net/sched: annotate lockless accesses to qdisc->empty
[linux-2.6-microblaze.git] / net / core / dev.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *      Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:        Ross Biro
7  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *      Additional Authors:
11  *              Florian la Roche <rzsfl@rz.uni-sb.de>
12  *              Alan Cox <gw4pts@gw4pts.ampr.org>
13  *              David Hinds <dahinds@users.sourceforge.net>
14  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *              Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *      Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *              Alan Cox        :       device private ioctl copies fields back.
24  *              Alan Cox        :       Transmit queue code does relevant
25  *                                      stunts to keep the queue safe.
26  *              Alan Cox        :       Fixed double lock.
27  *              Alan Cox        :       Fixed promisc NULL pointer trap
28  *              ????????        :       Support the full private ioctl range
29  *              Alan Cox        :       Moved ioctl permission check into
30  *                                      drivers
31  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
32  *              Alan Cox        :       100 backlog just doesn't cut it when
33  *                                      you start doing multicast video 8)
34  *              Alan Cox        :       Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *              Alan Cox        :       Took out transmit every packet pass
37  *                                      Saved a few bytes in the ioctl handler
38  *              Alan Cox        :       Network driver sets packet type before
39  *                                      calling netif_rx. Saves a function
40  *                                      call a packet.
41  *              Alan Cox        :       Hashed net_bh()
42  *              Richard Kooijman:       Timestamp fixes.
43  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
44  *              Alan Cox        :       Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *                                      changes.
47  *              Rudi Cilibrasi  :       Pass the right thing to
48  *                                      set_mac_address()
49  *              Dave Miller     :       32bit quantity for the device lock to
50  *                                      make it work out on a Sparc.
51  *              Bjorn Ekwall    :       Added KERNELD hack.
52  *              Alan Cox        :       Cleaned up the backlog initialise.
53  *              Craig Metz      :       SIOCGIFCONF fix if space for under
54  *                                      1 device.
55  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
56  *                                      is no device open function.
57  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
58  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
59  *              Cyrus Durgin    :       Cleaned for KMOD
60  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
61  *                                      A network device unload needs to purge
62  *                                      the backlog queue.
63  *      Paul Rusty Russell      :       SIOCSIFNAME
64  *              Pekka Riikonen  :       Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *                                      - netif_rx() feedback
69  */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/string.h>
83 #include <linux/mm.h>
84 #include <linux/socket.h>
85 #include <linux/sockios.h>
86 #include <linux/errno.h>
87 #include <linux/interrupt.h>
88 #include <linux/if_ether.h>
89 #include <linux/netdevice.h>
90 #include <linux/etherdevice.h>
91 #include <linux/ethtool.h>
92 #include <linux/skbuff.h>
93 #include <linux/bpf.h>
94 #include <linux/bpf_trace.h>
95 #include <net/net_namespace.h>
96 #include <net/sock.h>
97 #include <net/busy_poll.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/stat.h>
100 #include <net/dst.h>
101 #include <net/dst_metadata.h>
102 #include <net/pkt_sched.h>
103 #include <net/pkt_cls.h>
104 #include <net/checksum.h>
105 #include <net/xfrm.h>
106 #include <linux/highmem.h>
107 #include <linux/init.h>
108 #include <linux/module.h>
109 #include <linux/netpoll.h>
110 #include <linux/rcupdate.h>
111 #include <linux/delay.h>
112 #include <net/iw_handler.h>
113 #include <asm/current.h>
114 #include <linux/audit.h>
115 #include <linux/dmaengine.h>
116 #include <linux/err.h>
117 #include <linux/ctype.h>
118 #include <linux/if_arp.h>
119 #include <linux/if_vlan.h>
120 #include <linux/ip.h>
121 #include <net/ip.h>
122 #include <net/mpls.h>
123 #include <linux/ipv6.h>
124 #include <linux/in.h>
125 #include <linux/jhash.h>
126 #include <linux/random.h>
127 #include <trace/events/napi.h>
128 #include <trace/events/net.h>
129 #include <trace/events/skb.h>
130 #include <linux/inetdevice.h>
131 #include <linux/cpu_rmap.h>
132 #include <linux/static_key.h>
133 #include <linux/hashtable.h>
134 #include <linux/vmalloc.h>
135 #include <linux/if_macvlan.h>
136 #include <linux/errqueue.h>
137 #include <linux/hrtimer.h>
138 #include <linux/netfilter_ingress.h>
139 #include <linux/crash_dump.h>
140 #include <linux/sctp.h>
141 #include <net/udp_tunnel.h>
142 #include <linux/net_namespace.h>
143 #include <linux/indirect_call_wrapper.h>
144 #include <net/devlink.h>
145
146 #include "net-sysfs.h"
147
148 #define MAX_GRO_SKBS 8
149 #define MAX_NEST_DEV 8
150
151 /* This should be increased if a protocol with a bigger head is added. */
152 #define GRO_MAX_HEAD (MAX_HEADER + 128)
153
154 static DEFINE_SPINLOCK(ptype_lock);
155 static DEFINE_SPINLOCK(offload_lock);
156 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
157 struct list_head ptype_all __read_mostly;       /* Taps */
158 static struct list_head offload_base __read_mostly;
159
160 static int netif_rx_internal(struct sk_buff *skb);
161 static int call_netdevice_notifiers_info(unsigned long val,
162                                          struct netdev_notifier_info *info);
163 static int call_netdevice_notifiers_extack(unsigned long val,
164                                            struct net_device *dev,
165                                            struct netlink_ext_ack *extack);
166 static struct napi_struct *napi_by_id(unsigned int napi_id);
167
168 /*
169  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
170  * semaphore.
171  *
172  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
173  *
174  * Writers must hold the rtnl semaphore while they loop through the
175  * dev_base_head list, and hold dev_base_lock for writing when they do the
176  * actual updates.  This allows pure readers to access the list even
177  * while a writer is preparing to update it.
178  *
179  * To put it another way, dev_base_lock is held for writing only to
180  * protect against pure readers; the rtnl semaphore provides the
181  * protection against other writers.
182  *
183  * See, for example usages, register_netdevice() and
184  * unregister_netdevice(), which must be called with the rtnl
185  * semaphore held.
186  */
187 DEFINE_RWLOCK(dev_base_lock);
188 EXPORT_SYMBOL(dev_base_lock);
189
190 static DEFINE_MUTEX(ifalias_mutex);
191
192 /* protects napi_hash addition/deletion and napi_gen_id */
193 static DEFINE_SPINLOCK(napi_hash_lock);
194
195 static unsigned int napi_gen_id = NR_CPUS;
196 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
197
198 static seqcount_t devnet_rename_seq;
199
200 static inline void dev_base_seq_inc(struct net *net)
201 {
202         while (++net->dev_base_seq == 0)
203                 ;
204 }
205
206 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
207 {
208         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
209
210         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
211 }
212
213 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
214 {
215         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
216 }
217
218 static inline void rps_lock(struct softnet_data *sd)
219 {
220 #ifdef CONFIG_RPS
221         spin_lock(&sd->input_pkt_queue.lock);
222 #endif
223 }
224
225 static inline void rps_unlock(struct softnet_data *sd)
226 {
227 #ifdef CONFIG_RPS
228         spin_unlock(&sd->input_pkt_queue.lock);
229 #endif
230 }
231
232 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
233                                                        const char *name)
234 {
235         struct netdev_name_node *name_node;
236
237         name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
238         if (!name_node)
239                 return NULL;
240         INIT_HLIST_NODE(&name_node->hlist);
241         name_node->dev = dev;
242         name_node->name = name;
243         return name_node;
244 }
245
246 static struct netdev_name_node *
247 netdev_name_node_head_alloc(struct net_device *dev)
248 {
249         struct netdev_name_node *name_node;
250
251         name_node = netdev_name_node_alloc(dev, dev->name);
252         if (!name_node)
253                 return NULL;
254         INIT_LIST_HEAD(&name_node->list);
255         return name_node;
256 }
257
258 static void netdev_name_node_free(struct netdev_name_node *name_node)
259 {
260         kfree(name_node);
261 }
262
263 static void netdev_name_node_add(struct net *net,
264                                  struct netdev_name_node *name_node)
265 {
266         hlist_add_head_rcu(&name_node->hlist,
267                            dev_name_hash(net, name_node->name));
268 }
269
270 static void netdev_name_node_del(struct netdev_name_node *name_node)
271 {
272         hlist_del_rcu(&name_node->hlist);
273 }
274
275 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
276                                                         const char *name)
277 {
278         struct hlist_head *head = dev_name_hash(net, name);
279         struct netdev_name_node *name_node;
280
281         hlist_for_each_entry(name_node, head, hlist)
282                 if (!strcmp(name_node->name, name))
283                         return name_node;
284         return NULL;
285 }
286
287 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
288                                                             const char *name)
289 {
290         struct hlist_head *head = dev_name_hash(net, name);
291         struct netdev_name_node *name_node;
292
293         hlist_for_each_entry_rcu(name_node, head, hlist)
294                 if (!strcmp(name_node->name, name))
295                         return name_node;
296         return NULL;
297 }
298
299 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
300 {
301         struct netdev_name_node *name_node;
302         struct net *net = dev_net(dev);
303
304         name_node = netdev_name_node_lookup(net, name);
305         if (name_node)
306                 return -EEXIST;
307         name_node = netdev_name_node_alloc(dev, name);
308         if (!name_node)
309                 return -ENOMEM;
310         netdev_name_node_add(net, name_node);
311         /* The node that holds dev->name acts as a head of per-device list. */
312         list_add_tail(&name_node->list, &dev->name_node->list);
313
314         return 0;
315 }
316 EXPORT_SYMBOL(netdev_name_node_alt_create);
317
318 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
319 {
320         list_del(&name_node->list);
321         netdev_name_node_del(name_node);
322         kfree(name_node->name);
323         netdev_name_node_free(name_node);
324 }
325
326 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
327 {
328         struct netdev_name_node *name_node;
329         struct net *net = dev_net(dev);
330
331         name_node = netdev_name_node_lookup(net, name);
332         if (!name_node)
333                 return -ENOENT;
334         __netdev_name_node_alt_destroy(name_node);
335
336         return 0;
337 }
338 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
339
340 static void netdev_name_node_alt_flush(struct net_device *dev)
341 {
342         struct netdev_name_node *name_node, *tmp;
343
344         list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
345                 __netdev_name_node_alt_destroy(name_node);
346 }
347
348 /* Device list insertion */
349 static void list_netdevice(struct net_device *dev)
350 {
351         struct net *net = dev_net(dev);
352
353         ASSERT_RTNL();
354
355         write_lock_bh(&dev_base_lock);
356         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
357         netdev_name_node_add(net, dev->name_node);
358         hlist_add_head_rcu(&dev->index_hlist,
359                            dev_index_hash(net, dev->ifindex));
360         write_unlock_bh(&dev_base_lock);
361
362         dev_base_seq_inc(net);
363 }
364
365 /* Device list removal
366  * caller must respect a RCU grace period before freeing/reusing dev
367  */
368 static void unlist_netdevice(struct net_device *dev)
369 {
370         ASSERT_RTNL();
371
372         /* Unlink dev from the device chain */
373         write_lock_bh(&dev_base_lock);
374         list_del_rcu(&dev->dev_list);
375         netdev_name_node_del(dev->name_node);
376         hlist_del_rcu(&dev->index_hlist);
377         write_unlock_bh(&dev_base_lock);
378
379         dev_base_seq_inc(dev_net(dev));
380 }
381
382 /*
383  *      Our notifier list
384  */
385
386 static RAW_NOTIFIER_HEAD(netdev_chain);
387
388 /*
389  *      Device drivers call our routines to queue packets here. We empty the
390  *      queue in the local softnet handler.
391  */
392
393 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
394 EXPORT_PER_CPU_SYMBOL(softnet_data);
395
396 /*******************************************************************************
397  *
398  *              Protocol management and registration routines
399  *
400  *******************************************************************************/
401
402
403 /*
404  *      Add a protocol ID to the list. Now that the input handler is
405  *      smarter we can dispense with all the messy stuff that used to be
406  *      here.
407  *
408  *      BEWARE!!! Protocol handlers, mangling input packets,
409  *      MUST BE last in hash buckets and checking protocol handlers
410  *      MUST start from promiscuous ptype_all chain in net_bh.
411  *      It is true now, do not change it.
412  *      Explanation follows: if protocol handler, mangling packet, will
413  *      be the first on list, it is not able to sense, that packet
414  *      is cloned and should be copied-on-write, so that it will
415  *      change it and subsequent readers will get broken packet.
416  *                                                      --ANK (980803)
417  */
418
419 static inline struct list_head *ptype_head(const struct packet_type *pt)
420 {
421         if (pt->type == htons(ETH_P_ALL))
422                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
423         else
424                 return pt->dev ? &pt->dev->ptype_specific :
425                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
426 }
427
428 /**
429  *      dev_add_pack - add packet handler
430  *      @pt: packet type declaration
431  *
432  *      Add a protocol handler to the networking stack. The passed &packet_type
433  *      is linked into kernel lists and may not be freed until it has been
434  *      removed from the kernel lists.
435  *
436  *      This call does not sleep therefore it can not
437  *      guarantee all CPU's that are in middle of receiving packets
438  *      will see the new packet type (until the next received packet).
439  */
440
441 void dev_add_pack(struct packet_type *pt)
442 {
443         struct list_head *head = ptype_head(pt);
444
445         spin_lock(&ptype_lock);
446         list_add_rcu(&pt->list, head);
447         spin_unlock(&ptype_lock);
448 }
449 EXPORT_SYMBOL(dev_add_pack);
450
451 /**
452  *      __dev_remove_pack        - remove packet handler
453  *      @pt: packet type declaration
454  *
455  *      Remove a protocol handler that was previously added to the kernel
456  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
457  *      from the kernel lists and can be freed or reused once this function
458  *      returns.
459  *
460  *      The packet type might still be in use by receivers
461  *      and must not be freed until after all the CPU's have gone
462  *      through a quiescent state.
463  */
464 void __dev_remove_pack(struct packet_type *pt)
465 {
466         struct list_head *head = ptype_head(pt);
467         struct packet_type *pt1;
468
469         spin_lock(&ptype_lock);
470
471         list_for_each_entry(pt1, head, list) {
472                 if (pt == pt1) {
473                         list_del_rcu(&pt->list);
474                         goto out;
475                 }
476         }
477
478         pr_warn("dev_remove_pack: %p not found\n", pt);
479 out:
480         spin_unlock(&ptype_lock);
481 }
482 EXPORT_SYMBOL(__dev_remove_pack);
483
484 /**
485  *      dev_remove_pack  - remove packet handler
486  *      @pt: packet type declaration
487  *
488  *      Remove a protocol handler that was previously added to the kernel
489  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
490  *      from the kernel lists and can be freed or reused once this function
491  *      returns.
492  *
493  *      This call sleeps to guarantee that no CPU is looking at the packet
494  *      type after return.
495  */
496 void dev_remove_pack(struct packet_type *pt)
497 {
498         __dev_remove_pack(pt);
499
500         synchronize_net();
501 }
502 EXPORT_SYMBOL(dev_remove_pack);
503
504
505 /**
506  *      dev_add_offload - register offload handlers
507  *      @po: protocol offload declaration
508  *
509  *      Add protocol offload handlers to the networking stack. The passed
510  *      &proto_offload is linked into kernel lists and may not be freed until
511  *      it has been removed from the kernel lists.
512  *
513  *      This call does not sleep therefore it can not
514  *      guarantee all CPU's that are in middle of receiving packets
515  *      will see the new offload handlers (until the next received packet).
516  */
517 void dev_add_offload(struct packet_offload *po)
518 {
519         struct packet_offload *elem;
520
521         spin_lock(&offload_lock);
522         list_for_each_entry(elem, &offload_base, list) {
523                 if (po->priority < elem->priority)
524                         break;
525         }
526         list_add_rcu(&po->list, elem->list.prev);
527         spin_unlock(&offload_lock);
528 }
529 EXPORT_SYMBOL(dev_add_offload);
530
531 /**
532  *      __dev_remove_offload     - remove offload handler
533  *      @po: packet offload declaration
534  *
535  *      Remove a protocol offload handler that was previously added to the
536  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
537  *      is removed from the kernel lists and can be freed or reused once this
538  *      function returns.
539  *
540  *      The packet type might still be in use by receivers
541  *      and must not be freed until after all the CPU's have gone
542  *      through a quiescent state.
543  */
544 static void __dev_remove_offload(struct packet_offload *po)
545 {
546         struct list_head *head = &offload_base;
547         struct packet_offload *po1;
548
549         spin_lock(&offload_lock);
550
551         list_for_each_entry(po1, head, list) {
552                 if (po == po1) {
553                         list_del_rcu(&po->list);
554                         goto out;
555                 }
556         }
557
558         pr_warn("dev_remove_offload: %p not found\n", po);
559 out:
560         spin_unlock(&offload_lock);
561 }
562
563 /**
564  *      dev_remove_offload       - remove packet offload handler
565  *      @po: packet offload declaration
566  *
567  *      Remove a packet offload handler that was previously added to the kernel
568  *      offload handlers by dev_add_offload(). The passed &offload_type is
569  *      removed from the kernel lists and can be freed or reused once this
570  *      function returns.
571  *
572  *      This call sleeps to guarantee that no CPU is looking at the packet
573  *      type after return.
574  */
575 void dev_remove_offload(struct packet_offload *po)
576 {
577         __dev_remove_offload(po);
578
579         synchronize_net();
580 }
581 EXPORT_SYMBOL(dev_remove_offload);
582
583 /******************************************************************************
584  *
585  *                    Device Boot-time Settings Routines
586  *
587  ******************************************************************************/
588
589 /* Boot time configuration table */
590 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
591
592 /**
593  *      netdev_boot_setup_add   - add new setup entry
594  *      @name: name of the device
595  *      @map: configured settings for the device
596  *
597  *      Adds new setup entry to the dev_boot_setup list.  The function
598  *      returns 0 on error and 1 on success.  This is a generic routine to
599  *      all netdevices.
600  */
601 static int netdev_boot_setup_add(char *name, struct ifmap *map)
602 {
603         struct netdev_boot_setup *s;
604         int i;
605
606         s = dev_boot_setup;
607         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
608                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
609                         memset(s[i].name, 0, sizeof(s[i].name));
610                         strlcpy(s[i].name, name, IFNAMSIZ);
611                         memcpy(&s[i].map, map, sizeof(s[i].map));
612                         break;
613                 }
614         }
615
616         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
617 }
618
619 /**
620  * netdev_boot_setup_check      - check boot time settings
621  * @dev: the netdevice
622  *
623  * Check boot time settings for the device.
624  * The found settings are set for the device to be used
625  * later in the device probing.
626  * Returns 0 if no settings found, 1 if they are.
627  */
628 int netdev_boot_setup_check(struct net_device *dev)
629 {
630         struct netdev_boot_setup *s = dev_boot_setup;
631         int i;
632
633         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
634                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
635                     !strcmp(dev->name, s[i].name)) {
636                         dev->irq = s[i].map.irq;
637                         dev->base_addr = s[i].map.base_addr;
638                         dev->mem_start = s[i].map.mem_start;
639                         dev->mem_end = s[i].map.mem_end;
640                         return 1;
641                 }
642         }
643         return 0;
644 }
645 EXPORT_SYMBOL(netdev_boot_setup_check);
646
647
648 /**
649  * netdev_boot_base     - get address from boot time settings
650  * @prefix: prefix for network device
651  * @unit: id for network device
652  *
653  * Check boot time settings for the base address of device.
654  * The found settings are set for the device to be used
655  * later in the device probing.
656  * Returns 0 if no settings found.
657  */
658 unsigned long netdev_boot_base(const char *prefix, int unit)
659 {
660         const struct netdev_boot_setup *s = dev_boot_setup;
661         char name[IFNAMSIZ];
662         int i;
663
664         sprintf(name, "%s%d", prefix, unit);
665
666         /*
667          * If device already registered then return base of 1
668          * to indicate not to probe for this interface
669          */
670         if (__dev_get_by_name(&init_net, name))
671                 return 1;
672
673         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
674                 if (!strcmp(name, s[i].name))
675                         return s[i].map.base_addr;
676         return 0;
677 }
678
679 /*
680  * Saves at boot time configured settings for any netdevice.
681  */
682 int __init netdev_boot_setup(char *str)
683 {
684         int ints[5];
685         struct ifmap map;
686
687         str = get_options(str, ARRAY_SIZE(ints), ints);
688         if (!str || !*str)
689                 return 0;
690
691         /* Save settings */
692         memset(&map, 0, sizeof(map));
693         if (ints[0] > 0)
694                 map.irq = ints[1];
695         if (ints[0] > 1)
696                 map.base_addr = ints[2];
697         if (ints[0] > 2)
698                 map.mem_start = ints[3];
699         if (ints[0] > 3)
700                 map.mem_end = ints[4];
701
702         /* Add new entry to the list */
703         return netdev_boot_setup_add(str, &map);
704 }
705
706 __setup("netdev=", netdev_boot_setup);
707
708 /*******************************************************************************
709  *
710  *                          Device Interface Subroutines
711  *
712  *******************************************************************************/
713
714 /**
715  *      dev_get_iflink  - get 'iflink' value of a interface
716  *      @dev: targeted interface
717  *
718  *      Indicates the ifindex the interface is linked to.
719  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
720  */
721
722 int dev_get_iflink(const struct net_device *dev)
723 {
724         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
725                 return dev->netdev_ops->ndo_get_iflink(dev);
726
727         return dev->ifindex;
728 }
729 EXPORT_SYMBOL(dev_get_iflink);
730
731 /**
732  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
733  *      @dev: targeted interface
734  *      @skb: The packet.
735  *
736  *      For better visibility of tunnel traffic OVS needs to retrieve
737  *      egress tunnel information for a packet. Following API allows
738  *      user to get this info.
739  */
740 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
741 {
742         struct ip_tunnel_info *info;
743
744         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
745                 return -EINVAL;
746
747         info = skb_tunnel_info_unclone(skb);
748         if (!info)
749                 return -ENOMEM;
750         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
751                 return -EINVAL;
752
753         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
754 }
755 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
756
757 /**
758  *      __dev_get_by_name       - find a device by its name
759  *      @net: the applicable net namespace
760  *      @name: name to find
761  *
762  *      Find an interface by name. Must be called under RTNL semaphore
763  *      or @dev_base_lock. If the name is found a pointer to the device
764  *      is returned. If the name is not found then %NULL is returned. The
765  *      reference counters are not incremented so the caller must be
766  *      careful with locks.
767  */
768
769 struct net_device *__dev_get_by_name(struct net *net, const char *name)
770 {
771         struct netdev_name_node *node_name;
772
773         node_name = netdev_name_node_lookup(net, name);
774         return node_name ? node_name->dev : NULL;
775 }
776 EXPORT_SYMBOL(__dev_get_by_name);
777
778 /**
779  * dev_get_by_name_rcu  - find a device by its name
780  * @net: the applicable net namespace
781  * @name: name to find
782  *
783  * Find an interface by name.
784  * If the name is found a pointer to the device is returned.
785  * If the name is not found then %NULL is returned.
786  * The reference counters are not incremented so the caller must be
787  * careful with locks. The caller must hold RCU lock.
788  */
789
790 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
791 {
792         struct netdev_name_node *node_name;
793
794         node_name = netdev_name_node_lookup_rcu(net, name);
795         return node_name ? node_name->dev : NULL;
796 }
797 EXPORT_SYMBOL(dev_get_by_name_rcu);
798
799 /**
800  *      dev_get_by_name         - find a device by its name
801  *      @net: the applicable net namespace
802  *      @name: name to find
803  *
804  *      Find an interface by name. This can be called from any
805  *      context and does its own locking. The returned handle has
806  *      the usage count incremented and the caller must use dev_put() to
807  *      release it when it is no longer needed. %NULL is returned if no
808  *      matching device is found.
809  */
810
811 struct net_device *dev_get_by_name(struct net *net, const char *name)
812 {
813         struct net_device *dev;
814
815         rcu_read_lock();
816         dev = dev_get_by_name_rcu(net, name);
817         if (dev)
818                 dev_hold(dev);
819         rcu_read_unlock();
820         return dev;
821 }
822 EXPORT_SYMBOL(dev_get_by_name);
823
824 /**
825  *      __dev_get_by_index - find a device by its ifindex
826  *      @net: the applicable net namespace
827  *      @ifindex: index of device
828  *
829  *      Search for an interface by index. Returns %NULL if the device
830  *      is not found or a pointer to the device. The device has not
831  *      had its reference counter increased so the caller must be careful
832  *      about locking. The caller must hold either the RTNL semaphore
833  *      or @dev_base_lock.
834  */
835
836 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
837 {
838         struct net_device *dev;
839         struct hlist_head *head = dev_index_hash(net, ifindex);
840
841         hlist_for_each_entry(dev, head, index_hlist)
842                 if (dev->ifindex == ifindex)
843                         return dev;
844
845         return NULL;
846 }
847 EXPORT_SYMBOL(__dev_get_by_index);
848
849 /**
850  *      dev_get_by_index_rcu - find a device by its ifindex
851  *      @net: the applicable net namespace
852  *      @ifindex: index of device
853  *
854  *      Search for an interface by index. Returns %NULL if the device
855  *      is not found or a pointer to the device. The device has not
856  *      had its reference counter increased so the caller must be careful
857  *      about locking. The caller must hold RCU lock.
858  */
859
860 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
861 {
862         struct net_device *dev;
863         struct hlist_head *head = dev_index_hash(net, ifindex);
864
865         hlist_for_each_entry_rcu(dev, head, index_hlist)
866                 if (dev->ifindex == ifindex)
867                         return dev;
868
869         return NULL;
870 }
871 EXPORT_SYMBOL(dev_get_by_index_rcu);
872
873
874 /**
875  *      dev_get_by_index - find a device by its ifindex
876  *      @net: the applicable net namespace
877  *      @ifindex: index of device
878  *
879  *      Search for an interface by index. Returns NULL if the device
880  *      is not found or a pointer to the device. The device returned has
881  *      had a reference added and the pointer is safe until the user calls
882  *      dev_put to indicate they have finished with it.
883  */
884
885 struct net_device *dev_get_by_index(struct net *net, int ifindex)
886 {
887         struct net_device *dev;
888
889         rcu_read_lock();
890         dev = dev_get_by_index_rcu(net, ifindex);
891         if (dev)
892                 dev_hold(dev);
893         rcu_read_unlock();
894         return dev;
895 }
896 EXPORT_SYMBOL(dev_get_by_index);
897
898 /**
899  *      dev_get_by_napi_id - find a device by napi_id
900  *      @napi_id: ID of the NAPI struct
901  *
902  *      Search for an interface by NAPI ID. Returns %NULL if the device
903  *      is not found or a pointer to the device. The device has not had
904  *      its reference counter increased so the caller must be careful
905  *      about locking. The caller must hold RCU lock.
906  */
907
908 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
909 {
910         struct napi_struct *napi;
911
912         WARN_ON_ONCE(!rcu_read_lock_held());
913
914         if (napi_id < MIN_NAPI_ID)
915                 return NULL;
916
917         napi = napi_by_id(napi_id);
918
919         return napi ? napi->dev : NULL;
920 }
921 EXPORT_SYMBOL(dev_get_by_napi_id);
922
923 /**
924  *      netdev_get_name - get a netdevice name, knowing its ifindex.
925  *      @net: network namespace
926  *      @name: a pointer to the buffer where the name will be stored.
927  *      @ifindex: the ifindex of the interface to get the name from.
928  *
929  *      The use of raw_seqcount_begin() and cond_resched() before
930  *      retrying is required as we want to give the writers a chance
931  *      to complete when CONFIG_PREEMPT is not set.
932  */
933 int netdev_get_name(struct net *net, char *name, int ifindex)
934 {
935         struct net_device *dev;
936         unsigned int seq;
937
938 retry:
939         seq = raw_seqcount_begin(&devnet_rename_seq);
940         rcu_read_lock();
941         dev = dev_get_by_index_rcu(net, ifindex);
942         if (!dev) {
943                 rcu_read_unlock();
944                 return -ENODEV;
945         }
946
947         strcpy(name, dev->name);
948         rcu_read_unlock();
949         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
950                 cond_resched();
951                 goto retry;
952         }
953
954         return 0;
955 }
956
957 /**
958  *      dev_getbyhwaddr_rcu - find a device by its hardware address
959  *      @net: the applicable net namespace
960  *      @type: media type of device
961  *      @ha: hardware address
962  *
963  *      Search for an interface by MAC address. Returns NULL if the device
964  *      is not found or a pointer to the device.
965  *      The caller must hold RCU or RTNL.
966  *      The returned device has not had its ref count increased
967  *      and the caller must therefore be careful about locking
968  *
969  */
970
971 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
972                                        const char *ha)
973 {
974         struct net_device *dev;
975
976         for_each_netdev_rcu(net, dev)
977                 if (dev->type == type &&
978                     !memcmp(dev->dev_addr, ha, dev->addr_len))
979                         return dev;
980
981         return NULL;
982 }
983 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
984
985 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
986 {
987         struct net_device *dev;
988
989         ASSERT_RTNL();
990         for_each_netdev(net, dev)
991                 if (dev->type == type)
992                         return dev;
993
994         return NULL;
995 }
996 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
997
998 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
999 {
1000         struct net_device *dev, *ret = NULL;
1001
1002         rcu_read_lock();
1003         for_each_netdev_rcu(net, dev)
1004                 if (dev->type == type) {
1005                         dev_hold(dev);
1006                         ret = dev;
1007                         break;
1008                 }
1009         rcu_read_unlock();
1010         return ret;
1011 }
1012 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1013
1014 /**
1015  *      __dev_get_by_flags - find any device with given flags
1016  *      @net: the applicable net namespace
1017  *      @if_flags: IFF_* values
1018  *      @mask: bitmask of bits in if_flags to check
1019  *
1020  *      Search for any interface with the given flags. Returns NULL if a device
1021  *      is not found or a pointer to the device. Must be called inside
1022  *      rtnl_lock(), and result refcount is unchanged.
1023  */
1024
1025 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1026                                       unsigned short mask)
1027 {
1028         struct net_device *dev, *ret;
1029
1030         ASSERT_RTNL();
1031
1032         ret = NULL;
1033         for_each_netdev(net, dev) {
1034                 if (((dev->flags ^ if_flags) & mask) == 0) {
1035                         ret = dev;
1036                         break;
1037                 }
1038         }
1039         return ret;
1040 }
1041 EXPORT_SYMBOL(__dev_get_by_flags);
1042
1043 /**
1044  *      dev_valid_name - check if name is okay for network device
1045  *      @name: name string
1046  *
1047  *      Network device names need to be valid file names to
1048  *      to allow sysfs to work.  We also disallow any kind of
1049  *      whitespace.
1050  */
1051 bool dev_valid_name(const char *name)
1052 {
1053         if (*name == '\0')
1054                 return false;
1055         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1056                 return false;
1057         if (!strcmp(name, ".") || !strcmp(name, ".."))
1058                 return false;
1059
1060         while (*name) {
1061                 if (*name == '/' || *name == ':' || isspace(*name))
1062                         return false;
1063                 name++;
1064         }
1065         return true;
1066 }
1067 EXPORT_SYMBOL(dev_valid_name);
1068
1069 /**
1070  *      __dev_alloc_name - allocate a name for a device
1071  *      @net: network namespace to allocate the device name in
1072  *      @name: name format string
1073  *      @buf:  scratch buffer and result name string
1074  *
1075  *      Passed a format string - eg "lt%d" it will try and find a suitable
1076  *      id. It scans list of devices to build up a free map, then chooses
1077  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1078  *      while allocating the name and adding the device in order to avoid
1079  *      duplicates.
1080  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1081  *      Returns the number of the unit assigned or a negative errno code.
1082  */
1083
1084 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1085 {
1086         int i = 0;
1087         const char *p;
1088         const int max_netdevices = 8*PAGE_SIZE;
1089         unsigned long *inuse;
1090         struct net_device *d;
1091
1092         if (!dev_valid_name(name))
1093                 return -EINVAL;
1094
1095         p = strchr(name, '%');
1096         if (p) {
1097                 /*
1098                  * Verify the string as this thing may have come from
1099                  * the user.  There must be either one "%d" and no other "%"
1100                  * characters.
1101                  */
1102                 if (p[1] != 'd' || strchr(p + 2, '%'))
1103                         return -EINVAL;
1104
1105                 /* Use one page as a bit array of possible slots */
1106                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1107                 if (!inuse)
1108                         return -ENOMEM;
1109
1110                 for_each_netdev(net, d) {
1111                         if (!sscanf(d->name, name, &i))
1112                                 continue;
1113                         if (i < 0 || i >= max_netdevices)
1114                                 continue;
1115
1116                         /*  avoid cases where sscanf is not exact inverse of printf */
1117                         snprintf(buf, IFNAMSIZ, name, i);
1118                         if (!strncmp(buf, d->name, IFNAMSIZ))
1119                                 set_bit(i, inuse);
1120                 }
1121
1122                 i = find_first_zero_bit(inuse, max_netdevices);
1123                 free_page((unsigned long) inuse);
1124         }
1125
1126         snprintf(buf, IFNAMSIZ, name, i);
1127         if (!__dev_get_by_name(net, buf))
1128                 return i;
1129
1130         /* It is possible to run out of possible slots
1131          * when the name is long and there isn't enough space left
1132          * for the digits, or if all bits are used.
1133          */
1134         return -ENFILE;
1135 }
1136
1137 static int dev_alloc_name_ns(struct net *net,
1138                              struct net_device *dev,
1139                              const char *name)
1140 {
1141         char buf[IFNAMSIZ];
1142         int ret;
1143
1144         BUG_ON(!net);
1145         ret = __dev_alloc_name(net, name, buf);
1146         if (ret >= 0)
1147                 strlcpy(dev->name, buf, IFNAMSIZ);
1148         return ret;
1149 }
1150
1151 /**
1152  *      dev_alloc_name - allocate a name for a device
1153  *      @dev: device
1154  *      @name: name format string
1155  *
1156  *      Passed a format string - eg "lt%d" it will try and find a suitable
1157  *      id. It scans list of devices to build up a free map, then chooses
1158  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1159  *      while allocating the name and adding the device in order to avoid
1160  *      duplicates.
1161  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1162  *      Returns the number of the unit assigned or a negative errno code.
1163  */
1164
1165 int dev_alloc_name(struct net_device *dev, const char *name)
1166 {
1167         return dev_alloc_name_ns(dev_net(dev), dev, name);
1168 }
1169 EXPORT_SYMBOL(dev_alloc_name);
1170
1171 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1172                               const char *name)
1173 {
1174         BUG_ON(!net);
1175
1176         if (!dev_valid_name(name))
1177                 return -EINVAL;
1178
1179         if (strchr(name, '%'))
1180                 return dev_alloc_name_ns(net, dev, name);
1181         else if (__dev_get_by_name(net, name))
1182                 return -EEXIST;
1183         else if (dev->name != name)
1184                 strlcpy(dev->name, name, IFNAMSIZ);
1185
1186         return 0;
1187 }
1188
1189 /**
1190  *      dev_change_name - change name of a device
1191  *      @dev: device
1192  *      @newname: name (or format string) must be at least IFNAMSIZ
1193  *
1194  *      Change name of a device, can pass format strings "eth%d".
1195  *      for wildcarding.
1196  */
1197 int dev_change_name(struct net_device *dev, const char *newname)
1198 {
1199         unsigned char old_assign_type;
1200         char oldname[IFNAMSIZ];
1201         int err = 0;
1202         int ret;
1203         struct net *net;
1204
1205         ASSERT_RTNL();
1206         BUG_ON(!dev_net(dev));
1207
1208         net = dev_net(dev);
1209
1210         /* Some auto-enslaved devices e.g. failover slaves are
1211          * special, as userspace might rename the device after
1212          * the interface had been brought up and running since
1213          * the point kernel initiated auto-enslavement. Allow
1214          * live name change even when these slave devices are
1215          * up and running.
1216          *
1217          * Typically, users of these auto-enslaving devices
1218          * don't actually care about slave name change, as
1219          * they are supposed to operate on master interface
1220          * directly.
1221          */
1222         if (dev->flags & IFF_UP &&
1223             likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1224                 return -EBUSY;
1225
1226         write_seqcount_begin(&devnet_rename_seq);
1227
1228         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1229                 write_seqcount_end(&devnet_rename_seq);
1230                 return 0;
1231         }
1232
1233         memcpy(oldname, dev->name, IFNAMSIZ);
1234
1235         err = dev_get_valid_name(net, dev, newname);
1236         if (err < 0) {
1237                 write_seqcount_end(&devnet_rename_seq);
1238                 return err;
1239         }
1240
1241         if (oldname[0] && !strchr(oldname, '%'))
1242                 netdev_info(dev, "renamed from %s\n", oldname);
1243
1244         old_assign_type = dev->name_assign_type;
1245         dev->name_assign_type = NET_NAME_RENAMED;
1246
1247 rollback:
1248         ret = device_rename(&dev->dev, dev->name);
1249         if (ret) {
1250                 memcpy(dev->name, oldname, IFNAMSIZ);
1251                 dev->name_assign_type = old_assign_type;
1252                 write_seqcount_end(&devnet_rename_seq);
1253                 return ret;
1254         }
1255
1256         write_seqcount_end(&devnet_rename_seq);
1257
1258         netdev_adjacent_rename_links(dev, oldname);
1259
1260         write_lock_bh(&dev_base_lock);
1261         netdev_name_node_del(dev->name_node);
1262         write_unlock_bh(&dev_base_lock);
1263
1264         synchronize_rcu();
1265
1266         write_lock_bh(&dev_base_lock);
1267         netdev_name_node_add(net, dev->name_node);
1268         write_unlock_bh(&dev_base_lock);
1269
1270         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1271         ret = notifier_to_errno(ret);
1272
1273         if (ret) {
1274                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1275                 if (err >= 0) {
1276                         err = ret;
1277                         write_seqcount_begin(&devnet_rename_seq);
1278                         memcpy(dev->name, oldname, IFNAMSIZ);
1279                         memcpy(oldname, newname, IFNAMSIZ);
1280                         dev->name_assign_type = old_assign_type;
1281                         old_assign_type = NET_NAME_RENAMED;
1282                         goto rollback;
1283                 } else {
1284                         pr_err("%s: name change rollback failed: %d\n",
1285                                dev->name, ret);
1286                 }
1287         }
1288
1289         return err;
1290 }
1291
1292 /**
1293  *      dev_set_alias - change ifalias of a device
1294  *      @dev: device
1295  *      @alias: name up to IFALIASZ
1296  *      @len: limit of bytes to copy from info
1297  *
1298  *      Set ifalias for a device,
1299  */
1300 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1301 {
1302         struct dev_ifalias *new_alias = NULL;
1303
1304         if (len >= IFALIASZ)
1305                 return -EINVAL;
1306
1307         if (len) {
1308                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1309                 if (!new_alias)
1310                         return -ENOMEM;
1311
1312                 memcpy(new_alias->ifalias, alias, len);
1313                 new_alias->ifalias[len] = 0;
1314         }
1315
1316         mutex_lock(&ifalias_mutex);
1317         rcu_swap_protected(dev->ifalias, new_alias,
1318                            mutex_is_locked(&ifalias_mutex));
1319         mutex_unlock(&ifalias_mutex);
1320
1321         if (new_alias)
1322                 kfree_rcu(new_alias, rcuhead);
1323
1324         return len;
1325 }
1326 EXPORT_SYMBOL(dev_set_alias);
1327
1328 /**
1329  *      dev_get_alias - get ifalias of a device
1330  *      @dev: device
1331  *      @name: buffer to store name of ifalias
1332  *      @len: size of buffer
1333  *
1334  *      get ifalias for a device.  Caller must make sure dev cannot go
1335  *      away,  e.g. rcu read lock or own a reference count to device.
