt);
9717                         warning_time = jiffies;
9718                 }
9719         }
9720 }
9721
9722 /* The sequence is:
9723  *
9724  *      rtnl_lock();
9725  *      ...
9726  *      register_netdevice(x1);
9727  *      register_netdevice(x2);
9728  *      ...
9729  *      unregister_netdevice(y1);
9730  *      unregister_netdevice(y2);
9731  *      ...
9732  *      rtnl_unlock();
9733  *      free_netdev(y1);
9734  *      free_netdev(y2);
9735  *
9736  * We are invoked by rtnl_unlock().
9737  * This allows us to deal with problems:
9738  * 1) We can delete sysfs objects which invoke hotplug
9739  *    without deadlocking with linkwatch via keventd.
9740  * 2) Since we run with the RTNL semaphore not held, we can sleep
9741  *    safely in order to wait for the netdev refcnt to drop to zero.
9742  *
9743  * We must not return until all unregister events added during
9744  * the interval the lock was held have been completed.
9745  */
9746 void netdev_run_todo(void)
9747 {
9748         struct list_head list;
9749
9750         /* Snapshot list, allow later requests */
9751         list_replace_init(&net_todo_list, &list);
9752
9753         __rtnl_unlock();
9754
9755
9756         /* Wait for rcu callbacks to finish before next phase */
9757         if (!list_empty(&list))
9758                 rcu_barrier();
9759
9760         while (!list_empty(&list)) {
9761                 struct net_device *dev
9762                         = list_first_entry(&list, struct net_device, todo_list);
9763                 list_del(&dev->todo_list);
9764
9765                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
9766                         pr_err("network todo '%s' but state %d\n",
9767                                dev->name, dev->reg_state);
9768                         dump_stack();
9769                         continue;
9770                 }
9771
9772                 dev->reg_state = NETREG_UNREGISTERED;
9773
9774                 netdev_wait_allrefs(dev);
9775
9776                 /* paranoia */
9777                 BUG_ON(netdev_refcnt_read(dev));
9778                 BUG_ON(!list_empty(&dev->ptype_all));
9779                 BUG_ON(!list_empty(&dev->ptype_specific));
9780                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
9781                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
9782 #if IS_ENABLED(CONFIG_DECNET)
9783                 WARN_ON(dev->dn_ptr);
9784 #endif
9785                 if (dev->priv_destructor)
9786                         dev->priv_destructor(dev);
9787                 if (dev->needs_free_netdev)
9788                         free_netdev(dev);
9789
9790                 /* Report a network device has been unregistered */
9791                 rtnl_lock();
9792                 dev_net(dev)->dev_unreg_count--;
9793                 __rtnl_unlock();
9794                 wake_up(&netdev_unregistering_wq);
9795
9796                 /* Free network device */
9797                 kobject_put(&dev->dev.kobj);
9798         }
9799 }
9800
9801 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
9802  * all the same fields in the same order as net_device_stats, with only
9803  * the type differing, but rtnl_link_stats64 may have additional fields
9804  * at the end for newer counters.
9805  */
9806 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
9807                              const struct net_device_stats *netdev_stats)
9808 {
9809 #if BITS_PER_LONG == 64
9810         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9811         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9812         /* zero out counters that only exist in rtnl_link_stats64 */
9813         memset((char *)stats64 + sizeof(*netdev_stats), 0,
9814                sizeof(*stats64) - sizeof(*netdev_stats));
9815 #else
9816         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
9817         const unsigned long *src = (const unsigned long *)netdev_stats;
9818         u64 *dst = (u64 *)stats64;
9819
9820         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
9821         for (i = 0; i < n; i++)
9822                 dst[i] = src[i];
9823         /* zero out counters that only exist in rtnl_link_stats64 */
9824         memset((char *)stats64 + n * sizeof(u64), 0,
9825                sizeof(*stats64) - n * sizeof(u64));
9826 #endif
9827 }
9828 EXPORT_SYMBOL(netdev_stats_to_stats64);
9829
9830 /**
9831  *      dev_get_stats   - get network device statistics
9832  *      @dev: device to get statistics from
9833  *      @storage: place to store stats
9834  *
9835  *      Get network statistics from device. Return @storage.
