Merge tag 'fsverity-for-linus' of git://git.kernel.org/pub/scm/fs/fscrypt/fscrypt
[linux-2.6-microblaze.git] / net / core / dev.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *      Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:        Ross Biro
7  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *      Additional Authors:
11  *              Florian la Roche <rzsfl@rz.uni-sb.de>
12  *              Alan Cox <gw4pts@gw4pts.ampr.org>
13  *              David Hinds <dahinds@users.sourceforge.net>
14  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *              Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *      Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *              Alan Cox        :       device private ioctl copies fields back.
24  *              Alan Cox        :       Transmit queue code does relevant
25  *                                      stunts to keep the queue safe.
26  *              Alan Cox        :       Fixed double lock.
27  *              Alan Cox        :       Fixed promisc NULL pointer trap
28  *              ????????        :       Support the full private ioctl range
29  *              Alan Cox        :       Moved ioctl permission check into
30  *                                      drivers
31  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
32  *              Alan Cox        :       100 backlog just doesn't cut it when
33  *                                      you start doing multicast video 8)
34  *              Alan Cox        :       Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *              Alan Cox        :       Took out transmit every packet pass
37  *                                      Saved a few bytes in the ioctl handler
38  *              Alan Cox        :       Network driver sets packet type before
39  *                                      calling netif_rx. Saves a function
40  *                                      call a packet.
41  *              Alan Cox        :       Hashed net_bh()
42  *              Richard Kooijman:       Timestamp fixes.
43  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
44  *              Alan Cox        :       Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *                                      changes.
47  *              Rudi Cilibrasi  :       Pass the right thing to
48  *                                      set_mac_address()
49  *              Dave Miller     :       32bit quantity for the device lock to
50  *                                      make it work out on a Sparc.
51  *              Bjorn Ekwall    :       Added KERNELD hack.
52  *              Alan Cox        :       Cleaned up the backlog initialise.
53  *              Craig Metz      :       SIOCGIFCONF fix if space for under
54  *                                      1 device.
55  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
56  *                                      is no device open function.
57  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
58  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
59  *              Cyrus Durgin    :       Cleaned for KMOD
60  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
61  *                                      A network device unload needs to purge
62  *                                      the backlog queue.
63  *      Paul Rusty Russell      :       SIOCSIFNAME
64  *              Pekka Riikonen  :       Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *                                      - netif_rx() feedback
69  */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <linux/inetdevice.h>
135 #include <linux/cpu_rmap.h>
136 #include <linux/static_key.h>
137 #include <linux/hashtable.h>
138 #include <linux/vmalloc.h>
139 #include <linux/if_macvlan.h>
140 #include <linux/errqueue.h>
141 #include <linux/hrtimer.h>
142 #include <linux/netfilter_ingress.h>
143 #include <linux/crash_dump.h>
144 #include <linux/sctp.h>
145 #include <net/udp_tunnel.h>
146 #include <linux/net_namespace.h>
147 #include <linux/indirect_call_wrapper.h>
148 #include <net/devlink.h>
149 #include <linux/pm_runtime.h>
150 #include <linux/prandom.h>
151
152 #include "net-sysfs.h"
153
154 #define MAX_GRO_SKBS 8
155
156 /* This should be increased if a protocol with a bigger head is added. */
157 #define GRO_MAX_HEAD (MAX_HEADER + 128)
158
159 static DEFINE_SPINLOCK(ptype_lock);
160 static DEFINE_SPINLOCK(offload_lock);
161 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
162 struct list_head ptype_all __read_mostly;       /* Taps */
163 static struct list_head offload_base __read_mostly;
164
165 static int netif_rx_internal(struct sk_buff *skb);
166 static int call_netdevice_notifiers_info(unsigned long val,
167                                          struct netdev_notifier_info *info);
168 static int call_netdevice_notifiers_extack(unsigned long val,
169                                            struct net_device *dev,
170                                            struct netlink_ext_ack *extack);
171 static struct napi_struct *napi_by_id(unsigned int napi_id);
172
173 /*
174  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
175  * semaphore.
176  *
177  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
178  *
179  * Writers must hold the rtnl semaphore while they loop through the
180  * dev_base_head list, and hold dev_base_lock for writing when they do the
181  * actual updates.  This allows pure readers to access the list even
182  * while a writer is preparing to update it.
183  *
184  * To put it another way, dev_base_lock is held for writing only to
185  * protect against pure readers; the rtnl semaphore provides the
186  * protection against other writers.
187  *
188  * See, for example usages, register_netdevice() and
189  * unregister_netdevice(), which must be called with the rtnl
190  * semaphore held.
191  */
192 DEFINE_RWLOCK(dev_base_lock);
193 EXPORT_SYMBOL(dev_base_lock);
194
195 static DEFINE_MUTEX(ifalias_mutex);
196
197 /* protects napi_hash addition/deletion and napi_gen_id */
198 static DEFINE_SPINLOCK(napi_hash_lock);
199
200 static unsigned int napi_gen_id = NR_CPUS;
201 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
202
203 static DECLARE_RWSEM(devnet_rename_sem);
204
205 static inline void dev_base_seq_inc(struct net *net)
206 {
207         while (++net->dev_base_seq == 0)
208                 ;
209 }
210
211 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
212 {
213         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
214
215         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
216 }
217
218 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
219 {
220         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
221 }
222
223 static inline void rps_lock(struct softnet_data *sd)
224 {
225 #ifdef CONFIG_RPS
226         spin_lock(&sd->input_pkt_queue.lock);
227 #endif
228 }
229
230 static inline void rps_unlock(struct softnet_data *sd)
231 {
232 #ifdef CONFIG_RPS
233         spin_unlock(&sd->input_pkt_queue.lock);
234 #endif
235 }
236
237 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
238                                                        const char *name)
239 {
240         struct netdev_name_node *name_node;
241
242         name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
243         if (!name_node)
244                 return NULL;
245         INIT_HLIST_NODE(&name_node->hlist);
246         name_node->dev = dev;
247         name_node->name = name;
248         return name_node;
249 }
250
251 static struct netdev_name_node *
252 netdev_name_node_head_alloc(struct net_device *dev)
253 {
254         struct netdev_name_node *name_node;
255
256         name_node = netdev_name_node_alloc(dev, dev->name);
257         if (!name_node)
258                 return NULL;
259         INIT_LIST_HEAD(&name_node->list);
260         return name_node;
261 }
262
263 static void netdev_name_node_free(struct netdev_name_node *name_node)
264 {
265         kfree(name_node);
266 }
267
268 static void netdev_name_node_add(struct net *net,
269                                  struct netdev_name_node *name_node)
270 {
271         hlist_add_head_rcu(&name_node->hlist,
272                            dev_name_hash(net, name_node->name));
273 }
274
275 static void netdev_name_node_del(struct netdev_name_node *name_node)
276 {
277         hlist_del_rcu(&name_node->hlist);
278 }
279
280 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
281                                                         const char *name)
282 {
283         struct hlist_head *head = dev_name_hash(net, name);
284         struct netdev_name_node *name_node;
285
286         hlist_for_each_entry(name_node, head, hlist)
287                 if (!strcmp(name_node->name, name))
288                         return name_node;
289         return NULL;
290 }
291
292 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
293                                                             const char *name)
294 {
295         struct hlist_head *head = dev_name_hash(net, name);
296         struct netdev_name_node *name_node;
297
298         hlist_for_each_entry_rcu(name_node, head, hlist)
299                 if (!strcmp(name_node->name, name))
300                         return name_node;
301         return NULL;
302 }
303
304 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
305 {
306         struct netdev_name_node *name_node;
307         struct net *net = dev_net(dev);
308
309         name_node = netdev_name_node_lookup(net, name);
310         if (name_node)
311                 return -EEXIST;
312         name_node = netdev_name_node_alloc(dev, name);
313         if (!name_node)
314                 return -ENOMEM;
315         netdev_name_node_add(net, name_node);
316         /* The node that holds dev->name acts as a head of per-device list. */
317         list_add_tail(&name_node->list, &dev->name_node->list);
318
319         return 0;
320 }
321 EXPORT_SYMBOL(netdev_name_node_alt_create);
322
323 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
324 {
325         list_del(&name_node->list);
326         netdev_name_node_del(name_node);
327         kfree(name_node->name);
328         netdev_name_node_free(name_node);
329 }
330
331 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
332 {
333         struct netdev_name_node *name_node;
334         struct net *net = dev_net(dev);
335
336         name_node = netdev_name_node_lookup(net, name);
337         if (!name_node)
338                 return -ENOENT;
339         /* lookup might have found our primary name or a name belonging
340          * to another device.
341          */
342         if (name_node == dev->name_node || name_node->dev != dev)
343                 return -EINVAL;
344
345         __netdev_name_node_alt_destroy(name_node);
346
347         return 0;
348 }
349 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
350
351 static void netdev_name_node_alt_flush(struct net_device *dev)
352 {
353         struct netdev_name_node *name_node, *tmp;
354
355         list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
356                 __netdev_name_node_alt_destroy(name_node);
357 }
358
359 /* Device list insertion */
360 static void list_netdevice(struct net_device *dev)
361 {
362         struct net *net = dev_net(dev);
363
364         ASSERT_RTNL();
365
366         write_lock_bh(&dev_base_lock);
367         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
368         netdev_name_node_add(net, dev->name_node);
369         hlist_add_head_rcu(&dev->index_hlist,
370                            dev_index_hash(net, dev->ifindex));
371         write_unlock_bh(&dev_base_lock);
372
373         dev_base_seq_inc(net);
374 }
375
376 /* Device list removal
377  * caller must respect a RCU grace period before freeing/reusing dev
378  */
379 static void unlist_netdevice(struct net_device *dev)
380 {
381         ASSERT_RTNL();
382
383         /* Unlink dev from the device chain */
384         write_lock_bh(&dev_base_lock);
385         list_del_rcu(&dev->dev_list);
386         netdev_name_node_del(dev->name_node);
387         hlist_del_rcu(&dev->index_hlist);
388         write_unlock_bh(&dev_base_lock);
389
390         dev_base_seq_inc(dev_net(dev));
391 }
392
393 /*
394  *      Our notifier list
395  */
396
397 static RAW_NOTIFIER_HEAD(netdev_chain);
398
399 /*
400  *      Device drivers call our routines to queue packets here. We empty the
401  *      queue in the local softnet handler.
402  */
403
404 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
405 EXPORT_PER_CPU_SYMBOL(softnet_data);
406
407 #ifdef CONFIG_LOCKDEP
408 /*
409  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
410  * according to dev->type
411  */
412 static const unsigned short netdev_lock_type[] = {
413          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
414          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
415          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
416          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
417          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
418          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
419          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
420          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
421          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
422          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
423          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
424          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
425          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
426          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
427          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
428
429 static const char *const netdev_lock_name[] = {
430         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
431         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
432         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
433         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
434         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
435         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
436         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
437         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
438         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
439         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
440         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
441         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
442         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
443         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
444         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
445
446 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
447 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
448
449 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
450 {
451         int i;
452
453         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
454                 if (netdev_lock_type[i] == dev_type)
455                         return i;
456         /* the last key is used by default */
457         return ARRAY_SIZE(netdev_lock_type) - 1;
458 }
459
460 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
461                                                  unsigned short dev_type)
462 {
463         int i;
464
465         i = netdev_lock_pos(dev_type);
466         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
467                                    netdev_lock_name[i]);
468 }
469
470 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
471 {
472         int i;
473
474         i = netdev_lock_pos(dev->type);
475         lockdep_set_class_and_name(&dev->addr_list_lock,
476                                    &netdev_addr_lock_key[i],
477                                    netdev_lock_name[i]);
478 }
479 #else
480 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
481                                                  unsigned short dev_type)
482 {
483 }
484
485 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
486 {
487 }
488 #endif
489
490 /*******************************************************************************
491  *
492  *              Protocol management and registration routines
493  *
494  *******************************************************************************/
495
496
497 /*
498  *      Add a protocol ID to the list. Now that the input handler is
499  *      smarter we can dispense with all the messy stuff that used to be
500  *      here.
501  *
502  *      BEWARE!!! Protocol handlers, mangling input packets,
503  *      MUST BE last in hash buckets and checking protocol handlers
504  *      MUST start from promiscuous ptype_all chain in net_bh.
505  *      It is true now, do not change it.
506  *      Explanation follows: if protocol handler, mangling packet, will
507  *      be the first on list, it is not able to sense, that packet
508  *      is cloned and should be copied-on-write, so that it will
509  *      change it and subsequent readers will get broken packet.
510  *                                                      --ANK (980803)
511  */
512
513 static inline struct list_head *ptype_head(const struct packet_type *pt)
514 {
515         if (pt->type == htons(ETH_P_ALL))
516                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
517         else
518                 return pt->dev ? &pt->dev->ptype_specific :
519                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
520 }
521
522 /**
523  *      dev_add_pack - add packet handler
524  *      @pt: packet type declaration
525  *
526  *      Add a protocol handler to the networking stack. The passed &packet_type
527  *      is linked into kernel lists and may not be freed until it has been
528  *      removed from the kernel lists.
529  *
530  *      This call does not sleep therefore it can not
531  *      guarantee all CPU's that are in middle of receiving packets
532  *      will see the new packet type (until the next received packet).
533  */
534
535 void dev_add_pack(struct packet_type *pt)
536 {
537         struct list_head *head = ptype_head(pt);
538
539         spin_lock(&ptype_lock);
540         list_add_rcu(&pt->list, head);
541         spin_unlock(&ptype_lock);
542 }
543 EXPORT_SYMBOL(dev_add_pack);
544
545 /**
546  *      __dev_remove_pack        - remove packet handler
547  *      @pt: packet type declaration
548  *
549  *      Remove a protocol handler that was previously added to the kernel
550  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
551  *      from the kernel lists and can be freed or reused once this function
552  *      returns.
553  *
554  *      The packet type might still be in use by receivers
555  *      and must not be freed until after all the CPU's have gone
556  *      through a quiescent state.
557  */
558 void __dev_remove_pack(struct packet_type *pt)
559 {
560         struct list_head *head = ptype_head(pt);
561         struct packet_type *pt1;
562
563         spin_lock(&ptype_lock);
564
565         list_for_each_entry(pt1, head, list) {
566                 if (pt == pt1) {
567                         list_del_rcu(&pt->list);
568                         goto out;
569                 }
570         }
571
572         pr_warn("dev_remove_pack: %p not found\n", pt);
573 out:
574         spin_unlock(&ptype_lock);
575 }
576 EXPORT_SYMBOL(__dev_remove_pack);
577
578 /**
579  *      dev_remove_pack  - remove packet handler
580  *      @pt: packet type declaration
581  *
582  *      Remove a protocol handler that was previously added to the kernel
583  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
584  *      from the kernel lists and can be freed or reused once this function
585  *      returns.
586  *
587  *      This call sleeps to guarantee that no CPU is looking at the packet
588  *      type after return.
589  */
590 void dev_remove_pack(struct packet_type *pt)
591 {
592         __dev_remove_pack(pt);
593
594         synchronize_net();
595 }
596 EXPORT_SYMBOL(dev_remove_pack);
597
598
599 /**
600  *      dev_add_offload - register offload handlers
601  *      @po: protocol offload declaration
602  *
603  *      Add protocol offload handlers to the networking stack. The passed
604  *      &proto_offload is linked into kernel lists and may not be freed until
605  *      it has been removed from the kernel lists.
606  *
607  *      This call does not sleep therefore it can not
608  *      guarantee all CPU's that are in middle of receiving packets
609  *      will see the new offload handlers (until the next received packet).
610  */
611 void dev_add_offload(struct packet_offload *po)
612 {
613         struct packet_offload *elem;
614
615         spin_lock(&offload_lock);
616         list_for_each_entry(elem, &offload_base, list) {
617                 if (po->priority < elem->priority)
618                         break;
619         }
620         list_add_rcu(&po->list, elem->list.prev);
621         spin_unlock(&offload_lock);
622 }
623 EXPORT_SYMBOL(dev_add_offload);
624
625 /**
626  *      __dev_remove_offload     - remove offload handler
627  *      @po: packet offload declaration
628  *
629  *      Remove a protocol offload handler that was previously added to the
630  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
631  *      is removed from the kernel lists and can be freed or reused once this
632  *      function returns.
633  *
634  *      The packet type might still be in use by receivers
635  *      and must not be freed until after all the CPU's have gone
636  *      through a quiescent state.
637  */
638 static void __dev_remove_offload(struct packet_offload *po)
639 {
640         struct list_head *head = &offload_base;
641         struct packet_offload *po1;
642
643         spin_lock(&offload_lock);
644
645         list_for_each_entry(po1, head, list) {
646                 if (po == po1) {
647                         list_del_rcu(&po->list);
648                         goto out;
649                 }
650         }
651
652         pr_warn("dev_remove_offload: %p not found\n", po);
653 out:
654         spin_unlock(&offload_lock);
655 }
656
657 /**
658  *      dev_remove_offload       - remove packet offload handler
659  *      @po: packet offload declaration
660  *
661  *      Remove a packet offload handler that was previously added to the kernel
662  *      offload handlers by dev_add_offload(). The passed &offload_type is
663  *      removed from the kernel lists and can be freed or reused once this
664  *      function returns.
665  *
666  *      This call sleeps to guarantee that no CPU is looking at the packet
667  *      type after return.
668  */
669 void dev_remove_offload(struct packet_offload *po)
670 {
671         __dev_remove_offload(po);
672
673         synchronize_net();
674 }
675 EXPORT_SYMBOL(dev_remove_offload);
676
677 /******************************************************************************
678  *
679  *                    Device Boot-time Settings Routines
680  *
681  ******************************************************************************/
682
683 /* Boot time configuration table */
684 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
685
686 /**
687  *      netdev_boot_setup_add   - add new setup entry
688  *      @name: name of the device
689  *      @map: configured settings for the device
690  *
691  *      Adds new setup entry to the dev_boot_setup list.  The function
692  *      returns 0 on error and 1 on success.  This is a generic routine to
693  *      all netdevices.
694  */
695 static int netdev_boot_setup_add(char *name, struct ifmap *map)
696 {
697         struct netdev_boot_setup *s;
698         int i;
699
700         s = dev_boot_setup;
701         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
702                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
703                         memset(s[i].name, 0, sizeof(s[i].name));
704                         strlcpy(s[i].name, name, IFNAMSIZ);
705                         memcpy(&s[i].map, map, sizeof(s[i].map));
706                         break;
707                 }
708         }
709
710         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
711 }
712
713 /**
714  * netdev_boot_setup_check      - check boot time settings
715  * @dev: the netdevice
716  *
717  * Check boot time settings for the device.
718  * The found settings are set for the device to be used
719  * later in the device probing.
720  * Returns 0 if no settings found, 1 if they are.
721  */
722 int netdev_boot_setup_check(struct net_device *dev)
723 {
724         struct netdev_boot_setup *s = dev_boot_setup;
725         int i;
726
727         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
728                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
729                     !strcmp(dev->name, s[i].name)) {
730                         dev->irq = s[i].map.irq;
731                         dev->base_addr = s[i].map.base_addr;
732                         dev->mem_start = s[i].map.mem_start;
733                         dev->mem_end = s[i].map.mem_end;
734                         return 1;
735                 }
736         }
737         return 0;
738 }
739 EXPORT_SYMBOL(netdev_boot_setup_check);
740
741
742 /**
743  * netdev_boot_base     - get address from boot time settings
744  * @prefix: prefix for network device
745  * @unit: id for network device
746  *
747  * Check boot time settings for the base address of device.
748  * The found settings are set for the device to be used
749  * later in the device probing.
750  * Returns 0 if no settings found.
751  */
752 unsigned long netdev_boot_base(const char *prefix, int unit)
753 {
754         const struct netdev_boot_setup *s = dev_boot_setup;
755         char name[IFNAMSIZ];
756         int i;
757
758         sprintf(name, "%s%d", prefix, unit);
759
760         /*
761          * If device already registered then return base of 1
762          * to indicate not to probe for this interface
763          */
764         if (__dev_get_by_name(&init_net, name))
765                 return 1;
766
767         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
768                 if (!strcmp(name, s[i].name))
769                         return s[i].map.base_addr;
770         return 0;
771 }
772
773 /*
774  * Saves at boot time configured settings for any netdevice.
775  */
776 int __init netdev_boot_setup(char *str)
777 {
778         int ints[5];
779         struct ifmap map;
780
781         str = get_options(str, ARRAY_SIZE(ints), ints);
782         if (!str || !*str)
783                 return 0;
784
785         /* Save settings */
786         memset(&map, 0, sizeof(map));
787         if (ints[0] > 0)
788                 map.irq = ints[1];
789         if (ints[0] > 1)
790                 map.base_addr = ints[2];
791         if (ints[0] > 2)
792                 map.mem_start = ints[3];
793         if (ints[0] > 3)
794                 map.mem_end = ints[4];
795
796         /* Add new entry to the list */
797         return netdev_boot_setup_add(str, &map);
798 }
799
800 __setup("netdev=", netdev_boot_setup);
801
802 /*******************************************************************************
803  *
804  *                          Device Interface Subroutines
805  *
806  *******************************************************************************/
807
808 /**
809  *      dev_get_iflink  - get 'iflink' value of a interface
810  *      @dev: targeted interface
811  *
812  *      Indicates the ifindex the interface is linked to.
813  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
814  */
815
816 int dev_get_iflink(const struct net_device *dev)
817 {
818         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
819                 return dev->netdev_ops->ndo_get_iflink(dev);
820
821         return dev->ifindex;
822 }
823 EXPORT_SYMBOL(dev_get_iflink);
824
825 /**
826  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
827  *      @dev: targeted interface
828  *      @skb: The packet.
829  *
830  *      For better visibility of tunnel traffic OVS needs to retrieve
831  *      egress tunnel information for a packet. Following API allows
832  *      user to get this info.
833  */
834 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
835 {
836         struct ip_tunnel_info *info;
837
838         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
839                 return -EINVAL;
840
841         info = skb_tunnel_info_unclone(skb);
842         if (!info)
843                 return -ENOMEM;
844         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
845                 return -EINVAL;
846
847         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
848 }
849 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
850
851 /**
852  *      __dev_get_by_name       - find a device by its name
853  *      @net: the applicable net namespace
854  *      @name: name to find
855  *
856  *      Find an interface by name. Must be called under RTNL semaphore
857  *      or @dev_base_lock. If the name is found a pointer to the device
858  *      is returned. If the name is not found then %NULL is returned. The
859  *      reference counters are not incremented so the caller must be
860  *      careful with locks.
861  */
862
863 struct net_device *__dev_get_by_name(struct net *net, const char *name)
864 {
865         struct netdev_name_node *node_name;
866
867         node_name = netdev_name_node_lookup(net, name);
868         return node_name ? node_name->dev : NULL;
869 }
870 EXPORT_SYMBOL(__dev_get_by_name);
871
872 /**
873  * dev_get_by_name_rcu  - find a device by its name
874  * @net: the applicable net namespace
875  * @name: name to find
876  *
877  * Find an interface by name.
878  * If the name is found a pointer to the device is returned.
879  * If the name is not found then %NULL is returned.
880  * The reference counters are not incremented so the caller must be
881  * careful with locks. The caller must hold RCU lock.
882  */
883
884 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
885 {
886         struct netdev_name_node *node_name;
887
888         node_name = netdev_name_node_lookup_rcu(net, name);
889         return node_name ? node_name->dev : NULL;
890 }
891 EXPORT_SYMBOL(dev_get_by_name_rcu);
892
893 /**
894  *      dev_get_by_name         - find a device by its name
895  *      @net: the applicable net namespace
896  *      @name: name to find
897  *
898  *      Find an interface by name. This can be called from any
899  *      context and does its own locking. The returned handle has
900  *      the usage count incremented and the caller must use dev_put() to
901  *      release it when it is no longer needed. %NULL is returned if no
902  *      matching device is found.
903  */
904
905 struct net_device *dev_get_by_name(struct net *net, const char *name)
906 {
907         struct net_device *dev;
908
909         rcu_read_lock();
910         dev = dev_get_by_name_rcu(net, name);
911         if (dev)
912                 dev_hold(dev);
913         rcu_read_unlock();
914         return dev;
915 }
916 EXPORT_SYMBOL(dev_get_by_name);
917
918 /**
919  *      __dev_get_by_index - find a device by its ifindex
920  *      @net: the applicable net namespace
921  *      @ifindex: index of device
922  *
923  *      Search for an interface by index. Returns %NULL if the device
924  *      is not found or a pointer to the device. The device has not
925  *      had its reference counter increased so the caller must be careful
926  *      about locking. The caller must hold either the RTNL semaphore
927  *      or @dev_base_lock.
928  */
929
930 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
931 {
932         struct net_device *dev;
933         struct hlist_head *head = dev_index_hash(net, ifindex);
934
935         hlist_for_each_entry(dev, head, index_hlist)
936                 if (dev->ifindex == ifindex)
937                         return dev;
938
939         return NULL;
940 }
941 EXPORT_SYMBOL(__dev_get_by_index);
942
943 /**
944  *      dev_get_by_index_rcu - find a device by its ifindex
945  *      @net: the applicable net namespace
946  *      @ifindex: index of device
947  *
948  *      Search for an interface by index. Returns %NULL if the device
949  *      is not found or a pointer to the device. The device has not
950  *      had its reference counter increased so the caller must be careful
951  *      about locking. The caller must hold RCU lock.
952  */
953
954 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
955 {
956         struct net_device *dev;
957         struct hlist_head *head = dev_index_hash(net, ifindex);
958
959         hlist_for_each_entry_rcu(dev, head, index_hlist)
960                 if (dev->ifindex == ifindex)
961                         return dev;
962
963         return NULL;
964 }
965 EXPORT_SYMBOL(dev_get_by_index_rcu);
966
967
968 /**
969  *      dev_get_by_index - find a device by its ifindex
970  *      @net: the applicable net namespace
971  *      @ifindex: index of device
972  *
973  *      Search for an interface by index. Returns NULL if the device
974  *      is not found or a pointer to the device. The device returned has
975  *      had a reference added and the pointer is safe until the user calls
976  *      dev_put to indicate they have finished with it.
977  */
978
979 struct net_device *dev_get_by_index(struct net *net, int ifindex)
980 {
981         struct net_device *dev;
982
983         rcu_read_lock();
984         dev = dev_get_by_index_rcu(net, ifindex);
985         if (dev)
986                 dev_hold(dev);
987         rcu_read_unlock();
988         return dev;
989 }
990 EXPORT_SYMBOL(dev_get_by_index);
991
992 /**
993  *      dev_get_by_napi_id - find a device by napi_id
994  *      @napi_id: ID of the NAPI struct
995  *
996  *      Search for an interface by NAPI ID. Returns %NULL if the device
997  *      is not found or a pointer to the device. The device has not had
998  *      its reference counter increased so the caller must be careful
999  *      about locking. The caller must hold RCU lock.
1000  */
1001
1002 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1003 {
1004         struct napi_struct *napi;
1005
1006         WARN_ON_ONCE(!rcu_read_lock_held());
1007
1008         if (napi_id < MIN_NAPI_ID)
1009                 return NULL;
1010
1011         napi = napi_by_id(napi_id);
1012
1013         return napi ? napi->dev : NULL;
1014 }
1015 EXPORT_SYMBOL(dev_get_by_napi_id);
1016
1017 /**
1018  *      netdev_get_name - get a netdevice name, knowing its ifindex.
1019  *      @net: network namespace
1020  *      @name: a pointer to the buffer where the name will be stored.
1021  *      @ifindex: the ifindex of the interface to get the name from.
1022  */
1023 int netdev_get_name(struct net *net, char *name, int ifindex)
1024 {
1025         struct net_device *dev;
1026         int ret;
1027
1028         down_read(&devnet_rename_sem);
1029         rcu_read_lock();
1030
1031         dev = dev_get_by_index_rcu(net, ifindex);
1032         if (!dev) {
1033                 ret = -ENODEV;
1034                 goto out;
1035         }
1036
1037         strcpy(name, dev->name);
1038
1039         ret = 0;
1040 out:
1041         rcu_read_unlock();
1042         up_read(&devnet_rename_sem);
1043         return ret;
1044 }
1045
1046 /**
1047  *      dev_getbyhwaddr_rcu - find a device by its hardware address
1048  *      @net: the applicable net namespace
1049  *      @type: media type of device
1050  *      @ha: hardware address
1051  *
1052  *      Search for an interface by MAC address. Returns NULL if the device
1053  *      is not found or a pointer to the device.
1054  *      The caller must hold RCU or RTNL.
1055  *      The returned device has not had its ref count increased
1056  *      and the caller must therefore be careful about locking
1057  *
1058  */
1059
1060 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1061                                        const char *ha)
1062 {
1063         struct net_device *dev;
1064
1065         for_each_netdev_rcu(net, dev)
1066                 if (dev->type == type &&
1067                     !memcmp(dev->dev_addr, ha, dev->addr_len))
1068                         return dev;
1069
1070         return NULL;
1071 }
1072 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1073
1074 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1075 {
1076         struct net_device *dev, *ret = NULL;
1077
1078         rcu_read_lock();
1079         for_each_netdev_rcu(net, dev)
1080                 if (dev->type == type) {
1081                         dev_hold(dev);
1082                         ret = dev;
1083                         break;
1084                 }
1085         rcu_read_unlock();
1086         return ret;
1087 }
1088 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1089
1090 /**
1091  *      __dev_get_by_flags - find any device with given flags
1092  *      @net: the applicable net namespace
1093  *      @if_flags: IFF_* values
1094  *      @mask: bitmask of bits in if_flags to check
1095  *
1096  *      Search for any interface with the given flags. Returns NULL if a device
1097  *      is not found or a pointer to the device. Must be called inside
1098  *      rtnl_lock(), and result refcount is unchanged.
1099  */
1100
1101 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1102                                       unsigned short mask)
1103 {
1104         struct net_device *dev, *ret;
1105
1106         ASSERT_RTNL();
1107
1108         ret = NULL;
1109         for_each_netdev(net, dev) {
1110                 if (((dev->flags ^ if_flags) & mask) == 0) {
1111                         ret = dev;
1112                         break;
1113                 }
1114         }
1115         return ret;
1116 }
1117 EXPORT_SYMBOL(__dev_get_by_flags);
1118
1119 /**
1120  *      dev_valid_name - check if name is okay for network device
1121  *      @name: name string
1122  *
1123  *      Network device names need to be valid file names to
1124  *      allow sysfs to work.  We also disallow any kind of
1125  *      whitespace.
1126  */
1127 bool dev_valid_name(const char *name)
1128 {
1129         if (*name == '\0')
1130                 return false;
1131         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1132                 return false;
1133         if (!strcmp(name, ".") || !strcmp(name, ".."))
1134                 return false;
1135
1136         while (*name) {
1137                 if (*name == '/' || *name == ':' || isspace(*name))
1138                         return false;
1139                 name++;
1140         }
1141         return true;
1142 }
1143 EXPORT_SYMBOL(dev_valid_name);
1144
1145 /**
1146  *      __dev_alloc_name - allocate a name for a device
1147  *      @net: network namespace to allocate the device name in
1148  *      @name: name format string
1149  *      @buf:  scratch buffer and result name string
1150  *
1151  *      Passed a format string - eg "lt%d" it will try and find a suitable
1152  *      id. It scans list of devices to build up a free map, then chooses
1153  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1154  *      while allocating the name and adding the device in order to avoid
1155  *      duplicates.
1156  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1157  *      Returns the number of the unit assigned or a negative errno code.
1158  */
1159
1160 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1161 {
1162         int i = 0;
1163         const char *p;
1164         const int max_netdevices = 8*PAGE_SIZE;
1165         unsigned long *inuse;
1166         struct net_device *d;
1167
1168         if (!dev_valid_name(name))
1169                 return -EINVAL;
1170
1171         p = strchr(name, '%');
1172         if (p) {
1173                 /*
1174                  * Verify the string as this thing may have come from
1175                  * the user.  There must be either one "%d" and no other "%"
1176                  * characters.
1177                  */
1178                 if (p[1] != 'd' || strchr(p + 2, '%'))
1179                         return -EINVAL;
1180
1181                 /* Use one page as a bit array of possible slots */
1182                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1183                 if (!inuse)
1184                         return -ENOMEM;
1185
1186                 for_each_netdev(net, d) {
1187                         if (!sscanf(d->name, name, &i))
1188                                 continue;
1189                         if (i < 0 || i >= max_netdevices)
1190                                 continue;
1191
1192                         /*  avoid cases where sscanf is not exact inverse of printf */
1193                         snprintf(buf, IFNAMSIZ, name, i);
1194                         if (!strncmp(buf, d->name, IFNAMSIZ))
1195                                 set_bit(i, inuse);
1196                 }
1197
1198                 i = find_first_zero_bit(inuse, max_netdevices);
1199                 free_page((unsigned long) inuse);
1200         }
1201
1202         snprintf(buf, IFNAMSIZ, name, i);
1203         if (!__dev_get_by_name(net, buf))
1204                 return i;
1205
1206         /* It is possible to run out of possible slots
1207          * when the name is long and there isn't enough space left
1208          * for the digits, or if all bits are used.
1209          */
1210         return -ENFILE;
1211 }
1212
1213 static int dev_alloc_name_ns(struct net *net,
1214                              struct net_device *dev,
1215                              const char *name)
1216 {
1217         char buf[IFNAMSIZ];
1218         int ret;
1219
1220         BUG_ON(!net);
1221         ret = __dev_alloc_name(net, name, buf);
1222         if (ret >= 0)
1223                 strlcpy(dev->name, buf, IFNAMSIZ);
1224         return ret;
1225 }
1226
1227 /**
1228  *      dev_alloc_name - allocate a name for a device
1229  *      @dev: device
1230  *      @name: name format string
1231  *
1232  *      Passed a format string - eg "lt%d" it will try and find a suitable
1233  *      id. It scans list of devices to build up a free map, then chooses
1234  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1235  *      while allocating the name and adding the device in order to avoid
1236  *      duplicates.
1237  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1238  *      Returns the number of the unit assigned or a negative errno code.
1239  */
1240
1241 int dev_alloc_name(struct net_device *dev, const char *name)
1242 {
1243         return dev_alloc_name_ns(dev_net(dev), dev, name);
1244 }
1245 EXPORT_SYMBOL(dev_alloc_name);
1246
1247 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1248                               const char *name)
1249 {
1250         BUG_ON(!net);
1251
1252         if (!dev_valid_name(name))
1253                 return -EINVAL;
1254
1255         if (strchr(name, '%'))
1256                 return dev_alloc_name_ns(net, dev, name);
1257         else if (__dev_get_by_name(net, name))
1258                 return -EEXIST;
1259         else if (dev->name != name)
1260                 strlcpy(dev->name, name, IFNAMSIZ);
1261
1262         return 0;
1263 }
1264
1265 /**
1266  *      dev_change_name - change name of a device
1267  *      @dev: device
1268  *      @newname: name (or format string) must be at least IFNAMSIZ
1269  *
1270  *      Change name of a device, can pass format strings "eth%d".
1271  *      for wildcarding.
1272  */
1273 int dev_change_name(struct net_device *dev, const char *newname)
1274 {
1275         unsigned char old_assign_type;
1276         char oldname[IFNAMSIZ];
1277         int err = 0;
1278         int ret;
1279         struct net *net;
1280
1281         ASSERT_RTNL();
1282         BUG_ON(!dev_net(dev));
1283
1284         net = dev_net(dev);
1285
1286         /* Some auto-enslaved devices e.g. failover slaves are
1287          * special, as userspace might rename the device after
1288          * the interface had been brought up and running since
1289          * the point kernel initiated auto-enslavement. Allow
1290          * live name change even when these slave devices are
1291          * up and running.
1292          *
1293          * Typically, users of these auto-enslaving devices
1294          * don't actually care about slave name change, as
1295          * they are supposed to operate on master interface
1296          * directly.
1297          */
1298         if (dev->flags & IFF_UP &&
1299             likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1300                 return -EBUSY;
1301
1302         down_write(&devnet_rename_sem);
1303
1304         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1305                 up_write(&devnet_rename_sem);
1306                 return 0;
1307         }
1308
1309         memcpy(oldname, dev->name, IFNAMSIZ);
1310
1311         err = dev_get_valid_name(net, dev, newname);
1312         if (err < 0) {
1313                 up_write(&devnet_rename_sem);
1314                 return err;
1315         }
1316
1317         if (oldname[0] && !strchr(oldname, '%'))
1318                 netdev_info(dev, "renamed from %s\n", oldname);
1319
1320         old_assign_type = dev->name_assign_type;
1321         dev->name_assign_type = NET_NAME_RENAMED;
1322
1323 rollback:
1324         ret = device_rename(&dev->dev, dev->name);
1325         if (ret) {
1326                 memcpy(dev->name, oldname, IFNAMSIZ);
1327                 dev->name_assign_type = old_assign_type;
1328                 up_write(&devnet_rename_sem);
1329                 return ret;
1330         }
1331
1332         up_write(&devnet_rename_sem);
1333
1334         netdev_adjacent_rename_links(dev, oldname);
1335
1336         write_lock_bh(&dev_base_lock);
1337         netdev_name_node_del(dev->name_node);
1338         write_unlock_bh(&dev_base_lock);
1339
1340         synchronize_rcu();
1341
1342         write_lock_bh(&dev_base_lock);
1343         netdev_name_node_add(net, dev->name_node);
1344         write_unlock_bh(&dev_base_lock);
1345
1346         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1347         ret = notifier_to_errno(ret);
1348
1349         if (ret) {
1350                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1351                 if (err >= 0) {
1352                         err = ret;
1353                         down_write(&devnet_rename_sem);
1354                         memcpy(dev->name, oldname, IFNAMSIZ);
1355                         memcpy(oldname, newname, IFNAMSIZ);
1356                         dev->name_assign_type = old_assign_type;
1357                         old_assign_type = NET_NAME_RENAMED;
1358                         goto rollback;
1359                 } else {
1360                         pr_err("%s: name change rollback failed: %d\n",
1361                                dev->name, ret);
1362                 }
1363         }
1364
1365         return err;
1366 }
1367
1368 /**
1369  *      dev_set_alias - change ifalias of a device
1370  *      @dev: device
1371  *      @alias: name up to IFALIASZ
1372  *      @len: limit of bytes to copy from info
1373  *
1374  *      Set ifalias for a device,
1375  */
1376 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1377 {
1378         struct dev_ifalias *new_alias = NULL;
1379
1380         if (len >= IFALIASZ)
1381                 return -EINVAL;
1382
1383         if (len) {
1384                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1385                 if (!new_alias)
1386                         return -ENOMEM;
1387
1388                 memcpy(new_alias->ifalias, alias, len);
1389                 new_alias->ifalias[len] = 0;
1390         }
1391
1392         mutex_lock(&ifalias_mutex);
1393         new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1394                                         mutex_is_locked(&ifalias_mutex));
1395         mutex_unlock(&ifalias_mutex);
1396
1397         if (new_alias)
1398                 kfree_rcu(new_alias, rcuhead);
1399
1400         return len;
1401 }
1402 EXPORT_SYMBOL(dev_set_alias);
1403
1404 /**
1405  *      dev_get_alias - get ifalias of a device
1406  *      @dev: device
1407  *      @name: buffer to store name of ifalias
1408  *      @len: size of buffer
1409  *
1410  *      get ifalias for a device.  Caller must make sure dev cannot go
1411  *      away,  e.g. rcu read lock or own a reference count to device.
1412  */
1413 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1414 {
1415         const struct dev_ifalias *alias;
1416         int ret = 0;
1417
1418         rcu_read_lock();
1419         alias = rcu_dereference(dev->ifalias);
1420         if (alias)
1421                 ret = snprintf(name, len, "%s", alias->ifalias);
1422         rcu_read_unlock();
1423
1424         return ret;
1425 }
1426
1427 /**
1428  *      netdev_features_change - device changes features
1429  *      @dev: device to cause notification
1430  *
1431  *      Called to indicate a device has changed features.
1432  */
1433 void netdev_features_change(struct net_device *dev)
1434 {
1435         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1436 }
1437 EXPORT_SYMBOL(netdev_features_change);
1438
1439 /**
1440  *      netdev_state_change - device changes state
1441  *      @dev: device to cause notification
1442  *
1443  *      Called to indicate a device has changed state. This function calls
1444  *      the notifier chains for netdev_chain and sends a NEWLINK message
1445  *      to the routing socket.
1446  */
1447 void netdev_state_change(struct net_device *dev)
1448 {
1449         if (dev->flags & IFF_UP) {
1450                 struct netdev_notifier_change_info change_info = {
1451                         .info.dev = dev,
1452                 };
1453
1454                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1455                                               &change_info.info);
1456                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1457         }
1458 }
1459 EXPORT_SYMBOL(netdev_state_change);
1460
1461 /**
1462  * __netdev_notify_peers - notify network peers about existence of @dev,
1463  * to be called when rtnl lock is already held.
1464  * @dev: network device
1465  *
1466  * Generate traffic such that interested network peers are aware of
1467  * @dev, such as by generating a gratuitous ARP. This may be used when
1468  * a device wants to inform the rest of the network about some sort of
1469  * reconfiguration such as a failover event or virtual machine
1470  * migration.
1471  */
1472 void __netdev_notify_peers(struct net_device *dev)
1473 {
1474         ASSERT_RTNL();
1475         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1476         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1477 }
1478 EXPORT_SYMBOL(__netdev_notify_peers);
1479
1480 /**
1481  * netdev_notify_peers - notify network peers about existence of @dev
1482  * @dev: network device
1483  *
1484  * Generate traffic such that interested network peers are aware of
1485  * @dev, such as by generating a gratuitous ARP. This may be used when
1486  * a device wants to inform the rest of the network about some sort of
1487  * reconfiguration such as a failover event or virtual machine
1488  * migration.
1489  */
1490 void netdev_notify_peers(struct net_device *dev)
1491 {
1492         rtnl_lock();
1493         __netdev_notify_peers(dev);
1494         rtnl_unlock();
1495 }
1496 EXPORT_SYMBOL(netdev_notify_peers);
1497
1498 static int napi_threaded_poll(void *data);
1499
1500 static int napi_kthread_create(struct napi_struct *n)
1501 {
1502         int err = 0;
1503
1504         /* Create and wake up the kthread once to put it in
1505          * TASK_INTERRUPTIBLE mode to avoid the blocked task
1506          * warning and work with loadavg.
