net: remove unnecessary variables and callback
[linux-2.6-microblaze.git] / net / core / dev.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *      Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:        Ross Biro
7  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *      Additional Authors:
11  *              Florian la Roche <rzsfl@rz.uni-sb.de>
12  *              Alan Cox <gw4pts@gw4pts.ampr.org>
13  *              David Hinds <dahinds@users.sourceforge.net>
14  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *              Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *      Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *              Alan Cox        :       device private ioctl copies fields back.
24  *              Alan Cox        :       Transmit queue code does relevant
25  *                                      stunts to keep the queue safe.
26  *              Alan Cox        :       Fixed double lock.
27  *              Alan Cox        :       Fixed promisc NULL pointer trap
28  *              ????????        :       Support the full private ioctl range
29  *              Alan Cox        :       Moved ioctl permission check into
30  *                                      drivers
31  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
32  *              Alan Cox        :       100 backlog just doesn't cut it when
33  *                                      you start doing multicast video 8)
34  *              Alan Cox        :       Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *              Alan Cox        :       Took out transmit every packet pass
37  *                                      Saved a few bytes in the ioctl handler
38  *              Alan Cox        :       Network driver sets packet type before
39  *                                      calling netif_rx. Saves a function
40  *                                      call a packet.
41  *              Alan Cox        :       Hashed net_bh()
42  *              Richard Kooijman:       Timestamp fixes.
43  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
44  *              Alan Cox        :       Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *                                      changes.
47  *              Rudi Cilibrasi  :       Pass the right thing to
48  *                                      set_mac_address()
49  *              Dave Miller     :       32bit quantity for the device lock to
50  *                                      make it work out on a Sparc.
51  *              Bjorn Ekwall    :       Added KERNELD hack.
52  *              Alan Cox        :       Cleaned up the backlog initialise.
53  *              Craig Metz      :       SIOCGIFCONF fix if space for under
54  *                                      1 device.
55  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
56  *                                      is no device open function.
57  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
58  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
59  *              Cyrus Durgin    :       Cleaned for KMOD
60  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
61  *                                      A network device unload needs to purge
62  *                                      the backlog queue.
63  *      Paul Rusty Russell      :       SIOCSIFNAME
64  *              Pekka Riikonen  :       Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *                                      - netif_rx() feedback
69  */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/string.h>
83 #include <linux/mm.h>
84 #include <linux/socket.h>
85 #include <linux/sockios.h>
86 #include <linux/errno.h>
87 #include <linux/interrupt.h>
88 #include <linux/if_ether.h>
89 #include <linux/netdevice.h>
90 #include <linux/etherdevice.h>
91 #include <linux/ethtool.h>
92 #include <linux/skbuff.h>
93 #include <linux/bpf.h>
94 #include <linux/bpf_trace.h>
95 #include <net/net_namespace.h>
96 #include <net/sock.h>
97 #include <net/busy_poll.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/stat.h>
100 #include <net/dst.h>
101 #include <net/dst_metadata.h>
102 #include <net/pkt_sched.h>
103 #include <net/pkt_cls.h>
104 #include <net/checksum.h>
105 #include <net/xfrm.h>
106 #include <linux/highmem.h>
107 #include <linux/init.h>
108 #include <linux/module.h>
109 #include <linux/netpoll.h>
110 #include <linux/rcupdate.h>
111 #include <linux/delay.h>
112 #include <net/iw_handler.h>
113 #include <asm/current.h>
114 #include <linux/audit.h>
115 #include <linux/dmaengine.h>
116 #include <linux/err.h>
117 #include <linux/ctype.h>
118 #include <linux/if_arp.h>
119 #include <linux/if_vlan.h>
120 #include <linux/ip.h>
121 #include <net/ip.h>
122 #include <net/mpls.h>
123 #include <linux/ipv6.h>
124 #include <linux/in.h>
125 #include <linux/jhash.h>
126 #include <linux/random.h>
127 #include <trace/events/napi.h>
128 #include <trace/events/net.h>
129 #include <trace/events/skb.h>
130 #include <linux/inetdevice.h>
131 #include <linux/cpu_rmap.h>
132 #include <linux/static_key.h>
133 #include <linux/hashtable.h>
134 #include <linux/vmalloc.h>
135 #include <linux/if_macvlan.h>
136 #include <linux/errqueue.h>
137 #include <linux/hrtimer.h>
138 #include <linux/netfilter_ingress.h>
139 #include <linux/crash_dump.h>
140 #include <linux/sctp.h>
141 #include <net/udp_tunnel.h>
142 #include <linux/net_namespace.h>
143 #include <linux/indirect_call_wrapper.h>
144 #include <net/devlink.h>
145
146 #include "net-sysfs.h"
147
148 #define MAX_GRO_SKBS 8
149 #define MAX_NEST_DEV 8
150
151 /* This should be increased if a protocol with a bigger head is added. */
152 #define GRO_MAX_HEAD (MAX_HEADER + 128)
153
154 static DEFINE_SPINLOCK(ptype_lock);
155 static DEFINE_SPINLOCK(offload_lock);
156 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
157 struct list_head ptype_all __read_mostly;       /* Taps */
158 static struct list_head offload_base __read_mostly;
159
160 static int netif_rx_internal(struct sk_buff *skb);
161 static int call_netdevice_notifiers_info(unsigned long val,
162                                          struct netdev_notifier_info *info);
163 static int call_netdevice_notifiers_extack(unsigned long val,
164                                            struct net_device *dev,
165                                            struct netlink_ext_ack *extack);
166 static struct napi_struct *napi_by_id(unsigned int napi_id);
167
168 /*
169  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
170  * semaphore.
171  *
172  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
173  *
174  * Writers must hold the rtnl semaphore while they loop through the
175  * dev_base_head list, and hold dev_base_lock for writing when they do the
176  * actual updates.  This allows pure readers to access the list even
177  * while a writer is preparing to update it.
178  *
179  * To put it another way, dev_base_lock is held for writing only to
180  * protect against pure readers; the rtnl semaphore provides the
181  * protection against other writers.
182  *
183  * See, for example usages, register_netdevice() and
184  * unregister_netdevice(), which must be called with the rtnl
185  * semaphore held.
186  */
187 DEFINE_RWLOCK(dev_base_lock);
188 EXPORT_SYMBOL(dev_base_lock);
189
190 static DEFINE_MUTEX(ifalias_mutex);
191
192 /* protects napi_hash addition/deletion and napi_gen_id */
193 static DEFINE_SPINLOCK(napi_hash_lock);
194
195 static unsigned int napi_gen_id = NR_CPUS;
196 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
197
198 static seqcount_t devnet_rename_seq;
199
200 static inline void dev_base_seq_inc(struct net *net)
201 {
202         while (++net->dev_base_seq == 0)
203                 ;
204 }
205
206 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
207 {
208         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
209
210         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
211 }
212
213 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
214 {
215         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
216 }
217
218 static inline void rps_lock(struct softnet_data *sd)
219 {
220 #ifdef CONFIG_RPS
221         spin_lock(&sd->input_pkt_queue.lock);
222 #endif
223 }
224
225 static inline void rps_unlock(struct softnet_data *sd)
226 {
227 #ifdef CONFIG_RPS
228         spin_unlock(&sd->input_pkt_queue.lock);
229 #endif
230 }
231
232 /* Device list insertion */
233 static void list_netdevice(struct net_device *dev)
234 {
235         struct net *net = dev_net(dev);
236
237         ASSERT_RTNL();
238
239         write_lock_bh(&dev_base_lock);
240         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
241         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
242         hlist_add_head_rcu(&dev->index_hlist,
243                            dev_index_hash(net, dev->ifindex));
244         write_unlock_bh(&dev_base_lock);
245
246         dev_base_seq_inc(net);
247 }
248
249 /* Device list removal
250  * caller must respect a RCU grace period before freeing/reusing dev
251  */
252 static void unlist_netdevice(struct net_device *dev)
253 {
254         ASSERT_RTNL();
255
256         /* Unlink dev from the device chain */
257         write_lock_bh(&dev_base_lock);
258         list_del_rcu(&dev->dev_list);
259         hlist_del_rcu(&dev->name_hlist);
260         hlist_del_rcu(&dev->index_hlist);
261         write_unlock_bh(&dev_base_lock);
262
263         dev_base_seq_inc(dev_net(dev));
264 }
265
266 /*
267  *      Our notifier list
268  */
269
270 static RAW_NOTIFIER_HEAD(netdev_chain);
271
272 /*
273  *      Device drivers call our routines to queue packets here. We empty the
274  *      queue in the local softnet handler.
275  */
276
277 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
278 EXPORT_PER_CPU_SYMBOL(softnet_data);
279
280 /*******************************************************************************
281  *
282  *              Protocol management and registration routines
283  *
284  *******************************************************************************/
285
286
287 /*
288  *      Add a protocol ID to the list. Now that the input handler is
289  *      smarter we can dispense with all the messy stuff that used to be
290  *      here.
291  *
292  *      BEWARE!!! Protocol handlers, mangling input packets,
293  *      MUST BE last in hash buckets and checking protocol handlers
294  *      MUST start from promiscuous ptype_all chain in net_bh.
295  *      It is true now, do not change it.
296  *      Explanation follows: if protocol handler, mangling packet, will
297  *      be the first on list, it is not able to sense, that packet
298  *      is cloned and should be copied-on-write, so that it will
299  *      change it and subsequent readers will get broken packet.
300  *                                                      --ANK (980803)
301  */
302
303 static inline struct list_head *ptype_head(const struct packet_type *pt)
304 {
305         if (pt->type == htons(ETH_P_ALL))
306                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
307         else
308                 return pt->dev ? &pt->dev->ptype_specific :
309                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
310 }
311
312 /**
313  *      dev_add_pack - add packet handler
314  *      @pt: packet type declaration
315  *
316  *      Add a protocol handler to the networking stack. The passed &packet_type
317  *      is linked into kernel lists and may not be freed until it has been
318  *      removed from the kernel lists.
319  *
320  *      This call does not sleep therefore it can not
321  *      guarantee all CPU's that are in middle of receiving packets
322  *      will see the new packet type (until the next received packet).
323  */
324
325 void dev_add_pack(struct packet_type *pt)
326 {
327         struct list_head *head = ptype_head(pt);
328
329         spin_lock(&ptype_lock);
330         list_add_rcu(&pt->list, head);
331         spin_unlock(&ptype_lock);
332 }
333 EXPORT_SYMBOL(dev_add_pack);
334
335 /**
336  *      __dev_remove_pack        - remove packet handler
337  *      @pt: packet type declaration
338  *
339  *      Remove a protocol handler that was previously added to the kernel
340  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
341  *      from the kernel lists and can be freed or reused once this function
342  *      returns.
343  *
344  *      The packet type might still be in use by receivers
345  *      and must not be freed until after all the CPU's have gone
346  *      through a quiescent state.
347  */
348 void __dev_remove_pack(struct packet_type *pt)
349 {
350         struct list_head *head = ptype_head(pt);
351         struct packet_type *pt1;
352
353         spin_lock(&ptype_lock);
354
355         list_for_each_entry(pt1, head, list) {
356                 if (pt == pt1) {
357                         list_del_rcu(&pt->list);
358                         goto out;
359                 }
360         }
361
362         pr_warn("dev_remove_pack: %p not found\n", pt);
363 out:
364         spin_unlock(&ptype_lock);
365 }
366 EXPORT_SYMBOL(__dev_remove_pack);
367
368 /**
369  *      dev_remove_pack  - remove packet handler
370  *      @pt: packet type declaration
371  *
372  *      Remove a protocol handler that was previously added to the kernel
373  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
374  *      from the kernel lists and can be freed or reused once this function
375  *      returns.
376  *
377  *      This call sleeps to guarantee that no CPU is looking at the packet
378  *      type after return.
379  */
380 void dev_remove_pack(struct packet_type *pt)
381 {
382         __dev_remove_pack(pt);
383
384         synchronize_net();
385 }
386 EXPORT_SYMBOL(dev_remove_pack);
387
388
389 /**
390  *      dev_add_offload - register offload handlers
391  *      @po: protocol offload declaration
392  *
393  *      Add protocol offload handlers to the networking stack. The passed
394  *      &proto_offload is linked into kernel lists and may not be freed until
395  *      it has been removed from the kernel lists.
396  *
397  *      This call does not sleep therefore it can not
398  *      guarantee all CPU's that are in middle of receiving packets
399  *      will see the new offload handlers (until the next received packet).
400  */
401 void dev_add_offload(struct packet_offload *po)
402 {
403         struct packet_offload *elem;
404
405         spin_lock(&offload_lock);
406         list_for_each_entry(elem, &offload_base, list) {
407                 if (po->priority < elem->priority)
408                         break;
409         }
410         list_add_rcu(&po->list, elem->list.prev);
411         spin_unlock(&offload_lock);
412 }
413 EXPORT_SYMBOL(dev_add_offload);
414
415 /**
416  *      __dev_remove_offload     - remove offload handler
417  *      @po: packet offload declaration
418  *
419  *      Remove a protocol offload handler that was previously added to the
420  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
421  *      is removed from the kernel lists and can be freed or reused once this
422  *      function returns.
423  *
424  *      The packet type might still be in use by receivers
425  *      and must not be freed until after all the CPU's have gone
426  *      through a quiescent state.
427  */
428 static void __dev_remove_offload(struct packet_offload *po)
429 {
430         struct list_head *head = &offload_base;
431         struct packet_offload *po1;
432
433         spin_lock(&offload_lock);
434
435         list_for_each_entry(po1, head, list) {
436                 if (po == po1) {
437                         list_del_rcu(&po->list);
438                         goto out;
439                 }
440         }
441
442         pr_warn("dev_remove_offload: %p not found\n", po);
443 out:
444         spin_unlock(&offload_lock);
445 }
446
447 /**
448  *      dev_remove_offload       - remove packet offload handler
449  *      @po: packet offload declaration
450  *
451  *      Remove a packet offload handler that was previously added to the kernel
452  *      offload handlers by dev_add_offload(). The passed &offload_type is
453  *      removed from the kernel lists and can be freed or reused once this
454  *      function returns.
455  *
456  *      This call sleeps to guarantee that no CPU is looking at the packet
457  *      type after return.
458  */
459 void dev_remove_offload(struct packet_offload *po)
460 {
461         __dev_remove_offload(po);
462
463         synchronize_net();
464 }
465 EXPORT_SYMBOL(dev_remove_offload);
466
467 /******************************************************************************
468  *
469  *                    Device Boot-time Settings Routines
470  *
471  ******************************************************************************/
472
473 /* Boot time configuration table */
474 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
475
476 /**
477  *      netdev_boot_setup_add   - add new setup entry
478  *      @name: name of the device
479  *      @map: configured settings for the device
480  *
481  *      Adds new setup entry to the dev_boot_setup list.  The function
482  *      returns 0 on error and 1 on success.  This is a generic routine to
483  *      all netdevices.
484  */
485 static int netdev_boot_setup_add(char *name, struct ifmap *map)
486 {
487         struct netdev_boot_setup *s;
488         int i;
489
490         s = dev_boot_setup;
491         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
492                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
493                         memset(s[i].name, 0, sizeof(s[i].name));
494                         strlcpy(s[i].name, name, IFNAMSIZ);
495                         memcpy(&s[i].map, map, sizeof(s[i].map));
496                         break;
497                 }
498         }
499
500         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
501 }
502
503 /**
504  * netdev_boot_setup_check      - check boot time settings
505  * @dev: the netdevice
506  *
507  * Check boot time settings for the device.
508  * The found settings are set for the device to be used
509  * later in the device probing.
510  * Returns 0 if no settings found, 1 if they are.
511  */
512 int netdev_boot_setup_check(struct net_device *dev)
513 {
514         struct netdev_boot_setup *s = dev_boot_setup;
515         int i;
516
517         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
518                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
519                     !strcmp(dev->name, s[i].name)) {
520                         dev->irq = s[i].map.irq;
521                         dev->base_addr = s[i].map.base_addr;
522                         dev->mem_start = s[i].map.mem_start;
523                         dev->mem_end = s[i].map.mem_end;
524                         return 1;
525                 }
526         }
527         return 0;
528 }
529 EXPORT_SYMBOL(netdev_boot_setup_check);
530
531
532 /**
533  * netdev_boot_base     - get address from boot time settings
534  * @prefix: prefix for network device
535  * @unit: id for network device
536  *
537  * Check boot time settings for the base address of device.
538  * The found settings are set for the device to be used
539  * later in the device probing.
540  * Returns 0 if no settings found.
541  */
542 unsigned long netdev_boot_base(const char *prefix, int unit)
543 {
544         const struct netdev_boot_setup *s = dev_boot_setup;
545         char name[IFNAMSIZ];
546         int i;
547
548         sprintf(name, "%s%d", prefix, unit);
549
550         /*
551          * If device already registered then return base of 1
552          * to indicate not to probe for this interface
553          */
554         if (__dev_get_by_name(&init_net, name))
555                 return 1;
556
557         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
558                 if (!strcmp(name, s[i].name))
559                         return s[i].map.base_addr;
560         return 0;
561 }
562
563 /*
564  * Saves at boot time configured settings for any netdevice.
565  */
566 int __init netdev_boot_setup(char *str)
567 {
568         int ints[5];
569         struct ifmap map;
570
571         str = get_options(str, ARRAY_SIZE(ints), ints);
572         if (!str || !*str)
573                 return 0;
574
575         /* Save settings */
576         memset(&map, 0, sizeof(map));
577         if (ints[0] > 0)
578                 map.irq = ints[1];
579         if (ints[0] > 1)
580                 map.base_addr = ints[2];
581         if (ints[0] > 2)
582                 map.mem_start = ints[3];
583         if (ints[0] > 3)
584                 map.mem_end = ints[4];
585
586         /* Add new entry to the list */
587         return netdev_boot_setup_add(str, &map);
588 }
589
590 __setup("netdev=", netdev_boot_setup);
591
592 /*******************************************************************************
593  *
594  *                          Device Interface Subroutines
595  *
596  *******************************************************************************/
597
598 /**
599  *      dev_get_iflink  - get 'iflink' value of a interface
600  *      @dev: targeted interface
601  *
602  *      Indicates the ifindex the interface is linked to.
603  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
604  */
605
606 int dev_get_iflink(const struct net_device *dev)
607 {
608         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
609                 return dev->netdev_ops->ndo_get_iflink(dev);
610
611         return dev->ifindex;
612 }
613 EXPORT_SYMBOL(dev_get_iflink);
614
615 /**
616  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
617  *      @dev: targeted interface
618  *      @skb: The packet.
619  *
620  *      For better visibility of tunnel traffic OVS needs to retrieve
621  *      egress tunnel information for a packet. Following API allows
622  *      user to get this info.
623  */
624 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
625 {
626         struct ip_tunnel_info *info;
627
628         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
629                 return -EINVAL;
630
631         info = skb_tunnel_info_unclone(skb);
632         if (!info)
633                 return -ENOMEM;
634         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
635                 return -EINVAL;
636
637         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
638 }
639 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
640
641 /**
642  *      __dev_get_by_name       - find a device by its name
643  *      @net: the applicable net namespace
644  *      @name: name to find
645  *
646  *      Find an interface by name. Must be called under RTNL semaphore
647  *      or @dev_base_lock. If the name is found a pointer to the device
648  *      is returned. If the name is not found then %NULL is returned. The
649  *      reference counters are not incremented so the caller must be
650  *      careful with locks.
651  */
652
653 struct net_device *__dev_get_by_name(struct net *net, const char *name)
654 {
655         struct net_device *dev;
656         struct hlist_head *head = dev_name_hash(net, name);
657
658         hlist_for_each_entry(dev, head, name_hlist)
659                 if (!strncmp(dev->name, name, IFNAMSIZ))
660                         return dev;
661
662         return NULL;
663 }
664 EXPORT_SYMBOL(__dev_get_by_name);
665
666 /**
667  * dev_get_by_name_rcu  - find a device by its name
668  * @net: the applicable net namespace
669  * @name: name to find
670  *
671  * Find an interface by name.
672  * If the name is found a pointer to the device is returned.
673  * If the name is not found then %NULL is returned.
674  * The reference counters are not incremented so the caller must be
675  * careful with locks. The caller must hold RCU lock.
676  */
677
678 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
679 {
680         struct net_device *dev;
681         struct hlist_head *head = dev_name_hash(net, name);
682
683         hlist_for_each_entry_rcu(dev, head, name_hlist)
684                 if (!strncmp(dev->name, name, IFNAMSIZ))
685                         return dev;
686
687         return NULL;
688 }
689 EXPORT_SYMBOL(dev_get_by_name_rcu);
690
691 /**
692  *      dev_get_by_name         - find a device by its name
693  *      @net: the applicable net namespace
694  *      @name: name to find
695  *
696  *      Find an interface by name. This can be called from any
697  *      context and does its own locking. The returned handle has
698  *      the usage count incremented and the caller must use dev_put() to
699  *      release it when it is no longer needed. %NULL is returned if no
700  *      matching device is found.
701  */
702
703 struct net_device *dev_get_by_name(struct net *net, const char *name)
704 {
705         struct net_device *dev;
706
707         rcu_read_lock();
708         dev = dev_get_by_name_rcu(net, name);
709         if (dev)
710                 dev_hold(dev);
711         rcu_read_unlock();
712         return dev;
713 }
714 EXPORT_SYMBOL(dev_get_by_name);
715
716 /**
717  *      __dev_get_by_index - find a device by its ifindex
718  *      @net: the applicable net namespace
719  *      @ifindex: index of device
720  *
721  *      Search for an interface by index. Returns %NULL if the device
722  *      is not found or a pointer to the device. The device has not
723  *      had its reference counter increased so the caller must be careful
724  *      about locking. The caller must hold either the RTNL semaphore
725  *      or @dev_base_lock.
726  */
727
728 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
729 {
730         struct net_device *dev;
731         struct hlist_head *head = dev_index_hash(net, ifindex);
732
733         hlist_for_each_entry(dev, head, index_hlist)
734                 if (dev->ifindex == ifindex)
735                         return dev;
736
737         return NULL;
738 }
739 EXPORT_SYMBOL(__dev_get_by_index);
740
741 /**
742  *      dev_get_by_index_rcu - find a device by its ifindex
743  *      @net: the applicable net namespace
744  *      @ifindex: index of device
745  *
746  *      Search for an interface by index. Returns %NULL if the device
747  *      is not found or a pointer to the device. The device has not
748  *      had its reference counter increased so the caller must be careful
749  *      about locking. The caller must hold RCU lock.
750  */
751
752 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
753 {
754         struct net_device *dev;
755         struct hlist_head *head = dev_index_hash(net, ifindex);
756
757         hlist_for_each_entry_rcu(dev, head, index_hlist)
758                 if (dev->ifindex == ifindex)
759                         return dev;
760
761         return NULL;
762 }
763 EXPORT_SYMBOL(dev_get_by_index_rcu);
764
765
766 /**
767  *      dev_get_by_index - find a device by its ifindex
768  *      @net: the applicable net namespace
769  *      @ifindex: index of device
770  *
771  *      Search for an interface by index. Returns NULL if the device
772  *      is not found or a pointer to the device. The device returned has
773  *      had a reference added and the pointer is safe until the user calls
774  *      dev_put to indicate they have finished with it.
775  */
776
777 struct net_device *dev_get_by_index(struct net *net, int ifindex)
778 {
779         struct net_device *dev;
780
781         rcu_read_lock();
782         dev = dev_get_by_index_rcu(net, ifindex);
783         if (dev)
784                 dev_hold(dev);
785         rcu_read_unlock();
786         return dev;
787 }
788 EXPORT_SYMBOL(dev_get_by_index);
789
790 /**
791  *      dev_get_by_napi_id - find a device by napi_id
792  *      @napi_id: ID of the NAPI struct
793  *
794  *      Search for an interface by NAPI ID. Returns %NULL if the device
795  *      is not found or a pointer to the device. The device has not had
796  *      its reference counter increased so the caller must be careful
797  *      about locking. The caller must hold RCU lock.
798  */
799
800 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
801 {
802         struct napi_struct *napi;
803
804         WARN_ON_ONCE(!rcu_read_lock_held());
805
806         if (napi_id < MIN_NAPI_ID)
807                 return NULL;
808
809         napi = napi_by_id(napi_id);
810
811         return napi ? napi->dev : NULL;
812 }
813 EXPORT_SYMBOL(dev_get_by_napi_id);
814
815 /**
816  *      netdev_get_name - get a netdevice name, knowing its ifindex.
817  *      @net: network namespace
818  *      @name: a pointer to the buffer where the name will be stored.
819  *      @ifindex: the ifindex of the interface to get the name from.
820  *
821  *      The use of raw_seqcount_begin() and cond_resched() before
822  *      retrying is required as we want to give the writers a chance
823  *      to complete when CONFIG_PREEMPT is not set.
824  */
825 int netdev_get_name(struct net *net, char *name, int ifindex)
826 {
827         struct net_device *dev;
828         unsigned int seq;
829
830 retry:
831         seq = raw_seqcount_begin(&devnet_rename_seq);
832         rcu_read_lock();
833         dev = dev_get_by_index_rcu(net, ifindex);
834         if (!dev) {
835                 rcu_read_unlock();
836                 return -ENODEV;
837         }
838
839         strcpy(name, dev->name);
840         rcu_read_unlock();
841         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
842                 cond_resched();
843                 goto retry;
844         }
845
846         return 0;
847 }
848
849 /**
850  *      dev_getbyhwaddr_rcu - find a device by its hardware address
851  *      @net: the applicable net namespace
852  *      @type: media type of device
853  *      @ha: hardware address
854  *
855  *      Search for an interface by MAC address. Returns NULL if the device
856  *      is not found or a pointer to the device.
857  *      The caller must hold RCU or RTNL.
858  *      The returned device has not had its ref count increased
859  *      and the caller must therefore be careful about locking
860  *
861  */
862
863 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
864                                        const char *ha)
865 {
866         struct net_device *dev;
867
868         for_each_netdev_rcu(net, dev)
869                 if (dev->type == type &&
870                     !memcmp(dev->dev_addr, ha, dev->addr_len))
871                         return dev;
872
873         return NULL;
874 }
875 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
876
877 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
878 {
879         struct net_device *dev;
880
881         ASSERT_RTNL();
882         for_each_netdev(net, dev)
883                 if (dev->type == type)
884                         return dev;
885
886         return NULL;
887 }
888 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
889
890 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
891 {
892         struct net_device *dev, *ret = NULL;
893
894         rcu_read_lock();
895         for_each_netdev_rcu(net, dev)
896                 if (dev->type == type) {
897                         dev_hold(dev);
898                         ret = dev;
899                         break;
900                 }
901         rcu_read_unlock();
902         return ret;
903 }
904 EXPORT_SYMBOL(dev_getfirstbyhwtype);
905
906 /**
907  *      __dev_get_by_flags - find any device with given flags
908  *      @net: the applicable net namespace
909  *      @if_flags: IFF_* values
910  *      @mask: bitmask of bits in if_flags to check
911  *
912  *      Search for any interface with the given flags. Returns NULL if a device
913  *      is not found or a pointer to the device. Must be called inside
914  *      rtnl_lock(), and result refcount is unchanged.
915  */
916
917 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
918                                       unsigned short mask)
919 {
920         struct net_device *dev, *ret;
921
922         ASSERT_RTNL();
923
924         ret = NULL;
925         for_each_netdev(net, dev) {
926                 if (((dev->flags ^ if_flags) & mask) == 0) {
927                         ret = dev;
928                         break;
929                 }
930         }
931         return ret;
932 }
933 EXPORT_SYMBOL(__dev_get_by_flags);
934
935 /**
936  *      dev_valid_name - check if name is okay for network device
937  *      @name: name string
938  *
939  *      Network device names need to be valid file names to
940  *      to allow sysfs to work.  We also disallow any kind of
941  *      whitespace.
942  */
943 bool dev_valid_name(const char *name)
944 {
945         if (*name == '\0')
946                 return false;
947         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
948                 return false;
949         if (!strcmp(name, ".") || !strcmp(name, ".."))
950                 return false;
951
952         while (*name) {
953                 if (*name == '/' || *name == ':' || isspace(*name))
954                         return false;
955                 name++;
956         }
957         return true;
958 }
959 EXPORT_SYMBOL(dev_valid_name);
960
961 /**
962  *      __dev_alloc_name - allocate a name for a device
963  *      @net: network namespace to allocate the device name in
964  *      @name: name format string
965  *      @buf:  scratch buffer and result name string
966  *
967  *      Passed a format string - eg "lt%d" it will try and find a suitable
968  *      id. It scans list of devices to build up a free map, then chooses
969  *      the first empty slot. The caller must hold the dev_base or rtnl lock
970  *      while allocating the name and adding the device in order to avoid
971  *      duplicates.
972  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
973  *      Returns the number of the unit assigned or a negative errno code.
974  */
975
976 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
977 {
978         int i = 0;
979         const char *p;
980         const int max_netdevices = 8*PAGE_SIZE;
981         unsigned long *inuse;
982         struct net_device *d;
983
984         if (!dev_valid_name(name))
985                 return -EINVAL;
986
987         p = strchr(name, '%');
988         if (p) {
989                 /*
990                  * Verify the string as this thing may have come from
991                  * the user.  There must be either one "%d" and no other "%"
992                  * characters.
993                  */
994                 if (p[1] != 'd' || strchr(p + 2, '%'))
995                         return -EINVAL;
996
997                 /* Use one page as a bit array of possible slots */
998                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
999                 if (!inuse)
1000                         return -ENOMEM;
1001
1002                 for_each_netdev(net, d) {
1003                         if (!sscanf(d->name, name, &i))
1004                                 continue;
1005                         if (i < 0 || i >= max_netdevices)
1006                                 continue;
1007
1008                         /*  avoid cases where sscanf is not exact inverse of printf */
1009                         snprintf(buf, IFNAMSIZ, name, i);
1010                         if (!strncmp(buf, d->name, IFNAMSIZ))
1011                                 set_bit(i, inuse);
1012                 }
1013
1014                 i = find_first_zero_bit(inuse, max_netdevices);
1015                 free_page((unsigned long) inuse);
1016         }
1017
1018         snprintf(buf, IFNAMSIZ, name, i);
1019         if (!__dev_get_by_name(net, buf))
1020                 return i;
1021
1022         /* It is possible to run out of possible slots
1023          * when the name is long and there isn't enough space left
1024          * for the digits, or if all bits are used.
1025          */
1026         return -ENFILE;
1027 }
1028
1029 static int dev_alloc_name_ns(struct net *net,
1030                              struct net_device *dev,
1031                              const char *name)
1032 {
1033         char buf[IFNAMSIZ];
1034         int ret;
1035
1036         BUG_ON(!net);
1037         ret = __dev_alloc_name(net, name, buf);
1038         if (ret >= 0)
1039                 strlcpy(dev->name, buf, IFNAMSIZ);
1040         return ret;
1041 }
1042
1043 /**
1044  *      dev_alloc_name - allocate a name for a device
1045  *      @dev: device
1046  *      @name: name format string
1047  *
1048  *      Passed a format string - eg "lt%d" it will try and find a suitable
1049  *      id. It scans list of devices to build up a free map, then chooses
1050  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1051  *      while allocating the name and adding the device in order to avoid
1052  *      duplicates.
1053  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1054  *      Returns the number of the unit assigned or a negative errno code.
1055  */
1056
1057 int dev_alloc_name(struct net_device *dev, const char *name)
1058 {
1059         return dev_alloc_name_ns(dev_net(dev), dev, name);
1060 }
1061 EXPORT_SYMBOL(dev_alloc_name);
1062
1063 int dev_get_valid_name(struct net *net, struct net_device *dev,
1064                        const char *name)
1065 {
1066         BUG_ON(!net);
1067
1068         if (!dev_valid_name(name))
1069                 return -EINVAL;
1070
1071         if (strchr(name, '%'))
1072                 return dev_alloc_name_ns(net, dev, name);
1073         else if (__dev_get_by_name(net, name))
1074                 return -EEXIST;
1075         else if (dev->name != name)
1076                 strlcpy(dev->name, name, IFNAMSIZ);
1077
1078         return 0;
1079 }
1080 EXPORT_SYMBOL(dev_get_valid_name);
1081
1082 /**
1083  *      dev_change_name - change name of a device
1084  *      @dev: device
1085  *      @newname: name (or format string) must be at least IFNAMSIZ
1086  *
1087  *      Change name of a device, can pass format strings "eth%d".
1088  *      for wildcarding.
1089  */
1090 int dev_change_name(struct net_device *dev, const char *newname)
1091 {
1092         unsigned char old_assign_type;
1093         char oldname[IFNAMSIZ];
1094         int err = 0;
1095         int ret;
1096         struct net *net;
1097
1098         ASSERT_RTNL();
1099         BUG_ON(!dev_net(dev));
1100
1101         net = dev_net(dev);
1102
1103         /* Some auto-enslaved devices e.g. failover slaves are
1104          * special, as userspace might rename the device after
1105          * the interface had been brought up and running since
1106          * the point kernel initiated auto-enslavement. Allow
1107          * live name change even when these slave devices are
1108          * up and running.
1109          *
1110          * Typically, users of these auto-enslaving devices
1111          * don't actually care about slave name change, as
1112          * they are supposed to operate on master interface
1113          * directly.
1114          */
1115         if (dev->flags & IFF_UP &&
1116             likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1117                 return -EBUSY;
1118
1119         write_seqcount_begin(&devnet_rename_seq);
1120
1121         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1122                 write_seqcount_end(&devnet_rename_seq);
1123                 return 0;
1124         }
1125
1126         memcpy(oldname, dev->name, IFNAMSIZ);
1127
1128         err = dev_get_valid_name(net, dev, newname);
1129         if (err < 0) {
1130                 write_seqcount_end(&devnet_rename_seq);
1131                 return err;
1132         }
1133
1134         if (oldname[0] && !strchr(oldname, '%'))
1135                 netdev_info(dev, "renamed from %s\n", oldname);
1136
1137         old_assign_type = dev->name_assign_type;
1138         dev->name_assign_type = NET_NAME_RENAMED;
1139
1140 rollback:
1141         ret = device_rename(&dev->dev, dev->name);
1142         if (ret) {
1143                 memcpy(dev->name, oldname, IFNAMSIZ);
1144                 dev->name_assign_type = old_assign_type;
1145                 write_seqcount_end(&devnet_rename_seq);
1146                 return ret;
1147         }
1148
1149         write_seqcount_end(&devnet_rename_seq);
1150
1151         netdev_adjacent_rename_links(dev, oldname);
1152
1153         write_lock_bh(&dev_base_lock);
1154         hlist_del_rcu(&dev->name_hlist);
1155         write_unlock_bh(&dev_base_lock);
1156
1157         synchronize_rcu();
1158
1159         write_lock_bh(&dev_base_lock);
1160         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1161         write_unlock_bh(&dev_base_lock);
1162
1163         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1164         ret = notifier_to_errno(ret);
1165
1166         if (ret) {
1167                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1168                 if (err >= 0) {
1169                         err = ret;
1170                         write_seqcount_begin(&devnet_rename_seq);
1171                         memcpy(dev->name, oldname, IFNAMSIZ);
1172                         memcpy(oldname, newname, IFNAMSIZ);
1173                         dev->name_assign_type = old_assign_type;
1174                         old_assign_type = NET_NAME_RENAMED;
1175                         goto rollback;
1176                 } else {
1177                         pr_err("%s: name change rollback failed: %d\n",
1178                                dev->name, ret);
1179                 }
1180         }
1181
1182         return err;
1183 }
1184
1185 /**
1186  *      dev_set_alias - change ifalias of a device
1187  *      @dev: device
1188  *      @alias: name up to IFALIASZ
1189  *      @len: limit of bytes to copy from info
1190  *
1191  *      Set ifalias for a device,
1192  */
1193 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1194 {
1195         struct dev_ifalias *new_alias = NULL;
1196
1197         if (len >= IFALIASZ)
1198                 return -EINVAL;
1199
1200         if (len) {
1201                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1202                 if (!new_alias)
1203                         return -ENOMEM;
1204
1205                 memcpy(new_alias->ifalias, alias, len);
1206                 new_alias->ifalias[len] = 0;
1207         }
1208
1209         mutex_lock(&ifalias_mutex);
1210         rcu_swap_protected(dev->ifalias, new_alias,
1211                            mutex_is_locked(&ifalias_mutex));
1212         mutex_unlock(&ifalias_mutex);
1213
1214         if (new_alias)
1215                 kfree_rcu(new_alias, rcuhead);
1216
1217         return len;
1218 }
1219 EXPORT_SYMBOL(dev_set_alias);
1220
1221 /**
1222  *      dev_get_alias - get ifalias of a device
1223  *      @dev: device
1224  *      @name: buffer to store name of ifalias
1225  *      @len: size of buffer
1226  *
1227  *      get ifalias for a device.  Caller must make sure dev cannot go
1228  *      away,  e.g. rcu read lock or own a reference count to device.