9836  *      The device driver may provide its own method by setting
9837  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
9838  *      otherwise the internal statistics structure is used.
9839  */
9840 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
9841                                         struct rtnl_link_stats64 *storage)
9842 {
9843         const struct net_device_ops *ops = dev->netdev_ops;
9844
9845         if (ops->ndo_get_stats64) {
9846                 memset(storage, 0, sizeof(*storage));
9847                 ops->ndo_get_stats64(dev, storage);
9848         } else if (ops->ndo_get_stats) {
9849                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
9850         } else {
9851                 netdev_stats_to_stats64(storage, &dev->stats);
9852         }
9853         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
9854         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
9855         storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
9856         return storage;
9857 }
9858 EXPORT_SYMBOL(dev_get_stats);
9859
9860 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
9861 {
9862         struct netdev_queue *queue = dev_ingress_queue(dev);
9863
9864 #ifdef CONFIG_NET_CLS_ACT
9865         if (queue)
9866                 return queue;
9867         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
9868         if (!queue)
9869                 return NULL;
9870         netdev_init_one_queue(dev, queue, NULL);
9871         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
9872         queue->qdisc_sleeping = &noop_qdisc;
9873         rcu_assign_pointer(dev->ingress_queue, queue);
9874 #endif
9875         return queue;
9876 }
9877
9878 static const struct ethtool_ops default_ethtool_ops;
9879
9880 void netdev_set_default_ethtool_ops(struct net_device *dev,
9881                                     const struct ethtool_ops *ops)
9882 {
9883         if (dev->ethtool_ops == &default_ethtool_ops)
9884                 dev->ethtool_ops = ops;
9885 }
9886 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
9887
9888 void netdev_freemem(struct net_device *dev)
9889 {
9890         char *addr = (char *)dev - dev->padded;
9891
9892         kvfree(addr);
9893 }
9894
9895 /**
9896  * alloc_netdev_mqs - allocate network device
9897  * @sizeof_priv: size of private data to allocate space for
9898  * @name: device name format string
9899  * @name_assign_type: origin of device name
9900  * @setup: callback to initialize device
9901  * @txqs: the number of TX subqueues to allocate
9902  * @rxqs: the number of RX subqueues to allocate
9903  *
9904  * Allocates a struct net_device with private data area for driver use
9905  * and performs basic initialization.  Also allocates subqueue structs
9906  * for each queue on the device.
9907  */
9908 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
9909                 unsigned char name_assign_type,
9910                 void (*setup)(struct net_device *),
9911                 unsigned int txqs, unsigned int rxqs)
9912 {
9913         struct net_device *dev;
9914         unsigned int alloc_size;
9915         struct net_device *p;
9916
9917         BUG_ON(strlen(name) >= sizeof(dev->name));
9918
9919         if (txqs < 1) {
9920                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
9921                 return NULL;
9922         }
9923
9924         if (rxqs < 1) {
9925                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
9926                 return NULL;
9927         }
9928
9929         alloc_size = sizeof(struct net_device);
9930         if (sizeof_priv) {
9931                 /* ensure 32-byte alignment of private area */
9932                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
9933                 alloc_size += sizeof_priv;
9934         }
9935         /* ensure 32-byte alignment of whole construct */
9936         alloc_size += NETDEV_ALIGN - 1;
9937
9938         p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9939         if (!p)
9940                 return NULL;
9941
9942         dev = PTR_ALIGN(p, NETDEV_ALIGN);
9943         dev->padded = (char *)dev - (char *)p;
9944
9945         dev->pcpu_refcnt = alloc_percpu(int);
9946         if (!dev->pcpu_refcnt)
9947                 goto free_dev;
9948
