Merge tag 'drm-fixes-2021-07-16' of git://anongit.freedesktop.org/drm/drm
[linux-2.6-microblaze.git] / net / core / dev.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *      Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:        Ross Biro
7  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *      Additional Authors:
11  *              Florian la Roche <rzsfl@rz.uni-sb.de>
12  *              Alan Cox <gw4pts@gw4pts.ampr.org>
13  *              David Hinds <dahinds@users.sourceforge.net>
14  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *              Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *      Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *              Alan Cox        :       device private ioctl copies fields back.
24  *              Alan Cox        :       Transmit queue code does relevant
25  *                                      stunts to keep the queue safe.
26  *              Alan Cox        :       Fixed double lock.
27  *              Alan Cox        :       Fixed promisc NULL pointer trap
28  *              ????????        :       Support the full private ioctl range
29  *              Alan Cox        :       Moved ioctl permission check into
30  *                                      drivers
31  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
32  *              Alan Cox        :       100 backlog just doesn't cut it when
33  *                                      you start doing multicast video 8)
34  *              Alan Cox        :       Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *              Alan Cox        :       Took out transmit every packet pass
37  *                                      Saved a few bytes in the ioctl handler
38  *              Alan Cox        :       Network driver sets packet type before
39  *                                      calling netif_rx. Saves a function
40  *                                      call a packet.
41  *              Alan Cox        :       Hashed net_bh()
42  *              Richard Kooijman:       Timestamp fixes.
43  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
44  *              Alan Cox        :       Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *                                      changes.
47  *              Rudi Cilibrasi  :       Pass the right thing to
48  *                                      set_mac_address()
49  *              Dave Miller     :       32bit quantity for the device lock to
50  *                                      make it work out on a Sparc.
51  *              Bjorn Ekwall    :       Added KERNELD hack.
52  *              Alan Cox        :       Cleaned up the backlog initialise.
53  *              Craig Metz      :       SIOCGIFCONF fix if space for under
54  *                                      1 device.
55  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
56  *                                      is no device open function.
57  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
58  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
59  *              Cyrus Durgin    :       Cleaned for KMOD
60  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
61  *                                      A network device unload needs to purge
62  *                                      the backlog queue.
63  *      Paul Rusty Russell      :       SIOCSIFNAME
64  *              Pekka Riikonen  :       Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *                                      - netif_rx() feedback
69  */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <linux/inetdevice.h>
135 #include <linux/cpu_rmap.h>
136 #include <linux/static_key.h>
137 #include <linux/hashtable.h>
138 #include <linux/vmalloc.h>
139 #include <linux/if_macvlan.h>
140 #include <linux/errqueue.h>
141 #include <linux/hrtimer.h>
142 #include <linux/netfilter_ingress.h>
143 #include <linux/crash_dump.h>
144 #include <linux/sctp.h>
145 #include <net/udp_tunnel.h>
146 #include <linux/net_namespace.h>
147 #include <linux/indirect_call_wrapper.h>
148 #include <net/devlink.h>
149 #include <linux/pm_runtime.h>
150 #include <linux/prandom.h>
151 #include <linux/once_lite.h>
152
153 #include "net-sysfs.h"
154
155 #define MAX_GRO_SKBS 8
156
157 /* This should be increased if a protocol with a bigger head is added. */
158 #define GRO_MAX_HEAD (MAX_HEADER + 128)
159
160 static DEFINE_SPINLOCK(ptype_lock);
161 static DEFINE_SPINLOCK(offload_lock);
162 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
163 struct list_head ptype_all __read_mostly;       /* Taps */
164 static struct list_head offload_base __read_mostly;
165
166 static int netif_rx_internal(struct sk_buff *skb);
167 static int call_netdevice_notifiers_info(unsigned long val,
168                                          struct netdev_notifier_info *info);
169 static int call_netdevice_notifiers_extack(unsigned long val,
170                                            struct net_device *dev,
171                                            struct netlink_ext_ack *extack);
172 static struct napi_struct *napi_by_id(unsigned int napi_id);
173
174 /*
175  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
176  * semaphore.
177  *
178  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
179  *
180  * Writers must hold the rtnl semaphore while they loop through the
181  * dev_base_head list, and hold dev_base_lock for writing when they do the
182  * actual updates.  This allows pure readers to access the list even
183  * while a writer is preparing to update it.
184  *
185  * To put it another way, dev_base_lock is held for writing only to
186  * protect against pure readers; the rtnl semaphore provides the
187  * protection against other writers.
188  *
189  * See, for example usages, register_netdevice() and
190  * unregister_netdevice(), which must be called with the rtnl
191  * semaphore held.
192  */
193 DEFINE_RWLOCK(dev_base_lock);
194 EXPORT_SYMBOL(dev_base_lock);
195
196 static DEFINE_MUTEX(ifalias_mutex);
197
198 /* protects napi_hash addition/deletion and napi_gen_id */
199 static DEFINE_SPINLOCK(napi_hash_lock);
200
201 static unsigned int napi_gen_id = NR_CPUS;
202 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
203
204 static DECLARE_RWSEM(devnet_rename_sem);
205
206 static inline void dev_base_seq_inc(struct net *net)
207 {
208         while (++net->dev_base_seq == 0)
209                 ;
210 }
211
212 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
213 {
214         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
215
216         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
217 }
218
219 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
220 {
221         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
222 }
223
224 static inline void rps_lock(struct softnet_data *sd)
225 {
226 #ifdef CONFIG_RPS
227         spin_lock(&sd->input_pkt_queue.lock);
228 #endif
229 }
230
231 static inline void rps_unlock(struct softnet_data *sd)
232 {
233 #ifdef CONFIG_RPS
234         spin_unlock(&sd->input_pkt_queue.lock);
235 #endif
236 }
237
238 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
239                                                        const char *name)
240 {
241         struct netdev_name_node *name_node;
242
243         name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
244         if (!name_node)
245                 return NULL;
246         INIT_HLIST_NODE(&name_node->hlist);
247         name_node->dev = dev;
248         name_node->name = name;
249         return name_node;
250 }
251
252 static struct netdev_name_node *
253 netdev_name_node_head_alloc(struct net_device *dev)
254 {
255         struct netdev_name_node *name_node;
256
257         name_node = netdev_name_node_alloc(dev, dev->name);
258         if (!name_node)
259                 return NULL;
260         INIT_LIST_HEAD(&name_node->list);
261         return name_node;
262 }
263
264 static void netdev_name_node_free(struct netdev_name_node *name_node)
265 {
266         kfree(name_node);
267 }
268
269 static void netdev_name_node_add(struct net *net,
270                                  struct netdev_name_node *name_node)
271 {
272         hlist_add_head_rcu(&name_node->hlist,
273                            dev_name_hash(net, name_node->name));
274 }
275
276 static void netdev_name_node_del(struct netdev_name_node *name_node)
277 {
278         hlist_del_rcu(&name_node->hlist);
279 }
280
281 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
282                                                         const char *name)
283 {
284         struct hlist_head *head = dev_name_hash(net, name);
285         struct netdev_name_node *name_node;
286
287         hlist_for_each_entry(name_node, head, hlist)
288                 if (!strcmp(name_node->name, name))
289                         return name_node;
290         return NULL;
291 }
292
293 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
294                                                             const char *name)
295 {
296         struct hlist_head *head = dev_name_hash(net, name);
297         struct netdev_name_node *name_node;
298
299         hlist_for_each_entry_rcu(name_node, head, hlist)
300                 if (!strcmp(name_node->name, name))
301                         return name_node;
302         return NULL;
303 }
304
305 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
306 {
307         struct netdev_name_node *name_node;
308         struct net *net = dev_net(dev);
309
310         name_node = netdev_name_node_lookup(net, name);
311         if (name_node)
312                 return -EEXIST;
313         name_node = netdev_name_node_alloc(dev, name);
314         if (!name_node)
315                 return -ENOMEM;
316         netdev_name_node_add(net, name_node);
317         /* The node that holds dev->name acts as a head of per-device list. */
318         list_add_tail(&name_node->list, &dev->name_node->list);
319
320         return 0;
321 }
322 EXPORT_SYMBOL(netdev_name_node_alt_create);
323
324 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
325 {
326         list_del(&name_node->list);
327         netdev_name_node_del(name_node);
328         kfree(name_node->name);
329         netdev_name_node_free(name_node);
330 }
331
332 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
333 {
334         struct netdev_name_node *name_node;
335         struct net *net = dev_net(dev);
336
337         name_node = netdev_name_node_lookup(net, name);
338         if (!name_node)
339                 return -ENOENT;
340         /* lookup might have found our primary name or a name belonging
341          * to another device.
342          */
343         if (name_node == dev->name_node || name_node->dev != dev)
344                 return -EINVAL;
345
346         __netdev_name_node_alt_destroy(name_node);
347
348         return 0;
349 }
350 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
351
352 static void netdev_name_node_alt_flush(struct net_device *dev)
353 {
354         struct netdev_name_node *name_node, *tmp;
355
356         list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
357                 __netdev_name_node_alt_destroy(name_node);
358 }
359
360 /* Device list insertion */
361 static void list_netdevice(struct net_device *dev)
362 {
363         struct net *net = dev_net(dev);
364
365         ASSERT_RTNL();
366
367         write_lock_bh(&dev_base_lock);
368         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
369         netdev_name_node_add(net, dev->name_node);
370         hlist_add_head_rcu(&dev->index_hlist,
371                            dev_index_hash(net, dev->ifindex));
372         write_unlock_bh(&dev_base_lock);
373
374         dev_base_seq_inc(net);
375 }
376
377 /* Device list removal
378  * caller must respect a RCU grace period before freeing/reusing dev
379  */
380 static void unlist_netdevice(struct net_device *dev)
381 {
382         ASSERT_RTNL();
383
384         /* Unlink dev from the device chain */
385         write_lock_bh(&dev_base_lock);
386         list_del_rcu(&dev->dev_list);
387         netdev_name_node_del(dev->name_node);
388         hlist_del_rcu(&dev->index_hlist);
389         write_unlock_bh(&dev_base_lock);
390
391         dev_base_seq_inc(dev_net(dev));
392 }
393
394 /*
395  *      Our notifier list
396  */
397
398 static RAW_NOTIFIER_HEAD(netdev_chain);
399
400 /*
401  *      Device drivers call our routines to queue packets here. We empty the
402  *      queue in the local softnet handler.
403  */
404
405 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
406 EXPORT_PER_CPU_SYMBOL(softnet_data);
407
408 #ifdef CONFIG_LOCKDEP
409 /*
410  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
411  * according to dev->type
412  */
413 static const unsigned short netdev_lock_type[] = {
414          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
415          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
416          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
417          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
418          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
419          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
420          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
421          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
422          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
423          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
424          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
425          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
426          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
427          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
428          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
429
430 static const char *const netdev_lock_name[] = {
431         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
432         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
433         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
434         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
435         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
436         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
437         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
438         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
439         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
440         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
441         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
442         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
443         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
444         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
445         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
446
447 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
448 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
449
450 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
451 {
452         int i;
453
454         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
455                 if (netdev_lock_type[i] == dev_type)
456                         return i;
457         /* the last key is used by default */
458         return ARRAY_SIZE(netdev_lock_type) - 1;
459 }
460
461 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
462                                                  unsigned short dev_type)
463 {
464         int i;
465
466         i = netdev_lock_pos(dev_type);
467         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
468                                    netdev_lock_name[i]);
469 }
470
471 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
472 {
473         int i;
474
475         i = netdev_lock_pos(dev->type);
476         lockdep_set_class_and_name(&dev->addr_list_lock,
477                                    &netdev_addr_lock_key[i],
478                                    netdev_lock_name[i]);
479 }
480 #else
481 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
482                                                  unsigned short dev_type)
483 {
484 }
485
486 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
487 {
488 }
489 #endif
490
491 /*******************************************************************************
492  *
493  *              Protocol management and registration routines
494  *
495  *******************************************************************************/
496
497
498 /*
499  *      Add a protocol ID to the list. Now that the input handler is
500  *      smarter we can dispense with all the messy stuff that used to be
501  *      here.
502  *
503  *      BEWARE!!! Protocol handlers, mangling input packets,
504  *      MUST BE last in hash buckets and checking protocol handlers
505  *      MUST start from promiscuous ptype_all chain in net_bh.
506  *      It is true now, do not change it.
507  *      Explanation follows: if protocol handler, mangling packet, will
508  *      be the first on list, it is not able to sense, that packet
509  *      is cloned and should be copied-on-write, so that it will
510  *      change it and subsequent readers will get broken packet.
511  *                                                      --ANK (980803)
512  */
513
514 static inline struct list_head *ptype_head(const struct packet_type *pt)
515 {
516         if (pt->type == htons(ETH_P_ALL))
517                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
518         else
519                 return pt->dev ? &pt->dev->ptype_specific :
520                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
521 }
522
523 /**
524  *      dev_add_pack - add packet handler
525  *      @pt: packet type declaration
526  *
527  *      Add a protocol handler to the networking stack. The passed &packet_type
528  *      is linked into kernel lists and may not be freed until it has been
529  *      removed from the kernel lists.
530  *
531  *      This call does not sleep therefore it can not
532  *      guarantee all CPU's that are in middle of receiving packets
533  *      will see the new packet type (until the next received packet).
534  */
535
536 void dev_add_pack(struct packet_type *pt)
537 {
538         struct list_head *head = ptype_head(pt);
539
540         spin_lock(&ptype_lock);
541         list_add_rcu(&pt->list, head);
542         spin_unlock(&ptype_lock);
543 }
544 EXPORT_SYMBOL(dev_add_pack);
545
546 /**
547  *      __dev_remove_pack        - remove packet handler
548  *      @pt: packet type declaration
549  *
550  *      Remove a protocol handler that was previously added to the kernel
551  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
552  *      from the kernel lists and can be freed or reused once this function
553  *      returns.
554  *
555  *      The packet type might still be in use by receivers
556  *      and must not be freed until after all the CPU's have gone
557  *      through a quiescent state.
558  */
559 void __dev_remove_pack(struct packet_type *pt)
560 {
561         struct list_head *head = ptype_head(pt);
562         struct packet_type *pt1;
563
564         spin_lock(&ptype_lock);
565
566         list_for_each_entry(pt1, head, list) {
567                 if (pt == pt1) {
568                         list_del_rcu(&pt->list);
569                         goto out;
570                 }
571         }
572
573         pr_warn("dev_remove_pack: %p not found\n", pt);
574 out:
575         spin_unlock(&ptype_lock);
576 }
577 EXPORT_SYMBOL(__dev_remove_pack);
578
579 /**
580  *      dev_remove_pack  - remove packet handler
581  *      @pt: packet type declaration
582  *
583  *      Remove a protocol handler that was previously added to the kernel
584  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
585  *      from the kernel lists and can be freed or reused once this function
586  *      returns.
587  *
588  *      This call sleeps to guarantee that no CPU is looking at the packet
589  *      type after return.
590  */
591 void dev_remove_pack(struct packet_type *pt)
592 {
593         __dev_remove_pack(pt);
594
595         synchronize_net();
596 }
597 EXPORT_SYMBOL(dev_remove_pack);
598
599
600 /**
601  *      dev_add_offload - register offload handlers
602  *      @po: protocol offload declaration
603  *
604  *      Add protocol offload handlers to the networking stack. The passed
605  *      &proto_offload is linked into kernel lists and may not be freed until
606  *      it has been removed from the kernel lists.
607  *
608  *      This call does not sleep therefore it can not
609  *      guarantee all CPU's that are in middle of receiving packets
610  *      will see the new offload handlers (until the next received packet).
611  */
612 void dev_add_offload(struct packet_offload *po)
613 {
614         struct packet_offload *elem;
615
616         spin_lock(&offload_lock);
617         list_for_each_entry(elem, &offload_base, list) {
618                 if (po->priority < elem->priority)
619                         break;
620         }
621         list_add_rcu(&po->list, elem->list.prev);
622         spin_unlock(&offload_lock);
623 }
624 EXPORT_SYMBOL(dev_add_offload);
625
626 /**
627  *      __dev_remove_offload     - remove offload handler
628  *      @po: packet offload declaration
629  *
630  *      Remove a protocol offload handler that was previously added to the
631  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
632  *      is removed from the kernel lists and can be freed or reused once this
633  *      function returns.
634  *
635  *      The packet type might still be in use by receivers
636  *      and must not be freed until after all the CPU's have gone
637  *      through a quiescent state.
638  */
639 static void __dev_remove_offload(struct packet_offload *po)
640 {
641         struct list_head *head = &offload_base;
642         struct packet_offload *po1;
643
644         spin_lock(&offload_lock);
645
646         list_for_each_entry(po1, head, list) {
647                 if (po == po1) {
648                         list_del_rcu(&po->list);
649                         goto out;
650                 }
651         }
652
653         pr_warn("dev_remove_offload: %p not found\n", po);
654 out:
655         spin_unlock(&offload_lock);
656 }
657
658 /**
659  *      dev_remove_offload       - remove packet offload handler
660  *      @po: packet offload declaration
661  *
662  *      Remove a packet offload handler that was previously added to the kernel
663  *      offload handlers by dev_add_offload(). The passed &offload_type is
664  *      removed from the kernel lists and can be freed or reused once this
665  *      function returns.
666  *
667  *      This call sleeps to guarantee that no CPU is looking at the packet
668  *      type after return.
669  */
670 void dev_remove_offload(struct packet_offload *po)
671 {
672         __dev_remove_offload(po);
673
674         synchronize_net();
675 }
676 EXPORT_SYMBOL(dev_remove_offload);
677
678 /******************************************************************************
679  *
680  *                    Device Boot-time Settings Routines
681  *
682  ******************************************************************************/
683
684 /* Boot time configuration table */
685 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
686
687 /**
688  *      netdev_boot_setup_add   - add new setup entry
689  *      @name: name of the device
690  *      @map: configured settings for the device
691  *
692  *      Adds new setup entry to the dev_boot_setup list.  The function
693  *      returns 0 on error and 1 on success.  This is a generic routine to
694  *      all netdevices.
695  */
696 static int netdev_boot_setup_add(char *name, struct ifmap *map)
697 {
698         struct netdev_boot_setup *s;
699         int i;
700
701         s = dev_boot_setup;
702         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
703                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
704                         memset(s[i].name, 0, sizeof(s[i].name));
705                         strlcpy(s[i].name, name, IFNAMSIZ);
706                         memcpy(&s[i].map, map, sizeof(s[i].map));
707                         break;
708                 }
709         }
710
711         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
712 }
713
714 /**
715  * netdev_boot_setup_check      - check boot time settings
716  * @dev: the netdevice
717  *
718  * Check boot time settings for the device.
719  * The found settings are set for the device to be used
720  * later in the device probing.
721  * Returns 0 if no settings found, 1 if they are.
722  */
723 int netdev_boot_setup_check(struct net_device *dev)
724 {
725         struct netdev_boot_setup *s = dev_boot_setup;
726         int i;
727
728         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
729                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
730                     !strcmp(dev->name, s[i].name)) {
731                         dev->irq = s[i].map.irq;
732                         dev->base_addr = s[i].map.base_addr;
733                         dev->mem_start = s[i].map.mem_start;
734                         dev->mem_end = s[i].map.mem_end;
735                         return 1;
736                 }
737         }
738         return 0;
739 }
740 EXPORT_SYMBOL(netdev_boot_setup_check);
741
742
743 /**
744  * netdev_boot_base     - get address from boot time settings
745  * @prefix: prefix for network device
746  * @unit: id for network device
747  *
748  * Check boot time settings for the base address of device.
749  * The found settings are set for the device to be used
750  * later in the device probing.
751  * Returns 0 if no settings found.
752  */
753 unsigned long netdev_boot_base(const char *prefix, int unit)
754 {
755         const struct netdev_boot_setup *s = dev_boot_setup;
756         char name[IFNAMSIZ];
757         int i;
758
759         sprintf(name, "%s%d", prefix, unit);
760
761         /*
762          * If device already registered then return base of 1
763          * to indicate not to probe for this interface
764          */
765         if (__dev_get_by_name(&init_net, name))
766                 return 1;
767
768         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
769                 if (!strcmp(name, s[i].name))
770                         return s[i].map.base_addr;
771         return 0;
772 }
773
774 /*
775  * Saves at boot time configured settings for any netdevice.
776  */
777 int __init netdev_boot_setup(char *str)
778 {
779         int ints[5];
780         struct ifmap map;
781
782         str = get_options(str, ARRAY_SIZE(ints), ints);
783         if (!str || !*str)
784                 return 0;
785
786         /* Save settings */
787         memset(&map, 0, sizeof(map));
788         if (ints[0] > 0)
789                 map.irq = ints[1];
790         if (ints[0] > 1)
791                 map.base_addr = ints[2];
792         if (ints[0] > 2)
793                 map.mem_start = ints[3];
794         if (ints[0] > 3)
795                 map.mem_end = ints[4];
796
797         /* Add new entry to the list */
798         return netdev_boot_setup_add(str, &map);
799 }
800
801 __setup("netdev=", netdev_boot_setup);
802
803 /*******************************************************************************
804  *
805  *                          Device Interface Subroutines
806  *
807  *******************************************************************************/
808
809 /**
810  *      dev_get_iflink  - get 'iflink' value of a interface
811  *      @dev: targeted interface
812  *
813  *      Indicates the ifindex the interface is linked to.
814  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
815  */
816
817 int dev_get_iflink(const struct net_device *dev)
818 {
819         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
820                 return dev->netdev_ops->ndo_get_iflink(dev);
821
822         return dev->ifindex;
823 }
824 EXPORT_SYMBOL(dev_get_iflink);
825
826 /**
827  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
828  *      @dev: targeted interface
829  *      @skb: The packet.
830  *
831  *      For better visibility of tunnel traffic OVS needs to retrieve
832  *      egress tunnel information for a packet. Following API allows
833  *      user to get this info.
834  */
835 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
836 {
837         struct ip_tunnel_info *info;
838
839         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
840                 return -EINVAL;
841
842         info = skb_tunnel_info_unclone(skb);
843         if (!info)
844                 return -ENOMEM;
845         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
846                 return -EINVAL;
847
848         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
849 }
850 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
851
852 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
853 {
854         int k = stack->num_paths++;
855
856         if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
857                 return NULL;
858
859         return &stack->path[k];
860 }
861
862 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
863                           struct net_device_path_stack *stack)
864 {
865         const struct net_device *last_dev;
866         struct net_device_path_ctx ctx = {
867                 .dev    = dev,
868                 .daddr  = daddr,
869         };
870         struct net_device_path *path;
871         int ret = 0;
872
873         stack->num_paths = 0;
874         while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
875                 last_dev = ctx.dev;
876                 path = dev_fwd_path(stack);
877                 if (!path)
878                         return -1;
879
880                 memset(path, 0, sizeof(struct net_device_path));
881                 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
882                 if (ret < 0)
883                         return -1;
884
885                 if (WARN_ON_ONCE(last_dev == ctx.dev))
886                         return -1;
887         }
888         path = dev_fwd_path(stack);
889         if (!path)
890                 return -1;
891         path->type = DEV_PATH_ETHERNET;
892         path->dev = ctx.dev;
893
894         return ret;
895 }
896 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
897
898 /**
899  *      __dev_get_by_name       - find a device by its name
900  *      @net: the applicable net namespace
901  *      @name: name to find
902  *
903  *      Find an interface by name. Must be called under RTNL semaphore
904  *      or @dev_base_lock. If the name is found a pointer to the device
905  *      is returned. If the name is not found then %NULL is returned. The
906  *      reference counters are not incremented so the caller must be
907  *      careful with locks.
908  */
909
910 struct net_device *__dev_get_by_name(struct net *net, const char *name)
911 {
912         struct netdev_name_node *node_name;
913
914         node_name = netdev_name_node_lookup(net, name);
915         return node_name ? node_name->dev : NULL;
916 }
917 EXPORT_SYMBOL(__dev_get_by_name);
918
919 /**
920  * dev_get_by_name_rcu  - find a device by its name
921  * @net: the applicable net namespace
922  * @name: name to find
923  *
924  * Find an interface by name.
925  * If the name is found a pointer to the device is returned.
926  * If the name is not found then %NULL is returned.
927  * The reference counters are not incremented so the caller must be
928  * careful with locks. The caller must hold RCU lock.
929  */
930
931 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
932 {
933         struct netdev_name_node *node_name;
934
935         node_name = netdev_name_node_lookup_rcu(net, name);
936         return node_name ? node_name->dev : NULL;
937 }
938 EXPORT_SYMBOL(dev_get_by_name_rcu);
939
940 /**
941  *      dev_get_by_name         - find a device by its name
942  *      @net: the applicable net namespace
943  *      @name: name to find
944  *
945  *      Find an interface by name. This can be called from any
946  *      context and does its own locking. The returned handle has
947  *      the usage count incremented and the caller must use dev_put() to
948  *      release it when it is no longer needed. %NULL is returned if no
949  *      matching device is found.
950  */
951
952 struct net_device *dev_get_by_name(struct net *net, const char *name)
953 {
954         struct net_device *dev;
955
956         rcu_read_lock();
957         dev = dev_get_by_name_rcu(net, name);
958         if (dev)
959                 dev_hold(dev);
960         rcu_read_unlock();
961         return dev;
962 }
963 EXPORT_SYMBOL(dev_get_by_name);
964
965 /**
966  *      __dev_get_by_index - find a device by its ifindex
967  *      @net: the applicable net namespace
968  *      @ifindex: index of device
969  *
970  *      Search for an interface by index. Returns %NULL if the device
971  *      is not found or a pointer to the device. The device has not
972  *      had its reference counter increased so the caller must be careful
973  *      about locking. The caller must hold either the RTNL semaphore
974  *      or @dev_base_lock.
975  */
976
977 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
978 {
979         struct net_device *dev;
980         struct hlist_head *head = dev_index_hash(net, ifindex);
981
982         hlist_for_each_entry(dev, head, index_hlist)
983                 if (dev->ifindex == ifindex)
984                         return dev;
985
986         return NULL;
987 }
988 EXPORT_SYMBOL(__dev_get_by_index);
989
990 /**
991  *      dev_get_by_index_rcu - find a device by its ifindex
992  *      @net: the applicable net namespace
993  *      @ifindex: index of device
994  *
995  *      Search for an interface by index. Returns %NULL if the device
996  *      is not found or a pointer to the device. The device has not
997  *      had its reference counter increased so the caller must be careful
998  *      about locking. The caller must hold RCU lock.
999  */
1000
1001 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
1002 {
1003         struct net_device *dev;
1004         struct hlist_head *head = dev_index_hash(net, ifindex);
1005
1006         hlist_for_each_entry_rcu(dev, head, index_hlist)
1007                 if (dev->ifindex == ifindex)
1008                         return dev;
1009
1010         return NULL;
1011 }
1012 EXPORT_SYMBOL(dev_get_by_index_rcu);
1013
1014
1015 /**
1016  *      dev_get_by_index - find a device by its ifindex
1017  *      @net: the applicable net namespace
1018  *      @ifindex: index of device
1019  *
1020  *      Search for an interface by index. Returns NULL if the device
1021  *      is not found or a pointer to the device. The device returned has
1022  *      had a reference added and the pointer is safe until the user calls
1023  *      dev_put to indicate they have finished with it.
1024  */
1025
1026 struct net_device *dev_get_by_index(struct net *net, int ifindex)
1027 {
1028         struct net_device *dev;
1029
1030         rcu_read_lock();
1031         dev = dev_get_by_index_rcu(net, ifindex);
1032         if (dev)
1033                 dev_hold(dev);
1034         rcu_read_unlock();
1035         return dev;
1036 }
1037 EXPORT_SYMBOL(dev_get_by_index);
1038
1039 /**
1040  *      dev_get_by_napi_id - find a device by napi_id
1041  *      @napi_id: ID of the NAPI struct
1042  *
1043  *      Search for an interface by NAPI ID. Returns %NULL if the device
1044  *      is not found or a pointer to the device. The device has not had
1045  *      its reference counter increased so the caller must be careful
1046  *      about locking. The caller must hold RCU lock.
1047  */
1048
1049 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1050 {
1051         struct napi_struct *napi;
1052
1053         WARN_ON_ONCE(!rcu_read_lock_held());
1054
1055         if (napi_id < MIN_NAPI_ID)
1056                 return NULL;
1057
1058         napi = napi_by_id(napi_id);
1059
1060         return napi ? napi->dev : NULL;
1061 }
1062 EXPORT_SYMBOL(dev_get_by_napi_id);
1063
1064 /**
1065  *      netdev_get_name - get a netdevice name, knowing its ifindex.
1066  *      @net: network namespace
1067  *      @name: a pointer to the buffer where the name will be stored.
1068  *      @ifindex: the ifindex of the interface to get the name from.
1069  */
1070 int netdev_get_name(struct net *net, char *name, int ifindex)
1071 {
1072         struct net_device *dev;
1073         int ret;
1074
1075         down_read(&devnet_rename_sem);
1076         rcu_read_lock();
1077
1078         dev = dev_get_by_index_rcu(net, ifindex);
1079         if (!dev) {
1080                 ret = -ENODEV;
1081                 goto out;
1082         }
1083
1084         strcpy(name, dev->name);
1085
1086         ret = 0;
1087 out:
1088         rcu_read_unlock();
1089         up_read(&devnet_rename_sem);
1090         return ret;
1091 }
1092
1093 /**
1094  *      dev_getbyhwaddr_rcu - find a device by its hardware address
1095  *      @net: the applicable net namespace
1096  *      @type: media type of device
1097  *      @ha: hardware address
1098  *
1099  *      Search for an interface by MAC address. Returns NULL if the device
1100  *      is not found or a pointer to the device.
1101  *      The caller must hold RCU or RTNL.
1102  *      The returned device has not had its ref count increased
1103  *      and the caller must therefore be careful about locking
1104  *
1105  */
1106
1107 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1108                                        const char *ha)
1109 {
1110         struct net_device *dev;
1111
1112         for_each_netdev_rcu(net, dev)
1113                 if (dev->type == type &&
1114                     !memcmp(dev->dev_addr, ha, dev->addr_len))
1115                         return dev;
1116
1117         return NULL;
1118 }
1119 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1120
1121 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1122 {
1123         struct net_device *dev, *ret = NULL;
1124
1125         rcu_read_lock();
1126         for_each_netdev_rcu(net, dev)
1127                 if (dev->type == type) {
1128                         dev_hold(dev);
1129                         ret = dev;
1130                         break;
1131                 }
1132         rcu_read_unlock();
1133         return ret;
1134 }
1135 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1136
1137 /**
1138  *      __dev_get_by_flags - find any device with given flags
1139  *      @net: the applicable net namespace
1140  *      @if_flags: IFF_* values
1141  *      @mask: bitmask of bits in if_flags to check
1142  *
1143  *      Search for any interface with the given flags. Returns NULL if a device
1144  *      is not found or a pointer to the device. Must be called inside
1145  *      rtnl_lock(), and result refcount is unchanged.
1146  */
1147
1148 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1149                                       unsigned short mask)
1150 {
1151         struct net_device *dev, *ret;
1152
1153         ASSERT_RTNL();
1154
1155         ret = NULL;
1156         for_each_netdev(net, dev) {
1157                 if (((dev->flags ^ if_flags) & mask) == 0) {
1158                         ret = dev;
1159                         break;
1160                 }
1161         }
1162         return ret;
1163 }
1164 EXPORT_SYMBOL(__dev_get_by_flags);
1165
1166 /**
1167  *      dev_valid_name - check if name is okay for network device
1168  *      @name: name string
1169  *
1170  *      Network device names need to be valid file names to
1171  *      allow sysfs to work.  We also disallow any kind of
1172  *      whitespace.
1173  */
1174 bool dev_valid_name(const char *name)
1175 {
1176         if (*name == '\0')
1177                 return false;
1178         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1179                 return false;
1180         if (!strcmp(name, ".") || !strcmp(name, ".."))
1181                 return false;
1182
1183         while (*name) {
1184                 if (*name == '/' || *name == ':' || isspace(*name))
1185                         return false;
1186                 name++;
1187         }
1188         return true;
1189 }
1190 EXPORT_SYMBOL(dev_valid_name);
1191
1192 /**
1193  *      __dev_alloc_name - allocate a name for a device
1194  *      @net: network namespace to allocate the device name in
1195  *      @name: name format string
1196  *      @buf:  scratch buffer and result name string
1197  *
1198  *      Passed a format string - eg "lt%d" it will try and find a suitable
1199  *      id. It scans list of devices to build up a free map, then chooses
1200  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1201  *      while allocating the name and adding the device in order to avoid
1202  *      duplicates.
1203  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1204  *      Returns the number of the unit assigned or a negative errno code.
1205  */
1206
1207 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1208 {
1209         int i = 0;
1210         const char *p;
1211         const int max_netdevices = 8*PAGE_SIZE;
1212         unsigned long *inuse;
1213         struct net_device *d;
1214
1215         if (!dev_valid_name(name))
1216                 return -EINVAL;
1217
1218         p = strchr(name, '%');
1219         if (p) {
1220                 /*
1221                  * Verify the string as this thing may have come from
1222                  * the user.  There must be either one "%d" and no other "%"
1223                  * characters.
1224                  */
1225                 if (p[1] != 'd' || strchr(p + 2, '%'))
1226                         return -EINVAL;
1227
1228                 /* Use one page as a bit array of possible slots */
1229                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1230                 if (!inuse)
1231                         return -ENOMEM;
1232
1233                 for_each_netdev(net, d) {
1234                         struct netdev_name_node *name_node;
1235                         list_for_each_entry(name_node, &d->name_node->list, list) {
1236                                 if (!sscanf(name_node->name, name, &i))
1237                                         continue;
1238                                 if (i < 0 || i >= max_netdevices)
1239                                         continue;
1240
1241                                 /*  avoid cases where sscanf is not exact inverse of printf */
1242                                 snprintf(buf, IFNAMSIZ, name, i);
1243                                 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1244                                         set_bit(i, inuse);
1245                         }
1246                         if (!sscanf(d->name, name, &i))
1247                                 continue;
1248                         if (i < 0 || i >= max_netdevices)
1249                                 continue;
1250
1251                         /*  avoid cases where sscanf is not exact inverse of printf */
1252                         snprintf(buf, IFNAMSIZ, name, i);
1253                         if (!strncmp(buf, d->name, IFNAMSIZ))
1254                                 set_bit(i, inuse);
1255                 }
1256
1257                 i = find_first_zero_bit(inuse, max_netdevices);
1258                 free_page((unsigned long) inuse);
1259         }
1260
1261         snprintf(buf, IFNAMSIZ, name, i);
1262         if (!__dev_get_by_name(net, buf))
1263                 return i;
1264
1265         /* It is possible to run out of possible slots
1266          * when the name is long and there isn't enough space left
1267          * for the digits, or if all bits are used.
1268          */
1269         return -ENFILE;
1270 }
1271
1272 static int dev_alloc_name_ns(struct net *net,
1273                              struct net_device *dev,
1274                              const char *name)
1275 {
1276         char buf[IFNAMSIZ];
1277         int ret;
1278
1279         BUG_ON(!net);
1280         ret = __dev_alloc_name(net, name, buf);
1281         if (ret >= 0)
1282                 strlcpy(dev->name, buf, IFNAMSIZ);
1283         return ret;
1284 }
1285
1286 /**
1287  *      dev_alloc_name - allocate a name for a device
1288  *      @dev: device
1289  *      @name: name format string
1290  *
1291  *      Passed a format string - eg "lt%d" it will try and find a suitable
1292  *      id. It scans list of devices to build up a free map, then chooses
1293  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1294  *      while allocating the name and adding the device in order to avoid
1295  *      duplicates.
1296  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1297  *      Returns the number of the unit assigned or a negative errno code.
1298  */
1299
1300 int dev_alloc_name(struct net_device *dev, const char *name)
1301 {
1302         return dev_alloc_name_ns(dev_net(dev), dev, name);
1303 }
1304 EXPORT_SYMBOL(dev_alloc_name);
1305
1306 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1307                               const char *name)
1308 {
1309         BUG_ON(!net);
1310
1311         if (!dev_valid_name(name))
1312                 return -EINVAL;
1313
1314         if (strchr(name, '%'))
1315                 return dev_alloc_name_ns(net, dev, name);
1316         else if (__dev_get_by_name(net, name))
1317                 return -EEXIST;
1318         else if (dev->name != name)
1319                 strlcpy(dev->name, name, IFNAMSIZ);
1320
1321         return 0;
1322 }
1323
1324 /**
1325  *      dev_change_name - change name of a device
1326  *      @dev: device
1327  *      @newname: name (or format string) must be at least IFNAMSIZ
1328  *
1329  *      Change name of a device, can pass format strings "eth%d".
1330  *      for wildcarding.
1331  */
1332 int dev_change_name(struct net_device *dev, const char *newname)
1333 {
1334         unsigned char old_assign_type;
1335         char oldname[IFNAMSIZ];
1336         int err = 0;
1337         int ret;
1338         struct net *net;
1339
1340         ASSERT_RTNL();
1341         BUG_ON(!dev_net(dev));
1342
1343         net = dev_net(dev);
1344
1345         /* Some auto-enslaved devices e.g. failover slaves are
1346          * special, as userspace might rename the device after
1347          * the interface had been brought up and running since
1348          * the point kernel initiated auto-enslavement. Allow
1349          * live name change even when these slave devices are
1350          * up and running.
1351          *
1352          * Typically, users of these auto-enslaving devices
1353          * don't actually care about slave name change, as
1354          * they are supposed to operate on master interface
1355          * directly.
1356          */
1357         if (dev->flags & IFF_UP &&
1358             likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1359                 return -EBUSY;
1360
1361         down_write(&devnet_rename_sem);
1362
1363         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1364                 up_write(&devnet_rename_sem);
1365                 return 0;
1366         }
1367
1368         memcpy(oldname, dev->name, IFNAMSIZ);
1369
1370         err = dev_get_valid_name(net, dev, newname);
1371         if (err < 0) {
1372                 up_write(&devnet_rename_sem);
1373                 return err;
1374         }
1375
1376         if (oldname[0] && !strchr(oldname, '%'))
1377                 netdev_info(dev, "renamed from %s\n", oldname);
1378
1379         old_assign_type = dev->name_assign_type;
1380         dev->name_assign_type = NET_NAME_RENAMED;
1381
1382 rollback:
1383         ret = device_rename(&dev->dev, dev->name);
1384         if (ret) {
1385                 memcpy(dev->name, oldname, IFNAMSIZ);
1386                 dev->name_assign_type = old_assign_type;
1387                 up_write(&devnet_rename_sem);
1388                 return ret;
1389         }
1390
1391         up_write(&devnet_rename_sem);
1392
1393         netdev_adjacent_rename_links(dev, oldname);
1394
1395         write_lock_bh(&dev_base_lock);
1396         netdev_name_node_del(dev->name_node);
1397         write_unlock_bh(&dev_base_lock);
1398
1399         synchronize_rcu();
1400
1401         write_lock_bh(&dev_base_lock);
1402         netdev_name_node_add(net, dev->name_node);
1403         write_unlock_bh(&dev_base_lock);
1404
1405         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1406         ret = notifier_to_errno(ret);
1407
1408         if (ret) {
1409                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1410                 if (err >= 0) {
1411                         err = ret;
1412                         down_write(&devnet_rename_sem);
1413                         memcpy(dev->name, oldname, IFNAMSIZ);
1414                         memcpy(oldname, newname, IFNAMSIZ);
1415                         dev->name_assign_type = old_assign_type;
1416                         old_assign_type = NET_NAME_RENAMED;
1417                         goto rollback;
1418                 } else {
1419                         pr_err("%s: name change rollback failed: %d\n",
1420                                dev->name, ret);
1421                 }
1422         }
1423
1424         return err;
1425 }
1426
1427 /**
1428  *      dev_set_alias - change ifalias of a device
1429  *      @dev: device
1430  *      @alias: name up to IFALIASZ
1431  *      @len: limit of bytes to copy from info
1432  *
1433  *      Set ifalias for a device,
1434  */
1435 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1436 {
1437         struct dev_ifalias *new_alias = NULL;
1438
1439         if (len >= IFALIASZ)
1440                 return -EINVAL;
1441
1442         if (len) {
1443                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1444                 if (!new_alias)
1445                         return -ENOMEM;
1446
1447                 memcpy(new_alias->ifalias, alias, len);
1448                 new_alias->ifalias[len] = 0;
1449         }
1450
1451         mutex_lock(&ifalias_mutex);
1452         new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1453                                         mutex_is_locked(&ifalias_mutex));
1454         mutex_unlock(&ifalias_mutex);
1455
1456         if (new_alias)
1457                 kfree_rcu(new_alias, rcuhead);
1458
1459         return len;
1460 }
1461 EXPORT_SYMBOL(dev_set_alias);
1462
1463 /**
1464  *      dev_get_alias - get ifalias of a device
1465  *      @dev: device
1466  *      @name: buffer to store name of ifalias
1467  *      @len: size of buffer
1468  *
1469  *      get ifalias for a device.  Caller must make sure dev cannot go
1470  *      away,  e.g. rcu read lock or own a reference count to device.
1471  */
1472 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1473 {
1474         const struct dev_ifalias *alias;
1475         int ret = 0;
1476
1477         rcu_read_lock();
1478         alias = rcu_dereference(dev->ifalias);
1479         if (alias)
1480                 ret = snprintf(name, len, "%s", alias->ifalias);
1481         rcu_read_unlock();
1482
1483         return ret;
1484 }
1485
1486 /**
1487  *      netdev_features_change - device changes features
1488  *      @dev: device to cause notification
1489  *
1490  *      Called to indicate a device has changed features.
1491  */
1492 void netdev_features_change(struct net_device *dev)
1493 {
1494         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1495 }
1496 EXPORT_SYMBOL(netdev_features_change);
1497
1498 /**
1499  *      netdev_state_change - device changes state
1500  *      @dev: device to cause notification
1501  *
1502  *      Called to indicate a device has changed state. This function calls
1503  *      the notifier chains for netdev_chain and sends a NEWLINK message
1504  *      to the routing socket.
1505  */
1506 void netdev_state_change(struct net_device *dev)
1507 {
1508         if (dev->flags & IFF_UP) {
1509                 struct netdev_notifier_change_info change_info = {
1510                         .info.dev = dev,
1511                 };
1512
1513                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1514                                               &change_info.info);
1515                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1516         }
1517 }
1518 EXPORT_SYMBOL(netdev_state_change);
1519
1520 /**
1521  * __netdev_notify_peers - notify network peers about existence of @dev,
1522  * to be called when rtnl lock is already held.
1523  * @dev: network device
1524  *
1525  * Generate traffic such that interested network peers are aware of
1526  * @dev, such as by generating a gratuitous ARP. This may be used when
1527  * a device wants to inform the rest of the network about some sort of
1528  * reconfiguration such as a failover event or virtual machine
1529  * migration.
1530  */
1531 void __netdev_notify_peers(struct net_device *dev)
1532 {
1533         ASSERT_RTNL();
1534         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1535         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1536 }
1537 EXPORT_SYMBOL(__netdev_notify_peers);
1538
1539 /**
1540  * netdev_notify_peers - notify network peers about existence of @dev
1541  * @dev: network device
1542  *
1543  * Generate traffic such that interested network peers are aware of
1544  * @dev, such as by generating a gratuitous ARP. This may be used when
1545  * a device wants to inform the rest of the network about some sort of
1546  * reconfiguration such as a failover event or virtual machine
1547  * migration.