1229  */
1230 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1231 {
1232         const struct dev_ifalias *alias;
1233         int ret = 0;
1234
1235         rcu_read_lock();
1236         alias = rcu_dereference(dev->ifalias);
1237         if (alias)
1238                 ret = snprintf(name, len, "%s", alias->ifalias);
1239         rcu_read_unlock();
1240
1241         return ret;
1242 }
1243
1244 /**
1245  *      netdev_features_change - device changes features
1246  *      @dev: device to cause notification
1247  *
1248  *      Called to indicate a device has changed features.
1249  */
1250 void netdev_features_change(struct net_device *dev)
1251 {
1252         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1253 }
1254 EXPORT_SYMBOL(netdev_features_change);
1255
1256 /**
1257  *      netdev_state_change - device changes state
1258  *      @dev: device to cause notification
1259  *
1260  *      Called to indicate a device has changed state. This function calls
1261  *      the notifier chains for netdev_chain and sends a NEWLINK message
1262  *      to the routing socket.
1263  */
1264 void netdev_state_change(struct net_device *dev)
1265 {
1266         if (dev->flags & IFF_UP) {
1267                 struct netdev_notifier_change_info change_info = {
1268                         .info.dev = dev,
1269                 };
1270
1271                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1272                                               &change_info.info);
1273                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1274         }
1275 }
1276 EXPORT_SYMBOL(netdev_state_change);
1277
1278 /**
1279  * netdev_notify_peers - notify network peers about existence of @dev
1280  * @dev: network device
1281  *
1282  * Generate traffic such that interested network peers are aware of
1283  * @dev, such as by generating a gratuitous ARP. This may be used when
1284  * a device wants to inform the rest of the network about some sort of
1285  * reconfiguration such as a failover event or virtual machine
1286  * migration.
1287  */
1288 void netdev_notify_peers(struct net_device *dev)
1289 {
1290         rtnl_lock();
1291         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1292         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1293         rtnl_unlock();
1294 }
1295 EXPORT_SYMBOL(netdev_notify_peers);
1296
1297 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1298 {
1299         const struct net_device_ops *ops = dev->netdev_ops;
1300         int ret;
1301
1302         ASSERT_RTNL();
1303
1304         if (!netif_device_present(dev))
1305                 return -ENODEV;
1306
1307         /* Block netpoll from trying to do any rx path servicing.
1308          * If we don't do this there is a chance ndo_poll_controller
1309          * or ndo_poll may be running while we open the device
1310          */
1311         netpoll_poll_disable(dev);
1312
1313         ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1314         ret = notifier_to_errno(ret);
1315         if (ret)
1316                 return ret;
1317
1318         set_bit(__LINK_STATE_START, &dev->state);
1319
1320         if (ops->ndo_validate_addr)
1321                 ret = ops->ndo_validate_addr(dev);
1322
1323         if (!ret && ops->ndo_open)
1324                 ret = ops->ndo_open(dev);
1325
1326         netpoll_poll_enable(dev);
1327
1328         if (ret)
1329                 clear_bit(__LINK_STATE_START, &dev->state);
1330         else {
1331                 dev->flags |= IFF_UP;
1332                 dev_set_rx_mode(dev);
1333                 dev_activate(dev);
1334                 add_device_randomness(dev->dev_addr, dev->addr_len);
1335         }
1336
1337         return ret;
1338 }
1339
1340 /**
1341  *      dev_open        - prepare an interface for use.
1342  *      @dev: device to open
1343  *      @extack: netlink extended ack
1344  *
1345  *      Takes a device from down to up state. The device's private open
1346  *      function is invoked and then the multicast lists are loaded. Finally
1347  *      the device is moved into the up state and a %NETDEV_UP message is
1348  *      sent to the netdev notifier chain.
1349  *
1350  *      Calling this function on an active interface is a nop. On a failure
1351  *      a negative errno code is returned.
1352  */
1353 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1354 {
1355         int ret;
1356
1357         if (dev->flags & IFF_UP)
1358                 return 0;
1359
1360         ret = __dev_open(dev, extack);
1361         if (ret < 0)
1362                 return ret;
1363
1364         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1365         call_netdevice_notifiers(NETDEV_UP, dev);
1366
1367         return ret;
1368 }
1369 EXPORT_SYMBOL(dev_open);
1370
1371 static void __dev_close_many(struct list_head *head)
1372 {
1373         struct net_device *dev;
1374
1375         ASSERT_RTNL();
1376         might_sleep();
1377
1378         list_for_each_entry(dev, head, close_list) {
1379                 /* Temporarily disable netpoll until the interface is down */
1380                 netpoll_poll_disable(dev);
1381
1382                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1383
1384                 clear_bit(__LINK_STATE_START, &dev->state);
1385
1386                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1387                  * can be even on different cpu. So just clear netif_running().
1388                  *
1389                  * dev->stop() will invoke napi_disable() on all of it's
1390                  * napi_struct instances on this device.
1391                  */
1392                 smp_mb__after_atomic(); /* Commit netif_running(). */
1393         }
1394
1395         dev_deactivate_many(head);
1396
1397         list_for_each_entry(dev, head, close_list) {
1398                 const struct net_device_ops *ops = dev->netdev_ops;
1399
1400                 /*
1401                  *      Call the device specific close. This cannot fail.
1402                  *      Only if device is UP
1403                  *
1404                  *      We allow it to be called even after a DETACH hot-plug
1405                  *      event.
1406                  */
1407                 if (ops->ndo_stop)
1408                         ops->ndo_stop(dev);
1409
1410                 dev->flags &= ~IFF_UP;
1411                 netpoll_poll_enable(dev);
1412         }
1413 }
1414
1415 static void __dev_close(struct net_device *dev)
1416 {
1417         LIST_HEAD(single);
1418
1419         list_add(&dev->close_list, &single);
1420         __dev_close_many(&single);
1421         list_del(&single);
1422 }
1423
1424 void dev_close_many(struct list_head *head, bool unlink)
1425 {
1426         struct net_device *dev, *tmp;
1427
1428         /* Remove the devices that don't need to be closed */
1429         list_for_each_entry_safe(dev, tmp, head, close_list)
1430                 if (!(dev->flags & IFF_UP))
1431                         list_del_init(&dev->close_list);
1432
1433         __dev_close_many(head);
1434
1435         list_for_each_entry_safe(dev, tmp, head, close_list) {
1436                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1437                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1438                 if (unlink)
1439                         list_del_init(&dev->close_list);
1440         }
1441 }
1442 EXPORT_SYMBOL(dev_close_many);
1443
1444 /**
1445  *      dev_close - shutdown an interface.
1446  *      @dev: device to shutdown
1447  *
1448  *      This function moves an active device into down state. A
1449  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1450  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1451  *      chain.
1452  */
1453 void dev_close(struct net_device *dev)
1454 {
1455         if (dev->flags & IFF_UP) {
1456                 LIST_HEAD(single);
1457
1458                 list_add(&dev->close_list, &single);
1459                 dev_close_many(&single, true);
1460                 list_del(&single);
1461         }
1462 }
1463 EXPORT_SYMBOL(dev_close);
1464
1465
1466 /**
1467  *      dev_disable_lro - disable Large Receive Offload on a device
1468  *      @dev: device
1469  *
1470  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1471  *      called under RTNL.  This is needed if received packets may be
1472  *      forwarded to another interface.
1473  */
1474 void dev_disable_lro(struct net_device *dev)
1475 {
1476         struct net_device *lower_dev;
1477         struct list_head *iter;
1478
1479         dev->wanted_features &= ~NETIF_F_LRO;
1480         netdev_update_features(dev);
1481
1482         if (unlikely(dev->features & NETIF_F_LRO))
1483                 netdev_WARN(dev, "failed to disable LRO!\n");
1484
1485         netdev_for_each_lower_dev(dev, lower_dev, iter)
1486                 dev_disable_lro(lower_dev);
1487 }
1488 EXPORT_SYMBOL(dev_disable_lro);
1489
1490 /**
1491  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1492  *      @dev: device
1493  *
1494  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1495  *      called under RTNL.  This is needed if Generic XDP is installed on
1496  *      the device.
1497  */
1498 static void dev_disable_gro_hw(struct net_device *dev)
1499 {
1500         dev->wanted_features &= ~NETIF_F_GRO_HW;
1501         netdev_update_features(dev);
1502
1503         if (unlikely(dev->features & NETIF_F_GRO_HW))
1504                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1505 }
1506
1507 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1508 {
1509 #define N(val)                                          \
1510         case NETDEV_##val:                              \
1511                 return "NETDEV_" __stringify(val);
1512         switch (cmd) {
1513         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1514         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1515         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1516         N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1517         N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1518         N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1519         N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1520         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1521         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1522         N(PRE_CHANGEADDR)
1523         }
1524 #undef N
1525         return "UNKNOWN_NETDEV_EVENT";
1526 }
1527 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1528
1529 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1530                                    struct net_device *dev)
1531 {
1532         struct netdev_notifier_info info = {
1533                 .dev = dev,
1534         };
1535
1536         return nb->notifier_call(nb, val, &info);
1537 }
1538
1539 static int dev_boot_phase = 1;
1540
1541 /**
1542  * register_netdevice_notifier - register a network notifier block
1543  * @nb: notifier
1544  *
1545  * Register a notifier to be called when network device events occur.
1546  * The notifier passed is linked into the kernel structures and must
1547  * not be reused until it has been unregistered. A negative errno code
1548  * is returned on a failure.
1549  *
1550  * When registered all registration and up events are replayed
1551  * to the new notifier to allow device to have a race free
1552  * view of the network device list.
1553  */
1554
1555 int register_netdevice_notifier(struct notifier_block *nb)
1556 {
1557         struct net_device *dev;
1558         struct net_device *last;
1559         struct net *net;
1560         int err;
1561
1562         /* Close race with setup_net() and cleanup_net() */
1563         down_write(&pernet_ops_rwsem);
1564         rtnl_lock();
1565         err = raw_notifier_chain_register(&netdev_chain, nb);
1566         if (err)
1567                 goto unlock;
1568         if (dev_boot_phase)
1569                 goto unlock;
1570         for_each_net(net) {
1571                 for_each_netdev(net, dev) {
1572                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1573                         err = notifier_to_errno(err);
1574                         if (err)
1575                                 goto rollback;
1576
1577                         if (!(dev->flags & IFF_UP))
1578                                 continue;
1579
1580                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1581                 }
1582         }
1583
1584 unlock:
1585         rtnl_unlock();
1586         up_write(&pernet_ops_rwsem);
1587         return err;
1588
1589 rollback:
1590         last = dev;
1591         for_each_net(net) {
1592                 for_each_netdev(net, dev) {
1593                         if (dev == last)
1594                                 goto outroll;
1595
1596                         if (dev->flags & IFF_UP) {
1597                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1598                                                         dev);
1599                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1600                         }
1601                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1602                 }
1603         }
1604
1605 outroll:
1606         raw_notifier_chain_unregister(&netdev_chain, nb);
1607         goto unlock;
1608 }
1609 EXPORT_SYMBOL(register_netdevice_notifier);
1610
1611 /**
1612  * unregister_netdevice_notifier - unregister a network notifier block
1613  * @nb: notifier
1614  *
1615  * Unregister a notifier previously registered by
1616  * register_netdevice_notifier(). The notifier is unlinked into the
1617  * kernel structures and may then be reused. A negative errno code
1618  * is returned on a failure.
1619  *
1620  * After unregistering unregister and down device events are synthesized
1621  * for all devices on the device list to the removed notifier to remove
1622  * the need for special case cleanup code.
1623  */
1624
1625 int unregister_netdevice_notifier(struct notifier_block *nb)
1626 {
1627         struct net_device *dev;
1628         struct net *net;
1629         int err;
1630
1631         /* Close race with setup_net() and cleanup_net() */
1632         down_write(&pernet_ops_rwsem);
1633         rtnl_lock();
1634         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1635         if (err)
1636                 goto unlock;
1637
1638         for_each_net(net) {
1639                 for_each_netdev(net, dev) {
1640                         if (dev->flags & IFF_UP) {
1641                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1642                                                         dev);
1643                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1644                         }
1645                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1646                 }
1647         }
1648 unlock:
1649         rtnl_unlock();
1650         up_write(&pernet_ops_rwsem);
1651         return err;
1652 }
1653 EXPORT_SYMBOL(unregister_netdevice_notifier);
1654
1655 /**
1656  *      call_netdevice_notifiers_info - call all network notifier blocks
1657  *      @val: value passed unmodified to notifier function
1658  *      @info: notifier information data
1659  *
1660  *      Call all network notifier blocks.  Parameters and return value
1661  *      are as for raw_notifier_call_chain().
1662  */
1663
1664 static int call_netdevice_notifiers_info(unsigned long val,
1665                                          struct netdev_notifier_info *info)
1666 {
1667         ASSERT_RTNL();
1668         return raw_notifier_call_chain(&netdev_chain, val, info);
1669 }
1670
1671 static int call_netdevice_notifiers_extack(unsigned long val,
1672                                            struct net_device *dev,
1673                                            struct netlink_ext_ack *extack)
1674 {
1675         struct netdev_notifier_info info = {
1676                 .dev = dev,
1677                 .extack = extack,
1678         };
1679
1680         return call_netdevice_notifiers_info(val, &info);
1681 }
1682
1683 /**
1684  *      call_netdevice_notifiers - call all network notifier blocks
1685  *      @val: value passed unmodified to notifier function
1686  *      @dev: net_device pointer passed unmodified to notifier function
1687  *
1688  *      Call all network notifier blocks.  Parameters and return value
1689  *      are as for raw_notifier_call_chain().
1690  */
1691
1692 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1693 {
1694         return call_netdevice_notifiers_extack(val, dev, NULL);
1695 }
1696 EXPORT_SYMBOL(call_netdevice_notifiers);
1697
1698 /**
1699  *      call_netdevice_notifiers_mtu - call all network notifier blocks
1700  *      @val: value passed unmodified to notifier function
1701  *      @dev: net_device pointer passed unmodified to notifier function
1702  *      @arg: additional u32 argument passed to the notifier function
1703  *
1704  *      Call all network notifier blocks.  Parameters and return value
1705  *      are as for raw_notifier_call_chain().
1706  */
1707 static int call_netdevice_notifiers_mtu(unsigned long val,
1708                                         struct net_device *dev, u32 arg)
1709 {
1710         struct netdev_notifier_info_ext info = {
1711                 .info.dev = dev,
1712                 .ext.mtu = arg,
1713         };
1714
1715         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1716
1717         return call_netdevice_notifiers_info(val, &info.info);
1718 }
1719
1720 #ifdef CONFIG_NET_INGRESS
1721 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
1722
1723 void net_inc_ingress_queue(void)
1724 {
1725         static_branch_inc(&ingress_needed_key);
1726 }
1727 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1728
1729 void net_dec_ingress_queue(void)
1730 {
1731         static_branch_dec(&ingress_needed_key);
1732 }
1733 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1734 #endif
1735
1736 #ifdef CONFIG_NET_EGRESS
1737 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1738
1739 void net_inc_egress_queue(void)
1740 {
1741         static_branch_inc(&egress_needed_key);
1742 }
1743 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1744
1745 void net_dec_egress_queue(void)
1746 {
1747         static_branch_dec(&egress_needed_key);
1748 }
1749 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1750 #endif
1751
1752 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
1753 #ifdef CONFIG_JUMP_LABEL
1754 static atomic_t netstamp_needed_deferred;
1755 static atomic_t netstamp_wanted;
1756 static void netstamp_clear(struct work_struct *work)
1757 {
1758         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1759         int wanted;
1760
1761         wanted = atomic_add_return(deferred, &netstamp_wanted);
1762         if (wanted > 0)
1763                 static_branch_enable(&netstamp_needed_key);
1764         else
1765                 static_branch_disable(&netstamp_needed_key);
1766 }
1767 static DECLARE_WORK(netstamp_work, netstamp_clear);
1768 #endif
1769
1770 void net_enable_timestamp(void)
1771 {
1772 #ifdef CONFIG_JUMP_LABEL
1773         int wanted;
1774
1775         while (1) {
1776                 wanted = atomic_read(&netstamp_wanted);
1777                 if (wanted <= 0)
1778                         break;
1779                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1780                         return;
1781         }
1782         atomic_inc(&netstamp_needed_deferred);
1783         schedule_work(&netstamp_work);
1784 #else
1785         static_branch_inc(&netstamp_needed_key);
1786 #endif
1787 }
1788 EXPORT_SYMBOL(net_enable_timestamp);
1789
1790 void net_disable_timestamp(void)
1791 {
1792 #ifdef CONFIG_JUMP_LABEL
1793         int wanted;
1794
1795         while (1) {
1796                 wanted = atomic_read(&netstamp_wanted);
1797                 if (wanted <= 1)
1798                         break;
1799                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1800                         return;
1801         }
1802         atomic_dec(&netstamp_needed_deferred);
1803         schedule_work(&netstamp_work);
1804 #else
1805         static_branch_dec(&netstamp_needed_key);
1806 #endif
1807 }
1808 EXPORT_SYMBOL(net_disable_timestamp);
1809
1810 static inline void net_timestamp_set(struct sk_buff *skb)
1811 {
1812         skb->tstamp = 0;
1813         if (static_branch_unlikely(&netstamp_needed_key))
1814                 __net_timestamp(skb);
1815 }
1816
1817 #define net_timestamp_check(COND, SKB)                          \
1818         if (static_branch_unlikely(&netstamp_needed_key)) {     \
1819                 if ((COND) && !(SKB)->tstamp)                   \
1820                         __net_timestamp(SKB);                   \
1821         }                                                       \
1822
1823 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1824 {
1825         unsigned int len;
1826
1827         if (!(dev->flags & IFF_UP))
1828                 return false;
1829
1830         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1831         if (skb->len <= len)
1832                 return true;
1833
1834         /* if TSO is enabled, we don't care about the length as the packet
1835          * could be forwarded without being segmented before
1836          */
1837         if (skb_is_gso(skb))
1838                 return true;
1839
1840         return false;
1841 }
1842 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1843
1844 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1845 {
1846         int ret = ____dev_forward_skb(dev, skb);
1847
1848         if (likely(!ret)) {
1849                 skb->protocol = eth_type_trans(skb, dev);
1850                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1851         }
1852
1853         return ret;
1854 }
1855 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1856
1857 /**
1858  * dev_forward_skb - loopback an skb to another netif
1859  *
1860  * @dev: destination network device
1861  * @skb: buffer to forward
1862  *
1863  * return values:
1864  *      NET_RX_SUCCESS  (no congestion)
1865  *      NET_RX_DROP     (packet was dropped, but freed)
1866  *
1867  * dev_forward_skb can be used for injecting an skb from the
1868  * start_xmit function of one device into the receive queue
1869  * of another device.
1870  *
1871  * The receiving device may be in another namespace, so
1872  * we have to clear all information in the skb that could
1873  * impact namespace isolation.
1874  */
1875 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1876 {
1877         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1878 }
1879 EXPORT_SYMBOL_GPL(dev_forward_skb);
1880
1881 static inline int deliver_skb(struct sk_buff *skb,
1882                               struct packet_type *pt_prev,
1883                               struct net_device *orig_dev)
1884 {
1885         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1886                 return -ENOMEM;
1887         refcount_inc(&skb->users);
1888         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1889 }
1890
1891 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1892                                           struct packet_type **pt,
1893                                           struct net_device *orig_dev,
1894                                           __be16 type,
1895                                           struct list_head *ptype_list)
1896 {
1897         struct packet_type *ptype, *pt_prev = *pt;
1898
1899         list_for_each_entry_rcu(ptype, ptype_list, list) {
1900                 if (ptype->type != type)
1901                         continue;
1902                 if (pt_prev)
1903                         deliver_skb(skb, pt_prev, orig_dev);
1904                 pt_prev = ptype;
1905         }
1906         *pt = pt_prev;
1907 }
1908
1909 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1910 {
1911         if (!ptype->af_packet_priv || !skb->sk)
1912                 return false;
1913
1914         if (ptype->id_match)
1915                 return ptype->id_match(ptype, skb->sk);
1916         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1917                 return true;
1918
1919         return false;
1920 }
1921
1922 /**
1923  * dev_nit_active - return true if any network interface taps are in use
1924  *
1925  * @dev: network device to check for the presence of taps
1926  */
1927 bool dev_nit_active(struct net_device *dev)
1928 {
1929         return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
1930 }
1931 EXPORT_SYMBOL_GPL(dev_nit_active);
1932
1933 /*
1934  *      Support routine. Sends outgoing frames to any network
1935  *      taps currently in use.
1936  */
1937
1938 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1939 {
1940         struct packet_type *ptype;
1941         struct sk_buff *skb2 = NULL;
1942         struct packet_type *pt_prev = NULL;
1943         struct list_head *ptype_list = &ptype_all;
1944
1945         rcu_read_lock();
1946 again:
1947         list_for_each_entry_rcu(ptype, ptype_list, list) {
1948                 if (ptype->ignore_outgoing)
1949                         continue;
1950
1951                 /* Never send packets back to the socket
1952                  * they originated from - MvS (miquels@drinkel.ow.org)
1953                  */
1954                 if (skb_loop_sk(ptype, skb))
1955                         continue;
1956
1957                 if (pt_prev) {
1958                         deliver_skb(skb2, pt_prev, skb->dev);
1959                         pt_prev = ptype;
1960                         continue;
1961                 }
1962
1963                 /* need to clone skb, done only once */
1964                 skb2 = skb_clone(skb, GFP_ATOMIC);
1965                 if (!skb2)
1966                         goto out_unlock;
1967
1968                 net_timestamp_set(skb2);
1969
1970                 /* skb->nh should be correctly
1971                  * set by sender, so that the second statement is
1972                  * just protection against buggy protocols.
1973                  */
1974                 skb_reset_mac_header(skb2);
1975
1976                 if (skb_network_header(skb2) < skb2->data ||
1977                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1978                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1979                                              ntohs(skb2->protocol),
1980                                              dev->name);
1981                         skb_reset_network_header(skb2);
1982                 }
1983
1984                 skb2->transport_header = skb2->network_header;
1985                 skb2->pkt_type = PACKET_OUTGOING;
1986                 pt_prev = ptype;
1987         }
1988
1989         if (ptype_list == &ptype_all) {
1990                 ptype_list = &dev->ptype_all;
1991                 goto again;
1992         }
1993 out_unlock:
1994         if (pt_prev) {
1995                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
1996                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1997                 else
1998                         kfree_skb(skb2);
1999         }
2000         rcu_read_unlock();
2001 }
2002 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2003
2004 /**
2005  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2006  * @dev: Network device
2007  * @txq: number of queues available
2008  *
2009  * If real_num_tx_queues is changed the tc mappings may no longer be
2010  * valid. To resolve this verify the tc mapping remains valid and if
2011  * not NULL the mapping. With no priorities mapping to this
2012  * offset/count pair it will no longer be used. In the worst case TC0
2013  * is invalid nothing can be done so disable priority mappings. If is
2014  * expected that drivers will fix this mapping if they can before
2015  * calling netif_set_real_num_tx_queues.
2016  */
2017 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2018 {
2019         int i;
2020         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2021
2022         /* If TC0 is invalidated disable TC mapping */
2023         if (tc->offset + tc->count > txq) {
2024                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2025                 dev->num_tc = 0;
2026                 return;
2027         }
2028
2029         /* Invalidated prio to tc mappings set to TC0 */
2030         for (i = 1; i < TC_BITMASK + 1; i++) {
2031                 int q = netdev_get_prio_tc_map(dev, i);
2032
2033                 tc = &dev->tc_to_txq[q];
2034                 if (tc->offset + tc->count > txq) {
2035                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2036                                 i, q);
2037                         netdev_set_prio_tc_map(dev, i, 0);
2038                 }
2039         }
2040 }
2041
2042 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2043 {
2044         if (dev->num_tc) {
2045                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2046                 int i;
2047
2048                 /* walk through the TCs and see if it falls into any of them */
2049                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2050                         if ((txq - tc->offset) < tc->count)
2051                                 return i;
2052                 }
2053
2054                 /* didn't find it, just return -1 to indicate no match */
2055                 return -1;
2056         }
2057
2058         return 0;
2059 }
2060 EXPORT_SYMBOL(netdev_txq_to_tc);
2061
2062 #ifdef CONFIG_XPS
2063 struct static_key xps_needed __read_mostly;
2064 EXPORT_SYMBOL(xps_needed);
2065 struct static_key xps_rxqs_needed __read_mostly;
2066 EXPORT_SYMBOL(xps_rxqs_needed);
2067 static DEFINE_MUTEX(xps_map_mutex);
2068 #define xmap_dereference(P)             \
2069         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2070
2071 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2072                              int tci, u16 index)
2073 {
2074         struct xps_map *map = NULL;
2075         int pos;
2076
2077         if (dev_maps)
2078                 map = xmap_dereference(dev_maps->attr_map[tci]);
2079         if (!map)
2080                 return false;
2081
2082         for (pos = map->len; pos--;) {
2083                 if (map->queues[pos] != index)
2084                         continue;
2085
2086                 if (map->len > 1) {
2087                         map->queues[pos] = map->queues[--map->len];
2088                         break;
2089                 }
2090
2091                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2092                 kfree_rcu(map, rcu);
2093                 return false;
2094         }
2095
2096         return true;
2097 }
2098
2099 static bool remove_xps_queue_cpu(struct net_device *dev,
2100                                  struct xps_dev_maps *dev_maps,
2101                                  int cpu, u16 offset, u16 count)
2102 {
2103         int num_tc = dev->num_tc ? : 1;
2104         bool active = false;
2105         int tci;
2106
2107         for (tci = cpu * num_tc; num_tc--; tci++) {
2108                 int i, j;
2109
2110                 for (i = count, j = offset; i--; j++) {
2111                         if (!remove_xps_queue(dev_maps, tci, j))
2112                                 break;
2113                 }
2114
2115                 active |= i < 0;
2116         }
2117
2118         return active;
2119 }
2120
2121 static void reset_xps_maps(struct net_device *dev,
2122                            struct xps_dev_maps *dev_maps,
2123                            bool is_rxqs_map)
2124 {
2125         if (is_rxqs_map) {
2126                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2127                 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2128         } else {
2129                 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2130         }
2131         static_key_slow_dec_cpuslocked(&xps_needed);
2132         kfree_rcu(dev_maps, rcu);
2133 }
2134
2135 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2136                            struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2137                            u16 offset, u16 count, bool is_rxqs_map)
2138 {
2139         bool active = false;
2140         int i, j;
2141
2142         for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2143              j < nr_ids;)
2144                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2145                                                count);
2146         if (!active)
2147                 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2148
2149         if (!is_rxqs_map) {
2150                 for (i = offset + (count - 1); count--; i--) {
2151                         netdev_queue_numa_node_write(
2152                                 netdev_get_tx_queue(dev, i),
2153                                 NUMA_NO_NODE);
2154                 }
2155         }
2156 }
2157
2158 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2159                                    u16 count)
2160 {
2161         const unsigned long *possible_mask = NULL;
2162         struct xps_dev_maps *dev_maps;
2163         unsigned int nr_ids;
2164
2165         if (!static_key_false(&xps_needed))
2166                 return;
2167
2168         cpus_read_lock();
2169         mutex_lock(&xps_map_mutex);
2170
2171         if (static_key_false(&xps_rxqs_needed)) {
2172                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2173                 if (dev_maps) {
2174                         nr_ids = dev->num_rx_queues;
2175                         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2176                                        offset, count, true);
2177                 }
2178         }
2179
2180         dev_maps = xmap_dereference(dev->xps_cpus_map);
2181         if (!dev_maps)
2182                 goto out_no_maps;
2183
2184         if (num_possible_cpus() > 1)
2185                 possible_mask = cpumask_bits(cpu_possible_mask);
2186         nr_ids = nr_cpu_ids;
2187         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2188                        false);
2189
2190 out_no_maps:
2191         mutex_unlock(&xps_map_mutex);
2192         cpus_read_unlock();
2193 }
2194
2195 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2196 {
2197         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2198 }
2199
2200 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2201                                       u16 index, bool is_rxqs_map)
2202 {
2203         struct xps_map *new_map;
2204         int alloc_len = XPS_MIN_MAP_ALLOC;
2205         int i, pos;
2206
2207         for (pos = 0; map && pos < map->len; pos++) {
2208                 if (map->queues[pos] != index)
2209                         continue;
2210                 return map;
2211         }
2212
2213         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2214         if (map) {
2215                 if (pos < map->alloc_len)
2216                         return map;
2217
2218                 alloc_len = map->alloc_len * 2;
2219         }
2220
2221         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2222          *  map
2223          */
2224         if (is_rxqs_map)
2225                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2226         else
2227                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2228                                        cpu_to_node(attr_index));
2229         if (!new_map)
2230                 return NULL;
2231
2232         for (i = 0; i < pos; i++)
2233                 new_map->queues[i] = map->queues[i];
2234         new_map->alloc_len = alloc_len;
2235         new_map->len = pos;
2236
2237         return new_map;
2238 }
2239
2240 /* Must be called under cpus_read_lock */
2241 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2242                           u16 index, bool is_rxqs_map)
2243 {
2244         const unsigned long *online_mask = NULL, *possible_mask = NULL;
2245         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2246         int i, j, tci, numa_node_id = -2;
2247         int maps_sz, num_tc = 1, tc = 0;
2248         struct xps_map *map, *new_map;
2249         bool active = false;
2250         unsigned int nr_ids;
2251
2252         if (dev->num_tc) {
2253                 /* Do not allow XPS on subordinate device directly */
2254                 num_tc = dev->num_tc;
2255                 if (num_tc < 0)
2256                         return -EINVAL;
2257
2258                 /* If queue belongs to subordinate dev use its map */
2259                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2260
2261                 tc = netdev_txq_to_tc(dev, index);
2262                 if (tc < 0)
2263                         return -EINVAL;
2264         }
2265
2266         mutex_lock(&xps_map_mutex);
2267         if (is_rxqs_map) {
2268                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2269                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2270                 nr_ids = dev->num_rx_queues;
2271         } else {
2272                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2273                 if (num_possible_cpus() > 1) {
2274                         online_mask = cpumask_bits(cpu_online_mask);
2275                         possible_mask = cpumask_bits(cpu_possible_mask);
2276                 }
2277                 dev_maps = xmap_dereference(dev->xps_cpus_map);
2278                 nr_ids = nr_cpu_ids;
2279         }
2280
2281         if (maps_sz < L1_CACHE_BYTES)
2282                 maps_sz = L1_CACHE_BYTES;
2283
2284         /* allocate memory for queue storage */
2285         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2286              j < nr_ids;) {
2287                 if (!new_dev_maps)
2288                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2289                 if (!new_dev_maps) {
2290                         mutex_unlock(&xps_map_mutex);
2291                         return -ENOMEM;
2292                 }
2293
2294                 tci = j * num_tc + tc;
2295                 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2296                                  NULL;
2297
2298                 map = expand_xps_map(map, j, index, is_rxqs_map);
2299                 if (!map)
2300                         goto error;
2301
2302                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2303         }
2304
2305         if (!new_dev_maps)
2306                 goto out_no_new_maps;
2307
2308         if (!dev_maps) {
2309                 /* Increment static keys at most once per type */
2310                 static_key_slow_inc_cpuslocked(&xps_needed);
2311                 if (is_rxqs_map)
2312                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2313         }
2314
2315         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2316              j < nr_ids;) {
2317                 /* copy maps belonging to foreign traffic classes */
2318                 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2319                         /* fill in the new device map from the old device map */
2320                         map = xmap_dereference(dev_maps->attr_map[tci]);
2321                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2322                 }
2323
2324                 /* We need to explicitly update tci as prevous loop
2325                  * could break out early if dev_maps is NULL.
2326                  */
2327                 tci = j * num_tc + tc;
2328
2329                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2330                     netif_attr_test_online(j, online_mask, nr_ids)) {
2331                         /* add tx-queue to CPU/rx-queue maps */
2332                         int pos = 0;
2333
2334                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2335                         while ((pos < map->len) && (map->queues[pos] != index))
2336                                 pos++;
2337
2338                         if (pos == map->len)
2339                                 map->queues[map->len++] = index;
2340 #ifdef CONFIG_NUMA
2341                         if (!is_rxqs_map) {
2342                                 if (numa_node_id == -2)
2343                                         numa_node_id = cpu_to_node(j);
2344                                 else if (numa_node_id != cpu_to_node(j))
2345                                         numa_node_id = -1;
2346                         }
2347 #endif
2348                 } else if (dev_maps) {
2349                         /* fill in the new device map from the old device map */
2350                         map = xmap_dereference(dev_maps->attr_map[tci]);
2351                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2352                 }
2353
2354                 /* copy maps belonging to foreign traffic classes */
2355                 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2356                         /* fill in the new device map from the old device map */
2357                         map = xmap_dereference(dev_maps->attr_map[tci]);
2358                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2359                 }
2360         }
2361
2362         if (is_rxqs_map)
2363                 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2364         else
2365                 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2366
2367         /* Cleanup old maps */
2368         if (!dev_maps)
2369                 goto out_no_old_maps;
2370
2371         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2372              j < nr_ids;) {
2373                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2374                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2375                         map = xmap_dereference(dev_maps->attr_map[tci]);
2376                         if (map && map != new_map)
2377                                 kfree_rcu(map, rcu);
2378                 }
2379         }
2380
2381         kfree_rcu(dev_maps, rcu);
2382
2383 out_no_old_maps:
2384         dev_maps = new_dev_maps;
2385         active = true;
2386
2387 out_no_new_maps:
2388         if (!is_rxqs_map) {
2389                 /* update Tx queue numa node */
2390                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2391                                              (numa_node_id >= 0) ?
2392                                              numa_node_id : NUMA_NO_NODE);
2393         }
2394
2395         if (!dev_maps)
2396                 goto out_no_maps;
2397
2398         /* removes tx-queue from unused CPUs/rx-queues */
2399         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2400              j < nr_ids;) {
2401                 for (i = tc, tci = j * num_tc; i--; tci++)
2402                         active |= remove_xps_queue(dev_maps, tci, index);
2403                 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2404                     !netif_attr_test_online(j, online_mask, nr_ids))
2405                         active |= remove_xps_queue(dev_maps, tci, index);
2406                 for (i = num_tc - tc, tci++; --i; tci++)
2407                         active |= remove_xps_queue(dev_maps, tci, index);
2408         }
2409
2410         /* free map if not active */
2411         if (!active)
2412                 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2413
2414 out_no_maps:
2415         mutex_unlock(&xps_map_mutex);
2416
2417         return 0;
2418 error:
2419         /* remove any maps that we added */
2420         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2421              j < nr_ids;) {
2422                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2423                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2424                         map = dev_maps ?
2425                               xmap_dereference(dev_maps->attr_map[tci]) :
2426                               NULL;
2427                         if (new_map && new_map != map)
2428                                 kfree(new_map);
2429                 }
2430         }
2431
2432         mutex_unlock(&xps_map_mutex);
2433
2434         kfree(new_dev_maps);
2435         return -ENOMEM;
2436 }
2437 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2438
2439 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2440                         u16 index)
2441 {
2442         int ret;
2443
2444         cpus_read_lock();
2445         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2446         cpus_read_unlock();
2447
2448         return ret;
2449 }
2450 EXPORT_SYMBOL(netif_set_xps_queue);
2451
2452 #endif
2453 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2454 {
2455         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2456
2457         /* Unbind any subordinate channels */
2458         while (txq-- != &dev->_tx[0]) {
2459                 if (txq->sb_dev)
2460                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2461         }
2462 }
2463
2464 void netdev_reset_tc(struct net_device *dev)
2465 {
2466 #ifdef CONFIG_XPS
2467         netif_reset_xps_queues_gt(dev, 0);
2468 #endif
2469         netdev_unbind_all_sb_channels(dev);
2470
2471         /* Reset TC configuration of device */
2472         dev->num_tc = 0;
2473         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2474         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2475 }
2476 EXPORT_SYMBOL(netdev_reset_tc);
2477
2478 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2479 {
2480         if (tc >= dev->num_tc)
2481                 return -EINVAL;
2482
2483 #ifdef CONFIG_XPS
2484         netif_reset_xps_queues(dev, offset, count);
2485 #endif
2486         dev->tc_to_txq[tc].count = count;
2487         dev->tc_to_txq[tc].offset = offset;
2488         return 0;
2489 }
2490 EXPORT_SYMBOL(netdev_set_tc_queue);
2491
2492 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2493 {
2494         if (num_tc > TC_MAX_QUEUE)
2495                 return -EINVAL;
2496
2497 #ifdef CONFIG_XPS
2498         netif_reset_xps_queues_gt(dev, 0);
2499 #endif
2500         netdev_unbind_all_sb_channels(dev);
2501
2502         dev->num_tc = num_tc;
2503         return 0;
2504 }
2505 EXPORT_SYMBOL(netdev_set_num_tc);
2506
2507 void netdev_unbind_sb_channel(struct net_device *dev,
2508                               struct net_device *sb_dev)
2509 {
2510         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2511
2512 #ifdef CONFIG_XPS
2513         netif_reset_xps_queues_gt(sb_dev, 0);
2514 #endif
2515         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2516         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2517
2518         while (txq-- != &dev->_tx[0]) {
2519                 if (txq->sb_dev == sb_dev)
2520                         txq->sb_dev = NULL;
2521         }
2522 }
2523 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2524
2525 int netdev_bind_sb_channel_queue(struct net_device *dev,
2526                                  struct net_device *sb_dev,
2527                                  u8 tc, u16 count, u16 offset)
2528 {
2529         /* Make certain the sb_dev and dev are already configured */
2530         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2531                 return -EINVAL;
2532
2533         /* We cannot hand out queues we don't have */
2534         if ((offset + count) > dev->real_num_tx_queues)
2535                 return -EINVAL;
2536
2537         /* Record the mapping */
2538         sb_dev->tc_to_txq[tc].count = count;
2539         sb_dev->tc_to_txq[tc].offset = offset;
2540
2541         /* Provide a way for Tx queue to find the tc_to_txq map or
2542          * XPS map for itself.