1507          */
1508         n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1509                                 n->dev->name, n->napi_id);
1510         if (IS_ERR(n->thread)) {
1511                 err = PTR_ERR(n->thread);
1512                 pr_err("kthread_run failed with err %d\n", err);
1513                 n->thread = NULL;
1514         }
1515
1516         return err;
1517 }
1518
1519 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1520 {
1521         const struct net_device_ops *ops = dev->netdev_ops;
1522         int ret;
1523
1524         ASSERT_RTNL();
1525
1526         if (!netif_device_present(dev)) {
1527                 /* may be detached because parent is runtime-suspended */
1528                 if (dev->dev.parent)
1529                         pm_runtime_resume(dev->dev.parent);
1530                 if (!netif_device_present(dev))
1531                         return -ENODEV;
1532         }
1533
1534         /* Block netpoll from trying to do any rx path servicing.
1535          * If we don't do this there is a chance ndo_poll_controller
1536          * or ndo_poll may be running while we open the device
1537          */
1538         netpoll_poll_disable(dev);
1539
1540         ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1541         ret = notifier_to_errno(ret);
1542         if (ret)
1543                 return ret;
1544
1545         set_bit(__LINK_STATE_START, &dev->state);
1546
1547         if (ops->ndo_validate_addr)
1548                 ret = ops->ndo_validate_addr(dev);
1549
1550         if (!ret && ops->ndo_open)
1551                 ret = ops->ndo_open(dev);
1552
1553         netpoll_poll_enable(dev);
1554
1555         if (ret)
1556                 clear_bit(__LINK_STATE_START, &dev->state);
1557         else {
1558                 dev->flags |= IFF_UP;
1559                 dev_set_rx_mode(dev);
1560                 dev_activate(dev);
1561                 add_device_randomness(dev->dev_addr, dev->addr_len);
1562         }
1563
1564         return ret;
1565 }
1566
1567 /**
1568  *      dev_open        - prepare an interface for use.
1569  *      @dev: device to open
1570  *      @extack: netlink extended ack
1571  *
1572  *      Takes a device from down to up state. The device's private open
1573  *      function is invoked and then the multicast lists are loaded. Finally
1574  *      the device is moved into the up state and a %NETDEV_UP message is
1575  *      sent to the netdev notifier chain.
1576  *
1577  *      Calling this function on an active interface is a nop. On a failure
1578  *      a negative errno code is returned.
1579  */
1580 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1581 {
1582         int ret;
1583
1584         if (dev->flags & IFF_UP)
1585                 return 0;
1586
1587         ret = __dev_open(dev, extack);
1588         if (ret < 0)
1589                 return ret;
1590
1591         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1592         call_netdevice_notifiers(NETDEV_UP, dev);
1593
1594         return ret;
1595 }
1596 EXPORT_SYMBOL(dev_open);
1597
1598 static void __dev_close_many(struct list_head *head)
1599 {
1600         struct net_device *dev;
1601
1602         ASSERT_RTNL();
1603         might_sleep();
1604
1605         list_for_each_entry(dev, head, close_list) {
1606                 /* Temporarily disable netpoll until the interface is down */
1607                 netpoll_poll_disable(dev);
1608
1609                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1610
1611                 clear_bit(__LINK_STATE_START, &dev->state);
1612
1613                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1614                  * can be even on different cpu. So just clear netif_running().
1615                  *
1616                  * dev->stop() will invoke napi_disable() on all of it's
1617                  * napi_struct instances on this device.
1618                  */
1619                 smp_mb__after_atomic(); /* Commit netif_running(). */
1620         }
1621
1622         dev_deactivate_many(head);
1623
1624         list_for_each_entry(dev, head, close_list) {
1625                 const struct net_device_ops *ops = dev->netdev_ops;
1626
1627                 /*
1628                  *      Call the device specific close. This cannot fail.
1629                  *      Only if device is UP
1630                  *
1631                  *      We allow it to be called even after a DETACH hot-plug
1632                  *      event.
1633                  */
1634                 if (ops->ndo_stop)
1635                         ops->ndo_stop(dev);
1636
1637                 dev->flags &= ~IFF_UP;
1638                 netpoll_poll_enable(dev);
1639         }
1640 }
1641
1642 static void __dev_close(struct net_device *dev)
1643 {
1644         LIST_HEAD(single);
1645
1646         list_add(&dev->close_list, &single);
1647         __dev_close_many(&single);
1648         list_del(&single);
1649 }
1650
1651 void dev_close_many(struct list_head *head, bool unlink)
1652 {
1653         struct net_device *dev, *tmp;
1654
1655         /* Remove the devices that don't need to be closed */
1656         list_for_each_entry_safe(dev, tmp, head, close_list)
1657                 if (!(dev->flags & IFF_UP))
1658                         list_del_init(&dev->close_list);
1659
1660         __dev_close_many(head);
1661
1662         list_for_each_entry_safe(dev, tmp, head, close_list) {
1663                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1664                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1665                 if (unlink)
1666                         list_del_init(&dev->close_list);
1667         }
1668 }
1669 EXPORT_SYMBOL(dev_close_many);
1670
1671 /**
1672  *      dev_close - shutdown an interface.
1673  *      @dev: device to shutdown
1674  *
1675  *      This function moves an active device into down state. A
1676  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1677  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1678  *      chain.
1679  */
1680 void dev_close(struct net_device *dev)
1681 {
1682         if (dev->flags & IFF_UP) {
1683                 LIST_HEAD(single);
1684
1685                 list_add(&dev->close_list, &single);
1686                 dev_close_many(&single, true);
1687                 list_del(&single);
1688         }
1689 }
1690 EXPORT_SYMBOL(dev_close);
1691
1692
1693 /**
1694  *      dev_disable_lro - disable Large Receive Offload on a device
1695  *      @dev: device
1696  *
1697  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1698  *      called under RTNL.  This is needed if received packets may be
1699  *      forwarded to another interface.
1700  */
1701 void dev_disable_lro(struct net_device *dev)
1702 {
1703         struct net_device *lower_dev;
1704         struct list_head *iter;
1705
1706         dev->wanted_features &= ~NETIF_F_LRO;
1707         netdev_update_features(dev);
1708
1709         if (unlikely(dev->features & NETIF_F_LRO))
1710                 netdev_WARN(dev, "failed to disable LRO!\n");
1711
1712         netdev_for_each_lower_dev(dev, lower_dev, iter)
1713                 dev_disable_lro(lower_dev);
1714 }
1715 EXPORT_SYMBOL(dev_disable_lro);
1716
1717 /**
1718  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1719  *      @dev: device
1720  *
1721  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1722  *      called under RTNL.  This is needed if Generic XDP is installed on
1723  *      the device.
1724  */
1725 static void dev_disable_gro_hw(struct net_device *dev)
1726 {
1727         dev->wanted_features &= ~NETIF_F_GRO_HW;
1728         netdev_update_features(dev);
1729
1730         if (unlikely(dev->features & NETIF_F_GRO_HW))
1731                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1732 }
1733
1734 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1735 {
1736 #define N(val)                                          \
1737         case NETDEV_##val:                              \
1738                 return "NETDEV_" __stringify(val);
1739         switch (cmd) {
1740         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1741         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1742         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1743         N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1744         N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1745         N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1746         N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1747         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1748         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1749         N(PRE_CHANGEADDR)
1750         }
1751 #undef N
1752         return "UNKNOWN_NETDEV_EVENT";
1753 }
1754 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1755
1756 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1757                                    struct net_device *dev)
1758 {
1759         struct netdev_notifier_info info = {
1760                 .dev = dev,
1761         };
1762
1763         return nb->notifier_call(nb, val, &info);
1764 }
1765
1766 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1767                                              struct net_device *dev)
1768 {
1769         int err;
1770
1771         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1772         err = notifier_to_errno(err);
1773         if (err)
1774                 return err;
1775
1776         if (!(dev->flags & IFF_UP))
1777                 return 0;
1778
1779         call_netdevice_notifier(nb, NETDEV_UP, dev);
1780         return 0;
1781 }
1782
1783 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1784                                                 struct net_device *dev)
1785 {
1786         if (dev->flags & IFF_UP) {
1787                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1788                                         dev);
1789                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1790         }
1791         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1792 }
1793
1794 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1795                                                  struct net *net)
1796 {
1797         struct net_device *dev;
1798         int err;
1799
1800         for_each_netdev(net, dev) {
1801                 err = call_netdevice_register_notifiers(nb, dev);
1802                 if (err)
1803                         goto rollback;
1804         }
1805         return 0;
1806
1807 rollback:
1808         for_each_netdev_continue_reverse(net, dev)
1809                 call_netdevice_unregister_notifiers(nb, dev);
1810         return err;
1811 }
1812
1813 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1814                                                     struct net *net)
1815 {
1816         struct net_device *dev;
1817
1818         for_each_netdev(net, dev)
1819                 call_netdevice_unregister_notifiers(nb, dev);
1820 }
1821
1822 static int dev_boot_phase = 1;
1823
1824 /**
1825  * register_netdevice_notifier - register a network notifier block
1826  * @nb: notifier
1827  *
1828  * Register a notifier to be called when network device events occur.
1829  * The notifier passed is linked into the kernel structures and must
1830  * not be reused until it has been unregistered. A negative errno code
1831  * is returned on a failure.
1832  *
1833  * When registered all registration and up events are replayed
1834  * to the new notifier to allow device to have a race free
1835  * view of the network device list.
1836  */
1837
1838 int register_netdevice_notifier(struct notifier_block *nb)
1839 {
1840         struct net *net;
1841         int err;
1842
1843         /* Close race with setup_net() and cleanup_net() */
1844         down_write(&pernet_ops_rwsem);
1845         rtnl_lock();
1846         err = raw_notifier_chain_register(&netdev_chain, nb);
1847         if (err)
1848                 goto unlock;
1849         if (dev_boot_phase)
1850                 goto unlock;
1851         for_each_net(net) {
1852                 err = call_netdevice_register_net_notifiers(nb, net);
1853                 if (err)
1854                         goto rollback;
1855         }
1856
1857 unlock:
1858         rtnl_unlock();
1859         up_write(&pernet_ops_rwsem);
1860         return err;
1861
1862 rollback:
1863         for_each_net_continue_reverse(net)
1864                 call_netdevice_unregister_net_notifiers(nb, net);
1865
1866         raw_notifier_chain_unregister(&netdev_chain, nb);
1867         goto unlock;
1868 }
1869 EXPORT_SYMBOL(register_netdevice_notifier);
1870
1871 /**
1872  * unregister_netdevice_notifier - unregister a network notifier block
1873  * @nb: notifier
1874  *
1875  * Unregister a notifier previously registered by
1876  * register_netdevice_notifier(). The notifier is unlinked into the
1877  * kernel structures and may then be reused. A negative errno code
1878  * is returned on a failure.
1879  *
1880  * After unregistering unregister and down device events are synthesized
1881  * for all devices on the device list to the removed notifier to remove
1882  * the need for special case cleanup code.
1883  */
1884
1885 int unregister_netdevice_notifier(struct notifier_block *nb)
1886 {
1887         struct net *net;
1888         int err;
1889
1890         /* Close race with setup_net() and cleanup_net() */
1891         down_write(&pernet_ops_rwsem);
1892         rtnl_lock();
1893         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1894         if (err)
1895                 goto unlock;
1896
1897         for_each_net(net)
1898                 call_netdevice_unregister_net_notifiers(nb, net);
1899
1900 unlock:
1901         rtnl_unlock();
1902         up_write(&pernet_ops_rwsem);
1903         return err;
1904 }
1905 EXPORT_SYMBOL(unregister_netdevice_notifier);
1906
1907 static int __register_netdevice_notifier_net(struct net *net,
1908                                              struct notifier_block *nb,
1909                                              bool ignore_call_fail)
1910 {
1911         int err;
1912
1913         err = raw_notifier_chain_register(&net->netdev_chain, nb);
1914         if (err)
1915                 return err;
1916         if (dev_boot_phase)
1917                 return 0;
1918
1919         err = call_netdevice_register_net_notifiers(nb, net);
1920         if (err && !ignore_call_fail)
1921                 goto chain_unregister;
1922
1923         return 0;
1924
1925 chain_unregister:
1926         raw_notifier_chain_unregister(&net->netdev_chain, nb);
1927         return err;
1928 }
1929
1930 static int __unregister_netdevice_notifier_net(struct net *net,
1931                                                struct notifier_block *nb)
1932 {
1933         int err;
1934
1935         err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1936         if (err)
1937                 return err;
1938
1939         call_netdevice_unregister_net_notifiers(nb, net);
1940         return 0;
1941 }
1942
1943 /**
1944  * register_netdevice_notifier_net - register a per-netns network notifier block
1945  * @net: network namespace
1946  * @nb: notifier
1947  *
1948  * Register a notifier to be called when network device events occur.
1949  * The notifier passed is linked into the kernel structures and must
1950  * not be reused until it has been unregistered. A negative errno code
1951  * is returned on a failure.
1952  *
1953  * When registered all registration and up events are replayed
1954  * to the new notifier to allow device to have a race free
1955  * view of the network device list.
1956  */
1957
1958 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1959 {
1960         int err;
1961
1962         rtnl_lock();
1963         err = __register_netdevice_notifier_net(net, nb, false);
1964         rtnl_unlock();
1965         return err;
1966 }
1967 EXPORT_SYMBOL(register_netdevice_notifier_net);
1968
1969 /**
1970  * unregister_netdevice_notifier_net - unregister a per-netns
1971  *                                     network notifier block
1972  * @net: network namespace
1973  * @nb: notifier
1974  *
1975  * Unregister a notifier previously registered by
1976  * register_netdevice_notifier(). The notifier is unlinked into the
1977  * kernel structures and may then be reused. A negative errno code
1978  * is returned on a failure.
1979  *
1980  * After unregistering unregister and down device events are synthesized
1981  * for all devices on the device list to the removed notifier to remove
1982  * the need for special case cleanup code.
1983  */
1984
1985 int unregister_netdevice_notifier_net(struct net *net,
1986                                       struct notifier_block *nb)
1987 {
1988         int err;
1989
1990         rtnl_lock();
1991         err = __unregister_netdevice_notifier_net(net, nb);
1992         rtnl_unlock();
1993         return err;
1994 }
1995 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1996
1997 int register_netdevice_notifier_dev_net(struct net_device *dev,
1998                                         struct notifier_block *nb,
1999                                         struct netdev_net_notifier *nn)
2000 {
2001         int err;
2002
2003         rtnl_lock();
2004         err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
2005         if (!err) {
2006                 nn->nb = nb;
2007                 list_add(&nn->list, &dev->net_notifier_list);
2008         }
2009         rtnl_unlock();
2010         return err;
2011 }
2012 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
2013
2014 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2015                                           struct notifier_block *nb,
2016                                           struct netdev_net_notifier *nn)
2017 {
2018         int err;
2019
2020         rtnl_lock();
2021         list_del(&nn->list);
2022         err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2023         rtnl_unlock();
2024         return err;
2025 }
2026 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2027
2028 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2029                                              struct net *net)
2030 {
2031         struct netdev_net_notifier *nn;
2032
2033         list_for_each_entry(nn, &dev->net_notifier_list, list) {
2034                 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
2035                 __register_netdevice_notifier_net(net, nn->nb, true);
2036         }
2037 }
2038
2039 /**
2040  *      call_netdevice_notifiers_info - call all network notifier blocks
2041  *      @val: value passed unmodified to notifier function
2042  *      @info: notifier information data
2043  *
2044  *      Call all network notifier blocks.  Parameters and return value
2045  *      are as for raw_notifier_call_chain().
2046  */
2047
2048 static int call_netdevice_notifiers_info(unsigned long val,
2049                                          struct netdev_notifier_info *info)
2050 {
2051         struct net *net = dev_net(info->dev);
2052         int ret;
2053
2054         ASSERT_RTNL();
2055
2056         /* Run per-netns notifier block chain first, then run the global one.
2057          * Hopefully, one day, the global one is going to be removed after
2058          * all notifier block registrators get converted to be per-netns.
2059          */
2060         ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2061         if (ret & NOTIFY_STOP_MASK)
2062                 return ret;
2063         return raw_notifier_call_chain(&netdev_chain, val, info);
2064 }
2065
2066 static int call_netdevice_notifiers_extack(unsigned long val,
2067                                            struct net_device *dev,
2068                                            struct netlink_ext_ack *extack)
2069 {
2070         struct netdev_notifier_info info = {
2071                 .dev = dev,
2072                 .extack = extack,
2073         };
2074
2075         return call_netdevice_notifiers_info(val, &info);
2076 }
2077
2078 /**
2079  *      call_netdevice_notifiers - call all network notifier blocks
2080  *      @val: value passed unmodified to notifier function
2081  *      @dev: net_device pointer passed unmodified to notifier function
2082  *
2083  *      Call all network notifier blocks.  Parameters and return value
2084  *      are as for raw_notifier_call_chain().
2085  */
2086
2087 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2088 {
2089         return call_netdevice_notifiers_extack(val, dev, NULL);
2090 }
2091 EXPORT_SYMBOL(call_netdevice_notifiers);
2092
2093 /**
2094  *      call_netdevice_notifiers_mtu - call all network notifier blocks
2095  *      @val: value passed unmodified to notifier function
2096  *      @dev: net_device pointer passed unmodified to notifier function
2097  *      @arg: additional u32 argument passed to the notifier function
2098  *
2099  *      Call all network notifier blocks.  Parameters and return value
2100  *      are as for raw_notifier_call_chain().
2101  */
2102 static int call_netdevice_notifiers_mtu(unsigned long val,
2103                                         struct net_device *dev, u32 arg)
2104 {
2105         struct netdev_notifier_info_ext info = {
2106                 .info.dev = dev,
2107                 .ext.mtu = arg,
2108         };
2109
2110         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2111
2112         return call_netdevice_notifiers_info(val, &info.info);
2113 }
2114
2115 #ifdef CONFIG_NET_INGRESS
2116 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2117
2118 void net_inc_ingress_queue(void)
2119 {
2120         static_branch_inc(&ingress_needed_key);
2121 }
2122 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2123
2124 void net_dec_ingress_queue(void)
2125 {
2126         static_branch_dec(&ingress_needed_key);
2127 }
2128 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2129 #endif
2130
2131 #ifdef CONFIG_NET_EGRESS
2132 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2133
2134 void net_inc_egress_queue(void)
2135 {
2136         static_branch_inc(&egress_needed_key);
2137 }
2138 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2139
2140 void net_dec_egress_queue(void)
2141 {
2142         static_branch_dec(&egress_needed_key);
2143 }
2144 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2145 #endif
2146
2147 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2148 #ifdef CONFIG_JUMP_LABEL
2149 static atomic_t netstamp_needed_deferred;
2150 static atomic_t netstamp_wanted;
2151 static void netstamp_clear(struct work_struct *work)
2152 {
2153         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2154         int wanted;
2155
2156         wanted = atomic_add_return(deferred, &netstamp_wanted);
2157         if (wanted > 0)
2158                 static_branch_enable(&netstamp_needed_key);
2159         else
2160                 static_branch_disable(&netstamp_needed_key);
2161 }
2162 static DECLARE_WORK(netstamp_work, netstamp_clear);
2163 #endif
2164
2165 void net_enable_timestamp(void)
2166 {
2167 #ifdef CONFIG_JUMP_LABEL
2168         int wanted;
2169
2170         while (1) {
2171                 wanted = atomic_read(&netstamp_wanted);
2172                 if (wanted <= 0)
2173                         break;
2174                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2175                         return;
2176         }
2177         atomic_inc(&netstamp_needed_deferred);
2178         schedule_work(&netstamp_work);
2179 #else
2180         static_branch_inc(&netstamp_needed_key);
2181 #endif
2182 }
2183 EXPORT_SYMBOL(net_enable_timestamp);
2184
2185 void net_disable_timestamp(void)
2186 {
2187 #ifdef CONFIG_JUMP_LABEL
2188         int wanted;
2189
2190         while (1) {
2191                 wanted = atomic_read(&netstamp_wanted);
2192                 if (wanted <= 1)
2193                         break;
2194                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2195                         return;
2196         }
2197         atomic_dec(&netstamp_needed_deferred);
2198         schedule_work(&netstamp_work);
2199 #else
2200         static_branch_dec(&netstamp_needed_key);
2201 #endif
2202 }
2203 EXPORT_SYMBOL(net_disable_timestamp);
2204
2205 static inline void net_timestamp_set(struct sk_buff *skb)
2206 {
2207         skb->tstamp = 0;
2208         if (static_branch_unlikely(&netstamp_needed_key))
2209                 __net_timestamp(skb);
2210 }
2211
2212 #define net_timestamp_check(COND, SKB)                          \
2213         if (static_branch_unlikely(&netstamp_needed_key)) {     \
2214                 if ((COND) && !(SKB)->tstamp)                   \
2215                         __net_timestamp(SKB);                   \
2216         }                                                       \
2217
2218 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2219 {
2220         return __is_skb_forwardable(dev, skb, true);
2221 }
2222 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2223
2224 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2225                               bool check_mtu)
2226 {
2227         int ret = ____dev_forward_skb(dev, skb, check_mtu);
2228
2229         if (likely(!ret)) {
2230                 skb->protocol = eth_type_trans(skb, dev);
2231                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2232         }
2233
2234         return ret;
2235 }
2236
2237 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2238 {
2239         return __dev_forward_skb2(dev, skb, true);
2240 }
2241 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2242
2243 /**
2244  * dev_forward_skb - loopback an skb to another netif
2245  *
2246  * @dev: destination network device
2247  * @skb: buffer to forward
2248  *
2249  * return values:
2250  *      NET_RX_SUCCESS  (no congestion)
2251  *      NET_RX_DROP     (packet was dropped, but freed)
2252  *
2253  * dev_forward_skb can be used for injecting an skb from the
2254  * start_xmit function of one device into the receive queue
2255  * of another device.
2256  *
2257  * The receiving device may be in another namespace, so
2258  * we have to clear all information in the skb that could
2259  * impact namespace isolation.
2260  */
2261 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2262 {
2263         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2264 }
2265 EXPORT_SYMBOL_GPL(dev_forward_skb);
2266
2267 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2268 {
2269         return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2270 }
2271
2272 static inline int deliver_skb(struct sk_buff *skb,
2273                               struct packet_type *pt_prev,
2274                               struct net_device *orig_dev)
2275 {
2276         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2277                 return -ENOMEM;
2278         refcount_inc(&skb->users);
2279         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2280 }
2281
2282 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2283                                           struct packet_type **pt,
2284                                           struct net_device *orig_dev,
2285                                           __be16 type,
2286                                           struct list_head *ptype_list)
2287 {
2288         struct packet_type *ptype, *pt_prev = *pt;
2289
2290         list_for_each_entry_rcu(ptype, ptype_list, list) {
2291                 if (ptype->type != type)
2292                         continue;
2293                 if (pt_prev)
2294                         deliver_skb(skb, pt_prev, orig_dev);
2295                 pt_prev = ptype;
2296         }
2297         *pt = pt_prev;
2298 }
2299
2300 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2301 {
2302         if (!ptype->af_packet_priv || !skb->sk)
2303                 return false;
2304
2305         if (ptype->id_match)
2306                 return ptype->id_match(ptype, skb->sk);
2307         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2308                 return true;
2309
2310         return false;
2311 }
2312
2313 /**
2314  * dev_nit_active - return true if any network interface taps are in use
2315  *
2316  * @dev: network device to check for the presence of taps
2317  */
2318 bool dev_nit_active(struct net_device *dev)
2319 {
2320         return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2321 }
2322 EXPORT_SYMBOL_GPL(dev_nit_active);
2323
2324 /*
2325  *      Support routine. Sends outgoing frames to any network
2326  *      taps currently in use.
2327  */
2328
2329 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2330 {
2331         struct packet_type *ptype;
2332         struct sk_buff *skb2 = NULL;
2333         struct packet_type *pt_prev = NULL;
2334         struct list_head *ptype_list = &ptype_all;
2335
2336         rcu_read_lock();
2337 again:
2338         list_for_each_entry_rcu(ptype, ptype_list, list) {
2339                 if (ptype->ignore_outgoing)
2340                         continue;
2341
2342                 /* Never send packets back to the socket
2343                  * they originated from - MvS (miquels@drinkel.ow.org)
2344                  */
2345                 if (skb_loop_sk(ptype, skb))
2346                         continue;
2347
2348                 if (pt_prev) {
2349                         deliver_skb(skb2, pt_prev, skb->dev);
2350                         pt_prev = ptype;
2351                         continue;
2352                 }
2353
2354                 /* need to clone skb, done only once */
2355                 skb2 = skb_clone(skb, GFP_ATOMIC);
2356                 if (!skb2)
2357                         goto out_unlock;
2358
2359                 net_timestamp_set(skb2);
2360
2361                 /* skb->nh should be correctly
2362                  * set by sender, so that the second statement is
2363                  * just protection against buggy protocols.
2364                  */
2365                 skb_reset_mac_header(skb2);
2366
2367                 if (skb_network_header(skb2) < skb2->data ||
2368                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2369                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2370                                              ntohs(skb2->protocol),
2371                                              dev->name);
2372                         skb_reset_network_header(skb2);
2373                 }
2374
2375                 skb2->transport_header = skb2->network_header;
2376                 skb2->pkt_type = PACKET_OUTGOING;
2377                 pt_prev = ptype;
2378         }
2379
2380         if (ptype_list == &ptype_all) {
2381                 ptype_list = &dev->ptype_all;
2382                 goto again;
2383         }
2384 out_unlock:
2385         if (pt_prev) {
2386                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2387                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2388                 else
2389                         kfree_skb(skb2);
2390         }
2391         rcu_read_unlock();
2392 }
2393 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2394
2395 /**
2396  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2397  * @dev: Network device
2398  * @txq: number of queues available
2399  *
2400  * If real_num_tx_queues is changed the tc mappings may no longer be
2401  * valid. To resolve this verify the tc mapping remains valid and if
2402  * not NULL the mapping. With no priorities mapping to this
2403  * offset/count pair it will no longer be used. In the worst case TC0
2404  * is invalid nothing can be done so disable priority mappings. If is
2405  * expected that drivers will fix this mapping if they can before
2406  * calling netif_set_real_num_tx_queues.
2407  */
2408 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2409 {
2410         int i;
2411         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2412
2413         /* If TC0 is invalidated disable TC mapping */
2414         if (tc->offset + tc->count > txq) {
2415                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2416                 dev->num_tc = 0;
2417                 return;
2418         }
2419
2420         /* Invalidated prio to tc mappings set to TC0 */
2421         for (i = 1; i < TC_BITMASK + 1; i++) {
2422                 int q = netdev_get_prio_tc_map(dev, i);
2423
2424                 tc = &dev->tc_to_txq[q];
2425                 if (tc->offset + tc->count > txq) {
2426                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2427                                 i, q);
2428                         netdev_set_prio_tc_map(dev, i, 0);
2429                 }
2430         }
2431 }
2432
2433 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2434 {
2435         if (dev->num_tc) {
2436                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2437                 int i;
2438
2439                 /* walk through the TCs and see if it falls into any of them */
2440                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2441                         if ((txq - tc->offset) < tc->count)
2442                                 return i;
2443                 }
2444
2445                 /* didn't find it, just return -1 to indicate no match */
2446                 return -1;
2447         }
2448
2449         return 0;
2450 }
2451 EXPORT_SYMBOL(netdev_txq_to_tc);
2452
2453 #ifdef CONFIG_XPS
2454 struct static_key xps_needed __read_mostly;
2455 EXPORT_SYMBOL(xps_needed);
2456 struct static_key xps_rxqs_needed __read_mostly;
2457 EXPORT_SYMBOL(xps_rxqs_needed);
2458 static DEFINE_MUTEX(xps_map_mutex);
2459 #define xmap_dereference(P)             \
2460         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2461
2462 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2463                              int tci, u16 index)
2464 {
2465         struct xps_map *map = NULL;
2466         int pos;
2467
2468         if (dev_maps)
2469                 map = xmap_dereference(dev_maps->attr_map[tci]);
2470         if (!map)
2471                 return false;
2472
2473         for (pos = map->len; pos--;) {
2474                 if (map->queues[pos] != index)
2475                         continue;
2476
2477                 if (map->len > 1) {
2478                         map->queues[pos] = map->queues[--map->len];
2479                         break;
2480                 }
2481
2482                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2483                 kfree_rcu(map, rcu);
2484                 return false;
2485         }
2486
2487         return true;
2488 }
2489
2490 static bool remove_xps_queue_cpu(struct net_device *dev,
2491                                  struct xps_dev_maps *dev_maps,
2492                                  int cpu, u16 offset, u16 count)
2493 {
2494         int num_tc = dev->num_tc ? : 1;
2495         bool active = false;
2496         int tci;
2497
2498         for (tci = cpu * num_tc; num_tc--; tci++) {
2499                 int i, j;
2500
2501                 for (i = count, j = offset; i--; j++) {
2502                         if (!remove_xps_queue(dev_maps, tci, j))
2503                                 break;
2504                 }
2505
2506                 active |= i < 0;
2507         }
2508
2509         return active;
2510 }
2511
2512 static void reset_xps_maps(struct net_device *dev,
2513                            struct xps_dev_maps *dev_maps,
2514                            bool is_rxqs_map)
2515 {
2516         if (is_rxqs_map) {
2517                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2518                 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2519         } else {
2520                 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2521         }
2522         static_key_slow_dec_cpuslocked(&xps_needed);
2523         kfree_rcu(dev_maps, rcu);
2524 }
2525
2526 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2527                            struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2528                            u16 offset, u16 count, bool is_rxqs_map)
2529 {
2530         bool active = false;
2531         int i, j;
2532
2533         for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2534              j < nr_ids;)
2535                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2536                                                count);
2537         if (!active)
2538                 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2539
2540         if (!is_rxqs_map) {
2541                 for (i = offset + (count - 1); count--; i--) {
2542                         netdev_queue_numa_node_write(
2543                                 netdev_get_tx_queue(dev, i),
2544                                 NUMA_NO_NODE);
2545                 }
2546         }
2547 }
2548
2549 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2550                                    u16 count)
2551 {
2552         const unsigned long *possible_mask = NULL;
2553         struct xps_dev_maps *dev_maps;
2554         unsigned int nr_ids;
2555
2556         if (!static_key_false(&xps_needed))
2557                 return;
2558
2559         cpus_read_lock();
2560         mutex_lock(&xps_map_mutex);
2561
2562         if (static_key_false(&xps_rxqs_needed)) {
2563                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2564                 if (dev_maps) {
2565                         nr_ids = dev->num_rx_queues;
2566                         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2567                                        offset, count, true);
2568                 }
2569         }
2570
2571         dev_maps = xmap_dereference(dev->xps_cpus_map);
2572         if (!dev_maps)
2573                 goto out_no_maps;
2574
2575         if (num_possible_cpus() > 1)
2576                 possible_mask = cpumask_bits(cpu_possible_mask);
2577         nr_ids = nr_cpu_ids;
2578         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2579                        false);
2580
2581 out_no_maps:
2582         mutex_unlock(&xps_map_mutex);
2583         cpus_read_unlock();
2584 }
2585
2586 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2587 {
2588         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2589 }
2590
2591 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2592                                       u16 index, bool is_rxqs_map)
2593 {
2594         struct xps_map *new_map;
2595         int alloc_len = XPS_MIN_MAP_ALLOC;
2596         int i, pos;
2597
2598         for (pos = 0; map && pos < map->len; pos++) {
2599                 if (map->queues[pos] != index)
2600                         continue;
2601                 return map;
2602         }
2603
2604         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2605         if (map) {
2606                 if (pos < map->alloc_len)
2607                         return map;
2608
2609                 alloc_len = map->alloc_len * 2;
2610         }
2611
2612         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2613          *  map
2614          */
2615         if (is_rxqs_map)
2616                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2617         else
2618                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2619                                        cpu_to_node(attr_index));
2620         if (!new_map)
2621                 return NULL;
2622
2623         for (i = 0; i < pos; i++)
2624                 new_map->queues[i] = map->queues[i];
2625         new_map->alloc_len = alloc_len;
2626         new_map->len = pos;
2627
2628         return new_map;
2629 }
2630
2631 /* Must be called under cpus_read_lock */
2632 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2633                           u16 index, bool is_rxqs_map)
2634 {
2635         const unsigned long *online_mask = NULL, *possible_mask = NULL;
2636         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2637         int i, j, tci, numa_node_id = -2;
2638         int maps_sz, num_tc = 1, tc = 0;
2639         struct xps_map *map, *new_map;
2640         bool active = false;
2641         unsigned int nr_ids;
2642
2643         if (dev->num_tc) {
2644                 /* Do not allow XPS on subordinate device directly */
2645                 num_tc = dev->num_tc;
2646                 if (num_tc < 0)
2647                         return -EINVAL;
2648
2649                 /* If queue belongs to subordinate dev use its map */
2650                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2651
2652                 tc = netdev_txq_to_tc(dev, index);
2653                 if (tc < 0)
2654                         return -EINVAL;
2655         }
2656
2657         mutex_lock(&xps_map_mutex);
2658         if (is_rxqs_map) {
2659                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2660                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2661                 nr_ids = dev->num_rx_queues;
2662         } else {
2663                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2664                 if (num_possible_cpus() > 1) {
2665                         online_mask = cpumask_bits(cpu_online_mask);
2666                         possible_mask = cpumask_bits(cpu_possible_mask);
2667                 }
2668                 dev_maps = xmap_dereference(dev->xps_cpus_map);
2669                 nr_ids = nr_cpu_ids;
2670         }
2671
2672         if (maps_sz < L1_CACHE_BYTES)
2673                 maps_sz = L1_CACHE_BYTES;
2674
2675         /* allocate memory for queue storage */
2676         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2677              j < nr_ids;) {
2678                 if (!new_dev_maps)
2679                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2680                 if (!new_dev_maps) {
2681                         mutex_unlock(&xps_map_mutex);
2682                         return -ENOMEM;
2683                 }
2684
2685                 tci = j * num_tc + tc;
2686                 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2687                                  NULL;
2688
2689                 map = expand_xps_map(map, j, index, is_rxqs_map);
2690                 if (!map)
2691                         goto error;
2692
2693                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2694         }
2695
2696         if (!new_dev_maps)
2697                 goto out_no_new_maps;
2698
2699         if (!dev_maps) {
2700                 /* Increment static keys at most once per type */
2701                 static_key_slow_inc_cpuslocked(&xps_needed);
2702                 if (is_rxqs_map)
2703                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2704         }
2705
2706         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2707              j < nr_ids;) {
2708                 /* copy maps belonging to foreign traffic classes */
2709                 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2710                         /* fill in the new device map from the old device map */
2711                         map = xmap_dereference(dev_maps->attr_map[tci]);
2712                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2713                 }
2714
2715                 /* We need to explicitly update tci as prevous loop
2716                  * could break out early if dev_maps is NULL.
2717                  */
2718                 tci = j * num_tc + tc;
2719
2720                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2721                     netif_attr_test_online(j, online_mask, nr_ids)) {
2722                         /* add tx-queue to CPU/rx-queue maps */
2723                         int pos = 0;
2724
2725                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2726                         while ((pos < map->len) && (map->queues[pos] != index))
2727                                 pos++;
2728
2729                         if (pos == map->len)
2730                                 map->queues[map->len++] = index;
2731 #ifdef CONFIG_NUMA
2732                         if (!is_rxqs_map) {
2733                                 if (numa_node_id == -2)
2734                                         numa_node_id = cpu_to_node(j);
2735                                 else if (numa_node_id != cpu_to_node(j))
2736                                         numa_node_id = -1;
2737                         }
2738 #endif
2739                 } else if (dev_maps) {
2740                         /* fill in the new device map from the old device map */
2741                         map = xmap_dereference(dev_maps->attr_map[tci]);
2742                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2743                 }
2744
2745                 /* copy maps belonging to foreign traffic classes */
2746                 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2747                         /* fill in the new device map from the old device map */
2748                         map = xmap_dereference(dev_maps->attr_map[tci]);
2749                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2750                 }
2751         }
2752
2753         if (is_rxqs_map)
2754                 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2755         else
2756                 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2757
2758         /* Cleanup old maps */
2759         if (!dev_maps)
2760                 goto out_no_old_maps;
2761
2762         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2763              j < nr_ids;) {
2764                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2765                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2766                         map = xmap_dereference(dev_maps->attr_map[tci]);
2767                         if (map && map != new_map)
2768                                 kfree_rcu(map, rcu);
2769                 }
2770         }
2771
2772         kfree_rcu(dev_maps, rcu);
2773
2774 out_no_old_maps:
2775         dev_maps = new_dev_maps;
2776         active = true;
2777
2778 out_no_new_maps:
2779         if (!is_rxqs_map) {
2780                 /* update Tx queue numa node */
2781                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2782                                              (numa_node_id >= 0) ?
2783                                              numa_node_id : NUMA_NO_NODE);
2784         }
2785
2786         if (!dev_maps)
2787                 goto out_no_maps;
2788
2789         /* removes tx-queue from unused CPUs/rx-queues */
2790         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2791              j < nr_ids;) {
2792                 for (i = tc, tci = j * num_tc; i--; tci++)
2793                         active |= remove_xps_queue(dev_maps, tci, index);
2794                 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2795                     !netif_attr_test_online(j, online_mask, nr_ids))
2796                         active |= remove_xps_queue(dev_maps, tci, index);
2797                 for (i = num_tc - tc, tci++; --i; tci++)
2798                         active |= remove_xps_queue(dev_maps, tci, index);
2799         }
2800
2801         /* free map if not active */
2802         if (!active)
2803                 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2804
2805 out_no_maps:
2806         mutex_unlock(&xps_map_mutex);
2807
2808         return 0;
2809 error:
2810         /* remove any maps that we added */
2811         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2812              j < nr_ids;) {
2813                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2814                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2815                         map = dev_maps ?
2816                               xmap_dereference(dev_maps->attr_map[tci]) :
2817                               NULL;
2818                         if (new_map && new_map != map)
2819                                 kfree(new_map);
2820                 }
2821         }
2822
2823         mutex_unlock(&xps_map_mutex);
2824
2825         kfree(new_dev_maps);
2826         return -ENOMEM;
2827 }
2828 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2829
2830 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2831                         u16 index)
2832 {
2833         int ret;
2834
2835         cpus_read_lock();
2836         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2837         cpus_read_unlock();
2838
2839         return ret;
2840 }
2841 EXPORT_SYMBOL(netif_set_xps_queue);
2842
2843 #endif
2844 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2845 {
2846         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2847
2848         /* Unbind any subordinate channels */
2849         while (txq-- != &dev->_tx[0]) {
2850                 if (txq->sb_dev)
2851                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2852         }
2853 }
2854
2855 void netdev_reset_tc(struct net_device *dev)
2856 {
2857 #ifdef CONFIG_XPS
2858         netif_reset_xps_queues_gt(dev, 0);
2859 #endif
2860         netdev_unbind_all_sb_channels(dev);
2861
2862         /* Reset TC configuration of device */
2863         dev->num_tc = 0;
2864         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2865         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2866 }
2867 EXPORT_SYMBOL(netdev_reset_tc);
2868
2869 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2870 {
2871         if (tc >= dev->num_tc)
2872                 return -EINVAL;
2873
2874 #ifdef CONFIG_XPS
2875         netif_reset_xps_queues(dev, offset, count);
2876 #endif
2877         dev->tc_to_txq[tc].count = count;
2878         dev->tc_to_txq[tc].offset = offset;
2879         return 0;
2880 }
2881 EXPORT_SYMBOL(netdev_set_tc_queue);
2882
2883 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2884 {
2885         if (num_tc > TC_MAX_QUEUE)
2886                 return -EINVAL;
2887
2888 #ifdef CONFIG_XPS
2889         netif_reset_xps_queues_gt(dev, 0);
2890 #endif
2891         netdev_unbind_all_sb_channels(dev);
2892
2893         dev->num_tc = num_tc;
2894         return 0;
2895 }
2896 EXPORT_SYMBOL(netdev_set_num_tc);
2897
2898 void netdev_unbind_sb_channel(struct net_device *dev,
2899                               struct net_device *sb_dev)
2900 {
2901         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2902
2903 #ifdef CONFIG_XPS
2904         netif_reset_xps_queues_gt(sb_dev, 0);
2905 #endif
2906         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2907         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2908
2909         while (txq-- != &dev->_tx[0]) {
2910                 if (txq->sb_dev == sb_dev)
2911                         txq->sb_dev = NULL;
2912         }
2913 }
2914 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2915
2916 int netdev_bind_sb_channel_queue(struct net_device *dev,
2917                                  struct net_device *sb_dev,
2918                                  u8 tc, u16 count, u16 offset)
2919 {
2920         /* Make certain the sb_dev and dev are already configured */
2921         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2922                 return -EINVAL;
2923
2924         /* We cannot hand out queues we don't have */
2925         if ((offset + count) > dev->real_num_tx_queues)
2926                 return -EINVAL;
2927
2928         /* Record the mapping */
2929         sb_dev->tc_to_txq[tc].count = count;
2930         sb_dev->tc_to_txq[tc].offset = offset;
2931
2932         /* Provide a way for Tx queue to find the tc_to_txq map or
2933          * XPS map for itself.
2934          */
2935         while (count--)
2936                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2937
2938         return 0;
2939 }
2940 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2941
2942 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2943 {
2944         /* Do not use a multiqueue device to represent a subordinate channel */
2945         if (netif_is_multiqueue(dev))
2946                 return -ENODEV;
2947
2948         /* We allow channels 1 - 32767 to be used for subordinate channels.
2949          * Channel 0 is meant to be "native" mode and used only to represent
2950          * the main root device. We allow writing 0 to reset the device back
2951          * to normal mode after being used as a subordinate channel.
2952          */
2953         if (channel > S16_MAX)
2954                 return -EINVAL;
2955
2956         dev->num_tc = -channel;
2957
2958         return 0;
2959 }
2960 EXPORT_SYMBOL(netdev_set_sb_channel);
2961
2962 /*
2963  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2964  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2965  */
2966 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2967 {
2968         bool disabling;
2969         int rc;
2970
2971         disabling = txq < dev->real_num_tx_queues;
2972
2973         if (txq < 1 || txq > dev->num_tx_queues)
2974                 return -EINVAL;
2975
2976         if (dev->reg_state == NETREG_REGISTERED ||
2977             dev->reg_state == NETREG_UNREGISTERING) {
2978                 ASSERT_RTNL();
2979
2980                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2981                                                   txq);
2982                 if (rc)
2983                         return rc;
2984
2985                 if (dev->num_tc)
2986                         netif_setup_tc(dev, txq);
2987
2988                 dev->real_num_tx_queues = txq;
2989
2990                 if (disabling) {
2991                         synchronize_net();
2992                         qdisc_reset_all_tx_gt(dev, txq);
2993 #ifdef CONFIG_XPS
2994                         netif_reset_xps_queues_gt(dev, txq);
2995 #endif
2996                 }
2997         } else {
2998                 dev->real_num_tx_queues = txq;
2999         }
3000
3001         return 0;
3002 }
3003 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
3004
3005 #ifdef CONFIG_SYSFS
3006 /**
3007  *      netif_set_real_num_rx_queues - set actual number of RX queues used
3008  *      @dev: Network device
3009  *      @rxq: Actual number of RX queues
3010  *
3011  *      This must be called either with the rtnl_lock held or before
3012  *      registration of the net device.  Returns 0 on success, or a
3013  *      negative error code.  If called before registration, it always
3014  *      succeeds.