1548  */
1549 void netdev_notify_peers(struct net_device *dev)
1550 {
1551         rtnl_lock();
1552         __netdev_notify_peers(dev);
1553         rtnl_unlock();
1554 }
1555 EXPORT_SYMBOL(netdev_notify_peers);
1556
1557 static int napi_threaded_poll(void *data);
1558
1559 static int napi_kthread_create(struct napi_struct *n)
1560 {
1561         int err = 0;
1562
1563         /* Create and wake up the kthread once to put it in
1564          * TASK_INTERRUPTIBLE mode to avoid the blocked task
1565          * warning and work with loadavg.
1566          */
1567         n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1568                                 n->dev->name, n->napi_id);
1569         if (IS_ERR(n->thread)) {
1570                 err = PTR_ERR(n->thread);
1571                 pr_err("kthread_run failed with err %d\n", err);
1572                 n->thread = NULL;
1573         }
1574
1575         return err;
1576 }
1577
1578 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1579 {
1580         const struct net_device_ops *ops = dev->netdev_ops;
1581         int ret;
1582
1583         ASSERT_RTNL();
1584
1585         if (!netif_device_present(dev)) {
1586                 /* may be detached because parent is runtime-suspended */
1587                 if (dev->dev.parent)
1588                         pm_runtime_resume(dev->dev.parent);
1589                 if (!netif_device_present(dev))
1590                         return -ENODEV;
1591         }
1592
1593         /* Block netpoll from trying to do any rx path servicing.
1594          * If we don't do this there is a chance ndo_poll_controller
1595          * or ndo_poll may be running while we open the device
1596          */
1597         netpoll_poll_disable(dev);
1598
1599         ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1600         ret = notifier_to_errno(ret);
1601         if (ret)
1602                 return ret;
1603
1604         set_bit(__LINK_STATE_START, &dev->state);
1605
1606         if (ops->ndo_validate_addr)
1607                 ret = ops->ndo_validate_addr(dev);
1608
1609         if (!ret && ops->ndo_open)
1610                 ret = ops->ndo_open(dev);
1611
1612         netpoll_poll_enable(dev);
1613
1614         if (ret)
1615                 clear_bit(__LINK_STATE_START, &dev->state);
1616         else {
1617                 dev->flags |= IFF_UP;
1618                 dev_set_rx_mode(dev);
1619                 dev_activate(dev);
1620                 add_device_randomness(dev->dev_addr, dev->addr_len);
1621         }
1622
1623         return ret;
1624 }
1625
1626 /**
1627  *      dev_open        - prepare an interface for use.
1628  *      @dev: device to open
1629  *      @extack: netlink extended ack
1630  *
1631  *      Takes a device from down to up state. The device's private open
1632  *      function is invoked and then the multicast lists are loaded. Finally
1633  *      the device is moved into the up state and a %NETDEV_UP message is
1634  *      sent to the netdev notifier chain.
1635  *
1636  *      Calling this function on an active interface is a nop. On a failure
1637  *      a negative errno code is returned.
1638  */
1639 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1640 {
1641         int ret;
1642
1643         if (dev->flags & IFF_UP)
1644                 return 0;
1645
1646         ret = __dev_open(dev, extack);
1647         if (ret < 0)
1648                 return ret;
1649
1650         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1651         call_netdevice_notifiers(NETDEV_UP, dev);
1652
1653         return ret;
1654 }
1655 EXPORT_SYMBOL(dev_open);
1656
1657 static void __dev_close_many(struct list_head *head)
1658 {
1659         struct net_device *dev;
1660
1661         ASSERT_RTNL();
1662         might_sleep();
1663
1664         list_for_each_entry(dev, head, close_list) {
1665                 /* Temporarily disable netpoll until the interface is down */
1666                 netpoll_poll_disable(dev);
1667
1668                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1669
1670                 clear_bit(__LINK_STATE_START, &dev->state);
1671
1672                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1673                  * can be even on different cpu. So just clear netif_running().
1674                  *
1675                  * dev->stop() will invoke napi_disable() on all of it's
1676                  * napi_struct instances on this device.
1677                  */
1678                 smp_mb__after_atomic(); /* Commit netif_running(). */
1679         }
1680
1681         dev_deactivate_many(head);
1682
1683         list_for_each_entry(dev, head, close_list) {
1684                 const struct net_device_ops *ops = dev->netdev_ops;
1685
1686                 /*
1687                  *      Call the device specific close. This cannot fail.
1688                  *      Only if device is UP
1689                  *
1690                  *      We allow it to be called even after a DETACH hot-plug
1691                  *      event.
1692                  */
1693                 if (ops->ndo_stop)
1694                         ops->ndo_stop(dev);
1695
1696                 dev->flags &= ~IFF_UP;
1697                 netpoll_poll_enable(dev);
1698         }
1699 }
1700
1701 static void __dev_close(struct net_device *dev)
1702 {
1703         LIST_HEAD(single);
1704
1705         list_add(&dev->close_list, &single);
1706         __dev_close_many(&single);
1707         list_del(&single);
1708 }
1709
1710 void dev_close_many(struct list_head *head, bool unlink)
1711 {
1712         struct net_device *dev, *tmp;
1713
1714         /* Remove the devices that don't need to be closed */
1715         list_for_each_entry_safe(dev, tmp, head, close_list)
1716                 if (!(dev->flags & IFF_UP))
1717                         list_del_init(&dev->close_list);
1718
1719         __dev_close_many(head);
1720
1721         list_for_each_entry_safe(dev, tmp, head, close_list) {
1722                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1723                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1724                 if (unlink)
1725                         list_del_init(&dev->close_list);
1726         }
1727 }
1728 EXPORT_SYMBOL(dev_close_many);
1729
1730 /**
1731  *      dev_close - shutdown an interface.
1732  *      @dev: device to shutdown
1733  *
1734  *      This function moves an active device into down state. A
1735  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1736  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1737  *      chain.
1738  */
1739 void dev_close(struct net_device *dev)
1740 {
1741         if (dev->flags & IFF_UP) {
1742                 LIST_HEAD(single);
1743
1744                 list_add(&dev->close_list, &single);
1745                 dev_close_many(&single, true);
1746                 list_del(&single);
1747         }
1748 }
1749 EXPORT_SYMBOL(dev_close);
1750
1751
1752 /**
1753  *      dev_disable_lro - disable Large Receive Offload on a device
1754  *      @dev: device
1755  *
1756  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1757  *      called under RTNL.  This is needed if received packets may be
1758  *      forwarded to another interface.
1759  */
1760 void dev_disable_lro(struct net_device *dev)
1761 {
1762         struct net_device *lower_dev;
1763         struct list_head *iter;
1764
1765         dev->wanted_features &= ~NETIF_F_LRO;
1766         netdev_update_features(dev);
1767
1768         if (unlikely(dev->features & NETIF_F_LRO))
1769                 netdev_WARN(dev, "failed to disable LRO!\n");
1770
1771         netdev_for_each_lower_dev(dev, lower_dev, iter)
1772                 dev_disable_lro(lower_dev);
1773 }
1774 EXPORT_SYMBOL(dev_disable_lro);
1775
1776 /**
1777  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1778  *      @dev: device
1779  *
1780  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1781  *      called under RTNL.  This is needed if Generic XDP is installed on
1782  *      the device.
1783  */
1784 static void dev_disable_gro_hw(struct net_device *dev)
1785 {
1786         dev->wanted_features &= ~NETIF_F_GRO_HW;
1787         netdev_update_features(dev);
1788
1789         if (unlikely(dev->features & NETIF_F_GRO_HW))
1790                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1791 }
1792
1793 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1794 {
1795 #define N(val)                                          \
1796         case NETDEV_##val:                              \
1797                 return "NETDEV_" __stringify(val);
1798         switch (cmd) {
1799         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1800         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1801         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1802         N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1803         N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1804         N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1805         N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1806         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1807         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1808         N(PRE_CHANGEADDR)
1809         }
1810 #undef N
1811         return "UNKNOWN_NETDEV_EVENT";
1812 }
1813 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1814
1815 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1816                                    struct net_device *dev)
1817 {
1818         struct netdev_notifier_info info = {
1819                 .dev = dev,
1820         };
1821
1822         return nb->notifier_call(nb, val, &info);
1823 }
1824
1825 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1826                                              struct net_device *dev)
1827 {
1828         int err;
1829
1830         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1831         err = notifier_to_errno(err);
1832         if (err)
1833                 return err;
1834
1835         if (!(dev->flags & IFF_UP))
1836                 return 0;
1837
1838         call_netdevice_notifier(nb, NETDEV_UP, dev);
1839         return 0;
1840 }
1841
1842 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1843                                                 struct net_device *dev)
1844 {
1845         if (dev->flags & IFF_UP) {
1846                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1847                                         dev);
1848                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1849         }
1850         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1851 }
1852
1853 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1854                                                  struct net *net)
1855 {
1856         struct net_device *dev;
1857         int err;
1858
1859         for_each_netdev(net, dev) {
1860                 err = call_netdevice_register_notifiers(nb, dev);
1861                 if (err)
1862                         goto rollback;
1863         }
1864         return 0;
1865
1866 rollback:
1867         for_each_netdev_continue_reverse(net, dev)
1868                 call_netdevice_unregister_notifiers(nb, dev);
1869         return err;
1870 }
1871
1872 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1873                                                     struct net *net)
1874 {
1875         struct net_device *dev;
1876
1877         for_each_netdev(net, dev)
1878                 call_netdevice_unregister_notifiers(nb, dev);
1879 }
1880
1881 static int dev_boot_phase = 1;
1882
1883 /**
1884  * register_netdevice_notifier - register a network notifier block
1885  * @nb: notifier
1886  *
1887  * Register a notifier to be called when network device events occur.
1888  * The notifier passed is linked into the kernel structures and must
1889  * not be reused until it has been unregistered. A negative errno code
1890  * is returned on a failure.
1891  *
1892  * When registered all registration and up events are replayed
1893  * to the new notifier to allow device to have a race free
1894  * view of the network device list.
1895  */
1896
1897 int register_netdevice_notifier(struct notifier_block *nb)
1898 {
1899         struct net *net;
1900         int err;
1901
1902         /* Close race with setup_net() and cleanup_net() */
1903         down_write(&pernet_ops_rwsem);
1904         rtnl_lock();
1905         err = raw_notifier_chain_register(&netdev_chain, nb);
1906         if (err)
1907                 goto unlock;
1908         if (dev_boot_phase)
1909                 goto unlock;
1910         for_each_net(net) {
1911                 err = call_netdevice_register_net_notifiers(nb, net);
1912                 if (err)
1913                         goto rollback;
1914         }
1915
1916 unlock:
1917         rtnl_unlock();
1918         up_write(&pernet_ops_rwsem);
1919         return err;
1920
1921 rollback:
1922         for_each_net_continue_reverse(net)
1923                 call_netdevice_unregister_net_notifiers(nb, net);
1924
1925         raw_notifier_chain_unregister(&netdev_chain, nb);
1926         goto unlock;
1927 }
1928 EXPORT_SYMBOL(register_netdevice_notifier);
1929
1930 /**
1931  * unregister_netdevice_notifier - unregister a network notifier block
1932  * @nb: notifier
1933  *
1934  * Unregister a notifier previously registered by
1935  * register_netdevice_notifier(). The notifier is unlinked into the
1936  * kernel structures and may then be reused. A negative errno code
1937  * is returned on a failure.
1938  *
1939  * After unregistering unregister and down device events are synthesized
1940  * for all devices on the device list to the removed notifier to remove
1941  * the need for special case cleanup code.
1942  */
1943
1944 int unregister_netdevice_notifier(struct notifier_block *nb)
1945 {
1946         struct net *net;
1947         int err;
1948
1949         /* Close race with setup_net() and cleanup_net() */
1950         down_write(&pernet_ops_rwsem);
1951         rtnl_lock();
1952         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1953         if (err)
1954                 goto unlock;
1955
1956         for_each_net(net)
1957                 call_netdevice_unregister_net_notifiers(nb, net);
1958
1959 unlock:
1960         rtnl_unlock();
1961         up_write(&pernet_ops_rwsem);
1962         return err;
1963 }
1964 EXPORT_SYMBOL(unregister_netdevice_notifier);
1965
1966 static int __register_netdevice_notifier_net(struct net *net,
1967                                              struct notifier_block *nb,
1968                                              bool ignore_call_fail)
1969 {
1970         int err;
1971
1972         err = raw_notifier_chain_register(&net->netdev_chain, nb);
1973         if (err)
1974                 return err;
1975         if (dev_boot_phase)
1976                 return 0;
1977
1978         err = call_netdevice_register_net_notifiers(nb, net);
1979         if (err && !ignore_call_fail)
1980                 goto chain_unregister;
1981
1982         return 0;
1983
1984 chain_unregister:
1985         raw_notifier_chain_unregister(&net->netdev_chain, nb);
1986         return err;
1987 }
1988
1989 static int __unregister_netdevice_notifier_net(struct net *net,
1990                                                struct notifier_block *nb)
1991 {
1992         int err;
1993
1994         err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1995         if (err)
1996                 return err;
1997
1998         call_netdevice_unregister_net_notifiers(nb, net);
1999         return 0;
2000 }
2001
2002 /**
2003  * register_netdevice_notifier_net - register a per-netns network notifier block
2004  * @net: network namespace
2005  * @nb: notifier
2006  *
2007  * Register a notifier to be called when network device events occur.
2008  * The notifier passed is linked into the kernel structures and must
2009  * not be reused until it has been unregistered. A negative errno code
2010  * is returned on a failure.
2011  *
2012  * When registered all registration and up events are replayed
2013  * to the new notifier to allow device to have a race free
2014  * view of the network device list.
2015  */
2016
2017 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
2018 {
2019         int err;
2020
2021         rtnl_lock();
2022         err = __register_netdevice_notifier_net(net, nb, false);
2023         rtnl_unlock();
2024         return err;
2025 }
2026 EXPORT_SYMBOL(register_netdevice_notifier_net);
2027
2028 /**
2029  * unregister_netdevice_notifier_net - unregister a per-netns
2030  *                                     network notifier block
2031  * @net: network namespace
2032  * @nb: notifier
2033  *
2034  * Unregister a notifier previously registered by
2035  * register_netdevice_notifier(). The notifier is unlinked into the
2036  * kernel structures and may then be reused. A negative errno code
2037  * is returned on a failure.
2038  *
2039  * After unregistering unregister and down device events are synthesized
2040  * for all devices on the device list to the removed notifier to remove
2041  * the need for special case cleanup code.
2042  */
2043
2044 int unregister_netdevice_notifier_net(struct net *net,
2045                                       struct notifier_block *nb)
2046 {
2047         int err;
2048
2049         rtnl_lock();
2050         err = __unregister_netdevice_notifier_net(net, nb);
2051         rtnl_unlock();
2052         return err;
2053 }
2054 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
2055
2056 int register_netdevice_notifier_dev_net(struct net_device *dev,
2057                                         struct notifier_block *nb,
2058                                         struct netdev_net_notifier *nn)
2059 {
2060         int err;
2061
2062         rtnl_lock();
2063         err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
2064         if (!err) {
2065                 nn->nb = nb;
2066                 list_add(&nn->list, &dev->net_notifier_list);
2067         }
2068         rtnl_unlock();
2069         return err;
2070 }
2071 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
2072
2073 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2074                                           struct notifier_block *nb,
2075                                           struct netdev_net_notifier *nn)
2076 {
2077         int err;
2078
2079         rtnl_lock();
2080         list_del(&nn->list);
2081         err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2082         rtnl_unlock();
2083         return err;
2084 }
2085 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2086
2087 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2088                                              struct net *net)
2089 {
2090         struct netdev_net_notifier *nn;
2091
2092         list_for_each_entry(nn, &dev->net_notifier_list, list) {
2093                 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
2094                 __register_netdevice_notifier_net(net, nn->nb, true);
2095         }
2096 }
2097
2098 /**
2099  *      call_netdevice_notifiers_info - call all network notifier blocks
2100  *      @val: value passed unmodified to notifier function
2101  *      @info: notifier information data
2102  *
2103  *      Call all network notifier blocks.  Parameters and return value
2104  *      are as for raw_notifier_call_chain().
2105  */
2106
2107 static int call_netdevice_notifiers_info(unsigned long val,
2108                                          struct netdev_notifier_info *info)
2109 {
2110         struct net *net = dev_net(info->dev);
2111         int ret;
2112
2113         ASSERT_RTNL();
2114
2115         /* Run per-netns notifier block chain first, then run the global one.
2116          * Hopefully, one day, the global one is going to be removed after
2117          * all notifier block registrators get converted to be per-netns.
2118          */
2119         ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2120         if (ret & NOTIFY_STOP_MASK)
2121                 return ret;
2122         return raw_notifier_call_chain(&netdev_chain, val, info);
2123 }
2124
2125 static int call_netdevice_notifiers_extack(unsigned long val,
2126                                            struct net_device *dev,
2127                                            struct netlink_ext_ack *extack)
2128 {
2129         struct netdev_notifier_info info = {
2130                 .dev = dev,
2131                 .extack = extack,
2132         };
2133
2134         return call_netdevice_notifiers_info(val, &info);
2135 }
2136
2137 /**
2138  *      call_netdevice_notifiers - call all network notifier blocks
2139  *      @val: value passed unmodified to notifier function
2140  *      @dev: net_device pointer passed unmodified to notifier function
2141  *
2142  *      Call all network notifier blocks.  Parameters and return value
2143  *      are as for raw_notifier_call_chain().
2144  */
2145
2146 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2147 {
2148         return call_netdevice_notifiers_extack(val, dev, NULL);
2149 }
2150 EXPORT_SYMBOL(call_netdevice_notifiers);
2151
2152 /**
2153  *      call_netdevice_notifiers_mtu - call all network notifier blocks
2154  *      @val: value passed unmodified to notifier function
2155  *      @dev: net_device pointer passed unmodified to notifier function
2156  *      @arg: additional u32 argument passed to the notifier function
2157  *
2158  *      Call all network notifier blocks.  Parameters and return value
2159  *      are as for raw_notifier_call_chain().
2160  */
2161 static int call_netdevice_notifiers_mtu(unsigned long val,
2162                                         struct net_device *dev, u32 arg)
2163 {
2164         struct netdev_notifier_info_ext info = {
2165                 .info.dev = dev,
2166                 .ext.mtu = arg,
2167         };
2168
2169         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2170
2171         return call_netdevice_notifiers_info(val, &info.info);
2172 }
2173
2174 #ifdef CONFIG_NET_INGRESS
2175 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2176
2177 void net_inc_ingress_queue(void)
2178 {
2179         static_branch_inc(&ingress_needed_key);
2180 }
2181 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2182
2183 void net_dec_ingress_queue(void)
2184 {
2185         static_branch_dec(&ingress_needed_key);
2186 }
2187 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2188 #endif
2189
2190 #ifdef CONFIG_NET_EGRESS
2191 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2192
2193 void net_inc_egress_queue(void)
2194 {
2195         static_branch_inc(&egress_needed_key);
2196 }
2197 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2198
2199 void net_dec_egress_queue(void)
2200 {
2201         static_branch_dec(&egress_needed_key);
2202 }
2203 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2204 #endif
2205
2206 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2207 #ifdef CONFIG_JUMP_LABEL
2208 static atomic_t netstamp_needed_deferred;
2209 static atomic_t netstamp_wanted;
2210 static void netstamp_clear(struct work_struct *work)
2211 {
2212         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2213         int wanted;
2214
2215         wanted = atomic_add_return(deferred, &netstamp_wanted);
2216         if (wanted > 0)
2217                 static_branch_enable(&netstamp_needed_key);
2218         else
2219                 static_branch_disable(&netstamp_needed_key);
2220 }
2221 static DECLARE_WORK(netstamp_work, netstamp_clear);
2222 #endif
2223
2224 void net_enable_timestamp(void)
2225 {
2226 #ifdef CONFIG_JUMP_LABEL
2227         int wanted;
2228
2229         while (1) {
2230                 wanted = atomic_read(&netstamp_wanted);
2231                 if (wanted <= 0)
2232                         break;
2233                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2234                         return;
2235         }
2236         atomic_inc(&netstamp_needed_deferred);
2237         schedule_work(&netstamp_work);
2238 #else
2239         static_branch_inc(&netstamp_needed_key);
2240 #endif
2241 }
2242 EXPORT_SYMBOL(net_enable_timestamp);
2243
2244 void net_disable_timestamp(void)
2245 {
2246 #ifdef CONFIG_JUMP_LABEL
2247         int wanted;
2248
2249         while (1) {
2250                 wanted = atomic_read(&netstamp_wanted);
2251                 if (wanted <= 1)
2252                         break;
2253                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2254                         return;
2255         }
2256         atomic_dec(&netstamp_needed_deferred);
2257         schedule_work(&netstamp_work);
2258 #else
2259         static_branch_dec(&netstamp_needed_key);
2260 #endif
2261 }
2262 EXPORT_SYMBOL(net_disable_timestamp);
2263
2264 static inline void net_timestamp_set(struct sk_buff *skb)
2265 {
2266         skb->tstamp = 0;
2267         if (static_branch_unlikely(&netstamp_needed_key))
2268                 __net_timestamp(skb);
2269 }
2270
2271 #define net_timestamp_check(COND, SKB)                          \
2272         if (static_branch_unlikely(&netstamp_needed_key)) {     \
2273                 if ((COND) && !(SKB)->tstamp)                   \
2274                         __net_timestamp(SKB);                   \
2275         }                                                       \
2276
2277 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2278 {
2279         return __is_skb_forwardable(dev, skb, true);
2280 }
2281 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2282
2283 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2284                               bool check_mtu)
2285 {
2286         int ret = ____dev_forward_skb(dev, skb, check_mtu);
2287
2288         if (likely(!ret)) {
2289                 skb->protocol = eth_type_trans(skb, dev);
2290                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2291         }
2292
2293         return ret;
2294 }
2295
2296 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2297 {
2298         return __dev_forward_skb2(dev, skb, true);
2299 }
2300 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2301
2302 /**
2303  * dev_forward_skb - loopback an skb to another netif
2304  *
2305  * @dev: destination network device
2306  * @skb: buffer to forward
2307  *
2308  * return values:
2309  *      NET_RX_SUCCESS  (no congestion)
2310  *      NET_RX_DROP     (packet was dropped, but freed)
2311  *
2312  * dev_forward_skb can be used for injecting an skb from the
2313  * start_xmit function of one device into the receive queue
2314  * of another device.
2315  *
2316  * The receiving device may be in another namespace, so
2317  * we have to clear all information in the skb that could
2318  * impact namespace isolation.
2319  */
2320 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2321 {
2322         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2323 }
2324 EXPORT_SYMBOL_GPL(dev_forward_skb);
2325
2326 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2327 {
2328         return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2329 }
2330
2331 static inline int deliver_skb(struct sk_buff *skb,
2332                               struct packet_type *pt_prev,
2333                               struct net_device *orig_dev)
2334 {
2335         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2336                 return -ENOMEM;
2337         refcount_inc(&skb->users);
2338         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2339 }
2340
2341 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2342                                           struct packet_type **pt,
2343                                           struct net_device *orig_dev,
2344                                           __be16 type,
2345                                           struct list_head *ptype_list)
2346 {
2347         struct packet_type *ptype, *pt_prev = *pt;
2348
2349         list_for_each_entry_rcu(ptype, ptype_list, list) {
2350                 if (ptype->type != type)
2351                         continue;
2352                 if (pt_prev)
2353                         deliver_skb(skb, pt_prev, orig_dev);
2354                 pt_prev = ptype;
2355         }
2356         *pt = pt_prev;
2357 }
2358
2359 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2360 {
2361         if (!ptype->af_packet_priv || !skb->sk)
2362                 return false;
2363
2364         if (ptype->id_match)
2365                 return ptype->id_match(ptype, skb->sk);
2366         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2367                 return true;
2368
2369         return false;
2370 }
2371
2372 /**
2373  * dev_nit_active - return true if any network interface taps are in use
2374  *
2375  * @dev: network device to check for the presence of taps
2376  */
2377 bool dev_nit_active(struct net_device *dev)
2378 {
2379         return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2380 }
2381 EXPORT_SYMBOL_GPL(dev_nit_active);
2382
2383 /*
2384  *      Support routine. Sends outgoing frames to any network
2385  *      taps currently in use.
2386  */
2387
2388 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2389 {
2390         struct packet_type *ptype;
2391         struct sk_buff *skb2 = NULL;
2392         struct packet_type *pt_prev = NULL;
2393         struct list_head *ptype_list = &ptype_all;
2394
2395         rcu_read_lock();
2396 again:
2397         list_for_each_entry_rcu(ptype, ptype_list, list) {
2398                 if (ptype->ignore_outgoing)
2399                         continue;
2400
2401                 /* Never send packets back to the socket
2402                  * they originated from - MvS (miquels@drinkel.ow.org)
2403                  */
2404                 if (skb_loop_sk(ptype, skb))
2405                         continue;
2406
2407                 if (pt_prev) {
2408                         deliver_skb(skb2, pt_prev, skb->dev);
2409                         pt_prev = ptype;
2410                         continue;
2411                 }
2412
2413                 /* need to clone skb, done only once */
2414                 skb2 = skb_clone(skb, GFP_ATOMIC);
2415                 if (!skb2)
2416                         goto out_unlock;
2417
2418                 net_timestamp_set(skb2);
2419
2420                 /* skb->nh should be correctly
2421                  * set by sender, so that the second statement is
2422                  * just protection against buggy protocols.
2423                  */
2424                 skb_reset_mac_header(skb2);
2425
2426                 if (skb_network_header(skb2) < skb2->data ||
2427                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2428                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2429                                              ntohs(skb2->protocol),
2430                                              dev->name);
2431                         skb_reset_network_header(skb2);
2432                 }
2433
2434                 skb2->transport_header = skb2->network_header;
2435                 skb2->pkt_type = PACKET_OUTGOING;
2436                 pt_prev = ptype;
2437         }
2438
2439         if (ptype_list == &ptype_all) {
2440                 ptype_list = &dev->ptype_all;
2441                 goto again;
2442         }
2443 out_unlock:
2444         if (pt_prev) {
2445                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2446                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2447                 else
2448                         kfree_skb(skb2);
2449         }
2450         rcu_read_unlock();
2451 }
2452 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2453
2454 /**
2455  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2456  * @dev: Network device
2457  * @txq: number of queues available
2458  *
2459  * If real_num_tx_queues is changed the tc mappings may no longer be
2460  * valid. To resolve this verify the tc mapping remains valid and if
2461  * not NULL the mapping. With no priorities mapping to this
2462  * offset/count pair it will no longer be used. In the worst case TC0
2463  * is invalid nothing can be done so disable priority mappings. If is
2464  * expected that drivers will fix this mapping if they can before
2465  * calling netif_set_real_num_tx_queues.
2466  */
2467 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2468 {
2469         int i;
2470         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2471
2472         /* If TC0 is invalidated disable TC mapping */
2473         if (tc->offset + tc->count > txq) {
2474                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2475                 dev->num_tc = 0;
2476                 return;
2477         }
2478
2479         /* Invalidated prio to tc mappings set to TC0 */
2480         for (i = 1; i < TC_BITMASK + 1; i++) {
2481                 int q = netdev_get_prio_tc_map(dev, i);
2482
2483                 tc = &dev->tc_to_txq[q];
2484                 if (tc->offset + tc->count > txq) {
2485                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2486                                 i, q);
2487                         netdev_set_prio_tc_map(dev, i, 0);
2488                 }
2489         }
2490 }
2491
2492 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2493 {
2494         if (dev->num_tc) {
2495                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2496                 int i;
2497
2498                 /* walk through the TCs and see if it falls into any of them */
2499                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2500                         if ((txq - tc->offset) < tc->count)
2501                                 return i;
2502                 }
2503
2504                 /* didn't find it, just return -1 to indicate no match */
2505                 return -1;
2506         }
2507
2508         return 0;
2509 }
2510 EXPORT_SYMBOL(netdev_txq_to_tc);
2511
2512 #ifdef CONFIG_XPS
2513 static struct static_key xps_needed __read_mostly;
2514 static struct static_key xps_rxqs_needed __read_mostly;
2515 static DEFINE_MUTEX(xps_map_mutex);
2516 #define xmap_dereference(P)             \
2517         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2518
2519 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2520                              struct xps_dev_maps *old_maps, int tci, u16 index)
2521 {
2522         struct xps_map *map = NULL;
2523         int pos;
2524
2525         if (dev_maps)
2526                 map = xmap_dereference(dev_maps->attr_map[tci]);
2527         if (!map)
2528                 return false;
2529
2530         for (pos = map->len; pos--;) {
2531                 if (map->queues[pos] != index)
2532                         continue;
2533
2534                 if (map->len > 1) {
2535                         map->queues[pos] = map->queues[--map->len];
2536                         break;
2537                 }
2538
2539                 if (old_maps)
2540                         RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2541                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2542                 kfree_rcu(map, rcu);
2543                 return false;
2544         }
2545
2546         return true;
2547 }
2548
2549 static bool remove_xps_queue_cpu(struct net_device *dev,
2550                                  struct xps_dev_maps *dev_maps,
2551                                  int cpu, u16 offset, u16 count)
2552 {
2553         int num_tc = dev_maps->num_tc;
2554         bool active = false;
2555         int tci;
2556
2557         for (tci = cpu * num_tc; num_tc--; tci++) {
2558                 int i, j;
2559
2560                 for (i = count, j = offset; i--; j++) {
2561                         if (!remove_xps_queue(dev_maps, NULL, tci, j))
2562                                 break;
2563                 }
2564
2565                 active |= i < 0;
2566         }
2567
2568         return active;
2569 }
2570
2571 static void reset_xps_maps(struct net_device *dev,
2572                            struct xps_dev_maps *dev_maps,
2573                            enum xps_map_type type)
2574 {
2575         static_key_slow_dec_cpuslocked(&xps_needed);
2576         if (type == XPS_RXQS)
2577                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2578
2579         RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2580
2581         kfree_rcu(dev_maps, rcu);
2582 }
2583
2584 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2585                            u16 offset, u16 count)
2586 {
2587         struct xps_dev_maps *dev_maps;
2588         bool active = false;
2589         int i, j;
2590
2591         dev_maps = xmap_dereference(dev->xps_maps[type]);
2592         if (!dev_maps)
2593                 return;
2594
2595         for (j = 0; j < dev_maps->nr_ids; j++)
2596                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2597         if (!active)
2598                 reset_xps_maps(dev, dev_maps, type);
2599
2600         if (type == XPS_CPUS) {
2601                 for (i = offset + (count - 1); count--; i--)
2602                         netdev_queue_numa_node_write(
2603                                 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2604         }
2605 }
2606
2607 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2608                                    u16 count)
2609 {
2610         if (!static_key_false(&xps_needed))
2611                 return;
2612
2613         cpus_read_lock();
2614         mutex_lock(&xps_map_mutex);
2615
2616         if (static_key_false(&xps_rxqs_needed))
2617                 clean_xps_maps(dev, XPS_RXQS, offset, count);
2618
2619         clean_xps_maps(dev, XPS_CPUS, offset, count);
2620
2621         mutex_unlock(&xps_map_mutex);
2622         cpus_read_unlock();
2623 }
2624
2625 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2626 {
2627         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2628 }
2629
2630 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2631                                       u16 index, bool is_rxqs_map)
2632 {
2633         struct xps_map *new_map;
2634         int alloc_len = XPS_MIN_MAP_ALLOC;
2635         int i, pos;
2636
2637         for (pos = 0; map && pos < map->len; pos++) {
2638                 if (map->queues[pos] != index)
2639                         continue;
2640                 return map;
2641         }
2642
2643         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2644         if (map) {
2645                 if (pos < map->alloc_len)
2646                         return map;
2647
2648                 alloc_len = map->alloc_len * 2;
2649         }
2650
2651         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2652          *  map
2653          */
2654         if (is_rxqs_map)
2655                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2656         else
2657                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2658                                        cpu_to_node(attr_index));
2659         if (!new_map)
2660                 return NULL;
2661
2662         for (i = 0; i < pos; i++)
2663                 new_map->queues[i] = map->queues[i];
2664         new_map->alloc_len = alloc_len;
2665         new_map->len = pos;
2666
2667         return new_map;
2668 }
2669
2670 /* Copy xps maps at a given index */
2671 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2672                               struct xps_dev_maps *new_dev_maps, int index,
2673                               int tc, bool skip_tc)
2674 {
2675         int i, tci = index * dev_maps->num_tc;
2676         struct xps_map *map;
2677
2678         /* copy maps belonging to foreign traffic classes */
2679         for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2680                 if (i == tc && skip_tc)
2681                         continue;
2682
2683                 /* fill in the new device map from the old device map */
2684                 map = xmap_dereference(dev_maps->attr_map[tci]);
2685                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2686         }
2687 }
2688
2689 /* Must be called under cpus_read_lock */
2690 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2691                           u16 index, enum xps_map_type type)
2692 {
2693         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2694         const unsigned long *online_mask = NULL;
2695         bool active = false, copy = false;
2696         int i, j, tci, numa_node_id = -2;
2697         int maps_sz, num_tc = 1, tc = 0;
2698         struct xps_map *map, *new_map;
2699         unsigned int nr_ids;
2700
2701         if (dev->num_tc) {
2702                 /* Do not allow XPS on subordinate device directly */
2703                 num_tc = dev->num_tc;
2704                 if (num_tc < 0)
2705                         return -EINVAL;
2706
2707                 /* If queue belongs to subordinate dev use its map */
2708                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2709
2710                 tc = netdev_txq_to_tc(dev, index);
2711                 if (tc < 0)
2712                         return -EINVAL;
2713         }
2714
2715         mutex_lock(&xps_map_mutex);
2716
2717         dev_maps = xmap_dereference(dev->xps_maps[type]);
2718         if (type == XPS_RXQS) {
2719                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2720                 nr_ids = dev->num_rx_queues;
2721         } else {
2722                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2723                 if (num_possible_cpus() > 1)
2724                         online_mask = cpumask_bits(cpu_online_mask);
2725                 nr_ids = nr_cpu_ids;
2726         }
2727
2728         if (maps_sz < L1_CACHE_BYTES)
2729                 maps_sz = L1_CACHE_BYTES;
2730
2731         /* The old dev_maps could be larger or smaller than the one we're
2732          * setting up now, as dev->num_tc or nr_ids could have been updated in
2733          * between. We could try to be smart, but let's be safe instead and only
2734          * copy foreign traffic classes if the two map sizes match.
2735          */
2736         if (dev_maps &&
2737             dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2738                 copy = true;
2739
2740         /* allocate memory for queue storage */
2741         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2742              j < nr_ids;) {
2743                 if (!new_dev_maps) {
2744                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2745                         if (!new_dev_maps) {
2746                                 mutex_unlock(&xps_map_mutex);
2747                                 return -ENOMEM;
2748                         }
2749
2750                         new_dev_maps->nr_ids = nr_ids;
2751                         new_dev_maps->num_tc = num_tc;
2752                 }
2753
2754                 tci = j * num_tc + tc;
2755                 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2756
2757                 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2758                 if (!map)
2759                         goto error;
2760
2761                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2762         }
2763
2764         if (!new_dev_maps)
2765                 goto out_no_new_maps;
2766
2767         if (!dev_maps) {
2768                 /* Increment static keys at most once per type */
2769                 static_key_slow_inc_cpuslocked(&xps_needed);
2770                 if (type == XPS_RXQS)
2771                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2772         }
2773
2774         for (j = 0; j < nr_ids; j++) {
2775                 bool skip_tc = false;
2776
2777                 tci = j * num_tc + tc;
2778                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2779                     netif_attr_test_online(j, online_mask, nr_ids)) {
2780                         /* add tx-queue to CPU/rx-queue maps */
2781                         int pos = 0;
2782
2783                         skip_tc = true;
2784
2785                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2786                         while ((pos < map->len) && (map->queues[pos] != index))
2787                                 pos++;
2788
2789                         if (pos == map->len)
2790                                 map->queues[map->len++] = index;
2791 #ifdef CONFIG_NUMA
2792                         if (type == XPS_CPUS) {
2793                                 if (numa_node_id == -2)
2794                                         numa_node_id = cpu_to_node(j);
2795                                 else if (numa_node_id != cpu_to_node(j))
2796                                         numa_node_id = -1;
2797                         }
2798 #endif
2799                 }
2800
2801                 if (copy)
2802                         xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2803                                           skip_tc);
2804         }
2805
2806         rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2807
2808         /* Cleanup old maps */
2809         if (!dev_maps)
2810                 goto out_no_old_maps;
2811
2812         for (j = 0; j < dev_maps->nr_ids; j++) {
2813                 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2814                         map = xmap_dereference(dev_maps->attr_map[tci]);
2815                         if (!map)
2816                                 continue;
2817
2818                         if (copy) {
2819                                 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2820                                 if (map == new_map)
2821                                         continue;
2822                         }
2823
2824                         RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2825                         kfree_rcu(map, rcu);
2826                 }
2827         }
2828
2829         old_dev_maps = dev_maps;
2830
2831 out_no_old_maps:
2832         dev_maps = new_dev_maps;
2833         active = true;
2834
2835 out_no_new_maps:
2836         if (type == XPS_CPUS)
2837                 /* update Tx queue numa node */
2838                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2839                                              (numa_node_id >= 0) ?
2840                                              numa_node_id : NUMA_NO_NODE);
2841
2842         if (!dev_maps)
2843                 goto out_no_maps;
2844
2845         /* removes tx-queue from unused CPUs/rx-queues */
2846         for (j = 0; j < dev_maps->nr_ids; j++) {
2847                 tci = j * dev_maps->num_tc;
2848
2849                 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2850                         if (i == tc &&
2851                             netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2852                             netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2853                                 continue;
2854
2855                         active |= remove_xps_queue(dev_maps,
2856                                                    copy ? old_dev_maps : NULL,
2857                                                    tci, index);
2858                 }
2859         }
2860
2861         if (old_dev_maps)
2862                 kfree_rcu(old_dev_maps, rcu);
2863
2864         /* free map if not active */
2865         if (!active)
2866                 reset_xps_maps(dev, dev_maps, type);
2867
2868 out_no_maps:
2869         mutex_unlock(&xps_map_mutex);
2870
2871         return 0;
2872 error:
2873         /* remove any maps that we added */
2874         for (j = 0; j < nr_ids; j++) {
2875                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2876                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2877                         map = copy ?
2878                               xmap_dereference(dev_maps->attr_map[tci]) :
2879                               NULL;
2880                         if (new_map && new_map != map)
2881                                 kfree(new_map);
2882                 }
2883         }
2884
2885         mutex_unlock(&xps_map_mutex);
2886
2887         kfree(new_dev_maps);
2888         return -ENOMEM;
2889 }
2890 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2891
2892 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2893                         u16 index)
2894 {
2895         int ret;
2896
2897         cpus_read_lock();
2898         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2899         cpus_read_unlock();
2900
2901         return ret;
2902 }
2903 EXPORT_SYMBOL(netif_set_xps_queue);
2904
2905 #endif
2906 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2907 {
2908         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2909
2910         /* Unbind any subordinate channels */
2911         while (txq-- != &dev->_tx[0]) {
2912                 if (txq->sb_dev)
2913                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2914         }
2915 }
2916
2917 void netdev_reset_tc(struct net_device *dev)
2918 {
2919 #ifdef CONFIG_XPS
2920         netif_reset_xps_queues_gt(dev, 0);
2921 #endif
2922         netdev_unbind_all_sb_channels(dev);
2923
2924         /* Reset TC configuration of device */
2925         dev->num_tc = 0;
2926         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2927         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2928 }
2929 EXPORT_SYMBOL(netdev_reset_tc);
2930
2931 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2932 {
2933         if (tc >= dev->num_tc)
2934                 return -EINVAL;
2935
2936 #ifdef CONFIG_XPS
2937         netif_reset_xps_queues(dev, offset, count);
2938 #endif
2939         dev->tc_to_txq[tc].count = count;
2940         dev->tc_to_txq[tc].offset = offset;
2941         return 0;
2942 }
2943 EXPORT_SYMBOL(netdev_set_tc_queue);
2944
2945 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2946 {
2947         if (num_tc > TC_MAX_QUEUE)
2948                 return -EINVAL;
2949
2950 #ifdef CONFIG_XPS
2951         netif_reset_xps_queues_gt(dev, 0);
2952 #endif
2953         netdev_unbind_all_sb_channels(dev);
2954
2955         dev->num_tc = num_tc;
2956         return 0;
2957 }
2958 EXPORT_SYMBOL(netdev_set_num_tc);
2959
2960 void netdev_unbind_sb_channel(struct net_device *dev,
2961                               struct net_device *sb_dev)
2962 {
2963         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2964
2965 #ifdef CONFIG_XPS
2966         netif_reset_xps_queues_gt(sb_dev, 0);
2967 #endif
2968         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2969         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2970
2971         while (txq-- != &dev->_tx[0]) {
2972                 if (txq->sb_dev == sb_dev)
2973                         txq->sb_dev = NULL;
2974         }
2975 }
2976 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2977
2978 int netdev_bind_sb_channel_queue(struct net_device *dev,
2979                                  struct net_device *sb_dev,
2980                                  u8 tc, u16 count, u16 offset)
2981 {
2982         /* Make certain the sb_dev and dev are already configured */
2983         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2984                 return -EINVAL;
2985
2986         /* We cannot hand out queues we don't have */
2987         if ((offset + count) > dev->real_num_tx_queues)
2988                 return -EINVAL;
2989
2990         /* Record the mapping */
2991         sb_dev->tc_to_txq[tc].count = count;
2992         sb_dev->tc_to_txq[tc].offset = offset;
2993
2994         /* Provide a way for Tx queue to find the tc_to_txq map or
2995          * XPS map for itself.
2996          */
2997         while (count--)
2998                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2999
3000         return 0;
3001 }
3002 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
3003
3004 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
3005 {
3006         /* Do not use a multiqueue device to represent a subordinate channel */
3007         if (netif_is_multiqueue(dev))
3008                 return -ENODEV;
3009
3010         /* We allow channels 1 - 32767 to be used for subordinate channels.
3011          * Channel 0 is meant to be "native" mode and used only to represent
3012          * the main root device. We allow writing 0 to reset the device back
3013          * to normal mode after being used as a subordinate channel.
3014          */
3015         if (channel > S16_MAX)
3016                 return -EINVAL;
3017
3018         dev->num_tc = -channel;
3019
3020         return 0;
3021 }
3022 EXPORT_SYMBOL(netdev_set_sb_channel);
3023
3024 /*
3025  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
3026  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
3027  */
3028 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
3029 {
3030         bool disabling;
3031         int rc;
3032
3033         disabling = txq < dev->real_num_tx_queues;
3034
3035         if (txq < 1 || txq > dev->num_tx_queues)
3036                 return -EINVAL;
3037
3038         if (dev->reg_state == NETREG_REGISTERED ||
3039             dev->reg_state == NETREG_UNREGISTERING) {
3040                 ASSERT_RTNL();
3041
3042                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
3043                                                   txq);
3044                 if (rc)
3045                         return rc;
3046
3047                 if (dev->num_tc)
3048                         netif_setup_tc(dev, txq);
3049
3050                 dev->real_num_tx_queues = txq;
3051
3052                 if (disabling) {
3053                         synchronize_net();
3054                         qdisc_reset_all_tx_gt(dev, txq);
3055 #ifdef CONFIG_XPS
3056                         netif_reset_xps_queues_gt(dev, txq);
3057 #endif
3058                 }
3059         } else {
3060                 dev->real_num_tx_queues = txq;
3061         }
3062
3063         return 0;
3064 }
3065 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
3066
3067 #ifdef CONFIG_SYSFS
3068 /**
3069  *      netif_set_real_num_rx_queues - set actual number of RX queues used
3070  *      @dev: Network device
3071  *      @rxq: Actual number of RX queues
3072  *
3073  *      This must be called either with the rtnl_lock held or before
3074  *      registration of the net device.  Returns 0 on success, or a
3075  *      negative error code.  If called before registration, it always
3076  *      succeeds.