1336  */
1337 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1338 {
1339         const struct dev_ifalias *alias;
1340         int ret = 0;
1341
1342         rcu_read_lock();
1343         alias = rcu_dereference(dev->ifalias);
1344         if (alias)
1345                 ret = snprintf(name, len, "%s", alias->ifalias);
1346         rcu_read_unlock();
1347
1348         return ret;
1349 }
1350
1351 /**
1352  *      netdev_features_change - device changes features
1353  *      @dev: device to cause notification
1354  *
1355  *      Called to indicate a device has changed features.
1356  */
1357 void netdev_features_change(struct net_device *dev)
1358 {
1359         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1360 }
1361 EXPORT_SYMBOL(netdev_features_change);
1362
1363 /**
1364  *      netdev_state_change - device changes state
1365  *      @dev: device to cause notification
1366  *
1367  *      Called to indicate a device has changed state. This function calls
1368  *      the notifier chains for netdev_chain and sends a NEWLINK message
1369  *      to the routing socket.
1370  */
1371 void netdev_state_change(struct net_device *dev)
1372 {
1373         if (dev->flags & IFF_UP) {
1374                 struct netdev_notifier_change_info change_info = {
1375                         .info.dev = dev,
1376                 };
1377
1378                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1379                                               &change_info.info);
1380                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1381         }
1382 }
1383 EXPORT_SYMBOL(netdev_state_change);
1384
1385 /**
1386  * netdev_notify_peers - notify network peers about existence of @dev
1387  * @dev: network device
1388  *
1389  * Generate traffic such that interested network peers are aware of
1390  * @dev, such as by generating a gratuitous ARP. This may be used when
1391  * a device wants to inform the rest of the network about some sort of
1392  * reconfiguration such as a failover event or virtual machine
1393  * migration.
1394  */
1395 void netdev_notify_peers(struct net_device *dev)
1396 {
1397         rtnl_lock();
1398         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1399         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1400         rtnl_unlock();
1401 }
1402 EXPORT_SYMBOL(netdev_notify_peers);
1403
1404 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1405 {
1406         const struct net_device_ops *ops = dev->netdev_ops;
1407         int ret;
1408
1409         ASSERT_RTNL();
1410
1411         if (!netif_device_present(dev))
1412                 return -ENODEV;
1413
1414         /* Block netpoll from trying to do any rx path servicing.
1415          * If we don't do this there is a chance ndo_poll_controller
1416          * or ndo_poll may be running while we open the device
1417          */
1418         netpoll_poll_disable(dev);
1419
1420         ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1421         ret = notifier_to_errno(ret);
1422         if (ret)
1423                 return ret;
1424
1425         set_bit(__LINK_STATE_START, &dev->state);
1426
1427         if (ops->ndo_validate_addr)
1428                 ret = ops->ndo_validate_addr(dev);
1429
1430         if (!ret && ops->ndo_open)
1431                 ret = ops->ndo_open(dev);
1432
1433         netpoll_poll_enable(dev);
1434
1435         if (ret)
1436                 clear_bit(__LINK_STATE_START, &dev->state);
1437         else {
1438                 dev->flags |= IFF_UP;
1439                 dev_set_rx_mode(dev);
1440                 dev_activate(dev);
1441                 add_device_randomness(dev->dev_addr, dev->addr_len);
1442         }
1443
1444         return ret;
1445 }
1446
1447 /**
1448  *      dev_open        - prepare an interface for use.
1449  *      @dev: device to open
1450  *      @extack: netlink extended ack
1451  *
1452  *      Takes a device from down to up state. The device's private open
1453  *      function is invoked and then the multicast lists are loaded. Finally
1454  *      the device is moved into the up state and a %NETDEV_UP message is
1455  *      sent to the netdev notifier chain.
1456  *
1457  *      Calling this function on an active interface is a nop. On a failure
1458  *      a negative errno code is returned.
1459  */
1460 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1461 {
1462         int ret;
1463
1464         if (dev->flags & IFF_UP)
1465                 return 0;
1466
1467         ret = __dev_open(dev, extack);
1468         if (ret < 0)
1469                 return ret;
1470
1471         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1472         call_netdevice_notifiers(NETDEV_UP, dev);
1473
1474         return ret;
1475 }
1476 EXPORT_SYMBOL(dev_open);
1477
1478 static void __dev_close_many(struct list_head *head)
1479 {
1480         struct net_device *dev;
1481
1482         ASSERT_RTNL();
1483         might_sleep();
1484
1485         list_for_each_entry(dev, head, close_list) {
1486                 /* Temporarily disable netpoll until the interface is down */
1487                 netpoll_poll_disable(dev);
1488
1489                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1490
1491                 clear_bit(__LINK_STATE_START, &dev->state);
1492
1493                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1494                  * can be even on different cpu. So just clear netif_running().
1495                  *
1496                  * dev->stop() will invoke napi_disable() on all of it's
1497                  * napi_struct instances on this device.
1498                  */
1499                 smp_mb__after_atomic(); /* Commit netif_running(). */
1500         }
1501
1502         dev_deactivate_many(head);
1503
1504         list_for_each_entry(dev, head, close_list) {
1505                 const struct net_device_ops *ops = dev->netdev_ops;
1506
1507                 /*
1508                  *      Call the device specific close. This cannot fail.
1509                  *      Only if device is UP
1510                  *
1511                  *      We allow it to be called even after a DETACH hot-plug
1512                  *      event.
1513                  */
1514                 if (ops->ndo_stop)
1515                         ops->ndo_stop(dev);
1516
1517                 dev->flags &= ~IFF_UP;
1518                 netpoll_poll_enable(dev);
1519         }
1520 }
1521
1522 static void __dev_close(struct net_device *dev)
1523 {
1524         LIST_HEAD(single);
1525
1526         list_add(&dev->close_list, &single);
1527         __dev_close_many(&single);
1528         list_del(&single);
1529 }
1530
1531 void dev_close_many(struct list_head *head, bool unlink)
1532 {
1533         struct net_device *dev, *tmp;
1534
1535         /* Remove the devices that don't need to be closed */
1536         list_for_each_entry_safe(dev, tmp, head, close_list)
1537                 if (!(dev->flags & IFF_UP))
1538                         list_del_init(&dev->close_list);
1539
1540         __dev_close_many(head);
1541
1542         list_for_each_entry_safe(dev, tmp, head, close_list) {
1543                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1544                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1545                 if (unlink)
1546                         list_del_init(&dev->close_list);
1547         }
1548 }
1549 EXPORT_SYMBOL(dev_close_many);
1550
1551 /**
1552  *      dev_close - shutdown an interface.
1553  *      @dev: device to shutdown
1554  *
1555  *      This function moves an active device into down state. A
1556  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1557  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1558  *      chain.
1559  */
1560 void dev_close(struct net_device *dev)
1561 {
1562         if (dev->flags & IFF_UP) {
1563                 LIST_HEAD(single);
1564
1565                 list_add(&dev->close_list, &single);
1566                 dev_close_many(&single, true);
1567                 list_del(&single);
1568         }
1569 }
1570 EXPORT_SYMBOL(dev_close);
1571
1572
1573 /**
1574  *      dev_disable_lro - disable Large Receive Offload on a device
1575  *      @dev: device
1576  *
1577  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1578  *      called under RTNL.  This is needed if received packets may be
1579  *      forwarded to another interface.
1580  */
1581 void dev_disable_lro(struct net_device *dev)
1582 {
1583         struct net_device *lower_dev;
1584         struct list_head *iter;
1585
1586         dev->wanted_features &= ~NETIF_F_LRO;
1587         netdev_update_features(dev);
1588
1589         if (unlikely(dev->features & NETIF_F_LRO))
1590                 netdev_WARN(dev, "failed to disable LRO!\n");
1591
1592         netdev_for_each_lower_dev(dev, lower_dev, iter)
1593                 dev_disable_lro(lower_dev);
1594 }
1595 EXPORT_SYMBOL(dev_disable_lro);
1596
1597 /**
1598  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1599  *      @dev: device
1600  *
1601  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1602  *      called under RTNL.  This is needed if Generic XDP is installed on
1603  *      the device.
1604  */
1605 static void dev_disable_gro_hw(struct net_device *dev)
1606 {
1607         dev->wanted_features &= ~NETIF_F_GRO_HW;
1608         netdev_update_features(dev);
1609
1610         if (unlikely(dev->features & NETIF_F_GRO_HW))
1611                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1612 }
1613
1614 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1615 {
1616 #define N(val)                                          \
1617         case NETDEV_##val:                              \
1618                 return "NETDEV_" __stringify(val);
1619         switch (cmd) {
1620         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1621         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1622         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1623         N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1624         N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1625         N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1626         N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1627         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1628         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1629         N(PRE_CHANGEADDR)
1630         }
1631 #undef N
1632         return "UNKNOWN_NETDEV_EVENT";
1633 }
1634 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1635
1636 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1637                                    struct net_device *dev)
1638 {
1639         struct netdev_notifier_info info = {
1640                 .dev = dev,
1641         };
1642
1643         return nb->notifier_call(nb, val, &info);
1644 }
1645
1646 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1647                                              struct net_device *dev)
1648 {
1649         int err;
1650
1651         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1652         err = notifier_to_errno(err);
1653         if (err)
1654                 return err;
1655
1656         if (!(dev->flags & IFF_UP))
1657                 return 0;
1658
1659         call_netdevice_notifier(nb, NETDEV_UP, dev);
1660         return 0;
1661 }
1662
1663 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1664                                                 struct net_device *dev)
1665 {
1666         if (dev->flags & IFF_UP) {
1667                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1668                                         dev);
1669                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1670         }
1671         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1672 }
1673
1674 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1675                                                  struct net *net)
1676 {
1677         struct net_device *dev;
1678         int err;
1679
1680         for_each_netdev(net, dev) {
1681                 err = call_netdevice_register_notifiers(nb, dev);
1682                 if (err)
1683                         goto rollback;
1684         }
1685         return 0;
1686
1687 rollback:
1688         for_each_netdev_continue_reverse(net, dev)
1689                 call_netdevice_unregister_notifiers(nb, dev);
1690         return err;
1691 }
1692
1693 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1694                                                     struct net *net)
1695 {
1696         struct net_device *dev;
1697
1698         for_each_netdev(net, dev)
1699                 call_netdevice_unregister_notifiers(nb, dev);
1700 }
1701
1702 static int dev_boot_phase = 1;
1703
1704 /**
1705  * register_netdevice_notifier - register a network notifier block
1706  * @nb: notifier
1707  *
1708  * Register a notifier to be called when network device events occur.
1709  * The notifier passed is linked into the kernel structures and must
1710  * not be reused until it has been unregistered. A negative errno code
1711  * is returned on a failure.
1712  *
1713  * When registered all registration and up events are replayed
1714  * to the new notifier to allow device to have a race free
1715  * view of the network device list.
1716  */
1717
1718 int register_netdevice_notifier(struct notifier_block *nb)
1719 {
1720         struct net *net;
1721         int err;
1722
1723         /* Close race with setup_net() and cleanup_net() */
1724         down_write(&pernet_ops_rwsem);
1725         rtnl_lock();
1726         err = raw_notifier_chain_register(&netdev_chain, nb);
1727         if (err)
1728                 goto unlock;
1729         if (dev_boot_phase)
1730                 goto unlock;
1731         for_each_net(net) {
1732                 err = call_netdevice_register_net_notifiers(nb, net);
1733                 if (err)
1734                         goto rollback;
1735         }
1736
1737 unlock:
1738         rtnl_unlock();
1739         up_write(&pernet_ops_rwsem);
1740         return err;
1741
1742 rollback:
1743         for_each_net_continue_reverse(net)
1744                 call_netdevice_unregister_net_notifiers(nb, net);
1745
1746         raw_notifier_chain_unregister(&netdev_chain, nb);
1747         goto unlock;
1748 }
1749 EXPORT_SYMBOL(register_netdevice_notifier);
1750
1751 /**
1752  * unregister_netdevice_notifier - unregister a network notifier block
1753  * @nb: notifier
1754  *
1755  * Unregister a notifier previously registered by
1756  * register_netdevice_notifier(). The notifier is unlinked into the
1757  * kernel structures and may then be reused. A negative errno code
1758  * is returned on a failure.
1759  *
1760  * After unregistering unregister and down device events are synthesized
1761  * for all devices on the device list to the removed notifier to remove
1762  * the need for special case cleanup code.
1763  */
1764
1765 int unregister_netdevice_notifier(struct notifier_block *nb)
1766 {
1767         struct net_device *dev;
1768         struct net *net;
1769         int err;
1770
1771         /* Close race with setup_net() and cleanup_net() */
1772         down_write(&pernet_ops_rwsem);
1773         rtnl_lock();
1774         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1775         if (err)
1776                 goto unlock;
1777
1778         for_each_net(net) {
1779                 for_each_netdev(net, dev) {
1780                         if (dev->flags & IFF_UP) {
1781                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1782                                                         dev);
1783                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1784                         }
1785                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1786                 }
1787         }
1788 unlock:
1789         rtnl_unlock();
1790         up_write(&pernet_ops_rwsem);
1791         return err;
1792 }
1793 EXPORT_SYMBOL(unregister_netdevice_notifier);
1794
1795 /**
1796  * register_netdevice_notifier_net - register a per-netns network notifier block
1797  * @net: network namespace
1798  * @nb: notifier
1799  *
1800  * Register a notifier to be called when network device events occur.
1801  * The notifier passed is linked into the kernel structures and must
1802  * not be reused until it has been unregistered. A negative errno code
1803  * is returned on a failure.
1804  *
1805  * When registered all registration and up events are replayed
1806  * to the new notifier to allow device to have a race free
1807  * view of the network device list.
1808  */
1809
1810 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1811 {
1812         int err;
1813
1814         rtnl_lock();
1815         err = raw_notifier_chain_register(&net->netdev_chain, nb);
1816         if (err)
1817                 goto unlock;
1818         if (dev_boot_phase)
1819                 goto unlock;
1820
1821         err = call_netdevice_register_net_notifiers(nb, net);
1822         if (err)
1823                 goto chain_unregister;
1824
1825 unlock:
1826         rtnl_unlock();
1827         return err;
1828
1829 chain_unregister:
1830         raw_notifier_chain_unregister(&netdev_chain, nb);
1831         goto unlock;
1832 }
1833 EXPORT_SYMBOL(register_netdevice_notifier_net);
1834
1835 /**
1836  * unregister_netdevice_notifier_net - unregister a per-netns
1837  *                                     network notifier block
1838  * @net: network namespace
1839  * @nb: notifier
1840  *
1841  * Unregister a notifier previously registered by
1842  * register_netdevice_notifier(). The notifier is unlinked into the
1843  * kernel structures and may then be reused. A negative errno code
1844  * is returned on a failure.
1845  *
1846  * After unregistering unregister and down device events are synthesized
1847  * for all devices on the device list to the removed notifier to remove
1848  * the need for special case cleanup code.
1849  */
1850
1851 int unregister_netdevice_notifier_net(struct net *net,
1852                                       struct notifier_block *nb)
1853 {
1854         int err;
1855
1856         rtnl_lock();
1857         err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1858         if (err)
1859                 goto unlock;
1860
1861         call_netdevice_unregister_net_notifiers(nb, net);
1862
1863 unlock:
1864         rtnl_unlock();
1865         return err;
1866 }
1867 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1868
1869 /**
1870  *      call_netdevice_notifiers_info - call all network notifier blocks
1871  *      @val: value passed unmodified to notifier function
1872  *      @info: notifier information data
1873  *
1874  *      Call all network notifier blocks.  Parameters and return value
1875  *      are as for raw_notifier_call_chain().
1876  */
1877
1878 static int call_netdevice_notifiers_info(unsigned long val,
1879                                          struct netdev_notifier_info *info)
1880 {
1881         struct net *net = dev_net(info->dev);
1882         int ret;
1883
1884         ASSERT_RTNL();
1885
1886         /* Run per-netns notifier block chain first, then run the global one.
1887          * Hopefully, one day, the global one is going to be removed after
1888          * all notifier block registrators get converted to be per-netns.
1889          */
1890         ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1891         if (ret & NOTIFY_STOP_MASK)
1892                 return ret;
1893         return raw_notifier_call_chain(&netdev_chain, val, info);
1894 }
1895
1896 static int call_netdevice_notifiers_extack(unsigned long val,
1897                                            struct net_device *dev,
1898                                            struct netlink_ext_ack *extack)
1899 {
1900         struct netdev_notifier_info info = {
1901                 .dev = dev,
1902                 .extack = extack,
1903         };
1904
1905         return call_netdevice_notifiers_info(val, &info);
1906 }
1907
1908 /**
1909  *      call_netdevice_notifiers - call all network notifier blocks
1910  *      @val: value passed unmodified to notifier function
1911  *      @dev: net_device pointer passed unmodified to notifier function
1912  *
1913  *      Call all network notifier blocks.  Parameters and return value
1914  *      are as for raw_notifier_call_chain().
1915  */
1916
1917 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1918 {
1919         return call_netdevice_notifiers_extack(val, dev, NULL);
1920 }
1921 EXPORT_SYMBOL(call_netdevice_notifiers);
1922
1923 /**
1924  *      call_netdevice_notifiers_mtu - call all network notifier blocks
1925  *      @val: value passed unmodified to notifier function
1926  *      @dev: net_device pointer passed unmodified to notifier function
1927  *      @arg: additional u32 argument passed to the notifier function
1928  *
1929  *      Call all network notifier blocks.  Parameters and return value
1930  *      are as for raw_notifier_call_chain().
1931  */
1932 static int call_netdevice_notifiers_mtu(unsigned long val,
1933                                         struct net_device *dev, u32 arg)
1934 {
1935         struct netdev_notifier_info_ext info = {
1936                 .info.dev = dev,
1937                 .ext.mtu = arg,
1938         };
1939
1940         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1941
1942         return call_netdevice_notifiers_info(val, &info.info);
1943 }
1944
1945 #ifdef CONFIG_NET_INGRESS
1946 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
1947
1948 void net_inc_ingress_queue(void)
1949 {
1950         static_branch_inc(&ingress_needed_key);
1951 }
1952 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1953
1954 void net_dec_ingress_queue(void)
1955 {
1956         static_branch_dec(&ingress_needed_key);
1957 }
1958 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1959 #endif
1960
1961 #ifdef CONFIG_NET_EGRESS
1962 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1963
1964 void net_inc_egress_queue(void)
1965 {
1966         static_branch_inc(&egress_needed_key);
1967 }
1968 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1969
1970 void net_dec_egress_queue(void)
1971 {
1972         static_branch_dec(&egress_needed_key);
1973 }
1974 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1975 #endif
1976
1977 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
1978 #ifdef CONFIG_JUMP_LABEL
1979 static atomic_t netstamp_needed_deferred;
1980 static atomic_t netstamp_wanted;
1981 static void netstamp_clear(struct work_struct *work)
1982 {
1983         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1984         int wanted;
1985
1986         wanted = atomic_add_return(deferred, &netstamp_wanted);
1987         if (wanted > 0)
1988                 static_branch_enable(&netstamp_needed_key);
1989         else
1990                 static_branch_disable(&netstamp_needed_key);
1991 }
1992 static DECLARE_WORK(netstamp_work, netstamp_clear);
1993 #endif
1994
1995 void net_enable_timestamp(void)
1996 {
1997 #ifdef CONFIG_JUMP_LABEL
1998         int wanted;
1999
2000         while (1) {
2001                 wanted = atomic_read(&netstamp_wanted);
2002                 if (wanted <= 0)
2003                         break;
2004                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2005                         return;
2006         }
2007         atomic_inc(&netstamp_needed_deferred);
2008         schedule_work(&netstamp_work);
2009 #else
2010         static_branch_inc(&netstamp_needed_key);
2011 #endif
2012 }
2013 EXPORT_SYMBOL(net_enable_timestamp);
2014
2015 void net_disable_timestamp(void)
2016 {
2017 #ifdef CONFIG_JUMP_LABEL
2018         int wanted;
2019
2020         while (1) {
2021                 wanted = atomic_read(&netstamp_wanted);
2022                 if (wanted <= 1)
2023                         break;
2024                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2025                         return;
2026         }
2027         atomic_dec(&netstamp_needed_deferred);
2028         schedule_work(&netstamp_work);
2029 #else
2030         static_branch_dec(&netstamp_needed_key);
2031 #endif
2032 }
2033 EXPORT_SYMBOL(net_disable_timestamp);
2034
2035 static inline void net_timestamp_set(struct sk_buff *skb)
2036 {
2037         skb->tstamp = 0;
2038         if (static_branch_unlikely(&netstamp_needed_key))
2039                 __net_timestamp(skb);
2040 }
2041
2042 #define net_timestamp_check(COND, SKB)                          \
2043         if (static_branch_unlikely(&netstamp_needed_key)) {     \
2044                 if ((COND) && !(SKB)->tstamp)                   \
2045                         __net_timestamp(SKB);                   \
2046         }                                                       \
2047
2048 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2049 {
2050         unsigned int len;
2051
2052         if (!(dev->flags & IFF_UP))
2053                 return false;
2054
2055         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
2056         if (skb->len <= len)
2057                 return true;
2058
2059         /* if TSO is enabled, we don't care about the length as the packet
2060          * could be forwarded without being segmented before
2061          */
2062         if (skb_is_gso(skb))
2063                 return true;
2064
2065         return false;
2066 }
2067 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2068
2069 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2070 {
2071         int ret = ____dev_forward_skb(dev, skb);
2072
2073         if (likely(!ret)) {
2074                 skb->protocol = eth_type_trans(skb, dev);
2075                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2076         }
2077
2078         return ret;
2079 }
2080 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2081
2082 /**
2083  * dev_forward_skb - loopback an skb to another netif
2084  *
2085  * @dev: destination network device
2086  * @skb: buffer to forward
2087  *
2088  * return values:
2089  *      NET_RX_SUCCESS  (no congestion)
2090  *      NET_RX_DROP     (packet was dropped, but freed)
2091  *
2092  * dev_forward_skb can be used for injecting an skb from the
2093  * start_xmit function of one device into the receive queue
2094  * of another device.
2095  *
2096  * The receiving device may be in another namespace, so
2097  * we have to clear all information in the skb that could
2098  * impact namespace isolation.
2099  */
2100 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2101 {
2102         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2103 }
2104 EXPORT_SYMBOL_GPL(dev_forward_skb);
2105
2106 static inline int deliver_skb(struct sk_buff *skb,
2107                               struct packet_type *pt_prev,
2108                               struct net_device *orig_dev)
2109 {
2110         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2111                 return -ENOMEM;
2112         refcount_inc(&skb->users);
2113         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2114 }
2115
2116 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2117                                           struct packet_type **pt,
2118                                           struct net_device *orig_dev,
2119                                           __be16 type,
2120                                           struct list_head *ptype_list)
2121 {
2122         struct packet_type *ptype, *pt_prev = *pt;
2123
2124         list_for_each_entry_rcu(ptype, ptype_list, list) {
2125                 if (ptype->type != type)
2126                         continue;
2127                 if (pt_prev)
2128                         deliver_skb(skb, pt_prev, orig_dev);
2129                 pt_prev = ptype;
2130         }
2131         *pt = pt_prev;
2132 }
2133
2134 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2135 {
2136         if (!ptype->af_packet_priv || !skb->sk)
2137                 return false;
2138
2139         if (ptype->id_match)
2140                 return ptype->id_match(ptype, skb->sk);
2141         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2142                 return true;
2143
2144         return false;
2145 }
2146
2147 /**
2148  * dev_nit_active - return true if any network interface taps are in use
2149  *
2150  * @dev: network device to check for the presence of taps
2151  */
2152 bool dev_nit_active(struct net_device *dev)
2153 {
2154         return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2155 }
2156 EXPORT_SYMBOL_GPL(dev_nit_active);
2157
2158 /*
2159  *      Support routine. Sends outgoing frames to any network
2160  *      taps currently in use.
2161  */
2162
2163 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2164 {
2165         struct packet_type *ptype;
2166         struct sk_buff *skb2 = NULL;
2167         struct packet_type *pt_prev = NULL;
2168         struct list_head *ptype_list = &ptype_all;
2169
2170         rcu_read_lock();
2171 again:
2172         list_for_each_entry_rcu(ptype, ptype_list, list) {
2173                 if (ptype->ignore_outgoing)
2174                         continue;
2175
2176                 /* Never send packets back to the socket
2177                  * they originated from - MvS (miquels@drinkel.ow.org)
2178                  */
2179                 if (skb_loop_sk(ptype, skb))
2180                         continue;
2181
2182                 if (pt_prev) {
2183                         deliver_skb(skb2, pt_prev, skb->dev);
2184                         pt_prev = ptype;
2185                         continue;
2186                 }
2187
2188                 /* need to clone skb, done only once */
2189                 skb2 = skb_clone(skb, GFP_ATOMIC);
2190                 if (!skb2)
2191                         goto out_unlock;
2192
2193                 net_timestamp_set(skb2);
2194
2195                 /* skb->nh should be correctly
2196                  * set by sender, so that the second statement is
2197                  * just protection against buggy protocols.
2198                  */
2199                 skb_reset_mac_header(skb2);
2200
2201                 if (skb_network_header(skb2) < skb2->data ||
2202                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2203                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2204                                              ntohs(skb2->protocol),
2205                                              dev->name);
2206                         skb_reset_network_header(skb2);
2207                 }
2208
2209                 skb2->transport_header = skb2->network_header;
2210                 skb2->pkt_type = PACKET_OUTGOING;
2211                 pt_prev = ptype;
2212         }
2213
2214         if (ptype_list == &ptype_all) {
2215                 ptype_list = &dev->ptype_all;
2216                 goto again;
2217         }
2218 out_unlock:
2219         if (pt_prev) {
2220                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2221                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2222                 else
2223                         kfree_skb(skb2);
2224         }
2225         rcu_read_unlock();
2226 }
2227 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2228
2229 /**
2230  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2231  * @dev: Network device
2232  * @txq: number of queues available
2233  *
2234  * If real_num_tx_queues is changed the tc mappings may no longer be
2235  * valid. To resolve this verify the tc mapping remains valid and if
2236  * not NULL the mapping. With no priorities mapping to this
2237  * offset/count pair it will no longer be used. In the worst case TC0
2238  * is invalid nothing can be done so disable priority mappings. If is
2239  * expected that drivers will fix this mapping if they can before
2240  * calling netif_set_real_num_tx_queues.
2241  */
2242 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2243 {
2244         int i;
2245         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2246
2247         /* If TC0 is invalidated disable TC mapping */
2248         if (tc->offset + tc->count > txq) {
2249                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2250                 dev->num_tc = 0;
2251                 return;
2252         }
2253
2254         /* Invalidated prio to tc mappings set to TC0 */
2255         for (i = 1; i < TC_BITMASK + 1; i++) {
2256                 int q = netdev_get_prio_tc_map(dev, i);
2257
2258                 tc = &dev->tc_to_txq[q];
2259                 if (tc->offset + tc->count > txq) {
2260                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2261                                 i, q);
2262                         netdev_set_prio_tc_map(dev, i, 0);
2263                 }
2264         }
2265 }
2266
2267 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2268 {
2269         if (dev->num_tc) {
2270                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2271                 int i;
2272
2273                 /* walk through the TCs and see if it falls into any of them */
2274                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2275                         if ((txq - tc->offset) < tc->count)
2276                                 return i;
2277                 }
2278
2279                 /* didn't find it, just return -1 to indicate no match */
2280                 return -1;
2281         }
2282
2283         return 0;
2284 }
2285 EXPORT_SYMBOL(netdev_txq_to_tc);
2286
2287 #ifdef CONFIG_XPS
2288 struct static_key xps_needed __read_mostly;
2289 EXPORT_SYMBOL(xps_needed);
2290 struct static_key xps_rxqs_needed __read_mostly;
2291 EXPORT_SYMBOL(xps_rxqs_needed);
2292 static DEFINE_MUTEX(xps_map_mutex);
2293 #define xmap_dereference(P)             \
2294         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2295
2296 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2297                              int tci, u16 index)
2298 {
2299         struct xps_map *map = NULL;
2300         int pos;
2301
2302         if (dev_maps)
2303                 map = xmap_dereference(dev_maps->attr_map[tci]);
2304         if (!map)
2305                 return false;
2306
2307         for (pos = map->len; pos--;) {
2308                 if (map->queues[pos] != index)
2309                         continue;
2310
2311                 if (map->len > 1) {
2312                         map->queues[pos] = map->queues[--map->len];
2313                         break;
2314                 }
2315
2316                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2317                 kfree_rcu(map, rcu);
2318                 return false;
2319         }
2320
2321         return true;
2322 }
2323
2324 static bool remove_xps_queue_cpu(struct net_device *dev,
2325                                  struct xps_dev_maps *dev_maps,
2326                                  int cpu, u16 offset, u16 count)
2327 {
2328         int num_tc = dev->num_tc ? : 1;
2329         bool active = false;
2330         int tci;
2331
2332         for (tci = cpu * num_tc; num_tc--; tci++) {
2333                 int i, j;
2334
2335                 for (i = count, j = offset; i--; j++) {
2336                         if (!remove_xps_queue(dev_maps, tci, j))
2337                                 break;
2338                 }
2339
2340                 active |= i < 0;
2341         }
2342
2343         return active;
2344 }
2345
2346 static void reset_xps_maps(struct net_device *dev,
2347                            struct xps_dev_maps *dev_maps,
2348                            bool is_rxqs_map)
2349 {
2350         if (is_rxqs_map) {
2351                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2352                 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2353         } else {
2354                 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2355         }
2356         static_key_slow_dec_cpuslocked(&xps_needed);
2357         kfree_rcu(dev_maps, rcu);
2358 }
2359
2360 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2361                            struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2362                            u16 offset, u16 count, bool is_rxqs_map)
2363 {
2364         bool active = false;
2365         int i, j;
2366
2367         for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2368              j < nr_ids;)
2369                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2370                                                count);
2371         if (!active)
2372                 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2373
2374         if (!is_rxqs_map) {
2375                 for (i = offset + (count - 1); count--; i--) {
2376                         netdev_queue_numa_node_write(
2377                                 netdev_get_tx_queue(dev, i),
2378                                 NUMA_NO_NODE);
2379                 }
2380         }
2381 }
2382
2383 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2384                                    u16 count)
2385 {
2386         const unsigned long *possible_mask = NULL;
2387         struct xps_dev_maps *dev_maps;
2388         unsigned int nr_ids;
2389
2390         if (!static_key_false(&xps_needed))
2391                 return;
2392
2393         cpus_read_lock();
2394         mutex_lock(&xps_map_mutex);
2395
2396         if (static_key_false(&xps_rxqs_needed)) {
2397                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2398                 if (dev_maps) {
2399                         nr_ids = dev->num_rx_queues;
2400                         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2401                                        offset, count, true);
2402                 }
2403         }
2404
2405         dev_maps = xmap_dereference(dev->xps_cpus_map);
2406         if (!dev_maps)
2407                 goto out_no_maps;
2408
2409         if (num_possible_cpus() > 1)
2410                 possible_mask = cpumask_bits(cpu_possible_mask);
2411         nr_ids = nr_cpu_ids;
2412         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2413                        false);
2414
2415 out_no_maps:
2416         mutex_unlock(&xps_map_mutex);
2417         cpus_read_unlock();
2418 }
2419
2420 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2421 {
2422         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2423 }
2424
2425 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2426                                       u16 index, bool is_rxqs_map)
2427 {
2428         struct xps_map *new_map;
2429         int alloc_len = XPS_MIN_MAP_ALLOC;
2430         int i, pos;
2431
2432         for (pos = 0; map && pos < map->len; pos++) {
2433                 if (map->queues[pos] != index)
2434                         continue;
2435                 return map;
2436         }
2437
2438         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2439         if (map) {
2440                 if (pos < map->alloc_len)
2441                         return map;
2442
2443                 alloc_len = map->alloc_len * 2;
2444         }
2445
2446         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2447          *  map
2448          */
2449         if (is_rxqs_map)
2450                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2451         else
2452                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2453                                        cpu_to_node(attr_index));
2454         if (!new_map)
2455                 return NULL;
2456
2457         for (i = 0; i < pos; i++)
2458                 new_map->queues[i] = map->queues[i];
2459         new_map->alloc_len = alloc_len;
2460         new_map->len = pos;
2461
2462         return new_map;
2463 }
2464
2465 /* Must be called under cpus_read_lock */
2466 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2467                           u16 index, bool is_rxqs_map)
2468 {
2469         const unsigned long *online_mask = NULL, *possible_mask = NULL;
2470         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2471         int i, j, tci, numa_node_id = -2;
2472         int maps_sz, num_tc = 1, tc = 0;
2473         struct xps_map *map, *new_map;
2474         bool active = false;
2475         unsigned int nr_ids;
2476
2477         if (dev->num_tc) {
2478                 /* Do not allow XPS on subordinate device directly */
2479                 num_tc = dev->num_tc;
2480                 if (num_tc < 0)
2481                         return -EINVAL;
2482
2483                 /* If queue belongs to subordinate dev use its map */
2484                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2485
2486                 tc = netdev_txq_to_tc(dev, index);
2487                 if (tc < 0)
2488                         return -EINVAL;
2489         }
2490
2491         mutex_lock(&xps_map_mutex);
2492         if (is_rxqs_map) {
2493                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2494                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2495                 nr_ids = dev->num_rx_queues;
2496         } else {
2497                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2498                 if (num_possible_cpus() > 1) {
2499                         online_mask = cpumask_bits(cpu_online_mask);
2500                         possible_mask = cpumask_bits(cpu_possible_mask);
2501                 }
2502                 dev_maps = xmap_dereference(dev->xps_cpus_map);
2503                 nr_ids = nr_cpu_ids;
2504         }
2505
2506         if (maps_sz < L1_CACHE_BYTES)
2507                 maps_sz = L1_CACHE_BYTES;
2508
2509         /* allocate memory for queue storage */
2510         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2511              j < nr_ids;) {
2512                 if (!new_dev_maps)
2513                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2514                 if (!new_dev_maps) {
2515                         mutex_unlock(&xps_map_mutex);
2516                         return -ENOMEM;
2517                 }
2518
2519                 tci = j * num_tc + tc;
2520                 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2521                                  NULL;
2522
2523                 map = expand_xps_map(map, j, index, is_rxqs_map);
2524                 if (!map)
2525                         goto error;
2526
2527                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2528         }
2529
2530         if (!new_dev_maps)
2531                 goto out_no_new_maps;
2532
2533         if (!dev_maps) {
2534                 /* Increment static keys at most once per type */
2535                 static_key_slow_inc_cpuslocked(&xps_needed);
2536                 if (is_rxqs_map)
2537                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2538         }
2539
2540         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2541              j < nr_ids;) {
2542                 /* copy maps belonging to foreign traffic classes */
2543                 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2544                         /* fill in the new device map from the old device map */
2545                         map = xmap_dereference(dev_maps->attr_map[tci]);
2546                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2547                 }
2548
2549                 /* We need to explicitly update tci as prevous loop
2550                  * could break out early if dev_maps is NULL.
2551                  */
2552                 tci = j * num_tc + tc;
2553
2554                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2555                     netif_attr_test_online(j, online_mask, nr_ids)) {
2556                         /* add tx-queue to CPU/rx-queue maps */
2557                         int pos = 0;
2558
2559                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2560                         while ((pos < map->len) && (map->queues[pos] != index))
2561                                 pos++;
2562
2563                         if (pos == map->len)
2564                                 map->queues[map->len++] = index;
2565 #ifdef CONFIG_NUMA
2566                         if (!is_rxqs_map) {
2567                                 if (numa_node_id == -2)
2568                                         numa_node_id = cpu_to_node(j);
2569                                 else if (numa_node_id != cpu_to_node(j))
2570                                         numa_node_id = -1;
2571                         }
2572 #endif
2573                 } else if (dev_maps) {
2574                         /* fill in the new device map from the old device map */
2575                         map = xmap_dereference(dev_maps->attr_map[tci]);
2576                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2577                 }
2578
2579                 /* copy maps belonging to foreign traffic classes */
2580                 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2581                         /* fill in the new device map from the old device map */
2582                         map = xmap_dereference(dev_maps->attr_map[tci]);
2583                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2584                 }
2585         }
2586
2587         if (is_rxqs_map)
2588                 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2589         else
2590                 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2591
2592         /* Cleanup old maps */
2593         if (!dev_maps)
2594                 goto out_no_old_maps;
2595
2596         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2597              j < nr_ids;) {
2598                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2599                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2600                         map = xmap_dereference(dev_maps->attr_map[tci]);
2601                         if (map && map != new_map)
2602                                 kfree_rcu(map, rcu);
2603                 }
2604         }
2605
2606         kfree_rcu(dev_maps, rcu);
2607
2608 out_no_old_maps:
2609         dev_maps = new_dev_maps;
2610         active = true;
2611
2612 out_no_new_maps:
2613         if (!is_rxqs_map) {
2614                 /* update Tx queue numa node */
2615                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2616                                              (numa_node_id >= 0) ?
2617                                              numa_node_id : NUMA_NO_NODE);
2618         }
2619
2620         if (!dev_maps)
2621                 goto out_no_maps;
2622
2623         /* removes tx-queue from unused CPUs/rx-queues */
2624         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2625              j < nr_ids;) {
2626                 for (i = tc, tci = j * num_tc; i--; tci++)
2627                         active |= remove_xps_queue(dev_maps, tci, index);
2628                 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2629                     !netif_attr_test_online(j, online_mask, nr_ids))
2630                         active |= remove_xps_queue(dev_maps, tci, index);
2631                 for (i = num_tc - tc, tci++; --i; tci++)
2632                         active |= remove_xps_queue(dev_maps, tci, index);
2633         }
2634
2635         /* free map if not active */
2636         if (!active)
2637                 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2638
2639 out_no_maps:
2640         mutex_unlock(&xps_map_mutex);
2641
2642         return 0;
2643 error:
2644         /* remove any maps that we added */
2645         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2646              j < nr_ids;) {
2647                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2648                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2649                         map = dev_maps ?