3015  */
3016 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3017 {
3018         int rc;
3019
3020         if (rxq < 1 || rxq > dev->num_rx_queues)
3021                 return -EINVAL;
3022
3023         if (dev->reg_state == NETREG_REGISTERED) {
3024                 ASSERT_RTNL();
3025
3026                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3027                                                   rxq);
3028                 if (rc)
3029                         return rc;
3030         }
3031
3032         dev->real_num_rx_queues = rxq;
3033         return 0;
3034 }
3035 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3036 #endif
3037
3038 /**
3039  * netif_get_num_default_rss_queues - default number of RSS queues
3040  *
3041  * This routine should set an upper limit on the number of RSS queues
3042  * used by default by multiqueue devices.
3043  */
3044 int netif_get_num_default_rss_queues(void)
3045 {
3046         return is_kdump_kernel() ?
3047                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3048 }
3049 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3050
3051 static void __netif_reschedule(struct Qdisc *q)
3052 {
3053         struct softnet_data *sd;
3054         unsigned long flags;
3055
3056         local_irq_save(flags);
3057         sd = this_cpu_ptr(&softnet_data);
3058         q->next_sched = NULL;
3059         *sd->output_queue_tailp = q;
3060         sd->output_queue_tailp = &q->next_sched;
3061         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3062         local_irq_restore(flags);
3063 }
3064
3065 void __netif_schedule(struct Qdisc *q)
3066 {
3067         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3068                 __netif_reschedule(q);
3069 }
3070 EXPORT_SYMBOL(__netif_schedule);
3071
3072 struct dev_kfree_skb_cb {
3073         enum skb_free_reason reason;
3074 };
3075
3076 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3077 {
3078         return (struct dev_kfree_skb_cb *)skb->cb;
3079 }
3080
3081 void netif_schedule_queue(struct netdev_queue *txq)
3082 {
3083         rcu_read_lock();
3084         if (!netif_xmit_stopped(txq)) {
3085                 struct Qdisc *q = rcu_dereference(txq->qdisc);
3086
3087                 __netif_schedule(q);
3088         }
3089         rcu_read_unlock();
3090 }
3091 EXPORT_SYMBOL(netif_schedule_queue);
3092
3093 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3094 {
3095         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3096                 struct Qdisc *q;
3097
3098                 rcu_read_lock();
3099                 q = rcu_dereference(dev_queue->qdisc);
3100                 __netif_schedule(q);
3101                 rcu_read_unlock();
3102         }
3103 }
3104 EXPORT_SYMBOL(netif_tx_wake_queue);
3105
3106 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3107 {
3108         unsigned long flags;
3109
3110         if (unlikely(!skb))
3111                 return;
3112
3113         if (likely(refcount_read(&skb->users) == 1)) {
3114                 smp_rmb();
3115                 refcount_set(&skb->users, 0);
3116         } else if (likely(!refcount_dec_and_test(&skb->users))) {
3117                 return;
3118         }
3119         get_kfree_skb_cb(skb)->reason = reason;
3120         local_irq_save(flags);
3121         skb->next = __this_cpu_read(softnet_data.completion_queue);
3122         __this_cpu_write(softnet_data.completion_queue, skb);
3123         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3124         local_irq_restore(flags);
3125 }
3126 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3127
3128 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3129 {
3130         if (in_irq() || irqs_disabled())
3131                 __dev_kfree_skb_irq(skb, reason);
3132         else
3133                 dev_kfree_skb(skb);
3134 }
3135 EXPORT_SYMBOL(__dev_kfree_skb_any);
3136
3137
3138 /**
3139  * netif_device_detach - mark device as removed
3140  * @dev: network device
3141  *
3142  * Mark device as removed from system and therefore no longer available.
3143  */
3144 void netif_device_detach(struct net_device *dev)
3145 {
3146         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3147             netif_running(dev)) {
3148                 netif_tx_stop_all_queues(dev);
3149         }
3150 }
3151 EXPORT_SYMBOL(netif_device_detach);
3152
3153 /**
3154  * netif_device_attach - mark device as attached
3155  * @dev: network device
3156  *
3157  * Mark device as attached from system and restart if needed.
3158  */
3159 void netif_device_attach(struct net_device *dev)
3160 {
3161         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3162             netif_running(dev)) {
3163                 netif_tx_wake_all_queues(dev);
3164                 __netdev_watchdog_up(dev);
3165         }
3166 }
3167 EXPORT_SYMBOL(netif_device_attach);
3168
3169 /*
3170  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3171  * to be used as a distribution range.
3172  */
3173 static u16 skb_tx_hash(const struct net_device *dev,
3174                        const struct net_device *sb_dev,
3175                        struct sk_buff *skb)
3176 {
3177         u32 hash;
3178         u16 qoffset = 0;
3179         u16 qcount = dev->real_num_tx_queues;
3180
3181         if (dev->num_tc) {
3182                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3183
3184                 qoffset = sb_dev->tc_to_txq[tc].offset;
3185                 qcount = sb_dev->tc_to_txq[tc].count;
3186         }
3187
3188         if (skb_rx_queue_recorded(skb)) {
3189                 hash = skb_get_rx_queue(skb);
3190                 if (hash >= qoffset)
3191                         hash -= qoffset;
3192                 while (unlikely(hash >= qcount))
3193                         hash -= qcount;
3194                 return hash + qoffset;
3195         }
3196
3197         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3198 }
3199
3200 static void skb_warn_bad_offload(const struct sk_buff *skb)
3201 {
3202         static const netdev_features_t null_features;
3203         struct net_device *dev = skb->dev;
3204         const char *name = "";
3205
3206         if (!net_ratelimit())
3207                 return;
3208
3209         if (dev) {
3210                 if (dev->dev.parent)
3211                         name = dev_driver_string(dev->dev.parent);
3212                 else
3213                         name = netdev_name(dev);
3214         }
3215         skb_dump(KERN_WARNING, skb, false);
3216         WARN(1, "%s: caps=(%pNF, %pNF)\n",
3217              name, dev ? &dev->features : &null_features,
3218              skb->sk ? &skb->sk->sk_route_caps : &null_features);
3219 }
3220
3221 /*
3222  * Invalidate hardware checksum when packet is to be mangled, and
3223  * complete checksum manually on outgoing path.
3224  */
3225 int skb_checksum_help(struct sk_buff *skb)
3226 {
3227         __wsum csum;
3228         int ret = 0, offset;
3229
3230         if (skb->ip_summed == CHECKSUM_COMPLETE)
3231                 goto out_set_summed;
3232
3233         if (unlikely(skb_is_gso(skb))) {
3234                 skb_warn_bad_offload(skb);
3235                 return -EINVAL;
3236         }
3237
3238         /* Before computing a checksum, we should make sure no frag could
3239          * be modified by an external entity : checksum could be wrong.
3240          */
3241         if (skb_has_shared_frag(skb)) {
3242                 ret = __skb_linearize(skb);
3243                 if (ret)
3244                         goto out;
3245         }
3246
3247         offset = skb_checksum_start_offset(skb);
3248         BUG_ON(offset >= skb_headlen(skb));
3249         csum = skb_checksum(skb, offset, skb->len - offset, 0);
3250
3251         offset += skb->csum_offset;
3252         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3253
3254         ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3255         if (ret)
3256                 goto out;
3257
3258         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3259 out_set_summed:
3260         skb->ip_summed = CHECKSUM_NONE;
3261 out:
3262         return ret;
3263 }
3264 EXPORT_SYMBOL(skb_checksum_help);
3265
3266 int skb_crc32c_csum_help(struct sk_buff *skb)
3267 {
3268         __le32 crc32c_csum;
3269         int ret = 0, offset, start;
3270
3271         if (skb->ip_summed != CHECKSUM_PARTIAL)
3272                 goto out;
3273
3274         if (unlikely(skb_is_gso(skb)))
3275                 goto out;
3276
3277         /* Before computing a checksum, we should make sure no frag could
3278          * be modified by an external entity : checksum could be wrong.
3279          */
3280         if (unlikely(skb_has_shared_frag(skb))) {
3281                 ret = __skb_linearize(skb);
3282                 if (ret)
3283                         goto out;
3284         }
3285         start = skb_checksum_start_offset(skb);
3286         offset = start + offsetof(struct sctphdr, checksum);
3287         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3288                 ret = -EINVAL;
3289                 goto out;
3290         }
3291
3292         ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3293         if (ret)
3294                 goto out;
3295
3296         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3297                                                   skb->len - start, ~(__u32)0,
3298                                                   crc32c_csum_stub));
3299         *(__le32 *)(skb->data + offset) = crc32c_csum;
3300         skb->ip_summed = CHECKSUM_NONE;
3301         skb->csum_not_inet = 0;
3302 out:
3303         return ret;
3304 }
3305
3306 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3307 {
3308         __be16 type = skb->protocol;
3309
3310         /* Tunnel gso handlers can set protocol to ethernet. */
3311         if (type == htons(ETH_P_TEB)) {
3312                 struct ethhdr *eth;
3313
3314                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3315                         return 0;
3316
3317                 eth = (struct ethhdr *)skb->data;
3318                 type = eth->h_proto;
3319         }
3320
3321         return __vlan_get_protocol(skb, type, depth);
3322 }
3323
3324 /**
3325  *      skb_mac_gso_segment - mac layer segmentation handler.
3326  *      @skb: buffer to segment
3327  *      @features: features for the output path (see dev->features)
3328  */
3329 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3330                                     netdev_features_t features)
3331 {
3332         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3333         struct packet_offload *ptype;
3334         int vlan_depth = skb->mac_len;
3335         __be16 type = skb_network_protocol(skb, &vlan_depth);
3336
3337         if (unlikely(!type))
3338                 return ERR_PTR(-EINVAL);
3339
3340         __skb_pull(skb, vlan_depth);
3341
3342         rcu_read_lock();
3343         list_for_each_entry_rcu(ptype, &offload_base, list) {
3344                 if (ptype->type == type && ptype->callbacks.gso_segment) {
3345                         segs = ptype->callbacks.gso_segment(skb, features);
3346                         break;
3347                 }
3348         }
3349         rcu_read_unlock();
3350
3351         __skb_push(skb, skb->data - skb_mac_header(skb));
3352
3353         return segs;
3354 }
3355 EXPORT_SYMBOL(skb_mac_gso_segment);
3356
3357
3358 /* openvswitch calls this on rx path, so we need a different check.
3359  */
3360 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3361 {
3362         if (tx_path)
3363                 return skb->ip_summed != CHECKSUM_PARTIAL &&
3364                        skb->ip_summed != CHECKSUM_UNNECESSARY;
3365
3366         return skb->ip_summed == CHECKSUM_NONE;
3367 }
3368
3369 /**
3370  *      __skb_gso_segment - Perform segmentation on skb.
3371  *      @skb: buffer to segment
3372  *      @features: features for the output path (see dev->features)
3373  *      @tx_path: whether it is called in TX path
3374  *
3375  *      This function segments the given skb and returns a list of segments.
3376  *
3377  *      It may return NULL if the skb requires no segmentation.  This is
3378  *      only possible when GSO is used for verifying header integrity.
3379  *
3380  *      Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3381  */
3382 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3383                                   netdev_features_t features, bool tx_path)
3384 {
3385         struct sk_buff *segs;
3386
3387         if (unlikely(skb_needs_check(skb, tx_path))) {
3388                 int err;
3389
3390                 /* We're going to init ->check field in TCP or UDP header */
3391                 err = skb_cow_head(skb, 0);
3392                 if (err < 0)
3393                         return ERR_PTR(err);
3394         }
3395
3396         /* Only report GSO partial support if it will enable us to
3397          * support segmentation on this frame without needing additional
3398          * work.
3399          */
3400         if (features & NETIF_F_GSO_PARTIAL) {
3401                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3402                 struct net_device *dev = skb->dev;
3403
3404                 partial_features |= dev->features & dev->gso_partial_features;
3405                 if (!skb_gso_ok(skb, features | partial_features))
3406                         features &= ~NETIF_F_GSO_PARTIAL;
3407         }
3408
3409         BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3410                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3411
3412         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3413         SKB_GSO_CB(skb)->encap_level = 0;
3414
3415         skb_reset_mac_header(skb);
3416         skb_reset_mac_len(skb);
3417
3418         segs = skb_mac_gso_segment(skb, features);
3419
3420         if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3421                 skb_warn_bad_offload(skb);
3422
3423         return segs;
3424 }
3425 EXPORT_SYMBOL(__skb_gso_segment);
3426
3427 /* Take action when hardware reception checksum errors are detected. */
3428 #ifdef CONFIG_BUG
3429 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3430 {
3431         if (net_ratelimit()) {
3432                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3433                 skb_dump(KERN_ERR, skb, true);
3434                 dump_stack();
3435         }
3436 }
3437 EXPORT_SYMBOL(netdev_rx_csum_fault);
3438 #endif
3439
3440 /* XXX: check that highmem exists at all on the given machine. */
3441 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3442 {
3443 #ifdef CONFIG_HIGHMEM
3444         int i;
3445
3446         if (!(dev->features & NETIF_F_HIGHDMA)) {
3447                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3448                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3449
3450                         if (PageHighMem(skb_frag_page(frag)))
3451                                 return 1;
3452                 }
3453         }
3454 #endif
3455         return 0;
3456 }
3457
3458 /* If MPLS offload request, verify we are testing hardware MPLS features
3459  * instead of standard features for the netdev.
3460  */
3461 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3462 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3463                                            netdev_features_t features,
3464                                            __be16 type)
3465 {
3466         if (eth_p_mpls(type))
3467                 features &= skb->dev->mpls_features;
3468
3469         return features;
3470 }
3471 #else
3472 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3473                                            netdev_features_t features,
3474                                            __be16 type)
3475 {
3476         return features;
3477 }
3478 #endif
3479
3480 static netdev_features_t harmonize_features(struct sk_buff *skb,
3481         netdev_features_t features)
3482 {
3483         __be16 type;
3484
3485         type = skb_network_protocol(skb, NULL);
3486         features = net_mpls_features(skb, features, type);
3487
3488         if (skb->ip_summed != CHECKSUM_NONE &&
3489             !can_checksum_protocol(features, type)) {
3490                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3491         }
3492         if (illegal_highdma(skb->dev, skb))
3493                 features &= ~NETIF_F_SG;
3494
3495         return features;
3496 }
3497
3498 netdev_features_t passthru_features_check(struct sk_buff *skb,
3499                                           struct net_device *dev,
3500                                           netdev_features_t features)
3501 {
3502         return features;
3503 }
3504 EXPORT_SYMBOL(passthru_features_check);
3505
3506 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3507                                              struct net_device *dev,
3508                                              netdev_features_t features)
3509 {
3510         return vlan_features_check(skb, features);
3511 }
3512
3513 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3514                                             struct net_device *dev,
3515                                             netdev_features_t features)
3516 {
3517         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3518
3519         if (gso_segs > dev->gso_max_segs)
3520                 return features & ~NETIF_F_GSO_MASK;
3521
3522         if (!skb_shinfo(skb)->gso_type) {
3523                 skb_warn_bad_offload(skb);
3524                 return features & ~NETIF_F_GSO_MASK;
3525         }
3526
3527         /* Support for GSO partial features requires software
3528          * intervention before we can actually process the packets
3529          * so we need to strip support for any partial features now
3530          * and we can pull them back in after we have partially
3531          * segmented the frame.
3532          */
3533         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3534                 features &= ~dev->gso_partial_features;
3535
3536         /* Make sure to clear the IPv4 ID mangling feature if the
3537          * IPv4 header has the potential to be fragmented.
3538          */
3539         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3540                 struct iphdr *iph = skb->encapsulation ?
3541                                     inner_ip_hdr(skb) : ip_hdr(skb);
3542
3543                 if (!(iph->frag_off & htons(IP_DF)))
3544                         features &= ~NETIF_F_TSO_MANGLEID;
3545         }
3546
3547         return features;
3548 }
3549
3550 netdev_features_t netif_skb_features(struct sk_buff *skb)
3551 {
3552         struct net_device *dev = skb->dev;
3553         netdev_features_t features = dev->features;
3554
3555         if (skb_is_gso(skb))
3556                 features = gso_features_check(skb, dev, features);
3557
3558         /* If encapsulation offload request, verify we are testing
3559          * hardware encapsulation features instead of standard
3560          * features for the netdev
3561          */
3562         if (skb->encapsulation)
3563                 features &= dev->hw_enc_features;
3564
3565         if (skb_vlan_tagged(skb))
3566                 features = netdev_intersect_features(features,
3567                                                      dev->vlan_features |
3568                                                      NETIF_F_HW_VLAN_CTAG_TX |
3569                                                      NETIF_F_HW_VLAN_STAG_TX);
3570
3571         if (dev->netdev_ops->ndo_features_check)
3572                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3573                                                                 features);
3574         else
3575                 features &= dflt_features_check(skb, dev, features);
3576
3577         return harmonize_features(skb, features);
3578 }
3579 EXPORT_SYMBOL(netif_skb_features);
3580
3581 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3582                     struct netdev_queue *txq, bool more)
3583 {
3584         unsigned int len;
3585         int rc;
3586
3587         if (dev_nit_active(dev))
3588                 dev_queue_xmit_nit(skb, dev);
3589
3590         len = skb->len;
3591         PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3592         trace_net_dev_start_xmit(skb, dev);
3593         rc = netdev_start_xmit(skb, dev, txq, more);
3594         trace_net_dev_xmit(skb, rc, dev, len);
3595
3596         return rc;
3597 }
3598
3599 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3600                                     struct netdev_queue *txq, int *ret)
3601 {
3602         struct sk_buff *skb = first;
3603         int rc = NETDEV_TX_OK;
3604
3605         while (skb) {
3606                 struct sk_buff *next = skb->next;
3607
3608                 skb_mark_not_on_list(skb);
3609                 rc = xmit_one(skb, dev, txq, next != NULL);
3610                 if (unlikely(!dev_xmit_complete(rc))) {
3611                         skb->next = next;
3612                         goto out;
3613                 }
3614
3615                 skb = next;
3616                 if (netif_tx_queue_stopped(txq) && skb) {
3617                         rc = NETDEV_TX_BUSY;
3618                         break;
3619                 }
3620         }
3621
3622 out:
3623         *ret = rc;
3624         return skb;
3625 }
3626
3627 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3628                                           netdev_features_t features)
3629 {
3630         if (skb_vlan_tag_present(skb) &&
3631             !vlan_hw_offload_capable(features, skb->vlan_proto))
3632                 skb = __vlan_hwaccel_push_inside(skb);
3633         return skb;
3634 }
3635
3636 int skb_csum_hwoffload_help(struct sk_buff *skb,
3637                             const netdev_features_t features)
3638 {
3639         if (unlikely(skb_csum_is_sctp(skb)))
3640                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3641                         skb_crc32c_csum_help(skb);
3642
3643         if (features & NETIF_F_HW_CSUM)
3644                 return 0;
3645
3646         if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3647                 switch (skb->csum_offset) {
3648                 case offsetof(struct tcphdr, check):
3649                 case offsetof(struct udphdr, check):
3650                         return 0;
3651                 }
3652         }
3653
3654         return skb_checksum_help(skb);
3655 }
3656 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3657
3658 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3659 {
3660         netdev_features_t features;
3661
3662         features = netif_skb_features(skb);
3663         skb = validate_xmit_vlan(skb, features);
3664         if (unlikely(!skb))
3665                 goto out_null;
3666
3667         skb = sk_validate_xmit_skb(skb, dev);
3668         if (unlikely(!skb))
3669                 goto out_null;
3670
3671         if (netif_needs_gso(skb, features)) {
3672                 struct sk_buff *segs;
3673
3674                 segs = skb_gso_segment(skb, features);
3675                 if (IS_ERR(segs)) {
3676                         goto out_kfree_skb;
3677                 } else if (segs) {
3678                         consume_skb(skb);
3679                         skb = segs;
3680                 }
3681         } else {
3682                 if (skb_needs_linearize(skb, features) &&
3683                     __skb_linearize(skb))
3684                         goto out_kfree_skb;
3685
3686                 /* If packet is not checksummed and device does not
3687                  * support checksumming for this protocol, complete
3688                  * checksumming here.
3689                  */
3690                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3691                         if (skb->encapsulation)
3692                                 skb_set_inner_transport_header(skb,
3693                                                                skb_checksum_start_offset(skb));
3694                         else
3695                                 skb_set_transport_header(skb,
3696                                                          skb_checksum_start_offset(skb));
3697                         if (skb_csum_hwoffload_help(skb, features))
3698                                 goto out_kfree_skb;
3699                 }
3700         }
3701
3702         skb = validate_xmit_xfrm(skb, features, again);
3703
3704         return skb;
3705
3706 out_kfree_skb:
3707         kfree_skb(skb);
3708 out_null:
3709         atomic_long_inc(&dev->tx_dropped);
3710         return NULL;
3711 }
3712
3713 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3714 {
3715         struct sk_buff *next, *head = NULL, *tail;
3716
3717         for (; skb != NULL; skb = next) {
3718                 next = skb->next;
3719                 skb_mark_not_on_list(skb);
3720
3721                 /* in case skb wont be segmented, point to itself */
3722                 skb->prev = skb;
3723
3724                 skb = validate_xmit_skb(skb, dev, again);
3725                 if (!skb)
3726                         continue;
3727
3728                 if (!head)
3729                         head = skb;
3730                 else
3731                         tail->next = skb;
3732                 /* If skb was segmented, skb->prev points to
3733                  * the last segment. If not, it still contains skb.
3734                  */
3735                 tail = skb->prev;
3736         }
3737         return head;
3738 }
3739 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3740
3741 static void qdisc_pkt_len_init(struct sk_buff *skb)
3742 {
3743         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3744
3745         qdisc_skb_cb(skb)->pkt_len = skb->len;
3746
3747         /* To get more precise estimation of bytes sent on wire,
3748          * we add to pkt_len the headers size of all segments
3749          */
3750         if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3751                 unsigned int hdr_len;
3752                 u16 gso_segs = shinfo->gso_segs;
3753
3754                 /* mac layer + network layer */
3755                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3756
3757                 /* + transport layer */
3758                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3759                         const struct tcphdr *th;
3760                         struct tcphdr _tcphdr;
3761
3762                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3763                                                 sizeof(_tcphdr), &_tcphdr);
3764                         if (likely(th))
3765                                 hdr_len += __tcp_hdrlen(th);
3766                 } else {
3767                         struct udphdr _udphdr;
3768
3769                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3770                                                sizeof(_udphdr), &_udphdr))
3771                                 hdr_len += sizeof(struct udphdr);
3772                 }
3773
3774                 if (shinfo->gso_type & SKB_GSO_DODGY)
3775                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3776                                                 shinfo->gso_size);
3777
3778                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3779         }
3780 }
3781
3782 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3783                                  struct net_device *dev,
3784                                  struct netdev_queue *txq)
3785 {
3786         spinlock_t *root_lock = qdisc_lock(q);
3787         struct sk_buff *to_free = NULL;
3788         bool contended;
3789         int rc;
3790
3791         qdisc_calculate_pkt_len(skb, q);
3792
3793         if (q->flags & TCQ_F_NOLOCK) {
3794                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3795                 qdisc_run(q);
3796
3797                 if (unlikely(to_free))
3798                         kfree_skb_list(to_free);
3799                 return rc;
3800         }
3801
3802         /*
3803          * Heuristic to force contended enqueues to serialize on a
3804          * separate lock before trying to get qdisc main lock.
3805          * This permits qdisc->running owner to get the lock more
3806          * often and dequeue packets faster.
3807          */
3808         contended = qdisc_is_running(q);
3809         if (unlikely(contended))
3810                 spin_lock(&q->busylock);
3811
3812         spin_lock(root_lock);
3813         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3814                 __qdisc_drop(skb, &to_free);
3815                 rc = NET_XMIT_DROP;
3816         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3817                    qdisc_run_begin(q)) {
3818                 /*
3819                  * This is a work-conserving queue; there are no old skbs
3820                  * waiting to be sent out; and the qdisc is not running -
3821                  * xmit the skb directly.
3822                  */
3823
3824                 qdisc_bstats_update(q, skb);
3825
3826                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3827                         if (unlikely(contended)) {
3828                                 spin_unlock(&q->busylock);
3829                                 contended = false;
3830                         }
3831                         __qdisc_run(q);
3832                 }
3833
3834                 qdisc_run_end(q);
3835                 rc = NET_XMIT_SUCCESS;
3836         } else {
3837                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3838                 if (qdisc_run_begin(q)) {
3839                         if (unlikely(contended)) {
3840                                 spin_unlock(&q->busylock);
3841                                 contended = false;
3842                         }
3843                         __qdisc_run(q);
3844                         qdisc_run_end(q);
3845                 }
3846         }
3847         spin_unlock(root_lock);
3848         if (unlikely(to_free))
3849                 kfree_skb_list(to_free);
3850         if (unlikely(contended))
3851                 spin_unlock(&q->busylock);
3852         return rc;
3853 }
3854
3855 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3856 static void skb_update_prio(struct sk_buff *skb)
3857 {
3858         const struct netprio_map *map;
3859         const struct sock *sk;
3860         unsigned int prioidx;
3861
3862         if (skb->priority)
3863                 return;
3864         map = rcu_dereference_bh(skb->dev->priomap);
3865         if (!map)
3866                 return;
3867         sk = skb_to_full_sk(skb);
3868         if (!sk)
3869                 return;
3870
3871         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3872
3873         if (prioidx < map->priomap_len)
3874                 skb->priority = map->priomap[prioidx];
3875 }
3876 #else
3877 #define skb_update_prio(skb)
3878 #endif
3879
3880 /**
3881  *      dev_loopback_xmit - loop back @skb
3882  *      @net: network namespace this loopback is happening in
3883  *      @sk:  sk needed to be a netfilter okfn
3884  *      @skb: buffer to transmit
3885  */
3886 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3887 {
3888         skb_reset_mac_header(skb);
3889         __skb_pull(skb, skb_network_offset(skb));
3890         skb->pkt_type = PACKET_LOOPBACK;
3891         skb->ip_summed = CHECKSUM_UNNECESSARY;
3892         WARN_ON(!skb_dst(skb));
3893         skb_dst_force(skb);
3894         netif_rx_ni(skb);
3895         return 0;
3896 }
3897 EXPORT_SYMBOL(dev_loopback_xmit);
3898
3899 #ifdef CONFIG_NET_EGRESS
3900 static struct sk_buff *
3901 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3902 {
3903         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3904         struct tcf_result cl_res;
3905
3906         if (!miniq)
3907                 return skb;
3908
3909         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3910         qdisc_skb_cb(skb)->mru = 0;
3911         qdisc_skb_cb(skb)->post_ct = false;
3912         mini_qdisc_bstats_cpu_update(miniq, skb);
3913
3914         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3915         case TC_ACT_OK:
3916         case TC_ACT_RECLASSIFY:
3917                 skb->tc_index = TC_H_MIN(cl_res.classid);
3918                 break;
3919         case TC_ACT_SHOT:
3920                 mini_qdisc_qstats_cpu_drop(miniq);
3921                 *ret = NET_XMIT_DROP;
3922                 kfree_skb(skb);
3923                 return NULL;
3924         case TC_ACT_STOLEN:
3925         case TC_ACT_QUEUED:
3926         case TC_ACT_TRAP:
3927                 *ret = NET_XMIT_SUCCESS;
3928                 consume_skb(skb);
3929                 return NULL;
3930         case TC_ACT_REDIRECT:
3931                 /* No need to push/pop skb's mac_header here on egress! */
3932                 skb_do_redirect(skb);
3933                 *ret = NET_XMIT_SUCCESS;
3934                 return NULL;
3935         default:
3936                 break;
3937         }
3938
3939         return skb;
3940 }
3941 #endif /* CONFIG_NET_EGRESS */
3942
3943 #ifdef CONFIG_XPS
3944 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3945                                struct xps_dev_maps *dev_maps, unsigned int tci)
3946 {
3947         struct xps_map *map;
3948         int queue_index = -1;
3949
3950         if (dev->num_tc) {
3951                 tci *= dev->num_tc;
3952                 tci += netdev_get_prio_tc_map(dev, skb->priority);
3953         }
3954
3955         map = rcu_dereference(dev_maps->attr_map[tci]);
3956         if (map) {
3957                 if (map->len == 1)
3958                         queue_index = map->queues[0];
3959                 else
3960                         queue_index = map->queues[reciprocal_scale(
3961                                                 skb_get_hash(skb), map->len)];
3962                 if (unlikely(queue_index >= dev->real_num_tx_queues))
3963                         queue_index = -1;
3964         }
3965         return queue_index;
3966 }
3967 #endif
3968
3969 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3970                          struct sk_buff *skb)
3971 {
3972 #ifdef CONFIG_XPS
3973         struct xps_dev_maps *dev_maps;
3974         struct sock *sk = skb->sk;
3975         int queue_index = -1;
3976
3977         if (!static_key_false(&xps_needed))
3978                 return -1;
3979
3980         rcu_read_lock();
3981         if (!static_key_false(&xps_rxqs_needed))
3982                 goto get_cpus_map;
3983
3984         dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3985         if (dev_maps) {
3986                 int tci = sk_rx_queue_get(sk);
3987
3988                 if (tci >= 0 && tci < dev->num_rx_queues)
3989                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3990                                                           tci);
3991         }
3992
3993 get_cpus_map:
3994         if (queue_index < 0) {
3995                 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3996                 if (dev_maps) {
3997                         unsigned int tci = skb->sender_cpu - 1;
3998
3999                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4000                                                           tci);
4001                 }
4002         }
4003         rcu_read_unlock();
4004
4005         return queue_index;
4006 #else
4007         return -1;
4008 #endif
4009 }
4010
4011 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4012                      struct net_device *sb_dev)
4013 {
4014         return 0;
4015 }
4016 EXPORT_SYMBOL(dev_pick_tx_zero);
4017
4018 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4019                        struct net_device *sb_dev)
4020 {
4021         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4022 }
4023 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4024
4025 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4026                      struct net_device *sb_dev)
4027 {
4028         struct sock *sk = skb->sk;
4029         int queue_index = sk_tx_queue_get(sk);
4030
4031         sb_dev = sb_dev ? : dev;
4032
4033         if (queue_index < 0 || skb->ooo_okay ||
4034             queue_index >= dev->real_num_tx_queues) {
4035                 int new_index = get_xps_queue(dev, sb_dev, skb);
4036
4037                 if (new_index < 0)
4038                         new_index = skb_tx_hash(dev, sb_dev, skb);
4039
4040                 if (queue_index != new_index && sk &&
4041                     sk_fullsock(sk) &&
4042                     rcu_access_pointer(sk->sk_dst_cache))
4043                         sk_tx_queue_set(sk, new_index);
4044
4045                 queue_index = new_index;
4046         }
4047
4048         return queue_index;
4049 }
4050 EXPORT_SYMBOL(netdev_pick_tx);
4051
4052 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4053                                          struct sk_buff *skb,
4054                                          struct net_device *sb_dev)
4055 {
4056         int queue_index = 0;
4057
4058 #ifdef CONFIG_XPS
4059         u32 sender_cpu = skb->sender_cpu - 1;
4060
4061         if (sender_cpu >= (u32)NR_CPUS)
4062                 skb->sender_cpu = raw_smp_processor_id() + 1;
4063 #endif
4064
4065         if (dev->real_num_tx_queues != 1) {
4066                 const struct net_device_ops *ops = dev->netdev_ops;
4067
4068                 if (ops->ndo_select_queue)
4069                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4070                 else
4071                         queue_index = netdev_pick_tx(dev, skb, sb_dev);
4072
4073                 queue_index = netdev_cap_txqueue(dev, queue_index);
4074         }
4075
4076         skb_set_queue_mapping(skb, queue_index);
4077         return netdev_get_tx_queue(dev, queue_index);
4078 }
4079
4080 /**
4081  *      __dev_queue_xmit - transmit a buffer
4082  *      @skb: buffer to transmit
4083  *      @sb_dev: suboordinate device used for L2 forwarding offload
4084  *
4085  *      Queue a buffer for transmission to a network device. The caller must
4086  *      have set the device and priority and built the buffer before calling
4087  *      this function. The function can be called from an interrupt.
4088  *
4089  *      A negative errno code is returned on a failure. A success does not
4090  *      guarantee the frame will be transmitted as it may be dropped due
4091  *      to congestion or traffic shaping.
4092  *
4093  * -----------------------------------------------------------------------------------
4094  *      I notice this method can also return errors from the queue disciplines,
4095  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4096  *      be positive.
4097  *
4098  *      Regardless of the return value, the skb is consumed, so it is currently
4099  *      difficult to retry a send to this method.  (You can bump the ref count
4100  *      before sending to hold a reference for retry if you are careful.)
4101  *
4102  *      When calling this method, interrupts MUST be enabled.  This is because
4103  *      the BH enable code must have IRQs enabled so that it will not deadlock.
4104  *          --BLG
4105  */
4106 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4107 {
4108         struct net_device *dev = skb->dev;
4109         struct netdev_queue *txq;
4110         struct Qdisc *q;
4111         int rc = -ENOMEM;
4112         bool again = false;
4113
4114         skb_reset_mac_header(skb);
4115
4116         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4117                 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4118
4119         /* Disable soft irqs for various locks below. Also
4120          * stops preemption for RCU.
4121          */
4122         rcu_read_lock_bh();
4123
4124         skb_update_prio(skb);
4125
4126         qdisc_pkt_len_init(skb);
4127 #ifdef CONFIG_NET_CLS_ACT
4128         skb->tc_at_ingress = 0;
4129 # ifdef CONFIG_NET_EGRESS
4130         if (static_branch_unlikely(&egress_needed_key)) {
4131                 skb = sch_handle_egress(skb, &rc, dev);
4132                 if (!skb)
4133                         goto out;
4134         }
4135 # endif
4136 #endif
4137         /* If device/qdisc don't need skb->dst, release it right now while
4138          * its hot in this cpu cache.
4139          */
4140         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4141                 skb_dst_drop(skb);
4142         else
4143                 skb_dst_force(skb);
4144
4145         txq = netdev_core_pick_tx(dev, skb, sb_dev);
4146         q = rcu_dereference_bh(txq->qdisc);
4147
4148         trace_net_dev_queue(skb);
4149         if (q->enqueue) {
4150                 rc = __dev_xmit_skb(skb, q, dev, txq);
4151                 goto out;
4152         }
4153
4154         /* The device has no queue. Common case for software devices:
4155          * loopback, all the sorts of tunnels...
4156
4157          * Really, it is unlikely that netif_tx_lock protection is necessary
4158          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4159          * counters.)
4160          * However, it is possible, that they rely on protection
4161          * made by us here.
4162
4163          * Check this and shot the lock. It is not prone from deadlocks.
4164          *Either shot noqueue qdisc, it is even simpler 8)
4165          */
4166         if (dev->flags & IFF_UP) {
4167                 int cpu = smp_processor_id(); /* ok because BHs are off */
4168
4169                 if (txq->xmit_lock_owner != cpu) {
4170                         if (dev_xmit_recursion())
4171                                 goto recursion_alert;
4172
4173                         skb = validate_xmit_skb(skb, dev, &again);
4174                         if (!skb)
4175                                 goto out;
4176
4177                         PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4178                         HARD_TX_LOCK(dev, txq, cpu);
4179
4180                         if (!netif_xmit_stopped(txq)) {
4181                                 dev_xmit_recursion_inc();
4182                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4183                                 dev_xmit_recursion_dec();
4184                                 if (dev_xmit_complete(rc)) {
4185                                         HARD_TX_UNLOCK(dev, txq);
4186                                         goto out;
4187                                 }
4188                         }
4189                         HARD_TX_UNLOCK(dev, txq);
4190                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4191                                              dev->name);
4192                 } else {
4193                         /* Recursion is detected! It is possible,
4194                          * unfortunately
4195                          */
4196 recursion_alert:
4197                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4198                                              dev->name);
4199                 }
4200         }
4201
4202         rc = -ENETDOWN;
4203         rcu_read_unlock_bh();
4204
4205         atomic_long_inc(&dev->tx_dropped);
4206         kfree_skb_list(skb);
4207         return rc;
4208 out:
4209         rcu_read_unlock_bh();
4210         return rc;
4211 }
4212
4213 int dev_queue_xmit(struct sk_buff *skb)
4214 {
4215         return __dev_queue_xmit(skb, NULL);
4216 }
4217 EXPORT_SYMBOL(dev_queue_xmit);
4218
4219 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4220 {
4221         return __dev_queue_xmit(skb, sb_dev);
4222 }
4223 EXPORT_SYMBOL(dev_queue_xmit_accel);
4224
4225 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4226 {
4227         struct net_device *dev = skb->dev;
4228         struct sk_buff *orig_skb = skb;
4229         struct netdev_queue *txq;
4230         int ret = NETDEV_TX_BUSY;
4231         bool again = false;
4232
4233         if (unlikely(!netif_running(dev) ||
4234                      !netif_carrier_ok(dev)))
4235                 goto drop;
4236
4237         skb = validate_xmit_skb_list(skb, dev, &again);
4238         if (skb != orig_skb)
4239                 goto drop;
4240
4241         skb_set_queue_mapping(skb, queue_id);
4242         txq = skb_get_tx_queue(dev, skb);
4243         PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4244
4245         local_bh_disable();
4246
4247         dev_xmit_recursion_inc();
4248         HARD_TX_LOCK(dev, txq, smp_processor_id());
4249         if (!netif_xmit_frozen_or_drv_stopped(txq))
4250                 ret = netdev_start_xmit(skb, dev, txq, false);
4251         HARD_TX_UNLOCK(dev, txq);
4252         dev_xmit_recursion_dec();
4253
4254         local_bh_enable();
4255         return ret;
4256 drop:
4257         atomic_long_inc(&dev->tx_dropped);
4258         kfree_skb_list(skb);
4259         return NET_XMIT_DROP;
4260 }
4261 EXPORT_SYMBOL(__dev_direct_xmit);
4262
4263 /*************************************************************************
4264  *                      Receiver routines
4265  *************************************************************************/
4266
4267 int netdev_max_backlog __read_mostly = 1000;
4268 EXPORT_SYMBOL(netdev_max_backlog);
4269
4270 int netdev_tstamp_prequeue __read_mostly = 1;
4271 int netdev_budget __read_mostly = 300;
4272 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4273 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4274 int weight_p __read_mostly = 64;           /* old backlog weight */
4275 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4276 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4277 int dev_rx_weight __read_mostly = 64;
4278 int dev_tx_weight __read_mostly = 64;
4279 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4280 int gro_normal_batch __read_mostly = 8;
4281
4282 /* Called with irq disabled */
4283 static inline void ____napi_schedule(struct softnet_data *sd,
4284                                      struct napi_struct *napi)
4285 {
4286         struct task_struct *thread;
4287
4288         if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4289                 /* Paired with smp_mb__before_atomic() in
4290                  * napi_enable()/dev_set_threaded().
4291                  * Use READ_ONCE() to guarantee a complete
4292                  * read on napi->thread. Only call
4293                  * wake_up_process() when it's not NULL.
4294                  */
4295                 thread = READ_ONCE(napi->thread);
4296                 if (thread) {
4297                         wake_up_process(thread);
4298                         return;
4299                 }
4300         }
4301
4302         list_add_tail(&napi->poll_list, &sd->poll_list);
4303         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4304 }
4305
4306 #ifdef CONFIG_RPS
4307
4308 /* One global table that all flow-based protocols share. */
4309 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4310 EXPORT_SYMBOL(rps_sock_flow_table);
4311 u32 rps_cpu_mask __read_mostly;
4312 EXPORT_SYMBOL(rps_cpu_mask);
4313
4314 struct static_key_false rps_needed __read_mostly;
4315 EXPORT_SYMBOL(rps_needed);
4316 struct static_key_false rfs_needed __read_mostly;
4317 EXPORT_SYMBOL(rfs_needed);
4318
4319 static struct rps_dev_flow *
4320 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4321             struct rps_dev_flow *rflow, u16 next_cpu)
4322 {
4323         if (next_cpu < nr_cpu_ids) {
4324 #ifdef CONFIG_RFS_ACCEL
4325                 struct netdev_rx_queue *rxqueue;
4326                 struct rps_dev_flow_table *flow_table;
4327                 struct rps_dev_flow *old_rflow;
4328                 u32 flow_id;
4329                 u16 rxq_index;
4330                 int rc;
4331
4332                 /* Should we steer this flow to a different hardware queue? */
4333                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4334                     !(dev->features & NETIF_F_NTUPLE))
4335                         goto out;
4336                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4337                 if (rxq_index == skb_get_rx_queue(skb))
4338                         goto out;
4339
4340                 rxqueue = dev->_rx + rxq_index;
4341                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4342                 if (!flow_table)
4343                         goto out;
4344                 flow_id = skb_get_hash(skb) & flow_table->mask;
4345                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4346                                                         rxq_index, flow_id);
4347                 if (rc < 0)
4348                         goto out;
4349                 old_rflow = rflow;
4350                 rflow = &flow_table->flows[flow_id];
4351                 rflow->filter = rc;
4352                 if (old_rflow->filter == rflow->filter)
4353                         old_rflow->filter = RPS_NO_FILTER;
4354         out:
4355 #endif
4356                 rflow->last_qtail =
4357                         per_cpu(softnet_data, next_cpu).input_queue_head;
4358         }
4359
4360         rflow->cpu = next_cpu;
4361         return rflow;
4362 }
4363
4364 /*
4365  * get_rps_cpu is called from netif_receive_skb and returns the target
4366  * CPU from the RPS map of the receiving queue for a given skb.
4367  * rcu_read_lock must be held on entry.