3077  */
3078 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3079 {
3080         int rc;
3081
3082         if (rxq < 1 || rxq > dev->num_rx_queues)
3083                 return -EINVAL;
3084
3085         if (dev->reg_state == NETREG_REGISTERED) {
3086                 ASSERT_RTNL();
3087
3088                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3089                                                   rxq);
3090                 if (rc)
3091                         return rc;
3092         }
3093
3094         dev->real_num_rx_queues = rxq;
3095         return 0;
3096 }
3097 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3098 #endif
3099
3100 /**
3101  * netif_get_num_default_rss_queues - default number of RSS queues
3102  *
3103  * This routine should set an upper limit on the number of RSS queues
3104  * used by default by multiqueue devices.
3105  */
3106 int netif_get_num_default_rss_queues(void)
3107 {
3108         return is_kdump_kernel() ?
3109                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3110 }
3111 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3112
3113 static void __netif_reschedule(struct Qdisc *q)
3114 {
3115         struct softnet_data *sd;
3116         unsigned long flags;
3117
3118         local_irq_save(flags);
3119         sd = this_cpu_ptr(&softnet_data);
3120         q->next_sched = NULL;
3121         *sd->output_queue_tailp = q;
3122         sd->output_queue_tailp = &q->next_sched;
3123         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3124         local_irq_restore(flags);
3125 }
3126
3127 void __netif_schedule(struct Qdisc *q)
3128 {
3129         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3130                 __netif_reschedule(q);
3131 }
3132 EXPORT_SYMBOL(__netif_schedule);
3133
3134 struct dev_kfree_skb_cb {
3135         enum skb_free_reason reason;
3136 };
3137
3138 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3139 {
3140         return (struct dev_kfree_skb_cb *)skb->cb;
3141 }
3142
3143 void netif_schedule_queue(struct netdev_queue *txq)
3144 {
3145         rcu_read_lock();
3146         if (!netif_xmit_stopped(txq)) {
3147                 struct Qdisc *q = rcu_dereference(txq->qdisc);
3148
3149                 __netif_schedule(q);
3150         }
3151         rcu_read_unlock();
3152 }
3153 EXPORT_SYMBOL(netif_schedule_queue);
3154
3155 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3156 {
3157         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3158                 struct Qdisc *q;
3159
3160                 rcu_read_lock();
3161                 q = rcu_dereference(dev_queue->qdisc);
3162                 __netif_schedule(q);
3163                 rcu_read_unlock();
3164         }
3165 }
3166 EXPORT_SYMBOL(netif_tx_wake_queue);
3167
3168 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3169 {
3170         unsigned long flags;
3171
3172         if (unlikely(!skb))
3173                 return;
3174
3175         if (likely(refcount_read(&skb->users) == 1)) {
3176                 smp_rmb();
3177                 refcount_set(&skb->users, 0);
3178         } else if (likely(!refcount_dec_and_test(&skb->users))) {
3179                 return;
3180         }
3181         get_kfree_skb_cb(skb)->reason = reason;
3182         local_irq_save(flags);
3183         skb->next = __this_cpu_read(softnet_data.completion_queue);
3184         __this_cpu_write(softnet_data.completion_queue, skb);
3185         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3186         local_irq_restore(flags);
3187 }
3188 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3189
3190 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3191 {
3192         if (in_irq() || irqs_disabled())
3193                 __dev_kfree_skb_irq(skb, reason);
3194         else
3195                 dev_kfree_skb(skb);
3196 }
3197 EXPORT_SYMBOL(__dev_kfree_skb_any);
3198
3199
3200 /**
3201  * netif_device_detach - mark device as removed
3202  * @dev: network device
3203  *
3204  * Mark device as removed from system and therefore no longer available.
3205  */
3206 void netif_device_detach(struct net_device *dev)
3207 {
3208         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3209             netif_running(dev)) {
3210                 netif_tx_stop_all_queues(dev);
3211         }
3212 }
3213 EXPORT_SYMBOL(netif_device_detach);
3214
3215 /**
3216  * netif_device_attach - mark device as attached
3217  * @dev: network device
3218  *
3219  * Mark device as attached from system and restart if needed.
3220  */
3221 void netif_device_attach(struct net_device *dev)
3222 {
3223         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3224             netif_running(dev)) {
3225                 netif_tx_wake_all_queues(dev);
3226                 __netdev_watchdog_up(dev);
3227         }
3228 }
3229 EXPORT_SYMBOL(netif_device_attach);
3230
3231 /*
3232  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3233  * to be used as a distribution range.
3234  */
3235 static u16 skb_tx_hash(const struct net_device *dev,
3236                        const struct net_device *sb_dev,
3237                        struct sk_buff *skb)
3238 {
3239         u32 hash;
3240         u16 qoffset = 0;
3241         u16 qcount = dev->real_num_tx_queues;
3242
3243         if (dev->num_tc) {
3244                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3245
3246                 qoffset = sb_dev->tc_to_txq[tc].offset;
3247                 qcount = sb_dev->tc_to_txq[tc].count;
3248         }
3249
3250         if (skb_rx_queue_recorded(skb)) {
3251                 hash = skb_get_rx_queue(skb);
3252                 if (hash >= qoffset)
3253                         hash -= qoffset;
3254                 while (unlikely(hash >= qcount))
3255                         hash -= qcount;
3256                 return hash + qoffset;
3257         }
3258
3259         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3260 }
3261
3262 static void skb_warn_bad_offload(const struct sk_buff *skb)
3263 {
3264         static const netdev_features_t null_features;
3265         struct net_device *dev = skb->dev;
3266         const char *name = "";
3267
3268         if (!net_ratelimit())
3269                 return;
3270
3271         if (dev) {
3272                 if (dev->dev.parent)
3273                         name = dev_driver_string(dev->dev.parent);
3274                 else
3275                         name = netdev_name(dev);
3276         }
3277         skb_dump(KERN_WARNING, skb, false);
3278         WARN(1, "%s: caps=(%pNF, %pNF)\n",
3279              name, dev ? &dev->features : &null_features,
3280              skb->sk ? &skb->sk->sk_route_caps : &null_features);
3281 }
3282
3283 /*
3284  * Invalidate hardware checksum when packet is to be mangled, and
3285  * complete checksum manually on outgoing path.
3286  */
3287 int skb_checksum_help(struct sk_buff *skb)
3288 {
3289         __wsum csum;
3290         int ret = 0, offset;
3291
3292         if (skb->ip_summed == CHECKSUM_COMPLETE)
3293                 goto out_set_summed;
3294
3295         if (unlikely(skb_is_gso(skb))) {
3296                 skb_warn_bad_offload(skb);
3297                 return -EINVAL;
3298         }
3299
3300         /* Before computing a checksum, we should make sure no frag could
3301          * be modified by an external entity : checksum could be wrong.
3302          */
3303         if (skb_has_shared_frag(skb)) {
3304                 ret = __skb_linearize(skb);
3305                 if (ret)
3306                         goto out;
3307         }
3308
3309         offset = skb_checksum_start_offset(skb);
3310         BUG_ON(offset >= skb_headlen(skb));
3311         csum = skb_checksum(skb, offset, skb->len - offset, 0);
3312
3313         offset += skb->csum_offset;
3314         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3315
3316         ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3317         if (ret)
3318                 goto out;
3319
3320         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3321 out_set_summed:
3322         skb->ip_summed = CHECKSUM_NONE;
3323 out:
3324         return ret;
3325 }
3326 EXPORT_SYMBOL(skb_checksum_help);
3327
3328 int skb_crc32c_csum_help(struct sk_buff *skb)
3329 {
3330         __le32 crc32c_csum;
3331         int ret = 0, offset, start;
3332
3333         if (skb->ip_summed != CHECKSUM_PARTIAL)
3334                 goto out;
3335
3336         if (unlikely(skb_is_gso(skb)))
3337                 goto out;
3338
3339         /* Before computing a checksum, we should make sure no frag could
3340          * be modified by an external entity : checksum could be wrong.
3341          */
3342         if (unlikely(skb_has_shared_frag(skb))) {
3343                 ret = __skb_linearize(skb);
3344                 if (ret)
3345                         goto out;
3346         }
3347         start = skb_checksum_start_offset(skb);
3348         offset = start + offsetof(struct sctphdr, checksum);
3349         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3350                 ret = -EINVAL;
3351                 goto out;
3352         }
3353
3354         ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3355         if (ret)
3356                 goto out;
3357
3358         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3359                                                   skb->len - start, ~(__u32)0,
3360                                                   crc32c_csum_stub));
3361         *(__le32 *)(skb->data + offset) = crc32c_csum;
3362         skb->ip_summed = CHECKSUM_NONE;
3363         skb->csum_not_inet = 0;
3364 out:
3365         return ret;
3366 }
3367
3368 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3369 {
3370         __be16 type = skb->protocol;
3371
3372         /* Tunnel gso handlers can set protocol to ethernet. */
3373         if (type == htons(ETH_P_TEB)) {
3374                 struct ethhdr *eth;
3375
3376                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3377                         return 0;
3378
3379                 eth = (struct ethhdr *)skb->data;
3380                 type = eth->h_proto;
3381         }
3382
3383         return __vlan_get_protocol(skb, type, depth);
3384 }
3385
3386 /**
3387  *      skb_mac_gso_segment - mac layer segmentation handler.
3388  *      @skb: buffer to segment
3389  *      @features: features for the output path (see dev->features)
3390  */
3391 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3392                                     netdev_features_t features)
3393 {
3394         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3395         struct packet_offload *ptype;
3396         int vlan_depth = skb->mac_len;
3397         __be16 type = skb_network_protocol(skb, &vlan_depth);
3398
3399         if (unlikely(!type))
3400                 return ERR_PTR(-EINVAL);
3401
3402         __skb_pull(skb, vlan_depth);
3403
3404         rcu_read_lock();
3405         list_for_each_entry_rcu(ptype, &offload_base, list) {
3406                 if (ptype->type == type && ptype->callbacks.gso_segment) {
3407                         segs = ptype->callbacks.gso_segment(skb, features);
3408                         break;
3409                 }
3410         }
3411         rcu_read_unlock();
3412
3413         __skb_push(skb, skb->data - skb_mac_header(skb));
3414
3415         return segs;
3416 }
3417 EXPORT_SYMBOL(skb_mac_gso_segment);
3418
3419
3420 /* openvswitch calls this on rx path, so we need a different check.
3421  */
3422 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3423 {
3424         if (tx_path)
3425                 return skb->ip_summed != CHECKSUM_PARTIAL &&
3426                        skb->ip_summed != CHECKSUM_UNNECESSARY;
3427
3428         return skb->ip_summed == CHECKSUM_NONE;
3429 }
3430
3431 /**
3432  *      __skb_gso_segment - Perform segmentation on skb.
3433  *      @skb: buffer to segment
3434  *      @features: features for the output path (see dev->features)
3435  *      @tx_path: whether it is called in TX path
3436  *
3437  *      This function segments the given skb and returns a list of segments.
3438  *
3439  *      It may return NULL if the skb requires no segmentation.  This is
3440  *      only possible when GSO is used for verifying header integrity.
3441  *
3442  *      Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3443  */
3444 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3445                                   netdev_features_t features, bool tx_path)
3446 {
3447         struct sk_buff *segs;
3448
3449         if (unlikely(skb_needs_check(skb, tx_path))) {
3450                 int err;
3451
3452                 /* We're going to init ->check field in TCP or UDP header */
3453                 err = skb_cow_head(skb, 0);
3454                 if (err < 0)
3455                         return ERR_PTR(err);
3456         }
3457
3458         /* Only report GSO partial support if it will enable us to
3459          * support segmentation on this frame without needing additional
3460          * work.
3461          */
3462         if (features & NETIF_F_GSO_PARTIAL) {
3463                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3464                 struct net_device *dev = skb->dev;
3465
3466                 partial_features |= dev->features & dev->gso_partial_features;
3467                 if (!skb_gso_ok(skb, features | partial_features))
3468                         features &= ~NETIF_F_GSO_PARTIAL;
3469         }
3470
3471         BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3472                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3473
3474         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3475         SKB_GSO_CB(skb)->encap_level = 0;
3476
3477         skb_reset_mac_header(skb);
3478         skb_reset_mac_len(skb);
3479
3480         segs = skb_mac_gso_segment(skb, features);
3481
3482         if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3483                 skb_warn_bad_offload(skb);
3484
3485         return segs;
3486 }
3487 EXPORT_SYMBOL(__skb_gso_segment);
3488
3489 /* Take action when hardware reception checksum errors are detected. */
3490 #ifdef CONFIG_BUG
3491 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3492 {
3493         pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3494         skb_dump(KERN_ERR, skb, true);
3495         dump_stack();
3496 }
3497
3498 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3499 {
3500         DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3501 }
3502 EXPORT_SYMBOL(netdev_rx_csum_fault);
3503 #endif
3504
3505 /* XXX: check that highmem exists at all on the given machine. */
3506 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3507 {
3508 #ifdef CONFIG_HIGHMEM
3509         int i;
3510
3511         if (!(dev->features & NETIF_F_HIGHDMA)) {
3512                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3513                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3514
3515                         if (PageHighMem(skb_frag_page(frag)))
3516                                 return 1;
3517                 }
3518         }
3519 #endif
3520         return 0;
3521 }
3522
3523 /* If MPLS offload request, verify we are testing hardware MPLS features
3524  * instead of standard features for the netdev.
3525  */
3526 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3527 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3528                                            netdev_features_t features,
3529                                            __be16 type)
3530 {
3531         if (eth_p_mpls(type))
3532                 features &= skb->dev->mpls_features;
3533
3534         return features;
3535 }
3536 #else
3537 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3538                                            netdev_features_t features,
3539                                            __be16 type)
3540 {
3541         return features;
3542 }
3543 #endif
3544
3545 static netdev_features_t harmonize_features(struct sk_buff *skb,
3546         netdev_features_t features)
3547 {
3548         __be16 type;
3549
3550         type = skb_network_protocol(skb, NULL);
3551         features = net_mpls_features(skb, features, type);
3552
3553         if (skb->ip_summed != CHECKSUM_NONE &&
3554             !can_checksum_protocol(features, type)) {
3555                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3556         }
3557         if (illegal_highdma(skb->dev, skb))
3558                 features &= ~NETIF_F_SG;
3559
3560         return features;
3561 }
3562
3563 netdev_features_t passthru_features_check(struct sk_buff *skb,
3564                                           struct net_device *dev,
3565                                           netdev_features_t features)
3566 {
3567         return features;
3568 }
3569 EXPORT_SYMBOL(passthru_features_check);
3570
3571 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3572                                              struct net_device *dev,
3573                                              netdev_features_t features)
3574 {
3575         return vlan_features_check(skb, features);
3576 }
3577
3578 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3579                                             struct net_device *dev,
3580                                             netdev_features_t features)
3581 {
3582         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3583
3584         if (gso_segs > dev->gso_max_segs)
3585                 return features & ~NETIF_F_GSO_MASK;
3586
3587         if (!skb_shinfo(skb)->gso_type) {
3588                 skb_warn_bad_offload(skb);
3589                 return features & ~NETIF_F_GSO_MASK;
3590         }
3591
3592         /* Support for GSO partial features requires software
3593          * intervention before we can actually process the packets
3594          * so we need to strip support for any partial features now
3595          * and we can pull them back in after we have partially
3596          * segmented the frame.
3597          */
3598         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3599                 features &= ~dev->gso_partial_features;
3600
3601         /* Make sure to clear the IPv4 ID mangling feature if the
3602          * IPv4 header has the potential to be fragmented.
3603          */
3604         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3605                 struct iphdr *iph = skb->encapsulation ?
3606                                     inner_ip_hdr(skb) : ip_hdr(skb);
3607
3608                 if (!(iph->frag_off & htons(IP_DF)))
3609                         features &= ~NETIF_F_TSO_MANGLEID;
3610         }
3611
3612         return features;
3613 }
3614
3615 netdev_features_t netif_skb_features(struct sk_buff *skb)
3616 {
3617         struct net_device *dev = skb->dev;
3618         netdev_features_t features = dev->features;
3619
3620         if (skb_is_gso(skb))
3621                 features = gso_features_check(skb, dev, features);
3622
3623         /* If encapsulation offload request, verify we are testing
3624          * hardware encapsulation features instead of standard
3625          * features for the netdev
3626          */
3627         if (skb->encapsulation)
3628                 features &= dev->hw_enc_features;
3629
3630         if (skb_vlan_tagged(skb))
3631                 features = netdev_intersect_features(features,
3632                                                      dev->vlan_features |
3633                                                      NETIF_F_HW_VLAN_CTAG_TX |
3634                                                      NETIF_F_HW_VLAN_STAG_TX);
3635
3636         if (dev->netdev_ops->ndo_features_check)
3637                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3638                                                                 features);
3639         else
3640                 features &= dflt_features_check(skb, dev, features);
3641
3642         return harmonize_features(skb, features);
3643 }
3644 EXPORT_SYMBOL(netif_skb_features);
3645
3646 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3647                     struct netdev_queue *txq, bool more)
3648 {
3649         unsigned int len;
3650         int rc;
3651
3652         if (dev_nit_active(dev))
3653                 dev_queue_xmit_nit(skb, dev);
3654
3655         len = skb->len;
3656         PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3657         trace_net_dev_start_xmit(skb, dev);
3658         rc = netdev_start_xmit(skb, dev, txq, more);
3659         trace_net_dev_xmit(skb, rc, dev, len);
3660
3661         return rc;
3662 }
3663
3664 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3665                                     struct netdev_queue *txq, int *ret)
3666 {
3667         struct sk_buff *skb = first;
3668         int rc = NETDEV_TX_OK;
3669
3670         while (skb) {
3671                 struct sk_buff *next = skb->next;
3672
3673                 skb_mark_not_on_list(skb);
3674                 rc = xmit_one(skb, dev, txq, next != NULL);
3675                 if (unlikely(!dev_xmit_complete(rc))) {
3676                         skb->next = next;
3677                         goto out;
3678                 }
3679
3680                 skb = next;
3681                 if (netif_tx_queue_stopped(txq) && skb) {
3682                         rc = NETDEV_TX_BUSY;
3683                         break;
3684                 }
3685         }
3686
3687 out:
3688         *ret = rc;
3689         return skb;
3690 }
3691
3692 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3693                                           netdev_features_t features)
3694 {
3695         if (skb_vlan_tag_present(skb) &&
3696             !vlan_hw_offload_capable(features, skb->vlan_proto))
3697                 skb = __vlan_hwaccel_push_inside(skb);
3698         return skb;
3699 }
3700
3701 int skb_csum_hwoffload_help(struct sk_buff *skb,
3702                             const netdev_features_t features)
3703 {
3704         if (unlikely(skb_csum_is_sctp(skb)))
3705                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3706                         skb_crc32c_csum_help(skb);
3707
3708         if (features & NETIF_F_HW_CSUM)
3709                 return 0;
3710
3711         if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3712                 switch (skb->csum_offset) {
3713                 case offsetof(struct tcphdr, check):
3714                 case offsetof(struct udphdr, check):
3715                         return 0;
3716                 }
3717         }
3718
3719         return skb_checksum_help(skb);
3720 }
3721 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3722
3723 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3724 {
3725         netdev_features_t features;
3726
3727         features = netif_skb_features(skb);
3728         skb = validate_xmit_vlan(skb, features);
3729         if (unlikely(!skb))
3730                 goto out_null;
3731
3732         skb = sk_validate_xmit_skb(skb, dev);
3733         if (unlikely(!skb))
3734                 goto out_null;
3735
3736         if (netif_needs_gso(skb, features)) {
3737                 struct sk_buff *segs;
3738
3739                 segs = skb_gso_segment(skb, features);
3740                 if (IS_ERR(segs)) {
3741                         goto out_kfree_skb;
3742                 } else if (segs) {
3743                         consume_skb(skb);
3744                         skb = segs;
3745                 }
3746         } else {
3747                 if (skb_needs_linearize(skb, features) &&
3748                     __skb_linearize(skb))
3749                         goto out_kfree_skb;
3750
3751                 /* If packet is not checksummed and device does not
3752                  * support checksumming for this protocol, complete
3753                  * checksumming here.
3754                  */
3755                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3756                         if (skb->encapsulation)
3757                                 skb_set_inner_transport_header(skb,
3758                                                                skb_checksum_start_offset(skb));
3759                         else
3760                                 skb_set_transport_header(skb,
3761                                                          skb_checksum_start_offset(skb));
3762                         if (skb_csum_hwoffload_help(skb, features))
3763                                 goto out_kfree_skb;
3764                 }
3765         }
3766
3767         skb = validate_xmit_xfrm(skb, features, again);
3768
3769         return skb;
3770
3771 out_kfree_skb:
3772         kfree_skb(skb);
3773 out_null:
3774         atomic_long_inc(&dev->tx_dropped);
3775         return NULL;
3776 }
3777
3778 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3779 {
3780         struct sk_buff *next, *head = NULL, *tail;
3781
3782         for (; skb != NULL; skb = next) {
3783                 next = skb->next;
3784                 skb_mark_not_on_list(skb);
3785
3786                 /* in case skb wont be segmented, point to itself */
3787                 skb->prev = skb;
3788
3789                 skb = validate_xmit_skb(skb, dev, again);
3790                 if (!skb)
3791                         continue;
3792
3793                 if (!head)
3794                         head = skb;
3795                 else
3796                         tail->next = skb;
3797                 /* If skb was segmented, skb->prev points to
3798                  * the last segment. If not, it still contains skb.
3799                  */
3800                 tail = skb->prev;
3801         }
3802         return head;
3803 }
3804 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3805
3806 static void qdisc_pkt_len_init(struct sk_buff *skb)
3807 {
3808         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3809
3810         qdisc_skb_cb(skb)->pkt_len = skb->len;
3811
3812         /* To get more precise estimation of bytes sent on wire,
3813          * we add to pkt_len the headers size of all segments
3814          */
3815         if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3816                 unsigned int hdr_len;
3817                 u16 gso_segs = shinfo->gso_segs;
3818
3819                 /* mac layer + network layer */
3820                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3821
3822                 /* + transport layer */
3823                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3824                         const struct tcphdr *th;
3825                         struct tcphdr _tcphdr;
3826
3827                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3828                                                 sizeof(_tcphdr), &_tcphdr);
3829                         if (likely(th))
3830                                 hdr_len += __tcp_hdrlen(th);
3831                 } else {
3832                         struct udphdr _udphdr;
3833
3834                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3835                                                sizeof(_udphdr), &_udphdr))
3836                                 hdr_len += sizeof(struct udphdr);
3837                 }
3838
3839                 if (shinfo->gso_type & SKB_GSO_DODGY)
3840                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3841                                                 shinfo->gso_size);
3842
3843                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3844         }
3845 }
3846
3847 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3848                                  struct net_device *dev,
3849                                  struct netdev_queue *txq)
3850 {
3851         spinlock_t *root_lock = qdisc_lock(q);
3852         struct sk_buff *to_free = NULL;
3853         bool contended;
3854         int rc;
3855
3856         qdisc_calculate_pkt_len(skb, q);
3857
3858         if (q->flags & TCQ_F_NOLOCK) {
3859                 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3860                     qdisc_run_begin(q)) {
3861                         /* Retest nolock_qdisc_is_empty() within the protection
3862                          * of q->seqlock to protect from racing with requeuing.
3863                          */
3864                         if (unlikely(!nolock_qdisc_is_empty(q))) {
3865                                 rc = q->enqueue(skb, q, &to_free) &
3866                                         NET_XMIT_MASK;
3867                                 __qdisc_run(q);
3868                                 qdisc_run_end(q);
3869
3870                                 goto no_lock_out;
3871                         }
3872
3873                         qdisc_bstats_cpu_update(q, skb);
3874                         if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3875                             !nolock_qdisc_is_empty(q))
3876                                 __qdisc_run(q);
3877
3878                         qdisc_run_end(q);
3879                         return NET_XMIT_SUCCESS;
3880                 }
3881
3882                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3883                 qdisc_run(q);
3884
3885 no_lock_out:
3886                 if (unlikely(to_free))
3887                         kfree_skb_list(to_free);
3888                 return rc;
3889         }
3890
3891         /*
3892          * Heuristic to force contended enqueues to serialize on a
3893          * separate lock before trying to get qdisc main lock.
3894          * This permits qdisc->running owner to get the lock more
3895          * often and dequeue packets faster.
3896          */
3897         contended = qdisc_is_running(q);
3898         if (unlikely(contended))
3899                 spin_lock(&q->busylock);
3900
3901         spin_lock(root_lock);
3902         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3903                 __qdisc_drop(skb, &to_free);
3904                 rc = NET_XMIT_DROP;
3905         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3906                    qdisc_run_begin(q)) {
3907                 /*
3908                  * This is a work-conserving queue; there are no old skbs
3909                  * waiting to be sent out; and the qdisc is not running -
3910                  * xmit the skb directly.
3911                  */
3912
3913                 qdisc_bstats_update(q, skb);
3914
3915                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3916                         if (unlikely(contended)) {
3917                                 spin_unlock(&q->busylock);
3918                                 contended = false;
3919                         }
3920                         __qdisc_run(q);
3921                 }
3922
3923                 qdisc_run_end(q);
3924                 rc = NET_XMIT_SUCCESS;
3925         } else {
3926                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3927                 if (qdisc_run_begin(q)) {
3928                         if (unlikely(contended)) {
3929                                 spin_unlock(&q->busylock);
3930                                 contended = false;
3931                         }
3932                         __qdisc_run(q);
3933                         qdisc_run_end(q);
3934                 }
3935         }
3936         spin_unlock(root_lock);
3937         if (unlikely(to_free))
3938                 kfree_skb_list(to_free);
3939         if (unlikely(contended))
3940                 spin_unlock(&q->busylock);
3941         return rc;
3942 }
3943
3944 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3945 static void skb_update_prio(struct sk_buff *skb)
3946 {
3947         const struct netprio_map *map;
3948         const struct sock *sk;
3949         unsigned int prioidx;
3950
3951         if (skb->priority)
3952                 return;
3953         map = rcu_dereference_bh(skb->dev->priomap);
3954         if (!map)
3955                 return;
3956         sk = skb_to_full_sk(skb);
3957         if (!sk)
3958                 return;
3959
3960         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3961
3962         if (prioidx < map->priomap_len)
3963                 skb->priority = map->priomap[prioidx];
3964 }
3965 #else
3966 #define skb_update_prio(skb)
3967 #endif
3968
3969 /**
3970  *      dev_loopback_xmit - loop back @skb
3971  *      @net: network namespace this loopback is happening in
3972  *      @sk:  sk needed to be a netfilter okfn
3973  *      @skb: buffer to transmit
3974  */
3975 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3976 {
3977         skb_reset_mac_header(skb);
3978         __skb_pull(skb, skb_network_offset(skb));
3979         skb->pkt_type = PACKET_LOOPBACK;
3980         skb->ip_summed = CHECKSUM_UNNECESSARY;
3981         WARN_ON(!skb_dst(skb));
3982         skb_dst_force(skb);
3983         netif_rx_ni(skb);
3984         return 0;
3985 }
3986 EXPORT_SYMBOL(dev_loopback_xmit);
3987
3988 #ifdef CONFIG_NET_EGRESS
3989 static struct sk_buff *
3990 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3991 {
3992         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3993         struct tcf_result cl_res;
3994
3995         if (!miniq)
3996                 return skb;
3997
3998         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3999         qdisc_skb_cb(skb)->mru = 0;
4000         qdisc_skb_cb(skb)->post_ct = false;
4001         mini_qdisc_bstats_cpu_update(miniq, skb);
4002
4003         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4004         case TC_ACT_OK:
4005         case TC_ACT_RECLASSIFY:
4006                 skb->tc_index = TC_H_MIN(cl_res.classid);
4007                 break;
4008         case TC_ACT_SHOT:
4009                 mini_qdisc_qstats_cpu_drop(miniq);
4010                 *ret = NET_XMIT_DROP;
4011                 kfree_skb(skb);
4012                 return NULL;
4013         case TC_ACT_STOLEN:
4014         case TC_ACT_QUEUED:
4015         case TC_ACT_TRAP:
4016                 *ret = NET_XMIT_SUCCESS;
4017                 consume_skb(skb);
4018                 return NULL;
4019         case TC_ACT_REDIRECT:
4020                 /* No need to push/pop skb's mac_header here on egress! */
4021                 skb_do_redirect(skb);
4022                 *ret = NET_XMIT_SUCCESS;
4023                 return NULL;
4024         default:
4025                 break;
4026         }
4027
4028         return skb;
4029 }
4030 #endif /* CONFIG_NET_EGRESS */
4031
4032 #ifdef CONFIG_XPS
4033 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4034                                struct xps_dev_maps *dev_maps, unsigned int tci)
4035 {
4036         int tc = netdev_get_prio_tc_map(dev, skb->priority);
4037         struct xps_map *map;
4038         int queue_index = -1;
4039
4040         if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4041                 return queue_index;
4042
4043         tci *= dev_maps->num_tc;
4044         tci += tc;
4045
4046         map = rcu_dereference(dev_maps->attr_map[tci]);
4047         if (map) {
4048                 if (map->len == 1)
4049                         queue_index = map->queues[0];
4050                 else
4051                         queue_index = map->queues[reciprocal_scale(
4052                                                 skb_get_hash(skb), map->len)];
4053                 if (unlikely(queue_index >= dev->real_num_tx_queues))
4054                         queue_index = -1;
4055         }
4056         return queue_index;
4057 }
4058 #endif
4059
4060 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4061                          struct sk_buff *skb)
4062 {
4063 #ifdef CONFIG_XPS
4064         struct xps_dev_maps *dev_maps;
4065         struct sock *sk = skb->sk;
4066         int queue_index = -1;
4067
4068         if (!static_key_false(&xps_needed))
4069                 return -1;
4070
4071         rcu_read_lock();
4072         if (!static_key_false(&xps_rxqs_needed))
4073                 goto get_cpus_map;
4074
4075         dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4076         if (dev_maps) {
4077                 int tci = sk_rx_queue_get(sk);
4078
4079                 if (tci >= 0)
4080                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4081                                                           tci);
4082         }
4083
4084 get_cpus_map:
4085         if (queue_index < 0) {
4086                 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4087                 if (dev_maps) {
4088                         unsigned int tci = skb->sender_cpu - 1;
4089
4090                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4091                                                           tci);
4092                 }
4093         }
4094         rcu_read_unlock();
4095
4096         return queue_index;
4097 #else
4098         return -1;
4099 #endif
4100 }
4101
4102 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4103                      struct net_device *sb_dev)
4104 {
4105         return 0;
4106 }
4107 EXPORT_SYMBOL(dev_pick_tx_zero);
4108
4109 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4110                        struct net_device *sb_dev)
4111 {
4112         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4113 }
4114 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4115
4116 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4117                      struct net_device *sb_dev)
4118 {
4119         struct sock *sk = skb->sk;
4120         int queue_index = sk_tx_queue_get(sk);
4121
4122         sb_dev = sb_dev ? : dev;
4123
4124         if (queue_index < 0 || skb->ooo_okay ||
4125             queue_index >= dev->real_num_tx_queues) {
4126                 int new_index = get_xps_queue(dev, sb_dev, skb);
4127
4128                 if (new_index < 0)
4129                         new_index = skb_tx_hash(dev, sb_dev, skb);
4130
4131                 if (queue_index != new_index && sk &&
4132                     sk_fullsock(sk) &&
4133                     rcu_access_pointer(sk->sk_dst_cache))
4134                         sk_tx_queue_set(sk, new_index);
4135
4136                 queue_index = new_index;
4137         }
4138
4139         return queue_index;
4140 }
4141 EXPORT_SYMBOL(netdev_pick_tx);
4142
4143 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4144                                          struct sk_buff *skb,
4145                                          struct net_device *sb_dev)
4146 {
4147         int queue_index = 0;
4148
4149 #ifdef CONFIG_XPS
4150         u32 sender_cpu = skb->sender_cpu - 1;
4151
4152         if (sender_cpu >= (u32)NR_CPUS)
4153                 skb->sender_cpu = raw_smp_processor_id() + 1;
4154 #endif
4155
4156         if (dev->real_num_tx_queues != 1) {
4157                 const struct net_device_ops *ops = dev->netdev_ops;
4158
4159                 if (ops->ndo_select_queue)
4160                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4161                 else
4162                         queue_index = netdev_pick_tx(dev, skb, sb_dev);
4163
4164                 queue_index = netdev_cap_txqueue(dev, queue_index);
4165         }
4166
4167         skb_set_queue_mapping(skb, queue_index);
4168         return netdev_get_tx_queue(dev, queue_index);
4169 }
4170
4171 /**
4172  *      __dev_queue_xmit - transmit a buffer
4173  *      @skb: buffer to transmit
4174  *      @sb_dev: suboordinate device used for L2 forwarding offload
4175  *
4176  *      Queue a buffer for transmission to a network device. The caller must
4177  *      have set the device and priority and built the buffer before calling
4178  *      this function. The function can be called from an interrupt.
4179  *
4180  *      A negative errno code is returned on a failure. A success does not
4181  *      guarantee the frame will be transmitted as it may be dropped due
4182  *      to congestion or traffic shaping.
4183  *
4184  * -----------------------------------------------------------------------------------
4185  *      I notice this method can also return errors from the queue disciplines,
4186  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4187  *      be positive.
4188  *
4189  *      Regardless of the return value, the skb is consumed, so it is currently
4190  *      difficult to retry a send to this method.  (You can bump the ref count
4191  *      before sending to hold a reference for retry if you are careful.)
4192  *
4193  *      When calling this method, interrupts MUST be enabled.  This is because
4194  *      the BH enable code must have IRQs enabled so that it will not deadlock.
4195  *          --BLG
4196  */
4197 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4198 {
4199         struct net_device *dev = skb->dev;
4200         struct netdev_queue *txq;
4201         struct Qdisc *q;
4202         int rc = -ENOMEM;
4203         bool again = false;
4204
4205         skb_reset_mac_header(skb);
4206
4207         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4208                 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4209
4210         /* Disable soft irqs for various locks below. Also
4211          * stops preemption for RCU.
4212          */
4213         rcu_read_lock_bh();
4214
4215         skb_update_prio(skb);
4216
4217         qdisc_pkt_len_init(skb);
4218 #ifdef CONFIG_NET_CLS_ACT
4219         skb->tc_at_ingress = 0;
4220 # ifdef CONFIG_NET_EGRESS
4221         if (static_branch_unlikely(&egress_needed_key)) {
4222                 skb = sch_handle_egress(skb, &rc, dev);
4223                 if (!skb)
4224                         goto out;
4225         }
4226 # endif
4227 #endif
4228         /* If device/qdisc don't need skb->dst, release it right now while
4229          * its hot in this cpu cache.
4230          */
4231         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4232                 skb_dst_drop(skb);
4233         else
4234                 skb_dst_force(skb);
4235
4236         txq = netdev_core_pick_tx(dev, skb, sb_dev);
4237         q = rcu_dereference_bh(txq->qdisc);
4238
4239         trace_net_dev_queue(skb);
4240         if (q->enqueue) {
4241                 rc = __dev_xmit_skb(skb, q, dev, txq);
4242                 goto out;
4243         }
4244
4245         /* The device has no queue. Common case for software devices:
4246          * loopback, all the sorts of tunnels...
4247
4248          * Really, it is unlikely that netif_tx_lock protection is necessary
4249          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4250          * counters.)
4251          * However, it is possible, that they rely on protection
4252          * made by us here.
4253
4254          * Check this and shot the lock. It is not prone from deadlocks.
4255          *Either shot noqueue qdisc, it is even simpler 8)
4256          */
4257         if (dev->flags & IFF_UP) {
4258                 int cpu = smp_processor_id(); /* ok because BHs are off */
4259
4260                 if (txq->xmit_lock_owner != cpu) {
4261                         if (dev_xmit_recursion())
4262                                 goto recursion_alert;
4263
4264                         skb = validate_xmit_skb(skb, dev, &again);
4265                         if (!skb)
4266                                 goto out;
4267
4268                         PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4269                         HARD_TX_LOCK(dev, txq, cpu);
4270
4271                         if (!netif_xmit_stopped(txq)) {
4272                                 dev_xmit_recursion_inc();
4273                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4274                                 dev_xmit_recursion_dec();
4275                                 if (dev_xmit_complete(rc)) {
4276                                         HARD_TX_UNLOCK(dev, txq);
4277                                         goto out;
4278                                 }
4279                         }
4280                         HARD_TX_UNLOCK(dev, txq);
4281                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4282                                              dev->name);
4283                 } else {
4284                         /* Recursion is detected! It is possible,
4285                          * unfortunately
4286                          */
4287 recursion_alert:
4288                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4289                                              dev->name);
4290                 }
4291         }
4292
4293         rc = -ENETDOWN;
4294         rcu_read_unlock_bh();
4295
4296         atomic_long_inc(&dev->tx_dropped);
4297         kfree_skb_list(skb);
4298         return rc;
4299 out:
4300         rcu_read_unlock_bh();
4301         return rc;
4302 }
4303
4304 int dev_queue_xmit(struct sk_buff *skb)
4305 {
4306         return __dev_queue_xmit(skb, NULL);
4307 }
4308 EXPORT_SYMBOL(dev_queue_xmit);
4309
4310 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4311 {
4312         return __dev_queue_xmit(skb, sb_dev);
4313 }
4314 EXPORT_SYMBOL(dev_queue_xmit_accel);
4315
4316 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4317 {
4318         struct net_device *dev = skb->dev;
4319         struct sk_buff *orig_skb = skb;
4320         struct netdev_queue *txq;
4321         int ret = NETDEV_TX_BUSY;
4322         bool again = false;
4323
4324         if (unlikely(!netif_running(dev) ||
4325                      !netif_carrier_ok(dev)))
4326                 goto drop;
4327
4328         skb = validate_xmit_skb_list(skb, dev, &again);
4329         if (skb != orig_skb)
4330                 goto drop;
4331
4332         skb_set_queue_mapping(skb, queue_id);
4333         txq = skb_get_tx_queue(dev, skb);
4334         PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4335
4336         local_bh_disable();
4337
4338         dev_xmit_recursion_inc();
4339         HARD_TX_LOCK(dev, txq, smp_processor_id());
4340         if (!netif_xmit_frozen_or_drv_stopped(txq))
4341                 ret = netdev_start_xmit(skb, dev, txq, false);
4342         HARD_TX_UNLOCK(dev, txq);
4343         dev_xmit_recursion_dec();
4344
4345         local_bh_enable();
4346         return ret;
4347 drop:
4348         atomic_long_inc(&dev->tx_dropped);
4349         kfree_skb_list(skb);
4350         return NET_XMIT_DROP;
4351 }
4352 EXPORT_SYMBOL(__dev_direct_xmit);
4353
4354 /*************************************************************************
4355  *                      Receiver routines
4356  *************************************************************************/
4357
4358 int netdev_max_backlog __read_mostly = 1000;
4359 EXPORT_SYMBOL(netdev_max_backlog);
4360
4361 int netdev_tstamp_prequeue __read_mostly = 1;
4362 int netdev_budget __read_mostly = 300;
4363 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4364 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4365 int weight_p __read_mostly = 64;           /* old backlog weight */
4366 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4367 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4368 int dev_rx_weight __read_mostly = 64;
4369 int dev_tx_weight __read_mostly = 64;
4370 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4371 int gro_normal_batch __read_mostly = 8;
4372
4373 /* Called with irq disabled */
4374 static inline void ____napi_schedule(struct softnet_data *sd,
4375                                      struct napi_struct *napi)
4376 {
4377         struct task_struct *thread;
4378
4379         if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4380                 /* Paired with smp_mb__before_atomic() in
4381                  * napi_enable()/dev_set_threaded().
4382                  * Use READ_ONCE() to guarantee a complete
4383                  * read on napi->thread. Only call
4384                  * wake_up_process() when it's not NULL.
4385                  */
4386                 thread = READ_ONCE(napi->thread);
4387                 if (thread) {
4388                         /* Avoid doing set_bit() if the thread is in
4389                          * INTERRUPTIBLE state, cause napi_thread_wait()
4390                          * makes sure to proceed with napi polling
4391                          * if the thread is explicitly woken from here.
4392                          */
4393                         if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4394                                 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4395                         wake_up_process(thread);
4396                         return;
4397                 }
4398         }
4399
4400         list_add_tail(&napi->poll_list, &sd->poll_list);
4401         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4402 }
4403
4404 #ifdef CONFIG_RPS
4405
4406 /* One global table that all flow-based protocols share. */
4407 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4408 EXPORT_SYMBOL(rps_sock_flow_table);
4409 u32 rps_cpu_mask __read_mostly;
4410 EXPORT_SYMBOL(rps_cpu_mask);
4411
4412 struct static_key_false rps_needed __read_mostly;
4413 EXPORT_SYMBOL(rps_needed);
4414 struct static_key_false rfs_needed __read_mostly;
4415 EXPORT_SYMBOL(rfs_needed);
4416
4417 static struct rps_dev_flow *
4418 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4419             struct rps_dev_flow *rflow, u16 next_cpu)
4420 {
4421         if (next_cpu < nr_cpu_ids) {
4422 #ifdef CONFIG_RFS_ACCEL
4423                 struct netdev_rx_queue *rxqueue;
4424                 struct rps_dev_flow_table *flow_table;
4425                 struct rps_dev_flow *old_rflow;
4426                 u32 flow_id;
4427                 u16 rxq_index;
4428                 int rc;
4429
4430                 /* Should we steer this flow to a different hardware queue? */
4431                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4432                     !(dev->features & NETIF_F_NTUPLE))
4433                         goto out;
4434                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4435                 if (rxq_index == skb_get_rx_queue(skb))
4436                         goto out;
4437
4438                 rxqueue = dev->_rx + rxq_index;
4439                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4440                 if (!flow_table)
4441                         goto out;
4442                 flow_id = skb_get_hash(skb) & flow_table->mask;
4443                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4444                                                         rxq_index, flow_id);
4445                 if (rc < 0)
4446                         goto out;
4447                 old_rflow = rflow;
4448                 rflow = &flow_table->flows[flow_id];
4449                 rflow->filter = rc;
4450                 if (old_rflow->filter == rflow->filter)
4451                         old_rflow->filter = RPS_NO_FILTER;
4452         out:
4453 #endif
4454                 rflow->last_qtail =
4455                         per_cpu(softnet_data, next_cpu).input_queue_head;
4456         }
4457
4458         rflow->cpu = next_cpu;
4459         return rflow;
4460 }
4461
4462 /*
4463  * get_rps_cpu is called from netif_receive_skb and returns the target
4464  * CPU from the RPS map of the receiving queue for a given skb.
4465  * rcu_read_lock must be held on entry.