9949         if (dev_addr_init(dev))
9950                 goto free_pcpu;
9951
9952         dev_mc_init(dev);
9953         dev_uc_init(dev);
9954
9955         dev_net_set(dev, &init_net);
9956
9957         dev->gso_max_size = GSO_MAX_SIZE;
9958         dev->gso_max_segs = GSO_MAX_SEGS;
9959         dev->upper_level = 1;
9960         dev->lower_level = 1;
9961
9962         INIT_LIST_HEAD(&dev->napi_list);
9963         INIT_LIST_HEAD(&dev->unreg_list);
9964         INIT_LIST_HEAD(&dev->close_list);
9965         INIT_LIST_HEAD(&dev->link_watch_list);
9966         INIT_LIST_HEAD(&dev->adj_list.upper);
9967         INIT_LIST_HEAD(&dev->adj_list.lower);
9968         INIT_LIST_HEAD(&dev->ptype_all);
9969         INIT_LIST_HEAD(&dev->ptype_specific);
9970         INIT_LIST_HEAD(&dev->net_notifier_list);
9971 #ifdef CONFIG_NET_SCHED
9972         hash_init(dev->qdisc_hash);
9973 #endif
9974         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
9975         setup(dev);
9976
9977         if (!dev->tx_queue_len) {
9978                 dev->priv_flags |= IFF_NO_QUEUE;
9979                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
9980         }
9981
9982         dev->num_tx_queues = txqs;
9983         dev->real_num_tx_queues = txqs;
9984         if (netif_alloc_netdev_queues(dev))
9985                 goto free_all;
9986
9987         dev->num_rx_queues = rxqs;
9988         dev->real_num_rx_queues = rxqs;
9989         if (netif_alloc_rx_queues(dev))
9990                 goto free_all;
9991
9992         strcpy(dev->name, name);
9993         dev->name_assign_type = name_assign_type;
9994         dev->group = INIT_NETDEV_GROUP;
9995         if (!dev->ethtool_ops)
9996                 dev->ethtool_ops = &default_ethtool_ops;
9997
9998         nf_hook_ingress_init(dev);
9999
10000         return dev;
10001
10002 free_all:
10003         free_netdev(dev);
10004         return NULL;
10005
10006 free_pcpu:
10007         free_percpu(dev->pcpu_refcnt);
10008 free_dev:
10009         netdev_freemem(dev);
10010         return NULL;
10011 }
10012 EXPORT_SYMBOL(alloc_netdev_mqs);
10013
10014 /**
10015  * free_netdev - free network device
10016  * @dev: device
10017  *
10018  * This function does the last stage of destroying an allocated device
10019  * interface. The reference to the device object is released. If this
10020  * is the last reference then it will be freed.Must be called in process
10021  * context.
10022  */
10023 void free_netdev(struct net_device *dev)
10024 {
10025         struct napi_struct *p, *n;
10026
10027         might_sleep();
10028         netif_free_tx_queues(dev);
10029         netif_free_rx_queues(dev);
10030
10031         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10032
10033         /* Flush device addresses */
10034         dev_addr_flush(dev);
10035
10036         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10037                 netif_napi_del(p);
10038
10039         free_percpu(dev->pcpu_refcnt);
10040         dev->pcpu_refcnt = NULL;
10041         free_percpu(dev->xdp_bulkq);
10042         dev->xdp_bulkq = NULL;
10043
10044         /*  Compatibility with error handling in drivers */
10045         if (dev->reg_state == NETREG_UNINITIALIZED) {
10046                 netdev_freemem(dev);
10047                 return;
10048         }
10049
10050         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10051         dev->reg_state = NETREG_RELEASED;
10052
10053         /* will free via device release */
10054         put_device(&dev->dev);
10055 }
10056 EXPORT_SYMBOL(free_netdev);
10057
10058 /**
10059  *      synchronize_net -  Synchronize with packet receive processing
10060  *
10061  *      Wait for packets currently being received to be done.
10062  *      Does not block later packets from starting.
10063  */
10064 void synchronize_net(void)
10065 {
10066         might_sleep();
10067         if (rtnl_is_locked())
10068                 synchronize_rcu_expedited();
10069         else
10070                 synchronize_rcu();
10071 }
10072 EXPORT_SYMBOL(synchronize_net);
10073
10074 /**
10075  *      unregister_netdevice_queue - remove device from the kernel
10076  *      @dev: device
10077  *      @head: list
10078  *
10079  *      This function shuts down a device interface and removes it
10080  *      from the kernel tables.