2543          */
2544         while (count--)
2545                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2546
2547         return 0;
2548 }
2549 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2550
2551 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2552 {
2553         /* Do not use a multiqueue device to represent a subordinate channel */
2554         if (netif_is_multiqueue(dev))
2555                 return -ENODEV;
2556
2557         /* We allow channels 1 - 32767 to be used for subordinate channels.
2558          * Channel 0 is meant to be "native" mode and used only to represent
2559          * the main root device. We allow writing 0 to reset the device back
2560          * to normal mode after being used as a subordinate channel.
2561          */
2562         if (channel > S16_MAX)
2563                 return -EINVAL;
2564
2565         dev->num_tc = -channel;
2566
2567         return 0;
2568 }
2569 EXPORT_SYMBOL(netdev_set_sb_channel);
2570
2571 /*
2572  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2573  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2574  */
2575 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2576 {
2577         bool disabling;
2578         int rc;
2579
2580         disabling = txq < dev->real_num_tx_queues;
2581
2582         if (txq < 1 || txq > dev->num_tx_queues)
2583                 return -EINVAL;
2584
2585         if (dev->reg_state == NETREG_REGISTERED ||
2586             dev->reg_state == NETREG_UNREGISTERING) {
2587                 ASSERT_RTNL();
2588
2589                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2590                                                   txq);
2591                 if (rc)
2592                         return rc;
2593
2594                 if (dev->num_tc)
2595                         netif_setup_tc(dev, txq);
2596
2597                 dev->real_num_tx_queues = txq;
2598
2599                 if (disabling) {
2600                         synchronize_net();
2601                         qdisc_reset_all_tx_gt(dev, txq);
2602 #ifdef CONFIG_XPS
2603                         netif_reset_xps_queues_gt(dev, txq);
2604 #endif
2605                 }
2606         } else {
2607                 dev->real_num_tx_queues = txq;
2608         }
2609
2610         return 0;
2611 }
2612 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2613
2614 #ifdef CONFIG_SYSFS
2615 /**
2616  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2617  *      @dev: Network device
2618  *      @rxq: Actual number of RX queues
2619  *
2620  *      This must be called either with the rtnl_lock held or before
2621  *      registration of the net device.  Returns 0 on success, or a
2622  *      negative error code.  If called before registration, it always
2623  *      succeeds.
2624  */
2625 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2626 {
2627         int rc;
2628
2629         if (rxq < 1 || rxq > dev->num_rx_queues)
2630                 return -EINVAL;
2631
2632         if (dev->reg_state == NETREG_REGISTERED) {
2633                 ASSERT_RTNL();
2634
2635                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2636                                                   rxq);
2637                 if (rc)
2638                         return rc;
2639         }
2640
2641         dev->real_num_rx_queues = rxq;
2642         return 0;
2643 }
2644 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2645 #endif
2646
2647 /**
2648  * netif_get_num_default_rss_queues - default number of RSS queues
2649  *
2650  * This routine should set an upper limit on the number of RSS queues
2651  * used by default by multiqueue devices.
2652  */
2653 int netif_get_num_default_rss_queues(void)
2654 {
2655         return is_kdump_kernel() ?
2656                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2657 }
2658 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2659
2660 static void __netif_reschedule(struct Qdisc *q)
2661 {
2662         struct softnet_data *sd;
2663         unsigned long flags;
2664
2665         local_irq_save(flags);
2666         sd = this_cpu_ptr(&softnet_data);
2667         q->next_sched = NULL;
2668         *sd->output_queue_tailp = q;
2669         sd->output_queue_tailp = &q->next_sched;
2670         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2671         local_irq_restore(flags);
2672 }
2673
2674 void __netif_schedule(struct Qdisc *q)
2675 {
2676         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2677                 __netif_reschedule(q);
2678 }
2679 EXPORT_SYMBOL(__netif_schedule);
2680
2681 struct dev_kfree_skb_cb {
2682         enum skb_free_reason reason;
2683 };
2684
2685 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2686 {
2687         return (struct dev_kfree_skb_cb *)skb->cb;
2688 }
2689
2690 void netif_schedule_queue(struct netdev_queue *txq)
2691 {
2692         rcu_read_lock();
2693         if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2694                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2695
2696                 __netif_schedule(q);
2697         }
2698         rcu_read_unlock();
2699 }
2700 EXPORT_SYMBOL(netif_schedule_queue);
2701
2702 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2703 {
2704         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2705                 struct Qdisc *q;
2706
2707                 rcu_read_lock();
2708                 q = rcu_dereference(dev_queue->qdisc);
2709                 __netif_schedule(q);
2710                 rcu_read_unlock();
2711         }
2712 }
2713 EXPORT_SYMBOL(netif_tx_wake_queue);
2714
2715 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2716 {
2717         unsigned long flags;
2718
2719         if (unlikely(!skb))
2720                 return;
2721
2722         if (likely(refcount_read(&skb->users) == 1)) {
2723                 smp_rmb();
2724                 refcount_set(&skb->users, 0);
2725         } else if (likely(!refcount_dec_and_test(&skb->users))) {
2726                 return;
2727         }
2728         get_kfree_skb_cb(skb)->reason = reason;
2729         local_irq_save(flags);
2730         skb->next = __this_cpu_read(softnet_data.completion_queue);
2731         __this_cpu_write(softnet_data.completion_queue, skb);
2732         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2733         local_irq_restore(flags);
2734 }
2735 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2736
2737 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2738 {
2739         if (in_irq() || irqs_disabled())
2740                 __dev_kfree_skb_irq(skb, reason);
2741         else
2742                 dev_kfree_skb(skb);
2743 }
2744 EXPORT_SYMBOL(__dev_kfree_skb_any);
2745
2746
2747 /**
2748  * netif_device_detach - mark device as removed
2749  * @dev: network device
2750  *
2751  * Mark device as removed from system and therefore no longer available.
2752  */
2753 void netif_device_detach(struct net_device *dev)
2754 {
2755         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2756             netif_running(dev)) {
2757                 netif_tx_stop_all_queues(dev);
2758         }
2759 }
2760 EXPORT_SYMBOL(netif_device_detach);
2761
2762 /**
2763  * netif_device_attach - mark device as attached
2764  * @dev: network device
2765  *
2766  * Mark device as attached from system and restart if needed.
2767  */
2768 void netif_device_attach(struct net_device *dev)
2769 {
2770         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2771             netif_running(dev)) {
2772                 netif_tx_wake_all_queues(dev);
2773                 __netdev_watchdog_up(dev);
2774         }
2775 }
2776 EXPORT_SYMBOL(netif_device_attach);
2777
2778 /*
2779  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2780  * to be used as a distribution range.
2781  */
2782 static u16 skb_tx_hash(const struct net_device *dev,
2783                        const struct net_device *sb_dev,
2784                        struct sk_buff *skb)
2785 {
2786         u32 hash;
2787         u16 qoffset = 0;
2788         u16 qcount = dev->real_num_tx_queues;
2789
2790         if (dev->num_tc) {
2791                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2792
2793                 qoffset = sb_dev->tc_to_txq[tc].offset;
2794                 qcount = sb_dev->tc_to_txq[tc].count;
2795         }
2796
2797         if (skb_rx_queue_recorded(skb)) {
2798                 hash = skb_get_rx_queue(skb);
2799                 while (unlikely(hash >= qcount))
2800                         hash -= qcount;
2801                 return hash + qoffset;
2802         }
2803
2804         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2805 }
2806
2807 static void skb_warn_bad_offload(const struct sk_buff *skb)
2808 {
2809         static const netdev_features_t null_features;
2810         struct net_device *dev = skb->dev;
2811         const char *name = "";
2812
2813         if (!net_ratelimit())
2814                 return;
2815
2816         if (dev) {
2817                 if (dev->dev.parent)
2818                         name = dev_driver_string(dev->dev.parent);
2819                 else
2820                         name = netdev_name(dev);
2821         }
2822         skb_dump(KERN_WARNING, skb, false);
2823         WARN(1, "%s: caps=(%pNF, %pNF)\n",
2824              name, dev ? &dev->features : &null_features,
2825              skb->sk ? &skb->sk->sk_route_caps : &null_features);
2826 }
2827
2828 /*
2829  * Invalidate hardware checksum when packet is to be mangled, and
2830  * complete checksum manually on outgoing path.
2831  */
2832 int skb_checksum_help(struct sk_buff *skb)
2833 {
2834         __wsum csum;
2835         int ret = 0, offset;
2836
2837         if (skb->ip_summed == CHECKSUM_COMPLETE)
2838                 goto out_set_summed;
2839
2840         if (unlikely(skb_shinfo(skb)->gso_size)) {
2841                 skb_warn_bad_offload(skb);
2842                 return -EINVAL;
2843         }
2844
2845         /* Before computing a checksum, we should make sure no frag could
2846          * be modified by an external entity : checksum could be wrong.
2847          */
2848         if (skb_has_shared_frag(skb)) {
2849                 ret = __skb_linearize(skb);
2850                 if (ret)
2851                         goto out;
2852         }
2853
2854         offset = skb_checksum_start_offset(skb);
2855         BUG_ON(offset >= skb_headlen(skb));
2856         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2857
2858         offset += skb->csum_offset;
2859         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2860
2861         if (skb_cloned(skb) &&
2862             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2863                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2864                 if (ret)
2865                         goto out;
2866         }
2867
2868         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2869 out_set_summed:
2870         skb->ip_summed = CHECKSUM_NONE;
2871 out:
2872         return ret;
2873 }
2874 EXPORT_SYMBOL(skb_checksum_help);
2875
2876 int skb_crc32c_csum_help(struct sk_buff *skb)
2877 {
2878         __le32 crc32c_csum;
2879         int ret = 0, offset, start;
2880
2881         if (skb->ip_summed != CHECKSUM_PARTIAL)
2882                 goto out;
2883
2884         if (unlikely(skb_is_gso(skb)))
2885                 goto out;
2886
2887         /* Before computing a checksum, we should make sure no frag could
2888          * be modified by an external entity : checksum could be wrong.
2889          */
2890         if (unlikely(skb_has_shared_frag(skb))) {
2891                 ret = __skb_linearize(skb);
2892                 if (ret)
2893                         goto out;
2894         }
2895         start = skb_checksum_start_offset(skb);
2896         offset = start + offsetof(struct sctphdr, checksum);
2897         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2898                 ret = -EINVAL;
2899                 goto out;
2900         }
2901         if (skb_cloned(skb) &&
2902             !skb_clone_writable(skb, offset + sizeof(__le32))) {
2903                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2904                 if (ret)
2905                         goto out;
2906         }
2907         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2908                                                   skb->len - start, ~(__u32)0,
2909                                                   crc32c_csum_stub));
2910         *(__le32 *)(skb->data + offset) = crc32c_csum;
2911         skb->ip_summed = CHECKSUM_NONE;
2912         skb->csum_not_inet = 0;
2913 out:
2914         return ret;
2915 }
2916
2917 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2918 {
2919         __be16 type = skb->protocol;
2920
2921         /* Tunnel gso handlers can set protocol to ethernet. */
2922         if (type == htons(ETH_P_TEB)) {
2923                 struct ethhdr *eth;
2924
2925                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2926                         return 0;
2927
2928                 eth = (struct ethhdr *)skb->data;
2929                 type = eth->h_proto;
2930         }
2931
2932         return __vlan_get_protocol(skb, type, depth);
2933 }
2934
2935 /**
2936  *      skb_mac_gso_segment - mac layer segmentation handler.
2937  *      @skb: buffer to segment
2938  *      @features: features for the output path (see dev->features)
2939  */
2940 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2941                                     netdev_features_t features)
2942 {
2943         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2944         struct packet_offload *ptype;
2945         int vlan_depth = skb->mac_len;
2946         __be16 type = skb_network_protocol(skb, &vlan_depth);
2947
2948         if (unlikely(!type))
2949                 return ERR_PTR(-EINVAL);
2950
2951         __skb_pull(skb, vlan_depth);
2952
2953         rcu_read_lock();
2954         list_for_each_entry_rcu(ptype, &offload_base, list) {
2955                 if (ptype->type == type && ptype->callbacks.gso_segment) {
2956                         segs = ptype->callbacks.gso_segment(skb, features);
2957                         break;
2958                 }
2959         }
2960         rcu_read_unlock();
2961
2962         __skb_push(skb, skb->data - skb_mac_header(skb));
2963
2964         return segs;
2965 }
2966 EXPORT_SYMBOL(skb_mac_gso_segment);
2967
2968
2969 /* openvswitch calls this on rx path, so we need a different check.
2970  */
2971 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2972 {
2973         if (tx_path)
2974                 return skb->ip_summed != CHECKSUM_PARTIAL &&
2975                        skb->ip_summed != CHECKSUM_UNNECESSARY;
2976
2977         return skb->ip_summed == CHECKSUM_NONE;
2978 }
2979
2980 /**
2981  *      __skb_gso_segment - Perform segmentation on skb.
2982  *      @skb: buffer to segment
2983  *      @features: features for the output path (see dev->features)
2984  *      @tx_path: whether it is called in TX path
2985  *
2986  *      This function segments the given skb and returns a list of segments.
2987  *
2988  *      It may return NULL if the skb requires no segmentation.  This is
2989  *      only possible when GSO is used for verifying header integrity.
2990  *
2991  *      Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2992  */
2993 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2994                                   netdev_features_t features, bool tx_path)
2995 {
2996         struct sk_buff *segs;
2997
2998         if (unlikely(skb_needs_check(skb, tx_path))) {
2999                 int err;
3000
3001                 /* We're going to init ->check field in TCP or UDP header */
3002                 err = skb_cow_head(skb, 0);
3003                 if (err < 0)
3004                         return ERR_PTR(err);
3005         }
3006
3007         /* Only report GSO partial support if it will enable us to
3008          * support segmentation on this frame without needing additional
3009          * work.
3010          */
3011         if (features & NETIF_F_GSO_PARTIAL) {
3012                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3013                 struct net_device *dev = skb->dev;
3014
3015                 partial_features |= dev->features & dev->gso_partial_features;
3016                 if (!skb_gso_ok(skb, features | partial_features))
3017                         features &= ~NETIF_F_GSO_PARTIAL;
3018         }
3019
3020         BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3021                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3022
3023         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3024         SKB_GSO_CB(skb)->encap_level = 0;
3025
3026         skb_reset_mac_header(skb);
3027         skb_reset_mac_len(skb);
3028
3029         segs = skb_mac_gso_segment(skb, features);
3030
3031         if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3032                 skb_warn_bad_offload(skb);
3033
3034         return segs;
3035 }
3036 EXPORT_SYMBOL(__skb_gso_segment);
3037
3038 /* Take action when hardware reception checksum errors are detected. */
3039 #ifdef CONFIG_BUG
3040 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3041 {
3042         if (net_ratelimit()) {
3043                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3044                 skb_dump(KERN_ERR, skb, true);
3045                 dump_stack();
3046         }
3047 }
3048 EXPORT_SYMBOL(netdev_rx_csum_fault);
3049 #endif
3050
3051 /* XXX: check that highmem exists at all on the given machine. */
3052 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3053 {
3054 #ifdef CONFIG_HIGHMEM
3055         int i;
3056
3057         if (!(dev->features & NETIF_F_HIGHDMA)) {
3058                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3059                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3060
3061                         if (PageHighMem(skb_frag_page(frag)))
3062                                 return 1;
3063                 }
3064         }
3065 #endif
3066         return 0;
3067 }
3068
3069 /* If MPLS offload request, verify we are testing hardware MPLS features
3070  * instead of standard features for the netdev.
3071  */
3072 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3073 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3074                                            netdev_features_t features,
3075                                            __be16 type)
3076 {
3077         if (eth_p_mpls(type))
3078                 features &= skb->dev->mpls_features;
3079
3080         return features;
3081 }
3082 #else
3083 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3084                                            netdev_features_t features,
3085                                            __be16 type)
3086 {
3087         return features;
3088 }
3089 #endif
3090
3091 static netdev_features_t harmonize_features(struct sk_buff *skb,
3092         netdev_features_t features)
3093 {
3094         int tmp;
3095         __be16 type;
3096
3097         type = skb_network_protocol(skb, &tmp);
3098         features = net_mpls_features(skb, features, type);
3099
3100         if (skb->ip_summed != CHECKSUM_NONE &&
3101             !can_checksum_protocol(features, type)) {
3102                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3103         }
3104         if (illegal_highdma(skb->dev, skb))
3105                 features &= ~NETIF_F_SG;
3106
3107         return features;
3108 }
3109
3110 netdev_features_t passthru_features_check(struct sk_buff *skb,
3111                                           struct net_device *dev,
3112                                           netdev_features_t features)
3113 {
3114         return features;
3115 }
3116 EXPORT_SYMBOL(passthru_features_check);
3117
3118 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3119                                              struct net_device *dev,
3120                                              netdev_features_t features)
3121 {
3122         return vlan_features_check(skb, features);
3123 }
3124
3125 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3126                                             struct net_device *dev,
3127                                             netdev_features_t features)
3128 {
3129         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3130
3131         if (gso_segs > dev->gso_max_segs)
3132                 return features & ~NETIF_F_GSO_MASK;
3133
3134         /* Support for GSO partial features requires software
3135          * intervention before we can actually process the packets
3136          * so we need to strip support for any partial features now
3137          * and we can pull them back in after we have partially
3138          * segmented the frame.
3139          */
3140         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3141                 features &= ~dev->gso_partial_features;
3142
3143         /* Make sure to clear the IPv4 ID mangling feature if the
3144          * IPv4 header has the potential to be fragmented.
3145          */
3146         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3147                 struct iphdr *iph = skb->encapsulation ?
3148                                     inner_ip_hdr(skb) : ip_hdr(skb);
3149
3150                 if (!(iph->frag_off & htons(IP_DF)))
3151                         features &= ~NETIF_F_TSO_MANGLEID;
3152         }
3153
3154         return features;
3155 }
3156
3157 netdev_features_t netif_skb_features(struct sk_buff *skb)
3158 {
3159         struct net_device *dev = skb->dev;
3160         netdev_features_t features = dev->features;
3161
3162         if (skb_is_gso(skb))
3163                 features = gso_features_check(skb, dev, features);
3164
3165         /* If encapsulation offload request, verify we are testing
3166          * hardware encapsulation features instead of standard
3167          * features for the netdev
3168          */
3169         if (skb->encapsulation)
3170                 features &= dev->hw_enc_features;
3171
3172         if (skb_vlan_tagged(skb))
3173                 features = netdev_intersect_features(features,
3174                                                      dev->vlan_features |
3175                                                      NETIF_F_HW_VLAN_CTAG_TX |
3176                                                      NETIF_F_HW_VLAN_STAG_TX);
3177
3178         if (dev->netdev_ops->ndo_features_check)
3179                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3180                                                                 features);
3181         else
3182                 features &= dflt_features_check(skb, dev, features);
3183
3184         return harmonize_features(skb, features);
3185 }
3186 EXPORT_SYMBOL(netif_skb_features);
3187
3188 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3189                     struct netdev_queue *txq, bool more)
3190 {
3191         unsigned int len;
3192         int rc;
3193
3194         if (dev_nit_active(dev))
3195                 dev_queue_xmit_nit(skb, dev);
3196
3197         len = skb->len;
3198         trace_net_dev_start_xmit(skb, dev);
3199         rc = netdev_start_xmit(skb, dev, txq, more);
3200         trace_net_dev_xmit(skb, rc, dev, len);
3201
3202         return rc;
3203 }
3204
3205 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3206                                     struct netdev_queue *txq, int *ret)
3207 {
3208         struct sk_buff *skb = first;
3209         int rc = NETDEV_TX_OK;
3210
3211         while (skb) {
3212                 struct sk_buff *next = skb->next;
3213
3214                 skb_mark_not_on_list(skb);
3215                 rc = xmit_one(skb, dev, txq, next != NULL);
3216                 if (unlikely(!dev_xmit_complete(rc))) {
3217                         skb->next = next;
3218                         goto out;
3219                 }
3220
3221                 skb = next;
3222                 if (netif_tx_queue_stopped(txq) && skb) {
3223                         rc = NETDEV_TX_BUSY;
3224                         break;
3225                 }
3226         }
3227
3228 out:
3229         *ret = rc;
3230         return skb;
3231 }
3232
3233 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3234                                           netdev_features_t features)
3235 {
3236         if (skb_vlan_tag_present(skb) &&
3237             !vlan_hw_offload_capable(features, skb->vlan_proto))
3238                 skb = __vlan_hwaccel_push_inside(skb);
3239         return skb;
3240 }
3241
3242 int skb_csum_hwoffload_help(struct sk_buff *skb,
3243                             const netdev_features_t features)
3244 {
3245         if (unlikely(skb->csum_not_inet))
3246                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3247                         skb_crc32c_csum_help(skb);
3248
3249         return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3250 }
3251 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3252
3253 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3254 {
3255         netdev_features_t features;
3256
3257         features = netif_skb_features(skb);
3258         skb = validate_xmit_vlan(skb, features);
3259         if (unlikely(!skb))
3260                 goto out_null;
3261
3262         skb = sk_validate_xmit_skb(skb, dev);
3263         if (unlikely(!skb))
3264                 goto out_null;
3265
3266         if (netif_needs_gso(skb, features)) {
3267                 struct sk_buff *segs;
3268
3269                 segs = skb_gso_segment(skb, features);
3270                 if (IS_ERR(segs)) {
3271                         goto out_kfree_skb;
3272                 } else if (segs) {
3273                         consume_skb(skb);
3274                         skb = segs;
3275                 }
3276         } else {
3277                 if (skb_needs_linearize(skb, features) &&
3278                     __skb_linearize(skb))
3279                         goto out_kfree_skb;
3280
3281                 /* If packet is not checksummed and device does not
3282                  * support checksumming for this protocol, complete
3283                  * checksumming here.
3284                  */
3285                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3286                         if (skb->encapsulation)
3287                                 skb_set_inner_transport_header(skb,
3288                                                                skb_checksum_start_offset(skb));
3289                         else
3290                                 skb_set_transport_header(skb,
3291                                                          skb_checksum_start_offset(skb));
3292                         if (skb_csum_hwoffload_help(skb, features))
3293                                 goto out_kfree_skb;
3294                 }
3295         }
3296
3297         skb = validate_xmit_xfrm(skb, features, again);
3298
3299         return skb;
3300
3301 out_kfree_skb:
3302         kfree_skb(skb);
3303 out_null:
3304         atomic_long_inc(&dev->tx_dropped);
3305         return NULL;
3306 }
3307
3308 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3309 {
3310         struct sk_buff *next, *head = NULL, *tail;
3311
3312         for (; skb != NULL; skb = next) {
3313                 next = skb->next;
3314                 skb_mark_not_on_list(skb);
3315
3316                 /* in case skb wont be segmented, point to itself */
3317                 skb->prev = skb;
3318
3319                 skb = validate_xmit_skb(skb, dev, again);
3320                 if (!skb)
3321                         continue;
3322
3323                 if (!head)
3324                         head = skb;
3325                 else
3326                         tail->next = skb;
3327                 /* If skb was segmented, skb->prev points to
3328                  * the last segment. If not, it still contains skb.
3329                  */
3330                 tail = skb->prev;
3331         }
3332         return head;
3333 }
3334 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3335
3336 static void qdisc_pkt_len_init(struct sk_buff *skb)
3337 {
3338         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3339
3340         qdisc_skb_cb(skb)->pkt_len = skb->len;
3341
3342         /* To get more precise estimation of bytes sent on wire,
3343          * we add to pkt_len the headers size of all segments
3344          */
3345         if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3346                 unsigned int hdr_len;
3347                 u16 gso_segs = shinfo->gso_segs;
3348
3349                 /* mac layer + network layer */
3350                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3351
3352                 /* + transport layer */
3353                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3354                         const struct tcphdr *th;
3355                         struct tcphdr _tcphdr;
3356
3357                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3358                                                 sizeof(_tcphdr), &_tcphdr);
3359                         if (likely(th))
3360                                 hdr_len += __tcp_hdrlen(th);
3361                 } else {
3362                         struct udphdr _udphdr;
3363
3364                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3365                                                sizeof(_udphdr), &_udphdr))
3366                                 hdr_len += sizeof(struct udphdr);
3367                 }
3368
3369                 if (shinfo->gso_type & SKB_GSO_DODGY)
3370                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3371                                                 shinfo->gso_size);
3372
3373                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3374         }
3375 }
3376
3377 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3378                                  struct net_device *dev,
3379                                  struct netdev_queue *txq)
3380 {
3381         spinlock_t *root_lock = qdisc_lock(q);
3382         struct sk_buff *to_free = NULL;
3383         bool contended;
3384         int rc;
3385
3386         qdisc_calculate_pkt_len(skb, q);
3387
3388         if (q->flags & TCQ_F_NOLOCK) {
3389                 if ((q->flags & TCQ_F_CAN_BYPASS) && q->empty &&
3390                     qdisc_run_begin(q)) {
3391                         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
3392                                               &q->state))) {
3393                                 __qdisc_drop(skb, &to_free);
3394                                 rc = NET_XMIT_DROP;
3395                                 goto end_run;
3396                         }
3397                         qdisc_bstats_cpu_update(q, skb);
3398
3399                         rc = NET_XMIT_SUCCESS;
3400                         if (sch_direct_xmit(skb, q, dev, txq, NULL, true))
3401                                 __qdisc_run(q);
3402
3403 end_run:
3404                         qdisc_run_end(q);
3405                 } else {
3406                         rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3407                         qdisc_run(q);
3408                 }
3409
3410                 if (unlikely(to_free))
3411                         kfree_skb_list(to_free);
3412                 return rc;
3413         }
3414
3415         /*
3416          * Heuristic to force contended enqueues to serialize on a
3417          * separate lock before trying to get qdisc main lock.
3418          * This permits qdisc->running owner to get the lock more
3419          * often and dequeue packets faster.
3420          */
3421         contended = qdisc_is_running(q);
3422         if (unlikely(contended))
3423                 spin_lock(&q->busylock);
3424
3425         spin_lock(root_lock);
3426         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3427                 __qdisc_drop(skb, &to_free);
3428                 rc = NET_XMIT_DROP;
3429         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3430                    qdisc_run_begin(q)) {
3431                 /*
3432                  * This is a work-conserving queue; there are no old skbs
3433                  * waiting to be sent out; and the qdisc is not running -
3434                  * xmit the skb directly.
3435                  */
3436
3437                 qdisc_bstats_update(q, skb);
3438
3439                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3440                         if (unlikely(contended)) {
3441                                 spin_unlock(&q->busylock);
3442                                 contended = false;
3443                         }
3444                         __qdisc_run(q);
3445                 }
3446
3447                 qdisc_run_end(q);
3448                 rc = NET_XMIT_SUCCESS;
3449         } else {
3450                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3451                 if (qdisc_run_begin(q)) {
3452                         if (unlikely(contended)) {
3453                                 spin_unlock(&q->busylock);
3454                                 contended = false;
3455                         }
3456                         __qdisc_run(q);
3457                         qdisc_run_end(q);
3458                 }
3459         }
3460         spin_unlock(root_lock);
3461         if (unlikely(to_free))
3462                 kfree_skb_list(to_free);
3463         if (unlikely(contended))
3464                 spin_unlock(&q->busylock);
3465         return rc;
3466 }
3467
3468 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3469 static void skb_update_prio(struct sk_buff *skb)
3470 {
3471         const struct netprio_map *map;
3472         const struct sock *sk;
3473         unsigned int prioidx;
3474
3475         if (skb->priority)
3476                 return;
3477         map = rcu_dereference_bh(skb->dev->priomap);
3478         if (!map)
3479                 return;
3480         sk = skb_to_full_sk(skb);
3481         if (!sk)
3482                 return;
3483
3484         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3485
3486         if (prioidx < map->priomap_len)
3487                 skb->priority = map->priomap[prioidx];
3488 }
3489 #else
3490 #define skb_update_prio(skb)
3491 #endif
3492
3493 /**
3494  *      dev_loopback_xmit - loop back @skb
3495  *      @net: network namespace this loopback is happening in
3496  *      @sk:  sk needed to be a netfilter okfn
3497  *      @skb: buffer to transmit
3498  */
3499 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3500 {
3501         skb_reset_mac_header(skb);
3502         __skb_pull(skb, skb_network_offset(skb));
3503         skb->pkt_type = PACKET_LOOPBACK;
3504         skb->ip_summed = CHECKSUM_UNNECESSARY;
3505         WARN_ON(!skb_dst(skb));
3506         skb_dst_force(skb);
3507         netif_rx_ni(skb);
3508         return 0;
3509 }
3510 EXPORT_SYMBOL(dev_loopback_xmit);
3511
3512 #ifdef CONFIG_NET_EGRESS
3513 static struct sk_buff *
3514 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3515 {
3516         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3517         struct tcf_result cl_res;
3518
3519         if (!miniq)
3520                 return skb;
3521
3522         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3523         mini_qdisc_bstats_cpu_update(miniq, skb);
3524
3525         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3526         case TC_ACT_OK:
3527         case TC_ACT_RECLASSIFY:
3528                 skb->tc_index = TC_H_MIN(cl_res.classid);
3529                 break;
3530         case TC_ACT_SHOT:
3531                 mini_qdisc_qstats_cpu_drop(miniq);
3532                 *ret = NET_XMIT_DROP;
3533                 kfree_skb(skb);
3534                 return NULL;
3535         case TC_ACT_STOLEN:
3536         case TC_ACT_QUEUED:
3537         case TC_ACT_TRAP:
3538                 *ret = NET_XMIT_SUCCESS;
3539                 consume_skb(skb);
3540                 return NULL;
3541         case TC_ACT_REDIRECT:
3542                 /* No need to push/pop skb's mac_header here on egress! */
3543                 skb_do_redirect(skb);
3544                 *ret = NET_XMIT_SUCCESS;
3545                 return NULL;
3546         default:
3547                 break;
3548         }
3549
3550         return skb;
3551 }
3552 #endif /* CONFIG_NET_EGRESS */
3553
3554 #ifdef CONFIG_XPS
3555 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3556                                struct xps_dev_maps *dev_maps, unsigned int tci)
3557 {
3558         struct xps_map *map;
3559         int queue_index = -1;
3560
3561         if (dev->num_tc) {
3562                 tci *= dev->num_tc;
3563                 tci += netdev_get_prio_tc_map(dev, skb->priority);
3564         }
3565
3566         map = rcu_dereference(dev_maps->attr_map[tci]);
3567         if (map) {
3568                 if (map->len == 1)
3569                         queue_index = map->queues[0];
3570                 else
3571                         queue_index = map->queues[reciprocal_scale(
3572                                                 skb_get_hash(skb), map->len)];
3573                 if (unlikely(queue_index >= dev->real_num_tx_queues))
3574                         queue_index = -1;
3575         }
3576         return queue_index;
3577 }
3578 #endif
3579
3580 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3581                          struct sk_buff *skb)
3582 {
3583 #ifdef CONFIG_XPS
3584         struct xps_dev_maps *dev_maps;
3585         struct sock *sk = skb->sk;
3586         int queue_index = -1;
3587
3588         if (!static_key_false(&xps_needed))
3589                 return -1;
3590
3591         rcu_read_lock();
3592         if (!static_key_false(&xps_rxqs_needed))
3593                 goto get_cpus_map;
3594
3595         dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3596         if (dev_maps) {
3597                 int tci = sk_rx_queue_get(sk);
3598
3599                 if (tci >= 0 && tci < dev->num_rx_queues)
3600                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3601                                                           tci);
3602         }
3603
3604 get_cpus_map:
3605         if (queue_index < 0) {
3606                 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3607                 if (dev_maps) {
3608                         unsigned int tci = skb->sender_cpu - 1;
3609
3610                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3611                                                           tci);
3612                 }
3613         }
3614         rcu_read_unlock();
3615
3616         return queue_index;
3617 #else
3618         return -1;
3619 #endif
3620 }
3621
3622 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3623                      struct net_device *sb_dev)
3624 {
3625         return 0;
3626 }
3627 EXPORT_SYMBOL(dev_pick_tx_zero);
3628
3629 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3630                        struct net_device *sb_dev)
3631 {
3632         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3633 }
3634 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3635
3636 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3637                      struct net_device *sb_dev)
3638 {
3639         struct sock *sk = skb->sk;
3640         int queue_index = sk_tx_queue_get(sk);
3641
3642         sb_dev = sb_dev ? : dev;
3643
3644         if (queue_index < 0 || skb->ooo_okay ||
3645             queue_index >= dev->real_num_tx_queues) {
3646                 int new_index = get_xps_queue(dev, sb_dev, skb);
3647
3648                 if (new_index < 0)
3649                         new_index = skb_tx_hash(dev, sb_dev, skb);
3650
3651                 if (queue_index != new_index && sk &&
3652                     sk_fullsock(sk) &&
3653                     rcu_access_pointer(sk->sk_dst_cache))
3654                         sk_tx_queue_set(sk, new_index);
3655
3656                 queue_index = new_index;
3657         }
3658
3659         return queue_index;
3660 }
3661 EXPORT_SYMBOL(netdev_pick_tx);
3662
3663 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
3664                                          struct sk_buff *skb,
3665                                          struct net_device *sb_dev)
3666 {
3667         int queue_index = 0;
3668
3669 #ifdef CONFIG_XPS
3670         u32 sender_cpu = skb->sender_cpu - 1;
3671
3672         if (sender_cpu >= (u32)NR_CPUS)
3673                 skb->sender_cpu = raw_smp_processor_id() + 1;
3674 #endif
3675
3676         if (dev->real_num_tx_queues != 1) {
3677                 const struct net_device_ops *ops = dev->netdev_ops;
3678
3679                 if (ops->ndo_select_queue)
3680                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
3681                 else
3682                         queue_index = netdev_pick_tx(dev, skb, sb_dev);
3683
3684                 queue_index = netdev_cap_txqueue(dev, queue_index);
3685         }
3686
3687         skb_set_queue_mapping(skb, queue_index);
3688         return netdev_get_tx_queue(dev, queue_index);
3689 }
3690
3691 /**
3692  *      __dev_queue_xmit - transmit a buffer
3693  *      @skb: buffer to transmit
3694  *      @sb_dev: suboordinate device used for L2 forwarding offload
3695  *
3696  *      Queue a buffer for transmission to a network device. The caller must
3697  *      have set the device and priority and built the buffer before calling
3698  *      this function. The function can be called from an interrupt.
3699  *
3700  *      A negative errno code is returned on a failure. A success does not
3701  *      guarantee the frame will be transmitted as it may be dropped due
3702  *      to congestion or traffic shaping.
3703  *
3704  * -----------------------------------------------------------------------------------
3705  *      I notice this method can also return errors from the queue disciplines,
3706  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3707  *      be positive.
3708  *
3709  *      Regardless of the return value, the skb is consumed, so it is currently
3710  *      difficult to retry a send to this method.  (You can bump the ref count
3711  *      before sending to hold a reference for retry if you are careful.)
3712  *
3713  *      When calling this method, interrupts MUST be enabled.  This is because
3714  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3715  *          --BLG
3716  */
3717 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
3718 {
3719         struct net_device *dev = skb->dev;
3720         struct netdev_queue *txq;
3721         struct Qdisc *q;
3722         int rc = -ENOMEM;
3723         bool again = false;
3724
3725         skb_reset_mac_header(skb);
3726
3727         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3728                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3729
3730         /* Disable soft irqs for various locks below. Also
3731          * stops preemption for RCU.