4466  */
4467 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4468                        struct rps_dev_flow **rflowp)
4469 {
4470         const struct rps_sock_flow_table *sock_flow_table;
4471         struct netdev_rx_queue *rxqueue = dev->_rx;
4472         struct rps_dev_flow_table *flow_table;
4473         struct rps_map *map;
4474         int cpu = -1;
4475         u32 tcpu;
4476         u32 hash;
4477
4478         if (skb_rx_queue_recorded(skb)) {
4479                 u16 index = skb_get_rx_queue(skb);
4480
4481                 if (unlikely(index >= dev->real_num_rx_queues)) {
4482                         WARN_ONCE(dev->real_num_rx_queues > 1,
4483                                   "%s received packet on queue %u, but number "
4484                                   "of RX queues is %u\n",
4485                                   dev->name, index, dev->real_num_rx_queues);
4486                         goto done;
4487                 }
4488                 rxqueue += index;
4489         }
4490
4491         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4492
4493         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4494         map = rcu_dereference(rxqueue->rps_map);
4495         if (!flow_table && !map)
4496                 goto done;
4497
4498         skb_reset_network_header(skb);
4499         hash = skb_get_hash(skb);
4500         if (!hash)
4501                 goto done;
4502
4503         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4504         if (flow_table && sock_flow_table) {
4505                 struct rps_dev_flow *rflow;
4506                 u32 next_cpu;
4507                 u32 ident;
4508
4509                 /* First check into global flow table if there is a match */
4510                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4511                 if ((ident ^ hash) & ~rps_cpu_mask)
4512                         goto try_rps;
4513
4514                 next_cpu = ident & rps_cpu_mask;
4515
4516                 /* OK, now we know there is a match,
4517                  * we can look at the local (per receive queue) flow table
4518                  */
4519                 rflow = &flow_table->flows[hash & flow_table->mask];
4520                 tcpu = rflow->cpu;
4521
4522                 /*
4523                  * If the desired CPU (where last recvmsg was done) is
4524                  * different from current CPU (one in the rx-queue flow
4525                  * table entry), switch if one of the following holds:
4526                  *   - Current CPU is unset (>= nr_cpu_ids).
4527                  *   - Current CPU is offline.
4528                  *   - The current CPU's queue tail has advanced beyond the
4529                  *     last packet that was enqueued using this table entry.
4530                  *     This guarantees that all previous packets for the flow
4531                  *     have been dequeued, thus preserving in order delivery.
4532                  */
4533                 if (unlikely(tcpu != next_cpu) &&
4534                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4535                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4536                       rflow->last_qtail)) >= 0)) {
4537                         tcpu = next_cpu;
4538                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4539                 }
4540
4541                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4542                         *rflowp = rflow;
4543                         cpu = tcpu;
4544                         goto done;
4545                 }
4546         }
4547
4548 try_rps:
4549
4550         if (map) {
4551                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4552                 if (cpu_online(tcpu)) {
4553                         cpu = tcpu;
4554                         goto done;
4555                 }
4556         }
4557
4558 done:
4559         return cpu;
4560 }
4561
4562 #ifdef CONFIG_RFS_ACCEL
4563
4564 /**
4565  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4566  * @dev: Device on which the filter was set
4567  * @rxq_index: RX queue index
4568  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4569  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4570  *
4571  * Drivers that implement ndo_rx_flow_steer() should periodically call
4572  * this function for each installed filter and remove the filters for
4573  * which it returns %true.
4574  */
4575 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4576                          u32 flow_id, u16 filter_id)
4577 {
4578         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4579         struct rps_dev_flow_table *flow_table;
4580         struct rps_dev_flow *rflow;
4581         bool expire = true;
4582         unsigned int cpu;
4583
4584         rcu_read_lock();
4585         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4586         if (flow_table && flow_id <= flow_table->mask) {
4587                 rflow = &flow_table->flows[flow_id];
4588                 cpu = READ_ONCE(rflow->cpu);
4589                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4590                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4591                            rflow->last_qtail) <
4592                      (int)(10 * flow_table->mask)))
4593                         expire = false;
4594         }
4595         rcu_read_unlock();
4596         return expire;
4597 }
4598 EXPORT_SYMBOL(rps_may_expire_flow);
4599
4600 #endif /* CONFIG_RFS_ACCEL */
4601
4602 /* Called from hardirq (IPI) context */
4603 static void rps_trigger_softirq(void *data)
4604 {
4605         struct softnet_data *sd = data;
4606
4607         ____napi_schedule(sd, &sd->backlog);
4608         sd->received_rps++;
4609 }
4610
4611 #endif /* CONFIG_RPS */
4612
4613 /*
4614  * Check if this softnet_data structure is another cpu one
4615  * If yes, queue it to our IPI list and return 1
4616  * If no, return 0
4617  */
4618 static int rps_ipi_queued(struct softnet_data *sd)
4619 {
4620 #ifdef CONFIG_RPS
4621         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4622
4623         if (sd != mysd) {
4624                 sd->rps_ipi_next = mysd->rps_ipi_list;
4625                 mysd->rps_ipi_list = sd;
4626
4627                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4628                 return 1;
4629         }
4630 #endif /* CONFIG_RPS */
4631         return 0;
4632 }
4633
4634 #ifdef CONFIG_NET_FLOW_LIMIT
4635 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4636 #endif
4637
4638 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4639 {
4640 #ifdef CONFIG_NET_FLOW_LIMIT
4641         struct sd_flow_limit *fl;
4642         struct softnet_data *sd;
4643         unsigned int old_flow, new_flow;
4644
4645         if (qlen < (netdev_max_backlog >> 1))
4646                 return false;
4647
4648         sd = this_cpu_ptr(&softnet_data);
4649
4650         rcu_read_lock();
4651         fl = rcu_dereference(sd->flow_limit);
4652         if (fl) {
4653                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4654                 old_flow = fl->history[fl->history_head];
4655                 fl->history[fl->history_head] = new_flow;
4656
4657                 fl->history_head++;
4658                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4659
4660                 if (likely(fl->buckets[old_flow]))
4661                         fl->buckets[old_flow]--;
4662
4663                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4664                         fl->count++;
4665                         rcu_read_unlock();
4666                         return true;
4667                 }
4668         }
4669         rcu_read_unlock();
4670 #endif
4671         return false;
4672 }
4673
4674 /*
4675  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4676  * queue (may be a remote CPU queue).
4677  */
4678 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4679                               unsigned int *qtail)
4680 {
4681         struct softnet_data *sd;
4682         unsigned long flags;
4683         unsigned int qlen;
4684
4685         sd = &per_cpu(softnet_data, cpu);
4686
4687         local_irq_save(flags);
4688
4689         rps_lock(sd);
4690         if (!netif_running(skb->dev))
4691                 goto drop;
4692         qlen = skb_queue_len(&sd->input_pkt_queue);
4693         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4694                 if (qlen) {
4695 enqueue:
4696                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4697                         input_queue_tail_incr_save(sd, qtail);
4698                         rps_unlock(sd);
4699                         local_irq_restore(flags);
4700                         return NET_RX_SUCCESS;
4701                 }
4702
4703                 /* Schedule NAPI for backlog device
4704                  * We can use non atomic operation since we own the queue lock
4705                  */
4706                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4707                         if (!rps_ipi_queued(sd))
4708                                 ____napi_schedule(sd, &sd->backlog);
4709                 }
4710                 goto enqueue;
4711         }
4712
4713 drop:
4714         sd->dropped++;
4715         rps_unlock(sd);
4716
4717         local_irq_restore(flags);
4718
4719         atomic_long_inc(&skb->dev->rx_dropped);
4720         kfree_skb(skb);
4721         return NET_RX_DROP;
4722 }
4723
4724 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4725 {
4726         struct net_device *dev = skb->dev;
4727         struct netdev_rx_queue *rxqueue;
4728
4729         rxqueue = dev->_rx;
4730
4731         if (skb_rx_queue_recorded(skb)) {
4732                 u16 index = skb_get_rx_queue(skb);
4733
4734                 if (unlikely(index >= dev->real_num_rx_queues)) {
4735                         WARN_ONCE(dev->real_num_rx_queues > 1,
4736                                   "%s received packet on queue %u, but number "
4737                                   "of RX queues is %u\n",
4738                                   dev->name, index, dev->real_num_rx_queues);
4739
4740                         return rxqueue; /* Return first rxqueue */
4741                 }
4742                 rxqueue += index;
4743         }
4744         return rxqueue;
4745 }
4746
4747 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4748                                      struct xdp_buff *xdp,
4749                                      struct bpf_prog *xdp_prog)
4750 {
4751         void *orig_data, *orig_data_end, *hard_start;
4752         struct netdev_rx_queue *rxqueue;
4753         u32 metalen, act = XDP_DROP;
4754         bool orig_bcast, orig_host;
4755         u32 mac_len, frame_sz;
4756         __be16 orig_eth_type;
4757         struct ethhdr *eth;
4758         int off;
4759
4760         /* Reinjected packets coming from act_mirred or similar should
4761          * not get XDP generic processing.
4762          */
4763         if (skb_is_redirected(skb))
4764                 return XDP_PASS;
4765
4766         /* XDP packets must be linear and must have sufficient headroom
4767          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4768          * native XDP provides, thus we need to do it here as well.
4769          */
4770         if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4771             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4772                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4773                 int troom = skb->tail + skb->data_len - skb->end;
4774
4775                 /* In case we have to go down the path and also linearize,
4776                  * then lets do the pskb_expand_head() work just once here.
4777                  */
4778                 if (pskb_expand_head(skb,
4779                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4780                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4781                         goto do_drop;
4782                 if (skb_linearize(skb))
4783                         goto do_drop;
4784         }
4785
4786         /* The XDP program wants to see the packet starting at the MAC
4787          * header.
4788          */
4789         mac_len = skb->data - skb_mac_header(skb);
4790         hard_start = skb->data - skb_headroom(skb);
4791
4792         /* SKB "head" area always have tailroom for skb_shared_info */
4793         frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4794         frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4795
4796         rxqueue = netif_get_rxqueue(skb);
4797         xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4798         xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4799                          skb_headlen(skb) + mac_len, true);
4800
4801         orig_data_end = xdp->data_end;
4802         orig_data = xdp->data;
4803         eth = (struct ethhdr *)xdp->data;
4804         orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4805         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4806         orig_eth_type = eth->h_proto;
4807
4808         act = bpf_prog_run_xdp(xdp_prog, xdp);
4809
4810         /* check if bpf_xdp_adjust_head was used */
4811         off = xdp->data - orig_data;
4812         if (off) {
4813                 if (off > 0)
4814                         __skb_pull(skb, off);
4815                 else if (off < 0)
4816                         __skb_push(skb, -off);
4817
4818                 skb->mac_header += off;
4819                 skb_reset_network_header(skb);
4820         }
4821
4822         /* check if bpf_xdp_adjust_tail was used */
4823         off = xdp->data_end - orig_data_end;
4824         if (off != 0) {
4825                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4826                 skb->len += off; /* positive on grow, negative on shrink */
4827         }
4828
4829         /* check if XDP changed eth hdr such SKB needs update */
4830         eth = (struct ethhdr *)xdp->data;
4831         if ((orig_eth_type != eth->h_proto) ||
4832             (orig_host != ether_addr_equal_64bits(eth->h_dest,
4833                                                   skb->dev->dev_addr)) ||
4834             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4835                 __skb_push(skb, ETH_HLEN);
4836                 skb->pkt_type = PACKET_HOST;
4837                 skb->protocol = eth_type_trans(skb, skb->dev);
4838         }
4839
4840         switch (act) {
4841         case XDP_REDIRECT:
4842         case XDP_TX:
4843                 __skb_push(skb, mac_len);
4844                 break;
4845         case XDP_PASS:
4846                 metalen = xdp->data - xdp->data_meta;
4847                 if (metalen)
4848                         skb_metadata_set(skb, metalen);
4849                 break;
4850         default:
4851                 bpf_warn_invalid_xdp_action(act);
4852                 fallthrough;
4853         case XDP_ABORTED:
4854                 trace_xdp_exception(skb->dev, xdp_prog, act);
4855                 fallthrough;
4856         case XDP_DROP:
4857         do_drop:
4858                 kfree_skb(skb);
4859                 break;
4860         }
4861
4862         return act;
4863 }
4864
4865 /* When doing generic XDP we have to bypass the qdisc layer and the
4866  * network taps in order to match in-driver-XDP behavior.
4867  */
4868 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4869 {
4870         struct net_device *dev = skb->dev;
4871         struct netdev_queue *txq;
4872         bool free_skb = true;
4873         int cpu, rc;
4874
4875         txq = netdev_core_pick_tx(dev, skb, NULL);
4876         cpu = smp_processor_id();
4877         HARD_TX_LOCK(dev, txq, cpu);
4878         if (!netif_xmit_stopped(txq)) {
4879                 rc = netdev_start_xmit(skb, dev, txq, 0);
4880                 if (dev_xmit_complete(rc))
4881                         free_skb = false;
4882         }
4883         HARD_TX_UNLOCK(dev, txq);
4884         if (free_skb) {
4885                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4886                 kfree_skb(skb);
4887         }
4888 }
4889
4890 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4891
4892 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4893 {
4894         if (xdp_prog) {
4895                 struct xdp_buff xdp;
4896                 u32 act;
4897                 int err;
4898
4899                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4900                 if (act != XDP_PASS) {
4901                         switch (act) {
4902                         case XDP_REDIRECT:
4903                                 err = xdp_do_generic_redirect(skb->dev, skb,
4904                                                               &xdp, xdp_prog);
4905                                 if (err)
4906                                         goto out_redir;
4907                                 break;
4908                         case XDP_TX:
4909                                 generic_xdp_tx(skb, xdp_prog);
4910                                 break;
4911                         }
4912                         return XDP_DROP;
4913                 }
4914         }
4915         return XDP_PASS;
4916 out_redir:
4917         kfree_skb(skb);
4918         return XDP_DROP;
4919 }
4920 EXPORT_SYMBOL_GPL(do_xdp_generic);
4921
4922 static int netif_rx_internal(struct sk_buff *skb)
4923 {
4924         int ret;
4925
4926         net_timestamp_check(netdev_tstamp_prequeue, skb);
4927
4928         trace_netif_rx(skb);
4929
4930 #ifdef CONFIG_RPS
4931         if (static_branch_unlikely(&rps_needed)) {
4932                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4933                 int cpu;
4934
4935                 preempt_disable();
4936                 rcu_read_lock();
4937
4938                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4939                 if (cpu < 0)
4940                         cpu = smp_processor_id();
4941
4942                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4943
4944                 rcu_read_unlock();
4945                 preempt_enable();
4946         } else
4947 #endif
4948         {
4949                 unsigned int qtail;
4950
4951                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4952                 put_cpu();
4953         }
4954         return ret;
4955 }
4956
4957 /**
4958  *      netif_rx        -       post buffer to the network code
4959  *      @skb: buffer to post
4960  *
4961  *      This function receives a packet from a device driver and queues it for
4962  *      the upper (protocol) levels to process.  It always succeeds. The buffer
4963  *      may be dropped during processing for congestion control or by the
4964  *      protocol layers.
4965  *
4966  *      return values:
4967  *      NET_RX_SUCCESS  (no congestion)
4968  *      NET_RX_DROP     (packet was dropped)
4969  *
4970  */
4971
4972 int netif_rx(struct sk_buff *skb)
4973 {
4974         int ret;
4975
4976         trace_netif_rx_entry(skb);
4977
4978         ret = netif_rx_internal(skb);
4979         trace_netif_rx_exit(ret);
4980
4981         return ret;
4982 }
4983 EXPORT_SYMBOL(netif_rx);
4984
4985 int netif_rx_ni(struct sk_buff *skb)
4986 {
4987         int err;
4988
4989         trace_netif_rx_ni_entry(skb);
4990
4991         preempt_disable();
4992         err = netif_rx_internal(skb);
4993         if (local_softirq_pending())
4994                 do_softirq();
4995         preempt_enable();
4996         trace_netif_rx_ni_exit(err);
4997
4998         return err;
4999 }
5000 EXPORT_SYMBOL(netif_rx_ni);
5001
5002 int netif_rx_any_context(struct sk_buff *skb)
5003 {
5004         /*
5005          * If invoked from contexts which do not invoke bottom half
5006          * processing either at return from interrupt or when softrqs are
5007          * reenabled, use netif_rx_ni() which invokes bottomhalf processing
5008          * directly.
5009          */
5010         if (in_interrupt())
5011                 return netif_rx(skb);
5012         else
5013                 return netif_rx_ni(skb);
5014 }
5015 EXPORT_SYMBOL(netif_rx_any_context);
5016
5017 static __latent_entropy void net_tx_action(struct softirq_action *h)
5018 {
5019         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5020
5021         if (sd->completion_queue) {
5022                 struct sk_buff *clist;
5023
5024                 local_irq_disable();
5025                 clist = sd->completion_queue;
5026                 sd->completion_queue = NULL;
5027                 local_irq_enable();
5028
5029                 while (clist) {
5030                         struct sk_buff *skb = clist;
5031
5032                         clist = clist->next;
5033
5034                         WARN_ON(refcount_read(&skb->users));
5035                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
5036                                 trace_consume_skb(skb);
5037                         else
5038                                 trace_kfree_skb(skb, net_tx_action);
5039
5040                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5041                                 __kfree_skb(skb);
5042                         else
5043                                 __kfree_skb_defer(skb);
5044                 }
5045         }
5046
5047         if (sd->output_queue) {
5048                 struct Qdisc *head;
5049
5050                 local_irq_disable();
5051                 head = sd->output_queue;
5052                 sd->output_queue = NULL;
5053                 sd->output_queue_tailp = &sd->output_queue;
5054                 local_irq_enable();
5055
5056                 rcu_read_lock();
5057
5058                 while (head) {
5059                         struct Qdisc *q = head;
5060                         spinlock_t *root_lock = NULL;
5061
5062                         head = head->next_sched;
5063
5064                         /* We need to make sure head->next_sched is read
5065                          * before clearing __QDISC_STATE_SCHED
5066                          */
5067                         smp_mb__before_atomic();
5068
5069                         if (!(q->flags & TCQ_F_NOLOCK)) {
5070                                 root_lock = qdisc_lock(q);
5071                                 spin_lock(root_lock);
5072                         } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5073                                                      &q->state))) {
5074                                 /* There is a synchronize_net() between
5075                                  * STATE_DEACTIVATED flag being set and
5076                                  * qdisc_reset()/some_qdisc_is_busy() in
5077                                  * dev_deactivate(), so we can safely bail out
5078                                  * early here to avoid data race between
5079                                  * qdisc_deactivate() and some_qdisc_is_busy()
5080                                  * for lockless qdisc.
5081                                  */
5082                                 clear_bit(__QDISC_STATE_SCHED, &q->state);
5083                                 continue;
5084                         }
5085
5086                         clear_bit(__QDISC_STATE_SCHED, &q->state);
5087                         qdisc_run(q);
5088                         if (root_lock)
5089                                 spin_unlock(root_lock);
5090                 }
5091
5092                 rcu_read_unlock();
5093         }
5094
5095         xfrm_dev_backlog(sd);
5096 }
5097
5098 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5099 /* This hook is defined here for ATM LANE */
5100 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5101                              unsigned char *addr) __read_mostly;
5102 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5103 #endif
5104
5105 static inline struct sk_buff *
5106 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5107                    struct net_device *orig_dev, bool *another)
5108 {
5109 #ifdef CONFIG_NET_CLS_ACT
5110         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5111         struct tcf_result cl_res;
5112
5113         /* If there's at least one ingress present somewhere (so
5114          * we get here via enabled static key), remaining devices
5115          * that are not configured with an ingress qdisc will bail
5116          * out here.
5117          */
5118         if (!miniq)
5119                 return skb;
5120
5121         if (*pt_prev) {
5122                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5123                 *pt_prev = NULL;
5124         }
5125
5126         qdisc_skb_cb(skb)->pkt_len = skb->len;
5127         qdisc_skb_cb(skb)->mru = 0;
5128         qdisc_skb_cb(skb)->post_ct = false;
5129         skb->tc_at_ingress = 1;
5130         mini_qdisc_bstats_cpu_update(miniq, skb);
5131
5132         switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
5133                                      &cl_res, false)) {
5134         case TC_ACT_OK:
5135         case TC_ACT_RECLASSIFY:
5136                 skb->tc_index = TC_H_MIN(cl_res.classid);
5137                 break;
5138         case TC_ACT_SHOT:
5139                 mini_qdisc_qstats_cpu_drop(miniq);
5140                 kfree_skb(skb);
5141                 return NULL;
5142         case TC_ACT_STOLEN:
5143         case TC_ACT_QUEUED:
5144         case TC_ACT_TRAP:
5145                 consume_skb(skb);
5146                 return NULL;
5147         case TC_ACT_REDIRECT:
5148                 /* skb_mac_header check was done by cls/act_bpf, so
5149                  * we can safely push the L2 header back before
5150                  * redirecting to another netdev
5151                  */
5152                 __skb_push(skb, skb->mac_len);
5153                 if (skb_do_redirect(skb) == -EAGAIN) {
5154                         __skb_pull(skb, skb->mac_len);
5155                         *another = true;
5156                         break;
5157                 }
5158                 return NULL;
5159         case TC_ACT_CONSUMED:
5160                 return NULL;
5161         default:
5162                 break;
5163         }
5164 #endif /* CONFIG_NET_CLS_ACT */
5165         return skb;
5166 }
5167
5168 /**
5169  *      netdev_is_rx_handler_busy - check if receive handler is registered
5170  *      @dev: device to check
5171  *
5172  *      Check if a receive handler is already registered for a given device.
5173  *      Return true if there one.
5174  *
5175  *      The caller must hold the rtnl_mutex.
5176  */
5177 bool netdev_is_rx_handler_busy(struct net_device *dev)
5178 {
5179         ASSERT_RTNL();
5180         return dev && rtnl_dereference(dev->rx_handler);
5181 }
5182 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5183
5184 /**
5185  *      netdev_rx_handler_register - register receive handler
5186  *      @dev: device to register a handler for
5187  *      @rx_handler: receive handler to register
5188  *      @rx_handler_data: data pointer that is used by rx handler
5189  *
5190  *      Register a receive handler for a device. This handler will then be
5191  *      called from __netif_receive_skb. A negative errno code is returned
5192  *      on a failure.
5193  *
5194  *      The caller must hold the rtnl_mutex.
5195  *
5196  *      For a general description of rx_handler, see enum rx_handler_result.
5197  */
5198 int netdev_rx_handler_register(struct net_device *dev,
5199                                rx_handler_func_t *rx_handler,
5200                                void *rx_handler_data)
5201 {
5202         if (netdev_is_rx_handler_busy(dev))
5203                 return -EBUSY;
5204
5205         if (dev->priv_flags & IFF_NO_RX_HANDLER)
5206                 return -EINVAL;
5207
5208         /* Note: rx_handler_data must be set before rx_handler */
5209         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5210         rcu_assign_pointer(dev->rx_handler, rx_handler);
5211
5212         return 0;
5213 }
5214 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5215
5216 /**
5217  *      netdev_rx_handler_unregister - unregister receive handler
5218  *      @dev: device to unregister a handler from
5219  *
5220  *      Unregister a receive handler from a device.
5221  *
5222  *      The caller must hold the rtnl_mutex.
5223  */
5224 void netdev_rx_handler_unregister(struct net_device *dev)
5225 {
5226
5227         ASSERT_RTNL();
5228         RCU_INIT_POINTER(dev->rx_handler, NULL);
5229         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5230          * section has a guarantee to see a non NULL rx_handler_data
5231          * as well.
5232          */
5233         synchronize_net();
5234         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5235 }
5236 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5237
5238 /*
5239  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5240  * the special handling of PFMEMALLOC skbs.
5241  */
5242 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5243 {
5244         switch (skb->protocol) {
5245         case htons(ETH_P_ARP):
5246         case htons(ETH_P_IP):
5247         case htons(ETH_P_IPV6):
5248         case htons(ETH_P_8021Q):
5249         case htons(ETH_P_8021AD):
5250                 return true;
5251         default:
5252                 return false;
5253         }
5254 }
5255
5256 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5257                              int *ret, struct net_device *orig_dev)
5258 {
5259         if (nf_hook_ingress_active(skb)) {
5260                 int ingress_retval;
5261
5262                 if (*pt_prev) {
5263                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
5264                         *pt_prev = NULL;
5265                 }
5266
5267                 rcu_read_lock();
5268                 ingress_retval = nf_hook_ingress(skb);
5269                 rcu_read_unlock();
5270                 return ingress_retval;
5271         }
5272         return 0;
5273 }
5274
5275 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5276                                     struct packet_type **ppt_prev)
5277 {
5278         struct packet_type *ptype, *pt_prev;
5279         rx_handler_func_t *rx_handler;
5280         struct sk_buff *skb = *pskb;
5281         struct net_device *orig_dev;
5282         bool deliver_exact = false;
5283         int ret = NET_RX_DROP;
5284         __be16 type;
5285
5286         net_timestamp_check(!netdev_tstamp_prequeue, skb);
5287
5288         trace_netif_receive_skb(skb);
5289
5290         orig_dev = skb->dev;
5291
5292         skb_reset_network_header(skb);
5293         if (!skb_transport_header_was_set(skb))
5294                 skb_reset_transport_header(skb);
5295         skb_reset_mac_len(skb);
5296
5297         pt_prev = NULL;
5298
5299 another_round:
5300         skb->skb_iif = skb->dev->ifindex;
5301
5302         __this_cpu_inc(softnet_data.processed);
5303
5304         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5305                 int ret2;
5306
5307                 migrate_disable();
5308                 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5309                 migrate_enable();
5310
5311                 if (ret2 != XDP_PASS) {
5312                         ret = NET_RX_DROP;
5313                         goto out;
5314                 }
5315                 skb_reset_mac_len(skb);
5316         }
5317
5318         if (eth_type_vlan(skb->protocol)) {
5319                 skb = skb_vlan_untag(skb);
5320                 if (unlikely(!skb))
5321                         goto out;
5322         }
5323
5324         if (skb_skip_tc_classify(skb))
5325                 goto skip_classify;
5326
5327         if (pfmemalloc)
5328                 goto skip_taps;
5329
5330         list_for_each_entry_rcu(ptype, &ptype_all, list) {
5331                 if (pt_prev)
5332                         ret = deliver_skb(skb, pt_prev, orig_dev);
5333                 pt_prev = ptype;
5334         }
5335
5336         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5337                 if (pt_prev)
5338                         ret = deliver_skb(skb, pt_prev, orig_dev);
5339                 pt_prev = ptype;
5340         }
5341
5342 skip_taps:
5343 #ifdef CONFIG_NET_INGRESS
5344         if (static_branch_unlikely(&ingress_needed_key)) {
5345                 bool another = false;
5346
5347                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5348                                          &another);
5349                 if (another)
5350                         goto another_round;
5351                 if (!skb)
5352                         goto out;
5353
5354                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5355                         goto out;
5356         }
5357 #endif
5358         skb_reset_redirect(skb);
5359 skip_classify:
5360         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5361                 goto drop;
5362
5363         if (skb_vlan_tag_present(skb)) {
5364                 if (pt_prev) {
5365                         ret = deliver_skb(skb, pt_prev, orig_dev);
5366                         pt_prev = NULL;
5367                 }
5368                 if (vlan_do_receive(&skb))
5369                         goto another_round;
5370                 else if (unlikely(!skb))
5371                         goto out;
5372         }
5373
5374         rx_handler = rcu_dereference(skb->dev->rx_handler);
5375         if (rx_handler) {
5376                 if (pt_prev) {
5377                         ret = deliver_skb(skb, pt_prev, orig_dev);
5378                         pt_prev = NULL;
5379                 }
5380                 switch (rx_handler(&skb)) {
5381                 case RX_HANDLER_CONSUMED:
5382                         ret = NET_RX_SUCCESS;
5383                         goto out;
5384                 case RX_HANDLER_ANOTHER:
5385                         goto another_round;
5386                 case RX_HANDLER_EXACT:
5387                         deliver_exact = true;
5388                         break;
5389                 case RX_HANDLER_PASS:
5390                         break;
5391                 default:
5392                         BUG();
5393                 }
5394         }
5395
5396         if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5397 check_vlan_id:
5398                 if (skb_vlan_tag_get_id(skb)) {
5399                         /* Vlan id is non 0 and vlan_do_receive() above couldn't
5400                          * find vlan device.
5401                          */
5402                         skb->pkt_type = PACKET_OTHERHOST;
5403                 } else if (eth_type_vlan(skb->protocol)) {
5404                         /* Outer header is 802.1P with vlan 0, inner header is
5405                          * 802.1Q or 802.1AD and vlan_do_receive() above could
5406                          * not find vlan dev for vlan id 0.
5407                          */
5408                         __vlan_hwaccel_clear_tag(skb);
5409                         skb = skb_vlan_untag(skb);
5410                         if (unlikely(!skb))
5411                                 goto out;
5412                         if (vlan_do_receive(&skb))
5413                                 /* After stripping off 802.1P header with vlan 0
5414                                  * vlan dev is found for inner header.
5415                                  */
5416                                 goto another_round;
5417                         else if (unlikely(!skb))
5418                                 goto out;
5419                         else
5420                                 /* We have stripped outer 802.1P vlan 0 header.
5421                                  * But could not find vlan dev.
5422                                  * check again for vlan id to set OTHERHOST.
5423                                  */
5424                                 goto check_vlan_id;
5425                 }
5426                 /* Note: we might in the future use prio bits
5427                  * and set skb->priority like in vlan_do_receive()
5428                  * For the time being, just ignore Priority Code Point
5429                  */
5430                 __vlan_hwaccel_clear_tag(skb);
5431         }
5432
5433         type = skb->protocol;
5434
5435         /* deliver only exact match when indicated */
5436         if (likely(!deliver_exact)) {
5437                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5438                                        &ptype_base[ntohs(type) &
5439                                                    PTYPE_HASH_MASK]);
5440         }
5441
5442         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5443                                &orig_dev->ptype_specific);
5444
5445         if (unlikely(skb->dev != orig_dev)) {
5446                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5447                                        &skb->dev->ptype_specific);
5448         }
5449
5450         if (pt_prev) {
5451                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5452                         goto drop;
5453                 *ppt_prev = pt_prev;
5454         } else {
5455 drop:
5456                 if (!deliver_exact)
5457                         atomic_long_inc(&skb->dev->rx_dropped);
5458                 else
5459                         atomic_long_inc(&skb->dev->rx_nohandler);
5460                 kfree_skb(skb);
5461                 /* Jamal, now you will not able to escape explaining
5462                  * me how you were going to use this. :-)
5463                  */
5464                 ret = NET_RX_DROP;
5465         }
5466
5467 out:
5468         /* The invariant here is that if *ppt_prev is not NULL
5469          * then skb should also be non-NULL.
5470          *
5471          * Apparently *ppt_prev assignment above holds this invariant due to
5472          * skb dereferencing near it.
5473          */
5474         *pskb = skb;
5475         return ret;
5476 }
5477
5478 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5479 {
5480         struct net_device *orig_dev = skb->dev;
5481         struct packet_type *pt_prev = NULL;
5482         int ret;
5483
5484         ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5485         if (pt_prev)
5486                 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5487                                          skb->dev, pt_prev, orig_dev);
5488         return ret;
5489 }
5490
5491 /**
5492  *      netif_receive_skb_core - special purpose version of netif_receive_skb
5493  *      @skb: buffer to process
5494  *
5495  *      More direct receive version of netif_receive_skb().  It should
5496  *      only be used by callers that have a need to skip RPS and Generic XDP.
5497  *      Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5498  *
5499  *      This function may only be called from softirq context and interrupts
5500  *      should be enabled.
5501  *
5502  *      Return values (usually ignored):
5503  *      NET_RX_SUCCESS: no congestion
5504  *      NET_RX_DROP: packet was dropped
5505  */
5506 int netif_receive_skb_core(struct sk_buff *skb)
5507 {
5508         int ret;
5509
5510         rcu_read_lock();
5511         ret = __netif_receive_skb_one_core(skb, false);
5512         rcu_read_unlock();
5513
5514         return ret;
5515 }
5516 EXPORT_SYMBOL(netif_receive_skb_core);
5517
5518 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5519                                                   struct packet_type *pt_prev,
5520                                                   struct net_device *orig_dev)
5521 {
5522         struct sk_buff *skb, *next;
5523
5524         if (!pt_prev)
5525                 return;
5526         if (list_empty(head))
5527                 return;
5528         if (pt_prev->list_func != NULL)
5529                 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5530                                    ip_list_rcv, head, pt_prev, orig_dev);
5531         else
5532                 list_for_each_entry_safe(skb, next, head, list) {
5533                         skb_list_del_init(skb);
5534                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5535                 }
5536 }
5537
5538 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5539 {
5540         /* Fast-path assumptions:
5541          * - There is no RX handler.
5542          * - Only one packet_type matches.
5543          * If either of these fails, we will end up doing some per-packet
5544          * processing in-line, then handling the 'last ptype' for the whole
5545          * sublist.  This can't cause out-of-order delivery to any single ptype,
5546          * because the 'last ptype' must be constant across the sublist, and all
5547          * other ptypes are handled per-packet.
5548          */
5549         /* Current (common) ptype of sublist */
5550         struct packet_type *pt_curr = NULL;
5551         /* Current (common) orig_dev of sublist */
5552         struct net_device *od_curr = NULL;
5553         struct list_head sublist;
5554         struct sk_buff *skb, *next;
5555
5556         INIT_LIST_HEAD(&sublist);
5557         list_for_each_entry_safe(skb, next, head, list) {
5558                 struct net_device *orig_dev = skb->dev;
5559                 struct packet_type *pt_prev = NULL;
5560
5561                 skb_list_del_init(skb);
5562                 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5563                 if (!pt_prev)
5564                         continue;
5565                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5566                         /* dispatch old sublist */
5567                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5568                         /* start new sublist */
5569                         INIT_LIST_HEAD(&sublist);
5570                         pt_curr = pt_prev;
5571                         od_curr = orig_dev;
5572                 }
5573                 list_add_tail(&skb->list, &sublist);
5574         }
5575
5576         /* dispatch final sublist */
5577         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5578 }
5579
5580 static int __netif_receive_skb(struct sk_buff *skb)
5581 {
5582         int ret;
5583
5584         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5585                 unsigned int noreclaim_flag;
5586
5587                 /*
5588                  * PFMEMALLOC skbs are special, they should
5589                  * - be delivered to SOCK_MEMALLOC sockets only
5590                  * - stay away from userspace
5591                  * - have bounded memory usage
5592                  *
5593                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5594                  * context down to all allocation sites.
5595                  */
5596                 noreclaim_flag = memalloc_noreclaim_save();
5597                 ret = __netif_receive_skb_one_core(skb, true);
5598                 memalloc_noreclaim_restore(noreclaim_flag);
5599         } else
5600                 ret = __netif_receive_skb_one_core(skb, false);
5601
5602         return ret;
5603 }
5604
5605 static void __netif_receive_skb_list(struct list_head *head)
5606 {
5607         unsigned long noreclaim_flag = 0;
5608         struct sk_buff *skb, *next;
5609         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5610
5611         list_for_each_entry_safe(skb, next, head, list) {
5612                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5613                         struct list_head sublist;
5614
5615                         /* Handle the previous sublist */
5616                         list_cut_before(&sublist, head, &skb->list);
5617                         if (!list_empty(&sublist))
5618                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5619                         pfmemalloc = !pfmemalloc;
5620                         /* See comments in __netif_receive_skb */
5621                         if (pfmemalloc)
5622                                 noreclaim_flag = memalloc_noreclaim_save();
5623                         else
5624                                 memalloc_noreclaim_restore(noreclaim_flag);
5625                 }
5626         }
5627         /* Handle the remaining sublist */
5628         if (!list_empty(head))
5629                 __netif_receive_skb_list_core(head, pfmemalloc);
5630         /* Restore pflags */
5631         if (pfmemalloc)
5632                 memalloc_noreclaim_restore(noreclaim_flag);
5633 }
5634
5635 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5636 {
5637         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5638         struct bpf_prog *new = xdp->prog;
5639         int ret = 0;
5640
5641         if (new) {
5642                 u32 i;
5643
5644                 mutex_lock(&new->aux->used_maps_mutex);
5645
5646                 /* generic XDP does not work with DEVMAPs that can
5647                  * have a bpf_prog installed on an entry
5648                  */
5649                 for (i = 0; i < new->aux->used_map_cnt; i++) {
5650                         if (dev_map_can_have_prog(new->aux->used_maps[i]) ||
5651                             cpu_map_prog_allowed(new->aux->used_maps[i])) {
5652                                 mutex_unlock(&new->aux->used_maps_mutex);
5653                                 return -EINVAL;
5654                         }
5655                 }
5656
5657                 mutex_unlock(&new->aux->used_maps_mutex);
5658         }
5659
5660         switch (xdp->command) {
5661         case XDP_SETUP_PROG:
5662                 rcu_assign_pointer(dev->xdp_prog, new);
5663                 if (old)
5664                         bpf_prog_put(old);
5665
5666                 if (old && !new) {
5667                         static_branch_dec(&generic_xdp_needed_key);
5668                 } else if (new && !old) {
5669                         static_branch_inc(&generic_xdp_needed_key);
5670                         dev_disable_lro(dev);
5671                         dev_disable_gro_hw(dev);
5672                 }
5673                 break;
5674
5675         default:
5676                 ret = -EINVAL;
5677                 break;
5678         }
5679
5680         return ret;
5681 }
5682
5683 static int netif_receive_skb_internal(struct sk_buff *skb)
5684 {
5685         int ret;
5686
5687         net_timestamp_check(netdev_tstamp_prequeue, skb);
5688
5689         if (skb_defer_rx_timestamp(skb))
5690                 return NET_RX_SUCCESS;
5691
5692         rcu_read_lock();
5693 #ifdef CONFIG_RPS
5694         if (static_branch_unlikely(&rps_needed)) {
5695                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5696                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5697
5698                 if (cpu >= 0) {
5699                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5700                         rcu_read_unlock();
5701                         return ret;
5702                 }
5703         }
5704 #endif
5705         ret = __netif_receive_skb(skb);
5706         rcu_read_unlock();
5707         return ret;
5708 }
5709
5710 static void netif_receive_skb_list_internal(struct list_head *head)
5711 {
5712         struct sk_buff *skb, *next;
5713         struct list_head sublist;
5714
5715         INIT_LIST_HEAD(&sublist);
5716         list_for_each_entry_safe(skb, next, head, list) {
5717                 net_timestamp_check(netdev_tstamp_prequeue, skb);
5718                 skb_list_del_init(skb);
5719                 if (!skb_defer_rx_timestamp(skb))
5720                         list_add_tail(&skb->list, &sublist);
5721         }
5722         list_splice_init(&sublist, head);
5723
5724         rcu_read_lock();
5725 #ifdef CONFIG_RPS
5726         if (static_branch_unlikely(&rps_needed)) {
5727                 list_for_each_entry_safe(skb, next, head, list) {
5728                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5729                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5730
5731                         if (cpu >= 0) {
5732                                 /* Will be handled, remove from list */
5733                                 skb_list_del_init(skb);
5734                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5735                         }
5736                 }
5737         }
5738 #endif
5739         __netif_receive_skb_list(head);
5740         rcu_read_unlock();
5741 }
5742
5743 /**
5744  *      netif_receive_skb - process receive buffer from network
5745  *      @skb: buffer to process
5746  *
5747  *      netif_receive_skb() is the main receive data processing function.
5748  *      It always succeeds. The buffer may be dropped during processing
5749  *      for congestion control or by the protocol layers.
5750  *
5751  *      This function may only be called from softirq context and interrupts
5752  *      should be enabled.
5753  *
5754  *      Return values (usually ignored):
5755  *      NET_RX_SUCCESS: no congestion
5756  *      NET_RX_DROP: packet was dropped
5757  */
5758 int netif_receive_skb(struct sk_buff *skb)
5759 {
5760         int ret;
5761
5762         trace_netif_receive_skb_entry(skb);
5763
5764         ret = netif_receive_skb_internal(skb);
5765         trace_netif_receive_skb_exit(ret);
5766
5767         return ret;
5768 }
5769 EXPORT_SYMBOL(netif_receive_skb);
5770
5771 /**
5772  *      netif_receive_skb_list - process many receive buffers from network
5773  *      @head: list of skbs to process.
5774  *
5775  *      Since return value of netif_receive_skb() is normally ignored, and
5776  *      wouldn't be meaningful for a list, this function returns void.
5777  *
5778  *      This function may only be called from softirq context and interrupts
5779  *      should be enabled.
5780  */
5781 void netif_receive_skb_list(struct list_head *head)
5782 {
5783         struct sk_buff *skb;
5784
5785         if (list_empty(head))
5786                 return;
5787         if (trace_netif_receive_skb_list_entry_enabled()) {
5788                 list_for_each_entry(skb, head, list)
5789                         trace_netif_receive_skb_list_entry(skb);
5790         }
5791         netif_receive_skb_list_internal(head);
5792         trace_netif_receive_skb_list_exit(0);
5793 }
5794 EXPORT_SYMBOL(netif_receive_skb_list);
5795
5796 static DEFINE_PER_CPU(struct work_struct, flush_works);
5797
5798 /* Network device is going away, flush any packets still pending */
5799 static void flush_backlog(struct work_struct *work)
5800 {
5801         struct sk_buff *skb, *tmp;
5802         struct softnet_data *sd;
5803
5804         local_bh_disable();
5805         sd = this_cpu_ptr(&softnet_data);
5806
5807         local_irq_disable();
5808         rps_lock(sd);
5809         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5810                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5811                         __skb_unlink(skb, &sd->input_pkt_queue);
5812                         dev_kfree_skb_irq(skb);
5813                         input_queue_head_incr(sd);
5814                 }
5815         }
5816         rps_unlock(sd);
5817         local_irq_enable();
5818
5819         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5820                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5821                         __skb_unlink(skb, &sd->process_queue);
5822                         kfree_skb(skb);
5823                         input_queue_head_incr(sd);
5824                 }
5825         }
5826         local_bh_enable();
5827 }
5828
5829 static bool flush_required(int cpu)
5830 {
5831 #if IS_ENABLED(CONFIG_RPS)
5832         struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5833         bool do_flush;
5834
5835         local_irq_disable();
5836         rps_lock(sd);
5837
5838         /* as insertion into process_queue happens with the rps lock held,
5839          * process_queue access may race only with dequeue
5840          */
5841         do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5842                    !skb_queue_empty_lockless(&sd->process_queue);
5843         rps_unlock(sd);
5844         local_irq_enable();
5845
5846         return do_flush;
5847 #endif
5848         /* without RPS we can't safely check input_pkt_queue: during a
5849          * concurrent remote skb_queue_splice() we can detect as empty both
5850          * input_pkt_queue and process_queue even if the latter could end-up
5851          * containing a lot of packets.
5852          */
5853         return true;
5854 }
5855
5856 static void flush_all_backlogs(void)
5857 {
5858         static cpumask_t flush_cpus;
5859         unsigned int cpu;
5860
5861         /* since we are under rtnl lock protection we can use static data
5862          * for the cpumask and avoid allocating on stack the possibly
5863          * large mask
5864          */
5865         ASSERT_RTNL();
5866
5867         get_online_cpus();
5868
5869         cpumask_clear(&flush_cpus);
5870         for_each_online_cpu(cpu) {
5871                 if (flush_required(cpu)) {
5872                         queue_work_on(cpu, system_highpri_wq,
5873                                       per_cpu_ptr(&flush_works, cpu));
5874                         cpumask_set_cpu(cpu, &flush_cpus);
5875                 }
5876         }
5877
5878         /* we can have in flight packet[s] on the cpus we are not flushing,
5879          * synchronize_net() in unregister_netdevice_many() will take care of
5880          * them
5881          */
5882         for_each_cpu(cpu, &flush_cpus)
5883                 flush_work(per_cpu_ptr(&flush_works, cpu));
5884
5885         put_online_cpus();
5886 }
5887
5888 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5889 static void gro_normal_list(struct napi_struct *napi)
5890 {
5891         if (!napi->rx_count)
5892                 return;
5893         netif_receive_skb_list_internal(&napi->rx_list);
5894         INIT_LIST_HEAD(&napi->rx_list);
5895         napi->rx_count = 0;
5896 }
5897
5898 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5899  * pass the whole batch up to the stack.