10081  *      If head not NULL, device is queued to be unregistered later.
10082  *
10083  *      Callers must hold the rtnl semaphore.  You may want
10084  *      unregister_netdev() instead of this.
10085  */
10086
10087 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10088 {
10089         ASSERT_RTNL();
10090
10091         if (head) {
10092                 list_move_tail(&dev->unreg_list, head);
10093         } else {
10094                 rollback_registered(dev);
10095                 /* Finish processing unregister after unlock */
10096                 net_set_todo(dev);
10097         }
10098 }
10099 EXPORT_SYMBOL(unregister_netdevice_queue);
10100
10101 /**
10102  *      unregister_netdevice_many - unregister many devices
10103  *      @head: list of devices
10104  *
10105  *  Note: As most callers use a stack allocated list_head,
10106  *  we force a list_del() to make sure stack wont be corrupted later.
10107  */
10108 void unregister_netdevice_many(struct list_head *head)
10109 {
10110         struct net_device *dev;
10111
10112         if (!list_empty(head)) {
10113                 rollback_registered_many(head);
10114                 list_for_each_entry(dev, head, unreg_list)
10115                         net_set_todo(dev);
10116                 list_del(head);
10117         }
10118 }
10119 EXPORT_SYMBOL(unregister_netdevice_many);
10120
10121 /**
10122  *      unregister_netdev - remove device from the kernel
10123  *      @dev: device
10124  *
10125  *      This function shuts down a device interface and removes it
10126  *      from the kernel tables.
10127  *
10128  *      This is just a wrapper for unregister_netdevice that takes
10129  *      the rtnl semaphore.  In general you want to use this and not
10130  *      unregister_netdevice.
10131  */
10132 void unregister_netdev(struct net_device *dev)
10133 {
10134         rtnl_lock();
10135         unregister_netdevice(dev);
10136         rtnl_unlock();
10137 }
10138 EXPORT_SYMBOL(unregister_netdev);
10139
10140 /**
10141  *      dev_change_net_namespace - move device to different nethost namespace
10142  *      @dev: device
10143  *      @net: network namespace
10144  *      @pat: If not NULL name pattern to try if the current device name
10145  *            is already taken in the destination network namespace.
10146  *
10147  *      This function shuts down a device interface and moves it
10148  *      to a new network namespace. On success 0 is returned, on
10149  *      a failure a netagive errno code is returned.
10150  *
10151  *      Callers must hold the rtnl semaphore.
10152  */
10153
10154 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
10155 {
10156         struct net *net_old = dev_net(dev);
10157         int err, new_nsid, new_ifindex;
10158
10159         ASSERT_RTNL();
10160
10161         /* Don't allow namespace local devices to be moved. */
10162         err = -EINVAL;
10163         if (dev->features & NETIF_F_NETNS_LOCAL)
10164                 goto out;
10165
10166         /* Ensure the device has been registrered */
10167         if (dev->reg_state != NETREG_REGISTERED)
10168                 goto out;
10169
10170         /* Get out if there is nothing todo */
10171         err = 0;
10172         if (net_eq(net_old, net))
10173                 goto out;
10174
10175         /* Pick the destination device name, and ensure
10176          * we can use it in the destination network namespace.
10177          */
10178         err = -EEXIST;
10179         if (__dev_get_by_name(net, dev->name)) {
10180                 /* We get here if we can't use the current device name */
10181                 if (!pat)
10182                         goto out;
10183                 err = dev_get_valid_name(net, dev, pat);
10184                 if (err < 0)
10185                         goto out;
10186         }
10187
10188         /*
10189          * And now a mini version of register_netdevice unregister_netdevice.
10190          */
10191
10192         /* If device is running close it first. */
10193         dev_close(dev);
10194
10195         /* And unlink it from device chain */
10196         unlist_netdevice(dev);
10197
10198         synchronize_net();
10199
10200         /* Shutdown queueing discipline. */
10201         dev_shutdown(dev);
10202
10203         /* Notify protocols, that we are about to destroy
10204          * this device. They should clean all the things.
10205          *
10206          * Note that dev->reg_state stays at NETREG_REGISTERED.