3732          */
3733         rcu_read_lock_bh();
3734
3735         skb_update_prio(skb);
3736
3737         qdisc_pkt_len_init(skb);
3738 #ifdef CONFIG_NET_CLS_ACT
3739         skb->tc_at_ingress = 0;
3740 # ifdef CONFIG_NET_EGRESS
3741         if (static_branch_unlikely(&egress_needed_key)) {
3742                 skb = sch_handle_egress(skb, &rc, dev);
3743                 if (!skb)
3744                         goto out;
3745         }
3746 # endif
3747 #endif
3748         /* If device/qdisc don't need skb->dst, release it right now while
3749          * its hot in this cpu cache.
3750          */
3751         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3752                 skb_dst_drop(skb);
3753         else
3754                 skb_dst_force(skb);
3755
3756         txq = netdev_core_pick_tx(dev, skb, sb_dev);
3757         q = rcu_dereference_bh(txq->qdisc);
3758
3759         trace_net_dev_queue(skb);
3760         if (q->enqueue) {
3761                 rc = __dev_xmit_skb(skb, q, dev, txq);
3762                 goto out;
3763         }
3764
3765         /* The device has no queue. Common case for software devices:
3766          * loopback, all the sorts of tunnels...
3767
3768          * Really, it is unlikely that netif_tx_lock protection is necessary
3769          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3770          * counters.)
3771          * However, it is possible, that they rely on protection
3772          * made by us here.
3773
3774          * Check this and shot the lock. It is not prone from deadlocks.
3775          *Either shot noqueue qdisc, it is even simpler 8)
3776          */
3777         if (dev->flags & IFF_UP) {
3778                 int cpu = smp_processor_id(); /* ok because BHs are off */
3779
3780                 if (txq->xmit_lock_owner != cpu) {
3781                         if (dev_xmit_recursion())
3782                                 goto recursion_alert;
3783
3784                         skb = validate_xmit_skb(skb, dev, &again);
3785                         if (!skb)
3786                                 goto out;
3787
3788                         HARD_TX_LOCK(dev, txq, cpu);
3789
3790                         if (!netif_xmit_stopped(txq)) {
3791                                 dev_xmit_recursion_inc();
3792                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3793                                 dev_xmit_recursion_dec();
3794                                 if (dev_xmit_complete(rc)) {
3795                                         HARD_TX_UNLOCK(dev, txq);
3796                                         goto out;
3797                                 }
3798                         }
3799                         HARD_TX_UNLOCK(dev, txq);
3800                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3801                                              dev->name);
3802                 } else {
3803                         /* Recursion is detected! It is possible,
3804                          * unfortunately
3805                          */
3806 recursion_alert:
3807                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3808                                              dev->name);
3809                 }
3810         }
3811
3812         rc = -ENETDOWN;
3813         rcu_read_unlock_bh();
3814
3815         atomic_long_inc(&dev->tx_dropped);
3816         kfree_skb_list(skb);
3817         return rc;
3818 out:
3819         rcu_read_unlock_bh();
3820         return rc;
3821 }
3822
3823 int dev_queue_xmit(struct sk_buff *skb)
3824 {
3825         return __dev_queue_xmit(skb, NULL);
3826 }
3827 EXPORT_SYMBOL(dev_queue_xmit);
3828
3829 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
3830 {
3831         return __dev_queue_xmit(skb, sb_dev);
3832 }
3833 EXPORT_SYMBOL(dev_queue_xmit_accel);
3834
3835 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3836 {
3837         struct net_device *dev = skb->dev;
3838         struct sk_buff *orig_skb = skb;
3839         struct netdev_queue *txq;
3840         int ret = NETDEV_TX_BUSY;
3841         bool again = false;
3842
3843         if (unlikely(!netif_running(dev) ||
3844                      !netif_carrier_ok(dev)))
3845                 goto drop;
3846
3847         skb = validate_xmit_skb_list(skb, dev, &again);
3848         if (skb != orig_skb)
3849                 goto drop;
3850
3851         skb_set_queue_mapping(skb, queue_id);
3852         txq = skb_get_tx_queue(dev, skb);
3853
3854         local_bh_disable();
3855
3856         HARD_TX_LOCK(dev, txq, smp_processor_id());
3857         if (!netif_xmit_frozen_or_drv_stopped(txq))
3858                 ret = netdev_start_xmit(skb, dev, txq, false);
3859         HARD_TX_UNLOCK(dev, txq);
3860
3861         local_bh_enable();
3862
3863         if (!dev_xmit_complete(ret))
3864                 kfree_skb(skb);
3865
3866         return ret;
3867 drop:
3868         atomic_long_inc(&dev->tx_dropped);
3869         kfree_skb_list(skb);
3870         return NET_XMIT_DROP;
3871 }
3872 EXPORT_SYMBOL(dev_direct_xmit);
3873
3874 /*************************************************************************
3875  *                      Receiver routines
3876  *************************************************************************/
3877
3878 int netdev_max_backlog __read_mostly = 1000;
3879 EXPORT_SYMBOL(netdev_max_backlog);
3880
3881 int netdev_tstamp_prequeue __read_mostly = 1;
3882 int netdev_budget __read_mostly = 300;
3883 unsigned int __read_mostly netdev_budget_usecs = 2000;
3884 int weight_p __read_mostly = 64;           /* old backlog weight */
3885 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3886 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3887 int dev_rx_weight __read_mostly = 64;
3888 int dev_tx_weight __read_mostly = 64;
3889 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
3890 int gro_normal_batch __read_mostly = 8;
3891
3892 /* Called with irq disabled */
3893 static inline void ____napi_schedule(struct softnet_data *sd,
3894                                      struct napi_struct *napi)
3895 {
3896         list_add_tail(&napi->poll_list, &sd->poll_list);
3897         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3898 }
3899
3900 #ifdef CONFIG_RPS
3901
3902 /* One global table that all flow-based protocols share. */
3903 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3904 EXPORT_SYMBOL(rps_sock_flow_table);
3905 u32 rps_cpu_mask __read_mostly;
3906 EXPORT_SYMBOL(rps_cpu_mask);
3907
3908 struct static_key_false rps_needed __read_mostly;
3909 EXPORT_SYMBOL(rps_needed);
3910 struct static_key_false rfs_needed __read_mostly;
3911 EXPORT_SYMBOL(rfs_needed);
3912
3913 static struct rps_dev_flow *
3914 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3915             struct rps_dev_flow *rflow, u16 next_cpu)
3916 {
3917         if (next_cpu < nr_cpu_ids) {
3918 #ifdef CONFIG_RFS_ACCEL
3919                 struct netdev_rx_queue *rxqueue;
3920                 struct rps_dev_flow_table *flow_table;
3921                 struct rps_dev_flow *old_rflow;
3922                 u32 flow_id;
3923                 u16 rxq_index;
3924                 int rc;
3925
3926                 /* Should we steer this flow to a different hardware queue? */
3927                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3928                     !(dev->features & NETIF_F_NTUPLE))
3929                         goto out;
3930                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3931                 if (rxq_index == skb_get_rx_queue(skb))
3932                         goto out;
3933
3934                 rxqueue = dev->_rx + rxq_index;
3935                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3936                 if (!flow_table)
3937                         goto out;
3938                 flow_id = skb_get_hash(skb) & flow_table->mask;
3939                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3940                                                         rxq_index, flow_id);
3941                 if (rc < 0)
3942                         goto out;
3943                 old_rflow = rflow;
3944                 rflow = &flow_table->flows[flow_id];
3945                 rflow->filter = rc;
3946                 if (old_rflow->filter == rflow->filter)
3947                         old_rflow->filter = RPS_NO_FILTER;
3948         out:
3949 #endif
3950                 rflow->last_qtail =
3951                         per_cpu(softnet_data, next_cpu).input_queue_head;
3952         }
3953
3954         rflow->cpu = next_cpu;
3955         return rflow;
3956 }
3957
3958 /*
3959  * get_rps_cpu is called from netif_receive_skb and returns the target
3960  * CPU from the RPS map of the receiving queue for a given skb.
3961  * rcu_read_lock must be held on entry.
3962  */
3963 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3964                        struct rps_dev_flow **rflowp)
3965 {
3966         const struct rps_sock_flow_table *sock_flow_table;
3967         struct netdev_rx_queue *rxqueue = dev->_rx;
3968         struct rps_dev_flow_table *flow_table;
3969         struct rps_map *map;
3970         int cpu = -1;
3971         u32 tcpu;
3972         u32 hash;
3973
3974         if (skb_rx_queue_recorded(skb)) {
3975                 u16 index = skb_get_rx_queue(skb);
3976
3977                 if (unlikely(index >= dev->real_num_rx_queues)) {
3978                         WARN_ONCE(dev->real_num_rx_queues > 1,
3979                                   "%s received packet on queue %u, but number "
3980                                   "of RX queues is %u\n",
3981                                   dev->name, index, dev->real_num_rx_queues);
3982                         goto done;
3983                 }
3984                 rxqueue += index;
3985         }
3986
3987         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3988
3989         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3990         map = rcu_dereference(rxqueue->rps_map);
3991         if (!flow_table && !map)
3992                 goto done;
3993
3994         skb_reset_network_header(skb);
3995         hash = skb_get_hash(skb);
3996         if (!hash)
3997                 goto done;
3998
3999         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4000         if (flow_table && sock_flow_table) {
4001                 struct rps_dev_flow *rflow;
4002                 u32 next_cpu;
4003                 u32 ident;
4004
4005                 /* First check into global flow table if there is a match */
4006                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4007                 if ((ident ^ hash) & ~rps_cpu_mask)
4008                         goto try_rps;
4009
4010                 next_cpu = ident & rps_cpu_mask;
4011
4012                 /* OK, now we know there is a match,
4013                  * we can look at the local (per receive queue) flow table
4014                  */
4015                 rflow = &flow_table->flows[hash & flow_table->mask];
4016                 tcpu = rflow->cpu;
4017
4018                 /*
4019                  * If the desired CPU (where last recvmsg was done) is
4020                  * different from current CPU (one in the rx-queue flow
4021                  * table entry), switch if one of the following holds:
4022                  *   - Current CPU is unset (>= nr_cpu_ids).
4023                  *   - Current CPU is offline.
4024                  *   - The current CPU's queue tail has advanced beyond the
4025                  *     last packet that was enqueued using this table entry.
4026                  *     This guarantees that all previous packets for the flow
4027                  *     have been dequeued, thus preserving in order delivery.
4028                  */
4029                 if (unlikely(tcpu != next_cpu) &&
4030                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4031                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4032                       rflow->last_qtail)) >= 0)) {
4033                         tcpu = next_cpu;
4034                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4035                 }
4036
4037                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4038                         *rflowp = rflow;
4039                         cpu = tcpu;
4040                         goto done;
4041                 }
4042         }
4043
4044 try_rps:
4045
4046         if (map) {
4047                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4048                 if (cpu_online(tcpu)) {
4049                         cpu = tcpu;
4050                         goto done;
4051                 }
4052         }
4053
4054 done:
4055         return cpu;
4056 }
4057
4058 #ifdef CONFIG_RFS_ACCEL
4059
4060 /**
4061  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4062  * @dev: Device on which the filter was set
4063  * @rxq_index: RX queue index
4064  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4065  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4066  *
4067  * Drivers that implement ndo_rx_flow_steer() should periodically call
4068  * this function for each installed filter and remove the filters for
4069  * which it returns %true.
4070  */
4071 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4072                          u32 flow_id, u16 filter_id)
4073 {
4074         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4075         struct rps_dev_flow_table *flow_table;
4076         struct rps_dev_flow *rflow;
4077         bool expire = true;
4078         unsigned int cpu;
4079
4080         rcu_read_lock();
4081         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4082         if (flow_table && flow_id <= flow_table->mask) {
4083                 rflow = &flow_table->flows[flow_id];
4084                 cpu = READ_ONCE(rflow->cpu);
4085                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4086                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4087                            rflow->last_qtail) <
4088                      (int)(10 * flow_table->mask)))
4089                         expire = false;
4090         }
4091         rcu_read_unlock();
4092         return expire;
4093 }
4094 EXPORT_SYMBOL(rps_may_expire_flow);
4095
4096 #endif /* CONFIG_RFS_ACCEL */
4097
4098 /* Called from hardirq (IPI) context */
4099 static void rps_trigger_softirq(void *data)
4100 {
4101         struct softnet_data *sd = data;
4102
4103         ____napi_schedule(sd, &sd->backlog);
4104         sd->received_rps++;
4105 }
4106
4107 #endif /* CONFIG_RPS */
4108
4109 /*
4110  * Check if this softnet_data structure is another cpu one
4111  * If yes, queue it to our IPI list and return 1
4112  * If no, return 0
4113  */
4114 static int rps_ipi_queued(struct softnet_data *sd)
4115 {
4116 #ifdef CONFIG_RPS
4117         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4118
4119         if (sd != mysd) {
4120                 sd->rps_ipi_next = mysd->rps_ipi_list;
4121                 mysd->rps_ipi_list = sd;
4122
4123                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4124                 return 1;
4125         }
4126 #endif /* CONFIG_RPS */
4127         return 0;
4128 }
4129
4130 #ifdef CONFIG_NET_FLOW_LIMIT
4131 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4132 #endif
4133
4134 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4135 {
4136 #ifdef CONFIG_NET_FLOW_LIMIT
4137         struct sd_flow_limit *fl;
4138         struct softnet_data *sd;
4139         unsigned int old_flow, new_flow;
4140
4141         if (qlen < (netdev_max_backlog >> 1))
4142                 return false;
4143
4144         sd = this_cpu_ptr(&softnet_data);
4145
4146         rcu_read_lock();
4147         fl = rcu_dereference(sd->flow_limit);
4148         if (fl) {
4149                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4150                 old_flow = fl->history[fl->history_head];
4151                 fl->history[fl->history_head] = new_flow;
4152
4153                 fl->history_head++;
4154                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4155
4156                 if (likely(fl->buckets[old_flow]))
4157                         fl->buckets[old_flow]--;
4158
4159                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4160                         fl->count++;
4161                         rcu_read_unlock();
4162                         return true;
4163                 }
4164         }
4165         rcu_read_unlock();
4166 #endif
4167         return false;
4168 }
4169
4170 /*
4171  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4172  * queue (may be a remote CPU queue).
4173  */
4174 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4175                               unsigned int *qtail)
4176 {
4177         struct softnet_data *sd;
4178         unsigned long flags;
4179         unsigned int qlen;
4180
4181         sd = &per_cpu(softnet_data, cpu);
4182
4183         local_irq_save(flags);
4184
4185         rps_lock(sd);
4186         if (!netif_running(skb->dev))
4187                 goto drop;
4188         qlen = skb_queue_len(&sd->input_pkt_queue);
4189         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4190                 if (qlen) {
4191 enqueue:
4192                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4193                         input_queue_tail_incr_save(sd, qtail);
4194                         rps_unlock(sd);
4195                         local_irq_restore(flags);
4196                         return NET_RX_SUCCESS;
4197                 }
4198
4199                 /* Schedule NAPI for backlog device
4200                  * We can use non atomic operation since we own the queue lock
4201                  */
4202                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4203                         if (!rps_ipi_queued(sd))
4204                                 ____napi_schedule(sd, &sd->backlog);
4205                 }
4206                 goto enqueue;
4207         }
4208
4209 drop:
4210         sd->dropped++;
4211         rps_unlock(sd);
4212
4213         local_irq_restore(flags);
4214
4215         atomic_long_inc(&skb->dev->rx_dropped);
4216         kfree_skb(skb);
4217         return NET_RX_DROP;
4218 }
4219
4220 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4221 {
4222         struct net_device *dev = skb->dev;
4223         struct netdev_rx_queue *rxqueue;
4224
4225         rxqueue = dev->_rx;
4226
4227         if (skb_rx_queue_recorded(skb)) {
4228                 u16 index = skb_get_rx_queue(skb);
4229
4230                 if (unlikely(index >= dev->real_num_rx_queues)) {
4231                         WARN_ONCE(dev->real_num_rx_queues > 1,
4232                                   "%s received packet on queue %u, but number "
4233                                   "of RX queues is %u\n",
4234                                   dev->name, index, dev->real_num_rx_queues);
4235
4236                         return rxqueue; /* Return first rxqueue */
4237                 }
4238                 rxqueue += index;
4239         }
4240         return rxqueue;
4241 }
4242
4243 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4244                                      struct xdp_buff *xdp,
4245                                      struct bpf_prog *xdp_prog)
4246 {
4247         struct netdev_rx_queue *rxqueue;
4248         void *orig_data, *orig_data_end;
4249         u32 metalen, act = XDP_DROP;
4250         __be16 orig_eth_type;
4251         struct ethhdr *eth;
4252         bool orig_bcast;
4253         int hlen, off;
4254         u32 mac_len;
4255
4256         /* Reinjected packets coming from act_mirred or similar should
4257          * not get XDP generic processing.
4258          */
4259         if (skb_cloned(skb) || skb_is_tc_redirected(skb))
4260                 return XDP_PASS;
4261
4262         /* XDP packets must be linear and must have sufficient headroom
4263          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4264          * native XDP provides, thus we need to do it here as well.
4265          */
4266         if (skb_is_nonlinear(skb) ||
4267             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4268                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4269                 int troom = skb->tail + skb->data_len - skb->end;
4270
4271                 /* In case we have to go down the path and also linearize,
4272                  * then lets do the pskb_expand_head() work just once here.
4273                  */
4274                 if (pskb_expand_head(skb,
4275                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4276                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4277                         goto do_drop;
4278                 if (skb_linearize(skb))
4279                         goto do_drop;
4280         }
4281
4282         /* The XDP program wants to see the packet starting at the MAC
4283          * header.
4284          */
4285         mac_len = skb->data - skb_mac_header(skb);
4286         hlen = skb_headlen(skb) + mac_len;
4287         xdp->data = skb->data - mac_len;
4288         xdp->data_meta = xdp->data;
4289         xdp->data_end = xdp->data + hlen;
4290         xdp->data_hard_start = skb->data - skb_headroom(skb);
4291         orig_data_end = xdp->data_end;
4292         orig_data = xdp->data;
4293         eth = (struct ethhdr *)xdp->data;
4294         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4295         orig_eth_type = eth->h_proto;
4296
4297         rxqueue = netif_get_rxqueue(skb);
4298         xdp->rxq = &rxqueue->xdp_rxq;
4299
4300         act = bpf_prog_run_xdp(xdp_prog, xdp);
4301
4302         /* check if bpf_xdp_adjust_head was used */
4303         off = xdp->data - orig_data;
4304         if (off) {
4305                 if (off > 0)
4306                         __skb_pull(skb, off);
4307                 else if (off < 0)
4308                         __skb_push(skb, -off);
4309
4310                 skb->mac_header += off;
4311                 skb_reset_network_header(skb);
4312         }
4313
4314         /* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4315          * pckt.
4316          */
4317         off = orig_data_end - xdp->data_end;
4318         if (off != 0) {
4319                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4320                 skb->len -= off;
4321
4322         }
4323
4324         /* check if XDP changed eth hdr such SKB needs update */
4325         eth = (struct ethhdr *)xdp->data;
4326         if ((orig_eth_type != eth->h_proto) ||
4327             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4328                 __skb_push(skb, ETH_HLEN);
4329                 skb->protocol = eth_type_trans(skb, skb->dev);
4330         }
4331
4332         switch (act) {
4333         case XDP_REDIRECT:
4334         case XDP_TX:
4335                 __skb_push(skb, mac_len);
4336                 break;
4337         case XDP_PASS:
4338                 metalen = xdp->data - xdp->data_meta;
4339                 if (metalen)
4340                         skb_metadata_set(skb, metalen);
4341                 break;
4342         default:
4343                 bpf_warn_invalid_xdp_action(act);
4344                 /* fall through */
4345         case XDP_ABORTED:
4346                 trace_xdp_exception(skb->dev, xdp_prog, act);
4347                 /* fall through */
4348         case XDP_DROP:
4349         do_drop:
4350                 kfree_skb(skb);
4351                 break;
4352         }
4353
4354         return act;
4355 }
4356
4357 /* When doing generic XDP we have to bypass the qdisc layer and the
4358  * network taps in order to match in-driver-XDP behavior.
4359  */
4360 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4361 {
4362         struct net_device *dev = skb->dev;
4363         struct netdev_queue *txq;
4364         bool free_skb = true;
4365         int cpu, rc;
4366
4367         txq = netdev_core_pick_tx(dev, skb, NULL);
4368         cpu = smp_processor_id();
4369         HARD_TX_LOCK(dev, txq, cpu);
4370         if (!netif_xmit_stopped(txq)) {
4371                 rc = netdev_start_xmit(skb, dev, txq, 0);
4372                 if (dev_xmit_complete(rc))
4373                         free_skb = false;
4374         }
4375         HARD_TX_UNLOCK(dev, txq);
4376         if (free_skb) {
4377                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4378                 kfree_skb(skb);
4379         }
4380 }
4381 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4382
4383 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4384
4385 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4386 {
4387         if (xdp_prog) {
4388                 struct xdp_buff xdp;
4389                 u32 act;
4390                 int err;
4391
4392                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4393                 if (act != XDP_PASS) {
4394                         switch (act) {
4395                         case XDP_REDIRECT:
4396                                 err = xdp_do_generic_redirect(skb->dev, skb,
4397                                                               &xdp, xdp_prog);
4398                                 if (err)
4399                                         goto out_redir;
4400                                 break;
4401                         case XDP_TX:
4402                                 generic_xdp_tx(skb, xdp_prog);
4403                                 break;
4404                         }
4405                         return XDP_DROP;
4406                 }
4407         }
4408         return XDP_PASS;
4409 out_redir:
4410         kfree_skb(skb);
4411         return XDP_DROP;
4412 }
4413 EXPORT_SYMBOL_GPL(do_xdp_generic);
4414
4415 static int netif_rx_internal(struct sk_buff *skb)
4416 {
4417         int ret;
4418
4419         net_timestamp_check(netdev_tstamp_prequeue, skb);
4420
4421         trace_netif_rx(skb);
4422
4423 #ifdef CONFIG_RPS
4424         if (static_branch_unlikely(&rps_needed)) {
4425                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4426                 int cpu;
4427
4428                 preempt_disable();
4429                 rcu_read_lock();
4430
4431                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4432                 if (cpu < 0)
4433                         cpu = smp_processor_id();
4434
4435                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4436
4437                 rcu_read_unlock();
4438                 preempt_enable();
4439         } else
4440 #endif
4441         {
4442                 unsigned int qtail;
4443
4444                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4445                 put_cpu();
4446         }
4447         return ret;
4448 }
4449
4450 /**
4451  *      netif_rx        -       post buffer to the network code
4452  *      @skb: buffer to post
4453  *
4454  *      This function receives a packet from a device driver and queues it for
4455  *      the upper (protocol) levels to process.  It always succeeds. The buffer
4456  *      may be dropped during processing for congestion control or by the
4457  *      protocol layers.
4458  *
4459  *      return values:
4460  *      NET_RX_SUCCESS  (no congestion)
4461  *      NET_RX_DROP     (packet was dropped)
4462  *
4463  */
4464
4465 int netif_rx(struct sk_buff *skb)
4466 {
4467         int ret;
4468
4469         trace_netif_rx_entry(skb);
4470
4471         ret = netif_rx_internal(skb);
4472         trace_netif_rx_exit(ret);
4473
4474         return ret;
4475 }
4476 EXPORT_SYMBOL(netif_rx);
4477
4478 int netif_rx_ni(struct sk_buff *skb)
4479 {
4480         int err;
4481
4482         trace_netif_rx_ni_entry(skb);
4483
4484         preempt_disable();
4485         err = netif_rx_internal(skb);
4486         if (local_softirq_pending())
4487                 do_softirq();
4488         preempt_enable();
4489         trace_netif_rx_ni_exit(err);
4490
4491         return err;
4492 }
4493 EXPORT_SYMBOL(netif_rx_ni);
4494
4495 static __latent_entropy void net_tx_action(struct softirq_action *h)
4496 {
4497         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4498
4499         if (sd->completion_queue) {
4500                 struct sk_buff *clist;
4501
4502                 local_irq_disable();
4503                 clist = sd->completion_queue;
4504                 sd->completion_queue = NULL;
4505                 local_irq_enable();
4506
4507                 while (clist) {
4508                         struct sk_buff *skb = clist;
4509
4510                         clist = clist->next;
4511
4512                         WARN_ON(refcount_read(&skb->users));
4513                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4514                                 trace_consume_skb(skb);
4515                         else
4516                                 trace_kfree_skb(skb, net_tx_action);
4517
4518                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4519                                 __kfree_skb(skb);
4520                         else
4521                                 __kfree_skb_defer(skb);
4522                 }
4523
4524                 __kfree_skb_flush();
4525         }
4526
4527         if (sd->output_queue) {
4528                 struct Qdisc *head;
4529
4530                 local_irq_disable();
4531                 head = sd->output_queue;
4532                 sd->output_queue = NULL;
4533                 sd->output_queue_tailp = &sd->output_queue;
4534                 local_irq_enable();
4535
4536                 while (head) {
4537                         struct Qdisc *q = head;
4538                         spinlock_t *root_lock = NULL;
4539
4540                         head = head->next_sched;
4541
4542                         if (!(q->flags & TCQ_F_NOLOCK)) {
4543                                 root_lock = qdisc_lock(q);
4544                                 spin_lock(root_lock);
4545                         }
4546                         /* We need to make sure head->next_sched is read
4547                          * before clearing __QDISC_STATE_SCHED
4548                          */
4549                         smp_mb__before_atomic();
4550                         clear_bit(__QDISC_STATE_SCHED, &q->state);
4551                         qdisc_run(q);
4552                         if (root_lock)
4553                                 spin_unlock(root_lock);
4554                 }
4555         }
4556
4557         xfrm_dev_backlog(sd);
4558 }
4559
4560 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4561 /* This hook is defined here for ATM LANE */
4562 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4563                              unsigned char *addr) __read_mostly;
4564 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4565 #endif
4566
4567 static inline struct sk_buff *
4568 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4569                    struct net_device *orig_dev)
4570 {
4571 #ifdef CONFIG_NET_CLS_ACT
4572         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4573         struct tcf_result cl_res;
4574
4575         /* If there's at least one ingress present somewhere (so
4576          * we get here via enabled static key), remaining devices
4577          * that are not configured with an ingress qdisc will bail
4578          * out here.
4579          */
4580         if (!miniq)
4581                 return skb;
4582
4583         if (*pt_prev) {
4584                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4585                 *pt_prev = NULL;
4586         }
4587
4588         qdisc_skb_cb(skb)->pkt_len = skb->len;
4589         skb->tc_at_ingress = 1;
4590         mini_qdisc_bstats_cpu_update(miniq, skb);
4591
4592         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4593         case TC_ACT_OK:
4594         case TC_ACT_RECLASSIFY:
4595                 skb->tc_index = TC_H_MIN(cl_res.classid);
4596                 break;
4597         case TC_ACT_SHOT:
4598                 mini_qdisc_qstats_cpu_drop(miniq);
4599                 kfree_skb(skb);
4600                 return NULL;
4601         case TC_ACT_STOLEN:
4602         case TC_ACT_QUEUED:
4603         case TC_ACT_TRAP:
4604                 consume_skb(skb);
4605                 return NULL;
4606         case TC_ACT_REDIRECT:
4607                 /* skb_mac_header check was done by cls/act_bpf, so
4608                  * we can safely push the L2 header back before
4609                  * redirecting to another netdev
4610                  */
4611                 __skb_push(skb, skb->mac_len);
4612                 skb_do_redirect(skb);
4613                 return NULL;
4614         case TC_ACT_CONSUMED:
4615                 return NULL;
4616         default:
4617                 break;
4618         }
4619 #endif /* CONFIG_NET_CLS_ACT */
4620         return skb;
4621 }
4622
4623 /**
4624  *      netdev_is_rx_handler_busy - check if receive handler is registered
4625  *      @dev: device to check
4626  *
4627  *      Check if a receive handler is already registered for a given device.
4628  *      Return true if there one.
4629  *
4630  *      The caller must hold the rtnl_mutex.
4631  */
4632 bool netdev_is_rx_handler_busy(struct net_device *dev)
4633 {
4634         ASSERT_RTNL();
4635         return dev && rtnl_dereference(dev->rx_handler);
4636 }
4637 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4638
4639 /**
4640  *      netdev_rx_handler_register - register receive handler
4641  *      @dev: device to register a handler for
4642  *      @rx_handler: receive handler to register
4643  *      @rx_handler_data: data pointer that is used by rx handler
4644  *
4645  *      Register a receive handler for a device. This handler will then be
4646  *      called from __netif_receive_skb. A negative errno code is returned
4647  *      on a failure.
4648  *
4649  *      The caller must hold the rtnl_mutex.
4650  *
4651  *      For a general description of rx_handler, see enum rx_handler_result.
4652  */
4653 int netdev_rx_handler_register(struct net_device *dev,
4654                                rx_handler_func_t *rx_handler,
4655                                void *rx_handler_data)
4656 {
4657         if (netdev_is_rx_handler_busy(dev))
4658                 return -EBUSY;
4659
4660         if (dev->priv_flags & IFF_NO_RX_HANDLER)
4661                 return -EINVAL;
4662
4663         /* Note: rx_handler_data must be set before rx_handler */
4664         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4665         rcu_assign_pointer(dev->rx_handler, rx_handler);
4666
4667         return 0;
4668 }
4669 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4670
4671 /**
4672  *      netdev_rx_handler_unregister - unregister receive handler
4673  *      @dev: device to unregister a handler from
4674  *
4675  *      Unregister a receive handler from a device.
4676  *
4677  *      The caller must hold the rtnl_mutex.
4678  */
4679 void netdev_rx_handler_unregister(struct net_device *dev)
4680 {
4681
4682         ASSERT_RTNL();
4683         RCU_INIT_POINTER(dev->rx_handler, NULL);
4684         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4685          * section has a guarantee to see a non NULL rx_handler_data
4686          * as well.
4687          */
4688         synchronize_net();
4689         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4690 }
4691 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4692
4693 /*
4694  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4695  * the special handling of PFMEMALLOC skbs.
4696  */
4697 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4698 {
4699         switch (skb->protocol) {
4700         case htons(ETH_P_ARP):
4701         case htons(ETH_P_IP):
4702         case htons(ETH_P_IPV6):
4703         case htons(ETH_P_8021Q):
4704         case htons(ETH_P_8021AD):
4705                 return true;
4706         default:
4707                 return false;
4708         }
4709 }
4710
4711 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4712                              int *ret, struct net_device *orig_dev)
4713 {
4714 #ifdef CONFIG_NETFILTER_INGRESS
4715         if (nf_hook_ingress_active(skb)) {
4716                 int ingress_retval;
4717
4718                 if (*pt_prev) {
4719                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
4720                         *pt_prev = NULL;
4721                 }
4722
4723                 rcu_read_lock();
4724                 ingress_retval = nf_hook_ingress(skb);
4725                 rcu_read_unlock();
4726                 return ingress_retval;
4727         }
4728 #endif /* CONFIG_NETFILTER_INGRESS */
4729         return 0;
4730 }
4731
4732 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
4733                                     struct packet_type **ppt_prev)
4734 {
4735         struct packet_type *ptype, *pt_prev;
4736         rx_handler_func_t *rx_handler;
4737         struct net_device *orig_dev;
4738         bool deliver_exact = false;
4739         int ret = NET_RX_DROP;
4740         __be16 type;
4741
4742         net_timestamp_check(!netdev_tstamp_prequeue, skb);
4743
4744         trace_netif_receive_skb(skb);
4745
4746         orig_dev = skb->dev;
4747
4748         skb_reset_network_header(skb);
4749         if (!skb_transport_header_was_set(skb))
4750                 skb_reset_transport_header(skb);
4751         skb_reset_mac_len(skb);
4752
4753         pt_prev = NULL;
4754
4755 another_round:
4756         skb->skb_iif = skb->dev->ifindex;
4757
4758         __this_cpu_inc(softnet_data.processed);
4759
4760         if (static_branch_unlikely(&generic_xdp_needed_key)) {
4761                 int ret2;
4762
4763                 preempt_disable();
4764                 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4765                 preempt_enable();
4766
4767                 if (ret2 != XDP_PASS)
4768                         return NET_RX_DROP;
4769                 skb_reset_mac_len(skb);
4770         }
4771
4772         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4773             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4774                 skb = skb_vlan_untag(skb);
4775                 if (unlikely(!skb))
4776                         goto out;
4777         }
4778
4779         if (skb_skip_tc_classify(skb))
4780                 goto skip_classify;
4781
4782         if (pfmemalloc)
4783                 goto skip_taps;
4784
4785         list_for_each_entry_rcu(ptype, &ptype_all, list) {
4786                 if (pt_prev)
4787                         ret = deliver_skb(skb, pt_prev, orig_dev);
4788                 pt_prev = ptype;
4789         }
4790
4791         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4792                 if (pt_prev)
4793                         ret = deliver_skb(skb, pt_prev, orig_dev);
4794                 pt_prev = ptype;
4795         }
4796
4797 skip_taps:
4798 #ifdef CONFIG_NET_INGRESS
4799         if (static_branch_unlikely(&ingress_needed_key)) {
4800                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4801                 if (!skb)
4802                         goto out;
4803
4804                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4805                         goto out;
4806         }
4807 #endif
4808         skb_reset_tc(skb);
4809 skip_classify:
4810         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4811                 goto drop;
4812
4813         if (skb_vlan_tag_present(skb)) {
4814                 if (pt_prev) {
4815                         ret = deliver_skb(skb, pt_prev, orig_dev);
4816                         pt_prev = NULL;
4817                 }
4818                 if (vlan_do_receive(&skb))
4819                         goto another_round;
4820                 else if (unlikely(!skb))
4821                         goto out;
4822         }
4823
4824         rx_handler = rcu_dereference(skb->dev->rx_handler);
4825         if (rx_handler) {
4826                 if (pt_prev) {
4827                         ret = deliver_skb(skb, pt_prev, orig_dev);
4828                         pt_prev = NULL;
4829                 }
4830                 switch (rx_handler(&skb)) {
4831                 case RX_HANDLER_CONSUMED:
4832                         ret = NET_RX_SUCCESS;
4833                         goto out;
4834                 case RX_HANDLER_ANOTHER:
4835                         goto another_round;
4836                 case RX_HANDLER_EXACT:
4837                         deliver_exact = true;
4838                 case RX_HANDLER_PASS:
4839                         break;
4840                 default:
4841                         BUG();
4842                 }
4843         }
4844
4845         if (unlikely(skb_vlan_tag_present(skb))) {
4846 check_vlan_id:
4847                 if (skb_vlan_tag_get_id(skb)) {
4848                         /* Vlan id is non 0 and vlan_do_receive() above couldn't
4849                          * find vlan device.
4850                          */
4851                         skb->pkt_type = PACKET_OTHERHOST;
4852                 } else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4853                            skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4854                         /* Outer header is 802.1P with vlan 0, inner header is
4855                          * 802.1Q or 802.1AD and vlan_do_receive() above could
4856                          * not find vlan dev for vlan id 0.
4857                          */
4858                         __vlan_hwaccel_clear_tag(skb);
4859                         skb = skb_vlan_untag(skb);
4860                         if (unlikely(!skb))
4861                                 goto out;
4862                         if (vlan_do_receive(&skb))
4863                                 /* After stripping off 802.1P header with vlan 0
4864                                  * vlan dev is found for inner header.
4865                                  */
4866                                 goto another_round;
4867                         else if (unlikely(!skb))
4868                                 goto out;
4869                         else
4870                                 /* We have stripped outer 802.1P vlan 0 header.
4871                                  * But could not find vlan dev.
4872                                  * check again for vlan id to set OTHERHOST.
4873                                  */
4874                                 goto check_vlan_id;
4875                 }
4876                 /* Note: we might in the future use prio bits
4877                  * and set skb->priority like in vlan_do_receive()
4878                  * For the time being, just ignore Priority Code Point
4879                  */
4880                 __vlan_hwaccel_clear_tag(skb);
4881         }
4882
4883         type = skb->protocol;
4884
4885         /* deliver only exact match when indicated */
4886         if (likely(!deliver_exact)) {
4887                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4888                                        &ptype_base[ntohs(type) &
4889                                                    PTYPE_HASH_MASK]);
4890         }
4891
4892         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4893                                &orig_dev->ptype_specific);
4894
4895         if (unlikely(skb->dev != orig_dev)) {
4896                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4897                                        &skb->dev->ptype_specific);
4898         }
4899
4900         if (pt_prev) {
4901                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4902                         goto drop;
4903                 *ppt_prev = pt_prev;
4904         } else {
4905 drop:
4906                 if (!deliver_exact)
4907                         atomic_long_inc(&skb->dev->rx_dropped);
4908                 else
4909                         atomic_long_inc(&skb->dev->rx_nohandler);
4910                 kfree_skb(skb);
4911                 /* Jamal, now you will not able to escape explaining
4912                  * me how you were going to use this. :-)
4913                  */
4914                 ret = NET_RX_DROP;
4915         }
4916
4917 out:
4918         return ret;
4919 }
4920
4921 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
4922 {
4923         struct net_device *orig_dev = skb->dev;
4924         struct packet_type *pt_prev = NULL;
4925         int ret;
4926
4927         ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
4928         if (pt_prev)
4929                 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
4930                                          skb->dev, pt_prev, orig_dev);
4931         return ret;
4932 }
4933
4934 /**
4935  *      netif_receive_skb_core - special purpose version of netif_receive_skb
4936  *      @skb: buffer to process
4937  *
4938  *      More direct receive version of netif_receive_skb().  It should
4939  *      only be used by callers that have a need to skip RPS and Generic XDP.