5900  */
5901 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb, int segs)
5902 {
5903         list_add_tail(&skb->list, &napi->rx_list);
5904         napi->rx_count += segs;
5905         if (napi->rx_count >= gro_normal_batch)
5906                 gro_normal_list(napi);
5907 }
5908
5909 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5910 {
5911         struct packet_offload *ptype;
5912         __be16 type = skb->protocol;
5913         struct list_head *head = &offload_base;
5914         int err = -ENOENT;
5915
5916         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5917
5918         if (NAPI_GRO_CB(skb)->count == 1) {
5919                 skb_shinfo(skb)->gso_size = 0;
5920                 goto out;
5921         }
5922
5923         rcu_read_lock();
5924         list_for_each_entry_rcu(ptype, head, list) {
5925                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5926                         continue;
5927
5928                 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5929                                          ipv6_gro_complete, inet_gro_complete,
5930                                          skb, 0);
5931                 break;
5932         }
5933         rcu_read_unlock();
5934
5935         if (err) {
5936                 WARN_ON(&ptype->list == head);
5937                 kfree_skb(skb);
5938                 return NET_RX_SUCCESS;
5939         }
5940
5941 out:
5942         gro_normal_one(napi, skb, NAPI_GRO_CB(skb)->count);
5943         return NET_RX_SUCCESS;
5944 }
5945
5946 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5947                                    bool flush_old)
5948 {
5949         struct list_head *head = &napi->gro_hash[index].list;
5950         struct sk_buff *skb, *p;
5951
5952         list_for_each_entry_safe_reverse(skb, p, head, list) {
5953                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5954                         return;
5955                 skb_list_del_init(skb);
5956                 napi_gro_complete(napi, skb);
5957                 napi->gro_hash[index].count--;
5958         }
5959
5960         if (!napi->gro_hash[index].count)
5961                 __clear_bit(index, &napi->gro_bitmask);
5962 }
5963
5964 /* napi->gro_hash[].list contains packets ordered by age.
5965  * youngest packets at the head of it.
5966  * Complete skbs in reverse order to reduce latencies.
5967  */
5968 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5969 {
5970         unsigned long bitmask = napi->gro_bitmask;
5971         unsigned int i, base = ~0U;
5972
5973         while ((i = ffs(bitmask)) != 0) {
5974                 bitmask >>= i;
5975                 base += i;
5976                 __napi_gro_flush_chain(napi, base, flush_old);
5977         }
5978 }
5979 EXPORT_SYMBOL(napi_gro_flush);
5980
5981 static void gro_list_prepare(const struct list_head *head,
5982                              const struct sk_buff *skb)
5983 {
5984         unsigned int maclen = skb->dev->hard_header_len;
5985         u32 hash = skb_get_hash_raw(skb);
5986         struct sk_buff *p;
5987
5988         list_for_each_entry(p, head, list) {
5989                 unsigned long diffs;
5990
5991                 NAPI_GRO_CB(p)->flush = 0;
5992
5993                 if (hash != skb_get_hash_raw(p)) {
5994                         NAPI_GRO_CB(p)->same_flow = 0;
5995                         continue;
5996                 }
5997
5998                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5999                 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
6000                 if (skb_vlan_tag_present(p))
6001                         diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
6002                 diffs |= skb_metadata_dst_cmp(p, skb);
6003                 diffs |= skb_metadata_differs(p, skb);
6004                 if (maclen == ETH_HLEN)
6005                         diffs |= compare_ether_header(skb_mac_header(p),
6006                                                       skb_mac_header(skb));
6007                 else if (!diffs)
6008                         diffs = memcmp(skb_mac_header(p),
6009                                        skb_mac_header(skb),
6010                                        maclen);
6011
6012                 diffs |= skb_get_nfct(p) ^ skb_get_nfct(skb);
6013 #if IS_ENABLED(CONFIG_SKB_EXTENSIONS) && IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
6014                 if (!diffs) {
6015                         struct tc_skb_ext *skb_ext = skb_ext_find(skb, TC_SKB_EXT);
6016                         struct tc_skb_ext *p_ext = skb_ext_find(p, TC_SKB_EXT);
6017
6018                         diffs |= (!!p_ext) ^ (!!skb_ext);
6019                         if (!diffs && unlikely(skb_ext))
6020                                 diffs |= p_ext->chain ^ skb_ext->chain;
6021                 }
6022 #endif
6023
6024                 NAPI_GRO_CB(p)->same_flow = !diffs;
6025         }
6026 }
6027
6028 static inline void skb_gro_reset_offset(struct sk_buff *skb, u32 nhoff)
6029 {
6030         const struct skb_shared_info *pinfo = skb_shinfo(skb);
6031         const skb_frag_t *frag0 = &pinfo->frags[0];
6032
6033         NAPI_GRO_CB(skb)->data_offset = 0;
6034         NAPI_GRO_CB(skb)->frag0 = NULL;
6035         NAPI_GRO_CB(skb)->frag0_len = 0;
6036
6037         if (!skb_headlen(skb) && pinfo->nr_frags &&
6038             !PageHighMem(skb_frag_page(frag0)) &&
6039             (!NET_IP_ALIGN || !((skb_frag_off(frag0) + nhoff) & 3))) {
6040                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
6041                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
6042                                                     skb_frag_size(frag0),
6043                                                     skb->end - skb->tail);
6044         }
6045 }
6046
6047 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
6048 {
6049         struct skb_shared_info *pinfo = skb_shinfo(skb);
6050
6051         BUG_ON(skb->end - skb->tail < grow);
6052
6053         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
6054
6055         skb->data_len -= grow;
6056         skb->tail += grow;
6057
6058         skb_frag_off_add(&pinfo->frags[0], grow);
6059         skb_frag_size_sub(&pinfo->frags[0], grow);
6060
6061         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
6062                 skb_frag_unref(skb, 0);
6063                 memmove(pinfo->frags, pinfo->frags + 1,
6064                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
6065         }
6066 }
6067
6068 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
6069 {
6070         struct sk_buff *oldest;
6071
6072         oldest = list_last_entry(head, struct sk_buff, list);
6073
6074         /* We are called with head length >= MAX_GRO_SKBS, so this is
6075          * impossible.
6076          */
6077         if (WARN_ON_ONCE(!oldest))
6078                 return;
6079
6080         /* Do not adjust napi->gro_hash[].count, caller is adding a new
6081          * SKB to the chain.
6082          */
6083         skb_list_del_init(oldest);
6084         napi_gro_complete(napi, oldest);
6085 }
6086
6087 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6088 {
6089         u32 bucket = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
6090         struct gro_list *gro_list = &napi->gro_hash[bucket];
6091         struct list_head *head = &offload_base;
6092         struct packet_offload *ptype;
6093         __be16 type = skb->protocol;
6094         struct sk_buff *pp = NULL;
6095         enum gro_result ret;
6096         int same_flow;
6097         int grow;
6098
6099         if (netif_elide_gro(skb->dev))
6100                 goto normal;
6101
6102         gro_list_prepare(&gro_list->list, skb);
6103
6104         rcu_read_lock();
6105         list_for_each_entry_rcu(ptype, head, list) {
6106                 if (ptype->type != type || !ptype->callbacks.gro_receive)
6107                         continue;
6108
6109                 skb_set_network_header(skb, skb_gro_offset(skb));
6110                 skb_reset_mac_len(skb);
6111                 NAPI_GRO_CB(skb)->same_flow = 0;
6112                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
6113                 NAPI_GRO_CB(skb)->free = 0;
6114                 NAPI_GRO_CB(skb)->encap_mark = 0;
6115                 NAPI_GRO_CB(skb)->recursion_counter = 0;
6116                 NAPI_GRO_CB(skb)->is_fou = 0;
6117                 NAPI_GRO_CB(skb)->is_atomic = 1;
6118                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
6119
6120                 /* Setup for GRO checksum validation */
6121                 switch (skb->ip_summed) {
6122                 case CHECKSUM_COMPLETE:
6123                         NAPI_GRO_CB(skb)->csum = skb->csum;
6124                         NAPI_GRO_CB(skb)->csum_valid = 1;
6125                         NAPI_GRO_CB(skb)->csum_cnt = 0;
6126                         break;
6127                 case CHECKSUM_UNNECESSARY:
6128                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
6129                         NAPI_GRO_CB(skb)->csum_valid = 0;
6130                         break;
6131                 default:
6132                         NAPI_GRO_CB(skb)->csum_cnt = 0;
6133                         NAPI_GRO_CB(skb)->csum_valid = 0;
6134                 }
6135
6136                 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
6137                                         ipv6_gro_receive, inet_gro_receive,
6138                                         &gro_list->list, skb);
6139                 break;
6140         }
6141         rcu_read_unlock();
6142
6143         if (&ptype->list == head)
6144                 goto normal;
6145
6146         if (PTR_ERR(pp) == -EINPROGRESS) {
6147                 ret = GRO_CONSUMED;
6148                 goto ok;
6149         }
6150
6151         same_flow = NAPI_GRO_CB(skb)->same_flow;
6152         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
6153
6154         if (pp) {
6155                 skb_list_del_init(pp);
6156                 napi_gro_complete(napi, pp);
6157                 gro_list->count--;
6158         }
6159
6160         if (same_flow)
6161                 goto ok;
6162
6163         if (NAPI_GRO_CB(skb)->flush)
6164                 goto normal;
6165
6166         if (unlikely(gro_list->count >= MAX_GRO_SKBS))
6167                 gro_flush_oldest(napi, &gro_list->list);
6168         else
6169                 gro_list->count++;
6170
6171         NAPI_GRO_CB(skb)->count = 1;
6172         NAPI_GRO_CB(skb)->age = jiffies;
6173         NAPI_GRO_CB(skb)->last = skb;
6174         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
6175         list_add(&skb->list, &gro_list->list);
6176         ret = GRO_HELD;
6177
6178 pull:
6179         grow = skb_gro_offset(skb) - skb_headlen(skb);
6180         if (grow > 0)
6181                 gro_pull_from_frag0(skb, grow);
6182 ok:
6183         if (gro_list->count) {
6184                 if (!test_bit(bucket, &napi->gro_bitmask))
6185                         __set_bit(bucket, &napi->gro_bitmask);
6186         } else if (test_bit(bucket, &napi->gro_bitmask)) {
6187                 __clear_bit(bucket, &napi->gro_bitmask);
6188         }
6189
6190         return ret;
6191
6192 normal:
6193         ret = GRO_NORMAL;
6194         goto pull;
6195 }
6196
6197 struct packet_offload *gro_find_receive_by_type(__be16 type)
6198 {
6199         struct list_head *offload_head = &offload_base;
6200         struct packet_offload *ptype;
6201
6202         list_for_each_entry_rcu(ptype, offload_head, list) {
6203                 if (ptype->type != type || !ptype->callbacks.gro_receive)
6204                         continue;
6205                 return ptype;
6206         }
6207         return NULL;
6208 }
6209 EXPORT_SYMBOL(gro_find_receive_by_type);
6210
6211 struct packet_offload *gro_find_complete_by_type(__be16 type)
6212 {
6213         struct list_head *offload_head = &offload_base;
6214         struct packet_offload *ptype;
6215
6216         list_for_each_entry_rcu(ptype, offload_head, list) {
6217                 if (ptype->type != type || !ptype->callbacks.gro_complete)
6218                         continue;
6219                 return ptype;
6220         }
6221         return NULL;
6222 }
6223 EXPORT_SYMBOL(gro_find_complete_by_type);
6224
6225 static gro_result_t napi_skb_finish(struct napi_struct *napi,
6226                                     struct sk_buff *skb,
6227                                     gro_result_t ret)
6228 {
6229         switch (ret) {
6230         case GRO_NORMAL:
6231                 gro_normal_one(napi, skb, 1);
6232                 break;
6233
6234         case GRO_MERGED_FREE:
6235                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6236                         napi_skb_free_stolen_head(skb);
6237                 else if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
6238                         __kfree_skb(skb);
6239                 else
6240                         __kfree_skb_defer(skb);
6241                 break;
6242
6243         case GRO_HELD:
6244         case GRO_MERGED:
6245         case GRO_CONSUMED:
6246                 break;
6247         }
6248
6249         return ret;
6250 }
6251
6252 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6253 {
6254         gro_result_t ret;
6255
6256         skb_mark_napi_id(skb, napi);
6257         trace_napi_gro_receive_entry(skb);
6258
6259         skb_gro_reset_offset(skb, 0);
6260
6261         ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6262         trace_napi_gro_receive_exit(ret);
6263
6264         return ret;
6265 }
6266 EXPORT_SYMBOL(napi_gro_receive);
6267
6268 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6269 {
6270         if (unlikely(skb->pfmemalloc)) {
6271                 consume_skb(skb);
6272                 return;
6273         }
6274         __skb_pull(skb, skb_headlen(skb));
6275         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
6276         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6277         __vlan_hwaccel_clear_tag(skb);
6278         skb->dev = napi->dev;
6279         skb->skb_iif = 0;
6280
6281         /* eth_type_trans() assumes pkt_type is PACKET_HOST */
6282         skb->pkt_type = PACKET_HOST;
6283
6284         skb->encapsulation = 0;
6285         skb_shinfo(skb)->gso_type = 0;
6286         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6287         skb_ext_reset(skb);
6288         nf_reset_ct(skb);
6289
6290         napi->skb = skb;
6291 }
6292
6293 struct sk_buff *napi_get_frags(struct napi_struct *napi)
6294 {
6295         struct sk_buff *skb = napi->skb;
6296
6297         if (!skb) {
6298                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6299                 if (skb) {
6300                         napi->skb = skb;
6301                         skb_mark_napi_id(skb, napi);
6302                 }
6303         }
6304         return skb;
6305 }
6306 EXPORT_SYMBOL(napi_get_frags);
6307
6308 static gro_result_t napi_frags_finish(struct napi_struct *napi,
6309                                       struct sk_buff *skb,
6310                                       gro_result_t ret)
6311 {
6312         switch (ret) {
6313         case GRO_NORMAL:
6314         case GRO_HELD:
6315                 __skb_push(skb, ETH_HLEN);
6316                 skb->protocol = eth_type_trans(skb, skb->dev);
6317                 if (ret == GRO_NORMAL)
6318                         gro_normal_one(napi, skb, 1);
6319                 break;
6320
6321         case GRO_MERGED_FREE:
6322                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6323                         napi_skb_free_stolen_head(skb);
6324                 else
6325                         napi_reuse_skb(napi, skb);
6326                 break;
6327
6328         case GRO_MERGED:
6329         case GRO_CONSUMED:
6330                 break;
6331         }
6332
6333         return ret;
6334 }
6335
6336 /* Upper GRO stack assumes network header starts at gro_offset=0
6337  * Drivers could call both napi_gro_frags() and napi_gro_receive()
6338  * We copy ethernet header into skb->data to have a common layout.
6339  */
6340 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6341 {
6342         struct sk_buff *skb = napi->skb;
6343         const struct ethhdr *eth;
6344         unsigned int hlen = sizeof(*eth);
6345
6346         napi->skb = NULL;
6347
6348         skb_reset_mac_header(skb);
6349         skb_gro_reset_offset(skb, hlen);
6350
6351         if (unlikely(skb_gro_header_hard(skb, hlen))) {
6352                 eth = skb_gro_header_slow(skb, hlen, 0);
6353                 if (unlikely(!eth)) {
6354                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6355                                              __func__, napi->dev->name);
6356                         napi_reuse_skb(napi, skb);
6357                         return NULL;
6358                 }
6359         } else {
6360                 eth = (const struct ethhdr *)skb->data;
6361                 gro_pull_from_frag0(skb, hlen);
6362                 NAPI_GRO_CB(skb)->frag0 += hlen;
6363                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
6364         }
6365         __skb_pull(skb, hlen);
6366
6367         /*
6368          * This works because the only protocols we care about don't require
6369          * special handling.
6370          * We'll fix it up properly in napi_frags_finish()
6371          */
6372         skb->protocol = eth->h_proto;
6373
6374         return skb;
6375 }
6376
6377 gro_result_t napi_gro_frags(struct napi_struct *napi)
6378 {
6379         gro_result_t ret;
6380         struct sk_buff *skb = napi_frags_skb(napi);
6381
6382         trace_napi_gro_frags_entry(skb);
6383
6384         ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6385         trace_napi_gro_frags_exit(ret);
6386
6387         return ret;
6388 }
6389 EXPORT_SYMBOL(napi_gro_frags);
6390
6391 /* Compute the checksum from gro_offset and return the folded value
6392  * after adding in any pseudo checksum.
6393  */
6394 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6395 {
6396         __wsum wsum;
6397         __sum16 sum;
6398
6399         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6400
6401         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6402         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6403         /* See comments in __skb_checksum_complete(). */
6404         if (likely(!sum)) {
6405                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6406                     !skb->csum_complete_sw)
6407                         netdev_rx_csum_fault(skb->dev, skb);
6408         }
6409
6410         NAPI_GRO_CB(skb)->csum = wsum;
6411         NAPI_GRO_CB(skb)->csum_valid = 1;
6412
6413         return sum;
6414 }
6415 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6416
6417 static void net_rps_send_ipi(struct softnet_data *remsd)
6418 {
6419 #ifdef CONFIG_RPS
6420         while (remsd) {
6421                 struct softnet_data *next = remsd->rps_ipi_next;
6422
6423                 if (cpu_online(remsd->cpu))
6424                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
6425                 remsd = next;
6426         }
6427 #endif
6428 }
6429
6430 /*
6431  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6432  * Note: called with local irq disabled, but exits with local irq enabled.
6433  */
6434 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6435 {
6436 #ifdef CONFIG_RPS
6437         struct softnet_data *remsd = sd->rps_ipi_list;
6438
6439         if (remsd) {
6440                 sd->rps_ipi_list = NULL;
6441
6442                 local_irq_enable();
6443
6444                 /* Send pending IPI's to kick RPS processing on remote cpus. */
6445                 net_rps_send_ipi(remsd);
6446         } else
6447 #endif
6448                 local_irq_enable();
6449 }
6450
6451 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6452 {
6453 #ifdef CONFIG_RPS
6454         return sd->rps_ipi_list != NULL;
6455 #else
6456         return false;
6457 #endif
6458 }
6459
6460 static int process_backlog(struct napi_struct *napi, int quota)
6461 {
6462         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6463         bool again = true;
6464         int work = 0;
6465
6466         /* Check if we have pending ipi, its better to send them now,
6467          * not waiting net_rx_action() end.
6468          */
6469         if (sd_has_rps_ipi_waiting(sd)) {
6470                 local_irq_disable();
6471                 net_rps_action_and_irq_enable(sd);
6472         }
6473
6474         napi->weight = dev_rx_weight;
6475         while (again) {
6476                 struct sk_buff *skb;
6477
6478                 while ((skb = __skb_dequeue(&sd->process_queue))) {
6479                         rcu_read_lock();
6480                         __netif_receive_skb(skb);
6481                         rcu_read_unlock();
6482                         input_queue_head_incr(sd);
6483                         if (++work >= quota)
6484                                 return work;
6485
6486                 }
6487
6488                 local_irq_disable();
6489                 rps_lock(sd);
6490                 if (skb_queue_empty(&sd->input_pkt_queue)) {
6491                         /*
6492                          * Inline a custom version of __napi_complete().
6493                          * only current cpu owns and manipulates this napi,
6494                          * and NAPI_STATE_SCHED is the only possible flag set
6495                          * on backlog.
6496                          * We can use a plain write instead of clear_bit(),
6497                          * and we dont need an smp_mb() memory barrier.
6498                          */
6499                         napi->state = 0;
6500                         again = false;
6501                 } else {
6502                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
6503                                                    &sd->process_queue);
6504                 }
6505                 rps_unlock(sd);
6506                 local_irq_enable();
6507         }
6508
6509         return work;
6510 }
6511
6512 /**
6513  * __napi_schedule - schedule for receive
6514  * @n: entry to schedule
6515  *
6516  * The entry's receive function will be scheduled to run.
6517  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6518  */
6519 void __napi_schedule(struct napi_struct *n)
6520 {
6521         unsigned long flags;
6522
6523         local_irq_save(flags);
6524         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6525         local_irq_restore(flags);
6526 }
6527 EXPORT_SYMBOL(__napi_schedule);
6528
6529 /**
6530  *      napi_schedule_prep - check if napi can be scheduled
6531  *      @n: napi context
6532  *
6533  * Test if NAPI routine is already running, and if not mark
6534  * it as running.  This is used as a condition variable to
6535  * insure only one NAPI poll instance runs.  We also make
6536  * sure there is no pending NAPI disable.
6537  */
6538 bool napi_schedule_prep(struct napi_struct *n)
6539 {
6540         unsigned long val, new;
6541
6542         do {
6543                 val = READ_ONCE(n->state);
6544                 if (unlikely(val & NAPIF_STATE_DISABLE))
6545                         return false;
6546                 new = val | NAPIF_STATE_SCHED;
6547
6548                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6549                  * This was suggested by Alexander Duyck, as compiler
6550                  * emits better code than :
6551                  * if (val & NAPIF_STATE_SCHED)
6552                  *     new |= NAPIF_STATE_MISSED;
6553                  */
6554                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6555                                                    NAPIF_STATE_MISSED;
6556         } while (cmpxchg(&n->state, val, new) != val);
6557
6558         return !(val & NAPIF_STATE_SCHED);
6559 }
6560 EXPORT_SYMBOL(napi_schedule_prep);
6561
6562 /**
6563  * __napi_schedule_irqoff - schedule for receive
6564  * @n: entry to schedule
6565  *
6566  * Variant of __napi_schedule() assuming hard irqs are masked.
6567  *
6568  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6569  * because the interrupt disabled assumption might not be true
6570  * due to force-threaded interrupts and spinlock substitution.
6571  */
6572 void __napi_schedule_irqoff(struct napi_struct *n)
6573 {
6574         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6575                 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6576         else
6577                 __napi_schedule(n);
6578 }
6579 EXPORT_SYMBOL(__napi_schedule_irqoff);
6580
6581 bool napi_complete_done(struct napi_struct *n, int work_done)
6582 {
6583         unsigned long flags, val, new, timeout = 0;
6584         bool ret = true;
6585
6586         /*
6587          * 1) Don't let napi dequeue from the cpu poll list
6588          *    just in case its running on a different cpu.
6589          * 2) If we are busy polling, do nothing here, we have
6590          *    the guarantee we will be called later.
6591          */
6592         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6593                                  NAPIF_STATE_IN_BUSY_POLL)))
6594                 return false;
6595
6596         if (work_done) {
6597                 if (n->gro_bitmask)
6598                         timeout = READ_ONCE(n->dev->gro_flush_timeout);
6599                 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6600         }
6601         if (n->defer_hard_irqs_count > 0) {
6602                 n->defer_hard_irqs_count--;
6603                 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6604                 if (timeout)
6605                         ret = false;
6606         }
6607         if (n->gro_bitmask) {
6608                 /* When the NAPI instance uses a timeout and keeps postponing
6609                  * it, we need to bound somehow the time packets are kept in
6610                  * the GRO layer
6611                  */
6612                 napi_gro_flush(n, !!timeout);
6613         }
6614
6615         gro_normal_list(n);
6616
6617         if (unlikely(!list_empty(&n->poll_list))) {
6618                 /* If n->poll_list is not empty, we need to mask irqs */
6619                 local_irq_save(flags);
6620                 list_del_init(&n->poll_list);
6621                 local_irq_restore(flags);
6622         }
6623
6624         do {
6625                 val = READ_ONCE(n->state);
6626
6627                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6628
6629                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6630                               NAPIF_STATE_SCHED_THREADED |
6631                               NAPIF_STATE_PREFER_BUSY_POLL);
6632
6633                 /* If STATE_MISSED was set, leave STATE_SCHED set,
6634                  * because we will call napi->poll() one more time.
6635                  * This C code was suggested by Alexander Duyck to help gcc.
6636                  */
6637                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6638                                                     NAPIF_STATE_SCHED;
6639         } while (cmpxchg(&n->state, val, new) != val);
6640
6641         if (unlikely(val & NAPIF_STATE_MISSED)) {
6642                 __napi_schedule(n);
6643                 return false;
6644         }
6645
6646         if (timeout)
6647                 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6648                               HRTIMER_MODE_REL_PINNED);
6649         return ret;
6650 }
6651 EXPORT_SYMBOL(napi_complete_done);
6652
6653 /* must be called under rcu_read_lock(), as we dont take a reference */
6654 static struct napi_struct *napi_by_id(unsigned int napi_id)
6655 {
6656         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6657         struct napi_struct *napi;
6658
6659         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6660                 if (napi->napi_id == napi_id)
6661                         return napi;
6662
6663         return NULL;
6664 }
6665
6666 #if defined(CONFIG_NET_RX_BUSY_POLL)
6667
6668 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6669 {
6670         if (!skip_schedule) {
6671                 gro_normal_list(napi);
6672                 __napi_schedule(napi);
6673                 return;
6674         }
6675
6676         if (napi->gro_bitmask) {
6677                 /* flush too old packets
6678                  * If HZ < 1000, flush all packets.
6679                  */
6680                 napi_gro_flush(napi, HZ >= 1000);
6681         }
6682
6683         gro_normal_list(napi);
6684         clear_bit(NAPI_STATE_SCHED, &napi->state);
6685 }
6686
6687 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6688                            u16 budget)
6689 {
6690         bool skip_schedule = false;
6691         unsigned long timeout;
6692         int rc;
6693
6694         /* Busy polling means there is a high chance device driver hard irq
6695          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6696          * set in napi_schedule_prep().
6697          * Since we are about to call napi->poll() once more, we can safely
6698          * clear NAPI_STATE_MISSED.
6699          *
6700          * Note: x86 could use a single "lock and ..." instruction
6701          * to perform these two clear_bit()
6702          */
6703         clear_bit(NAPI_STATE_MISSED, &napi->state);
6704         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6705
6706         local_bh_disable();
6707
6708         if (prefer_busy_poll) {
6709                 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6710                 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6711                 if (napi->defer_hard_irqs_count && timeout) {
6712                         hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6713                         skip_schedule = true;
6714                 }
6715         }
6716
6717         /* All we really want here is to re-enable device interrupts.
6718          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6719          */
6720         rc = napi->poll(napi, budget);
6721         /* We can't gro_normal_list() here, because napi->poll() might have
6722          * rearmed the napi (napi_complete_done()) in which case it could
6723          * already be running on another CPU.
6724          */
6725         trace_napi_poll(napi, rc, budget);
6726         netpoll_poll_unlock(have_poll_lock);
6727         if (rc == budget)
6728                 __busy_poll_stop(napi, skip_schedule);
6729         local_bh_enable();
6730 }
6731
6732 void napi_busy_loop(unsigned int napi_id,
6733                     bool (*loop_end)(void *, unsigned long),
6734                     void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6735 {
6736         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6737         int (*napi_poll)(struct napi_struct *napi, int budget);
6738         void *have_poll_lock = NULL;
6739         struct napi_struct *napi;
6740
6741 restart:
6742         napi_poll = NULL;
6743
6744         rcu_read_lock();
6745
6746         napi = napi_by_id(napi_id);
6747         if (!napi)
6748                 goto out;
6749
6750         preempt_disable();
6751         for (;;) {
6752                 int work = 0;
6753
6754                 local_bh_disable();
6755                 if (!napi_poll) {
6756                         unsigned long val = READ_ONCE(napi->state);
6757
6758                         /* If multiple threads are competing for this napi,
6759                          * we avoid dirtying napi->state as much as we can.
6760                          */
6761                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6762                                    NAPIF_STATE_IN_BUSY_POLL)) {
6763                                 if (prefer_busy_poll)
6764                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6765                                 goto count;
6766                         }
6767                         if (cmpxchg(&napi->state, val,
6768                                     val | NAPIF_STATE_IN_BUSY_POLL |
6769                                           NAPIF_STATE_SCHED) != val) {
6770                                 if (prefer_busy_poll)
6771                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6772                                 goto count;
6773                         }
6774                         have_poll_lock = netpoll_poll_lock(napi);
6775                         napi_poll = napi->poll;
6776                 }
6777                 work = napi_poll(napi, budget);
6778                 trace_napi_poll(napi, work, budget);
6779                 gro_normal_list(napi);
6780 count:
6781                 if (work > 0)
6782                         __NET_ADD_STATS(dev_net(napi->dev),
6783                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6784                 local_bh_enable();
6785
6786                 if (!loop_end || loop_end(loop_end_arg, start_time))
6787                         break;
6788
6789                 if (unlikely(need_resched())) {
6790                         if (napi_poll)
6791                                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6792                         preempt_enable();
6793                         rcu_read_unlock();
6794                         cond_resched();
6795                         if (loop_end(loop_end_arg, start_time))
6796                                 return;
6797                         goto restart;
6798                 }
6799                 cpu_relax();
6800         }
6801         if (napi_poll)
6802                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6803         preempt_enable();
6804 out:
6805         rcu_read_unlock();
6806 }
6807 EXPORT_SYMBOL(napi_busy_loop);
6808
6809 #endif /* CONFIG_NET_RX_BUSY_POLL */
6810
6811 static void napi_hash_add(struct napi_struct *napi)
6812 {
6813         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6814                 return;
6815
6816         spin_lock(&napi_hash_lock);
6817
6818         /* 0..NR_CPUS range is reserved for sender_cpu use */
6819         do {
6820                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6821                         napi_gen_id = MIN_NAPI_ID;
6822         } while (napi_by_id(napi_gen_id));
6823         napi->napi_id = napi_gen_id;
6824
6825         hlist_add_head_rcu(&napi->napi_hash_node,
6826                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6827
6828         spin_unlock(&napi_hash_lock);
6829 }
6830
6831 /* Warning : caller is responsible to make sure rcu grace period
6832  * is respected before freeing memory containing @napi
6833  */
6834 static void napi_hash_del(struct napi_struct *napi)
6835 {
6836         spin_lock(&napi_hash_lock);
6837
6838         hlist_del_init_rcu(&napi->napi_hash_node);
6839
6840         spin_unlock(&napi_hash_lock);
6841 }
6842
6843 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6844 {
6845         struct napi_struct *napi;
6846
6847         napi = container_of(timer, struct napi_struct, timer);
6848
6849         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6850          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6851          */
6852         if (!napi_disable_pending(napi) &&
6853             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6854                 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6855                 __napi_schedule_irqoff(napi);
6856         }
6857
6858         return HRTIMER_NORESTART;
6859 }
6860
6861 static void init_gro_hash(struct napi_struct *napi)
6862 {
6863         int i;
6864
6865         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6866                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6867                 napi->gro_hash[i].count = 0;
6868         }
6869         napi->gro_bitmask = 0;
6870 }
6871
6872 int dev_set_threaded(struct net_device *dev, bool threaded)
6873 {
6874         struct napi_struct *napi;
6875         int err = 0;
6876
6877         if (dev->threaded == threaded)
6878                 return 0;
6879
6880         if (threaded) {
6881                 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6882                         if (!napi->thread) {
6883                                 err = napi_kthread_create(napi);
6884                                 if (err) {
6885                                         threaded = false;
6886                                         break;
6887                                 }
6888                         }
6889                 }
6890         }
6891
6892         dev->threaded = threaded;
6893
6894         /* Make sure kthread is created before THREADED bit
6895          * is set.
6896          */
6897         smp_mb__before_atomic();
6898
6899         /* Setting/unsetting threaded mode on a napi might not immediately
6900          * take effect, if the current napi instance is actively being
6901          * polled. In this case, the switch between threaded mode and
6902          * softirq mode will happen in the next round of napi_schedule().
6903          * This should not cause hiccups/stalls to the live traffic.
6904          */
6905         list_for_each_entry(napi, &dev->napi_list, dev_list) {
6906                 if (threaded)
6907                         set_bit(NAPI_STATE_THREADED, &napi->state);
6908                 else
6909                         clear_bit(NAPI_STATE_THREADED, &napi->state);
6910         }
6911
6912         return err;
6913 }
6914 EXPORT_SYMBOL(dev_set_threaded);
6915
6916 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6917                     int (*poll)(struct napi_struct *, int), int weight)
6918 {
6919         if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6920                 return;
6921
6922         INIT_LIST_HEAD(&napi->poll_list);
6923         INIT_HLIST_NODE(&napi->napi_hash_node);
6924         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6925         napi->timer.function = napi_watchdog;
6926         init_gro_hash(napi);
6927         napi->skb = NULL;
6928         INIT_LIST_HEAD(&napi->rx_list);
6929         napi->rx_count = 0;
6930         napi->poll = poll;
6931         if (weight > NAPI_POLL_WEIGHT)
6932                 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6933                                 weight);
6934         napi->weight = weight;
6935         napi->dev = dev;
6936 #ifdef CONFIG_NETPOLL
6937         napi->poll_owner = -1;
6938 #endif
6939         set_bit(NAPI_STATE_SCHED, &napi->state);
6940         set_bit(NAPI_STATE_NPSVC, &napi->state);
6941         list_add_rcu(&napi->dev_list, &dev->napi_list);
6942         napi_hash_add(napi);
6943         /* Create kthread for this napi if dev->threaded is set.
6944          * Clear dev->threaded if kthread creation failed so that
6945          * threaded mode will not be enabled in napi_enable().
6946          */
6947         if (dev->threaded && napi_kthread_create(napi))
6948                 dev->threaded = 0;
6949 }
6950 EXPORT_SYMBOL(netif_napi_add);
6951
6952 void napi_disable(struct napi_struct *n)
6953 {
6954         might_sleep();
6955         set_bit(NAPI_STATE_DISABLE, &n->state);
6956
6957         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6958                 msleep(1);
6959         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6960                 msleep(1);
6961
6962         hrtimer_cancel(&n->timer);
6963
6964         clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
6965         clear_bit(NAPI_STATE_DISABLE, &n->state);
6966         clear_bit(NAPI_STATE_THREADED, &n->state);
6967 }
6968 EXPORT_SYMBOL(napi_disable);
6969
6970 /**
6971  *      napi_enable - enable NAPI scheduling
6972  *      @n: NAPI context
6973  *
6974  * Resume NAPI from being scheduled on this context.
6975  * Must be paired with napi_disable.
6976  */
6977 void napi_enable(struct napi_struct *n)
6978 {
6979         BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
6980         smp_mb__before_atomic();
6981         clear_bit(NAPI_STATE_SCHED, &n->state);
6982         clear_bit(NAPI_STATE_NPSVC, &n->state);
6983         if (n->dev->threaded && n->thread)
6984                 set_bit(NAPI_STATE_THREADED, &n->state);
6985 }
6986 EXPORT_SYMBOL(napi_enable);
6987
6988 static void flush_gro_hash(struct napi_struct *napi)
6989 {
6990         int i;
6991
6992         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6993                 struct sk_buff *skb, *n;
6994
6995                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6996                         kfree_skb(skb);
6997                 napi->gro_hash[i].count = 0;
6998         }
6999 }
7000
7001 /* Must be called in process context */
7002 void __netif_napi_del(struct napi_struct *napi)
7003 {
7004         if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
7005                 return;
7006
7007         napi_hash_del(napi);
7008         list_del_rcu(&napi->dev_list);
7009         napi_free_frags(napi);
7010
7011         flush_gro_hash(napi);
7012         napi->gro_bitmask = 0;
7013
7014         if (napi->thread) {
7015                 kthread_stop(napi->thread);
7016                 napi->thread = NULL;
7017         }
7018 }
7019 EXPORT_SYMBOL(__netif_napi_del);
7020
7021 static int __napi_poll(struct napi_struct *n, bool *repoll)
7022 {
7023         int work, weight;
7024
7025         weight = n->weight;
7026
7027         /* This NAPI_STATE_SCHED test is for avoiding a race
7028          * with netpoll's poll_napi().  Only the entity which
7029          * obtains the lock and sees NAPI_STATE_SCHED set will
7030          * actually make the ->poll() call.  Therefore we avoid
7031          * accidentally calling ->poll() when NAPI is not scheduled.
7032          */
7033         work = 0;
7034         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
7035                 work = n->poll(n, weight);
7036                 trace_napi_poll(n, work, weight);
7037         }
7038
7039         if (unlikely(work > weight))
7040                 pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
7041                             n->poll, work, weight);
7042
7043         if (likely(work < weight))
7044                 return work;
7045
7046         /* Drivers must not modify the NAPI state if they
7047          * consume the entire weight.  In such cases this code
7048          * still "owns" the NAPI instance and therefore can
7049          * move the instance around on the list at-will.
7050          */
7051         if (unlikely(napi_disable_pending(n))) {
7052                 napi_complete(n);
7053                 return work;
7054         }
7055
7056         /* The NAPI context has more processing work, but busy-polling
7057          * is preferred. Exit early.
7058          */
7059         if (napi_prefer_busy_poll(n)) {
7060                 if (napi_complete_done(n, work)) {
7061                         /* If timeout is not set, we need to make sure
7062                          * that the NAPI is re-scheduled.
7063                          */
7064                         napi_schedule(n);
7065                 }
7066                 return work;
7067         }
7068
7069         if (n->gro_bitmask) {
7070                 /* flush too old packets
7071                  * If HZ < 1000, flush all packets.
7072                  */
7073                 napi_gro_flush(n, HZ >= 1000);
7074         }
7075
7076         gro_normal_list(n);
7077
7078         /* Some drivers may have called napi_schedule
7079          * prior to exhausting their budget.
7080          */
7081         if (unlikely(!list_empty(&n->poll_list))) {
7082                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7083                              n->dev ? n->dev->name : "backlog");
7084                 return work;
7085         }
7086
7087         *repoll = true;
7088
7089         return work;
7090 }
7091
7092 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7093 {
7094         bool do_repoll = false;
7095         void *have;
7096         int work;
7097
7098         list_del_init(&n->poll_list);
7099
7100         have = netpoll_poll_lock(n);
7101
7102         work = __napi_poll(n, &do_repoll);
7103
7104         if (do_repoll)
7105                 list_add_tail(&n->poll_list, repoll);
7106
7107         netpoll_poll_unlock(have);
7108
7109         return work;
7110 }
7111
7112 static int napi_thread_wait(struct napi_struct *napi)
7113 {
7114         bool woken = false;
7115
7116         set_current_state(TASK_INTERRUPTIBLE);
7117
7118         while (!kthread_should_stop()) {
7119                 /* Testing SCHED_THREADED bit here to make sure the current
7120                  * kthread owns this napi and could poll on this napi.
7121                  * Testing SCHED bit is not enough because SCHED bit might be
7122                  * set by some other busy poll thread or by napi_disable().
7123                  */
7124                 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
7125                         WARN_ON(!list_empty(&napi->poll_list));
7126                         __set_current_state(TASK_RUNNING);
7127                         return 0;
7128                 }
7129
7130                 schedule();
7131                 /* woken being true indicates this thread owns this napi. */
7132                 woken = true;
7133                 set_current_state(TASK_INTERRUPTIBLE);
7134         }
7135         __set_current_state(TASK_RUNNING);
7136
7137         return -1;
7138 }
7139
7140 static int napi_threaded_poll(void *data)
7141 {
7142         struct napi_struct *napi = data;
7143         void *have;
7144
7145         while (!napi_thread_wait(napi)) {
7146                 for (;;) {
7147                         bool repoll = false;
7148
7149                         local_bh_disable();
7150
7151                         have = netpoll_poll_lock(napi);
7152                         __napi_poll(napi, &repoll);
7153                         netpoll_poll_unlock(have);
7154
7155                         local_bh_enable();
7156
7157                         if (!repoll)
7158                                 break;
7159
7160                         cond_resched();
7161                 }
7162         }
7163         return 0;
7164 }
7165
7166 static __latent_entropy void net_rx_action(struct softirq_action *h)
7167 {
7168         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7169         unsigned long time_limit = jiffies +
7170                 usecs_to_jiffies(netdev_budget_usecs);
7171         int budget = netdev_budget;
7172         LIST_HEAD(list);
7173         LIST_HEAD(repoll);
7174
7175         local_irq_disable();
7176         list_splice_init(&sd->poll_list, &list);
7177         local_irq_enable();
7178
7179         for (;;) {
7180                 struct napi_struct *n;
7181
7182                 if (list_empty(&list)) {
7183                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
7184                                 return;
7185                         break;
7186                 }
7187
7188                 n = list_first_entry(&list, struct napi_struct, poll_list);
7189                 budget -= napi_poll(n, &repoll);
7190
7191                 /* If softirq window is exhausted then punt.
7192                  * Allow this to run for 2 jiffies since which will allow
7193                  * an average latency of 1.5/HZ.
7194                  */
7195                 if (unlikely(budget <= 0 ||
7196                              time_after_eq(jiffies, time_limit))) {
7197                         sd->time_squeeze++;
7198                         break;
7199                 }
7200         }
7201
7202         local_irq_disable();
7203
7204         list_splice_tail_init(&sd->poll_list, &list);
7205         list_splice_tail(&repoll, &list);
7206         list_splice(&list, &sd->poll_list);
7207         if (!list_empty(&sd->poll_list))
7208                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
7209
7210         net_rps_action_and_irq_enable(sd);
7211 }
7212
7213 struct netdev_adjacent {
7214         struct net_device *dev;
7215
7216         /* upper master flag, there can only be one master device per list */
7217         bool master;
7218
7219         /* lookup ignore flag */
7220         bool ignore;
7221
7222         /* counter for the number of times this device was added to us */
7223         u16 ref_nr;
7224
7225         /* private field for the users */
7226         void *private;
7227
7228         struct list_head list;
7229         struct rcu_head rcu;
7230 };
7231
7232 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7233                                                  struct list_head *adj_list)
7234 {
7235         struct netdev_adjacent *adj;
7236
7237         list_for_each_entry(adj, adj_list, list) {
7238                 if (adj->dev == adj_dev)
7239                         return adj;
7240         }
7241         return NULL;
7242 }
7243
7244 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7245                                     struct netdev_nested_priv *priv)
7246 {
7247         struct net_device *dev = (struct net_device *)priv->data;
7248
7249         return upper_dev == dev;
7250 }
7251
7252 /**
7253  * netdev_has_upper_dev - Check if device is linked to an upper device
7254  * @dev: device
7255  * @upper_dev: upper device to check
7256  *
7257  * Find out if a device is linked to specified upper device and return true
7258  * in case it is. Note that this checks only immediate upper device,
7259  * not through a complete stack of devices. The caller must hold the RTNL lock.
7260  */
7261 bool netdev_has_upper_dev(struct net_device *dev,
7262                           struct net_device *upper_dev)
7263 {
7264         struct netdev_nested_priv priv = {
7265                 .data = (void *)upper_dev,
7266         };
7267
7268         ASSERT_RTNL();
7269
7270         return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7271                                              &priv);
7272 }
7273 EXPORT_SYMBOL(netdev_has_upper_dev);
7274
7275 /**
7276  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7277  * @dev: device
7278  * @upper_dev: upper device to check
7279  *
7280  * Find out if a device is linked to specified upper device and return true
7281  * in case it is. Note that this checks the entire upper device chain.
7282  * The caller must hold rcu lock.