2650                               xmap_dereference(dev_maps->attr_map[tci]) :
2651                               NULL;
2652                         if (new_map && new_map != map)
2653                                 kfree(new_map);
2654                 }
2655         }
2656
2657         mutex_unlock(&xps_map_mutex);
2658
2659         kfree(new_dev_maps);
2660         return -ENOMEM;
2661 }
2662 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2663
2664 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2665                         u16 index)
2666 {
2667         int ret;
2668
2669         cpus_read_lock();
2670         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2671         cpus_read_unlock();
2672
2673         return ret;
2674 }
2675 EXPORT_SYMBOL(netif_set_xps_queue);
2676
2677 #endif
2678 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2679 {
2680         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2681
2682         /* Unbind any subordinate channels */
2683         while (txq-- != &dev->_tx[0]) {
2684                 if (txq->sb_dev)
2685                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2686         }
2687 }
2688
2689 void netdev_reset_tc(struct net_device *dev)
2690 {
2691 #ifdef CONFIG_XPS
2692         netif_reset_xps_queues_gt(dev, 0);
2693 #endif
2694         netdev_unbind_all_sb_channels(dev);
2695
2696         /* Reset TC configuration of device */
2697         dev->num_tc = 0;
2698         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2699         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2700 }
2701 EXPORT_SYMBOL(netdev_reset_tc);
2702
2703 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2704 {
2705         if (tc >= dev->num_tc)
2706                 return -EINVAL;
2707
2708 #ifdef CONFIG_XPS
2709         netif_reset_xps_queues(dev, offset, count);
2710 #endif
2711         dev->tc_to_txq[tc].count = count;
2712         dev->tc_to_txq[tc].offset = offset;
2713         return 0;
2714 }
2715 EXPORT_SYMBOL(netdev_set_tc_queue);
2716
2717 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2718 {
2719         if (num_tc > TC_MAX_QUEUE)
2720                 return -EINVAL;
2721
2722 #ifdef CONFIG_XPS
2723         netif_reset_xps_queues_gt(dev, 0);
2724 #endif
2725         netdev_unbind_all_sb_channels(dev);
2726
2727         dev->num_tc = num_tc;
2728         return 0;
2729 }
2730 EXPORT_SYMBOL(netdev_set_num_tc);
2731
2732 void netdev_unbind_sb_channel(struct net_device *dev,
2733                               struct net_device *sb_dev)
2734 {
2735         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2736
2737 #ifdef CONFIG_XPS
2738         netif_reset_xps_queues_gt(sb_dev, 0);
2739 #endif
2740         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2741         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2742
2743         while (txq-- != &dev->_tx[0]) {
2744                 if (txq->sb_dev == sb_dev)
2745                         txq->sb_dev = NULL;
2746         }
2747 }
2748 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2749
2750 int netdev_bind_sb_channel_queue(struct net_device *dev,
2751                                  struct net_device *sb_dev,
2752                                  u8 tc, u16 count, u16 offset)
2753 {
2754         /* Make certain the sb_dev and dev are already configured */
2755         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2756                 return -EINVAL;
2757
2758         /* We cannot hand out queues we don't have */
2759         if ((offset + count) > dev->real_num_tx_queues)
2760                 return -EINVAL;
2761
2762         /* Record the mapping */
2763         sb_dev->tc_to_txq[tc].count = count;
2764         sb_dev->tc_to_txq[tc].offset = offset;
2765
2766         /* Provide a way for Tx queue to find the tc_to_txq map or
2767          * XPS map for itself.
2768          */
2769         while (count--)
2770                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2771
2772         return 0;
2773 }
2774 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2775
2776 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2777 {
2778         /* Do not use a multiqueue device to represent a subordinate channel */
2779         if (netif_is_multiqueue(dev))
2780                 return -ENODEV;
2781
2782         /* We allow channels 1 - 32767 to be used for subordinate channels.
2783          * Channel 0 is meant to be "native" mode and used only to represent
2784          * the main root device. We allow writing 0 to reset the device back
2785          * to normal mode after being used as a subordinate channel.
2786          */
2787         if (channel > S16_MAX)
2788                 return -EINVAL;
2789
2790         dev->num_tc = -channel;
2791
2792         return 0;
2793 }
2794 EXPORT_SYMBOL(netdev_set_sb_channel);
2795
2796 /*
2797  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2798  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2799  */
2800 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2801 {
2802         bool disabling;
2803         int rc;
2804
2805         disabling = txq < dev->real_num_tx_queues;
2806
2807         if (txq < 1 || txq > dev->num_tx_queues)
2808                 return -EINVAL;
2809
2810         if (dev->reg_state == NETREG_REGISTERED ||
2811             dev->reg_state == NETREG_UNREGISTERING) {
2812                 ASSERT_RTNL();
2813
2814                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2815                                                   txq);
2816                 if (rc)
2817                         return rc;
2818
2819                 if (dev->num_tc)
2820                         netif_setup_tc(dev, txq);
2821
2822                 dev->real_num_tx_queues = txq;
2823
2824                 if (disabling) {
2825                         synchronize_net();
2826                         qdisc_reset_all_tx_gt(dev, txq);
2827 #ifdef CONFIG_XPS
2828                         netif_reset_xps_queues_gt(dev, txq);
2829 #endif
2830                 }
2831         } else {
2832                 dev->real_num_tx_queues = txq;
2833         }
2834
2835         return 0;
2836 }
2837 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2838
2839 #ifdef CONFIG_SYSFS
2840 /**
2841  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2842  *      @dev: Network device
2843  *      @rxq: Actual number of RX queues
2844  *
2845  *      This must be called either with the rtnl_lock held or before
2846  *      registration of the net device.  Returns 0 on success, or a
2847  *      negative error code.  If called before registration, it always
2848  *      succeeds.
2849  */
2850 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2851 {
2852         int rc;
2853
2854         if (rxq < 1 || rxq > dev->num_rx_queues)
2855                 return -EINVAL;
2856
2857         if (dev->reg_state == NETREG_REGISTERED) {
2858                 ASSERT_RTNL();
2859
2860                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2861                                                   rxq);
2862                 if (rc)
2863                         return rc;
2864         }
2865
2866         dev->real_num_rx_queues = rxq;
2867         return 0;
2868 }
2869 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2870 #endif
2871
2872 /**
2873  * netif_get_num_default_rss_queues - default number of RSS queues
2874  *
2875  * This routine should set an upper limit on the number of RSS queues
2876  * used by default by multiqueue devices.
2877  */
2878 int netif_get_num_default_rss_queues(void)
2879 {
2880         return is_kdump_kernel() ?
2881                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2882 }
2883 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2884
2885 static void __netif_reschedule(struct Qdisc *q)
2886 {
2887         struct softnet_data *sd;
2888         unsigned long flags;
2889
2890         local_irq_save(flags);
2891         sd = this_cpu_ptr(&softnet_data);
2892         q->next_sched = NULL;
2893         *sd->output_queue_tailp = q;
2894         sd->output_queue_tailp = &q->next_sched;
2895         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2896         local_irq_restore(flags);
2897 }
2898
2899 void __netif_schedule(struct Qdisc *q)
2900 {
2901         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2902                 __netif_reschedule(q);
2903 }
2904 EXPORT_SYMBOL(__netif_schedule);
2905
2906 struct dev_kfree_skb_cb {
2907         enum skb_free_reason reason;
2908 };
2909
2910 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2911 {
2912         return (struct dev_kfree_skb_cb *)skb->cb;
2913 }
2914
2915 void netif_schedule_queue(struct netdev_queue *txq)
2916 {
2917         rcu_read_lock();
2918         if (!netif_xmit_stopped(txq)) {
2919                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2920
2921                 __netif_schedule(q);
2922         }
2923         rcu_read_unlock();
2924 }
2925 EXPORT_SYMBOL(netif_schedule_queue);
2926
2927 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2928 {
2929         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2930                 struct Qdisc *q;
2931
2932                 rcu_read_lock();
2933                 q = rcu_dereference(dev_queue->qdisc);
2934                 __netif_schedule(q);
2935                 rcu_read_unlock();
2936         }
2937 }
2938 EXPORT_SYMBOL(netif_tx_wake_queue);
2939
2940 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2941 {
2942         unsigned long flags;
2943
2944         if (unlikely(!skb))
2945                 return;
2946
2947         if (likely(refcount_read(&skb->users) == 1)) {
2948                 smp_rmb();
2949                 refcount_set(&skb->users, 0);
2950         } else if (likely(!refcount_dec_and_test(&skb->users))) {
2951                 return;
2952         }
2953         get_kfree_skb_cb(skb)->reason = reason;
2954         local_irq_save(flags);
2955         skb->next = __this_cpu_read(softnet_data.completion_queue);
2956         __this_cpu_write(softnet_data.completion_queue, skb);
2957         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2958         local_irq_restore(flags);
2959 }
2960 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2961
2962 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2963 {
2964         if (in_irq() || irqs_disabled())
2965                 __dev_kfree_skb_irq(skb, reason);
2966         else
2967                 dev_kfree_skb(skb);
2968 }
2969 EXPORT_SYMBOL(__dev_kfree_skb_any);
2970
2971
2972 /**
2973  * netif_device_detach - mark device as removed
2974  * @dev: network device
2975  *
2976  * Mark device as removed from system and therefore no longer available.
2977  */
2978 void netif_device_detach(struct net_device *dev)
2979 {
2980         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2981             netif_running(dev)) {
2982                 netif_tx_stop_all_queues(dev);
2983         }
2984 }
2985 EXPORT_SYMBOL(netif_device_detach);
2986
2987 /**
2988  * netif_device_attach - mark device as attached
2989  * @dev: network device
2990  *
2991  * Mark device as attached from system and restart if needed.
2992  */
2993 void netif_device_attach(struct net_device *dev)
2994 {
2995         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2996             netif_running(dev)) {
2997                 netif_tx_wake_all_queues(dev);
2998                 __netdev_watchdog_up(dev);
2999         }
3000 }
3001 EXPORT_SYMBOL(netif_device_attach);
3002
3003 /*
3004  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3005  * to be used as a distribution range.
3006  */
3007 static u16 skb_tx_hash(const struct net_device *dev,
3008                        const struct net_device *sb_dev,
3009                        struct sk_buff *skb)
3010 {
3011         u32 hash;
3012         u16 qoffset = 0;
3013         u16 qcount = dev->real_num_tx_queues;
3014
3015         if (dev->num_tc) {
3016                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3017
3018                 qoffset = sb_dev->tc_to_txq[tc].offset;
3019                 qcount = sb_dev->tc_to_txq[tc].count;
3020         }
3021
3022         if (skb_rx_queue_recorded(skb)) {
3023                 hash = skb_get_rx_queue(skb);
3024                 while (unlikely(hash >= qcount))
3025                         hash -= qcount;
3026                 return hash + qoffset;
3027         }
3028
3029         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3030 }
3031
3032 static void skb_warn_bad_offload(const struct sk_buff *skb)
3033 {
3034         static const netdev_features_t null_features;
3035         struct net_device *dev = skb->dev;
3036         const char *name = "";
3037
3038         if (!net_ratelimit())
3039                 return;
3040
3041         if (dev) {
3042                 if (dev->dev.parent)
3043                         name = dev_driver_string(dev->dev.parent);
3044                 else
3045                         name = netdev_name(dev);
3046         }
3047         skb_dump(KERN_WARNING, skb, false);
3048         WARN(1, "%s: caps=(%pNF, %pNF)\n",
3049              name, dev ? &dev->features : &null_features,
3050              skb->sk ? &skb->sk->sk_route_caps : &null_features);
3051 }
3052
3053 /*
3054  * Invalidate hardware checksum when packet is to be mangled, and
3055  * complete checksum manually on outgoing path.
3056  */
3057 int skb_checksum_help(struct sk_buff *skb)
3058 {
3059         __wsum csum;
3060         int ret = 0, offset;
3061
3062         if (skb->ip_summed == CHECKSUM_COMPLETE)
3063                 goto out_set_summed;
3064
3065         if (unlikely(skb_shinfo(skb)->gso_size)) {
3066                 skb_warn_bad_offload(skb);
3067                 return -EINVAL;
3068         }
3069
3070         /* Before computing a checksum, we should make sure no frag could
3071          * be modified by an external entity : checksum could be wrong.
3072          */
3073         if (skb_has_shared_frag(skb)) {
3074                 ret = __skb_linearize(skb);
3075                 if (ret)
3076                         goto out;
3077         }
3078
3079         offset = skb_checksum_start_offset(skb);
3080         BUG_ON(offset >= skb_headlen(skb));
3081         csum = skb_checksum(skb, offset, skb->len - offset, 0);
3082
3083         offset += skb->csum_offset;
3084         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3085
3086         ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3087         if (ret)
3088                 goto out;
3089
3090         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3091 out_set_summed:
3092         skb->ip_summed = CHECKSUM_NONE;
3093 out:
3094         return ret;
3095 }
3096 EXPORT_SYMBOL(skb_checksum_help);
3097
3098 int skb_crc32c_csum_help(struct sk_buff *skb)
3099 {
3100         __le32 crc32c_csum;
3101         int ret = 0, offset, start;
3102
3103         if (skb->ip_summed != CHECKSUM_PARTIAL)
3104                 goto out;
3105
3106         if (unlikely(skb_is_gso(skb)))
3107                 goto out;
3108
3109         /* Before computing a checksum, we should make sure no frag could
3110          * be modified by an external entity : checksum could be wrong.
3111          */
3112         if (unlikely(skb_has_shared_frag(skb))) {
3113                 ret = __skb_linearize(skb);
3114                 if (ret)
3115                         goto out;
3116         }
3117         start = skb_checksum_start_offset(skb);
3118         offset = start + offsetof(struct sctphdr, checksum);
3119         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3120                 ret = -EINVAL;
3121                 goto out;
3122         }
3123
3124         ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3125         if (ret)
3126                 goto out;
3127
3128         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3129                                                   skb->len - start, ~(__u32)0,
3130                                                   crc32c_csum_stub));
3131         *(__le32 *)(skb->data + offset) = crc32c_csum;
3132         skb->ip_summed = CHECKSUM_NONE;
3133         skb->csum_not_inet = 0;
3134 out:
3135         return ret;
3136 }
3137
3138 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3139 {
3140         __be16 type = skb->protocol;
3141
3142         /* Tunnel gso handlers can set protocol to ethernet. */
3143         if (type == htons(ETH_P_TEB)) {
3144                 struct ethhdr *eth;
3145
3146                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3147                         return 0;
3148
3149                 eth = (struct ethhdr *)skb->data;
3150                 type = eth->h_proto;
3151         }
3152
3153         return __vlan_get_protocol(skb, type, depth);
3154 }
3155
3156 /**
3157  *      skb_mac_gso_segment - mac layer segmentation handler.
3158  *      @skb: buffer to segment
3159  *      @features: features for the output path (see dev->features)
3160  */
3161 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3162                                     netdev_features_t features)
3163 {
3164         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3165         struct packet_offload *ptype;
3166         int vlan_depth = skb->mac_len;
3167         __be16 type = skb_network_protocol(skb, &vlan_depth);
3168
3169         if (unlikely(!type))
3170                 return ERR_PTR(-EINVAL);
3171
3172         __skb_pull(skb, vlan_depth);
3173
3174         rcu_read_lock();
3175         list_for_each_entry_rcu(ptype, &offload_base, list) {
3176                 if (ptype->type == type && ptype->callbacks.gso_segment) {
3177                         segs = ptype->callbacks.gso_segment(skb, features);
3178                         break;
3179                 }
3180         }
3181         rcu_read_unlock();
3182
3183         __skb_push(skb, skb->data - skb_mac_header(skb));
3184
3185         return segs;
3186 }
3187 EXPORT_SYMBOL(skb_mac_gso_segment);
3188
3189
3190 /* openvswitch calls this on rx path, so we need a different check.
3191  */
3192 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3193 {
3194         if (tx_path)
3195                 return skb->ip_summed != CHECKSUM_PARTIAL &&
3196                        skb->ip_summed != CHECKSUM_UNNECESSARY;
3197
3198         return skb->ip_summed == CHECKSUM_NONE;
3199 }
3200
3201 /**
3202  *      __skb_gso_segment - Perform segmentation on skb.
3203  *      @skb: buffer to segment
3204  *      @features: features for the output path (see dev->features)
3205  *      @tx_path: whether it is called in TX path
3206  *
3207  *      This function segments the given skb and returns a list of segments.
3208  *
3209  *      It may return NULL if the skb requires no segmentation.  This is
3210  *      only possible when GSO is used for verifying header integrity.
3211  *
3212  *      Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
3213  */
3214 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3215                                   netdev_features_t features, bool tx_path)
3216 {
3217         struct sk_buff *segs;
3218
3219         if (unlikely(skb_needs_check(skb, tx_path))) {
3220                 int err;
3221
3222                 /* We're going to init ->check field in TCP or UDP header */
3223                 err = skb_cow_head(skb, 0);
3224                 if (err < 0)
3225                         return ERR_PTR(err);
3226         }
3227
3228         /* Only report GSO partial support if it will enable us to
3229          * support segmentation on this frame without needing additional
3230          * work.
3231          */
3232         if (features & NETIF_F_GSO_PARTIAL) {
3233                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3234                 struct net_device *dev = skb->dev;
3235
3236                 partial_features |= dev->features & dev->gso_partial_features;
3237                 if (!skb_gso_ok(skb, features | partial_features))
3238                         features &= ~NETIF_F_GSO_PARTIAL;
3239         }
3240
3241         BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3242                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3243
3244         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3245         SKB_GSO_CB(skb)->encap_level = 0;
3246
3247         skb_reset_mac_header(skb);
3248         skb_reset_mac_len(skb);
3249
3250         segs = skb_mac_gso_segment(skb, features);
3251
3252         if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3253                 skb_warn_bad_offload(skb);
3254
3255         return segs;
3256 }
3257 EXPORT_SYMBOL(__skb_gso_segment);
3258
3259 /* Take action when hardware reception checksum errors are detected. */
3260 #ifdef CONFIG_BUG
3261 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3262 {
3263         if (net_ratelimit()) {
3264                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3265                 skb_dump(KERN_ERR, skb, true);
3266                 dump_stack();
3267         }
3268 }
3269 EXPORT_SYMBOL(netdev_rx_csum_fault);
3270 #endif
3271
3272 /* XXX: check that highmem exists at all on the given machine. */
3273 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3274 {
3275 #ifdef CONFIG_HIGHMEM
3276         int i;
3277
3278         if (!(dev->features & NETIF_F_HIGHDMA)) {
3279                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3280                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3281
3282                         if (PageHighMem(skb_frag_page(frag)))
3283                                 return 1;
3284                 }
3285         }
3286 #endif
3287         return 0;
3288 }
3289
3290 /* If MPLS offload request, verify we are testing hardware MPLS features
3291  * instead of standard features for the netdev.
3292  */
3293 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3294 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3295                                            netdev_features_t features,
3296                                            __be16 type)
3297 {
3298         if (eth_p_mpls(type))
3299                 features &= skb->dev->mpls_features;
3300
3301         return features;
3302 }
3303 #else
3304 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3305                                            netdev_features_t features,
3306                                            __be16 type)
3307 {
3308         return features;
3309 }
3310 #endif
3311
3312 static netdev_features_t harmonize_features(struct sk_buff *skb,
3313         netdev_features_t features)
3314 {
3315         int tmp;
3316         __be16 type;
3317
3318         type = skb_network_protocol(skb, &tmp);
3319         features = net_mpls_features(skb, features, type);
3320
3321         if (skb->ip_summed != CHECKSUM_NONE &&
3322             !can_checksum_protocol(features, type)) {
3323                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3324         }
3325         if (illegal_highdma(skb->dev, skb))
3326                 features &= ~NETIF_F_SG;
3327
3328         return features;
3329 }
3330
3331 netdev_features_t passthru_features_check(struct sk_buff *skb,
3332                                           struct net_device *dev,
3333                                           netdev_features_t features)
3334 {
3335         return features;
3336 }
3337 EXPORT_SYMBOL(passthru_features_check);
3338
3339 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3340                                              struct net_device *dev,
3341                                              netdev_features_t features)
3342 {
3343         return vlan_features_check(skb, features);
3344 }
3345
3346 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3347                                             struct net_device *dev,
3348                                             netdev_features_t features)
3349 {
3350         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3351
3352         if (gso_segs > dev->gso_max_segs)
3353                 return features & ~NETIF_F_GSO_MASK;
3354
3355         /* Support for GSO partial features requires software
3356          * intervention before we can actually process the packets
3357          * so we need to strip support for any partial features now
3358          * and we can pull them back in after we have partially
3359          * segmented the frame.
3360          */
3361         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3362                 features &= ~dev->gso_partial_features;
3363
3364         /* Make sure to clear the IPv4 ID mangling feature if the
3365          * IPv4 header has the potential to be fragmented.
3366          */
3367         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3368                 struct iphdr *iph = skb->encapsulation ?
3369                                     inner_ip_hdr(skb) : ip_hdr(skb);
3370
3371                 if (!(iph->frag_off & htons(IP_DF)))
3372                         features &= ~NETIF_F_TSO_MANGLEID;
3373         }
3374
3375         return features;
3376 }
3377
3378 netdev_features_t netif_skb_features(struct sk_buff *skb)
3379 {
3380         struct net_device *dev = skb->dev;
3381         netdev_features_t features = dev->features;
3382
3383         if (skb_is_gso(skb))
3384                 features = gso_features_check(skb, dev, features);
3385
3386         /* If encapsulation offload request, verify we are testing
3387          * hardware encapsulation features instead of standard
3388          * features for the netdev
3389          */
3390         if (skb->encapsulation)
3391                 features &= dev->hw_enc_features;
3392
3393         if (skb_vlan_tagged(skb))
3394                 features = netdev_intersect_features(features,
3395                                                      dev->vlan_features |
3396                                                      NETIF_F_HW_VLAN_CTAG_TX |
3397                                                      NETIF_F_HW_VLAN_STAG_TX);
3398
3399         if (dev->netdev_ops->ndo_features_check)
3400                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3401                                                                 features);
3402         else
3403                 features &= dflt_features_check(skb, dev, features);
3404
3405         return harmonize_features(skb, features);
3406 }
3407 EXPORT_SYMBOL(netif_skb_features);
3408
3409 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3410                     struct netdev_queue *txq, bool more)
3411 {
3412         unsigned int len;
3413         int rc;
3414
3415         if (dev_nit_active(dev))
3416                 dev_queue_xmit_nit(skb, dev);
3417
3418         len = skb->len;
3419         trace_net_dev_start_xmit(skb, dev);
3420         rc = netdev_start_xmit(skb, dev, txq, more);
3421         trace_net_dev_xmit(skb, rc, dev, len);
3422
3423         return rc;
3424 }
3425
3426 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3427                                     struct netdev_queue *txq, int *ret)
3428 {
3429         struct sk_buff *skb = first;
3430         int rc = NETDEV_TX_OK;
3431
3432         while (skb) {
3433                 struct sk_buff *next = skb->next;
3434
3435                 skb_mark_not_on_list(skb);
3436                 rc = xmit_one(skb, dev, txq, next != NULL);
3437                 if (unlikely(!dev_xmit_complete(rc))) {
3438                         skb->next = next;
3439                         goto out;
3440                 }
3441
3442                 skb = next;
3443                 if (netif_tx_queue_stopped(txq) && skb) {
3444                         rc = NETDEV_TX_BUSY;
3445                         break;
3446                 }
3447         }
3448
3449 out:
3450         *ret = rc;
3451         return skb;
3452 }
3453
3454 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3455                                           netdev_features_t features)
3456 {
3457         if (skb_vlan_tag_present(skb) &&
3458             !vlan_hw_offload_capable(features, skb->vlan_proto))
3459                 skb = __vlan_hwaccel_push_inside(skb);
3460         return skb;
3461 }
3462
3463 int skb_csum_hwoffload_help(struct sk_buff *skb,
3464                             const netdev_features_t features)
3465 {
3466         if (unlikely(skb->csum_not_inet))
3467                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3468                         skb_crc32c_csum_help(skb);
3469
3470         return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3471 }
3472 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3473
3474 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3475 {
3476         netdev_features_t features;
3477
3478         features = netif_skb_features(skb);
3479         skb = validate_xmit_vlan(skb, features);
3480         if (unlikely(!skb))
3481                 goto out_null;
3482
3483         skb = sk_validate_xmit_skb(skb, dev);
3484         if (unlikely(!skb))
3485                 goto out_null;
3486
3487         if (netif_needs_gso(skb, features)) {
3488                 struct sk_buff *segs;
3489
3490                 segs = skb_gso_segment(skb, features);
3491                 if (IS_ERR(segs)) {
3492                         goto out_kfree_skb;
3493                 } else if (segs) {
3494                         consume_skb(skb);
3495                         skb = segs;
3496                 }
3497         } else {
3498                 if (skb_needs_linearize(skb, features) &&
3499                     __skb_linearize(skb))
3500                         goto out_kfree_skb;
3501
3502                 /* If packet is not checksummed and device does not
3503                  * support checksumming for this protocol, complete
3504                  * checksumming here.
3505                  */
3506                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3507                         if (skb->encapsulation)
3508                                 skb_set_inner_transport_header(skb,
3509                                                                skb_checksum_start_offset(skb));
3510                         else
3511                                 skb_set_transport_header(skb,
3512                                                          skb_checksum_start_offset(skb));
3513                         if (skb_csum_hwoffload_help(skb, features))
3514                                 goto out_kfree_skb;
3515                 }
3516         }
3517
3518         skb = validate_xmit_xfrm(skb, features, again);
3519
3520         return skb;
3521
3522 out_kfree_skb:
3523         kfree_skb(skb);
3524 out_null:
3525         atomic_long_inc(&dev->tx_dropped);
3526         return NULL;
3527 }
3528
3529 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3530 {
3531         struct sk_buff *next, *head = NULL, *tail;
3532
3533         for (; skb != NULL; skb = next) {
3534                 next = skb->next;
3535                 skb_mark_not_on_list(skb);
3536
3537                 /* in case skb wont be segmented, point to itself */
3538                 skb->prev = skb;
3539
3540                 skb = validate_xmit_skb(skb, dev, again);
3541                 if (!skb)
3542                         continue;
3543
3544                 if (!head)
3545                         head = skb;
3546                 else
3547                         tail->next = skb;
3548                 /* If skb was segmented, skb->prev points to
3549                  * the last segment. If not, it still contains skb.
3550                  */
3551                 tail = skb->prev;
3552         }
3553         return head;
3554 }
3555 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3556
3557 static void qdisc_pkt_len_init(struct sk_buff *skb)
3558 {
3559         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3560
3561         qdisc_skb_cb(skb)->pkt_len = skb->len;
3562
3563         /* To get more precise estimation of bytes sent on wire,
3564          * we add to pkt_len the headers size of all segments
3565          */
3566         if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3567                 unsigned int hdr_len;
3568                 u16 gso_segs = shinfo->gso_segs;
3569
3570                 /* mac layer + network layer */
3571                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3572
3573                 /* + transport layer */
3574                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3575                         const struct tcphdr *th;
3576                         struct tcphdr _tcphdr;
3577
3578                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3579                                                 sizeof(_tcphdr), &_tcphdr);
3580                         if (likely(th))
3581                                 hdr_len += __tcp_hdrlen(th);
3582                 } else {
3583                         struct udphdr _udphdr;
3584
3585                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3586                                                sizeof(_udphdr), &_udphdr))
3587                                 hdr_len += sizeof(struct udphdr);
3588                 }
3589
3590                 if (shinfo->gso_type & SKB_GSO_DODGY)
3591                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3592                                                 shinfo->gso_size);
3593
3594                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3595         }
3596 }
3597
3598 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3599                                  struct net_device *dev,
3600                                  struct netdev_queue *txq)
3601 {
3602         spinlock_t *root_lock = qdisc_lock(q);
3603         struct sk_buff *to_free = NULL;
3604         bool contended;
3605         int rc;
3606
3607         qdisc_calculate_pkt_len(skb, q);
3608
3609         if (q->flags & TCQ_F_NOLOCK) {
3610                 if ((q->flags & TCQ_F_CAN_BYPASS) && READ_ONCE(q->empty) &&
3611                     qdisc_run_begin(q)) {
3612                         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
3613                                               &q->state))) {
3614                                 __qdisc_drop(skb, &to_free);
3615                                 rc = NET_XMIT_DROP;
3616                                 goto end_run;
3617                         }
3618                         qdisc_bstats_cpu_update(q, skb);
3619
3620                         rc = NET_XMIT_SUCCESS;
3621                         if (sch_direct_xmit(skb, q, dev, txq, NULL, true))
3622                                 __qdisc_run(q);
3623
3624 end_run:
3625                         qdisc_run_end(q);
3626                 } else {
3627                         rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3628                         qdisc_run(q);
3629                 }
3630
3631                 if (unlikely(to_free))
3632                         kfree_skb_list(to_free);
3633                 return rc;
3634         }
3635
3636         /*
3637          * Heuristic to force contended enqueues to serialize on a
3638          * separate lock before trying to get qdisc main lock.
3639          * This permits qdisc->running owner to get the lock more
3640          * often and dequeue packets faster.
3641          */
3642         contended = qdisc_is_running(q);
3643         if (unlikely(contended))
3644                 spin_lock(&q->busylock);
3645
3646         spin_lock(root_lock);
3647         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3648                 __qdisc_drop(skb, &to_free);
3649                 rc = NET_XMIT_DROP;
3650         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3651                    qdisc_run_begin(q)) {
3652                 /*
3653                  * This is a work-conserving queue; there are no old skbs
3654                  * waiting to be sent out; and the qdisc is not running -
3655                  * xmit the skb directly.
3656                  */
3657
3658                 qdisc_bstats_update(q, skb);
3659
3660                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3661                         if (unlikely(contended)) {
3662                                 spin_unlock(&q->busylock);
3663                                 contended = false;
3664                         }
3665                         __qdisc_run(q);
3666                 }
3667
3668                 qdisc_run_end(q);
3669                 rc = NET_XMIT_SUCCESS;
3670         } else {
3671                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3672                 if (qdisc_run_begin(q)) {
3673                         if (unlikely(contended)) {
3674                                 spin_unlock(&q->busylock);
3675                                 contended = false;
3676                         }
3677                         __qdisc_run(q);
3678                         qdisc_run_end(q);
3679                 }
3680         }
3681         spin_unlock(root_lock);
3682         if (unlikely(to_free))
3683                 kfree_skb_list(to_free);
3684         if (unlikely(contended))
3685                 spin_unlock(&q->busylock);
3686         return rc;
3687 }
3688
3689 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3690 static void skb_update_prio(struct sk_buff *skb)
3691 {
3692         const struct netprio_map *map;
3693         const struct sock *sk;
3694         unsigned int prioidx;
3695
3696         if (skb->priority)
3697                 return;
3698         map = rcu_dereference_bh(skb->dev->priomap);
3699         if (!map)
3700                 return;
3701         sk = skb_to_full_sk(skb);
3702         if (!sk)
3703                 return;
3704
3705         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3706
3707         if (prioidx < map->priomap_len)
3708                 skb->priority = map->priomap[prioidx];
3709 }
3710 #else
3711 #define skb_update_prio(skb)
3712 #endif
3713
3714 /**
3715  *      dev_loopback_xmit - loop back @skb
3716  *      @net: network namespace this loopback is happening in
3717  *      @sk:  sk needed to be a netfilter okfn
3718  *      @skb: buffer to transmit
3719  */
3720 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3721 {
3722         skb_reset_mac_header(skb);
3723         __skb_pull(skb, skb_network_offset(skb));
3724         skb->pkt_type = PACKET_LOOPBACK;
3725         skb->ip_summed = CHECKSUM_UNNECESSARY;
3726         WARN_ON(!skb_dst(skb));
3727         skb_dst_force(skb);
3728         netif_rx_ni(skb);
3729         return 0;
3730 }
3731 EXPORT_SYMBOL(dev_loopback_xmit);
3732
3733 #ifdef CONFIG_NET_EGRESS
3734 static struct sk_buff *
3735 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3736 {
3737         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3738         struct tcf_result cl_res;
3739
3740         if (!miniq)
3741                 return skb;
3742
3743         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3744         mini_qdisc_bstats_cpu_update(miniq, skb);
3745
3746         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3747         case TC_ACT_OK:
3748         case TC_ACT_RECLASSIFY:
3749                 skb->tc_index = TC_H_MIN(cl_res.classid);
3750                 break;
3751         case TC_ACT_SHOT:
3752                 mini_qdisc_qstats_cpu_drop(miniq);
3753                 *ret = NET_XMIT_DROP;
3754                 kfree_skb(skb);
3755                 return NULL;
3756         case TC_ACT_STOLEN:
3757         case TC_ACT_QUEUED:
3758         case TC_ACT_TRAP:
3759                 *ret = NET_XMIT_SUCCESS;
3760                 consume_skb(skb);
3761                 return NULL;
3762         case TC_ACT_REDIRECT:
3763                 /* No need to push/pop skb's mac_header here on egress! */
3764                 skb_do_redirect(skb);
3765                 *ret = NET_XMIT_SUCCESS;
3766                 return NULL;
3767         default:
3768                 break;
3769         }
3770
3771         return skb;
3772 }
3773 #endif /* CONFIG_NET_EGRESS */
3774
3775 #ifdef CONFIG_XPS
3776 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3777                                struct xps_dev_maps *dev_maps, unsigned int tci)
3778 {
3779         struct xps_map *map;
3780         int queue_index = -1;
3781
3782         if (dev->num_tc) {
3783                 tci *= dev->num_tc;
3784                 tci += netdev_get_prio_tc_map(dev, skb->priority);
3785         }
3786
3787         map = rcu_dereference(dev_maps->attr_map[tci]);
3788         if (map) {
3789                 if (map->len == 1)
3790                         queue_index = map->queues[0];
3791                 else
3792                         queue_index = map->queues[reciprocal_scale(
3793                                                 skb_get_hash(skb), map->len)];
3794                 if (unlikely(queue_index >= dev->real_num_tx_queues))
3795                         queue_index = -1;
3796         }
3797         return queue_index;
3798 }
3799 #endif
3800
3801 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3802                          struct sk_buff *skb)
3803 {
3804 #ifdef CONFIG_XPS
3805         struct xps_dev_maps *dev_maps;
3806         struct sock *sk = skb->sk;
3807         int queue_index = -1;
3808
3809         if (!static_key_false(&xps_needed))
3810                 return -1;
3811
3812         rcu_read_lock();
3813         if (!static_key_false(&xps_rxqs_needed))
3814                 goto get_cpus_map;
3815
3816         dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3817         if (dev_maps) {
3818                 int tci = sk_rx_queue_get(sk);
3819
3820                 if (tci >= 0 && tci < dev->num_rx_queues)
3821                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3822                                                           tci);
3823         }
3824
3825 get_cpus_map:
3826         if (queue_index < 0) {
3827                 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3828                 if (dev_maps) {
3829                         unsigned int tci = skb->sender_cpu - 1;
3830
3831                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3832                                                           tci);
3833                 }
3834         }
3835         rcu_read_unlock();
3836
3837         return queue_index;
3838 #else
3839         return -1;
3840 #endif
3841 }
3842
3843 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3844                      struct net_device *sb_dev)
3845 {
3846         return 0;
3847 }
3848 EXPORT_SYMBOL(dev_pick_tx_zero);
3849
3850 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3851                        struct net_device *sb_dev)
3852 {
3853         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3854 }
3855 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3856
3857 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3858                      struct net_device *sb_dev)
3859 {
3860         struct sock *sk = skb->sk;
3861         int queue_index = sk_tx_queue_get(sk);
3862
3863         sb_dev = sb_dev ? : dev;
3864
3865         if (queue_index < 0 || skb->ooo_okay ||
3866             queue_index >= dev->real_num_tx_queues) {
3867                 int new_index = get_xps_queue(dev, sb_dev, skb);
3868
3869                 if (new_index < 0)
3870                         new_index = skb_tx_hash(dev, sb_dev, skb);
3871
3872                 if (queue_index != new_index && sk &&
3873                     sk_fullsock(sk) &&
3874                     rcu_access_pointer(sk->sk_dst_cache))
3875                         sk_tx_queue_set(sk, new_index);
3876
3877                 queue_index = new_index;
3878         }
3879
3880         return queue_index;
3881 }
3882 EXPORT_SYMBOL(netdev_pick_tx);
3883
3884 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
3885                                          struct sk_buff *skb,
3886                                          struct net_device *sb_dev)
3887 {
3888         int queue_index = 0;
3889
3890 #ifdef CONFIG_XPS
3891         u32 sender_cpu = skb->sender_cpu - 1;
3892
3893         if (sender_cpu >= (u32)NR_CPUS)
3894                 skb->sender_cpu = raw_smp_processor_id() + 1;
3895 #endif
3896
3897         if (dev->real_num_tx_queues != 1) {
3898                 const struct net_device_ops *ops = dev->netdev_ops;
3899
3900                 if (ops->ndo_select_queue)
3901                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
3902                 else
3903                         queue_index = netdev_pick_tx(dev, skb, sb_dev);
3904
3905                 queue_index = netdev_cap_txqueue(dev, queue_index);
3906         }
3907
3908         skb_set_queue_mapping(skb, queue_index);
3909         return netdev_get_tx_queue(dev, queue_index);
3910 }
3911
3912 /**
3913  *      __dev_queue_xmit - transmit a buffer
3914  *      @skb: buffer to transmit
3915  *      @sb_dev: suboordinate device used for L2 forwarding offload
3916  *
3917  *      Queue a buffer for transmission to a network device. The caller must
3918  *      have set the device and priority and built the buffer before calling
3919  *      this function. The function can be called from an interrupt.
3920  *
3921  *      A negative errno code is returned on a failure. A success does not
3922  *      guarantee the frame will be transmitted as it may be dropped due
3923  *      to congestion or traffic shaping.
3924  *
3925  * -----------------------------------------------------------------------------------
3926  *      I notice this method can also return errors from the queue disciplines,
3927  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3928  *      be positive.
3929  *
3930  *      Regardless of the return value, the skb is consumed, so it is currently
3931  *      difficult to retry a send to this method.  (You can bump the ref count
3932  *      before sending to hold a reference for retry if you are careful.)
3933  *
3934  *      When calling this method, interrupts MUST be enabled.  This is because
3935  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3936  *          --BLG
3937  */
3938 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
3939 {
3940         struct net_device *dev = skb->dev;
3941         struct netdev_queue *txq;
3942         struct Qdisc *q;
3943         int rc = -ENOMEM;
3944         bool again = false;
3945
3946         skb_reset_mac_header(skb);
3947
3948         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3949                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3950
3951         /* Disable soft irqs for various locks below. Also
3952          * stops preemption for RCU.
3953          */
3954         rcu_read_lock_bh();
3955
3956         skb_update_prio(skb);
3957
3958         qdisc_pkt_len_init(skb);
3959 #ifdef CONFIG_NET_CLS_ACT
3960         skb->tc_at_ingress = 0;
3961 # ifdef CONFIG_NET_EGRESS
3962         if (static_branch_unlikely(&egress_needed_key)) {
3963                 skb = sch_handle_egress(skb, &rc, dev);
3964                 if (!skb)
3965                         goto out;
3966         }
3967 # endif
3968 #endif
3969         /* If device/qdisc don't need skb->dst, release it right now while
3970          * its hot in this cpu cache.
3971          */
3972         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3973                 skb_dst_drop(skb);
3974         else
3975                 skb_dst_force(skb);
3976
3977         txq = netdev_core_pick_tx(dev, skb, sb_dev);
3978         q = rcu_dereference_bh(txq->qdisc);
3979
3980         trace_net_dev_queue(skb);
3981         if (q->enqueue) {
3982                 rc = __dev_xmit_skb(skb, q, dev, txq);
3983                 goto out;
3984         }
3985
3986         /* The device has no queue. Common case for software devices:
3987          * loopback, all the sorts of tunnels...
3988
3989          * Really, it is unlikely that netif_tx_lock protection is necessary
3990          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3991          * counters.)
3992          * However, it is possible, that they rely on protection
3993          * made by us here.
3994
3995          * Check this and shot the lock. It is not prone from deadlocks.