4368  */
4369 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4370                        struct rps_dev_flow **rflowp)
4371 {
4372         const struct rps_sock_flow_table *sock_flow_table;
4373         struct netdev_rx_queue *rxqueue = dev->_rx;
4374         struct rps_dev_flow_table *flow_table;
4375         struct rps_map *map;
4376         int cpu = -1;
4377         u32 tcpu;
4378         u32 hash;
4379
4380         if (skb_rx_queue_recorded(skb)) {
4381                 u16 index = skb_get_rx_queue(skb);
4382
4383                 if (unlikely(index >= dev->real_num_rx_queues)) {
4384                         WARN_ONCE(dev->real_num_rx_queues > 1,
4385                                   "%s received packet on queue %u, but number "
4386                                   "of RX queues is %u\n",
4387                                   dev->name, index, dev->real_num_rx_queues);
4388                         goto done;
4389                 }
4390                 rxqueue += index;
4391         }
4392
4393         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4394
4395         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4396         map = rcu_dereference(rxqueue->rps_map);
4397         if (!flow_table && !map)
4398                 goto done;
4399
4400         skb_reset_network_header(skb);
4401         hash = skb_get_hash(skb);
4402         if (!hash)
4403                 goto done;
4404
4405         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4406         if (flow_table && sock_flow_table) {
4407                 struct rps_dev_flow *rflow;
4408                 u32 next_cpu;
4409                 u32 ident;
4410
4411                 /* First check into global flow table if there is a match */
4412                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4413                 if ((ident ^ hash) & ~rps_cpu_mask)
4414                         goto try_rps;
4415
4416                 next_cpu = ident & rps_cpu_mask;
4417
4418                 /* OK, now we know there is a match,
4419                  * we can look at the local (per receive queue) flow table
4420                  */
4421                 rflow = &flow_table->flows[hash & flow_table->mask];
4422                 tcpu = rflow->cpu;
4423
4424                 /*
4425                  * If the desired CPU (where last recvmsg was done) is
4426                  * different from current CPU (one in the rx-queue flow
4427                  * table entry), switch if one of the following holds:
4428                  *   - Current CPU is unset (>= nr_cpu_ids).
4429                  *   - Current CPU is offline.
4430                  *   - The current CPU's queue tail has advanced beyond the
4431                  *     last packet that was enqueued using this table entry.
4432                  *     This guarantees that all previous packets for the flow
4433                  *     have been dequeued, thus preserving in order delivery.
4434                  */
4435                 if (unlikely(tcpu != next_cpu) &&
4436                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4437                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4438                       rflow->last_qtail)) >= 0)) {
4439                         tcpu = next_cpu;
4440                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4441                 }
4442
4443                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4444                         *rflowp = rflow;
4445                         cpu = tcpu;
4446                         goto done;
4447                 }
4448         }
4449
4450 try_rps:
4451
4452         if (map) {
4453                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4454                 if (cpu_online(tcpu)) {
4455                         cpu = tcpu;
4456                         goto done;
4457                 }
4458         }
4459
4460 done:
4461         return cpu;
4462 }
4463
4464 #ifdef CONFIG_RFS_ACCEL
4465
4466 /**
4467  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4468  * @dev: Device on which the filter was set
4469  * @rxq_index: RX queue index
4470  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4471  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4472  *
4473  * Drivers that implement ndo_rx_flow_steer() should periodically call
4474  * this function for each installed filter and remove the filters for
4475  * which it returns %true.
4476  */
4477 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4478                          u32 flow_id, u16 filter_id)
4479 {
4480         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4481         struct rps_dev_flow_table *flow_table;
4482         struct rps_dev_flow *rflow;
4483         bool expire = true;
4484         unsigned int cpu;
4485
4486         rcu_read_lock();
4487         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4488         if (flow_table && flow_id <= flow_table->mask) {
4489                 rflow = &flow_table->flows[flow_id];
4490                 cpu = READ_ONCE(rflow->cpu);
4491                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4492                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4493                            rflow->last_qtail) <
4494                      (int)(10 * flow_table->mask)))
4495                         expire = false;
4496         }
4497         rcu_read_unlock();
4498         return expire;
4499 }
4500 EXPORT_SYMBOL(rps_may_expire_flow);
4501
4502 #endif /* CONFIG_RFS_ACCEL */
4503
4504 /* Called from hardirq (IPI) context */
4505 static void rps_trigger_softirq(void *data)
4506 {
4507         struct softnet_data *sd = data;
4508
4509         ____napi_schedule(sd, &sd->backlog);
4510         sd->received_rps++;
4511 }
4512
4513 #endif /* CONFIG_RPS */
4514
4515 /*
4516  * Check if this softnet_data structure is another cpu one
4517  * If yes, queue it to our IPI list and return 1
4518  * If no, return 0
4519  */
4520 static int rps_ipi_queued(struct softnet_data *sd)
4521 {
4522 #ifdef CONFIG_RPS
4523         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4524
4525         if (sd != mysd) {
4526                 sd->rps_ipi_next = mysd->rps_ipi_list;
4527                 mysd->rps_ipi_list = sd;
4528
4529                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4530                 return 1;
4531         }
4532 #endif /* CONFIG_RPS */
4533         return 0;
4534 }
4535
4536 #ifdef CONFIG_NET_FLOW_LIMIT
4537 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4538 #endif
4539
4540 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4541 {
4542 #ifdef CONFIG_NET_FLOW_LIMIT
4543         struct sd_flow_limit *fl;
4544         struct softnet_data *sd;
4545         unsigned int old_flow, new_flow;
4546
4547         if (qlen < (netdev_max_backlog >> 1))
4548                 return false;
4549
4550         sd = this_cpu_ptr(&softnet_data);
4551
4552         rcu_read_lock();
4553         fl = rcu_dereference(sd->flow_limit);
4554         if (fl) {
4555                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4556                 old_flow = fl->history[fl->history_head];
4557                 fl->history[fl->history_head] = new_flow;
4558
4559                 fl->history_head++;
4560                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4561
4562                 if (likely(fl->buckets[old_flow]))
4563                         fl->buckets[old_flow]--;
4564
4565                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4566                         fl->count++;
4567                         rcu_read_unlock();
4568                         return true;
4569                 }
4570         }
4571         rcu_read_unlock();
4572 #endif
4573         return false;
4574 }
4575
4576 /*
4577  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4578  * queue (may be a remote CPU queue).
4579  */
4580 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4581                               unsigned int *qtail)
4582 {
4583         struct softnet_data *sd;
4584         unsigned long flags;
4585         unsigned int qlen;
4586
4587         sd = &per_cpu(softnet_data, cpu);
4588
4589         local_irq_save(flags);
4590
4591         rps_lock(sd);
4592         if (!netif_running(skb->dev))
4593                 goto drop;
4594         qlen = skb_queue_len(&sd->input_pkt_queue);
4595         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4596                 if (qlen) {
4597 enqueue:
4598                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4599                         input_queue_tail_incr_save(sd, qtail);
4600                         rps_unlock(sd);
4601                         local_irq_restore(flags);
4602                         return NET_RX_SUCCESS;
4603                 }
4604
4605                 /* Schedule NAPI for backlog device
4606                  * We can use non atomic operation since we own the queue lock
4607                  */
4608                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4609                         if (!rps_ipi_queued(sd))
4610                                 ____napi_schedule(sd, &sd->backlog);
4611                 }
4612                 goto enqueue;
4613         }
4614
4615 drop:
4616         sd->dropped++;
4617         rps_unlock(sd);
4618
4619         local_irq_restore(flags);
4620
4621         atomic_long_inc(&skb->dev->rx_dropped);
4622         kfree_skb(skb);
4623         return NET_RX_DROP;
4624 }
4625
4626 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4627 {
4628         struct net_device *dev = skb->dev;
4629         struct netdev_rx_queue *rxqueue;
4630
4631         rxqueue = dev->_rx;
4632
4633         if (skb_rx_queue_recorded(skb)) {
4634                 u16 index = skb_get_rx_queue(skb);
4635
4636                 if (unlikely(index >= dev->real_num_rx_queues)) {
4637                         WARN_ONCE(dev->real_num_rx_queues > 1,
4638                                   "%s received packet on queue %u, but number "
4639                                   "of RX queues is %u\n",
4640                                   dev->name, index, dev->real_num_rx_queues);
4641
4642                         return rxqueue; /* Return first rxqueue */
4643                 }
4644                 rxqueue += index;
4645         }
4646         return rxqueue;
4647 }
4648
4649 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4650                                      struct xdp_buff *xdp,
4651                                      struct bpf_prog *xdp_prog)
4652 {
4653         void *orig_data, *orig_data_end, *hard_start;
4654         struct netdev_rx_queue *rxqueue;
4655         u32 metalen, act = XDP_DROP;
4656         u32 mac_len, frame_sz;
4657         __be16 orig_eth_type;
4658         struct ethhdr *eth;
4659         bool orig_bcast;
4660         int off;
4661
4662         /* Reinjected packets coming from act_mirred or similar should
4663          * not get XDP generic processing.
4664          */
4665         if (skb_is_redirected(skb))
4666                 return XDP_PASS;
4667
4668         /* XDP packets must be linear and must have sufficient headroom
4669          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4670          * native XDP provides, thus we need to do it here as well.
4671          */
4672         if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4673             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4674                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4675                 int troom = skb->tail + skb->data_len - skb->end;
4676
4677                 /* In case we have to go down the path and also linearize,
4678                  * then lets do the pskb_expand_head() work just once here.
4679                  */
4680                 if (pskb_expand_head(skb,
4681                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4682                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4683                         goto do_drop;
4684                 if (skb_linearize(skb))
4685                         goto do_drop;
4686         }
4687
4688         /* The XDP program wants to see the packet starting at the MAC
4689          * header.
4690          */
4691         mac_len = skb->data - skb_mac_header(skb);
4692         hard_start = skb->data - skb_headroom(skb);
4693
4694         /* SKB "head" area always have tailroom for skb_shared_info */
4695         frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4696         frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4697
4698         rxqueue = netif_get_rxqueue(skb);
4699         xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4700         xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4701                          skb_headlen(skb) + mac_len, true);
4702
4703         orig_data_end = xdp->data_end;
4704         orig_data = xdp->data;
4705         eth = (struct ethhdr *)xdp->data;
4706         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4707         orig_eth_type = eth->h_proto;
4708
4709         act = bpf_prog_run_xdp(xdp_prog, xdp);
4710
4711         /* check if bpf_xdp_adjust_head was used */
4712         off = xdp->data - orig_data;
4713         if (off) {
4714                 if (off > 0)
4715                         __skb_pull(skb, off);
4716                 else if (off < 0)
4717                         __skb_push(skb, -off);
4718
4719                 skb->mac_header += off;
4720                 skb_reset_network_header(skb);
4721         }
4722
4723         /* check if bpf_xdp_adjust_tail was used */
4724         off = xdp->data_end - orig_data_end;
4725         if (off != 0) {
4726                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4727                 skb->len += off; /* positive on grow, negative on shrink */
4728         }
4729
4730         /* check if XDP changed eth hdr such SKB needs update */
4731         eth = (struct ethhdr *)xdp->data;
4732         if ((orig_eth_type != eth->h_proto) ||
4733             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4734                 __skb_push(skb, ETH_HLEN);
4735                 skb->protocol = eth_type_trans(skb, skb->dev);
4736         }
4737
4738         switch (act) {
4739         case XDP_REDIRECT:
4740         case XDP_TX:
4741                 __skb_push(skb, mac_len);
4742                 break;
4743         case XDP_PASS:
4744                 metalen = xdp->data - xdp->data_meta;
4745                 if (metalen)
4746                         skb_metadata_set(skb, metalen);
4747                 break;
4748         default:
4749                 bpf_warn_invalid_xdp_action(act);
4750                 fallthrough;
4751         case XDP_ABORTED:
4752                 trace_xdp_exception(skb->dev, xdp_prog, act);
4753                 fallthrough;
4754         case XDP_DROP:
4755         do_drop:
4756                 kfree_skb(skb);
4757                 break;
4758         }
4759
4760         return act;
4761 }
4762
4763 /* When doing generic XDP we have to bypass the qdisc layer and the
4764  * network taps in order to match in-driver-XDP behavior.
4765  */
4766 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4767 {
4768         struct net_device *dev = skb->dev;
4769         struct netdev_queue *txq;
4770         bool free_skb = true;
4771         int cpu, rc;
4772
4773         txq = netdev_core_pick_tx(dev, skb, NULL);
4774         cpu = smp_processor_id();
4775         HARD_TX_LOCK(dev, txq, cpu);
4776         if (!netif_xmit_stopped(txq)) {
4777                 rc = netdev_start_xmit(skb, dev, txq, 0);
4778                 if (dev_xmit_complete(rc))
4779                         free_skb = false;
4780         }
4781         HARD_TX_UNLOCK(dev, txq);
4782         if (free_skb) {
4783                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4784                 kfree_skb(skb);
4785         }
4786 }
4787
4788 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4789
4790 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4791 {
4792         if (xdp_prog) {
4793                 struct xdp_buff xdp;
4794                 u32 act;
4795                 int err;
4796
4797                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4798                 if (act != XDP_PASS) {
4799                         switch (act) {
4800                         case XDP_REDIRECT:
4801                                 err = xdp_do_generic_redirect(skb->dev, skb,
4802                                                               &xdp, xdp_prog);
4803                                 if (err)
4804                                         goto out_redir;
4805                                 break;
4806                         case XDP_TX:
4807                                 generic_xdp_tx(skb, xdp_prog);
4808                                 break;
4809                         }
4810                         return XDP_DROP;
4811                 }
4812         }
4813         return XDP_PASS;
4814 out_redir:
4815         kfree_skb(skb);
4816         return XDP_DROP;
4817 }
4818 EXPORT_SYMBOL_GPL(do_xdp_generic);
4819
4820 static int netif_rx_internal(struct sk_buff *skb)
4821 {
4822         int ret;
4823
4824         net_timestamp_check(netdev_tstamp_prequeue, skb);
4825
4826         trace_netif_rx(skb);
4827
4828 #ifdef CONFIG_RPS
4829         if (static_branch_unlikely(&rps_needed)) {
4830                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4831                 int cpu;
4832
4833                 preempt_disable();
4834                 rcu_read_lock();
4835
4836                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4837                 if (cpu < 0)
4838                         cpu = smp_processor_id();
4839
4840                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4841
4842                 rcu_read_unlock();
4843                 preempt_enable();
4844         } else
4845 #endif
4846         {
4847                 unsigned int qtail;
4848
4849                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4850                 put_cpu();
4851         }
4852         return ret;
4853 }
4854
4855 /**
4856  *      netif_rx        -       post buffer to the network code
4857  *      @skb: buffer to post
4858  *
4859  *      This function receives a packet from a device driver and queues it for
4860  *      the upper (protocol) levels to process.  It always succeeds. The buffer
4861  *      may be dropped during processing for congestion control or by the
4862  *      protocol layers.
4863  *
4864  *      return values:
4865  *      NET_RX_SUCCESS  (no congestion)
4866  *      NET_RX_DROP     (packet was dropped)
4867  *
4868  */
4869
4870 int netif_rx(struct sk_buff *skb)
4871 {
4872         int ret;
4873
4874         trace_netif_rx_entry(skb);
4875
4876         ret = netif_rx_internal(skb);
4877         trace_netif_rx_exit(ret);
4878
4879         return ret;
4880 }
4881 EXPORT_SYMBOL(netif_rx);
4882
4883 int netif_rx_ni(struct sk_buff *skb)
4884 {
4885         int err;
4886
4887         trace_netif_rx_ni_entry(skb);
4888
4889         preempt_disable();
4890         err = netif_rx_internal(skb);
4891         if (local_softirq_pending())
4892                 do_softirq();
4893         preempt_enable();
4894         trace_netif_rx_ni_exit(err);
4895
4896         return err;
4897 }
4898 EXPORT_SYMBOL(netif_rx_ni);
4899
4900 int netif_rx_any_context(struct sk_buff *skb)
4901 {
4902         /*
4903          * If invoked from contexts which do not invoke bottom half
4904          * processing either at return from interrupt or when softrqs are
4905          * reenabled, use netif_rx_ni() which invokes bottomhalf processing
4906          * directly.
4907          */
4908         if (in_interrupt())
4909                 return netif_rx(skb);
4910         else
4911                 return netif_rx_ni(skb);
4912 }
4913 EXPORT_SYMBOL(netif_rx_any_context);
4914
4915 static __latent_entropy void net_tx_action(struct softirq_action *h)
4916 {
4917         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4918
4919         if (sd->completion_queue) {
4920                 struct sk_buff *clist;
4921
4922                 local_irq_disable();
4923                 clist = sd->completion_queue;
4924                 sd->completion_queue = NULL;
4925                 local_irq_enable();
4926
4927                 while (clist) {
4928                         struct sk_buff *skb = clist;
4929
4930                         clist = clist->next;
4931
4932                         WARN_ON(refcount_read(&skb->users));
4933                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4934                                 trace_consume_skb(skb);
4935                         else
4936                                 trace_kfree_skb(skb, net_tx_action);
4937
4938                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4939                                 __kfree_skb(skb);
4940                         else
4941                                 __kfree_skb_defer(skb);
4942                 }
4943         }
4944
4945         if (sd->output_queue) {
4946                 struct Qdisc *head;
4947
4948                 local_irq_disable();
4949                 head = sd->output_queue;
4950                 sd->output_queue = NULL;
4951                 sd->output_queue_tailp = &sd->output_queue;
4952                 local_irq_enable();
4953
4954                 while (head) {
4955                         struct Qdisc *q = head;
4956                         spinlock_t *root_lock = NULL;
4957
4958                         head = head->next_sched;
4959
4960                         if (!(q->flags & TCQ_F_NOLOCK)) {
4961                                 root_lock = qdisc_lock(q);
4962                                 spin_lock(root_lock);
4963                         }
4964                         /* We need to make sure head->next_sched is read
4965                          * before clearing __QDISC_STATE_SCHED
4966                          */
4967                         smp_mb__before_atomic();
4968                         clear_bit(__QDISC_STATE_SCHED, &q->state);
4969                         qdisc_run(q);
4970                         if (root_lock)
4971                                 spin_unlock(root_lock);
4972                 }
4973         }
4974
4975         xfrm_dev_backlog(sd);
4976 }
4977
4978 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4979 /* This hook is defined here for ATM LANE */
4980 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4981                              unsigned char *addr) __read_mostly;
4982 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4983 #endif
4984
4985 static inline struct sk_buff *
4986 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4987                    struct net_device *orig_dev, bool *another)
4988 {
4989 #ifdef CONFIG_NET_CLS_ACT
4990         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4991         struct tcf_result cl_res;
4992
4993         /* If there's at least one ingress present somewhere (so
4994          * we get here via enabled static key), remaining devices
4995          * that are not configured with an ingress qdisc will bail
4996          * out here.
4997          */
4998         if (!miniq)
4999                 return skb;
5000
5001         if (*pt_prev) {
5002                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5003                 *pt_prev = NULL;
5004         }
5005
5006         qdisc_skb_cb(skb)->pkt_len = skb->len;
5007         qdisc_skb_cb(skb)->mru = 0;
5008         qdisc_skb_cb(skb)->post_ct = false;
5009         skb->tc_at_ingress = 1;
5010         mini_qdisc_bstats_cpu_update(miniq, skb);
5011
5012         switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
5013                                      &cl_res, false)) {
5014         case TC_ACT_OK:
5015         case TC_ACT_RECLASSIFY:
5016                 skb->tc_index = TC_H_MIN(cl_res.classid);
5017                 break;
5018         case TC_ACT_SHOT:
5019                 mini_qdisc_qstats_cpu_drop(miniq);
5020                 kfree_skb(skb);
5021                 return NULL;
5022         case TC_ACT_STOLEN:
5023         case TC_ACT_QUEUED:
5024         case TC_ACT_TRAP:
5025                 consume_skb(skb);
5026                 return NULL;
5027         case TC_ACT_REDIRECT:
5028                 /* skb_mac_header check was done by cls/act_bpf, so
5029                  * we can safely push the L2 header back before
5030                  * redirecting to another netdev
5031                  */
5032                 __skb_push(skb, skb->mac_len);
5033                 if (skb_do_redirect(skb) == -EAGAIN) {
5034                         __skb_pull(skb, skb->mac_len);
5035                         *another = true;
5036                         break;
5037                 }
5038                 return NULL;
5039         case TC_ACT_CONSUMED:
5040                 return NULL;
5041         default:
5042                 break;
5043         }
5044 #endif /* CONFIG_NET_CLS_ACT */
5045         return skb;
5046 }
5047
5048 /**
5049  *      netdev_is_rx_handler_busy - check if receive handler is registered
5050  *      @dev: device to check
5051  *
5052  *      Check if a receive handler is already registered for a given device.
5053  *      Return true if there one.
5054  *
5055  *      The caller must hold the rtnl_mutex.
5056  */
5057 bool netdev_is_rx_handler_busy(struct net_device *dev)
5058 {
5059         ASSERT_RTNL();
5060         return dev && rtnl_dereference(dev->rx_handler);
5061 }
5062 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5063
5064 /**
5065  *      netdev_rx_handler_register - register receive handler
5066  *      @dev: device to register a handler for
5067  *      @rx_handler: receive handler to register
5068  *      @rx_handler_data: data pointer that is used by rx handler
5069  *
5070  *      Register a receive handler for a device. This handler will then be
5071  *      called from __netif_receive_skb. A negative errno code is returned
5072  *      on a failure.
5073  *
5074  *      The caller must hold the rtnl_mutex.
5075  *
5076  *      For a general description of rx_handler, see enum rx_handler_result.
5077  */
5078 int netdev_rx_handler_register(struct net_device *dev,
5079                                rx_handler_func_t *rx_handler,
5080                                void *rx_handler_data)
5081 {
5082         if (netdev_is_rx_handler_busy(dev))
5083                 return -EBUSY;
5084
5085         if (dev->priv_flags & IFF_NO_RX_HANDLER)
5086                 return -EINVAL;
5087
5088         /* Note: rx_handler_data must be set before rx_handler */
5089         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5090         rcu_assign_pointer(dev->rx_handler, rx_handler);
5091
5092         return 0;
5093 }
5094 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5095
5096 /**
5097  *      netdev_rx_handler_unregister - unregister receive handler
5098  *      @dev: device to unregister a handler from
5099  *
5100  *      Unregister a receive handler from a device.
5101  *
5102  *      The caller must hold the rtnl_mutex.
5103  */
5104 void netdev_rx_handler_unregister(struct net_device *dev)
5105 {
5106
5107         ASSERT_RTNL();
5108         RCU_INIT_POINTER(dev->rx_handler, NULL);
5109         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5110          * section has a guarantee to see a non NULL rx_handler_data
5111          * as well.
5112          */
5113         synchronize_net();
5114         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5115 }
5116 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5117
5118 /*
5119  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5120  * the special handling of PFMEMALLOC skbs.
5121  */
5122 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5123 {
5124         switch (skb->protocol) {
5125         case htons(ETH_P_ARP):
5126         case htons(ETH_P_IP):
5127         case htons(ETH_P_IPV6):
5128         case htons(ETH_P_8021Q):
5129         case htons(ETH_P_8021AD):
5130                 return true;
5131         default:
5132                 return false;
5133         }
5134 }
5135
5136 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5137                              int *ret, struct net_device *orig_dev)
5138 {
5139         if (nf_hook_ingress_active(skb)) {
5140                 int ingress_retval;
5141
5142                 if (*pt_prev) {
5143                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
5144                         *pt_prev = NULL;
5145                 }
5146
5147                 rcu_read_lock();
5148                 ingress_retval = nf_hook_ingress(skb);
5149                 rcu_read_unlock();
5150                 return ingress_retval;
5151         }
5152         return 0;
5153 }
5154
5155 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5156                                     struct packet_type **ppt_prev)
5157 {
5158         struct packet_type *ptype, *pt_prev;
5159         rx_handler_func_t *rx_handler;
5160         struct sk_buff *skb = *pskb;
5161         struct net_device *orig_dev;
5162         bool deliver_exact = false;
5163         int ret = NET_RX_DROP;
5164         __be16 type;
5165
5166         net_timestamp_check(!netdev_tstamp_prequeue, skb);
5167
5168         trace_netif_receive_skb(skb);
5169
5170         orig_dev = skb->dev;
5171
5172         skb_reset_network_header(skb);
5173         if (!skb_transport_header_was_set(skb))
5174                 skb_reset_transport_header(skb);
5175         skb_reset_mac_len(skb);
5176
5177         pt_prev = NULL;
5178
5179 another_round:
5180         skb->skb_iif = skb->dev->ifindex;
5181
5182         __this_cpu_inc(softnet_data.processed);
5183
5184         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5185                 int ret2;
5186
5187                 preempt_disable();
5188                 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5189                 preempt_enable();
5190
5191                 if (ret2 != XDP_PASS) {
5192                         ret = NET_RX_DROP;
5193                         goto out;
5194                 }
5195                 skb_reset_mac_len(skb);
5196         }
5197
5198         if (eth_type_vlan(skb->protocol)) {
5199                 skb = skb_vlan_untag(skb);
5200                 if (unlikely(!skb))
5201                         goto out;
5202         }
5203
5204         if (skb_skip_tc_classify(skb))
5205                 goto skip_classify;
5206
5207         if (pfmemalloc)
5208                 goto skip_taps;
5209
5210         list_for_each_entry_rcu(ptype, &ptype_all, list) {
5211                 if (pt_prev)
5212                         ret = deliver_skb(skb, pt_prev, orig_dev);
5213                 pt_prev = ptype;
5214         }
5215
5216         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5217                 if (pt_prev)
5218                         ret = deliver_skb(skb, pt_prev, orig_dev);
5219                 pt_prev = ptype;
5220         }
5221
5222 skip_taps:
5223 #ifdef CONFIG_NET_INGRESS
5224         if (static_branch_unlikely(&ingress_needed_key)) {
5225                 bool another = false;
5226
5227                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5228                                          &another);
5229                 if (another)
5230                         goto another_round;
5231                 if (!skb)
5232                         goto out;
5233
5234                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5235                         goto out;
5236         }
5237 #endif
5238         skb_reset_redirect(skb);
5239 skip_classify:
5240         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5241                 goto drop;
5242
5243         if (skb_vlan_tag_present(skb)) {
5244                 if (pt_prev) {
5245                         ret = deliver_skb(skb, pt_prev, orig_dev);
5246                         pt_prev = NULL;
5247                 }
5248                 if (vlan_do_receive(&skb))
5249                         goto another_round;
5250                 else if (unlikely(!skb))
5251                         goto out;
5252         }
5253
5254         rx_handler = rcu_dereference(skb->dev->rx_handler);
5255         if (rx_handler) {
5256                 if (pt_prev) {
5257                         ret = deliver_skb(skb, pt_prev, orig_dev);
5258                         pt_prev = NULL;
5259                 }
5260                 switch (rx_handler(&skb)) {
5261                 case RX_HANDLER_CONSUMED:
5262                         ret = NET_RX_SUCCESS;
5263                         goto out;
5264                 case RX_HANDLER_ANOTHER:
5265                         goto another_round;
5266                 case RX_HANDLER_EXACT:
5267                         deliver_exact = true;
5268                 case RX_HANDLER_PASS:
5269                         break;
5270                 default:
5271                         BUG();
5272                 }
5273         }
5274
5275         if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5276 check_vlan_id:
5277                 if (skb_vlan_tag_get_id(skb)) {
5278                         /* Vlan id is non 0 and vlan_do_receive() above couldn't
5279                          * find vlan device.
5280                          */
5281                         skb->pkt_type = PACKET_OTHERHOST;
5282                 } else if (eth_type_vlan(skb->protocol)) {
5283                         /* Outer header is 802.1P with vlan 0, inner header is
5284                          * 802.1Q or 802.1AD and vlan_do_receive() above could
5285                          * not find vlan dev for vlan id 0.
5286                          */
5287                         __vlan_hwaccel_clear_tag(skb);
5288                         skb = skb_vlan_untag(skb);
5289                         if (unlikely(!skb))
5290                                 goto out;
5291                         if (vlan_do_receive(&skb))
5292                                 /* After stripping off 802.1P header with vlan 0
5293                                  * vlan dev is found for inner header.
5294                                  */
5295                                 goto another_round;
5296                         else if (unlikely(!skb))
5297                                 goto out;
5298                         else
5299                                 /* We have stripped outer 802.1P vlan 0 header.
5300                                  * But could not find vlan dev.
5301                                  * check again for vlan id to set OTHERHOST.
5302                                  */
5303                                 goto check_vlan_id;
5304                 }
5305                 /* Note: we might in the future use prio bits
5306                  * and set skb->priority like in vlan_do_receive()
5307                  * For the time being, just ignore Priority Code Point
5308                  */
5309                 __vlan_hwaccel_clear_tag(skb);
5310         }
5311
5312         type = skb->protocol;
5313
5314         /* deliver only exact match when indicated */
5315         if (likely(!deliver_exact)) {
5316                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5317                                        &ptype_base[ntohs(type) &
5318                                                    PTYPE_HASH_MASK]);
5319         }
5320
5321         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5322                                &orig_dev->ptype_specific);
5323
5324         if (unlikely(skb->dev != orig_dev)) {
5325                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5326                                        &skb->dev->ptype_specific);
5327         }
5328
5329         if (pt_prev) {
5330                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5331                         goto drop;
5332                 *ppt_prev = pt_prev;
5333         } else {
5334 drop:
5335                 if (!deliver_exact)
5336                         atomic_long_inc(&skb->dev->rx_dropped);
5337                 else
5338                         atomic_long_inc(&skb->dev->rx_nohandler);
5339                 kfree_skb(skb);
5340                 /* Jamal, now you will not able to escape explaining
5341                  * me how you were going to use this. :-)
5342                  */
5343                 ret = NET_RX_DROP;
5344         }
5345
5346 out:
5347         /* The invariant here is that if *ppt_prev is not NULL
5348          * then skb should also be non-NULL.
5349          *
5350          * Apparently *ppt_prev assignment above holds this invariant due to
5351          * skb dereferencing near it.
5352          */
5353         *pskb = skb;
5354         return ret;
5355 }
5356
5357 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5358 {
5359         struct net_device *orig_dev = skb->dev;
5360         struct packet_type *pt_prev = NULL;
5361         int ret;
5362
5363         ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5364         if (pt_prev)
5365                 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5366                                          skb->dev, pt_prev, orig_dev);
5367         return ret;
5368 }
5369
5370 /**
5371  *      netif_receive_skb_core - special purpose version of netif_receive_skb
5372  *      @skb: buffer to process
5373  *
5374  *      More direct receive version of netif_receive_skb().  It should
5375  *      only be used by callers that have a need to skip RPS and Generic XDP.
5376  *      Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5377  *
5378  *      This function may only be called from softirq context and interrupts
5379  *      should be enabled.
5380  *
5381  *      Return values (usually ignored):
5382  *      NET_RX_SUCCESS: no congestion
5383  *      NET_RX_DROP: packet was dropped
5384  */
5385 int netif_receive_skb_core(struct sk_buff *skb)
5386 {
5387         int ret;
5388
5389         rcu_read_lock();
5390         ret = __netif_receive_skb_one_core(skb, false);
5391         rcu_read_unlock();
5392
5393         return ret;
5394 }
5395 EXPORT_SYMBOL(netif_receive_skb_core);
5396
5397 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5398                                                   struct packet_type *pt_prev,
5399                                                   struct net_device *orig_dev)
5400 {
5401         struct sk_buff *skb, *next;
5402
5403         if (!pt_prev)
5404                 return;
5405         if (list_empty(head))
5406                 return;
5407         if (pt_prev->list_func != NULL)
5408                 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5409                                    ip_list_rcv, head, pt_prev, orig_dev);
5410         else
5411                 list_for_each_entry_safe(skb, next, head, list) {
5412                         skb_list_del_init(skb);
5413                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5414                 }
5415 }
5416
5417 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5418 {
5419         /* Fast-path assumptions:
5420          * - There is no RX handler.
5421          * - Only one packet_type matches.
5422          * If either of these fails, we will end up doing some per-packet
5423          * processing in-line, then handling the 'last ptype' for the whole
5424          * sublist.  This can't cause out-of-order delivery to any single ptype,
5425          * because the 'last ptype' must be constant across the sublist, and all
5426          * other ptypes are handled per-packet.
5427          */
5428         /* Current (common) ptype of sublist */
5429         struct packet_type *pt_curr = NULL;
5430         /* Current (common) orig_dev of sublist */
5431         struct net_device *od_curr = NULL;
5432         struct list_head sublist;
5433         struct sk_buff *skb, *next;
5434
5435         INIT_LIST_HEAD(&sublist);
5436         list_for_each_entry_safe(skb, next, head, list) {
5437                 struct net_device *orig_dev = skb->dev;
5438                 struct packet_type *pt_prev = NULL;
5439
5440                 skb_list_del_init(skb);
5441                 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5442                 if (!pt_prev)
5443                         continue;
5444                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5445                         /* dispatch old sublist */
5446                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5447                         /* start new sublist */
5448                         INIT_LIST_HEAD(&sublist);
5449                         pt_curr = pt_prev;
5450                         od_curr = orig_dev;
5451                 }
5452                 list_add_tail(&skb->list, &sublist);
5453         }
5454
5455         /* dispatch final sublist */
5456         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5457 }
5458
5459 static int __netif_receive_skb(struct sk_buff *skb)
5460 {
5461         int ret;
5462
5463         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5464                 unsigned int noreclaim_flag;
5465
5466                 /*
5467                  * PFMEMALLOC skbs are special, they should
5468                  * - be delivered to SOCK_MEMALLOC sockets only
5469                  * - stay away from userspace
5470                  * - have bounded memory usage
5471                  *
5472                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5473                  * context down to all allocation sites.
5474                  */
5475                 noreclaim_flag = memalloc_noreclaim_save();
5476                 ret = __netif_receive_skb_one_core(skb, true);
5477                 memalloc_noreclaim_restore(noreclaim_flag);
5478         } else
5479                 ret = __netif_receive_skb_one_core(skb, false);
5480
5481         return ret;
5482 }
5483
5484 static void __netif_receive_skb_list(struct list_head *head)
5485 {
5486         unsigned long noreclaim_flag = 0;
5487         struct sk_buff *skb, *next;
5488         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5489
5490         list_for_each_entry_safe(skb, next, head, list) {
5491                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5492                         struct list_head sublist;
5493
5494                         /* Handle the previous sublist */
5495                         list_cut_before(&sublist, head, &skb->list);
5496                         if (!list_empty(&sublist))
5497                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5498                         pfmemalloc = !pfmemalloc;
5499                         /* See comments in __netif_receive_skb */
5500                         if (pfmemalloc)
5501                                 noreclaim_flag = memalloc_noreclaim_save();
5502                         else
5503                                 memalloc_noreclaim_restore(noreclaim_flag);
5504                 }
5505         }
5506         /* Handle the remaining sublist */
5507         if (!list_empty(head))
5508                 __netif_receive_skb_list_core(head, pfmemalloc);
5509         /* Restore pflags */
5510         if (pfmemalloc)
5511                 memalloc_noreclaim_restore(noreclaim_flag);
5512 }
5513
5514 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5515 {
5516         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5517         struct bpf_prog *new = xdp->prog;
5518         int ret = 0;
5519
5520         if (new) {
5521                 u32 i;
5522
5523                 mutex_lock(&new->aux->used_maps_mutex);
5524
5525                 /* generic XDP does not work with DEVMAPs that can
5526                  * have a bpf_prog installed on an entry
5527                  */
5528                 for (i = 0; i < new->aux->used_map_cnt; i++) {
5529                         if (dev_map_can_have_prog(new->aux->used_maps[i]) ||
5530                             cpu_map_prog_allowed(new->aux->used_maps[i])) {
5531                                 mutex_unlock(&new->aux->used_maps_mutex);
5532                                 return -EINVAL;
5533                         }
5534                 }
5535
5536                 mutex_unlock(&new->aux->used_maps_mutex);
5537         }
5538
5539         switch (xdp->command) {
5540         case XDP_SETUP_PROG:
5541                 rcu_assign_pointer(dev->xdp_prog, new);
5542                 if (old)
5543                         bpf_prog_put(old);
5544
5545                 if (old && !new) {
5546                         static_branch_dec(&generic_xdp_needed_key);
5547                 } else if (new && !old) {
5548                         static_branch_inc(&generic_xdp_needed_key);
5549                         dev_disable_lro(dev);
5550                         dev_disable_gro_hw(dev);
5551                 }
5552                 break;
5553
5554         default:
5555                 ret = -EINVAL;
5556                 break;
5557         }
5558
5559         return ret;
5560 }
5561
5562 static int netif_receive_skb_internal(struct sk_buff *skb)
5563 {
5564         int ret;
5565
5566         net_timestamp_check(netdev_tstamp_prequeue, skb);
5567
5568         if (skb_defer_rx_timestamp(skb))
5569                 return NET_RX_SUCCESS;
5570
5571         rcu_read_lock();
5572 #ifdef CONFIG_RPS
5573         if (static_branch_unlikely(&rps_needed)) {
5574                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5575                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5576
5577                 if (cpu >= 0) {
5578                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5579                         rcu_read_unlock();
5580                         return ret;
5581                 }
5582         }
5583 #endif
5584         ret = __netif_receive_skb(skb);
5585         rcu_read_unlock();
5586         return ret;
5587 }
5588
5589 static void netif_receive_skb_list_internal(struct list_head *head)
5590 {
5591         struct sk_buff *skb, *next;
5592         struct list_head sublist;
5593
5594         INIT_LIST_HEAD(&sublist);
5595         list_for_each_entry_safe(skb, next, head, list) {
5596                 net_timestamp_check(netdev_tstamp_prequeue, skb);
5597                 skb_list_del_init(skb);
5598                 if (!skb_defer_rx_timestamp(skb))
5599                         list_add_tail(&skb->list, &sublist);
5600         }
5601         list_splice_init(&sublist, head);
5602
5603         rcu_read_lock();
5604 #ifdef CONFIG_RPS
5605         if (static_branch_unlikely(&rps_needed)) {
5606                 list_for_each_entry_safe(skb, next, head, list) {
5607                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5608                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5609
5610                         if (cpu >= 0) {
5611                                 /* Will be handled, remove from list */
5612                                 skb_list_del_init(skb);
5613                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5614                         }
5615                 }
5616         }
5617 #endif
5618         __netif_receive_skb_list(head);
5619         rcu_read_unlock();
5620 }
5621
5622 /**
5623  *      netif_receive_skb - process receive buffer from network
5624  *      @skb: buffer to process
5625  *
5626  *      netif_receive_skb() is the main receive data processing function.
5627  *      It always succeeds. The buffer may be dropped during processing
5628  *      for congestion control or by the protocol layers.
5629  *
5630  *      This function may only be called from softirq context and interrupts
5631  *      should be enabled.
5632  *
5633  *      Return values (usually ignored):
5634  *      NET_RX_SUCCESS: no congestion
5635  *      NET_RX_DROP: packet was dropped
5636  */
5637 int netif_receive_skb(struct sk_buff *skb)
5638 {
5639         int ret;
5640
5641         trace_netif_receive_skb_entry(skb);
5642
5643         ret = netif_receive_skb_internal(skb);
5644         trace_netif_receive_skb_exit(ret);
5645
5646         return ret;
5647 }
5648 EXPORT_SYMBOL(netif_receive_skb);
5649
5650 /**
5651  *      netif_receive_skb_list - process many receive buffers from network
5652  *      @head: list of skbs to process.
5653  *
5654  *      Since return value of netif_receive_skb() is normally ignored, and
5655  *      wouldn't be meaningful for a list, this function returns void.
5656  *
5657  *      This function may only be called from softirq context and interrupts
5658  *      should be enabled.
5659  */
5660 void netif_receive_skb_list(struct list_head *head)
5661 {
5662         struct sk_buff *skb;
5663
5664         if (list_empty(head))
5665                 return;
5666         if (trace_netif_receive_skb_list_entry_enabled()) {
5667                 list_for_each_entry(skb, head, list)
5668                         trace_netif_receive_skb_list_entry(skb);
5669         }
5670         netif_receive_skb_list_internal(head);
5671         trace_netif_receive_skb_list_exit(0);
5672 }
5673 EXPORT_SYMBOL(netif_receive_skb_list);
5674
5675 static DEFINE_PER_CPU(struct work_struct, flush_works);
5676
5677 /* Network device is going away, flush any packets still pending */
5678 static void flush_backlog(struct work_struct *work)
5679 {
5680         struct sk_buff *skb, *tmp;
5681         struct softnet_data *sd;
5682
5683         local_bh_disable();
5684         sd = this_cpu_ptr(&softnet_data);
5685
5686         local_irq_disable();
5687         rps_lock(sd);
5688         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5689                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5690                         __skb_unlink(skb, &sd->input_pkt_queue);
5691                         dev_kfree_skb_irq(skb);
5692                         input_queue_head_incr(sd);
5693                 }
5694         }
5695         rps_unlock(sd);
5696         local_irq_enable();
5697
5698         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5699                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5700                         __skb_unlink(skb, &sd->process_queue);
5701                         kfree_skb(skb);
5702                         input_queue_head_incr(sd);
5703                 }
5704         }
5705         local_bh_enable();
5706 }
5707
5708 static bool flush_required(int cpu)
5709 {
5710 #if IS_ENABLED(CONFIG_RPS)
5711         struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5712         bool do_flush;
5713
5714         local_irq_disable();
5715         rps_lock(sd);
5716
5717         /* as insertion into process_queue happens with the rps lock held,
5718          * process_queue access may race only with dequeue
5719          */
5720         do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5721                    !skb_queue_empty_lockless(&sd->process_queue);
5722         rps_unlock(sd);
5723         local_irq_enable();
5724
5725         return do_flush;
5726 #endif
5727         /* without RPS we can't safely check input_pkt_queue: during a
5728          * concurrent remote skb_queue_splice() we can detect as empty both
5729          * input_pkt_queue and process_queue even if the latter could end-up
5730          * containing a lot of packets.
5731          */
5732         return true;
5733 }
5734
5735 static void flush_all_backlogs(void)
5736 {
5737         static cpumask_t flush_cpus;
5738         unsigned int cpu;
5739
5740         /* since we are under rtnl lock protection we can use static data
5741          * for the cpumask and avoid allocating on stack the possibly
5742          * large mask
5743          */
5744         ASSERT_RTNL();
5745
5746         get_online_cpus();
5747
5748         cpumask_clear(&flush_cpus);
5749         for_each_online_cpu(cpu) {
5750                 if (flush_required(cpu)) {
5751                         queue_work_on(cpu, system_highpri_wq,
5752                                       per_cpu_ptr(&flush_works, cpu));
5753                         cpumask_set_cpu(cpu, &flush_cpus);
5754                 }
5755         }
5756
5757         /* we can have in flight packet[s] on the cpus we are not flushing,
5758          * synchronize_net() in unregister_netdevice_many() will take care of
5759          * them
5760          */
5761         for_each_cpu(cpu, &flush_cpus)
5762                 flush_work(per_cpu_ptr(&flush_works, cpu));
5763
5764         put_online_cpus();
5765 }
5766
5767 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5768 static void gro_normal_list(struct napi_struct *napi)
5769 {
5770         if (!napi->rx_count)
5771                 return;
5772         netif_receive_skb_list_internal(&napi->rx_list);
5773         INIT_LIST_HEAD(&napi->rx_list);
5774         napi->rx_count = 0;
5775 }
5776
5777 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5778  * pass the whole batch up to the stack.