7283  */
7284
7285 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7286                                   struct net_device *upper_dev)
7287 {
7288         struct netdev_nested_priv priv = {
7289                 .data = (void *)upper_dev,
7290         };
7291
7292         return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7293                                                &priv);
7294 }
7295 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7296
7297 /**
7298  * netdev_has_any_upper_dev - Check if device is linked to some device
7299  * @dev: device
7300  *
7301  * Find out if a device is linked to an upper device and return true in case
7302  * it is. The caller must hold the RTNL lock.
7303  */
7304 bool netdev_has_any_upper_dev(struct net_device *dev)
7305 {
7306         ASSERT_RTNL();
7307
7308         return !list_empty(&dev->adj_list.upper);
7309 }
7310 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7311
7312 /**
7313  * netdev_master_upper_dev_get - Get master upper device
7314  * @dev: device
7315  *
7316  * Find a master upper device and return pointer to it or NULL in case
7317  * it's not there. The caller must hold the RTNL lock.
7318  */
7319 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7320 {
7321         struct netdev_adjacent *upper;
7322
7323         ASSERT_RTNL();
7324
7325         if (list_empty(&dev->adj_list.upper))
7326                 return NULL;
7327
7328         upper = list_first_entry(&dev->adj_list.upper,
7329                                  struct netdev_adjacent, list);
7330         if (likely(upper->master))
7331                 return upper->dev;
7332         return NULL;
7333 }
7334 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7335
7336 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7337 {
7338         struct netdev_adjacent *upper;
7339
7340         ASSERT_RTNL();
7341
7342         if (list_empty(&dev->adj_list.upper))
7343                 return NULL;
7344
7345         upper = list_first_entry(&dev->adj_list.upper,
7346                                  struct netdev_adjacent, list);
7347         if (likely(upper->master) && !upper->ignore)
7348                 return upper->dev;
7349         return NULL;
7350 }
7351
7352 /**
7353  * netdev_has_any_lower_dev - Check if device is linked to some device
7354  * @dev: device
7355  *
7356  * Find out if a device is linked to a lower device and return true in case
7357  * it is. The caller must hold the RTNL lock.
7358  */
7359 static bool netdev_has_any_lower_dev(struct net_device *dev)
7360 {
7361         ASSERT_RTNL();
7362
7363         return !list_empty(&dev->adj_list.lower);
7364 }
7365
7366 void *netdev_adjacent_get_private(struct list_head *adj_list)
7367 {
7368         struct netdev_adjacent *adj;
7369
7370         adj = list_entry(adj_list, struct netdev_adjacent, list);
7371
7372         return adj->private;
7373 }
7374 EXPORT_SYMBOL(netdev_adjacent_get_private);
7375
7376 /**
7377  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7378  * @dev: device
7379  * @iter: list_head ** of the current position
7380  *
7381  * Gets the next device from the dev's upper list, starting from iter
7382  * position. The caller must hold RCU read lock.
7383  */
7384 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7385                                                  struct list_head **iter)
7386 {
7387         struct netdev_adjacent *upper;
7388
7389         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7390
7391         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7392
7393         if (&upper->list == &dev->adj_list.upper)
7394                 return NULL;
7395
7396         *iter = &upper->list;
7397
7398         return upper->dev;
7399 }
7400 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7401
7402 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7403                                                   struct list_head **iter,
7404                                                   bool *ignore)
7405 {
7406         struct netdev_adjacent *upper;
7407
7408         upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7409
7410         if (&upper->list == &dev->adj_list.upper)
7411                 return NULL;
7412
7413         *iter = &upper->list;
7414         *ignore = upper->ignore;
7415
7416         return upper->dev;
7417 }
7418
7419 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7420                                                     struct list_head **iter)
7421 {
7422         struct netdev_adjacent *upper;
7423
7424         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7425
7426         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7427
7428         if (&upper->list == &dev->adj_list.upper)
7429                 return NULL;
7430
7431         *iter = &upper->list;
7432
7433         return upper->dev;
7434 }
7435
7436 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7437                                        int (*fn)(struct net_device *dev,
7438                                          struct netdev_nested_priv *priv),
7439                                        struct netdev_nested_priv *priv)
7440 {
7441         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7442         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7443         int ret, cur = 0;
7444         bool ignore;
7445
7446         now = dev;
7447         iter = &dev->adj_list.upper;
7448
7449         while (1) {
7450                 if (now != dev) {
7451                         ret = fn(now, priv);
7452                         if (ret)
7453                                 return ret;
7454                 }
7455
7456                 next = NULL;
7457                 while (1) {
7458                         udev = __netdev_next_upper_dev(now, &iter, &ignore);
7459                         if (!udev)
7460                                 break;
7461                         if (ignore)
7462                                 continue;
7463
7464                         next = udev;
7465                         niter = &udev->adj_list.upper;
7466                         dev_stack[cur] = now;
7467                         iter_stack[cur++] = iter;
7468                         break;
7469                 }
7470
7471                 if (!next) {
7472                         if (!cur)
7473                                 return 0;
7474                         next = dev_stack[--cur];
7475                         niter = iter_stack[cur];
7476                 }
7477
7478                 now = next;
7479                 iter = niter;
7480         }
7481
7482         return 0;
7483 }
7484
7485 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7486                                   int (*fn)(struct net_device *dev,
7487                                             struct netdev_nested_priv *priv),
7488                                   struct netdev_nested_priv *priv)
7489 {
7490         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7491         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7492         int ret, cur = 0;
7493
7494         now = dev;
7495         iter = &dev->adj_list.upper;
7496
7497         while (1) {
7498                 if (now != dev) {
7499                         ret = fn(now, priv);
7500                         if (ret)
7501                                 return ret;
7502                 }
7503
7504                 next = NULL;
7505                 while (1) {
7506                         udev = netdev_next_upper_dev_rcu(now, &iter);
7507                         if (!udev)
7508                                 break;
7509
7510                         next = udev;
7511                         niter = &udev->adj_list.upper;
7512                         dev_stack[cur] = now;
7513                         iter_stack[cur++] = iter;
7514                         break;
7515                 }
7516
7517                 if (!next) {
7518                         if (!cur)
7519                                 return 0;
7520                         next = dev_stack[--cur];
7521                         niter = iter_stack[cur];
7522                 }
7523
7524                 now = next;
7525                 iter = niter;
7526         }
7527
7528         return 0;
7529 }
7530 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7531
7532 static bool __netdev_has_upper_dev(struct net_device *dev,
7533                                    struct net_device *upper_dev)
7534 {
7535         struct netdev_nested_priv priv = {
7536                 .flags = 0,
7537                 .data = (void *)upper_dev,
7538         };
7539
7540         ASSERT_RTNL();
7541
7542         return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7543                                            &priv);
7544 }
7545
7546 /**
7547  * netdev_lower_get_next_private - Get the next ->private from the
7548  *                                 lower neighbour list
7549  * @dev: device
7550  * @iter: list_head ** of the current position
7551  *
7552  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7553  * list, starting from iter position. The caller must hold either hold the
7554  * RTNL lock or its own locking that guarantees that the neighbour lower
7555  * list will remain unchanged.
7556  */
7557 void *netdev_lower_get_next_private(struct net_device *dev,
7558                                     struct list_head **iter)
7559 {
7560         struct netdev_adjacent *lower;
7561
7562         lower = list_entry(*iter, struct netdev_adjacent, list);
7563
7564         if (&lower->list == &dev->adj_list.lower)
7565                 return NULL;
7566
7567         *iter = lower->list.next;
7568
7569         return lower->private;
7570 }
7571 EXPORT_SYMBOL(netdev_lower_get_next_private);
7572
7573 /**
7574  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7575  *                                     lower neighbour list, RCU
7576  *                                     variant
7577  * @dev: device
7578  * @iter: list_head ** of the current position
7579  *
7580  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7581  * list, starting from iter position. The caller must hold RCU read lock.
7582  */
7583 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7584                                         struct list_head **iter)
7585 {
7586         struct netdev_adjacent *lower;
7587
7588         WARN_ON_ONCE(!rcu_read_lock_held());
7589
7590         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7591
7592         if (&lower->list == &dev->adj_list.lower)
7593                 return NULL;
7594
7595         *iter = &lower->list;
7596
7597         return lower->private;
7598 }
7599 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7600
7601 /**
7602  * netdev_lower_get_next - Get the next device from the lower neighbour
7603  *                         list
7604  * @dev: device
7605  * @iter: list_head ** of the current position
7606  *
7607  * Gets the next netdev_adjacent from the dev's lower neighbour
7608  * list, starting from iter position. The caller must hold RTNL lock or
7609  * its own locking that guarantees that the neighbour lower
7610  * list will remain unchanged.
7611  */
7612 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7613 {
7614         struct netdev_adjacent *lower;
7615
7616         lower = list_entry(*iter, struct netdev_adjacent, list);
7617
7618         if (&lower->list == &dev->adj_list.lower)
7619                 return NULL;
7620
7621         *iter = lower->list.next;
7622
7623         return lower->dev;
7624 }
7625 EXPORT_SYMBOL(netdev_lower_get_next);
7626
7627 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7628                                                 struct list_head **iter)
7629 {
7630         struct netdev_adjacent *lower;
7631
7632         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7633
7634         if (&lower->list == &dev->adj_list.lower)
7635                 return NULL;
7636
7637         *iter = &lower->list;
7638
7639         return lower->dev;
7640 }
7641
7642 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7643                                                   struct list_head **iter,
7644                                                   bool *ignore)
7645 {
7646         struct netdev_adjacent *lower;
7647
7648         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7649
7650         if (&lower->list == &dev->adj_list.lower)
7651                 return NULL;
7652
7653         *iter = &lower->list;
7654         *ignore = lower->ignore;
7655
7656         return lower->dev;
7657 }
7658
7659 int netdev_walk_all_lower_dev(struct net_device *dev,
7660                               int (*fn)(struct net_device *dev,
7661                                         struct netdev_nested_priv *priv),
7662                               struct netdev_nested_priv *priv)
7663 {
7664         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7665         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7666         int ret, cur = 0;
7667
7668         now = dev;
7669         iter = &dev->adj_list.lower;
7670
7671         while (1) {
7672                 if (now != dev) {
7673                         ret = fn(now, priv);
7674                         if (ret)
7675                                 return ret;
7676                 }
7677
7678                 next = NULL;
7679                 while (1) {
7680                         ldev = netdev_next_lower_dev(now, &iter);
7681                         if (!ldev)
7682                                 break;
7683
7684                         next = ldev;
7685                         niter = &ldev->adj_list.lower;
7686                         dev_stack[cur] = now;
7687                         iter_stack[cur++] = iter;
7688                         break;
7689                 }
7690
7691                 if (!next) {
7692                         if (!cur)
7693                                 return 0;
7694                         next = dev_stack[--cur];
7695                         niter = iter_stack[cur];
7696                 }
7697
7698                 now = next;
7699                 iter = niter;
7700         }
7701
7702         return 0;
7703 }
7704 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7705
7706 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7707                                        int (*fn)(struct net_device *dev,
7708                                          struct netdev_nested_priv *priv),
7709                                        struct netdev_nested_priv *priv)
7710 {
7711         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7712         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7713         int ret, cur = 0;
7714         bool ignore;
7715
7716         now = dev;
7717         iter = &dev->adj_list.lower;
7718
7719         while (1) {
7720                 if (now != dev) {
7721                         ret = fn(now, priv);
7722                         if (ret)
7723                                 return ret;
7724                 }
7725
7726                 next = NULL;
7727                 while (1) {
7728                         ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7729                         if (!ldev)
7730                                 break;
7731                         if (ignore)
7732                                 continue;
7733
7734                         next = ldev;
7735                         niter = &ldev->adj_list.lower;
7736                         dev_stack[cur] = now;
7737                         iter_stack[cur++] = iter;
7738                         break;
7739                 }
7740
7741                 if (!next) {
7742                         if (!cur)
7743                                 return 0;
7744                         next = dev_stack[--cur];
7745                         niter = iter_stack[cur];
7746                 }
7747
7748                 now = next;
7749                 iter = niter;
7750         }
7751
7752         return 0;
7753 }
7754
7755 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7756                                              struct list_head **iter)
7757 {
7758         struct netdev_adjacent *lower;
7759
7760         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7761         if (&lower->list == &dev->adj_list.lower)
7762                 return NULL;
7763
7764         *iter = &lower->list;
7765
7766         return lower->dev;
7767 }
7768 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7769
7770 static u8 __netdev_upper_depth(struct net_device *dev)
7771 {
7772         struct net_device *udev;
7773         struct list_head *iter;
7774         u8 max_depth = 0;
7775         bool ignore;
7776
7777         for (iter = &dev->adj_list.upper,
7778              udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7779              udev;
7780              udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7781                 if (ignore)
7782                         continue;
7783                 if (max_depth < udev->upper_level)
7784                         max_depth = udev->upper_level;
7785         }
7786
7787         return max_depth;
7788 }
7789
7790 static u8 __netdev_lower_depth(struct net_device *dev)
7791 {
7792         struct net_device *ldev;
7793         struct list_head *iter;
7794         u8 max_depth = 0;
7795         bool ignore;
7796
7797         for (iter = &dev->adj_list.lower,
7798              ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7799              ldev;
7800              ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7801                 if (ignore)
7802                         continue;
7803                 if (max_depth < ldev->lower_level)
7804                         max_depth = ldev->lower_level;
7805         }
7806
7807         return max_depth;
7808 }
7809
7810 static int __netdev_update_upper_level(struct net_device *dev,
7811                                        struct netdev_nested_priv *__unused)
7812 {
7813         dev->upper_level = __netdev_upper_depth(dev) + 1;
7814         return 0;
7815 }
7816
7817 static int __netdev_update_lower_level(struct net_device *dev,
7818                                        struct netdev_nested_priv *priv)
7819 {
7820         dev->lower_level = __netdev_lower_depth(dev) + 1;
7821
7822 #ifdef CONFIG_LOCKDEP
7823         if (!priv)
7824                 return 0;
7825
7826         if (priv->flags & NESTED_SYNC_IMM)
7827                 dev->nested_level = dev->lower_level - 1;
7828         if (priv->flags & NESTED_SYNC_TODO)
7829                 net_unlink_todo(dev);
7830 #endif
7831         return 0;
7832 }
7833
7834 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7835                                   int (*fn)(struct net_device *dev,
7836                                             struct netdev_nested_priv *priv),
7837                                   struct netdev_nested_priv *priv)
7838 {
7839         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7840         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7841         int ret, cur = 0;
7842
7843         now = dev;
7844         iter = &dev->adj_list.lower;
7845
7846         while (1) {
7847                 if (now != dev) {
7848                         ret = fn(now, priv);
7849                         if (ret)
7850                                 return ret;
7851                 }
7852
7853                 next = NULL;
7854                 while (1) {
7855                         ldev = netdev_next_lower_dev_rcu(now, &iter);
7856                         if (!ldev)
7857                                 break;
7858
7859                         next = ldev;
7860                         niter = &ldev->adj_list.lower;
7861                         dev_stack[cur] = now;
7862                         iter_stack[cur++] = iter;
7863                         break;
7864                 }
7865
7866                 if (!next) {
7867                         if (!cur)
7868                                 return 0;
7869                         next = dev_stack[--cur];
7870                         niter = iter_stack[cur];
7871                 }
7872
7873                 now = next;
7874                 iter = niter;
7875         }
7876
7877         return 0;
7878 }
7879 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7880
7881 /**
7882  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7883  *                                     lower neighbour list, RCU
7884  *                                     variant
7885  * @dev: device
7886  *
7887  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7888  * list. The caller must hold RCU read lock.
7889  */
7890 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7891 {
7892         struct netdev_adjacent *lower;
7893
7894         lower = list_first_or_null_rcu(&dev->adj_list.lower,
7895                         struct netdev_adjacent, list);
7896         if (lower)
7897                 return lower->private;
7898         return NULL;
7899 }
7900 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7901
7902 /**
7903  * netdev_master_upper_dev_get_rcu - Get master upper device
7904  * @dev: device
7905  *
7906  * Find a master upper device and return pointer to it or NULL in case
7907  * it's not there. The caller must hold the RCU read lock.
7908  */
7909 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7910 {
7911         struct netdev_adjacent *upper;
7912
7913         upper = list_first_or_null_rcu(&dev->adj_list.upper,
7914                                        struct netdev_adjacent, list);
7915         if (upper && likely(upper->master))
7916                 return upper->dev;
7917         return NULL;
7918 }
7919 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7920
7921 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7922                               struct net_device *adj_dev,
7923                               struct list_head *dev_list)
7924 {
7925         char linkname[IFNAMSIZ+7];
7926
7927         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7928                 "upper_%s" : "lower_%s", adj_dev->name);
7929         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7930                                  linkname);
7931 }
7932 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7933                                char *name,
7934                                struct list_head *dev_list)
7935 {
7936         char linkname[IFNAMSIZ+7];
7937
7938         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7939                 "upper_%s" : "lower_%s", name);
7940         sysfs_remove_link(&(dev->dev.kobj), linkname);
7941 }
7942
7943 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7944                                                  struct net_device *adj_dev,
7945                                                  struct list_head *dev_list)
7946 {
7947         return (dev_list == &dev->adj_list.upper ||
7948                 dev_list == &dev->adj_list.lower) &&
7949                 net_eq(dev_net(dev), dev_net(adj_dev));
7950 }
7951
7952 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7953                                         struct net_device *adj_dev,
7954                                         struct list_head *dev_list,
7955                                         void *private, bool master)
7956 {
7957         struct netdev_adjacent *adj;
7958         int ret;
7959
7960         adj = __netdev_find_adj(adj_dev, dev_list);
7961
7962         if (adj) {
7963                 adj->ref_nr += 1;
7964                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7965                          dev->name, adj_dev->name, adj->ref_nr);
7966
7967                 return 0;
7968         }
7969
7970         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7971         if (!adj)
7972                 return -ENOMEM;
7973
7974         adj->dev = adj_dev;
7975         adj->master = master;
7976         adj->ref_nr = 1;
7977         adj->private = private;
7978         adj->ignore = false;
7979         dev_hold(adj_dev);
7980
7981         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7982                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7983
7984         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7985                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7986                 if (ret)
7987                         goto free_adj;
7988         }
7989
7990         /* Ensure that master link is always the first item in list. */
7991         if (master) {
7992                 ret = sysfs_create_link(&(dev->dev.kobj),
7993                                         &(adj_dev->dev.kobj), "master");
7994                 if (ret)
7995                         goto remove_symlinks;
7996
7997                 list_add_rcu(&adj->list, dev_list);
7998         } else {
7999                 list_add_tail_rcu(&adj->list, dev_list);
8000         }
8001
8002         return 0;
8003
8004 remove_symlinks:
8005         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8006                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8007 free_adj:
8008         kfree(adj);
8009         dev_put(adj_dev);
8010
8011         return ret;
8012 }
8013
8014 static void __netdev_adjacent_dev_remove(struct net_device *dev,
8015                                          struct net_device *adj_dev,
8016                                          u16 ref_nr,
8017                                          struct list_head *dev_list)
8018 {
8019         struct netdev_adjacent *adj;
8020
8021         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
8022                  dev->name, adj_dev->name, ref_nr);
8023
8024         adj = __netdev_find_adj(adj_dev, dev_list);
8025
8026         if (!adj) {
8027                 pr_err("Adjacency does not exist for device %s from %s\n",
8028                        dev->name, adj_dev->name);
8029                 WARN_ON(1);
8030                 return;
8031         }
8032
8033         if (adj->ref_nr > ref_nr) {
8034                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
8035                          dev->name, adj_dev->name, ref_nr,
8036                          adj->ref_nr - ref_nr);
8037                 adj->ref_nr -= ref_nr;
8038                 return;
8039         }
8040
8041         if (adj->master)
8042                 sysfs_remove_link(&(dev->dev.kobj), "master");
8043
8044         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8045                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8046
8047         list_del_rcu(&adj->list);
8048         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
8049                  adj_dev->name, dev->name, adj_dev->name);
8050         dev_put(adj_dev);
8051         kfree_rcu(adj, rcu);
8052 }
8053
8054 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
8055                                             struct net_device *upper_dev,
8056                                             struct list_head *up_list,
8057                                             struct list_head *down_list,
8058                                             void *private, bool master)
8059 {
8060         int ret;
8061
8062         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
8063                                            private, master);
8064         if (ret)
8065                 return ret;
8066
8067         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
8068                                            private, false);
8069         if (ret) {
8070                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
8071                 return ret;
8072         }
8073
8074         return 0;
8075 }
8076
8077 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8078                                                struct net_device *upper_dev,
8079                                                u16 ref_nr,
8080                                                struct list_head *up_list,
8081                                                struct list_head *down_list)
8082 {
8083         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8084         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8085 }
8086
8087 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8088                                                 struct net_device *upper_dev,
8089                                                 void *private, bool master)
8090 {
8091         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8092                                                 &dev->adj_list.upper,
8093                                                 &upper_dev->adj_list.lower,
8094                                                 private, master);
8095 }
8096
8097 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8098                                                    struct net_device *upper_dev)
8099 {
8100         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8101                                            &dev->adj_list.upper,
8102                                            &upper_dev->adj_list.lower);
8103 }
8104
8105 static int __netdev_upper_dev_link(struct net_device *dev,
8106                                    struct net_device *upper_dev, bool master,
8107                                    void *upper_priv, void *upper_info,
8108                                    struct netdev_nested_priv *priv,
8109                                    struct netlink_ext_ack *extack)
8110 {
8111         struct netdev_notifier_changeupper_info changeupper_info = {
8112                 .info = {
8113                         .dev = dev,
8114                         .extack = extack,
8115                 },
8116                 .upper_dev = upper_dev,
8117                 .master = master,
8118                 .linking = true,
8119                 .upper_info = upper_info,
8120         };
8121         struct net_device *master_dev;
8122         int ret = 0;
8123
8124         ASSERT_RTNL();
8125
8126         if (dev == upper_dev)
8127                 return -EBUSY;
8128
8129         /* To prevent loops, check if dev is not upper device to upper_dev. */
8130         if (__netdev_has_upper_dev(upper_dev, dev))
8131                 return -EBUSY;
8132
8133         if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8134                 return -EMLINK;
8135
8136         if (!master) {
8137                 if (__netdev_has_upper_dev(dev, upper_dev))
8138                         return -EEXIST;
8139         } else {
8140                 master_dev = __netdev_master_upper_dev_get(dev);
8141                 if (master_dev)
8142                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
8143         }
8144
8145         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8146                                             &changeupper_info.info);
8147         ret = notifier_to_errno(ret);
8148         if (ret)
8149                 return ret;
8150
8151         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8152                                                    master);
8153         if (ret)
8154                 return ret;
8155
8156         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8157                                             &changeupper_info.info);
8158         ret = notifier_to_errno(ret);
8159         if (ret)
8160                 goto rollback;
8161
8162         __netdev_update_upper_level(dev, NULL);
8163         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8164
8165         __netdev_update_lower_level(upper_dev, priv);
8166         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8167                                     priv);
8168
8169         return 0;
8170
8171 rollback:
8172         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8173
8174         return ret;
8175 }
8176
8177 /**
8178  * netdev_upper_dev_link - Add a link to the upper device
8179  * @dev: device
8180  * @upper_dev: new upper device
8181  * @extack: netlink extended ack
8182  *
8183  * Adds a link to device which is upper to this one. The caller must hold
8184  * the RTNL lock. On a failure a negative errno code is returned.
8185  * On success the reference counts are adjusted and the function
8186  * returns zero.
8187  */
8188 int netdev_upper_dev_link(struct net_device *dev,
8189                           struct net_device *upper_dev,
8190                           struct netlink_ext_ack *extack)
8191 {
8192         struct netdev_nested_priv priv = {
8193                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8194                 .data = NULL,
8195         };
8196
8197         return __netdev_upper_dev_link(dev, upper_dev, false,
8198                                        NULL, NULL, &priv, extack);
8199 }
8200 EXPORT_SYMBOL(netdev_upper_dev_link);
8201
8202 /**
8203  * netdev_master_upper_dev_link - Add a master link to the upper device
8204  * @dev: device
8205  * @upper_dev: new upper device
8206  * @upper_priv: upper device private
8207  * @upper_info: upper info to be passed down via notifier
8208  * @extack: netlink extended ack
8209  *
8210  * Adds a link to device which is upper to this one. In this case, only
8211  * one master upper device can be linked, although other non-master devices
8212  * might be linked as well. The caller must hold the RTNL lock.
8213  * On a failure a negative errno code is returned. On success the reference
8214  * counts are adjusted and the function returns zero.
8215  */
8216 int netdev_master_upper_dev_link(struct net_device *dev,
8217                                  struct net_device *upper_dev,
8218                                  void *upper_priv, void *upper_info,
8219                                  struct netlink_ext_ack *extack)
8220 {
8221         struct netdev_nested_priv priv = {
8222                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8223                 .data = NULL,
8224         };
8225
8226         return __netdev_upper_dev_link(dev, upper_dev, true,
8227                                        upper_priv, upper_info, &priv, extack);
8228 }
8229 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8230
8231 static void __netdev_upper_dev_unlink(struct net_device *dev,
8232                                       struct net_device *upper_dev,
8233                                       struct netdev_nested_priv *priv)
8234 {
8235         struct netdev_notifier_changeupper_info changeupper_info = {
8236                 .info = {
8237                         .dev = dev,
8238                 },
8239                 .upper_dev = upper_dev,
8240                 .linking = false,
8241         };
8242
8243         ASSERT_RTNL();
8244
8245         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8246
8247         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8248                                       &changeupper_info.info);
8249
8250         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8251
8252         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8253                                       &changeupper_info.info);
8254
8255         __netdev_update_upper_level(dev, NULL);
8256         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8257
8258         __netdev_update_lower_level(upper_dev, priv);
8259         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8260                                     priv);
8261 }
8262
8263 /**
8264  * netdev_upper_dev_unlink - Removes a link to upper device
8265  * @dev: device
8266  * @upper_dev: new upper device
8267  *
8268  * Removes a link to device which is upper to this one. The caller must hold
8269  * the RTNL lock.
8270  */
8271 void netdev_upper_dev_unlink(struct net_device *dev,
8272                              struct net_device *upper_dev)
8273 {
8274         struct netdev_nested_priv priv = {
8275                 .flags = NESTED_SYNC_TODO,
8276                 .data = NULL,
8277         };
8278
8279         __netdev_upper_dev_unlink(dev, upper_dev, &priv);
8280 }
8281 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8282
8283 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8284                                       struct net_device *lower_dev,
8285                                       bool val)
8286 {
8287         struct netdev_adjacent *adj;
8288
8289         adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8290         if (adj)
8291                 adj->ignore = val;
8292
8293         adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8294         if (adj)
8295                 adj->ignore = val;
8296 }
8297
8298 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8299                                         struct net_device *lower_dev)
8300 {
8301         __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8302 }
8303
8304 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8305                                        struct net_device *lower_dev)
8306 {
8307         __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8308 }
8309
8310 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8311                                    struct net_device *new_dev,
8312                                    struct net_device *dev,
8313                                    struct netlink_ext_ack *extack)
8314 {
8315         struct netdev_nested_priv priv = {
8316                 .flags = 0,
8317                 .data = NULL,
8318         };
8319         int err;
8320
8321         if (!new_dev)
8322                 return 0;
8323
8324         if (old_dev && new_dev != old_dev)
8325                 netdev_adjacent_dev_disable(dev, old_dev);
8326         err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8327                                       extack);
8328         if (err) {
8329                 if (old_dev && new_dev != old_dev)
8330                         netdev_adjacent_dev_enable(dev, old_dev);
8331                 return err;
8332         }
8333
8334         return 0;
8335 }
8336 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8337
8338 void netdev_adjacent_change_commit(struct net_device *old_dev,
8339                                    struct net_device *new_dev,
8340                                    struct net_device *dev)
8341 {
8342         struct netdev_nested_priv priv = {
8343                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8344                 .data = NULL,
8345         };
8346
8347         if (!new_dev || !old_dev)
8348                 return;
8349
8350         if (new_dev == old_dev)
8351                 return;
8352
8353         netdev_adjacent_dev_enable(dev, old_dev);
8354         __netdev_upper_dev_unlink(old_dev, dev, &priv);
8355 }
8356 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8357
8358 void netdev_adjacent_change_abort(struct net_device *old_dev,
8359                                   struct net_device *new_dev,
8360                                   struct net_device *dev)
8361 {
8362         struct netdev_nested_priv priv = {
8363                 .flags = 0,
8364                 .data = NULL,
8365         };
8366
8367         if (!new_dev)
8368                 return;
8369
8370         if (old_dev && new_dev != old_dev)
8371                 netdev_adjacent_dev_enable(dev, old_dev);
8372
8373         __netdev_upper_dev_unlink(new_dev, dev, &priv);
8374 }
8375 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8376
8377 /**
8378  * netdev_bonding_info_change - Dispatch event about slave change
8379  * @dev: device
8380  * @bonding_info: info to dispatch
8381  *
8382  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8383  * The caller must hold the RTNL lock.
8384  */
8385 void netdev_bonding_info_change(struct net_device *dev,
8386                                 struct netdev_bonding_info *bonding_info)
8387 {
8388         struct netdev_notifier_bonding_info info = {
8389                 .info.dev = dev,
8390         };
8391
8392         memcpy(&info.bonding_info, bonding_info,
8393                sizeof(struct netdev_bonding_info));
8394         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8395                                       &info.info);
8396 }
8397 EXPORT_SYMBOL(netdev_bonding_info_change);
8398
8399 /**
8400  * netdev_get_xmit_slave - Get the xmit slave of master device
8401  * @dev: device
8402  * @skb: The packet
8403  * @all_slaves: assume all the slaves are active
8404  *
8405  * The reference counters are not incremented so the caller must be
8406  * careful with locks. The caller must hold RCU lock.
8407  * %NULL is returned if no slave is found.
8408  */
8409
8410 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8411                                          struct sk_buff *skb,
8412                                          bool all_slaves)
8413 {
8414         const struct net_device_ops *ops = dev->netdev_ops;
8415
8416         if (!ops->ndo_get_xmit_slave)
8417                 return NULL;
8418         return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8419 }
8420 EXPORT_SYMBOL(netdev_get_xmit_slave);
8421
8422 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8423                                                   struct sock *sk)
8424 {
8425         const struct net_device_ops *ops = dev->netdev_ops;
8426
8427         if (!ops->ndo_sk_get_lower_dev)
8428                 return NULL;
8429         return ops->ndo_sk_get_lower_dev(dev, sk);
8430 }
8431
8432 /**
8433  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8434  * @dev: device
8435  * @sk: the socket
8436  *
8437  * %NULL is returned if no lower device is found.
8438  */
8439
8440 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8441                                             struct sock *sk)
8442 {
8443         struct net_device *lower;
8444
8445         lower = netdev_sk_get_lower_dev(dev, sk);
8446         while (lower) {
8447                 dev = lower;
8448                 lower = netdev_sk_get_lower_dev(dev, sk);
8449         }
8450
8451         return dev;
8452 }
8453 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8454
8455 static void netdev_adjacent_add_links(struct net_device *dev)
8456 {
8457         struct netdev_adjacent *iter;
8458
8459         struct net *net = dev_net(dev);
8460
8461         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8462                 if (!net_eq(net, dev_net(iter->dev)))
8463                         continue;
8464                 netdev_adjacent_sysfs_add(iter->dev, dev,
8465                                           &iter->dev->adj_list.lower);
8466                 netdev_adjacent_sysfs_add(dev, iter->dev,
8467                                           &dev->adj_list.upper);
8468         }
8469
8470         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8471                 if (!net_eq(net, dev_net(iter->dev)))
8472                         continue;
8473                 netdev_adjacent_sysfs_add(iter->dev, dev,
8474                                           &iter->dev->adj_list.upper);
8475                 netdev_adjacent_sysfs_add(dev, iter->dev,
8476                                           &dev->adj_list.lower);
8477         }
8478 }
8479
8480 static void netdev_adjacent_del_links(struct net_device *dev)
8481 {
8482         struct netdev_adjacent *iter;
8483
8484         struct net *net = dev_net(dev);
8485
8486         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8487                 if (!net_eq(net, dev_net(iter->dev)))
8488                         continue;
8489                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8490                                           &iter->dev->adj_list.lower);
8491                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8492                                           &dev->adj_list.upper);
8493         }
8494
8495         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8496                 if (!net_eq(net, dev_net(iter->dev)))
8497                         continue;
8498                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8499                                           &iter->dev->adj_list.upper);
8500                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8501                                           &dev->adj_list.lower);
8502         }
8503 }
8504
8505 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8506 {
8507         struct netdev_adjacent *iter;
8508
8509         struct net *net = dev_net(dev);
8510
8511         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8512                 if (!net_eq(net, dev_net(iter->dev)))
8513                         continue;
8514                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8515                                           &iter->dev->adj_list.lower);
8516                 netdev_adjacent_sysfs_add(iter->dev, dev,
8517                                           &iter->dev->adj_list.lower);
8518         }
8519
8520         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8521                 if (!net_eq(net, dev_net(iter->dev)))
8522                         continue;
8523                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8524                                           &iter->dev->adj_list.upper);
8525                 netdev_adjacent_sysfs_add(iter->dev, dev,
8526                                           &iter->dev->adj_list.upper);
8527         }
8528 }
8529
8530 void *netdev_lower_dev_get_private(struct net_device *dev,
8531                                    struct net_device *lower_dev)
8532 {
8533         struct netdev_adjacent *lower;
8534
8535         if (!lower_dev)
8536                 return NULL;
8537         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8538         if (!lower)
8539                 return NULL;
8540
8541         return lower->private;
8542 }
8543 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8544
8545
8546 /**
8547  * netdev_lower_state_changed - Dispatch event about lower device state change
8548  * @lower_dev: device
8549  * @lower_state_info: state to dispatch
8550  *
8551  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8552  * The caller must hold the RTNL lock.
8553  */
8554 void netdev_lower_state_changed(struct net_device *lower_dev,
8555                                 void *lower_state_info)
8556 {
8557         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8558                 .info.dev = lower_dev,
8559         };
8560
8561         ASSERT_RTNL();
8562         changelowerstate_info.lower_state_info = lower_state_info;
8563         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8564                                       &changelowerstate_info.info);
8565 }
8566 EXPORT_SYMBOL(netdev_lower_state_changed);
8567
8568 static void dev_change_rx_flags(struct net_device *dev, int flags)
8569 {
8570         const struct net_device_ops *ops = dev->netdev_ops;
8571
8572         if (ops->ndo_change_rx_flags)
8573                 ops->ndo_change_rx_flags(dev, flags);
8574 }
8575
8576 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8577 {
8578         unsigned int old_flags = dev->flags;
8579         kuid_t uid;
8580         kgid_t gid;
8581
8582         ASSERT_RTNL();
8583
8584         dev->flags |= IFF_PROMISC;
8585         dev->promiscuity += inc;
8586         if (dev->promiscuity == 0) {
8587                 /*
8588                  * Avoid overflow.
8589                  * If inc causes overflow, untouch promisc and return error.
8590                  */
8591                 if (inc < 0)
8592                         dev->flags &= ~IFF_PROMISC;
8593                 else {
8594                         dev->promiscuity -= inc;
8595                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8596                                 dev->name);
8597                         return -EOVERFLOW;
8598                 }
8599         }
8600         if (dev->flags != old_flags) {
8601                 pr_info("device %s %s promiscuous mode\n",
8602                         dev->name,
8603                         dev->flags & IFF_PROMISC ? "entered" : "left");
8604                 if (audit_enabled) {
8605                         current_uid_gid(&uid, &gid);
8606                         audit_log(audit_context(), GFP_ATOMIC,
8607                                   AUDIT_ANOM_PROMISCUOUS,
8608                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8609                                   dev->name, (dev->flags & IFF_PROMISC),
8610                                   (old_flags & IFF_PROMISC),
8611                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
8612                                   from_kuid(&init_user_ns, uid),
8613                                   from_kgid(&init_user_ns, gid),
8614                                   audit_get_sessionid(current));
8615                 }
8616
8617                 dev_change_rx_flags(dev, IFF_PROMISC);
8618         }
8619         if (notify)
8620                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
8621         return 0;
8622 }
8623
8624 /**
8625  *      dev_set_promiscuity     - update promiscuity count on a device
8626  *      @dev: device
8627  *      @inc: modifier
8628  *
8629  *      Add or remove promiscuity from a device. While the count in the device
8630  *      remains above zero the interface remains promiscuous. Once it hits zero
8631  *      the device reverts back to normal filtering operation. A negative inc
8632  *      value is used to drop promiscuity on the device.
8633  *      Return 0 if successful or a negative errno code on error.
8634  */
8635 int dev_set_promiscuity(struct net_device *dev, int inc)
8636 {
8637         unsigned int old_flags = dev->flags;
8638         int err;
8639
8640         err = __dev_set_promiscuity(dev, inc, true);
8641         if (err < 0)
8642                 return err;
8643         if (dev->flags != old_flags)
8644                 dev_set_rx_mode(dev);
8645         return err;
8646 }
8647 EXPORT_SYMBOL(dev_set_promiscuity);
8648
8649 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8650 {
8651         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8652
8653         ASSERT_RTNL();
8654
8655         dev->flags |= IFF_ALLMULTI;
8656         dev->allmulti += inc;
8657         if (dev->allmulti == 0) {
8658                 /*
8659                  * Avoid overflow.
8660                  * If inc causes overflow, untouch allmulti and return error.
8661                  */
8662                 if (inc < 0)
8663                         dev->flags &= ~IFF_ALLMULTI;
8664                 else {
8665                         dev->allmulti -= inc;
8666                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8667                                 dev->name);
8668                         return -EOVERFLOW;
8669                 }
8670         }
8671         if (dev->flags ^ old_flags) {
8672                 dev_change_rx_flags(dev, IFF_ALLMULTI);
8673                 dev_set_rx_mode(dev);
8674                 if (notify)
8675                         __dev_notify_flags(dev, old_flags,
8676                                            dev->gflags ^ old_gflags);
8677         }
8678         return 0;
8679 }
8680
8681 /**
8682  *      dev_set_allmulti        - update allmulti count on a device
8683  *      @dev: device
8684  *      @inc: modifier
8685  *
8686  *      Add or remove reception of all multicast frames to a device. While the
8687  *      count in the device remains above zero the interface remains listening
8688  *      to all interfaces. Once it hits zero the device reverts back to normal
8689  *      filtering operation. A negative @inc value is used to drop the counter
8690  *      when releasing a resource needing all multicasts.
8691  *      Return 0 if successful or a negative errno code on error.
8692  */
8693
8694 int dev_set_allmulti(struct net_device *dev, int inc)
8695 {
8696         return __dev_set_allmulti(dev, inc, true);
8697 }
8698 EXPORT_SYMBOL(dev_set_allmulti);
8699
8700 /*
8701  *      Upload unicast and multicast address lists to device and
8702  *      configure RX filtering. When the device doesn't support unicast
8703  *      filtering it is put in promiscuous mode while unicast addresses
8704  *      are present.
8705  */
8706 void __dev_set_rx_mode(struct net_device *dev)
8707 {
8708         const struct net_device_ops *ops = dev->netdev_ops;
8709
8710         /* dev_open will call this function so the list will stay sane. */
8711         if (!(dev->flags&IFF_UP))
8712                 return;
8713
8714         if (!netif_device_present(dev))
8715                 return;
8716
8717         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8718                 /* Unicast addresses changes may only happen under the rtnl,
8719                  * therefore calling __dev_set_promiscuity here is safe.
8720                  */
8721                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8722                         __dev_set_promiscuity(dev, 1, false);
8723                         dev->uc_promisc = true;
8724                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8725                         __dev_set_promiscuity(dev, -1, false);
8726                         dev->uc_promisc = false;
8727                 }
8728         }
8729
8730         if (ops->ndo_set_rx_mode)
8731                 ops->ndo_set_rx_mode(dev);
8732 }
8733
8734 void dev_set_rx_mode(struct net_device *dev)
8735 {
8736         netif_addr_lock_bh(dev);
8737         __dev_set_rx_mode(dev);
8738         netif_addr_unlock_bh(dev);
8739 }
8740
8741 /**
8742  *      dev_get_flags - get flags reported to userspace
8743  *      @dev: device
8744  *
8745  *      Get the combination of flag bits exported through APIs to userspace.
8746  */
8747 unsigned int dev_get_flags(const struct net_device *dev)
8748 {
8749         unsigned int flags;
8750
8751         flags = (dev->flags & ~(IFF_PROMISC |
8752                                 IFF_ALLMULTI |
8753                                 IFF_RUNNING |
8754                                 IFF_LOWER_UP |
8755                                 IFF_DORMANT)) |
8756                 (dev->gflags & (IFF_PROMISC |
8757                                 IFF_ALLMULTI));
8758
8759         if (netif_running(dev)) {
8760                 if (netif_oper_up(dev))
8761                         flags |= IFF_RUNNING;
8762                 if (netif_carrier_ok(dev))
8763                         flags |= IFF_LOWER_UP;
8764                 if (netif_dormant(dev))
8765                         flags |= IFF_DORMANT;
8766         }
8767
8768         return flags;
8769 }
8770 EXPORT_SYMBOL(dev_get_flags);
8771
8772 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8773                        struct netlink_ext_ack *extack)
8774 {
8775         unsigned int old_flags = dev->flags;
8776         int ret;
8777
8778         ASSERT_RTNL();
8779
8780         /*
8781          *      Set the flags on our device.
8782          */
8783
8784         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8785                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8786                                IFF_AUTOMEDIA)) |
8787                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8788                                     IFF_ALLMULTI));
8789
8790         /*
8791          *      Load in the correct multicast list now the flags have changed.
8792          */
8793
8794         if ((old_flags ^ flags) & IFF_MULTICAST)
8795                 dev_change_rx_flags(dev, IFF_MULTICAST);
8796
8797         dev_set_rx_mode(dev);
8798
8799         /*
8800          *      Have we downed the interface. We handle IFF_UP ourselves
8801          *      according to user attempts to set it, rather than blindly
8802          *      setting it.
8803          */
8804
8805         ret = 0;
8806         if ((old_flags ^ flags) & IFF_UP) {
8807                 if (old_flags & IFF_UP)
8808                         __dev_close(dev);
8809                 else
8810                         ret = __dev_open(dev, extack);
8811         }
8812
8813         if ((flags ^ dev->gflags) & IFF_PROMISC) {
8814                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8815                 unsigned int old_flags = dev->flags;
8816
8817                 dev->gflags ^= IFF_PROMISC;
8818
8819                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8820                         if (dev->flags != old_flags)
8821                                 dev_set_rx_mode(dev);
8822         }
8823
8824         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8825          * is important. Some (broken) drivers set IFF_PROMISC, when
8826          * IFF_ALLMULTI is requested not asking us and not reporting.
8827          */
8828         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8829                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8830
8831                 dev->gflags ^= IFF_ALLMULTI;
8832                 __dev_set_allmulti(dev, inc, false);
8833         }
8834
8835         return ret;
8836 }
8837
8838 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8839                         unsigned int gchanges)
8840 {
8841         unsigned int changes = dev->flags ^ old_flags;
8842
8843         if (gchanges)
8844                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8845
8846         if (changes & IFF_UP) {
8847                 if (dev->flags & IFF_UP)
8848                         call_netdevice_notifiers(NETDEV_UP, dev);
8849                 else
8850                         call_netdevice_notifiers(NETDEV_DOWN, dev);
8851         }
8852
8853         if (dev->flags & IFF_UP &&
8854             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8855                 struct netdev_notifier_change_info change_info = {
8856                         .info = {
8857                                 .dev = dev,
8858                         },
8859                         .flags_changed = changes,
8860                 };
8861
8862                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8863         }
8864 }
8865
8866 /**
8867  *      dev_change_flags - change device settings
8868  *      @dev: device
8869  *      @flags: device state flags
8870  *      @extack: netlink extended ack
8871  *
8872  *      Change settings on device based state flags. The flags are
8873  *      in the userspace exported format.