3996          *Either shot noqueue qdisc, it is even simpler 8)
3997          */
3998         if (dev->flags & IFF_UP) {
3999                 int cpu = smp_processor_id(); /* ok because BHs are off */
4000
4001                 if (txq->xmit_lock_owner != cpu) {
4002                         if (dev_xmit_recursion())
4003                                 goto recursion_alert;
4004
4005                         skb = validate_xmit_skb(skb, dev, &again);
4006                         if (!skb)
4007                                 goto out;
4008
4009                         HARD_TX_LOCK(dev, txq, cpu);
4010
4011                         if (!netif_xmit_stopped(txq)) {
4012                                 dev_xmit_recursion_inc();
4013                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4014                                 dev_xmit_recursion_dec();
4015                                 if (dev_xmit_complete(rc)) {
4016                                         HARD_TX_UNLOCK(dev, txq);
4017                                         goto out;
4018                                 }
4019                         }
4020                         HARD_TX_UNLOCK(dev, txq);
4021                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4022                                              dev->name);
4023                 } else {
4024                         /* Recursion is detected! It is possible,
4025                          * unfortunately
4026                          */
4027 recursion_alert:
4028                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4029                                              dev->name);
4030                 }
4031         }
4032
4033         rc = -ENETDOWN;
4034         rcu_read_unlock_bh();
4035
4036         atomic_long_inc(&dev->tx_dropped);
4037         kfree_skb_list(skb);
4038         return rc;
4039 out:
4040         rcu_read_unlock_bh();
4041         return rc;
4042 }
4043
4044 int dev_queue_xmit(struct sk_buff *skb)
4045 {
4046         return __dev_queue_xmit(skb, NULL);
4047 }
4048 EXPORT_SYMBOL(dev_queue_xmit);
4049
4050 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4051 {
4052         return __dev_queue_xmit(skb, sb_dev);
4053 }
4054 EXPORT_SYMBOL(dev_queue_xmit_accel);
4055
4056 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4057 {
4058         struct net_device *dev = skb->dev;
4059         struct sk_buff *orig_skb = skb;
4060         struct netdev_queue *txq;
4061         int ret = NETDEV_TX_BUSY;
4062         bool again = false;
4063
4064         if (unlikely(!netif_running(dev) ||
4065                      !netif_carrier_ok(dev)))
4066                 goto drop;
4067
4068         skb = validate_xmit_skb_list(skb, dev, &again);
4069         if (skb != orig_skb)
4070                 goto drop;
4071
4072         skb_set_queue_mapping(skb, queue_id);
4073         txq = skb_get_tx_queue(dev, skb);
4074
4075         local_bh_disable();
4076
4077         HARD_TX_LOCK(dev, txq, smp_processor_id());
4078         if (!netif_xmit_frozen_or_drv_stopped(txq))
4079                 ret = netdev_start_xmit(skb, dev, txq, false);
4080         HARD_TX_UNLOCK(dev, txq);
4081
4082         local_bh_enable();
4083
4084         if (!dev_xmit_complete(ret))
4085                 kfree_skb(skb);
4086
4087         return ret;
4088 drop:
4089         atomic_long_inc(&dev->tx_dropped);
4090         kfree_skb_list(skb);
4091         return NET_XMIT_DROP;
4092 }
4093 EXPORT_SYMBOL(dev_direct_xmit);
4094
4095 /*************************************************************************
4096  *                      Receiver routines
4097  *************************************************************************/
4098
4099 int netdev_max_backlog __read_mostly = 1000;
4100 EXPORT_SYMBOL(netdev_max_backlog);
4101
4102 int netdev_tstamp_prequeue __read_mostly = 1;
4103 int netdev_budget __read_mostly = 300;
4104 unsigned int __read_mostly netdev_budget_usecs = 2000;
4105 int weight_p __read_mostly = 64;           /* old backlog weight */
4106 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4107 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4108 int dev_rx_weight __read_mostly = 64;
4109 int dev_tx_weight __read_mostly = 64;
4110 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4111 int gro_normal_batch __read_mostly = 8;
4112
4113 /* Called with irq disabled */
4114 static inline void ____napi_schedule(struct softnet_data *sd,
4115                                      struct napi_struct *napi)
4116 {
4117         list_add_tail(&napi->poll_list, &sd->poll_list);
4118         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4119 }
4120
4121 #ifdef CONFIG_RPS
4122
4123 /* One global table that all flow-based protocols share. */
4124 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4125 EXPORT_SYMBOL(rps_sock_flow_table);
4126 u32 rps_cpu_mask __read_mostly;
4127 EXPORT_SYMBOL(rps_cpu_mask);
4128
4129 struct static_key_false rps_needed __read_mostly;
4130 EXPORT_SYMBOL(rps_needed);
4131 struct static_key_false rfs_needed __read_mostly;
4132 EXPORT_SYMBOL(rfs_needed);
4133
4134 static struct rps_dev_flow *
4135 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4136             struct rps_dev_flow *rflow, u16 next_cpu)
4137 {
4138         if (next_cpu < nr_cpu_ids) {
4139 #ifdef CONFIG_RFS_ACCEL
4140                 struct netdev_rx_queue *rxqueue;
4141                 struct rps_dev_flow_table *flow_table;
4142                 struct rps_dev_flow *old_rflow;
4143                 u32 flow_id;
4144                 u16 rxq_index;
4145                 int rc;
4146
4147                 /* Should we steer this flow to a different hardware queue? */
4148                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4149                     !(dev->features & NETIF_F_NTUPLE))
4150                         goto out;
4151                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4152                 if (rxq_index == skb_get_rx_queue(skb))
4153                         goto out;
4154
4155                 rxqueue = dev->_rx + rxq_index;
4156                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4157                 if (!flow_table)
4158                         goto out;
4159                 flow_id = skb_get_hash(skb) & flow_table->mask;
4160                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4161                                                         rxq_index, flow_id);
4162                 if (rc < 0)
4163                         goto out;
4164                 old_rflow = rflow;
4165                 rflow = &flow_table->flows[flow_id];
4166                 rflow->filter = rc;
4167                 if (old_rflow->filter == rflow->filter)
4168                         old_rflow->filter = RPS_NO_FILTER;
4169         out:
4170 #endif
4171                 rflow->last_qtail =
4172                         per_cpu(softnet_data, next_cpu).input_queue_head;
4173         }
4174
4175         rflow->cpu = next_cpu;
4176         return rflow;
4177 }
4178
4179 /*
4180  * get_rps_cpu is called from netif_receive_skb and returns the target
4181  * CPU from the RPS map of the receiving queue for a given skb.
4182  * rcu_read_lock must be held on entry.
4183  */
4184 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4185                        struct rps_dev_flow **rflowp)
4186 {
4187         const struct rps_sock_flow_table *sock_flow_table;
4188         struct netdev_rx_queue *rxqueue = dev->_rx;
4189         struct rps_dev_flow_table *flow_table;
4190         struct rps_map *map;
4191         int cpu = -1;
4192         u32 tcpu;
4193         u32 hash;
4194
4195         if (skb_rx_queue_recorded(skb)) {
4196                 u16 index = skb_get_rx_queue(skb);
4197
4198                 if (unlikely(index >= dev->real_num_rx_queues)) {
4199                         WARN_ONCE(dev->real_num_rx_queues > 1,
4200                                   "%s received packet on queue %u, but number "
4201                                   "of RX queues is %u\n",
4202                                   dev->name, index, dev->real_num_rx_queues);
4203                         goto done;
4204                 }
4205                 rxqueue += index;
4206         }
4207
4208         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4209
4210         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4211         map = rcu_dereference(rxqueue->rps_map);
4212         if (!flow_table && !map)
4213                 goto done;
4214
4215         skb_reset_network_header(skb);
4216         hash = skb_get_hash(skb);
4217         if (!hash)
4218                 goto done;
4219
4220         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4221         if (flow_table && sock_flow_table) {
4222                 struct rps_dev_flow *rflow;
4223                 u32 next_cpu;
4224                 u32 ident;
4225
4226                 /* First check into global flow table if there is a match */
4227                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4228                 if ((ident ^ hash) & ~rps_cpu_mask)
4229                         goto try_rps;
4230
4231                 next_cpu = ident & rps_cpu_mask;
4232
4233                 /* OK, now we know there is a match,
4234                  * we can look at the local (per receive queue) flow table
4235                  */
4236                 rflow = &flow_table->flows[hash & flow_table->mask];
4237                 tcpu = rflow->cpu;
4238
4239                 /*
4240                  * If the desired CPU (where last recvmsg was done) is
4241                  * different from current CPU (one in the rx-queue flow
4242                  * table entry), switch if one of the following holds:
4243                  *   - Current CPU is unset (>= nr_cpu_ids).
4244                  *   - Current CPU is offline.
4245                  *   - The current CPU's queue tail has advanced beyond the
4246                  *     last packet that was enqueued using this table entry.
4247                  *     This guarantees that all previous packets for the flow
4248                  *     have been dequeued, thus preserving in order delivery.
4249                  */
4250                 if (unlikely(tcpu != next_cpu) &&
4251                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4252                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4253                       rflow->last_qtail)) >= 0)) {
4254                         tcpu = next_cpu;
4255                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4256                 }
4257
4258                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4259                         *rflowp = rflow;
4260                         cpu = tcpu;
4261                         goto done;
4262                 }
4263         }
4264
4265 try_rps:
4266
4267         if (map) {
4268                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4269                 if (cpu_online(tcpu)) {
4270                         cpu = tcpu;
4271                         goto done;
4272                 }
4273         }
4274
4275 done:
4276         return cpu;
4277 }
4278
4279 #ifdef CONFIG_RFS_ACCEL
4280
4281 /**
4282  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4283  * @dev: Device on which the filter was set
4284  * @rxq_index: RX queue index
4285  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4286  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4287  *
4288  * Drivers that implement ndo_rx_flow_steer() should periodically call
4289  * this function for each installed filter and remove the filters for
4290  * which it returns %true.
4291  */
4292 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4293                          u32 flow_id, u16 filter_id)
4294 {
4295         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4296         struct rps_dev_flow_table *flow_table;
4297         struct rps_dev_flow *rflow;
4298         bool expire = true;
4299         unsigned int cpu;
4300
4301         rcu_read_lock();
4302         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4303         if (flow_table && flow_id <= flow_table->mask) {
4304                 rflow = &flow_table->flows[flow_id];
4305                 cpu = READ_ONCE(rflow->cpu);
4306                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4307                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4308                            rflow->last_qtail) <
4309                      (int)(10 * flow_table->mask)))
4310                         expire = false;
4311         }
4312         rcu_read_unlock();
4313         return expire;
4314 }
4315 EXPORT_SYMBOL(rps_may_expire_flow);
4316
4317 #endif /* CONFIG_RFS_ACCEL */
4318
4319 /* Called from hardirq (IPI) context */
4320 static void rps_trigger_softirq(void *data)
4321 {
4322         struct softnet_data *sd = data;
4323
4324         ____napi_schedule(sd, &sd->backlog);
4325         sd->received_rps++;
4326 }
4327
4328 #endif /* CONFIG_RPS */
4329
4330 /*
4331  * Check if this softnet_data structure is another cpu one
4332  * If yes, queue it to our IPI list and return 1
4333  * If no, return 0
4334  */
4335 static int rps_ipi_queued(struct softnet_data *sd)
4336 {
4337 #ifdef CONFIG_RPS
4338         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4339
4340         if (sd != mysd) {
4341                 sd->rps_ipi_next = mysd->rps_ipi_list;
4342                 mysd->rps_ipi_list = sd;
4343
4344                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4345                 return 1;
4346         }
4347 #endif /* CONFIG_RPS */
4348         return 0;
4349 }
4350
4351 #ifdef CONFIG_NET_FLOW_LIMIT
4352 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4353 #endif
4354
4355 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4356 {
4357 #ifdef CONFIG_NET_FLOW_LIMIT
4358         struct sd_flow_limit *fl;
4359         struct softnet_data *sd;
4360         unsigned int old_flow, new_flow;
4361
4362         if (qlen < (netdev_max_backlog >> 1))
4363                 return false;
4364
4365         sd = this_cpu_ptr(&softnet_data);
4366
4367         rcu_read_lock();
4368         fl = rcu_dereference(sd->flow_limit);
4369         if (fl) {
4370                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4371                 old_flow = fl->history[fl->history_head];
4372                 fl->history[fl->history_head] = new_flow;
4373
4374                 fl->history_head++;
4375                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4376
4377                 if (likely(fl->buckets[old_flow]))
4378                         fl->buckets[old_flow]--;
4379
4380                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4381                         fl->count++;
4382                         rcu_read_unlock();
4383                         return true;
4384                 }
4385         }
4386         rcu_read_unlock();
4387 #endif
4388         return false;
4389 }
4390
4391 /*
4392  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4393  * queue (may be a remote CPU queue).
4394  */
4395 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4396                               unsigned int *qtail)
4397 {
4398         struct softnet_data *sd;
4399         unsigned long flags;
4400         unsigned int qlen;
4401
4402         sd = &per_cpu(softnet_data, cpu);
4403
4404         local_irq_save(flags);
4405
4406         rps_lock(sd);
4407         if (!netif_running(skb->dev))
4408                 goto drop;
4409         qlen = skb_queue_len(&sd->input_pkt_queue);
4410         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4411                 if (qlen) {
4412 enqueue:
4413                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4414                         input_queue_tail_incr_save(sd, qtail);
4415                         rps_unlock(sd);
4416                         local_irq_restore(flags);
4417                         return NET_RX_SUCCESS;
4418                 }
4419
4420                 /* Schedule NAPI for backlog device
4421                  * We can use non atomic operation since we own the queue lock
4422                  */
4423                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4424                         if (!rps_ipi_queued(sd))
4425                                 ____napi_schedule(sd, &sd->backlog);
4426                 }
4427                 goto enqueue;
4428         }
4429
4430 drop:
4431         sd->dropped++;
4432         rps_unlock(sd);
4433
4434         local_irq_restore(flags);
4435
4436         atomic_long_inc(&skb->dev->rx_dropped);
4437         kfree_skb(skb);
4438         return NET_RX_DROP;
4439 }
4440
4441 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4442 {
4443         struct net_device *dev = skb->dev;
4444         struct netdev_rx_queue *rxqueue;
4445
4446         rxqueue = dev->_rx;
4447
4448         if (skb_rx_queue_recorded(skb)) {
4449                 u16 index = skb_get_rx_queue(skb);
4450
4451                 if (unlikely(index >= dev->real_num_rx_queues)) {
4452                         WARN_ONCE(dev->real_num_rx_queues > 1,
4453                                   "%s received packet on queue %u, but number "
4454                                   "of RX queues is %u\n",
4455                                   dev->name, index, dev->real_num_rx_queues);
4456
4457                         return rxqueue; /* Return first rxqueue */
4458                 }
4459                 rxqueue += index;
4460         }
4461         return rxqueue;
4462 }
4463
4464 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4465                                      struct xdp_buff *xdp,
4466                                      struct bpf_prog *xdp_prog)
4467 {
4468         struct netdev_rx_queue *rxqueue;
4469         void *orig_data, *orig_data_end;
4470         u32 metalen, act = XDP_DROP;
4471         __be16 orig_eth_type;
4472         struct ethhdr *eth;
4473         bool orig_bcast;
4474         int hlen, off;
4475         u32 mac_len;
4476
4477         /* Reinjected packets coming from act_mirred or similar should
4478          * not get XDP generic processing.
4479          */
4480         if (skb_cloned(skb) || skb_is_tc_redirected(skb))
4481                 return XDP_PASS;
4482
4483         /* XDP packets must be linear and must have sufficient headroom
4484          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4485          * native XDP provides, thus we need to do it here as well.
4486          */
4487         if (skb_is_nonlinear(skb) ||
4488             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4489                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4490                 int troom = skb->tail + skb->data_len - skb->end;
4491
4492                 /* In case we have to go down the path and also linearize,
4493                  * then lets do the pskb_expand_head() work just once here.
4494                  */
4495                 if (pskb_expand_head(skb,
4496                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4497                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4498                         goto do_drop;
4499                 if (skb_linearize(skb))
4500                         goto do_drop;
4501         }
4502
4503         /* The XDP program wants to see the packet starting at the MAC
4504          * header.
4505          */
4506         mac_len = skb->data - skb_mac_header(skb);
4507         hlen = skb_headlen(skb) + mac_len;
4508         xdp->data = skb->data - mac_len;
4509         xdp->data_meta = xdp->data;
4510         xdp->data_end = xdp->data + hlen;
4511         xdp->data_hard_start = skb->data - skb_headroom(skb);
4512         orig_data_end = xdp->data_end;
4513         orig_data = xdp->data;
4514         eth = (struct ethhdr *)xdp->data;
4515         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4516         orig_eth_type = eth->h_proto;
4517
4518         rxqueue = netif_get_rxqueue(skb);
4519         xdp->rxq = &rxqueue->xdp_rxq;
4520
4521         act = bpf_prog_run_xdp(xdp_prog, xdp);
4522
4523         /* check if bpf_xdp_adjust_head was used */
4524         off = xdp->data - orig_data;
4525         if (off) {
4526                 if (off > 0)
4527                         __skb_pull(skb, off);
4528                 else if (off < 0)
4529                         __skb_push(skb, -off);
4530
4531                 skb->mac_header += off;
4532                 skb_reset_network_header(skb);
4533         }
4534
4535         /* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4536          * pckt.
4537          */
4538         off = orig_data_end - xdp->data_end;
4539         if (off != 0) {
4540                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4541                 skb->len -= off;
4542
4543         }
4544
4545         /* check if XDP changed eth hdr such SKB needs update */
4546         eth = (struct ethhdr *)xdp->data;
4547         if ((orig_eth_type != eth->h_proto) ||
4548             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4549                 __skb_push(skb, ETH_HLEN);
4550                 skb->protocol = eth_type_trans(skb, skb->dev);
4551         }
4552
4553         switch (act) {
4554         case XDP_REDIRECT:
4555         case XDP_TX:
4556                 __skb_push(skb, mac_len);
4557                 break;
4558         case XDP_PASS:
4559                 metalen = xdp->data - xdp->data_meta;
4560                 if (metalen)
4561                         skb_metadata_set(skb, metalen);
4562                 break;
4563         default:
4564                 bpf_warn_invalid_xdp_action(act);
4565                 /* fall through */
4566         case XDP_ABORTED:
4567                 trace_xdp_exception(skb->dev, xdp_prog, act);
4568                 /* fall through */
4569         case XDP_DROP:
4570         do_drop:
4571                 kfree_skb(skb);
4572                 break;
4573         }
4574
4575         return act;
4576 }
4577
4578 /* When doing generic XDP we have to bypass the qdisc layer and the
4579  * network taps in order to match in-driver-XDP behavior.
4580  */
4581 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4582 {
4583         struct net_device *dev = skb->dev;
4584         struct netdev_queue *txq;
4585         bool free_skb = true;
4586         int cpu, rc;
4587
4588         txq = netdev_core_pick_tx(dev, skb, NULL);
4589         cpu = smp_processor_id();
4590         HARD_TX_LOCK(dev, txq, cpu);
4591         if (!netif_xmit_stopped(txq)) {
4592                 rc = netdev_start_xmit(skb, dev, txq, 0);
4593                 if (dev_xmit_complete(rc))
4594                         free_skb = false;
4595         }
4596         HARD_TX_UNLOCK(dev, txq);
4597         if (free_skb) {
4598                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4599                 kfree_skb(skb);
4600         }
4601 }
4602 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4603
4604 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4605
4606 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4607 {
4608         if (xdp_prog) {
4609                 struct xdp_buff xdp;
4610                 u32 act;
4611                 int err;
4612
4613                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4614                 if (act != XDP_PASS) {
4615                         switch (act) {
4616                         case XDP_REDIRECT:
4617                                 err = xdp_do_generic_redirect(skb->dev, skb,
4618                                                               &xdp, xdp_prog);
4619                                 if (err)
4620                                         goto out_redir;
4621                                 break;
4622                         case XDP_TX:
4623                                 generic_xdp_tx(skb, xdp_prog);
4624                                 break;
4625                         }
4626                         return XDP_DROP;
4627                 }
4628         }
4629         return XDP_PASS;
4630 out_redir:
4631         kfree_skb(skb);
4632         return XDP_DROP;
4633 }
4634 EXPORT_SYMBOL_GPL(do_xdp_generic);
4635
4636 static int netif_rx_internal(struct sk_buff *skb)
4637 {
4638         int ret;
4639
4640         net_timestamp_check(netdev_tstamp_prequeue, skb);
4641
4642         trace_netif_rx(skb);
4643
4644 #ifdef CONFIG_RPS
4645         if (static_branch_unlikely(&rps_needed)) {
4646                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4647                 int cpu;
4648
4649                 preempt_disable();
4650                 rcu_read_lock();
4651
4652                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4653                 if (cpu < 0)
4654                         cpu = smp_processor_id();
4655
4656                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4657
4658                 rcu_read_unlock();
4659                 preempt_enable();
4660         } else
4661 #endif
4662         {
4663                 unsigned int qtail;
4664
4665                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4666                 put_cpu();
4667         }
4668         return ret;
4669 }
4670
4671 /**
4672  *      netif_rx        -       post buffer to the network code
4673  *      @skb: buffer to post
4674  *
4675  *      This function receives a packet from a device driver and queues it for
4676  *      the upper (protocol) levels to process.  It always succeeds. The buffer
4677  *      may be dropped during processing for congestion control or by the
4678  *      protocol layers.
4679  *
4680  *      return values:
4681  *      NET_RX_SUCCESS  (no congestion)
4682  *      NET_RX_DROP     (packet was dropped)
4683  *
4684  */
4685
4686 int netif_rx(struct sk_buff *skb)
4687 {
4688         int ret;
4689
4690         trace_netif_rx_entry(skb);
4691
4692         ret = netif_rx_internal(skb);
4693         trace_netif_rx_exit(ret);
4694
4695         return ret;
4696 }
4697 EXPORT_SYMBOL(netif_rx);
4698
4699 int netif_rx_ni(struct sk_buff *skb)
4700 {
4701         int err;
4702
4703         trace_netif_rx_ni_entry(skb);
4704
4705         preempt_disable();
4706         err = netif_rx_internal(skb);
4707         if (local_softirq_pending())
4708                 do_softirq();
4709         preempt_enable();
4710         trace_netif_rx_ni_exit(err);
4711
4712         return err;
4713 }
4714 EXPORT_SYMBOL(netif_rx_ni);
4715
4716 static __latent_entropy void net_tx_action(struct softirq_action *h)
4717 {
4718         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4719
4720         if (sd->completion_queue) {
4721                 struct sk_buff *clist;
4722
4723                 local_irq_disable();
4724                 clist = sd->completion_queue;
4725                 sd->completion_queue = NULL;
4726                 local_irq_enable();
4727
4728                 while (clist) {
4729                         struct sk_buff *skb = clist;
4730
4731                         clist = clist->next;
4732
4733                         WARN_ON(refcount_read(&skb->users));
4734                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4735                                 trace_consume_skb(skb);
4736                         else
4737                                 trace_kfree_skb(skb, net_tx_action);
4738
4739                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4740                                 __kfree_skb(skb);
4741                         else
4742                                 __kfree_skb_defer(skb);
4743                 }
4744
4745                 __kfree_skb_flush();
4746         }
4747
4748         if (sd->output_queue) {
4749                 struct Qdisc *head;
4750
4751                 local_irq_disable();
4752                 head = sd->output_queue;
4753                 sd->output_queue = NULL;
4754                 sd->output_queue_tailp = &sd->output_queue;
4755                 local_irq_enable();
4756
4757                 while (head) {
4758                         struct Qdisc *q = head;
4759                         spinlock_t *root_lock = NULL;
4760
4761                         head = head->next_sched;
4762
4763                         if (!(q->flags & TCQ_F_NOLOCK)) {
4764                                 root_lock = qdisc_lock(q);
4765                                 spin_lock(root_lock);
4766                         }
4767                         /* We need to make sure head->next_sched is read
4768                          * before clearing __QDISC_STATE_SCHED
4769                          */
4770                         smp_mb__before_atomic();
4771                         clear_bit(__QDISC_STATE_SCHED, &q->state);
4772                         qdisc_run(q);
4773                         if (root_lock)
4774                                 spin_unlock(root_lock);
4775                 }
4776         }
4777
4778         xfrm_dev_backlog(sd);
4779 }
4780
4781 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4782 /* This hook is defined here for ATM LANE */
4783 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4784                              unsigned char *addr) __read_mostly;
4785 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4786 #endif
4787
4788 static inline struct sk_buff *
4789 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4790                    struct net_device *orig_dev)
4791 {
4792 #ifdef CONFIG_NET_CLS_ACT
4793         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4794         struct tcf_result cl_res;
4795
4796         /* If there's at least one ingress present somewhere (so
4797          * we get here via enabled static key), remaining devices
4798          * that are not configured with an ingress qdisc will bail
4799          * out here.
4800          */
4801         if (!miniq)
4802                 return skb;
4803
4804         if (*pt_prev) {
4805                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4806                 *pt_prev = NULL;
4807         }
4808
4809         qdisc_skb_cb(skb)->pkt_len = skb->len;
4810         skb->tc_at_ingress = 1;
4811         mini_qdisc_bstats_cpu_update(miniq, skb);
4812
4813         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4814         case TC_ACT_OK:
4815         case TC_ACT_RECLASSIFY:
4816                 skb->tc_index = TC_H_MIN(cl_res.classid);
4817                 break;
4818         case TC_ACT_SHOT:
4819                 mini_qdisc_qstats_cpu_drop(miniq);
4820                 kfree_skb(skb);
4821                 return NULL;
4822         case TC_ACT_STOLEN:
4823         case TC_ACT_QUEUED:
4824         case TC_ACT_TRAP:
4825                 consume_skb(skb);
4826                 return NULL;
4827         case TC_ACT_REDIRECT:
4828                 /* skb_mac_header check was done by cls/act_bpf, so
4829                  * we can safely push the L2 header back before
4830                  * redirecting to another netdev
4831                  */
4832                 __skb_push(skb, skb->mac_len);
4833                 skb_do_redirect(skb);
4834                 return NULL;
4835         case TC_ACT_CONSUMED:
4836                 return NULL;
4837         default:
4838                 break;
4839         }
4840 #endif /* CONFIG_NET_CLS_ACT */
4841         return skb;
4842 }
4843
4844 /**
4845  *      netdev_is_rx_handler_busy - check if receive handler is registered
4846  *      @dev: device to check
4847  *
4848  *      Check if a receive handler is already registered for a given device.
4849  *      Return true if there one.
4850  *
4851  *      The caller must hold the rtnl_mutex.
4852  */
4853 bool netdev_is_rx_handler_busy(struct net_device *dev)
4854 {
4855         ASSERT_RTNL();
4856         return dev && rtnl_dereference(dev->rx_handler);
4857 }
4858 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4859
4860 /**
4861  *      netdev_rx_handler_register - register receive handler
4862  *      @dev: device to register a handler for
4863  *      @rx_handler: receive handler to register
4864  *      @rx_handler_data: data pointer that is used by rx handler
4865  *
4866  *      Register a receive handler for a device. This handler will then be
4867  *      called from __netif_receive_skb. A negative errno code is returned
4868  *      on a failure.
4869  *
4870  *      The caller must hold the rtnl_mutex.
4871  *
4872  *      For a general description of rx_handler, see enum rx_handler_result.
4873  */
4874 int netdev_rx_handler_register(struct net_device *dev,
4875                                rx_handler_func_t *rx_handler,
4876                                void *rx_handler_data)
4877 {
4878         if (netdev_is_rx_handler_busy(dev))
4879                 return -EBUSY;
4880
4881         if (dev->priv_flags & IFF_NO_RX_HANDLER)
4882                 return -EINVAL;
4883
4884         /* Note: rx_handler_data must be set before rx_handler */
4885         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4886         rcu_assign_pointer(dev->rx_handler, rx_handler);
4887
4888         return 0;
4889 }
4890 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4891
4892 /**
4893  *      netdev_rx_handler_unregister - unregister receive handler
4894  *      @dev: device to unregister a handler from
4895  *
4896  *      Unregister a receive handler from a device.
4897  *
4898  *      The caller must hold the rtnl_mutex.
4899  */
4900 void netdev_rx_handler_unregister(struct net_device *dev)
4901 {
4902
4903         ASSERT_RTNL();
4904         RCU_INIT_POINTER(dev->rx_handler, NULL);
4905         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4906          * section has a guarantee to see a non NULL rx_handler_data
4907          * as well.
4908          */
4909         synchronize_net();
4910         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4911 }
4912 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4913
4914 /*
4915  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4916  * the special handling of PFMEMALLOC skbs.
4917  */
4918 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4919 {
4920         switch (skb->protocol) {
4921         case htons(ETH_P_ARP):
4922         case htons(ETH_P_IP):
4923         case htons(ETH_P_IPV6):
4924         case htons(ETH_P_8021Q):
4925         case htons(ETH_P_8021AD):
4926                 return true;
4927         default:
4928                 return false;
4929         }
4930 }
4931
4932 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4933                              int *ret, struct net_device *orig_dev)
4934 {
4935 #ifdef CONFIG_NETFILTER_INGRESS
4936         if (nf_hook_ingress_active(skb)) {
4937                 int ingress_retval;
4938
4939                 if (*pt_prev) {
4940                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
4941                         *pt_prev = NULL;
4942                 }
4943
4944                 rcu_read_lock();
4945                 ingress_retval = nf_hook_ingress(skb);
4946                 rcu_read_unlock();
4947                 return ingress_retval;
4948         }
4949 #endif /* CONFIG_NETFILTER_INGRESS */
4950         return 0;
4951 }
4952
4953 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
4954                                     struct packet_type **ppt_prev)
4955 {
4956         struct packet_type *ptype, *pt_prev;
4957         rx_handler_func_t *rx_handler;
4958         struct net_device *orig_dev;
4959         bool deliver_exact = false;
4960         int ret = NET_RX_DROP;
4961         __be16 type;
4962
4963         net_timestamp_check(!netdev_tstamp_prequeue, skb);
4964
4965         trace_netif_receive_skb(skb);
4966
4967         orig_dev = skb->dev;
4968
4969         skb_reset_network_header(skb);
4970         if (!skb_transport_header_was_set(skb))
4971                 skb_reset_transport_header(skb);
4972         skb_reset_mac_len(skb);
4973
4974         pt_prev = NULL;
4975
4976 another_round:
4977         skb->skb_iif = skb->dev->ifindex;
4978
4979         __this_cpu_inc(softnet_data.processed);
4980
4981         if (static_branch_unlikely(&generic_xdp_needed_key)) {
4982                 int ret2;
4983
4984                 preempt_disable();
4985                 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4986                 preempt_enable();
4987
4988                 if (ret2 != XDP_PASS)
4989                         return NET_RX_DROP;
4990                 skb_reset_mac_len(skb);
4991         }
4992
4993         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4994             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4995                 skb = skb_vlan_untag(skb);
4996                 if (unlikely(!skb))
4997                         goto out;
4998         }
4999
5000         if (skb_skip_tc_classify(skb))
5001                 goto skip_classify;
5002
5003         if (pfmemalloc)
5004                 goto skip_taps;
5005
5006         list_for_each_entry_rcu(ptype, &ptype_all, list) {
5007                 if (pt_prev)
5008                         ret = deliver_skb(skb, pt_prev, orig_dev);
5009                 pt_prev = ptype;
5010         }
5011
5012         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5013                 if (pt_prev)
5014                         ret = deliver_skb(skb, pt_prev, orig_dev);
5015                 pt_prev = ptype;
5016         }
5017
5018 skip_taps:
5019 #ifdef CONFIG_NET_INGRESS
5020         if (static_branch_unlikely(&ingress_needed_key)) {
5021                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
5022                 if (!skb)
5023                         goto out;
5024
5025                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5026                         goto out;
5027         }
5028 #endif
5029         skb_reset_tc(skb);
5030 skip_classify:
5031         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5032                 goto drop;
5033
5034         if (skb_vlan_tag_present(skb)) {
5035                 if (pt_prev) {
5036                         ret = deliver_skb(skb, pt_prev, orig_dev);
5037                         pt_prev = NULL;
5038                 }
5039                 if (vlan_do_receive(&skb))
5040                         goto another_round;
5041                 else if (unlikely(!skb))
5042                         goto out;
5043         }
5044
5045         rx_handler = rcu_dereference(skb->dev->rx_handler);
5046         if (rx_handler) {
5047                 if (pt_prev) {
5048                         ret = deliver_skb(skb, pt_prev, orig_dev);
5049                         pt_prev = NULL;
5050                 }
5051                 switch (rx_handler(&skb)) {
5052                 case RX_HANDLER_CONSUMED:
5053                         ret = NET_RX_SUCCESS;
5054                         goto out;
5055                 case RX_HANDLER_ANOTHER:
5056                         goto another_round;
5057                 case RX_HANDLER_EXACT:
5058                         deliver_exact = true;
5059                 case RX_HANDLER_PASS:
5060                         break;
5061                 default:
5062                         BUG();
5063                 }
5064         }
5065
5066         if (unlikely(skb_vlan_tag_present(skb))) {
5067 check_vlan_id:
5068                 if (skb_vlan_tag_get_id(skb)) {
5069                         /* Vlan id is non 0 and vlan_do_receive() above couldn't
5070                          * find vlan device.
5071                          */
5072                         skb->pkt_type = PACKET_OTHERHOST;
5073                 } else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5074                            skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5075                         /* Outer header is 802.1P with vlan 0, inner header is
5076                          * 802.1Q or 802.1AD and vlan_do_receive() above could
5077                          * not find vlan dev for vlan id 0.
5078                          */
5079                         __vlan_hwaccel_clear_tag(skb);
5080                         skb = skb_vlan_untag(skb);
5081                         if (unlikely(!skb))
5082                                 goto out;
5083                         if (vlan_do_receive(&skb))
5084                                 /* After stripping off 802.1P header with vlan 0
5085                                  * vlan dev is found for inner header.
5086                                  */
5087                                 goto another_round;
5088                         else if (unlikely(!skb))
5089                                 goto out;
5090                         else
5091                                 /* We have stripped outer 802.1P vlan 0 header.
5092                                  * But could not find vlan dev.
5093                                  * check again for vlan id to set OTHERHOST.
5094                                  */
5095                                 goto check_vlan_id;
5096                 }
5097                 /* Note: we might in the future use prio bits
5098                  * and set skb->priority like in vlan_do_receive()
5099                  * For the time being, just ignore Priority Code Point
5100                  */
5101                 __vlan_hwaccel_clear_tag(skb);
5102         }
5103
5104         type = skb->protocol;
5105
5106         /* deliver only exact match when indicated */
5107         if (likely(!deliver_exact)) {
5108                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5109                                        &ptype_base[ntohs(type) &
5110                                                    PTYPE_HASH_MASK]);
5111         }
5112
5113         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5114                                &orig_dev->ptype_specific);
5115
5116         if (unlikely(skb->dev != orig_dev)) {
5117                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5118                                        &skb->dev->ptype_specific);
5119         }
5120
5121         if (pt_prev) {
5122                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5123                         goto drop;
5124                 *ppt_prev = pt_prev;
5125         } else {
5126 drop:
5127                 if (!deliver_exact)
5128                         atomic_long_inc(&skb->dev->rx_dropped);
5129                 else
5130                         atomic_long_inc(&skb->dev->rx_nohandler);
5131                 kfree_skb(skb);
5132                 /* Jamal, now you will not able to escape explaining
5133                  * me how you were going to use this. :-)
5134                  */
5135                 ret = NET_RX_DROP;
5136         }
5137
5138 out:
5139         return ret;
5140 }
5141
5142 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5143 {
5144         struct net_device *orig_dev = skb->dev;
5145         struct packet_type *pt_prev = NULL;
5146         int ret;
5147
5148         ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5149         if (pt_prev)
5150                 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5151                                          skb->dev, pt_prev, orig_dev);
5152         return ret;
5153 }
5154
5155 /**
5156  *      netif_receive_skb_core - special purpose version of netif_receive_skb
5157  *      @skb: buffer to process
5158  *
5159  *      More direct receive version of netif_receive_skb().  It should
5160  *      only be used by callers that have a need to skip RPS and Generic XDP.
5161  *      Caller must also take care of handling if (page_is_)pfmemalloc.
5162  *
5163  *      This function may only be called from softirq context and interrupts
5164  *      should be enabled.
5165  *
5166  *      Return values (usually ignored):
5167  *      NET_RX_SUCCESS: no congestion
5168  *      NET_RX_DROP: packet was dropped
5169  */
5170 int netif_receive_skb_core(struct sk_buff *skb)
5171 {
5172         int ret;
5173
5174         rcu_read_lock();
5175         ret = __netif_receive_skb_one_core(skb, false);
5176         rcu_read_unlock();
5177
5178         return ret;
5179 }
5180 EXPORT_SYMBOL(netif_receive_skb_core);
5181
5182 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5183                                                   struct packet_type *pt_prev,
5184                                                   struct net_device *orig_dev)
5185 {
5186         struct sk_buff *skb, *next;
5187
5188         if (!pt_prev)
5189                 return;
5190         if (list_empty(head))
5191                 return;
5192         if (pt_prev->list_func != NULL)
5193                 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5194                                    ip_list_rcv, head, pt_prev, orig_dev);
5195         else
5196                 list_for_each_entry_safe(skb, next, head, list) {
5197                         skb_list_del_init(skb);
5198                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5199                 }
5200 }
5201
5202 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5203 {
5204         /* Fast-path assumptions:
5205          * - There is no RX handler.
5206          * - Only one packet_type matches.
5207          * If either of these fails, we will end up doing some per-packet
5208          * processing in-line, then handling the 'last ptype' for the whole
5209          * sublist.  This can't cause out-of-order delivery to any single ptype,
5210          * because the 'last ptype' must be constant across the sublist, and all
5211          * other ptypes are handled per-packet.
5212          */
5213         /* Current (common) ptype of sublist */
5214         struct packet_type *pt_curr = NULL;
5215         /* Current (common) orig_dev of sublist */
5216         struct net_device *od_curr = NULL;
5217         struct list_head sublist;
5218         struct sk_buff *skb, *next;
5219
5220         INIT_LIST_HEAD(&sublist);
5221         list_for_each_entry_safe(skb, next, head, list) {
5222                 struct net_device *orig_dev = skb->dev;
5223                 struct packet_type *pt_prev = NULL;
5224
5225                 skb_list_del_init(skb);
5226                 __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5227                 if (!pt_prev)
5228                         continue;
5229                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5230                         /* dispatch old sublist */
5231                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5232                         /* start new sublist */
5233                         INIT_LIST_HEAD(&sublist);
5234                         pt_curr = pt_prev;
5235                         od_curr = orig_dev;
5236                 }
5237                 list_add_tail(&skb->list, &sublist);
5238         }
5239
5240         /* dispatch final sublist */
5241         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5242 }
5243
5244 static int __netif_receive_skb(struct sk_buff *skb)
5245 {
5246         int ret;
5247
5248         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5249                 unsigned int noreclaim_flag;
5250
5251                 /*
5252                  * PFMEMALLOC skbs are special, they should
5253                  * - be delivered to SOCK_MEMALLOC sockets only
5254                  * - stay away from userspace
5255                  * - have bounded memory usage
5256                  *
5257                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5258                  * context down to all allocation sites.