5779  */
5780 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb, int segs)
5781 {
5782         list_add_tail(&skb->list, &napi->rx_list);
5783         napi->rx_count += segs;
5784         if (napi->rx_count >= gro_normal_batch)
5785                 gro_normal_list(napi);
5786 }
5787
5788 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5789 {
5790         struct packet_offload *ptype;
5791         __be16 type = skb->protocol;
5792         struct list_head *head = &offload_base;
5793         int err = -ENOENT;
5794
5795         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5796
5797         if (NAPI_GRO_CB(skb)->count == 1) {
5798                 skb_shinfo(skb)->gso_size = 0;
5799                 goto out;
5800         }
5801
5802         rcu_read_lock();
5803         list_for_each_entry_rcu(ptype, head, list) {
5804                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5805                         continue;
5806
5807                 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5808                                          ipv6_gro_complete, inet_gro_complete,
5809                                          skb, 0);
5810                 break;
5811         }
5812         rcu_read_unlock();
5813
5814         if (err) {
5815                 WARN_ON(&ptype->list == head);
5816                 kfree_skb(skb);
5817                 return NET_RX_SUCCESS;
5818         }
5819
5820 out:
5821         gro_normal_one(napi, skb, NAPI_GRO_CB(skb)->count);
5822         return NET_RX_SUCCESS;
5823 }
5824
5825 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5826                                    bool flush_old)
5827 {
5828         struct list_head *head = &napi->gro_hash[index].list;
5829         struct sk_buff *skb, *p;
5830
5831         list_for_each_entry_safe_reverse(skb, p, head, list) {
5832                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5833                         return;
5834                 skb_list_del_init(skb);
5835                 napi_gro_complete(napi, skb);
5836                 napi->gro_hash[index].count--;
5837         }
5838
5839         if (!napi->gro_hash[index].count)
5840                 __clear_bit(index, &napi->gro_bitmask);
5841 }
5842
5843 /* napi->gro_hash[].list contains packets ordered by age.
5844  * youngest packets at the head of it.
5845  * Complete skbs in reverse order to reduce latencies.
5846  */
5847 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5848 {
5849         unsigned long bitmask = napi->gro_bitmask;
5850         unsigned int i, base = ~0U;
5851
5852         while ((i = ffs(bitmask)) != 0) {
5853                 bitmask >>= i;
5854                 base += i;
5855                 __napi_gro_flush_chain(napi, base, flush_old);
5856         }
5857 }
5858 EXPORT_SYMBOL(napi_gro_flush);
5859
5860 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5861                                           struct sk_buff *skb)
5862 {
5863         unsigned int maclen = skb->dev->hard_header_len;
5864         u32 hash = skb_get_hash_raw(skb);
5865         struct list_head *head;
5866         struct sk_buff *p;
5867
5868         head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5869         list_for_each_entry(p, head, list) {
5870                 unsigned long diffs;
5871
5872                 NAPI_GRO_CB(p)->flush = 0;
5873
5874                 if (hash != skb_get_hash_raw(p)) {
5875                         NAPI_GRO_CB(p)->same_flow = 0;
5876                         continue;
5877                 }
5878
5879                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5880                 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5881                 if (skb_vlan_tag_present(p))
5882                         diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5883                 diffs |= skb_metadata_dst_cmp(p, skb);
5884                 diffs |= skb_metadata_differs(p, skb);
5885                 if (maclen == ETH_HLEN)
5886                         diffs |= compare_ether_header(skb_mac_header(p),
5887                                                       skb_mac_header(skb));
5888                 else if (!diffs)
5889                         diffs = memcmp(skb_mac_header(p),
5890                                        skb_mac_header(skb),
5891                                        maclen);
5892                 NAPI_GRO_CB(p)->same_flow = !diffs;
5893         }
5894
5895         return head;
5896 }
5897
5898 static void skb_gro_reset_offset(struct sk_buff *skb)
5899 {
5900         const struct skb_shared_info *pinfo = skb_shinfo(skb);
5901         const skb_frag_t *frag0 = &pinfo->frags[0];
5902
5903         NAPI_GRO_CB(skb)->data_offset = 0;
5904         NAPI_GRO_CB(skb)->frag0 = NULL;
5905         NAPI_GRO_CB(skb)->frag0_len = 0;
5906
5907         if (!skb_headlen(skb) && pinfo->nr_frags &&
5908             !PageHighMem(skb_frag_page(frag0))) {
5909                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5910                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5911                                                     skb_frag_size(frag0),
5912                                                     skb->end - skb->tail);
5913         }
5914 }
5915
5916 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5917 {
5918         struct skb_shared_info *pinfo = skb_shinfo(skb);
5919
5920         BUG_ON(skb->end - skb->tail < grow);
5921
5922         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5923
5924         skb->data_len -= grow;
5925         skb->tail += grow;
5926
5927         skb_frag_off_add(&pinfo->frags[0], grow);
5928         skb_frag_size_sub(&pinfo->frags[0], grow);
5929
5930         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5931                 skb_frag_unref(skb, 0);
5932                 memmove(pinfo->frags, pinfo->frags + 1,
5933                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5934         }
5935 }
5936
5937 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
5938 {
5939         struct sk_buff *oldest;
5940
5941         oldest = list_last_entry(head, struct sk_buff, list);
5942
5943         /* We are called with head length >= MAX_GRO_SKBS, so this is
5944          * impossible.
5945          */
5946         if (WARN_ON_ONCE(!oldest))
5947                 return;
5948
5949         /* Do not adjust napi->gro_hash[].count, caller is adding a new
5950          * SKB to the chain.
5951          */
5952         skb_list_del_init(oldest);
5953         napi_gro_complete(napi, oldest);
5954 }
5955
5956 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5957 {
5958         u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5959         struct list_head *head = &offload_base;
5960         struct packet_offload *ptype;
5961         __be16 type = skb->protocol;
5962         struct list_head *gro_head;
5963         struct sk_buff *pp = NULL;
5964         enum gro_result ret;
5965         int same_flow;
5966         int grow;
5967
5968         if (netif_elide_gro(skb->dev))
5969                 goto normal;
5970
5971         gro_head = gro_list_prepare(napi, skb);
5972
5973         rcu_read_lock();
5974         list_for_each_entry_rcu(ptype, head, list) {
5975                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5976                         continue;
5977
5978                 skb_set_network_header(skb, skb_gro_offset(skb));
5979                 skb_reset_mac_len(skb);
5980                 NAPI_GRO_CB(skb)->same_flow = 0;
5981                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5982                 NAPI_GRO_CB(skb)->free = 0;
5983                 NAPI_GRO_CB(skb)->encap_mark = 0;
5984                 NAPI_GRO_CB(skb)->recursion_counter = 0;
5985                 NAPI_GRO_CB(skb)->is_fou = 0;
5986                 NAPI_GRO_CB(skb)->is_atomic = 1;
5987                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5988
5989                 /* Setup for GRO checksum validation */
5990                 switch (skb->ip_summed) {
5991                 case CHECKSUM_COMPLETE:
5992                         NAPI_GRO_CB(skb)->csum = skb->csum;
5993                         NAPI_GRO_CB(skb)->csum_valid = 1;
5994                         NAPI_GRO_CB(skb)->csum_cnt = 0;
5995                         break;
5996                 case CHECKSUM_UNNECESSARY:
5997                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5998                         NAPI_GRO_CB(skb)->csum_valid = 0;
5999                         break;
6000                 default:
6001                         NAPI_GRO_CB(skb)->csum_cnt = 0;
6002                         NAPI_GRO_CB(skb)->csum_valid = 0;
6003                 }
6004
6005                 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
6006                                         ipv6_gro_receive, inet_gro_receive,
6007                                         gro_head, skb);
6008                 break;
6009         }
6010         rcu_read_unlock();
6011
6012         if (&ptype->list == head)
6013                 goto normal;
6014
6015         if (PTR_ERR(pp) == -EINPROGRESS) {
6016                 ret = GRO_CONSUMED;
6017                 goto ok;
6018         }
6019
6020         same_flow = NAPI_GRO_CB(skb)->same_flow;
6021         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
6022
6023         if (pp) {
6024                 skb_list_del_init(pp);
6025                 napi_gro_complete(napi, pp);
6026                 napi->gro_hash[hash].count--;
6027         }
6028
6029         if (same_flow)
6030                 goto ok;
6031
6032         if (NAPI_GRO_CB(skb)->flush)
6033                 goto normal;
6034
6035         if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
6036                 gro_flush_oldest(napi, gro_head);
6037         } else {
6038                 napi->gro_hash[hash].count++;
6039         }
6040         NAPI_GRO_CB(skb)->count = 1;
6041         NAPI_GRO_CB(skb)->age = jiffies;
6042         NAPI_GRO_CB(skb)->last = skb;
6043         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
6044         list_add(&skb->list, gro_head);
6045         ret = GRO_HELD;
6046
6047 pull:
6048         grow = skb_gro_offset(skb) - skb_headlen(skb);
6049         if (grow > 0)
6050                 gro_pull_from_frag0(skb, grow);
6051 ok:
6052         if (napi->gro_hash[hash].count) {
6053                 if (!test_bit(hash, &napi->gro_bitmask))
6054                         __set_bit(hash, &napi->gro_bitmask);
6055         } else if (test_bit(hash, &napi->gro_bitmask)) {
6056                 __clear_bit(hash, &napi->gro_bitmask);
6057         }
6058
6059         return ret;
6060
6061 normal:
6062         ret = GRO_NORMAL;
6063         goto pull;
6064 }
6065
6066 struct packet_offload *gro_find_receive_by_type(__be16 type)
6067 {
6068         struct list_head *offload_head = &offload_base;
6069         struct packet_offload *ptype;
6070
6071         list_for_each_entry_rcu(ptype, offload_head, list) {
6072                 if (ptype->type != type || !ptype->callbacks.gro_receive)
6073                         continue;
6074                 return ptype;
6075         }
6076         return NULL;
6077 }
6078 EXPORT_SYMBOL(gro_find_receive_by_type);
6079
6080 struct packet_offload *gro_find_complete_by_type(__be16 type)
6081 {
6082         struct list_head *offload_head = &offload_base;
6083         struct packet_offload *ptype;
6084
6085         list_for_each_entry_rcu(ptype, offload_head, list) {
6086                 if (ptype->type != type || !ptype->callbacks.gro_complete)
6087                         continue;
6088                 return ptype;
6089         }
6090         return NULL;
6091 }
6092 EXPORT_SYMBOL(gro_find_complete_by_type);
6093
6094 static gro_result_t napi_skb_finish(struct napi_struct *napi,
6095                                     struct sk_buff *skb,
6096                                     gro_result_t ret)
6097 {
6098         switch (ret) {
6099         case GRO_NORMAL:
6100                 gro_normal_one(napi, skb, 1);
6101                 break;
6102
6103         case GRO_MERGED_FREE:
6104                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6105                         napi_skb_free_stolen_head(skb);
6106                 else
6107                         __kfree_skb_defer(skb);
6108                 break;
6109
6110         case GRO_HELD:
6111         case GRO_MERGED:
6112         case GRO_CONSUMED:
6113                 break;
6114         }
6115
6116         return ret;
6117 }
6118
6119 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6120 {
6121         gro_result_t ret;
6122
6123         skb_mark_napi_id(skb, napi);
6124         trace_napi_gro_receive_entry(skb);
6125
6126         skb_gro_reset_offset(skb);
6127
6128         ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6129         trace_napi_gro_receive_exit(ret);
6130
6131         return ret;
6132 }
6133 EXPORT_SYMBOL(napi_gro_receive);
6134
6135 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6136 {
6137         if (unlikely(skb->pfmemalloc)) {
6138                 consume_skb(skb);
6139                 return;
6140         }
6141         __skb_pull(skb, skb_headlen(skb));
6142         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
6143         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6144         __vlan_hwaccel_clear_tag(skb);
6145         skb->dev = napi->dev;
6146         skb->skb_iif = 0;
6147
6148         /* eth_type_trans() assumes pkt_type is PACKET_HOST */
6149         skb->pkt_type = PACKET_HOST;
6150
6151         skb->encapsulation = 0;
6152         skb_shinfo(skb)->gso_type = 0;
6153         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6154         skb_ext_reset(skb);
6155
6156         napi->skb = skb;
6157 }
6158
6159 struct sk_buff *napi_get_frags(struct napi_struct *napi)
6160 {
6161         struct sk_buff *skb = napi->skb;
6162
6163         if (!skb) {
6164                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6165                 if (skb) {
6166                         napi->skb = skb;
6167                         skb_mark_napi_id(skb, napi);
6168                 }
6169         }
6170         return skb;
6171 }
6172 EXPORT_SYMBOL(napi_get_frags);
6173
6174 static gro_result_t napi_frags_finish(struct napi_struct *napi,
6175                                       struct sk_buff *skb,
6176                                       gro_result_t ret)
6177 {
6178         switch (ret) {
6179         case GRO_NORMAL:
6180         case GRO_HELD:
6181                 __skb_push(skb, ETH_HLEN);
6182                 skb->protocol = eth_type_trans(skb, skb->dev);
6183                 if (ret == GRO_NORMAL)
6184                         gro_normal_one(napi, skb, 1);
6185                 break;
6186
6187         case GRO_MERGED_FREE:
6188                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6189                         napi_skb_free_stolen_head(skb);
6190                 else
6191                         napi_reuse_skb(napi, skb);
6192                 break;
6193
6194         case GRO_MERGED:
6195         case GRO_CONSUMED:
6196                 break;
6197         }
6198
6199         return ret;
6200 }
6201
6202 /* Upper GRO stack assumes network header starts at gro_offset=0
6203  * Drivers could call both napi_gro_frags() and napi_gro_receive()
6204  * We copy ethernet header into skb->data to have a common layout.
6205  */
6206 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6207 {
6208         struct sk_buff *skb = napi->skb;
6209         const struct ethhdr *eth;
6210         unsigned int hlen = sizeof(*eth);
6211
6212         napi->skb = NULL;
6213
6214         skb_reset_mac_header(skb);
6215         skb_gro_reset_offset(skb);
6216
6217         if (unlikely(skb_gro_header_hard(skb, hlen))) {
6218                 eth = skb_gro_header_slow(skb, hlen, 0);
6219                 if (unlikely(!eth)) {
6220                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6221                                              __func__, napi->dev->name);
6222                         napi_reuse_skb(napi, skb);
6223                         return NULL;
6224                 }
6225         } else {
6226                 eth = (const struct ethhdr *)skb->data;
6227                 gro_pull_from_frag0(skb, hlen);
6228                 NAPI_GRO_CB(skb)->frag0 += hlen;
6229                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
6230         }
6231         __skb_pull(skb, hlen);
6232
6233         /*
6234          * This works because the only protocols we care about don't require
6235          * special handling.
6236          * We'll fix it up properly in napi_frags_finish()
6237          */
6238         skb->protocol = eth->h_proto;
6239
6240         return skb;
6241 }
6242
6243 gro_result_t napi_gro_frags(struct napi_struct *napi)
6244 {
6245         gro_result_t ret;
6246         struct sk_buff *skb = napi_frags_skb(napi);
6247
6248         trace_napi_gro_frags_entry(skb);
6249
6250         ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6251         trace_napi_gro_frags_exit(ret);
6252
6253         return ret;
6254 }
6255 EXPORT_SYMBOL(napi_gro_frags);
6256
6257 /* Compute the checksum from gro_offset and return the folded value
6258  * after adding in any pseudo checksum.
6259  */
6260 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6261 {
6262         __wsum wsum;
6263         __sum16 sum;
6264
6265         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6266
6267         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6268         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6269         /* See comments in __skb_checksum_complete(). */
6270         if (likely(!sum)) {
6271                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6272                     !skb->csum_complete_sw)
6273                         netdev_rx_csum_fault(skb->dev, skb);
6274         }
6275
6276         NAPI_GRO_CB(skb)->csum = wsum;
6277         NAPI_GRO_CB(skb)->csum_valid = 1;
6278
6279         return sum;
6280 }
6281 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6282
6283 static void net_rps_send_ipi(struct softnet_data *remsd)
6284 {
6285 #ifdef CONFIG_RPS
6286         while (remsd) {
6287                 struct softnet_data *next = remsd->rps_ipi_next;
6288
6289                 if (cpu_online(remsd->cpu))
6290                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
6291                 remsd = next;
6292         }
6293 #endif
6294 }
6295
6296 /*
6297  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6298  * Note: called with local irq disabled, but exits with local irq enabled.
6299  */
6300 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6301 {
6302 #ifdef CONFIG_RPS
6303         struct softnet_data *remsd = sd->rps_ipi_list;
6304
6305         if (remsd) {
6306                 sd->rps_ipi_list = NULL;
6307
6308                 local_irq_enable();
6309
6310                 /* Send pending IPI's to kick RPS processing on remote cpus. */
6311                 net_rps_send_ipi(remsd);
6312         } else
6313 #endif
6314                 local_irq_enable();
6315 }
6316
6317 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6318 {
6319 #ifdef CONFIG_RPS
6320         return sd->rps_ipi_list != NULL;
6321 #else
6322         return false;
6323 #endif
6324 }
6325
6326 static int process_backlog(struct napi_struct *napi, int quota)
6327 {
6328         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6329         bool again = true;
6330         int work = 0;
6331
6332         /* Check if we have pending ipi, its better to send them now,
6333          * not waiting net_rx_action() end.
6334          */
6335         if (sd_has_rps_ipi_waiting(sd)) {
6336                 local_irq_disable();
6337                 net_rps_action_and_irq_enable(sd);
6338         }
6339
6340         napi->weight = dev_rx_weight;
6341         while (again) {
6342                 struct sk_buff *skb;
6343
6344                 while ((skb = __skb_dequeue(&sd->process_queue))) {
6345                         rcu_read_lock();
6346                         __netif_receive_skb(skb);
6347                         rcu_read_unlock();
6348                         input_queue_head_incr(sd);
6349                         if (++work >= quota)
6350                                 return work;
6351
6352                 }
6353
6354                 local_irq_disable();
6355                 rps_lock(sd);
6356                 if (skb_queue_empty(&sd->input_pkt_queue)) {
6357                         /*
6358                          * Inline a custom version of __napi_complete().
6359                          * only current cpu owns and manipulates this napi,
6360                          * and NAPI_STATE_SCHED is the only possible flag set
6361                          * on backlog.
6362                          * We can use a plain write instead of clear_bit(),
6363                          * and we dont need an smp_mb() memory barrier.
6364                          */
6365                         napi->state = 0;
6366                         again = false;
6367                 } else {
6368                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
6369                                                    &sd->process_queue);
6370                 }
6371                 rps_unlock(sd);
6372                 local_irq_enable();
6373         }
6374
6375         return work;
6376 }
6377
6378 /**
6379  * __napi_schedule - schedule for receive
6380  * @n: entry to schedule
6381  *
6382  * The entry's receive function will be scheduled to run.
6383  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6384  */
6385 void __napi_schedule(struct napi_struct *n)
6386 {
6387         unsigned long flags;
6388
6389         local_irq_save(flags);
6390         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6391         local_irq_restore(flags);
6392 }
6393 EXPORT_SYMBOL(__napi_schedule);
6394
6395 /**
6396  *      napi_schedule_prep - check if napi can be scheduled
6397  *      @n: napi context
6398  *
6399  * Test if NAPI routine is already running, and if not mark
6400  * it as running.  This is used as a condition variable to
6401  * insure only one NAPI poll instance runs.  We also make
6402  * sure there is no pending NAPI disable.
6403  */
6404 bool napi_schedule_prep(struct napi_struct *n)
6405 {
6406         unsigned long val, new;
6407
6408         do {
6409                 val = READ_ONCE(n->state);
6410                 if (unlikely(val & NAPIF_STATE_DISABLE))
6411                         return false;
6412                 new = val | NAPIF_STATE_SCHED;
6413
6414                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6415                  * This was suggested by Alexander Duyck, as compiler
6416                  * emits better code than :
6417                  * if (val & NAPIF_STATE_SCHED)
6418                  *     new |= NAPIF_STATE_MISSED;
6419                  */
6420                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6421                                                    NAPIF_STATE_MISSED;
6422         } while (cmpxchg(&n->state, val, new) != val);
6423
6424         return !(val & NAPIF_STATE_SCHED);
6425 }
6426 EXPORT_SYMBOL(napi_schedule_prep);
6427
6428 /**
6429  * __napi_schedule_irqoff - schedule for receive
6430  * @n: entry to schedule
6431  *
6432  * Variant of __napi_schedule() assuming hard irqs are masked
6433  */
6434 void __napi_schedule_irqoff(struct napi_struct *n)
6435 {
6436         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6437 }
6438 EXPORT_SYMBOL(__napi_schedule_irqoff);
6439
6440 bool napi_complete_done(struct napi_struct *n, int work_done)
6441 {
6442         unsigned long flags, val, new, timeout = 0;
6443         bool ret = true;
6444
6445         /*
6446          * 1) Don't let napi dequeue from the cpu poll list
6447          *    just in case its running on a different cpu.
6448          * 2) If we are busy polling, do nothing here, we have
6449          *    the guarantee we will be called later.
6450          */
6451         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6452                                  NAPIF_STATE_IN_BUSY_POLL)))
6453                 return false;
6454
6455         if (work_done) {
6456                 if (n->gro_bitmask)
6457                         timeout = READ_ONCE(n->dev->gro_flush_timeout);
6458                 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6459         }
6460         if (n->defer_hard_irqs_count > 0) {
6461                 n->defer_hard_irqs_count--;
6462                 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6463                 if (timeout)
6464                         ret = false;
6465         }
6466         if (n->gro_bitmask) {
6467                 /* When the NAPI instance uses a timeout and keeps postponing
6468                  * it, we need to bound somehow the time packets are kept in
6469                  * the GRO layer
6470                  */
6471                 napi_gro_flush(n, !!timeout);
6472         }
6473
6474         gro_normal_list(n);
6475
6476         if (unlikely(!list_empty(&n->poll_list))) {
6477                 /* If n->poll_list is not empty, we need to mask irqs */
6478                 local_irq_save(flags);
6479                 list_del_init(&n->poll_list);
6480                 local_irq_restore(flags);
6481         }
6482
6483         do {
6484                 val = READ_ONCE(n->state);
6485
6486                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6487
6488                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6489                               NAPIF_STATE_PREFER_BUSY_POLL);
6490
6491                 /* If STATE_MISSED was set, leave STATE_SCHED set,
6492                  * because we will call napi->poll() one more time.
6493                  * This C code was suggested by Alexander Duyck to help gcc.
6494                  */
6495                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6496                                                     NAPIF_STATE_SCHED;
6497         } while (cmpxchg(&n->state, val, new) != val);
6498
6499         if (unlikely(val & NAPIF_STATE_MISSED)) {
6500                 __napi_schedule(n);
6501                 return false;
6502         }
6503
6504         if (timeout)
6505                 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6506                               HRTIMER_MODE_REL_PINNED);
6507         return ret;
6508 }
6509 EXPORT_SYMBOL(napi_complete_done);
6510
6511 /* must be called under rcu_read_lock(), as we dont take a reference */
6512 static struct napi_struct *napi_by_id(unsigned int napi_id)
6513 {
6514         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6515         struct napi_struct *napi;
6516
6517         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6518                 if (napi->napi_id == napi_id)
6519                         return napi;
6520
6521         return NULL;
6522 }
6523
6524 #if defined(CONFIG_NET_RX_BUSY_POLL)
6525
6526 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6527 {
6528         if (!skip_schedule) {
6529                 gro_normal_list(napi);
6530                 __napi_schedule(napi);
6531                 return;
6532         }
6533
6534         if (napi->gro_bitmask) {
6535                 /* flush too old packets
6536                  * If HZ < 1000, flush all packets.
6537                  */
6538                 napi_gro_flush(napi, HZ >= 1000);
6539         }
6540
6541         gro_normal_list(napi);
6542         clear_bit(NAPI_STATE_SCHED, &napi->state);
6543 }
6544
6545 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6546                            u16 budget)
6547 {
6548         bool skip_schedule = false;
6549         unsigned long timeout;
6550         int rc;
6551
6552         /* Busy polling means there is a high chance device driver hard irq
6553          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6554          * set in napi_schedule_prep().
6555          * Since we are about to call napi->poll() once more, we can safely
6556          * clear NAPI_STATE_MISSED.
6557          *
6558          * Note: x86 could use a single "lock and ..." instruction
6559          * to perform these two clear_bit()
6560          */
6561         clear_bit(NAPI_STATE_MISSED, &napi->state);
6562         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6563
6564         local_bh_disable();
6565
6566         if (prefer_busy_poll) {
6567                 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6568                 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6569                 if (napi->defer_hard_irqs_count && timeout) {
6570                         hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6571                         skip_schedule = true;
6572                 }
6573         }
6574
6575         /* All we really want here is to re-enable device interrupts.
6576          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6577          */
6578         rc = napi->poll(napi, budget);
6579         /* We can't gro_normal_list() here, because napi->poll() might have
6580          * rearmed the napi (napi_complete_done()) in which case it could
6581          * already be running on another CPU.
6582          */
6583         trace_napi_poll(napi, rc, budget);
6584         netpoll_poll_unlock(have_poll_lock);
6585         if (rc == budget)
6586                 __busy_poll_stop(napi, skip_schedule);
6587         local_bh_enable();
6588 }
6589
6590 void napi_busy_loop(unsigned int napi_id,
6591                     bool (*loop_end)(void *, unsigned long),
6592                     void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6593 {
6594         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6595         int (*napi_poll)(struct napi_struct *napi, int budget);
6596         void *have_poll_lock = NULL;
6597         struct napi_struct *napi;
6598
6599 restart:
6600         napi_poll = NULL;
6601
6602         rcu_read_lock();
6603
6604         napi = napi_by_id(napi_id);
6605         if (!napi)
6606                 goto out;
6607
6608         preempt_disable();
6609         for (;;) {
6610                 int work = 0;
6611
6612                 local_bh_disable();
6613                 if (!napi_poll) {
6614                         unsigned long val = READ_ONCE(napi->state);
6615
6616                         /* If multiple threads are competing for this napi,
6617                          * we avoid dirtying napi->state as much as we can.
6618                          */
6619                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6620                                    NAPIF_STATE_IN_BUSY_POLL)) {
6621                                 if (prefer_busy_poll)
6622                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6623                                 goto count;
6624                         }
6625                         if (cmpxchg(&napi->state, val,
6626                                     val | NAPIF_STATE_IN_BUSY_POLL |
6627                                           NAPIF_STATE_SCHED) != val) {
6628                                 if (prefer_busy_poll)
6629                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6630                                 goto count;
6631                         }
6632                         have_poll_lock = netpoll_poll_lock(napi);
6633                         napi_poll = napi->poll;
6634                 }
6635                 work = napi_poll(napi, budget);
6636                 trace_napi_poll(napi, work, budget);
6637                 gro_normal_list(napi);
6638 count:
6639                 if (work > 0)
6640                         __NET_ADD_STATS(dev_net(napi->dev),
6641                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6642                 local_bh_enable();
6643
6644                 if (!loop_end || loop_end(loop_end_arg, start_time))
6645                         break;
6646
6647                 if (unlikely(need_resched())) {
6648                         if (napi_poll)
6649                                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6650                         preempt_enable();
6651                         rcu_read_unlock();
6652                         cond_resched();
6653                         if (loop_end(loop_end_arg, start_time))
6654                                 return;
6655                         goto restart;
6656                 }
6657                 cpu_relax();
6658         }
6659         if (napi_poll)
6660                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6661         preempt_enable();
6662 out:
6663         rcu_read_unlock();
6664 }
6665 EXPORT_SYMBOL(napi_busy_loop);
6666
6667 #endif /* CONFIG_NET_RX_BUSY_POLL */
6668
6669 static void napi_hash_add(struct napi_struct *napi)
6670 {
6671         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6672                 return;
6673
6674         spin_lock(&napi_hash_lock);
6675
6676         /* 0..NR_CPUS range is reserved for sender_cpu use */
6677         do {
6678                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6679                         napi_gen_id = MIN_NAPI_ID;
6680         } while (napi_by_id(napi_gen_id));
6681         napi->napi_id = napi_gen_id;
6682
6683         hlist_add_head_rcu(&napi->napi_hash_node,
6684                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6685
6686         spin_unlock(&napi_hash_lock);
6687 }
6688
6689 /* Warning : caller is responsible to make sure rcu grace period
6690  * is respected before freeing memory containing @napi
6691  */
6692 static void napi_hash_del(struct napi_struct *napi)
6693 {
6694         spin_lock(&napi_hash_lock);
6695
6696         hlist_del_init_rcu(&napi->napi_hash_node);
6697
6698         spin_unlock(&napi_hash_lock);
6699 }
6700
6701 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6702 {
6703         struct napi_struct *napi;
6704
6705         napi = container_of(timer, struct napi_struct, timer);
6706
6707         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6708          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6709          */
6710         if (!napi_disable_pending(napi) &&
6711             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6712                 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6713                 __napi_schedule_irqoff(napi);
6714         }
6715
6716         return HRTIMER_NORESTART;
6717 }
6718
6719 static void init_gro_hash(struct napi_struct *napi)
6720 {
6721         int i;
6722
6723         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6724                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6725                 napi->gro_hash[i].count = 0;
6726         }
6727         napi->gro_bitmask = 0;
6728 }
6729
6730 int dev_set_threaded(struct net_device *dev, bool threaded)
6731 {
6732         struct napi_struct *napi;
6733         int err = 0;
6734
6735         if (dev->threaded == threaded)
6736                 return 0;
6737
6738         if (threaded) {
6739                 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6740                         if (!napi->thread) {
6741                                 err = napi_kthread_create(napi);
6742                                 if (err) {
6743                                         threaded = false;
6744                                         break;
6745                                 }
6746                         }
6747                 }
6748         }
6749
6750         dev->threaded = threaded;
6751
6752         /* Make sure kthread is created before THREADED bit
6753          * is set.
6754          */
6755         smp_mb__before_atomic();
6756
6757         /* Setting/unsetting threaded mode on a napi might not immediately
6758          * take effect, if the current napi instance is actively being
6759          * polled. In this case, the switch between threaded mode and
6760          * softirq mode will happen in the next round of napi_schedule().
6761          * This should not cause hiccups/stalls to the live traffic.
6762          */
6763         list_for_each_entry(napi, &dev->napi_list, dev_list) {
6764                 if (threaded)
6765                         set_bit(NAPI_STATE_THREADED, &napi->state);
6766                 else
6767                         clear_bit(NAPI_STATE_THREADED, &napi->state);
6768         }
6769
6770         return err;
6771 }
6772
6773 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6774                     int (*poll)(struct napi_struct *, int), int weight)
6775 {
6776         if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6777                 return;
6778
6779         INIT_LIST_HEAD(&napi->poll_list);
6780         INIT_HLIST_NODE(&napi->napi_hash_node);
6781         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6782         napi->timer.function = napi_watchdog;
6783         init_gro_hash(napi);
6784         napi->skb = NULL;
6785         INIT_LIST_HEAD(&napi->rx_list);
6786         napi->rx_count = 0;
6787         napi->poll = poll;
6788         if (weight > NAPI_POLL_WEIGHT)
6789                 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6790                                 weight);
6791         napi->weight = weight;
6792         napi->dev = dev;
6793 #ifdef CONFIG_NETPOLL
6794         napi->poll_owner = -1;
6795 #endif
6796         set_bit(NAPI_STATE_SCHED, &napi->state);
6797         set_bit(NAPI_STATE_NPSVC, &napi->state);
6798         list_add_rcu(&napi->dev_list, &dev->napi_list);
6799         napi_hash_add(napi);
6800         /* Create kthread for this napi if dev->threaded is set.
6801          * Clear dev->threaded if kthread creation failed so that
6802          * threaded mode will not be enabled in napi_enable().
6803          */
6804         if (dev->threaded && napi_kthread_create(napi))
6805                 dev->threaded = 0;
6806 }
6807 EXPORT_SYMBOL(netif_napi_add);
6808
6809 void napi_disable(struct napi_struct *n)
6810 {
6811         might_sleep();
6812         set_bit(NAPI_STATE_DISABLE, &n->state);
6813
6814         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6815                 msleep(1);
6816         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6817                 msleep(1);
6818
6819         hrtimer_cancel(&n->timer);
6820
6821         clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
6822         clear_bit(NAPI_STATE_DISABLE, &n->state);
6823         clear_bit(NAPI_STATE_THREADED, &n->state);
6824 }
6825 EXPORT_SYMBOL(napi_disable);
6826
6827 /**
6828  *      napi_enable - enable NAPI scheduling
6829  *      @n: NAPI context
6830  *
6831  * Resume NAPI from being scheduled on this context.
6832  * Must be paired with napi_disable.
6833  */
6834 void napi_enable(struct napi_struct *n)
6835 {
6836         BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
6837         smp_mb__before_atomic();
6838         clear_bit(NAPI_STATE_SCHED, &n->state);
6839         clear_bit(NAPI_STATE_NPSVC, &n->state);
6840         if (n->dev->threaded && n->thread)
6841                 set_bit(NAPI_STATE_THREADED, &n->state);
6842 }
6843 EXPORT_SYMBOL(napi_enable);
6844
6845 static void flush_gro_hash(struct napi_struct *napi)
6846 {
6847         int i;
6848
6849         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6850                 struct sk_buff *skb, *n;
6851
6852                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6853                         kfree_skb(skb);
6854                 napi->gro_hash[i].count = 0;
6855         }
6856 }
6857
6858 /* Must be called in process context */
6859 void __netif_napi_del(struct napi_struct *napi)
6860 {
6861         if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6862                 return;
6863
6864         napi_hash_del(napi);
6865         list_del_rcu(&napi->dev_list);
6866         napi_free_frags(napi);
6867
6868         flush_gro_hash(napi);
6869         napi->gro_bitmask = 0;
6870
6871         if (napi->thread) {
6872                 kthread_stop(napi->thread);
6873                 napi->thread = NULL;
6874         }
6875 }
6876 EXPORT_SYMBOL(__netif_napi_del);
6877
6878 static int __napi_poll(struct napi_struct *n, bool *repoll)
6879 {
6880         int work, weight;
6881
6882         weight = n->weight;
6883
6884         /* This NAPI_STATE_SCHED test is for avoiding a race
6885          * with netpoll's poll_napi().  Only the entity which
6886          * obtains the lock and sees NAPI_STATE_SCHED set will
6887          * actually make the ->poll() call.  Therefore we avoid
6888          * accidentally calling ->poll() when NAPI is not scheduled.
6889          */
6890         work = 0;
6891         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6892                 work = n->poll(n, weight);
6893                 trace_napi_poll(n, work, weight);
6894         }
6895
6896         if (unlikely(work > weight))
6897                 pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6898                             n->poll, work, weight);
6899
6900         if (likely(work < weight))
6901                 return work;
6902
6903         /* Drivers must not modify the NAPI state if they
6904          * consume the entire weight.  In such cases this code
6905          * still "owns" the NAPI instance and therefore can
6906          * move the instance around on the list at-will.
6907          */
6908         if (unlikely(napi_disable_pending(n))) {
6909                 napi_complete(n);
6910                 return work;
6911         }
6912
6913         /* The NAPI context has more processing work, but busy-polling
6914          * is preferred. Exit early.
6915          */
6916         if (napi_prefer_busy_poll(n)) {
6917                 if (napi_complete_done(n, work)) {
6918                         /* If timeout is not set, we need to make sure
6919                          * that the NAPI is re-scheduled.
6920                          */
6921                         napi_schedule(n);
6922                 }
6923                 return work;
6924         }
6925
6926         if (n->gro_bitmask) {
6927                 /* flush too old packets
6928                  * If HZ < 1000, flush all packets.
6929                  */
6930                 napi_gro_flush(n, HZ >= 1000);
6931         }
6932
6933         gro_normal_list(n);
6934
6935         /* Some drivers may have called napi_schedule
6936          * prior to exhausting their budget.
6937          */
6938         if (unlikely(!list_empty(&n->poll_list))) {
6939                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6940                              n->dev ? n->dev->name : "backlog");
6941                 return work;
6942         }
6943
6944         *repoll = true;
6945
6946         return work;
6947 }
6948
6949 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6950 {
6951         bool do_repoll = false;
6952         void *have;
6953         int work;
6954
6955         list_del_init(&n->poll_list);
6956
6957         have = netpoll_poll_lock(n);
6958
6959         work = __napi_poll(n, &do_repoll);
6960
6961         if (do_repoll)
6962                 list_add_tail(&n->poll_list, repoll);
6963
6964         netpoll_poll_unlock(have);
6965
6966         return work;
6967 }
6968
6969 static int napi_thread_wait(struct napi_struct *napi)
6970 {
6971         set_current_state(TASK_INTERRUPTIBLE);
6972
6973         while (!kthread_should_stop() && !napi_disable_pending(napi)) {
6974                 if (test_bit(NAPI_STATE_SCHED, &napi->state)) {
6975                         WARN_ON(!list_empty(&napi->poll_list));
6976                         __set_current_state(TASK_RUNNING);
6977                         return 0;
6978                 }
6979
6980                 schedule();
6981                 set_current_state(TASK_INTERRUPTIBLE);
6982         }
6983         __set_current_state(TASK_RUNNING);
6984         return -1;
6985 }
6986
6987 static int napi_threaded_poll(void *data)
6988 {
6989         struct napi_struct *napi = data;
6990         void *have;
6991
6992         while (!napi_thread_wait(napi)) {
6993                 for (;;) {
6994                         bool repoll = false;
6995
6996                         local_bh_disable();
6997
6998                         have = netpoll_poll_lock(napi);
6999                         __napi_poll(napi, &repoll);
7000                         netpoll_poll_unlock(have);
7001
7002                         local_bh_enable();
7003
7004                         if (!repoll)
7005                                 break;
7006
7007                         cond_resched();
7008                 }
7009         }
7010         return 0;
7011 }
7012
7013 static __latent_entropy void net_rx_action(struct softirq_action *h)
7014 {
7015         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7016         unsigned long time_limit = jiffies +
7017                 usecs_to_jiffies(netdev_budget_usecs);
7018         int budget = netdev_budget;
7019         LIST_HEAD(list);
7020         LIST_HEAD(repoll);
7021
7022         local_irq_disable();
7023         list_splice_init(&sd->poll_list, &list);
7024         local_irq_enable();
7025
7026         for (;;) {
7027                 struct napi_struct *n;
7028
7029                 if (list_empty(&list)) {
7030                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
7031                                 return;
7032                         break;
7033                 }
7034
7035                 n = list_first_entry(&list, struct napi_struct, poll_list);
7036                 budget -= napi_poll(n, &repoll);
7037
7038                 /* If softirq window is exhausted then punt.
7039                  * Allow this to run for 2 jiffies since which will allow
7040                  * an average latency of 1.5/HZ.
7041                  */
7042                 if (unlikely(budget <= 0 ||
7043                              time_after_eq(jiffies, time_limit))) {
7044                         sd->time_squeeze++;
7045                         break;
7046                 }
7047         }
7048
7049         local_irq_disable();
7050
7051         list_splice_tail_init(&sd->poll_list, &list);
7052         list_splice_tail(&repoll, &list);
7053         list_splice(&list, &sd->poll_list);
7054         if (!list_empty(&sd->poll_list))
7055                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
7056
7057         net_rps_action_and_irq_enable(sd);
7058 }
7059
7060 struct netdev_adjacent {
7061         struct net_device *dev;
7062
7063         /* upper master flag, there can only be one master device per list */
7064         bool master;
7065
7066         /* lookup ignore flag */
7067         bool ignore;
7068
7069         /* counter for the number of times this device was added to us */
7070         u16 ref_nr;
7071
7072         /* private field for the users */
7073         void *private;
7074
7075         struct list_head list;
7076         struct rcu_head rcu;
7077 };
7078
7079 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7080                                                  struct list_head *adj_list)
7081 {
7082         struct netdev_adjacent *adj;
7083
7084         list_for_each_entry(adj, adj_list, list) {
7085                 if (adj->dev == adj_dev)
7086                         return adj;
7087         }
7088         return NULL;
7089 }
7090
7091 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7092                                     struct netdev_nested_priv *priv)
7093 {
7094         struct net_device *dev = (struct net_device *)priv->data;
7095
7096         return upper_dev == dev;
7097 }
7098
7099 /**
7100  * netdev_has_upper_dev - Check if device is linked to an upper device
7101  * @dev: device
7102  * @upper_dev: upper device to check
7103  *
7104  * Find out if a device is linked to specified upper device and return true
7105  * in case it is. Note that this checks only immediate upper device,
7106  * not through a complete stack of devices. The caller must hold the RTNL lock.
7107  */
7108 bool netdev_has_upper_dev(struct net_device *dev,
7109                           struct net_device *upper_dev)
7110 {
7111         struct netdev_nested_priv priv = {
7112                 .data = (void *)upper_dev,
7113         };
7114
7115         ASSERT_RTNL();
7116
7117         return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7118                                              &priv);
7119 }
7120 EXPORT_SYMBOL(netdev_has_upper_dev);
7121
7122 /**
7123  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7124  * @dev: device
7125  * @upper_dev: upper device to check
7126  *
7127  * Find out if a device is linked to specified upper device and return true
7128  * in case it is. Note that this checks the entire upper device chain.
7129  * The caller must hold rcu lock.
7130  */
7131
7132 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7133                                   struct net_device *upper_dev)
7134 {
7135         struct netdev_nested_priv priv = {
7136                 .data = (void *)upper_dev,
7137         };
7138
7139         return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7140                                                &priv);
7141 }
7142 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7143
7144 /**
7145  * netdev_has_any_upper_dev - Check if device is linked to some device
7146  * @dev: device
7147  *
7148  * Find out if a device is linked to an upper device and return true in case
7149  * it is. The caller must hold the RTNL lock.
7150  */
7151 bool netdev_has_any_upper_dev(struct net_device *dev)
7152 {
7153         ASSERT_RTNL();
7154
7155         return !list_empty(&dev->adj_list.upper);
7156 }
7157 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7158
7159 /**
7160  * netdev_master_upper_dev_get - Get master upper device
7161  * @dev: device
7162  *
7163  * Find a master upper device and return pointer to it or NULL in case
7164  * it's not there. The caller must hold the RTNL lock.