8874  */
8875 int dev_change_flags(struct net_device *dev, unsigned int flags,
8876                      struct netlink_ext_ack *extack)
8877 {
8878         int ret;
8879         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8880
8881         ret = __dev_change_flags(dev, flags, extack);
8882         if (ret < 0)
8883                 return ret;
8884
8885         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8886         __dev_notify_flags(dev, old_flags, changes);
8887         return ret;
8888 }
8889 EXPORT_SYMBOL(dev_change_flags);
8890
8891 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8892 {
8893         const struct net_device_ops *ops = dev->netdev_ops;
8894
8895         if (ops->ndo_change_mtu)
8896                 return ops->ndo_change_mtu(dev, new_mtu);
8897
8898         /* Pairs with all the lockless reads of dev->mtu in the stack */
8899         WRITE_ONCE(dev->mtu, new_mtu);
8900         return 0;
8901 }
8902 EXPORT_SYMBOL(__dev_set_mtu);
8903
8904 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8905                      struct netlink_ext_ack *extack)
8906 {
8907         /* MTU must be positive, and in range */
8908         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8909                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8910                 return -EINVAL;
8911         }
8912
8913         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8914                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8915                 return -EINVAL;
8916         }
8917         return 0;
8918 }
8919
8920 /**
8921  *      dev_set_mtu_ext - Change maximum transfer unit
8922  *      @dev: device
8923  *      @new_mtu: new transfer unit
8924  *      @extack: netlink extended ack
8925  *
8926  *      Change the maximum transfer size of the network device.
8927  */
8928 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8929                     struct netlink_ext_ack *extack)
8930 {
8931         int err, orig_mtu;
8932
8933         if (new_mtu == dev->mtu)
8934                 return 0;
8935
8936         err = dev_validate_mtu(dev, new_mtu, extack);
8937         if (err)
8938                 return err;
8939
8940         if (!netif_device_present(dev))
8941                 return -ENODEV;
8942
8943         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8944         err = notifier_to_errno(err);
8945         if (err)
8946                 return err;
8947
8948         orig_mtu = dev->mtu;
8949         err = __dev_set_mtu(dev, new_mtu);
8950
8951         if (!err) {
8952                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8953                                                    orig_mtu);
8954                 err = notifier_to_errno(err);
8955                 if (err) {
8956                         /* setting mtu back and notifying everyone again,
8957                          * so that they have a chance to revert changes.
8958                          */
8959                         __dev_set_mtu(dev, orig_mtu);
8960                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8961                                                      new_mtu);
8962                 }
8963         }
8964         return err;
8965 }
8966
8967 int dev_set_mtu(struct net_device *dev, int new_mtu)
8968 {
8969         struct netlink_ext_ack extack;
8970         int err;
8971
8972         memset(&extack, 0, sizeof(extack));
8973         err = dev_set_mtu_ext(dev, new_mtu, &extack);
8974         if (err && extack._msg)
8975                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8976         return err;
8977 }
8978 EXPORT_SYMBOL(dev_set_mtu);
8979
8980 /**
8981  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
8982  *      @dev: device
8983  *      @new_len: new tx queue length
8984  */
8985 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8986 {
8987         unsigned int orig_len = dev->tx_queue_len;
8988         int res;
8989
8990         if (new_len != (unsigned int)new_len)
8991                 return -ERANGE;
8992
8993         if (new_len != orig_len) {
8994                 dev->tx_queue_len = new_len;
8995                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8996                 res = notifier_to_errno(res);
8997                 if (res)
8998                         goto err_rollback;
8999                 res = dev_qdisc_change_tx_queue_len(dev);
9000                 if (res)
9001                         goto err_rollback;
9002         }
9003
9004         return 0;
9005
9006 err_rollback:
9007         netdev_err(dev, "refused to change device tx_queue_len\n");
9008         dev->tx_queue_len = orig_len;
9009         return res;
9010 }
9011
9012 /**
9013  *      dev_set_group - Change group this device belongs to
9014  *      @dev: device
9015  *      @new_group: group this device should belong to
9016  */
9017 void dev_set_group(struct net_device *dev, int new_group)
9018 {
9019         dev->group = new_group;
9020 }
9021 EXPORT_SYMBOL(dev_set_group);
9022
9023 /**
9024  *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
9025  *      @dev: device
9026  *      @addr: new address
9027  *      @extack: netlink extended ack
9028  */
9029 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
9030                               struct netlink_ext_ack *extack)
9031 {
9032         struct netdev_notifier_pre_changeaddr_info info = {
9033                 .info.dev = dev,
9034                 .info.extack = extack,
9035                 .dev_addr = addr,
9036         };
9037         int rc;
9038
9039         rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9040         return notifier_to_errno(rc);
9041 }
9042 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
9043
9044 /**
9045  *      dev_set_mac_address - Change Media Access Control Address
9046  *      @dev: device
9047  *      @sa: new address
9048  *      @extack: netlink extended ack
9049  *
9050  *      Change the hardware (MAC) address of the device
9051  */
9052 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
9053                         struct netlink_ext_ack *extack)
9054 {
9055         const struct net_device_ops *ops = dev->netdev_ops;
9056         int err;
9057
9058         if (!ops->ndo_set_mac_address)
9059                 return -EOPNOTSUPP;
9060         if (sa->sa_family != dev->type)
9061                 return -EINVAL;
9062         if (!netif_device_present(dev))
9063                 return -ENODEV;
9064         err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
9065         if (err)
9066                 return err;
9067         err = ops->ndo_set_mac_address(dev, sa);
9068         if (err)
9069                 return err;
9070         dev->addr_assign_type = NET_ADDR_SET;
9071         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9072         add_device_randomness(dev->dev_addr, dev->addr_len);
9073         return 0;
9074 }
9075 EXPORT_SYMBOL(dev_set_mac_address);
9076
9077 static DECLARE_RWSEM(dev_addr_sem);
9078
9079 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
9080                              struct netlink_ext_ack *extack)
9081 {
9082         int ret;
9083
9084         down_write(&dev_addr_sem);
9085         ret = dev_set_mac_address(dev, sa, extack);
9086         up_write(&dev_addr_sem);
9087         return ret;
9088 }
9089 EXPORT_SYMBOL(dev_set_mac_address_user);
9090
9091 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9092 {
9093         size_t size = sizeof(sa->sa_data);
9094         struct net_device *dev;
9095         int ret = 0;
9096
9097         down_read(&dev_addr_sem);
9098         rcu_read_lock();
9099
9100         dev = dev_get_by_name_rcu(net, dev_name);
9101         if (!dev) {
9102                 ret = -ENODEV;
9103                 goto unlock;
9104         }
9105         if (!dev->addr_len)
9106                 memset(sa->sa_data, 0, size);
9107         else
9108                 memcpy(sa->sa_data, dev->dev_addr,
9109                        min_t(size_t, size, dev->addr_len));
9110         sa->sa_family = dev->type;
9111
9112 unlock:
9113         rcu_read_unlock();
9114         up_read(&dev_addr_sem);
9115         return ret;
9116 }
9117 EXPORT_SYMBOL(dev_get_mac_address);
9118
9119 /**
9120  *      dev_change_carrier - Change device carrier
9121  *      @dev: device
9122  *      @new_carrier: new value
9123  *
9124  *      Change device carrier
9125  */
9126 int dev_change_carrier(struct net_device *dev, bool new_carrier)
9127 {
9128         const struct net_device_ops *ops = dev->netdev_ops;
9129
9130         if (!ops->ndo_change_carrier)
9131                 return -EOPNOTSUPP;
9132         if (!netif_device_present(dev))
9133                 return -ENODEV;
9134         return ops->ndo_change_carrier(dev, new_carrier);
9135 }
9136 EXPORT_SYMBOL(dev_change_carrier);
9137
9138 /**
9139  *      dev_get_phys_port_id - Get device physical port ID
9140  *      @dev: device
9141  *      @ppid: port ID
9142  *
9143  *      Get device physical port ID
9144  */
9145 int dev_get_phys_port_id(struct net_device *dev,
9146                          struct netdev_phys_item_id *ppid)
9147 {
9148         const struct net_device_ops *ops = dev->netdev_ops;
9149
9150         if (!ops->ndo_get_phys_port_id)
9151                 return -EOPNOTSUPP;
9152         return ops->ndo_get_phys_port_id(dev, ppid);
9153 }
9154 EXPORT_SYMBOL(dev_get_phys_port_id);
9155
9156 /**
9157  *      dev_get_phys_port_name - Get device physical port name
9158  *      @dev: device
9159  *      @name: port name
9160  *      @len: limit of bytes to copy to name
9161  *
9162  *      Get device physical port name
9163  */
9164 int dev_get_phys_port_name(struct net_device *dev,
9165                            char *name, size_t len)
9166 {
9167         const struct net_device_ops *ops = dev->netdev_ops;
9168         int err;
9169
9170         if (ops->ndo_get_phys_port_name) {
9171                 err = ops->ndo_get_phys_port_name(dev, name, len);
9172                 if (err != -EOPNOTSUPP)
9173                         return err;
9174         }
9175         return devlink_compat_phys_port_name_get(dev, name, len);
9176 }
9177 EXPORT_SYMBOL(dev_get_phys_port_name);
9178
9179 /**
9180  *      dev_get_port_parent_id - Get the device's port parent identifier
9181  *      @dev: network device
9182  *      @ppid: pointer to a storage for the port's parent identifier
9183  *      @recurse: allow/disallow recursion to lower devices
9184  *
9185  *      Get the devices's port parent identifier
9186  */
9187 int dev_get_port_parent_id(struct net_device *dev,
9188                            struct netdev_phys_item_id *ppid,
9189                            bool recurse)
9190 {
9191         const struct net_device_ops *ops = dev->netdev_ops;
9192         struct netdev_phys_item_id first = { };
9193         struct net_device *lower_dev;
9194         struct list_head *iter;
9195         int err;
9196
9197         if (ops->ndo_get_port_parent_id) {
9198                 err = ops->ndo_get_port_parent_id(dev, ppid);
9199                 if (err != -EOPNOTSUPP)
9200                         return err;
9201         }
9202
9203         err = devlink_compat_switch_id_get(dev, ppid);
9204         if (!err || err != -EOPNOTSUPP)
9205                 return err;
9206
9207         if (!recurse)
9208                 return -EOPNOTSUPP;
9209
9210         netdev_for_each_lower_dev(dev, lower_dev, iter) {
9211                 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
9212                 if (err)
9213                         break;
9214                 if (!first.id_len)
9215                         first = *ppid;
9216                 else if (memcmp(&first, ppid, sizeof(*ppid)))
9217                         return -EOPNOTSUPP;
9218         }
9219
9220         return err;
9221 }
9222 EXPORT_SYMBOL(dev_get_port_parent_id);
9223
9224 /**
9225  *      netdev_port_same_parent_id - Indicate if two network devices have
9226  *      the same port parent identifier
9227  *      @a: first network device
9228  *      @b: second network device
9229  */
9230 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9231 {
9232         struct netdev_phys_item_id a_id = { };
9233         struct netdev_phys_item_id b_id = { };
9234
9235         if (dev_get_port_parent_id(a, &a_id, true) ||
9236             dev_get_port_parent_id(b, &b_id, true))
9237                 return false;
9238
9239         return netdev_phys_item_id_same(&a_id, &b_id);
9240 }
9241 EXPORT_SYMBOL(netdev_port_same_parent_id);
9242
9243 /**
9244  *      dev_change_proto_down - update protocol port state information
9245  *      @dev: device
9246  *      @proto_down: new value
9247  *
9248  *      This info can be used by switch drivers to set the phys state of the
9249  *      port.
9250  */
9251 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9252 {
9253         const struct net_device_ops *ops = dev->netdev_ops;
9254
9255         if (!ops->ndo_change_proto_down)
9256                 return -EOPNOTSUPP;
9257         if (!netif_device_present(dev))
9258                 return -ENODEV;
9259         return ops->ndo_change_proto_down(dev, proto_down);
9260 }
9261 EXPORT_SYMBOL(dev_change_proto_down);
9262
9263 /**
9264  *      dev_change_proto_down_generic - generic implementation for
9265  *      ndo_change_proto_down that sets carrier according to
9266  *      proto_down.
9267  *
9268  *      @dev: device
9269  *      @proto_down: new value
9270  */
9271 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
9272 {
9273         if (proto_down)
9274                 netif_carrier_off(dev);
9275         else
9276                 netif_carrier_on(dev);
9277         dev->proto_down = proto_down;
9278         return 0;
9279 }
9280 EXPORT_SYMBOL(dev_change_proto_down_generic);
9281
9282 /**
9283  *      dev_change_proto_down_reason - proto down reason
9284  *
9285  *      @dev: device
9286  *      @mask: proto down mask
9287  *      @value: proto down value
9288  */
9289 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9290                                   u32 value)
9291 {
9292         int b;
9293
9294         if (!mask) {
9295                 dev->proto_down_reason = value;
9296         } else {
9297                 for_each_set_bit(b, &mask, 32) {
9298                         if (value & (1 << b))
9299                                 dev->proto_down_reason |= BIT(b);
9300                         else
9301                                 dev->proto_down_reason &= ~BIT(b);
9302                 }
9303         }
9304 }
9305 EXPORT_SYMBOL(dev_change_proto_down_reason);
9306
9307 struct bpf_xdp_link {
9308         struct bpf_link link;
9309         struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9310         int flags;
9311 };
9312
9313 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9314 {
9315         if (flags & XDP_FLAGS_HW_MODE)
9316                 return XDP_MODE_HW;
9317         if (flags & XDP_FLAGS_DRV_MODE)
9318                 return XDP_MODE_DRV;
9319         if (flags & XDP_FLAGS_SKB_MODE)
9320                 return XDP_MODE_SKB;
9321         return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9322 }
9323
9324 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9325 {
9326         switch (mode) {
9327         case XDP_MODE_SKB:
9328                 return generic_xdp_install;
9329         case XDP_MODE_DRV:
9330         case XDP_MODE_HW:
9331                 return dev->netdev_ops->ndo_bpf;
9332         default:
9333                 return NULL;
9334         }
9335 }
9336
9337 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9338                                          enum bpf_xdp_mode mode)
9339 {
9340         return dev->xdp_state[mode].link;
9341 }
9342
9343 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9344                                      enum bpf_xdp_mode mode)
9345 {
9346         struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9347
9348         if (link)
9349                 return link->link.prog;
9350         return dev->xdp_state[mode].prog;
9351 }
9352
9353 static u8 dev_xdp_prog_count(struct net_device *dev)
9354 {
9355         u8 count = 0;
9356         int i;
9357
9358         for (i = 0; i < __MAX_XDP_MODE; i++)
9359                 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9360                         count++;
9361         return count;
9362 }
9363
9364 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9365 {
9366         struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9367
9368         return prog ? prog->aux->id : 0;
9369 }
9370
9371 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9372                              struct bpf_xdp_link *link)
9373 {
9374         dev->xdp_state[mode].link = link;
9375         dev->xdp_state[mode].prog = NULL;
9376 }
9377
9378 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9379                              struct bpf_prog *prog)
9380 {
9381         dev->xdp_state[mode].link = NULL;
9382         dev->xdp_state[mode].prog = prog;
9383 }
9384
9385 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9386                            bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9387                            u32 flags, struct bpf_prog *prog)
9388 {
9389         struct netdev_bpf xdp;
9390         int err;
9391
9392         memset(&xdp, 0, sizeof(xdp));
9393         xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9394         xdp.extack = extack;
9395         xdp.flags = flags;
9396         xdp.prog = prog;
9397
9398         /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9399          * "moved" into driver), so they don't increment it on their own, but
9400          * they do decrement refcnt when program is detached or replaced.
9401          * Given net_device also owns link/prog, we need to bump refcnt here
9402          * to prevent drivers from underflowing it.
9403          */
9404         if (prog)
9405                 bpf_prog_inc(prog);
9406         err = bpf_op(dev, &xdp);
9407         if (err) {
9408                 if (prog)
9409                         bpf_prog_put(prog);
9410                 return err;
9411         }
9412
9413         if (mode != XDP_MODE_HW)
9414                 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9415
9416         return 0;
9417 }
9418
9419 static void dev_xdp_uninstall(struct net_device *dev)
9420 {
9421         struct bpf_xdp_link *link;
9422         struct bpf_prog *prog;
9423         enum bpf_xdp_mode mode;
9424         bpf_op_t bpf_op;
9425
9426         ASSERT_RTNL();
9427
9428         for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9429                 prog = dev_xdp_prog(dev, mode);
9430                 if (!prog)
9431                         continue;
9432
9433                 bpf_op = dev_xdp_bpf_op(dev, mode);
9434                 if (!bpf_op)
9435                         continue;
9436
9437                 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9438
9439                 /* auto-detach link from net device */
9440                 link = dev_xdp_link(dev, mode);
9441                 if (link)
9442                         link->dev = NULL;
9443                 else
9444                         bpf_prog_put(prog);
9445
9446                 dev_xdp_set_link(dev, mode, NULL);
9447         }
9448 }
9449
9450 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9451                           struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9452                           struct bpf_prog *old_prog, u32 flags)
9453 {
9454         unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9455         struct bpf_prog *cur_prog;
9456         enum bpf_xdp_mode mode;
9457         bpf_op_t bpf_op;
9458         int err;
9459
9460         ASSERT_RTNL();
9461
9462         /* either link or prog attachment, never both */
9463         if (link && (new_prog || old_prog))
9464                 return -EINVAL;
9465         /* link supports only XDP mode flags */
9466         if (link && (flags & ~XDP_FLAGS_MODES)) {
9467                 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9468                 return -EINVAL;
9469         }
9470         /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9471         if (num_modes > 1) {
9472                 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9473                 return -EINVAL;
9474         }
9475         /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9476         if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9477                 NL_SET_ERR_MSG(extack,
9478                                "More than one program loaded, unset mode is ambiguous");
9479                 return -EINVAL;
9480         }
9481         /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9482         if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9483                 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9484                 return -EINVAL;
9485         }
9486
9487         mode = dev_xdp_mode(dev, flags);
9488         /* can't replace attached link */
9489         if (dev_xdp_link(dev, mode)) {
9490                 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9491                 return -EBUSY;
9492         }
9493
9494         cur_prog = dev_xdp_prog(dev, mode);
9495         /* can't replace attached prog with link */
9496         if (link && cur_prog) {
9497                 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9498                 return -EBUSY;
9499         }
9500         if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9501                 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9502                 return -EEXIST;
9503         }
9504
9505         /* put effective new program into new_prog */
9506         if (link)
9507                 new_prog = link->link.prog;
9508
9509         if (new_prog) {
9510                 bool offload = mode == XDP_MODE_HW;
9511                 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9512                                                ? XDP_MODE_DRV : XDP_MODE_SKB;
9513
9514                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9515                         NL_SET_ERR_MSG(extack, "XDP program already attached");
9516                         return -EBUSY;
9517                 }
9518                 if (!offload && dev_xdp_prog(dev, other_mode)) {
9519                         NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9520                         return -EEXIST;
9521                 }
9522                 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9523                         NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9524                         return -EINVAL;
9525                 }
9526                 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9527                         NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9528                         return -EINVAL;
9529                 }
9530                 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9531                         NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9532                         return -EINVAL;
9533                 }
9534         }
9535
9536         /* don't call drivers if the effective program didn't change */
9537         if (new_prog != cur_prog) {
9538                 bpf_op = dev_xdp_bpf_op(dev, mode);
9539                 if (!bpf_op) {
9540                         NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9541                         return -EOPNOTSUPP;
9542                 }
9543
9544                 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9545                 if (err)
9546                         return err;
9547         }
9548
9549         if (link)
9550                 dev_xdp_set_link(dev, mode, link);
9551         else
9552                 dev_xdp_set_prog(dev, mode, new_prog);
9553         if (cur_prog)
9554                 bpf_prog_put(cur_prog);
9555
9556         return 0;
9557 }
9558
9559 static int dev_xdp_attach_link(struct net_device *dev,
9560                                struct netlink_ext_ack *extack,
9561                                struct bpf_xdp_link *link)
9562 {
9563         return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9564 }
9565
9566 static int dev_xdp_detach_link(struct net_device *dev,
9567                                struct netlink_ext_ack *extack,
9568                                struct bpf_xdp_link *link)
9569 {
9570         enum bpf_xdp_mode mode;
9571         bpf_op_t bpf_op;
9572
9573         ASSERT_RTNL();
9574
9575         mode = dev_xdp_mode(dev, link->flags);
9576         if (dev_xdp_link(dev, mode) != link)
9577                 return -EINVAL;
9578
9579         bpf_op = dev_xdp_bpf_op(dev, mode);
9580         WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9581         dev_xdp_set_link(dev, mode, NULL);
9582         return 0;
9583 }
9584
9585 static void bpf_xdp_link_release(struct bpf_link *link)
9586 {
9587         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9588
9589         rtnl_lock();
9590
9591         /* if racing with net_device's tear down, xdp_link->dev might be
9592          * already NULL, in which case link was already auto-detached
9593          */
9594         if (xdp_link->dev) {
9595                 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9596                 xdp_link->dev = NULL;
9597         }
9598
9599         rtnl_unlock();
9600 }
9601
9602 static int bpf_xdp_link_detach(struct bpf_link *link)
9603 {
9604         bpf_xdp_link_release(link);
9605         return 0;
9606 }
9607
9608 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9609 {
9610         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9611
9612         kfree(xdp_link);
9613 }
9614
9615 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9616                                      struct seq_file *seq)
9617 {
9618         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9619         u32 ifindex = 0;
9620
9621         rtnl_lock();
9622         if (xdp_link->dev)
9623                 ifindex = xdp_link->dev->ifindex;
9624         rtnl_unlock();
9625
9626         seq_printf(seq, "ifindex:\t%u\n", ifindex);
9627 }
9628
9629 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9630                                        struct bpf_link_info *info)
9631 {
9632         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9633         u32 ifindex = 0;
9634
9635         rtnl_lock();
9636         if (xdp_link->dev)
9637                 ifindex = xdp_link->dev->ifindex;
9638         rtnl_unlock();
9639
9640         info->xdp.ifindex = ifindex;
9641         return 0;
9642 }
9643
9644 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9645                                struct bpf_prog *old_prog)
9646 {
9647         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9648         enum bpf_xdp_mode mode;
9649         bpf_op_t bpf_op;
9650         int err = 0;
9651
9652         rtnl_lock();
9653
9654         /* link might have been auto-released already, so fail */
9655         if (!xdp_link->dev) {
9656                 err = -ENOLINK;
9657                 goto out_unlock;
9658         }
9659
9660         if (old_prog && link->prog != old_prog) {
9661                 err = -EPERM;
9662                 goto out_unlock;
9663         }
9664         old_prog = link->prog;
9665         if (old_prog == new_prog) {
9666                 /* no-op, don't disturb drivers */
9667                 bpf_prog_put(new_prog);
9668                 goto out_unlock;
9669         }
9670
9671         mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9672         bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9673         err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9674                               xdp_link->flags, new_prog);
9675         if (err)
9676                 goto out_unlock;
9677
9678         old_prog = xchg(&link->prog, new_prog);
9679         bpf_prog_put(old_prog);
9680
9681 out_unlock:
9682         rtnl_unlock();
9683         return err;
9684 }
9685
9686 static const struct bpf_link_ops bpf_xdp_link_lops = {
9687         .release = bpf_xdp_link_release,
9688         .dealloc = bpf_xdp_link_dealloc,
9689         .detach = bpf_xdp_link_detach,
9690         .show_fdinfo = bpf_xdp_link_show_fdinfo,
9691         .fill_link_info = bpf_xdp_link_fill_link_info,
9692         .update_prog = bpf_xdp_link_update,
9693 };
9694
9695 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9696 {
9697         struct net *net = current->nsproxy->net_ns;
9698         struct bpf_link_primer link_primer;
9699         struct bpf_xdp_link *link;
9700         struct net_device *dev;
9701         int err, fd;
9702
9703         dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9704         if (!dev)
9705                 return -EINVAL;
9706
9707         link = kzalloc(sizeof(*link), GFP_USER);
9708         if (!link) {
9709                 err = -ENOMEM;
9710                 goto out_put_dev;
9711         }
9712
9713         bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9714         link->dev = dev;
9715         link->flags = attr->link_create.flags;
9716
9717         err = bpf_link_prime(&link->link, &link_primer);
9718         if (err) {
9719                 kfree(link);
9720                 goto out_put_dev;
9721         }
9722
9723         rtnl_lock();
9724         err = dev_xdp_attach_link(dev, NULL, link);
9725         rtnl_unlock();
9726
9727         if (err) {
9728                 bpf_link_cleanup(&link_primer);
9729                 goto out_put_dev;
9730         }
9731
9732         fd = bpf_link_settle(&link_primer);
9733         /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9734         dev_put(dev);
9735         return fd;
9736
9737 out_put_dev:
9738         dev_put(dev);
9739         return err;
9740 }
9741
9742 /**
9743  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
9744  *      @dev: device
9745  *      @extack: netlink extended ack
9746  *      @fd: new program fd or negative value to clear
9747  *      @expected_fd: old program fd that userspace expects to replace or clear
9748  *      @flags: xdp-related flags
9749  *
9750  *      Set or clear a bpf program for a device
9751  */
9752 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9753                       int fd, int expected_fd, u32 flags)
9754 {
9755         enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9756         struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9757         int err;
9758
9759         ASSERT_RTNL();
9760
9761         if (fd >= 0) {
9762                 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9763                                                  mode != XDP_MODE_SKB);
9764                 if (IS_ERR(new_prog))
9765                         return PTR_ERR(new_prog);
9766         }
9767
9768         if (expected_fd >= 0) {
9769                 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9770                                                  mode != XDP_MODE_SKB);
9771                 if (IS_ERR(old_prog)) {
9772                         err = PTR_ERR(old_prog);
9773                         old_prog = NULL;
9774                         goto err_out;
9775                 }
9776         }
9777
9778         err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9779
9780 err_out:
9781         if (err && new_prog)
9782                 bpf_prog_put(new_prog);
9783         if (old_prog)
9784                 bpf_prog_put(old_prog);
9785         return err;
9786 }
9787
9788 /**
9789  *      dev_new_index   -       allocate an ifindex
9790  *      @net: the applicable net namespace
9791  *
9792  *      Returns a suitable unique value for a new device interface
9793  *      number.  The caller must hold the rtnl semaphore or the
9794  *      dev_base_lock to be sure it remains unique.
9795  */
9796 static int dev_new_index(struct net *net)
9797 {
9798         int ifindex = net->ifindex;
9799
9800         for (;;) {
9801                 if (++ifindex <= 0)
9802                         ifindex = 1;
9803                 if (!__dev_get_by_index(net, ifindex))
9804                         return net->ifindex = ifindex;
9805         }
9806 }
9807
9808 /* Delayed registration/unregisteration */
9809 static LIST_HEAD(net_todo_list);
9810 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9811
9812 static void net_set_todo(struct net_device *dev)
9813 {
9814         list_add_tail(&dev->todo_list, &net_todo_list);
9815         dev_net(dev)->dev_unreg_count++;
9816 }
9817
9818 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9819         struct net_device *upper, netdev_features_t features)
9820 {
9821         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9822         netdev_features_t feature;
9823         int feature_bit;
9824
9825         for_each_netdev_feature(upper_disables, feature_bit) {
9826                 feature = __NETIF_F_BIT(feature_bit);
9827                 if (!(upper->wanted_features & feature)
9828                     && (features & feature)) {
9829                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9830                                    &feature, upper->name);
9831                         features &= ~feature;
9832                 }
9833         }
9834
9835         return features;
9836 }
9837
9838 static void netdev_sync_lower_features(struct net_device *upper,
9839         struct net_device *lower, netdev_features_t features)
9840 {
9841         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9842         netdev_features_t feature;
9843         int feature_bit;
9844
9845         for_each_netdev_feature(upper_disables, feature_bit) {
9846                 feature = __NETIF_F_BIT(feature_bit);
9847                 if (!(features & feature) && (lower->features & feature)) {
9848                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9849                                    &feature, lower->name);
9850                         lower->wanted_features &= ~feature;
9851                         __netdev_update_features(lower);
9852
9853                         if (unlikely(lower->features & feature))
9854                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9855                                             &feature, lower->name);
9856                         else
9857                                 netdev_features_change(lower);
9858                 }
9859         }
9860 }
9861
9862 static netdev_features_t netdev_fix_features(struct net_device *dev,
9863         netdev_features_t features)
9864 {
9865         /* Fix illegal checksum combinations */
9866         if ((features & NETIF_F_HW_CSUM) &&
9867             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9868                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9869                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9870         }
9871
9872         /* TSO requires that SG is present as well. */
9873         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9874                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9875                 features &= ~NETIF_F_ALL_TSO;
9876         }
9877
9878         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9879                                         !(features & NETIF_F_IP_CSUM)) {
9880                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9881                 features &= ~NETIF_F_TSO;
9882                 features &= ~NETIF_F_TSO_ECN;
9883         }
9884
9885         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9886                                          !(features & NETIF_F_IPV6_CSUM)) {
9887                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9888                 features &= ~NETIF_F_TSO6;
9889         }
9890
9891         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9892         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9893                 features &= ~NETIF_F_TSO_MANGLEID;
9894
9895         /* TSO ECN requires that TSO is present as well. */
9896         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9897                 features &= ~NETIF_F_TSO_ECN;
9898
9899         /* Software GSO depends on SG. */
9900         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9901                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9902                 features &= ~NETIF_F_GSO;
9903         }
9904
9905         /* GSO partial features require GSO partial be set */
9906         if ((features & dev->gso_partial_features) &&
9907             !(features & NETIF_F_GSO_PARTIAL)) {
9908                 netdev_dbg(dev,
9909                            "Dropping partially supported GSO features since no GSO partial.\n");
9910                 features &= ~dev->gso_partial_features;
9911         }
9912
9913         if (!(features & NETIF_F_RXCSUM)) {
9914                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9915                  * successfully merged by hardware must also have the
9916                  * checksum verified by hardware.  If the user does not
9917                  * want to enable RXCSUM, logically, we should disable GRO_HW.
9918                  */
9919                 if (features & NETIF_F_GRO_HW) {
9920                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9921                         features &= ~NETIF_F_GRO_HW;
9922                 }
9923         }
9924
9925         /* LRO/HW-GRO features cannot be combined with RX-FCS */
9926         if (features & NETIF_F_RXFCS) {
9927                 if (features & NETIF_F_LRO) {
9928                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9929                         features &= ~NETIF_F_LRO;
9930                 }
9931
9932                 if (features & NETIF_F_GRO_HW) {
9933                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9934                         features &= ~NETIF_F_GRO_HW;
9935                 }
9936         }
9937
9938         if (features & NETIF_F_HW_TLS_TX) {
9939                 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9940                         (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9941                 bool hw_csum = features & NETIF_F_HW_CSUM;
9942
9943                 if (!ip_csum && !hw_csum) {
9944                         netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9945                         features &= ~NETIF_F_HW_TLS_TX;
9946                 }
9947         }
9948
9949         if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9950                 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9951                 features &= ~NETIF_F_HW_TLS_RX;
9952         }
9953
9954         return features;
9955 }
9956
9957 int __netdev_update_features(struct net_device *dev)
9958 {
9959         struct net_device *upper, *lower;
9960         netdev_features_t features;
9961         struct list_head *iter;
9962         int err = -1;
9963
9964         ASSERT_RTNL();
9965
9966         features = netdev_get_wanted_features(dev);
9967
9968         if (dev->netdev_ops->ndo_fix_features)
9969                 features = dev->netdev_ops->ndo_fix_features(dev, features);
9970
9971         /* driver might be less strict about feature dependencies */
9972         features = netdev_fix_features(dev, features);
9973
9974         /* some features can't be enabled if they're off on an upper device */
9975         netdev_for_each_upper_dev_rcu(dev, upper, iter)
9976                 features = netdev_sync_upper_features(dev, upper, features);
9977
9978         if (dev->features == features)
9979                 goto sync_lower;
9980
9981         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9982                 &dev->features, &features);
9983
9984         if (dev->netdev_ops->ndo_set_features)
9985                 err = dev->netdev_ops->ndo_set_features(dev, features);
9986         else
9987                 err = 0;
9988
9989         if (unlikely(err < 0)) {
9990                 netdev_err(dev,
9991                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
9992                         err, &features, &dev->features);
9993                 /* return non-0 since some features might have changed and
9994                  * it's better to fire a spurious notification than miss it
9995                  */
9996                 return -1;
9997         }
9998
9999 sync_lower:
10000         /* some features must be disabled on lower devices when disabled
10001          * on an upper device (think: bonding master or bridge)
10002          */
10003         netdev_for_each_lower_dev(dev, lower, iter)
10004                 netdev_sync_lower_features(dev, lower, features);
10005
10006         if (!err) {
10007                 netdev_features_t diff = features ^ dev->features;
10008
10009                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
10010                         /* udp_tunnel_{get,drop}_rx_info both need
10011                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
10012                          * device, or they won't do anything.
10013                          * Thus we need to update dev->features
10014                          * *before* calling udp_tunnel_get_rx_info,
10015                          * but *after* calling udp_tunnel_drop_rx_info.
10016                          */
10017                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
10018                                 dev->features = features;
10019                                 udp_tunnel_get_rx_info(dev);
10020                         } else {
10021                                 udp_tunnel_drop_rx_info(dev);
10022                         }
10023                 }
10024
10025                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
10026                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
10027                                 dev->features = features;
10028                                 err |= vlan_get_rx_ctag_filter_info(dev);
10029                         } else {
10030                                 vlan_drop_rx_ctag_filter_info(dev);
10031                         }
10032                 }
10033
10034                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10035                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10036                                 dev->features = features;
10037                                 err |= vlan_get_rx_stag_filter_info(dev);
10038                         } else {
10039                                 vlan_drop_rx_stag_filter_info(dev);
10040                         }
10041                 }
10042
10043                 dev->features = features;
10044         }
10045
10046         return err < 0 ? 0 : 1;
10047 }
10048
10049 /**
10050  *      netdev_update_features - recalculate device features
10051  *      @dev: the device to check
10052  *
10053  *      Recalculate dev->features set and send notifications if it
10054  *      has changed. Should be called after driver or hardware dependent
10055  *      conditions might have changed that influence the features.
10056  */
10057 void netdev_update_features(struct net_device *dev)
10058 {
10059         if (__netdev_update_features(dev))
10060                 netdev_features_change(dev);
10061 }
10062 EXPORT_SYMBOL(netdev_update_features);
10063
10064 /**
10065  *      netdev_change_features - recalculate device features
10066  *      @dev: the device to check
10067  *
10068  *      Recalculate dev->features set and send notifications even
10069  *      if they have not changed. Should be called instead of
10070  *      netdev_update_features() if also dev->vlan_features might
10071  *      have changed to allow the changes to be propagated to stacked
10072  *      VLAN devices.
10073  */
10074 void netdev_change_features(struct net_device *dev)
10075 {
10076         __netdev_update_features(dev);
10077         netdev_features_change(dev);
10078 }
10079 EXPORT_SYMBOL(netdev_change_features);
10080
10081 /**
10082  *      netif_stacked_transfer_operstate -      transfer operstate
10083  *      @rootdev: the root or lower level device to transfer state from
10084  *      @dev: the device to transfer operstate to
10085  *
10086  *      Transfer operational state from root to device. This is normally
10087  *      called when a stacking relationship exists between the root
10088  *      device and the device(a leaf device).
10089  */
10090 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10091                                         struct net_device *dev)
10092 {
10093         if (rootdev->operstate == IF_OPER_DORMANT)
10094                 netif_dormant_on(dev);
10095         else
10096                 netif_dormant_off(dev);
10097
10098         if (rootdev->operstate == IF_OPER_TESTING)
10099                 netif_testing_on(dev);
10100         else
10101                 netif_testing_off(dev);
10102
10103         if (netif_carrier_ok(rootdev))
10104                 netif_carrier_on(dev);
10105         else
10106                 netif_carrier_off(dev);
10107 }
10108 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10109
10110 static int netif_alloc_rx_queues(struct net_device *dev)
10111 {
10112         unsigned int i, count = dev->num_rx_queues;
10113         struct netdev_rx_queue *rx;
10114         size_t sz = count * sizeof(*rx);
10115         int err = 0;
10116
10117         BUG_ON(count < 1);
10118
10119         rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10120         if (!rx)
10121                 return -ENOMEM;
10122
10123         dev->_rx = rx;
10124
10125         for (i = 0; i < count; i++) {
10126                 rx[i].dev = dev;
10127
10128                 /* XDP RX-queue setup */
10129                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10130                 if (err < 0)
10131                         goto err_rxq_info;
10132         }
10133         return 0;
10134
10135 err_rxq_info:
10136         /* Rollback successful reg's and free other resources */
10137         while (i--)
10138                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10139         kvfree(dev->_rx);
10140         dev->_rx = NULL;
10141         return err;
10142 }
10143
10144 static void netif_free_rx_queues(struct net_device *dev)
10145 {
10146         unsigned int i, count = dev->num_rx_queues;
10147
10148         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10149         if (!dev->_rx)
10150                 return;
10151
10152         for (i = 0; i < count; i++)
10153                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10154
10155         kvfree(dev->_rx);
10156 }
10157
10158 static void netdev_init_one_queue(struct net_device *dev,
10159                                   struct netdev_queue *queue, void *_unused)
10160 {
10161         /* Initialize queue lock */
10162         spin_lock_init(&queue->_xmit_lock);
10163         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10164         queue->xmit_lock_owner = -1;
10165         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10166         queue->dev = dev;
10167 #ifdef CONFIG_BQL
10168         dql_init(&queue->dql, HZ);
10169 #endif
10170 }
10171
10172 static void netif_free_tx_queues(struct net_device *dev)
10173 {
10174         kvfree(dev->_tx);
10175 }
10176
10177 static int netif_alloc_netdev_queues(struct net_device *dev)
10178 {
10179         unsigned int count = dev->num_tx_queues;
10180         struct netdev_queue *tx;
10181         size_t sz = count * sizeof(*tx);
10182
10183         if (count < 1 || count > 0xffff)
10184                 return -EINVAL;
10185
10186         tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10187         if (!tx)
10188                 return -ENOMEM;
10189
10190         dev->_tx = tx;
10191
10192         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10193         spin_lock_init(&dev->tx_global_lock);
10194
10195         return 0;
10196 }
10197
10198 void netif_tx_stop_all_queues(struct net_device *dev)
10199 {
10200         unsigned int i;
10201
10202         for (i = 0; i < dev->num_tx_queues; i++) {
10203                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10204
10205                 netif_tx_stop_queue(txq);
10206         }
10207 }
10208 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10209
10210 /**
10211  *      register_netdevice      - register a network device
10212  *      @dev: device to register
10213  *
10214  *      Take a completed network device structure and add it to the kernel
10215  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10216  *      chain. 0 is returned on success. A negative errno code is returned
10217  *      on a failure to set up the device, or if the name is a duplicate.
10218  *
10219  *      Callers must hold the rtnl semaphore. You may want
10220  *      register_netdev() instead of this.
10221  *
10222  *      BUGS:
10223  *      The locking appears insufficient to guarantee two parallel registers
10224  *      will not get the same name.
10225  */
10226
10227 int register_netdevice(struct net_device *dev)
10228 {
10229         int ret;
10230         struct net *net = dev_net(dev);
10231
10232         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10233                      NETDEV_FEATURE_COUNT);
10234         BUG_ON(dev_boot_phase);
10235         ASSERT_RTNL();
10236
10237         might_sleep();
10238
10239         /* When net_device's are persistent, this will be fatal. */
10240         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10241         BUG_ON(!net);
10242
10243         ret = ethtool_check_ops(dev->ethtool_ops);
10244         if (ret)
10245                 return ret;
10246
10247         spin_lock_init(&dev->addr_list_lock);
10248         netdev_set_addr_lockdep_class(dev);
10249
10250         ret = dev_get_valid_name(net, dev, dev->name);
10251         if (ret < 0)
10252                 goto out;
10253
10254         ret = -ENOMEM;
10255         dev->name_node = netdev_name_node_head_alloc(dev);
10256         if (!dev->name_node)
10257                 goto out;
10258
10259         /* Init, if this function is available */
10260         if (dev->netdev_ops->ndo_init) {
10261                 ret = dev->netdev_ops->ndo_init(dev);
10262                 if (ret) {
10263                         if (ret > 0)
10264                                 ret = -EIO;
10265                         goto err_free_name;
10266                 }
10267         }
10268
10269         if (((dev->hw_features | dev->features) &
10270              NETIF_F_HW_VLAN_CTAG_FILTER) &&
10271             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10272              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10273                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10274                 ret = -EINVAL;
10275                 goto err_uninit;
10276         }
10277
10278         ret = -EBUSY;
10279         if (!dev->ifindex)
10280                 dev->ifindex = dev_new_index(net);
10281         else if (__dev_get_by_index(net, dev->ifindex))
10282                 goto err_uninit;
10283
10284         /* Transfer changeable features to wanted_features and enable
10285          * software offloads (GSO and GRO).
10286          */
10287         dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10288         dev->features |= NETIF_F_SOFT_FEATURES;
10289
10290         if (dev->udp_tunnel_nic_info) {
10291                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10292                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10293         }
10294
10295         dev->wanted_features = dev->features & dev->hw_features;
10296
10297         if (!(dev->flags & IFF_LOOPBACK))
10298                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10299
10300         /* If IPv4 TCP segmentation offload is supported we should also
10301          * allow the device to enable segmenting the frame with the option
10302          * of ignoring a static IP ID value.  This doesn't enable the
10303          * feature itself but allows the user to enable it later.
10304          */
10305         if (dev->hw_features & NETIF_F_TSO)
10306                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10307         if (dev->vlan_features & NETIF_F_TSO)
10308                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10309         if (dev->mpls_features & NETIF_F_TSO)
10310                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10311         if (dev->hw_enc_features & NETIF_F_TSO)
10312                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10313
10314         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10315          */
10316         dev->vlan_features |= NETIF_F_HIGHDMA;
10317
10318         /* Make NETIF_F_SG inheritable to tunnel devices.
10319          */
10320         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10321
10322         /* Make NETIF_F_SG inheritable to MPLS.
10323          */
10324         dev->mpls_features |= NETIF_F_SG;
10325
10326         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10327         ret = notifier_to_errno(ret);
10328         if (ret)
10329                 goto err_uninit;
10330
10331         ret = netdev_register_kobject(dev);
10332         if (ret) {
10333                 dev->reg_state = NETREG_UNREGISTERED;
10334                 goto err_uninit;
10335         }
10336         dev->reg_state = NETREG_REGISTERED;
10337
10338         __netdev_update_features(dev);
10339
10340         /*
10341          *      Default initial state at registry is that the
10342          *      device is present.
10343          */
10344
10345         set_bit(__LINK_STATE_PRESENT, &dev->state);
10346
10347         linkwatch_init_dev(dev);
10348
10349         dev_init_scheduler(dev);
10350         dev_hold(dev);
10351         list_netdevice(dev);
10352         add_device_randomness(dev->dev_addr, dev->addr_len);
10353
10354         /* If the device has permanent device address, driver should
10355          * set dev_addr and also addr_assign_type should be set to
10356          * NET_ADDR_PERM (default value).