4940  *      Caller must also take care of handling if (page_is_)pfmemalloc.
4941  *
4942  *      This function may only be called from softirq context and interrupts
4943  *      should be enabled.
4944  *
4945  *      Return values (usually ignored):
4946  *      NET_RX_SUCCESS: no congestion
4947  *      NET_RX_DROP: packet was dropped
4948  */
4949 int netif_receive_skb_core(struct sk_buff *skb)
4950 {
4951         int ret;
4952
4953         rcu_read_lock();
4954         ret = __netif_receive_skb_one_core(skb, false);
4955         rcu_read_unlock();
4956
4957         return ret;
4958 }
4959 EXPORT_SYMBOL(netif_receive_skb_core);
4960
4961 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
4962                                                   struct packet_type *pt_prev,
4963                                                   struct net_device *orig_dev)
4964 {
4965         struct sk_buff *skb, *next;
4966
4967         if (!pt_prev)
4968                 return;
4969         if (list_empty(head))
4970                 return;
4971         if (pt_prev->list_func != NULL)
4972                 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
4973                                    ip_list_rcv, head, pt_prev, orig_dev);
4974         else
4975                 list_for_each_entry_safe(skb, next, head, list) {
4976                         skb_list_del_init(skb);
4977                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4978                 }
4979 }
4980
4981 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
4982 {
4983         /* Fast-path assumptions:
4984          * - There is no RX handler.
4985          * - Only one packet_type matches.
4986          * If either of these fails, we will end up doing some per-packet
4987          * processing in-line, then handling the 'last ptype' for the whole
4988          * sublist.  This can't cause out-of-order delivery to any single ptype,
4989          * because the 'last ptype' must be constant across the sublist, and all
4990          * other ptypes are handled per-packet.
4991          */
4992         /* Current (common) ptype of sublist */
4993         struct packet_type *pt_curr = NULL;
4994         /* Current (common) orig_dev of sublist */
4995         struct net_device *od_curr = NULL;
4996         struct list_head sublist;
4997         struct sk_buff *skb, *next;
4998
4999         INIT_LIST_HEAD(&sublist);
5000         list_for_each_entry_safe(skb, next, head, list) {
5001                 struct net_device *orig_dev = skb->dev;
5002                 struct packet_type *pt_prev = NULL;
5003
5004                 skb_list_del_init(skb);
5005                 __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5006                 if (!pt_prev)
5007                         continue;
5008                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5009                         /* dispatch old sublist */
5010                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5011                         /* start new sublist */
5012                         INIT_LIST_HEAD(&sublist);
5013                         pt_curr = pt_prev;
5014                         od_curr = orig_dev;
5015                 }
5016                 list_add_tail(&skb->list, &sublist);
5017         }
5018
5019         /* dispatch final sublist */
5020         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5021 }
5022
5023 static int __netif_receive_skb(struct sk_buff *skb)
5024 {
5025         int ret;
5026
5027         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5028                 unsigned int noreclaim_flag;
5029
5030                 /*
5031                  * PFMEMALLOC skbs are special, they should
5032                  * - be delivered to SOCK_MEMALLOC sockets only
5033                  * - stay away from userspace
5034                  * - have bounded memory usage
5035                  *
5036                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5037                  * context down to all allocation sites.
5038                  */
5039                 noreclaim_flag = memalloc_noreclaim_save();
5040                 ret = __netif_receive_skb_one_core(skb, true);
5041                 memalloc_noreclaim_restore(noreclaim_flag);
5042         } else
5043                 ret = __netif_receive_skb_one_core(skb, false);
5044
5045         return ret;
5046 }
5047
5048 static void __netif_receive_skb_list(struct list_head *head)
5049 {
5050         unsigned long noreclaim_flag = 0;
5051         struct sk_buff *skb, *next;
5052         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5053
5054         list_for_each_entry_safe(skb, next, head, list) {
5055                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5056                         struct list_head sublist;
5057
5058                         /* Handle the previous sublist */
5059                         list_cut_before(&sublist, head, &skb->list);
5060                         if (!list_empty(&sublist))
5061                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5062                         pfmemalloc = !pfmemalloc;
5063                         /* See comments in __netif_receive_skb */
5064                         if (pfmemalloc)
5065                                 noreclaim_flag = memalloc_noreclaim_save();
5066                         else
5067                                 memalloc_noreclaim_restore(noreclaim_flag);
5068                 }
5069         }
5070         /* Handle the remaining sublist */
5071         if (!list_empty(head))
5072                 __netif_receive_skb_list_core(head, pfmemalloc);
5073         /* Restore pflags */
5074         if (pfmemalloc)
5075                 memalloc_noreclaim_restore(noreclaim_flag);
5076 }
5077
5078 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5079 {
5080         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5081         struct bpf_prog *new = xdp->prog;
5082         int ret = 0;
5083
5084         switch (xdp->command) {
5085         case XDP_SETUP_PROG:
5086                 rcu_assign_pointer(dev->xdp_prog, new);
5087                 if (old)
5088                         bpf_prog_put(old);
5089
5090                 if (old && !new) {
5091                         static_branch_dec(&generic_xdp_needed_key);
5092                 } else if (new && !old) {
5093                         static_branch_inc(&generic_xdp_needed_key);
5094                         dev_disable_lro(dev);
5095                         dev_disable_gro_hw(dev);
5096                 }
5097                 break;
5098
5099         case XDP_QUERY_PROG:
5100                 xdp->prog_id = old ? old->aux->id : 0;
5101                 break;
5102
5103         default:
5104                 ret = -EINVAL;
5105                 break;
5106         }
5107
5108         return ret;
5109 }
5110
5111 static int netif_receive_skb_internal(struct sk_buff *skb)
5112 {
5113         int ret;
5114
5115         net_timestamp_check(netdev_tstamp_prequeue, skb);
5116
5117         if (skb_defer_rx_timestamp(skb))
5118                 return NET_RX_SUCCESS;
5119
5120         rcu_read_lock();
5121 #ifdef CONFIG_RPS
5122         if (static_branch_unlikely(&rps_needed)) {
5123                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5124                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5125
5126                 if (cpu >= 0) {
5127                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5128                         rcu_read_unlock();
5129                         return ret;
5130                 }
5131         }
5132 #endif
5133         ret = __netif_receive_skb(skb);
5134         rcu_read_unlock();
5135         return ret;
5136 }
5137
5138 static void netif_receive_skb_list_internal(struct list_head *head)
5139 {
5140         struct sk_buff *skb, *next;
5141         struct list_head sublist;
5142
5143         INIT_LIST_HEAD(&sublist);
5144         list_for_each_entry_safe(skb, next, head, list) {
5145                 net_timestamp_check(netdev_tstamp_prequeue, skb);
5146                 skb_list_del_init(skb);
5147                 if (!skb_defer_rx_timestamp(skb))
5148                         list_add_tail(&skb->list, &sublist);
5149         }
5150         list_splice_init(&sublist, head);
5151
5152         rcu_read_lock();
5153 #ifdef CONFIG_RPS
5154         if (static_branch_unlikely(&rps_needed)) {
5155                 list_for_each_entry_safe(skb, next, head, list) {
5156                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5157                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5158
5159                         if (cpu >= 0) {
5160                                 /* Will be handled, remove from list */
5161                                 skb_list_del_init(skb);
5162                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5163                         }
5164                 }
5165         }
5166 #endif
5167         __netif_receive_skb_list(head);
5168         rcu_read_unlock();
5169 }
5170
5171 /**
5172  *      netif_receive_skb - process receive buffer from network
5173  *      @skb: buffer to process
5174  *
5175  *      netif_receive_skb() is the main receive data processing function.
5176  *      It always succeeds. The buffer may be dropped during processing
5177  *      for congestion control or by the protocol layers.
5178  *
5179  *      This function may only be called from softirq context and interrupts
5180  *      should be enabled.
5181  *
5182  *      Return values (usually ignored):
5183  *      NET_RX_SUCCESS: no congestion
5184  *      NET_RX_DROP: packet was dropped
5185  */
5186 int netif_receive_skb(struct sk_buff *skb)
5187 {
5188         int ret;
5189
5190         trace_netif_receive_skb_entry(skb);
5191
5192         ret = netif_receive_skb_internal(skb);
5193         trace_netif_receive_skb_exit(ret);
5194
5195         return ret;
5196 }
5197 EXPORT_SYMBOL(netif_receive_skb);
5198
5199 /**
5200  *      netif_receive_skb_list - process many receive buffers from network
5201  *      @head: list of skbs to process.
5202  *
5203  *      Since return value of netif_receive_skb() is normally ignored, and
5204  *      wouldn't be meaningful for a list, this function returns void.
5205  *
5206  *      This function may only be called from softirq context and interrupts
5207  *      should be enabled.
5208  */
5209 void netif_receive_skb_list(struct list_head *head)
5210 {
5211         struct sk_buff *skb;
5212
5213         if (list_empty(head))
5214                 return;
5215         if (trace_netif_receive_skb_list_entry_enabled()) {
5216                 list_for_each_entry(skb, head, list)
5217                         trace_netif_receive_skb_list_entry(skb);
5218         }
5219         netif_receive_skb_list_internal(head);
5220         trace_netif_receive_skb_list_exit(0);
5221 }
5222 EXPORT_SYMBOL(netif_receive_skb_list);
5223
5224 DEFINE_PER_CPU(struct work_struct, flush_works);
5225
5226 /* Network device is going away, flush any packets still pending */
5227 static void flush_backlog(struct work_struct *work)
5228 {
5229         struct sk_buff *skb, *tmp;
5230         struct softnet_data *sd;
5231
5232         local_bh_disable();
5233         sd = this_cpu_ptr(&softnet_data);
5234
5235         local_irq_disable();
5236         rps_lock(sd);
5237         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5238                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5239                         __skb_unlink(skb, &sd->input_pkt_queue);
5240                         kfree_skb(skb);
5241                         input_queue_head_incr(sd);
5242                 }
5243         }
5244         rps_unlock(sd);
5245         local_irq_enable();
5246
5247         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5248                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5249                         __skb_unlink(skb, &sd->process_queue);
5250                         kfree_skb(skb);
5251                         input_queue_head_incr(sd);
5252                 }
5253         }
5254         local_bh_enable();
5255 }
5256
5257 static void flush_all_backlogs(void)
5258 {
5259         unsigned int cpu;
5260
5261         get_online_cpus();
5262
5263         for_each_online_cpu(cpu)
5264                 queue_work_on(cpu, system_highpri_wq,
5265                               per_cpu_ptr(&flush_works, cpu));
5266
5267         for_each_online_cpu(cpu)
5268                 flush_work(per_cpu_ptr(&flush_works, cpu));
5269
5270         put_online_cpus();
5271 }
5272
5273 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5274 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
5275 static int napi_gro_complete(struct sk_buff *skb)
5276 {
5277         struct packet_offload *ptype;
5278         __be16 type = skb->protocol;
5279         struct list_head *head = &offload_base;
5280         int err = -ENOENT;
5281
5282         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5283
5284         if (NAPI_GRO_CB(skb)->count == 1) {
5285                 skb_shinfo(skb)->gso_size = 0;
5286                 goto out;
5287         }
5288
5289         rcu_read_lock();
5290         list_for_each_entry_rcu(ptype, head, list) {
5291                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5292                         continue;
5293
5294                 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5295                                          ipv6_gro_complete, inet_gro_complete,
5296                                          skb, 0);
5297                 break;
5298         }
5299         rcu_read_unlock();
5300
5301         if (err) {
5302                 WARN_ON(&ptype->list == head);
5303                 kfree_skb(skb);
5304                 return NET_RX_SUCCESS;
5305         }
5306
5307 out:
5308         return netif_receive_skb_internal(skb);
5309 }
5310
5311 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5312                                    bool flush_old)
5313 {
5314         struct list_head *head = &napi->gro_hash[index].list;
5315         struct sk_buff *skb, *p;
5316
5317         list_for_each_entry_safe_reverse(skb, p, head, list) {
5318                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5319                         return;
5320                 skb_list_del_init(skb);
5321                 napi_gro_complete(skb);
5322                 napi->gro_hash[index].count--;
5323         }
5324
5325         if (!napi->gro_hash[index].count)
5326                 __clear_bit(index, &napi->gro_bitmask);
5327 }
5328
5329 /* napi->gro_hash[].list contains packets ordered by age.
5330  * youngest packets at the head of it.
5331  * Complete skbs in reverse order to reduce latencies.
5332  */
5333 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5334 {
5335         unsigned long bitmask = napi->gro_bitmask;
5336         unsigned int i, base = ~0U;
5337
5338         while ((i = ffs(bitmask)) != 0) {
5339                 bitmask >>= i;
5340                 base += i;
5341                 __napi_gro_flush_chain(napi, base, flush_old);
5342         }
5343 }
5344 EXPORT_SYMBOL(napi_gro_flush);
5345
5346 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5347                                           struct sk_buff *skb)
5348 {
5349         unsigned int maclen = skb->dev->hard_header_len;
5350         u32 hash = skb_get_hash_raw(skb);
5351         struct list_head *head;
5352         struct sk_buff *p;
5353
5354         head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5355         list_for_each_entry(p, head, list) {
5356                 unsigned long diffs;
5357
5358                 NAPI_GRO_CB(p)->flush = 0;
5359
5360                 if (hash != skb_get_hash_raw(p)) {
5361                         NAPI_GRO_CB(p)->same_flow = 0;
5362                         continue;
5363                 }
5364
5365                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5366                 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5367                 if (skb_vlan_tag_present(p))
5368                         diffs |= p->vlan_tci ^ skb->vlan_tci;
5369                 diffs |= skb_metadata_dst_cmp(p, skb);
5370                 diffs |= skb_metadata_differs(p, skb);
5371                 if (maclen == ETH_HLEN)
5372                         diffs |= compare_ether_header(skb_mac_header(p),
5373                                                       skb_mac_header(skb));
5374                 else if (!diffs)
5375                         diffs = memcmp(skb_mac_header(p),
5376                                        skb_mac_header(skb),
5377                                        maclen);
5378                 NAPI_GRO_CB(p)->same_flow = !diffs;
5379         }
5380
5381         return head;
5382 }
5383
5384 static void skb_gro_reset_offset(struct sk_buff *skb)
5385 {
5386         const struct skb_shared_info *pinfo = skb_shinfo(skb);
5387         const skb_frag_t *frag0 = &pinfo->frags[0];
5388
5389         NAPI_GRO_CB(skb)->data_offset = 0;
5390         NAPI_GRO_CB(skb)->frag0 = NULL;
5391         NAPI_GRO_CB(skb)->frag0_len = 0;
5392
5393         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
5394             pinfo->nr_frags &&
5395             !PageHighMem(skb_frag_page(frag0))) {
5396                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5397                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5398                                                     skb_frag_size(frag0),
5399                                                     skb->end - skb->tail);
5400         }
5401 }
5402
5403 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5404 {
5405         struct skb_shared_info *pinfo = skb_shinfo(skb);
5406
5407         BUG_ON(skb->end - skb->tail < grow);
5408
5409         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5410
5411         skb->data_len -= grow;
5412         skb->tail += grow;
5413
5414         skb_frag_off_add(&pinfo->frags[0], grow);
5415         skb_frag_size_sub(&pinfo->frags[0], grow);
5416
5417         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5418                 skb_frag_unref(skb, 0);
5419                 memmove(pinfo->frags, pinfo->frags + 1,
5420                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5421         }
5422 }
5423
5424 static void gro_flush_oldest(struct list_head *head)
5425 {
5426         struct sk_buff *oldest;
5427
5428         oldest = list_last_entry(head, struct sk_buff, list);
5429
5430         /* We are called with head length >= MAX_GRO_SKBS, so this is
5431          * impossible.
5432          */
5433         if (WARN_ON_ONCE(!oldest))
5434                 return;
5435
5436         /* Do not adjust napi->gro_hash[].count, caller is adding a new
5437          * SKB to the chain.
5438          */
5439         skb_list_del_init(oldest);
5440         napi_gro_complete(oldest);
5441 }
5442
5443 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5444                                                            struct sk_buff *));
5445 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5446                                                            struct sk_buff *));
5447 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5448 {
5449         u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5450         struct list_head *head = &offload_base;
5451         struct packet_offload *ptype;
5452         __be16 type = skb->protocol;
5453         struct list_head *gro_head;
5454         struct sk_buff *pp = NULL;
5455         enum gro_result ret;
5456         int same_flow;
5457         int grow;
5458
5459         if (netif_elide_gro(skb->dev))
5460                 goto normal;
5461
5462         gro_head = gro_list_prepare(napi, skb);
5463
5464         rcu_read_lock();
5465         list_for_each_entry_rcu(ptype, head, list) {
5466                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5467                         continue;
5468
5469                 skb_set_network_header(skb, skb_gro_offset(skb));
5470                 skb_reset_mac_len(skb);
5471                 NAPI_GRO_CB(skb)->same_flow = 0;
5472                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5473                 NAPI_GRO_CB(skb)->free = 0;
5474                 NAPI_GRO_CB(skb)->encap_mark = 0;
5475                 NAPI_GRO_CB(skb)->recursion_counter = 0;
5476                 NAPI_GRO_CB(skb)->is_fou = 0;
5477                 NAPI_GRO_CB(skb)->is_atomic = 1;
5478                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5479
5480                 /* Setup for GRO checksum validation */
5481                 switch (skb->ip_summed) {
5482                 case CHECKSUM_COMPLETE:
5483                         NAPI_GRO_CB(skb)->csum = skb->csum;
5484                         NAPI_GRO_CB(skb)->csum_valid = 1;
5485                         NAPI_GRO_CB(skb)->csum_cnt = 0;
5486                         break;
5487                 case CHECKSUM_UNNECESSARY:
5488                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5489                         NAPI_GRO_CB(skb)->csum_valid = 0;
5490                         break;
5491                 default:
5492                         NAPI_GRO_CB(skb)->csum_cnt = 0;
5493                         NAPI_GRO_CB(skb)->csum_valid = 0;
5494                 }
5495
5496                 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5497                                         ipv6_gro_receive, inet_gro_receive,
5498                                         gro_head, skb);
5499                 break;
5500         }
5501         rcu_read_unlock();
5502
5503         if (&ptype->list == head)
5504                 goto normal;
5505
5506         if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5507                 ret = GRO_CONSUMED;
5508                 goto ok;
5509         }
5510
5511         same_flow = NAPI_GRO_CB(skb)->same_flow;
5512         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5513
5514         if (pp) {
5515                 skb_list_del_init(pp);
5516                 napi_gro_complete(pp);
5517                 napi->gro_hash[hash].count--;
5518         }
5519
5520         if (same_flow)
5521                 goto ok;
5522
5523         if (NAPI_GRO_CB(skb)->flush)
5524                 goto normal;
5525
5526         if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5527                 gro_flush_oldest(gro_head);
5528         } else {
5529                 napi->gro_hash[hash].count++;
5530         }
5531         NAPI_GRO_CB(skb)->count = 1;
5532         NAPI_GRO_CB(skb)->age = jiffies;
5533         NAPI_GRO_CB(skb)->last = skb;
5534         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5535         list_add(&skb->list, gro_head);
5536         ret = GRO_HELD;
5537
5538 pull:
5539         grow = skb_gro_offset(skb) - skb_headlen(skb);
5540         if (grow > 0)
5541                 gro_pull_from_frag0(skb, grow);
5542 ok:
5543         if (napi->gro_hash[hash].count) {
5544                 if (!test_bit(hash, &napi->gro_bitmask))
5545                         __set_bit(hash, &napi->gro_bitmask);
5546         } else if (test_bit(hash, &napi->gro_bitmask)) {
5547                 __clear_bit(hash, &napi->gro_bitmask);
5548         }
5549
5550         return ret;
5551
5552 normal:
5553         ret = GRO_NORMAL;
5554         goto pull;
5555 }
5556
5557 struct packet_offload *gro_find_receive_by_type(__be16 type)
5558 {
5559         struct list_head *offload_head = &offload_base;
5560         struct packet_offload *ptype;
5561
5562         list_for_each_entry_rcu(ptype, offload_head, list) {
5563                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5564                         continue;
5565                 return ptype;
5566         }
5567         return NULL;
5568 }
5569 EXPORT_SYMBOL(gro_find_receive_by_type);
5570
5571 struct packet_offload *gro_find_complete_by_type(__be16 type)
5572 {
5573         struct list_head *offload_head = &offload_base;
5574         struct packet_offload *ptype;
5575
5576         list_for_each_entry_rcu(ptype, offload_head, list) {
5577                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5578                         continue;
5579                 return ptype;
5580         }
5581         return NULL;
5582 }
5583 EXPORT_SYMBOL(gro_find_complete_by_type);
5584
5585 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5586 {
5587         skb_dst_drop(skb);
5588         skb_ext_put(skb);
5589         kmem_cache_free(skbuff_head_cache, skb);
5590 }
5591
5592 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5593 {
5594         switch (ret) {
5595         case GRO_NORMAL:
5596                 if (netif_receive_skb_internal(skb))
5597                         ret = GRO_DROP;
5598                 break;
5599
5600         case GRO_DROP:
5601                 kfree_skb(skb);
5602                 break;
5603
5604         case GRO_MERGED_FREE:
5605                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5606                         napi_skb_free_stolen_head(skb);
5607                 else
5608                         __kfree_skb(skb);
5609                 break;
5610
5611         case GRO_HELD:
5612         case GRO_MERGED:
5613         case GRO_CONSUMED:
5614                 break;
5615         }
5616
5617         return ret;
5618 }
5619
5620 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5621 {
5622         gro_result_t ret;
5623
5624         skb_mark_napi_id(skb, napi);
5625         trace_napi_gro_receive_entry(skb);
5626
5627         skb_gro_reset_offset(skb);
5628
5629         ret = napi_skb_finish(dev_gro_receive(napi, skb), skb);
5630         trace_napi_gro_receive_exit(ret);
5631
5632         return ret;
5633 }
5634 EXPORT_SYMBOL(napi_gro_receive);
5635
5636 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5637 {
5638         if (unlikely(skb->pfmemalloc)) {
5639                 consume_skb(skb);
5640                 return;
5641         }
5642         __skb_pull(skb, skb_headlen(skb));
5643         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5644         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5645         __vlan_hwaccel_clear_tag(skb);
5646         skb->dev = napi->dev;
5647         skb->skb_iif = 0;
5648
5649         /* eth_type_trans() assumes pkt_type is PACKET_HOST */
5650         skb->pkt_type = PACKET_HOST;
5651
5652         skb->encapsulation = 0;
5653         skb_shinfo(skb)->gso_type = 0;
5654         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5655         skb_ext_reset(skb);
5656
5657         napi->skb = skb;
5658 }
5659
5660 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5661 {
5662         struct sk_buff *skb = napi->skb;
5663
5664         if (!skb) {
5665                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5666                 if (skb) {
5667                         napi->skb = skb;
5668                         skb_mark_napi_id(skb, napi);
5669                 }
5670         }
5671         return skb;
5672 }
5673 EXPORT_SYMBOL(napi_get_frags);
5674
5675 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5676 static void gro_normal_list(struct napi_struct *napi)
5677 {
5678         if (!napi->rx_count)
5679                 return;
5680         netif_receive_skb_list_internal(&napi->rx_list);
5681         INIT_LIST_HEAD(&napi->rx_list);
5682         napi->rx_count = 0;
5683 }
5684
5685 /* Queue one GRO_NORMAL SKB up for list processing.  If batch size exceeded,
5686  * pass the whole batch up to the stack.
5687  */
5688 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb)
5689 {
5690         list_add_tail(&skb->list, &napi->rx_list);
5691         if (++napi->rx_count >= gro_normal_batch)
5692                 gro_normal_list(napi);
5693 }
5694
5695 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5696                                       struct sk_buff *skb,
5697                                       gro_result_t ret)
5698 {
5699         switch (ret) {
5700         case GRO_NORMAL:
5701         case GRO_HELD:
5702                 __skb_push(skb, ETH_HLEN);
5703                 skb->protocol = eth_type_trans(skb, skb->dev);
5704                 if (ret == GRO_NORMAL)
5705                         gro_normal_one(napi, skb);
5706                 break;
5707
5708         case GRO_DROP:
5709                 napi_reuse_skb(napi, skb);
5710                 break;
5711
5712         case GRO_MERGED_FREE:
5713                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5714                         napi_skb_free_stolen_head(skb);
5715                 else
5716                         napi_reuse_skb(napi, skb);
5717                 break;
5718
5719         case GRO_MERGED:
5720         case GRO_CONSUMED:
5721                 break;
5722         }
5723
5724         return ret;
5725 }
5726
5727 /* Upper GRO stack assumes network header starts at gro_offset=0
5728  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5729  * We copy ethernet header into skb->data to have a common layout.
5730  */
5731 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5732 {
5733         struct sk_buff *skb = napi->skb;
5734         const struct ethhdr *eth;
5735         unsigned int hlen = sizeof(*eth);
5736
5737         napi->skb = NULL;
5738
5739         skb_reset_mac_header(skb);
5740         skb_gro_reset_offset(skb);
5741
5742         if (unlikely(skb_gro_header_hard(skb, hlen))) {
5743                 eth = skb_gro_header_slow(skb, hlen, 0);
5744                 if (unlikely(!eth)) {
5745                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5746                                              __func__, napi->dev->name);
5747                         napi_reuse_skb(napi, skb);
5748                         return NULL;
5749                 }
5750         } else {
5751                 eth = (const struct ethhdr *)skb->data;
5752                 gro_pull_from_frag0(skb, hlen);
5753                 NAPI_GRO_CB(skb)->frag0 += hlen;
5754                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
5755         }
5756         __skb_pull(skb, hlen);
5757
5758         /*
5759          * This works because the only protocols we care about don't require
5760          * special handling.
5761          * We'll fix it up properly in napi_frags_finish()
5762          */
5763         skb->protocol = eth->h_proto;
5764
5765         return skb;
5766 }
5767
5768 gro_result_t napi_gro_frags(struct napi_struct *napi)
5769 {
5770         gro_result_t ret;
5771         struct sk_buff *skb = napi_frags_skb(napi);
5772
5773         if (!skb)
5774                 return GRO_DROP;
5775
5776         trace_napi_gro_frags_entry(skb);
5777
5778         ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5779         trace_napi_gro_frags_exit(ret);
5780
5781         return ret;
5782 }
5783 EXPORT_SYMBOL(napi_gro_frags);
5784
5785 /* Compute the checksum from gro_offset and return the folded value
5786  * after adding in any pseudo checksum.
5787  */
5788 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5789 {
5790         __wsum wsum;
5791         __sum16 sum;
5792
5793         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5794
5795         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5796         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5797         /* See comments in __skb_checksum_complete(). */
5798         if (likely(!sum)) {
5799                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5800                     !skb->csum_complete_sw)
5801                         netdev_rx_csum_fault(skb->dev, skb);
5802         }
5803
5804         NAPI_GRO_CB(skb)->csum = wsum;
5805         NAPI_GRO_CB(skb)->csum_valid = 1;
5806
5807         return sum;
5808 }
5809 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5810
5811 static void net_rps_send_ipi(struct softnet_data *remsd)
5812 {
5813 #ifdef CONFIG_RPS
5814         while (remsd) {
5815                 struct softnet_data *next = remsd->rps_ipi_next;
5816
5817                 if (cpu_online(remsd->cpu))
5818                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
5819                 remsd = next;
5820         }
5821 #endif
5822 }
5823
5824 /*
5825  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5826  * Note: called with local irq disabled, but exits with local irq enabled.
5827  */
5828 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5829 {
5830 #ifdef CONFIG_RPS
5831         struct softnet_data *remsd = sd->rps_ipi_list;
5832
5833         if (remsd) {
5834                 sd->rps_ipi_list = NULL;
5835
5836                 local_irq_enable();
5837
5838                 /* Send pending IPI's to kick RPS processing on remote cpus. */
5839                 net_rps_send_ipi(remsd);
5840         } else
5841 #endif
5842                 local_irq_enable();
5843 }
5844
5845 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5846 {
5847 #ifdef CONFIG_RPS
5848         return sd->rps_ipi_list != NULL;
5849 #else
5850         return false;
5851 #endif
5852 }
5853
5854 static int process_backlog(struct napi_struct *napi, int quota)
5855 {
5856         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5857         bool again = true;
5858         int work = 0;
5859
5860         /* Check if we have pending ipi, its better to send them now,
5861          * not waiting net_rx_action() end.
5862          */
5863         if (sd_has_rps_ipi_waiting(sd)) {
5864                 local_irq_disable();
5865                 net_rps_action_and_irq_enable(sd);
5866         }
5867
5868         napi->weight = dev_rx_weight;
5869         while (again) {
5870                 struct sk_buff *skb;
5871
5872                 while ((skb = __skb_dequeue(&sd->process_queue))) {
5873                         rcu_read_lock();
5874                         __netif_receive_skb(skb);
5875                         rcu_read_unlock();
5876                         input_queue_head_incr(sd);
5877                         if (++work >= quota)
5878                                 return work;
5879
5880                 }
5881
5882                 local_irq_disable();
5883                 rps_lock(sd);
5884                 if (skb_queue_empty(&sd->input_pkt_queue)) {
5885                         /*
5886                          * Inline a custom version of __napi_complete().
5887                          * only current cpu owns and manipulates this napi,
5888                          * and NAPI_STATE_SCHED is the only possible flag set
5889                          * on backlog.
5890                          * We can use a plain write instead of clear_bit(),
5891                          * and we dont need an smp_mb() memory barrier.
5892                          */
5893                         napi->state = 0;
5894                         again = false;
5895                 } else {
5896                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
5897                                                    &sd->process_queue);
5898                 }
5899                 rps_unlock(sd);
5900                 local_irq_enable();
5901         }
5902
5903         return work;
5904 }
5905
5906 /**
5907  * __napi_schedule - schedule for receive
5908  * @n: entry to schedule
5909  *
5910  * The entry's receive function will be scheduled to run.
5911  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5912  */
5913 void __napi_schedule(struct napi_struct *n)
5914 {
5915         unsigned long flags;
5916
5917         local_irq_save(flags);
5918         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5919         local_irq_restore(flags);
5920 }
5921 EXPORT_SYMBOL(__napi_schedule);
5922
5923 /**
5924  *      napi_schedule_prep - check if napi can be scheduled
5925  *      @n: napi context
5926  *
5927  * Test if NAPI routine is already running, and if not mark
5928  * it as running.  This is used as a condition variable
5929  * insure only one NAPI poll instance runs.  We also make
5930  * sure there is no pending NAPI disable.
5931  */
5932 bool napi_schedule_prep(struct napi_struct *n)
5933 {
5934         unsigned long val, new;
5935
5936         do {
5937                 val = READ_ONCE(n->state);
5938                 if (unlikely(val & NAPIF_STATE_DISABLE))
5939                         return false;
5940                 new = val | NAPIF_STATE_SCHED;
5941
5942                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5943                  * This was suggested by Alexander Duyck, as compiler
5944                  * emits better code than :
5945                  * if (val & NAPIF_STATE_SCHED)
5946                  *     new |= NAPIF_STATE_MISSED;
5947                  */
5948                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5949                                                    NAPIF_STATE_MISSED;
5950         } while (cmpxchg(&n->state, val, new) != val);
5951
5952         return !(val & NAPIF_STATE_SCHED);
5953 }
5954 EXPORT_SYMBOL(napi_schedule_prep);
5955
5956 /**
5957  * __napi_schedule_irqoff - schedule for receive
5958  * @n: entry to schedule
5959  *
5960  * Variant of __napi_schedule() assuming hard irqs are masked
5961  */
5962 void __napi_schedule_irqoff(struct napi_struct *n)
5963 {
5964         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5965 }
5966 EXPORT_SYMBOL(__napi_schedule_irqoff);
5967
5968 bool napi_complete_done(struct napi_struct *n, int work_done)
5969 {
5970         unsigned long flags, val, new;
5971
5972         /*
5973          * 1) Don't let napi dequeue from the cpu poll list
5974          *    just in case its running on a different cpu.
5975          * 2) If we are busy polling, do nothing here, we have
5976          *    the guarantee we will be called later.
5977          */
5978         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5979                                  NAPIF_STATE_IN_BUSY_POLL)))
5980                 return false;
5981
5982         gro_normal_list(n);
5983
5984         if (n->gro_bitmask) {
5985                 unsigned long timeout = 0;
5986
5987                 if (work_done)
5988                         timeout = n->dev->gro_flush_timeout;
5989
5990                 /* When the NAPI instance uses a timeout and keeps postponing
5991                  * it, we need to bound somehow the time packets are kept in
5992                  * the GRO layer
5993                  */
5994                 napi_gro_flush(n, !!timeout);
5995                 if (timeout)
5996                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
5997                                       HRTIMER_MODE_REL_PINNED);
5998         }
5999         if (unlikely(!list_empty(&n->poll_list))) {
6000                 /* If n->poll_list is not empty, we need to mask irqs */
6001                 local_irq_save(flags);
6002                 list_del_init(&n->poll_list);
6003                 local_irq_restore(flags);
6004         }
6005
6006         do {
6007                 val = READ_ONCE(n->state);
6008
6009                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6010
6011                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6012
6013                 /* If STATE_MISSED was set, leave STATE_SCHED set,
6014                  * because we will call napi->poll() one more time.
6015                  * This C code was suggested by Alexander Duyck to help gcc.
6016                  */
6017                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6018                                                     NAPIF_STATE_SCHED;
6019         } while (cmpxchg(&n->state, val, new) != val);
6020
6021         if (unlikely(val & NAPIF_STATE_MISSED)) {
6022                 __napi_schedule(n);
6023                 return false;
6024         }
6025
6026         return true;
6027 }
6028 EXPORT_SYMBOL(napi_complete_done);
6029
6030 /* must be called under rcu_read_lock(), as we dont take a reference */
6031 static struct napi_struct *napi_by_id(unsigned int napi_id)
6032 {
6033         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6034         struct napi_struct *napi;
6035
6036         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6037                 if (napi->napi_id == napi_id)
6038                         return napi;
6039
6040         return NULL;
6041 }
6042
6043 #if defined(CONFIG_NET_RX_BUSY_POLL)
6044
6045 #define BUSY_POLL_BUDGET 8
6046
6047 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6048 {
6049         int rc;
6050
6051         /* Busy polling means there is a high chance device driver hard irq
6052          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6053          * set in napi_schedule_prep().
6054          * Since we are about to call napi->poll() once more, we can safely
6055          * clear NAPI_STATE_MISSED.
6056          *
6057          * Note: x86 could use a single "lock and ..." instruction
6058          * to perform these two clear_bit()
6059          */
6060         clear_bit(NAPI_STATE_MISSED, &napi->state);
6061         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6062
6063         local_bh_disable();
6064
6065         /* All we really want here is to re-enable device interrupts.
6066          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6067          */
6068         rc = napi->poll(napi, BUSY_POLL_BUDGET);
6069         /* We can't gro_normal_list() here, because napi->poll() might have
6070          * rearmed the napi (napi_complete_done()) in which case it could
6071          * already be running on another CPU.
6072          */
6073         trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6074         netpoll_poll_unlock(have_poll_lock);
6075         if (rc == BUSY_POLL_BUDGET) {
6076                 /* As the whole budget was spent, we still own the napi so can
6077                  * safely handle the rx_list.
6078                  */
6079                 gro_normal_list(napi);
6080                 __napi_schedule(napi);
6081         }
6082         local_bh_enable();
6083 }
6084
6085 void napi_busy_loop(unsigned int napi_id,
6086                     bool (*loop_end)(void *, unsigned long),
6087                     void *loop_end_arg)
6088 {
6089         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6090         int (*napi_poll)(struct napi_struct *napi, int budget);
6091         void *have_poll_lock = NULL;
6092         struct napi_struct *napi;
6093
6094 restart:
6095         napi_poll = NULL;
6096
6097         rcu_read_lock();
6098
6099         napi = napi_by_id(napi_id);
6100         if (!napi)
6101                 goto out;
6102
6103         preempt_disable();
6104         for (;;) {
6105                 int work = 0;
6106
6107                 local_bh_disable();
6108                 if (!napi_poll) {
6109                         unsigned long val = READ_ONCE(napi->state);
6110
6111                         /* If multiple threads are competing for this napi,
6112                          * we avoid dirtying napi->state as much as we can.
