net: better IFF_XMIT_DST_RELEASE support
[linux-2.6-microblaze.git] / net / core / dev.c
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *              This program is free software; you can redistribute it and/or
5  *              modify it under the terms of the GNU General Public License
6  *              as published by the Free Software Foundation; either version
7  *              2 of the License, or (at your option) any later version.
8  *
9  *      Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:        Ross Biro
11  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *      Additional Authors:
15  *              Florian la Roche <rzsfl@rz.uni-sb.de>
16  *              Alan Cox <gw4pts@gw4pts.ampr.org>
17  *              David Hinds <dahinds@users.sourceforge.net>
18  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *              Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *      Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *              Alan Cox        :       device private ioctl copies fields back.
28  *              Alan Cox        :       Transmit queue code does relevant
29  *                                      stunts to keep the queue safe.
30  *              Alan Cox        :       Fixed double lock.
31  *              Alan Cox        :       Fixed promisc NULL pointer trap
32  *              ????????        :       Support the full private ioctl range
33  *              Alan Cox        :       Moved ioctl permission check into
34  *                                      drivers
35  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
36  *              Alan Cox        :       100 backlog just doesn't cut it when
37  *                                      you start doing multicast video 8)
38  *              Alan Cox        :       Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *              Alan Cox        :       Took out transmit every packet pass
41  *                                      Saved a few bytes in the ioctl handler
42  *              Alan Cox        :       Network driver sets packet type before
43  *                                      calling netif_rx. Saves a function
44  *                                      call a packet.
45  *              Alan Cox        :       Hashed net_bh()
46  *              Richard Kooijman:       Timestamp fixes.
47  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
48  *              Alan Cox        :       Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *                                      changes.
51  *              Rudi Cilibrasi  :       Pass the right thing to
52  *                                      set_mac_address()
53  *              Dave Miller     :       32bit quantity for the device lock to
54  *                                      make it work out on a Sparc.
55  *              Bjorn Ekwall    :       Added KERNELD hack.
56  *              Alan Cox        :       Cleaned up the backlog initialise.
57  *              Craig Metz      :       SIOCGIFCONF fix if space for under
58  *                                      1 device.
59  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
60  *                                      is no device open function.
61  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
62  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
63  *              Cyrus Durgin    :       Cleaned for KMOD
64  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
65  *                                      A network device unload needs to purge
66  *                                      the backlog queue.
67  *      Paul Rusty Russell      :       SIOCSIFNAME
68  *              Pekka Riikonen  :       Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *                                      - netif_rx() feedback
73  */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <linux/ipv6.h>
122 #include <linux/in.h>
123 #include <linux/jhash.h>
124 #include <linux/random.h>
125 #include <trace/events/napi.h>
126 #include <trace/events/net.h>
127 #include <trace/events/skb.h>
128 #include <linux/pci.h>
129 #include <linux/inetdevice.h>
130 #include <linux/cpu_rmap.h>
131 #include <linux/static_key.h>
132 #include <linux/hashtable.h>
133 #include <linux/vmalloc.h>
134 #include <linux/if_macvlan.h>
135 #include <linux/errqueue.h>
136
137 #include "net-sysfs.h"
138
139 /* Instead of increasing this, you should create a hash table. */
140 #define MAX_GRO_SKBS 8
141
142 /* This should be increased if a protocol with a bigger head is added. */
143 #define GRO_MAX_HEAD (MAX_HEADER + 128)
144
145 static DEFINE_SPINLOCK(ptype_lock);
146 static DEFINE_SPINLOCK(offload_lock);
147 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
148 struct list_head ptype_all __read_mostly;       /* Taps */
149 static struct list_head offload_base __read_mostly;
150
151 static int netif_rx_internal(struct sk_buff *skb);
152 static int call_netdevice_notifiers_info(unsigned long val,
153                                          struct net_device *dev,
154                                          struct netdev_notifier_info *info);
155
156 /*
157  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
158  * semaphore.
159  *
160  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
161  *
162  * Writers must hold the rtnl semaphore while they loop through the
163  * dev_base_head list, and hold dev_base_lock for writing when they do the
164  * actual updates.  This allows pure readers to access the list even
165  * while a writer is preparing to update it.
166  *
167  * To put it another way, dev_base_lock is held for writing only to
168  * protect against pure readers; the rtnl semaphore provides the
169  * protection against other writers.
170  *
171  * See, for example usages, register_netdevice() and
172  * unregister_netdevice(), which must be called with the rtnl
173  * semaphore held.
174  */
175 DEFINE_RWLOCK(dev_base_lock);
176 EXPORT_SYMBOL(dev_base_lock);
177
178 /* protects napi_hash addition/deletion and napi_gen_id */
179 static DEFINE_SPINLOCK(napi_hash_lock);
180
181 static unsigned int napi_gen_id;
182 static DEFINE_HASHTABLE(napi_hash, 8);
183
184 static seqcount_t devnet_rename_seq;
185
186 static inline void dev_base_seq_inc(struct net *net)
187 {
188         while (++net->dev_base_seq == 0);
189 }
190
191 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
192 {
193         unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
194
195         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
196 }
197
198 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
199 {
200         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
201 }
202
203 static inline void rps_lock(struct softnet_data *sd)
204 {
205 #ifdef CONFIG_RPS
206         spin_lock(&sd->input_pkt_queue.lock);
207 #endif
208 }
209
210 static inline void rps_unlock(struct softnet_data *sd)
211 {
212 #ifdef CONFIG_RPS
213         spin_unlock(&sd->input_pkt_queue.lock);
214 #endif
215 }
216
217 /* Device list insertion */
218 static void list_netdevice(struct net_device *dev)
219 {
220         struct net *net = dev_net(dev);
221
222         ASSERT_RTNL();
223
224         write_lock_bh(&dev_base_lock);
225         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
226         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
227         hlist_add_head_rcu(&dev->index_hlist,
228                            dev_index_hash(net, dev->ifindex));
229         write_unlock_bh(&dev_base_lock);
230
231         dev_base_seq_inc(net);
232 }
233
234 /* Device list removal
235  * caller must respect a RCU grace period before freeing/reusing dev
236  */
237 static void unlist_netdevice(struct net_device *dev)
238 {
239         ASSERT_RTNL();
240
241         /* Unlink dev from the device chain */
242         write_lock_bh(&dev_base_lock);
243         list_del_rcu(&dev->dev_list);
244         hlist_del_rcu(&dev->name_hlist);
245         hlist_del_rcu(&dev->index_hlist);
246         write_unlock_bh(&dev_base_lock);
247
248         dev_base_seq_inc(dev_net(dev));
249 }
250
251 /*
252  *      Our notifier list
253  */
254
255 static RAW_NOTIFIER_HEAD(netdev_chain);
256
257 /*
258  *      Device drivers call our routines to queue packets here. We empty the
259  *      queue in the local softnet handler.
260  */
261
262 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
263 EXPORT_PER_CPU_SYMBOL(softnet_data);
264
265 #ifdef CONFIG_LOCKDEP
266 /*
267  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
268  * according to dev->type
269  */
270 static const unsigned short netdev_lock_type[] =
271         {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
272          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
273          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
274          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
275          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
276          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
277          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
278          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
279          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
280          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
281          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
282          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
283          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
284          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
285          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
286
287 static const char *const netdev_lock_name[] =
288         {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
289          "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
290          "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
291          "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
292          "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
293          "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
294          "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
295          "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
296          "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
297          "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
298          "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
299          "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
300          "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
301          "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
302          "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
303
304 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
305 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
306
307 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
308 {
309         int i;
310
311         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
312                 if (netdev_lock_type[i] == dev_type)
313                         return i;
314         /* the last key is used by default */
315         return ARRAY_SIZE(netdev_lock_type) - 1;
316 }
317
318 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
319                                                  unsigned short dev_type)
320 {
321         int i;
322
323         i = netdev_lock_pos(dev_type);
324         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
325                                    netdev_lock_name[i]);
326 }
327
328 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
329 {
330         int i;
331
332         i = netdev_lock_pos(dev->type);
333         lockdep_set_class_and_name(&dev->addr_list_lock,
334                                    &netdev_addr_lock_key[i],
335                                    netdev_lock_name[i]);
336 }
337 #else
338 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
339                                                  unsigned short dev_type)
340 {
341 }
342 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
343 {
344 }
345 #endif
346
347 /*******************************************************************************
348
349                 Protocol management and registration routines
350
351 *******************************************************************************/
352
353 /*
354  *      Add a protocol ID to the list. Now that the input handler is
355  *      smarter we can dispense with all the messy stuff that used to be
356  *      here.
357  *
358  *      BEWARE!!! Protocol handlers, mangling input packets,
359  *      MUST BE last in hash buckets and checking protocol handlers
360  *      MUST start from promiscuous ptype_all chain in net_bh.
361  *      It is true now, do not change it.
362  *      Explanation follows: if protocol handler, mangling packet, will
363  *      be the first on list, it is not able to sense, that packet
364  *      is cloned and should be copied-on-write, so that it will
365  *      change it and subsequent readers will get broken packet.
366  *                                                      --ANK (980803)
367  */
368
369 static inline struct list_head *ptype_head(const struct packet_type *pt)
370 {
371         if (pt->type == htons(ETH_P_ALL))
372                 return &ptype_all;
373         else
374                 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
375 }
376
377 /**
378  *      dev_add_pack - add packet handler
379  *      @pt: packet type declaration
380  *
381  *      Add a protocol handler to the networking stack. The passed &packet_type
382  *      is linked into kernel lists and may not be freed until it has been
383  *      removed from the kernel lists.
384  *
385  *      This call does not sleep therefore it can not
386  *      guarantee all CPU's that are in middle of receiving packets
387  *      will see the new packet type (until the next received packet).
388  */
389
390 void dev_add_pack(struct packet_type *pt)
391 {
392         struct list_head *head = ptype_head(pt);
393
394         spin_lock(&ptype_lock);
395         list_add_rcu(&pt->list, head);
396         spin_unlock(&ptype_lock);
397 }
398 EXPORT_SYMBOL(dev_add_pack);
399
400 /**
401  *      __dev_remove_pack        - remove packet handler
402  *      @pt: packet type declaration
403  *
404  *      Remove a protocol handler that was previously added to the kernel
405  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
406  *      from the kernel lists and can be freed or reused once this function
407  *      returns.
408  *
409  *      The packet type might still be in use by receivers
410  *      and must not be freed until after all the CPU's have gone
411  *      through a quiescent state.
412  */
413 void __dev_remove_pack(struct packet_type *pt)
414 {
415         struct list_head *head = ptype_head(pt);
416         struct packet_type *pt1;
417
418         spin_lock(&ptype_lock);
419
420         list_for_each_entry(pt1, head, list) {
421                 if (pt == pt1) {
422                         list_del_rcu(&pt->list);
423                         goto out;
424                 }
425         }
426
427         pr_warn("dev_remove_pack: %p not found\n", pt);
428 out:
429         spin_unlock(&ptype_lock);
430 }
431 EXPORT_SYMBOL(__dev_remove_pack);
432
433 /**
434  *      dev_remove_pack  - remove packet handler
435  *      @pt: packet type declaration
436  *
437  *      Remove a protocol handler that was previously added to the kernel
438  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
439  *      from the kernel lists and can be freed or reused once this function
440  *      returns.
441  *
442  *      This call sleeps to guarantee that no CPU is looking at the packet
443  *      type after return.
444  */
445 void dev_remove_pack(struct packet_type *pt)
446 {
447         __dev_remove_pack(pt);
448
449         synchronize_net();
450 }
451 EXPORT_SYMBOL(dev_remove_pack);
452
453
454 /**
455  *      dev_add_offload - register offload handlers
456  *      @po: protocol offload declaration
457  *
458  *      Add protocol offload handlers to the networking stack. The passed
459  *      &proto_offload is linked into kernel lists and may not be freed until
460  *      it has been removed from the kernel lists.
461  *
462  *      This call does not sleep therefore it can not
463  *      guarantee all CPU's that are in middle of receiving packets
464  *      will see the new offload handlers (until the next received packet).
465  */
466 void dev_add_offload(struct packet_offload *po)
467 {
468         struct list_head *head = &offload_base;
469
470         spin_lock(&offload_lock);
471         list_add_rcu(&po->list, head);
472         spin_unlock(&offload_lock);
473 }
474 EXPORT_SYMBOL(dev_add_offload);
475
476 /**
477  *      __dev_remove_offload     - remove offload handler
478  *      @po: packet offload declaration
479  *
480  *      Remove a protocol offload handler that was previously added to the
481  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
482  *      is removed from the kernel lists and can be freed or reused once this
483  *      function returns.
484  *
485  *      The packet type might still be in use by receivers
486  *      and must not be freed until after all the CPU's have gone
487  *      through a quiescent state.
488  */
489 static void __dev_remove_offload(struct packet_offload *po)
490 {
491         struct list_head *head = &offload_base;
492         struct packet_offload *po1;
493
494         spin_lock(&offload_lock);
495
496         list_for_each_entry(po1, head, list) {
497                 if (po == po1) {
498                         list_del_rcu(&po->list);
499                         goto out;
500                 }
501         }
502
503         pr_warn("dev_remove_offload: %p not found\n", po);
504 out:
505         spin_unlock(&offload_lock);
506 }
507
508 /**
509  *      dev_remove_offload       - remove packet offload handler
510  *      @po: packet offload declaration
511  *
512  *      Remove a packet offload handler that was previously added to the kernel
513  *      offload handlers by dev_add_offload(). The passed &offload_type is
514  *      removed from the kernel lists and can be freed or reused once this
515  *      function returns.
516  *
517  *      This call sleeps to guarantee that no CPU is looking at the packet
518  *      type after return.
519  */
520 void dev_remove_offload(struct packet_offload *po)
521 {
522         __dev_remove_offload(po);
523
524         synchronize_net();
525 }
526 EXPORT_SYMBOL(dev_remove_offload);
527
528 /******************************************************************************
529
530                       Device Boot-time Settings Routines
531
532 *******************************************************************************/
533
534 /* Boot time configuration table */
535 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
536
537 /**
538  *      netdev_boot_setup_add   - add new setup entry
539  *      @name: name of the device
540  *      @map: configured settings for the device
541  *
542  *      Adds new setup entry to the dev_boot_setup list.  The function
543  *      returns 0 on error and 1 on success.  This is a generic routine to
544  *      all netdevices.
545  */
546 static int netdev_boot_setup_add(char *name, struct ifmap *map)
547 {
548         struct netdev_boot_setup *s;
549         int i;
550
551         s = dev_boot_setup;
552         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
553                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
554                         memset(s[i].name, 0, sizeof(s[i].name));
555                         strlcpy(s[i].name, name, IFNAMSIZ);
556                         memcpy(&s[i].map, map, sizeof(s[i].map));
557                         break;
558                 }
559         }
560
561         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
562 }
563
564 /**
565  *      netdev_boot_setup_check - check boot time settings
566  *      @dev: the netdevice
567  *
568  *      Check boot time settings for the device.
569  *      The found settings are set for the device to be used
570  *      later in the device probing.
571  *      Returns 0 if no settings found, 1 if they are.
572  */
573 int netdev_boot_setup_check(struct net_device *dev)
574 {
575         struct netdev_boot_setup *s = dev_boot_setup;
576         int i;
577
578         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
579                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
580                     !strcmp(dev->name, s[i].name)) {
581                         dev->irq        = s[i].map.irq;
582                         dev->base_addr  = s[i].map.base_addr;
583                         dev->mem_start  = s[i].map.mem_start;
584                         dev->mem_end    = s[i].map.mem_end;
585                         return 1;
586                 }
587         }
588         return 0;
589 }
590 EXPORT_SYMBOL(netdev_boot_setup_check);
591
592
593 /**
594  *      netdev_boot_base        - get address from boot time settings
595  *      @prefix: prefix for network device
596  *      @unit: id for network device
597  *
598  *      Check boot time settings for the base address of device.
599  *      The found settings are set for the device to be used
600  *      later in the device probing.
601  *      Returns 0 if no settings found.
602  */
603 unsigned long netdev_boot_base(const char *prefix, int unit)
604 {
605         const struct netdev_boot_setup *s = dev_boot_setup;
606         char name[IFNAMSIZ];
607         int i;
608
609         sprintf(name, "%s%d", prefix, unit);
610
611         /*
612          * If device already registered then return base of 1
613          * to indicate not to probe for this interface
614          */
615         if (__dev_get_by_name(&init_net, name))
616                 return 1;
617
618         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
619                 if (!strcmp(name, s[i].name))
620                         return s[i].map.base_addr;
621         return 0;
622 }
623
624 /*
625  * Saves at boot time configured settings for any netdevice.
626  */
627 int __init netdev_boot_setup(char *str)
628 {
629         int ints[5];
630         struct ifmap map;
631
632         str = get_options(str, ARRAY_SIZE(ints), ints);
633         if (!str || !*str)
634                 return 0;
635
636         /* Save settings */
637         memset(&map, 0, sizeof(map));
638         if (ints[0] > 0)
639                 map.irq = ints[1];
640         if (ints[0] > 1)
641                 map.base_addr = ints[2];
642         if (ints[0] > 2)
643                 map.mem_start = ints[3];
644         if (ints[0] > 3)
645                 map.mem_end = ints[4];
646
647         /* Add new entry to the list */
648         return netdev_boot_setup_add(str, &map);
649 }
650
651 __setup("netdev=", netdev_boot_setup);
652
653 /*******************************************************************************
654
655                             Device Interface Subroutines
656
657 *******************************************************************************/
658
659 /**
660  *      __dev_get_by_name       - find a device by its name
661  *      @net: the applicable net namespace
662  *      @name: name to find
663  *
664  *      Find an interface by name. Must be called under RTNL semaphore
665  *      or @dev_base_lock. If the name is found a pointer to the device
666  *      is returned. If the name is not found then %NULL is returned. The
667  *      reference counters are not incremented so the caller must be
668  *      careful with locks.
669  */
670
671 struct net_device *__dev_get_by_name(struct net *net, const char *name)
672 {
673         struct net_device *dev;
674         struct hlist_head *head = dev_name_hash(net, name);
675
676         hlist_for_each_entry(dev, head, name_hlist)
677                 if (!strncmp(dev->name, name, IFNAMSIZ))
678                         return dev;
679
680         return NULL;
681 }
682 EXPORT_SYMBOL(__dev_get_by_name);
683
684 /**
685  *      dev_get_by_name_rcu     - find a device by its name
686  *      @net: the applicable net namespace
687  *      @name: name to find
688  *
689  *      Find an interface by name.
690  *      If the name is found a pointer to the device is returned.
691  *      If the name is not found then %NULL is returned.
692  *      The reference counters are not incremented so the caller must be
693  *      careful with locks. The caller must hold RCU lock.
694  */
695
696 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
697 {
698         struct net_device *dev;
699         struct hlist_head *head = dev_name_hash(net, name);
700
701         hlist_for_each_entry_rcu(dev, head, name_hlist)
702                 if (!strncmp(dev->name, name, IFNAMSIZ))
703                         return dev;
704
705         return NULL;
706 }
707 EXPORT_SYMBOL(dev_get_by_name_rcu);
708
709 /**
710  *      dev_get_by_name         - find a device by its name
711  *      @net: the applicable net namespace
712  *      @name: name to find
713  *
714  *      Find an interface by name. This can be called from any
715  *      context and does its own locking. The returned handle has
716  *      the usage count incremented and the caller must use dev_put() to
717  *      release it when it is no longer needed. %NULL is returned if no
718  *      matching device is found.
719  */
720
721 struct net_device *dev_get_by_name(struct net *net, const char *name)
722 {
723         struct net_device *dev;
724
725         rcu_read_lock();
726         dev = dev_get_by_name_rcu(net, name);
727         if (dev)
728                 dev_hold(dev);
729         rcu_read_unlock();
730         return dev;
731 }
732 EXPORT_SYMBOL(dev_get_by_name);
733
734 /**
735  *      __dev_get_by_index - find a device by its ifindex
736  *      @net: the applicable net namespace
737  *      @ifindex: index of device
738  *
739  *      Search for an interface by index. Returns %NULL if the device
740  *      is not found or a pointer to the device. The device has not
741  *      had its reference counter increased so the caller must be careful
742  *      about locking. The caller must hold either the RTNL semaphore
743  *      or @dev_base_lock.
744  */
745
746 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
747 {
748         struct net_device *dev;
749         struct hlist_head *head = dev_index_hash(net, ifindex);
750
751         hlist_for_each_entry(dev, head, index_hlist)
752                 if (dev->ifindex == ifindex)
753                         return dev;
754
755         return NULL;
756 }
757 EXPORT_SYMBOL(__dev_get_by_index);
758
759 /**
760  *      dev_get_by_index_rcu - find a device by its ifindex
761  *      @net: the applicable net namespace
762  *      @ifindex: index of device
763  *
764  *      Search for an interface by index. Returns %NULL if the device
765  *      is not found or a pointer to the device. The device has not
766  *      had its reference counter increased so the caller must be careful
767  *      about locking. The caller must hold RCU lock.
768  */
769
770 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
771 {
772         struct net_device *dev;
773         struct hlist_head *head = dev_index_hash(net, ifindex);
774
775         hlist_for_each_entry_rcu(dev, head, index_hlist)
776                 if (dev->ifindex == ifindex)
777                         return dev;
778
779         return NULL;
780 }
781 EXPORT_SYMBOL(dev_get_by_index_rcu);
782
783
784 /**
785  *      dev_get_by_index - find a device by its ifindex
786  *      @net: the applicable net namespace
787  *      @ifindex: index of device
788  *
789  *      Search for an interface by index. Returns NULL if the device
790  *      is not found or a pointer to the device. The device returned has
791  *      had a reference added and the pointer is safe until the user calls
792  *      dev_put to indicate they have finished with it.
793  */
794
795 struct net_device *dev_get_by_index(struct net *net, int ifindex)
796 {
797         struct net_device *dev;
798
799         rcu_read_lock();
800         dev = dev_get_by_index_rcu(net, ifindex);
801         if (dev)
802                 dev_hold(dev);
803         rcu_read_unlock();
804         return dev;
805 }
806 EXPORT_SYMBOL(dev_get_by_index);
807
808 /**
809  *      netdev_get_name - get a netdevice name, knowing its ifindex.
810  *      @net: network namespace
811  *      @name: a pointer to the buffer where the name will be stored.
812  *      @ifindex: the ifindex of the interface to get the name from.
813  *
814  *      The use of raw_seqcount_begin() and cond_resched() before
815  *      retrying is required as we want to give the writers a chance
816  *      to complete when CONFIG_PREEMPT is not set.
817  */
818 int netdev_get_name(struct net *net, char *name, int ifindex)
819 {
820         struct net_device *dev;
821         unsigned int seq;
822
823 retry:
824         seq = raw_seqcount_begin(&devnet_rename_seq);
825         rcu_read_lock();
826         dev = dev_get_by_index_rcu(net, ifindex);
827         if (!dev) {
828                 rcu_read_unlock();
829                 return -ENODEV;
830         }
831
832         strcpy(name, dev->name);
833         rcu_read_unlock();
834         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
835                 cond_resched();
836                 goto retry;
837         }
838
839         return 0;
840 }
841
842 /**
843  *      dev_getbyhwaddr_rcu - find a device by its hardware address
844  *      @net: the applicable net namespace
845  *      @type: media type of device
846  *      @ha: hardware address
847  *
848  *      Search for an interface by MAC address. Returns NULL if the device
849  *      is not found or a pointer to the device.
850  *      The caller must hold RCU or RTNL.
851  *      The returned device has not had its ref count increased
852  *      and the caller must therefore be careful about locking
853  *
854  */
855
856 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
857                                        const char *ha)
858 {
859         struct net_device *dev;
860
861         for_each_netdev_rcu(net, dev)
862                 if (dev->type == type &&
863                     !memcmp(dev->dev_addr, ha, dev->addr_len))
864                         return dev;
865
866         return NULL;
867 }
868 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
869
870 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
871 {
872         struct net_device *dev;
873
874         ASSERT_RTNL();
875         for_each_netdev(net, dev)
876                 if (dev->type == type)
877                         return dev;
878
879         return NULL;
880 }
881 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
882
883 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
884 {
885         struct net_device *dev, *ret = NULL;
886
887         rcu_read_lock();
888         for_each_netdev_rcu(net, dev)
889                 if (dev->type == type) {
890                         dev_hold(dev);
891                         ret = dev;
892                         break;
893                 }
894         rcu_read_unlock();
895         return ret;
896 }
897 EXPORT_SYMBOL(dev_getfirstbyhwtype);
898
899 /**
900  *      __dev_get_by_flags - find any device with given flags
901  *      @net: the applicable net namespace
902  *      @if_flags: IFF_* values
903  *      @mask: bitmask of bits in if_flags to check
904  *
905  *      Search for any interface with the given flags. Returns NULL if a device
906  *      is not found or a pointer to the device. Must be called inside
907  *      rtnl_lock(), and result refcount is unchanged.
908  */
909
910 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
911                                       unsigned short mask)
912 {
913         struct net_device *dev, *ret;
914
915         ASSERT_RTNL();
916
917         ret = NULL;
918         for_each_netdev(net, dev) {
919                 if (((dev->flags ^ if_flags) & mask) == 0) {
920                         ret = dev;
921                         break;
922                 }
923         }
924         return ret;
925 }
926 EXPORT_SYMBOL(__dev_get_by_flags);
927
928 /**
929  *      dev_valid_name - check if name is okay for network device
930  *      @name: name string
931  *
932  *      Network device names need to be valid file names to
933  *      to allow sysfs to work.  We also disallow any kind of
934  *      whitespace.
935  */
936 bool dev_valid_name(const char *name)
937 {
938         if (*name == '\0')
939                 return false;
940         if (strlen(name) >= IFNAMSIZ)
941                 return false;
942         if (!strcmp(name, ".") || !strcmp(name, ".."))
943                 return false;
944
945         while (*name) {
946                 if (*name == '/' || isspace(*name))
947                         return false;
948                 name++;
949         }
950         return true;
951 }
952 EXPORT_SYMBOL(dev_valid_name);
953
954 /**
955  *      __dev_alloc_name - allocate a name for a device
956  *      @net: network namespace to allocate the device name in
957  *      @name: name format string
958  *      @buf:  scratch buffer and result name string
959  *
960  *      Passed a format string - eg "lt%d" it will try and find a suitable
961  *      id. It scans list of devices to build up a free map, then chooses
962  *      the first empty slot. The caller must hold the dev_base or rtnl lock
963  *      while allocating the name and adding the device in order to avoid
964  *      duplicates.
965  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
966  *      Returns the number of the unit assigned or a negative errno code.
967  */
968
969 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
970 {
971         int i = 0;
972         const char *p;
973         const int max_netdevices = 8*PAGE_SIZE;
974         unsigned long *inuse;
975         struct net_device *d;
976
977         p = strnchr(name, IFNAMSIZ-1, '%');
978         if (p) {
979                 /*
980                  * Verify the string as this thing may have come from
981                  * the user.  There must be either one "%d" and no other "%"
982                  * characters.
983                  */
984                 if (p[1] != 'd' || strchr(p + 2, '%'))
985                         return -EINVAL;
986
987                 /* Use one page as a bit array of possible slots */
988                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
989                 if (!inuse)
990                         return -ENOMEM;
991
992                 for_each_netdev(net, d) {
993                         if (!sscanf(d->name, name, &i))
994                                 continue;
995                         if (i < 0 || i >= max_netdevices)
996                                 continue;
997
998                         /*  avoid cases where sscanf is not exact inverse of printf */
999                         snprintf(buf, IFNAMSIZ, name, i);
1000                         if (!strncmp(buf, d->name, IFNAMSIZ))
1001                                 set_bit(i, inuse);
1002                 }
1003
1004                 i = find_first_zero_bit(inuse, max_netdevices);
1005                 free_page((unsigned long) inuse);
1006         }
1007
1008         if (buf != name)
1009                 snprintf(buf, IFNAMSIZ, name, i);
1010         if (!__dev_get_by_name(net, buf))
1011                 return i;
1012
1013         /* It is possible to run out of possible slots
1014          * when the name is long and there isn't enough space left
1015          * for the digits, or if all bits are used.