5259                  */
5260                 noreclaim_flag = memalloc_noreclaim_save();
5261                 ret = __netif_receive_skb_one_core(skb, true);
5262                 memalloc_noreclaim_restore(noreclaim_flag);
5263         } else
5264                 ret = __netif_receive_skb_one_core(skb, false);
5265
5266         return ret;
5267 }
5268
5269 static void __netif_receive_skb_list(struct list_head *head)
5270 {
5271         unsigned long noreclaim_flag = 0;
5272         struct sk_buff *skb, *next;
5273         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5274
5275         list_for_each_entry_safe(skb, next, head, list) {
5276                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5277                         struct list_head sublist;
5278
5279                         /* Handle the previous sublist */
5280                         list_cut_before(&sublist, head, &skb->list);
5281                         if (!list_empty(&sublist))
5282                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5283                         pfmemalloc = !pfmemalloc;
5284                         /* See comments in __netif_receive_skb */
5285                         if (pfmemalloc)
5286                                 noreclaim_flag = memalloc_noreclaim_save();
5287                         else
5288                                 memalloc_noreclaim_restore(noreclaim_flag);
5289                 }
5290         }
5291         /* Handle the remaining sublist */
5292         if (!list_empty(head))
5293                 __netif_receive_skb_list_core(head, pfmemalloc);
5294         /* Restore pflags */
5295         if (pfmemalloc)
5296                 memalloc_noreclaim_restore(noreclaim_flag);
5297 }
5298
5299 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5300 {
5301         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5302         struct bpf_prog *new = xdp->prog;
5303         int ret = 0;
5304
5305         switch (xdp->command) {
5306         case XDP_SETUP_PROG:
5307                 rcu_assign_pointer(dev->xdp_prog, new);
5308                 if (old)
5309                         bpf_prog_put(old);
5310
5311                 if (old && !new) {
5312                         static_branch_dec(&generic_xdp_needed_key);
5313                 } else if (new && !old) {
5314                         static_branch_inc(&generic_xdp_needed_key);
5315                         dev_disable_lro(dev);
5316                         dev_disable_gro_hw(dev);
5317                 }
5318                 break;
5319
5320         case XDP_QUERY_PROG:
5321                 xdp->prog_id = old ? old->aux->id : 0;
5322                 break;
5323
5324         default:
5325                 ret = -EINVAL;
5326                 break;
5327         }
5328
5329         return ret;
5330 }
5331
5332 static int netif_receive_skb_internal(struct sk_buff *skb)
5333 {
5334         int ret;
5335
5336         net_timestamp_check(netdev_tstamp_prequeue, skb);
5337
5338         if (skb_defer_rx_timestamp(skb))
5339                 return NET_RX_SUCCESS;
5340
5341         rcu_read_lock();
5342 #ifdef CONFIG_RPS
5343         if (static_branch_unlikely(&rps_needed)) {
5344                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5345                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5346
5347                 if (cpu >= 0) {
5348                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5349                         rcu_read_unlock();
5350                         return ret;
5351                 }
5352         }
5353 #endif
5354         ret = __netif_receive_skb(skb);
5355         rcu_read_unlock();
5356         return ret;
5357 }
5358
5359 static void netif_receive_skb_list_internal(struct list_head *head)
5360 {
5361         struct sk_buff *skb, *next;
5362         struct list_head sublist;
5363
5364         INIT_LIST_HEAD(&sublist);
5365         list_for_each_entry_safe(skb, next, head, list) {
5366                 net_timestamp_check(netdev_tstamp_prequeue, skb);
5367                 skb_list_del_init(skb);
5368                 if (!skb_defer_rx_timestamp(skb))
5369                         list_add_tail(&skb->list, &sublist);
5370         }
5371         list_splice_init(&sublist, head);
5372
5373         rcu_read_lock();
5374 #ifdef CONFIG_RPS
5375         if (static_branch_unlikely(&rps_needed)) {
5376                 list_for_each_entry_safe(skb, next, head, list) {
5377                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5378                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5379
5380                         if (cpu >= 0) {
5381                                 /* Will be handled, remove from list */
5382                                 skb_list_del_init(skb);
5383                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5384                         }
5385                 }
5386         }
5387 #endif
5388         __netif_receive_skb_list(head);
5389         rcu_read_unlock();
5390 }
5391
5392 /**
5393  *      netif_receive_skb - process receive buffer from network
5394  *      @skb: buffer to process
5395  *
5396  *      netif_receive_skb() is the main receive data processing function.
5397  *      It always succeeds. The buffer may be dropped during processing
5398  *      for congestion control or by the protocol layers.
5399  *
5400  *      This function may only be called from softirq context and interrupts
5401  *      should be enabled.
5402  *
5403  *      Return values (usually ignored):
5404  *      NET_RX_SUCCESS: no congestion
5405  *      NET_RX_DROP: packet was dropped
5406  */
5407 int netif_receive_skb(struct sk_buff *skb)
5408 {
5409         int ret;
5410
5411         trace_netif_receive_skb_entry(skb);
5412
5413         ret = netif_receive_skb_internal(skb);
5414         trace_netif_receive_skb_exit(ret);
5415
5416         return ret;
5417 }
5418 EXPORT_SYMBOL(netif_receive_skb);
5419
5420 /**
5421  *      netif_receive_skb_list - process many receive buffers from network
5422  *      @head: list of skbs to process.
5423  *
5424  *      Since return value of netif_receive_skb() is normally ignored, and
5425  *      wouldn't be meaningful for a list, this function returns void.
5426  *
5427  *      This function may only be called from softirq context and interrupts
5428  *      should be enabled.
5429  */
5430 void netif_receive_skb_list(struct list_head *head)
5431 {
5432         struct sk_buff *skb;
5433
5434         if (list_empty(head))
5435                 return;
5436         if (trace_netif_receive_skb_list_entry_enabled()) {
5437                 list_for_each_entry(skb, head, list)
5438                         trace_netif_receive_skb_list_entry(skb);
5439         }
5440         netif_receive_skb_list_internal(head);
5441         trace_netif_receive_skb_list_exit(0);
5442 }
5443 EXPORT_SYMBOL(netif_receive_skb_list);
5444
5445 DEFINE_PER_CPU(struct work_struct, flush_works);
5446
5447 /* Network device is going away, flush any packets still pending */
5448 static void flush_backlog(struct work_struct *work)
5449 {
5450         struct sk_buff *skb, *tmp;
5451         struct softnet_data *sd;
5452
5453         local_bh_disable();
5454         sd = this_cpu_ptr(&softnet_data);
5455
5456         local_irq_disable();
5457         rps_lock(sd);
5458         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5459                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5460                         __skb_unlink(skb, &sd->input_pkt_queue);
5461                         kfree_skb(skb);
5462                         input_queue_head_incr(sd);
5463                 }
5464         }
5465         rps_unlock(sd);
5466         local_irq_enable();
5467
5468         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5469                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5470                         __skb_unlink(skb, &sd->process_queue);
5471                         kfree_skb(skb);
5472                         input_queue_head_incr(sd);
5473                 }
5474         }
5475         local_bh_enable();
5476 }
5477
5478 static void flush_all_backlogs(void)
5479 {
5480         unsigned int cpu;
5481
5482         get_online_cpus();
5483
5484         for_each_online_cpu(cpu)
5485                 queue_work_on(cpu, system_highpri_wq,
5486                               per_cpu_ptr(&flush_works, cpu));
5487
5488         for_each_online_cpu(cpu)
5489                 flush_work(per_cpu_ptr(&flush_works, cpu));
5490
5491         put_online_cpus();
5492 }
5493
5494 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5495 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
5496 static int napi_gro_complete(struct sk_buff *skb)
5497 {
5498         struct packet_offload *ptype;
5499         __be16 type = skb->protocol;
5500         struct list_head *head = &offload_base;
5501         int err = -ENOENT;
5502
5503         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5504
5505         if (NAPI_GRO_CB(skb)->count == 1) {
5506                 skb_shinfo(skb)->gso_size = 0;
5507                 goto out;
5508         }
5509
5510         rcu_read_lock();
5511         list_for_each_entry_rcu(ptype, head, list) {
5512                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5513                         continue;
5514
5515                 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5516                                          ipv6_gro_complete, inet_gro_complete,
5517                                          skb, 0);
5518                 break;
5519         }
5520         rcu_read_unlock();
5521
5522         if (err) {
5523                 WARN_ON(&ptype->list == head);
5524                 kfree_skb(skb);
5525                 return NET_RX_SUCCESS;
5526         }
5527
5528 out:
5529         return netif_receive_skb_internal(skb);
5530 }
5531
5532 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5533                                    bool flush_old)
5534 {
5535         struct list_head *head = &napi->gro_hash[index].list;
5536         struct sk_buff *skb, *p;
5537
5538         list_for_each_entry_safe_reverse(skb, p, head, list) {
5539                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5540                         return;
5541                 skb_list_del_init(skb);
5542                 napi_gro_complete(skb);
5543                 napi->gro_hash[index].count--;
5544         }
5545
5546         if (!napi->gro_hash[index].count)
5547                 __clear_bit(index, &napi->gro_bitmask);
5548 }
5549
5550 /* napi->gro_hash[].list contains packets ordered by age.
5551  * youngest packets at the head of it.
5552  * Complete skbs in reverse order to reduce latencies.
5553  */
5554 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5555 {
5556         unsigned long bitmask = napi->gro_bitmask;
5557         unsigned int i, base = ~0U;
5558
5559         while ((i = ffs(bitmask)) != 0) {
5560                 bitmask >>= i;
5561                 base += i;
5562                 __napi_gro_flush_chain(napi, base, flush_old);
5563         }
5564 }
5565 EXPORT_SYMBOL(napi_gro_flush);
5566
5567 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5568                                           struct sk_buff *skb)
5569 {
5570         unsigned int maclen = skb->dev->hard_header_len;
5571         u32 hash = skb_get_hash_raw(skb);
5572         struct list_head *head;
5573         struct sk_buff *p;
5574
5575         head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5576         list_for_each_entry(p, head, list) {
5577                 unsigned long diffs;
5578
5579                 NAPI_GRO_CB(p)->flush = 0;
5580
5581                 if (hash != skb_get_hash_raw(p)) {
5582                         NAPI_GRO_CB(p)->same_flow = 0;
5583                         continue;
5584                 }
5585
5586                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5587                 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5588                 if (skb_vlan_tag_present(p))
5589                         diffs |= p->vlan_tci ^ skb->vlan_tci;
5590                 diffs |= skb_metadata_dst_cmp(p, skb);
5591                 diffs |= skb_metadata_differs(p, skb);
5592                 if (maclen == ETH_HLEN)
5593                         diffs |= compare_ether_header(skb_mac_header(p),
5594                                                       skb_mac_header(skb));
5595                 else if (!diffs)
5596                         diffs = memcmp(skb_mac_header(p),
5597                                        skb_mac_header(skb),
5598                                        maclen);
5599                 NAPI_GRO_CB(p)->same_flow = !diffs;
5600         }
5601
5602         return head;
5603 }
5604
5605 static void skb_gro_reset_offset(struct sk_buff *skb)
5606 {
5607         const struct skb_shared_info *pinfo = skb_shinfo(skb);
5608         const skb_frag_t *frag0 = &pinfo->frags[0];
5609
5610         NAPI_GRO_CB(skb)->data_offset = 0;
5611         NAPI_GRO_CB(skb)->frag0 = NULL;
5612         NAPI_GRO_CB(skb)->frag0_len = 0;
5613
5614         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
5615             pinfo->nr_frags &&
5616             !PageHighMem(skb_frag_page(frag0))) {
5617                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5618                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5619                                                     skb_frag_size(frag0),
5620                                                     skb->end - skb->tail);
5621         }
5622 }
5623
5624 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5625 {
5626         struct skb_shared_info *pinfo = skb_shinfo(skb);
5627
5628         BUG_ON(skb->end - skb->tail < grow);
5629
5630         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5631
5632         skb->data_len -= grow;
5633         skb->tail += grow;
5634
5635         skb_frag_off_add(&pinfo->frags[0], grow);
5636         skb_frag_size_sub(&pinfo->frags[0], grow);
5637
5638         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5639                 skb_frag_unref(skb, 0);
5640                 memmove(pinfo->frags, pinfo->frags + 1,
5641                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5642         }
5643 }
5644
5645 static void gro_flush_oldest(struct list_head *head)
5646 {
5647         struct sk_buff *oldest;
5648
5649         oldest = list_last_entry(head, struct sk_buff, list);
5650
5651         /* We are called with head length >= MAX_GRO_SKBS, so this is
5652          * impossible.
5653          */
5654         if (WARN_ON_ONCE(!oldest))
5655                 return;
5656
5657         /* Do not adjust napi->gro_hash[].count, caller is adding a new
5658          * SKB to the chain.
5659          */
5660         skb_list_del_init(oldest);
5661         napi_gro_complete(oldest);
5662 }
5663
5664 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5665                                                            struct sk_buff *));
5666 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5667                                                            struct sk_buff *));
5668 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5669 {
5670         u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5671         struct list_head *head = &offload_base;
5672         struct packet_offload *ptype;
5673         __be16 type = skb->protocol;
5674         struct list_head *gro_head;
5675         struct sk_buff *pp = NULL;
5676         enum gro_result ret;
5677         int same_flow;
5678         int grow;
5679
5680         if (netif_elide_gro(skb->dev))
5681                 goto normal;
5682
5683         gro_head = gro_list_prepare(napi, skb);
5684
5685         rcu_read_lock();
5686         list_for_each_entry_rcu(ptype, head, list) {
5687                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5688                         continue;
5689
5690                 skb_set_network_header(skb, skb_gro_offset(skb));
5691                 skb_reset_mac_len(skb);
5692                 NAPI_GRO_CB(skb)->same_flow = 0;
5693                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5694                 NAPI_GRO_CB(skb)->free = 0;
5695                 NAPI_GRO_CB(skb)->encap_mark = 0;
5696                 NAPI_GRO_CB(skb)->recursion_counter = 0;
5697                 NAPI_GRO_CB(skb)->is_fou = 0;
5698                 NAPI_GRO_CB(skb)->is_atomic = 1;
5699                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5700
5701                 /* Setup for GRO checksum validation */
5702                 switch (skb->ip_summed) {
5703                 case CHECKSUM_COMPLETE:
5704                         NAPI_GRO_CB(skb)->csum = skb->csum;
5705                         NAPI_GRO_CB(skb)->csum_valid = 1;
5706                         NAPI_GRO_CB(skb)->csum_cnt = 0;
5707                         break;
5708                 case CHECKSUM_UNNECESSARY:
5709                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5710                         NAPI_GRO_CB(skb)->csum_valid = 0;
5711                         break;
5712                 default:
5713                         NAPI_GRO_CB(skb)->csum_cnt = 0;
5714                         NAPI_GRO_CB(skb)->csum_valid = 0;
5715                 }
5716
5717                 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5718                                         ipv6_gro_receive, inet_gro_receive,
5719                                         gro_head, skb);
5720                 break;
5721         }
5722         rcu_read_unlock();
5723
5724         if (&ptype->list == head)
5725                 goto normal;
5726
5727         if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5728                 ret = GRO_CONSUMED;
5729                 goto ok;
5730         }
5731
5732         same_flow = NAPI_GRO_CB(skb)->same_flow;
5733         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5734
5735         if (pp) {
5736                 skb_list_del_init(pp);
5737                 napi_gro_complete(pp);
5738                 napi->gro_hash[hash].count--;
5739         }
5740
5741         if (same_flow)
5742                 goto ok;
5743
5744         if (NAPI_GRO_CB(skb)->flush)
5745                 goto normal;
5746
5747         if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5748                 gro_flush_oldest(gro_head);
5749         } else {
5750                 napi->gro_hash[hash].count++;
5751         }
5752         NAPI_GRO_CB(skb)->count = 1;
5753         NAPI_GRO_CB(skb)->age = jiffies;
5754         NAPI_GRO_CB(skb)->last = skb;
5755         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5756         list_add(&skb->list, gro_head);
5757         ret = GRO_HELD;
5758
5759 pull:
5760         grow = skb_gro_offset(skb) - skb_headlen(skb);
5761         if (grow > 0)
5762                 gro_pull_from_frag0(skb, grow);
5763 ok:
5764         if (napi->gro_hash[hash].count) {
5765                 if (!test_bit(hash, &napi->gro_bitmask))
5766                         __set_bit(hash, &napi->gro_bitmask);
5767         } else if (test_bit(hash, &napi->gro_bitmask)) {
5768                 __clear_bit(hash, &napi->gro_bitmask);
5769         }
5770
5771         return ret;
5772
5773 normal:
5774         ret = GRO_NORMAL;
5775         goto pull;
5776 }
5777
5778 struct packet_offload *gro_find_receive_by_type(__be16 type)
5779 {
5780         struct list_head *offload_head = &offload_base;
5781         struct packet_offload *ptype;
5782
5783         list_for_each_entry_rcu(ptype, offload_head, list) {
5784                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5785                         continue;
5786                 return ptype;
5787         }
5788         return NULL;
5789 }
5790 EXPORT_SYMBOL(gro_find_receive_by_type);
5791
5792 struct packet_offload *gro_find_complete_by_type(__be16 type)
5793 {
5794         struct list_head *offload_head = &offload_base;
5795         struct packet_offload *ptype;
5796
5797         list_for_each_entry_rcu(ptype, offload_head, list) {
5798                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5799                         continue;
5800                 return ptype;
5801         }
5802         return NULL;
5803 }
5804 EXPORT_SYMBOL(gro_find_complete_by_type);
5805
5806 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5807 static void gro_normal_list(struct napi_struct *napi)
5808 {
5809         if (!napi->rx_count)
5810                 return;
5811         netif_receive_skb_list_internal(&napi->rx_list);
5812         INIT_LIST_HEAD(&napi->rx_list);
5813         napi->rx_count = 0;
5814 }
5815
5816 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5817  * pass the whole batch up to the stack.
5818  */
5819 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb)
5820 {
5821         list_add_tail(&skb->list, &napi->rx_list);
5822         if (++napi->rx_count >= gro_normal_batch)
5823                 gro_normal_list(napi);
5824 }
5825
5826 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5827 {
5828         skb_dst_drop(skb);
5829         skb_ext_put(skb);
5830         kmem_cache_free(skbuff_head_cache, skb);
5831 }
5832
5833 static gro_result_t napi_skb_finish(struct napi_struct *napi,
5834                                     struct sk_buff *skb,
5835                                     gro_result_t ret)
5836 {
5837         switch (ret) {
5838         case GRO_NORMAL:
5839                 gro_normal_one(napi, skb);
5840                 break;
5841
5842         case GRO_DROP:
5843                 kfree_skb(skb);
5844                 break;
5845
5846         case GRO_MERGED_FREE:
5847                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5848                         napi_skb_free_stolen_head(skb);
5849                 else
5850                         __kfree_skb(skb);
5851                 break;
5852
5853         case GRO_HELD:
5854         case GRO_MERGED:
5855         case GRO_CONSUMED:
5856                 break;
5857         }
5858
5859         return ret;
5860 }
5861
5862 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5863 {
5864         gro_result_t ret;
5865
5866         skb_mark_napi_id(skb, napi);
5867         trace_napi_gro_receive_entry(skb);
5868
5869         skb_gro_reset_offset(skb);
5870
5871         ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
5872         trace_napi_gro_receive_exit(ret);
5873
5874         return ret;
5875 }
5876 EXPORT_SYMBOL(napi_gro_receive);
5877
5878 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5879 {
5880         if (unlikely(skb->pfmemalloc)) {
5881                 consume_skb(skb);
5882                 return;
5883         }
5884         __skb_pull(skb, skb_headlen(skb));
5885         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5886         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5887         __vlan_hwaccel_clear_tag(skb);
5888         skb->dev = napi->dev;
5889         skb->skb_iif = 0;
5890
5891         /* eth_type_trans() assumes pkt_type is PACKET_HOST */
5892         skb->pkt_type = PACKET_HOST;
5893
5894         skb->encapsulation = 0;
5895         skb_shinfo(skb)->gso_type = 0;
5896         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5897         skb_ext_reset(skb);
5898
5899         napi->skb = skb;
5900 }
5901
5902 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5903 {
5904         struct sk_buff *skb = napi->skb;
5905
5906         if (!skb) {
5907                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5908                 if (skb) {
5909                         napi->skb = skb;
5910                         skb_mark_napi_id(skb, napi);
5911                 }
5912         }
5913         return skb;
5914 }
5915 EXPORT_SYMBOL(napi_get_frags);
5916
5917 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5918                                       struct sk_buff *skb,
5919                                       gro_result_t ret)
5920 {
5921         switch (ret) {
5922         case GRO_NORMAL:
5923         case GRO_HELD:
5924                 __skb_push(skb, ETH_HLEN);
5925                 skb->protocol = eth_type_trans(skb, skb->dev);
5926                 if (ret == GRO_NORMAL)
5927                         gro_normal_one(napi, skb);
5928                 break;
5929
5930         case GRO_DROP:
5931                 napi_reuse_skb(napi, skb);
5932                 break;
5933
5934         case GRO_MERGED_FREE:
5935                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5936                         napi_skb_free_stolen_head(skb);
5937                 else
5938                         napi_reuse_skb(napi, skb);
5939                 break;
5940
5941         case GRO_MERGED:
5942         case GRO_CONSUMED:
5943                 break;
5944         }
5945
5946         return ret;
5947 }
5948
5949 /* Upper GRO stack assumes network header starts at gro_offset=0
5950  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5951  * We copy ethernet header into skb->data to have a common layout.
5952  */
5953 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5954 {
5955         struct sk_buff *skb = napi->skb;
5956         const struct ethhdr *eth;
5957         unsigned int hlen = sizeof(*eth);
5958
5959         napi->skb = NULL;
5960
5961         skb_reset_mac_header(skb);
5962         skb_gro_reset_offset(skb);
5963
5964         if (unlikely(skb_gro_header_hard(skb, hlen))) {
5965                 eth = skb_gro_header_slow(skb, hlen, 0);
5966                 if (unlikely(!eth)) {
5967                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5968                                              __func__, napi->dev->name);
5969                         napi_reuse_skb(napi, skb);
5970                         return NULL;
5971                 }
5972         } else {
5973                 eth = (const struct ethhdr *)skb->data;
5974                 gro_pull_from_frag0(skb, hlen);
5975                 NAPI_GRO_CB(skb)->frag0 += hlen;
5976                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
5977         }
5978         __skb_pull(skb, hlen);
5979
5980         /*
5981          * This works because the only protocols we care about don't require
5982          * special handling.
5983          * We'll fix it up properly in napi_frags_finish()
5984          */
5985         skb->protocol = eth->h_proto;
5986
5987         return skb;
5988 }
5989
5990 gro_result_t napi_gro_frags(struct napi_struct *napi)
5991 {
5992         gro_result_t ret;
5993         struct sk_buff *skb = napi_frags_skb(napi);
5994
5995         if (!skb)
5996                 return GRO_DROP;
5997
5998         trace_napi_gro_frags_entry(skb);
5999
6000         ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6001         trace_napi_gro_frags_exit(ret);
6002
6003         return ret;
6004 }
6005 EXPORT_SYMBOL(napi_gro_frags);
6006
6007 /* Compute the checksum from gro_offset and return the folded value
6008  * after adding in any pseudo checksum.
6009  */
6010 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6011 {
6012         __wsum wsum;
6013         __sum16 sum;
6014
6015         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6016
6017         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6018         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6019         /* See comments in __skb_checksum_complete(). */
6020         if (likely(!sum)) {
6021                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6022                     !skb->csum_complete_sw)
6023                         netdev_rx_csum_fault(skb->dev, skb);
6024         }
6025
6026         NAPI_GRO_CB(skb)->csum = wsum;
6027         NAPI_GRO_CB(skb)->csum_valid = 1;
6028
6029         return sum;
6030 }
6031 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6032
6033 static void net_rps_send_ipi(struct softnet_data *remsd)
6034 {
6035 #ifdef CONFIG_RPS
6036         while (remsd) {
6037                 struct softnet_data *next = remsd->rps_ipi_next;
6038
6039                 if (cpu_online(remsd->cpu))
6040                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
6041                 remsd = next;
6042         }
6043 #endif
6044 }
6045
6046 /*
6047  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6048  * Note: called with local irq disabled, but exits with local irq enabled.
6049  */
6050 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6051 {
6052 #ifdef CONFIG_RPS
6053         struct softnet_data *remsd = sd->rps_ipi_list;
6054
6055         if (remsd) {
6056                 sd->rps_ipi_list = NULL;
6057
6058                 local_irq_enable();
6059
6060                 /* Send pending IPI's to kick RPS processing on remote cpus. */
6061                 net_rps_send_ipi(remsd);
6062         } else
6063 #endif
6064                 local_irq_enable();
6065 }
6066
6067 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6068 {
6069 #ifdef CONFIG_RPS
6070         return sd->rps_ipi_list != NULL;
6071 #else
6072         return false;
6073 #endif
6074 }
6075
6076 static int process_backlog(struct napi_struct *napi, int quota)
6077 {
6078         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6079         bool again = true;
6080         int work = 0;
6081
6082         /* Check if we have pending ipi, its better to send them now,
6083          * not waiting net_rx_action() end.
6084          */
6085         if (sd_has_rps_ipi_waiting(sd)) {
6086                 local_irq_disable();
6087                 net_rps_action_and_irq_enable(sd);
6088         }
6089
6090         napi->weight = dev_rx_weight;
6091         while (again) {
6092                 struct sk_buff *skb;
6093
6094                 while ((skb = __skb_dequeue(&sd->process_queue))) {
6095                         rcu_read_lock();
6096                         __netif_receive_skb(skb);
6097                         rcu_read_unlock();
6098                         input_queue_head_incr(sd);
6099                         if (++work >= quota)
6100                                 return work;
6101
6102                 }
6103
6104                 local_irq_disable();
6105                 rps_lock(sd);
6106                 if (skb_queue_empty(&sd->input_pkt_queue)) {
6107                         /*
6108                          * Inline a custom version of __napi_complete().
6109                          * only current cpu owns and manipulates this napi,
6110                          * and NAPI_STATE_SCHED is the only possible flag set
6111                          * on backlog.
6112                          * We can use a plain write instead of clear_bit(),
6113                          * and we dont need an smp_mb() memory barrier.
6114                          */
6115                         napi->state = 0;
6116                         again = false;
6117                 } else {
6118                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
6119                                                    &sd->process_queue);
6120                 }
6121                 rps_unlock(sd);
6122                 local_irq_enable();
6123         }
6124
6125         return work;
6126 }
6127
6128 /**
6129  * __napi_schedule - schedule for receive
6130  * @n: entry to schedule
6131  *
6132  * The entry's receive function will be scheduled to run.
6133  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6134  */
6135 void __napi_schedule(struct napi_struct *n)
6136 {
6137         unsigned long flags;
6138
6139         local_irq_save(flags);
6140         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6141         local_irq_restore(flags);
6142 }
6143 EXPORT_SYMBOL(__napi_schedule);
6144
6145 /**
6146  *      napi_schedule_prep - check if napi can be scheduled
6147  *      @n: napi context
6148  *
6149  * Test if NAPI routine is already running, and if not mark
6150  * it as running.  This is used as a condition variable
6151  * insure only one NAPI poll instance runs.  We also make
6152  * sure there is no pending NAPI disable.
6153  */
6154 bool napi_schedule_prep(struct napi_struct *n)
6155 {
6156         unsigned long val, new;
6157
6158         do {
6159                 val = READ_ONCE(n->state);
6160                 if (unlikely(val & NAPIF_STATE_DISABLE))
6161                         return false;
6162                 new = val | NAPIF_STATE_SCHED;
6163
6164                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6165                  * This was suggested by Alexander Duyck, as compiler
6166                  * emits better code than :
6167                  * if (val & NAPIF_STATE_SCHED)
6168                  *     new |= NAPIF_STATE_MISSED;
6169                  */
6170                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6171                                                    NAPIF_STATE_MISSED;
6172         } while (cmpxchg(&n->state, val, new) != val);
6173
6174         return !(val & NAPIF_STATE_SCHED);
6175 }
6176 EXPORT_SYMBOL(napi_schedule_prep);
6177
6178 /**
6179  * __napi_schedule_irqoff - schedule for receive
6180  * @n: entry to schedule
6181  *
6182  * Variant of __napi_schedule() assuming hard irqs are masked
6183  */
6184 void __napi_schedule_irqoff(struct napi_struct *n)
6185 {
6186         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6187 }
6188 EXPORT_SYMBOL(__napi_schedule_irqoff);
6189
6190 bool napi_complete_done(struct napi_struct *n, int work_done)
6191 {
6192         unsigned long flags, val, new;
6193
6194         /*
6195          * 1) Don't let napi dequeue from the cpu poll list
6196          *    just in case its running on a different cpu.
6197          * 2) If we are busy polling, do nothing here, we have
6198          *    the guarantee we will be called later.
6199          */
6200         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6201                                  NAPIF_STATE_IN_BUSY_POLL)))
6202                 return false;
6203
6204         gro_normal_list(n);
6205
6206         if (n->gro_bitmask) {
6207                 unsigned long timeout = 0;
6208
6209                 if (work_done)
6210                         timeout = n->dev->gro_flush_timeout;
6211
6212                 /* When the NAPI instance uses a timeout and keeps postponing
6213                  * it, we need to bound somehow the time packets are kept in
6214                  * the GRO layer
6215                  */
6216                 napi_gro_flush(n, !!timeout);
6217                 if (timeout)
6218                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
6219                                       HRTIMER_MODE_REL_PINNED);
6220         }
6221         if (unlikely(!list_empty(&n->poll_list))) {
6222                 /* If n->poll_list is not empty, we need to mask irqs */
6223                 local_irq_save(flags);
6224                 list_del_init(&n->poll_list);
6225                 local_irq_restore(flags);
6226         }
6227
6228         do {
6229                 val = READ_ONCE(n->state);
6230
6231                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6232
6233                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6234
6235                 /* If STATE_MISSED was set, leave STATE_SCHED set,
6236                  * because we will call napi->poll() one more time.
6237                  * This C code was suggested by Alexander Duyck to help gcc.
6238                  */
6239                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6240                                                     NAPIF_STATE_SCHED;
6241         } while (cmpxchg(&n->state, val, new) != val);
6242
6243         if (unlikely(val & NAPIF_STATE_MISSED)) {
6244                 __napi_schedule(n);
6245                 return false;
6246         }
6247
6248         return true;
6249 }
6250 EXPORT_SYMBOL(napi_complete_done);
6251
6252 /* must be called under rcu_read_lock(), as we dont take a reference */
6253 static struct napi_struct *napi_by_id(unsigned int napi_id)
6254 {
6255         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6256         struct napi_struct *napi;
6257
6258         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6259                 if (napi->napi_id == napi_id)
6260                         return napi;
6261
6262         return NULL;
6263 }
6264
6265 #if defined(CONFIG_NET_RX_BUSY_POLL)
6266
6267 #define BUSY_POLL_BUDGET 8
6268
6269 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6270 {
6271         int rc;
6272
6273         /* Busy polling means there is a high chance device driver hard irq
6274          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6275          * set in napi_schedule_prep().
6276          * Since we are about to call napi->poll() once more, we can safely
6277          * clear NAPI_STATE_MISSED.
6278          *
6279          * Note: x86 could use a single "lock and ..." instruction
6280          * to perform these two clear_bit()
6281          */
6282         clear_bit(NAPI_STATE_MISSED, &napi->state);
6283         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6284
6285         local_bh_disable();
6286
6287         /* All we really want here is to re-enable device interrupts.
6288          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6289          */
6290         rc = napi->poll(napi, BUSY_POLL_BUDGET);
6291         /* We can't gro_normal_list() here, because napi->poll() might have
6292          * rearmed the napi (napi_complete_done()) in which case it could
6293          * already be running on another CPU.
6294          */
6295         trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6296         netpoll_poll_unlock(have_poll_lock);
6297         if (rc == BUSY_POLL_BUDGET) {
6298                 /* As the whole budget was spent, we still own the napi so can
6299                  * safely handle the rx_list.
6300                  */
6301                 gro_normal_list(napi);
6302                 __napi_schedule(napi);
6303         }
6304         local_bh_enable();
6305 }
6306
6307 void napi_busy_loop(unsigned int napi_id,
6308                     bool (*loop_end)(void *, unsigned long),
6309                     void *loop_end_arg)
6310 {
6311         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6312         int (*napi_poll)(struct napi_struct *napi, int budget);
6313         void *have_poll_lock = NULL;
6314         struct napi_struct *napi;
6315
6316 restart:
6317         napi_poll = NULL;
6318
6319         rcu_read_lock();
6320
6321         napi = napi_by_id(napi_id);
6322         if (!napi)
6323                 goto out;
6324
6325         preempt_disable();
6326         for (;;) {
6327                 int work = 0;
6328
6329                 local_bh_disable();
6330                 if (!napi_poll) {
6331                         unsigned long val = READ_ONCE(napi->state);
6332
6333                         /* If multiple threads are competing for this napi,
6334                          * we avoid dirtying napi->state as much as we can.
6335                          */
6336                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6337                                    NAPIF_STATE_IN_BUSY_POLL))
6338                                 goto count;
6339                         if (cmpxchg(&napi->state, val,
6340                                     val | NAPIF_STATE_IN_BUSY_POLL |
6341                                           NAPIF_STATE_SCHED) != val)
6342                                 goto count;
6343                         have_poll_lock = netpoll_poll_lock(napi);
6344                         napi_poll = napi->poll;
6345                 }
6346                 work = napi_poll(napi, BUSY_POLL_BUDGET);
6347                 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6348                 gro_normal_list(napi);
6349 count:
6350                 if (work > 0)
6351                         __NET_ADD_STATS(dev_net(napi->dev),
6352                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6353                 local_bh_enable();
6354
6355                 if (!loop_end || loop_end(loop_end_arg, start_time))
6356                         break;
6357
6358                 if (unlikely(need_resched())) {
6359                         if (napi_poll)
6360                                 busy_poll_stop(napi, have_poll_lock);
6361                         preempt_enable();
6362                         rcu_read_unlock();
6363                         cond_resched();
6364                         if (loop_end(loop_end_arg, start_time))
6365                                 return;
6366                         goto restart;
6367                 }
6368                 cpu_relax();
6369         }
6370         if (napi_poll)
6371                 busy_poll_stop(napi, have_poll_lock);
6372         preempt_enable();
6373 out:
6374         rcu_read_unlock();
6375 }
6376 EXPORT_SYMBOL(napi_busy_loop);
6377
6378 #endif /* CONFIG_NET_RX_BUSY_POLL */
6379
6380 static void napi_hash_add(struct napi_struct *napi)
6381 {
6382         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6383             test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6384                 return;
6385
6386         spin_lock(&napi_hash_lock);
6387
6388         /* 0..NR_CPUS range is reserved for sender_cpu use */
6389         do {
6390                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6391                         napi_gen_id = MIN_NAPI_ID;
6392         } while (napi_by_id(napi_gen_id));
6393         napi->napi_id = napi_gen_id;
6394
6395         hlist_add_head_rcu(&napi->napi_hash_node,
6396                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6397
6398         spin_unlock(&napi_hash_lock);
6399 }
6400
6401 /* Warning : caller is responsible to make sure rcu grace period
6402  * is respected before freeing memory containing @napi
6403  */
6404 bool napi_hash_del(struct napi_struct *napi)
6405 {
6406         bool rcu_sync_needed = false;
6407
6408         spin_lock(&napi_hash_lock);
6409
6410         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6411                 rcu_sync_needed = true;
6412                 hlist_del_rcu(&napi->napi_hash_node);
6413         }
6414         spin_unlock(&napi_hash_lock);
6415         return rcu_sync_needed;
6416 }
6417 EXPORT_SYMBOL_GPL(napi_hash_del);
6418
6419 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6420 {
6421         struct napi_struct *napi;
6422
6423         napi = container_of(timer, struct napi_struct, timer);
6424
6425         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6426          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6427          */
6428         if (napi->gro_bitmask && !napi_disable_pending(napi) &&
6429             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6430                 __napi_schedule_irqoff(napi);
6431
6432         return HRTIMER_NORESTART;
6433 }
6434
6435 static void init_gro_hash(struct napi_struct *napi)
6436 {
6437         int i;
6438
6439         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6440                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6441                 napi->gro_hash[i].count = 0;
6442         }
6443         napi->gro_bitmask = 0;
6444 }
6445
6446 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6447                     int (*poll)(struct napi_struct *, int), int weight)
6448 {
6449         INIT_LIST_HEAD(&napi->poll_list);
6450         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6451         napi->timer.function = napi_watchdog;
6452         init_gro_hash(napi);
6453         napi->skb = NULL;
6454         INIT_LIST_HEAD(&napi->rx_list);
6455         napi->rx_count = 0;
6456         napi->poll = poll;
6457         if (weight > NAPI_POLL_WEIGHT)
6458                 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6459                                 weight);
6460         napi->weight = weight;
6461         list_add(&napi->dev_list, &dev->napi_list);
6462         napi->dev = dev;
6463 #ifdef CONFIG_NETPOLL
6464         napi->poll_owner = -1;
6465 #endif
6466         set_bit(NAPI_STATE_SCHED, &napi->state);
6467         napi_hash_add(napi);
6468 }
6469 EXPORT_SYMBOL(netif_napi_add);
6470
6471 void napi_disable(struct napi_struct *n)
6472 {
6473         might_sleep();
6474         set_bit(NAPI_STATE_DISABLE, &n->state);
6475
6476         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6477                 msleep(1);
6478         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6479                 msleep(1);
6480
6481         hrtimer_cancel(&n->timer);
6482
6483         clear_bit(NAPI_STATE_DISABLE, &n->state);
6484 }
6485 EXPORT_SYMBOL(napi_disable);
6486
6487 static void flush_gro_hash(struct napi_struct *napi)
6488 {
6489         int i;
6490
6491         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6492                 struct sk_buff *skb, *n;
6493
6494                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6495                         kfree_skb(skb);
6496                 napi->gro_hash[i].count = 0;
6497         }
6498 }
6499
6500 /* Must be called in process context */
6501 void netif_napi_del(struct napi_struct *napi)
6502 {
6503         might_sleep();
6504         if (napi_hash_del(napi))
6505                 synchronize_net();
6506         list_del_init(&napi->dev_list);
6507         napi_free_frags(napi);
6508
6509         flush_gro_hash(napi);
6510         napi->gro_bitmask = 0;
6511 }
6512 EXPORT_SYMBOL(netif_napi_del);
6513
6514 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6515 {
6516         void *have;
6517         int work, weight;
6518
6519         list_del_init(&n->poll_list);
6520
6521         have = netpoll_poll_lock(n);
6522
6523         weight = n->weight;
6524
6525         /* This NAPI_STATE_SCHED test is for avoiding a race
6526          * with netpoll's poll_napi().  Only the entity which
6527          * obtains the lock and sees NAPI_STATE_SCHED set will
6528          * actually make the ->poll() call.  Therefore we avoid
6529          * accidentally calling ->poll() when NAPI is not scheduled.
6530          */
6531         work = 0;
6532         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6533                 work = n->poll(n, weight);
6534                 trace_napi_poll(n, work, weight);
6535         }
6536
6537         WARN_ON_ONCE(work > weight);
6538
6539         if (likely(work < weight))
6540                 goto out_unlock;
6541
6542         /* Drivers must not modify the NAPI state if they
6543          * consume the entire weight.  In such cases this code
6544          * still "owns" the NAPI instance and therefore can
6545          * move the instance around on the list at-will.