6113                          */
6114                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6115                                    NAPIF_STATE_IN_BUSY_POLL))
6116                                 goto count;
6117                         if (cmpxchg(&napi->state, val,
6118                                     val | NAPIF_STATE_IN_BUSY_POLL |
6119                                           NAPIF_STATE_SCHED) != val)
6120                                 goto count;
6121                         have_poll_lock = netpoll_poll_lock(napi);
6122                         napi_poll = napi->poll;
6123                 }
6124                 work = napi_poll(napi, BUSY_POLL_BUDGET);
6125                 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6126                 gro_normal_list(napi);
6127 count:
6128                 if (work > 0)
6129                         __NET_ADD_STATS(dev_net(napi->dev),
6130                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6131                 local_bh_enable();
6132
6133                 if (!loop_end || loop_end(loop_end_arg, start_time))
6134                         break;
6135
6136                 if (unlikely(need_resched())) {
6137                         if (napi_poll)
6138                                 busy_poll_stop(napi, have_poll_lock);
6139                         preempt_enable();
6140                         rcu_read_unlock();
6141                         cond_resched();
6142                         if (loop_end(loop_end_arg, start_time))
6143                                 return;
6144                         goto restart;
6145                 }
6146                 cpu_relax();
6147         }
6148         if (napi_poll)
6149                 busy_poll_stop(napi, have_poll_lock);
6150         preempt_enable();
6151 out:
6152         rcu_read_unlock();
6153 }
6154 EXPORT_SYMBOL(napi_busy_loop);
6155
6156 #endif /* CONFIG_NET_RX_BUSY_POLL */
6157
6158 static void napi_hash_add(struct napi_struct *napi)
6159 {
6160         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6161             test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6162                 return;
6163
6164         spin_lock(&napi_hash_lock);
6165
6166         /* 0..NR_CPUS range is reserved for sender_cpu use */
6167         do {
6168                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6169                         napi_gen_id = MIN_NAPI_ID;
6170         } while (napi_by_id(napi_gen_id));
6171         napi->napi_id = napi_gen_id;
6172
6173         hlist_add_head_rcu(&napi->napi_hash_node,
6174                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6175
6176         spin_unlock(&napi_hash_lock);
6177 }
6178
6179 /* Warning : caller is responsible to make sure rcu grace period
6180  * is respected before freeing memory containing @napi
6181  */
6182 bool napi_hash_del(struct napi_struct *napi)
6183 {
6184         bool rcu_sync_needed = false;
6185
6186         spin_lock(&napi_hash_lock);
6187
6188         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6189                 rcu_sync_needed = true;
6190                 hlist_del_rcu(&napi->napi_hash_node);
6191         }
6192         spin_unlock(&napi_hash_lock);
6193         return rcu_sync_needed;
6194 }
6195 EXPORT_SYMBOL_GPL(napi_hash_del);
6196
6197 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6198 {
6199         struct napi_struct *napi;
6200
6201         napi = container_of(timer, struct napi_struct, timer);
6202
6203         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6204          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6205          */
6206         if (napi->gro_bitmask && !napi_disable_pending(napi) &&
6207             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6208                 __napi_schedule_irqoff(napi);
6209
6210         return HRTIMER_NORESTART;
6211 }
6212
6213 static void init_gro_hash(struct napi_struct *napi)
6214 {
6215         int i;
6216
6217         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6218                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6219                 napi->gro_hash[i].count = 0;
6220         }
6221         napi->gro_bitmask = 0;
6222 }
6223
6224 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6225                     int (*poll)(struct napi_struct *, int), int weight)
6226 {
6227         INIT_LIST_HEAD(&napi->poll_list);
6228         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6229         napi->timer.function = napi_watchdog;
6230         init_gro_hash(napi);
6231         napi->skb = NULL;
6232         INIT_LIST_HEAD(&napi->rx_list);
6233         napi->rx_count = 0;
6234         napi->poll = poll;
6235         if (weight > NAPI_POLL_WEIGHT)
6236                 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6237                                 weight);
6238         napi->weight = weight;
6239         list_add(&napi->dev_list, &dev->napi_list);
6240         napi->dev = dev;
6241 #ifdef CONFIG_NETPOLL
6242         napi->poll_owner = -1;
6243 #endif
6244         set_bit(NAPI_STATE_SCHED, &napi->state);
6245         napi_hash_add(napi);
6246 }
6247 EXPORT_SYMBOL(netif_napi_add);
6248
6249 void napi_disable(struct napi_struct *n)
6250 {
6251         might_sleep();
6252         set_bit(NAPI_STATE_DISABLE, &n->state);
6253
6254         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6255                 msleep(1);
6256         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6257                 msleep(1);
6258
6259         hrtimer_cancel(&n->timer);
6260
6261         clear_bit(NAPI_STATE_DISABLE, &n->state);
6262 }
6263 EXPORT_SYMBOL(napi_disable);
6264
6265 static void flush_gro_hash(struct napi_struct *napi)
6266 {
6267         int i;
6268
6269         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6270                 struct sk_buff *skb, *n;
6271
6272                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6273                         kfree_skb(skb);
6274                 napi->gro_hash[i].count = 0;
6275         }
6276 }
6277
6278 /* Must be called in process context */
6279 void netif_napi_del(struct napi_struct *napi)
6280 {
6281         might_sleep();
6282         if (napi_hash_del(napi))
6283                 synchronize_net();
6284         list_del_init(&napi->dev_list);
6285         napi_free_frags(napi);
6286
6287         flush_gro_hash(napi);
6288         napi->gro_bitmask = 0;
6289 }
6290 EXPORT_SYMBOL(netif_napi_del);
6291
6292 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6293 {
6294         void *have;
6295         int work, weight;
6296
6297         list_del_init(&n->poll_list);
6298
6299         have = netpoll_poll_lock(n);
6300
6301         weight = n->weight;
6302
6303         /* This NAPI_STATE_SCHED test is for avoiding a race
6304          * with netpoll's poll_napi().  Only the entity which
6305          * obtains the lock and sees NAPI_STATE_SCHED set will
6306          * actually make the ->poll() call.  Therefore we avoid
6307          * accidentally calling ->poll() when NAPI is not scheduled.
6308          */
6309         work = 0;
6310         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6311                 work = n->poll(n, weight);
6312                 trace_napi_poll(n, work, weight);
6313         }
6314
6315         WARN_ON_ONCE(work > weight);
6316
6317         if (likely(work < weight))
6318                 goto out_unlock;
6319
6320         /* Drivers must not modify the NAPI state if they
6321          * consume the entire weight.  In such cases this code
6322          * still "owns" the NAPI instance and therefore can
6323          * move the instance around on the list at-will.
6324          */
6325         if (unlikely(napi_disable_pending(n))) {
6326                 napi_complete(n);
6327                 goto out_unlock;
6328         }
6329
6330         gro_normal_list(n);
6331
6332         if (n->gro_bitmask) {
6333                 /* flush too old packets
6334                  * If HZ < 1000, flush all packets.
6335                  */
6336                 napi_gro_flush(n, HZ >= 1000);
6337         }
6338
6339         /* Some drivers may have called napi_schedule
6340          * prior to exhausting their budget.
6341          */
6342         if (unlikely(!list_empty(&n->poll_list))) {
6343                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6344                              n->dev ? n->dev->name : "backlog");
6345                 goto out_unlock;
6346         }
6347
6348         list_add_tail(&n->poll_list, repoll);
6349
6350 out_unlock:
6351         netpoll_poll_unlock(have);
6352
6353         return work;
6354 }
6355
6356 static __latent_entropy void net_rx_action(struct softirq_action *h)
6357 {
6358         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6359         unsigned long time_limit = jiffies +
6360                 usecs_to_jiffies(netdev_budget_usecs);
6361         int budget = netdev_budget;
6362         LIST_HEAD(list);
6363         LIST_HEAD(repoll);
6364
6365         local_irq_disable();
6366         list_splice_init(&sd->poll_list, &list);
6367         local_irq_enable();
6368
6369         for (;;) {
6370                 struct napi_struct *n;
6371
6372                 if (list_empty(&list)) {
6373                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6374                                 goto out;
6375                         break;
6376                 }
6377
6378                 n = list_first_entry(&list, struct napi_struct, poll_list);
6379                 budget -= napi_poll(n, &repoll);
6380
6381                 /* If softirq window is exhausted then punt.
6382                  * Allow this to run for 2 jiffies since which will allow
6383                  * an average latency of 1.5/HZ.
6384                  */
6385                 if (unlikely(budget <= 0 ||
6386                              time_after_eq(jiffies, time_limit))) {
6387                         sd->time_squeeze++;
6388                         break;
6389                 }
6390         }
6391
6392         local_irq_disable();
6393
6394         list_splice_tail_init(&sd->poll_list, &list);
6395         list_splice_tail(&repoll, &list);
6396         list_splice(&list, &sd->poll_list);
6397         if (!list_empty(&sd->poll_list))
6398                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6399
6400         net_rps_action_and_irq_enable(sd);
6401 out:
6402         __kfree_skb_flush();
6403 }
6404
6405 struct netdev_adjacent {
6406         struct net_device *dev;
6407
6408         /* upper master flag, there can only be one master device per list */
6409         bool master;
6410
6411         /* lookup ignore flag */
6412         bool ignore;
6413
6414         /* counter for the number of times this device was added to us */
6415         u16 ref_nr;
6416
6417         /* private field for the users */
6418         void *private;
6419
6420         struct list_head list;
6421         struct rcu_head rcu;
6422 };
6423
6424 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6425                                                  struct list_head *adj_list)
6426 {
6427         struct netdev_adjacent *adj;
6428
6429         list_for_each_entry(adj, adj_list, list) {
6430                 if (adj->dev == adj_dev)
6431                         return adj;
6432         }
6433         return NULL;
6434 }
6435
6436 static int ____netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6437 {
6438         struct net_device *dev = data;
6439
6440         return upper_dev == dev;
6441 }
6442
6443 /**
6444  * netdev_has_upper_dev - Check if device is linked to an upper device
6445  * @dev: device
6446  * @upper_dev: upper device to check
6447  *
6448  * Find out if a device is linked to specified upper device and return true
6449  * in case it is. Note that this checks only immediate upper device,
6450  * not through a complete stack of devices. The caller must hold the RTNL lock.
6451  */
6452 bool netdev_has_upper_dev(struct net_device *dev,
6453                           struct net_device *upper_dev)
6454 {
6455         ASSERT_RTNL();
6456
6457         return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6458                                              upper_dev);
6459 }
6460 EXPORT_SYMBOL(netdev_has_upper_dev);
6461
6462 /**
6463  * netdev_has_upper_dev_all - Check if device is linked to an upper device
6464  * @dev: device
6465  * @upper_dev: upper device to check
6466  *
6467  * Find out if a device is linked to specified upper device and return true
6468  * in case it is. Note that this checks the entire upper device chain.
6469  * The caller must hold rcu lock.
6470  */
6471
6472 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6473                                   struct net_device *upper_dev)
6474 {
6475         return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6476                                                upper_dev);
6477 }
6478 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6479
6480 /**
6481  * netdev_has_any_upper_dev - Check if device is linked to some device
6482  * @dev: device
6483  *
6484  * Find out if a device is linked to an upper device and return true in case
6485  * it is. The caller must hold the RTNL lock.
6486  */
6487 bool netdev_has_any_upper_dev(struct net_device *dev)
6488 {
6489         ASSERT_RTNL();
6490
6491         return !list_empty(&dev->adj_list.upper);
6492 }
6493 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6494
6495 /**
6496  * netdev_master_upper_dev_get - Get master upper device
6497  * @dev: device
6498  *
6499  * Find a master upper device and return pointer to it or NULL in case
6500  * it's not there. The caller must hold the RTNL lock.
6501  */
6502 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6503 {
6504         struct netdev_adjacent *upper;
6505
6506         ASSERT_RTNL();
6507
6508         if (list_empty(&dev->adj_list.upper))
6509                 return NULL;
6510
6511         upper = list_first_entry(&dev->adj_list.upper,
6512                                  struct netdev_adjacent, list);
6513         if (likely(upper->master))
6514                 return upper->dev;
6515         return NULL;
6516 }
6517 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6518
6519 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6520 {
6521         struct netdev_adjacent *upper;
6522
6523         ASSERT_RTNL();
6524
6525         if (list_empty(&dev->adj_list.upper))
6526                 return NULL;
6527
6528         upper = list_first_entry(&dev->adj_list.upper,
6529                                  struct netdev_adjacent, list);
6530         if (likely(upper->master) && !upper->ignore)
6531                 return upper->dev;
6532         return NULL;
6533 }
6534
6535 /**
6536  * netdev_has_any_lower_dev - Check if device is linked to some device
6537  * @dev: device
6538  *
6539  * Find out if a device is linked to a lower device and return true in case
6540  * it is. The caller must hold the RTNL lock.
6541  */
6542 static bool netdev_has_any_lower_dev(struct net_device *dev)
6543 {
6544         ASSERT_RTNL();
6545
6546         return !list_empty(&dev->adj_list.lower);
6547 }
6548
6549 void *netdev_adjacent_get_private(struct list_head *adj_list)
6550 {
6551         struct netdev_adjacent *adj;
6552
6553         adj = list_entry(adj_list, struct netdev_adjacent, list);
6554
6555         return adj->private;
6556 }
6557 EXPORT_SYMBOL(netdev_adjacent_get_private);
6558
6559 /**
6560  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6561  * @dev: device
6562  * @iter: list_head ** of the current position
6563  *
6564  * Gets the next device from the dev's upper list, starting from iter
6565  * position. The caller must hold RCU read lock.
6566  */
6567 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6568                                                  struct list_head **iter)
6569 {
6570         struct netdev_adjacent *upper;
6571
6572         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6573
6574         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6575
6576         if (&upper->list == &dev->adj_list.upper)
6577                 return NULL;
6578
6579         *iter = &upper->list;
6580
6581         return upper->dev;
6582 }
6583 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6584
6585 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6586                                                   struct list_head **iter,
6587                                                   bool *ignore)
6588 {
6589         struct netdev_adjacent *upper;
6590
6591         upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6592
6593         if (&upper->list == &dev->adj_list.upper)
6594                 return NULL;
6595
6596         *iter = &upper->list;
6597         *ignore = upper->ignore;
6598
6599         return upper->dev;
6600 }
6601
6602 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6603                                                     struct list_head **iter)
6604 {
6605         struct netdev_adjacent *upper;
6606
6607         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6608
6609         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6610
6611         if (&upper->list == &dev->adj_list.upper)
6612                 return NULL;
6613
6614         *iter = &upper->list;
6615
6616         return upper->dev;
6617 }
6618
6619 static int __netdev_walk_all_upper_dev(struct net_device *dev,
6620                                        int (*fn)(struct net_device *dev,
6621                                                  void *data),
6622                                        void *data)
6623 {
6624         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6625         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6626         int ret, cur = 0;
6627         bool ignore;
6628
6629         now = dev;
6630         iter = &dev->adj_list.upper;
6631
6632         while (1) {
6633                 if (now != dev) {
6634                         ret = fn(now, data);
6635                         if (ret)
6636                                 return ret;
6637                 }
6638
6639                 next = NULL;
6640                 while (1) {
6641                         udev = __netdev_next_upper_dev(now, &iter, &ignore);
6642                         if (!udev)
6643                                 break;
6644                         if (ignore)
6645                                 continue;
6646
6647                         next = udev;
6648                         niter = &udev->adj_list.upper;
6649                         dev_stack[cur] = now;
6650                         iter_stack[cur++] = iter;
6651                         break;
6652                 }
6653
6654                 if (!next) {
6655                         if (!cur)
6656                                 return 0;
6657                         next = dev_stack[--cur];
6658                         niter = iter_stack[cur];
6659                 }
6660
6661                 now = next;
6662                 iter = niter;
6663         }
6664
6665         return 0;
6666 }
6667
6668 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6669                                   int (*fn)(struct net_device *dev,
6670                                             void *data),
6671                                   void *data)
6672 {
6673         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6674         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6675         int ret, cur = 0;
6676
6677         now = dev;
6678         iter = &dev->adj_list.upper;
6679
6680         while (1) {
6681                 if (now != dev) {
6682                         ret = fn(now, data);
6683                         if (ret)
6684                                 return ret;
6685                 }
6686
6687                 next = NULL;
6688                 while (1) {
6689                         udev = netdev_next_upper_dev_rcu(now, &iter);
6690                         if (!udev)
6691                                 break;
6692
6693                         next = udev;
6694                         niter = &udev->adj_list.upper;
6695                         dev_stack[cur] = now;
6696                         iter_stack[cur++] = iter;
6697                         break;
6698                 }
6699
6700                 if (!next) {
6701                         if (!cur)
6702                                 return 0;
6703                         next = dev_stack[--cur];
6704                         niter = iter_stack[cur];
6705                 }
6706
6707                 now = next;
6708                 iter = niter;
6709         }
6710
6711         return 0;
6712 }
6713 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6714
6715 static bool __netdev_has_upper_dev(struct net_device *dev,
6716                                    struct net_device *upper_dev)
6717 {
6718         ASSERT_RTNL();
6719
6720         return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
6721                                            upper_dev);
6722 }
6723
6724 /**
6725  * netdev_lower_get_next_private - Get the next ->private from the
6726  *                                 lower neighbour list
6727  * @dev: device
6728  * @iter: list_head ** of the current position
6729  *
6730  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6731  * list, starting from iter position. The caller must hold either hold the
6732  * RTNL lock or its own locking that guarantees that the neighbour lower
6733  * list will remain unchanged.
6734  */
6735 void *netdev_lower_get_next_private(struct net_device *dev,
6736                                     struct list_head **iter)
6737 {
6738         struct netdev_adjacent *lower;
6739
6740         lower = list_entry(*iter, struct netdev_adjacent, list);
6741
6742         if (&lower->list == &dev->adj_list.lower)
6743                 return NULL;
6744
6745         *iter = lower->list.next;
6746
6747         return lower->private;
6748 }
6749 EXPORT_SYMBOL(netdev_lower_get_next_private);
6750
6751 /**
6752  * netdev_lower_get_next_private_rcu - Get the next ->private from the
6753  *                                     lower neighbour list, RCU
6754  *                                     variant
6755  * @dev: device
6756  * @iter: list_head ** of the current position
6757  *
6758  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6759  * list, starting from iter position. The caller must hold RCU read lock.
6760  */
6761 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6762                                         struct list_head **iter)
6763 {
6764         struct netdev_adjacent *lower;
6765
6766         WARN_ON_ONCE(!rcu_read_lock_held());
6767
6768         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6769
6770         if (&lower->list == &dev->adj_list.lower)
6771                 return NULL;
6772
6773         *iter = &lower->list;
6774
6775         return lower->private;
6776 }
6777 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6778
6779 /**
6780  * netdev_lower_get_next - Get the next device from the lower neighbour
6781  *                         list
6782  * @dev: device
6783  * @iter: list_head ** of the current position
6784  *
6785  * Gets the next netdev_adjacent from the dev's lower neighbour
6786  * list, starting from iter position. The caller must hold RTNL lock or
6787  * its own locking that guarantees that the neighbour lower
6788  * list will remain unchanged.
6789  */
6790 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6791 {
6792         struct netdev_adjacent *lower;
6793
6794         lower = list_entry(*iter, struct netdev_adjacent, list);
6795
6796         if (&lower->list == &dev->adj_list.lower)
6797                 return NULL;
6798
6799         *iter = lower->list.next;
6800
6801         return lower->dev;
6802 }
6803 EXPORT_SYMBOL(netdev_lower_get_next);
6804
6805 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6806                                                 struct list_head **iter)
6807 {
6808         struct netdev_adjacent *lower;
6809
6810         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6811
6812         if (&lower->list == &dev->adj_list.lower)
6813                 return NULL;
6814
6815         *iter = &lower->list;
6816
6817         return lower->dev;
6818 }
6819
6820 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
6821                                                   struct list_head **iter,
6822                                                   bool *ignore)
6823 {
6824         struct netdev_adjacent *lower;
6825
6826         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6827
6828         if (&lower->list == &dev->adj_list.lower)
6829                 return NULL;
6830
6831         *iter = &lower->list;
6832         *ignore = lower->ignore;
6833
6834         return lower->dev;
6835 }
6836
6837 int netdev_walk_all_lower_dev(struct net_device *dev,
6838                               int (*fn)(struct net_device *dev,
6839                                         void *data),
6840                               void *data)
6841 {
6842         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6843         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6844         int ret, cur = 0;
6845
6846         now = dev;
6847         iter = &dev->adj_list.lower;
6848
6849         while (1) {
6850                 if (now != dev) {
6851                         ret = fn(now, data);
6852                         if (ret)
6853                                 return ret;
6854                 }
6855
6856                 next = NULL;
6857                 while (1) {
6858                         ldev = netdev_next_lower_dev(now, &iter);
6859                         if (!ldev)
6860                                 break;
6861
6862                         next = ldev;
6863                         niter = &ldev->adj_list.lower;
6864                         dev_stack[cur] = now;
6865                         iter_stack[cur++] = iter;
6866                         break;
6867                 }
6868
6869                 if (!next) {
6870                         if (!cur)
6871                                 return 0;
6872                         next = dev_stack[--cur];
6873                         niter = iter_stack[cur];
6874                 }
6875
6876                 now = next;
6877                 iter = niter;
6878         }
6879
6880         return 0;
6881 }
6882 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6883
6884 static int __netdev_walk_all_lower_dev(struct net_device *dev,
6885                                        int (*fn)(struct net_device *dev,
6886                                                  void *data),
6887                                        void *data)
6888 {
6889         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6890         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6891         int ret, cur = 0;
6892         bool ignore;
6893
6894         now = dev;
6895         iter = &dev->adj_list.lower;
6896
6897         while (1) {
6898                 if (now != dev) {
6899                         ret = fn(now, data);
6900                         if (ret)
6901                                 return ret;
6902                 }
6903
6904                 next = NULL;
6905                 while (1) {
6906                         ldev = __netdev_next_lower_dev(now, &iter, &ignore);
6907                         if (!ldev)
6908                                 break;
6909                         if (ignore)
6910                                 continue;
6911
6912                         next = ldev;
6913                         niter = &ldev->adj_list.lower;
6914                         dev_stack[cur] = now;
6915                         iter_stack[cur++] = iter;
6916                         break;
6917                 }
6918
6919                 if (!next) {
6920                         if (!cur)
6921                                 return 0;
6922                         next = dev_stack[--cur];
6923                         niter = iter_stack[cur];
6924                 }
6925
6926                 now = next;
6927                 iter = niter;
6928         }
6929
6930         return 0;
6931 }
6932
6933 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6934                                                     struct list_head **iter)
6935 {
6936         struct netdev_adjacent *lower;
6937
6938         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6939         if (&lower->list == &dev->adj_list.lower)
6940                 return NULL;
6941
6942         *iter = &lower->list;
6943
6944         return lower->dev;
6945 }
6946
6947 static u8 __netdev_upper_depth(struct net_device *dev)
6948 {
6949         struct net_device *udev;
6950         struct list_head *iter;
6951         u8 max_depth = 0;
6952         bool ignore;
6953
6954         for (iter = &dev->adj_list.upper,
6955              udev = __netdev_next_upper_dev(dev, &iter, &ignore);
6956              udev;
6957              udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
6958                 if (ignore)
6959                         continue;
6960                 if (max_depth < udev->upper_level)
6961                         max_depth = udev->upper_level;
6962         }
6963
6964         return max_depth;
6965 }
6966
6967 static u8 __netdev_lower_depth(struct net_device *dev)
6968 {
6969         struct net_device *ldev;
6970         struct list_head *iter;
6971         u8 max_depth = 0;
6972         bool ignore;
6973
6974         for (iter = &dev->adj_list.lower,
6975              ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
6976              ldev;
6977              ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
6978                 if (ignore)
6979                         continue;
6980                 if (max_depth < ldev->lower_level)
6981                         max_depth = ldev->lower_level;
6982         }
6983
6984         return max_depth;
6985 }
6986
6987 static int __netdev_update_upper_level(struct net_device *dev, void *data)
6988 {
6989         dev->upper_level = __netdev_upper_depth(dev) + 1;
6990         return 0;
6991 }
6992
6993 static int __netdev_update_lower_level(struct net_device *dev, void *data)
6994 {
6995         dev->lower_level = __netdev_lower_depth(dev) + 1;
6996         return 0;
6997 }
6998
6999 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7000                                   int (*fn)(struct net_device *dev,
7001                                             void *data),
7002                                   void *data)
7003 {
7004         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7005         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7006         int ret, cur = 0;
7007
7008         now = dev;
7009         iter = &dev->adj_list.lower;
7010
7011         while (1) {
7012                 if (now != dev) {
7013                         ret = fn(now, data);
7014                         if (ret)
7015                                 return ret;
7016                 }
7017
7018                 next = NULL;
7019                 while (1) {
7020                         ldev = netdev_next_lower_dev_rcu(now, &iter);
7021                         if (!ldev)
7022                                 break;
7023
7024                         next = ldev;
7025                         niter = &ldev->adj_list.lower;
7026                         dev_stack[cur] = now;
7027                         iter_stack[cur++] = iter;
7028                         break;
7029                 }
7030
7031                 if (!next) {
7032                         if (!cur)
7033                                 return 0;
7034                         next = dev_stack[--cur];
7035                         niter = iter_stack[cur];
7036                 }
7037
7038                 now = next;
7039                 iter = niter;
7040         }
7041
7042         return 0;
7043 }
7044 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7045
7046 /**
7047  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7048  *                                     lower neighbour list, RCU
7049  *                                     variant
7050  * @dev: device
7051  *
7052  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7053  * list. The caller must hold RCU read lock.
7054  */
7055 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7056 {
7057         struct netdev_adjacent *lower;
7058
7059         lower = list_first_or_null_rcu(&dev->adj_list.lower,
7060                         struct netdev_adjacent, list);
7061         if (lower)
7062                 return lower->private;
7063         return NULL;
7064 }
7065 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7066
7067 /**
7068  * netdev_master_upper_dev_get_rcu - Get master upper device
7069  * @dev: device
7070  *
7071  * Find a master upper device and return pointer to it or NULL in case
7072  * it's not there. The caller must hold the RCU read lock.
7073  */
7074 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7075 {
7076         struct netdev_adjacent *upper;
7077
7078         upper = list_first_or_null_rcu(&dev->adj_list.upper,
7079                                        struct netdev_adjacent, list);
7080         if (upper && likely(upper->master))
7081                 return upper->dev;
7082         return NULL;
7083 }
7084 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7085
7086 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7087                               struct net_device *adj_dev,
7088                               struct list_head *dev_list)
7089 {
7090         char linkname[IFNAMSIZ+7];
7091
7092         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7093                 "upper_%s" : "lower_%s", adj_dev->name);
7094         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7095                                  linkname);
7096 }
7097 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7098                                char *name,
7099                                struct list_head *dev_list)
7100 {
7101         char linkname[IFNAMSIZ+7];
7102
7103         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7104                 "upper_%s" : "lower_%s", name);
7105         sysfs_remove_link(&(dev->dev.kobj), linkname);
7106 }
7107
7108 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7109                                                  struct net_device *adj_dev,
7110                                                  struct list_head *dev_list)
7111 {
7112         return (dev_list == &dev->adj_list.upper ||
7113                 dev_list == &dev->adj_list.lower) &&
7114                 net_eq(dev_net(dev), dev_net(adj_dev));
7115 }
7116
7117 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7118                                         struct net_device *adj_dev,
7119                                         struct list_head *dev_list,
7120                                         void *private, bool master)
7121 {
7122         struct netdev_adjacent *adj;
7123         int ret;
7124
7125         adj = __netdev_find_adj(adj_dev, dev_list);
7126
7127         if (adj) {
7128                 adj->ref_nr += 1;
7129                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7130                          dev->name, adj_dev->name, adj->ref_nr);
7131
7132                 return 0;
7133         }
7134
7135         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7136         if (!adj)
7137                 return -ENOMEM;
7138
7139         adj->dev = adj_dev;
7140         adj->master = master;
7141         adj->ref_nr = 1;
7142         adj->private = private;
7143         adj->ignore = false;
7144         dev_hold(adj_dev);
7145
7146         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7147                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7148
7149         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7150                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7151                 if (ret)
7152                         goto free_adj;
7153         }
7154
7155         /* Ensure that master link is always the first item in list. */
7156         if (master) {
7157                 ret = sysfs_create_link(&(dev->dev.kobj),
7158                                         &(adj_dev->dev.kobj), "master");
7159                 if (ret)
7160                         goto remove_symlinks;
7161
7162                 list_add_rcu(&adj->list, dev_list);
7163         } else {
7164                 list_add_tail_rcu(&adj->list, dev_list);
7165         }
7166
7167         return 0;
7168
7169 remove_symlinks:
7170         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7171                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7172 free_adj:
7173         kfree(adj);
7174         dev_put(adj_dev);
7175
7176         return ret;
7177 }
7178
7179 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7180                                          struct net_device *adj_dev,
7181                                          u16 ref_nr,
7182                                          struct list_head *dev_list)
7183 {
7184         struct netdev_adjacent *adj;
7185
7186         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7187                  dev->name, adj_dev->name, ref_nr);
7188
7189         adj = __netdev_find_adj(adj_dev, dev_list);
7190
7191         if (!adj) {
7192                 pr_err("Adjacency does not exist for device %s from %s\n",
7193                        dev->name, adj_dev->name);
7194                 WARN_ON(1);
7195                 return;
7196         }
7197
7198         if (adj->ref_nr > ref_nr) {
7199                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7200                          dev->name, adj_dev->name, ref_nr,
7201                          adj->ref_nr - ref_nr);
7202                 adj->ref_nr -= ref_nr;
7203                 return;
7204         }
7205
7206         if (adj->master)
7207                 sysfs_remove_link(&(dev->dev.kobj), "master");
7208
7209         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7210                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7211
7212         list_del_rcu(&adj->list);
7213         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7214                  adj_dev->name, dev->name, adj_dev->name);
7215         dev_put(adj_dev);
7216         kfree_rcu(adj, rcu);
7217 }
7218
7219 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7220                                             struct net_device *upper_dev,
7221                                             struct list_head *up_list,
7222                                             struct list_head *down_list,
7223                                             void *private, bool master)
7224 {
7225         int ret;
7226
7227         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7228                                            private, master);
7229         if (ret)
7230                 return ret;
7231
7232         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7233                                            private, false);
7234         if (ret) {
7235                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7236                 return ret;
7237         }
7238
7239         return 0;
7240 }
7241
7242 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7243                                                struct net_device *upper_dev,
7244                                                u16 ref_nr,
7245                                                struct list_head *up_list,
7246                                                struct list_head *down_list)
7247 {
7248         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7249         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7250 }
7251
7252 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7253                                                 struct net_device *upper_dev,
7254                                                 void *private, bool master)
7255 {
7256         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7257                                                 &dev->adj_list.upper,
7258                                                 &upper_dev->adj_list.lower,
7259                                                 private, master);
7260 }
7261
7262 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7263                                                    struct net_device *upper_dev)
7264 {
7265         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7266                                            &dev->adj_list.upper,
7267                                            &upper_dev->adj_list.lower);
7268 }
7269
7270 static int __netdev_upper_dev_link(struct net_device *dev,
7271                                    struct net_device *upper_dev, bool master,
7272                                    void *upper_priv, void *upper_info,
7273                                    struct netlink_ext_ack *extack)
7274 {
7275         struct netdev_notifier_changeupper_info changeupper_info = {
7276                 .info = {
7277                         .dev = dev,
7278                         .extack = extack,
7279                 },
7280                 .upper_dev = upper_dev,
7281                 .master = master,
7282                 .linking = true,
7283                 .upper_info = upper_info,
7284         };
7285         struct net_device *master_dev;
7286         int ret = 0;
7287
7288         ASSERT_RTNL();
7289
7290         if (dev == upper_dev)
7291                 return -EBUSY;
7292
7293         /* To prevent loops, check if dev is not upper device to upper_dev. */
7294         if (__netdev_has_upper_dev(upper_dev, dev))
7295                 return -EBUSY;
7296
7297         if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7298                 return -EMLINK;
7299
7300         if (!master) {
7301                 if (__netdev_has_upper_dev(dev, upper_dev))
7302                         return -EEXIST;
7303         } else {
7304                 master_dev = __netdev_master_upper_dev_get(dev);
7305                 if (master_dev)
7306                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
7307         }
7308
7309         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7310                                             &changeupper_info.info);
7311         ret = notifier_to_errno(ret);
7312         if (ret)
7313                 return ret;
7314
7315         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7316                                                    master);
7317         if (ret)
7318                 return ret;
7319
7320         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7321                                             &changeupper_info.info);
7322         ret = notifier_to_errno(ret);
7323         if (ret)
7324                 goto rollback;
7325
7326         __netdev_update_upper_level(dev, NULL);
7327         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7328
7329         __netdev_update_lower_level(upper_dev, NULL);
7330         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7331                                     NULL);
7332
7333         return 0;
7334
7335 rollback:
7336         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7337
7338         return ret;
7339 }
7340
7341 /**
7342  * netdev_upper_dev_link - Add a link to the upper device
7343  * @dev: device
7344  * @upper_dev: new upper device
7345  * @extack: netlink extended ack
7346  *
7347  * Adds a link to device which is upper to this one. The caller must hold
7348  * the RTNL lock. On a failure a negative errno code is returned.
7349  * On success the reference counts are adjusted and the function
7350  * returns zero.
7351  */
7352 int netdev_upper_dev_link(struct net_device *dev,
7353                           struct net_device *upper_dev,
7354                           struct netlink_ext_ack *extack)
7355 {
7356         return __netdev_upper_dev_link(dev, upper_dev, false,
7357                                        NULL, NULL, extack);
7358 }
7359 EXPORT_SYMBOL(netdev_upper_dev_link);
7360
7361 /**
7362  * netdev_master_upper_dev_link - Add a master link to the upper device
7363  * @dev: device
7364  * @upper_dev: new upper device
7365  * @upper_priv: upper device private
7366  * @upper_info: upper info to be passed down via notifier
7367  * @extack: netlink extended ack
7368  *
7369  * Adds a link to device which is upper to this one. In this case, only
7370  * one master upper device can be linked, although other non-master devices
7371  * might be linked as well. The caller must hold the RTNL lock.
7372  * On a failure a negative errno code is returned. On success the reference
7373  * counts are adjusted and the function returns zero.
7374  */
7375 int netdev_master_upper_dev_link(struct net_device *dev,
7376                                  struct net_device *upper_dev,
7377                                  void *upper_priv, void *upper_info,
7378                                  struct netlink_ext_ack *extack)
7379 {
7380         return __netdev_upper_dev_link(dev, upper_dev, true,
7381                                        upper_priv, upper_info, extack);
7382 }
7383 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7384
7385 /**
7386  * netdev_upper_dev_unlink - Removes a link to upper device
7387  * @dev: device
7388  * @upper_dev: new upper device
7389  *
7390  * Removes a link to device which is upper to this one. The caller must hold
7391  * the RTNL lock.
7392  */
7393 void netdev_upper_dev_unlink(struct net_device *dev,
7394                              struct net_device *upper_dev)
7395 {
7396         struct netdev_notifier_changeupper_info changeupper_info = {
7397                 .info = {
7398                         .dev = dev,
7399                 },
7400                 .upper_dev = upper_dev,
7401                 .linking = false,
7402         };
7403
7404         ASSERT_RTNL();
7405
7406         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7407
7408         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7409                                       &changeupper_info.info);
7410
7411         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7412
7413         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7414                                       &changeupper_info.info);
7415
7416         __netdev_update_upper_level(dev, NULL);
7417         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7418
7419         __netdev_update_lower_level(upper_dev, NULL);
7420         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7421                                     NULL);
7422 }
7423 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7424
7425 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7426                                       struct net_device *lower_dev,
7427                                       bool val)
7428 {
7429         struct netdev_adjacent *adj;
7430
7431         adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7432         if (adj)
7433                 adj->ignore = val;
7434
7435         adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7436         if (adj)
7437                 adj->ignore = val;
7438 }
7439
7440 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7441                                         struct net_device *lower_dev)
7442 {
7443         __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7444 }
7445
7446 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7447                                        struct net_device *lower_dev)
7448 {
7449         __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7450 }
7451
7452 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7453                                    struct net_device *new_dev,
7454                                    struct net_device *dev,
7455                                    struct netlink_ext_ack *extack)
7456 {
7457         int err;
7458
7459         if (!new_dev)
7460                 return 0;
7461
7462         if (old_dev && new_dev != old_dev)
7463                 netdev_adjacent_dev_disable(dev, old_dev);
7464
7465         err = netdev_upper_dev_link(new_dev, dev, extack);
7466         if (err) {
7467                 if (old_dev && new_dev != old_dev)
7468                         netdev_adjacent_dev_enable(dev, old_dev);
7469                 return err;
7470         }
7471
7472         return 0;
7473 }
7474 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7475
7476 void netdev_adjacent_change_commit(struct net_device *old_dev,
7477                                    struct net_device *new_dev,
7478                                    struct net_device *dev)
7479 {
7480         if (!new_dev || !old_dev)
7481                 return;
7482
7483         if (new_dev == old_dev)
7484                 return;
7485
7486         netdev_adjacent_dev_enable(dev, old_dev);
7487         netdev_upper_dev_unlink(old_dev, dev);
7488 }
7489 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7490
7491 void netdev_adjacent_change_abort(struct net_device *old_dev,
7492                                   struct net_device *new_dev,
7493                                   struct net_device *dev)
7494 {
7495         if (!new_dev)
7496                 return;
7497
7498         if (old_dev && new_dev != old_dev)
7499                 netdev_adjacent_dev_enable(dev, old_dev);
7500
7501         netdev_upper_dev_unlink(new_dev, dev);
7502 }
7503 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7504
7505 /**
7506  * netdev_bonding_info_change - Dispatch event about slave change
7507  * @dev: device
7508  * @bonding_info: info to dispatch
7509  *
7510  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7511  * The caller must hold the RTNL lock.