1016          */
1017         return -ENFILE;
1018 }
1019
1020 /**
1021  *      dev_alloc_name - allocate a name for a device
1022  *      @dev: device
1023  *      @name: name format string
1024  *
1025  *      Passed a format string - eg "lt%d" it will try and find a suitable
1026  *      id. It scans list of devices to build up a free map, then chooses
1027  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1028  *      while allocating the name and adding the device in order to avoid
1029  *      duplicates.
1030  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1031  *      Returns the number of the unit assigned or a negative errno code.
1032  */
1033
1034 int dev_alloc_name(struct net_device *dev, const char *name)
1035 {
1036         char buf[IFNAMSIZ];
1037         struct net *net;
1038         int ret;
1039
1040         BUG_ON(!dev_net(dev));
1041         net = dev_net(dev);
1042         ret = __dev_alloc_name(net, name, buf);
1043         if (ret >= 0)
1044                 strlcpy(dev->name, buf, IFNAMSIZ);
1045         return ret;
1046 }
1047 EXPORT_SYMBOL(dev_alloc_name);
1048
1049 static int dev_alloc_name_ns(struct net *net,
1050                              struct net_device *dev,
1051                              const char *name)
1052 {
1053         char buf[IFNAMSIZ];
1054         int ret;
1055
1056         ret = __dev_alloc_name(net, name, buf);
1057         if (ret >= 0)
1058                 strlcpy(dev->name, buf, IFNAMSIZ);
1059         return ret;
1060 }
1061
1062 static int dev_get_valid_name(struct net *net,
1063                               struct net_device *dev,
1064                               const char *name)
1065 {
1066         BUG_ON(!net);
1067
1068         if (!dev_valid_name(name))
1069                 return -EINVAL;
1070
1071         if (strchr(name, '%'))
1072                 return dev_alloc_name_ns(net, dev, name);
1073         else if (__dev_get_by_name(net, name))
1074                 return -EEXIST;
1075         else if (dev->name != name)
1076                 strlcpy(dev->name, name, IFNAMSIZ);
1077
1078         return 0;
1079 }
1080
1081 /**
1082  *      dev_change_name - change name of a device
1083  *      @dev: device
1084  *      @newname: name (or format string) must be at least IFNAMSIZ
1085  *
1086  *      Change name of a device, can pass format strings "eth%d".
1087  *      for wildcarding.
1088  */
1089 int dev_change_name(struct net_device *dev, const char *newname)
1090 {
1091         unsigned char old_assign_type;
1092         char oldname[IFNAMSIZ];
1093         int err = 0;
1094         int ret;
1095         struct net *net;
1096
1097         ASSERT_RTNL();
1098         BUG_ON(!dev_net(dev));
1099
1100         net = dev_net(dev);
1101         if (dev->flags & IFF_UP)
1102                 return -EBUSY;
1103
1104         write_seqcount_begin(&devnet_rename_seq);
1105
1106         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1107                 write_seqcount_end(&devnet_rename_seq);
1108                 return 0;
1109         }
1110
1111         memcpy(oldname, dev->name, IFNAMSIZ);
1112
1113         err = dev_get_valid_name(net, dev, newname);
1114         if (err < 0) {
1115                 write_seqcount_end(&devnet_rename_seq);
1116                 return err;
1117         }
1118
1119         if (oldname[0] && !strchr(oldname, '%'))
1120                 netdev_info(dev, "renamed from %s\n", oldname);
1121
1122         old_assign_type = dev->name_assign_type;
1123         dev->name_assign_type = NET_NAME_RENAMED;
1124
1125 rollback:
1126         ret = device_rename(&dev->dev, dev->name);
1127         if (ret) {
1128                 memcpy(dev->name, oldname, IFNAMSIZ);
1129                 dev->name_assign_type = old_assign_type;
1130                 write_seqcount_end(&devnet_rename_seq);
1131                 return ret;
1132         }
1133
1134         write_seqcount_end(&devnet_rename_seq);
1135
1136         netdev_adjacent_rename_links(dev, oldname);
1137
1138         write_lock_bh(&dev_base_lock);
1139         hlist_del_rcu(&dev->name_hlist);
1140         write_unlock_bh(&dev_base_lock);
1141
1142         synchronize_rcu();
1143
1144         write_lock_bh(&dev_base_lock);
1145         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1146         write_unlock_bh(&dev_base_lock);
1147
1148         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1149         ret = notifier_to_errno(ret);
1150
1151         if (ret) {
1152                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1153                 if (err >= 0) {
1154                         err = ret;
1155                         write_seqcount_begin(&devnet_rename_seq);
1156                         memcpy(dev->name, oldname, IFNAMSIZ);
1157                         memcpy(oldname, newname, IFNAMSIZ);
1158                         dev->name_assign_type = old_assign_type;
1159                         old_assign_type = NET_NAME_RENAMED;
1160                         goto rollback;
1161                 } else {
1162                         pr_err("%s: name change rollback failed: %d\n",
1163                                dev->name, ret);
1164                 }
1165         }
1166
1167         return err;
1168 }
1169
1170 /**
1171  *      dev_set_alias - change ifalias of a device
1172  *      @dev: device
1173  *      @alias: name up to IFALIASZ
1174  *      @len: limit of bytes to copy from info
1175  *
1176  *      Set ifalias for a device,
1177  */
1178 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1179 {
1180         char *new_ifalias;
1181
1182         ASSERT_RTNL();
1183
1184         if (len >= IFALIASZ)
1185                 return -EINVAL;
1186
1187         if (!len) {
1188                 kfree(dev->ifalias);
1189                 dev->ifalias = NULL;
1190                 return 0;
1191         }
1192
1193         new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1194         if (!new_ifalias)
1195                 return -ENOMEM;
1196         dev->ifalias = new_ifalias;
1197
1198         strlcpy(dev->ifalias, alias, len+1);
1199         return len;
1200 }
1201
1202
1203 /**
1204  *      netdev_features_change - device changes features
1205  *      @dev: device to cause notification
1206  *
1207  *      Called to indicate a device has changed features.
1208  */
1209 void netdev_features_change(struct net_device *dev)
1210 {
1211         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1212 }
1213 EXPORT_SYMBOL(netdev_features_change);
1214
1215 /**
1216  *      netdev_state_change - device changes state
1217  *      @dev: device to cause notification
1218  *
1219  *      Called to indicate a device has changed state. This function calls
1220  *      the notifier chains for netdev_chain and sends a NEWLINK message
1221  *      to the routing socket.
1222  */
1223 void netdev_state_change(struct net_device *dev)
1224 {
1225         if (dev->flags & IFF_UP) {
1226                 struct netdev_notifier_change_info change_info;
1227
1228                 change_info.flags_changed = 0;
1229                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1230                                               &change_info.info);
1231                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1232         }
1233 }
1234 EXPORT_SYMBOL(netdev_state_change);
1235
1236 /**
1237  *      netdev_notify_peers - notify network peers about existence of @dev
1238  *      @dev: network device
1239  *
1240  * Generate traffic such that interested network peers are aware of
1241  * @dev, such as by generating a gratuitous ARP. This may be used when
1242  * a device wants to inform the rest of the network about some sort of
1243  * reconfiguration such as a failover event or virtual machine
1244  * migration.
1245  */
1246 void netdev_notify_peers(struct net_device *dev)
1247 {
1248         rtnl_lock();
1249         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1250         rtnl_unlock();
1251 }
1252 EXPORT_SYMBOL(netdev_notify_peers);
1253
1254 static int __dev_open(struct net_device *dev)
1255 {
1256         const struct net_device_ops *ops = dev->netdev_ops;
1257         int ret;
1258
1259         ASSERT_RTNL();
1260
1261         if (!netif_device_present(dev))
1262                 return -ENODEV;
1263
1264         /* Block netpoll from trying to do any rx path servicing.
1265          * If we don't do this there is a chance ndo_poll_controller
1266          * or ndo_poll may be running while we open the device
1267          */
1268         netpoll_poll_disable(dev);
1269
1270         ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1271         ret = notifier_to_errno(ret);
1272         if (ret)
1273                 return ret;
1274
1275         set_bit(__LINK_STATE_START, &dev->state);
1276
1277         if (ops->ndo_validate_addr)
1278                 ret = ops->ndo_validate_addr(dev);
1279
1280         if (!ret && ops->ndo_open)
1281                 ret = ops->ndo_open(dev);
1282
1283         netpoll_poll_enable(dev);
1284
1285         if (ret)
1286                 clear_bit(__LINK_STATE_START, &dev->state);
1287         else {
1288                 dev->flags |= IFF_UP;
1289                 net_dmaengine_get();
1290                 dev_set_rx_mode(dev);
1291                 dev_activate(dev);
1292                 add_device_randomness(dev->dev_addr, dev->addr_len);
1293         }
1294
1295         return ret;
1296 }
1297
1298 /**
1299  *      dev_open        - prepare an interface for use.
1300  *      @dev:   device to open
1301  *
1302  *      Takes a device from down to up state. The device's private open
1303  *      function is invoked and then the multicast lists are loaded. Finally
1304  *      the device is moved into the up state and a %NETDEV_UP message is
1305  *      sent to the netdev notifier chain.
1306  *
1307  *      Calling this function on an active interface is a nop. On a failure
1308  *      a negative errno code is returned.
1309  */
1310 int dev_open(struct net_device *dev)
1311 {
1312         int ret;
1313
1314         if (dev->flags & IFF_UP)
1315                 return 0;
1316
1317         ret = __dev_open(dev);
1318         if (ret < 0)
1319                 return ret;
1320
1321         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1322         call_netdevice_notifiers(NETDEV_UP, dev);
1323
1324         return ret;
1325 }
1326 EXPORT_SYMBOL(dev_open);
1327
1328 static int __dev_close_many(struct list_head *head)
1329 {
1330         struct net_device *dev;
1331
1332         ASSERT_RTNL();
1333         might_sleep();
1334
1335         list_for_each_entry(dev, head, close_list) {
1336                 /* Temporarily disable netpoll until the interface is down */
1337                 netpoll_poll_disable(dev);
1338
1339                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1340
1341                 clear_bit(__LINK_STATE_START, &dev->state);
1342
1343                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1344                  * can be even on different cpu. So just clear netif_running().
1345                  *
1346                  * dev->stop() will invoke napi_disable() on all of it's
1347                  * napi_struct instances on this device.
1348                  */
1349                 smp_mb__after_atomic(); /* Commit netif_running(). */
1350         }
1351
1352         dev_deactivate_many(head);
1353
1354         list_for_each_entry(dev, head, close_list) {
1355                 const struct net_device_ops *ops = dev->netdev_ops;
1356
1357                 /*
1358                  *      Call the device specific close. This cannot fail.
1359                  *      Only if device is UP
1360                  *
1361                  *      We allow it to be called even after a DETACH hot-plug
1362                  *      event.
1363                  */
1364                 if (ops->ndo_stop)
1365                         ops->ndo_stop(dev);
1366
1367                 dev->flags &= ~IFF_UP;
1368                 net_dmaengine_put();
1369                 netpoll_poll_enable(dev);
1370         }
1371
1372         return 0;
1373 }
1374
1375 static int __dev_close(struct net_device *dev)
1376 {
1377         int retval;
1378         LIST_HEAD(single);
1379
1380         list_add(&dev->close_list, &single);
1381         retval = __dev_close_many(&single);
1382         list_del(&single);
1383
1384         return retval;
1385 }
1386
1387 static int dev_close_many(struct list_head *head)
1388 {
1389         struct net_device *dev, *tmp;
1390
1391         /* Remove the devices that don't need to be closed */
1392         list_for_each_entry_safe(dev, tmp, head, close_list)
1393                 if (!(dev->flags & IFF_UP))
1394                         list_del_init(&dev->close_list);
1395
1396         __dev_close_many(head);
1397
1398         list_for_each_entry_safe(dev, tmp, head, close_list) {
1399                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1400                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1401                 list_del_init(&dev->close_list);
1402         }
1403
1404         return 0;
1405 }
1406
1407 /**
1408  *      dev_close - shutdown an interface.
1409  *      @dev: device to shutdown
1410  *
1411  *      This function moves an active device into down state. A
1412  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1413  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1414  *      chain.
1415  */
1416 int dev_close(struct net_device *dev)
1417 {
1418         if (dev->flags & IFF_UP) {
1419                 LIST_HEAD(single);
1420
1421                 list_add(&dev->close_list, &single);
1422                 dev_close_many(&single);
1423                 list_del(&single);
1424         }
1425         return 0;
1426 }
1427 EXPORT_SYMBOL(dev_close);
1428
1429
1430 /**
1431  *      dev_disable_lro - disable Large Receive Offload on a device
1432  *      @dev: device
1433  *
1434  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1435  *      called under RTNL.  This is needed if received packets may be
1436  *      forwarded to another interface.
1437  */
1438 void dev_disable_lro(struct net_device *dev)
1439 {
1440         /*
1441          * If we're trying to disable lro on a vlan device
1442          * use the underlying physical device instead
1443          */
1444         if (is_vlan_dev(dev))
1445                 dev = vlan_dev_real_dev(dev);
1446
1447         /* the same for macvlan devices */
1448         if (netif_is_macvlan(dev))
1449                 dev = macvlan_dev_real_dev(dev);
1450
1451         dev->wanted_features &= ~NETIF_F_LRO;
1452         netdev_update_features(dev);
1453
1454         if (unlikely(dev->features & NETIF_F_LRO))
1455                 netdev_WARN(dev, "failed to disable LRO!\n");
1456 }
1457 EXPORT_SYMBOL(dev_disable_lro);
1458
1459 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1460                                    struct net_device *dev)
1461 {
1462         struct netdev_notifier_info info;
1463
1464         netdev_notifier_info_init(&info, dev);
1465         return nb->notifier_call(nb, val, &info);
1466 }
1467
1468 static int dev_boot_phase = 1;
1469
1470 /**
1471  *      register_netdevice_notifier - register a network notifier block
1472  *      @nb: notifier
1473  *
1474  *      Register a notifier to be called when network device events occur.
1475  *      The notifier passed is linked into the kernel structures and must
1476  *      not be reused until it has been unregistered. A negative errno code
1477  *      is returned on a failure.
1478  *
1479  *      When registered all registration and up events are replayed
1480  *      to the new notifier to allow device to have a race free
1481  *      view of the network device list.
1482  */
1483
1484 int register_netdevice_notifier(struct notifier_block *nb)
1485 {
1486         struct net_device *dev;
1487         struct net_device *last;
1488         struct net *net;
1489         int err;
1490
1491         rtnl_lock();
1492         err = raw_notifier_chain_register(&netdev_chain, nb);
1493         if (err)
1494                 goto unlock;
1495         if (dev_boot_phase)
1496                 goto unlock;
1497         for_each_net(net) {
1498                 for_each_netdev(net, dev) {
1499                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1500                         err = notifier_to_errno(err);
1501                         if (err)
1502                                 goto rollback;
1503
1504                         if (!(dev->flags & IFF_UP))
1505                                 continue;
1506
1507                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1508                 }
1509         }
1510
1511 unlock:
1512         rtnl_unlock();
1513         return err;
1514
1515 rollback:
1516         last = dev;
1517         for_each_net(net) {
1518                 for_each_netdev(net, dev) {
1519                         if (dev == last)
1520                                 goto outroll;
1521
1522                         if (dev->flags & IFF_UP) {
1523                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1524                                                         dev);
1525                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1526                         }
1527                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1528                 }
1529         }
1530
1531 outroll:
1532         raw_notifier_chain_unregister(&netdev_chain, nb);
1533         goto unlock;
1534 }
1535 EXPORT_SYMBOL(register_netdevice_notifier);
1536
1537 /**
1538  *      unregister_netdevice_notifier - unregister a network notifier block
1539  *      @nb: notifier
1540  *
1541  *      Unregister a notifier previously registered by
1542  *      register_netdevice_notifier(). The notifier is unlinked into the
1543  *      kernel structures and may then be reused. A negative errno code
1544  *      is returned on a failure.
1545  *
1546  *      After unregistering unregister and down device events are synthesized
1547  *      for all devices on the device list to the removed notifier to remove
1548  *      the need for special case cleanup code.
1549  */
1550
1551 int unregister_netdevice_notifier(struct notifier_block *nb)
1552 {
1553         struct net_device *dev;
1554         struct net *net;
1555         int err;
1556
1557         rtnl_lock();
1558         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1559         if (err)
1560                 goto unlock;
1561
1562         for_each_net(net) {
1563                 for_each_netdev(net, dev) {
1564                         if (dev->flags & IFF_UP) {
1565                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1566                                                         dev);
1567                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1568                         }
1569                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1570                 }
1571         }
1572 unlock:
1573         rtnl_unlock();
1574         return err;
1575 }
1576 EXPORT_SYMBOL(unregister_netdevice_notifier);
1577
1578 /**
1579  *      call_netdevice_notifiers_info - call all network notifier blocks
1580  *      @val: value passed unmodified to notifier function
1581  *      @dev: net_device pointer passed unmodified to notifier function
1582  *      @info: notifier information data
1583  *
1584  *      Call all network notifier blocks.  Parameters and return value
1585  *      are as for raw_notifier_call_chain().
1586  */
1587
1588 static int call_netdevice_notifiers_info(unsigned long val,
1589                                          struct net_device *dev,
1590                                          struct netdev_notifier_info *info)
1591 {
1592         ASSERT_RTNL();
1593         netdev_notifier_info_init(info, dev);
1594         return raw_notifier_call_chain(&netdev_chain, val, info);
1595 }
1596
1597 /**
1598  *      call_netdevice_notifiers - call all network notifier blocks
1599  *      @val: value passed unmodified to notifier function
1600  *      @dev: net_device pointer passed unmodified to notifier function
1601  *
1602  *      Call all network notifier blocks.  Parameters and return value
1603  *      are as for raw_notifier_call_chain().
1604  */
1605
1606 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1607 {
1608         struct netdev_notifier_info info;
1609
1610         return call_netdevice_notifiers_info(val, dev, &info);
1611 }
1612 EXPORT_SYMBOL(call_netdevice_notifiers);
1613
1614 static struct static_key netstamp_needed __read_mostly;
1615 #ifdef HAVE_JUMP_LABEL
1616 /* We are not allowed to call static_key_slow_dec() from irq context
1617  * If net_disable_timestamp() is called from irq context, defer the
1618  * static_key_slow_dec() calls.
1619  */
1620 static atomic_t netstamp_needed_deferred;
1621 #endif
1622
1623 void net_enable_timestamp(void)
1624 {
1625 #ifdef HAVE_JUMP_LABEL
1626         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1627
1628         if (deferred) {
1629                 while (--deferred)
1630                         static_key_slow_dec(&netstamp_needed);
1631                 return;
1632         }
1633 #endif
1634         static_key_slow_inc(&netstamp_needed);
1635 }
1636 EXPORT_SYMBOL(net_enable_timestamp);
1637
1638 void net_disable_timestamp(void)
1639 {
1640 #ifdef HAVE_JUMP_LABEL
1641         if (in_interrupt()) {
1642                 atomic_inc(&netstamp_needed_deferred);
1643                 return;
1644         }
1645 #endif
1646         static_key_slow_dec(&netstamp_needed);
1647 }
1648 EXPORT_SYMBOL(net_disable_timestamp);
1649
1650 static inline void net_timestamp_set(struct sk_buff *skb)
1651 {
1652         skb->tstamp.tv64 = 0;
1653         if (static_key_false(&netstamp_needed))
1654                 __net_timestamp(skb);
1655 }
1656
1657 #define net_timestamp_check(COND, SKB)                  \
1658         if (static_key_false(&netstamp_needed)) {               \
1659                 if ((COND) && !(SKB)->tstamp.tv64)      \
1660                         __net_timestamp(SKB);           \
1661         }                                               \
1662
1663 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1664 {
1665         unsigned int len;
1666
1667         if (!(dev->flags & IFF_UP))
1668                 return false;
1669
1670         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1671         if (skb->len <= len)
1672                 return true;
1673
1674         /* if TSO is enabled, we don't care about the length as the packet
1675          * could be forwarded without being segmented before
1676          */
1677         if (skb_is_gso(skb))
1678                 return true;
1679
1680         return false;
1681 }
1682 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1683
1684 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1685 {
1686         if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1687                 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1688                         atomic_long_inc(&dev->rx_dropped);
1689                         kfree_skb(skb);
1690                         return NET_RX_DROP;
1691                 }
1692         }
1693
1694         if (unlikely(!is_skb_forwardable(dev, skb))) {
1695                 atomic_long_inc(&dev->rx_dropped);
1696                 kfree_skb(skb);
1697                 return NET_RX_DROP;
1698         }
1699
1700         skb_scrub_packet(skb, true);
1701         skb->protocol = eth_type_trans(skb, dev);
1702
1703         return 0;
1704 }
1705 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1706
1707 /**
1708  * dev_forward_skb - loopback an skb to another netif
1709  *
1710  * @dev: destination network device
1711  * @skb: buffer to forward
1712  *
1713  * return values:
1714  *      NET_RX_SUCCESS  (no congestion)
1715  *      NET_RX_DROP     (packet was dropped, but freed)
1716  *
1717  * dev_forward_skb can be used for injecting an skb from the
1718  * start_xmit function of one device into the receive queue
1719  * of another device.
1720  *
1721  * The receiving device may be in another namespace, so
1722  * we have to clear all information in the skb that could
1723  * impact namespace isolation.
1724  */
1725 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1726 {
1727         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1728 }
1729 EXPORT_SYMBOL_GPL(dev_forward_skb);
1730
1731 static inline int deliver_skb(struct sk_buff *skb,
1732                               struct packet_type *pt_prev,
1733                               struct net_device *orig_dev)
1734 {
1735         if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1736                 return -ENOMEM;
1737         atomic_inc(&skb->users);
1738         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1739 }
1740
1741 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1742 {
1743         if (!ptype->af_packet_priv || !skb->sk)
1744                 return false;
1745
1746         if (ptype->id_match)
1747                 return ptype->id_match(ptype, skb->sk);
1748         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1749                 return true;
1750
1751         return false;
1752 }
1753
1754 /*
1755  *      Support routine. Sends outgoing frames to any network
1756  *      taps currently in use.
1757  */
1758
1759 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1760 {
1761         struct packet_type *ptype;
1762         struct sk_buff *skb2 = NULL;
1763         struct packet_type *pt_prev = NULL;
1764
1765         rcu_read_lock();
1766         list_for_each_entry_rcu(ptype, &ptype_all, list) {
1767                 /* Never send packets back to the socket
1768                  * they originated from - MvS (miquels@drinkel.ow.org)
1769                  */
1770                 if ((ptype->dev == dev || !ptype->dev) &&
1771                     (!skb_loop_sk(ptype, skb))) {
1772                         if (pt_prev) {
1773                                 deliver_skb(skb2, pt_prev, skb->dev);
1774                                 pt_prev = ptype;
1775                                 continue;
1776                         }
1777
1778                         skb2 = skb_clone(skb, GFP_ATOMIC);
1779                         if (!skb2)
1780                                 break;
1781
1782                         net_timestamp_set(skb2);
1783
1784                         /* skb->nh should be correctly
1785                            set by sender, so that the second statement is
1786                            just protection against buggy protocols.
1787                          */
1788                         skb_reset_mac_header(skb2);
1789
1790                         if (skb_network_header(skb2) < skb2->data ||
1791                             skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1792                                 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1793                                                      ntohs(skb2->protocol),
1794                                                      dev->name);
1795                                 skb_reset_network_header(skb2);
1796                         }
1797
1798                         skb2->transport_header = skb2->network_header;
1799                         skb2->pkt_type = PACKET_OUTGOING;
1800                         pt_prev = ptype;
1801                 }
1802         }
1803         if (pt_prev)
1804                 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1805         rcu_read_unlock();
1806 }
1807
1808 /**
1809  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1810  * @dev: Network device
1811  * @txq: number of queues available
1812  *
1813  * If real_num_tx_queues is changed the tc mappings may no longer be
1814  * valid. To resolve this verify the tc mapping remains valid and if
1815  * not NULL the mapping. With no priorities mapping to this
1816  * offset/count pair it will no longer be used. In the worst case TC0
1817  * is invalid nothing can be done so disable priority mappings. If is
1818  * expected that drivers will fix this mapping if they can before
1819  * calling netif_set_real_num_tx_queues.