6546          */
6547         if (unlikely(napi_disable_pending(n))) {
6548                 napi_complete(n);
6549                 goto out_unlock;
6550         }
6551
6552         gro_normal_list(n);
6553
6554         if (n->gro_bitmask) {
6555                 /* flush too old packets
6556                  * If HZ < 1000, flush all packets.
6557                  */
6558                 napi_gro_flush(n, HZ >= 1000);
6559         }
6560
6561         /* Some drivers may have called napi_schedule
6562          * prior to exhausting their budget.
6563          */
6564         if (unlikely(!list_empty(&n->poll_list))) {
6565                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6566                              n->dev ? n->dev->name : "backlog");
6567                 goto out_unlock;
6568         }
6569
6570         list_add_tail(&n->poll_list, repoll);
6571
6572 out_unlock:
6573         netpoll_poll_unlock(have);
6574
6575         return work;
6576 }
6577
6578 static __latent_entropy void net_rx_action(struct softirq_action *h)
6579 {
6580         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6581         unsigned long time_limit = jiffies +
6582                 usecs_to_jiffies(netdev_budget_usecs);
6583         int budget = netdev_budget;
6584         LIST_HEAD(list);
6585         LIST_HEAD(repoll);
6586
6587         local_irq_disable();
6588         list_splice_init(&sd->poll_list, &list);
6589         local_irq_enable();
6590
6591         for (;;) {
6592                 struct napi_struct *n;
6593
6594                 if (list_empty(&list)) {
6595                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6596                                 goto out;
6597                         break;
6598                 }
6599
6600                 n = list_first_entry(&list, struct napi_struct, poll_list);
6601                 budget -= napi_poll(n, &repoll);
6602
6603                 /* If softirq window is exhausted then punt.
6604                  * Allow this to run for 2 jiffies since which will allow
6605                  * an average latency of 1.5/HZ.
6606                  */
6607                 if (unlikely(budget <= 0 ||
6608                              time_after_eq(jiffies, time_limit))) {
6609                         sd->time_squeeze++;
6610                         break;
6611                 }
6612         }
6613
6614         local_irq_disable();
6615
6616         list_splice_tail_init(&sd->poll_list, &list);
6617         list_splice_tail(&repoll, &list);
6618         list_splice(&list, &sd->poll_list);
6619         if (!list_empty(&sd->poll_list))
6620                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6621
6622         net_rps_action_and_irq_enable(sd);
6623 out:
6624         __kfree_skb_flush();
6625 }
6626
6627 struct netdev_adjacent {
6628         struct net_device *dev;
6629
6630         /* upper master flag, there can only be one master device per list */
6631         bool master;
6632
6633         /* lookup ignore flag */
6634         bool ignore;
6635
6636         /* counter for the number of times this device was added to us */
6637         u16 ref_nr;
6638
6639         /* private field for the users */
6640         void *private;
6641
6642         struct list_head list;
6643         struct rcu_head rcu;
6644 };
6645
6646 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6647                                                  struct list_head *adj_list)
6648 {
6649         struct netdev_adjacent *adj;
6650
6651         list_for_each_entry(adj, adj_list, list) {
6652                 if (adj->dev == adj_dev)
6653                         return adj;
6654         }
6655         return NULL;
6656 }
6657
6658 static int ____netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6659 {
6660         struct net_device *dev = data;
6661
6662         return upper_dev == dev;
6663 }
6664
6665 /**
6666  * netdev_has_upper_dev - Check if device is linked to an upper device
6667  * @dev: device
6668  * @upper_dev: upper device to check
6669  *
6670  * Find out if a device is linked to specified upper device and return true
6671  * in case it is. Note that this checks only immediate upper device,
6672  * not through a complete stack of devices. The caller must hold the RTNL lock.
6673  */
6674 bool netdev_has_upper_dev(struct net_device *dev,
6675                           struct net_device *upper_dev)
6676 {
6677         ASSERT_RTNL();
6678
6679         return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6680                                              upper_dev);
6681 }
6682 EXPORT_SYMBOL(netdev_has_upper_dev);
6683
6684 /**
6685  * netdev_has_upper_dev_all - Check if device is linked to an upper device
6686  * @dev: device
6687  * @upper_dev: upper device to check
6688  *
6689  * Find out if a device is linked to specified upper device and return true
6690  * in case it is. Note that this checks the entire upper device chain.
6691  * The caller must hold rcu lock.
6692  */
6693
6694 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6695                                   struct net_device *upper_dev)
6696 {
6697         return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6698                                                upper_dev);
6699 }
6700 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6701
6702 /**
6703  * netdev_has_any_upper_dev - Check if device is linked to some device
6704  * @dev: device
6705  *
6706  * Find out if a device is linked to an upper device and return true in case
6707  * it is. The caller must hold the RTNL lock.
6708  */
6709 bool netdev_has_any_upper_dev(struct net_device *dev)
6710 {
6711         ASSERT_RTNL();
6712
6713         return !list_empty(&dev->adj_list.upper);
6714 }
6715 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6716
6717 /**
6718  * netdev_master_upper_dev_get - Get master upper device
6719  * @dev: device
6720  *
6721  * Find a master upper device and return pointer to it or NULL in case
6722  * it's not there. The caller must hold the RTNL lock.
6723  */
6724 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6725 {
6726         struct netdev_adjacent *upper;
6727
6728         ASSERT_RTNL();
6729
6730         if (list_empty(&dev->adj_list.upper))
6731                 return NULL;
6732
6733         upper = list_first_entry(&dev->adj_list.upper,
6734                                  struct netdev_adjacent, list);
6735         if (likely(upper->master))
6736                 return upper->dev;
6737         return NULL;
6738 }
6739 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6740
6741 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6742 {
6743         struct netdev_adjacent *upper;
6744
6745         ASSERT_RTNL();
6746
6747         if (list_empty(&dev->adj_list.upper))
6748                 return NULL;
6749
6750         upper = list_first_entry(&dev->adj_list.upper,
6751                                  struct netdev_adjacent, list);
6752         if (likely(upper->master) && !upper->ignore)
6753                 return upper->dev;
6754         return NULL;
6755 }
6756
6757 /**
6758  * netdev_has_any_lower_dev - Check if device is linked to some device
6759  * @dev: device
6760  *
6761  * Find out if a device is linked to a lower device and return true in case
6762  * it is. The caller must hold the RTNL lock.
6763  */
6764 static bool netdev_has_any_lower_dev(struct net_device *dev)
6765 {
6766         ASSERT_RTNL();
6767
6768         return !list_empty(&dev->adj_list.lower);
6769 }
6770
6771 void *netdev_adjacent_get_private(struct list_head *adj_list)
6772 {
6773         struct netdev_adjacent *adj;
6774
6775         adj = list_entry(adj_list, struct netdev_adjacent, list);
6776
6777         return adj->private;
6778 }
6779 EXPORT_SYMBOL(netdev_adjacent_get_private);
6780
6781 /**
6782  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6783  * @dev: device
6784  * @iter: list_head ** of the current position
6785  *
6786  * Gets the next device from the dev's upper list, starting from iter
6787  * position. The caller must hold RCU read lock.
6788  */
6789 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6790                                                  struct list_head **iter)
6791 {
6792         struct netdev_adjacent *upper;
6793
6794         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6795
6796         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6797
6798         if (&upper->list == &dev->adj_list.upper)
6799                 return NULL;
6800
6801         *iter = &upper->list;
6802
6803         return upper->dev;
6804 }
6805 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6806
6807 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6808                                                   struct list_head **iter,
6809                                                   bool *ignore)
6810 {
6811         struct netdev_adjacent *upper;
6812
6813         upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6814
6815         if (&upper->list == &dev->adj_list.upper)
6816                 return NULL;
6817
6818         *iter = &upper->list;
6819         *ignore = upper->ignore;
6820
6821         return upper->dev;
6822 }
6823
6824 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6825                                                     struct list_head **iter)
6826 {
6827         struct netdev_adjacent *upper;
6828
6829         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6830
6831         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6832
6833         if (&upper->list == &dev->adj_list.upper)
6834                 return NULL;
6835
6836         *iter = &upper->list;
6837
6838         return upper->dev;
6839 }
6840
6841 static int __netdev_walk_all_upper_dev(struct net_device *dev,
6842                                        int (*fn)(struct net_device *dev,
6843                                                  void *data),
6844                                        void *data)
6845 {
6846         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6847         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6848         int ret, cur = 0;
6849         bool ignore;
6850
6851         now = dev;
6852         iter = &dev->adj_list.upper;
6853
6854         while (1) {
6855                 if (now != dev) {
6856                         ret = fn(now, data);
6857                         if (ret)
6858                                 return ret;
6859                 }
6860
6861                 next = NULL;
6862                 while (1) {
6863                         udev = __netdev_next_upper_dev(now, &iter, &ignore);
6864                         if (!udev)
6865                                 break;
6866                         if (ignore)
6867                                 continue;
6868
6869                         next = udev;
6870                         niter = &udev->adj_list.upper;
6871                         dev_stack[cur] = now;
6872                         iter_stack[cur++] = iter;
6873                         break;
6874                 }
6875
6876                 if (!next) {
6877                         if (!cur)
6878                                 return 0;
6879                         next = dev_stack[--cur];
6880                         niter = iter_stack[cur];
6881                 }
6882
6883                 now = next;
6884                 iter = niter;
6885         }
6886
6887         return 0;
6888 }
6889
6890 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6891                                   int (*fn)(struct net_device *dev,
6892                                             void *data),
6893                                   void *data)
6894 {
6895         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6896         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6897         int ret, cur = 0;
6898
6899         now = dev;
6900         iter = &dev->adj_list.upper;
6901
6902         while (1) {
6903                 if (now != dev) {
6904                         ret = fn(now, data);
6905                         if (ret)
6906                                 return ret;
6907                 }
6908
6909                 next = NULL;
6910                 while (1) {
6911                         udev = netdev_next_upper_dev_rcu(now, &iter);
6912                         if (!udev)
6913                                 break;
6914
6915                         next = udev;
6916                         niter = &udev->adj_list.upper;
6917                         dev_stack[cur] = now;
6918                         iter_stack[cur++] = iter;
6919                         break;
6920                 }
6921
6922                 if (!next) {
6923                         if (!cur)
6924                                 return 0;
6925                         next = dev_stack[--cur];
6926                         niter = iter_stack[cur];
6927                 }
6928
6929                 now = next;
6930                 iter = niter;
6931         }
6932
6933         return 0;
6934 }
6935 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6936
6937 static bool __netdev_has_upper_dev(struct net_device *dev,
6938                                    struct net_device *upper_dev)
6939 {
6940         ASSERT_RTNL();
6941
6942         return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
6943                                            upper_dev);
6944 }
6945
6946 /**
6947  * netdev_lower_get_next_private - Get the next ->private from the
6948  *                                 lower neighbour list
6949  * @dev: device
6950  * @iter: list_head ** of the current position
6951  *
6952  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6953  * list, starting from iter position. The caller must hold either hold the
6954  * RTNL lock or its own locking that guarantees that the neighbour lower
6955  * list will remain unchanged.
6956  */
6957 void *netdev_lower_get_next_private(struct net_device *dev,
6958                                     struct list_head **iter)
6959 {
6960         struct netdev_adjacent *lower;
6961
6962         lower = list_entry(*iter, struct netdev_adjacent, list);
6963
6964         if (&lower->list == &dev->adj_list.lower)
6965                 return NULL;
6966
6967         *iter = lower->list.next;
6968
6969         return lower->private;
6970 }
6971 EXPORT_SYMBOL(netdev_lower_get_next_private);
6972
6973 /**
6974  * netdev_lower_get_next_private_rcu - Get the next ->private from the
6975  *                                     lower neighbour list, RCU
6976  *                                     variant
6977  * @dev: device
6978  * @iter: list_head ** of the current position
6979  *
6980  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6981  * list, starting from iter position. The caller must hold RCU read lock.
6982  */
6983 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6984                                         struct list_head **iter)
6985 {
6986         struct netdev_adjacent *lower;
6987
6988         WARN_ON_ONCE(!rcu_read_lock_held());
6989
6990         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6991
6992         if (&lower->list == &dev->adj_list.lower)
6993                 return NULL;
6994
6995         *iter = &lower->list;
6996
6997         return lower->private;
6998 }
6999 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7000
7001 /**
7002  * netdev_lower_get_next - Get the next device from the lower neighbour
7003  *                         list
7004  * @dev: device
7005  * @iter: list_head ** of the current position
7006  *
7007  * Gets the next netdev_adjacent from the dev's lower neighbour
7008  * list, starting from iter position. The caller must hold RTNL lock or
7009  * its own locking that guarantees that the neighbour lower
7010  * list will remain unchanged.
7011  */
7012 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7013 {
7014         struct netdev_adjacent *lower;
7015
7016         lower = list_entry(*iter, struct netdev_adjacent, list);
7017
7018         if (&lower->list == &dev->adj_list.lower)
7019                 return NULL;
7020
7021         *iter = lower->list.next;
7022
7023         return lower->dev;
7024 }
7025 EXPORT_SYMBOL(netdev_lower_get_next);
7026
7027 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7028                                                 struct list_head **iter)
7029 {
7030         struct netdev_adjacent *lower;
7031
7032         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7033
7034         if (&lower->list == &dev->adj_list.lower)
7035                 return NULL;
7036
7037         *iter = &lower->list;
7038
7039         return lower->dev;
7040 }
7041
7042 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7043                                                   struct list_head **iter,
7044                                                   bool *ignore)
7045 {
7046         struct netdev_adjacent *lower;
7047
7048         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7049
7050         if (&lower->list == &dev->adj_list.lower)
7051                 return NULL;
7052
7053         *iter = &lower->list;
7054         *ignore = lower->ignore;
7055
7056         return lower->dev;
7057 }
7058
7059 int netdev_walk_all_lower_dev(struct net_device *dev,
7060                               int (*fn)(struct net_device *dev,
7061                                         void *data),
7062                               void *data)
7063 {
7064         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7065         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7066         int ret, cur = 0;
7067
7068         now = dev;
7069         iter = &dev->adj_list.lower;
7070
7071         while (1) {
7072                 if (now != dev) {
7073                         ret = fn(now, data);
7074                         if (ret)
7075                                 return ret;
7076                 }
7077
7078                 next = NULL;
7079                 while (1) {
7080                         ldev = netdev_next_lower_dev(now, &iter);
7081                         if (!ldev)
7082                                 break;
7083
7084                         next = ldev;
7085                         niter = &ldev->adj_list.lower;
7086                         dev_stack[cur] = now;
7087                         iter_stack[cur++] = iter;
7088                         break;
7089                 }
7090
7091                 if (!next) {
7092                         if (!cur)
7093                                 return 0;
7094                         next = dev_stack[--cur];
7095                         niter = iter_stack[cur];
7096                 }
7097
7098                 now = next;
7099                 iter = niter;
7100         }
7101
7102         return 0;
7103 }
7104 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7105
7106 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7107                                        int (*fn)(struct net_device *dev,
7108                                                  void *data),
7109                                        void *data)
7110 {
7111         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7112         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7113         int ret, cur = 0;
7114         bool ignore;
7115
7116         now = dev;
7117         iter = &dev->adj_list.lower;
7118
7119         while (1) {
7120                 if (now != dev) {
7121                         ret = fn(now, data);
7122                         if (ret)
7123                                 return ret;
7124                 }
7125
7126                 next = NULL;
7127                 while (1) {
7128                         ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7129                         if (!ldev)
7130                                 break;
7131                         if (ignore)
7132                                 continue;
7133
7134                         next = ldev;
7135                         niter = &ldev->adj_list.lower;
7136                         dev_stack[cur] = now;
7137                         iter_stack[cur++] = iter;
7138                         break;
7139                 }
7140
7141                 if (!next) {
7142                         if (!cur)
7143                                 return 0;
7144                         next = dev_stack[--cur];
7145                         niter = iter_stack[cur];
7146                 }
7147
7148                 now = next;
7149                 iter = niter;
7150         }
7151
7152         return 0;
7153 }
7154
7155 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7156                                                     struct list_head **iter)
7157 {
7158         struct netdev_adjacent *lower;
7159
7160         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7161         if (&lower->list == &dev->adj_list.lower)
7162                 return NULL;
7163
7164         *iter = &lower->list;
7165
7166         return lower->dev;
7167 }
7168
7169 static u8 __netdev_upper_depth(struct net_device *dev)
7170 {
7171         struct net_device *udev;
7172         struct list_head *iter;
7173         u8 max_depth = 0;
7174         bool ignore;
7175
7176         for (iter = &dev->adj_list.upper,
7177              udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7178              udev;
7179              udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7180                 if (ignore)
7181                         continue;
7182                 if (max_depth < udev->upper_level)
7183                         max_depth = udev->upper_level;
7184         }
7185
7186         return max_depth;
7187 }
7188
7189 static u8 __netdev_lower_depth(struct net_device *dev)
7190 {
7191         struct net_device *ldev;
7192         struct list_head *iter;
7193         u8 max_depth = 0;
7194         bool ignore;
7195
7196         for (iter = &dev->adj_list.lower,
7197              ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7198              ldev;
7199              ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7200                 if (ignore)
7201                         continue;
7202                 if (max_depth < ldev->lower_level)
7203                         max_depth = ldev->lower_level;
7204         }
7205
7206         return max_depth;
7207 }
7208
7209 static int __netdev_update_upper_level(struct net_device *dev, void *data)
7210 {
7211         dev->upper_level = __netdev_upper_depth(dev) + 1;
7212         return 0;
7213 }
7214
7215 static int __netdev_update_lower_level(struct net_device *dev, void *data)
7216 {
7217         dev->lower_level = __netdev_lower_depth(dev) + 1;
7218         return 0;
7219 }
7220
7221 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7222                                   int (*fn)(struct net_device *dev,
7223                                             void *data),
7224                                   void *data)
7225 {
7226         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7227         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7228         int ret, cur = 0;
7229
7230         now = dev;
7231         iter = &dev->adj_list.lower;
7232
7233         while (1) {
7234                 if (now != dev) {
7235                         ret = fn(now, data);
7236                         if (ret)
7237                                 return ret;
7238                 }
7239
7240                 next = NULL;
7241                 while (1) {
7242                         ldev = netdev_next_lower_dev_rcu(now, &iter);
7243                         if (!ldev)
7244                                 break;
7245
7246                         next = ldev;
7247                         niter = &ldev->adj_list.lower;
7248                         dev_stack[cur] = now;
7249                         iter_stack[cur++] = iter;
7250                         break;
7251                 }
7252
7253                 if (!next) {
7254                         if (!cur)
7255                                 return 0;
7256                         next = dev_stack[--cur];
7257                         niter = iter_stack[cur];
7258                 }
7259
7260                 now = next;
7261                 iter = niter;
7262         }
7263
7264         return 0;
7265 }
7266 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7267
7268 /**
7269  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7270  *                                     lower neighbour list, RCU
7271  *                                     variant
7272  * @dev: device
7273  *
7274  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7275  * list. The caller must hold RCU read lock.
7276  */
7277 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7278 {
7279         struct netdev_adjacent *lower;
7280
7281         lower = list_first_or_null_rcu(&dev->adj_list.lower,
7282                         struct netdev_adjacent, list);
7283         if (lower)
7284                 return lower->private;
7285         return NULL;
7286 }
7287 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7288
7289 /**
7290  * netdev_master_upper_dev_get_rcu - Get master upper device
7291  * @dev: device
7292  *
7293  * Find a master upper device and return pointer to it or NULL in case
7294  * it's not there. The caller must hold the RCU read lock.
7295  */
7296 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7297 {
7298         struct netdev_adjacent *upper;
7299
7300         upper = list_first_or_null_rcu(&dev->adj_list.upper,
7301                                        struct netdev_adjacent, list);
7302         if (upper && likely(upper->master))
7303                 return upper->dev;
7304         return NULL;
7305 }
7306 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7307
7308 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7309                               struct net_device *adj_dev,
7310                               struct list_head *dev_list)
7311 {
7312         char linkname[IFNAMSIZ+7];
7313
7314         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7315                 "upper_%s" : "lower_%s", adj_dev->name);
7316         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7317                                  linkname);
7318 }
7319 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7320                                char *name,
7321                                struct list_head *dev_list)
7322 {
7323         char linkname[IFNAMSIZ+7];
7324
7325         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7326                 "upper_%s" : "lower_%s", name);
7327         sysfs_remove_link(&(dev->dev.kobj), linkname);
7328 }
7329
7330 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7331                                                  struct net_device *adj_dev,
7332                                                  struct list_head *dev_list)
7333 {
7334         return (dev_list == &dev->adj_list.upper ||
7335                 dev_list == &dev->adj_list.lower) &&
7336                 net_eq(dev_net(dev), dev_net(adj_dev));
7337 }
7338
7339 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7340                                         struct net_device *adj_dev,
7341                                         struct list_head *dev_list,
7342                                         void *private, bool master)
7343 {
7344         struct netdev_adjacent *adj;
7345         int ret;
7346
7347         adj = __netdev_find_adj(adj_dev, dev_list);
7348
7349         if (adj) {
7350                 adj->ref_nr += 1;
7351                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7352                          dev->name, adj_dev->name, adj->ref_nr);
7353
7354                 return 0;
7355         }
7356
7357         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7358         if (!adj)
7359                 return -ENOMEM;
7360
7361         adj->dev = adj_dev;
7362         adj->master = master;
7363         adj->ref_nr = 1;
7364         adj->private = private;
7365         adj->ignore = false;
7366         dev_hold(adj_dev);
7367
7368         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7369                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7370
7371         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7372                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7373                 if (ret)
7374                         goto free_adj;
7375         }
7376
7377         /* Ensure that master link is always the first item in list. */
7378         if (master) {
7379                 ret = sysfs_create_link(&(dev->dev.kobj),
7380                                         &(adj_dev->dev.kobj), "master");
7381                 if (ret)
7382                         goto remove_symlinks;
7383
7384                 list_add_rcu(&adj->list, dev_list);
7385         } else {
7386                 list_add_tail_rcu(&adj->list, dev_list);
7387         }
7388
7389         return 0;
7390
7391 remove_symlinks:
7392         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7393                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7394 free_adj:
7395         kfree(adj);
7396         dev_put(adj_dev);
7397
7398         return ret;
7399 }
7400
7401 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7402                                          struct net_device *adj_dev,
7403                                          u16 ref_nr,
7404                                          struct list_head *dev_list)
7405 {
7406         struct netdev_adjacent *adj;
7407
7408         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7409                  dev->name, adj_dev->name, ref_nr);
7410
7411         adj = __netdev_find_adj(adj_dev, dev_list);
7412
7413         if (!adj) {
7414                 pr_err("Adjacency does not exist for device %s from %s\n",
7415                        dev->name, adj_dev->name);
7416                 WARN_ON(1);
7417                 return;
7418         }
7419
7420         if (adj->ref_nr > ref_nr) {
7421                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7422                          dev->name, adj_dev->name, ref_nr,
7423                          adj->ref_nr - ref_nr);
7424                 adj->ref_nr -= ref_nr;
7425                 return;
7426         }
7427
7428         if (adj->master)
7429                 sysfs_remove_link(&(dev->dev.kobj), "master");
7430
7431         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7432                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7433
7434         list_del_rcu(&adj->list);
7435         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7436                  adj_dev->name, dev->name, adj_dev->name);
7437         dev_put(adj_dev);
7438         kfree_rcu(adj, rcu);
7439 }
7440
7441 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7442                                             struct net_device *upper_dev,
7443                                             struct list_head *up_list,
7444                                             struct list_head *down_list,
7445                                             void *private, bool master)
7446 {
7447         int ret;
7448
7449         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7450                                            private, master);
7451         if (ret)
7452                 return ret;
7453
7454         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7455                                            private, false);
7456         if (ret) {
7457                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7458                 return ret;
7459         }
7460
7461         return 0;
7462 }
7463
7464 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7465                                                struct net_device *upper_dev,
7466                                                u16 ref_nr,
7467                                                struct list_head *up_list,
7468                                                struct list_head *down_list)
7469 {
7470         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7471         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7472 }
7473
7474 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7475                                                 struct net_device *upper_dev,
7476                                                 void *private, bool master)
7477 {
7478         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7479                                                 &dev->adj_list.upper,
7480                                                 &upper_dev->adj_list.lower,
7481                                                 private, master);
7482 }
7483
7484 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7485                                                    struct net_device *upper_dev)
7486 {
7487         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7488                                            &dev->adj_list.upper,
7489                                            &upper_dev->adj_list.lower);
7490 }
7491
7492 static int __netdev_upper_dev_link(struct net_device *dev,
7493                                    struct net_device *upper_dev, bool master,
7494                                    void *upper_priv, void *upper_info,
7495                                    struct netlink_ext_ack *extack)
7496 {
7497         struct netdev_notifier_changeupper_info changeupper_info = {
7498                 .info = {
7499                         .dev = dev,
7500                         .extack = extack,
7501                 },
7502                 .upper_dev = upper_dev,
7503                 .master = master,
7504                 .linking = true,
7505                 .upper_info = upper_info,
7506         };
7507         struct net_device *master_dev;
7508         int ret = 0;
7509
7510         ASSERT_RTNL();
7511
7512         if (dev == upper_dev)
7513                 return -EBUSY;
7514
7515         /* To prevent loops, check if dev is not upper device to upper_dev. */
7516         if (__netdev_has_upper_dev(upper_dev, dev))
7517                 return -EBUSY;
7518
7519         if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7520                 return -EMLINK;
7521
7522         if (!master) {
7523                 if (__netdev_has_upper_dev(dev, upper_dev))
7524                         return -EEXIST;
7525         } else {
7526                 master_dev = __netdev_master_upper_dev_get(dev);
7527                 if (master_dev)
7528                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
7529         }
7530
7531         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7532                                             &changeupper_info.info);
7533         ret = notifier_to_errno(ret);
7534         if (ret)
7535                 return ret;
7536
7537         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7538                                                    master);
7539         if (ret)
7540                 return ret;
7541
7542         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7543                                             &changeupper_info.info);
7544         ret = notifier_to_errno(ret);
7545         if (ret)
7546                 goto rollback;
7547
7548         __netdev_update_upper_level(dev, NULL);
7549         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7550
7551         __netdev_update_lower_level(upper_dev, NULL);
7552         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7553                                     NULL);
7554
7555         return 0;
7556
7557 rollback:
7558         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7559
7560         return ret;
7561 }
7562
7563 /**
7564  * netdev_upper_dev_link - Add a link to the upper device
7565  * @dev: device
7566  * @upper_dev: new upper device
7567  * @extack: netlink extended ack
7568  *
7569  * Adds a link to device which is upper to this one. The caller must hold
7570  * the RTNL lock. On a failure a negative errno code is returned.
7571  * On success the reference counts are adjusted and the function
7572  * returns zero.
7573  */
7574 int netdev_upper_dev_link(struct net_device *dev,
7575                           struct net_device *upper_dev,
7576                           struct netlink_ext_ack *extack)
7577 {
7578         return __netdev_upper_dev_link(dev, upper_dev, false,
7579                                        NULL, NULL, extack);
7580 }
7581 EXPORT_SYMBOL(netdev_upper_dev_link);
7582
7583 /**
7584  * netdev_master_upper_dev_link - Add a master link to the upper device
7585  * @dev: device
7586  * @upper_dev: new upper device
7587  * @upper_priv: upper device private
7588  * @upper_info: upper info to be passed down via notifier
7589  * @extack: netlink extended ack
7590  *
7591  * Adds a link to device which is upper to this one. In this case, only
7592  * one master upper device can be linked, although other non-master devices
7593  * might be linked as well. The caller must hold the RTNL lock.
7594  * On a failure a negative errno code is returned. On success the reference
7595  * counts are adjusted and the function returns zero.
7596  */
7597 int netdev_master_upper_dev_link(struct net_device *dev,
7598                                  struct net_device *upper_dev,
7599                                  void *upper_priv, void *upper_info,
7600                                  struct netlink_ext_ack *extack)
7601 {
7602         return __netdev_upper_dev_link(dev, upper_dev, true,
7603                                        upper_priv, upper_info, extack);
7604 }
7605 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7606
7607 /**
7608  * netdev_upper_dev_unlink - Removes a link to upper device
7609  * @dev: device
7610  * @upper_dev: new upper device
7611  *
7612  * Removes a link to device which is upper to this one. The caller must hold
7613  * the RTNL lock.
7614  */
7615 void netdev_upper_dev_unlink(struct net_device *dev,
7616                              struct net_device *upper_dev)
7617 {
7618         struct netdev_notifier_changeupper_info changeupper_info = {
7619                 .info = {
7620                         .dev = dev,
7621                 },
7622                 .upper_dev = upper_dev,
7623                 .linking = false,
7624         };
7625
7626         ASSERT_RTNL();
7627
7628         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7629
7630         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7631                                       &changeupper_info.info);
7632
7633         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7634
7635         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7636                                       &changeupper_info.info);
7637
7638         __netdev_update_upper_level(dev, NULL);
7639         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7640
7641         __netdev_update_lower_level(upper_dev, NULL);
7642         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7643                                     NULL);
7644 }
7645 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7646
7647 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7648                                       struct net_device *lower_dev,
7649                                       bool val)
7650 {
7651         struct netdev_adjacent *adj;
7652
7653         adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7654         if (adj)
7655                 adj->ignore = val;
7656
7657         adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7658         if (adj)
7659                 adj->ignore = val;
7660 }
7661
7662 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7663                                         struct net_device *lower_dev)
7664 {
7665         __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7666 }
7667
7668 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7669                                        struct net_device *lower_dev)
7670 {
7671         __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7672 }
7673
7674 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7675                                    struct net_device *new_dev,
7676                                    struct net_device *dev,
7677                                    struct netlink_ext_ack *extack)
7678 {
7679         int err;
7680
7681         if (!new_dev)
7682                 return 0;
7683
7684         if (old_dev && new_dev != old_dev)
7685                 netdev_adjacent_dev_disable(dev, old_dev);
7686
7687         err = netdev_upper_dev_link(new_dev, dev, extack);
7688         if (err) {
7689                 if (old_dev && new_dev != old_dev)
7690                         netdev_adjacent_dev_enable(dev, old_dev);
7691                 return err;
7692         }
7693
7694         return 0;
7695 }
7696 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7697
7698 void netdev_adjacent_change_commit(struct net_device *old_dev,
7699                                    struct net_device *new_dev,
7700                                    struct net_device *dev)
7701 {
7702         if (!new_dev || !old_dev)
7703                 return;
7704
7705         if (new_dev == old_dev)
7706                 return;
7707
7708         netdev_adjacent_dev_enable(dev, old_dev);
7709         netdev_upper_dev_unlink(old_dev, dev);
7710 }
7711 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7712
7713 void netdev_adjacent_change_abort(struct net_device *old_dev,
7714                                   struct net_device *new_dev,
7715                                   struct net_device *dev)
7716 {
7717         if (!new_dev)
7718                 return;
7719
7720         if (old_dev && new_dev != old_dev)
7721                 netdev_adjacent_dev_enable(dev, old_dev);
7722
7723         netdev_upper_dev_unlink(new_dev, dev);
7724 }
7725 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7726
7727 /**
7728  * netdev_bonding_info_change - Dispatch event about slave change
7729  * @dev: device
7730  * @bonding_info: info to dispatch
7731  *
7732  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7733  * The caller must hold the RTNL lock.
7734  */
7735 void netdev_bonding_info_change(struct net_device *dev,
7736                                 struct netdev_bonding_info *bonding_info)
7737 {
7738         struct netdev_notifier_bonding_info info = {
7739                 .info.dev = dev,
7740         };
7741
7742         memcpy(&info.bonding_info, bonding_info,
7743                sizeof(struct netdev_bonding_info));
7744         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7745                                       &info.info);
7746 }
7747 EXPORT_SYMBOL(netdev_bonding_info_change);
7748
7749 static void netdev_adjacent_add_links(struct net_device *dev)
7750 {
7751         struct netdev_adjacent *iter;
7752
7753         struct net *net = dev_net(dev);
7754
7755         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7756                 if (!net_eq(net, dev_net(iter->dev)))
7757                         continue;
7758                 netdev_adjacent_sysfs_add(iter->dev, dev,
7759                                           &iter->dev->adj_list.lower);
7760                 netdev_adjacent_sysfs_add(dev, iter->dev,
7761                                           &dev->adj_list.upper);
7762         }
7763
7764         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7765                 if (!net_eq(net, dev_net(iter->dev)))
7766                         continue;
7767                 netdev_adjacent_sysfs_add(iter->dev, dev,
7768                                           &iter->dev->adj_list.upper);
7769                 netdev_adjacent_sysfs_add(dev, iter->dev,
7770                                           &dev->adj_list.lower);
7771         }
7772 }
7773
7774 static void netdev_adjacent_del_links(struct net_device *dev)
7775 {
7776         struct netdev_adjacent *iter;
7777
7778         struct net *net = dev_net(dev);
7779
7780         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7781                 if (!net_eq(net, dev_net(iter->dev)))
7782                         continue;
7783                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7784                                           &iter->dev->adj_list.lower);
7785                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7786                                           &dev->adj_list.upper);
7787         }
7788
7789         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7790                 if (!net_eq(net, dev_net(iter->dev)))
7791                         continue;
7792                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7793                                           &iter->dev->adj_list.upper);
7794                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7795                                           &dev->adj_list.lower);
7796         }
7797 }
7798
7799 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7800 {
7801         struct netdev_adjacent *iter;
7802
7803         struct net *net = dev_net(dev);
7804
7805         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7806                 if (!net_eq(net, dev_net(iter->dev)))
7807                         continue;
7808                 netdev_adjacent_sysfs_del(iter->dev, oldname,
7809                                           &iter->dev->adj_list.lower);
7810                 netdev_adjacent_sysfs_add(iter->dev, dev,
7811                                           &iter->dev->adj_list.lower);
7812         }
7813
7814         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7815                 if (!net_eq(net, dev_net(iter->dev)))
7816                         continue;
7817                 netdev_adjacent_sysfs_del(iter->dev, oldname,
7818                                           &iter->dev->adj_list.upper);
7819                 netdev_adjacent_sysfs_add(iter->dev, dev,
7820                                           &iter->dev->adj_list.upper);
7821         }
7822 }
7823
7824 void *netdev_lower_dev_get_private(struct net_device *dev,
7825                                    struct net_device *lower_dev)
7826 {
7827         struct netdev_adjacent *lower;
7828
7829         if (!lower_dev)
7830                 return NULL;
7831         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7832         if (!lower)
7833                 return NULL;
7834
7835         return lower->private;
7836 }
7837 EXPORT_SYMBOL(netdev_lower_dev_get_private);
7838
7839
7840 /**
7841  * netdev_lower_change - Dispatch event about lower device state change
7842  * @lower_dev: device
7843  * @lower_state_info: state to dispatch
7844  *
7845  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7846  * The caller must hold the RTNL lock.
7847  */
7848 void netdev_lower_state_changed(struct net_device *lower_dev,
7849                                 void *lower_state_info)
7850 {
7851         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7852                 .info.dev = lower_dev,
7853         };
7854
7855         ASSERT_RTNL();
7856         changelowerstate_info.lower_state_info = lower_state_info;
7857         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7858                                       &changelowerstate_info.info);
7859 }
7860 EXPORT_SYMBOL(netdev_lower_state_changed);
7861
7862 static void dev_change_rx_flags(struct net_device *dev, int flags)
7863 {
7864         const struct net_device_ops *ops = dev->netdev_ops;
7865
7866         if (ops->ndo_change_rx_flags)
7867                 ops->ndo_change_rx_flags(dev, flags);
7868 }
7869
7870 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7871 {
7872         unsigned int old_flags = dev->flags;
7873         kuid_t uid;
7874         kgid_t gid;
7875
7876         ASSERT_RTNL();
7877
7878         dev->flags |= IFF_PROMISC;
7879         dev->promiscuity += inc;
7880         if (dev->promiscuity == 0) {
7881                 /*
7882                  * Avoid overflow.
7883                  * If inc causes overflow, untouch promisc and return error.
7884                  */
7885                 if (inc < 0)
7886                         dev->flags &= ~IFF_PROMISC;
7887                 else {
7888                         dev->promiscuity -= inc;
7889                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7890                                 dev->name);
7891                         return -EOVERFLOW;
7892                 }
7893         }
7894         if (dev->flags != old_flags) {
7895                 pr_info("device %s %s promiscuous mode\n",
7896                         dev->name,
7897                         dev->flags & IFF_PROMISC ? "entered" : "left");
7898                 if (audit_enabled) {
7899                         current_uid_gid(&uid, &gid);
7900                         audit_log(audit_context(), GFP_ATOMIC,
7901                                   AUDIT_ANOM_PROMISCUOUS,
7902                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7903                                   dev->name, (dev->flags & IFF_PROMISC),
7904                                   (old_flags & IFF_PROMISC),
7905                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
7906                                   from_kuid(&init_user_ns, uid),
7907                                   from_kgid(&init_user_ns, gid),
7908                                   audit_get_sessionid(current));
7909                 }
7910
7911                 dev_change_rx_flags(dev, IFF_PROMISC);
7912         }
7913         if (notify)
7914                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
7915         return 0;
7916 }
7917
7918 /**
7919  *      dev_set_promiscuity     - update promiscuity count on a device
7920  *      @dev: device
7921  *      @inc: modifier
7922  *
7923  *      Add or remove promiscuity from a device. While the count in the device
7924  *      remains above zero the interface remains promiscuous. Once it hits zero
7925  *      the device reverts back to normal filtering operation. A negative inc
7926  *      value is used to drop promiscuity on the device.
7927  *      Return 0 if successful or a negative errno code on error.
7928  */
7929 int dev_set_promiscuity(struct net_device *dev, int inc)
7930 {
7931         unsigned int old_flags = dev->flags;
7932         int err;
7933
7934         err = __dev_set_promiscuity(dev, inc, true);
7935         if (err < 0)
7936                 return err;
7937         if (dev->flags != old_flags)
7938                 dev_set_rx_mode(dev);
7939         return err;
7940 }
7941 EXPORT_SYMBOL(dev_set_promiscuity);
7942
7943 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7944 {
7945         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7946
7947         ASSERT_RTNL();
7948
7949         dev->flags |= IFF_ALLMULTI;
7950         dev->allmulti += inc;
7951         if (dev->allmulti == 0) {
7952                 /*
7953                  * Avoid overflow.
7954                  * If inc causes overflow, untouch allmulti and return error.
7955                  */
7956                 if (inc < 0)
7957                         dev->flags &= ~IFF_ALLMULTI;
7958                 else {
7959                         dev->allmulti -= inc;
7960                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7961                                 dev->name);
7962                         return -EOVERFLOW;
7963                 }
7964         }
7965         if (dev->flags ^ old_flags) {
7966                 dev_change_rx_flags(dev, IFF_ALLMULTI);
7967                 dev_set_rx_mode(dev);
7968                 if (notify)
7969                         __dev_notify_flags(dev, old_flags,
7970                                            dev->gflags ^ old_gflags);
7971         }
7972         return 0;
7973 }
7974
7975 /**
7976  *      dev_set_allmulti        - update allmulti count on a device
7977  *      @dev: device
7978  *      @inc: modifier
7979  *
7980  *      Add or remove reception of all multicast frames to a device. While the
7981  *      count in the device remains above zero the interface remains listening
7982  *      to all interfaces. Once it hits zero the device reverts back to normal
7983  *      filtering operation. A negative @inc value is used to drop the counter
7984  *      when releasing a resource needing all multicasts.