7512  */
7513 void netdev_bonding_info_change(struct net_device *dev,
7514                                 struct netdev_bonding_info *bonding_info)
7515 {
7516         struct netdev_notifier_bonding_info info = {
7517                 .info.dev = dev,
7518         };
7519
7520         memcpy(&info.bonding_info, bonding_info,
7521                sizeof(struct netdev_bonding_info));
7522         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7523                                       &info.info);
7524 }
7525 EXPORT_SYMBOL(netdev_bonding_info_change);
7526
7527 static void netdev_adjacent_add_links(struct net_device *dev)
7528 {
7529         struct netdev_adjacent *iter;
7530
7531         struct net *net = dev_net(dev);
7532
7533         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7534                 if (!net_eq(net, dev_net(iter->dev)))
7535                         continue;
7536                 netdev_adjacent_sysfs_add(iter->dev, dev,
7537                                           &iter->dev->adj_list.lower);
7538                 netdev_adjacent_sysfs_add(dev, iter->dev,
7539                                           &dev->adj_list.upper);
7540         }
7541
7542         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7543                 if (!net_eq(net, dev_net(iter->dev)))
7544                         continue;
7545                 netdev_adjacent_sysfs_add(iter->dev, dev,
7546                                           &iter->dev->adj_list.upper);
7547                 netdev_adjacent_sysfs_add(dev, iter->dev,
7548                                           &dev->adj_list.lower);
7549         }
7550 }
7551
7552 static void netdev_adjacent_del_links(struct net_device *dev)
7553 {
7554         struct netdev_adjacent *iter;
7555
7556         struct net *net = dev_net(dev);
7557
7558         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7559                 if (!net_eq(net, dev_net(iter->dev)))
7560                         continue;
7561                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7562                                           &iter->dev->adj_list.lower);
7563                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7564                                           &dev->adj_list.upper);
7565         }
7566
7567         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7568                 if (!net_eq(net, dev_net(iter->dev)))
7569                         continue;
7570                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7571                                           &iter->dev->adj_list.upper);
7572                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7573                                           &dev->adj_list.lower);
7574         }
7575 }
7576
7577 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7578 {
7579         struct netdev_adjacent *iter;
7580
7581         struct net *net = dev_net(dev);
7582
7583         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7584                 if (!net_eq(net, dev_net(iter->dev)))
7585                         continue;
7586                 netdev_adjacent_sysfs_del(iter->dev, oldname,
7587                                           &iter->dev->adj_list.lower);
7588                 netdev_adjacent_sysfs_add(iter->dev, dev,
7589                                           &iter->dev->adj_list.lower);
7590         }
7591
7592         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7593                 if (!net_eq(net, dev_net(iter->dev)))
7594                         continue;
7595                 netdev_adjacent_sysfs_del(iter->dev, oldname,
7596                                           &iter->dev->adj_list.upper);
7597                 netdev_adjacent_sysfs_add(iter->dev, dev,
7598                                           &iter->dev->adj_list.upper);
7599         }
7600 }
7601
7602 void *netdev_lower_dev_get_private(struct net_device *dev,
7603                                    struct net_device *lower_dev)
7604 {
7605         struct netdev_adjacent *lower;
7606
7607         if (!lower_dev)
7608                 return NULL;
7609         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7610         if (!lower)
7611                 return NULL;
7612
7613         return lower->private;
7614 }
7615 EXPORT_SYMBOL(netdev_lower_dev_get_private);
7616
7617
7618 /**
7619  * netdev_lower_change - Dispatch event about lower device state change
7620  * @lower_dev: device
7621  * @lower_state_info: state to dispatch
7622  *
7623  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7624  * The caller must hold the RTNL lock.
7625  */
7626 void netdev_lower_state_changed(struct net_device *lower_dev,
7627                                 void *lower_state_info)
7628 {
7629         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7630                 .info.dev = lower_dev,
7631         };
7632
7633         ASSERT_RTNL();
7634         changelowerstate_info.lower_state_info = lower_state_info;
7635         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7636                                       &changelowerstate_info.info);
7637 }
7638 EXPORT_SYMBOL(netdev_lower_state_changed);
7639
7640 static void dev_change_rx_flags(struct net_device *dev, int flags)
7641 {
7642         const struct net_device_ops *ops = dev->netdev_ops;
7643
7644         if (ops->ndo_change_rx_flags)
7645                 ops->ndo_change_rx_flags(dev, flags);
7646 }
7647
7648 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7649 {
7650         unsigned int old_flags = dev->flags;
7651         kuid_t uid;
7652         kgid_t gid;
7653
7654         ASSERT_RTNL();
7655
7656         dev->flags |= IFF_PROMISC;
7657         dev->promiscuity += inc;
7658         if (dev->promiscuity == 0) {
7659                 /*
7660                  * Avoid overflow.
7661                  * If inc causes overflow, untouch promisc and return error.
7662                  */
7663                 if (inc < 0)
7664                         dev->flags &= ~IFF_PROMISC;
7665                 else {
7666                         dev->promiscuity -= inc;
7667                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7668                                 dev->name);
7669                         return -EOVERFLOW;
7670                 }
7671         }
7672         if (dev->flags != old_flags) {
7673                 pr_info("device %s %s promiscuous mode\n",
7674                         dev->name,
7675                         dev->flags & IFF_PROMISC ? "entered" : "left");
7676                 if (audit_enabled) {
7677                         current_uid_gid(&uid, &gid);
7678                         audit_log(audit_context(), GFP_ATOMIC,
7679                                   AUDIT_ANOM_PROMISCUOUS,
7680                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7681                                   dev->name, (dev->flags & IFF_PROMISC),
7682                                   (old_flags & IFF_PROMISC),
7683                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
7684                                   from_kuid(&init_user_ns, uid),
7685                                   from_kgid(&init_user_ns, gid),
7686                                   audit_get_sessionid(current));
7687                 }
7688
7689                 dev_change_rx_flags(dev, IFF_PROMISC);
7690         }
7691         if (notify)
7692                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
7693         return 0;
7694 }
7695
7696 /**
7697  *      dev_set_promiscuity     - update promiscuity count on a device
7698  *      @dev: device
7699  *      @inc: modifier
7700  *
7701  *      Add or remove promiscuity from a device. While the count in the device
7702  *      remains above zero the interface remains promiscuous. Once it hits zero
7703  *      the device reverts back to normal filtering operation. A negative inc
7704  *      value is used to drop promiscuity on the device.
7705  *      Return 0 if successful or a negative errno code on error.
7706  */
7707 int dev_set_promiscuity(struct net_device *dev, int inc)
7708 {
7709         unsigned int old_flags = dev->flags;
7710         int err;
7711
7712         err = __dev_set_promiscuity(dev, inc, true);
7713         if (err < 0)
7714                 return err;
7715         if (dev->flags != old_flags)
7716                 dev_set_rx_mode(dev);
7717         return err;
7718 }
7719 EXPORT_SYMBOL(dev_set_promiscuity);
7720
7721 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7722 {
7723         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7724
7725         ASSERT_RTNL();
7726
7727         dev->flags |= IFF_ALLMULTI;
7728         dev->allmulti += inc;
7729         if (dev->allmulti == 0) {
7730                 /*
7731                  * Avoid overflow.
7732                  * If inc causes overflow, untouch allmulti and return error.
7733                  */
7734                 if (inc < 0)
7735                         dev->flags &= ~IFF_ALLMULTI;
7736                 else {
7737                         dev->allmulti -= inc;
7738                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7739                                 dev->name);
7740                         return -EOVERFLOW;
7741                 }
7742         }
7743         if (dev->flags ^ old_flags) {
7744                 dev_change_rx_flags(dev, IFF_ALLMULTI);
7745                 dev_set_rx_mode(dev);
7746                 if (notify)
7747                         __dev_notify_flags(dev, old_flags,
7748                                            dev->gflags ^ old_gflags);
7749         }
7750         return 0;
7751 }
7752
7753 /**
7754  *      dev_set_allmulti        - update allmulti count on a device
7755  *      @dev: device
7756  *      @inc: modifier
7757  *
7758  *      Add or remove reception of all multicast frames to a device. While the
7759  *      count in the device remains above zero the interface remains listening
7760  *      to all interfaces. Once it hits zero the device reverts back to normal
7761  *      filtering operation. A negative @inc value is used to drop the counter
7762  *      when releasing a resource needing all multicasts.
7763  *      Return 0 if successful or a negative errno code on error.
7764  */
7765
7766 int dev_set_allmulti(struct net_device *dev, int inc)
7767 {
7768         return __dev_set_allmulti(dev, inc, true);
7769 }
7770 EXPORT_SYMBOL(dev_set_allmulti);
7771
7772 /*
7773  *      Upload unicast and multicast address lists to device and
7774  *      configure RX filtering. When the device doesn't support unicast
7775  *      filtering it is put in promiscuous mode while unicast addresses
7776  *      are present.
7777  */
7778 void __dev_set_rx_mode(struct net_device *dev)
7779 {
7780         const struct net_device_ops *ops = dev->netdev_ops;
7781
7782         /* dev_open will call this function so the list will stay sane. */
7783         if (!(dev->flags&IFF_UP))
7784                 return;
7785
7786         if (!netif_device_present(dev))
7787                 return;
7788
7789         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
7790                 /* Unicast addresses changes may only happen under the rtnl,
7791                  * therefore calling __dev_set_promiscuity here is safe.
7792                  */
7793                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
7794                         __dev_set_promiscuity(dev, 1, false);
7795                         dev->uc_promisc = true;
7796                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
7797                         __dev_set_promiscuity(dev, -1, false);
7798                         dev->uc_promisc = false;
7799                 }
7800         }
7801
7802         if (ops->ndo_set_rx_mode)
7803                 ops->ndo_set_rx_mode(dev);
7804 }
7805
7806 void dev_set_rx_mode(struct net_device *dev)
7807 {
7808         netif_addr_lock_bh(dev);
7809         __dev_set_rx_mode(dev);
7810         netif_addr_unlock_bh(dev);
7811 }
7812
7813 /**
7814  *      dev_get_flags - get flags reported to userspace
7815  *      @dev: device
7816  *
7817  *      Get the combination of flag bits exported through APIs to userspace.
7818  */
7819 unsigned int dev_get_flags(const struct net_device *dev)
7820 {
7821         unsigned int flags;
7822
7823         flags = (dev->flags & ~(IFF_PROMISC |
7824                                 IFF_ALLMULTI |
7825                                 IFF_RUNNING |
7826                                 IFF_LOWER_UP |
7827                                 IFF_DORMANT)) |
7828                 (dev->gflags & (IFF_PROMISC |
7829                                 IFF_ALLMULTI));
7830
7831         if (netif_running(dev)) {
7832                 if (netif_oper_up(dev))
7833                         flags |= IFF_RUNNING;
7834                 if (netif_carrier_ok(dev))
7835                         flags |= IFF_LOWER_UP;
7836                 if (netif_dormant(dev))
7837                         flags |= IFF_DORMANT;
7838         }
7839
7840         return flags;
7841 }
7842 EXPORT_SYMBOL(dev_get_flags);
7843
7844 int __dev_change_flags(struct net_device *dev, unsigned int flags,
7845                        struct netlink_ext_ack *extack)
7846 {
7847         unsigned int old_flags = dev->flags;
7848         int ret;
7849
7850         ASSERT_RTNL();
7851
7852         /*
7853          *      Set the flags on our device.
7854          */
7855
7856         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
7857                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
7858                                IFF_AUTOMEDIA)) |
7859                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
7860                                     IFF_ALLMULTI));
7861
7862         /*
7863          *      Load in the correct multicast list now the flags have changed.
7864          */
7865
7866         if ((old_flags ^ flags) & IFF_MULTICAST)
7867                 dev_change_rx_flags(dev, IFF_MULTICAST);
7868
7869         dev_set_rx_mode(dev);
7870
7871         /*
7872          *      Have we downed the interface. We handle IFF_UP ourselves
7873          *      according to user attempts to set it, rather than blindly
7874          *      setting it.
7875          */
7876
7877         ret = 0;
7878         if ((old_flags ^ flags) & IFF_UP) {
7879                 if (old_flags & IFF_UP)
7880                         __dev_close(dev);
7881                 else
7882                         ret = __dev_open(dev, extack);
7883         }
7884
7885         if ((flags ^ dev->gflags) & IFF_PROMISC) {
7886                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
7887                 unsigned int old_flags = dev->flags;
7888
7889                 dev->gflags ^= IFF_PROMISC;
7890
7891                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
7892                         if (dev->flags != old_flags)
7893                                 dev_set_rx_mode(dev);
7894         }
7895
7896         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
7897          * is important. Some (broken) drivers set IFF_PROMISC, when
7898          * IFF_ALLMULTI is requested not asking us and not reporting.
7899          */
7900         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
7901                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
7902
7903                 dev->gflags ^= IFF_ALLMULTI;
7904                 __dev_set_allmulti(dev, inc, false);
7905         }
7906
7907         return ret;
7908 }
7909
7910 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
7911                         unsigned int gchanges)
7912 {
7913         unsigned int changes = dev->flags ^ old_flags;
7914
7915         if (gchanges)
7916                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
7917
7918         if (changes & IFF_UP) {
7919                 if (dev->flags & IFF_UP)
7920                         call_netdevice_notifiers(NETDEV_UP, dev);
7921                 else
7922                         call_netdevice_notifiers(NETDEV_DOWN, dev);
7923         }
7924
7925         if (dev->flags & IFF_UP &&
7926             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
7927                 struct netdev_notifier_change_info change_info = {
7928                         .info = {
7929                                 .dev = dev,
7930                         },
7931                         .flags_changed = changes,
7932                 };
7933
7934                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
7935         }
7936 }
7937
7938 /**
7939  *      dev_change_flags - change device settings
7940  *      @dev: device
7941  *      @flags: device state flags
7942  *      @extack: netlink extended ack
7943  *
7944  *      Change settings on device based state flags. The flags are
7945  *      in the userspace exported format.
7946  */
7947 int dev_change_flags(struct net_device *dev, unsigned int flags,
7948                      struct netlink_ext_ack *extack)
7949 {
7950         int ret;
7951         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
7952
7953         ret = __dev_change_flags(dev, flags, extack);
7954         if (ret < 0)
7955                 return ret;
7956
7957         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
7958         __dev_notify_flags(dev, old_flags, changes);
7959         return ret;
7960 }
7961 EXPORT_SYMBOL(dev_change_flags);
7962
7963 int __dev_set_mtu(struct net_device *dev, int new_mtu)
7964 {
7965         const struct net_device_ops *ops = dev->netdev_ops;
7966
7967         if (ops->ndo_change_mtu)
7968                 return ops->ndo_change_mtu(dev, new_mtu);
7969
7970         dev->mtu = new_mtu;
7971         return 0;
7972 }
7973 EXPORT_SYMBOL(__dev_set_mtu);
7974
7975 /**
7976  *      dev_set_mtu_ext - Change maximum transfer unit
7977  *      @dev: device
7978  *      @new_mtu: new transfer unit
7979  *      @extack: netlink extended ack
7980  *
7981  *      Change the maximum transfer size of the network device.
7982  */
7983 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
7984                     struct netlink_ext_ack *extack)
7985 {
7986         int err, orig_mtu;
7987
7988         if (new_mtu == dev->mtu)
7989                 return 0;
7990
7991         /* MTU must be positive, and in range */
7992         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7993                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
7994                 return -EINVAL;
7995         }
7996
7997         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7998                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
7999                 return -EINVAL;
8000         }
8001
8002         if (!netif_device_present(dev))
8003                 return -ENODEV;
8004
8005         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8006         err = notifier_to_errno(err);
8007         if (err)
8008                 return err;
8009
8010         orig_mtu = dev->mtu;
8011         err = __dev_set_mtu(dev, new_mtu);
8012
8013         if (!err) {
8014                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8015                                                    orig_mtu);
8016                 err = notifier_to_errno(err);
8017                 if (err) {
8018                         /* setting mtu back and notifying everyone again,
8019                          * so that they have a chance to revert changes.
8020                          */
8021                         __dev_set_mtu(dev, orig_mtu);
8022                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8023                                                      new_mtu);
8024                 }
8025         }
8026         return err;
8027 }
8028
8029 int dev_set_mtu(struct net_device *dev, int new_mtu)
8030 {
8031         struct netlink_ext_ack extack;
8032         int err;
8033
8034         memset(&extack, 0, sizeof(extack));
8035         err = dev_set_mtu_ext(dev, new_mtu, &extack);
8036         if (err && extack._msg)
8037                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8038         return err;
8039 }
8040 EXPORT_SYMBOL(dev_set_mtu);
8041
8042 /**
8043  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
8044  *      @dev: device
8045  *      @new_len: new tx queue length
8046  */
8047 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8048 {
8049         unsigned int orig_len = dev->tx_queue_len;
8050         int res;
8051
8052         if (new_len != (unsigned int)new_len)
8053                 return -ERANGE;
8054
8055         if (new_len != orig_len) {
8056                 dev->tx_queue_len = new_len;
8057                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8058                 res = notifier_to_errno(res);
8059                 if (res)
8060                         goto err_rollback;
8061                 res = dev_qdisc_change_tx_queue_len(dev);
8062                 if (res)
8063                         goto err_rollback;
8064         }
8065
8066         return 0;
8067
8068 err_rollback:
8069         netdev_err(dev, "refused to change device tx_queue_len\n");
8070         dev->tx_queue_len = orig_len;
8071         return res;
8072 }
8073
8074 /**
8075  *      dev_set_group - Change group this device belongs to
8076  *      @dev: device
8077  *      @new_group: group this device should belong to
8078  */
8079 void dev_set_group(struct net_device *dev, int new_group)
8080 {
8081         dev->group = new_group;
8082 }
8083 EXPORT_SYMBOL(dev_set_group);
8084
8085 /**
8086  *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8087  *      @dev: device
8088  *      @addr: new address
8089  *      @extack: netlink extended ack
8090  */
8091 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8092                               struct netlink_ext_ack *extack)
8093 {
8094         struct netdev_notifier_pre_changeaddr_info info = {
8095                 .info.dev = dev,
8096                 .info.extack = extack,
8097                 .dev_addr = addr,
8098         };
8099         int rc;
8100
8101         rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8102         return notifier_to_errno(rc);
8103 }
8104 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8105
8106 /**
8107  *      dev_set_mac_address - Change Media Access Control Address
8108  *      @dev: device
8109  *      @sa: new address
8110  *      @extack: netlink extended ack
8111  *
8112  *      Change the hardware (MAC) address of the device
8113  */
8114 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8115                         struct netlink_ext_ack *extack)
8116 {
8117         const struct net_device_ops *ops = dev->netdev_ops;
8118         int err;
8119
8120         if (!ops->ndo_set_mac_address)
8121                 return -EOPNOTSUPP;
8122         if (sa->sa_family != dev->type)
8123                 return -EINVAL;
8124         if (!netif_device_present(dev))
8125                 return -ENODEV;
8126         err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8127         if (err)
8128                 return err;
8129         err = ops->ndo_set_mac_address(dev, sa);
8130         if (err)
8131                 return err;
8132         dev->addr_assign_type = NET_ADDR_SET;
8133         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8134         add_device_randomness(dev->dev_addr, dev->addr_len);
8135         return 0;
8136 }
8137 EXPORT_SYMBOL(dev_set_mac_address);
8138
8139 /**
8140  *      dev_change_carrier - Change device carrier
8141  *      @dev: device
8142  *      @new_carrier: new value
8143  *
8144  *      Change device carrier
8145  */
8146 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8147 {
8148         const struct net_device_ops *ops = dev->netdev_ops;
8149
8150         if (!ops->ndo_change_carrier)
8151                 return -EOPNOTSUPP;
8152         if (!netif_device_present(dev))
8153                 return -ENODEV;
8154         return ops->ndo_change_carrier(dev, new_carrier);
8155 }
8156 EXPORT_SYMBOL(dev_change_carrier);
8157
8158 /**
8159  *      dev_get_phys_port_id - Get device physical port ID
8160  *      @dev: device
8161  *      @ppid: port ID
8162  *
8163  *      Get device physical port ID
8164  */
8165 int dev_get_phys_port_id(struct net_device *dev,
8166                          struct netdev_phys_item_id *ppid)
8167 {
8168         const struct net_device_ops *ops = dev->netdev_ops;
8169
8170         if (!ops->ndo_get_phys_port_id)
8171                 return -EOPNOTSUPP;
8172         return ops->ndo_get_phys_port_id(dev, ppid);
8173 }
8174 EXPORT_SYMBOL(dev_get_phys_port_id);
8175
8176 /**
8177  *      dev_get_phys_port_name - Get device physical port name
8178  *      @dev: device
8179  *      @name: port name
8180  *      @len: limit of bytes to copy to name
8181  *
8182  *      Get device physical port name
8183  */
8184 int dev_get_phys_port_name(struct net_device *dev,
8185                            char *name, size_t len)
8186 {
8187         const struct net_device_ops *ops = dev->netdev_ops;
8188         int err;
8189
8190         if (ops->ndo_get_phys_port_name) {
8191                 err = ops->ndo_get_phys_port_name(dev, name, len);
8192                 if (err != -EOPNOTSUPP)
8193                         return err;
8194         }
8195         return devlink_compat_phys_port_name_get(dev, name, len);
8196 }
8197 EXPORT_SYMBOL(dev_get_phys_port_name);
8198
8199 /**
8200  *      dev_get_port_parent_id - Get the device's port parent identifier
8201  *      @dev: network device
8202  *      @ppid: pointer to a storage for the port's parent identifier
8203  *      @recurse: allow/disallow recursion to lower devices
8204  *
8205  *      Get the devices's port parent identifier
8206  */
8207 int dev_get_port_parent_id(struct net_device *dev,
8208                            struct netdev_phys_item_id *ppid,
8209                            bool recurse)
8210 {
8211         const struct net_device_ops *ops = dev->netdev_ops;
8212         struct netdev_phys_item_id first = { };
8213         struct net_device *lower_dev;
8214         struct list_head *iter;
8215         int err;
8216
8217         if (ops->ndo_get_port_parent_id) {
8218                 err = ops->ndo_get_port_parent_id(dev, ppid);
8219                 if (err != -EOPNOTSUPP)
8220                         return err;
8221         }
8222
8223         err = devlink_compat_switch_id_get(dev, ppid);
8224         if (!err || err != -EOPNOTSUPP)
8225                 return err;
8226
8227         if (!recurse)
8228                 return -EOPNOTSUPP;
8229
8230         netdev_for_each_lower_dev(dev, lower_dev, iter) {
8231                 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
8232                 if (err)
8233                         break;
8234                 if (!first.id_len)
8235                         first = *ppid;
8236                 else if (memcmp(&first, ppid, sizeof(*ppid)))
8237                         return -ENODATA;
8238         }
8239
8240         return err;
8241 }
8242 EXPORT_SYMBOL(dev_get_port_parent_id);
8243
8244 /**
8245  *      netdev_port_same_parent_id - Indicate if two network devices have
8246  *      the same port parent identifier
8247  *      @a: first network device
8248  *      @b: second network device
8249  */
8250 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8251 {
8252         struct netdev_phys_item_id a_id = { };
8253         struct netdev_phys_item_id b_id = { };
8254
8255         if (dev_get_port_parent_id(a, &a_id, true) ||
8256             dev_get_port_parent_id(b, &b_id, true))
8257                 return false;
8258
8259         return netdev_phys_item_id_same(&a_id, &b_id);
8260 }
8261 EXPORT_SYMBOL(netdev_port_same_parent_id);
8262
8263 /**
8264  *      dev_change_proto_down - update protocol port state information
8265  *      @dev: device
8266  *      @proto_down: new value
8267  *
8268  *      This info can be used by switch drivers to set the phys state of the
8269  *      port.
8270  */
8271 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8272 {
8273         const struct net_device_ops *ops = dev->netdev_ops;
8274
8275         if (!ops->ndo_change_proto_down)
8276                 return -EOPNOTSUPP;
8277         if (!netif_device_present(dev))
8278                 return -ENODEV;
8279         return ops->ndo_change_proto_down(dev, proto_down);
8280 }
8281 EXPORT_SYMBOL(dev_change_proto_down);
8282
8283 /**
8284  *      dev_change_proto_down_generic - generic implementation for
8285  *      ndo_change_proto_down that sets carrier according to
8286  *      proto_down.
8287  *
8288  *      @dev: device
8289  *      @proto_down: new value
8290  */
8291 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8292 {
8293         if (proto_down)
8294                 netif_carrier_off(dev);
8295         else
8296                 netif_carrier_on(dev);
8297         dev->proto_down = proto_down;
8298         return 0;
8299 }
8300 EXPORT_SYMBOL(dev_change_proto_down_generic);
8301
8302 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
8303                     enum bpf_netdev_command cmd)
8304 {
8305         struct netdev_bpf xdp;
8306
8307         if (!bpf_op)
8308                 return 0;
8309
8310         memset(&xdp, 0, sizeof(xdp));
8311         xdp.command = cmd;
8312
8313         /* Query must always succeed. */
8314         WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
8315
8316         return xdp.prog_id;
8317 }
8318
8319 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
8320                            struct netlink_ext_ack *extack, u32 flags,
8321                            struct bpf_prog *prog)
8322 {
8323         struct netdev_bpf xdp;
8324
8325         memset(&xdp, 0, sizeof(xdp));
8326         if (flags & XDP_FLAGS_HW_MODE)
8327                 xdp.command = XDP_SETUP_PROG_HW;
8328         else
8329                 xdp.command = XDP_SETUP_PROG;
8330         xdp.extack = extack;
8331         xdp.flags = flags;
8332         xdp.prog = prog;
8333
8334         return bpf_op(dev, &xdp);
8335 }
8336
8337 static void dev_xdp_uninstall(struct net_device *dev)
8338 {
8339         struct netdev_bpf xdp;
8340         bpf_op_t ndo_bpf;
8341
8342         /* Remove generic XDP */
8343         WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
8344
8345         /* Remove from the driver */
8346         ndo_bpf = dev->netdev_ops->ndo_bpf;
8347         if (!ndo_bpf)
8348                 return;
8349
8350         memset(&xdp, 0, sizeof(xdp));
8351         xdp.command = XDP_QUERY_PROG;
8352         WARN_ON(ndo_bpf(dev, &xdp));
8353         if (xdp.prog_id)
8354                 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8355                                         NULL));
8356
8357         /* Remove HW offload */
8358         memset(&xdp, 0, sizeof(xdp));
8359         xdp.command = XDP_QUERY_PROG_HW;
8360         if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
8361                 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8362                                         NULL));
8363 }
8364
8365 /**
8366  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
8367  *      @dev: device
8368  *      @extack: netlink extended ack
8369  *      @fd: new program fd or negative value to clear
8370  *      @flags: xdp-related flags
8371  *
8372  *      Set or clear a bpf program for a device
8373  */
8374 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
8375                       int fd, u32 flags)
8376 {
8377         const struct net_device_ops *ops = dev->netdev_ops;
8378         enum bpf_netdev_command query;
8379         struct bpf_prog *prog = NULL;
8380         bpf_op_t bpf_op, bpf_chk;
8381         bool offload;
8382         int err;
8383
8384         ASSERT_RTNL();
8385
8386         offload = flags & XDP_FLAGS_HW_MODE;
8387         query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
8388
8389         bpf_op = bpf_chk = ops->ndo_bpf;
8390         if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) {
8391                 NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode");
8392                 return -EOPNOTSUPP;
8393         }
8394         if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
8395                 bpf_op = generic_xdp_install;
8396         if (bpf_op == bpf_chk)
8397                 bpf_chk = generic_xdp_install;
8398
8399         if (fd >= 0) {
8400                 u32 prog_id;
8401
8402                 if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) {
8403                         NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time");
8404                         return -EEXIST;
8405                 }
8406
8407                 prog_id = __dev_xdp_query(dev, bpf_op, query);
8408                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && prog_id) {
8409                         NL_SET_ERR_MSG(extack, "XDP program already attached");
8410                         return -EBUSY;
8411                 }
8412
8413                 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
8414                                              bpf_op == ops->ndo_bpf);
8415                 if (IS_ERR(prog))
8416                         return PTR_ERR(prog);
8417
8418                 if (!offload && bpf_prog_is_dev_bound(prog->aux)) {
8419                         NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
8420                         bpf_prog_put(prog);
8421                         return -EINVAL;
8422                 }
8423
8424                 if (prog->aux->id == prog_id) {
8425                         bpf_prog_put(prog);
8426                         return 0;
8427                 }
8428         } else {
8429                 if (!__dev_xdp_query(dev, bpf_op, query))
8430                         return 0;
8431         }
8432
8433         err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
8434         if (err < 0 && prog)
8435                 bpf_prog_put(prog);
8436
8437         return err;
8438 }
8439
8440 /**
8441  *      dev_new_index   -       allocate an ifindex
8442  *      @net: the applicable net namespace
8443  *
8444  *      Returns a suitable unique value for a new device interface
8445  *      number.  The caller must hold the rtnl semaphore or the
8446  *      dev_base_lock to be sure it remains unique.
8447  */
8448 static int dev_new_index(struct net *net)
8449 {
8450         int ifindex = net->ifindex;
8451
8452         for (;;) {
8453                 if (++ifindex <= 0)
8454                         ifindex = 1;
8455                 if (!__dev_get_by_index(net, ifindex))
8456                         return net->ifindex = ifindex;
8457         }
8458 }
8459
8460 /* Delayed registration/unregisteration */
8461 static LIST_HEAD(net_todo_list);
8462 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
8463
8464 static void net_set_todo(struct net_device *dev)
8465 {
8466         list_add_tail(&dev->todo_list, &net_todo_list);
8467         dev_net(dev)->dev_unreg_count++;
8468 }
8469
8470 static void rollback_registered_many(struct list_head *head)
8471 {
8472         struct net_device *dev, *tmp;
8473         LIST_HEAD(close_head);
8474
8475         BUG_ON(dev_boot_phase);
8476         ASSERT_RTNL();
8477
8478         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
8479                 /* Some devices call without registering
8480                  * for initialization unwind. Remove those
8481                  * devices and proceed with the remaining.
8482                  */
8483                 if (dev->reg_state == NETREG_UNINITIALIZED) {
8484                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8485                                  dev->name, dev);
8486
8487                         WARN_ON(1);
8488                         list_del(&dev->unreg_list);
8489                         continue;
8490                 }
8491                 dev->dismantle = true;
8492                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
8493         }
8494
8495         /* If device is running, close it first. */
8496         list_for_each_entry(dev, head, unreg_list)
8497                 list_add_tail(&dev->close_list, &close_head);
8498         dev_close_many(&close_head, true);
8499
8500         list_for_each_entry(dev, head, unreg_list) {
8501                 /* And unlink it from device chain. */
8502                 unlist_netdevice(dev);
8503
8504                 dev->reg_state = NETREG_UNREGISTERING;
8505         }
8506         flush_all_backlogs();
8507
8508         synchronize_net();
8509
8510         list_for_each_entry(dev, head, unreg_list) {
8511                 struct sk_buff *skb = NULL;
8512
8513                 /* Shutdown queueing discipline. */
8514                 dev_shutdown(dev);
8515
8516                 dev_xdp_uninstall(dev);
8517
8518                 /* Notify protocols, that we are about to destroy
8519                  * this device. They should clean all the things.
8520                  */
8521                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8522
8523                 if (!dev->rtnl_link_ops ||
8524                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8525                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
8526                                                      GFP_KERNEL, NULL, 0);
8527
8528                 /*
8529                  *      Flush the unicast and multicast chains
8530                  */
8531                 dev_uc_flush(dev);
8532                 dev_mc_flush(dev);
8533
8534                 if (dev->netdev_ops->ndo_uninit)
8535                         dev->netdev_ops->ndo_uninit(dev);
8536
8537                 if (skb)
8538                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
8539
8540                 /* Notifier chain MUST detach us all upper devices. */
8541                 WARN_ON(netdev_has_any_upper_dev(dev));
8542                 WARN_ON(netdev_has_any_lower_dev(dev));
8543
8544                 /* Remove entries from kobject tree */
8545                 netdev_unregister_kobject(dev);
8546 #ifdef CONFIG_XPS
8547                 /* Remove XPS queueing entries */
8548                 netif_reset_xps_queues_gt(dev, 0);
8549 #endif
8550         }
8551
8552         synchronize_net();
8553
8554         list_for_each_entry(dev, head, unreg_list)
8555                 dev_put(dev);
8556 }
8557
8558 static void rollback_registered(struct net_device *dev)
8559 {
8560         LIST_HEAD(single);
8561
8562         list_add(&dev->unreg_list, &single);
8563         rollback_registered_many(&single);
8564         list_del(&single);
8565 }
8566
8567 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8568         struct net_device *upper, netdev_features_t features)
8569 {
8570         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8571         netdev_features_t feature;
8572         int feature_bit;
8573
8574         for_each_netdev_feature(upper_disables, feature_bit) {
8575                 feature = __NETIF_F_BIT(feature_bit);
8576                 if (!(upper->wanted_features & feature)
8577                     && (features & feature)) {
8578                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8579                                    &feature, upper->name);
8580                         features &= ~feature;
8581                 }
8582         }
8583
8584         return features;
8585 }
8586
8587 static void netdev_sync_lower_features(struct net_device *upper,
8588         struct net_device *lower, netdev_features_t features)
8589 {
8590         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8591         netdev_features_t feature;
8592         int feature_bit;
8593
8594         for_each_netdev_feature(upper_disables, feature_bit) {
8595                 feature = __NETIF_F_BIT(feature_bit);
8596                 if (!(features & feature) && (lower->features & feature)) {
8597                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8598                                    &feature, lower->name);
8599                         lower->wanted_features &= ~feature;
8600                         netdev_update_features(lower);
8601
8602                         if (unlikely(lower->features & feature))
8603                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8604                                             &feature, lower->name);
8605                 }
8606         }
8607 }
8608
8609 static netdev_features_t netdev_fix_features(struct net_device *dev,
8610         netdev_features_t features)
8611 {
8612         /* Fix illegal checksum combinations */
8613         if ((features & NETIF_F_HW_CSUM) &&
8614             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
8615                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
8616                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8617         }
8618
8619         /* TSO requires that SG is present as well. */
8620         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
8621                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
8622                 features &= ~NETIF_F_ALL_TSO;
8623         }
8624
8625         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8626                                         !(features & NETIF_F_IP_CSUM)) {
8627                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8628                 features &= ~NETIF_F_TSO;
8629                 features &= ~NETIF_F_TSO_ECN;
8630         }
8631
8632         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8633                                          !(features & NETIF_F_IPV6_CSUM)) {
8634                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8635                 features &= ~NETIF_F_TSO6;
8636         }
8637
8638         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8639         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8640                 features &= ~NETIF_F_TSO_MANGLEID;
8641
8642         /* TSO ECN requires that TSO is present as well. */
8643         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8644                 features &= ~NETIF_F_TSO_ECN;
8645
8646         /* Software GSO depends on SG. */
8647         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
8648                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
8649                 features &= ~NETIF_F_GSO;
8650         }
8651
8652         /* GSO partial features require GSO partial be set */
8653         if ((features & dev->gso_partial_features) &&
8654             !(features & NETIF_F_GSO_PARTIAL)) {
8655                 netdev_dbg(dev,
8656                            "Dropping partially supported GSO features since no GSO partial.\n");
8657                 features &= ~dev->gso_partial_features;
8658         }
8659
8660         if (!(features & NETIF_F_RXCSUM)) {
8661                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8662                  * successfully merged by hardware must also have the
8663                  * checksum verified by hardware.  If the user does not
8664                  * want to enable RXCSUM, logically, we should disable GRO_HW.