7165  */
7166 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7167 {
7168         struct netdev_adjacent *upper;
7169
7170         ASSERT_RTNL();
7171
7172         if (list_empty(&dev->adj_list.upper))
7173                 return NULL;
7174
7175         upper = list_first_entry(&dev->adj_list.upper,
7176                                  struct netdev_adjacent, list);
7177         if (likely(upper->master))
7178                 return upper->dev;
7179         return NULL;
7180 }
7181 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7182
7183 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7184 {
7185         struct netdev_adjacent *upper;
7186
7187         ASSERT_RTNL();
7188
7189         if (list_empty(&dev->adj_list.upper))
7190                 return NULL;
7191
7192         upper = list_first_entry(&dev->adj_list.upper,
7193                                  struct netdev_adjacent, list);
7194         if (likely(upper->master) && !upper->ignore)
7195                 return upper->dev;
7196         return NULL;
7197 }
7198
7199 /**
7200  * netdev_has_any_lower_dev - Check if device is linked to some device
7201  * @dev: device
7202  *
7203  * Find out if a device is linked to a lower device and return true in case
7204  * it is. The caller must hold the RTNL lock.
7205  */
7206 static bool netdev_has_any_lower_dev(struct net_device *dev)
7207 {
7208         ASSERT_RTNL();
7209
7210         return !list_empty(&dev->adj_list.lower);
7211 }
7212
7213 void *netdev_adjacent_get_private(struct list_head *adj_list)
7214 {
7215         struct netdev_adjacent *adj;
7216
7217         adj = list_entry(adj_list, struct netdev_adjacent, list);
7218
7219         return adj->private;
7220 }
7221 EXPORT_SYMBOL(netdev_adjacent_get_private);
7222
7223 /**
7224  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7225  * @dev: device
7226  * @iter: list_head ** of the current position
7227  *
7228  * Gets the next device from the dev's upper list, starting from iter
7229  * position. The caller must hold RCU read lock.
7230  */
7231 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7232                                                  struct list_head **iter)
7233 {
7234         struct netdev_adjacent *upper;
7235
7236         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7237
7238         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7239
7240         if (&upper->list == &dev->adj_list.upper)
7241                 return NULL;
7242
7243         *iter = &upper->list;
7244
7245         return upper->dev;
7246 }
7247 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7248
7249 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7250                                                   struct list_head **iter,
7251                                                   bool *ignore)
7252 {
7253         struct netdev_adjacent *upper;
7254
7255         upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7256
7257         if (&upper->list == &dev->adj_list.upper)
7258                 return NULL;
7259
7260         *iter = &upper->list;
7261         *ignore = upper->ignore;
7262
7263         return upper->dev;
7264 }
7265
7266 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7267                                                     struct list_head **iter)
7268 {
7269         struct netdev_adjacent *upper;
7270
7271         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7272
7273         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7274
7275         if (&upper->list == &dev->adj_list.upper)
7276                 return NULL;
7277
7278         *iter = &upper->list;
7279
7280         return upper->dev;
7281 }
7282
7283 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7284                                        int (*fn)(struct net_device *dev,
7285                                          struct netdev_nested_priv *priv),
7286                                        struct netdev_nested_priv *priv)
7287 {
7288         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7289         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7290         int ret, cur = 0;
7291         bool ignore;
7292
7293         now = dev;
7294         iter = &dev->adj_list.upper;
7295
7296         while (1) {
7297                 if (now != dev) {
7298                         ret = fn(now, priv);
7299                         if (ret)
7300                                 return ret;
7301                 }
7302
7303                 next = NULL;
7304                 while (1) {
7305                         udev = __netdev_next_upper_dev(now, &iter, &ignore);
7306                         if (!udev)
7307                                 break;
7308                         if (ignore)
7309                                 continue;
7310
7311                         next = udev;
7312                         niter = &udev->adj_list.upper;
7313                         dev_stack[cur] = now;
7314                         iter_stack[cur++] = iter;
7315                         break;
7316                 }
7317
7318                 if (!next) {
7319                         if (!cur)
7320                                 return 0;
7321                         next = dev_stack[--cur];
7322                         niter = iter_stack[cur];
7323                 }
7324
7325                 now = next;
7326                 iter = niter;
7327         }
7328
7329         return 0;
7330 }
7331
7332 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7333                                   int (*fn)(struct net_device *dev,
7334                                             struct netdev_nested_priv *priv),
7335                                   struct netdev_nested_priv *priv)
7336 {
7337         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7338         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7339         int ret, cur = 0;
7340
7341         now = dev;
7342         iter = &dev->adj_list.upper;
7343
7344         while (1) {
7345                 if (now != dev) {
7346                         ret = fn(now, priv);
7347                         if (ret)
7348                                 return ret;
7349                 }
7350
7351                 next = NULL;
7352                 while (1) {
7353                         udev = netdev_next_upper_dev_rcu(now, &iter);
7354                         if (!udev)
7355                                 break;
7356
7357                         next = udev;
7358                         niter = &udev->adj_list.upper;
7359                         dev_stack[cur] = now;
7360                         iter_stack[cur++] = iter;
7361                         break;
7362                 }
7363
7364                 if (!next) {
7365                         if (!cur)
7366                                 return 0;
7367                         next = dev_stack[--cur];
7368                         niter = iter_stack[cur];
7369                 }
7370
7371                 now = next;
7372                 iter = niter;
7373         }
7374
7375         return 0;
7376 }
7377 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7378
7379 static bool __netdev_has_upper_dev(struct net_device *dev,
7380                                    struct net_device *upper_dev)
7381 {
7382         struct netdev_nested_priv priv = {
7383                 .flags = 0,
7384                 .data = (void *)upper_dev,
7385         };
7386
7387         ASSERT_RTNL();
7388
7389         return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7390                                            &priv);
7391 }
7392
7393 /**
7394  * netdev_lower_get_next_private - Get the next ->private from the
7395  *                                 lower neighbour list
7396  * @dev: device
7397  * @iter: list_head ** of the current position
7398  *
7399  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7400  * list, starting from iter position. The caller must hold either hold the
7401  * RTNL lock or its own locking that guarantees that the neighbour lower
7402  * list will remain unchanged.
7403  */
7404 void *netdev_lower_get_next_private(struct net_device *dev,
7405                                     struct list_head **iter)
7406 {
7407         struct netdev_adjacent *lower;
7408
7409         lower = list_entry(*iter, struct netdev_adjacent, list);
7410
7411         if (&lower->list == &dev->adj_list.lower)
7412                 return NULL;
7413
7414         *iter = lower->list.next;
7415
7416         return lower->private;
7417 }
7418 EXPORT_SYMBOL(netdev_lower_get_next_private);
7419
7420 /**
7421  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7422  *                                     lower neighbour list, RCU
7423  *                                     variant
7424  * @dev: device
7425  * @iter: list_head ** of the current position
7426  *
7427  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7428  * list, starting from iter position. The caller must hold RCU read lock.
7429  */
7430 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7431                                         struct list_head **iter)
7432 {
7433         struct netdev_adjacent *lower;
7434
7435         WARN_ON_ONCE(!rcu_read_lock_held());
7436
7437         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7438
7439         if (&lower->list == &dev->adj_list.lower)
7440                 return NULL;
7441
7442         *iter = &lower->list;
7443
7444         return lower->private;
7445 }
7446 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7447
7448 /**
7449  * netdev_lower_get_next - Get the next device from the lower neighbour
7450  *                         list
7451  * @dev: device
7452  * @iter: list_head ** of the current position
7453  *
7454  * Gets the next netdev_adjacent from the dev's lower neighbour
7455  * list, starting from iter position. The caller must hold RTNL lock or
7456  * its own locking that guarantees that the neighbour lower
7457  * list will remain unchanged.
7458  */
7459 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7460 {
7461         struct netdev_adjacent *lower;
7462
7463         lower = list_entry(*iter, struct netdev_adjacent, list);
7464
7465         if (&lower->list == &dev->adj_list.lower)
7466                 return NULL;
7467
7468         *iter = lower->list.next;
7469
7470         return lower->dev;
7471 }
7472 EXPORT_SYMBOL(netdev_lower_get_next);
7473
7474 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7475                                                 struct list_head **iter)
7476 {
7477         struct netdev_adjacent *lower;
7478
7479         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7480
7481         if (&lower->list == &dev->adj_list.lower)
7482                 return NULL;
7483
7484         *iter = &lower->list;
7485
7486         return lower->dev;
7487 }
7488
7489 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7490                                                   struct list_head **iter,
7491                                                   bool *ignore)
7492 {
7493         struct netdev_adjacent *lower;
7494
7495         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7496
7497         if (&lower->list == &dev->adj_list.lower)
7498                 return NULL;
7499
7500         *iter = &lower->list;
7501         *ignore = lower->ignore;
7502
7503         return lower->dev;
7504 }
7505
7506 int netdev_walk_all_lower_dev(struct net_device *dev,
7507                               int (*fn)(struct net_device *dev,
7508                                         struct netdev_nested_priv *priv),
7509                               struct netdev_nested_priv *priv)
7510 {
7511         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7512         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7513         int ret, cur = 0;
7514
7515         now = dev;
7516         iter = &dev->adj_list.lower;
7517
7518         while (1) {
7519                 if (now != dev) {
7520                         ret = fn(now, priv);
7521                         if (ret)
7522                                 return ret;
7523                 }
7524
7525                 next = NULL;
7526                 while (1) {
7527                         ldev = netdev_next_lower_dev(now, &iter);
7528                         if (!ldev)
7529                                 break;
7530
7531                         next = ldev;
7532                         niter = &ldev->adj_list.lower;
7533                         dev_stack[cur] = now;
7534                         iter_stack[cur++] = iter;
7535                         break;
7536                 }
7537
7538                 if (!next) {
7539                         if (!cur)
7540                                 return 0;
7541                         next = dev_stack[--cur];
7542                         niter = iter_stack[cur];
7543                 }
7544
7545                 now = next;
7546                 iter = niter;
7547         }
7548
7549         return 0;
7550 }
7551 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7552
7553 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7554                                        int (*fn)(struct net_device *dev,
7555                                          struct netdev_nested_priv *priv),
7556                                        struct netdev_nested_priv *priv)
7557 {
7558         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7559         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7560         int ret, cur = 0;
7561         bool ignore;
7562
7563         now = dev;
7564         iter = &dev->adj_list.lower;
7565
7566         while (1) {
7567                 if (now != dev) {
7568                         ret = fn(now, priv);
7569                         if (ret)
7570                                 return ret;
7571                 }
7572
7573                 next = NULL;
7574                 while (1) {
7575                         ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7576                         if (!ldev)
7577                                 break;
7578                         if (ignore)
7579                                 continue;
7580
7581                         next = ldev;
7582                         niter = &ldev->adj_list.lower;
7583                         dev_stack[cur] = now;
7584                         iter_stack[cur++] = iter;
7585                         break;
7586                 }
7587
7588                 if (!next) {
7589                         if (!cur)
7590                                 return 0;
7591                         next = dev_stack[--cur];
7592                         niter = iter_stack[cur];
7593                 }
7594
7595                 now = next;
7596                 iter = niter;
7597         }
7598
7599         return 0;
7600 }
7601
7602 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7603                                              struct list_head **iter)
7604 {
7605         struct netdev_adjacent *lower;
7606
7607         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7608         if (&lower->list == &dev->adj_list.lower)
7609                 return NULL;
7610
7611         *iter = &lower->list;
7612
7613         return lower->dev;
7614 }
7615 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7616
7617 static u8 __netdev_upper_depth(struct net_device *dev)
7618 {
7619         struct net_device *udev;
7620         struct list_head *iter;
7621         u8 max_depth = 0;
7622         bool ignore;
7623
7624         for (iter = &dev->adj_list.upper,
7625              udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7626              udev;
7627              udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7628                 if (ignore)
7629                         continue;
7630                 if (max_depth < udev->upper_level)
7631                         max_depth = udev->upper_level;
7632         }
7633
7634         return max_depth;
7635 }
7636
7637 static u8 __netdev_lower_depth(struct net_device *dev)
7638 {
7639         struct net_device *ldev;
7640         struct list_head *iter;
7641         u8 max_depth = 0;
7642         bool ignore;
7643
7644         for (iter = &dev->adj_list.lower,
7645              ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7646              ldev;
7647              ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7648                 if (ignore)
7649                         continue;
7650                 if (max_depth < ldev->lower_level)
7651                         max_depth = ldev->lower_level;
7652         }
7653
7654         return max_depth;
7655 }
7656
7657 static int __netdev_update_upper_level(struct net_device *dev,
7658                                        struct netdev_nested_priv *__unused)
7659 {
7660         dev->upper_level = __netdev_upper_depth(dev) + 1;
7661         return 0;
7662 }
7663
7664 static int __netdev_update_lower_level(struct net_device *dev,
7665                                        struct netdev_nested_priv *priv)
7666 {
7667         dev->lower_level = __netdev_lower_depth(dev) + 1;
7668
7669 #ifdef CONFIG_LOCKDEP
7670         if (!priv)
7671                 return 0;
7672
7673         if (priv->flags & NESTED_SYNC_IMM)
7674                 dev->nested_level = dev->lower_level - 1;
7675         if (priv->flags & NESTED_SYNC_TODO)
7676                 net_unlink_todo(dev);
7677 #endif
7678         return 0;
7679 }
7680
7681 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7682                                   int (*fn)(struct net_device *dev,
7683                                             struct netdev_nested_priv *priv),
7684                                   struct netdev_nested_priv *priv)
7685 {
7686         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7687         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7688         int ret, cur = 0;
7689
7690         now = dev;
7691         iter = &dev->adj_list.lower;
7692
7693         while (1) {
7694                 if (now != dev) {
7695                         ret = fn(now, priv);
7696                         if (ret)
7697                                 return ret;
7698                 }
7699
7700                 next = NULL;
7701                 while (1) {
7702                         ldev = netdev_next_lower_dev_rcu(now, &iter);
7703                         if (!ldev)
7704                                 break;
7705
7706                         next = ldev;
7707                         niter = &ldev->adj_list.lower;
7708                         dev_stack[cur] = now;
7709                         iter_stack[cur++] = iter;
7710                         break;
7711                 }
7712
7713                 if (!next) {
7714                         if (!cur)
7715                                 return 0;
7716                         next = dev_stack[--cur];
7717                         niter = iter_stack[cur];
7718                 }
7719
7720                 now = next;
7721                 iter = niter;
7722         }
7723
7724         return 0;
7725 }
7726 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7727
7728 /**
7729  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7730  *                                     lower neighbour list, RCU
7731  *                                     variant
7732  * @dev: device
7733  *
7734  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7735  * list. The caller must hold RCU read lock.
7736  */
7737 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7738 {
7739         struct netdev_adjacent *lower;
7740
7741         lower = list_first_or_null_rcu(&dev->adj_list.lower,
7742                         struct netdev_adjacent, list);
7743         if (lower)
7744                 return lower->private;
7745         return NULL;
7746 }
7747 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7748
7749 /**
7750  * netdev_master_upper_dev_get_rcu - Get master upper device
7751  * @dev: device
7752  *
7753  * Find a master upper device and return pointer to it or NULL in case
7754  * it's not there. The caller must hold the RCU read lock.
7755  */
7756 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7757 {
7758         struct netdev_adjacent *upper;
7759
7760         upper = list_first_or_null_rcu(&dev->adj_list.upper,
7761                                        struct netdev_adjacent, list);
7762         if (upper && likely(upper->master))
7763                 return upper->dev;
7764         return NULL;
7765 }
7766 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7767
7768 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7769                               struct net_device *adj_dev,
7770                               struct list_head *dev_list)
7771 {
7772         char linkname[IFNAMSIZ+7];
7773
7774         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7775                 "upper_%s" : "lower_%s", adj_dev->name);
7776         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7777                                  linkname);
7778 }
7779 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7780                                char *name,
7781                                struct list_head *dev_list)
7782 {
7783         char linkname[IFNAMSIZ+7];
7784
7785         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7786                 "upper_%s" : "lower_%s", name);
7787         sysfs_remove_link(&(dev->dev.kobj), linkname);
7788 }
7789
7790 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7791                                                  struct net_device *adj_dev,
7792                                                  struct list_head *dev_list)
7793 {
7794         return (dev_list == &dev->adj_list.upper ||
7795                 dev_list == &dev->adj_list.lower) &&
7796                 net_eq(dev_net(dev), dev_net(adj_dev));
7797 }
7798
7799 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7800                                         struct net_device *adj_dev,
7801                                         struct list_head *dev_list,
7802                                         void *private, bool master)
7803 {
7804         struct netdev_adjacent *adj;
7805         int ret;
7806
7807         adj = __netdev_find_adj(adj_dev, dev_list);
7808
7809         if (adj) {
7810                 adj->ref_nr += 1;
7811                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7812                          dev->name, adj_dev->name, adj->ref_nr);
7813
7814                 return 0;
7815         }
7816
7817         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7818         if (!adj)
7819                 return -ENOMEM;
7820
7821         adj->dev = adj_dev;
7822         adj->master = master;
7823         adj->ref_nr = 1;
7824         adj->private = private;
7825         adj->ignore = false;
7826         dev_hold(adj_dev);
7827
7828         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7829                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7830
7831         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7832                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7833                 if (ret)
7834                         goto free_adj;
7835         }
7836
7837         /* Ensure that master link is always the first item in list. */
7838         if (master) {
7839                 ret = sysfs_create_link(&(dev->dev.kobj),
7840                                         &(adj_dev->dev.kobj), "master");
7841                 if (ret)
7842                         goto remove_symlinks;
7843
7844                 list_add_rcu(&adj->list, dev_list);
7845         } else {
7846                 list_add_tail_rcu(&adj->list, dev_list);
7847         }
7848
7849         return 0;
7850
7851 remove_symlinks:
7852         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7853                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7854 free_adj:
7855         kfree(adj);
7856         dev_put(adj_dev);
7857
7858         return ret;
7859 }
7860
7861 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7862                                          struct net_device *adj_dev,
7863                                          u16 ref_nr,
7864                                          struct list_head *dev_list)
7865 {
7866         struct netdev_adjacent *adj;
7867
7868         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7869                  dev->name, adj_dev->name, ref_nr);
7870
7871         adj = __netdev_find_adj(adj_dev, dev_list);
7872
7873         if (!adj) {
7874                 pr_err("Adjacency does not exist for device %s from %s\n",
7875                        dev->name, adj_dev->name);
7876                 WARN_ON(1);
7877                 return;
7878         }
7879
7880         if (adj->ref_nr > ref_nr) {
7881                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7882                          dev->name, adj_dev->name, ref_nr,
7883                          adj->ref_nr - ref_nr);
7884                 adj->ref_nr -= ref_nr;
7885                 return;
7886         }
7887
7888         if (adj->master)
7889                 sysfs_remove_link(&(dev->dev.kobj), "master");
7890
7891         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7892                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7893
7894         list_del_rcu(&adj->list);
7895         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7896                  adj_dev->name, dev->name, adj_dev->name);
7897         dev_put(adj_dev);
7898         kfree_rcu(adj, rcu);
7899 }
7900
7901 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7902                                             struct net_device *upper_dev,
7903                                             struct list_head *up_list,
7904                                             struct list_head *down_list,
7905                                             void *private, bool master)
7906 {
7907         int ret;
7908
7909         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7910                                            private, master);
7911         if (ret)
7912                 return ret;
7913
7914         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7915                                            private, false);
7916         if (ret) {
7917                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7918                 return ret;
7919         }
7920
7921         return 0;
7922 }
7923
7924 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7925                                                struct net_device *upper_dev,
7926                                                u16 ref_nr,
7927                                                struct list_head *up_list,
7928                                                struct list_head *down_list)
7929 {
7930         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7931         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7932 }
7933
7934 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7935                                                 struct net_device *upper_dev,
7936                                                 void *private, bool master)
7937 {
7938         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7939                                                 &dev->adj_list.upper,
7940                                                 &upper_dev->adj_list.lower,
7941                                                 private, master);
7942 }
7943
7944 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7945                                                    struct net_device *upper_dev)
7946 {
7947         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7948                                            &dev->adj_list.upper,
7949                                            &upper_dev->adj_list.lower);
7950 }
7951
7952 static int __netdev_upper_dev_link(struct net_device *dev,
7953                                    struct net_device *upper_dev, bool master,
7954                                    void *upper_priv, void *upper_info,
7955                                    struct netdev_nested_priv *priv,
7956                                    struct netlink_ext_ack *extack)
7957 {
7958         struct netdev_notifier_changeupper_info changeupper_info = {
7959                 .info = {
7960                         .dev = dev,
7961                         .extack = extack,
7962                 },
7963                 .upper_dev = upper_dev,
7964                 .master = master,
7965                 .linking = true,
7966                 .upper_info = upper_info,
7967         };
7968         struct net_device *master_dev;
7969         int ret = 0;
7970
7971         ASSERT_RTNL();
7972
7973         if (dev == upper_dev)
7974                 return -EBUSY;
7975
7976         /* To prevent loops, check if dev is not upper device to upper_dev. */
7977         if (__netdev_has_upper_dev(upper_dev, dev))
7978                 return -EBUSY;
7979
7980         if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7981                 return -EMLINK;
7982
7983         if (!master) {
7984                 if (__netdev_has_upper_dev(dev, upper_dev))
7985                         return -EEXIST;
7986         } else {
7987                 master_dev = __netdev_master_upper_dev_get(dev);
7988                 if (master_dev)
7989                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
7990         }
7991
7992         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7993                                             &changeupper_info.info);
7994         ret = notifier_to_errno(ret);
7995         if (ret)
7996                 return ret;
7997
7998         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7999                                                    master);
8000         if (ret)
8001                 return ret;
8002
8003         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8004                                             &changeupper_info.info);
8005         ret = notifier_to_errno(ret);
8006         if (ret)
8007                 goto rollback;
8008
8009         __netdev_update_upper_level(dev, NULL);
8010         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8011
8012         __netdev_update_lower_level(upper_dev, priv);
8013         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8014                                     priv);
8015
8016         return 0;
8017
8018 rollback:
8019         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8020
8021         return ret;
8022 }
8023
8024 /**
8025  * netdev_upper_dev_link - Add a link to the upper device
8026  * @dev: device
8027  * @upper_dev: new upper device
8028  * @extack: netlink extended ack
8029  *
8030  * Adds a link to device which is upper to this one. The caller must hold
8031  * the RTNL lock. On a failure a negative errno code is returned.
8032  * On success the reference counts are adjusted and the function
8033  * returns zero.
8034  */
8035 int netdev_upper_dev_link(struct net_device *dev,
8036                           struct net_device *upper_dev,
8037                           struct netlink_ext_ack *extack)
8038 {
8039         struct netdev_nested_priv priv = {
8040                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8041                 .data = NULL,
8042         };
8043
8044         return __netdev_upper_dev_link(dev, upper_dev, false,
8045                                        NULL, NULL, &priv, extack);
8046 }
8047 EXPORT_SYMBOL(netdev_upper_dev_link);
8048
8049 /**
8050  * netdev_master_upper_dev_link - Add a master link to the upper device
8051  * @dev: device
8052  * @upper_dev: new upper device
8053  * @upper_priv: upper device private
8054  * @upper_info: upper info to be passed down via notifier
8055  * @extack: netlink extended ack
8056  *
8057  * Adds a link to device which is upper to this one. In this case, only
8058  * one master upper device can be linked, although other non-master devices
8059  * might be linked as well. The caller must hold the RTNL lock.
8060  * On a failure a negative errno code is returned. On success the reference
8061  * counts are adjusted and the function returns zero.
8062  */
8063 int netdev_master_upper_dev_link(struct net_device *dev,
8064                                  struct net_device *upper_dev,
8065                                  void *upper_priv, void *upper_info,
8066                                  struct netlink_ext_ack *extack)
8067 {
8068         struct netdev_nested_priv priv = {
8069                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8070                 .data = NULL,
8071         };
8072
8073         return __netdev_upper_dev_link(dev, upper_dev, true,
8074                                        upper_priv, upper_info, &priv, extack);
8075 }
8076 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8077
8078 static void __netdev_upper_dev_unlink(struct net_device *dev,
8079                                       struct net_device *upper_dev,
8080                                       struct netdev_nested_priv *priv)
8081 {
8082         struct netdev_notifier_changeupper_info changeupper_info = {
8083                 .info = {
8084                         .dev = dev,
8085                 },
8086                 .upper_dev = upper_dev,
8087                 .linking = false,
8088         };
8089
8090         ASSERT_RTNL();
8091
8092         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8093
8094         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8095                                       &changeupper_info.info);
8096
8097         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8098
8099         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8100                                       &changeupper_info.info);
8101
8102         __netdev_update_upper_level(dev, NULL);
8103         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8104
8105         __netdev_update_lower_level(upper_dev, priv);
8106         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8107                                     priv);
8108 }
8109
8110 /**
8111  * netdev_upper_dev_unlink - Removes a link to upper device
8112  * @dev: device
8113  * @upper_dev: new upper device
8114  *
8115  * Removes a link to device which is upper to this one. The caller must hold
8116  * the RTNL lock.
8117  */
8118 void netdev_upper_dev_unlink(struct net_device *dev,
8119                              struct net_device *upper_dev)
8120 {
8121         struct netdev_nested_priv priv = {
8122                 .flags = NESTED_SYNC_TODO,
8123                 .data = NULL,
8124         };
8125
8126         __netdev_upper_dev_unlink(dev, upper_dev, &priv);
8127 }
8128 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8129
8130 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8131                                       struct net_device *lower_dev,
8132                                       bool val)
8133 {
8134         struct netdev_adjacent *adj;
8135
8136         adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8137         if (adj)
8138                 adj->ignore = val;
8139
8140         adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8141         if (adj)
8142                 adj->ignore = val;
8143 }
8144
8145 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8146                                         struct net_device *lower_dev)
8147 {
8148         __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8149 }
8150
8151 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8152                                        struct net_device *lower_dev)
8153 {
8154         __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8155 }
8156
8157 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8158                                    struct net_device *new_dev,
8159                                    struct net_device *dev,
8160                                    struct netlink_ext_ack *extack)
8161 {
8162         struct netdev_nested_priv priv = {
8163                 .flags = 0,
8164                 .data = NULL,
8165         };
8166         int err;
8167
8168         if (!new_dev)
8169                 return 0;
8170
8171         if (old_dev && new_dev != old_dev)
8172                 netdev_adjacent_dev_disable(dev, old_dev);
8173         err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8174                                       extack);
8175         if (err) {
8176                 if (old_dev && new_dev != old_dev)
8177                         netdev_adjacent_dev_enable(dev, old_dev);
8178                 return err;
8179         }
8180
8181         return 0;
8182 }
8183 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8184
8185 void netdev_adjacent_change_commit(struct net_device *old_dev,
8186                                    struct net_device *new_dev,
8187                                    struct net_device *dev)
8188 {
8189         struct netdev_nested_priv priv = {
8190                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8191                 .data = NULL,
8192         };
8193
8194         if (!new_dev || !old_dev)
8195                 return;
8196
8197         if (new_dev == old_dev)
8198                 return;
8199
8200         netdev_adjacent_dev_enable(dev, old_dev);
8201         __netdev_upper_dev_unlink(old_dev, dev, &priv);
8202 }
8203 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8204
8205 void netdev_adjacent_change_abort(struct net_device *old_dev,
8206                                   struct net_device *new_dev,
8207                                   struct net_device *dev)
8208 {
8209         struct netdev_nested_priv priv = {
8210                 .flags = 0,
8211                 .data = NULL,
8212         };
8213
8214         if (!new_dev)
8215                 return;
8216
8217         if (old_dev && new_dev != old_dev)
8218                 netdev_adjacent_dev_enable(dev, old_dev);
8219
8220         __netdev_upper_dev_unlink(new_dev, dev, &priv);
8221 }
8222 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8223
8224 /**
8225  * netdev_bonding_info_change - Dispatch event about slave change
8226  * @dev: device
8227  * @bonding_info: info to dispatch
8228  *
8229  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8230  * The caller must hold the RTNL lock.
8231  */
8232 void netdev_bonding_info_change(struct net_device *dev,
8233                                 struct netdev_bonding_info *bonding_info)
8234 {
8235         struct netdev_notifier_bonding_info info = {
8236                 .info.dev = dev,
8237         };
8238
8239         memcpy(&info.bonding_info, bonding_info,
8240                sizeof(struct netdev_bonding_info));
8241         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8242                                       &info.info);
8243 }
8244 EXPORT_SYMBOL(netdev_bonding_info_change);
8245
8246 /**
8247  * netdev_get_xmit_slave - Get the xmit slave of master device
8248  * @dev: device
8249  * @skb: The packet
8250  * @all_slaves: assume all the slaves are active
8251  *
8252  * The reference counters are not incremented so the caller must be
8253  * careful with locks. The caller must hold RCU lock.
8254  * %NULL is returned if no slave is found.
8255  */
8256
8257 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8258                                          struct sk_buff *skb,
8259                                          bool all_slaves)
8260 {
8261         const struct net_device_ops *ops = dev->netdev_ops;
8262
8263         if (!ops->ndo_get_xmit_slave)
8264                 return NULL;
8265         return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8266 }
8267 EXPORT_SYMBOL(netdev_get_xmit_slave);
8268
8269 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8270                                                   struct sock *sk)
8271 {
8272         const struct net_device_ops *ops = dev->netdev_ops;
8273
8274         if (!ops->ndo_sk_get_lower_dev)
8275                 return NULL;
8276         return ops->ndo_sk_get_lower_dev(dev, sk);
8277 }
8278
8279 /**
8280  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8281  * @dev: device
8282  * @sk: the socket
8283  *
8284  * %NULL is returned if no lower device is found.
8285  */
8286
8287 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8288                                             struct sock *sk)
8289 {
8290         struct net_device *lower;
8291
8292         lower = netdev_sk_get_lower_dev(dev, sk);
8293         while (lower) {
8294                 dev = lower;
8295                 lower = netdev_sk_get_lower_dev(dev, sk);
8296         }
8297
8298         return dev;
8299 }
8300 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8301
8302 static void netdev_adjacent_add_links(struct net_device *dev)
8303 {
8304         struct netdev_adjacent *iter;
8305
8306         struct net *net = dev_net(dev);
8307
8308         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8309                 if (!net_eq(net, dev_net(iter->dev)))
8310                         continue;
8311                 netdev_adjacent_sysfs_add(iter->dev, dev,
8312                                           &iter->dev->adj_list.lower);
8313                 netdev_adjacent_sysfs_add(dev, iter->dev,
8314                                           &dev->adj_list.upper);
8315         }
8316
8317         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8318                 if (!net_eq(net, dev_net(iter->dev)))
8319                         continue;
8320                 netdev_adjacent_sysfs_add(iter->dev, dev,
8321                                           &iter->dev->adj_list.upper);
8322                 netdev_adjacent_sysfs_add(dev, iter->dev,
8323                                           &dev->adj_list.lower);
8324         }
8325 }
8326
8327 static void netdev_adjacent_del_links(struct net_device *dev)
8328 {
8329         struct netdev_adjacent *iter;
8330
8331         struct net *net = dev_net(dev);
8332
8333         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8334                 if (!net_eq(net, dev_net(iter->dev)))
8335                         continue;
8336                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8337                                           &iter->dev->adj_list.lower);
8338                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8339                                           &dev->adj_list.upper);
8340         }
8341
8342         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8343                 if (!net_eq(net, dev_net(iter->dev)))
8344                         continue;
8345                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8346                                           &iter->dev->adj_list.upper);
8347                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8348                                           &dev->adj_list.lower);
8349         }
8350 }
8351
8352 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8353 {
8354         struct netdev_adjacent *iter;
8355
8356         struct net *net = dev_net(dev);
8357
8358         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8359                 if (!net_eq(net, dev_net(iter->dev)))
8360                         continue;
8361                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8362                                           &iter->dev->adj_list.lower);
8363                 netdev_adjacent_sysfs_add(iter->dev, dev,
8364                                           &iter->dev->adj_list.lower);
8365         }
8366
8367         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8368                 if (!net_eq(net, dev_net(iter->dev)))
8369                         continue;
8370                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8371                                           &iter->dev->adj_list.upper);
8372                 netdev_adjacent_sysfs_add(iter->dev, dev,
8373                                           &iter->dev->adj_list.upper);
8374         }
8375 }
8376
8377 void *netdev_lower_dev_get_private(struct net_device *dev,
8378                                    struct net_device *lower_dev)
8379 {
8380         struct netdev_adjacent *lower;
8381
8382         if (!lower_dev)
8383                 return NULL;
8384         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8385         if (!lower)
8386                 return NULL;
8387
8388         return lower->private;
8389 }
8390 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8391
8392
8393 /**
8394  * netdev_lower_state_changed - Dispatch event about lower device state change
8395  * @lower_dev: device
8396  * @lower_state_info: state to dispatch
8397  *
8398  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8399  * The caller must hold the RTNL lock.
8400  */
8401 void netdev_lower_state_changed(struct net_device *lower_dev,
8402                                 void *lower_state_info)
8403 {
8404         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8405                 .info.dev = lower_dev,
8406         };
8407
8408         ASSERT_RTNL();
8409         changelowerstate_info.lower_state_info = lower_state_info;
8410         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8411                                       &changelowerstate_info.info);
8412 }
8413 EXPORT_SYMBOL(netdev_lower_state_changed);
8414
8415 static void dev_change_rx_flags(struct net_device *dev, int flags)
8416 {
8417         const struct net_device_ops *ops = dev->netdev_ops;
8418
8419         if (ops->ndo_change_rx_flags)
8420                 ops->ndo_change_rx_flags(dev, flags);
8421 }
8422
8423 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8424 {
8425         unsigned int old_flags = dev->flags;
8426         kuid_t uid;
8427         kgid_t gid;
8428
8429         ASSERT_RTNL();
8430
8431         dev->flags |= IFF_PROMISC;
8432         dev->promiscuity += inc;
8433         if (dev->promiscuity == 0) {
8434                 /*
8435                  * Avoid overflow.
8436                  * If inc causes overflow, untouch promisc and return error.
8437                  */
8438                 if (inc < 0)
8439                         dev->flags &= ~IFF_PROMISC;
8440                 else {
8441                         dev->promiscuity -= inc;
8442                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8443                                 dev->name);
8444                         return -EOVERFLOW;
8445                 }
8446         }
8447         if (dev->flags != old_flags) {
8448                 pr_info("device %s %s promiscuous mode\n",
8449                         dev->name,
8450                         dev->flags & IFF_PROMISC ? "entered" : "left");
8451                 if (audit_enabled) {
8452                         current_uid_gid(&uid, &gid);
8453                         audit_log(audit_context(), GFP_ATOMIC,
8454                                   AUDIT_ANOM_PROMISCUOUS,
8455                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8456                                   dev->name, (dev->flags & IFF_PROMISC),
8457                                   (old_flags & IFF_PROMISC),
8458                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
8459                                   from_kuid(&init_user_ns, uid),
8460                                   from_kgid(&init_user_ns, gid),
8461                                   audit_get_sessionid(current));
8462                 }
8463
8464                 dev_change_rx_flags(dev, IFF_PROMISC);
8465         }
8466         if (notify)
8467                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
8468         return 0;
8469 }
8470
8471 /**
8472  *      dev_set_promiscuity     - update promiscuity count on a device
8473  *      @dev: device
8474  *      @inc: modifier
8475  *
8476  *      Add or remove promiscuity from a device. While the count in the device
8477  *      remains above zero the interface remains promiscuous. Once it hits zero
8478  *      the device reverts back to normal filtering operation. A negative inc
8479  *      value is used to drop promiscuity on the device.
8480  *      Return 0 if successful or a negative errno code on error.
8481  */
8482 int dev_set_promiscuity(struct net_device *dev, int inc)
8483 {
8484         unsigned int old_flags = dev->flags;
8485         int err;
8486
8487         err = __dev_set_promiscuity(dev, inc, true);
8488         if (err < 0)
8489                 return err;
8490         if (dev->flags != old_flags)
8491                 dev_set_rx_mode(dev);
8492         return err;
8493 }
8494 EXPORT_SYMBOL(dev_set_promiscuity);
8495
8496 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8497 {
8498         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8499
8500         ASSERT_RTNL();
8501
8502         dev->flags |= IFF_ALLMULTI;
8503         dev->allmulti += inc;
8504         if (dev->allmulti == 0) {
8505                 /*
8506                  * Avoid overflow.
8507                  * If inc causes overflow, untouch allmulti and return error.
8508                  */
8509                 if (inc < 0)
8510                         dev->flags &= ~IFF_ALLMULTI;
8511                 else {
8512                         dev->allmulti -= inc;
8513                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8514                                 dev->name);
8515                         return -EOVERFLOW;
8516                 }
8517         }
8518         if (dev->flags ^ old_flags) {
8519                 dev_change_rx_flags(dev, IFF_ALLMULTI);
8520                 dev_set_rx_mode(dev);
8521                 if (notify)
8522                         __dev_notify_flags(dev, old_flags,
8523                                            dev->gflags ^ old_gflags);
8524         }
8525         return 0;
8526 }
8527
8528 /**
8529  *      dev_set_allmulti        - update allmulti count on a device
8530  *      @dev: device
8531  *      @inc: modifier
8532  *
8533  *      Add or remove reception of all multicast frames to a device. While the
8534  *      count in the device remains above zero the interface remains listening
8535  *      to all interfaces. Once it hits zero the device reverts back to normal
8536  *      filtering operation. A negative @inc value is used to drop the counter
8537  *      when releasing a resource needing all multicasts.
8538  *      Return 0 if successful or a negative errno code on error.
8539  */
8540
8541 int dev_set_allmulti(struct net_device *dev, int inc)
8542 {
8543         return __dev_set_allmulti(dev, inc, true);
8544 }
8545 EXPORT_SYMBOL(dev_set_allmulti);
8546
8547 /*
8548  *      Upload unicast and multicast address lists to device and
8549  *      configure RX filtering. When the device doesn't support unicast
8550  *      filtering it is put in promiscuous mode while unicast addresses
8551  *      are present.
8552  */
8553 void __dev_set_rx_mode(struct net_device *dev)
8554 {
8555         const struct net_device_ops *ops = dev->netdev_ops;
8556
8557         /* dev_open will call this function so the list will stay sane. */
8558         if (!(dev->flags&IFF_UP))
8559                 return;
8560
8561         if (!netif_device_present(dev))
8562                 return;
8563
8564         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8565                 /* Unicast addresses changes may only happen under the rtnl,
8566                  * therefore calling __dev_set_promiscuity here is safe.
8567                  */
8568                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8569                         __dev_set_promiscuity(dev, 1, false);
8570                         dev->uc_promisc = true;
8571                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8572                         __dev_set_promiscuity(dev, -1, false);
8573                         dev->uc_promisc = false;
8574                 }
8575         }
8576
8577         if (ops->ndo_set_rx_mode)
8578                 ops->ndo_set_rx_mode(dev);
8579 }
8580
8581 void dev_set_rx_mode(struct net_device *dev)
8582 {
8583         netif_addr_lock_bh(dev);
8584         __dev_set_rx_mode(dev);
8585         netif_addr_unlock_bh(dev);
8586 }
8587
8588 /**
8589  *      dev_get_flags - get flags reported to userspace
8590  *      @dev: device
8591  *
8592  *      Get the combination of flag bits exported through APIs to userspace.
8593  */
8594 unsigned int dev_get_flags(const struct net_device *dev)
8595 {
8596         unsigned int flags;
8597
8598         flags = (dev->flags & ~(IFF_PROMISC |
8599                                 IFF_ALLMULTI |
8600                                 IFF_RUNNING |
8601                                 IFF_LOWER_UP |
8602                                 IFF_DORMANT)) |
8603                 (dev->gflags & (IFF_PROMISC |
8604                                 IFF_ALLMULTI));
8605
8606         if (netif_running(dev)) {
8607                 if (netif_oper_up(dev))
8608                         flags |= IFF_RUNNING;
8609                 if (netif_carrier_ok(dev))
8610                         flags |= IFF_LOWER_UP;
8611                 if (netif_dormant(dev))
8612                         flags |= IFF_DORMANT;
8613         }
8614
8615         return flags;
8616 }
8617 EXPORT_SYMBOL(dev_get_flags);
8618
8619 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8620                        struct netlink_ext_ack *extack)
8621 {
8622         unsigned int old_flags = dev->flags;
8623         int ret;
8624
8625         ASSERT_RTNL();
8626
8627         /*
8628          *      Set the flags on our device.
8629          */
8630
8631         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8632                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8633                                IFF_AUTOMEDIA)) |
8634                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8635                                     IFF_ALLMULTI));
8636
8637         /*
8638          *      Load in the correct multicast list now the flags have changed.
8639          */
8640
8641         if ((old_flags ^ flags) & IFF_MULTICAST)
8642                 dev_change_rx_flags(dev, IFF_MULTICAST);
8643
8644         dev_set_rx_mode(dev);
8645
8646         /*
8647          *      Have we downed the interface. We handle IFF_UP ourselves
8648          *      according to user attempts to set it, rather than blindly
8649          *      setting it.
8650          */
8651
8652         ret = 0;
8653         if ((old_flags ^ flags) & IFF_UP) {
8654                 if (old_flags & IFF_UP)
8655                         __dev_close(dev);
8656                 else
8657                         ret = __dev_open(dev, extack);
8658         }
8659
8660         if ((flags ^ dev->gflags) & IFF_PROMISC) {
8661                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8662                 unsigned int old_flags = dev->flags;
8663
8664                 dev->gflags ^= IFF_PROMISC;
8665
8666                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8667                         if (dev->flags != old_flags)
8668                                 dev_set_rx_mode(dev);
8669         }
8670
8671         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8672          * is important. Some (broken) drivers set IFF_PROMISC, when
8673          * IFF_ALLMULTI is requested not asking us and not reporting.
8674          */
8675         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8676                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8677
8678                 dev->gflags ^= IFF_ALLMULTI;
8679                 __dev_set_allmulti(dev, inc, false);
8680         }
8681
8682         return ret;
8683 }
8684
8685 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8686                         unsigned int gchanges)
8687 {
8688         unsigned int changes = dev->flags ^ old_flags;
8689
8690         if (gchanges)
8691                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8692
8693         if (changes & IFF_UP) {
8694                 if (dev->flags & IFF_UP)
8695                         call_netdevice_notifiers(NETDEV_UP, dev);
8696                 else
8697                         call_netdevice_notifiers(NETDEV_DOWN, dev);
8698         }
8699
8700         if (dev->flags & IFF_UP &&
8701             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8702                 struct netdev_notifier_change_info change_info = {
8703                         .info = {
8704                                 .dev = dev,
8705                         },
8706                         .flags_changed = changes,
8707                 };
8708
8709                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8710         }
8711 }
8712
8713 /**
8714  *      dev_change_flags - change device settings
8715  *      @dev: device
8716  *      @flags: device state flags
8717  *      @extack: netlink extended ack
8718  *
8719  *      Change settings on device based state flags. The flags are
8720  *      in the userspace exported format.