10207          * This is wanted because this way 8021q and macvlan know
10208          * the device is just moving and can keep their slaves up.
10209          */
10210         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10211         rcu_barrier();
10212
10213         new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10214         /* If there is an ifindex conflict assign a new one */
10215         if (__dev_get_by_index(net, dev->ifindex))
10216                 new_ifindex = dev_new_index(net);
10217         else
10218                 new_ifindex = dev->ifindex;
10219
10220         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10221                             new_ifindex);
10222
10223         /*
10224          *      Flush the unicast and multicast chains
10225          */
10226         dev_uc_flush(dev);
10227         dev_mc_flush(dev);
10228
10229         /* Send a netdev-removed uevent to the old namespace */
10230         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
10231         netdev_adjacent_del_links(dev);
10232
10233         /* Move per-net netdevice notifiers that are following the netdevice */
10234         move_netdevice_notifiers_dev_net(dev, net);
10235
10236         /* Actually switch the network namespace */
10237         dev_net_set(dev, net);
10238         dev->ifindex = new_ifindex;
10239
10240         /* Send a netdev-add uevent to the new namespace */
10241         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
10242         netdev_adjacent_add_links(dev);
10243
10244         /* Fixup kobjects */
10245         err = device_rename(&dev->dev, dev->name);
10246         WARN_ON(err);
10247
10248         /* Adapt owner in case owning user namespace of target network
10249          * namespace is different from the original one.
10250          */
10251         err = netdev_change_owner(dev, net_old, net);
10252         WARN_ON(err);
10253
10254         /* Add the device back in the hashes */
10255         list_netdevice(dev);
10256
10257         /* Notify protocols, that a new device appeared. */
10258         call_netdevice_notifiers(NETDEV_REGISTER, dev);
10259
10260         /*
10261          *      Prevent userspace races by waiting until the network
10262          *      device is fully setup before sending notifications.
10263          */
10264         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10265
10266         synchronize_net();
10267         err = 0;
10268 out:
10269         return err;
10270 }
10271 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
10272
10273 static int dev_cpu_dead(unsigned int oldcpu)
10274 {
10275         struct sk_buff **list_skb;
10276         struct sk_buff *skb;
10277         unsigned int cpu;
10278         struct softnet_data *sd, *oldsd, *remsd = NULL;
10279
10280         local_irq_disable();
10281         cpu = smp_processor_id();
10282         sd = &per_cpu(softnet_data, cpu);
10283         oldsd = &per_cpu(softnet_data, oldcpu);
10284
10285         /* Find end of our completion_queue. */
10286         list_skb = &sd->completion_queue;
10287         while (*list_skb)
10288                 list_skb = &(*list_skb)->next;
10289         /* Append completion queue from offline CPU. */
10290         *list_skb = oldsd->completion_queue;
10291         oldsd->completion_queue = NULL;
10292
10293         /* Append output queue from offline CPU. */
10294         if (oldsd->output_queue) {
10295                 *sd->output_queue_tailp = oldsd->output_queue;
10296                 sd->output_queue_tailp = oldsd->output_queue_tailp;
10297                 oldsd->output_queue = NULL;
10298                 oldsd->output_queue_tailp = &oldsd->output_queue;
10299         }
10300         /* Append NAPI poll list from offline CPU, with one exception :
10301          * process_backlog() must be called by cpu owning percpu backlog.
10302          * We properly handle process_queue & input_pkt_queue later.
10303          */
10304         while (!list_empty(&oldsd->poll_list)) {
10305                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10306                                                             struct napi_struct,
10307                                                             poll_list);
10308
10309                 list_del_init(&napi->poll_list);
10310                 if (napi->poll == process_backlog)
10311                         napi->state = 0;
10312                 else
10313                         ____napi_schedule(sd, napi);
10314         }
10315
10316         raise_softirq_irqoff(NET_TX_SOFTIRQ);
10317         local_irq_enable();
10318
10319 #ifdef CONFIG_RPS
10320         remsd = oldsd->rps_ipi_list;
10321         oldsd->rps_ipi_list = NULL;
10322 #endif
10323         /* send out pending IPI's on offline CPU */
10324         net_rps_send_ipi(remsd);
10325
10326         /* Process offline CPU's input_pkt_queue */
10327         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
10328                 netif_rx_ni(skb);
10329                 input_queue_head_incr(oldsd);
10330         }
10331         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
10332                 netif_rx_ni(skb);
10333                 input_queue_head_incr(oldsd);
10334         }
10335
10336         return 0;
10337 }
10338
10339 /**
10340  *      netdev_increment_features - increment feature set by one
10341  *      @all: current feature set
10342  *      @one: new feature set
10343  *      @mask: mask feature set
10344  *
10345  *      Computes a new feature set after adding a device with feature set
10346  *      @one to the master device with current feature set @all.  Will not
10347  *      enable anything that is off in @mask. Returns the new feature set.