10357          */
10358         if (dev->addr_assign_type == NET_ADDR_PERM)
10359                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10360
10361         /* Notify protocols, that a new device appeared. */
10362         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10363         ret = notifier_to_errno(ret);
10364         if (ret) {
10365                 /* Expect explicit free_netdev() on failure */
10366                 dev->needs_free_netdev = false;
10367                 unregister_netdevice_queue(dev, NULL);
10368                 goto out;
10369         }
10370         /*
10371          *      Prevent userspace races by waiting until the network
10372          *      device is fully setup before sending notifications.
10373          */
10374         if (!dev->rtnl_link_ops ||
10375             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10376                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10377
10378 out:
10379         return ret;
10380
10381 err_uninit:
10382         if (dev->netdev_ops->ndo_uninit)
10383                 dev->netdev_ops->ndo_uninit(dev);
10384         if (dev->priv_destructor)
10385                 dev->priv_destructor(dev);
10386 err_free_name:
10387         netdev_name_node_free(dev->name_node);
10388         goto out;
10389 }
10390 EXPORT_SYMBOL(register_netdevice);
10391
10392 /**
10393  *      init_dummy_netdev       - init a dummy network device for NAPI
10394  *      @dev: device to init
10395  *
10396  *      This takes a network device structure and initialize the minimum
10397  *      amount of fields so it can be used to schedule NAPI polls without
10398  *      registering a full blown interface. This is to be used by drivers
10399  *      that need to tie several hardware interfaces to a single NAPI
10400  *      poll scheduler due to HW limitations.
10401  */
10402 int init_dummy_netdev(struct net_device *dev)
10403 {
10404         /* Clear everything. Note we don't initialize spinlocks
10405          * are they aren't supposed to be taken by any of the
10406          * NAPI code and this dummy netdev is supposed to be
10407          * only ever used for NAPI polls
10408          */
10409         memset(dev, 0, sizeof(struct net_device));
10410
10411         /* make sure we BUG if trying to hit standard
10412          * register/unregister code path
10413          */
10414         dev->reg_state = NETREG_DUMMY;
10415
10416         /* NAPI wants this */
10417         INIT_LIST_HEAD(&dev->napi_list);
10418
10419         /* a dummy interface is started by default */
10420         set_bit(__LINK_STATE_PRESENT, &dev->state);
10421         set_bit(__LINK_STATE_START, &dev->state);
10422
10423         /* napi_busy_loop stats accounting wants this */
10424         dev_net_set(dev, &init_net);
10425
10426         /* Note : We dont allocate pcpu_refcnt for dummy devices,
10427          * because users of this 'device' dont need to change
10428          * its refcount.
10429          */
10430
10431         return 0;
10432 }
10433 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10434
10435
10436 /**
10437  *      register_netdev - register a network device
10438  *      @dev: device to register
10439  *
10440  *      Take a completed network device structure and add it to the kernel
10441  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10442  *      chain. 0 is returned on success. A negative errno code is returned
10443  *      on a failure to set up the device, or if the name is a duplicate.
10444  *
10445  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
10446  *      and expands the device name if you passed a format string to
10447  *      alloc_netdev.
10448  */
10449 int register_netdev(struct net_device *dev)
10450 {
10451         int err;
10452
10453         if (rtnl_lock_killable())
10454                 return -EINTR;
10455         err = register_netdevice(dev);
10456         rtnl_unlock();
10457         return err;
10458 }
10459 EXPORT_SYMBOL(register_netdev);
10460
10461 int netdev_refcnt_read(const struct net_device *dev)
10462 {
10463 #ifdef CONFIG_PCPU_DEV_REFCNT
10464         int i, refcnt = 0;
10465
10466         for_each_possible_cpu(i)
10467                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10468         return refcnt;
10469 #else
10470         return refcount_read(&dev->dev_refcnt);
10471 #endif
10472 }
10473 EXPORT_SYMBOL(netdev_refcnt_read);
10474
10475 int netdev_unregister_timeout_secs __read_mostly = 10;
10476
10477 #define WAIT_REFS_MIN_MSECS 1
10478 #define WAIT_REFS_MAX_MSECS 250
10479 /**
10480  * netdev_wait_allrefs - wait until all references are gone.
10481  * @dev: target net_device
10482  *
10483  * This is called when unregistering network devices.
10484  *
10485  * Any protocol or device that holds a reference should register
10486  * for netdevice notification, and cleanup and put back the
10487  * reference if they receive an UNREGISTER event.
10488  * We can get stuck here if buggy protocols don't correctly
10489  * call dev_put.
10490  */
10491 static void netdev_wait_allrefs(struct net_device *dev)
10492 {
10493         unsigned long rebroadcast_time, warning_time;
10494         int wait = 0, refcnt;
10495
10496         linkwatch_forget_dev(dev);
10497
10498         rebroadcast_time = warning_time = jiffies;
10499         refcnt = netdev_refcnt_read(dev);
10500
10501         while (refcnt != 1) {
10502                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10503                         rtnl_lock();
10504
10505                         /* Rebroadcast unregister notification */
10506                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10507
10508                         __rtnl_unlock();
10509                         rcu_barrier();
10510                         rtnl_lock();
10511
10512                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10513                                      &dev->state)) {
10514                                 /* We must not have linkwatch events
10515                                  * pending on unregister. If this
10516                                  * happens, we simply run the queue
10517                                  * unscheduled, resulting in a noop
10518                                  * for this device.
10519                                  */
10520                                 linkwatch_run_queue();
10521                         }
10522
10523                         __rtnl_unlock();
10524
10525                         rebroadcast_time = jiffies;
10526                 }
10527
10528                 if (!wait) {
10529                         rcu_barrier();
10530                         wait = WAIT_REFS_MIN_MSECS;
10531                 } else {
10532                         msleep(wait);
10533                         wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10534                 }
10535
10536                 refcnt = netdev_refcnt_read(dev);
10537
10538                 if (refcnt != 1 &&
10539                     time_after(jiffies, warning_time +
10540                                netdev_unregister_timeout_secs * HZ)) {
10541                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10542                                  dev->name, refcnt);
10543                         warning_time = jiffies;
10544                 }
10545         }
10546 }
10547
10548 /* The sequence is:
10549  *
10550  *      rtnl_lock();
10551  *      ...
10552  *      register_netdevice(x1);
10553  *      register_netdevice(x2);
10554  *      ...
10555  *      unregister_netdevice(y1);
10556  *      unregister_netdevice(y2);
10557  *      ...
10558  *      rtnl_unlock();
10559  *      free_netdev(y1);
10560  *      free_netdev(y2);
10561  *
10562  * We are invoked by rtnl_unlock().
10563  * This allows us to deal with problems:
10564  * 1) We can delete sysfs objects which invoke hotplug
10565  *    without deadlocking with linkwatch via keventd.
10566  * 2) Since we run with the RTNL semaphore not held, we can sleep
10567  *    safely in order to wait for the netdev refcnt to drop to zero.
10568  *
10569  * We must not return until all unregister events added during
10570  * the interval the lock was held have been completed.
10571  */
10572 void netdev_run_todo(void)
10573 {
10574         struct list_head list;
10575 #ifdef CONFIG_LOCKDEP
10576         struct list_head unlink_list;
10577
10578         list_replace_init(&net_unlink_list, &unlink_list);
10579
10580         while (!list_empty(&unlink_list)) {
10581                 struct net_device *dev = list_first_entry(&unlink_list,
10582                                                           struct net_device,
10583                                                           unlink_list);
10584                 list_del_init(&dev->unlink_list);
10585                 dev->nested_level = dev->lower_level - 1;
10586         }
10587 #endif
10588
10589         /* Snapshot list, allow later requests */
10590         list_replace_init(&net_todo_list, &list);
10591
10592         __rtnl_unlock();
10593
10594
10595         /* Wait for rcu callbacks to finish before next phase */
10596         if (!list_empty(&list))
10597                 rcu_barrier();
10598
10599         while (!list_empty(&list)) {
10600                 struct net_device *dev
10601                         = list_first_entry(&list, struct net_device, todo_list);
10602                 list_del(&dev->todo_list);
10603
10604                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10605                         pr_err("network todo '%s' but state %d\n",
10606                                dev->name, dev->reg_state);
10607                         dump_stack();
10608                         continue;
10609                 }
10610
10611                 dev->reg_state = NETREG_UNREGISTERED;
10612
10613                 netdev_wait_allrefs(dev);
10614
10615                 /* paranoia */
10616                 BUG_ON(netdev_refcnt_read(dev) != 1);
10617                 BUG_ON(!list_empty(&dev->ptype_all));
10618                 BUG_ON(!list_empty(&dev->ptype_specific));
10619                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10620                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10621 #if IS_ENABLED(CONFIG_DECNET)
10622                 WARN_ON(dev->dn_ptr);
10623 #endif
10624                 if (dev->priv_destructor)
10625                         dev->priv_destructor(dev);
10626                 if (dev->needs_free_netdev)
10627                         free_netdev(dev);
10628
10629                 /* Report a network device has been unregistered */
10630                 rtnl_lock();
10631                 dev_net(dev)->dev_unreg_count--;
10632                 __rtnl_unlock();
10633                 wake_up(&netdev_unregistering_wq);
10634
10635                 /* Free network device */
10636                 kobject_put(&dev->dev.kobj);
10637         }
10638 }
10639
10640 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10641  * all the same fields in the same order as net_device_stats, with only
10642  * the type differing, but rtnl_link_stats64 may have additional fields
10643  * at the end for newer counters.
10644  */
10645 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10646                              const struct net_device_stats *netdev_stats)
10647 {
10648 #if BITS_PER_LONG == 64
10649         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10650         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10651         /* zero out counters that only exist in rtnl_link_stats64 */
10652         memset((char *)stats64 + sizeof(*netdev_stats), 0,
10653                sizeof(*stats64) - sizeof(*netdev_stats));
10654 #else
10655         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10656         const unsigned long *src = (const unsigned long *)netdev_stats;
10657         u64 *dst = (u64 *)stats64;
10658
10659         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10660         for (i = 0; i < n; i++)
10661                 dst[i] = src[i];
10662         /* zero out counters that only exist in rtnl_link_stats64 */
10663         memset((char *)stats64 + n * sizeof(u64), 0,
10664                sizeof(*stats64) - n * sizeof(u64));
10665 #endif
10666 }
10667 EXPORT_SYMBOL(netdev_stats_to_stats64);
10668
10669 /**
10670  *      dev_get_stats   - get network device statistics
10671  *      @dev: device to get statistics from
10672  *      @storage: place to store stats
10673  *
10674  *      Get network statistics from device. Return @storage.
10675  *      The device driver may provide its own method by setting
10676  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10677  *      otherwise the internal statistics structure is used.
10678  */
10679 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10680                                         struct rtnl_link_stats64 *storage)
10681 {
10682         const struct net_device_ops *ops = dev->netdev_ops;
10683
10684         if (ops->ndo_get_stats64) {
10685                 memset(storage, 0, sizeof(*storage));
10686                 ops->ndo_get_stats64(dev, storage);
10687         } else if (ops->ndo_get_stats) {
10688                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10689         } else {
10690                 netdev_stats_to_stats64(storage, &dev->stats);
10691         }
10692         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10693         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10694         storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10695         return storage;
10696 }
10697 EXPORT_SYMBOL(dev_get_stats);
10698
10699 /**
10700  *      dev_fetch_sw_netstats - get per-cpu network device statistics
10701  *      @s: place to store stats
10702  *      @netstats: per-cpu network stats to read from
10703  *
10704  *      Read per-cpu network statistics and populate the related fields in @s.
10705  */
10706 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10707                            const struct pcpu_sw_netstats __percpu *netstats)
10708 {
10709         int cpu;
10710
10711         for_each_possible_cpu(cpu) {
10712                 const struct pcpu_sw_netstats *stats;
10713                 struct pcpu_sw_netstats tmp;
10714                 unsigned int start;
10715
10716                 stats = per_cpu_ptr(netstats, cpu);
10717                 do {
10718                         start = u64_stats_fetch_begin_irq(&stats->syncp);
10719                         tmp.rx_packets = stats->rx_packets;
10720                         tmp.rx_bytes   = stats->rx_bytes;
10721                         tmp.tx_packets = stats->tx_packets;
10722                         tmp.tx_bytes   = stats->tx_bytes;
10723                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10724
10725                 s->rx_packets += tmp.rx_packets;
10726                 s->rx_bytes   += tmp.rx_bytes;
10727                 s->tx_packets += tmp.tx_packets;
10728                 s->tx_bytes   += tmp.tx_bytes;
10729         }
10730 }
10731 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10732
10733 /**
10734  *      dev_get_tstats64 - ndo_get_stats64 implementation
10735  *      @dev: device to get statistics from
10736  *      @s: place to store stats
10737  *
10738  *      Populate @s from dev->stats and dev->tstats. Can be used as
10739  *      ndo_get_stats64() callback.
10740  */
10741 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10742 {
10743         netdev_stats_to_stats64(s, &dev->stats);
10744         dev_fetch_sw_netstats(s, dev->tstats);
10745 }
10746 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10747
10748 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10749 {
10750         struct netdev_queue *queue = dev_ingress_queue(dev);
10751
10752 #ifdef CONFIG_NET_CLS_ACT
10753         if (queue)
10754                 return queue;
10755         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10756         if (!queue)
10757                 return NULL;
10758         netdev_init_one_queue(dev, queue, NULL);
10759         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10760         queue->qdisc_sleeping = &noop_qdisc;
10761         rcu_assign_pointer(dev->ingress_queue, queue);
10762 #endif
10763         return queue;
10764 }
10765
10766 static const struct ethtool_ops default_ethtool_ops;
10767
10768 void netdev_set_default_ethtool_ops(struct net_device *dev,
10769                                     const struct ethtool_ops *ops)
10770 {
10771         if (dev->ethtool_ops == &default_ethtool_ops)
10772                 dev->ethtool_ops = ops;
10773 }
10774 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10775
10776 void netdev_freemem(struct net_device *dev)
10777 {
10778         char *addr = (char *)dev - dev->padded;
10779
10780         kvfree(addr);
10781 }
10782
10783 /**
10784  * alloc_netdev_mqs - allocate network device
10785  * @sizeof_priv: size of private data to allocate space for
10786  * @name: device name format string
10787  * @name_assign_type: origin of device name
10788  * @setup: callback to initialize device
10789  * @txqs: the number of TX subqueues to allocate
10790  * @rxqs: the number of RX subqueues to allocate
10791  *
10792  * Allocates a struct net_device with private data area for driver use
10793  * and performs basic initialization.  Also allocates subqueue structs
10794  * for each queue on the device.
10795  */
10796 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10797                 unsigned char name_assign_type,
10798                 void (*setup)(struct net_device *),
10799                 unsigned int txqs, unsigned int rxqs)
10800 {
10801         struct net_device *dev;
10802         unsigned int alloc_size;
10803         struct net_device *p;
10804
10805         BUG_ON(strlen(name) >= sizeof(dev->name));
10806
10807         if (txqs < 1) {
10808                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10809                 return NULL;
10810         }
10811
10812         if (rxqs < 1) {
10813                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10814                 return NULL;
10815         }
10816
10817         alloc_size = sizeof(struct net_device);
10818         if (sizeof_priv) {
10819                 /* ensure 32-byte alignment of private area */
10820                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10821                 alloc_size += sizeof_priv;
10822         }
10823         /* ensure 32-byte alignment of whole construct */
10824         alloc_size += NETDEV_ALIGN - 1;
10825
10826         p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10827         if (!p)
10828                 return NULL;
10829
10830         dev = PTR_ALIGN(p, NETDEV_ALIGN);
10831         dev->padded = (char *)dev - (char *)p;
10832
10833 #ifdef CONFIG_PCPU_DEV_REFCNT
10834         dev->pcpu_refcnt = alloc_percpu(int);
10835         if (!dev->pcpu_refcnt)
10836                 goto free_dev;
10837         dev_hold(dev);
10838 #else
10839         refcount_set(&dev->dev_refcnt, 1);
10840 #endif
10841
10842         if (dev_addr_init(dev))
10843                 goto free_pcpu;
10844
10845         dev_mc_init(dev);
10846         dev_uc_init(dev);
10847
10848         dev_net_set(dev, &init_net);
10849
10850         dev->gso_max_size = GSO_MAX_SIZE;
10851         dev->gso_max_segs = GSO_MAX_SEGS;
10852         dev->upper_level = 1;
10853         dev->lower_level = 1;
10854 #ifdef CONFIG_LOCKDEP
10855         dev->nested_level = 0;
10856         INIT_LIST_HEAD(&dev->unlink_list);
10857 #endif
10858
10859         INIT_LIST_HEAD(&dev->napi_list);
10860         INIT_LIST_HEAD(&dev->unreg_list);
10861         INIT_LIST_HEAD(&dev->close_list);
10862         INIT_LIST_HEAD(&dev->link_watch_list);
10863         INIT_LIST_HEAD(&dev->adj_list.upper);
10864         INIT_LIST_HEAD(&dev->adj_list.lower);
10865         INIT_LIST_HEAD(&dev->ptype_all);
10866         INIT_LIST_HEAD(&dev->ptype_specific);
10867         INIT_LIST_HEAD(&dev->net_notifier_list);
10868 #ifdef CONFIG_NET_SCHED
10869         hash_init(dev->qdisc_hash);
10870 #endif
10871         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10872         setup(dev);
10873
10874         if (!dev->tx_queue_len) {
10875                 dev->priv_flags |= IFF_NO_QUEUE;
10876                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10877         }
10878
10879         dev->num_tx_queues = txqs;
10880         dev->real_num_tx_queues = txqs;
10881         if (netif_alloc_netdev_queues(dev))
10882                 goto free_all;
10883
10884         dev->num_rx_queues = rxqs;
10885         dev->real_num_rx_queues = rxqs;
10886         if (netif_alloc_rx_queues(dev))
10887                 goto free_all;
10888
10889         strcpy(dev->name, name);
10890         dev->name_assign_type = name_assign_type;
10891         dev->group = INIT_NETDEV_GROUP;
10892         if (!dev->ethtool_ops)
10893                 dev->ethtool_ops = &default_ethtool_ops;
10894
10895         nf_hook_ingress_init(dev);
10896
10897         return dev;
10898
10899 free_all:
10900         free_netdev(dev);
10901         return NULL;
10902
10903 free_pcpu:
10904 #ifdef CONFIG_PCPU_DEV_REFCNT
10905         free_percpu(dev->pcpu_refcnt);
10906 free_dev:
10907 #endif
10908         netdev_freemem(dev);
10909         return NULL;
10910 }
10911 EXPORT_SYMBOL(alloc_netdev_mqs);
10912
10913 /**
10914  * free_netdev - free network device
10915  * @dev: device
10916  *
10917  * This function does the last stage of destroying an allocated device
10918  * interface. The reference to the device object is released. If this
10919  * is the last reference then it will be freed.Must be called in process
10920  * context.
10921  */
10922 void free_netdev(struct net_device *dev)
10923 {
10924         struct napi_struct *p, *n;
10925
10926         might_sleep();
10927
10928         /* When called immediately after register_netdevice() failed the unwind
10929          * handling may still be dismantling the device. Handle that case by
10930          * deferring the free.
10931          */
10932         if (dev->reg_state == NETREG_UNREGISTERING) {
10933                 ASSERT_RTNL();
10934                 dev->needs_free_netdev = true;
10935                 return;
10936         }
10937
10938         netif_free_tx_queues(dev);
10939         netif_free_rx_queues(dev);
10940
10941         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10942
10943         /* Flush device addresses */
10944         dev_addr_flush(dev);
10945
10946         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10947                 netif_napi_del(p);
10948
10949 #ifdef CONFIG_PCPU_DEV_REFCNT
10950         free_percpu(dev->pcpu_refcnt);
10951         dev->pcpu_refcnt = NULL;
10952 #endif
10953         free_percpu(dev->xdp_bulkq);
10954         dev->xdp_bulkq = NULL;
10955
10956         /*  Compatibility with error handling in drivers */
10957         if (dev->reg_state == NETREG_UNINITIALIZED) {
10958                 netdev_freemem(dev);
10959                 return;
10960         }
10961
10962         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10963         dev->reg_state = NETREG_RELEASED;
10964
10965         /* will free via device release */
10966         put_device(&dev->dev);
10967 }
10968 EXPORT_SYMBOL(free_netdev);
10969
10970 /**
10971  *      synchronize_net -  Synchronize with packet receive processing
10972  *
10973  *      Wait for packets currently being received to be done.
10974  *      Does not block later packets from starting.
10975  */
10976 void synchronize_net(void)
10977 {
10978         might_sleep();
10979         if (rtnl_is_locked())
10980                 synchronize_rcu_expedited();
10981         else
10982                 synchronize_rcu();
10983 }
10984 EXPORT_SYMBOL(synchronize_net);
10985
10986 /**
10987  *      unregister_netdevice_queue - remove device from the kernel
10988  *      @dev: device
10989  *      @head: list
10990  *
10991  *      This function shuts down a device interface and removes it
10992  *      from the kernel tables.
10993  *      If head not NULL, device is queued to be unregistered later.
10994  *
10995  *      Callers must hold the rtnl semaphore.  You may want
10996  *      unregister_netdev() instead of this.
10997  */
10998
10999 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
11000 {
11001         ASSERT_RTNL();
11002
11003         if (head) {
11004                 list_move_tail(&dev->unreg_list, head);
11005         } else {
11006                 LIST_HEAD(single);
11007
11008                 list_add(&dev->unreg_list, &single);
11009                 unregister_netdevice_many(&single);
11010         }
11011 }
11012 EXPORT_SYMBOL(unregister_netdevice_queue);
11013
11014 /**
11015  *      unregister_netdevice_many - unregister many devices
11016  *      @head: list of devices
11017  *
11018  *  Note: As most callers use a stack allocated list_head,
11019  *  we force a list_del() to make sure stack wont be corrupted later.
11020  */
11021 void unregister_netdevice_many(struct list_head *head)
11022 {
11023         struct net_device *dev, *tmp;
11024         LIST_HEAD(close_head);
11025
11026         BUG_ON(dev_boot_phase);
11027         ASSERT_RTNL();
11028
11029         if (list_empty(head))
11030                 return;
11031
11032         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11033                 /* Some devices call without registering
11034                  * for initialization unwind. Remove those
11035                  * devices and proceed with the remaining.
11036                  */
11037                 if (dev->reg_state == NETREG_UNINITIALIZED) {
11038                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11039                                  dev->name, dev);
11040
11041                         WARN_ON(1);
11042                         list_del(&dev->unreg_list);
11043                         continue;
11044                 }
11045                 dev->dismantle = true;
11046                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
11047         }
11048
11049         /* If device is running, close it first. */
11050         list_for_each_entry(dev, head, unreg_list)
11051                 list_add_tail(&dev->close_list, &close_head);
11052         dev_close_many(&close_head, true);
11053
11054         list_for_each_entry(dev, head, unreg_list) {
11055                 /* And unlink it from device chain. */
11056                 unlist_netdevice(dev);
11057
11058                 dev->reg_state = NETREG_UNREGISTERING;
11059         }
11060         flush_all_backlogs();
11061
11062         synchronize_net();
11063
11064         list_for_each_entry(dev, head, unreg_list) {
11065                 struct sk_buff *skb = NULL;
11066
11067                 /* Shutdown queueing discipline. */
11068                 dev_shutdown(dev);
11069
11070                 dev_xdp_uninstall(dev);
11071
11072                 /* Notify protocols, that we are about to destroy
11073                  * this device. They should clean all the things.
11074                  */
11075                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11076
11077                 if (!dev->rtnl_link_ops ||
11078                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11079                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11080                                                      GFP_KERNEL, NULL, 0);
11081
11082                 /*
11083                  *      Flush the unicast and multicast chains
11084                  */
11085                 dev_uc_flush(dev);
11086                 dev_mc_flush(dev);
11087
11088                 netdev_name_node_alt_flush(dev);
11089                 netdev_name_node_free(dev->name_node);
11090
11091                 if (dev->netdev_ops->ndo_uninit)
11092                         dev->netdev_ops->ndo_uninit(dev);
11093
11094                 if (skb)
11095                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
11096
11097                 /* Notifier chain MUST detach us all upper devices. */
11098                 WARN_ON(netdev_has_any_upper_dev(dev));
11099                 WARN_ON(netdev_has_any_lower_dev(dev));
11100
11101                 /* Remove entries from kobject tree */
11102                 netdev_unregister_kobject(dev);
11103 #ifdef CONFIG_XPS
11104                 /* Remove XPS queueing entries */
11105                 netif_reset_xps_queues_gt(dev, 0);
11106 #endif
11107         }
11108
11109         synchronize_net();
11110
11111         list_for_each_entry(dev, head, unreg_list) {
11112                 dev_put(dev);
11113                 net_set_todo(dev);
11114         }
11115
11116         list_del(head);
11117 }
11118 EXPORT_SYMBOL(unregister_netdevice_many);
11119
11120 /**
11121  *      unregister_netdev - remove device from the kernel
11122  *      @dev: device
11123  *
11124  *      This function shuts down a device interface and removes it
11125  *      from the kernel tables.
11126  *
11127  *      This is just a wrapper for unregister_netdevice that takes
11128  *      the rtnl semaphore.  In general you want to use this and not
11129  *      unregister_netdevice.
11130  */
11131 void unregister_netdev(struct net_device *dev)
11132 {
11133         rtnl_lock();
11134         unregister_netdevice(dev);
11135         rtnl_unlock();
11136 }
11137 EXPORT_SYMBOL(unregister_netdev);
11138
11139 /**
11140  *      __dev_change_net_namespace - move device to different nethost namespace
11141  *      @dev: device
11142  *      @net: network namespace
11143  *      @pat: If not NULL name pattern to try if the current device name
11144  *            is already taken in the destination network namespace.
11145  *      @new_ifindex: If not zero, specifies device index in the target
11146  *                    namespace.
11147  *
11148  *      This function shuts down a device interface and moves it
11149  *      to a new network namespace. On success 0 is returned, on
11150  *      a failure a netagive errno code is returned.
11151  *
11152  *      Callers must hold the rtnl semaphore.
11153  */
11154
11155 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11156                                const char *pat, int new_ifindex)
11157 {
11158         struct net *net_old = dev_net(dev);
11159         int err, new_nsid;
11160
11161         ASSERT_RTNL();
11162
11163         /* Don't allow namespace local devices to be moved. */
11164         err = -EINVAL;
11165         if (dev->features & NETIF_F_NETNS_LOCAL)
11166                 goto out;
11167
11168         /* Ensure the device has been registrered */
11169         if (dev->reg_state != NETREG_REGISTERED)
11170                 goto out;
11171
11172         /* Get out if there is nothing todo */
11173         err = 0;
11174         if (net_eq(net_old, net))
11175                 goto out;
11176
11177         /* Pick the destination device name, and ensure
11178          * we can use it in the destination network namespace.
11179          */
11180         err = -EEXIST;
11181         if (__dev_get_by_name(net, dev->name)) {
11182                 /* We get here if we can't use the current device name */
11183                 if (!pat)
11184                         goto out;
11185                 err = dev_get_valid_name(net, dev, pat);
11186                 if (err < 0)
11187                         goto out;
11188         }
11189
11190         /* Check that new_ifindex isn't used yet. */
11191         err = -EBUSY;
11192         if (new_ifindex && __dev_get_by_index(net, new_ifindex))
11193                 goto out;
11194
11195         /*
11196          * And now a mini version of register_netdevice unregister_netdevice.
11197          */
11198
11199         /* If device is running close it first. */
11200         dev_close(dev);
11201
11202         /* And unlink it from device chain */
11203         unlist_netdevice(dev);
11204
11205         synchronize_net();
11206
11207         /* Shutdown queueing discipline. */
11208         dev_shutdown(dev);
11209
11210         /* Notify protocols, that we are about to destroy
11211          * this device. They should clean all the things.
11212          *
11213          * Note that dev->reg_state stays at NETREG_REGISTERED.
11214          * This is wanted because this way 8021q and macvlan know
11215          * the device is just moving and can keep their slaves up.
11216          */
11217         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11218         rcu_barrier();
11219
11220         new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11221         /* If there is an ifindex conflict assign a new one */
11222         if (!new_ifindex) {
11223                 if (__dev_get_by_index(net, dev->ifindex))
11224                         new_ifindex = dev_new_index(net);
11225                 else
11226                         new_ifindex = dev->ifindex;
11227         }
11228
11229         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11230                             new_ifindex);
11231
11232         /*
11233          *      Flush the unicast and multicast chains
11234          */
11235         dev_uc_flush(dev);
11236         dev_mc_flush(dev);
11237
11238         /* Send a netdev-removed uevent to the old namespace */
11239         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11240         netdev_adjacent_del_links(dev);
11241
11242         /* Move per-net netdevice notifiers that are following the netdevice */
11243         move_netdevice_notifiers_dev_net(dev, net);
11244
11245         /* Actually switch the network namespace */
11246         dev_net_set(dev, net);
11247         dev->ifindex = new_ifindex;
11248
11249         /* Send a netdev-add uevent to the new namespace */
11250         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11251         netdev_adjacent_add_links(dev);
11252
11253         /* Fixup kobjects */
11254         err = device_rename(&dev->dev, dev->name);
11255         WARN_ON(err);
11256
11257         /* Adapt owner in case owning user namespace of target network
11258          * namespace is different from the original one.
11259          */
11260         err = netdev_change_owner(dev, net_old, net);
11261         WARN_ON(err);
11262
11263         /* Add the device back in the hashes */
11264         list_netdevice(dev);
11265
11266         /* Notify protocols, that a new device appeared. */
11267         call_netdevice_notifiers(NETDEV_REGISTER, dev);
11268
11269         /*
11270          *      Prevent userspace races by waiting until the network
11271          *      device is fully setup before sending notifications.
11272          */
11273         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
11274
11275         synchronize_net();
11276         err = 0;
11277 out:
11278         return err;
11279 }
11280 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11281
11282 static int dev_cpu_dead(unsigned int oldcpu)
11283 {
11284         struct sk_buff **list_skb;
11285         struct sk_buff *skb;
11286         unsigned int cpu;
11287         struct softnet_data *sd, *oldsd, *remsd = NULL;
11288
11289         local_irq_disable();
11290         cpu = smp_processor_id();
11291         sd = &per_cpu(softnet_data, cpu);
11292         oldsd = &per_cpu(softnet_data, oldcpu);
11293
11294         /* Find end of our completion_queue. */
11295         list_skb = &sd->completion_queue;
11296         while (*list_skb)
11297                 list_skb = &(*list_skb)->next;
11298         /* Append completion queue from offline CPU. */
11299         *list_skb = oldsd->completion_queue;
11300         oldsd->completion_queue = NULL;
11301
11302         /* Append output queue from offline CPU. */
11303         if (oldsd->output_queue) {
11304                 *sd->output_queue_tailp = oldsd->output_queue;
11305                 sd->output_queue_tailp = oldsd->output_queue_tailp;
11306                 oldsd->output_queue = NULL;
11307                 oldsd->output_queue_tailp = &oldsd->output_queue;
11308         }
11309         /* Append NAPI poll list from offline CPU, with one exception :
11310          * process_backlog() must be called by cpu owning percpu backlog.
11311          * We properly handle process_queue & input_pkt_queue later.
11312          */
11313         while (!list_empty(&oldsd->poll_list)) {
11314                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11315                                                             struct napi_struct,
11316                                                             poll_list);
11317
11318                 list_del_init(&napi->poll_list);
11319                 if (napi->poll == process_backlog)
11320                         napi->state = 0;
11321                 else
11322                         ____napi_schedule(sd, napi);
11323         }
11324
11325         raise_softirq_irqoff(NET_TX_SOFTIRQ);
11326         local_irq_enable();
11327
11328 #ifdef CONFIG_RPS
11329         remsd = oldsd->rps_ipi_list;
11330         oldsd->rps_ipi_list = NULL;
11331 #endif
11332         /* send out pending IPI's on offline CPU */
11333         net_rps_send_ipi(remsd);
11334
11335         /* Process offline CPU's input_pkt_queue */
11336         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11337                 netif_rx_ni(skb);
11338                 input_queue_head_incr(oldsd);
11339         }
11340         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11341                 netif_rx_ni(skb);
11342                 input_queue_head_incr(oldsd);
11343         }
11344
11345         return 0;
11346 }
11347
11348 /**
11349  *      netdev_increment_features - increment feature set by one
11350  *      @all: current feature set
11351  *      @one: new feature set
11352  *      @mask: mask feature set
11353  *
11354  *      Computes a new feature set after adding a device with feature set
11355  *      @one to the master device with current feature set @all.  Will not
11356  *      enable anything that is off in @mask. Returns the new feature set.
11357  */
11358 netdev_features_t netdev_increment_features(netdev_features_t all,
11359         netdev_features_t one, netdev_features_t mask)
11360 {
11361         if (mask & NETIF_F_HW_CSUM)
11362                 mask |= NETIF_F_CSUM_MASK;
11363         mask |= NETIF_F_VLAN_CHALLENGED;
11364
11365         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11366         all &= one | ~NETIF_F_ALL_FOR_ALL;
11367
11368         /* If one device supports hw checksumming, set for all. */
11369         if (all & NETIF_F_HW_CSUM)
11370                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11371
11372         return all;
11373 }
11374 EXPORT_SYMBOL(netdev_increment_features);
11375
11376 static struct hlist_head * __net_init netdev_create_hash(void)
11377 {
11378         int i;
11379         struct hlist_head *hash;
11380
11381         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11382         if (hash != NULL)
11383                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11384                         INIT_HLIST_HEAD(&hash[i]);
11385
11386         return hash;
11387 }
11388
11389 /* Initialize per network namespace state */
11390 static int __net_init netdev_init(struct net *net)
11391 {
11392         BUILD_BUG_ON(GRO_HASH_BUCKETS >
11393                      8 * sizeof_field(struct napi_struct, gro_bitmask));
11394
11395         if (net != &init_net)
11396                 INIT_LIST_HEAD(&net->dev_base_head);
11397
11398         net->dev_name_head = netdev_create_hash();
11399         if (net->dev_name_head == NULL)
11400                 goto err_name;
11401
11402         net->dev_index_head = netdev_create_hash();
11403         if (net->dev_index_head == NULL)
11404                 goto err_idx;
11405
11406         RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11407
11408         return 0;
11409
11410 err_idx:
11411         kfree(net->dev_name_head);
11412 err_name:
11413         return -ENOMEM;
11414 }
11415
11416 /**
11417  *      netdev_drivername - network driver for the device
11418  *      @dev: network device
11419  *
11420  *      Determine network driver for device.
11421  */
11422 const char *netdev_drivername(const struct net_device *dev)
11423 {
11424         const struct device_driver *driver;
11425         const struct device *parent;
11426         const char *empty = "";
11427
11428         parent = dev->dev.parent;
11429         if (!parent)
11430                 return empty;
11431
11432         driver = parent->driver;
11433         if (driver && driver->name)
11434                 return driver->name;
11435         return empty;
11436 }
11437
11438 static void __netdev_printk(const char *level, const struct net_device *dev,
11439                             struct va_format *vaf)
11440 {
11441         if (dev && dev->dev.parent) {
11442                 dev_printk_emit(level[1] - '0',
11443                                 dev->dev.parent,
11444                                 "%s %s %s%s: %pV",
11445                                 dev_driver_string(dev->dev.parent),
11446                                 dev_name(dev->dev.parent),
11447                                 netdev_name(dev), netdev_reg_state(dev),
11448                                 vaf);
11449         } else if (dev) {
11450                 printk("%s%s%s: %pV",
11451                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
11452         } else {
11453                 printk("%s(NULL net_device): %pV", level, vaf);
11454         }
11455 }
11456
11457 void netdev_printk(const char *level, const struct net_device *dev,
11458                    const char *format, ...)
11459 {
11460         struct va_format vaf;
11461         va_list args;
11462
11463         va_start(args, format);
11464
11465         vaf.fmt = format;
11466         vaf.va = &args;
11467
11468         __netdev_printk(level, dev, &vaf);
11469
11470         va_end(args);
11471 }
11472 EXPORT_SYMBOL(netdev_printk);
11473
11474 #define define_netdev_printk_level(func, level)                 \
11475 void func(const struct net_device *dev, const char *fmt, ...)   \
11476 {                                                               \
11477         struct va_format vaf;                                   \
11478         va_list args;                                           \
11479                                                                 \
11480         va_start(args, fmt);                                    \
11481                                                                 \
11482         vaf.fmt = fmt;                                          \
11483         vaf.va = &args;                                         \
11484                                                                 \
11485         __netdev_printk(level, dev, &vaf);                      \
11486                                                                 \
11487         va_end(args);                                           \
11488 }                                                               \
11489 EXPORT_SYMBOL(func);
11490
11491 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11492 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11493 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11494 define_netdev_printk_level(netdev_err, KERN_ERR);
11495 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11496 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11497 define_netdev_printk_level(netdev_info, KERN_INFO);
11498
11499 static void __net_exit netdev_exit(struct net *net)
11500 {
11501         kfree(net->dev_name_head);
11502         kfree(net->dev_index_head);
11503         if (net != &init_net)
11504                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11505 }
11506
11507 static struct pernet_operations __net_initdata netdev_net_ops = {
11508         .init = netdev_init,
11509         .exit = netdev_exit,
11510 };
11511
11512 static void __net_exit default_device_exit(struct net *net)
11513 {
11514         struct net_device *dev, *aux;
11515         /*
11516          * Push all migratable network devices back to the
11517          * initial network namespace
11518          */
11519         rtnl_lock();
11520         for_each_netdev_safe(net, dev, aux) {
11521                 int err;
11522                 char fb_name[IFNAMSIZ];
11523
11524                 /* Ignore unmoveable devices (i.e. loopback) */
11525                 if (dev->features & NETIF_F_NETNS_LOCAL)
11526                         continue;
11527
11528                 /* Leave virtual devices for the generic cleanup */
11529                 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11530                         continue;
11531
11532                 /* Push remaining network devices to init_net */
11533                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11534                 if (__dev_get_by_name(&init_net, fb_name))
11535                         snprintf(fb_name, IFNAMSIZ, "dev%%d");
11536                 err = dev_change_net_namespace(dev, &init_net, fb_name);
11537                 if (err) {
11538                         pr_emerg("%s: failed to move %s to init_net: %d\n",
11539                                  __func__, dev->name, err);
11540                         BUG();
11541                 }
11542         }
11543         rtnl_unlock();
11544 }
11545
11546 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11547 {
11548         /* Return with the rtnl_lock held when there are no network
11549          * devices unregistering in any network namespace in net_list.
11550          */
11551         struct net *net;
11552         bool unregistering;
11553         DEFINE_WAIT_FUNC(wait, woken_wake_function);
11554
11555         add_wait_queue(&netdev_unregistering_wq, &wait);
11556         for (;;) {
11557                 unregistering = false;
11558                 rtnl_lock();
11559                 list_for_each_entry(net, net_list, exit_list) {
11560                         if (net->dev_unreg_count > 0) {
11561                                 unregistering = true;
11562                                 break;
11563                         }
11564                 }
11565                 if (!unregistering)
11566                         break;
11567                 __rtnl_unlock();
11568
11569                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
11570         }
11571         remove_wait_queue(&netdev_unregistering_wq, &wait);
11572 }
11573
11574 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11575 {
11576         /* At exit all network devices most be removed from a network
11577          * namespace.  Do this in the reverse order of registration.
11578          * Do this across as many network namespaces as possible to
11579          * improve batching efficiency.
11580          */
11581         struct net_device *dev;
11582         struct net *net;
11583         LIST_HEAD(dev_kill_list);
11584
11585         /* To prevent network device cleanup code from dereferencing
11586          * loopback devices or network devices that have been freed
11587          * wait here for all pending unregistrations to complete,
11588          * before unregistring the loopback device and allowing the
11589          * network namespace be freed.
11590          *
11591          * The netdev todo list containing all network devices
11592          * unregistrations that happen in default_device_exit_batch
11593          * will run in the rtnl_unlock() at the end of
11594          * default_device_exit_batch.
11595          */
11596         rtnl_lock_unregistering(net_list);
11597         list_for_each_entry(net, net_list, exit_list) {
11598                 for_each_netdev_reverse(net, dev) {
11599                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11600                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11601                         else
11602                                 unregister_netdevice_queue(dev, &dev_kill_list);
11603                 }
11604         }
11605         unregister_netdevice_many(&dev_kill_list);
11606         rtnl_unlock();
11607 }
11608
11609 static struct pernet_operations __net_initdata default_device_ops = {
11610         .exit = default_device_exit,
11611         .exit_batch = default_device_exit_batch,
11612 };
11613
11614 /*
11615  *      Initialize the DEV module. At boot time this walks the device list and
11616  *      unhooks any devices that fail to initialise (normally hardware not
11617  *      present) and leaves us with a valid list of present and active devices.
11618  *
11619  */
11620
11621 /*
11622  *       This is called single threaded during boot, so no need
11623  *       to take the rtnl semaphore.
11624  */
11625 static int __init net_dev_init(void)
11626 {
11627         int i, rc = -ENOMEM;
11628
11629         BUG_ON(!dev_boot_phase);
11630
11631         if (dev_proc_init())
11632                 goto out;
11633
11634         if (netdev_kobject_init())
11635                 goto out;
11636
11637         INIT_LIST_HEAD(&ptype_all);
11638         for (i = 0; i < PTYPE_HASH_SIZE; i++)
11639                 INIT_LIST_HEAD(&ptype_base[i]);
11640
11641         INIT_LIST_HEAD(&offload_base);
11642
11643         if (register_pernet_subsys(&netdev_net_ops))
11644                 goto out;
11645
11646         /*
11647          *      Initialise the packet receive queues.
11648          */
11649
11650         for_each_possible_cpu(i) {
11651                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11652                 struct softnet_data *sd = &per_cpu(softnet_data, i);
11653
11654                 INIT_WORK(flush, flush_backlog);
11655
11656                 skb_queue_head_init(&sd->input_pkt_queue);
11657                 skb_queue_head_init(&sd->process_queue);
11658 #ifdef CONFIG_XFRM_OFFLOAD
11659                 skb_queue_head_init(&sd->xfrm_backlog);
11660 #endif
11661                 INIT_LIST_HEAD(&sd->poll_list);
11662                 sd->output_queue_tailp = &sd->output_queue;
11663 #ifdef CONFIG_RPS
11664                 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11665                 sd->cpu = i;
11666 #endif
11667
11668                 init_gro_hash(&sd->backlog);
11669                 sd->backlog.poll = process_backlog;
11670                 sd->backlog.weight = weight_p;
11671         }
11672
11673         dev_boot_phase = 0;
11674
11675         /* The loopback device is special if any other network devices
11676          * is present in a network namespace the loopback device must
11677          * be present. Since we now dynamically allocate and free the
11678          * loopback device ensure this invariant is maintained by
11679          * keeping the loopback device as the first device on the
11680          * list of network devices.  Ensuring the loopback devices
11681          * is the first device that appears and the last network device
11682          * that disappears.
11683          */
11684         if (register_pernet_device(&loopback_net_ops))
11685                 goto out;
11686
11687         if (register_pernet_device(&default_device_ops))
11688                 goto out;
11689
11690         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11691         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11692
11693         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11694                                        NULL, dev_cpu_dead);
11695         WARN_ON(rc < 0);
11696         rc = 0;
11697 out:
11698         return rc;
11699 }
11700
11701 subsys_initcall(net_dev_init);