1820  */
1821 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1822 {
1823         int i;
1824         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1825
1826         /* If TC0 is invalidated disable TC mapping */
1827         if (tc->offset + tc->count > txq) {
1828                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1829                 dev->num_tc = 0;
1830                 return;
1831         }
1832
1833         /* Invalidated prio to tc mappings set to TC0 */
1834         for (i = 1; i < TC_BITMASK + 1; i++) {
1835                 int q = netdev_get_prio_tc_map(dev, i);
1836
1837                 tc = &dev->tc_to_txq[q];
1838                 if (tc->offset + tc->count > txq) {
1839                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1840                                 i, q);
1841                         netdev_set_prio_tc_map(dev, i, 0);
1842                 }
1843         }
1844 }
1845
1846 #ifdef CONFIG_XPS
1847 static DEFINE_MUTEX(xps_map_mutex);
1848 #define xmap_dereference(P)             \
1849         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1850
1851 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1852                                         int cpu, u16 index)
1853 {
1854         struct xps_map *map = NULL;
1855         int pos;
1856
1857         if (dev_maps)
1858                 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1859
1860         for (pos = 0; map && pos < map->len; pos++) {
1861                 if (map->queues[pos] == index) {
1862                         if (map->len > 1) {
1863                                 map->queues[pos] = map->queues[--map->len];
1864                         } else {
1865                                 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1866                                 kfree_rcu(map, rcu);
1867                                 map = NULL;
1868                         }
1869                         break;
1870                 }
1871         }
1872
1873         return map;
1874 }
1875
1876 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1877 {
1878         struct xps_dev_maps *dev_maps;
1879         int cpu, i;
1880         bool active = false;
1881
1882         mutex_lock(&xps_map_mutex);
1883         dev_maps = xmap_dereference(dev->xps_maps);
1884
1885         if (!dev_maps)
1886                 goto out_no_maps;
1887
1888         for_each_possible_cpu(cpu) {
1889                 for (i = index; i < dev->num_tx_queues; i++) {
1890                         if (!remove_xps_queue(dev_maps, cpu, i))
1891                                 break;
1892                 }
1893                 if (i == dev->num_tx_queues)
1894                         active = true;
1895         }
1896
1897         if (!active) {
1898                 RCU_INIT_POINTER(dev->xps_maps, NULL);
1899                 kfree_rcu(dev_maps, rcu);
1900         }
1901
1902         for (i = index; i < dev->num_tx_queues; i++)
1903                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1904                                              NUMA_NO_NODE);
1905
1906 out_no_maps:
1907         mutex_unlock(&xps_map_mutex);
1908 }
1909
1910 static struct xps_map *expand_xps_map(struct xps_map *map,
1911                                       int cpu, u16 index)
1912 {
1913         struct xps_map *new_map;
1914         int alloc_len = XPS_MIN_MAP_ALLOC;
1915         int i, pos;
1916
1917         for (pos = 0; map && pos < map->len; pos++) {
1918                 if (map->queues[pos] != index)
1919                         continue;
1920                 return map;
1921         }
1922
1923         /* Need to add queue to this CPU's existing map */
1924         if (map) {
1925                 if (pos < map->alloc_len)
1926                         return map;
1927
1928                 alloc_len = map->alloc_len * 2;
1929         }
1930
1931         /* Need to allocate new map to store queue on this CPU's map */
1932         new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1933                                cpu_to_node(cpu));
1934         if (!new_map)
1935                 return NULL;
1936
1937         for (i = 0; i < pos; i++)
1938                 new_map->queues[i] = map->queues[i];
1939         new_map->alloc_len = alloc_len;
1940         new_map->len = pos;
1941
1942         return new_map;
1943 }
1944
1945 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
1946                         u16 index)
1947 {
1948         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1949         struct xps_map *map, *new_map;
1950         int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1951         int cpu, numa_node_id = -2;
1952         bool active = false;
1953
1954         mutex_lock(&xps_map_mutex);
1955
1956         dev_maps = xmap_dereference(dev->xps_maps);
1957
1958         /* allocate memory for queue storage */
1959         for_each_online_cpu(cpu) {
1960                 if (!cpumask_test_cpu(cpu, mask))
1961                         continue;
1962
1963                 if (!new_dev_maps)
1964                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1965                 if (!new_dev_maps) {
1966                         mutex_unlock(&xps_map_mutex);
1967                         return -ENOMEM;
1968                 }
1969
1970                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1971                                  NULL;
1972
1973                 map = expand_xps_map(map, cpu, index);
1974                 if (!map)
1975                         goto error;
1976
1977                 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1978         }
1979
1980         if (!new_dev_maps)
1981                 goto out_no_new_maps;
1982
1983         for_each_possible_cpu(cpu) {
1984                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1985                         /* add queue to CPU maps */
1986                         int pos = 0;
1987
1988                         map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1989                         while ((pos < map->len) && (map->queues[pos] != index))
1990                                 pos++;
1991
1992                         if (pos == map->len)
1993                                 map->queues[map->len++] = index;
1994 #ifdef CONFIG_NUMA
1995                         if (numa_node_id == -2)
1996                                 numa_node_id = cpu_to_node(cpu);
1997                         else if (numa_node_id != cpu_to_node(cpu))
1998                                 numa_node_id = -1;
1999 #endif
2000                 } else if (dev_maps) {
2001                         /* fill in the new device map from the old device map */
2002                         map = xmap_dereference(dev_maps->cpu_map[cpu]);
2003                         RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2004                 }
2005
2006         }
2007
2008         rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2009
2010         /* Cleanup old maps */
2011         if (dev_maps) {
2012                 for_each_possible_cpu(cpu) {
2013                         new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2014                         map = xmap_dereference(dev_maps->cpu_map[cpu]);
2015                         if (map && map != new_map)
2016                                 kfree_rcu(map, rcu);
2017                 }
2018
2019                 kfree_rcu(dev_maps, rcu);
2020         }
2021
2022         dev_maps = new_dev_maps;
2023         active = true;
2024
2025 out_no_new_maps:
2026         /* update Tx queue numa node */
2027         netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2028                                      (numa_node_id >= 0) ? numa_node_id :
2029                                      NUMA_NO_NODE);
2030
2031         if (!dev_maps)
2032                 goto out_no_maps;
2033
2034         /* removes queue from unused CPUs */
2035         for_each_possible_cpu(cpu) {
2036                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2037                         continue;
2038
2039                 if (remove_xps_queue(dev_maps, cpu, index))
2040                         active = true;
2041         }
2042
2043         /* free map if not active */
2044         if (!active) {
2045                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2046                 kfree_rcu(dev_maps, rcu);
2047         }
2048
2049 out_no_maps:
2050         mutex_unlock(&xps_map_mutex);
2051
2052         return 0;
2053 error:
2054         /* remove any maps that we added */
2055         for_each_possible_cpu(cpu) {
2056                 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2057                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2058                                  NULL;
2059                 if (new_map && new_map != map)
2060                         kfree(new_map);
2061         }
2062
2063         mutex_unlock(&xps_map_mutex);
2064
2065         kfree(new_dev_maps);
2066         return -ENOMEM;
2067 }
2068 EXPORT_SYMBOL(netif_set_xps_queue);
2069
2070 #endif
2071 /*
2072  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2073  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2074  */
2075 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2076 {
2077         int rc;
2078
2079         if (txq < 1 || txq > dev->num_tx_queues)
2080                 return -EINVAL;
2081
2082         if (dev->reg_state == NETREG_REGISTERED ||
2083             dev->reg_state == NETREG_UNREGISTERING) {
2084                 ASSERT_RTNL();
2085
2086                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2087                                                   txq);
2088                 if (rc)
2089                         return rc;
2090
2091                 if (dev->num_tc)
2092                         netif_setup_tc(dev, txq);
2093
2094                 if (txq < dev->real_num_tx_queues) {
2095                         qdisc_reset_all_tx_gt(dev, txq);
2096 #ifdef CONFIG_XPS
2097                         netif_reset_xps_queues_gt(dev, txq);
2098 #endif
2099                 }
2100         }
2101
2102         dev->real_num_tx_queues = txq;
2103         return 0;
2104 }
2105 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2106
2107 #ifdef CONFIG_SYSFS
2108 /**
2109  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2110  *      @dev: Network device
2111  *      @rxq: Actual number of RX queues
2112  *
2113  *      This must be called either with the rtnl_lock held or before
2114  *      registration of the net device.  Returns 0 on success, or a
2115  *      negative error code.  If called before registration, it always
2116  *      succeeds.
2117  */
2118 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2119 {
2120         int rc;
2121
2122         if (rxq < 1 || rxq > dev->num_rx_queues)
2123                 return -EINVAL;
2124
2125         if (dev->reg_state == NETREG_REGISTERED) {
2126                 ASSERT_RTNL();
2127
2128                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2129                                                   rxq);
2130                 if (rc)
2131                         return rc;
2132         }
2133
2134         dev->real_num_rx_queues = rxq;
2135         return 0;
2136 }
2137 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2138 #endif
2139
2140 /**
2141  * netif_get_num_default_rss_queues - default number of RSS queues
2142  *
2143  * This routine should set an upper limit on the number of RSS queues
2144  * used by default by multiqueue devices.
2145  */
2146 int netif_get_num_default_rss_queues(void)
2147 {
2148         return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2149 }
2150 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2151
2152 static inline void __netif_reschedule(struct Qdisc *q)
2153 {
2154         struct softnet_data *sd;
2155         unsigned long flags;
2156
2157         local_irq_save(flags);
2158         sd = &__get_cpu_var(softnet_data);
2159         q->next_sched = NULL;
2160         *sd->output_queue_tailp = q;
2161         sd->output_queue_tailp = &q->next_sched;
2162         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2163         local_irq_restore(flags);
2164 }
2165
2166 void __netif_schedule(struct Qdisc *q)
2167 {
2168         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2169                 __netif_reschedule(q);
2170 }
2171 EXPORT_SYMBOL(__netif_schedule);
2172
2173 struct dev_kfree_skb_cb {
2174         enum skb_free_reason reason;
2175 };
2176
2177 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2178 {
2179         return (struct dev_kfree_skb_cb *)skb->cb;
2180 }
2181
2182 void netif_schedule_queue(struct netdev_queue *txq)
2183 {
2184         rcu_read_lock();
2185         if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2186                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2187
2188                 __netif_schedule(q);
2189         }
2190         rcu_read_unlock();
2191 }
2192 EXPORT_SYMBOL(netif_schedule_queue);
2193
2194 /**
2195  *      netif_wake_subqueue - allow sending packets on subqueue
2196  *      @dev: network device
2197  *      @queue_index: sub queue index
2198  *
2199  * Resume individual transmit queue of a device with multiple transmit queues.
2200  */
2201 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2202 {
2203         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2204
2205         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2206                 struct Qdisc *q;
2207
2208                 rcu_read_lock();
2209                 q = rcu_dereference(txq->qdisc);
2210                 __netif_schedule(q);
2211                 rcu_read_unlock();
2212         }
2213 }
2214 EXPORT_SYMBOL(netif_wake_subqueue);
2215
2216 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2217 {
2218         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2219                 struct Qdisc *q;
2220
2221                 rcu_read_lock();
2222                 q = rcu_dereference(dev_queue->qdisc);
2223                 __netif_schedule(q);
2224                 rcu_read_unlock();
2225         }
2226 }
2227 EXPORT_SYMBOL(netif_tx_wake_queue);
2228
2229 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2230 {
2231         unsigned long flags;
2232
2233         if (likely(atomic_read(&skb->users) == 1)) {
2234                 smp_rmb();
2235                 atomic_set(&skb->users, 0);
2236         } else if (likely(!atomic_dec_and_test(&skb->users))) {
2237                 return;
2238         }
2239         get_kfree_skb_cb(skb)->reason = reason;
2240         local_irq_save(flags);
2241         skb->next = __this_cpu_read(softnet_data.completion_queue);
2242         __this_cpu_write(softnet_data.completion_queue, skb);
2243         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2244         local_irq_restore(flags);
2245 }
2246 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2247
2248 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2249 {
2250         if (in_irq() || irqs_disabled())
2251                 __dev_kfree_skb_irq(skb, reason);
2252         else
2253                 dev_kfree_skb(skb);
2254 }
2255 EXPORT_SYMBOL(__dev_kfree_skb_any);
2256
2257
2258 /**
2259  * netif_device_detach - mark device as removed
2260  * @dev: network device
2261  *
2262  * Mark device as removed from system and therefore no longer available.
2263  */
2264 void netif_device_detach(struct net_device *dev)
2265 {
2266         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2267             netif_running(dev)) {
2268                 netif_tx_stop_all_queues(dev);
2269         }
2270 }
2271 EXPORT_SYMBOL(netif_device_detach);
2272
2273 /**
2274  * netif_device_attach - mark device as attached
2275  * @dev: network device
2276  *
2277  * Mark device as attached from system and restart if needed.
2278  */
2279 void netif_device_attach(struct net_device *dev)
2280 {
2281         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2282             netif_running(dev)) {
2283                 netif_tx_wake_all_queues(dev);
2284                 __netdev_watchdog_up(dev);
2285         }
2286 }
2287 EXPORT_SYMBOL(netif_device_attach);
2288
2289 static void skb_warn_bad_offload(const struct sk_buff *skb)
2290 {
2291         static const netdev_features_t null_features = 0;
2292         struct net_device *dev = skb->dev;
2293         const char *driver = "";
2294
2295         if (!net_ratelimit())
2296                 return;
2297
2298         if (dev && dev->dev.parent)
2299                 driver = dev_driver_string(dev->dev.parent);
2300
2301         WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2302              "gso_type=%d ip_summed=%d\n",
2303              driver, dev ? &dev->features : &null_features,
2304              skb->sk ? &skb->sk->sk_route_caps : &null_features,
2305              skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2306              skb_shinfo(skb)->gso_type, skb->ip_summed);
2307 }
2308
2309 /*
2310  * Invalidate hardware checksum when packet is to be mangled, and
2311  * complete checksum manually on outgoing path.
2312  */
2313 int skb_checksum_help(struct sk_buff *skb)
2314 {
2315         __wsum csum;
2316         int ret = 0, offset;
2317
2318         if (skb->ip_summed == CHECKSUM_COMPLETE)
2319                 goto out_set_summed;
2320
2321         if (unlikely(skb_shinfo(skb)->gso_size)) {
2322                 skb_warn_bad_offload(skb);
2323                 return -EINVAL;
2324         }
2325
2326         /* Before computing a checksum, we should make sure no frag could
2327          * be modified by an external entity : checksum could be wrong.
2328          */
2329         if (skb_has_shared_frag(skb)) {
2330                 ret = __skb_linearize(skb);
2331                 if (ret)
2332                         goto out;
2333         }
2334
2335         offset = skb_checksum_start_offset(skb);
2336         BUG_ON(offset >= skb_headlen(skb));
2337         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2338
2339         offset += skb->csum_offset;
2340         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2341
2342         if (skb_cloned(skb) &&
2343             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2344                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2345                 if (ret)
2346                         goto out;
2347         }
2348
2349         *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2350 out_set_summed:
2351         skb->ip_summed = CHECKSUM_NONE;
2352 out:
2353         return ret;
2354 }
2355 EXPORT_SYMBOL(skb_checksum_help);
2356
2357 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2358 {
2359         unsigned int vlan_depth = skb->mac_len;
2360         __be16 type = skb->protocol;
2361
2362         /* Tunnel gso handlers can set protocol to ethernet. */
2363         if (type == htons(ETH_P_TEB)) {
2364                 struct ethhdr *eth;
2365
2366                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2367                         return 0;
2368
2369                 eth = (struct ethhdr *)skb_mac_header(skb);
2370                 type = eth->h_proto;
2371         }
2372
2373         /* if skb->protocol is 802.1Q/AD then the header should already be
2374          * present at mac_len - VLAN_HLEN (if mac_len > 0), or at
2375          * ETH_HLEN otherwise
2376          */
2377         if (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) {
2378                 if (vlan_depth) {
2379                         if (WARN_ON(vlan_depth < VLAN_HLEN))
2380                                 return 0;
2381                         vlan_depth -= VLAN_HLEN;
2382                 } else {
2383                         vlan_depth = ETH_HLEN;
2384                 }
2385                 do {
2386                         struct vlan_hdr *vh;
2387
2388                         if (unlikely(!pskb_may_pull(skb,
2389                                                     vlan_depth + VLAN_HLEN)))
2390                                 return 0;
2391
2392                         vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2393                         type = vh->h_vlan_encapsulated_proto;
2394                         vlan_depth += VLAN_HLEN;
2395                 } while (type == htons(ETH_P_8021Q) ||
2396                          type == htons(ETH_P_8021AD));
2397         }
2398
2399         *depth = vlan_depth;
2400
2401         return type;
2402 }
2403
2404 /**
2405  *      skb_mac_gso_segment - mac layer segmentation handler.
2406  *      @skb: buffer to segment
2407  *      @features: features for the output path (see dev->features)
2408  */
2409 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2410                                     netdev_features_t features)
2411 {
2412         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2413         struct packet_offload *ptype;
2414         int vlan_depth = skb->mac_len;
2415         __be16 type = skb_network_protocol(skb, &vlan_depth);
2416
2417         if (unlikely(!type))
2418                 return ERR_PTR(-EINVAL);
2419
2420         __skb_pull(skb, vlan_depth);
2421
2422         rcu_read_lock();
2423         list_for_each_entry_rcu(ptype, &offload_base, list) {
2424                 if (ptype->type == type && ptype->callbacks.gso_segment) {
2425                         segs = ptype->callbacks.gso_segment(skb, features);
2426                         break;
2427                 }
2428         }
2429         rcu_read_unlock();
2430
2431         __skb_push(skb, skb->data - skb_mac_header(skb));
2432
2433         return segs;
2434 }
2435 EXPORT_SYMBOL(skb_mac_gso_segment);
2436
2437
2438 /* openvswitch calls this on rx path, so we need a different check.
2439  */
2440 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2441 {
2442         if (tx_path)
2443                 return skb->ip_summed != CHECKSUM_PARTIAL;
2444         else
2445                 return skb->ip_summed == CHECKSUM_NONE;
2446 }
2447
2448 /**
2449  *      __skb_gso_segment - Perform segmentation on skb.
2450  *      @skb: buffer to segment
2451  *      @features: features for the output path (see dev->features)
2452  *      @tx_path: whether it is called in TX path
2453  *
2454  *      This function segments the given skb and returns a list of segments.
2455  *
2456  *      It may return NULL if the skb requires no segmentation.  This is
2457  *      only possible when GSO is used for verifying header integrity.
2458  */
2459 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2460                                   netdev_features_t features, bool tx_path)
2461 {
2462         if (unlikely(skb_needs_check(skb, tx_path))) {
2463                 int err;
2464
2465                 skb_warn_bad_offload(skb);
2466
2467                 err = skb_cow_head(skb, 0);
2468                 if (err < 0)
2469                         return ERR_PTR(err);
2470         }
2471
2472         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2473         SKB_GSO_CB(skb)->encap_level = 0;
2474
2475         skb_reset_mac_header(skb);
2476         skb_reset_mac_len(skb);
2477
2478         return skb_mac_gso_segment(skb, features);
2479 }
2480 EXPORT_SYMBOL(__skb_gso_segment);
2481
2482 /* Take action when hardware reception checksum errors are detected. */
2483 #ifdef CONFIG_BUG
2484 void netdev_rx_csum_fault(struct net_device *dev)
2485 {
2486         if (net_ratelimit()) {
2487                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2488                 dump_stack();
2489         }
2490 }
2491 EXPORT_SYMBOL(netdev_rx_csum_fault);
2492 #endif
2493
2494 /* Actually, we should eliminate this check as soon as we know, that:
2495  * 1. IOMMU is present and allows to map all the memory.
2496  * 2. No high memory really exists on this machine.
2497  */
2498
2499 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2500 {
2501 #ifdef CONFIG_HIGHMEM
2502         int i;
2503         if (!(dev->features & NETIF_F_HIGHDMA)) {
2504                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2505                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2506                         if (PageHighMem(skb_frag_page(frag)))
2507                                 return 1;
2508                 }
2509         }
2510
2511         if (PCI_DMA_BUS_IS_PHYS) {
2512                 struct device *pdev = dev->dev.parent;
2513
2514                 if (!pdev)
2515                         return 0;
2516                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2517                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2518                         dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2519                         if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2520                                 return 1;
2521                 }
2522         }
2523 #endif
2524         return 0;
2525 }
2526
2527 /* If MPLS offload request, verify we are testing hardware MPLS features
2528  * instead of standard features for the netdev.
2529  */
2530 #ifdef CONFIG_NET_MPLS_GSO
2531 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2532                                            netdev_features_t features,
2533                                            __be16 type)
2534 {
2535         if (type == htons(ETH_P_MPLS_UC) || type == htons(ETH_P_MPLS_MC))
2536                 features &= skb->dev->mpls_features;
2537
2538         return features;
2539 }
2540 #else
2541 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2542                                            netdev_features_t features,
2543                                            __be16 type)
2544 {
2545         return features;
2546 }
2547 #endif
2548
2549 static netdev_features_t harmonize_features(struct sk_buff *skb,
2550         netdev_features_t features)
2551 {
2552         int tmp;
2553         __be16 type;
2554
2555         type = skb_network_protocol(skb, &tmp);
2556         features = net_mpls_features(skb, features, type);
2557
2558         if (skb->ip_summed != CHECKSUM_NONE &&
2559             !can_checksum_protocol(features, type)) {
2560                 features &= ~NETIF_F_ALL_CSUM;
2561         } else if (illegal_highdma(skb->dev, skb)) {
2562                 features &= ~NETIF_F_SG;
2563         }
2564
2565         return features;
2566 }
2567
2568 netdev_features_t netif_skb_features(struct sk_buff *skb)
2569 {
2570         const struct net_device *dev = skb->dev;
2571         netdev_features_t features = dev->features;
2572         u16 gso_segs = skb_shinfo(skb)->gso_segs;
2573         __be16 protocol = skb->protocol;
2574
2575         if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
2576                 features &= ~NETIF_F_GSO_MASK;
2577
2578         if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) {
2579                 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2580                 protocol = veh->h_vlan_encapsulated_proto;
2581         } else if (!vlan_tx_tag_present(skb)) {
2582                 return harmonize_features(skb, features);
2583         }
2584
2585         features = netdev_intersect_features(features,
2586                                              dev->vlan_features |
2587                                              NETIF_F_HW_VLAN_CTAG_TX |
2588                                              NETIF_F_HW_VLAN_STAG_TX);
2589
2590         if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD))
2591                 features = netdev_intersect_features(features,
2592                                                      NETIF_F_SG |
2593                                                      NETIF_F_HIGHDMA |
2594                                                      NETIF_F_FRAGLIST |
2595                                                      NETIF_F_GEN_CSUM |
2596                                                      NETIF_F_HW_VLAN_CTAG_TX |
2597                                                      NETIF_F_HW_VLAN_STAG_TX);
2598
2599         return harmonize_features(skb, features);
2600 }
2601 EXPORT_SYMBOL(netif_skb_features);
2602
2603 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2604                     struct netdev_queue *txq, bool more)
2605 {
2606         unsigned int len;
2607         int rc;
2608
2609         if (!list_empty(&ptype_all))
2610                 dev_queue_xmit_nit(skb, dev);
2611
2612         len = skb->len;
2613         trace_net_dev_start_xmit(skb, dev);
2614         rc = netdev_start_xmit(skb, dev, txq, more);
2615         trace_net_dev_xmit(skb, rc, dev, len);
2616
2617         return rc;
2618 }
2619
2620 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2621                                     struct netdev_queue *txq, int *ret)
2622 {
2623         struct sk_buff *skb = first;
2624         int rc = NETDEV_TX_OK;
2625
2626         while (skb) {
2627                 struct sk_buff *next = skb->next;
2628
2629                 skb->next = NULL;
2630                 rc = xmit_one(skb, dev, txq, next != NULL);
2631                 if (unlikely(!dev_xmit_complete(rc))) {
2632                         skb->next = next;
2633                         goto out;
2634                 }
2635
2636                 skb = next;
2637                 if (netif_xmit_stopped(txq) && skb) {
2638                         rc = NETDEV_TX_BUSY;
2639                         break;
2640                 }
2641         }
2642
2643 out:
2644         *ret = rc;
2645         return skb;
2646 }
2647
2648 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2649                                           netdev_features_t features)
2650 {
2651         if (vlan_tx_tag_present(skb) &&
2652             !vlan_hw_offload_capable(features, skb->vlan_proto)) {
2653                 skb = __vlan_put_tag(skb, skb->vlan_proto,
2654                                      vlan_tx_tag_get(skb));
2655                 if (skb)
2656                         skb->vlan_tci = 0;
2657         }
2658         return skb;
2659 }
2660
2661 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2662 {
2663         netdev_features_t features;
2664
2665         if (skb->next)
2666                 return skb;
2667
2668         features = netif_skb_features(skb);
2669         skb = validate_xmit_vlan(skb, features);
2670         if (unlikely(!skb))
2671                 goto out_null;
2672
2673         /* If encapsulation offload request, verify we are testing
2674          * hardware encapsulation features instead of standard
2675          * features for the netdev
2676          */
2677         if (skb->encapsulation)
2678                 features &= dev->hw_enc_features;
2679
2680         if (netif_needs_gso(skb, features)) {
2681                 struct sk_buff *segs;
2682
2683                 segs = skb_gso_segment(skb, features);
2684                 if (IS_ERR(segs)) {
2685                         segs = NULL;
2686                 } else if (segs) {
2687                         consume_skb(skb);
2688                         skb = segs;
2689                 }
2690         } else {
2691                 if (skb_needs_linearize(skb, features) &&
2692                     __skb_linearize(skb))
2693                         goto out_kfree_skb;
2694
2695                 /* If packet is not checksummed and device does not
2696                  * support checksumming for this protocol, complete
2697                  * checksumming here.
2698                  */
2699                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2700                         if (skb->encapsulation)
2701                                 skb_set_inner_transport_header(skb,
2702                                                                skb_checksum_start_offset(skb));
2703                         else
2704                                 skb_set_transport_header(skb,
2705                                                          skb_checksum_start_offset(skb));
2706                         if (!(features & NETIF_F_ALL_CSUM) &&
2707                             skb_checksum_help(skb))
2708                                 goto out_kfree_skb;
2709                 }
2710         }
2711
2712         return skb;
2713
2714 out_kfree_skb:
2715         kfree_skb(skb);
2716 out_null:
2717         return NULL;
2718 }
2719
2720 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2721 {
2722         struct sk_buff *next, *head = NULL, *tail;
2723
2724         for (; skb != NULL; skb = next) {
2725                 next = skb->next;
2726                 skb->next = NULL;
2727
2728                 /* in case skb wont be segmented, point to itself */
2729                 skb->prev = skb;
2730
2731                 skb = validate_xmit_skb(skb, dev);
2732                 if (!skb)
2733                         continue;
2734
2735                 if (!head)
2736                         head = skb;
2737                 else
2738                         tail->next = skb;
2739                 /* If skb was segmented, skb->prev points to
2740                  * the last segment. If not, it still contains skb.
2741                  */
2742                 tail = skb->prev;
2743         }
2744         return head;
2745 }
2746
2747 static void qdisc_pkt_len_init(struct sk_buff *skb)
2748 {
2749         const struct skb_shared_info *shinfo = skb_shinfo(skb);
2750
2751         qdisc_skb_cb(skb)->pkt_len = skb->len;
2752
2753         /* To get more precise estimation of bytes sent on wire,
2754          * we add to pkt_len the headers size of all segments
2755          */
2756         if (shinfo->gso_size)  {
2757                 unsigned int hdr_len;
2758                 u16 gso_segs = shinfo->gso_segs;
2759
2760                 /* mac layer + network layer */
2761                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2762
2763                 /* + transport layer */
2764                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2765                         hdr_len += tcp_hdrlen(skb);
2766                 else
2767                         hdr_len += sizeof(struct udphdr);
2768
2769                 if (shinfo->gso_type & SKB_GSO_DODGY)
2770                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2771                                                 shinfo->gso_size);
2772
2773                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2774         }
2775 }
2776
2777 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2778                                  struct net_device *dev,
2779                                  struct netdev_queue *txq)
2780 {
2781         spinlock_t *root_lock = qdisc_lock(q);
2782         bool contended;
2783         int rc;
2784
2785         qdisc_pkt_len_init(skb);
2786         qdisc_calculate_pkt_len(skb, q);
2787         /*
2788          * Heuristic to force contended enqueues to serialize on a
2789          * separate lock before trying to get qdisc main lock.
2790          * This permits __QDISC___STATE_RUNNING owner to get the lock more
2791          * often and dequeue packets faster.
2792          */
2793         contended = qdisc_is_running(q);
2794         if (unlikely(contended))
2795                 spin_lock(&q->busylock);
2796
2797         spin_lock(root_lock);
2798         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2799                 kfree_skb(skb);
2800                 rc = NET_XMIT_DROP;
2801         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2802                    qdisc_run_begin(q)) {
2803                 /*
2804                  * This is a work-conserving queue; there are no old skbs
2805                  * waiting to be sent out; and the qdisc is not running -
2806                  * xmit the skb directly.
2807                  */
2808
2809                 qdisc_bstats_update(q, skb);
2810
2811                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
2812                         if (unlikely(contended)) {
2813                                 spin_unlock(&q->busylock);
2814                                 contended = false;
2815                         }
2816                         __qdisc_run(q);
2817                 } else
2818                         qdisc_run_end(q);
2819
2820                 rc = NET_XMIT_SUCCESS;
2821         } else {
2822                 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2823                 if (qdisc_run_begin(q)) {
2824                         if (unlikely(contended)) {
2825                                 spin_unlock(&q->busylock);
2826                                 contended = false;
2827                         }
2828                         __qdisc_run(q);
2829                 }
2830         }
2831         spin_unlock(root_lock);
2832         if (unlikely(contended))
2833                 spin_unlock(&q->busylock);
2834         return rc;
2835 }
2836
2837 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2838 static void skb_update_prio(struct sk_buff *skb)
2839 {
2840         struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2841
2842         if (!skb->priority && skb->sk && map) {
2843                 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2844
2845                 if (prioidx < map->priomap_len)
2846                         skb->priority = map->priomap[prioidx];
2847         }
2848 }
2849 #else
2850 #define skb_update_prio(skb)
2851 #endif
2852
2853 static DEFINE_PER_CPU(int, xmit_recursion);
2854 #define RECURSION_LIMIT 10
2855
2856 /**
2857  *      dev_loopback_xmit - loop back @skb
2858  *      @skb: buffer to transmit
2859  */
2860 int dev_loopback_xmit(struct sk_buff *skb)
2861 {
2862         skb_reset_mac_header(skb);
2863         __skb_pull(skb, skb_network_offset(skb));
2864         skb->pkt_type = PACKET_LOOPBACK;
2865         skb->ip_summed = CHECKSUM_UNNECESSARY;
2866         WARN_ON(!skb_dst(skb));
2867         skb_dst_force(skb);
2868         netif_rx_ni(skb);
2869         return 0;
2870 }
2871 EXPORT_SYMBOL(dev_loopback_xmit);
2872
2873 /**
2874  *      __dev_queue_xmit - transmit a buffer
2875  *      @skb: buffer to transmit
2876  *      @accel_priv: private data used for L2 forwarding offload
2877  *
2878  *      Queue a buffer for transmission to a network device. The caller must
2879  *      have set the device and priority and built the buffer before calling
2880  *      this function. The function can be called from an interrupt.