7985  *      Return 0 if successful or a negative errno code on error.
7986  */
7987
7988 int dev_set_allmulti(struct net_device *dev, int inc)
7989 {
7990         return __dev_set_allmulti(dev, inc, true);
7991 }
7992 EXPORT_SYMBOL(dev_set_allmulti);
7993
7994 /*
7995  *      Upload unicast and multicast address lists to device and
7996  *      configure RX filtering. When the device doesn't support unicast
7997  *      filtering it is put in promiscuous mode while unicast addresses
7998  *      are present.
7999  */
8000 void __dev_set_rx_mode(struct net_device *dev)
8001 {
8002         const struct net_device_ops *ops = dev->netdev_ops;
8003
8004         /* dev_open will call this function so the list will stay sane. */
8005         if (!(dev->flags&IFF_UP))
8006                 return;
8007
8008         if (!netif_device_present(dev))
8009                 return;
8010
8011         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8012                 /* Unicast addresses changes may only happen under the rtnl,
8013                  * therefore calling __dev_set_promiscuity here is safe.
8014                  */
8015                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8016                         __dev_set_promiscuity(dev, 1, false);
8017                         dev->uc_promisc = true;
8018                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8019                         __dev_set_promiscuity(dev, -1, false);
8020                         dev->uc_promisc = false;
8021                 }
8022         }
8023
8024         if (ops->ndo_set_rx_mode)
8025                 ops->ndo_set_rx_mode(dev);
8026 }
8027
8028 void dev_set_rx_mode(struct net_device *dev)
8029 {
8030         netif_addr_lock_bh(dev);
8031         __dev_set_rx_mode(dev);
8032         netif_addr_unlock_bh(dev);
8033 }
8034
8035 /**
8036  *      dev_get_flags - get flags reported to userspace
8037  *      @dev: device
8038  *
8039  *      Get the combination of flag bits exported through APIs to userspace.
8040  */
8041 unsigned int dev_get_flags(const struct net_device *dev)
8042 {
8043         unsigned int flags;
8044
8045         flags = (dev->flags & ~(IFF_PROMISC |
8046                                 IFF_ALLMULTI |
8047                                 IFF_RUNNING |
8048                                 IFF_LOWER_UP |
8049                                 IFF_DORMANT)) |
8050                 (dev->gflags & (IFF_PROMISC |
8051                                 IFF_ALLMULTI));
8052
8053         if (netif_running(dev)) {
8054                 if (netif_oper_up(dev))
8055                         flags |= IFF_RUNNING;
8056                 if (netif_carrier_ok(dev))
8057                         flags |= IFF_LOWER_UP;
8058                 if (netif_dormant(dev))
8059                         flags |= IFF_DORMANT;
8060         }
8061
8062         return flags;
8063 }
8064 EXPORT_SYMBOL(dev_get_flags);
8065
8066 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8067                        struct netlink_ext_ack *extack)
8068 {
8069         unsigned int old_flags = dev->flags;
8070         int ret;
8071
8072         ASSERT_RTNL();
8073
8074         /*
8075          *      Set the flags on our device.
8076          */
8077
8078         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8079                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8080                                IFF_AUTOMEDIA)) |
8081                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8082                                     IFF_ALLMULTI));
8083
8084         /*
8085          *      Load in the correct multicast list now the flags have changed.
8086          */
8087
8088         if ((old_flags ^ flags) & IFF_MULTICAST)
8089                 dev_change_rx_flags(dev, IFF_MULTICAST);
8090
8091         dev_set_rx_mode(dev);
8092
8093         /*
8094          *      Have we downed the interface. We handle IFF_UP ourselves
8095          *      according to user attempts to set it, rather than blindly
8096          *      setting it.
8097          */
8098
8099         ret = 0;
8100         if ((old_flags ^ flags) & IFF_UP) {
8101                 if (old_flags & IFF_UP)
8102                         __dev_close(dev);
8103                 else
8104                         ret = __dev_open(dev, extack);
8105         }
8106
8107         if ((flags ^ dev->gflags) & IFF_PROMISC) {
8108                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8109                 unsigned int old_flags = dev->flags;
8110
8111                 dev->gflags ^= IFF_PROMISC;
8112
8113                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8114                         if (dev->flags != old_flags)
8115                                 dev_set_rx_mode(dev);
8116         }
8117
8118         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8119          * is important. Some (broken) drivers set IFF_PROMISC, when
8120          * IFF_ALLMULTI is requested not asking us and not reporting.
8121          */
8122         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8123                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8124
8125                 dev->gflags ^= IFF_ALLMULTI;
8126                 __dev_set_allmulti(dev, inc, false);
8127         }
8128
8129         return ret;
8130 }
8131
8132 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8133                         unsigned int gchanges)
8134 {
8135         unsigned int changes = dev->flags ^ old_flags;
8136
8137         if (gchanges)
8138                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8139
8140         if (changes & IFF_UP) {
8141                 if (dev->flags & IFF_UP)
8142                         call_netdevice_notifiers(NETDEV_UP, dev);
8143                 else
8144                         call_netdevice_notifiers(NETDEV_DOWN, dev);
8145         }
8146
8147         if (dev->flags & IFF_UP &&
8148             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8149                 struct netdev_notifier_change_info change_info = {
8150                         .info = {
8151                                 .dev = dev,
8152                         },
8153                         .flags_changed = changes,
8154                 };
8155
8156                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8157         }
8158 }
8159
8160 /**
8161  *      dev_change_flags - change device settings
8162  *      @dev: device
8163  *      @flags: device state flags
8164  *      @extack: netlink extended ack
8165  *
8166  *      Change settings on device based state flags. The flags are
8167  *      in the userspace exported format.
8168  */
8169 int dev_change_flags(struct net_device *dev, unsigned int flags,
8170                      struct netlink_ext_ack *extack)
8171 {
8172         int ret;
8173         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8174
8175         ret = __dev_change_flags(dev, flags, extack);
8176         if (ret < 0)
8177                 return ret;
8178
8179         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8180         __dev_notify_flags(dev, old_flags, changes);
8181         return ret;
8182 }
8183 EXPORT_SYMBOL(dev_change_flags);
8184
8185 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8186 {
8187         const struct net_device_ops *ops = dev->netdev_ops;
8188
8189         if (ops->ndo_change_mtu)
8190                 return ops->ndo_change_mtu(dev, new_mtu);
8191
8192         dev->mtu = new_mtu;
8193         return 0;
8194 }
8195 EXPORT_SYMBOL(__dev_set_mtu);
8196
8197 /**
8198  *      dev_set_mtu_ext - Change maximum transfer unit
8199  *      @dev: device
8200  *      @new_mtu: new transfer unit
8201  *      @extack: netlink extended ack
8202  *
8203  *      Change the maximum transfer size of the network device.
8204  */
8205 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8206                     struct netlink_ext_ack *extack)
8207 {
8208         int err, orig_mtu;
8209
8210         if (new_mtu == dev->mtu)
8211                 return 0;
8212
8213         /* MTU must be positive, and in range */
8214         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8215                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8216                 return -EINVAL;
8217         }
8218
8219         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8220                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8221                 return -EINVAL;
8222         }
8223
8224         if (!netif_device_present(dev))
8225                 return -ENODEV;
8226
8227         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8228         err = notifier_to_errno(err);
8229         if (err)
8230                 return err;
8231
8232         orig_mtu = dev->mtu;
8233         err = __dev_set_mtu(dev, new_mtu);
8234
8235         if (!err) {
8236                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8237                                                    orig_mtu);
8238                 err = notifier_to_errno(err);
8239                 if (err) {
8240                         /* setting mtu back and notifying everyone again,
8241                          * so that they have a chance to revert changes.
8242                          */
8243                         __dev_set_mtu(dev, orig_mtu);
8244                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8245                                                      new_mtu);
8246                 }
8247         }
8248         return err;
8249 }
8250
8251 int dev_set_mtu(struct net_device *dev, int new_mtu)
8252 {
8253         struct netlink_ext_ack extack;
8254         int err;
8255
8256         memset(&extack, 0, sizeof(extack));
8257         err = dev_set_mtu_ext(dev, new_mtu, &extack);
8258         if (err && extack._msg)
8259                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8260         return err;
8261 }
8262 EXPORT_SYMBOL(dev_set_mtu);
8263
8264 /**
8265  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
8266  *      @dev: device
8267  *      @new_len: new tx queue length
8268  */
8269 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8270 {
8271         unsigned int orig_len = dev->tx_queue_len;
8272         int res;
8273
8274         if (new_len != (unsigned int)new_len)
8275                 return -ERANGE;
8276
8277         if (new_len != orig_len) {
8278                 dev->tx_queue_len = new_len;
8279                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8280                 res = notifier_to_errno(res);
8281                 if (res)
8282                         goto err_rollback;
8283                 res = dev_qdisc_change_tx_queue_len(dev);
8284                 if (res)
8285                         goto err_rollback;
8286         }
8287
8288         return 0;
8289
8290 err_rollback:
8291         netdev_err(dev, "refused to change device tx_queue_len\n");
8292         dev->tx_queue_len = orig_len;
8293         return res;
8294 }
8295
8296 /**
8297  *      dev_set_group - Change group this device belongs to
8298  *      @dev: device
8299  *      @new_group: group this device should belong to
8300  */
8301 void dev_set_group(struct net_device *dev, int new_group)
8302 {
8303         dev->group = new_group;
8304 }
8305 EXPORT_SYMBOL(dev_set_group);
8306
8307 /**
8308  *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8309  *      @dev: device
8310  *      @addr: new address
8311  *      @extack: netlink extended ack
8312  */
8313 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8314                               struct netlink_ext_ack *extack)
8315 {
8316         struct netdev_notifier_pre_changeaddr_info info = {
8317                 .info.dev = dev,
8318                 .info.extack = extack,
8319                 .dev_addr = addr,
8320         };
8321         int rc;
8322
8323         rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8324         return notifier_to_errno(rc);
8325 }
8326 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8327
8328 /**
8329  *      dev_set_mac_address - Change Media Access Control Address
8330  *      @dev: device
8331  *      @sa: new address
8332  *      @extack: netlink extended ack
8333  *
8334  *      Change the hardware (MAC) address of the device
8335  */
8336 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8337                         struct netlink_ext_ack *extack)
8338 {
8339         const struct net_device_ops *ops = dev->netdev_ops;
8340         int err;
8341
8342         if (!ops->ndo_set_mac_address)
8343                 return -EOPNOTSUPP;
8344         if (sa->sa_family != dev->type)
8345                 return -EINVAL;
8346         if (!netif_device_present(dev))
8347                 return -ENODEV;
8348         err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8349         if (err)
8350                 return err;
8351         err = ops->ndo_set_mac_address(dev, sa);
8352         if (err)
8353                 return err;
8354         dev->addr_assign_type = NET_ADDR_SET;
8355         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8356         add_device_randomness(dev->dev_addr, dev->addr_len);
8357         return 0;
8358 }
8359 EXPORT_SYMBOL(dev_set_mac_address);
8360
8361 /**
8362  *      dev_change_carrier - Change device carrier
8363  *      @dev: device
8364  *      @new_carrier: new value
8365  *
8366  *      Change device carrier
8367  */
8368 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8369 {
8370         const struct net_device_ops *ops = dev->netdev_ops;
8371
8372         if (!ops->ndo_change_carrier)
8373                 return -EOPNOTSUPP;
8374         if (!netif_device_present(dev))
8375                 return -ENODEV;
8376         return ops->ndo_change_carrier(dev, new_carrier);
8377 }
8378 EXPORT_SYMBOL(dev_change_carrier);
8379
8380 /**
8381  *      dev_get_phys_port_id - Get device physical port ID
8382  *      @dev: device
8383  *      @ppid: port ID
8384  *
8385  *      Get device physical port ID
8386  */
8387 int dev_get_phys_port_id(struct net_device *dev,
8388                          struct netdev_phys_item_id *ppid)
8389 {
8390         const struct net_device_ops *ops = dev->netdev_ops;
8391
8392         if (!ops->ndo_get_phys_port_id)
8393                 return -EOPNOTSUPP;
8394         return ops->ndo_get_phys_port_id(dev, ppid);
8395 }
8396 EXPORT_SYMBOL(dev_get_phys_port_id);
8397
8398 /**
8399  *      dev_get_phys_port_name - Get device physical port name
8400  *      @dev: device
8401  *      @name: port name
8402  *      @len: limit of bytes to copy to name
8403  *
8404  *      Get device physical port name
8405  */
8406 int dev_get_phys_port_name(struct net_device *dev,
8407                            char *name, size_t len)
8408 {
8409         const struct net_device_ops *ops = dev->netdev_ops;
8410         int err;
8411
8412         if (ops->ndo_get_phys_port_name) {
8413                 err = ops->ndo_get_phys_port_name(dev, name, len);
8414                 if (err != -EOPNOTSUPP)
8415                         return err;
8416         }
8417         return devlink_compat_phys_port_name_get(dev, name, len);
8418 }
8419 EXPORT_SYMBOL(dev_get_phys_port_name);
8420
8421 /**
8422  *      dev_get_port_parent_id - Get the device's port parent identifier
8423  *      @dev: network device
8424  *      @ppid: pointer to a storage for the port's parent identifier
8425  *      @recurse: allow/disallow recursion to lower devices
8426  *
8427  *      Get the devices's port parent identifier
8428  */
8429 int dev_get_port_parent_id(struct net_device *dev,
8430                            struct netdev_phys_item_id *ppid,
8431                            bool recurse)
8432 {
8433         const struct net_device_ops *ops = dev->netdev_ops;
8434         struct netdev_phys_item_id first = { };
8435         struct net_device *lower_dev;
8436         struct list_head *iter;
8437         int err;
8438
8439         if (ops->ndo_get_port_parent_id) {
8440                 err = ops->ndo_get_port_parent_id(dev, ppid);
8441                 if (err != -EOPNOTSUPP)
8442                         return err;
8443         }
8444
8445         err = devlink_compat_switch_id_get(dev, ppid);
8446         if (!err || err != -EOPNOTSUPP)
8447                 return err;
8448
8449         if (!recurse)
8450                 return -EOPNOTSUPP;
8451
8452         netdev_for_each_lower_dev(dev, lower_dev, iter) {
8453                 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
8454                 if (err)
8455                         break;
8456                 if (!first.id_len)
8457                         first = *ppid;
8458                 else if (memcmp(&first, ppid, sizeof(*ppid)))
8459                         return -ENODATA;
8460         }
8461
8462         return err;
8463 }
8464 EXPORT_SYMBOL(dev_get_port_parent_id);
8465
8466 /**
8467  *      netdev_port_same_parent_id - Indicate if two network devices have
8468  *      the same port parent identifier
8469  *      @a: first network device
8470  *      @b: second network device
8471  */
8472 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8473 {
8474         struct netdev_phys_item_id a_id = { };
8475         struct netdev_phys_item_id b_id = { };
8476
8477         if (dev_get_port_parent_id(a, &a_id, true) ||
8478             dev_get_port_parent_id(b, &b_id, true))
8479                 return false;
8480
8481         return netdev_phys_item_id_same(&a_id, &b_id);
8482 }
8483 EXPORT_SYMBOL(netdev_port_same_parent_id);
8484
8485 /**
8486  *      dev_change_proto_down - update protocol port state information
8487  *      @dev: device
8488  *      @proto_down: new value
8489  *
8490  *      This info can be used by switch drivers to set the phys state of the
8491  *      port.
8492  */
8493 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8494 {
8495         const struct net_device_ops *ops = dev->netdev_ops;
8496
8497         if (!ops->ndo_change_proto_down)
8498                 return -EOPNOTSUPP;
8499         if (!netif_device_present(dev))
8500                 return -ENODEV;
8501         return ops->ndo_change_proto_down(dev, proto_down);
8502 }
8503 EXPORT_SYMBOL(dev_change_proto_down);
8504
8505 /**
8506  *      dev_change_proto_down_generic - generic implementation for
8507  *      ndo_change_proto_down that sets carrier according to
8508  *      proto_down.
8509  *
8510  *      @dev: device
8511  *      @proto_down: new value
8512  */
8513 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8514 {
8515         if (proto_down)
8516                 netif_carrier_off(dev);
8517         else
8518                 netif_carrier_on(dev);
8519         dev->proto_down = proto_down;
8520         return 0;
8521 }
8522 EXPORT_SYMBOL(dev_change_proto_down_generic);
8523
8524 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
8525                     enum bpf_netdev_command cmd)
8526 {
8527         struct netdev_bpf xdp;
8528
8529         if (!bpf_op)
8530                 return 0;
8531
8532         memset(&xdp, 0, sizeof(xdp));
8533         xdp.command = cmd;
8534
8535         /* Query must always succeed. */
8536         WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
8537
8538         return xdp.prog_id;
8539 }
8540
8541 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
8542                            struct netlink_ext_ack *extack, u32 flags,
8543                            struct bpf_prog *prog)
8544 {
8545         struct netdev_bpf xdp;
8546
8547         memset(&xdp, 0, sizeof(xdp));
8548         if (flags & XDP_FLAGS_HW_MODE)
8549                 xdp.command = XDP_SETUP_PROG_HW;
8550         else
8551                 xdp.command = XDP_SETUP_PROG;
8552         xdp.extack = extack;
8553         xdp.flags = flags;
8554         xdp.prog = prog;
8555
8556         return bpf_op(dev, &xdp);
8557 }
8558
8559 static void dev_xdp_uninstall(struct net_device *dev)
8560 {
8561         struct netdev_bpf xdp;
8562         bpf_op_t ndo_bpf;
8563
8564         /* Remove generic XDP */
8565         WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
8566
8567         /* Remove from the driver */
8568         ndo_bpf = dev->netdev_ops->ndo_bpf;
8569         if (!ndo_bpf)
8570                 return;
8571
8572         memset(&xdp, 0, sizeof(xdp));
8573         xdp.command = XDP_QUERY_PROG;
8574         WARN_ON(ndo_bpf(dev, &xdp));
8575         if (xdp.prog_id)
8576                 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8577                                         NULL));
8578
8579         /* Remove HW offload */
8580         memset(&xdp, 0, sizeof(xdp));
8581         xdp.command = XDP_QUERY_PROG_HW;
8582         if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
8583                 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8584                                         NULL));
8585 }
8586
8587 /**
8588  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
8589  *      @dev: device
8590  *      @extack: netlink extended ack
8591  *      @fd: new program fd or negative value to clear
8592  *      @flags: xdp-related flags
8593  *
8594  *      Set or clear a bpf program for a device
8595  */
8596 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
8597                       int fd, u32 flags)
8598 {
8599         const struct net_device_ops *ops = dev->netdev_ops;
8600         enum bpf_netdev_command query;
8601         struct bpf_prog *prog = NULL;
8602         bpf_op_t bpf_op, bpf_chk;
8603         bool offload;
8604         int err;
8605
8606         ASSERT_RTNL();
8607
8608         offload = flags & XDP_FLAGS_HW_MODE;
8609         query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
8610
8611         bpf_op = bpf_chk = ops->ndo_bpf;
8612         if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) {
8613                 NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode");
8614                 return -EOPNOTSUPP;
8615         }
8616         if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
8617                 bpf_op = generic_xdp_install;
8618         if (bpf_op == bpf_chk)
8619                 bpf_chk = generic_xdp_install;
8620
8621         if (fd >= 0) {
8622                 u32 prog_id;
8623
8624                 if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) {
8625                         NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time");
8626                         return -EEXIST;
8627                 }
8628
8629                 prog_id = __dev_xdp_query(dev, bpf_op, query);
8630                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && prog_id) {
8631                         NL_SET_ERR_MSG(extack, "XDP program already attached");
8632                         return -EBUSY;
8633                 }
8634
8635                 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
8636                                              bpf_op == ops->ndo_bpf);
8637                 if (IS_ERR(prog))
8638                         return PTR_ERR(prog);
8639
8640                 if (!offload && bpf_prog_is_dev_bound(prog->aux)) {
8641                         NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
8642                         bpf_prog_put(prog);
8643                         return -EINVAL;
8644                 }
8645
8646                 /* prog->aux->id may be 0 for orphaned device-bound progs */
8647                 if (prog->aux->id && prog->aux->id == prog_id) {
8648                         bpf_prog_put(prog);
8649                         return 0;
8650                 }
8651         } else {
8652                 if (!__dev_xdp_query(dev, bpf_op, query))
8653                         return 0;
8654         }
8655
8656         err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
8657         if (err < 0 && prog)
8658                 bpf_prog_put(prog);
8659
8660         return err;
8661 }
8662
8663 /**
8664  *      dev_new_index   -       allocate an ifindex
8665  *      @net: the applicable net namespace
8666  *
8667  *      Returns a suitable unique value for a new device interface
8668  *      number.  The caller must hold the rtnl semaphore or the
8669  *      dev_base_lock to be sure it remains unique.
8670  */
8671 static int dev_new_index(struct net *net)
8672 {
8673         int ifindex = net->ifindex;
8674
8675         for (;;) {
8676                 if (++ifindex <= 0)
8677                         ifindex = 1;
8678                 if (!__dev_get_by_index(net, ifindex))
8679                         return net->ifindex = ifindex;
8680         }
8681 }
8682
8683 /* Delayed registration/unregisteration */
8684 static LIST_HEAD(net_todo_list);
8685 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
8686
8687 static void net_set_todo(struct net_device *dev)
8688 {
8689         list_add_tail(&dev->todo_list, &net_todo_list);
8690         dev_net(dev)->dev_unreg_count++;
8691 }
8692
8693 static void rollback_registered_many(struct list_head *head)
8694 {
8695         struct net_device *dev, *tmp;
8696         LIST_HEAD(close_head);
8697
8698         BUG_ON(dev_boot_phase);
8699         ASSERT_RTNL();
8700
8701         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
8702                 /* Some devices call without registering
8703                  * for initialization unwind. Remove those
8704                  * devices and proceed with the remaining.
8705                  */
8706                 if (dev->reg_state == NETREG_UNINITIALIZED) {
8707                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8708                                  dev->name, dev);
8709
8710                         WARN_ON(1);
8711                         list_del(&dev->unreg_list);
8712                         continue;
8713                 }
8714                 dev->dismantle = true;
8715                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
8716         }
8717
8718         /* If device is running, close it first. */
8719         list_for_each_entry(dev, head, unreg_list)
8720                 list_add_tail(&dev->close_list, &close_head);
8721         dev_close_many(&close_head, true);
8722
8723         list_for_each_entry(dev, head, unreg_list) {
8724                 /* And unlink it from device chain. */
8725                 unlist_netdevice(dev);
8726
8727                 dev->reg_state = NETREG_UNREGISTERING;
8728         }
8729         flush_all_backlogs();
8730
8731         synchronize_net();
8732
8733         list_for_each_entry(dev, head, unreg_list) {
8734                 struct sk_buff *skb = NULL;
8735
8736                 /* Shutdown queueing discipline. */
8737                 dev_shutdown(dev);
8738
8739                 dev_xdp_uninstall(dev);
8740
8741                 /* Notify protocols, that we are about to destroy
8742                  * this device. They should clean all the things.
8743                  */
8744                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8745
8746                 if (!dev->rtnl_link_ops ||
8747                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8748                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
8749                                                      GFP_KERNEL, NULL, 0);
8750
8751                 /*
8752                  *      Flush the unicast and multicast chains
8753                  */
8754                 dev_uc_flush(dev);
8755                 dev_mc_flush(dev);
8756
8757                 netdev_name_node_alt_flush(dev);
8758                 netdev_name_node_free(dev->name_node);
8759
8760                 if (dev->netdev_ops->ndo_uninit)
8761                         dev->netdev_ops->ndo_uninit(dev);
8762
8763                 if (skb)
8764                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
8765
8766                 /* Notifier chain MUST detach us all upper devices. */
8767                 WARN_ON(netdev_has_any_upper_dev(dev));
8768                 WARN_ON(netdev_has_any_lower_dev(dev));
8769
8770                 /* Remove entries from kobject tree */
8771                 netdev_unregister_kobject(dev);
8772 #ifdef CONFIG_XPS
8773                 /* Remove XPS queueing entries */
8774                 netif_reset_xps_queues_gt(dev, 0);
8775 #endif
8776         }
8777
8778         synchronize_net();
8779
8780         list_for_each_entry(dev, head, unreg_list)
8781                 dev_put(dev);
8782 }
8783
8784 static void rollback_registered(struct net_device *dev)
8785 {
8786         LIST_HEAD(single);
8787
8788         list_add(&dev->unreg_list, &single);
8789         rollback_registered_many(&single);
8790         list_del(&single);
8791 }
8792
8793 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8794         struct net_device *upper, netdev_features_t features)
8795 {
8796         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8797         netdev_features_t feature;
8798         int feature_bit;
8799
8800         for_each_netdev_feature(upper_disables, feature_bit) {
8801                 feature = __NETIF_F_BIT(feature_bit);
8802                 if (!(upper->wanted_features & feature)
8803                     && (features & feature)) {
8804                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8805                                    &feature, upper->name);
8806                         features &= ~feature;
8807                 }
8808         }
8809
8810         return features;
8811 }
8812
8813 static void netdev_sync_lower_features(struct net_device *upper,
8814         struct net_device *lower, netdev_features_t features)
8815 {
8816         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8817         netdev_features_t feature;
8818         int feature_bit;
8819
8820         for_each_netdev_feature(upper_disables, feature_bit) {
8821                 feature = __NETIF_F_BIT(feature_bit);
8822                 if (!(features & feature) && (lower->features & feature)) {
8823                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8824                                    &feature, lower->name);
8825                         lower->wanted_features &= ~feature;
8826                         netdev_update_features(lower);
8827
8828                         if (unlikely(lower->features & feature))
8829                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8830                                             &feature, lower->name);
8831                 }
8832         }
8833 }
8834
8835 static netdev_features_t netdev_fix_features(struct net_device *dev,
8836         netdev_features_t features)
8837 {
8838         /* Fix illegal checksum combinations */
8839         if ((features & NETIF_F_HW_CSUM) &&
8840             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
8841                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
8842                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8843         }
8844
8845         /* TSO requires that SG is present as well. */
8846         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
8847                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
8848                 features &= ~NETIF_F_ALL_TSO;
8849         }
8850
8851         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8852                                         !(features & NETIF_F_IP_CSUM)) {
8853                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8854                 features &= ~NETIF_F_TSO;
8855                 features &= ~NETIF_F_TSO_ECN;
8856         }
8857
8858         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8859                                          !(features & NETIF_F_IPV6_CSUM)) {
8860                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8861                 features &= ~NETIF_F_TSO6;
8862         }
8863
8864         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8865         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8866                 features &= ~NETIF_F_TSO_MANGLEID;
8867
8868         /* TSO ECN requires that TSO is present as well. */
8869         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8870                 features &= ~NETIF_F_TSO_ECN;
8871
8872         /* Software GSO depends on SG. */
8873         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
8874                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
8875                 features &= ~NETIF_F_GSO;
8876         }
8877
8878         /* GSO partial features require GSO partial be set */
8879         if ((features & dev->gso_partial_features) &&
8880             !(features & NETIF_F_GSO_PARTIAL)) {
8881                 netdev_dbg(dev,
8882                            "Dropping partially supported GSO features since no GSO partial.\n");
8883                 features &= ~dev->gso_partial_features;
8884         }
8885
8886         if (!(features & NETIF_F_RXCSUM)) {
8887                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8888                  * successfully merged by hardware must also have the
8889                  * checksum verified by hardware.  If the user does not
8890                  * want to enable RXCSUM, logically, we should disable GRO_HW.
8891                  */
8892                 if (features & NETIF_F_GRO_HW) {
8893                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8894                         features &= ~NETIF_F_GRO_HW;
8895                 }
8896         }
8897
8898         /* LRO/HW-GRO features cannot be combined with RX-FCS */
8899         if (features & NETIF_F_RXFCS) {
8900                 if (features & NETIF_F_LRO) {
8901                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8902                         features &= ~NETIF_F_LRO;
8903                 }
8904
8905                 if (features & NETIF_F_GRO_HW) {
8906                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8907                         features &= ~NETIF_F_GRO_HW;
8908                 }
8909         }
8910
8911         return features;
8912 }
8913
8914 int __netdev_update_features(struct net_device *dev)
8915 {
8916         struct net_device *upper, *lower;
8917         netdev_features_t features;
8918         struct list_head *iter;
8919         int err = -1;
8920
8921         ASSERT_RTNL();
8922
8923         features = netdev_get_wanted_features(dev);
8924
8925         if (dev->netdev_ops->ndo_fix_features)
8926                 features = dev->netdev_ops->ndo_fix_features(dev, features);
8927
8928         /* driver might be less strict about feature dependencies */
8929         features = netdev_fix_features(dev, features);
8930
8931         /* some features can't be enabled if they're off an an upper device */
8932         netdev_for_each_upper_dev_rcu(dev, upper, iter)
8933                 features = netdev_sync_upper_features(dev, upper, features);
8934
8935         if (dev->features == features)
8936                 goto sync_lower;
8937
8938         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
8939                 &dev->features, &features);
8940
8941         if (dev->netdev_ops->ndo_set_features)
8942                 err = dev->netdev_ops->ndo_set_features(dev, features);
8943         else
8944                 err = 0;
8945
8946         if (unlikely(err < 0)) {
8947                 netdev_err(dev,
8948                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
8949                         err, &features, &dev->features);
8950                 /* return non-0 since some features might have changed and
8951                  * it's better to fire a spurious notification than miss it
8952                  */
8953                 return -1;
8954         }
8955
8956 sync_lower:
8957         /* some features must be disabled on lower devices when disabled
8958          * on an upper device (think: bonding master or bridge)
8959          */
8960         netdev_for_each_lower_dev(dev, lower, iter)
8961                 netdev_sync_lower_features(dev, lower, features);
8962
8963         if (!err) {
8964                 netdev_features_t diff = features ^ dev->features;
8965
8966                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
8967                         /* udp_tunnel_{get,drop}_rx_info both need
8968                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
8969                          * device, or they won't do anything.
8970                          * Thus we need to update dev->features
8971                          * *before* calling udp_tunnel_get_rx_info,
8972                          * but *after* calling udp_tunnel_drop_rx_info.
8973                          */
8974                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
8975                                 dev->features = features;
8976                                 udp_tunnel_get_rx_info(dev);
8977                         } else {
8978                                 udp_tunnel_drop_rx_info(dev);
8979                         }
8980                 }
8981
8982                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
8983                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
8984                                 dev->features = features;
8985                                 err |= vlan_get_rx_ctag_filter_info(dev);
8986                         } else {
8987                                 vlan_drop_rx_ctag_filter_info(dev);
8988                         }
8989                 }
8990
8991                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
8992                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
8993                                 dev->features = features;
8994                                 err |= vlan_get_rx_stag_filter_info(dev);
8995                         } else {
8996                                 vlan_drop_rx_stag_filter_info(dev);
8997                         }
8998                 }
8999
9000                 dev->features = features;
9001         }
9002
9003         return err < 0 ? 0 : 1;
9004 }
9005
9006 /**
9007  *      netdev_update_features - recalculate device features
9008  *      @dev: the device to check
9009  *
9010  *      Recalculate dev->features set and send notifications if it
9011  *      has changed. Should be called after driver or hardware dependent
9012  *      conditions might have changed that influence the features.
9013  */
9014 void netdev_update_features(struct net_device *dev)
9015 {
9016         if (__netdev_update_features(dev))
9017                 netdev_features_change(dev);
9018 }
9019 EXPORT_SYMBOL(netdev_update_features);
9020
9021 /**
9022  *      netdev_change_features - recalculate device features
9023  *      @dev: the device to check
9024  *
9025  *      Recalculate dev->features set and send notifications even
9026  *      if they have not changed. Should be called instead of
9027  *      netdev_update_features() if also dev->vlan_features might
9028  *      have changed to allow the changes to be propagated to stacked
9029  *      VLAN devices.
9030  */
9031 void netdev_change_features(struct net_device *dev)
9032 {
9033         __netdev_update_features(dev);
9034         netdev_features_change(dev);
9035 }
9036 EXPORT_SYMBOL(netdev_change_features);
9037
9038 /**
9039  *      netif_stacked_transfer_operstate -      transfer operstate
9040  *      @rootdev: the root or lower level device to transfer state from
9041  *      @dev: the device to transfer operstate to
9042  *
9043  *      Transfer operational state from root to device. This is normally
9044  *      called when a stacking relationship exists between the root
9045  *      device and the device(a leaf device).
9046  */
9047 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9048                                         struct net_device *dev)
9049 {
9050         if (rootdev->operstate == IF_OPER_DORMANT)
9051                 netif_dormant_on(dev);
9052         else
9053                 netif_dormant_off(dev);
9054
9055         if (netif_carrier_ok(rootdev))
9056                 netif_carrier_on(dev);
9057         else
9058                 netif_carrier_off(dev);
9059 }
9060 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9061
9062 static int netif_alloc_rx_queues(struct net_device *dev)
9063 {
9064         unsigned int i, count = dev->num_rx_queues;
9065         struct netdev_rx_queue *rx;
9066         size_t sz = count * sizeof(*rx);
9067         int err = 0;
9068
9069         BUG_ON(count < 1);
9070
9071         rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9072         if (!rx)
9073                 return -ENOMEM;
9074
9075         dev->_rx = rx;
9076
9077         for (i = 0; i < count; i++) {
9078                 rx[i].dev = dev;
9079
9080                 /* XDP RX-queue setup */
9081                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
9082                 if (err < 0)
9083                         goto err_rxq_info;
9084         }
9085         return 0;
9086
9087 err_rxq_info:
9088         /* Rollback successful reg's and free other resources */
9089         while (i--)
9090                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9091         kvfree(dev->_rx);
9092         dev->_rx = NULL;
9093         return err;
9094 }
9095
9096 static void netif_free_rx_queues(struct net_device *dev)
9097 {
9098         unsigned int i, count = dev->num_rx_queues;
9099
9100         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9101         if (!dev->_rx)
9102                 return;
9103
9104         for (i = 0; i < count; i++)
9105                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9106
9107         kvfree(dev->_rx);
9108 }
9109
9110 static void netdev_init_one_queue(struct net_device *dev,
9111                                   struct netdev_queue *queue, void *_unused)
9112 {
9113         /* Initialize queue lock */
9114         spin_lock_init(&queue->_xmit_lock);
9115         lockdep_set_class(&queue->_xmit_lock, &dev->qdisc_xmit_lock_key);
9116         queue->xmit_lock_owner = -1;
9117         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9118         queue->dev = dev;
9119 #ifdef CONFIG_BQL
9120         dql_init(&queue->dql, HZ);
9121 #endif
9122 }
9123
9124 static void netif_free_tx_queues(struct net_device *dev)
9125 {
9126         kvfree(dev->_tx);
9127 }
9128
9129 static int netif_alloc_netdev_queues(struct net_device *dev)
9130 {
9131         unsigned int count = dev->num_tx_queues;
9132         struct netdev_queue *tx;
9133         size_t sz = count * sizeof(*tx);
9134
9135         if (count < 1 || count > 0xffff)
9136                 return -EINVAL;
9137
9138         tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9139         if (!tx)
9140                 return -ENOMEM;
9141
9142         dev->_tx = tx;
9143
9144         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9145         spin_lock_init(&dev->tx_global_lock);
9146
9147         return 0;
9148 }
9149
9150 void netif_tx_stop_all_queues(struct net_device *dev)
9151 {
9152         unsigned int i;
9153
9154         for (i = 0; i < dev->num_tx_queues; i++) {
9155                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9156
9157                 netif_tx_stop_queue(txq);
9158         }
9159 }
9160 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9161
9162 static void netdev_register_lockdep_key(struct net_device *dev)
9163 {
9164         lockdep_register_key(&dev->qdisc_tx_busylock_key);
9165         lockdep_register_key(&dev->qdisc_running_key);
9166         lockdep_register_key(&dev->qdisc_xmit_lock_key);
9167         lockdep_register_key(&dev->addr_list_lock_key);
9168 }
9169
9170 static void netdev_unregister_lockdep_key(struct net_device *dev)
9171 {
9172         lockdep_unregister_key(&dev->qdisc_tx_busylock_key);
9173         lockdep_unregister_key(&dev->qdisc_running_key);
9174         lockdep_unregister_key(&dev->qdisc_xmit_lock_key);
9175         lockdep_unregister_key(&dev->addr_list_lock_key);
9176 }
9177
9178 void netdev_update_lockdep_key(struct net_device *dev)
9179 {
9180         struct netdev_queue *queue;
9181         int i;
9182
9183         lockdep_unregister_key(&dev->qdisc_xmit_lock_key);
9184         lockdep_unregister_key(&dev->addr_list_lock_key);
9185
9186         lockdep_register_key(&dev->qdisc_xmit_lock_key);
9187         lockdep_register_key(&dev->addr_list_lock_key);
9188
9189         lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key);
9190         for (i = 0; i < dev->num_tx_queues; i++) {
9191                 queue = netdev_get_tx_queue(dev, i);
9192
9193                 lockdep_set_class(&queue->_xmit_lock,
9194                                   &dev->qdisc_xmit_lock_key);
9195         }
9196 }
9197 EXPORT_SYMBOL(netdev_update_lockdep_key);
9198
9199 /**
9200  *      register_netdevice      - register a network device
9201  *      @dev: device to register
9202  *
9203  *      Take a completed network device structure and add it to the kernel
9204  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9205  *      chain. 0 is returned on success. A negative errno code is returned
9206  *      on a failure to set up the device, or if the name is a duplicate.
9207  *
9208  *      Callers must hold the rtnl semaphore. You may want
9209  *      register_netdev() instead of this.
9210  *
9211  *      BUGS:
9212  *      The locking appears insufficient to guarantee two parallel registers
9213  *      will not get the same name.
9214  */
9215
9216 int register_netdevice(struct net_device *dev)
9217 {
9218         int ret;
9219         struct net *net = dev_net(dev);
9220
9221         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9222                      NETDEV_FEATURE_COUNT);
9223         BUG_ON(dev_boot_phase);
9224         ASSERT_RTNL();
9225
9226         might_sleep();
9227
9228         /* When net_device's are persistent, this will be fatal. */
9229         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9230         BUG_ON(!net);
9231
9232         spin_lock_init(&dev->addr_list_lock);
9233         lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key);
9234
9235         ret = dev_get_valid_name(net, dev, dev->name);
9236         if (ret < 0)
9237                 goto out;
9238
9239         ret = -ENOMEM;
9240         dev->name_node = netdev_name_node_head_alloc(dev);
9241         if (!dev->name_node)
9242                 goto out;
9243
9244         /* Init, if this function is available */
9245         if (dev->netdev_ops->ndo_init) {
9246                 ret = dev->netdev_ops->ndo_init(dev);
9247                 if (ret) {
9248                         if (ret > 0)
9249                                 ret = -EIO;
9250                         goto out;
9251                 }
9252         }
9253
9254         if (((dev->hw_features | dev->features) &
9255              NETIF_F_HW_VLAN_CTAG_FILTER) &&
9256             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9257              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9258                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9259                 ret = -EINVAL;
9260                 goto err_uninit;
9261         }
9262
9263         ret = -EBUSY;
9264         if (!dev->ifindex)
9265                 dev->ifindex = dev_new_index(net);
9266         else if (__dev_get_by_index(net, dev->ifindex))
9267                 goto err_uninit;
9268
9269         /* Transfer changeable features to wanted_features and enable
9270          * software offloads (GSO and GRO).