8721  */
8722 int dev_change_flags(struct net_device *dev, unsigned int flags,
8723                      struct netlink_ext_ack *extack)
8724 {
8725         int ret;
8726         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8727
8728         ret = __dev_change_flags(dev, flags, extack);
8729         if (ret < 0)
8730                 return ret;
8731
8732         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8733         __dev_notify_flags(dev, old_flags, changes);
8734         return ret;
8735 }
8736 EXPORT_SYMBOL(dev_change_flags);
8737
8738 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8739 {
8740         const struct net_device_ops *ops = dev->netdev_ops;
8741
8742         if (ops->ndo_change_mtu)
8743                 return ops->ndo_change_mtu(dev, new_mtu);
8744
8745         /* Pairs with all the lockless reads of dev->mtu in the stack */
8746         WRITE_ONCE(dev->mtu, new_mtu);
8747         return 0;
8748 }
8749 EXPORT_SYMBOL(__dev_set_mtu);
8750
8751 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8752                      struct netlink_ext_ack *extack)
8753 {
8754         /* MTU must be positive, and in range */
8755         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8756                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8757                 return -EINVAL;
8758         }
8759
8760         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8761                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8762                 return -EINVAL;
8763         }
8764         return 0;
8765 }
8766
8767 /**
8768  *      dev_set_mtu_ext - Change maximum transfer unit
8769  *      @dev: device
8770  *      @new_mtu: new transfer unit
8771  *      @extack: netlink extended ack
8772  *
8773  *      Change the maximum transfer size of the network device.
8774  */
8775 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8776                     struct netlink_ext_ack *extack)
8777 {
8778         int err, orig_mtu;
8779
8780         if (new_mtu == dev->mtu)
8781                 return 0;
8782
8783         err = dev_validate_mtu(dev, new_mtu, extack);
8784         if (err)
8785                 return err;
8786
8787         if (!netif_device_present(dev))
8788                 return -ENODEV;
8789
8790         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8791         err = notifier_to_errno(err);
8792         if (err)
8793                 return err;
8794
8795         orig_mtu = dev->mtu;
8796         err = __dev_set_mtu(dev, new_mtu);
8797
8798         if (!err) {
8799                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8800                                                    orig_mtu);
8801                 err = notifier_to_errno(err);
8802                 if (err) {
8803                         /* setting mtu back and notifying everyone again,
8804                          * so that they have a chance to revert changes.
8805                          */
8806                         __dev_set_mtu(dev, orig_mtu);
8807                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8808                                                      new_mtu);
8809                 }
8810         }
8811         return err;
8812 }
8813
8814 int dev_set_mtu(struct net_device *dev, int new_mtu)
8815 {
8816         struct netlink_ext_ack extack;
8817         int err;
8818
8819         memset(&extack, 0, sizeof(extack));
8820         err = dev_set_mtu_ext(dev, new_mtu, &extack);
8821         if (err && extack._msg)
8822                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8823         return err;
8824 }
8825 EXPORT_SYMBOL(dev_set_mtu);
8826
8827 /**
8828  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
8829  *      @dev: device
8830  *      @new_len: new tx queue length
8831  */
8832 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8833 {
8834         unsigned int orig_len = dev->tx_queue_len;
8835         int res;
8836
8837         if (new_len != (unsigned int)new_len)
8838                 return -ERANGE;
8839
8840         if (new_len != orig_len) {
8841                 dev->tx_queue_len = new_len;
8842                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8843                 res = notifier_to_errno(res);
8844                 if (res)
8845                         goto err_rollback;
8846                 res = dev_qdisc_change_tx_queue_len(dev);
8847                 if (res)
8848                         goto err_rollback;
8849         }
8850
8851         return 0;
8852
8853 err_rollback:
8854         netdev_err(dev, "refused to change device tx_queue_len\n");
8855         dev->tx_queue_len = orig_len;
8856         return res;
8857 }
8858
8859 /**
8860  *      dev_set_group - Change group this device belongs to
8861  *      @dev: device
8862  *      @new_group: group this device should belong to
8863  */
8864 void dev_set_group(struct net_device *dev, int new_group)
8865 {
8866         dev->group = new_group;
8867 }
8868 EXPORT_SYMBOL(dev_set_group);
8869
8870 /**
8871  *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8872  *      @dev: device
8873  *      @addr: new address
8874  *      @extack: netlink extended ack
8875  */
8876 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8877                               struct netlink_ext_ack *extack)
8878 {
8879         struct netdev_notifier_pre_changeaddr_info info = {
8880                 .info.dev = dev,
8881                 .info.extack = extack,
8882                 .dev_addr = addr,
8883         };
8884         int rc;
8885
8886         rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8887         return notifier_to_errno(rc);
8888 }
8889 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8890
8891 /**
8892  *      dev_set_mac_address - Change Media Access Control Address
8893  *      @dev: device
8894  *      @sa: new address
8895  *      @extack: netlink extended ack
8896  *
8897  *      Change the hardware (MAC) address of the device
8898  */
8899 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8900                         struct netlink_ext_ack *extack)
8901 {
8902         const struct net_device_ops *ops = dev->netdev_ops;
8903         int err;
8904
8905         if (!ops->ndo_set_mac_address)
8906                 return -EOPNOTSUPP;
8907         if (sa->sa_family != dev->type)
8908                 return -EINVAL;
8909         if (!netif_device_present(dev))
8910                 return -ENODEV;
8911         err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8912         if (err)
8913                 return err;
8914         err = ops->ndo_set_mac_address(dev, sa);
8915         if (err)
8916                 return err;
8917         dev->addr_assign_type = NET_ADDR_SET;
8918         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8919         add_device_randomness(dev->dev_addr, dev->addr_len);
8920         return 0;
8921 }
8922 EXPORT_SYMBOL(dev_set_mac_address);
8923
8924 static DECLARE_RWSEM(dev_addr_sem);
8925
8926 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8927                              struct netlink_ext_ack *extack)
8928 {
8929         int ret;
8930
8931         down_write(&dev_addr_sem);
8932         ret = dev_set_mac_address(dev, sa, extack);
8933         up_write(&dev_addr_sem);
8934         return ret;
8935 }
8936 EXPORT_SYMBOL(dev_set_mac_address_user);
8937
8938 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8939 {
8940         size_t size = sizeof(sa->sa_data);
8941         struct net_device *dev;
8942         int ret = 0;
8943
8944         down_read(&dev_addr_sem);
8945         rcu_read_lock();
8946
8947         dev = dev_get_by_name_rcu(net, dev_name);
8948         if (!dev) {
8949                 ret = -ENODEV;
8950                 goto unlock;
8951         }
8952         if (!dev->addr_len)
8953                 memset(sa->sa_data, 0, size);
8954         else
8955                 memcpy(sa->sa_data, dev->dev_addr,
8956                        min_t(size_t, size, dev->addr_len));
8957         sa->sa_family = dev->type;
8958
8959 unlock:
8960         rcu_read_unlock();
8961         up_read(&dev_addr_sem);
8962         return ret;
8963 }
8964 EXPORT_SYMBOL(dev_get_mac_address);
8965
8966 /**
8967  *      dev_change_carrier - Change device carrier
8968  *      @dev: device
8969  *      @new_carrier: new value
8970  *
8971  *      Change device carrier
8972  */
8973 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8974 {
8975         const struct net_device_ops *ops = dev->netdev_ops;
8976
8977         if (!ops->ndo_change_carrier)
8978                 return -EOPNOTSUPP;
8979         if (!netif_device_present(dev))
8980                 return -ENODEV;
8981         return ops->ndo_change_carrier(dev, new_carrier);
8982 }
8983 EXPORT_SYMBOL(dev_change_carrier);
8984
8985 /**
8986  *      dev_get_phys_port_id - Get device physical port ID
8987  *      @dev: device
8988  *      @ppid: port ID
8989  *
8990  *      Get device physical port ID
8991  */
8992 int dev_get_phys_port_id(struct net_device *dev,
8993                          struct netdev_phys_item_id *ppid)
8994 {
8995         const struct net_device_ops *ops = dev->netdev_ops;
8996
8997         if (!ops->ndo_get_phys_port_id)
8998                 return -EOPNOTSUPP;
8999         return ops->ndo_get_phys_port_id(dev, ppid);
9000 }
9001 EXPORT_SYMBOL(dev_get_phys_port_id);
9002
9003 /**
9004  *      dev_get_phys_port_name - Get device physical port name
9005  *      @dev: device
9006  *      @name: port name
9007  *      @len: limit of bytes to copy to name
9008  *
9009  *      Get device physical port name
9010  */
9011 int dev_get_phys_port_name(struct net_device *dev,
9012                            char *name, size_t len)
9013 {
9014         const struct net_device_ops *ops = dev->netdev_ops;
9015         int err;
9016
9017         if (ops->ndo_get_phys_port_name) {
9018                 err = ops->ndo_get_phys_port_name(dev, name, len);
9019                 if (err != -EOPNOTSUPP)
9020                         return err;
9021         }
9022         return devlink_compat_phys_port_name_get(dev, name, len);
9023 }
9024 EXPORT_SYMBOL(dev_get_phys_port_name);
9025
9026 /**
9027  *      dev_get_port_parent_id - Get the device's port parent identifier
9028  *      @dev: network device
9029  *      @ppid: pointer to a storage for the port's parent identifier
9030  *      @recurse: allow/disallow recursion to lower devices
9031  *
9032  *      Get the devices's port parent identifier
9033  */
9034 int dev_get_port_parent_id(struct net_device *dev,
9035                            struct netdev_phys_item_id *ppid,
9036                            bool recurse)
9037 {
9038         const struct net_device_ops *ops = dev->netdev_ops;
9039         struct netdev_phys_item_id first = { };
9040         struct net_device *lower_dev;
9041         struct list_head *iter;
9042         int err;
9043
9044         if (ops->ndo_get_port_parent_id) {
9045                 err = ops->ndo_get_port_parent_id(dev, ppid);
9046                 if (err != -EOPNOTSUPP)
9047                         return err;
9048         }
9049
9050         err = devlink_compat_switch_id_get(dev, ppid);
9051         if (!err || err != -EOPNOTSUPP)
9052                 return err;
9053
9054         if (!recurse)
9055                 return -EOPNOTSUPP;
9056
9057         netdev_for_each_lower_dev(dev, lower_dev, iter) {
9058                 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
9059                 if (err)
9060                         break;
9061                 if (!first.id_len)
9062                         first = *ppid;
9063                 else if (memcmp(&first, ppid, sizeof(*ppid)))
9064                         return -EOPNOTSUPP;
9065         }
9066
9067         return err;
9068 }
9069 EXPORT_SYMBOL(dev_get_port_parent_id);
9070
9071 /**
9072  *      netdev_port_same_parent_id - Indicate if two network devices have
9073  *      the same port parent identifier
9074  *      @a: first network device
9075  *      @b: second network device
9076  */
9077 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9078 {
9079         struct netdev_phys_item_id a_id = { };
9080         struct netdev_phys_item_id b_id = { };
9081
9082         if (dev_get_port_parent_id(a, &a_id, true) ||
9083             dev_get_port_parent_id(b, &b_id, true))
9084                 return false;
9085
9086         return netdev_phys_item_id_same(&a_id, &b_id);
9087 }
9088 EXPORT_SYMBOL(netdev_port_same_parent_id);
9089
9090 /**
9091  *      dev_change_proto_down - update protocol port state information
9092  *      @dev: device
9093  *      @proto_down: new value
9094  *
9095  *      This info can be used by switch drivers to set the phys state of the
9096  *      port.
9097  */
9098 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9099 {
9100         const struct net_device_ops *ops = dev->netdev_ops;
9101
9102         if (!ops->ndo_change_proto_down)
9103                 return -EOPNOTSUPP;
9104         if (!netif_device_present(dev))
9105                 return -ENODEV;
9106         return ops->ndo_change_proto_down(dev, proto_down);
9107 }
9108 EXPORT_SYMBOL(dev_change_proto_down);
9109
9110 /**
9111  *      dev_change_proto_down_generic - generic implementation for
9112  *      ndo_change_proto_down that sets carrier according to
9113  *      proto_down.
9114  *
9115  *      @dev: device
9116  *      @proto_down: new value
9117  */
9118 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
9119 {
9120         if (proto_down)
9121                 netif_carrier_off(dev);
9122         else
9123                 netif_carrier_on(dev);
9124         dev->proto_down = proto_down;
9125         return 0;
9126 }
9127 EXPORT_SYMBOL(dev_change_proto_down_generic);
9128
9129 /**
9130  *      dev_change_proto_down_reason - proto down reason
9131  *
9132  *      @dev: device
9133  *      @mask: proto down mask
9134  *      @value: proto down value
9135  */
9136 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9137                                   u32 value)
9138 {
9139         int b;
9140
9141         if (!mask) {
9142                 dev->proto_down_reason = value;
9143         } else {
9144                 for_each_set_bit(b, &mask, 32) {
9145                         if (value & (1 << b))
9146                                 dev->proto_down_reason |= BIT(b);
9147                         else
9148                                 dev->proto_down_reason &= ~BIT(b);
9149                 }
9150         }
9151 }
9152 EXPORT_SYMBOL(dev_change_proto_down_reason);
9153
9154 struct bpf_xdp_link {
9155         struct bpf_link link;
9156         struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9157         int flags;
9158 };
9159
9160 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9161 {
9162         if (flags & XDP_FLAGS_HW_MODE)
9163                 return XDP_MODE_HW;
9164         if (flags & XDP_FLAGS_DRV_MODE)
9165                 return XDP_MODE_DRV;
9166         if (flags & XDP_FLAGS_SKB_MODE)
9167                 return XDP_MODE_SKB;
9168         return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9169 }
9170
9171 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9172 {
9173         switch (mode) {
9174         case XDP_MODE_SKB:
9175                 return generic_xdp_install;
9176         case XDP_MODE_DRV:
9177         case XDP_MODE_HW:
9178                 return dev->netdev_ops->ndo_bpf;
9179         default:
9180                 return NULL;
9181         }
9182 }
9183
9184 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9185                                          enum bpf_xdp_mode mode)
9186 {
9187         return dev->xdp_state[mode].link;
9188 }
9189
9190 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9191                                      enum bpf_xdp_mode mode)
9192 {
9193         struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9194
9195         if (link)
9196                 return link->link.prog;
9197         return dev->xdp_state[mode].prog;
9198 }
9199
9200 static u8 dev_xdp_prog_count(struct net_device *dev)
9201 {
9202         u8 count = 0;
9203         int i;
9204
9205         for (i = 0; i < __MAX_XDP_MODE; i++)
9206                 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9207                         count++;
9208         return count;
9209 }
9210
9211 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9212 {
9213         struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9214
9215         return prog ? prog->aux->id : 0;
9216 }
9217
9218 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9219                              struct bpf_xdp_link *link)
9220 {
9221         dev->xdp_state[mode].link = link;
9222         dev->xdp_state[mode].prog = NULL;
9223 }
9224
9225 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9226                              struct bpf_prog *prog)
9227 {
9228         dev->xdp_state[mode].link = NULL;
9229         dev->xdp_state[mode].prog = prog;
9230 }
9231
9232 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9233                            bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9234                            u32 flags, struct bpf_prog *prog)
9235 {
9236         struct netdev_bpf xdp;
9237         int err;
9238
9239         memset(&xdp, 0, sizeof(xdp));
9240         xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9241         xdp.extack = extack;
9242         xdp.flags = flags;
9243         xdp.prog = prog;
9244
9245         /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9246          * "moved" into driver), so they don't increment it on their own, but
9247          * they do decrement refcnt when program is detached or replaced.
9248          * Given net_device also owns link/prog, we need to bump refcnt here
9249          * to prevent drivers from underflowing it.
9250          */
9251         if (prog)
9252                 bpf_prog_inc(prog);
9253         err = bpf_op(dev, &xdp);
9254         if (err) {
9255                 if (prog)
9256                         bpf_prog_put(prog);
9257                 return err;
9258         }
9259
9260         if (mode != XDP_MODE_HW)
9261                 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9262
9263         return 0;
9264 }
9265
9266 static void dev_xdp_uninstall(struct net_device *dev)
9267 {
9268         struct bpf_xdp_link *link;
9269         struct bpf_prog *prog;
9270         enum bpf_xdp_mode mode;
9271         bpf_op_t bpf_op;
9272
9273         ASSERT_RTNL();
9274
9275         for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9276                 prog = dev_xdp_prog(dev, mode);
9277                 if (!prog)
9278                         continue;
9279
9280                 bpf_op = dev_xdp_bpf_op(dev, mode);
9281                 if (!bpf_op)
9282                         continue;
9283
9284                 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9285
9286                 /* auto-detach link from net device */
9287                 link = dev_xdp_link(dev, mode);
9288                 if (link)
9289                         link->dev = NULL;
9290                 else
9291                         bpf_prog_put(prog);
9292
9293                 dev_xdp_set_link(dev, mode, NULL);
9294         }
9295 }
9296
9297 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9298                           struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9299                           struct bpf_prog *old_prog, u32 flags)
9300 {
9301         unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9302         struct bpf_prog *cur_prog;
9303         enum bpf_xdp_mode mode;
9304         bpf_op_t bpf_op;
9305         int err;
9306
9307         ASSERT_RTNL();
9308
9309         /* either link or prog attachment, never both */
9310         if (link && (new_prog || old_prog))
9311                 return -EINVAL;
9312         /* link supports only XDP mode flags */
9313         if (link && (flags & ~XDP_FLAGS_MODES)) {
9314                 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9315                 return -EINVAL;
9316         }
9317         /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9318         if (num_modes > 1) {
9319                 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9320                 return -EINVAL;
9321         }
9322         /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9323         if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9324                 NL_SET_ERR_MSG(extack,
9325                                "More than one program loaded, unset mode is ambiguous");
9326                 return -EINVAL;
9327         }
9328         /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9329         if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9330                 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9331                 return -EINVAL;
9332         }
9333
9334         mode = dev_xdp_mode(dev, flags);
9335         /* can't replace attached link */
9336         if (dev_xdp_link(dev, mode)) {
9337                 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9338                 return -EBUSY;
9339         }
9340
9341         cur_prog = dev_xdp_prog(dev, mode);
9342         /* can't replace attached prog with link */
9343         if (link && cur_prog) {
9344                 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9345                 return -EBUSY;
9346         }
9347         if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9348                 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9349                 return -EEXIST;
9350         }
9351
9352         /* put effective new program into new_prog */
9353         if (link)
9354                 new_prog = link->link.prog;
9355
9356         if (new_prog) {
9357                 bool offload = mode == XDP_MODE_HW;
9358                 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9359                                                ? XDP_MODE_DRV : XDP_MODE_SKB;
9360
9361                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9362                         NL_SET_ERR_MSG(extack, "XDP program already attached");
9363                         return -EBUSY;
9364                 }
9365                 if (!offload && dev_xdp_prog(dev, other_mode)) {
9366                         NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9367                         return -EEXIST;
9368                 }
9369                 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9370                         NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9371                         return -EINVAL;
9372                 }
9373                 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9374                         NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9375                         return -EINVAL;
9376                 }
9377                 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9378                         NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9379                         return -EINVAL;
9380                 }
9381         }
9382
9383         /* don't call drivers if the effective program didn't change */
9384         if (new_prog != cur_prog) {
9385                 bpf_op = dev_xdp_bpf_op(dev, mode);
9386                 if (!bpf_op) {
9387                         NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9388                         return -EOPNOTSUPP;
9389                 }
9390
9391                 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9392                 if (err)
9393                         return err;
9394         }
9395
9396         if (link)
9397                 dev_xdp_set_link(dev, mode, link);
9398         else
9399                 dev_xdp_set_prog(dev, mode, new_prog);
9400         if (cur_prog)
9401                 bpf_prog_put(cur_prog);
9402
9403         return 0;
9404 }
9405
9406 static int dev_xdp_attach_link(struct net_device *dev,
9407                                struct netlink_ext_ack *extack,
9408                                struct bpf_xdp_link *link)
9409 {
9410         return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9411 }
9412
9413 static int dev_xdp_detach_link(struct net_device *dev,
9414                                struct netlink_ext_ack *extack,
9415                                struct bpf_xdp_link *link)
9416 {
9417         enum bpf_xdp_mode mode;
9418         bpf_op_t bpf_op;
9419
9420         ASSERT_RTNL();
9421
9422         mode = dev_xdp_mode(dev, link->flags);
9423         if (dev_xdp_link(dev, mode) != link)
9424                 return -EINVAL;
9425
9426         bpf_op = dev_xdp_bpf_op(dev, mode);
9427         WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9428         dev_xdp_set_link(dev, mode, NULL);
9429         return 0;
9430 }
9431
9432 static void bpf_xdp_link_release(struct bpf_link *link)
9433 {
9434         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9435
9436         rtnl_lock();
9437
9438         /* if racing with net_device's tear down, xdp_link->dev might be
9439          * already NULL, in which case link was already auto-detached
9440          */
9441         if (xdp_link->dev) {
9442                 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9443                 xdp_link->dev = NULL;
9444         }
9445
9446         rtnl_unlock();
9447 }
9448
9449 static int bpf_xdp_link_detach(struct bpf_link *link)
9450 {
9451         bpf_xdp_link_release(link);
9452         return 0;
9453 }
9454
9455 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9456 {
9457         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9458
9459         kfree(xdp_link);
9460 }
9461
9462 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9463                                      struct seq_file *seq)
9464 {
9465         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9466         u32 ifindex = 0;
9467
9468         rtnl_lock();
9469         if (xdp_link->dev)
9470                 ifindex = xdp_link->dev->ifindex;
9471         rtnl_unlock();
9472
9473         seq_printf(seq, "ifindex:\t%u\n", ifindex);
9474 }
9475
9476 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9477                                        struct bpf_link_info *info)
9478 {
9479         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9480         u32 ifindex = 0;
9481
9482         rtnl_lock();
9483         if (xdp_link->dev)
9484                 ifindex = xdp_link->dev->ifindex;
9485         rtnl_unlock();
9486
9487         info->xdp.ifindex = ifindex;
9488         return 0;
9489 }
9490
9491 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9492                                struct bpf_prog *old_prog)
9493 {
9494         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9495         enum bpf_xdp_mode mode;
9496         bpf_op_t bpf_op;
9497         int err = 0;
9498
9499         rtnl_lock();
9500
9501         /* link might have been auto-released already, so fail */
9502         if (!xdp_link->dev) {
9503                 err = -ENOLINK;
9504                 goto out_unlock;
9505         }
9506
9507         if (old_prog && link->prog != old_prog) {
9508                 err = -EPERM;
9509                 goto out_unlock;
9510         }
9511         old_prog = link->prog;
9512         if (old_prog == new_prog) {
9513                 /* no-op, don't disturb drivers */
9514                 bpf_prog_put(new_prog);
9515                 goto out_unlock;
9516         }
9517
9518         mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9519         bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9520         err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9521                               xdp_link->flags, new_prog);
9522         if (err)
9523                 goto out_unlock;
9524
9525         old_prog = xchg(&link->prog, new_prog);
9526         bpf_prog_put(old_prog);
9527
9528 out_unlock:
9529         rtnl_unlock();
9530         return err;
9531 }
9532
9533 static const struct bpf_link_ops bpf_xdp_link_lops = {
9534         .release = bpf_xdp_link_release,
9535         .dealloc = bpf_xdp_link_dealloc,
9536         .detach = bpf_xdp_link_detach,
9537         .show_fdinfo = bpf_xdp_link_show_fdinfo,
9538         .fill_link_info = bpf_xdp_link_fill_link_info,
9539         .update_prog = bpf_xdp_link_update,
9540 };
9541
9542 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9543 {
9544         struct net *net = current->nsproxy->net_ns;
9545         struct bpf_link_primer link_primer;
9546         struct bpf_xdp_link *link;
9547         struct net_device *dev;
9548         int err, fd;
9549
9550         dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9551         if (!dev)
9552                 return -EINVAL;
9553
9554         link = kzalloc(sizeof(*link), GFP_USER);
9555         if (!link) {
9556                 err = -ENOMEM;
9557                 goto out_put_dev;
9558         }
9559
9560         bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9561         link->dev = dev;
9562         link->flags = attr->link_create.flags;
9563
9564         err = bpf_link_prime(&link->link, &link_primer);
9565         if (err) {
9566                 kfree(link);
9567                 goto out_put_dev;
9568         }
9569
9570         rtnl_lock();
9571         err = dev_xdp_attach_link(dev, NULL, link);
9572         rtnl_unlock();
9573
9574         if (err) {
9575                 bpf_link_cleanup(&link_primer);
9576                 goto out_put_dev;
9577         }
9578
9579         fd = bpf_link_settle(&link_primer);
9580         /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9581         dev_put(dev);
9582         return fd;
9583
9584 out_put_dev:
9585         dev_put(dev);
9586         return err;
9587 }
9588
9589 /**
9590  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
9591  *      @dev: device
9592  *      @extack: netlink extended ack
9593  *      @fd: new program fd or negative value to clear
9594  *      @expected_fd: old program fd that userspace expects to replace or clear
9595  *      @flags: xdp-related flags
9596  *
9597  *      Set or clear a bpf program for a device
9598  */
9599 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9600                       int fd, int expected_fd, u32 flags)
9601 {
9602         enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9603         struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9604         int err;
9605
9606         ASSERT_RTNL();
9607
9608         if (fd >= 0) {
9609                 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9610                                                  mode != XDP_MODE_SKB);
9611                 if (IS_ERR(new_prog))
9612                         return PTR_ERR(new_prog);
9613         }
9614
9615         if (expected_fd >= 0) {
9616                 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9617                                                  mode != XDP_MODE_SKB);
9618                 if (IS_ERR(old_prog)) {
9619                         err = PTR_ERR(old_prog);
9620                         old_prog = NULL;
9621                         goto err_out;
9622                 }
9623         }
9624
9625         err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9626
9627 err_out:
9628         if (err && new_prog)
9629                 bpf_prog_put(new_prog);
9630         if (old_prog)
9631                 bpf_prog_put(old_prog);
9632         return err;
9633 }
9634
9635 /**
9636  *      dev_new_index   -       allocate an ifindex
9637  *      @net: the applicable net namespace
9638  *
9639  *      Returns a suitable unique value for a new device interface
9640  *      number.  The caller must hold the rtnl semaphore or the
9641  *      dev_base_lock to be sure it remains unique.
9642  */
9643 static int dev_new_index(struct net *net)
9644 {
9645         int ifindex = net->ifindex;
9646
9647         for (;;) {
9648                 if (++ifindex <= 0)
9649                         ifindex = 1;
9650                 if (!__dev_get_by_index(net, ifindex))
9651                         return net->ifindex = ifindex;
9652         }
9653 }
9654
9655 /* Delayed registration/unregisteration */
9656 static LIST_HEAD(net_todo_list);
9657 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9658
9659 static void net_set_todo(struct net_device *dev)
9660 {
9661         list_add_tail(&dev->todo_list, &net_todo_list);
9662         dev_net(dev)->dev_unreg_count++;
9663 }
9664
9665 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9666         struct net_device *upper, netdev_features_t features)
9667 {
9668         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9669         netdev_features_t feature;
9670         int feature_bit;
9671
9672         for_each_netdev_feature(upper_disables, feature_bit) {
9673                 feature = __NETIF_F_BIT(feature_bit);
9674                 if (!(upper->wanted_features & feature)
9675                     && (features & feature)) {
9676                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9677                                    &feature, upper->name);
9678                         features &= ~feature;
9679                 }
9680         }
9681
9682         return features;
9683 }
9684
9685 static void netdev_sync_lower_features(struct net_device *upper,
9686         struct net_device *lower, netdev_features_t features)
9687 {
9688         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9689         netdev_features_t feature;
9690         int feature_bit;
9691
9692         for_each_netdev_feature(upper_disables, feature_bit) {
9693                 feature = __NETIF_F_BIT(feature_bit);
9694                 if (!(features & feature) && (lower->features & feature)) {
9695                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9696                                    &feature, lower->name);
9697                         lower->wanted_features &= ~feature;
9698                         __netdev_update_features(lower);
9699
9700                         if (unlikely(lower->features & feature))
9701                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9702                                             &feature, lower->name);
9703                         else
9704                                 netdev_features_change(lower);
9705                 }
9706         }
9707 }
9708
9709 static netdev_features_t netdev_fix_features(struct net_device *dev,
9710         netdev_features_t features)
9711 {
9712         /* Fix illegal checksum combinations */
9713         if ((features & NETIF_F_HW_CSUM) &&
9714             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9715                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9716                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9717         }
9718
9719         /* TSO requires that SG is present as well. */
9720         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9721                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9722                 features &= ~NETIF_F_ALL_TSO;
9723         }
9724
9725         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9726                                         !(features & NETIF_F_IP_CSUM)) {
9727                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9728                 features &= ~NETIF_F_TSO;
9729                 features &= ~NETIF_F_TSO_ECN;
9730         }
9731
9732         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9733                                          !(features & NETIF_F_IPV6_CSUM)) {
9734                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9735                 features &= ~NETIF_F_TSO6;
9736         }
9737
9738         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9739         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9740                 features &= ~NETIF_F_TSO_MANGLEID;
9741
9742         /* TSO ECN requires that TSO is present as well. */
9743         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9744                 features &= ~NETIF_F_TSO_ECN;
9745
9746         /* Software GSO depends on SG. */
9747         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9748                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9749                 features &= ~NETIF_F_GSO;
9750         }
9751
9752         /* GSO partial features require GSO partial be set */
9753         if ((features & dev->gso_partial_features) &&
9754             !(features & NETIF_F_GSO_PARTIAL)) {
9755                 netdev_dbg(dev,
9756                            "Dropping partially supported GSO features since no GSO partial.\n");
9757                 features &= ~dev->gso_partial_features;
9758         }
9759
9760         if (!(features & NETIF_F_RXCSUM)) {
9761                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9762                  * successfully merged by hardware must also have the
9763                  * checksum verified by hardware.  If the user does not
9764                  * want to enable RXCSUM, logically, we should disable GRO_HW.
9765                  */
9766                 if (features & NETIF_F_GRO_HW) {
9767                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9768                         features &= ~NETIF_F_GRO_HW;
9769                 }
9770         }
9771
9772         /* LRO/HW-GRO features cannot be combined with RX-FCS */
9773         if (features & NETIF_F_RXFCS) {
9774                 if (features & NETIF_F_LRO) {
9775                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9776                         features &= ~NETIF_F_LRO;
9777                 }
9778
9779                 if (features & NETIF_F_GRO_HW) {
9780                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9781                         features &= ~NETIF_F_GRO_HW;
9782                 }
9783         }
9784
9785         if (features & NETIF_F_HW_TLS_TX) {
9786                 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9787                         (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9788                 bool hw_csum = features & NETIF_F_HW_CSUM;
9789
9790                 if (!ip_csum && !hw_csum) {
9791                         netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9792                         features &= ~NETIF_F_HW_TLS_TX;
9793                 }
9794         }
9795
9796         if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9797                 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9798                 features &= ~NETIF_F_HW_TLS_RX;
9799         }
9800
9801         return features;
9802 }
9803
9804 int __netdev_update_features(struct net_device *dev)
9805 {
9806         struct net_device *upper, *lower;
9807         netdev_features_t features;
9808         struct list_head *iter;
9809         int err = -1;
9810
9811         ASSERT_RTNL();
9812
9813         features = netdev_get_wanted_features(dev);
9814
9815         if (dev->netdev_ops->ndo_fix_features)
9816                 features = dev->netdev_ops->ndo_fix_features(dev, features);
9817
9818         /* driver might be less strict about feature dependencies */
9819         features = netdev_fix_features(dev, features);
9820
9821         /* some features can't be enabled if they're off on an upper device */
9822         netdev_for_each_upper_dev_rcu(dev, upper, iter)
9823                 features = netdev_sync_upper_features(dev, upper, features);
9824
9825         if (dev->features == features)
9826                 goto sync_lower;
9827
9828         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9829                 &dev->features, &features);
9830
9831         if (dev->netdev_ops->ndo_set_features)
9832                 err = dev->netdev_ops->ndo_set_features(dev, features);
9833         else
9834                 err = 0;
9835
9836         if (unlikely(err < 0)) {
9837                 netdev_err(dev,
9838                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
9839                         err, &features, &dev->features);
9840                 /* return non-0 since some features might have changed and
9841                  * it's better to fire a spurious notification than miss it
9842                  */
9843                 return -1;
9844         }
9845
9846 sync_lower:
9847         /* some features must be disabled on lower devices when disabled
9848          * on an upper device (think: bonding master or bridge)
9849          */
9850         netdev_for_each_lower_dev(dev, lower, iter)
9851                 netdev_sync_lower_features(dev, lower, features);
9852
9853         if (!err) {
9854                 netdev_features_t diff = features ^ dev->features;
9855
9856                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9857                         /* udp_tunnel_{get,drop}_rx_info both need
9858                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9859                          * device, or they won't do anything.
9860                          * Thus we need to update dev->features
9861                          * *before* calling udp_tunnel_get_rx_info,
9862                          * but *after* calling udp_tunnel_drop_rx_info.
9863                          */
9864                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9865                                 dev->features = features;
9866                                 udp_tunnel_get_rx_info(dev);
9867                         } else {
9868                                 udp_tunnel_drop_rx_info(dev);
9869                         }
9870                 }
9871
9872                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9873                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9874                                 dev->features = features;
9875                                 err |= vlan_get_rx_ctag_filter_info(dev);
9876                         } else {
9877                                 vlan_drop_rx_ctag_filter_info(dev);
9878                         }
9879                 }
9880
9881                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9882                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9883                                 dev->features = features;
9884                                 err |= vlan_get_rx_stag_filter_info(dev);
9885                         } else {
9886                                 vlan_drop_rx_stag_filter_info(dev);
9887                         }
9888                 }
9889
9890                 dev->features = features;
9891         }
9892
9893         return err < 0 ? 0 : 1;
9894 }
9895
9896 /**
9897  *      netdev_update_features - recalculate device features
9898  *      @dev: the device to check
9899  *
9900  *      Recalculate dev->features set and send notifications if it
9901  *      has changed. Should be called after driver or hardware dependent
9902  *      conditions might have changed that influence the features.
9903  */
9904 void netdev_update_features(struct net_device *dev)
9905 {
9906         if (__netdev_update_features(dev))
9907                 netdev_features_change(dev);
9908 }
9909 EXPORT_SYMBOL(netdev_update_features);
9910
9911 /**
9912  *      netdev_change_features - recalculate device features
9913  *      @dev: the device to check
9914  *
9915  *      Recalculate dev->features set and send notifications even
9916  *      if they have not changed. Should be called instead of
9917  *      netdev_update_features() if also dev->vlan_features might
9918  *      have changed to allow the changes to be propagated to stacked
9919  *      VLAN devices.
9920  */
9921 void netdev_change_features(struct net_device *dev)
9922 {
9923         __netdev_update_features(dev);
9924         netdev_features_change(dev);
9925 }
9926 EXPORT_SYMBOL(netdev_change_features);
9927
9928 /**
9929  *      netif_stacked_transfer_operstate -      transfer operstate
9930  *      @rootdev: the root or lower level device to transfer state from
9931  *      @dev: the device to transfer operstate to
9932  *
9933  *      Transfer operational state from root to device. This is normally
9934  *      called when a stacking relationship exists between the root
9935  *      device and the device(a leaf device).
9936  */
9937 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9938                                         struct net_device *dev)
9939 {
9940         if (rootdev->operstate == IF_OPER_DORMANT)
9941                 netif_dormant_on(dev);
9942         else
9943                 netif_dormant_off(dev);
9944
9945         if (rootdev->operstate == IF_OPER_TESTING)
9946                 netif_testing_on(dev);
9947         else
9948                 netif_testing_off(dev);
9949
9950         if (netif_carrier_ok(rootdev))
9951                 netif_carrier_on(dev);
9952         else
9953                 netif_carrier_off(dev);
9954 }
9955 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9956
9957 static int netif_alloc_rx_queues(struct net_device *dev)
9958 {
9959         unsigned int i, count = dev->num_rx_queues;
9960         struct netdev_rx_queue *rx;
9961         size_t sz = count * sizeof(*rx);
9962         int err = 0;
9963
9964         BUG_ON(count < 1);
9965
9966         rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9967         if (!rx)
9968                 return -ENOMEM;
9969
9970         dev->_rx = rx;
9971
9972         for (i = 0; i < count; i++) {
9973                 rx[i].dev = dev;
9974
9975                 /* XDP RX-queue setup */
9976                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9977                 if (err < 0)
9978                         goto err_rxq_info;
9979         }
9980         return 0;
9981
9982 err_rxq_info:
9983         /* Rollback successful reg's and free other resources */
9984         while (i--)
9985                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9986         kvfree(dev->_rx);
9987         dev->_rx = NULL;
9988         return err;
9989 }
9990
9991 static void netif_free_rx_queues(struct net_device *dev)
9992 {
9993         unsigned int i, count = dev->num_rx_queues;
9994
9995         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9996         if (!dev->_rx)
9997                 return;
9998
9999         for (i = 0; i < count; i++)
10000                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10001
10002         kvfree(dev->_rx);
10003 }
10004
10005 static void netdev_init_one_queue(struct net_device *dev,
10006                                   struct netdev_queue *queue, void *_unused)
10007 {
10008         /* Initialize queue lock */
10009         spin_lock_init(&queue->_xmit_lock);
10010         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10011         queue->xmit_lock_owner = -1;
10012         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10013         queue->dev = dev;
10014 #ifdef CONFIG_BQL
10015         dql_init(&queue->dql, HZ);
10016 #endif
10017 }
10018
10019 static void netif_free_tx_queues(struct net_device *dev)
10020 {
10021         kvfree(dev->_tx);
10022 }
10023
10024 static int netif_alloc_netdev_queues(struct net_device *dev)
10025 {
10026         unsigned int count = dev->num_tx_queues;
10027         struct netdev_queue *tx;
10028         size_t sz = count * sizeof(*tx);
10029
10030         if (count < 1 || count > 0xffff)
10031                 return -EINVAL;
10032
10033         tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10034         if (!tx)
10035                 return -ENOMEM;
10036
10037         dev->_tx = tx;
10038
10039         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10040         spin_lock_init(&dev->tx_global_lock);
10041
10042         return 0;
10043 }
10044
10045 void netif_tx_stop_all_queues(struct net_device *dev)
10046 {
10047         unsigned int i;
10048
10049         for (i = 0; i < dev->num_tx_queues; i++) {
10050                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10051
10052                 netif_tx_stop_queue(txq);
10053         }
10054 }
10055 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10056
10057 /**
10058  *      register_netdevice      - register a network device
10059  *      @dev: device to register
10060  *
10061  *      Take a completed network device structure and add it to the kernel
10062  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10063  *      chain. 0 is returned on success. A negative errno code is returned
10064  *      on a failure to set up the device, or if the name is a duplicate.
10065  *
10066  *      Callers must hold the rtnl semaphore. You may want
10067  *      register_netdev() instead of this.
10068  *
10069  *      BUGS:
10070  *      The locking appears insufficient to guarantee two parallel registers
10071  *      will not get the same name.
10072  */
10073
10074 int register_netdevice(struct net_device *dev)
10075 {
10076         int ret;
10077         struct net *net = dev_net(dev);
10078
10079         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10080                      NETDEV_FEATURE_COUNT);
10081         BUG_ON(dev_boot_phase);
10082         ASSERT_RTNL();
10083
10084         might_sleep();
10085
10086         /* When net_device's are persistent, this will be fatal. */
10087         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10088         BUG_ON(!net);
10089
10090         ret = ethtool_check_ops(dev->ethtool_ops);
10091         if (ret)
10092                 return ret;
10093
10094         spin_lock_init(&dev->addr_list_lock);
10095         netdev_set_addr_lockdep_class(dev);
10096
10097         ret = dev_get_valid_name(net, dev, dev->name);
10098         if (ret < 0)
10099                 goto out;
10100
10101         ret = -ENOMEM;
10102         dev->name_node = netdev_name_node_head_alloc(dev);
10103         if (!dev->name_node)
10104                 goto out;
10105
10106         /* Init, if this function is available */
10107         if (dev->netdev_ops->ndo_init) {
10108                 ret = dev->netdev_ops->ndo_init(dev);
10109                 if (ret) {
10110                         if (ret > 0)
10111                                 ret = -EIO;
10112                         goto err_free_name;
10113                 }
10114         }
10115
10116         if (((dev->hw_features | dev->features) &
10117              NETIF_F_HW_VLAN_CTAG_FILTER) &&
10118             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10119              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10120                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10121                 ret = -EINVAL;
10122                 goto err_uninit;
10123         }
10124
10125         ret = -EBUSY;
10126         if (!dev->ifindex)
10127                 dev->ifindex = dev_new_index(net);
10128         else if (__dev_get_by_index(net, dev->ifindex))
10129                 goto err_uninit;
10130
10131         /* Transfer changeable features to wanted_features and enable
10132          * software offloads (GSO and GRO).
10133          */
10134         dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10135         dev->features |= NETIF_F_SOFT_FEATURES;
10136
10137         if (dev->udp_tunnel_nic_info) {
10138                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10139                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10140         }
10141
10142         dev->wanted_features = dev->features & dev->hw_features;
10143
10144         if (!(dev->flags & IFF_LOOPBACK))
10145                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10146
10147         /* If IPv4 TCP segmentation offload is supported we should also
10148          * allow the device to enable segmenting the frame with the option
10149          * of ignoring a static IP ID value.  This doesn't enable the
10150          * feature itself but allows the user to enable it later.
10151          */
10152         if (dev->hw_features & NETIF_F_TSO)
10153                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10154         if (dev->vlan_features & NETIF_F_TSO)
10155                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10156         if (dev->mpls_features & NETIF_F_TSO)
10157                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10158         if (dev->hw_enc_features & NETIF_F_TSO)
10159                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10160
10161         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10162          */
10163         dev->vlan_features |= NETIF_F_HIGHDMA;
10164
10165         /* Make NETIF_F_SG inheritable to tunnel devices.
10166          */
10167         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10168
10169         /* Make NETIF_F_SG inheritable to MPLS.
10170          */
10171         dev->mpls_features |= NETIF_F_SG;
10172
10173         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10174         ret = notifier_to_errno(ret);
10175         if (ret)
10176                 goto err_uninit;
10177
10178         ret = netdev_register_kobject(dev);
10179         if (ret) {
10180                 dev->reg_state = NETREG_UNREGISTERED;
10181                 goto err_uninit;
10182         }
10183         dev->reg_state = NETREG_REGISTERED;
10184
10185         __netdev_update_features(dev);
10186
10187         /*
10188          *      Default initial state at registry is that the
10189          *      device is present.