2881  *
2882  *      A negative errno code is returned on a failure. A success does not
2883  *      guarantee the frame will be transmitted as it may be dropped due
2884  *      to congestion or traffic shaping.
2885  *
2886  * -----------------------------------------------------------------------------------
2887  *      I notice this method can also return errors from the queue disciplines,
2888  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
2889  *      be positive.
2890  *
2891  *      Regardless of the return value, the skb is consumed, so it is currently
2892  *      difficult to retry a send to this method.  (You can bump the ref count
2893  *      before sending to hold a reference for retry if you are careful.)
2894  *
2895  *      When calling this method, interrupts MUST be enabled.  This is because
2896  *      the BH enable code must have IRQs enabled so that it will not deadlock.
2897  *          --BLG
2898  */
2899 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
2900 {
2901         struct net_device *dev = skb->dev;
2902         struct netdev_queue *txq;
2903         struct Qdisc *q;
2904         int rc = -ENOMEM;
2905
2906         skb_reset_mac_header(skb);
2907
2908         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
2909                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
2910
2911         /* Disable soft irqs for various locks below. Also
2912          * stops preemption for RCU.
2913          */
2914         rcu_read_lock_bh();
2915
2916         skb_update_prio(skb);
2917
2918         /* If device/qdisc don't need skb->dst, release it right now while
2919          * its hot in this cpu cache.
2920          */
2921         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2922                 skb_dst_drop(skb);
2923         else
2924                 skb_dst_force(skb);
2925
2926         txq = netdev_pick_tx(dev, skb, accel_priv);
2927         q = rcu_dereference_bh(txq->qdisc);
2928
2929 #ifdef CONFIG_NET_CLS_ACT
2930         skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2931 #endif
2932         trace_net_dev_queue(skb);
2933         if (q->enqueue) {
2934                 rc = __dev_xmit_skb(skb, q, dev, txq);
2935                 goto out;
2936         }
2937
2938         /* The device has no queue. Common case for software devices:
2939            loopback, all the sorts of tunnels...
2940
2941            Really, it is unlikely that netif_tx_lock protection is necessary
2942            here.  (f.e. loopback and IP tunnels are clean ignoring statistics
2943            counters.)
2944            However, it is possible, that they rely on protection
2945            made by us here.
2946
2947            Check this and shot the lock. It is not prone from deadlocks.
2948            Either shot noqueue qdisc, it is even simpler 8)
2949          */
2950         if (dev->flags & IFF_UP) {
2951                 int cpu = smp_processor_id(); /* ok because BHs are off */
2952
2953                 if (txq->xmit_lock_owner != cpu) {
2954
2955                         if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2956                                 goto recursion_alert;
2957
2958                         skb = validate_xmit_skb(skb, dev);
2959                         if (!skb)
2960                                 goto drop;
2961
2962                         HARD_TX_LOCK(dev, txq, cpu);
2963
2964                         if (!netif_xmit_stopped(txq)) {
2965                                 __this_cpu_inc(xmit_recursion);
2966                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
2967                                 __this_cpu_dec(xmit_recursion);
2968                                 if (dev_xmit_complete(rc)) {
2969                                         HARD_TX_UNLOCK(dev, txq);
2970                                         goto out;
2971                                 }
2972                         }
2973                         HARD_TX_UNLOCK(dev, txq);
2974                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2975                                              dev->name);
2976                 } else {
2977                         /* Recursion is detected! It is possible,
2978                          * unfortunately
2979                          */
2980 recursion_alert:
2981                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2982                                              dev->name);
2983                 }
2984         }
2985
2986         rc = -ENETDOWN;
2987 drop:
2988         rcu_read_unlock_bh();
2989
2990         atomic_long_inc(&dev->tx_dropped);
2991         kfree_skb_list(skb);
2992         return rc;
2993 out:
2994         rcu_read_unlock_bh();
2995         return rc;
2996 }
2997
2998 int dev_queue_xmit(struct sk_buff *skb)
2999 {
3000         return __dev_queue_xmit(skb, NULL);
3001 }
3002 EXPORT_SYMBOL(dev_queue_xmit);
3003
3004 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3005 {
3006         return __dev_queue_xmit(skb, accel_priv);
3007 }
3008 EXPORT_SYMBOL(dev_queue_xmit_accel);
3009
3010
3011 /*=======================================================================
3012                         Receiver routines
3013   =======================================================================*/
3014
3015 int netdev_max_backlog __read_mostly = 1000;
3016 EXPORT_SYMBOL(netdev_max_backlog);
3017
3018 int netdev_tstamp_prequeue __read_mostly = 1;
3019 int netdev_budget __read_mostly = 300;
3020 int weight_p __read_mostly = 64;            /* old backlog weight */
3021
3022 /* Called with irq disabled */
3023 static inline void ____napi_schedule(struct softnet_data *sd,
3024                                      struct napi_struct *napi)
3025 {
3026         list_add_tail(&napi->poll_list, &sd->poll_list);
3027         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3028 }
3029
3030 #ifdef CONFIG_RPS
3031
3032 /* One global table that all flow-based protocols share. */
3033 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3034 EXPORT_SYMBOL(rps_sock_flow_table);
3035
3036 struct static_key rps_needed __read_mostly;
3037
3038 static struct rps_dev_flow *
3039 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3040             struct rps_dev_flow *rflow, u16 next_cpu)
3041 {
3042         if (next_cpu != RPS_NO_CPU) {
3043 #ifdef CONFIG_RFS_ACCEL
3044                 struct netdev_rx_queue *rxqueue;
3045                 struct rps_dev_flow_table *flow_table;
3046                 struct rps_dev_flow *old_rflow;
3047                 u32 flow_id;
3048                 u16 rxq_index;
3049                 int rc;
3050
3051                 /* Should we steer this flow to a different hardware queue? */
3052                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3053                     !(dev->features & NETIF_F_NTUPLE))
3054                         goto out;
3055                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3056                 if (rxq_index == skb_get_rx_queue(skb))
3057                         goto out;
3058
3059                 rxqueue = dev->_rx + rxq_index;
3060                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3061                 if (!flow_table)
3062                         goto out;
3063                 flow_id = skb_get_hash(skb) & flow_table->mask;
3064                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3065                                                         rxq_index, flow_id);
3066                 if (rc < 0)
3067                         goto out;
3068                 old_rflow = rflow;
3069                 rflow = &flow_table->flows[flow_id];
3070                 rflow->filter = rc;
3071                 if (old_rflow->filter == rflow->filter)
3072                         old_rflow->filter = RPS_NO_FILTER;
3073         out:
3074 #endif
3075                 rflow->last_qtail =
3076                         per_cpu(softnet_data, next_cpu).input_queue_head;
3077         }
3078
3079         rflow->cpu = next_cpu;
3080         return rflow;
3081 }
3082
3083 /*
3084  * get_rps_cpu is called from netif_receive_skb and returns the target
3085  * CPU from the RPS map of the receiving queue for a given skb.
3086  * rcu_read_lock must be held on entry.
3087  */
3088 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3089                        struct rps_dev_flow **rflowp)
3090 {
3091         struct netdev_rx_queue *rxqueue;
3092         struct rps_map *map;
3093         struct rps_dev_flow_table *flow_table;
3094         struct rps_sock_flow_table *sock_flow_table;
3095         int cpu = -1;
3096         u16 tcpu;
3097         u32 hash;
3098
3099         if (skb_rx_queue_recorded(skb)) {
3100                 u16 index = skb_get_rx_queue(skb);
3101                 if (unlikely(index >= dev->real_num_rx_queues)) {
3102                         WARN_ONCE(dev->real_num_rx_queues > 1,
3103                                   "%s received packet on queue %u, but number "
3104                                   "of RX queues is %u\n",
3105                                   dev->name, index, dev->real_num_rx_queues);
3106                         goto done;
3107                 }
3108                 rxqueue = dev->_rx + index;
3109         } else
3110                 rxqueue = dev->_rx;
3111
3112         map = rcu_dereference(rxqueue->rps_map);
3113         if (map) {
3114                 if (map->len == 1 &&
3115                     !rcu_access_pointer(rxqueue->rps_flow_table)) {
3116                         tcpu = map->cpus[0];
3117                         if (cpu_online(tcpu))
3118                                 cpu = tcpu;
3119                         goto done;
3120                 }
3121         } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
3122                 goto done;
3123         }
3124
3125         skb_reset_network_header(skb);
3126         hash = skb_get_hash(skb);
3127         if (!hash)
3128                 goto done;
3129
3130         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3131         sock_flow_table = rcu_dereference(rps_sock_flow_table);
3132         if (flow_table && sock_flow_table) {
3133                 u16 next_cpu;
3134                 struct rps_dev_flow *rflow;
3135
3136                 rflow = &flow_table->flows[hash & flow_table->mask];
3137                 tcpu = rflow->cpu;
3138
3139                 next_cpu = sock_flow_table->ents[hash & sock_flow_table->mask];
3140
3141                 /*
3142                  * If the desired CPU (where last recvmsg was done) is
3143                  * different from current CPU (one in the rx-queue flow
3144                  * table entry), switch if one of the following holds:
3145                  *   - Current CPU is unset (equal to RPS_NO_CPU).
3146                  *   - Current CPU is offline.
3147                  *   - The current CPU's queue tail has advanced beyond the
3148                  *     last packet that was enqueued using this table entry.
3149                  *     This guarantees that all previous packets for the flow
3150                  *     have been dequeued, thus preserving in order delivery.
3151                  */
3152                 if (unlikely(tcpu != next_cpu) &&
3153                     (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3154                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3155                       rflow->last_qtail)) >= 0)) {
3156                         tcpu = next_cpu;
3157                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3158                 }
3159
3160                 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3161                         *rflowp = rflow;
3162                         cpu = tcpu;
3163                         goto done;
3164                 }
3165         }
3166
3167         if (map) {
3168                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3169                 if (cpu_online(tcpu)) {
3170                         cpu = tcpu;
3171                         goto done;
3172                 }
3173         }
3174
3175 done:
3176         return cpu;
3177 }
3178
3179 #ifdef CONFIG_RFS_ACCEL
3180
3181 /**
3182  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3183  * @dev: Device on which the filter was set
3184  * @rxq_index: RX queue index
3185  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3186  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3187  *
3188  * Drivers that implement ndo_rx_flow_steer() should periodically call
3189  * this function for each installed filter and remove the filters for
3190  * which it returns %true.
3191  */
3192 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3193                          u32 flow_id, u16 filter_id)
3194 {
3195         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3196         struct rps_dev_flow_table *flow_table;
3197         struct rps_dev_flow *rflow;
3198         bool expire = true;
3199         int cpu;
3200
3201         rcu_read_lock();
3202         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3203         if (flow_table && flow_id <= flow_table->mask) {
3204                 rflow = &flow_table->flows[flow_id];
3205                 cpu = ACCESS_ONCE(rflow->cpu);
3206                 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3207                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3208                            rflow->last_qtail) <
3209                      (int)(10 * flow_table->mask)))
3210                         expire = false;
3211         }
3212         rcu_read_unlock();
3213         return expire;
3214 }
3215 EXPORT_SYMBOL(rps_may_expire_flow);
3216
3217 #endif /* CONFIG_RFS_ACCEL */
3218
3219 /* Called from hardirq (IPI) context */
3220 static void rps_trigger_softirq(void *data)
3221 {
3222         struct softnet_data *sd = data;
3223
3224         ____napi_schedule(sd, &sd->backlog);
3225         sd->received_rps++;
3226 }
3227
3228 #endif /* CONFIG_RPS */
3229
3230 /*
3231  * Check if this softnet_data structure is another cpu one
3232  * If yes, queue it to our IPI list and return 1
3233  * If no, return 0
3234  */
3235 static int rps_ipi_queued(struct softnet_data *sd)
3236 {
3237 #ifdef CONFIG_RPS
3238         struct softnet_data *mysd = &__get_cpu_var(softnet_data);
3239
3240         if (sd != mysd) {
3241                 sd->rps_ipi_next = mysd->rps_ipi_list;
3242                 mysd->rps_ipi_list = sd;
3243
3244                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3245                 return 1;
3246         }
3247 #endif /* CONFIG_RPS */
3248         return 0;
3249 }
3250
3251 #ifdef CONFIG_NET_FLOW_LIMIT
3252 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3253 #endif
3254
3255 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3256 {
3257 #ifdef CONFIG_NET_FLOW_LIMIT
3258         struct sd_flow_limit *fl;
3259         struct softnet_data *sd;
3260         unsigned int old_flow, new_flow;
3261
3262         if (qlen < (netdev_max_backlog >> 1))
3263                 return false;
3264
3265         sd = &__get_cpu_var(softnet_data);
3266
3267         rcu_read_lock();
3268         fl = rcu_dereference(sd->flow_limit);
3269         if (fl) {
3270                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3271                 old_flow = fl->history[fl->history_head];
3272                 fl->history[fl->history_head] = new_flow;
3273
3274                 fl->history_head++;
3275                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3276
3277                 if (likely(fl->buckets[old_flow]))
3278                         fl->buckets[old_flow]--;
3279
3280                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3281                         fl->count++;
3282                         rcu_read_unlock();
3283                         return true;
3284                 }
3285         }
3286         rcu_read_unlock();
3287 #endif
3288         return false;
3289 }
3290
3291 /*
3292  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3293  * queue (may be a remote CPU queue).
3294  */
3295 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3296                               unsigned int *qtail)
3297 {
3298         struct softnet_data *sd;
3299         unsigned long flags;
3300         unsigned int qlen;
3301
3302         sd = &per_cpu(softnet_data, cpu);
3303
3304         local_irq_save(flags);
3305
3306         rps_lock(sd);
3307         qlen = skb_queue_len(&sd->input_pkt_queue);
3308         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3309                 if (skb_queue_len(&sd->input_pkt_queue)) {
3310 enqueue:
3311                         __skb_queue_tail(&sd->input_pkt_queue, skb);
3312                         input_queue_tail_incr_save(sd, qtail);
3313                         rps_unlock(sd);
3314                         local_irq_restore(flags);
3315                         return NET_RX_SUCCESS;
3316                 }
3317
3318                 /* Schedule NAPI for backlog device
3319                  * We can use non atomic operation since we own the queue lock
3320                  */
3321                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3322                         if (!rps_ipi_queued(sd))
3323                                 ____napi_schedule(sd, &sd->backlog);
3324                 }
3325                 goto enqueue;
3326         }
3327
3328         sd->dropped++;
3329         rps_unlock(sd);
3330
3331         local_irq_restore(flags);
3332
3333         atomic_long_inc(&skb->dev->rx_dropped);
3334         kfree_skb(skb);
3335         return NET_RX_DROP;
3336 }
3337
3338 static int netif_rx_internal(struct sk_buff *skb)
3339 {
3340         int ret;
3341
3342         net_timestamp_check(netdev_tstamp_prequeue, skb);
3343
3344         trace_netif_rx(skb);
3345 #ifdef CONFIG_RPS
3346         if (static_key_false(&rps_needed)) {
3347                 struct rps_dev_flow voidflow, *rflow = &voidflow;
3348                 int cpu;
3349
3350                 preempt_disable();
3351                 rcu_read_lock();
3352
3353                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3354                 if (cpu < 0)
3355                         cpu = smp_processor_id();
3356
3357                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3358
3359                 rcu_read_unlock();
3360                 preempt_enable();
3361         } else
3362 #endif
3363         {
3364                 unsigned int qtail;
3365                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3366                 put_cpu();
3367         }
3368         return ret;
3369 }
3370
3371 /**
3372  *      netif_rx        -       post buffer to the network code
3373  *      @skb: buffer to post
3374  *
3375  *      This function receives a packet from a device driver and queues it for
3376  *      the upper (protocol) levels to process.  It always succeeds. The buffer
3377  *      may be dropped during processing for congestion control or by the
3378  *      protocol layers.
3379  *
3380  *      return values:
3381  *      NET_RX_SUCCESS  (no congestion)
3382  *      NET_RX_DROP     (packet was dropped)
3383  *
3384  */
3385
3386 int netif_rx(struct sk_buff *skb)
3387 {
3388         trace_netif_rx_entry(skb);
3389
3390         return netif_rx_internal(skb);
3391 }
3392 EXPORT_SYMBOL(netif_rx);
3393
3394 int netif_rx_ni(struct sk_buff *skb)
3395 {
3396         int err;
3397
3398         trace_netif_rx_ni_entry(skb);
3399
3400         preempt_disable();
3401         err = netif_rx_internal(skb);
3402         if (local_softirq_pending())
3403                 do_softirq();
3404         preempt_enable();
3405
3406         return err;
3407 }
3408 EXPORT_SYMBOL(netif_rx_ni);
3409
3410 static void net_tx_action(struct softirq_action *h)
3411 {
3412         struct softnet_data *sd = &__get_cpu_var(softnet_data);
3413
3414         if (sd->completion_queue) {
3415                 struct sk_buff *clist;
3416
3417                 local_irq_disable();
3418                 clist = sd->completion_queue;
3419                 sd->completion_queue = NULL;
3420                 local_irq_enable();
3421
3422                 while (clist) {
3423                         struct sk_buff *skb = clist;
3424                         clist = clist->next;
3425
3426                         WARN_ON(atomic_read(&skb->users));
3427                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3428                                 trace_consume_skb(skb);
3429                         else
3430                                 trace_kfree_skb(skb, net_tx_action);
3431                         __kfree_skb(skb);
3432                 }
3433         }
3434
3435         if (sd->output_queue) {
3436                 struct Qdisc *head;
3437
3438                 local_irq_disable();
3439                 head = sd->output_queue;
3440                 sd->output_queue = NULL;
3441                 sd->output_queue_tailp = &sd->output_queue;
3442                 local_irq_enable();
3443
3444                 while (head) {
3445                         struct Qdisc *q = head;
3446                         spinlock_t *root_lock;
3447
3448                         head = head->next_sched;
3449
3450                         root_lock = qdisc_lock(q);
3451                         if (spin_trylock(root_lock)) {
3452                                 smp_mb__before_atomic();
3453                                 clear_bit(__QDISC_STATE_SCHED,
3454                                           &q->state);
3455                                 qdisc_run(q);
3456                                 spin_unlock(root_lock);
3457                         } else {
3458                                 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3459                                               &q->state)) {
3460                                         __netif_reschedule(q);
3461                                 } else {
3462                                         smp_mb__before_atomic();
3463                                         clear_bit(__QDISC_STATE_SCHED,
3464                                                   &q->state);
3465                                 }
3466                         }
3467                 }
3468         }
3469 }
3470
3471 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3472     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3473 /* This hook is defined here for ATM LANE */
3474 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3475                              unsigned char *addr) __read_mostly;
3476 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3477 #endif
3478
3479 #ifdef CONFIG_NET_CLS_ACT
3480 /* TODO: Maybe we should just force sch_ingress to be compiled in
3481  * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3482  * a compare and 2 stores extra right now if we dont have it on
3483  * but have CONFIG_NET_CLS_ACT
3484  * NOTE: This doesn't stop any functionality; if you dont have
3485  * the ingress scheduler, you just can't add policies on ingress.
3486  *
3487  */
3488 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3489 {
3490         struct net_device *dev = skb->dev;
3491         u32 ttl = G_TC_RTTL(skb->tc_verd);
3492         int result = TC_ACT_OK;
3493         struct Qdisc *q;
3494
3495         if (unlikely(MAX_RED_LOOP < ttl++)) {
3496                 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3497                                      skb->skb_iif, dev->ifindex);
3498                 return TC_ACT_SHOT;
3499         }
3500
3501         skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3502         skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3503
3504         q = rcu_dereference(rxq->qdisc);
3505         if (q != &noop_qdisc) {
3506                 spin_lock(qdisc_lock(q));
3507                 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3508                         result = qdisc_enqueue_root(skb, q);
3509                 spin_unlock(qdisc_lock(q));
3510         }
3511
3512         return result;
3513 }
3514
3515 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3516                                          struct packet_type **pt_prev,
3517                                          int *ret, struct net_device *orig_dev)
3518 {
3519         struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3520
3521         if (!rxq || rcu_access_pointer(rxq->qdisc) == &noop_qdisc)
3522                 goto out;
3523
3524         if (*pt_prev) {
3525                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3526                 *pt_prev = NULL;
3527         }
3528
3529         switch (ing_filter(skb, rxq)) {
3530         case TC_ACT_SHOT:
3531         case TC_ACT_STOLEN:
3532                 kfree_skb(skb);
3533                 return NULL;
3534         }
3535
3536 out:
3537         skb->tc_verd = 0;
3538         return skb;
3539 }
3540 #endif
3541
3542 /**
3543  *      netdev_rx_handler_register - register receive handler
3544  *      @dev: device to register a handler for
3545  *      @rx_handler: receive handler to register
3546  *      @rx_handler_data: data pointer that is used by rx handler
3547  *
3548  *      Register a receive handler for a device. This handler will then be
3549  *      called from __netif_receive_skb. A negative errno code is returned
3550  *      on a failure.
3551  *
3552  *      The caller must hold the rtnl_mutex.
3553  *
3554  *      For a general description of rx_handler, see enum rx_handler_result.
3555  */
3556 int netdev_rx_handler_register(struct net_device *dev,
3557                                rx_handler_func_t *rx_handler,
3558                                void *rx_handler_data)
3559 {
3560         ASSERT_RTNL();
3561
3562         if (dev->rx_handler)
3563                 return -EBUSY;
3564
3565         /* Note: rx_handler_data must be set before rx_handler */
3566         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3567         rcu_assign_pointer(dev->rx_handler, rx_handler);
3568
3569         return 0;
3570 }
3571 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3572
3573 /**
3574  *      netdev_rx_handler_unregister - unregister receive handler
3575  *      @dev: device to unregister a handler from
3576  *
3577  *      Unregister a receive handler from a device.
3578  *
3579  *      The caller must hold the rtnl_mutex.
3580  */
3581 void netdev_rx_handler_unregister(struct net_device *dev)
3582 {
3583
3584         ASSERT_RTNL();
3585         RCU_INIT_POINTER(dev->rx_handler, NULL);
3586         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3587          * section has a guarantee to see a non NULL rx_handler_data
3588          * as well.
3589          */
3590         synchronize_net();
3591         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3592 }
3593 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3594
3595 /*
3596  * Limit the use of PFMEMALLOC reserves to those protocols that implement
3597  * the special handling of PFMEMALLOC skbs.
3598  */
3599 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3600 {
3601         switch (skb->protocol) {
3602         case htons(ETH_P_ARP):
3603         case htons(ETH_P_IP):
3604         case htons(ETH_P_IPV6):
3605         case htons(ETH_P_8021Q):
3606         case htons(ETH_P_8021AD):
3607                 return true;
3608         default:
3609                 return false;
3610         }
3611 }
3612
3613 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3614 {
3615         struct packet_type *ptype, *pt_prev;
3616         rx_handler_func_t *rx_handler;
3617         struct net_device *orig_dev;
3618         struct net_device *null_or_dev;
3619         bool deliver_exact = false;
3620         int ret = NET_RX_DROP;
3621         __be16 type;
3622
3623         net_timestamp_check(!netdev_tstamp_prequeue, skb);
3624
3625         trace_netif_receive_skb(skb);
3626
3627         orig_dev = skb->dev;
3628
3629         skb_reset_network_header(skb);
3630         if (!skb_transport_header_was_set(skb))
3631                 skb_reset_transport_header(skb);
3632         skb_reset_mac_len(skb);
3633
3634         pt_prev = NULL;
3635
3636         rcu_read_lock();
3637
3638 another_round:
3639         skb->skb_iif = skb->dev->ifindex;
3640
3641         __this_cpu_inc(softnet_data.processed);
3642
3643         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3644             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3645                 skb = skb_vlan_untag(skb);
3646                 if (unlikely(!skb))
3647                         goto unlock;
3648         }
3649
3650 #ifdef CONFIG_NET_CLS_ACT
3651         if (skb->tc_verd & TC_NCLS) {
3652                 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3653                 goto ncls;
3654         }
3655 #endif
3656
3657         if (pfmemalloc)
3658                 goto skip_taps;
3659
3660         list_for_each_entry_rcu(ptype, &ptype_all, list) {
3661                 if (!ptype->dev || ptype->dev == skb->dev) {
3662                         if (pt_prev)
3663                                 ret = deliver_skb(skb, pt_prev, orig_dev);
3664                         pt_prev = ptype;
3665                 }
3666         }
3667
3668 skip_taps:
3669 #ifdef CONFIG_NET_CLS_ACT
3670         skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3671         if (!skb)
3672                 goto unlock;
3673 ncls:
3674 #endif
3675
3676         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3677                 goto drop;
3678
3679         if (vlan_tx_tag_present(skb)) {
3680                 if (pt_prev) {
3681                         ret = deliver_skb(skb, pt_prev, orig_dev);
3682                         pt_prev = NULL;
3683                 }
3684                 if (vlan_do_receive(&skb))
3685                         goto another_round;
3686                 else if (unlikely(!skb))
3687                         goto unlock;
3688         }
3689
3690         rx_handler = rcu_dereference(skb->dev->rx_handler);
3691         if (rx_handler) {
3692                 if (pt_prev) {
3693                         ret = deliver_skb(skb, pt_prev, orig_dev);
3694                         pt_prev = NULL;
3695                 }
3696                 switch (rx_handler(&skb)) {
3697                 case RX_HANDLER_CONSUMED:
3698                         ret = NET_RX_SUCCESS;
3699                         goto unlock;
3700                 case RX_HANDLER_ANOTHER:
3701                         goto another_round;
3702                 case RX_HANDLER_EXACT:
3703                         deliver_exact = true;
3704                 case RX_HANDLER_PASS:
3705                         break;
3706                 default:
3707                         BUG();
3708                 }
3709         }
3710
3711         if (unlikely(vlan_tx_tag_present(skb))) {
3712                 if (vlan_tx_tag_get_id(skb))
3713                         skb->pkt_type = PACKET_OTHERHOST;
3714                 /* Note: we might in the future use prio bits
3715                  * and set skb->priority like in vlan_do_receive()
3716                  * For the time being, just ignore Priority Code Point
3717                  */
3718                 skb->vlan_tci = 0;
3719         }
3720
3721         /* deliver only exact match when indicated */
3722         null_or_dev = deliver_exact ? skb->dev : NULL;
3723
3724         type = skb->protocol;
3725         list_for_each_entry_rcu(ptype,
3726                         &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3727                 if (ptype->type == type &&
3728                     (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3729                      ptype->dev == orig_dev)) {
3730                         if (pt_prev)
3731                                 ret = deliver_skb(skb, pt_prev, orig_dev);
3732                         pt_prev = ptype;
3733                 }
3734         }
3735
3736         if (pt_prev) {
3737                 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3738                         goto drop;
3739                 else
3740                         ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3741         } else {
3742 drop:
3743                 atomic_long_inc(&skb->dev->rx_dropped);
3744                 kfree_skb(skb);
3745                 /* Jamal, now you will not able to escape explaining
3746                  * me how you were going to use this. :-)
3747                  */
3748                 ret = NET_RX_DROP;
3749         }
3750
3751 unlock:
3752         rcu_read_unlock();
3753         return ret;
3754 }
3755
3756 static int __netif_receive_skb(struct sk_buff *skb)
3757 {
3758         int ret;
3759
3760         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3761                 unsigned long pflags = current->flags;
3762
3763                 /*
3764                  * PFMEMALLOC skbs are special, they should
3765                  * - be delivered to SOCK_MEMALLOC sockets only
3766                  * - stay away from userspace
3767                  * - have bounded memory usage
3768                  *
3769                  * Use PF_MEMALLOC as this saves us from propagating the allocation
3770                  * context down to all allocation sites.