9271          */
9272         dev->hw_features |= NETIF_F_SOFT_FEATURES;
9273         dev->features |= NETIF_F_SOFT_FEATURES;
9274
9275         if (dev->netdev_ops->ndo_udp_tunnel_add) {
9276                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9277                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9278         }
9279
9280         dev->wanted_features = dev->features & dev->hw_features;
9281
9282         if (!(dev->flags & IFF_LOOPBACK))
9283                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
9284
9285         /* If IPv4 TCP segmentation offload is supported we should also
9286          * allow the device to enable segmenting the frame with the option
9287          * of ignoring a static IP ID value.  This doesn't enable the
9288          * feature itself but allows the user to enable it later.
9289          */
9290         if (dev->hw_features & NETIF_F_TSO)
9291                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
9292         if (dev->vlan_features & NETIF_F_TSO)
9293                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
9294         if (dev->mpls_features & NETIF_F_TSO)
9295                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
9296         if (dev->hw_enc_features & NETIF_F_TSO)
9297                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
9298
9299         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
9300          */
9301         dev->vlan_features |= NETIF_F_HIGHDMA;
9302
9303         /* Make NETIF_F_SG inheritable to tunnel devices.
9304          */
9305         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
9306
9307         /* Make NETIF_F_SG inheritable to MPLS.
9308          */
9309         dev->mpls_features |= NETIF_F_SG;
9310
9311         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
9312         ret = notifier_to_errno(ret);
9313         if (ret)
9314                 goto err_uninit;
9315
9316         ret = netdev_register_kobject(dev);
9317         if (ret)
9318                 goto err_uninit;
9319         dev->reg_state = NETREG_REGISTERED;
9320
9321         __netdev_update_features(dev);
9322
9323         /*
9324          *      Default initial state at registry is that the
9325          *      device is present.
9326          */
9327
9328         set_bit(__LINK_STATE_PRESENT, &dev->state);
9329
9330         linkwatch_init_dev(dev);
9331
9332         dev_init_scheduler(dev);
9333         dev_hold(dev);
9334         list_netdevice(dev);
9335         add_device_randomness(dev->dev_addr, dev->addr_len);
9336
9337         /* If the device has permanent device address, driver should
9338          * set dev_addr and also addr_assign_type should be set to
9339          * NET_ADDR_PERM (default value).
9340          */
9341         if (dev->addr_assign_type == NET_ADDR_PERM)
9342                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
9343
9344         /* Notify protocols, that a new device appeared. */
9345         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
9346         ret = notifier_to_errno(ret);
9347         if (ret) {
9348                 rollback_registered(dev);
9349                 rcu_barrier();
9350
9351                 dev->reg_state = NETREG_UNREGISTERED;
9352         }
9353         /*
9354          *      Prevent userspace races by waiting until the network
9355          *      device is fully setup before sending notifications.
9356          */
9357         if (!dev->rtnl_link_ops ||
9358             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
9359                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9360
9361 out:
9362         return ret;
9363
9364 err_uninit:
9365         if (dev->name_node)
9366                 netdev_name_node_free(dev->name_node);
9367         if (dev->netdev_ops->ndo_uninit)
9368                 dev->netdev_ops->ndo_uninit(dev);
9369         if (dev->priv_destructor)
9370                 dev->priv_destructor(dev);
9371         goto out;
9372 }
9373 EXPORT_SYMBOL(register_netdevice);
9374
9375 /**
9376  *      init_dummy_netdev       - init a dummy network device for NAPI
9377  *      @dev: device to init
9378  *
9379  *      This takes a network device structure and initialize the minimum
9380  *      amount of fields so it can be used to schedule NAPI polls without
9381  *      registering a full blown interface. This is to be used by drivers
9382  *      that need to tie several hardware interfaces to a single NAPI
9383  *      poll scheduler due to HW limitations.
9384  */
9385 int init_dummy_netdev(struct net_device *dev)
9386 {
9387         /* Clear everything. Note we don't initialize spinlocks
9388          * are they aren't supposed to be taken by any of the
9389          * NAPI code and this dummy netdev is supposed to be
9390          * only ever used for NAPI polls
9391          */
9392         memset(dev, 0, sizeof(struct net_device));
9393
9394         /* make sure we BUG if trying to hit standard
9395          * register/unregister code path
9396          */
9397         dev->reg_state = NETREG_DUMMY;
9398
9399         /* NAPI wants this */
9400         INIT_LIST_HEAD(&dev->napi_list);
9401
9402         /* a dummy interface is started by default */
9403         set_bit(__LINK_STATE_PRESENT, &dev->state);
9404         set_bit(__LINK_STATE_START, &dev->state);
9405
9406         /* napi_busy_loop stats accounting wants this */
9407         dev_net_set(dev, &init_net);
9408
9409         /* Note : We dont allocate pcpu_refcnt for dummy devices,
9410          * because users of this 'device' dont need to change
9411          * its refcount.
9412          */
9413
9414         return 0;
9415 }
9416 EXPORT_SYMBOL_GPL(init_dummy_netdev);
9417
9418
9419 /**
9420  *      register_netdev - register a network device
9421  *      @dev: device to register
9422  *
9423  *      Take a completed network device structure and add it to the kernel
9424  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9425  *      chain. 0 is returned on success. A negative errno code is returned
9426  *      on a failure to set up the device, or if the name is a duplicate.
9427  *
9428  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
9429  *      and expands the device name if you passed a format string to
9430  *      alloc_netdev.
9431  */
9432 int register_netdev(struct net_device *dev)
9433 {
9434         int err;
9435
9436         if (rtnl_lock_killable())
9437                 return -EINTR;
9438         err = register_netdevice(dev);
9439         rtnl_unlock();
9440         return err;
9441 }
9442 EXPORT_SYMBOL(register_netdev);
9443
9444 int netdev_refcnt_read(const struct net_device *dev)
9445 {
9446         int i, refcnt = 0;
9447
9448         for_each_possible_cpu(i)
9449                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
9450         return refcnt;
9451 }
9452 EXPORT_SYMBOL(netdev_refcnt_read);
9453
9454 /**
9455  * netdev_wait_allrefs - wait until all references are gone.
9456  * @dev: target net_device
9457  *
9458  * This is called when unregistering network devices.
9459  *
9460  * Any protocol or device that holds a reference should register
9461  * for netdevice notification, and cleanup and put back the
9462  * reference if they receive an UNREGISTER event.
9463  * We can get stuck here if buggy protocols don't correctly
9464  * call dev_put.
9465  */
9466 static void netdev_wait_allrefs(struct net_device *dev)
9467 {
9468         unsigned long rebroadcast_time, warning_time;
9469         int refcnt;
9470
9471         linkwatch_forget_dev(dev);
9472
9473         rebroadcast_time = warning_time = jiffies;
9474         refcnt = netdev_refcnt_read(dev);
9475
9476         while (refcnt != 0) {
9477                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
9478                         rtnl_lock();
9479
9480                         /* Rebroadcast unregister notification */
9481                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9482
9483                         __rtnl_unlock();
9484                         rcu_barrier();
9485                         rtnl_lock();
9486
9487                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
9488                                      &dev->state)) {
9489                                 /* We must not have linkwatch events
9490                                  * pending on unregister. If this
9491                                  * happens, we simply run the queue
9492                                  * unscheduled, resulting in a noop
9493                                  * for this device.
9494                                  */
9495                                 linkwatch_run_queue();
9496                         }
9497
9498                         __rtnl_unlock();
9499
9500                         rebroadcast_time = jiffies;
9501                 }
9502
9503                 msleep(250);
9504
9505                 refcnt = netdev_refcnt_read(dev);
9506
9507                 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
9508                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
9509                                  dev->name, refcnt);
9510                         warning_time = jiffies;
9511                 }
9512         }
9513 }
9514
9515 /* The sequence is:
9516  *
9517  *      rtnl_lock();
9518  *      ...
9519  *      register_netdevice(x1);
9520  *      register_netdevice(x2);
9521  *      ...
9522  *      unregister_netdevice(y1);
9523  *      unregister_netdevice(y2);
9524  *      ...
9525  *      rtnl_unlock();
9526  *      free_netdev(y1);
9527  *      free_netdev(y2);
9528  *
9529  * We are invoked by rtnl_unlock().
9530  * This allows us to deal with problems:
9531  * 1) We can delete sysfs objects which invoke hotplug
9532  *    without deadlocking with linkwatch via keventd.
9533  * 2) Since we run with the RTNL semaphore not held, we can sleep
9534  *    safely in order to wait for the netdev refcnt to drop to zero.
9535  *
9536  * We must not return until all unregister events added during
9537  * the interval the lock was held have been completed.
9538  */
9539 void netdev_run_todo(void)
9540 {
9541         struct list_head list;
9542
9543         /* Snapshot list, allow later requests */
9544         list_replace_init(&net_todo_list, &list);
9545
9546         __rtnl_unlock();
9547
9548
9549         /* Wait for rcu callbacks to finish before next phase */
9550         if (!list_empty(&list))
9551                 rcu_barrier();
9552
9553         while (!list_empty(&list)) {
9554                 struct net_device *dev
9555                         = list_first_entry(&list, struct net_device, todo_list);
9556                 list_del(&dev->todo_list);
9557
9558                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
9559                         pr_err("network todo '%s' but state %d\n",
9560                                dev->name, dev->reg_state);
9561                         dump_stack();
9562                         continue;
9563                 }
9564
9565                 dev->reg_state = NETREG_UNREGISTERED;
9566
9567                 netdev_wait_allrefs(dev);
9568
9569                 /* paranoia */
9570                 BUG_ON(netdev_refcnt_read(dev));
9571                 BUG_ON(!list_empty(&dev->ptype_all));
9572                 BUG_ON(!list_empty(&dev->ptype_specific));
9573                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
9574                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
9575 #if IS_ENABLED(CONFIG_DECNET)
9576                 WARN_ON(dev->dn_ptr);
9577 #endif
9578                 if (dev->priv_destructor)
9579                         dev->priv_destructor(dev);
9580                 if (dev->needs_free_netdev)
9581                         free_netdev(dev);
9582
9583                 /* Report a network device has been unregistered */
9584                 rtnl_lock();
9585                 dev_net(dev)->dev_unreg_count--;
9586                 __rtnl_unlock();
9587                 wake_up(&netdev_unregistering_wq);
9588
9589                 /* Free network device */
9590                 kobject_put(&dev->dev.kobj);
9591         }
9592 }
9593
9594 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
9595  * all the same fields in the same order as net_device_stats, with only
9596  * the type differing, but rtnl_link_stats64 may have additional fields
9597  * at the end for newer counters.
9598  */
9599 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
9600                              const struct net_device_stats *netdev_stats)
9601 {
9602 #if BITS_PER_LONG == 64
9603         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9604         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9605         /* zero out counters that only exist in rtnl_link_stats64 */
9606         memset((char *)stats64 + sizeof(*netdev_stats), 0,
9607                sizeof(*stats64) - sizeof(*netdev_stats));
9608 #else
9609         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
9610         const unsigned long *src = (const unsigned long *)netdev_stats;
9611         u64 *dst = (u64 *)stats64;
9612
9613         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
9614         for (i = 0; i < n; i++)
9615                 dst[i] = src[i];
9616         /* zero out counters that only exist in rtnl_link_stats64 */
9617         memset((char *)stats64 + n * sizeof(u64), 0,
9618                sizeof(*stats64) - n * sizeof(u64));
9619 #endif
9620 }
9621 EXPORT_SYMBOL(netdev_stats_to_stats64);
9622
9623 /**
9624  *      dev_get_stats   - get network device statistics
9625  *      @dev: device to get statistics from
9626  *      @storage: place to store stats
9627  *
9628  *      Get network statistics from device. Return @storage.
9629  *      The device driver may provide its own method by setting
9630  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
9631  *      otherwise the internal statistics structure is used.
9632  */
9633 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
9634                                         struct rtnl_link_stats64 *storage)
9635 {
9636         const struct net_device_ops *ops = dev->netdev_ops;
9637
9638         if (ops->ndo_get_stats64) {
9639                 memset(storage, 0, sizeof(*storage));
9640                 ops->ndo_get_stats64(dev, storage);
9641         } else if (ops->ndo_get_stats) {
9642                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
9643         } else {
9644                 netdev_stats_to_stats64(storage, &dev->stats);
9645         }
9646         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
9647         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
9648         storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
9649         return storage;
9650 }
9651 EXPORT_SYMBOL(dev_get_stats);
9652
9653 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
9654 {
9655         struct netdev_queue *queue = dev_ingress_queue(dev);
9656
9657 #ifdef CONFIG_NET_CLS_ACT
9658         if (queue)
9659                 return queue;
9660         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
9661         if (!queue)
9662                 return NULL;
9663         netdev_init_one_queue(dev, queue, NULL);
9664         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
9665         queue->qdisc_sleeping = &noop_qdisc;
9666         rcu_assign_pointer(dev->ingress_queue, queue);
9667 #endif
9668         return queue;
9669 }
9670
9671 static const struct ethtool_ops default_ethtool_ops;
9672
9673 void netdev_set_default_ethtool_ops(struct net_device *dev,
9674                                     const struct ethtool_ops *ops)
9675 {
9676         if (dev->ethtool_ops == &default_ethtool_ops)
9677                 dev->ethtool_ops = ops;
9678 }
9679 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
9680
9681 void netdev_freemem(struct net_device *dev)
9682 {
9683         char *addr = (char *)dev - dev->padded;
9684
9685         kvfree(addr);
9686 }
9687
9688 /**
9689  * alloc_netdev_mqs - allocate network device
9690  * @sizeof_priv: size of private data to allocate space for
9691  * @name: device name format string
9692  * @name_assign_type: origin of device name
9693  * @setup: callback to initialize device
9694  * @txqs: the number of TX subqueues to allocate
9695  * @rxqs: the number of RX subqueues to allocate
9696  *
9697  * Allocates a struct net_device with private data area for driver use
9698  * and performs basic initialization.  Also allocates subqueue structs
9699  * for each queue on the device.
9700  */
9701 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
9702                 unsigned char name_assign_type,
9703                 void (*setup)(struct net_device *),
9704                 unsigned int txqs, unsigned int rxqs)
9705 {
9706         struct net_device *dev;
9707         unsigned int alloc_size;
9708         struct net_device *p;
9709
9710         BUG_ON(strlen(name) >= sizeof(dev->name));
9711
9712         if (txqs < 1) {
9713                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
9714                 return NULL;
9715         }
9716
9717         if (rxqs < 1) {
9718                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
9719                 return NULL;
9720         }
9721
9722         alloc_size = sizeof(struct net_device);
9723         if (sizeof_priv) {
9724                 /* ensure 32-byte alignment of private area */
9725                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
9726                 alloc_size += sizeof_priv;
9727         }
9728         /* ensure 32-byte alignment of whole construct */
9729         alloc_size += NETDEV_ALIGN - 1;
9730
9731         p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9732         if (!p)
9733                 return NULL;
9734
9735         dev = PTR_ALIGN(p, NETDEV_ALIGN);
9736         dev->padded = (char *)dev - (char *)p;
9737
9738         dev->pcpu_refcnt = alloc_percpu(int);
9739         if (!dev->pcpu_refcnt)
9740                 goto free_dev;
9741
9742         if (dev_addr_init(dev))
9743                 goto free_pcpu;
9744
9745         dev_mc_init(dev);
9746         dev_uc_init(dev);
9747
9748         dev_net_set(dev, &init_net);
9749
9750         netdev_register_lockdep_key(dev);
9751
9752         dev->gso_max_size = GSO_MAX_SIZE;
9753         dev->gso_max_segs = GSO_MAX_SEGS;
9754         dev->upper_level = 1;
9755         dev->lower_level = 1;
9756
9757         INIT_LIST_HEAD(&dev->napi_list);
9758         INIT_LIST_HEAD(&dev->unreg_list);
9759         INIT_LIST_HEAD(&dev->close_list);
9760         INIT_LIST_HEAD(&dev->link_watch_list);
9761         INIT_LIST_HEAD(&dev->adj_list.upper);
9762         INIT_LIST_HEAD(&dev->adj_list.lower);
9763         INIT_LIST_HEAD(&dev->ptype_all);
9764         INIT_LIST_HEAD(&dev->ptype_specific);
9765 #ifdef CONFIG_NET_SCHED
9766         hash_init(dev->qdisc_hash);
9767 #endif
9768         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
9769         setup(dev);
9770
9771         if (!dev->tx_queue_len) {
9772                 dev->priv_flags |= IFF_NO_QUEUE;
9773                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
9774         }
9775
9776         dev->num_tx_queues = txqs;
9777         dev->real_num_tx_queues = txqs;
9778         if (netif_alloc_netdev_queues(dev))
9779                 goto free_all;
9780
9781         dev->num_rx_queues = rxqs;
9782         dev->real_num_rx_queues = rxqs;
9783         if (netif_alloc_rx_queues(dev))
9784                 goto free_all;
9785
9786         strcpy(dev->name, name);
9787         dev->name_assign_type = name_assign_type;
9788         dev->group = INIT_NETDEV_GROUP;
9789         if (!dev->ethtool_ops)
9790                 dev->ethtool_ops = &default_ethtool_ops;
9791
9792         nf_hook_ingress_init(dev);
9793
9794         return dev;
9795
9796 free_all:
9797         free_netdev(dev);
9798         return NULL;
9799
9800 free_pcpu:
9801         free_percpu(dev->pcpu_refcnt);
9802 free_dev:
9803         netdev_freemem(dev);
9804         return NULL;
9805 }
9806 EXPORT_SYMBOL(alloc_netdev_mqs);
9807
9808 /**
9809  * free_netdev - free network device
9810  * @dev: device
9811  *
9812  * This function does the last stage of destroying an allocated device
9813  * interface. The reference to the device object is released. If this
9814  * is the last reference then it will be freed.Must be called in process
9815  * context.
9816  */
9817 void free_netdev(struct net_device *dev)
9818 {
9819         struct napi_struct *p, *n;
9820
9821         might_sleep();
9822         netif_free_tx_queues(dev);
9823         netif_free_rx_queues(dev);
9824
9825         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
9826
9827         /* Flush device addresses */
9828         dev_addr_flush(dev);
9829
9830         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
9831                 netif_napi_del(p);
9832
9833         free_percpu(dev->pcpu_refcnt);
9834         dev->pcpu_refcnt = NULL;
9835
9836         netdev_unregister_lockdep_key(dev);
9837
9838         /*  Compatibility with error handling in drivers */
9839         if (dev->reg_state == NETREG_UNINITIALIZED) {
9840                 netdev_freemem(dev);
9841                 return;
9842         }
9843
9844         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
9845         dev->reg_state = NETREG_RELEASED;
9846
9847         /* will free via device release */
9848         put_device(&dev->dev);
9849 }
9850 EXPORT_SYMBOL(free_netdev);
9851
9852 /**
9853  *      synchronize_net -  Synchronize with packet receive processing
9854  *
9855  *      Wait for packets currently being received to be done.
9856  *      Does not block later packets from starting.
9857  */
9858 void synchronize_net(void)
9859 {
9860         might_sleep();
9861         if (rtnl_is_locked())
9862                 synchronize_rcu_expedited();
9863         else
9864                 synchronize_rcu();
9865 }
9866 EXPORT_SYMBOL(synchronize_net);
9867
9868 /**
9869  *      unregister_netdevice_queue - remove device from the kernel
9870  *      @dev: device
9871  *      @head: list
9872  *
9873  *      This function shuts down a device interface and removes it
9874  *      from the kernel tables.
9875  *      If head not NULL, device is queued to be unregistered later.
9876  *
9877  *      Callers must hold the rtnl semaphore.  You may want
9878  *      unregister_netdev() instead of this.
9879  */
9880
9881 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
9882 {
9883         ASSERT_RTNL();
9884
9885         if (head) {
9886                 list_move_tail(&dev->unreg_list, head);
9887         } else {
9888                 rollback_registered(dev);
9889                 /* Finish processing unregister after unlock */
9890                 net_set_todo(dev);
9891         }
9892 }
9893 EXPORT_SYMBOL(unregister_netdevice_queue);
9894
9895 /**
9896  *      unregister_netdevice_many - unregister many devices
9897  *      @head: list of devices
9898  *
9899  *  Note: As most callers use a stack allocated list_head,
9900  *  we force a list_del() to make sure stack wont be corrupted later.
9901  */
9902 void unregister_netdevice_many(struct list_head *head)
9903 {
9904         struct net_device *dev;
9905
9906         if (!list_empty(head)) {
9907                 rollback_registered_many(head);
9908                 list_for_each_entry(dev, head, unreg_list)
9909                         net_set_todo(dev);
9910                 list_del(head);
9911         }
9912 }
9913 EXPORT_SYMBOL(unregister_netdevice_many);
9914
9915 /**
9916  *      unregister_netdev - remove device from the kernel
9917  *      @dev: device
9918  *
9919  *      This function shuts down a device interface and removes it
9920  *      from the kernel tables.
9921  *
9922  *      This is just a wrapper for unregister_netdevice that takes
9923  *      the rtnl semaphore.  In general you want to use this and not
9924  *      unregister_netdevice.
9925  */
9926 void unregister_netdev(struct net_device *dev)
9927 {
9928         rtnl_lock();
9929         unregister_netdevice(dev);
9930         rtnl_unlock();
9931 }
9932 EXPORT_SYMBOL(unregister_netdev);
9933
9934 /**
9935  *      dev_change_net_namespace - move device to different nethost namespace
9936  *      @dev: device
9937  *      @net: network namespace
9938  *      @pat: If not NULL name pattern to try if the current device name
9939  *            is already taken in the destination network namespace.
9940  *
9941  *      This function shuts down a device interface and moves it
9942  *      to a new network namespace. On success 0 is returned, on
9943  *      a failure a netagive errno code is returned.
9944  *
9945  *      Callers must hold the rtnl semaphore.
9946  */
9947
9948 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
9949 {
9950         int err, new_nsid, new_ifindex;
9951
9952         ASSERT_RTNL();
9953
9954         /* Don't allow namespace local devices to be moved. */
9955         err = -EINVAL;
9956         if (dev->features & NETIF_F_NETNS_LOCAL)
9957                 goto out;
9958
9959         /* Ensure the device has been registrered */
9960         if (dev->reg_state != NETREG_REGISTERED)
9961                 goto out;
9962
9963         /* Get out if there is nothing todo */
9964         err = 0;
9965         if (net_eq(dev_net(dev), net))
9966                 goto out;
9967
9968         /* Pick the destination device name, and ensure
9969          * we can use it in the destination network namespace.
9970          */
9971         err = -EEXIST;
9972         if (__dev_get_by_name(net, dev->name)) {
9973                 /* We get here if we can't use the current device name */
9974                 if (!pat)
9975                         goto out;
9976                 err = dev_get_valid_name(net, dev, pat);
9977                 if (err < 0)
9978                         goto out;
9979         }
9980
9981         /*
9982          * And now a mini version of register_netdevice unregister_netdevice.
9983          */
9984
9985         /* If device is running close it first. */
9986         dev_close(dev);
9987
9988         /* And unlink it from device chain */
9989         unlist_netdevice(dev);
9990
9991         synchronize_net();
9992
9993         /* Shutdown queueing discipline. */
9994         dev_shutdown(dev);
9995
9996         /* Notify protocols, that we are about to destroy
9997          * this device. They should clean all the things.
9998          *
9999          * Note that dev->reg_state stays at NETREG_REGISTERED.
10000          * This is wanted because this way 8021q and macvlan know
10001          * the device is just moving and can keep their slaves up.
10002          */
10003         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10004         rcu_barrier();
10005
10006         new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10007         /* If there is an ifindex conflict assign a new one */
10008         if (__dev_get_by_index(net, dev->ifindex))
10009                 new_ifindex = dev_new_index(net);
10010         else
10011                 new_ifindex = dev->ifindex;
10012
10013         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10014                             new_ifindex);
10015
10016         /*
10017          *      Flush the unicast and multicast chains
10018          */
10019         dev_uc_flush(dev);
10020         dev_mc_flush(dev);
10021
10022         /* Send a netdev-removed uevent to the old namespace */
10023         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
10024         netdev_adjacent_del_links(dev);
10025
10026         /* Actually switch the network namespace */
10027         dev_net_set(dev, net);
10028         dev->ifindex = new_ifindex;
10029
10030         /* Send a netdev-add uevent to the new namespace */
10031         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
10032         netdev_adjacent_add_links(dev);
10033
10034         /* Fixup kobjects */
10035         err = device_rename(&dev->dev, dev->name);
10036         WARN_ON(err);
10037
10038         /* Add the device back in the hashes */
10039         list_netdevice(dev);
10040
10041         /* Notify protocols, that a new device appeared. */
10042         call_netdevice_notifiers(NETDEV_REGISTER, dev);
10043
10044         /*
10045          *      Prevent userspace races by waiting until the network
10046          *      device is fully setup before sending notifications.
10047          */
10048         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10049
10050         synchronize_net();
10051         err = 0;
10052 out:
10053         return err;
10054 }
10055 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
10056
10057 static int dev_cpu_dead(unsigned int oldcpu)
10058 {
10059         struct sk_buff **list_skb;
10060         struct sk_buff *skb;
10061         unsigned int cpu;
10062         struct softnet_data *sd, *oldsd, *remsd = NULL;
10063
10064         local_irq_disable();
10065         cpu = smp_processor_id();
10066         sd = &per_cpu(softnet_data, cpu);
10067         oldsd = &per_cpu(softnet_data, oldcpu);
10068
10069         /* Find end of our completion_queue. */
10070         list_skb = &sd->completion_queue;
10071         while (*list_skb)
10072                 list_skb = &(*list_skb)->next;
10073         /* Append completion queue from offline CPU. */
10074         *list_skb = oldsd->completion_queue;
10075         oldsd->completion_queue = NULL;
10076
10077         /* Append output queue from offline CPU. */
10078         if (oldsd->output_queue) {
10079                 *sd->output_queue_tailp = oldsd->output_queue;
10080                 sd->output_queue_tailp = oldsd->output_queue_tailp;
10081                 oldsd->output_queue = NULL;
10082                 oldsd->output_queue_tailp = &oldsd->output_queue;
10083         }
10084         /* Append NAPI poll list from offline CPU, with one exception :
10085          * process_backlog() must be called by cpu owning percpu backlog.
10086          * We properly handle process_queue & input_pkt_queue later.
10087          */
10088         while (!list_empty(&oldsd->poll_list)) {
10089                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10090                                                             struct napi_struct,
10091                                                             poll_list);
10092
10093                 list_del_init(&napi->poll_list);
10094                 if (napi->poll == process_backlog)
10095                         napi->state = 0;
10096                 else
10097                         ____napi_schedule(sd, napi);
10098         }
10099
10100         raise_softirq_irqoff(NET_TX_SOFTIRQ);
10101         local_irq_enable();
10102
10103 #ifdef CONFIG_RPS
10104         remsd = oldsd->rps_ipi_list;
10105         oldsd->rps_ipi_list = NULL;
10106 #endif
10107         /* send out pending IPI's on offline CPU */
10108         net_rps_send_ipi(remsd);
10109
10110         /* Process offline CPU's input_pkt_queue */
10111         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
10112                 netif_rx_ni(skb);
10113                 input_queue_head_incr(oldsd);
10114         }
10115         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
10116                 netif_rx_ni(skb);
10117                 input_queue_head_incr(oldsd);
10118         }
10119
10120         return 0;
10121 }
10122
10123 /**
10124  *      netdev_increment_features - increment feature set by one
10125  *      @all: current feature set
10126  *      @one: new feature set
10127  *      @mask: mask feature set
10128  *
10129  *      Computes a new feature set after adding a device with feature set
10130  *      @one to the master device with current feature set @all.  Will not
10131  *      enable anything that is off in @mask. Returns the new feature set.
10132  */
10133 netdev_features_t netdev_increment_features(netdev_features_t all,
10134         netdev_features_t one, netdev_features_t mask)
10135 {
10136         if (mask & NETIF_F_HW_CSUM)
10137                 mask |= NETIF_F_CSUM_MASK;
10138         mask |= NETIF_F_VLAN_CHALLENGED;
10139
10140         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
10141         all &= one | ~NETIF_F_ALL_FOR_ALL;
10142
10143         /* If one device supports hw checksumming, set for all. */
10144         if (all & NETIF_F_HW_CSUM)
10145                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
10146
10147         return all;
10148 }
10149 EXPORT_SYMBOL(netdev_increment_features);
10150
10151 static struct hlist_head * __net_init netdev_create_hash(void)
10152 {
10153         int i;
10154         struct hlist_head *hash;
10155
10156         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
10157         if (hash != NULL)
10158                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
10159                         INIT_HLIST_HEAD(&hash[i]);
10160
10161         return hash;
10162 }
10163
10164 /* Initialize per network namespace state */
10165 static int __net_init netdev_init(struct net *net)
10166 {
10167         BUILD_BUG_ON(GRO_HASH_BUCKETS >
10168                      8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask));
10169
10170         if (net != &init_net)
10171                 INIT_LIST_HEAD(&net->dev_base_head);
10172
10173         net->dev_name_head = netdev_create_hash();
10174         if (net->dev_name_head == NULL)
10175                 goto err_name;
10176
10177         net->dev_index_head = netdev_create_hash();
10178         if (net->dev_index_head == NULL)
10179                 goto err_idx;
10180
10181         RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
10182
10183         return 0;
10184
10185 err_idx:
10186         kfree(net->dev_name_head);
10187 err_name:
10188         return -ENOMEM;
10189 }
10190
10191 /**
10192  *      netdev_drivername - network driver for the device
10193  *      @dev: network device
10194  *
10195  *      Determine network driver for device.
10196  */
10197 const char *netdev_drivername(const struct net_device *dev)
10198 {
10199         const struct device_driver *driver;
10200         const struct device *parent;
10201         const char *empty = "";
10202
10203         parent = dev->dev.parent;
10204         if (!parent)
10205                 return empty;
10206
10207         driver = parent->driver;
10208         if (driver && driver->name)
10209                 return driver->name;
10210         return empty;
10211 }
10212
10213 static void __netdev_printk(const char *level, const struct net_device *dev,
10214                             struct va_format *vaf)
10215 {
10216         if (dev && dev->dev.parent) {
10217                 dev_printk_emit(level[1] - '0',
10218                                 dev->dev.parent,
10219                                 "%s %s %s%s: %pV",
10220                                 dev_driver_string(dev->dev.parent),
10221                                 dev_name(dev->dev.parent),
10222                                 netdev_name(dev), netdev_reg_state(dev),
10223                                 vaf);
10224         } else if (dev) {
10225                 printk("%s%s%s: %pV",
10226                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
10227         } else {
10228                 printk("%s(NULL net_device): %pV", level, vaf);
10229         }
10230 }
10231
10232 void netdev_printk(const char *level, const struct net_device *dev,
10233                    const char *format, ...)
10234 {
10235         struct va_format vaf;
10236         va_list args;
10237
10238         va_start(args, format);
10239
10240         vaf.fmt = format;
10241         vaf.va = &args;
10242
10243         __netdev_printk(level, dev, &vaf);
10244
10245         va_end(args);
10246 }
10247 EXPORT_SYMBOL(netdev_printk);
10248
10249 #define define_netdev_printk_level(func, level)                 \
10250 void func(const struct net_device *dev, const char *fmt, ...)   \
10251 {                                                               \
10252         struct va_format vaf;                                   \
10253         va_list args;                                           \
10254                                                                 \
10255         va_start(args, fmt);                                    \
10256                                                                 \
10257         vaf.fmt = fmt;                                          \
10258         vaf.va = &args;                                         \
10259                                                                 \
10260         __netdev_printk(level, dev, &vaf);                      \
10261                                                                 \
10262         va_end(args);                                           \
10263 }                                                               \
10264 EXPORT_SYMBOL(func);
10265
10266 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
10267 define_netdev_printk_level(netdev_alert, KERN_ALERT);
10268 define_netdev_printk_level(netdev_crit, KERN_CRIT);
10269 define_netdev_printk_level(netdev_err, KERN_ERR);
10270 define_netdev_printk_level(netdev_warn, KERN_WARNING);
10271 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
10272 define_netdev_printk_level(netdev_info, KERN_INFO);
10273
10274 static void __net_exit netdev_exit(struct net *net)
10275 {
10276         kfree(net->dev_name_head);
10277         kfree(net->dev_index_head);
10278         if (net != &init_net)
10279                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
10280 }
10281
10282 static struct pernet_operations __net_initdata netdev_net_ops = {
10283         .init = netdev_init,
10284         .exit = netdev_exit,
10285 };
10286
10287 static void __net_exit default_device_exit(struct net *net)
10288 {
10289         struct net_device *dev, *aux;
10290         /*
10291          * Push all migratable network devices back to the
10292          * initial network namespace
10293          */
10294         rtnl_lock();
10295         for_each_netdev_safe(net, dev, aux) {
10296                 int err;
10297                 char fb_name[IFNAMSIZ];
10298
10299                 /* Ignore unmoveable devices (i.e. loopback) */
10300                 if (dev->features & NETIF_F_NETNS_LOCAL)
10301                         continue;
10302
10303                 /* Leave virtual devices for the generic cleanup */
10304                 if (dev->rtnl_link_ops)
10305                         continue;
10306
10307                 /* Push remaining network devices to init_net */
10308                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
10309                 if (__dev_get_by_name(&init_net, fb_name))
10310                         snprintf(fb_name, IFNAMSIZ, "dev%%d");
10311                 err = dev_change_net_namespace(dev, &init_net, fb_name);
10312                 if (err) {
10313                         pr_emerg("%s: failed to move %s to init_net: %d\n",
10314                                  __func__, dev->name, err);
10315                         BUG();
10316                 }
10317         }
10318         rtnl_unlock();
10319 }
10320
10321 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
10322 {
10323         /* Return with the rtnl_lock held when there are no network
10324          * devices unregistering in any network namespace in net_list.
10325          */
10326         struct net *net;
10327         bool unregistering;
10328         DEFINE_WAIT_FUNC(wait, woken_wake_function);
10329
10330         add_wait_queue(&netdev_unregistering_wq, &wait);
10331         for (;;) {
10332                 unregistering = false;
10333                 rtnl_lock();
10334                 list_for_each_entry(net, net_list, exit_list) {
10335                         if (net->dev_unreg_count > 0) {
10336                                 unregistering = true;
10337                                 break;
10338                         }
10339                 }
10340                 if (!unregistering)
10341                         break;
10342                 __rtnl_unlock();
10343
10344                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
10345         }
10346         remove_wait_queue(&netdev_unregistering_wq, &wait);
10347 }
10348
10349 static void __net_exit default_device_exit_batch(struct list_head *net_list)
10350 {
10351         /* At exit all network devices most be removed from a network
10352          * namespace.  Do this in the reverse order of registration.
10353          * Do this across as many network namespaces as possible to
10354          * improve batching efficiency.
10355          */
10356         struct net_device *dev;
10357         struct net *net;
10358         LIST_HEAD(dev_kill_list);
10359
10360         /* To prevent network device cleanup code from dereferencing
10361          * loopback devices or network devices that have been freed
10362          * wait here for all pending unregistrations to complete,
10363          * before unregistring the loopback device and allowing the
10364          * network namespace be freed.
10365          *
10366          * The netdev todo list containing all network devices
10367          * unregistrations that happen in default_device_exit_batch
10368          * will run in the rtnl_unlock() at the end of
10369          * default_device_exit_batch.
10370          */
10371         rtnl_lock_unregistering(net_list);
10372         list_for_each_entry(net, net_list, exit_list) {
10373                 for_each_netdev_reverse(net, dev) {
10374                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
10375                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
10376                         else
10377                                 unregister_netdevice_queue(dev, &dev_kill_list);
10378                 }
10379         }
10380         unregister_netdevice_many(&dev_kill_list);
10381         rtnl_unlock();
10382 }
10383
10384 static struct pernet_operations __net_initdata default_device_ops = {
10385         .exit = default_device_exit,
10386         .exit_batch = default_device_exit_batch,
10387 };
10388
10389 /*
10390  *      Initialize the DEV module. At boot time this walks the device list and
10391  *      unhooks any devices that fail to initialise (normally hardware not
10392  *      present) and leaves us with a valid list of present and active devices.
10393  *
10394  */
10395
10396 /*
10397  *       This is called single threaded during boot, so no need
10398  *       to take the rtnl semaphore.
10399  */
10400 static int __init net_dev_init(void)
10401 {
10402         int i, rc = -ENOMEM;
10403
10404         BUG_ON(!dev_boot_phase);
10405
10406         if (dev_proc_init())
10407                 goto out;
10408
10409         if (netdev_kobject_init())
10410                 goto out;
10411
10412         INIT_LIST_HEAD(&ptype_all);
10413         for (i = 0; i < PTYPE_HASH_SIZE; i++)
10414                 INIT_LIST_HEAD(&ptype_base[i]);
10415
10416         INIT_LIST_HEAD(&offload_base);
10417
10418         if (register_pernet_subsys(&netdev_net_ops))
10419                 goto out;
10420
10421         /*
10422          *      Initialise the packet receive queues.
10423          */
10424
10425         for_each_possible_cpu(i) {
10426                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
10427                 struct softnet_data *sd = &per_cpu(softnet_data, i);
10428
10429                 INIT_WORK(flush, flush_backlog);
10430
10431                 skb_queue_head_init(&sd->input_pkt_queue);
10432                 skb_queue_head_init(&sd->process_queue);
10433 #ifdef CONFIG_XFRM_OFFLOAD
10434                 skb_queue_head_init(&sd->xfrm_backlog);
10435 #endif
10436                 INIT_LIST_HEAD(&sd->poll_list);
10437                 sd->output_queue_tailp = &sd->output_queue;
10438 #ifdef CONFIG_RPS
10439                 sd->csd.func = rps_trigger_softirq;
10440                 sd->csd.info = sd;
10441                 sd->cpu = i;
10442 #endif
10443
10444                 init_gro_hash(&sd->backlog);
10445                 sd->backlog.poll = process_backlog;
10446                 sd->backlog.weight = weight_p;
10447         }
10448
10449         dev_boot_phase = 0;
10450
10451         /* The loopback device is special if any other network devices
10452          * is present in a network namespace the loopback device must
10453          * be present. Since we now dynamically allocate and free the
10454          * loopback device ensure this invariant is maintained by
10455          * keeping the loopback device as the first device on the
10456          * list of network devices.  Ensuring the loopback devices
10457          * is the first device that appears and the last network device
10458          * that disappears.
10459          */
10460         if (register_pernet_device(&loopback_net_ops))
10461                 goto out;
10462
10463         if (register_pernet_device(&default_device_ops))
10464                 goto out;
10465
10466         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
10467         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
10468
10469         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
10470                                        NULL, dev_cpu_dead);
10471         WARN_ON(rc < 0);
10472         rc = 0;
10473 out:
10474         return rc;
10475 }
10476
10477 subsys_initcall(net_dev_init);