10348  */
10349 netdev_features_t netdev_increment_features(netdev_features_t all,
10350         netdev_features_t one, netdev_features_t mask)
10351 {
10352         if (mask & NETIF_F_HW_CSUM)
10353                 mask |= NETIF_F_CSUM_MASK;
10354         mask |= NETIF_F_VLAN_CHALLENGED;
10355
10356         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
10357         all &= one | ~NETIF_F_ALL_FOR_ALL;
10358
10359         /* If one device supports hw checksumming, set for all. */
10360         if (all & NETIF_F_HW_CSUM)
10361                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
10362
10363         return all;
10364 }
10365 EXPORT_SYMBOL(netdev_increment_features);
10366
10367 static struct hlist_head * __net_init netdev_create_hash(void)
10368 {
10369         int i;
10370         struct hlist_head *hash;
10371
10372         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
10373         if (hash != NULL)
10374                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
10375                         INIT_HLIST_HEAD(&hash[i]);
10376
10377         return hash;
10378 }
10379
10380 /* Initialize per network namespace state */
10381 static int __net_init netdev_init(struct net *net)
10382 {
10383         BUILD_BUG_ON(GRO_HASH_BUCKETS >
10384                      8 * sizeof_field(struct napi_struct, gro_bitmask));
10385
10386         if (net != &init_net)
10387                 INIT_LIST_HEAD(&net->dev_base_head);
10388
10389         net->dev_name_head = netdev_create_hash();
10390         if (net->dev_name_head == NULL)
10391                 goto err_name;
10392
10393         net->dev_index_head = netdev_create_hash();
10394         if (net->dev_index_head == NULL)
10395                 goto err_idx;
10396
10397         RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
10398
10399         return 0;
10400
10401 err_idx:
10402         kfree(net->dev_name_head);
10403 err_name:
10404         return -ENOMEM;
10405 }
10406
10407 /**
10408  *      netdev_drivername - network driver for the device
10409  *      @dev: network device
10410  *
10411  *      Determine network driver for device.
10412  */
10413 const char *netdev_drivername(const struct net_device *dev)
10414 {
10415         const struct device_driver *driver;
10416         const struct device *parent;
10417         const char *empty = "";
10418
10419         parent = dev->dev.parent;
10420         if (!parent)
10421                 return empty;
10422
10423         driver = parent->driver;
10424         if (driver && driver->name)
10425                 return driver->name;
10426         return empty;
10427 }
10428
10429 static void __netdev_printk(const char *level, const struct net_device *dev,
10430                             struct va_format *vaf)
10431 {
10432         if (dev && dev->dev.parent) {
10433                 dev_printk_emit(level[1] - '0',
10434                                 dev->dev.parent,
10435                                 "%s %s %s%s: %pV",
10436                                 dev_driver_string(dev->dev.parent),
10437                                 dev_name(dev->dev.parent),
10438                                 netdev_name(dev), netdev_reg_state(dev),
10439                                 vaf);
10440         } else if (dev) {
10441                 printk("%s%s%s: %pV",
10442                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
10443         } else {
10444                 printk("%s(NULL net_device): %pV", level, vaf);
10445         }
10446 }
10447
10448 void netdev_printk(const char *level, const struct net_device *dev,
10449                    const char *format, ...)