3771                  */
3772                 current->flags |= PF_MEMALLOC;
3773                 ret = __netif_receive_skb_core(skb, true);
3774                 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3775         } else
3776                 ret = __netif_receive_skb_core(skb, false);
3777
3778         return ret;
3779 }
3780
3781 static int netif_receive_skb_internal(struct sk_buff *skb)
3782 {
3783         net_timestamp_check(netdev_tstamp_prequeue, skb);
3784
3785         if (skb_defer_rx_timestamp(skb))
3786                 return NET_RX_SUCCESS;
3787
3788 #ifdef CONFIG_RPS
3789         if (static_key_false(&rps_needed)) {
3790                 struct rps_dev_flow voidflow, *rflow = &voidflow;
3791                 int cpu, ret;
3792
3793                 rcu_read_lock();
3794
3795                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3796
3797                 if (cpu >= 0) {
3798                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3799                         rcu_read_unlock();
3800                         return ret;
3801                 }
3802                 rcu_read_unlock();
3803         }
3804 #endif
3805         return __netif_receive_skb(skb);
3806 }
3807
3808 /**
3809  *      netif_receive_skb - process receive buffer from network
3810  *      @skb: buffer to process
3811  *
3812  *      netif_receive_skb() is the main receive data processing function.
3813  *      It always succeeds. The buffer may be dropped during processing
3814  *      for congestion control or by the protocol layers.
3815  *
3816  *      This function may only be called from softirq context and interrupts
3817  *      should be enabled.
3818  *
3819  *      Return values (usually ignored):
3820  *      NET_RX_SUCCESS: no congestion
3821  *      NET_RX_DROP: packet was dropped
3822  */
3823 int netif_receive_skb(struct sk_buff *skb)
3824 {
3825         trace_netif_receive_skb_entry(skb);
3826
3827         return netif_receive_skb_internal(skb);
3828 }
3829 EXPORT_SYMBOL(netif_receive_skb);
3830
3831 /* Network device is going away, flush any packets still pending
3832  * Called with irqs disabled.
3833  */
3834 static void flush_backlog(void *arg)
3835 {
3836         struct net_device *dev = arg;
3837         struct softnet_data *sd = &__get_cpu_var(softnet_data);
3838         struct sk_buff *skb, *tmp;
3839
3840         rps_lock(sd);
3841         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3842                 if (skb->dev == dev) {
3843                         __skb_unlink(skb, &sd->input_pkt_queue);
3844                         kfree_skb(skb);
3845                         input_queue_head_incr(sd);
3846                 }
3847         }
3848         rps_unlock(sd);
3849
3850         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3851                 if (skb->dev == dev) {
3852                         __skb_unlink(skb, &sd->process_queue);
3853                         kfree_skb(skb);
3854                         input_queue_head_incr(sd);
3855                 }
3856         }
3857 }
3858
3859 static int napi_gro_complete(struct sk_buff *skb)
3860 {
3861         struct packet_offload *ptype;
3862         __be16 type = skb->protocol;
3863         struct list_head *head = &offload_base;
3864         int err = -ENOENT;
3865
3866         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3867
3868         if (NAPI_GRO_CB(skb)->count == 1) {
3869                 skb_shinfo(skb)->gso_size = 0;
3870                 goto out;
3871         }
3872
3873         rcu_read_lock();
3874         list_for_each_entry_rcu(ptype, head, list) {
3875                 if (ptype->type != type || !ptype->callbacks.gro_complete)
3876                         continue;
3877
3878                 err = ptype->callbacks.gro_complete(skb, 0);
3879                 break;
3880         }
3881         rcu_read_unlock();
3882
3883         if (err) {
3884                 WARN_ON(&ptype->list == head);
3885                 kfree_skb(skb);
3886                 return NET_RX_SUCCESS;
3887         }
3888
3889 out:
3890         return netif_receive_skb_internal(skb);
3891 }
3892
3893 /* napi->gro_list contains packets ordered by age.
3894  * youngest packets at the head of it.
3895  * Complete skbs in reverse order to reduce latencies.
3896  */
3897 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3898 {
3899         struct sk_buff *skb, *prev = NULL;
3900
3901         /* scan list and build reverse chain */
3902         for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3903                 skb->prev = prev;
3904                 prev = skb;
3905         }
3906
3907         for (skb = prev; skb; skb = prev) {
3908                 skb->next = NULL;
3909
3910                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3911                         return;
3912
3913                 prev = skb->prev;
3914                 napi_gro_complete(skb);
3915                 napi->gro_count--;
3916         }
3917
3918         napi->gro_list = NULL;
3919 }
3920 EXPORT_SYMBOL(napi_gro_flush);
3921
3922 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3923 {
3924         struct sk_buff *p;
3925         unsigned int maclen = skb->dev->hard_header_len;
3926         u32 hash = skb_get_hash_raw(skb);
3927
3928         for (p = napi->gro_list; p; p = p->next) {
3929                 unsigned long diffs;
3930
3931                 NAPI_GRO_CB(p)->flush = 0;
3932
3933                 if (hash != skb_get_hash_raw(p)) {
3934                         NAPI_GRO_CB(p)->same_flow = 0;
3935                         continue;
3936                 }
3937
3938                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3939                 diffs |= p->vlan_tci ^ skb->vlan_tci;
3940                 if (maclen == ETH_HLEN)
3941                         diffs |= compare_ether_header(skb_mac_header(p),
3942                                                       skb_mac_header(skb));
3943                 else if (!diffs)
3944                         diffs = memcmp(skb_mac_header(p),
3945                                        skb_mac_header(skb),
3946                                        maclen);
3947                 NAPI_GRO_CB(p)->same_flow = !diffs;
3948         }
3949 }
3950
3951 static void skb_gro_reset_offset(struct sk_buff *skb)
3952 {
3953         const struct skb_shared_info *pinfo = skb_shinfo(skb);
3954         const skb_frag_t *frag0 = &pinfo->frags[0];
3955
3956         NAPI_GRO_CB(skb)->data_offset = 0;
3957         NAPI_GRO_CB(skb)->frag0 = NULL;
3958         NAPI_GRO_CB(skb)->frag0_len = 0;
3959
3960         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
3961             pinfo->nr_frags &&
3962             !PageHighMem(skb_frag_page(frag0))) {
3963                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3964                 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3965         }
3966 }
3967
3968 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
3969 {
3970         struct skb_shared_info *pinfo = skb_shinfo(skb);
3971
3972         BUG_ON(skb->end - skb->tail < grow);
3973
3974         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3975
3976         skb->data_len -= grow;
3977         skb->tail += grow;
3978
3979         pinfo->frags[0].page_offset += grow;
3980         skb_frag_size_sub(&pinfo->frags[0], grow);
3981
3982         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
3983                 skb_frag_unref(skb, 0);
3984                 memmove(pinfo->frags, pinfo->frags + 1,
3985                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
3986         }
3987 }
3988
3989 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3990 {
3991         struct sk_buff **pp = NULL;
3992         struct packet_offload *ptype;
3993         __be16 type = skb->protocol;
3994         struct list_head *head = &offload_base;
3995         int same_flow;
3996         enum gro_result ret;
3997         int grow;
3998
3999         if (!(skb->dev->features & NETIF_F_GRO))
4000                 goto normal;
4001
4002         if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4003                 goto normal;
4004
4005         gro_list_prepare(napi, skb);
4006
4007         rcu_read_lock();
4008         list_for_each_entry_rcu(ptype, head, list) {
4009                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4010                         continue;
4011
4012                 skb_set_network_header(skb, skb_gro_offset(skb));
4013                 skb_reset_mac_len(skb);
4014                 NAPI_GRO_CB(skb)->same_flow = 0;
4015                 NAPI_GRO_CB(skb)->flush = 0;
4016                 NAPI_GRO_CB(skb)->free = 0;
4017                 NAPI_GRO_CB(skb)->udp_mark = 0;
4018
4019                 /* Setup for GRO checksum validation */
4020                 switch (skb->ip_summed) {
4021                 case CHECKSUM_COMPLETE:
4022                         NAPI_GRO_CB(skb)->csum = skb->csum;
4023                         NAPI_GRO_CB(skb)->csum_valid = 1;
4024                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4025                         break;
4026                 case CHECKSUM_UNNECESSARY:
4027                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4028                         NAPI_GRO_CB(skb)->csum_valid = 0;
4029                         break;
4030                 default:
4031                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4032                         NAPI_GRO_CB(skb)->csum_valid = 0;
4033                 }
4034
4035                 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4036                 break;
4037         }
4038         rcu_read_unlock();
4039
4040         if (&ptype->list == head)
4041                 goto normal;
4042
4043         same_flow = NAPI_GRO_CB(skb)->same_flow;
4044         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4045
4046         if (pp) {
4047                 struct sk_buff *nskb = *pp;
4048
4049                 *pp = nskb->next;
4050                 nskb->next = NULL;
4051                 napi_gro_complete(nskb);
4052                 napi->gro_count--;
4053         }
4054
4055         if (same_flow)
4056                 goto ok;
4057
4058         if (NAPI_GRO_CB(skb)->flush)
4059                 goto normal;
4060
4061         if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4062                 struct sk_buff *nskb = napi->gro_list;
4063
4064                 /* locate the end of the list to select the 'oldest' flow */
4065                 while (nskb->next) {
4066                         pp = &nskb->next;
4067                         nskb = *pp;
4068                 }
4069                 *pp = NULL;
4070                 nskb->next = NULL;
4071                 napi_gro_complete(nskb);
4072         } else {
4073                 napi->gro_count++;
4074         }
4075         NAPI_GRO_CB(skb)->count = 1;
4076         NAPI_GRO_CB(skb)->age = jiffies;
4077         NAPI_GRO_CB(skb)->last = skb;
4078         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4079         skb->next = napi->gro_list;
4080         napi->gro_list = skb;
4081         ret = GRO_HELD;
4082
4083 pull:
4084         grow = skb_gro_offset(skb) - skb_headlen(skb);
4085         if (grow > 0)
4086                 gro_pull_from_frag0(skb, grow);
4087 ok:
4088         return ret;
4089
4090 normal:
4091         ret = GRO_NORMAL;
4092         goto pull;
4093 }
4094
4095 struct packet_offload *gro_find_receive_by_type(__be16 type)
4096 {
4097         struct list_head *offload_head = &offload_base;
4098         struct packet_offload *ptype;
4099
4100         list_for_each_entry_rcu(ptype, offload_head, list) {
4101                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4102                         continue;
4103                 return ptype;
4104         }
4105         return NULL;
4106 }
4107 EXPORT_SYMBOL(gro_find_receive_by_type);
4108
4109 struct packet_offload *gro_find_complete_by_type(__be16 type)
4110 {
4111         struct list_head *offload_head = &offload_base;
4112         struct packet_offload *ptype;
4113
4114         list_for_each_entry_rcu(ptype, offload_head, list) {
4115                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4116                         continue;
4117                 return ptype;
4118         }
4119         return NULL;
4120 }
4121 EXPORT_SYMBOL(gro_find_complete_by_type);
4122
4123 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4124 {
4125         switch (ret) {
4126         case GRO_NORMAL:
4127                 if (netif_receive_skb_internal(skb))
4128                         ret = GRO_DROP;
4129                 break;
4130
4131         case GRO_DROP:
4132                 kfree_skb(skb);
4133                 break;
4134
4135         case GRO_MERGED_FREE:
4136                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4137                         kmem_cache_free(skbuff_head_cache, skb);
4138                 else
4139                         __kfree_skb(skb);
4140                 break;
4141
4142         case GRO_HELD:
4143         case GRO_MERGED:
4144                 break;
4145         }
4146
4147         return ret;
4148 }
4149
4150 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4151 {
4152         trace_napi_gro_receive_entry(skb);
4153
4154         skb_gro_reset_offset(skb);
4155
4156         return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4157 }
4158 EXPORT_SYMBOL(napi_gro_receive);
4159
4160 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4161 {
4162         __skb_pull(skb, skb_headlen(skb));
4163         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4164         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4165         skb->vlan_tci = 0;
4166         skb->dev = napi->dev;
4167         skb->skb_iif = 0;
4168         skb->encapsulation = 0;
4169         skb_shinfo(skb)->gso_type = 0;
4170         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4171
4172         napi->skb = skb;
4173 }
4174
4175 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4176 {
4177         struct sk_buff *skb = napi->skb;
4178
4179         if (!skb) {
4180                 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
4181                 napi->skb = skb;
4182         }
4183         return skb;
4184 }
4185 EXPORT_SYMBOL(napi_get_frags);
4186
4187 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4188                                       struct sk_buff *skb,
4189                                       gro_result_t ret)
4190 {
4191         switch (ret) {
4192         case GRO_NORMAL:
4193         case GRO_HELD:
4194                 __skb_push(skb, ETH_HLEN);
4195                 skb->protocol = eth_type_trans(skb, skb->dev);
4196                 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4197                         ret = GRO_DROP;
4198                 break;
4199
4200         case GRO_DROP:
4201         case GRO_MERGED_FREE:
4202                 napi_reuse_skb(napi, skb);
4203                 break;
4204
4205         case GRO_MERGED:
4206                 break;
4207         }
4208
4209         return ret;
4210 }
4211
4212 /* Upper GRO stack assumes network header starts at gro_offset=0
4213  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4214  * We copy ethernet header into skb->data to have a common layout.
4215  */
4216 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4217 {
4218         struct sk_buff *skb = napi->skb;
4219         const struct ethhdr *eth;
4220         unsigned int hlen = sizeof(*eth);
4221
4222         napi->skb = NULL;
4223
4224         skb_reset_mac_header(skb);
4225         skb_gro_reset_offset(skb);
4226
4227         eth = skb_gro_header_fast(skb, 0);
4228         if (unlikely(skb_gro_header_hard(skb, hlen))) {
4229                 eth = skb_gro_header_slow(skb, hlen, 0);
4230                 if (unlikely(!eth)) {
4231                         napi_reuse_skb(napi, skb);
4232                         return NULL;
4233                 }
4234         } else {
4235                 gro_pull_from_frag0(skb, hlen);
4236                 NAPI_GRO_CB(skb)->frag0 += hlen;
4237                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4238         }
4239         __skb_pull(skb, hlen);
4240
4241         /*
4242          * This works because the only protocols we care about don't require
4243          * special handling.
4244          * We'll fix it up properly in napi_frags_finish()
4245          */
4246         skb->protocol = eth->h_proto;
4247
4248         return skb;
4249 }
4250
4251 gro_result_t napi_gro_frags(struct napi_struct *napi)
4252 {
4253         struct sk_buff *skb = napi_frags_skb(napi);
4254
4255         if (!skb)
4256                 return GRO_DROP;
4257
4258         trace_napi_gro_frags_entry(skb);
4259
4260         return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4261 }
4262 EXPORT_SYMBOL(napi_gro_frags);
4263
4264 /* Compute the checksum from gro_offset and return the folded value
4265  * after adding in any pseudo checksum.
4266  */
4267 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4268 {
4269         __wsum wsum;
4270         __sum16 sum;
4271
4272         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4273
4274         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4275         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4276         if (likely(!sum)) {
4277                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4278                     !skb->csum_complete_sw)
4279                         netdev_rx_csum_fault(skb->dev);
4280         }
4281
4282         NAPI_GRO_CB(skb)->csum = wsum;
4283         NAPI_GRO_CB(skb)->csum_valid = 1;
4284
4285         return sum;
4286 }
4287 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4288
4289 /*
4290  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4291  * Note: called with local irq disabled, but exits with local irq enabled.
4292  */
4293 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4294 {
4295 #ifdef CONFIG_RPS
4296         struct softnet_data *remsd = sd->rps_ipi_list;
4297
4298         if (remsd) {
4299                 sd->rps_ipi_list = NULL;
4300
4301                 local_irq_enable();
4302
4303                 /* Send pending IPI's to kick RPS processing on remote cpus. */
4304                 while (remsd) {
4305                         struct softnet_data *next = remsd->rps_ipi_next;
4306
4307                         if (cpu_online(remsd->cpu))
4308                                 smp_call_function_single_async(remsd->cpu,
4309                                                            &remsd->csd);
4310                         remsd = next;
4311                 }
4312         } else
4313 #endif
4314                 local_irq_enable();
4315 }
4316
4317 static int process_backlog(struct napi_struct *napi, int quota)
4318 {
4319         int work = 0;
4320         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4321
4322 #ifdef CONFIG_RPS
4323         /* Check if we have pending ipi, its better to send them now,
4324          * not waiting net_rx_action() end.
4325          */
4326         if (sd->rps_ipi_list) {
4327                 local_irq_disable();
4328                 net_rps_action_and_irq_enable(sd);
4329         }
4330 #endif
4331         napi->weight = weight_p;
4332         local_irq_disable();
4333         while (1) {
4334                 struct sk_buff *skb;
4335
4336                 while ((skb = __skb_dequeue(&sd->process_queue))) {
4337                         local_irq_enable();
4338                         __netif_receive_skb(skb);
4339                         local_irq_disable();
4340                         input_queue_head_incr(sd);
4341                         if (++work >= quota) {
4342                                 local_irq_enable();
4343                                 return work;
4344                         }
4345                 }
4346
4347                 rps_lock(sd);
4348                 if (skb_queue_empty(&sd->input_pkt_queue)) {
4349                         /*
4350                          * Inline a custom version of __napi_complete().
4351                          * only current cpu owns and manipulates this napi,
4352                          * and NAPI_STATE_SCHED is the only possible flag set
4353                          * on backlog.
4354                          * We can use a plain write instead of clear_bit(),
4355                          * and we dont need an smp_mb() memory barrier.
4356                          */
4357                         list_del(&napi->poll_list);
4358                         napi->state = 0;
4359                         rps_unlock(sd);
4360
4361                         break;
4362                 }
4363
4364                 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4365                                            &sd->process_queue);
4366                 rps_unlock(sd);
4367         }
4368         local_irq_enable();
4369
4370         return work;
4371 }
4372
4373 /**
4374  * __napi_schedule - schedule for receive
4375  * @n: entry to schedule
4376  *
4377  * The entry's receive function will be scheduled to run
4378  */
4379 void __napi_schedule(struct napi_struct *n)
4380 {
4381         unsigned long flags;
4382
4383         local_irq_save(flags);
4384         ____napi_schedule(&__get_cpu_var(softnet_data), n);
4385         local_irq_restore(flags);
4386 }
4387 EXPORT_SYMBOL(__napi_schedule);
4388
4389 void __napi_complete(struct napi_struct *n)
4390 {
4391         BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4392         BUG_ON(n->gro_list);
4393
4394         list_del(&n->poll_list);
4395         smp_mb__before_atomic();
4396         clear_bit(NAPI_STATE_SCHED, &n->state);
4397 }
4398 EXPORT_SYMBOL(__napi_complete);
4399
4400 void napi_complete(struct napi_struct *n)
4401 {
4402         unsigned long flags;
4403
4404         /*
4405          * don't let napi dequeue from the cpu poll list
4406          * just in case its running on a different cpu
4407          */
4408         if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4409                 return;
4410
4411         napi_gro_flush(n, false);
4412         local_irq_save(flags);
4413         __napi_complete(n);
4414         local_irq_restore(flags);
4415 }
4416 EXPORT_SYMBOL(napi_complete);
4417
4418 /* must be called under rcu_read_lock(), as we dont take a reference */
4419 struct napi_struct *napi_by_id(unsigned int napi_id)
4420 {
4421         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4422         struct napi_struct *napi;
4423
4424         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4425                 if (napi->napi_id == napi_id)
4426                         return napi;
4427
4428         return NULL;
4429 }
4430 EXPORT_SYMBOL_GPL(napi_by_id);
4431
4432 void napi_hash_add(struct napi_struct *napi)
4433 {
4434         if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4435
4436                 spin_lock(&napi_hash_lock);
4437
4438                 /* 0 is not a valid id, we also skip an id that is taken
4439                  * we expect both events to be extremely rare
4440                  */
4441                 napi->napi_id = 0;
4442                 while (!napi->napi_id) {
4443                         napi->napi_id = ++napi_gen_id;
4444                         if (napi_by_id(napi->napi_id))
4445                                 napi->napi_id = 0;
4446                 }
4447
4448                 hlist_add_head_rcu(&napi->napi_hash_node,
4449                         &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4450
4451                 spin_unlock(&napi_hash_lock);
4452         }
4453 }
4454 EXPORT_SYMBOL_GPL(napi_hash_add);
4455
4456 /* Warning : caller is responsible to make sure rcu grace period
4457  * is respected before freeing memory containing @napi
4458  */
4459 void napi_hash_del(struct napi_struct *napi)
4460 {
4461         spin_lock(&napi_hash_lock);
4462
4463         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4464                 hlist_del_rcu(&napi->napi_hash_node);
4465
4466         spin_unlock(&napi_hash_lock);
4467 }
4468 EXPORT_SYMBOL_GPL(napi_hash_del);
4469
4470 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4471                     int (*poll)(struct napi_struct *, int), int weight)
4472 {
4473         INIT_LIST_HEAD(&napi->poll_list);
4474         napi->gro_count = 0;
4475         napi->gro_list = NULL;
4476         napi->skb = NULL;
4477         napi->poll = poll;
4478         if (weight > NAPI_POLL_WEIGHT)
4479                 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4480                             weight, dev->name);
4481         napi->weight = weight;
4482         list_add(&napi->dev_list, &dev->napi_list);
4483         napi->dev = dev;
4484 #ifdef CONFIG_NETPOLL
4485         spin_lock_init(&napi->poll_lock);
4486         napi->poll_owner = -1;
4487 #endif
4488         set_bit(NAPI_STATE_SCHED, &napi->state);
4489 }
4490 EXPORT_SYMBOL(netif_napi_add);
4491
4492 void netif_napi_del(struct napi_struct *napi)
4493 {
4494         list_del_init(&napi->dev_list);
4495         napi_free_frags(napi);
4496
4497         kfree_skb_list(napi->gro_list);
4498         napi->gro_list = NULL;
4499         napi->gro_count = 0;
4500 }
4501 EXPORT_SYMBOL(netif_napi_del);
4502
4503 static void net_rx_action(struct softirq_action *h)
4504 {
4505         struct softnet_data *sd = &__get_cpu_var(softnet_data);
4506         unsigned long time_limit = jiffies + 2;
4507         int budget = netdev_budget;
4508         void *have;
4509
4510         local_irq_disable();
4511
4512         while (!list_empty(&sd->poll_list)) {
4513                 struct napi_struct *n;
4514                 int work, weight;
4515
4516                 /* If softirq window is exhuasted then punt.
4517                  * Allow this to run for 2 jiffies since which will allow
4518                  * an average latency of 1.5/HZ.
4519                  */
4520                 if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit)))
4521                         goto softnet_break;
4522
4523                 local_irq_enable();
4524
4525                 /* Even though interrupts have been re-enabled, this
4526                  * access is safe because interrupts can only add new
4527                  * entries to the tail of this list, and only ->poll()
4528                  * calls can remove this head entry from the list.
4529                  */
4530                 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
4531
4532                 have = netpoll_poll_lock(n);
4533
4534                 weight = n->weight;
4535
4536                 /* This NAPI_STATE_SCHED test is for avoiding a race
4537                  * with netpoll's poll_napi().  Only the entity which
4538                  * obtains the lock and sees NAPI_STATE_SCHED set will
4539                  * actually make the ->poll() call.  Therefore we avoid
4540                  * accidentally calling ->poll() when NAPI is not scheduled.
4541                  */
4542                 work = 0;
4543                 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4544                         work = n->poll(n, weight);
4545                         trace_napi_poll(n);
4546                 }
4547
4548                 WARN_ON_ONCE(work > weight);
4549
4550                 budget -= work;
4551
4552                 local_irq_disable();
4553
4554                 /* Drivers must not modify the NAPI state if they
4555                  * consume the entire weight.  In such cases this code
4556                  * still "owns" the NAPI instance and therefore can
4557                  * move the instance around on the list at-will.
4558                  */
4559                 if (unlikely(work == weight)) {
4560                         if (unlikely(napi_disable_pending(n))) {
4561                                 local_irq_enable();
4562                                 napi_complete(n);
4563                                 local_irq_disable();
4564                         } else {
4565                                 if (n->gro_list) {
4566                                         /* flush too old packets
4567                                          * If HZ < 1000, flush all packets.
4568                                          */
4569                                         local_irq_enable();
4570                                         napi_gro_flush(n, HZ >= 1000);
4571                                         local_irq_disable();
4572                                 }
4573                                 list_move_tail(&n->poll_list, &sd->poll_list);
4574                         }
4575                 }
4576
4577                 netpoll_poll_unlock(have);
4578         }
4579 out:
4580         net_rps_action_and_irq_enable(sd);
4581
4582 #ifdef CONFIG_NET_DMA
4583         /*
4584          * There may not be any more sk_buffs coming right now, so push
4585          * any pending DMA copies to hardware
4586          */
4587         dma_issue_pending_all();
4588 #endif
4589
4590         return;
4591
4592 softnet_break:
4593         sd->time_squeeze++;
4594         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4595         goto out;
4596 }
4597
4598 struct netdev_adjacent {
4599         struct net_device *dev;
4600
4601         /* upper master flag, there can only be one master device per list */
4602         bool master;
4603
4604         /* counter for the number of times this device was added to us */
4605         u16 ref_nr;
4606
4607         /* private field for the users */
4608         void *private;
4609
4610         struct list_head list;
4611         struct rcu_head rcu;
4612 };
4613
4614 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4615                                                  struct net_device *adj_dev,
4616                                                  struct list_head *adj_list)
4617 {
4618         struct netdev_adjacent *adj;
4619
4620         list_for_each_entry(adj, adj_list, list) {
4621                 if (adj->dev == adj_dev)
4622                         return adj;
4623         }
4624         return NULL;
4625 }
4626
4627 /**
4628  * netdev_has_upper_dev - Check if device is linked to an upper device
4629  * @dev: device
4630  * @upper_dev: upper device to check
4631  *
4632  * Find out if a device is linked to specified upper device and return true
4633  * in case it is. Note that this checks only immediate upper device,
4634  * not through a complete stack of devices. The caller must hold the RTNL lock.
4635  */
4636 bool netdev_has_upper_dev(struct net_device *dev,
4637                           struct net_device *upper_dev)
4638 {
4639         ASSERT_RTNL();
4640
4641         return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
4642 }
4643 EXPORT_SYMBOL(netdev_has_upper_dev);
4644
4645 /**
4646  * netdev_has_any_upper_dev - Check if device is linked to some device
4647  * @dev: device
4648  *
4649  * Find out if a device is linked to an upper device and return true in case
4650  * it is. The caller must hold the RTNL lock.
4651  */
4652 static bool netdev_has_any_upper_dev(struct net_device *dev)
4653 {
4654         ASSERT_RTNL();
4655
4656         return !list_empty(&dev->all_adj_list.upper);
4657 }
4658
4659 /**
4660  * netdev_master_upper_dev_get - Get master upper device
4661  * @dev: device
4662  *
4663  * Find a master upper device and return pointer to it or NULL in case
4664  * it's not there. The caller must hold the RTNL lock.