10190          */
10191
10192         set_bit(__LINK_STATE_PRESENT, &dev->state);
10193
10194         linkwatch_init_dev(dev);
10195
10196         dev_init_scheduler(dev);
10197         dev_hold(dev);
10198         list_netdevice(dev);
10199         add_device_randomness(dev->dev_addr, dev->addr_len);
10200
10201         /* If the device has permanent device address, driver should
10202          * set dev_addr and also addr_assign_type should be set to
10203          * NET_ADDR_PERM (default value).
10204          */
10205         if (dev->addr_assign_type == NET_ADDR_PERM)
10206                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10207
10208         /* Notify protocols, that a new device appeared. */
10209         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10210         ret = notifier_to_errno(ret);
10211         if (ret) {
10212                 /* Expect explicit free_netdev() on failure */
10213                 dev->needs_free_netdev = false;
10214                 unregister_netdevice_queue(dev, NULL);
10215                 goto out;
10216         }
10217         /*
10218          *      Prevent userspace races by waiting until the network
10219          *      device is fully setup before sending notifications.
10220          */
10221         if (!dev->rtnl_link_ops ||
10222             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10223                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10224
10225 out:
10226         return ret;
10227
10228 err_uninit:
10229         if (dev->netdev_ops->ndo_uninit)
10230                 dev->netdev_ops->ndo_uninit(dev);
10231         if (dev->priv_destructor)
10232                 dev->priv_destructor(dev);
10233 err_free_name:
10234         netdev_name_node_free(dev->name_node);
10235         goto out;
10236 }
10237 EXPORT_SYMBOL(register_netdevice);
10238
10239 /**
10240  *      init_dummy_netdev       - init a dummy network device for NAPI
10241  *      @dev: device to init
10242  *
10243  *      This takes a network device structure and initialize the minimum
10244  *      amount of fields so it can be used to schedule NAPI polls without
10245  *      registering a full blown interface. This is to be used by drivers
10246  *      that need to tie several hardware interfaces to a single NAPI
10247  *      poll scheduler due to HW limitations.
10248  */
10249 int init_dummy_netdev(struct net_device *dev)
10250 {
10251         /* Clear everything. Note we don't initialize spinlocks
10252          * are they aren't supposed to be taken by any of the
10253          * NAPI code and this dummy netdev is supposed to be
10254          * only ever used for NAPI polls
10255          */
10256         memset(dev, 0, sizeof(struct net_device));
10257
10258         /* make sure we BUG if trying to hit standard
10259          * register/unregister code path
10260          */
10261         dev->reg_state = NETREG_DUMMY;
10262
10263         /* NAPI wants this */
10264         INIT_LIST_HEAD(&dev->napi_list);
10265
10266         /* a dummy interface is started by default */
10267         set_bit(__LINK_STATE_PRESENT, &dev->state);
10268         set_bit(__LINK_STATE_START, &dev->state);
10269
10270         /* napi_busy_loop stats accounting wants this */
10271         dev_net_set(dev, &init_net);
10272
10273         /* Note : We dont allocate pcpu_refcnt for dummy devices,
10274          * because users of this 'device' dont need to change
10275          * its refcount.
10276          */
10277
10278         return 0;
10279 }
10280 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10281
10282
10283 /**
10284  *      register_netdev - register a network device
10285  *      @dev: device to register
10286  *
10287  *      Take a completed network device structure and add it to the kernel
10288  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10289  *      chain. 0 is returned on success. A negative errno code is returned
10290  *      on a failure to set up the device, or if the name is a duplicate.
10291  *
10292  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
10293  *      and expands the device name if you passed a format string to
10294  *      alloc_netdev.
10295  */
10296 int register_netdev(struct net_device *dev)
10297 {
10298         int err;
10299
10300         if (rtnl_lock_killable())
10301                 return -EINTR;
10302         err = register_netdevice(dev);
10303         rtnl_unlock();
10304         return err;
10305 }
10306 EXPORT_SYMBOL(register_netdev);
10307
10308 int netdev_refcnt_read(const struct net_device *dev)
10309 {
10310         int i, refcnt = 0;
10311
10312         for_each_possible_cpu(i)
10313                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10314         return refcnt;
10315 }
10316 EXPORT_SYMBOL(netdev_refcnt_read);
10317
10318 #define WAIT_REFS_MIN_MSECS 1
10319 #define WAIT_REFS_MAX_MSECS 250
10320 /**
10321  * netdev_wait_allrefs - wait until all references are gone.
10322  * @dev: target net_device
10323  *
10324  * This is called when unregistering network devices.
10325  *
10326  * Any protocol or device that holds a reference should register
10327  * for netdevice notification, and cleanup and put back the
10328  * reference if they receive an UNREGISTER event.
10329  * We can get stuck here if buggy protocols don't correctly
10330  * call dev_put.
10331  */
10332 static void netdev_wait_allrefs(struct net_device *dev)
10333 {
10334         unsigned long rebroadcast_time, warning_time;
10335         int wait = 0, refcnt;
10336
10337         linkwatch_forget_dev(dev);
10338
10339         rebroadcast_time = warning_time = jiffies;
10340         refcnt = netdev_refcnt_read(dev);
10341
10342         while (refcnt != 0) {
10343                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10344                         rtnl_lock();
10345
10346                         /* Rebroadcast unregister notification */
10347                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10348
10349                         __rtnl_unlock();
10350                         rcu_barrier();
10351                         rtnl_lock();
10352
10353                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10354                                      &dev->state)) {
10355                                 /* We must not have linkwatch events
10356                                  * pending on unregister. If this
10357                                  * happens, we simply run the queue
10358                                  * unscheduled, resulting in a noop
10359                                  * for this device.
10360                                  */
10361                                 linkwatch_run_queue();
10362                         }
10363
10364                         __rtnl_unlock();
10365
10366                         rebroadcast_time = jiffies;
10367                 }
10368
10369                 if (!wait) {
10370                         rcu_barrier();
10371                         wait = WAIT_REFS_MIN_MSECS;
10372                 } else {
10373                         msleep(wait);
10374                         wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10375                 }
10376
10377                 refcnt = netdev_refcnt_read(dev);
10378
10379                 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
10380                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10381                                  dev->name, refcnt);
10382                         warning_time = jiffies;
10383                 }
10384         }
10385 }
10386
10387 /* The sequence is:
10388  *
10389  *      rtnl_lock();
10390  *      ...
10391  *      register_netdevice(x1);
10392  *      register_netdevice(x2);
10393  *      ...
10394  *      unregister_netdevice(y1);
10395  *      unregister_netdevice(y2);
10396  *      ...
10397  *      rtnl_unlock();
10398  *      free_netdev(y1);
10399  *      free_netdev(y2);
10400  *
10401  * We are invoked by rtnl_unlock().
10402  * This allows us to deal with problems:
10403  * 1) We can delete sysfs objects which invoke hotplug
10404  *    without deadlocking with linkwatch via keventd.
10405  * 2) Since we run with the RTNL semaphore not held, we can sleep
10406  *    safely in order to wait for the netdev refcnt to drop to zero.
10407  *
10408  * We must not return until all unregister events added during
10409  * the interval the lock was held have been completed.
10410  */
10411 void netdev_run_todo(void)
10412 {
10413         struct list_head list;
10414 #ifdef CONFIG_LOCKDEP
10415         struct list_head unlink_list;
10416
10417         list_replace_init(&net_unlink_list, &unlink_list);
10418
10419         while (!list_empty(&unlink_list)) {
10420                 struct net_device *dev = list_first_entry(&unlink_list,
10421                                                           struct net_device,
10422                                                           unlink_list);
10423                 list_del_init(&dev->unlink_list);
10424                 dev->nested_level = dev->lower_level - 1;
10425         }
10426 #endif
10427
10428         /* Snapshot list, allow later requests */
10429         list_replace_init(&net_todo_list, &list);
10430
10431         __rtnl_unlock();
10432
10433
10434         /* Wait for rcu callbacks to finish before next phase */
10435         if (!list_empty(&list))
10436                 rcu_barrier();
10437
10438         while (!list_empty(&list)) {
10439                 struct net_device *dev
10440                         = list_first_entry(&list, struct net_device, todo_list);
10441                 list_del(&dev->todo_list);
10442
10443                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10444                         pr_err("network todo '%s' but state %d\n",
10445                                dev->name, dev->reg_state);
10446                         dump_stack();
10447                         continue;
10448                 }
10449
10450                 dev->reg_state = NETREG_UNREGISTERED;
10451
10452                 netdev_wait_allrefs(dev);
10453
10454                 /* paranoia */
10455                 BUG_ON(netdev_refcnt_read(dev));
10456                 BUG_ON(!list_empty(&dev->ptype_all));
10457                 BUG_ON(!list_empty(&dev->ptype_specific));
10458                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10459                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10460 #if IS_ENABLED(CONFIG_DECNET)
10461                 WARN_ON(dev->dn_ptr);
10462 #endif
10463                 if (dev->priv_destructor)
10464                         dev->priv_destructor(dev);
10465                 if (dev->needs_free_netdev)
10466                         free_netdev(dev);
10467
10468                 /* Report a network device has been unregistered */
10469                 rtnl_lock();
10470                 dev_net(dev)->dev_unreg_count--;
10471                 __rtnl_unlock();
10472                 wake_up(&netdev_unregistering_wq);
10473
10474                 /* Free network device */
10475                 kobject_put(&dev->dev.kobj);
10476         }
10477 }
10478
10479 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10480  * all the same fields in the same order as net_device_stats, with only
10481  * the type differing, but rtnl_link_stats64 may have additional fields
10482  * at the end for newer counters.
10483  */
10484 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10485                              const struct net_device_stats *netdev_stats)
10486 {
10487 #if BITS_PER_LONG == 64
10488         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10489         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10490         /* zero out counters that only exist in rtnl_link_stats64 */
10491         memset((char *)stats64 + sizeof(*netdev_stats), 0,
10492                sizeof(*stats64) - sizeof(*netdev_stats));
10493 #else
10494         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10495         const unsigned long *src = (const unsigned long *)netdev_stats;
10496         u64 *dst = (u64 *)stats64;
10497
10498         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10499         for (i = 0; i < n; i++)
10500                 dst[i] = src[i];
10501         /* zero out counters that only exist in rtnl_link_stats64 */
10502         memset((char *)stats64 + n * sizeof(u64), 0,
10503                sizeof(*stats64) - n * sizeof(u64));
10504 #endif
10505 }
10506 EXPORT_SYMBOL(netdev_stats_to_stats64);
10507
10508 /**
10509  *      dev_get_stats   - get network device statistics
10510  *      @dev: device to get statistics from
10511  *      @storage: place to store stats
10512  *
10513  *      Get network statistics from device. Return @storage.
10514  *      The device driver may provide its own method by setting
10515  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10516  *      otherwise the internal statistics structure is used.
10517  */
10518 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10519                                         struct rtnl_link_stats64 *storage)
10520 {
10521         const struct net_device_ops *ops = dev->netdev_ops;
10522
10523         if (ops->ndo_get_stats64) {
10524                 memset(storage, 0, sizeof(*storage));
10525                 ops->ndo_get_stats64(dev, storage);
10526         } else if (ops->ndo_get_stats) {
10527                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10528         } else {
10529                 netdev_stats_to_stats64(storage, &dev->stats);
10530         }
10531         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10532         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10533         storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10534         return storage;
10535 }
10536 EXPORT_SYMBOL(dev_get_stats);
10537
10538 /**
10539  *      dev_fetch_sw_netstats - get per-cpu network device statistics
10540  *      @s: place to store stats
10541  *      @netstats: per-cpu network stats to read from
10542  *
10543  *      Read per-cpu network statistics and populate the related fields in @s.
10544  */
10545 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10546                            const struct pcpu_sw_netstats __percpu *netstats)
10547 {
10548         int cpu;
10549
10550         for_each_possible_cpu(cpu) {
10551                 const struct pcpu_sw_netstats *stats;
10552                 struct pcpu_sw_netstats tmp;
10553                 unsigned int start;
10554
10555                 stats = per_cpu_ptr(netstats, cpu);
10556                 do {
10557                         start = u64_stats_fetch_begin_irq(&stats->syncp);
10558                         tmp.rx_packets = stats->rx_packets;
10559                         tmp.rx_bytes   = stats->rx_bytes;
10560                         tmp.tx_packets = stats->tx_packets;
10561                         tmp.tx_bytes   = stats->tx_bytes;
10562                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10563
10564                 s->rx_packets += tmp.rx_packets;
10565                 s->rx_bytes   += tmp.rx_bytes;
10566                 s->tx_packets += tmp.tx_packets;
10567                 s->tx_bytes   += tmp.tx_bytes;
10568         }
10569 }
10570 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10571
10572 /**
10573  *      dev_get_tstats64 - ndo_get_stats64 implementation
10574  *      @dev: device to get statistics from
10575  *      @s: place to store stats
10576  *
10577  *      Populate @s from dev->stats and dev->tstats. Can be used as
10578  *      ndo_get_stats64() callback.
10579  */
10580 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10581 {
10582         netdev_stats_to_stats64(s, &dev->stats);
10583         dev_fetch_sw_netstats(s, dev->tstats);
10584 }
10585 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10586
10587 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10588 {
10589         struct netdev_queue *queue = dev_ingress_queue(dev);
10590
10591 #ifdef CONFIG_NET_CLS_ACT
10592         if (queue)
10593                 return queue;
10594         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10595         if (!queue)
10596                 return NULL;
10597         netdev_init_one_queue(dev, queue, NULL);
10598         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10599         queue->qdisc_sleeping = &noop_qdisc;
10600         rcu_assign_pointer(dev->ingress_queue, queue);
10601 #endif
10602         return queue;
10603 }
10604
10605 static const struct ethtool_ops default_ethtool_ops;
10606
10607 void netdev_set_default_ethtool_ops(struct net_device *dev,
10608                                     const struct ethtool_ops *ops)
10609 {
10610         if (dev->ethtool_ops == &default_ethtool_ops)
10611                 dev->ethtool_ops = ops;
10612 }
10613 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10614
10615 void netdev_freemem(struct net_device *dev)
10616 {
10617         char *addr = (char *)dev - dev->padded;
10618
10619         kvfree(addr);
10620 }
10621
10622 /**
10623  * alloc_netdev_mqs - allocate network device
10624  * @sizeof_priv: size of private data to allocate space for
10625  * @name: device name format string
10626  * @name_assign_type: origin of device name
10627  * @setup: callback to initialize device
10628  * @txqs: the number of TX subqueues to allocate
10629  * @rxqs: the number of RX subqueues to allocate
10630  *
10631  * Allocates a struct net_device with private data area for driver use
10632  * and performs basic initialization.  Also allocates subqueue structs
10633  * for each queue on the device.
10634  */
10635 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10636                 unsigned char name_assign_type,
10637                 void (*setup)(struct net_device *),
10638                 unsigned int txqs, unsigned int rxqs)
10639 {
10640         struct net_device *dev;
10641         unsigned int alloc_size;
10642         struct net_device *p;
10643
10644         BUG_ON(strlen(name) >= sizeof(dev->name));
10645
10646         if (txqs < 1) {
10647                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10648                 return NULL;
10649         }
10650
10651         if (rxqs < 1) {
10652                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10653                 return NULL;
10654         }
10655
10656         alloc_size = sizeof(struct net_device);
10657         if (sizeof_priv) {
10658                 /* ensure 32-byte alignment of private area */
10659                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10660                 alloc_size += sizeof_priv;
10661         }
10662         /* ensure 32-byte alignment of whole construct */
10663         alloc_size += NETDEV_ALIGN - 1;
10664
10665         p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10666         if (!p)
10667                 return NULL;
10668
10669         dev = PTR_ALIGN(p, NETDEV_ALIGN);
10670         dev->padded = (char *)dev - (char *)p;
10671
10672         dev->pcpu_refcnt = alloc_percpu(int);
10673         if (!dev->pcpu_refcnt)
10674                 goto free_dev;
10675
10676         if (dev_addr_init(dev))
10677                 goto free_pcpu;
10678
10679         dev_mc_init(dev);
10680         dev_uc_init(dev);
10681
10682         dev_net_set(dev, &init_net);
10683
10684         dev->gso_max_size = GSO_MAX_SIZE;
10685         dev->gso_max_segs = GSO_MAX_SEGS;
10686         dev->upper_level = 1;
10687         dev->lower_level = 1;
10688 #ifdef CONFIG_LOCKDEP
10689         dev->nested_level = 0;
10690         INIT_LIST_HEAD(&dev->unlink_list);
10691 #endif
10692
10693         INIT_LIST_HEAD(&dev->napi_list);
10694         INIT_LIST_HEAD(&dev->unreg_list);
10695         INIT_LIST_HEAD(&dev->close_list);
10696         INIT_LIST_HEAD(&dev->link_watch_list);
10697         INIT_LIST_HEAD(&dev->adj_list.upper);
10698         INIT_LIST_HEAD(&dev->adj_list.lower);
10699         INIT_LIST_HEAD(&dev->ptype_all);
10700         INIT_LIST_HEAD(&dev->ptype_specific);
10701         INIT_LIST_HEAD(&dev->net_notifier_list);
10702 #ifdef CONFIG_NET_SCHED
10703         hash_init(dev->qdisc_hash);
10704 #endif
10705         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10706         setup(dev);
10707
10708         if (!dev->tx_queue_len) {
10709                 dev->priv_flags |= IFF_NO_QUEUE;
10710                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10711         }
10712
10713         dev->num_tx_queues = txqs;
10714         dev->real_num_tx_queues = txqs;
10715         if (netif_alloc_netdev_queues(dev))
10716                 goto free_all;
10717
10718         dev->num_rx_queues = rxqs;
10719         dev->real_num_rx_queues = rxqs;
10720         if (netif_alloc_rx_queues(dev))
10721                 goto free_all;
10722
10723         strcpy(dev->name, name);
10724         dev->name_assign_type = name_assign_type;
10725         dev->group = INIT_NETDEV_GROUP;
10726         if (!dev->ethtool_ops)
10727                 dev->ethtool_ops = &default_ethtool_ops;
10728
10729         nf_hook_ingress_init(dev);
10730
10731         return dev;
10732
10733 free_all:
10734         free_netdev(dev);
10735         return NULL;
10736
10737 free_pcpu:
10738         free_percpu(dev->pcpu_refcnt);
10739 free_dev:
10740         netdev_freemem(dev);
10741         return NULL;
10742 }
10743 EXPORT_SYMBOL(alloc_netdev_mqs);
10744
10745 /**
10746  * free_netdev - free network device
10747  * @dev: device
10748  *
10749  * This function does the last stage of destroying an allocated device
10750  * interface. The reference to the device object is released. If this
10751  * is the last reference then it will be freed.Must be called in process
10752  * context.
10753  */
10754 void free_netdev(struct net_device *dev)
10755 {
10756         struct napi_struct *p, *n;
10757
10758         might_sleep();
10759
10760         /* When called immediately after register_netdevice() failed the unwind
10761          * handling may still be dismantling the device. Handle that case by
10762          * deferring the free.
10763          */
10764         if (dev->reg_state == NETREG_UNREGISTERING) {
10765                 ASSERT_RTNL();
10766                 dev->needs_free_netdev = true;
10767                 return;
10768         }
10769
10770         netif_free_tx_queues(dev);
10771         netif_free_rx_queues(dev);
10772
10773         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10774
10775         /* Flush device addresses */
10776         dev_addr_flush(dev);
10777
10778         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10779                 netif_napi_del(p);
10780
10781         free_percpu(dev->pcpu_refcnt);
10782         dev->pcpu_refcnt = NULL;
10783         free_percpu(dev->xdp_bulkq);
10784         dev->xdp_bulkq = NULL;
10785
10786         /*  Compatibility with error handling in drivers */
10787         if (dev->reg_state == NETREG_UNINITIALIZED) {
10788                 netdev_freemem(dev);
10789                 return;
10790         }
10791
10792         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10793         dev->reg_state = NETREG_RELEASED;
10794
10795         /* will free via device release */
10796         put_device(&dev->dev);
10797 }
10798 EXPORT_SYMBOL(free_netdev);
10799
10800 /**
10801  *      synchronize_net -  Synchronize with packet receive processing
10802  *
10803  *      Wait for packets currently being received to be done.
10804  *      Does not block later packets from starting.
10805  */
10806 void synchronize_net(void)
10807 {
10808         might_sleep();
10809         if (rtnl_is_locked())
10810                 synchronize_rcu_expedited();
10811         else
10812                 synchronize_rcu();
10813 }
10814 EXPORT_SYMBOL(synchronize_net);
10815
10816 /**
10817  *      unregister_netdevice_queue - remove device from the kernel
10818  *      @dev: device
10819  *      @head: list
10820  *
10821  *      This function shuts down a device interface and removes it
10822  *      from the kernel tables.
10823  *      If head not NULL, device is queued to be unregistered later.
10824  *
10825  *      Callers must hold the rtnl semaphore.  You may want
10826  *      unregister_netdev() instead of this.
10827  */
10828
10829 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10830 {
10831         ASSERT_RTNL();
10832
10833         if (head) {
10834                 list_move_tail(&dev->unreg_list, head);
10835         } else {
10836                 LIST_HEAD(single);
10837
10838                 list_add(&dev->unreg_list, &single);
10839                 unregister_netdevice_many(&single);
10840         }
10841 }
10842 EXPORT_SYMBOL(unregister_netdevice_queue);
10843
10844 /**
10845  *      unregister_netdevice_many - unregister many devices
10846  *      @head: list of devices
10847  *
10848  *  Note: As most callers use a stack allocated list_head,
10849  *  we force a list_del() to make sure stack wont be corrupted later.
10850  */
10851 void unregister_netdevice_many(struct list_head *head)
10852 {
10853         struct net_device *dev, *tmp;
10854         LIST_HEAD(close_head);
10855
10856         BUG_ON(dev_boot_phase);
10857         ASSERT_RTNL();
10858
10859         if (list_empty(head))
10860                 return;
10861
10862         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10863                 /* Some devices call without registering
10864                  * for initialization unwind. Remove those
10865                  * devices and proceed with the remaining.
10866                  */
10867                 if (dev->reg_state == NETREG_UNINITIALIZED) {
10868                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10869                                  dev->name, dev);
10870
10871                         WARN_ON(1);
10872                         list_del(&dev->unreg_list);
10873                         continue;
10874                 }
10875                 dev->dismantle = true;
10876                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
10877         }
10878
10879         /* If device is running, close it first. */
10880         list_for_each_entry(dev, head, unreg_list)
10881                 list_add_tail(&dev->close_list, &close_head);
10882         dev_close_many(&close_head, true);
10883
10884         list_for_each_entry(dev, head, unreg_list) {
10885                 /* And unlink it from device chain. */
10886                 unlist_netdevice(dev);
10887
10888                 dev->reg_state = NETREG_UNREGISTERING;
10889         }
10890         flush_all_backlogs();
10891
10892         synchronize_net();
10893
10894         list_for_each_entry(dev, head, unreg_list) {
10895                 struct sk_buff *skb = NULL;
10896
10897                 /* Shutdown queueing discipline. */
10898                 dev_shutdown(dev);
10899
10900                 dev_xdp_uninstall(dev);
10901
10902                 /* Notify protocols, that we are about to destroy
10903                  * this device. They should clean all the things.
10904                  */
10905                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10906
10907                 if (!dev->rtnl_link_ops ||
10908                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10909                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
10910                                                      GFP_KERNEL, NULL, 0);
10911
10912                 /*
10913                  *      Flush the unicast and multicast chains
10914                  */
10915                 dev_uc_flush(dev);
10916                 dev_mc_flush(dev);
10917
10918                 netdev_name_node_alt_flush(dev);
10919                 netdev_name_node_free(dev->name_node);
10920
10921                 if (dev->netdev_ops->ndo_uninit)
10922                         dev->netdev_ops->ndo_uninit(dev);
10923
10924                 if (skb)
10925                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
10926
10927                 /* Notifier chain MUST detach us all upper devices. */
10928                 WARN_ON(netdev_has_any_upper_dev(dev));
10929                 WARN_ON(netdev_has_any_lower_dev(dev));
10930
10931                 /* Remove entries from kobject tree */
10932                 netdev_unregister_kobject(dev);
10933 #ifdef CONFIG_XPS
10934                 /* Remove XPS queueing entries */
10935                 netif_reset_xps_queues_gt(dev, 0);
10936 #endif
10937         }
10938
10939         synchronize_net();
10940
10941         list_for_each_entry(dev, head, unreg_list) {
10942                 dev_put(dev);
10943                 net_set_todo(dev);
10944         }
10945
10946         list_del(head);
10947 }
10948 EXPORT_SYMBOL(unregister_netdevice_many);
10949
10950 /**
10951  *      unregister_netdev - remove device from the kernel
10952  *      @dev: device
10953  *
10954  *      This function shuts down a device interface and removes it
10955  *      from the kernel tables.
10956  *
10957  *      This is just a wrapper for unregister_netdevice that takes
10958  *      the rtnl semaphore.  In general you want to use this and not
10959  *      unregister_netdevice.
10960  */
10961 void unregister_netdev(struct net_device *dev)
10962 {
10963         rtnl_lock();
10964         unregister_netdevice(dev);
10965         rtnl_unlock();
10966 }
10967 EXPORT_SYMBOL(unregister_netdev);
10968
10969 /**
10970  *      dev_change_net_namespace - move device to different nethost namespace
10971  *      @dev: device
10972  *      @net: network namespace
10973  *      @pat: If not NULL name pattern to try if the current device name
10974  *            is already taken in the destination network namespace.
10975  *
10976  *      This function shuts down a device interface and moves it
10977  *      to a new network namespace. On success 0 is returned, on
10978  *      a failure a netagive errno code is returned.
10979  *
10980  *      Callers must hold the rtnl semaphore.
10981  */
10982
10983 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
10984 {
10985         struct net *net_old = dev_net(dev);
10986         int err, new_nsid, new_ifindex;
10987
10988         ASSERT_RTNL();
10989
10990         /* Don't allow namespace local devices to be moved. */
10991         err = -EINVAL;
10992         if (dev->features & NETIF_F_NETNS_LOCAL)
10993                 goto out;
10994
10995         /* Ensure the device has been registrered */
10996         if (dev->reg_state != NETREG_REGISTERED)
10997                 goto out;
10998
10999         /* Get out if there is nothing todo */
11000         err = 0;
11001         if (net_eq(net_old, net))
11002                 goto out;
11003
11004         /* Pick the destination device name, and ensure
11005          * we can use it in the destination network namespace.
11006          */
11007         err = -EEXIST;
11008         if (__dev_get_by_name(net, dev->name)) {
11009                 /* We get here if we can't use the current device name */
11010                 if (!pat)
11011                         goto out;
11012                 err = dev_get_valid_name(net, dev, pat);
11013                 if (err < 0)
11014                         goto out;
11015         }
11016
11017         /*
11018          * And now a mini version of register_netdevice unregister_netdevice.
11019          */
11020
11021         /* If device is running close it first. */
11022         dev_close(dev);
11023
11024         /* And unlink it from device chain */
11025         unlist_netdevice(dev);
11026
11027         synchronize_net();
11028
11029         /* Shutdown queueing discipline. */
11030         dev_shutdown(dev);
11031
11032         /* Notify protocols, that we are about to destroy
11033          * this device. They should clean all the things.
11034          *
11035          * Note that dev->reg_state stays at NETREG_REGISTERED.
11036          * This is wanted because this way 8021q and macvlan know
11037          * the device is just moving and can keep their slaves up.
11038          */
11039         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11040         rcu_barrier();
11041
11042         new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11043         /* If there is an ifindex conflict assign a new one */
11044         if (__dev_get_by_index(net, dev->ifindex))
11045                 new_ifindex = dev_new_index(net);
11046         else
11047                 new_ifindex = dev->ifindex;
11048
11049         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11050                             new_ifindex);
11051
11052         /*
11053          *      Flush the unicast and multicast chains
11054          */
11055         dev_uc_flush(dev);
11056         dev_mc_flush(dev);
11057
11058         /* Send a netdev-removed uevent to the old namespace */
11059         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11060         netdev_adjacent_del_links(dev);
11061
11062         /* Move per-net netdevice notifiers that are following the netdevice */
11063         move_netdevice_notifiers_dev_net(dev, net);
11064
11065         /* Actually switch the network namespace */
11066         dev_net_set(dev, net);
11067         dev->ifindex = new_ifindex;
11068
11069         /* Send a netdev-add uevent to the new namespace */
11070         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11071         netdev_adjacent_add_links(dev);
11072
11073         /* Fixup kobjects */
11074         err = device_rename(&dev->dev, dev->name);
11075         WARN_ON(err);
11076
11077         /* Adapt owner in case owning user namespace of target network
11078          * namespace is different from the original one.
11079          */
11080         err = netdev_change_owner(dev, net_old, net);
11081         WARN_ON(err);
11082
11083         /* Add the device back in the hashes */
11084         list_netdevice(dev);
11085
11086         /* Notify protocols, that a new device appeared. */
11087         call_netdevice_notifiers(NETDEV_REGISTER, dev);
11088
11089         /*
11090          *      Prevent userspace races by waiting until the network
11091          *      device is fully setup before sending notifications.
11092          */
11093         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
11094
11095         synchronize_net();
11096         err = 0;
11097 out:
11098         return err;
11099 }
11100 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
11101
11102 static int dev_cpu_dead(unsigned int oldcpu)
11103 {
11104         struct sk_buff **list_skb;
11105         struct sk_buff *skb;
11106         unsigned int cpu;
11107         struct softnet_data *sd, *oldsd, *remsd = NULL;
11108
11109         local_irq_disable();
11110         cpu = smp_processor_id();
11111         sd = &per_cpu(softnet_data, cpu);
11112         oldsd = &per_cpu(softnet_data, oldcpu);
11113
11114         /* Find end of our completion_queue. */
11115         list_skb = &sd->completion_queue;
11116         while (*list_skb)
11117                 list_skb = &(*list_skb)->next;
11118         /* Append completion queue from offline CPU. */
11119         *list_skb = oldsd->completion_queue;
11120         oldsd->completion_queue = NULL;
11121
11122         /* Append output queue from offline CPU. */
11123         if (oldsd->output_queue) {
11124                 *sd->output_queue_tailp = oldsd->output_queue;
11125                 sd->output_queue_tailp = oldsd->output_queue_tailp;
11126                 oldsd->output_queue = NULL;
11127                 oldsd->output_queue_tailp = &oldsd->output_queue;
11128         }
11129         /* Append NAPI poll list from offline CPU, with one exception :
11130          * process_backlog() must be called by cpu owning percpu backlog.
11131          * We properly handle process_queue & input_pkt_queue later.
11132          */
11133         while (!list_empty(&oldsd->poll_list)) {
11134                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11135                                                             struct napi_struct,
11136                                                             poll_list);
11137
11138                 list_del_init(&napi->poll_list);
11139                 if (napi->poll == process_backlog)
11140                         napi->state = 0;
11141                 else
11142                         ____napi_schedule(sd, napi);
11143         }
11144
11145         raise_softirq_irqoff(NET_TX_SOFTIRQ);
11146         local_irq_enable();
11147
11148 #ifdef CONFIG_RPS
11149         remsd = oldsd->rps_ipi_list;
11150         oldsd->rps_ipi_list = NULL;
11151 #endif
11152         /* send out pending IPI's on offline CPU */
11153         net_rps_send_ipi(remsd);
11154
11155         /* Process offline CPU's input_pkt_queue */
11156         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11157                 netif_rx_ni(skb);
11158                 input_queue_head_incr(oldsd);
11159         }
11160         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11161                 netif_rx_ni(skb);
11162                 input_queue_head_incr(oldsd);
11163         }
11164
11165         return 0;
11166 }
11167
11168 /**
11169  *      netdev_increment_features - increment feature set by one
11170  *      @all: current feature set
11171  *      @one: new feature set
11172  *      @mask: mask feature set
11173  *
11174  *      Computes a new feature set after adding a device with feature set
11175  *      @one to the master device with current feature set @all.  Will not
11176  *      enable anything that is off in @mask. Returns the new feature set.
11177  */
11178 netdev_features_t netdev_increment_features(netdev_features_t all,
11179         netdev_features_t one, netdev_features_t mask)
11180 {
11181         if (mask & NETIF_F_HW_CSUM)
11182                 mask |= NETIF_F_CSUM_MASK;
11183         mask |= NETIF_F_VLAN_CHALLENGED;
11184
11185         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11186         all &= one | ~NETIF_F_ALL_FOR_ALL;
11187
11188         /* If one device supports hw checksumming, set for all. */
11189         if (all & NETIF_F_HW_CSUM)
11190                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11191
11192         return all;
11193 }
11194 EXPORT_SYMBOL(netdev_increment_features);
11195
11196 static struct hlist_head * __net_init netdev_create_hash(void)
11197 {
11198         int i;
11199         struct hlist_head *hash;
11200
11201         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11202         if (hash != NULL)
11203                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11204                         INIT_HLIST_HEAD(&hash[i]);
11205
11206         return hash;
11207 }
11208
11209 /* Initialize per network namespace state */
11210 static int __net_init netdev_init(struct net *net)
11211 {
11212         BUILD_BUG_ON(GRO_HASH_BUCKETS >
11213                      8 * sizeof_field(struct napi_struct, gro_bitmask));
11214
11215         if (net != &init_net)
11216                 INIT_LIST_HEAD(&net->dev_base_head);
11217
11218         net->dev_name_head = netdev_create_hash();
11219         if (net->dev_name_head == NULL)
11220                 goto err_name;
11221
11222         net->dev_index_head = netdev_create_hash();
11223         if (net->dev_index_head == NULL)
11224                 goto err_idx;
11225
11226         RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11227
11228         return 0;
11229
11230 err_idx:
11231         kfree(net->dev_name_head);
11232 err_name:
11233         return -ENOMEM;
11234 }
11235
11236 /**
11237  *      netdev_drivername - network driver for the device
11238  *      @dev: network device
11239  *
11240  *      Determine network driver for device.
11241  */
11242 const char *netdev_drivername(const struct net_device *dev)
11243 {
11244         const struct device_driver *driver;
11245         const struct device *parent;
11246         const char *empty = "";
11247
11248         parent = dev->dev.parent;
11249         if (!parent)
11250                 return empty;
11251
11252         driver = parent->driver;
11253         if (driver && driver->name)
11254                 return driver->name;
11255         return empty;
11256 }
11257
11258 static void __netdev_printk(const char *level, const struct net_device *dev,
11259                             struct va_format *vaf)
11260 {
11261         if (dev && dev->dev.parent) {
11262                 dev_printk_emit(level[1] - '0',
11263                                 dev->dev.parent,
11264                                 "%s %s %s%s: %pV",
11265                                 dev_driver_string(dev->dev.parent),
11266                                 dev_name(dev->dev.parent),
11267                                 netdev_name(dev), netdev_reg_state(dev),
11268                                 vaf);
11269         } else if (dev) {
11270                 printk("%s%s%s: %pV",
11271                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
11272         } else {
11273                 printk("%s(NULL net_device): %pV", level, vaf);
11274         }
11275 }
11276
11277 void netdev_printk(const char *level, const struct net_device *dev,
11278                    const char *format, ...)
11279 {
11280         struct va_format vaf;
11281         va_list args;
11282
11283         va_start(args, format);
11284
11285         vaf.fmt = format;
11286         vaf.va = &args;
11287
11288         __netdev_printk(level, dev, &vaf);
11289
11290         va_end(args);
11291 }
11292 EXPORT_SYMBOL(netdev_printk);
11293
11294 #define define_netdev_printk_level(func, level)                 \
11295 void func(const struct net_device *dev, const char *fmt, ...)   \
11296 {                                                               \
11297         struct va_format vaf;                                   \
11298         va_list args;                                           \
11299                                                                 \
11300         va_start(args, fmt);                                    \
11301                                                                 \
11302         vaf.fmt = fmt;                                          \
11303         vaf.va = &args;                                         \
11304                                                                 \
11305         __netdev_printk(level, dev, &vaf);                      \
11306                                                                 \
11307         va_end(args);                                           \
11308 }                                                               \
11309 EXPORT_SYMBOL(func);
11310
11311 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11312 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11313 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11314 define_netdev_printk_level(netdev_err, KERN_ERR);
11315 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11316 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11317 define_netdev_printk_level(netdev_info, KERN_INFO);
11318
11319 static void __net_exit netdev_exit(struct net *net)
11320 {
11321         kfree(net->dev_name_head);
11322         kfree(net->dev_index_head);
11323         if (net != &init_net)
11324                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11325 }
11326
11327 static struct pernet_operations __net_initdata netdev_net_ops = {
11328         .init = netdev_init,
11329         .exit = netdev_exit,
11330 };
11331
11332 static void __net_exit default_device_exit(struct net *net)
11333 {
11334         struct net_device *dev, *aux;
11335         /*
11336          * Push all migratable network devices back to the
11337          * initial network namespace
11338          */
11339         rtnl_lock();
11340         for_each_netdev_safe(net, dev, aux) {
11341                 int err;
11342                 char fb_name[IFNAMSIZ];
11343
11344                 /* Ignore unmoveable devices (i.e. loopback) */
11345                 if (dev->features & NETIF_F_NETNS_LOCAL)
11346                         continue;
11347
11348                 /* Leave virtual devices for the generic cleanup */
11349                 if (dev->rtnl_link_ops)
11350                         continue;
11351
11352                 /* Push remaining network devices to init_net */
11353                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11354                 if (__dev_get_by_name(&init_net, fb_name))
11355                         snprintf(fb_name, IFNAMSIZ, "dev%%d");
11356                 err = dev_change_net_namespace(dev, &init_net, fb_name);
11357                 if (err) {
11358                         pr_emerg("%s: failed to move %s to init_net: %d\n",
11359                                  __func__, dev->name, err);
11360                         BUG();
11361                 }
11362         }
11363         rtnl_unlock();
11364 }
11365
11366 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11367 {
11368         /* Return with the rtnl_lock held when there are no network
11369          * devices unregistering in any network namespace in net_list.
11370          */
11371         struct net *net;
11372         bool unregistering;
11373         DEFINE_WAIT_FUNC(wait, woken_wake_function);
11374
11375         add_wait_queue(&netdev_unregistering_wq, &wait);
11376         for (;;) {
11377                 unregistering = false;
11378                 rtnl_lock();
11379                 list_for_each_entry(net, net_list, exit_list) {
11380                         if (net->dev_unreg_count > 0) {
11381                                 unregistering = true;
11382                                 break;
11383                         }
11384                 }
11385                 if (!unregistering)
11386                         break;
11387                 __rtnl_unlock();
11388
11389                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
11390         }
11391         remove_wait_queue(&netdev_unregistering_wq, &wait);
11392 }
11393
11394 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11395 {
11396         /* At exit all network devices most be removed from a network
11397          * namespace.  Do this in the reverse order of registration.
11398          * Do this across as many network namespaces as possible to
11399          * improve batching efficiency.
11400          */
11401         struct net_device *dev;
11402         struct net *net;
11403         LIST_HEAD(dev_kill_list);
11404
11405         /* To prevent network device cleanup code from dereferencing
11406          * loopback devices or network devices that have been freed
11407          * wait here for all pending unregistrations to complete,
11408          * before unregistring the loopback device and allowing the
11409          * network namespace be freed.
11410          *
11411          * The netdev todo list containing all network devices
11412          * unregistrations that happen in default_device_exit_batch
11413          * will run in the rtnl_unlock() at the end of
11414          * default_device_exit_batch.
11415          */
11416         rtnl_lock_unregistering(net_list);
11417         list_for_each_entry(net, net_list, exit_list) {
11418                 for_each_netdev_reverse(net, dev) {
11419                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11420                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11421                         else
11422                                 unregister_netdevice_queue(dev, &dev_kill_list);
11423                 }
11424         }
11425         unregister_netdevice_many(&dev_kill_list);
11426         rtnl_unlock();
11427 }
11428
11429 static struct pernet_operations __net_initdata default_device_ops = {
11430         .exit = default_device_exit,
11431         .exit_batch = default_device_exit_batch,
11432 };
11433
11434 /*
11435  *      Initialize the DEV module. At boot time this walks the device list and
11436  *      unhooks any devices that fail to initialise (normally hardware not
11437  *      present) and leaves us with a valid list of present and active devices.
11438  *
11439  */
11440
11441 /*
11442  *       This is called single threaded during boot, so no need
11443  *       to take the rtnl semaphore.
11444  */
11445 static int __init net_dev_init(void)
11446 {
11447         int i, rc = -ENOMEM;
11448
11449         BUG_ON(!dev_boot_phase);
11450
11451         if (dev_proc_init())
11452                 goto out;
11453
11454         if (netdev_kobject_init())
11455                 goto out;
11456
11457         INIT_LIST_HEAD(&ptype_all);
11458         for (i = 0; i < PTYPE_HASH_SIZE; i++)
11459                 INIT_LIST_HEAD(&ptype_base[i]);
11460
11461         INIT_LIST_HEAD(&offload_base);
11462
11463         if (register_pernet_subsys(&netdev_net_ops))
11464                 goto out;
11465
11466         /*
11467          *      Initialise the packet receive queues.
11468          */
11469
11470         for_each_possible_cpu(i) {
11471                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11472                 struct softnet_data *sd = &per_cpu(softnet_data, i);
11473
11474                 INIT_WORK(flush, flush_backlog);
11475
11476                 skb_queue_head_init(&sd->input_pkt_queue);
11477                 skb_queue_head_init(&sd->process_queue);
11478 #ifdef CONFIG_XFRM_OFFLOAD
11479                 skb_queue_head_init(&sd->xfrm_backlog);
11480 #endif
11481                 INIT_LIST_HEAD(&sd->poll_list);
11482                 sd->output_queue_tailp = &sd->output_queue;
11483 #ifdef CONFIG_RPS
11484                 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11485                 sd->cpu = i;
11486 #endif
11487
11488                 init_gro_hash(&sd->backlog);
11489                 sd->backlog.poll = process_backlog;
11490                 sd->backlog.weight = weight_p;
11491         }
11492
11493         dev_boot_phase = 0;
11494
11495         /* The loopback device is special if any other network devices
11496          * is present in a network namespace the loopback device must
11497          * be present. Since we now dynamically allocate and free the
11498          * loopback device ensure this invariant is maintained by
11499          * keeping the loopback device as the first device on the
11500          * list of network devices.  Ensuring the loopback devices
11501          * is the first device that appears and the last network device
11502          * that disappears.
11503          */
11504         if (register_pernet_device(&loopback_net_ops))
11505                 goto out;
11506
11507         if (register_pernet_device(&default_device_ops))
11508                 goto out;
11509
11510         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11511         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11512
11513         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11514                                        NULL, dev_cpu_dead);
11515         WARN_ON(rc < 0);
11516         rc = 0;
11517 out:
11518         return rc;
11519 }
11520
11521 subsys_initcall(net_dev_init);