10450 {
10451         struct va_format vaf;
10452         va_list args;
10453
10454         va_start(args, format);
10455
10456         vaf.fmt = format;
10457         vaf.va = &args;
10458
10459         __netdev_printk(level, dev, &vaf);
10460
10461         va_end(args);
10462 }
10463 EXPORT_SYMBOL(netdev_printk);
10464
10465 #define define_netdev_printk_level(func, level)                 \
10466 void func(const struct net_device *dev, const char *fmt, ...)   \
10467 {                                                               \
10468         struct va_format vaf;                                   \
10469         va_list args;                                           \
10470                                                                 \
10471         va_start(args, fmt);                                    \
10472                                                                 \
10473         vaf.fmt = fmt;                                          \
10474         vaf.va = &args;                                         \
10475                                                                 \
10476         __netdev_printk(level, dev, &vaf);                      \
10477                                                                 \
10478         va_end(args);                                           \
10479 }                                                               \
10480 EXPORT_SYMBOL(func);
10481
10482 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
10483 define_netdev_printk_level(netdev_alert, KERN_ALERT);
10484 define_netdev_printk_level(netdev_crit, KERN_CRIT);
10485 define_netdev_printk_level(netdev_err, KERN_ERR);
10486 define_netdev_printk_level(netdev_warn, KERN_WARNING);
10487 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
10488 define_netdev_printk_level(netdev_info, KERN_INFO);
10489
10490 static void __net_exit netdev_exit(struct net *net)
10491 {
10492         kfree(net->dev_name_head);
10493         kfree(net->dev_index_head);
10494         if (net != &init_net)
10495                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
10496 }
10497
10498 static struct pernet_operations __net_initdata netdev_net_ops = {
10499         .init = netdev_init,
10500         .exit = netdev_exit,
10501 };
10502
10503 static void __net_exit default_device_exit(struct net *net)
10504 {
10505         struct net_device *dev, *aux;
10506         /*
10507          * Push all migratable network devices back to the
10508          * initial network namespace
10509          */
10510         rtnl_lock();
10511         for_each_netdev_safe(net, dev, aux) {
10512                 int err;
10513                 char fb_name[IFNAMSIZ];
10514
10515                 /* Ignore unmoveable devices (i.e. loopback) */
10516                 if (dev->features & NETIF_F_NETNS_LOCAL)
10517                         continue;
10518
10519                 /* Leave virtual devices for the generic cleanup */
10520                 if (dev->rtnl_link_ops)
10521                         continue;
10522
10523                 /* Push remaining network devices to init_net */
10524                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
10525                 if (__dev_get_by_name(&init_net, fb_name))
10526                         snprintf(fb_name, IFNAMSIZ, "dev%%d");
10527                 err = dev_change_net_namespace(dev, &init_net, fb_name);
10528                 if (err) {
10529                         pr_emerg("%s: failed to move %s to init_net: %d\n",
10530                                  __func__, dev->name, err);
10531                         BUG();
10532                 }
10533         }
10534         rtnl_unlock();
10535 }
10536
10537 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
10538 {
10539         /* Return with the rtnl_lock held when there are no network
10540          * devices unregistering in any network namespace in net_list.
10541          */
10542         struct net *net;
10543         bool unregistering;
10544         DEFINE_WAIT_FUNC(wait, woken_wake_function);
10545
10546         add_wait_queue(&netdev_unregistering_wq, &wait);
10547         for (;;) {
10548                 unregistering = false;
10549                 rtnl_lock();
10550                 list_for_each_entry(net, net_list, exit_list) {
10551                         if (net->dev_unreg_count > 0) {
10552                                 unregistering = true;
10553                                 break;
10554                         }
10555                 }
10556                 if (!unregistering)
10557                         break;
10558                 __rtnl_unlock();
10559
10560                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
10561         }
10562         remove_wait_queue(&netdev_unregistering_wq, &wait);
10563 }
10564
10565 static void __net_exit default_device_exit_batch(struct list_head *net_list)
10566 {
10567         /* At exit all network devices most be removed from a network
10568          * namespace.  Do this in the reverse order of registration.
10569          * Do this across as many network namespaces as possible to
10570          * improve batching efficiency.