4665  */
4666 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4667 {
4668         struct netdev_adjacent *upper;
4669
4670         ASSERT_RTNL();
4671
4672         if (list_empty(&dev->adj_list.upper))
4673                 return NULL;
4674
4675         upper = list_first_entry(&dev->adj_list.upper,
4676                                  struct netdev_adjacent, list);
4677         if (likely(upper->master))
4678                 return upper->dev;
4679         return NULL;
4680 }
4681 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4682
4683 void *netdev_adjacent_get_private(struct list_head *adj_list)
4684 {
4685         struct netdev_adjacent *adj;
4686
4687         adj = list_entry(adj_list, struct netdev_adjacent, list);
4688
4689         return adj->private;
4690 }
4691 EXPORT_SYMBOL(netdev_adjacent_get_private);
4692
4693 /**
4694  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4695  * @dev: device
4696  * @iter: list_head ** of the current position
4697  *
4698  * Gets the next device from the dev's upper list, starting from iter
4699  * position. The caller must hold RCU read lock.
4700  */
4701 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4702                                                  struct list_head **iter)
4703 {
4704         struct netdev_adjacent *upper;
4705
4706         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4707
4708         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4709
4710         if (&upper->list == &dev->adj_list.upper)
4711                 return NULL;
4712
4713         *iter = &upper->list;
4714
4715         return upper->dev;
4716 }
4717 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4718
4719 /**
4720  * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4721  * @dev: device
4722  * @iter: list_head ** of the current position
4723  *
4724  * Gets the next device from the dev's upper list, starting from iter
4725  * position. The caller must hold RCU read lock.
4726  */
4727 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4728                                                      struct list_head **iter)
4729 {
4730         struct netdev_adjacent *upper;
4731
4732         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4733
4734         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4735
4736         if (&upper->list == &dev->all_adj_list.upper)
4737                 return NULL;
4738
4739         *iter = &upper->list;
4740
4741         return upper->dev;
4742 }
4743 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
4744
4745 /**
4746  * netdev_lower_get_next_private - Get the next ->private from the
4747  *                                 lower neighbour list
4748  * @dev: device
4749  * @iter: list_head ** of the current position
4750  *
4751  * Gets the next netdev_adjacent->private from the dev's lower neighbour
4752  * list, starting from iter position. The caller must hold either hold the
4753  * RTNL lock or its own locking that guarantees that the neighbour lower
4754  * list will remain unchainged.
4755  */
4756 void *netdev_lower_get_next_private(struct net_device *dev,
4757                                     struct list_head **iter)
4758 {
4759         struct netdev_adjacent *lower;
4760
4761         lower = list_entry(*iter, struct netdev_adjacent, list);
4762
4763         if (&lower->list == &dev->adj_list.lower)
4764                 return NULL;
4765
4766         *iter = lower->list.next;
4767
4768         return lower->private;
4769 }
4770 EXPORT_SYMBOL(netdev_lower_get_next_private);
4771
4772 /**
4773  * netdev_lower_get_next_private_rcu - Get the next ->private from the
4774  *                                     lower neighbour list, RCU
4775  *                                     variant
4776  * @dev: device
4777  * @iter: list_head ** of the current position
4778  *
4779  * Gets the next netdev_adjacent->private from the dev's lower neighbour
4780  * list, starting from iter position. The caller must hold RCU read lock.
4781  */
4782 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4783                                         struct list_head **iter)
4784 {
4785         struct netdev_adjacent *lower;
4786
4787         WARN_ON_ONCE(!rcu_read_lock_held());
4788
4789         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4790
4791         if (&lower->list == &dev->adj_list.lower)
4792                 return NULL;
4793
4794         *iter = &lower->list;
4795
4796         return lower->private;
4797 }
4798 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4799
4800 /**
4801  * netdev_lower_get_next - Get the next device from the lower neighbour
4802  *                         list
4803  * @dev: device
4804  * @iter: list_head ** of the current position
4805  *
4806  * Gets the next netdev_adjacent from the dev's lower neighbour
4807  * list, starting from iter position. The caller must hold RTNL lock or
4808  * its own locking that guarantees that the neighbour lower
4809  * list will remain unchainged.
4810  */
4811 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
4812 {
4813         struct netdev_adjacent *lower;
4814
4815         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
4816
4817         if (&lower->list == &dev->adj_list.lower)
4818                 return NULL;
4819
4820         *iter = &lower->list;
4821
4822         return lower->dev;
4823 }
4824 EXPORT_SYMBOL(netdev_lower_get_next);
4825
4826 /**
4827  * netdev_lower_get_first_private_rcu - Get the first ->private from the
4828  *                                     lower neighbour list, RCU
4829  *                                     variant
4830  * @dev: device
4831  *
4832  * Gets the first netdev_adjacent->private from the dev's lower neighbour
4833  * list. The caller must hold RCU read lock.
4834  */
4835 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
4836 {
4837         struct netdev_adjacent *lower;
4838
4839         lower = list_first_or_null_rcu(&dev->adj_list.lower,
4840                         struct netdev_adjacent, list);
4841         if (lower)
4842                 return lower->private;
4843         return NULL;
4844 }
4845 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
4846
4847 /**
4848  * netdev_master_upper_dev_get_rcu - Get master upper device
4849  * @dev: device
4850  *
4851  * Find a master upper device and return pointer to it or NULL in case
4852  * it's not there. The caller must hold the RCU read lock.
4853  */
4854 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4855 {
4856         struct netdev_adjacent *upper;
4857
4858         upper = list_first_or_null_rcu(&dev->adj_list.upper,
4859                                        struct netdev_adjacent, list);
4860         if (upper && likely(upper->master))
4861                 return upper->dev;
4862         return NULL;
4863 }
4864 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4865
4866 static int netdev_adjacent_sysfs_add(struct net_device *dev,
4867                               struct net_device *adj_dev,
4868                               struct list_head *dev_list)
4869 {
4870         char linkname[IFNAMSIZ+7];
4871         sprintf(linkname, dev_list == &dev->adj_list.upper ?
4872                 "upper_%s" : "lower_%s", adj_dev->name);
4873         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
4874                                  linkname);
4875 }
4876 static void netdev_adjacent_sysfs_del(struct net_device *dev,
4877                                char *name,
4878                                struct list_head *dev_list)
4879 {
4880         char linkname[IFNAMSIZ+7];
4881         sprintf(linkname, dev_list == &dev->adj_list.upper ?
4882                 "upper_%s" : "lower_%s", name);
4883         sysfs_remove_link(&(dev->dev.kobj), linkname);
4884 }
4885
4886 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
4887                                                  struct net_device *adj_dev,
4888                                                  struct list_head *dev_list)
4889 {
4890         return (dev_list == &dev->adj_list.upper ||
4891                 dev_list == &dev->adj_list.lower) &&
4892                 net_eq(dev_net(dev), dev_net(adj_dev));
4893 }
4894
4895 static int __netdev_adjacent_dev_insert(struct net_device *dev,
4896                                         struct net_device *adj_dev,
4897                                         struct list_head *dev_list,
4898                                         void *private, bool master)
4899 {
4900         struct netdev_adjacent *adj;
4901         int ret;
4902
4903         adj = __netdev_find_adj(dev, adj_dev, dev_list);
4904
4905         if (adj) {
4906                 adj->ref_nr++;
4907                 return 0;
4908         }
4909
4910         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
4911         if (!adj)
4912                 return -ENOMEM;
4913
4914         adj->dev = adj_dev;
4915         adj->master = master;
4916         adj->ref_nr = 1;
4917         adj->private = private;
4918         dev_hold(adj_dev);
4919
4920         pr_debug("dev_hold for %s, because of link added from %s to %s\n",
4921                  adj_dev->name, dev->name, adj_dev->name);
4922
4923         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
4924                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
4925                 if (ret)
4926                         goto free_adj;
4927         }
4928
4929         /* Ensure that master link is always the first item in list. */
4930         if (master) {
4931                 ret = sysfs_create_link(&(dev->dev.kobj),
4932                                         &(adj_dev->dev.kobj), "master");
4933                 if (ret)
4934                         goto remove_symlinks;
4935
4936                 list_add_rcu(&adj->list, dev_list);
4937         } else {
4938                 list_add_tail_rcu(&adj->list, dev_list);
4939         }
4940
4941         return 0;
4942
4943 remove_symlinks:
4944         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
4945                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
4946 free_adj:
4947         kfree(adj);
4948         dev_put(adj_dev);
4949
4950         return ret;
4951 }
4952
4953 static void __netdev_adjacent_dev_remove(struct net_device *dev,
4954                                          struct net_device *adj_dev,
4955                                          struct list_head *dev_list)
4956 {
4957         struct netdev_adjacent *adj;
4958
4959         adj = __netdev_find_adj(dev, adj_dev, dev_list);
4960
4961         if (!adj) {
4962                 pr_err("tried to remove device %s from %s\n",
4963                        dev->name, adj_dev->name);
4964                 BUG();
4965         }
4966
4967         if (adj->ref_nr > 1) {
4968                 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
4969                          adj->ref_nr-1);
4970                 adj->ref_nr--;
4971                 return;
4972         }
4973
4974         if (adj->master)
4975                 sysfs_remove_link(&(dev->dev.kobj), "master");
4976
4977         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
4978                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
4979
4980         list_del_rcu(&adj->list);
4981         pr_debug("dev_put for %s, because link removed from %s to %s\n",
4982                  adj_dev->name, dev->name, adj_dev->name);
4983         dev_put(adj_dev);
4984         kfree_rcu(adj, rcu);
4985 }
4986
4987 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
4988                                             struct net_device *upper_dev,
4989                                             struct list_head *up_list,
4990                                             struct list_head *down_list,
4991                                             void *private, bool master)
4992 {
4993         int ret;
4994
4995         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
4996                                            master);
4997         if (ret)
4998                 return ret;
4999
5000         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5001                                            false);
5002         if (ret) {
5003                 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5004                 return ret;
5005         }
5006
5007         return 0;
5008 }
5009
5010 static int __netdev_adjacent_dev_link(struct net_device *dev,
5011                                       struct net_device *upper_dev)
5012 {
5013         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5014                                                 &dev->all_adj_list.upper,
5015                                                 &upper_dev->all_adj_list.lower,
5016                                                 NULL, false);
5017 }
5018
5019 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5020                                                struct net_device *upper_dev,
5021                                                struct list_head *up_list,
5022                                                struct list_head *down_list)
5023 {
5024         __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5025         __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5026 }
5027
5028 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5029                                          struct net_device *upper_dev)
5030 {
5031         __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5032                                            &dev->all_adj_list.upper,
5033                                            &upper_dev->all_adj_list.lower);
5034 }
5035
5036 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5037                                                 struct net_device *upper_dev,
5038                                                 void *private, bool master)
5039 {
5040         int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5041
5042         if (ret)
5043                 return ret;
5044
5045         ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5046                                                &dev->adj_list.upper,
5047                                                &upper_dev->adj_list.lower,
5048                                                private, master);
5049         if (ret) {
5050                 __netdev_adjacent_dev_unlink(dev, upper_dev);
5051                 return ret;
5052         }
5053
5054         return 0;
5055 }
5056
5057 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5058                                                    struct net_device *upper_dev)
5059 {
5060         __netdev_adjacent_dev_unlink(dev, upper_dev);
5061         __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5062                                            &dev->adj_list.upper,
5063                                            &upper_dev->adj_list.lower);
5064 }
5065
5066 static int __netdev_upper_dev_link(struct net_device *dev,
5067                                    struct net_device *upper_dev, bool master,
5068                                    void *private)
5069 {
5070         struct netdev_adjacent *i, *j, *to_i, *to_j;
5071         int ret = 0;
5072
5073         ASSERT_RTNL();
5074
5075         if (dev == upper_dev)
5076                 return -EBUSY;
5077
5078         /* To prevent loops, check if dev is not upper device to upper_dev. */
5079         if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
5080                 return -EBUSY;
5081
5082         if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper))
5083                 return -EEXIST;
5084
5085         if (master && netdev_master_upper_dev_get(dev))
5086                 return -EBUSY;
5087
5088         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5089                                                    master);
5090         if (ret)
5091                 return ret;
5092
5093         /* Now that we linked these devs, make all the upper_dev's
5094          * all_adj_list.upper visible to every dev's all_adj_list.lower an
5095          * versa, and don't forget the devices itself. All of these
5096          * links are non-neighbours.
5097          */
5098         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5099                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5100                         pr_debug("Interlinking %s with %s, non-neighbour\n",
5101                                  i->dev->name, j->dev->name);
5102                         ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5103                         if (ret)
5104                                 goto rollback_mesh;
5105                 }
5106         }
5107
5108         /* add dev to every upper_dev's upper device */
5109         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5110                 pr_debug("linking %s's upper device %s with %s\n",
5111                          upper_dev->name, i->dev->name, dev->name);
5112                 ret = __netdev_adjacent_dev_link(dev, i->dev);
5113                 if (ret)
5114                         goto rollback_upper_mesh;
5115         }
5116
5117         /* add upper_dev to every dev's lower device */
5118         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5119                 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5120                          i->dev->name, upper_dev->name);
5121                 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5122                 if (ret)
5123                         goto rollback_lower_mesh;
5124         }
5125
5126         call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5127         return 0;
5128
5129 rollback_lower_mesh:
5130         to_i = i;
5131         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5132                 if (i == to_i)
5133                         break;
5134                 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5135         }
5136
5137         i = NULL;
5138
5139 rollback_upper_mesh:
5140         to_i = i;
5141         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5142                 if (i == to_i)
5143                         break;
5144                 __netdev_adjacent_dev_unlink(dev, i->dev);
5145         }
5146
5147         i = j = NULL;
5148
5149 rollback_mesh:
5150         to_i = i;
5151         to_j = j;
5152         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5153                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5154                         if (i == to_i && j == to_j)
5155                                 break;
5156                         __netdev_adjacent_dev_unlink(i->dev, j->dev);
5157                 }
5158                 if (i == to_i)
5159                         break;
5160         }
5161
5162         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5163
5164         return ret;
5165 }
5166
5167 /**
5168  * netdev_upper_dev_link - Add a link to the upper device
5169  * @dev: device
5170  * @upper_dev: new upper device
5171  *
5172  * Adds a link to device which is upper to this one. The caller must hold
5173  * the RTNL lock. On a failure a negative errno code is returned.
5174  * On success the reference counts are adjusted and the function
5175  * returns zero.
5176  */
5177 int netdev_upper_dev_link(struct net_device *dev,
5178                           struct net_device *upper_dev)
5179 {
5180         return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5181 }
5182 EXPORT_SYMBOL(netdev_upper_dev_link);
5183
5184 /**
5185  * netdev_master_upper_dev_link - Add a master link to the upper device
5186  * @dev: device
5187  * @upper_dev: new upper device
5188  *
5189  * Adds a link to device which is upper to this one. In this case, only
5190  * one master upper device can be linked, although other non-master devices
5191  * might be linked as well. The caller must hold the RTNL lock.
5192  * On a failure a negative errno code is returned. On success the reference
5193  * counts are adjusted and the function returns zero.
5194  */
5195 int netdev_master_upper_dev_link(struct net_device *dev,
5196                                  struct net_device *upper_dev)
5197 {
5198         return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5199 }
5200 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5201
5202 int netdev_master_upper_dev_link_private(struct net_device *dev,
5203                                          struct net_device *upper_dev,
5204                                          void *private)
5205 {
5206         return __netdev_upper_dev_link(dev, upper_dev, true, private);
5207 }
5208 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5209
5210 /**
5211  * netdev_upper_dev_unlink - Removes a link to upper device
5212  * @dev: device
5213  * @upper_dev: new upper device
5214  *
5215  * Removes a link to device which is upper to this one. The caller must hold
5216  * the RTNL lock.
5217  */
5218 void netdev_upper_dev_unlink(struct net_device *dev,
5219                              struct net_device *upper_dev)
5220 {
5221         struct netdev_adjacent *i, *j;
5222         ASSERT_RTNL();
5223
5224         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5225
5226         /* Here is the tricky part. We must remove all dev's lower
5227          * devices from all upper_dev's upper devices and vice
5228          * versa, to maintain the graph relationship.
5229          */
5230         list_for_each_entry(i, &dev->all_adj_list.lower, list)
5231                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5232                         __netdev_adjacent_dev_unlink(i->dev, j->dev);
5233
5234         /* remove also the devices itself from lower/upper device
5235          * list
5236          */
5237         list_for_each_entry(i, &dev->all_adj_list.lower, list)
5238                 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5239
5240         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5241                 __netdev_adjacent_dev_unlink(dev, i->dev);
5242
5243         call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5244 }
5245 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5246
5247 void netdev_adjacent_add_links(struct net_device *dev)
5248 {
5249         struct netdev_adjacent *iter;
5250
5251         struct net *net = dev_net(dev);
5252
5253         list_for_each_entry(iter, &dev->adj_list.upper, list) {
5254                 if (!net_eq(net,dev_net(iter->dev)))
5255                         continue;
5256                 netdev_adjacent_sysfs_add(iter->dev, dev,
5257                                           &iter->dev->adj_list.lower);
5258                 netdev_adjacent_sysfs_add(dev, iter->dev,
5259                                           &dev->adj_list.upper);
5260         }
5261
5262         list_for_each_entry(iter, &dev->adj_list.lower, list) {
5263                 if (!net_eq(net,dev_net(iter->dev)))
5264                         continue;
5265                 netdev_adjacent_sysfs_add(iter->dev, dev,
5266                                           &iter->dev->adj_list.upper);
5267                 netdev_adjacent_sysfs_add(dev, iter->dev,
5268                                           &dev->adj_list.lower);
5269         }
5270 }
5271
5272 void netdev_adjacent_del_links(struct net_device *dev)
5273 {
5274         struct netdev_adjacent *iter;
5275
5276         struct net *net = dev_net(dev);
5277
5278         list_for_each_entry(iter, &dev->adj_list.upper, list) {
5279                 if (!net_eq(net,dev_net(iter->dev)))
5280                         continue;
5281                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5282                                           &iter->dev->adj_list.lower);
5283                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5284                                           &dev->adj_list.upper);
5285         }
5286
5287         list_for_each_entry(iter, &dev->adj_list.lower, list) {
5288                 if (!net_eq(net,dev_net(iter->dev)))
5289                         continue;
5290                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5291                                           &iter->dev->adj_list.upper);
5292                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5293                                           &dev->adj_list.lower);
5294         }
5295 }
5296
5297 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5298 {
5299         struct netdev_adjacent *iter;
5300
5301         struct net *net = dev_net(dev);
5302
5303         list_for_each_entry(iter, &dev->adj_list.upper, list) {
5304                 if (!net_eq(net,dev_net(iter->dev)))
5305                         continue;
5306                 netdev_adjacent_sysfs_del(iter->dev, oldname,
5307                                           &iter->dev->adj_list.lower);
5308                 netdev_adjacent_sysfs_add(iter->dev, dev,
5309                                           &iter->dev->adj_list.lower);
5310         }
5311
5312         list_for_each_entry(iter, &dev->adj_list.lower, list) {
5313                 if (!net_eq(net,dev_net(iter->dev)))
5314                         continue;
5315                 netdev_adjacent_sysfs_del(iter->dev, oldname,
5316                                           &iter->dev->adj_list.upper);
5317                 netdev_adjacent_sysfs_add(iter->dev, dev,
5318                                           &iter->dev->adj_list.upper);
5319         }
5320 }
5321
5322 void *netdev_lower_dev_get_private(struct net_device *dev,
5323                                    struct net_device *lower_dev)
5324 {
5325         struct netdev_adjacent *lower;
5326
5327         if (!lower_dev)
5328                 return NULL;
5329         lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5330         if (!lower)
5331                 return NULL;
5332
5333         return lower->private;
5334 }
5335 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5336
5337
5338 int dev_get_nest_level(struct net_device *dev,
5339                        bool (*type_check)(struct net_device *dev))
5340 {
5341         struct net_device *lower = NULL;
5342         struct list_head *iter;
5343         int max_nest = -1;
5344         int nest;
5345
5346         ASSERT_RTNL();
5347
5348         netdev_for_each_lower_dev(dev, lower, iter) {
5349                 nest = dev_get_nest_level(lower, type_check);
5350                 if (max_nest < nest)
5351                         max_nest = nest;
5352         }
5353
5354         if (type_check(dev))
5355                 max_nest++;
5356
5357         return max_nest;
5358 }
5359 EXPORT_SYMBOL(dev_get_nest_level);
5360
5361 static void dev_change_rx_flags(struct net_device *dev, int flags)
5362 {
5363         const struct net_device_ops *ops = dev->netdev_ops;
5364
5365         if (ops->ndo_change_rx_flags)
5366                 ops->ndo_change_rx_flags(dev, flags);
5367 }
5368
5369 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5370 {
5371         unsigned int old_flags = dev->flags;
5372         kuid_t uid;
5373         kgid_t gid;
5374
5375         ASSERT_RTNL();
5376
5377         dev->flags |= IFF_PROMISC;
5378         dev->promiscuity += inc;
5379         if (dev->promiscuity == 0) {
5380                 /*
5381                  * Avoid overflow.
5382                  * If inc causes overflow, untouch promisc and return error.
5383                  */
5384                 if (inc < 0)
5385                         dev->flags &= ~IFF_PROMISC;
5386                 else {
5387                         dev->promiscuity -= inc;
5388                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5389                                 dev->name);
5390                         return -EOVERFLOW;
5391                 }
5392         }
5393         if (dev->flags != old_flags) {
5394                 pr_info("device %s %s promiscuous mode\n",
5395                         dev->name,
5396                         dev->flags & IFF_PROMISC ? "entered" : "left");
5397                 if (audit_enabled) {
5398                         current_uid_gid(&uid, &gid);
5399                         audit_log(current->audit_context, GFP_ATOMIC,
5400                                 AUDIT_ANOM_PROMISCUOUS,
5401                                 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5402                                 dev->name, (dev->flags & IFF_PROMISC),
5403                                 (old_flags & IFF_PROMISC),
5404                                 from_kuid(&init_user_ns, audit_get_loginuid(current)),
5405                                 from_kuid(&init_user_ns, uid),
5406                                 from_kgid(&init_user_ns, gid),
5407                                 audit_get_sessionid(current));
5408                 }
5409
5410                 dev_change_rx_flags(dev, IFF_PROMISC);
5411         }
5412         if (notify)
5413                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
5414         return 0;
5415 }
5416
5417 /**
5418  *      dev_set_promiscuity     - update promiscuity count on a device
5419  *      @dev: device
5420  *      @inc: modifier
5421  *
5422  *      Add or remove promiscuity from a device. While the count in the device
5423  *      remains above zero the interface remains promiscuous. Once it hits zero
5424  *      the device reverts back to normal filtering operation. A negative inc
5425  *      value is used to drop promiscuity on the device.
5426  *      Return 0 if successful or a negative errno code on error.
5427  */
5428 int dev_set_promiscuity(struct net_device *dev, int inc)
5429 {
5430         unsigned int old_flags = dev->flags;
5431         int err;
5432
5433         err = __dev_set_promiscuity(dev, inc, true);
5434         if (err < 0)
5435                 return err;
5436         if (dev->flags != old_flags)
5437                 dev_set_rx_mode(dev);
5438         return err;
5439 }
5440 EXPORT_SYMBOL(dev_set_promiscuity);
5441
5442 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5443 {
5444         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5445
5446         ASSERT_RTNL();
5447
5448         dev->flags |= IFF_ALLMULTI;
5449         dev->allmulti += inc;
5450         if (dev->allmulti == 0) {
5451                 /*
5452                  * Avoid overflow.
5453                  * If inc causes overflow, untouch allmulti and return error.
5454                  */
5455                 if (inc < 0)
5456                         dev->flags &= ~IFF_ALLMULTI;
5457                 else {
5458                         dev->allmulti -= inc;
5459                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5460                                 dev->name);
5461                         return -EOVERFLOW;
5462                 }
5463         }
5464         if (dev->flags ^ old_flags) {
5465                 dev_change_rx_flags(dev, IFF_ALLMULTI);
5466                 dev_set_rx_mode(dev);
5467                 if (notify)
5468                         __dev_notify_flags(dev, old_flags,
5469                                            dev->gflags ^ old_gflags);
5470         }
5471         return 0;
5472 }
5473
5474 /**
5475  *      dev_set_allmulti        - update allmulti count on a device
5476  *      @dev: device
5477  *      @inc: modifier
5478  *
5479  *      Add or remove reception of all multicast frames to a device. While the
5480  *      count in the device remains above zero the interface remains listening
5481  *      to all interfaces. Once it hits zero the device reverts back to normal
5482  *      filtering operation. A negative @inc value is used to drop the counter
5483  *      when releasing a resource needing all multicasts.
5484  *      Return 0 if successful or a negative errno code on error.
5485  */
5486
5487 int dev_set_allmulti(struct net_device *dev, int inc)
5488 {
5489         return __dev_set_allmulti(dev, inc, true);
5490 }
5491 EXPORT_SYMBOL(dev_set_allmulti);
5492
5493 /*
5494  *      Upload unicast and multicast address lists to device and
5495  *      configure RX filtering. When the device doesn't support unicast
5496  *      filtering it is put in promiscuous mode while unicast addresses
5497  *      are present.
5498  */
5499 void __dev_set_rx_mode(struct net_device *dev)
5500 {
5501         const struct net_device_ops *ops = dev->netdev_ops;
5502
5503         /* dev_open will call this function so the list will stay sane. */
5504         if (!(dev->flags&IFF_UP))
5505                 return;
5506
5507         if (!netif_device_present(dev))
5508                 return;
5509
5510         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5511                 /* Unicast addresses changes may only happen under the rtnl,
5512                  * therefore calling __dev_set_promiscuity here is safe.
5513                  */
5514                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5515                         __dev_set_promiscuity(dev, 1, false);
5516                         dev->uc_promisc = true;
5517                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5518                         __dev_set_promiscuity(dev, -1, false);
5519                         dev->uc_promisc = false;
5520                 }
5521         }
5522
5523         if (ops->ndo_set_rx_mode)
5524                 ops->ndo_set_rx_mode(dev);
5525 }
5526
5527 void dev_set_rx_mode(struct net_device *dev)
5528 {
5529         netif_addr_lock_bh(dev);
5530         __dev_set_rx_mode(dev);
5531         netif_addr_unlock_bh(dev);
5532 }
5533
5534 /**
5535  *      dev_get_flags - get flags reported to userspace
5536  *      @dev: device
5537  *
5538  *      Get the combination of flag bits exported through APIs to userspace.
5539  */
5540 unsigned int dev_get_flags(const struct net_device *dev)
5541 {
5542         unsigned int flags;
5543
5544         flags = (dev->flags & ~(IFF_PROMISC |
5545                                 IFF_ALLMULTI |
5546                                 IFF_RUNNING |
5547                                 IFF_LOWER_UP |
5548                                 IFF_DORMANT)) |
5549                 (dev->gflags & (IFF_PROMISC |
5550                                 IFF_ALLMULTI));
5551
5552         if (netif_running(dev)) {
5553                 if (netif_oper_up(dev))
5554                         flags |= IFF_RUNNING;
5555                 if (netif_carrier_ok(dev))
5556                         flags |= IFF_LOWER_UP;
5557                 if (netif_dormant(dev))
5558                         flags |= IFF_DORMANT;
5559         }
5560
5561         return flags;
5562 }
5563 EXPORT_SYMBOL(dev_get_flags);
5564
5565 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5566 {
5567         unsigned int old_flags = dev->flags;
5568         int ret;
5569
5570         ASSERT_RTNL();
5571
5572         /*
5573          *      Set the flags on our device.
5574          */
5575
5576         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5577                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5578                                IFF_AUTOMEDIA)) |
5579                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5580                                     IFF_ALLMULTI));
5581
5582         /*
5583          *      Load in the correct multicast list now the flags have changed.
5584          */
5585
5586         if ((old_flags ^ flags) & IFF_MULTICAST)
5587                 dev_change_rx_flags(dev, IFF_MULTICAST);
5588
5589         dev_set_rx_mode(dev);
5590
5591         /*
5592          *      Have we downed the interface. We handle IFF_UP ourselves
5593          *      according to user attempts to set it, rather than blindly
5594          *      setting it.
5595          */
5596
5597         ret = 0;
5598         if ((old_flags ^ flags) & IFF_UP)
5599                 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5600
5601         if ((flags ^ dev->gflags) & IFF_PROMISC) {
5602                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
5603                 unsigned int old_flags = dev->flags;
5604
5605                 dev->gflags ^= IFF_PROMISC;
5606
5607                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5608                         if (dev->flags != old_flags)
5609                                 dev_set_rx_mode(dev);
5610         }
5611
5612         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5613            is important. Some (broken) drivers set IFF_PROMISC, when
5614            IFF_ALLMULTI is requested not asking us and not reporting.
5615          */
5616         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5617                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5618
5619                 dev->gflags ^= IFF_ALLMULTI;
5620                 __dev_set_allmulti(dev, inc, false);
5621         }
5622
5623         return ret;
5624 }
5625
5626 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5627                         unsigned int gchanges)
5628 {
5629         unsigned int changes = dev->flags ^ old_flags;
5630
5631         if (gchanges)
5632                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5633
5634         if (changes & IFF_UP) {
5635                 if (dev->flags & IFF_UP)
5636                         call_netdevice_notifiers(NETDEV_UP, dev);
5637                 else
5638                         call_netdevice_notifiers(NETDEV_DOWN, dev);
5639         }
5640
5641         if (dev->flags & IFF_UP &&
5642             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5643                 struct netdev_notifier_change_info change_info;
5644
5645                 change_info.flags_changed = changes;
5646                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5647                                               &change_info.info);
5648         }
5649 }
5650
5651 /**
5652  *      dev_change_flags - change device settings
5653  *      @dev: device
5654  *      @flags: device state flags
5655  *
5656  *      Change settings on device based state flags. The flags are
5657  *      in the userspace exported format.
5658  */
5659 int dev_change_flags(struct net_device *dev, unsigned int flags)
5660 {
5661         int ret;
5662         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5663
5664         ret = __dev_change_flags(dev, flags);
5665         if (ret < 0)
5666                 return ret;
5667
5668         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5669         __dev_notify_flags(dev, old_flags, changes);
5670         return ret;
5671 }
5672 EXPORT_SYMBOL(dev_change_flags);
5673
5674 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5675 {
5676         const struct net_device_ops *ops = dev->netdev_ops;
5677
5678         if (ops->ndo_change_mtu)
5679                 return ops->ndo_change_mtu(dev, new_mtu);
5680
5681         dev->mtu = new_mtu;
5682         return 0;
5683 }
5684
5685 /**
5686  *      dev_set_mtu - Change maximum transfer unit
5687  *      @dev: device
5688  *      @new_mtu: new transfer unit
5689  *
5690  *      Change the maximum transfer size of the network device.
5691  */
5692 int dev_set_mtu(struct net_device *dev, int new_mtu)
5693 {
5694         int err, orig_mtu;
5695
5696         if (new_mtu == dev->mtu)
5697                 return 0;
5698
5699         /*      MTU must be positive.    */
5700         if (new_mtu < 0)
5701                 return -EINVAL;
5702
5703         if (!netif_device_present(dev))
5704                 return -ENODEV;
5705
5706         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5707         err = notifier_to_errno(err);
5708         if (err)
5709                 return err;
5710
5711         orig_mtu = dev->mtu;
5712         err = __dev_set_mtu(dev, new_mtu);
5713
5714         if (!err) {
5715                 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5716                 err = notifier_to_errno(err);
5717                 if (err) {
5718                         /* setting mtu back and notifying everyone again,
5719                          * so that they have a chance to revert changes.
5720                          */
5721                         __dev_set_mtu(dev, orig_mtu);
5722                         call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5723                 }
5724         }
5725         return err;
5726 }
5727 EXPORT_SYMBOL(dev_set_mtu);
5728
5729 /**
5730  *      dev_set_group - Change group this device belongs to
5731  *      @dev: device
5732  *      @new_group: group this device should belong to
5733  */
5734 void dev_set_group(struct net_device *dev, int new_group)
5735 {
5736         dev->group = new_group;
5737 }
5738 EXPORT_SYMBOL(dev_set_group);
5739
5740 /**
5741  *      dev_set_mac_address - Change Media Access Control Address
5742  *      @dev: device
5743  *      @sa: new address
5744  *
5745  *      Change the hardware (MAC) address of the device
5746  */
5747 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5748 {
5749         const struct net_device_ops *ops = dev->netdev_ops;
5750         int err;
5751
5752         if (!ops->ndo_set_mac_address)
5753                 return -EOPNOTSUPP;
5754         if (sa->sa_family != dev->type)
5755                 return -EINVAL;
5756         if (!netif_device_present(dev))
5757                 return -ENODEV;
5758         err = ops->ndo_set_mac_address(dev, sa);
5759         if (err)
5760                 return err;
5761         dev->addr_assign_type = NET_ADDR_SET;
5762         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5763         add_device_randomness(dev->dev_addr, dev->addr_len);
5764         return 0;
5765 }
5766 EXPORT_SYMBOL(dev_set_mac_address);
5767
5768 /**
5769  *      dev_change_carrier - Change device carrier
5770  *      @dev: device
5771  *      @new_carrier: new value
5772  *
5773  *      Change device carrier
5774  */
5775 int dev_change_carrier(struct net_device *dev, bool new_carrier)
5776 {
5777         const struct net_device_ops *ops = dev->netdev_ops;
5778
5779         if (!ops->ndo_change_carrier)
5780                 return -EOPNOTSUPP;
5781         if (!netif_device_present(dev))
5782                 return -ENODEV;
5783         return ops->ndo_change_carrier(dev, new_carrier);
5784 }
5785 EXPORT_SYMBOL(dev_change_carrier);
5786
5787 /**
5788  *      dev_get_phys_port_id - Get device physical port ID
5789  *      @dev: device
5790  *      @ppid: port ID
5791  *
5792  *      Get device physical port ID
5793  */
5794 int dev_get_phys_port_id(struct net_device *dev,
5795                          struct netdev_phys_port_id *ppid)
5796 {
5797         const struct net_device_ops *ops = dev->netdev_ops;
5798
5799         if (!ops->ndo_get_phys_port_id)
5800                 return -EOPNOTSUPP;
5801         return ops->ndo_get_phys_port_id(dev, ppid);
5802 }
5803 EXPORT_SYMBOL(dev_get_phys_port_id);
5804
5805 /**
5806  *      dev_new_index   -       allocate an ifindex
5807  *      @net: the applicable net namespace
5808  *
5809  *      Returns a suitable unique value for a new device interface
5810  *      number.  The caller must hold the rtnl semaphore or the
5811  *      dev_base_lock to be sure it remains unique.
5812  */
5813 static int dev_new_index(struct net *net)
5814 {
5815         int ifindex = net->ifindex;
5816         for (;;) {
5817                 if (++ifindex <= 0)
5818                         ifindex = 1;
5819                 if (!__dev_get_by_index(net, ifindex))
5820                         return net->ifindex = ifindex;
5821         }
5822 }
5823
5824 /* Delayed registration/unregisteration */
5825 static LIST_HEAD(net_todo_list);
5826 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
5827
5828 static void net_set_todo(struct net_device *dev)
5829 {
5830         list_add_tail(&dev->todo_list, &net_todo_list);
5831         dev_net(dev)->dev_unreg_count++;
5832 }
5833
5834 static void rollback_registered_many(struct list_head *head)
5835 {
5836         struct net_device *dev, *tmp;
5837         LIST_HEAD(close_head);
5838
5839         BUG_ON(dev_boot_phase);
5840         ASSERT_RTNL();
5841
5842         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5843                 /* Some devices call without registering
5844                  * for initialization unwind. Remove those
5845                  * devices and proceed with the remaining.
5846                  */
5847                 if (dev->reg_state == NETREG_UNINITIALIZED) {
5848                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5849                                  dev->name, dev);
5850
5851                         WARN_ON(1);
5852                         list_del(&dev->unreg_list);
5853                         continue;
5854                 }
5855                 dev->dismantle = true;
5856                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5857         }
5858
5859         /* If device is running, close it first. */
5860         list_for_each_entry(dev, head, unreg_list)
5861                 list_add_tail(&dev->close_list, &close_head);
5862         dev_close_many(&close_head);
5863
5864         list_for_each_entry(dev, head, unreg_list) {
5865                 /* And unlink it from device chain. */
5866                 unlist_netdevice(dev);
5867
5868                 dev->reg_state = NETREG_UNREGISTERING;
5869         }
5870
5871         synchronize_net();
5872
5873         list_for_each_entry(dev, head, unreg_list) {
5874                 /* Shutdown queueing discipline. */
5875                 dev_shutdown(dev);
5876
5877
5878                 /* Notify protocols, that we are about to destroy
5879                    this device. They should clean all the things.
5880                 */
5881                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5882
5883                 /*
5884                  *      Flush the unicast and multicast chains
5885                  */
5886                 dev_uc_flush(dev);
5887                 dev_mc_flush(dev);
5888
5889                 if (dev->netdev_ops->ndo_uninit)
5890                         dev->netdev_ops->ndo_uninit(dev);
5891
5892                 if (!dev->rtnl_link_ops ||
5893                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5894                         rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
5895
5896                 /* Notifier chain MUST detach us all upper devices. */
5897                 WARN_ON(netdev_has_any_upper_dev(dev));
5898
5899                 /* Remove entries from kobject tree */
5900                 netdev_unregister_kobject(dev);
5901 #ifdef CONFIG_XPS
5902                 /* Remove XPS queueing entries */
5903                 netif_reset_xps_queues_gt(dev, 0);
5904 #endif
5905         }
5906
5907         synchronize_net();
5908
5909         list_for_each_entry(dev, head, unreg_list)
5910                 dev_put(dev);
5911 }
5912
5913 static void rollback_registered(struct net_device *dev)
5914 {
5915         LIST_HEAD(single);
5916
5917         list_add(&dev->unreg_list, &single);
5918         rollback_registered_many(&single);
5919         list_del(&single);
5920 }
5921
5922 static netdev_features_t netdev_fix_features(struct net_device *dev,
5923         netdev_features_t features)
5924 {
5925         /* Fix illegal checksum combinations */
5926         if ((features & NETIF_F_HW_CSUM) &&
5927             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5928                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5929                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5930         }
5931
5932         /* TSO requires that SG is present as well. */
5933         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5934                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5935                 features &= ~NETIF_F_ALL_TSO;
5936         }
5937
5938         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
5939                                         !(features & NETIF_F_IP_CSUM)) {
5940                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
5941                 features &= ~NETIF_F_TSO;
5942                 features &= ~NETIF_F_TSO_ECN;
5943         }
5944
5945         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
5946                                          !(features & NETIF_F_IPV6_CSUM)) {
5947                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
5948                 features &= ~NETIF_F_TSO6;
5949         }
5950
5951         /* TSO ECN requires that TSO is present as well. */
5952         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5953                 features &= ~NETIF_F_TSO_ECN;
5954
5955         /* Software GSO depends on SG. */
5956         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5957                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5958                 features &= ~NETIF_F_GSO;
5959         }
5960
5961         /* UFO needs SG and checksumming */
5962         if (features & NETIF_F_UFO) {
5963                 /* maybe split UFO into V4 and V6? */
5964                 if (!((features & NETIF_F_GEN_CSUM) ||
5965                     (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5966                             == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5967                         netdev_dbg(dev,
5968                                 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5969                         features &= ~NETIF_F_UFO;
5970                 }
5971
5972                 if (!(features & NETIF_F_SG)) {
5973                         netdev_dbg(dev,
5974                                 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5975                         features &= ~NETIF_F_UFO;
5976                 }
5977         }
5978
5979 #ifdef CONFIG_NET_RX_BUSY_POLL
5980         if (dev->netdev_ops->ndo_busy_poll)
5981                 features |= NETIF_F_BUSY_POLL;
5982         else
5983 #endif
5984                 features &= ~NETIF_F_BUSY_POLL;
5985
5986         return features;
5987 }
5988
5989 int __netdev_update_features(struct net_device *dev)
5990 {
5991         netdev_features_t features;
5992         int err = 0;
5993
5994         ASSERT_RTNL();
5995
5996         features = netdev_get_wanted_features(dev);
5997
5998         if (dev->netdev_ops->ndo_fix_features)
5999                 features = dev->netdev_ops->ndo_fix_features(dev, features);
6000
6001         /* driver might be less strict about feature dependencies */
6002         features = netdev_fix_features(dev, features);
6003
6004         if (dev->features == features)
6005                 return 0;
6006
6007         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6008                 &dev->features, &features);
6009
6010         if (dev->netdev_ops->ndo_set_features)
6011                 err = dev->netdev_ops->ndo_set_features(dev, features);
6012
6013         if (unlikely(err < 0)) {
6014                 netdev_err(dev,
6015                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
6016                         err, &features, &dev->features);
6017                 return -1;
6018         }
6019
6020         if (!err)
6021                 dev->features = features;
6022
6023         return 1;
6024 }
6025
6026 /**
6027  *      netdev_update_features - recalculate device features
6028  *      @dev: the device to check
6029  *
6030  *      Recalculate dev->features set and send notifications if it
6031  *      has changed. Should be called after driver or hardware dependent
6032  *      conditions might have changed that influence the features.
6033  */
6034 void netdev_update_features(struct net_device *dev)
6035 {
6036         if (__netdev_update_features(dev))
6037                 netdev_features_change(dev);
6038 }
6039 EXPORT_SYMBOL(netdev_update_features);
6040
6041 /**
6042  *      netdev_change_features - recalculate device features
6043  *      @dev: the device to check
6044  *
6045  *      Recalculate dev->features set and send notifications even
6046  *      if they have not changed. Should be called instead of
6047  *      netdev_update_features() if also dev->vlan_features might
6048  *      have changed to allow the changes to be propagated to stacked
6049  *      VLAN devices.
6050  */
6051 void netdev_change_features(struct net_device *dev)
6052 {
6053         __netdev_update_features(dev);
6054         netdev_features_change(dev);
6055 }
6056 EXPORT_SYMBOL(netdev_change_features);
6057
6058 /**
6059  *      netif_stacked_transfer_operstate -      transfer operstate
6060  *      @rootdev: the root or lower level device to transfer state from
6061  *      @dev: the device to transfer operstate to
6062  *
6063  *      Transfer operational state from root to device. This is normally
6064  *      called when a stacking relationship exists between the root
6065  *      device and the device(a leaf device).
6066  */
6067 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6068                                         struct net_device *dev)
6069 {
6070         if (rootdev->operstate == IF_OPER_DORMANT)
6071                 netif_dormant_on(dev);
6072         else
6073                 netif_dormant_off(dev);
6074
6075         if (netif_carrier_ok(rootdev)) {
6076                 if (!netif_carrier_ok(dev))
6077                         netif_carrier_on(dev);
6078         } else {
6079                 if (netif_carrier_ok(dev))
6080                         netif_carrier_off(dev);
6081         }
6082 }
6083 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6084
6085 #ifdef CONFIG_SYSFS
6086 static int netif_alloc_rx_queues(struct net_device *dev)
6087 {
6088         unsigned int i, count = dev->num_rx_queues;
6089         struct netdev_rx_queue *rx;
6090
6091         BUG_ON(count < 1);
6092
6093         rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
6094         if (!rx)
6095                 return -ENOMEM;
6096
6097         dev->_rx = rx;
6098
6099         for (i = 0; i < count; i++)
6100                 rx[i].dev = dev;
6101         return 0;
6102 }
6103 #endif
6104
6105 static void netdev_init_one_queue(struct net_device *dev,
6106                                   struct netdev_queue *queue, void *_unused)
6107 {
6108         /* Initialize queue lock */
6109         spin_lock_init(&queue->_xmit_lock);
6110         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6111         queue->xmit_lock_owner = -1;
6112         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6113         queue->dev = dev;
6114 #ifdef CONFIG_BQL
6115         dql_init(&queue->dql, HZ);
6116 #endif
6117 }
6118
6119 static void netif_free_tx_queues(struct net_device *dev)
6120 {
6121         kvfree(dev->_tx);
6122 }
6123
6124 static int netif_alloc_netdev_queues(struct net_device *dev)
6125 {
6126         unsigned int count = dev->num_tx_queues;
6127         struct netdev_queue *tx;
6128         size_t sz = count * sizeof(*tx);
6129
6130         BUG_ON(count < 1 || count > 0xffff);
6131
6132         tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6133         if (!tx) {
6134                 tx = vzalloc(sz);
6135                 if (!tx)
6136                         return -ENOMEM;
6137         }
6138         dev->_tx = tx;
6139
6140         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6141         spin_lock_init(&dev->tx_global_lock);
6142
6143         return 0;
6144 }
6145
6146 /**
6147  *      register_netdevice      - register a network device
6148  *      @dev: device to register
6149  *
6150  *      Take a completed network device structure and add it to the kernel
6151  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6152  *      chain. 0 is returned on success. A negative errno code is returned
6153  *      on a failure to set up the device, or if the name is a duplicate.
6154  *
6155  *      Callers must hold the rtnl semaphore. You may want
6156  *      register_netdev() instead of this.
6157  *
6158  *      BUGS:
6159  *      The locking appears insufficient to guarantee two parallel registers
6160  *      will not get the same name.
6161  */
6162
6163 int register_netdevice(struct net_device *dev)
6164 {
6165         int ret;
6166         struct net *net = dev_net(dev);
6167
6168         BUG_ON(dev_boot_phase);
6169         ASSERT_RTNL();
6170
6171         might_sleep();
6172
6173         /* When net_device's are persistent, this will be fatal. */
6174         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6175         BUG_ON(!net);
6176
6177         spin_lock_init(&dev->addr_list_lock);
6178         netdev_set_addr_lockdep_class(dev);
6179
6180         dev->iflink = -1;
6181
6182         ret = dev_get_valid_name(net, dev, dev->name);
6183         if (ret < 0)
6184                 goto out;
6185
6186         /* Init, if this function is available */
6187         if (dev->netdev_ops->ndo_init) {
6188                 ret = dev->netdev_ops->ndo_init(dev);
6189                 if (ret) {
6190                         if (ret > 0)
6191                                 ret = -EIO;
6192                         goto out;
6193                 }
6194         }
6195
6196         if (((dev->hw_features | dev->features) &
6197              NETIF_F_HW_VLAN_CTAG_FILTER) &&
6198             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6199              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6200                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6201                 ret = -EINVAL;
6202                 goto err_uninit;
6203         }
6204
6205         ret = -EBUSY;
6206         if (!dev->ifindex)
6207                 dev->ifindex = dev_new_index(net);
6208         else if (__dev_get_by_index(net, dev->ifindex))
6209                 goto err_uninit;
6210
6211         if (dev->iflink == -1)
6212                 dev->iflink = dev->ifindex;
6213
6214         /* Transfer changeable features to wanted_features and enable
6215          * software offloads (GSO and GRO).
6216          */
6217         dev->hw_features |= NETIF_F_SOFT_FEATURES;
6218         dev->features |= NETIF_F_SOFT_FEATURES;
6219         dev->wanted_features = dev->features & dev->hw_features;
6220
6221         if (!(dev->flags & IFF_LOOPBACK)) {
6222                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
6223         }
6224
6225         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6226          */
6227         dev->vlan_features |= NETIF_F_HIGHDMA;
6228
6229         /* Make NETIF_F_SG inheritable to tunnel devices.
6230          */
6231         dev->hw_enc_features |= NETIF_F_SG;
6232
6233         /* Make NETIF_F_SG inheritable to MPLS.
6234          */
6235         dev->mpls_features |= NETIF_F_SG;
6236
6237         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6238         ret = notifier_to_errno(ret);
6239         if (ret)
6240                 goto err_uninit;
6241
6242         ret = netdev_register_kobject(dev);
6243         if (ret)
6244                 goto err_uninit;
6245         dev->reg_state = NETREG_REGISTERED;
6246
6247         __netdev_update_features(dev);
6248
6249         /*
6250          *      Default initial state at registry is that the
6251          *      device is present.
6252          */
6253
6254         set_bit(__LINK_STATE_PRESENT, &dev->state);
6255
6256         linkwatch_init_dev(dev);
6257
6258         dev_init_scheduler(dev);
6259         dev_hold(dev);
6260         list_netdevice(dev);
6261         add_device_randomness(dev->dev_addr, dev->addr_len);
6262
6263         /* If the device has permanent device address, driver should
6264          * set dev_addr and also addr_assign_type should be set to
6265          * NET_ADDR_PERM (default value).
6266          */
6267         if (dev->addr_assign_type == NET_ADDR_PERM)
6268                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6269
6270         /* Notify protocols, that a new device appeared. */
6271         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6272         ret = notifier_to_errno(ret);
6273         if (ret) {
6274                 rollback_registered(dev);
6275                 dev->reg_state = NETREG_UNREGISTERED;
6276         }
6277         /*
6278          *      Prevent userspace races by waiting until the network
6279          *      device is fully setup before sending notifications.
6280          */
6281         if (!dev->rtnl_link_ops ||
6282             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6283                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6284
6285 out:
6286         return ret;
6287
6288 err_uninit:
6289         if (dev->netdev_ops->ndo_uninit)
6290                 dev->netdev_ops->ndo_uninit(dev);
6291         goto out;
6292 }
6293 EXPORT_SYMBOL(register_netdevice);
6294
6295 /**
6296  *      init_dummy_netdev       - init a dummy network device for NAPI
6297  *      @dev: device to init
6298  *
6299  *      This takes a network device structure and initialize the minimum
6300  *      amount of fields so it can be used to schedule NAPI polls without
6301  *      registering a full blown interface. This is to be used by drivers
6302  *      that need to tie several hardware interfaces to a single NAPI
6303  *      poll scheduler due to HW limitations.
6304  */
6305 int init_dummy_netdev(struct net_device *dev)
6306 {
6307         /* Clear everything. Note we don't initialize spinlocks
6308          * are they aren't supposed to be taken by any of the
6309          * NAPI code and this dummy netdev is supposed to be
6310          * only ever used for NAPI polls
6311          */
6312         memset(dev, 0, sizeof(struct net_device));
6313
6314         /* make sure we BUG if trying to hit standard
6315          * register/unregister code path
6316          */
6317         dev->reg_state = NETREG_DUMMY;
6318
6319         /* NAPI wants this */
6320         INIT_LIST_HEAD(&dev->napi_list);
6321
6322         /* a dummy interface is started by default */
6323         set_bit(__LINK_STATE_PRESENT, &dev->state);
6324         set_bit(__LINK_STATE_START, &dev->state);
6325
6326         /* Note : We dont allocate pcpu_refcnt for dummy devices,
6327          * because users of this 'device' dont need to change
6328          * its refcount.
6329          */
6330
6331         return 0;
6332 }
6333 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6334
6335
6336 /**
6337  *      register_netdev - register a network device
6338  *      @dev: device to register
6339  *
6340  *      Take a completed network device structure and add it to the kernel
6341  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6342  *      chain. 0 is returned on success. A negative errno code is returned
6343  *      on a failure to set up the device, or if the name is a duplicate.
6344  *
6345  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
6346  *      and expands the device name if you passed a format string to
6347  *      alloc_netdev.
6348  */
6349 int register_netdev(struct net_device *dev)
6350 {
6351         int err;
6352
6353         rtnl_lock();
6354         err = register_netdevice(dev);
6355         rtnl_unlock();
6356         return err;
6357 }
6358 EXPORT_SYMBOL(register_netdev);
6359
6360 int netdev_refcnt_read(const struct net_device *dev)
6361 {
6362         int i, refcnt = 0;
6363
6364         for_each_possible_cpu(i)
6365                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6366         return refcnt;
6367 }
6368 EXPORT_SYMBOL(netdev_refcnt_read);
6369
6370 /**
6371  * netdev_wait_allrefs - wait until all references are gone.
6372  * @dev: target net_device
6373  *
6374  * This is called when unregistering network devices.
6375  *
6376  * Any protocol or device that holds a reference should register
6377  * for netdevice notification, and cleanup and put back the
6378  * reference if they receive an UNREGISTER event.
6379  * We can get stuck here if buggy protocols don't correctly
6380  * call dev_put.
6381  */
6382 static void netdev_wait_allrefs(struct net_device *dev)
6383 {
6384         unsigned long rebroadcast_time, warning_time;
6385         int refcnt;
6386
6387         linkwatch_forget_dev(dev);
6388
6389         rebroadcast_time = warning_time = jiffies;
6390         refcnt = netdev_refcnt_read(dev);
6391
6392         while (refcnt != 0) {
6393                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6394                         rtnl_lock();
6395
6396                         /* Rebroadcast unregister notification */
6397                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6398
6399                         __rtnl_unlock();
6400                         rcu_barrier();
6401                         rtnl_lock();
6402
6403                         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6404                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6405                                      &dev->state)) {
6406                                 /* We must not have linkwatch events
6407                                  * pending on unregister. If this
6408                                  * happens, we simply run the queue
6409                                  * unscheduled, resulting in a noop
6410                                  * for this device.
6411                                  */
6412                                 linkwatch_run_queue();
6413                         }
6414
6415                         __rtnl_unlock();
6416
6417                         rebroadcast_time = jiffies;
6418                 }
6419
6420                 msleep(250);
6421
6422                 refcnt = netdev_refcnt_read(dev);
6423
6424                 if (time_after(jiffies, warning_time + 10 * HZ)) {
6425                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6426                                  dev->name, refcnt);
6427                         warning_time = jiffies;
6428                 }
6429         }
6430 }
6431
6432 /* The sequence is:
6433  *
6434  *      rtnl_lock();
6435  *      ...
6436  *      register_netdevice(x1);
6437  *      register_netdevice(x2);
6438  *      ...
6439  *      unregister_netdevice(y1);
6440  *      unregister_netdevice(y2);
6441  *      ...
6442  *      rtnl_unlock();
6443  *      free_netdev(y1);
6444  *      free_netdev(y2);
6445  *
6446  * We are invoked by rtnl_unlock().
6447  * This allows us to deal with problems:
6448  * 1) We can delete sysfs objects which invoke hotplug
6449  *    without deadlocking with linkwatch via keventd.
6450  * 2) Since we run with the RTNL semaphore not held, we can sleep
6451  *    safely in order to wait for the netdev refcnt to drop to zero.
6452  *
6453  * We must not return until all unregister events added during
6454  * the interval the lock was held have been completed.
6455  */
6456 void netdev_run_todo(void)
6457 {
6458         struct list_head list;
6459
6460         /* Snapshot list, allow later requests */
6461         list_replace_init(&net_todo_list, &list);
6462
6463         __rtnl_unlock();
6464
6465
6466         /* Wait for rcu callbacks to finish before next phase */
6467         if (!list_empty(&list))
6468                 rcu_barrier();
6469
6470         while (!list_empty(&list)) {
6471                 struct net_device *dev
6472                         = list_first_entry(&list, struct net_device, todo_list);
6473                 list_del(&dev->todo_list);
6474
6475                 rtnl_lock();
6476                 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6477                 __rtnl_unlock();
6478
6479                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6480                         pr_err("network todo '%s' but state %d\n",
6481                                dev->name, dev->reg_state);
6482                         dump_stack();
6483                         continue;
6484                 }
6485
6486                 dev->reg_state = NETREG_UNREGISTERED;
6487
6488                 on_each_cpu(flush_backlog, dev, 1);
6489
6490                 netdev_wait_allrefs(dev);
6491
6492                 /* paranoia */
6493                 BUG_ON(netdev_refcnt_read(dev));
6494                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6495                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6496                 WARN_ON(dev->dn_ptr);
6497
6498                 if (dev->destructor)
6499                         dev->destructor(dev);
6500
6501                 /* Report a network device has been unregistered */
6502                 rtnl_lock();
6503                 dev_net(dev)->dev_unreg_count--;
6504                 __rtnl_unlock();
6505                 wake_up(&netdev_unregistering_wq);
6506
6507                 /* Free network device */
6508                 kobject_put(&dev->dev.kobj);
6509         }
6510 }
6511
6512 /* Convert net_device_stats to rtnl_link_stats64.  They have the same
6513  * fields in the same order, with only the type differing.