10571          */
10572         struct net_device *dev;
10573         struct net *net;
10574         LIST_HEAD(dev_kill_list);
10575
10576         /* To prevent network device cleanup code from dereferencing
10577          * loopback devices or network devices that have been freed
10578          * wait here for all pending unregistrations to complete,
10579          * before unregistring the loopback device and allowing the
10580          * network namespace be freed.
10581          *
10582          * The netdev todo list containing all network devices
10583          * unregistrations that happen in default_device_exit_batch
10584          * will run in the rtnl_unlock() at the end of
10585          * default_device_exit_batch.
10586          */
10587         rtnl_lock_unregistering(net_list);
10588         list_for_each_entry(net, net_list, exit_list) {
10589                 for_each_netdev_reverse(net, dev) {
10590                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
10591                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
10592                         else
10593                                 unregister_netdevice_queue(dev, &dev_kill_list);
10594                 }
10595         }
10596         unregister_netdevice_many(&dev_kill_list);
10597         rtnl_unlock();
10598 }
10599
10600 static struct pernet_operations __net_initdata default_device_ops = {
10601         .exit = default_device_exit,
10602         .exit_batch = default_device_exit_batch,
10603 };
10604
10605 /*
10606  *      Initialize the DEV module. At boot time this walks the device list and
10607  *      unhooks any devices that fail to initialise (normally hardware not
10608  *      present) and leaves us with a valid list of present and active devices.
10609  *
10610  */
10611
10612 /*
10613  *       This is called single threaded during boot, so no need
10614  *       to take the rtnl semaphore.
10615  */
10616 static int __init net_dev_init(void)
10617 {
10618         int i, rc = -ENOMEM;
10619
10620         BUG_ON(!dev_boot_phase);
10621
10622         if (dev_proc_init())
10623                 goto out;
10624
10625         if (netdev_kobject_init())
10626                 goto out;
10627
10628         INIT_LIST_HEAD(&ptype_all);
10629         for (i = 0; i < PTYPE_HASH_SIZE; i++)
10630                 INIT_LIST_HEAD(&ptype_base[i]);
10631
10632         INIT_LIST_HEAD(&offload_base);
10633
10634         if (register_pernet_subsys(&netdev_net_ops))
10635                 goto out;
10636
10637         /*
10638          *      Initialise the packet receive queues.
10639          */
10640
10641         for_each_possible_cpu(i) {
10642                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
10643                 struct softnet_data *sd = &per_cpu(softnet_data, i);
10644
10645                 INIT_WORK(flush, flush_backlog);
10646
10647                 skb_queue_head_init(&sd->input_pkt_queue);
10648                 skb_queue_head_init(&sd->process_queue);
10649 #ifdef CONFIG_XFRM_OFFLOAD
10650                 skb_queue_head_init(&sd->xfrm_backlog);
10651 #endif
10652                 INIT_LIST_HEAD(&sd->poll_list);
10653                 sd->output_queue_tailp = &sd->output_queue;
10654 #ifdef CONFIG_RPS
10655                 sd->csd.func = rps_trigger_softirq;
10656                 sd->csd.info = sd;
10657                 sd->cpu = i;
10658 #endif
10659
10660                 init_gro_hash(&sd->backlog);
10661                 sd->backlog.poll = process_backlog;
10662                 sd->backlog.weight = weight_p;
10663         }
10664
10665         dev_boot_phase = 0;
10666
10667         /* The loopback device is special if any other network devices
10668          * is present in a network namespace the loopback device must
10669          * be present. Since we now dynamically allocate and free the
10670          * loopback device ensure this invariant is maintained by
10671          * keeping the loopback device as the first device on the
10672          * list of network devices.  Ensuring the loopback devices
10673          * is the first device that appears and the last network device
10674          * that disappears.
10675          */
10676         if (register_pernet_device(&loopback_net_ops))
10677                 goto out;
10678
10679         if (register_pernet_device(&default_device_ops))
10680                 goto out;
10681
10682         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
10683         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
10684
10685         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
10686                                        NULL, dev_cpu_dead);
10687         WARN_ON(rc < 0);
10688         rc = 0;
10689 out:
10690         return rc;
10691 }
10692
10693 subsys_initcall(net_dev_init);