6514  */
6515 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6516                              const struct net_device_stats *netdev_stats)
6517 {
6518 #if BITS_PER_LONG == 64
6519         BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6520         memcpy(stats64, netdev_stats, sizeof(*stats64));
6521 #else
6522         size_t i, n = sizeof(*stats64) / sizeof(u64);
6523         const unsigned long *src = (const unsigned long *)netdev_stats;
6524         u64 *dst = (u64 *)stats64;
6525
6526         BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6527                      sizeof(*stats64) / sizeof(u64));
6528         for (i = 0; i < n; i++)
6529                 dst[i] = src[i];
6530 #endif
6531 }
6532 EXPORT_SYMBOL(netdev_stats_to_stats64);
6533
6534 /**
6535  *      dev_get_stats   - get network device statistics
6536  *      @dev: device to get statistics from
6537  *      @storage: place to store stats
6538  *
6539  *      Get network statistics from device. Return @storage.
6540  *      The device driver may provide its own method by setting
6541  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6542  *      otherwise the internal statistics structure is used.
6543  */
6544 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6545                                         struct rtnl_link_stats64 *storage)
6546 {
6547         const struct net_device_ops *ops = dev->netdev_ops;
6548
6549         if (ops->ndo_get_stats64) {
6550                 memset(storage, 0, sizeof(*storage));
6551                 ops->ndo_get_stats64(dev, storage);
6552         } else if (ops->ndo_get_stats) {
6553                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6554         } else {
6555                 netdev_stats_to_stats64(storage, &dev->stats);
6556         }
6557         storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6558         storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6559         return storage;
6560 }
6561 EXPORT_SYMBOL(dev_get_stats);
6562
6563 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6564 {
6565         struct netdev_queue *queue = dev_ingress_queue(dev);
6566
6567 #ifdef CONFIG_NET_CLS_ACT
6568         if (queue)
6569                 return queue;
6570         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6571         if (!queue)
6572                 return NULL;
6573         netdev_init_one_queue(dev, queue, NULL);
6574         queue->qdisc = &noop_qdisc;
6575         queue->qdisc_sleeping = &noop_qdisc;
6576         rcu_assign_pointer(dev->ingress_queue, queue);
6577 #endif
6578         return queue;
6579 }
6580
6581 static const struct ethtool_ops default_ethtool_ops;
6582
6583 void netdev_set_default_ethtool_ops(struct net_device *dev,
6584                                     const struct ethtool_ops *ops)
6585 {
6586         if (dev->ethtool_ops == &default_ethtool_ops)
6587                 dev->ethtool_ops = ops;
6588 }
6589 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6590
6591 void netdev_freemem(struct net_device *dev)
6592 {
6593         char *addr = (char *)dev - dev->padded;
6594
6595         kvfree(addr);
6596 }
6597
6598 /**
6599  *      alloc_netdev_mqs - allocate network device
6600  *      @sizeof_priv:           size of private data to allocate space for
6601  *      @name:                  device name format string
6602  *      @name_assign_type:      origin of device name
6603  *      @setup:                 callback to initialize device
6604  *      @txqs:                  the number of TX subqueues to allocate
6605  *      @rxqs:                  the number of RX subqueues to allocate
6606  *
6607  *      Allocates a struct net_device with private data area for driver use
6608  *      and performs basic initialization.  Also allocates subqueue structs
6609  *      for each queue on the device.
6610  */
6611 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6612                 unsigned char name_assign_type,
6613                 void (*setup)(struct net_device *),
6614                 unsigned int txqs, unsigned int rxqs)
6615 {
6616         struct net_device *dev;
6617         size_t alloc_size;
6618         struct net_device *p;
6619
6620         BUG_ON(strlen(name) >= sizeof(dev->name));
6621
6622         if (txqs < 1) {
6623                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6624                 return NULL;
6625         }
6626
6627 #ifdef CONFIG_SYSFS
6628         if (rxqs < 1) {
6629                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6630                 return NULL;
6631         }
6632 #endif
6633
6634         alloc_size = sizeof(struct net_device);
6635         if (sizeof_priv) {
6636                 /* ensure 32-byte alignment of private area */
6637                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6638                 alloc_size += sizeof_priv;
6639         }
6640         /* ensure 32-byte alignment of whole construct */
6641         alloc_size += NETDEV_ALIGN - 1;
6642
6643         p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6644         if (!p)
6645                 p = vzalloc(alloc_size);
6646         if (!p)
6647                 return NULL;
6648
6649         dev = PTR_ALIGN(p, NETDEV_ALIGN);
6650         dev->padded = (char *)dev - (char *)p;
6651
6652         dev->pcpu_refcnt = alloc_percpu(int);
6653         if (!dev->pcpu_refcnt)
6654                 goto free_dev;
6655
6656         if (dev_addr_init(dev))
6657                 goto free_pcpu;
6658
6659         dev_mc_init(dev);
6660         dev_uc_init(dev);
6661
6662         dev_net_set(dev, &init_net);
6663
6664         dev->gso_max_size = GSO_MAX_SIZE;
6665         dev->gso_max_segs = GSO_MAX_SEGS;
6666         dev->gso_min_segs = 0;
6667
6668         INIT_LIST_HEAD(&dev->napi_list);
6669         INIT_LIST_HEAD(&dev->unreg_list);
6670         INIT_LIST_HEAD(&dev->close_list);
6671         INIT_LIST_HEAD(&dev->link_watch_list);
6672         INIT_LIST_HEAD(&dev->adj_list.upper);
6673         INIT_LIST_HEAD(&dev->adj_list.lower);
6674         INIT_LIST_HEAD(&dev->all_adj_list.upper);
6675         INIT_LIST_HEAD(&dev->all_adj_list.lower);
6676         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
6677         setup(dev);
6678
6679         dev->num_tx_queues = txqs;
6680         dev->real_num_tx_queues = txqs;
6681         if (netif_alloc_netdev_queues(dev))
6682                 goto free_all;
6683
6684 #ifdef CONFIG_SYSFS
6685         dev->num_rx_queues = rxqs;
6686         dev->real_num_rx_queues = rxqs;
6687         if (netif_alloc_rx_queues(dev))
6688                 goto free_all;
6689 #endif
6690
6691         strcpy(dev->name, name);
6692         dev->name_assign_type = name_assign_type;
6693         dev->group = INIT_NETDEV_GROUP;
6694         if (!dev->ethtool_ops)
6695                 dev->ethtool_ops = &default_ethtool_ops;
6696         return dev;
6697
6698 free_all:
6699         free_netdev(dev);
6700         return NULL;
6701
6702 free_pcpu:
6703         free_percpu(dev->pcpu_refcnt);
6704 free_dev:
6705         netdev_freemem(dev);
6706         return NULL;
6707 }
6708 EXPORT_SYMBOL(alloc_netdev_mqs);
6709
6710 /**
6711  *      free_netdev - free network device
6712  *      @dev: device
6713  *
6714  *      This function does the last stage of destroying an allocated device
6715  *      interface. The reference to the device object is released.
6716  *      If this is the last reference then it will be freed.
6717  */
6718 void free_netdev(struct net_device *dev)
6719 {
6720         struct napi_struct *p, *n;
6721
6722         release_net(dev_net(dev));
6723
6724         netif_free_tx_queues(dev);
6725 #ifdef CONFIG_SYSFS
6726         kfree(dev->_rx);
6727 #endif
6728
6729         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6730
6731         /* Flush device addresses */
6732         dev_addr_flush(dev);
6733
6734         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6735                 netif_napi_del(p);
6736
6737         free_percpu(dev->pcpu_refcnt);
6738         dev->pcpu_refcnt = NULL;
6739
6740         /*  Compatibility with error handling in drivers */
6741         if (dev->reg_state == NETREG_UNINITIALIZED) {
6742                 netdev_freemem(dev);
6743                 return;
6744         }
6745
6746         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6747         dev->reg_state = NETREG_RELEASED;
6748
6749         /* will free via device release */
6750         put_device(&dev->dev);
6751 }
6752 EXPORT_SYMBOL(free_netdev);
6753
6754 /**
6755  *      synchronize_net -  Synchronize with packet receive processing
6756  *
6757  *      Wait for packets currently being received to be done.
6758  *      Does not block later packets from starting.
6759  */
6760 void synchronize_net(void)
6761 {
6762         might_sleep();
6763         if (rtnl_is_locked())
6764                 synchronize_rcu_expedited();
6765         else
6766                 synchronize_rcu();
6767 }
6768 EXPORT_SYMBOL(synchronize_net);
6769
6770 /**
6771  *      unregister_netdevice_queue - remove device from the kernel
6772  *      @dev: device
6773  *      @head: list
6774  *
6775  *      This function shuts down a device interface and removes it
6776  *      from the kernel tables.
6777  *      If head not NULL, device is queued to be unregistered later.
6778  *
6779  *      Callers must hold the rtnl semaphore.  You may want
6780  *      unregister_netdev() instead of this.
6781  */
6782
6783 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6784 {
6785         ASSERT_RTNL();
6786
6787         if (head) {
6788                 list_move_tail(&dev->unreg_list, head);
6789         } else {
6790                 rollback_registered(dev);
6791                 /* Finish processing unregister after unlock */
6792                 net_set_todo(dev);
6793         }
6794 }
6795 EXPORT_SYMBOL(unregister_netdevice_queue);
6796
6797 /**
6798  *      unregister_netdevice_many - unregister many devices
6799  *      @head: list of devices
6800  *
6801  *  Note: As most callers use a stack allocated list_head,
6802  *  we force a list_del() to make sure stack wont be corrupted later.
6803  */
6804 void unregister_netdevice_many(struct list_head *head)
6805 {
6806         struct net_device *dev;
6807
6808         if (!list_empty(head)) {
6809                 rollback_registered_many(head);
6810                 list_for_each_entry(dev, head, unreg_list)
6811                         net_set_todo(dev);
6812                 list_del(head);
6813         }
6814 }
6815 EXPORT_SYMBOL(unregister_netdevice_many);
6816
6817 /**
6818  *      unregister_netdev - remove device from the kernel
6819  *      @dev: device
6820  *
6821  *      This function shuts down a device interface and removes it
6822  *      from the kernel tables.
6823  *
6824  *      This is just a wrapper for unregister_netdevice that takes
6825  *      the rtnl semaphore.  In general you want to use this and not
6826  *      unregister_netdevice.
6827  */
6828 void unregister_netdev(struct net_device *dev)
6829 {
6830         rtnl_lock();
6831         unregister_netdevice(dev);
6832         rtnl_unlock();
6833 }
6834 EXPORT_SYMBOL(unregister_netdev);
6835
6836 /**
6837  *      dev_change_net_namespace - move device to different nethost namespace
6838  *      @dev: device
6839  *      @net: network namespace
6840  *      @pat: If not NULL name pattern to try if the current device name
6841  *            is already taken in the destination network namespace.
6842  *
6843  *      This function shuts down a device interface and moves it
6844  *      to a new network namespace. On success 0 is returned, on
6845  *      a failure a netagive errno code is returned.
6846  *
6847  *      Callers must hold the rtnl semaphore.
6848  */
6849
6850 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6851 {
6852         int err;
6853
6854         ASSERT_RTNL();
6855
6856         /* Don't allow namespace local devices to be moved. */
6857         err = -EINVAL;
6858         if (dev->features & NETIF_F_NETNS_LOCAL)
6859                 goto out;
6860
6861         /* Ensure the device has been registrered */
6862         if (dev->reg_state != NETREG_REGISTERED)
6863                 goto out;
6864
6865         /* Get out if there is nothing todo */
6866         err = 0;
6867         if (net_eq(dev_net(dev), net))
6868                 goto out;
6869
6870         /* Pick the destination device name, and ensure
6871          * we can use it in the destination network namespace.
6872          */
6873         err = -EEXIST;
6874         if (__dev_get_by_name(net, dev->name)) {
6875                 /* We get here if we can't use the current device name */
6876                 if (!pat)
6877                         goto out;
6878                 if (dev_get_valid_name(net, dev, pat) < 0)
6879                         goto out;
6880         }
6881
6882         /*
6883          * And now a mini version of register_netdevice unregister_netdevice.
6884          */
6885
6886         /* If device is running close it first. */
6887         dev_close(dev);
6888
6889         /* And unlink it from device chain */
6890         err = -ENODEV;
6891         unlist_netdevice(dev);
6892
6893         synchronize_net();
6894
6895         /* Shutdown queueing discipline. */
6896         dev_shutdown(dev);
6897
6898         /* Notify protocols, that we are about to destroy
6899            this device. They should clean all the things.
6900
6901            Note that dev->reg_state stays at NETREG_REGISTERED.
6902            This is wanted because this way 8021q and macvlan know
6903            the device is just moving and can keep their slaves up.
6904         */
6905         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6906         rcu_barrier();
6907         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6908         rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
6909
6910         /*
6911          *      Flush the unicast and multicast chains
6912          */
6913         dev_uc_flush(dev);
6914         dev_mc_flush(dev);
6915
6916         /* Send a netdev-removed uevent to the old namespace */
6917         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
6918         netdev_adjacent_del_links(dev);
6919
6920         /* Actually switch the network namespace */
6921         dev_net_set(dev, net);
6922
6923         /* If there is an ifindex conflict assign a new one */
6924         if (__dev_get_by_index(net, dev->ifindex)) {
6925                 int iflink = (dev->iflink == dev->ifindex);
6926                 dev->ifindex = dev_new_index(net);
6927                 if (iflink)
6928                         dev->iflink = dev->ifindex;
6929         }
6930
6931         /* Send a netdev-add uevent to the new namespace */
6932         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
6933         netdev_adjacent_add_links(dev);
6934
6935         /* Fixup kobjects */
6936         err = device_rename(&dev->dev, dev->name);
6937         WARN_ON(err);
6938
6939         /* Add the device back in the hashes */
6940         list_netdevice(dev);
6941
6942         /* Notify protocols, that a new device appeared. */
6943         call_netdevice_notifiers(NETDEV_REGISTER, dev);
6944
6945         /*
6946          *      Prevent userspace races by waiting until the network
6947          *      device is fully setup before sending notifications.
6948          */
6949         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6950
6951         synchronize_net();
6952         err = 0;
6953 out:
6954         return err;
6955 }
6956 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6957
6958 static int dev_cpu_callback(struct notifier_block *nfb,
6959                             unsigned long action,
6960                             void *ocpu)
6961 {
6962         struct sk_buff **list_skb;
6963         struct sk_buff *skb;
6964         unsigned int cpu, oldcpu = (unsigned long)ocpu;
6965         struct softnet_data *sd, *oldsd;
6966
6967         if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6968                 return NOTIFY_OK;
6969
6970         local_irq_disable();
6971         cpu = smp_processor_id();
6972         sd = &per_cpu(softnet_data, cpu);
6973         oldsd = &per_cpu(softnet_data, oldcpu);
6974
6975         /* Find end of our completion_queue. */
6976         list_skb = &sd->completion_queue;
6977         while (*list_skb)
6978                 list_skb = &(*list_skb)->next;
6979         /* Append completion queue from offline CPU. */
6980         *list_skb = oldsd->completion_queue;
6981         oldsd->completion_queue = NULL;
6982
6983         /* Append output queue from offline CPU. */
6984         if (oldsd->output_queue) {
6985                 *sd->output_queue_tailp = oldsd->output_queue;
6986                 sd->output_queue_tailp = oldsd->output_queue_tailp;
6987                 oldsd->output_queue = NULL;
6988                 oldsd->output_queue_tailp = &oldsd->output_queue;
6989         }
6990         /* Append NAPI poll list from offline CPU. */
6991         if (!list_empty(&oldsd->poll_list)) {
6992                 list_splice_init(&oldsd->poll_list, &sd->poll_list);
6993                 raise_softirq_irqoff(NET_RX_SOFTIRQ);
6994         }
6995
6996         raise_softirq_irqoff(NET_TX_SOFTIRQ);
6997         local_irq_enable();
6998
6999         /* Process offline CPU's input_pkt_queue */
7000         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7001                 netif_rx_internal(skb);
7002                 input_queue_head_incr(oldsd);
7003         }
7004         while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
7005                 netif_rx_internal(skb);
7006                 input_queue_head_incr(oldsd);
7007         }
7008
7009         return NOTIFY_OK;
7010 }
7011
7012
7013 /**
7014  *      netdev_increment_features - increment feature set by one
7015  *      @all: current feature set
7016  *      @one: new feature set
7017  *      @mask: mask feature set
7018  *
7019  *      Computes a new feature set after adding a device with feature set
7020  *      @one to the master device with current feature set @all.  Will not
7021  *      enable anything that is off in @mask. Returns the new feature set.
7022  */
7023 netdev_features_t netdev_increment_features(netdev_features_t all,
7024         netdev_features_t one, netdev_features_t mask)
7025 {
7026         if (mask & NETIF_F_GEN_CSUM)
7027                 mask |= NETIF_F_ALL_CSUM;
7028         mask |= NETIF_F_VLAN_CHALLENGED;
7029
7030         all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
7031         all &= one | ~NETIF_F_ALL_FOR_ALL;
7032
7033         /* If one device supports hw checksumming, set for all. */
7034         if (all & NETIF_F_GEN_CSUM)
7035                 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
7036
7037         return all;
7038 }
7039 EXPORT_SYMBOL(netdev_increment_features);
7040
7041 static struct hlist_head * __net_init netdev_create_hash(void)
7042 {
7043         int i;
7044         struct hlist_head *hash;
7045
7046         hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7047         if (hash != NULL)
7048                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7049                         INIT_HLIST_HEAD(&hash[i]);
7050
7051         return hash;
7052 }
7053
7054 /* Initialize per network namespace state */
7055 static int __net_init netdev_init(struct net *net)
7056 {
7057         if (net != &init_net)
7058                 INIT_LIST_HEAD(&net->dev_base_head);
7059
7060         net->dev_name_head = netdev_create_hash();
7061         if (net->dev_name_head == NULL)
7062                 goto err_name;
7063
7064         net->dev_index_head = netdev_create_hash();
7065         if (net->dev_index_head == NULL)
7066                 goto err_idx;
7067
7068         return 0;
7069
7070 err_idx:
7071         kfree(net->dev_name_head);
7072 err_name:
7073         return -ENOMEM;
7074 }
7075
7076 /**
7077  *      netdev_drivername - network driver for the device
7078  *      @dev: network device
7079  *
7080  *      Determine network driver for device.
7081  */
7082 const char *netdev_drivername(const struct net_device *dev)
7083 {
7084         const struct device_driver *driver;
7085         const struct device *parent;
7086         const char *empty = "";
7087
7088         parent = dev->dev.parent;
7089         if (!parent)
7090                 return empty;
7091
7092         driver = parent->driver;
7093         if (driver && driver->name)
7094                 return driver->name;
7095         return empty;
7096 }
7097
7098 static void __netdev_printk(const char *level, const struct net_device *dev,
7099                             struct va_format *vaf)
7100 {
7101         if (dev && dev->dev.parent) {
7102                 dev_printk_emit(level[1] - '0',
7103                                 dev->dev.parent,
7104                                 "%s %s %s%s: %pV",
7105                                 dev_driver_string(dev->dev.parent),
7106                                 dev_name(dev->dev.parent),
7107                                 netdev_name(dev), netdev_reg_state(dev),
7108                                 vaf);
7109         } else if (dev) {
7110                 printk("%s%s%s: %pV",
7111                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
7112         } else {
7113                 printk("%s(NULL net_device): %pV", level, vaf);
7114         }
7115 }
7116
7117 void netdev_printk(const char *level, const struct net_device *dev,
7118                    const char *format, ...)
7119 {
7120         struct va_format vaf;
7121         va_list args;
7122
7123         va_start(args, format);
7124
7125         vaf.fmt = format;
7126         vaf.va = &args;
7127
7128         __netdev_printk(level, dev, &vaf);
7129
7130         va_end(args);
7131 }
7132 EXPORT_SYMBOL(netdev_printk);
7133
7134 #define define_netdev_printk_level(func, level)                 \
7135 void func(const struct net_device *dev, const char *fmt, ...)   \
7136 {                                                               \
7137         struct va_format vaf;                                   \
7138         va_list args;                                           \
7139                                                                 \
7140         va_start(args, fmt);                                    \
7141                                                                 \
7142         vaf.fmt = fmt;                                          \
7143         vaf.va = &args;                                         \
7144                                                                 \
7145         __netdev_printk(level, dev, &vaf);                      \
7146                                                                 \
7147         va_end(args);                                           \
7148 }                                                               \
7149 EXPORT_SYMBOL(func);
7150
7151 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7152 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7153 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7154 define_netdev_printk_level(netdev_err, KERN_ERR);
7155 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7156 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7157 define_netdev_printk_level(netdev_info, KERN_INFO);
7158
7159 static void __net_exit netdev_exit(struct net *net)
7160 {
7161         kfree(net->dev_name_head);
7162         kfree(net->dev_index_head);
7163 }
7164
7165 static struct pernet_operations __net_initdata netdev_net_ops = {
7166         .init = netdev_init,
7167         .exit = netdev_exit,
7168 };
7169
7170 static void __net_exit default_device_exit(struct net *net)
7171 {
7172         struct net_device *dev, *aux;
7173         /*
7174          * Push all migratable network devices back to the
7175          * initial network namespace
7176          */
7177         rtnl_lock();
7178         for_each_netdev_safe(net, dev, aux) {
7179                 int err;
7180                 char fb_name[IFNAMSIZ];
7181
7182                 /* Ignore unmoveable devices (i.e. loopback) */
7183                 if (dev->features & NETIF_F_NETNS_LOCAL)
7184                         continue;
7185
7186                 /* Leave virtual devices for the generic cleanup */
7187                 if (dev->rtnl_link_ops)
7188                         continue;
7189
7190                 /* Push remaining network devices to init_net */
7191                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7192                 err = dev_change_net_namespace(dev, &init_net, fb_name);
7193                 if (err) {
7194                         pr_emerg("%s: failed to move %s to init_net: %d\n",
7195                                  __func__, dev->name, err);
7196                         BUG();
7197                 }
7198         }
7199         rtnl_unlock();
7200 }
7201
7202 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7203 {
7204         /* Return with the rtnl_lock held when there are no network
7205          * devices unregistering in any network namespace in net_list.
7206          */
7207         struct net *net;
7208         bool unregistering;
7209         DEFINE_WAIT(wait);
7210
7211         for (;;) {
7212                 prepare_to_wait(&netdev_unregistering_wq, &wait,
7213                                 TASK_UNINTERRUPTIBLE);
7214                 unregistering = false;
7215                 rtnl_lock();
7216                 list_for_each_entry(net, net_list, exit_list) {
7217                         if (net->dev_unreg_count > 0) {
7218                                 unregistering = true;
7219                                 break;
7220                         }
7221                 }
7222                 if (!unregistering)
7223                         break;
7224                 __rtnl_unlock();
7225                 schedule();
7226         }
7227         finish_wait(&netdev_unregistering_wq, &wait);
7228 }
7229
7230 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7231 {
7232         /* At exit all network devices most be removed from a network
7233          * namespace.  Do this in the reverse order of registration.
7234          * Do this across as many network namespaces as possible to
7235          * improve batching efficiency.
7236          */
7237         struct net_device *dev;
7238         struct net *net;
7239         LIST_HEAD(dev_kill_list);
7240
7241         /* To prevent network device cleanup code from dereferencing
7242          * loopback devices or network devices that have been freed
7243          * wait here for all pending unregistrations to complete,
7244          * before unregistring the loopback device and allowing the
7245          * network namespace be freed.
7246          *
7247          * The netdev todo list containing all network devices
7248          * unregistrations that happen in default_device_exit_batch
7249          * will run in the rtnl_unlock() at the end of
7250          * default_device_exit_batch.
7251          */
7252         rtnl_lock_unregistering(net_list);
7253         list_for_each_entry(net, net_list, exit_list) {
7254                 for_each_netdev_reverse(net, dev) {
7255                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
7256                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7257                         else
7258                                 unregister_netdevice_queue(dev, &dev_kill_list);
7259                 }
7260         }
7261         unregister_netdevice_many(&dev_kill_list);
7262         rtnl_unlock();
7263 }
7264
7265 static struct pernet_operations __net_initdata default_device_ops = {
7266         .exit = default_device_exit,
7267         .exit_batch = default_device_exit_batch,
7268 };
7269
7270 /*
7271  *      Initialize the DEV module. At boot time this walks the device list and
7272  *      unhooks any devices that fail to initialise (normally hardware not
7273  *      present) and leaves us with a valid list of present and active devices.
7274  *
7275  */
7276
7277 /*
7278  *       This is called single threaded during boot, so no need
7279  *       to take the rtnl semaphore.
7280  */
7281 static int __init net_dev_init(void)
7282 {
7283         int i, rc = -ENOMEM;
7284
7285         BUG_ON(!dev_boot_phase);
7286
7287         if (dev_proc_init())
7288                 goto out;
7289
7290         if (netdev_kobject_init())
7291                 goto out;
7292
7293         INIT_LIST_HEAD(&ptype_all);
7294         for (i = 0; i < PTYPE_HASH_SIZE; i++)
7295                 INIT_LIST_HEAD(&ptype_base[i]);
7296
7297         INIT_LIST_HEAD(&offload_base);
7298
7299         if (register_pernet_subsys(&netdev_net_ops))
7300                 goto out;
7301
7302         /*
7303          *      Initialise the packet receive queues.
7304          */
7305
7306         for_each_possible_cpu(i) {
7307                 struct softnet_data *sd = &per_cpu(softnet_data, i);
7308
7309                 skb_queue_head_init(&sd->input_pkt_queue);
7310                 skb_queue_head_init(&sd->process_queue);
7311                 INIT_LIST_HEAD(&sd->poll_list);
7312                 sd->output_queue_tailp = &sd->output_queue;
7313 #ifdef CONFIG_RPS
7314                 sd->csd.func = rps_trigger_softirq;
7315                 sd->csd.info = sd;
7316                 sd->cpu = i;
7317 #endif
7318
7319                 sd->backlog.poll = process_backlog;
7320                 sd->backlog.weight = weight_p;
7321         }
7322
7323         dev_boot_phase = 0;
7324
7325         /* The loopback device is special if any other network devices
7326          * is present in a network namespace the loopback device must
7327          * be present. Since we now dynamically allocate and free the
7328          * loopback device ensure this invariant is maintained by
7329          * keeping the loopback device as the first device on the
7330          * list of network devices.  Ensuring the loopback devices
7331          * is the first device that appears and the last network device
7332          * that disappears.
7333          */
7334         if (register_pernet_device(&loopback_net_ops))
7335                 goto out;
7336
7337         if (register_pernet_device(&default_device_ops))
7338                 goto out;
7339
7340         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7341         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7342
7343         hotcpu_notifier(dev_cpu_callback, 0);
7344         dst_init();
7345         rc = 0;
7346 out:
7347         return rc;
7348 }
7349
7350 subsys_initcall(net_dev_init);