8665                  */
8666                 if (features & NETIF_F_GRO_HW) {
8667                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8668                         features &= ~NETIF_F_GRO_HW;
8669                 }
8670         }
8671
8672         /* LRO/HW-GRO features cannot be combined with RX-FCS */
8673         if (features & NETIF_F_RXFCS) {
8674                 if (features & NETIF_F_LRO) {
8675                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8676                         features &= ~NETIF_F_LRO;
8677                 }
8678
8679                 if (features & NETIF_F_GRO_HW) {
8680                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8681                         features &= ~NETIF_F_GRO_HW;
8682                 }
8683         }
8684
8685         return features;
8686 }
8687
8688 int __netdev_update_features(struct net_device *dev)
8689 {
8690         struct net_device *upper, *lower;
8691         netdev_features_t features;
8692         struct list_head *iter;
8693         int err = -1;
8694
8695         ASSERT_RTNL();
8696
8697         features = netdev_get_wanted_features(dev);
8698
8699         if (dev->netdev_ops->ndo_fix_features)
8700                 features = dev->netdev_ops->ndo_fix_features(dev, features);
8701
8702         /* driver might be less strict about feature dependencies */
8703         features = netdev_fix_features(dev, features);
8704
8705         /* some features can't be enabled if they're off an an upper device */
8706         netdev_for_each_upper_dev_rcu(dev, upper, iter)
8707                 features = netdev_sync_upper_features(dev, upper, features);
8708
8709         if (dev->features == features)
8710                 goto sync_lower;
8711
8712         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
8713                 &dev->features, &features);
8714
8715         if (dev->netdev_ops->ndo_set_features)
8716                 err = dev->netdev_ops->ndo_set_features(dev, features);
8717         else
8718                 err = 0;
8719
8720         if (unlikely(err < 0)) {
8721                 netdev_err(dev,
8722                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
8723                         err, &features, &dev->features);
8724                 /* return non-0 since some features might have changed and
8725                  * it's better to fire a spurious notification than miss it
8726                  */
8727                 return -1;
8728         }
8729
8730 sync_lower:
8731         /* some features must be disabled on lower devices when disabled
8732          * on an upper device (think: bonding master or bridge)
8733          */
8734         netdev_for_each_lower_dev(dev, lower, iter)
8735                 netdev_sync_lower_features(dev, lower, features);
8736
8737         if (!err) {
8738                 netdev_features_t diff = features ^ dev->features;
8739
8740                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
8741                         /* udp_tunnel_{get,drop}_rx_info both need
8742                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
8743                          * device, or they won't do anything.
8744                          * Thus we need to update dev->features
8745                          * *before* calling udp_tunnel_get_rx_info,
8746                          * but *after* calling udp_tunnel_drop_rx_info.
8747                          */
8748                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
8749                                 dev->features = features;
8750                                 udp_tunnel_get_rx_info(dev);
8751                         } else {
8752                                 udp_tunnel_drop_rx_info(dev);
8753                         }
8754                 }
8755
8756                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
8757                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
8758                                 dev->features = features;
8759                                 err |= vlan_get_rx_ctag_filter_info(dev);
8760                         } else {
8761                                 vlan_drop_rx_ctag_filter_info(dev);
8762                         }
8763                 }
8764
8765                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
8766                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
8767                                 dev->features = features;
8768                                 err |= vlan_get_rx_stag_filter_info(dev);
8769                         } else {
8770                                 vlan_drop_rx_stag_filter_info(dev);
8771                         }
8772                 }
8773
8774                 dev->features = features;
8775         }
8776
8777         return err < 0 ? 0 : 1;
8778 }
8779
8780 /**
8781  *      netdev_update_features - recalculate device features
8782  *      @dev: the device to check
8783  *
8784  *      Recalculate dev->features set and send notifications if it
8785  *      has changed. Should be called after driver or hardware dependent
8786  *      conditions might have changed that influence the features.
8787  */
8788 void netdev_update_features(struct net_device *dev)
8789 {
8790         if (__netdev_update_features(dev))
8791                 netdev_features_change(dev);
8792 }
8793 EXPORT_SYMBOL(netdev_update_features);
8794
8795 /**
8796  *      netdev_change_features - recalculate device features
8797  *      @dev: the device to check
8798  *
8799  *      Recalculate dev->features set and send notifications even
8800  *      if they have not changed. Should be called instead of
8801  *      netdev_update_features() if also dev->vlan_features might
8802  *      have changed to allow the changes to be propagated to stacked
8803  *      VLAN devices.
8804  */
8805 void netdev_change_features(struct net_device *dev)
8806 {
8807         __netdev_update_features(dev);
8808         netdev_features_change(dev);
8809 }
8810 EXPORT_SYMBOL(netdev_change_features);
8811
8812 /**
8813  *      netif_stacked_transfer_operstate -      transfer operstate
8814  *      @rootdev: the root or lower level device to transfer state from
8815  *      @dev: the device to transfer operstate to
8816  *
8817  *      Transfer operational state from root to device. This is normally
8818  *      called when a stacking relationship exists between the root
8819  *      device and the device(a leaf device).
8820  */
8821 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
8822                                         struct net_device *dev)
8823 {
8824         if (rootdev->operstate == IF_OPER_DORMANT)
8825                 netif_dormant_on(dev);
8826         else
8827                 netif_dormant_off(dev);
8828
8829         if (netif_carrier_ok(rootdev))
8830                 netif_carrier_on(dev);
8831         else
8832                 netif_carrier_off(dev);
8833 }
8834 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
8835
8836 static int netif_alloc_rx_queues(struct net_device *dev)
8837 {
8838         unsigned int i, count = dev->num_rx_queues;
8839         struct netdev_rx_queue *rx;
8840         size_t sz = count * sizeof(*rx);
8841         int err = 0;
8842
8843         BUG_ON(count < 1);
8844
8845         rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8846         if (!rx)
8847                 return -ENOMEM;
8848
8849         dev->_rx = rx;
8850
8851         for (i = 0; i < count; i++) {
8852                 rx[i].dev = dev;
8853
8854                 /* XDP RX-queue setup */
8855                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
8856                 if (err < 0)
8857                         goto err_rxq_info;
8858         }
8859         return 0;
8860
8861 err_rxq_info:
8862         /* Rollback successful reg's and free other resources */
8863         while (i--)
8864                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
8865         kvfree(dev->_rx);
8866         dev->_rx = NULL;
8867         return err;
8868 }
8869
8870 static void netif_free_rx_queues(struct net_device *dev)
8871 {
8872         unsigned int i, count = dev->num_rx_queues;
8873
8874         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
8875         if (!dev->_rx)
8876                 return;
8877
8878         for (i = 0; i < count; i++)
8879                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
8880
8881         kvfree(dev->_rx);
8882 }
8883
8884 static void netdev_init_one_queue(struct net_device *dev,
8885                                   struct netdev_queue *queue, void *_unused)
8886 {
8887         /* Initialize queue lock */
8888         spin_lock_init(&queue->_xmit_lock);
8889         lockdep_set_class(&queue->_xmit_lock, &dev->qdisc_xmit_lock_key);
8890         queue->xmit_lock_owner = -1;
8891         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
8892         queue->dev = dev;
8893 #ifdef CONFIG_BQL
8894         dql_init(&queue->dql, HZ);
8895 #endif
8896 }
8897
8898 static void netif_free_tx_queues(struct net_device *dev)
8899 {
8900         kvfree(dev->_tx);
8901 }
8902
8903 static int netif_alloc_netdev_queues(struct net_device *dev)
8904 {
8905         unsigned int count = dev->num_tx_queues;
8906         struct netdev_queue *tx;
8907         size_t sz = count * sizeof(*tx);
8908
8909         if (count < 1 || count > 0xffff)
8910                 return -EINVAL;
8911
8912         tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8913         if (!tx)
8914                 return -ENOMEM;
8915
8916         dev->_tx = tx;
8917
8918         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
8919         spin_lock_init(&dev->tx_global_lock);
8920
8921         return 0;
8922 }
8923
8924 void netif_tx_stop_all_queues(struct net_device *dev)
8925 {
8926         unsigned int i;
8927
8928         for (i = 0; i < dev->num_tx_queues; i++) {
8929                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
8930
8931                 netif_tx_stop_queue(txq);
8932         }
8933 }
8934 EXPORT_SYMBOL(netif_tx_stop_all_queues);
8935
8936 static void netdev_register_lockdep_key(struct net_device *dev)
8937 {
8938         lockdep_register_key(&dev->qdisc_tx_busylock_key);
8939         lockdep_register_key(&dev->qdisc_running_key);
8940         lockdep_register_key(&dev->qdisc_xmit_lock_key);
8941         lockdep_register_key(&dev->addr_list_lock_key);
8942 }
8943
8944 static void netdev_unregister_lockdep_key(struct net_device *dev)
8945 {
8946         lockdep_unregister_key(&dev->qdisc_tx_busylock_key);
8947         lockdep_unregister_key(&dev->qdisc_running_key);
8948         lockdep_unregister_key(&dev->qdisc_xmit_lock_key);
8949         lockdep_unregister_key(&dev->addr_list_lock_key);
8950 }
8951
8952 void netdev_update_lockdep_key(struct net_device *dev)
8953 {
8954         struct netdev_queue *queue;
8955         int i;
8956
8957         lockdep_unregister_key(&dev->qdisc_xmit_lock_key);
8958         lockdep_unregister_key(&dev->addr_list_lock_key);
8959
8960         lockdep_register_key(&dev->qdisc_xmit_lock_key);
8961         lockdep_register_key(&dev->addr_list_lock_key);
8962
8963         lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key);
8964         for (i = 0; i < dev->num_tx_queues; i++) {
8965                 queue = netdev_get_tx_queue(dev, i);
8966
8967                 lockdep_set_class(&queue->_xmit_lock,
8968                                   &dev->qdisc_xmit_lock_key);
8969         }
8970 }
8971 EXPORT_SYMBOL(netdev_update_lockdep_key);
8972
8973 /**
8974  *      register_netdevice      - register a network device
8975  *      @dev: device to register
8976  *
8977  *      Take a completed network device structure and add it to the kernel
8978  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8979  *      chain. 0 is returned on success. A negative errno code is returned
8980  *      on a failure to set up the device, or if the name is a duplicate.
8981  *
8982  *      Callers must hold the rtnl semaphore. You may want
8983  *      register_netdev() instead of this.
8984  *
8985  *      BUGS:
8986  *      The locking appears insufficient to guarantee two parallel registers
8987  *      will not get the same name.
8988  */
8989
8990 int register_netdevice(struct net_device *dev)
8991 {
8992         int ret;
8993         struct net *net = dev_net(dev);
8994
8995         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
8996                      NETDEV_FEATURE_COUNT);
8997         BUG_ON(dev_boot_phase);
8998         ASSERT_RTNL();
8999
9000         might_sleep();
9001
9002         /* When net_device's are persistent, this will be fatal. */
9003         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9004         BUG_ON(!net);
9005
9006         spin_lock_init(&dev->addr_list_lock);
9007         lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key);
9008
9009         ret = dev_get_valid_name(net, dev, dev->name);
9010         if (ret < 0)
9011                 goto out;
9012
9013         /* Init, if this function is available */
9014         if (dev->netdev_ops->ndo_init) {
9015                 ret = dev->netdev_ops->ndo_init(dev);
9016                 if (ret) {
9017                         if (ret > 0)
9018                                 ret = -EIO;
9019                         goto out;
9020                 }
9021         }
9022
9023         if (((dev->hw_features | dev->features) &
9024              NETIF_F_HW_VLAN_CTAG_FILTER) &&
9025             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9026              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9027                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9028                 ret = -EINVAL;
9029                 goto err_uninit;
9030         }
9031
9032         ret = -EBUSY;
9033         if (!dev->ifindex)
9034                 dev->ifindex = dev_new_index(net);
9035         else if (__dev_get_by_index(net, dev->ifindex))
9036                 goto err_uninit;
9037
9038         /* Transfer changeable features to wanted_features and enable
9039          * software offloads (GSO and GRO).
9040          */
9041         dev->hw_features |= NETIF_F_SOFT_FEATURES;
9042         dev->features |= NETIF_F_SOFT_FEATURES;
9043
9044         if (dev->netdev_ops->ndo_udp_tunnel_add) {
9045                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9046                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9047         }
9048
9049         dev->wanted_features = dev->features & dev->hw_features;
9050
9051         if (!(dev->flags & IFF_LOOPBACK))
9052                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
9053
9054         /* If IPv4 TCP segmentation offload is supported we should also
9055          * allow the device to enable segmenting the frame with the option
9056          * of ignoring a static IP ID value.  This doesn't enable the
9057          * feature itself but allows the user to enable it later.
9058          */
9059         if (dev->hw_features & NETIF_F_TSO)
9060                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
9061         if (dev->vlan_features & NETIF_F_TSO)
9062                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
9063         if (dev->mpls_features & NETIF_F_TSO)
9064                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
9065         if (dev->hw_enc_features & NETIF_F_TSO)
9066                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
9067
9068         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
9069          */
9070         dev->vlan_features |= NETIF_F_HIGHDMA;
9071
9072         /* Make NETIF_F_SG inheritable to tunnel devices.
9073          */
9074         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
9075
9076         /* Make NETIF_F_SG inheritable to MPLS.
9077          */
9078         dev->mpls_features |= NETIF_F_SG;
9079
9080         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
9081         ret = notifier_to_errno(ret);
9082         if (ret)
9083                 goto err_uninit;
9084
9085         ret = netdev_register_kobject(dev);
9086         if (ret)
9087                 goto err_uninit;
9088         dev->reg_state = NETREG_REGISTERED;
9089
9090         __netdev_update_features(dev);
9091
9092         /*
9093          *      Default initial state at registry is that the
9094          *      device is present.
9095          */
9096
9097         set_bit(__LINK_STATE_PRESENT, &dev->state);
9098
9099         linkwatch_init_dev(dev);
9100
9101         dev_init_scheduler(dev);
9102         dev_hold(dev);
9103         list_netdevice(dev);
9104         add_device_randomness(dev->dev_addr, dev->addr_len);
9105
9106         /* If the device has permanent device address, driver should
9107          * set dev_addr and also addr_assign_type should be set to
9108          * NET_ADDR_PERM (default value).
9109          */
9110         if (dev->addr_assign_type == NET_ADDR_PERM)
9111                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
9112
9113         /* Notify protocols, that a new device appeared. */
9114         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
9115         ret = notifier_to_errno(ret);
9116         if (ret) {
9117                 rollback_registered(dev);
9118                 rcu_barrier();
9119
9120                 dev->reg_state = NETREG_UNREGISTERED;
9121         }
9122         /*
9123          *      Prevent userspace races by waiting until the network
9124          *      device is fully setup before sending notifications.
9125          */
9126         if (!dev->rtnl_link_ops ||
9127             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
9128                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9129
9130 out:
9131         return ret;
9132
9133 err_uninit:
9134         if (dev->netdev_ops->ndo_uninit)
9135                 dev->netdev_ops->ndo_uninit(dev);
9136         if (dev->priv_destructor)
9137                 dev->priv_destructor(dev);
9138         goto out;
9139 }
9140 EXPORT_SYMBOL(register_netdevice);
9141
9142 /**
9143  *      init_dummy_netdev       - init a dummy network device for NAPI
9144  *      @dev: device to init
9145  *
9146  *      This takes a network device structure and initialize the minimum
9147  *      amount of fields so it can be used to schedule NAPI polls without
9148  *      registering a full blown interface. This is to be used by drivers
9149  *      that need to tie several hardware interfaces to a single NAPI
9150  *      poll scheduler due to HW limitations.
9151  */
9152 int init_dummy_netdev(struct net_device *dev)
9153 {
9154         /* Clear everything. Note we don't initialize spinlocks
9155          * are they aren't supposed to be taken by any of the
9156          * NAPI code and this dummy netdev is supposed to be
9157          * only ever used for NAPI polls
9158          */
9159         memset(dev, 0, sizeof(struct net_device));
9160
9161         /* make sure we BUG if trying to hit standard
9162          * register/unregister code path
9163          */
9164         dev->reg_state = NETREG_DUMMY;
9165
9166         /* NAPI wants this */
9167         INIT_LIST_HEAD(&dev->napi_list);
9168
9169         /* a dummy interface is started by default */
9170         set_bit(__LINK_STATE_PRESENT, &dev->state);
9171         set_bit(__LINK_STATE_START, &dev->state);
9172
9173         /* napi_busy_loop stats accounting wants this */
9174         dev_net_set(dev, &init_net);
9175
9176         /* Note : We dont allocate pcpu_refcnt for dummy devices,
9177          * because users of this 'device' dont need to change
9178          * its refcount.
9179          */
9180
9181         return 0;
9182 }
9183 EXPORT_SYMBOL_GPL(init_dummy_netdev);
9184
9185
9186 /**
9187  *      register_netdev - register a network device
9188  *      @dev: device to register
9189  *
9190  *      Take a completed network device structure and add it to the kernel
9191  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9192  *      chain. 0 is returned on success. A negative errno code is returned
9193  *      on a failure to set up the device, or if the name is a duplicate.
9194  *
9195  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
9196  *      and expands the device name if you passed a format string to
9197  *      alloc_netdev.
9198  */
9199 int register_netdev(struct net_device *dev)
9200 {
9201         int err;
9202
9203         if (rtnl_lock_killable())
9204                 return -EINTR;
9205         err = register_netdevice(dev);
9206         rtnl_unlock();
9207         return err;
9208 }
9209 EXPORT_SYMBOL(register_netdev);
9210
9211 int netdev_refcnt_read(const struct net_device *dev)
9212 {
9213         int i, refcnt = 0;
9214
9215         for_each_possible_cpu(i)
9216                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
9217         return refcnt;
9218 }
9219 EXPORT_SYMBOL(netdev_refcnt_read);
9220
9221 /**
9222  * netdev_wait_allrefs - wait until all references are gone.
9223  * @dev: target net_device
9224  *
9225  * This is called when unregistering network devices.
9226  *
9227  * Any protocol or device that holds a reference should register
9228  * for netdevice notification, and cleanup and put back the
9229  * reference if they receive an UNREGISTER event.
9230  * We can get stuck here if buggy protocols don't correctly
9231  * call dev_put.
9232  */
9233 static void netdev_wait_allrefs(struct net_device *dev)
9234 {
9235         unsigned long rebroadcast_time, warning_time;
9236         int refcnt;
9237
9238         linkwatch_forget_dev(dev);
9239
9240         rebroadcast_time = warning_time = jiffies;
9241         refcnt = netdev_refcnt_read(dev);
9242
9243         while (refcnt != 0) {
9244                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
9245                         rtnl_lock();
9246
9247                         /* Rebroadcast unregister notification */
9248                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9249
9250                         __rtnl_unlock();
9251                         rcu_barrier();
9252                         rtnl_lock();
9253
9254                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
9255                                      &dev->state)) {
9256                                 /* We must not have linkwatch events
9257                                  * pending on unregister. If this
9258                                  * happens, we simply run the queue
9259                                  * unscheduled, resulting in a noop
9260                                  * for this device.
9261                                  */
9262                                 linkwatch_run_queue();
9263                         }
9264
9265                         __rtnl_unlock();
9266
9267                         rebroadcast_time = jiffies;
9268                 }
9269
9270                 msleep(250);
9271
9272                 refcnt = netdev_refcnt_read(dev);
9273
9274                 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
9275                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
9276                                  dev->name, refcnt);
9277                         warning_time = jiffies;
9278                 }
9279         }
9280 }
9281
9282 /* The sequence is:
9283  *
9284  *      rtnl_lock();
9285  *      ...
9286  *      register_netdevice(x1);
9287  *      register_netdevice(x2);
9288  *      ...
9289  *      unregister_netdevice(y1);
9290  *      unregister_netdevice(y2);
9291  *      ...
9292  *      rtnl_unlock();
9293  *      free_netdev(y1);
9294  *      free_netdev(y2);
9295  *
9296  * We are invoked by rtnl_unlock().
9297  * This allows us to deal with problems:
9298  * 1) We can delete sysfs objects which invoke hotplug
9299  *    without deadlocking with linkwatch via keventd.
9300  * 2) Since we run with the RTNL semaphore not held, we can sleep
9301  *    safely in order to wait for the netdev refcnt to drop to zero.
9302  *
9303  * We must not return until all unregister events added during
9304  * the interval the lock was held have been completed.
9305  */
9306 void netdev_run_todo(void)
9307 {
9308         struct list_head list;
9309
9310         /* Snapshot list, allow later requests */
9311         list_replace_init(&net_todo_list, &list);
9312
9313         __rtnl_unlock();
9314
9315
9316         /* Wait for rcu callbacks to finish before next phase */
9317         if (!list_empty(&list))
9318                 rcu_barrier();
9319
9320         while (!list_empty(&list)) {
9321                 struct net_device *dev
9322                         = list_first_entry(&list, struct net_device, todo_list);
9323                 list_del(&dev->todo_list);
9324
9325                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
9326                         pr_err("network todo '%s' but state %d\n",
9327                                dev->name, dev->reg_state);
9328                         dump_stack();
9329                         continue;
9330                 }
9331
9332                 dev->reg_state = NETREG_UNREGISTERED;
9333
9334                 netdev_wait_allrefs(dev);
9335
9336                 /* paranoia */
9337                 BUG_ON(netdev_refcnt_read(dev));
9338                 BUG_ON(!list_empty(&dev->ptype_all));
9339                 BUG_ON(!list_empty(&dev->ptype_specific));
9340                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
9341                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
9342 #if IS_ENABLED(CONFIG_DECNET)
9343                 WARN_ON(dev->dn_ptr);
9344 #endif
9345                 if (dev->priv_destructor)
9346                         dev->priv_destructor(dev);
9347                 if (dev->needs_free_netdev)
9348                         free_netdev(dev);
9349
9350                 /* Report a network device has been unregistered */
9351                 rtnl_lock();
9352                 dev_net(dev)->dev_unreg_count--;
9353                 __rtnl_unlock();
9354                 wake_up(&netdev_unregistering_wq);
9355
9356                 /* Free network device */
9357                 kobject_put(&dev->dev.kobj);
9358         }
9359 }
9360
9361 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
9362  * all the same fields in the same order as net_device_stats, with only
9363  * the type differing, but rtnl_link_stats64 may have additional fields
9364  * at the end for newer counters.
9365  */
9366 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
9367                              const struct net_device_stats *netdev_stats)
9368 {
9369 #if BITS_PER_LONG == 64
9370         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9371         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9372         /* zero out counters that only exist in rtnl_link_stats64 */
9373         memset((char *)stats64 + sizeof(*netdev_stats), 0,
9374                sizeof(*stats64) - sizeof(*netdev_stats));
9375 #else
9376         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
9377         const unsigned long *src = (const unsigned long *)netdev_stats;
9378         u64 *dst = (u64 *)stats64;
9379
9380         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
9381         for (i = 0; i < n; i++)
9382                 dst[i] = src[i];
9383         /* zero out counters that only exist in rtnl_link_stats64 */
9384         memset((char *)stats64 + n * sizeof(u64), 0,
9385                sizeof(*stats64) - n * sizeof(u64));
9386 #endif
9387 }
9388 EXPORT_SYMBOL(netdev_stats_to_stats64);
9389
9390 /**
9391  *      dev_get_stats   - get network device statistics
9392  *      @dev: device to get statistics from
9393  *      @storage: place to store stats
9394  *
9395  *      Get network statistics from device. Return @storage.
9396  *      The device driver may provide its own method by setting
9397  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
9398  *      otherwise the internal statistics structure is used.
9399  */
9400 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
9401                                         struct rtnl_link_stats64 *storage)
9402 {
9403         const struct net_device_ops *ops = dev->netdev_ops;
9404
9405         if (ops->ndo_get_stats64) {
9406                 memset(storage, 0, sizeof(*storage));
9407                 ops->ndo_get_stats64(dev, storage);
9408         } else if (ops->ndo_get_stats) {
9409                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
9410         } else {
9411                 netdev_stats_to_stats64(storage, &dev->stats);
9412         }
9413         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
9414         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
9415         storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
9416         return storage;
9417 }
9418 EXPORT_SYMBOL(dev_get_stats);
9419
9420 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
9421 {
9422         struct netdev_queue *queue = dev_ingress_queue(dev);
9423
9424 #ifdef CONFIG_NET_CLS_ACT
9425         if (queue)
9426                 return queue;
9427         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
9428         if (!queue)
9429                 return NULL;
9430         netdev_init_one_queue(dev, queue, NULL);
9431         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
9432         queue->qdisc_sleeping = &noop_qdisc;
9433         rcu_assign_pointer(dev->ingress_queue, queue);
9434 #endif
9435         return queue;
9436 }
9437
9438 static const struct ethtool_ops default_ethtool_ops;
9439
9440 void netdev_set_default_ethtool_ops(struct net_device *dev,
9441                                     const struct ethtool_ops *ops)
9442 {
9443         if (dev->ethtool_ops == &default_ethtool_ops)
9444                 dev->ethtool_ops = ops;
9445 }
9446 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
9447
9448 void netdev_freemem(struct net_device *dev)
9449 {
9450         char *addr = (char *)dev - dev->padded;
9451
9452         kvfree(addr);
9453 }
9454
9455 /**
9456  * alloc_netdev_mqs - allocate network device
9457  * @sizeof_priv: size of private data to allocate space for
9458  * @name: device name format string
9459  * @name_assign_type: origin of device name
9460  * @setup: callback to initialize device
9461  * @txqs: the number of TX subqueues to allocate
9462  * @rxqs: the number of RX subqueues to allocate
9463  *
9464  * Allocates a struct net_device with private data area for driver use
9465  * and performs basic initialization.  Also allocates subqueue structs
9466  * for each queue on the device.
9467  */
9468 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
9469                 unsigned char name_assign_type,
9470                 void (*setup)(struct net_device *),
9471                 unsigned int txqs, unsigned int rxqs)
9472 {
9473         struct net_device *dev;
9474         unsigned int alloc_size;
9475         struct net_device *p;
9476
9477         BUG_ON(strlen(name) >= sizeof(dev->name));
9478
9479         if (txqs < 1) {
9480                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
9481                 return NULL;
9482         }
9483
9484         if (rxqs < 1) {
9485                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
9486                 return NULL;
9487         }
9488
9489         alloc_size = sizeof(struct net_device);
9490         if (sizeof_priv) {
9491                 /* ensure 32-byte alignment of private area */
9492                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
9493                 alloc_size += sizeof_priv;
9494         }
9495         /* ensure 32-byte alignment of whole construct */
9496         alloc_size += NETDEV_ALIGN - 1;
9497
9498         p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9499         if (!p)
9500                 return NULL;
9501
9502         dev = PTR_ALIGN(p, NETDEV_ALIGN);
9503         dev->padded = (char *)dev - (char *)p;
9504
9505         dev->pcpu_refcnt = alloc_percpu(int);
9506         if (!dev->pcpu_refcnt)
9507                 goto free_dev;
9508
9509         if (dev_addr_init(dev))
9510                 goto free_pcpu;
9511
9512         dev_mc_init(dev);
9513         dev_uc_init(dev);
9514
9515         dev_net_set(dev, &init_net);
9516
9517         netdev_register_lockdep_key(dev);
9518
9519         dev->gso_max_size = GSO_MAX_SIZE;
9520         dev->gso_max_segs = GSO_MAX_SEGS;
9521         dev->upper_level = 1;
9522         dev->lower_level = 1;
9523
9524         INIT_LIST_HEAD(&dev->napi_list);
9525         INIT_LIST_HEAD(&dev->unreg_list);
9526         INIT_LIST_HEAD(&dev->close_list);
9527         INIT_LIST_HEAD(&dev->link_watch_list);
9528         INIT_LIST_HEAD(&dev->adj_list.upper);
9529         INIT_LIST_HEAD(&dev->adj_list.lower);
9530         INIT_LIST_HEAD(&dev->ptype_all);
9531         INIT_LIST_HEAD(&dev->ptype_specific);
9532 #ifdef CONFIG_NET_SCHED
9533         hash_init(dev->qdisc_hash);
9534 #endif
9535         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
9536         setup(dev);
9537
9538         if (!dev->tx_queue_len) {
9539                 dev->priv_flags |= IFF_NO_QUEUE;
9540                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
9541         }
9542
9543         dev->num_tx_queues = txqs;
9544         dev->real_num_tx_queues = txqs;
9545         if (netif_alloc_netdev_queues(dev))
9546                 goto free_all;
9547
9548         dev->num_rx_queues = rxqs;
9549         dev->real_num_rx_queues = rxqs;
9550         if (netif_alloc_rx_queues(dev))
9551                 goto free_all;
9552
9553         strcpy(dev->name, name);
9554         dev->name_assign_type = name_assign_type;
9555         dev->group = INIT_NETDEV_GROUP;
9556         if (!dev->ethtool_ops)
9557                 dev->ethtool_ops = &default_ethtool_ops;
9558
9559         nf_hook_ingress_init(dev);
9560
9561         return dev;
9562
9563 free_all:
9564         free_netdev(dev);
9565         return NULL;
9566
9567 free_pcpu:
9568         free_percpu(dev->pcpu_refcnt);
9569 free_dev:
9570         netdev_freemem(dev);
9571         return NULL;
9572 }
9573 EXPORT_SYMBOL(alloc_netdev_mqs);
9574
9575 /**
9576  * free_netdev - free network device
9577  * @dev: device
9578  *
9579  * This function does the last stage of destroying an allocated device
9580  * interface. The reference to the device object is released. If this
9581  * is the last reference then it will be freed.Must be called in process
9582  * context.
9583  */
9584 void free_netdev(struct net_device *dev)
9585 {
9586         struct napi_struct *p, *n;
9587
9588         might_sleep();
9589         netif_free_tx_queues(dev);
9590         netif_free_rx_queues(dev);
9591
9592         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
9593
9594         /* Flush device addresses */
9595         dev_addr_flush(dev);
9596
9597         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
9598                 netif_napi_del(p);
9599
9600         free_percpu(dev->pcpu_refcnt);
9601         dev->pcpu_refcnt = NULL;
9602
9603         netdev_unregister_lockdep_key(dev);
9604
9605         /*  Compatibility with error handling in drivers */
9606         if (dev->reg_state == NETREG_UNINITIALIZED) {
9607                 netdev_freemem(dev);
9608                 return;
9609         }
9610
9611         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
9612         dev->reg_state = NETREG_RELEASED;
9613
9614         /* will free via device release */
9615         put_device(&dev->dev);
9616 }
9617 EXPORT_SYMBOL(free_netdev);
9618
9619 /**
9620  *      synchronize_net -  Synchronize with packet receive processing
9621  *
9622  *      Wait for packets currently being received to be done.
9623  *      Does not block later packets from starting.
9624  */
9625 void synchronize_net(void)
9626 {
9627         might_sleep();
9628         if (rtnl_is_locked())
9629                 synchronize_rcu_expedited();
9630         else
9631                 synchronize_rcu();
9632 }
9633 EXPORT_SYMBOL(synchronize_net);
9634
9635 /**
9636  *      unregister_netdevice_queue - remove device from the kernel
9637  *      @dev: device
9638  *      @head: list
9639  *
9640  *      This function shuts down a device interface and removes it
9641  *      from the kernel tables.
9642  *      If head not NULL, device is queued to be unregistered later.
9643  *
9644  *      Callers must hold the rtnl semaphore.  You may want
9645  *      unregister_netdev() instead of this.
9646  */
9647
9648 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
9649 {
9650         ASSERT_RTNL();
9651
9652         if (head) {
9653                 list_move_tail(&dev->unreg_list, head);
9654         } else {
9655                 rollback_registered(dev);
9656                 /* Finish processing unregister after unlock */
9657                 net_set_todo(dev);
9658         }
9659 }
9660 EXPORT_SYMBOL(unregister_netdevice_queue);
9661
9662 /**
9663  *      unregister_netdevice_many - unregister many devices
9664  *      @head: list of devices
9665  *
9666  *  Note: As most callers use a stack allocated list_head,
9667  *  we force a list_del() to make sure stack wont be corrupted later.
9668  */
9669 void unregister_netdevice_many(struct list_head *head)
9670 {
9671         struct net_device *dev;
9672
9673         if (!list_empty(head)) {
9674                 rollback_registered_many(head);
9675                 list_for_each_entry(dev, head, unreg_list)
9676                         net_set_todo(dev);
9677                 list_del(head);
9678         }
9679 }
9680 EXPORT_SYMBOL(unregister_netdevice_many);
9681
9682 /**
9683  *      unregister_netdev - remove device from the kernel
9684  *      @dev: device
9685  *
9686  *      This function shuts down a device interface and removes it
9687  *      from the kernel tables.
9688  *
9689  *      This is just a wrapper for unregister_netdevice that takes
9690  *      the rtnl semaphore.  In general you want to use this and not
9691  *      unregister_netdevice.
9692  */
9693 void unregister_netdev(struct net_device *dev)
9694 {
9695         rtnl_lock();
9696         unregister_netdevice(dev);
9697         rtnl_unlock();
9698 }
9699 EXPORT_SYMBOL(unregister_netdev);
9700
9701 /**
9702  *      dev_change_net_namespace - move device to different nethost namespace
9703  *      @dev: device
9704  *      @net: network namespace
9705  *      @pat: If not NULL name pattern to try if the current device name
9706  *            is already taken in the destination network namespace.
9707  *
9708  *      This function shuts down a device interface and moves it
9709  *      to a new network namespace. On success 0 is returned, on
9710  *      a failure a netagive errno code is returned.
9711  *
9712  *      Callers must hold the rtnl semaphore.
9713  */
9714
9715 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
9716 {
9717         int err, new_nsid, new_ifindex;
9718
9719         ASSERT_RTNL();
9720
9721         /* Don't allow namespace local devices to be moved. */
9722         err = -EINVAL;
9723         if (dev->features & NETIF_F_NETNS_LOCAL)
9724                 goto out;
9725
9726         /* Ensure the device has been registrered */
9727         if (dev->reg_state != NETREG_REGISTERED)
9728                 goto out;
9729
9730         /* Get out if there is nothing todo */
9731         err = 0;
9732         if (net_eq(dev_net(dev), net))
9733                 goto out;
9734
9735         /* Pick the destination device name, and ensure
9736          * we can use it in the destination network namespace.
9737          */
9738         err = -EEXIST;
9739         if (__dev_get_by_name(net, dev->name)) {
9740                 /* We get here if we can't use the current device name */
9741                 if (!pat)
9742                         goto out;
9743                 err = dev_get_valid_name(net, dev, pat);
9744                 if (err < 0)
9745                         goto out;
9746         }
9747
9748         /*
9749          * And now a mini version of register_netdevice unregister_netdevice.
9750          */
9751
9752         /* If device is running close it first. */
9753         dev_close(dev);
9754
9755         /* And unlink it from device chain */
9756         unlist_netdevice(dev);
9757
9758         synchronize_net();
9759
9760         /* Shutdown queueing discipline. */
9761         dev_shutdown(dev);
9762
9763         /* Notify protocols, that we are about to destroy
9764          * this device. They should clean all the things.
9765          *
9766          * Note that dev->reg_state stays at NETREG_REGISTERED.
9767          * This is wanted because this way 8021q and macvlan know
9768          * the device is just moving and can keep their slaves up.
9769          */
9770         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9771         rcu_barrier();
9772
9773         new_nsid = peernet2id_alloc(dev_net(dev), net);
9774         /* If there is an ifindex conflict assign a new one */
9775         if (__dev_get_by_index(net, dev->ifindex))
9776                 new_ifindex = dev_new_index(net);
9777         else
9778                 new_ifindex = dev->ifindex;
9779
9780         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
9781                             new_ifindex);
9782
9783         /*
9784          *      Flush the unicast and multicast chains
9785          */
9786         dev_uc_flush(dev);
9787         dev_mc_flush(dev);
9788
9789         /* Send a netdev-removed uevent to the old namespace */
9790         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
9791         netdev_adjacent_del_links(dev);
9792
9793         /* Actually switch the network namespace */
9794         dev_net_set(dev, net);
9795         dev->ifindex = new_ifindex;
9796
9797         /* Send a netdev-add uevent to the new namespace */
9798         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
9799         netdev_adjacent_add_links(dev);
9800
9801         /* Fixup kobjects */
9802         err = device_rename(&dev->dev, dev->name);
9803         WARN_ON(err);
9804
9805         /* Add the device back in the hashes */
9806         list_netdevice(dev);
9807
9808         /* Notify protocols, that a new device appeared. */
9809         call_netdevice_notifiers(NETDEV_REGISTER, dev);
9810
9811         /*
9812          *      Prevent userspace races by waiting until the network
9813          *      device is fully setup before sending notifications.
9814          */
9815         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9816
9817         synchronize_net();
9818         err = 0;
9819 out:
9820         return err;
9821 }
9822 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
9823
9824 static int dev_cpu_dead(unsigned int oldcpu)
9825 {
9826         struct sk_buff **list_skb;
9827         struct sk_buff *skb;
9828         unsigned int cpu;
9829         struct softnet_data *sd, *oldsd, *remsd = NULL;
9830
9831         local_irq_disable();
9832         cpu = smp_processor_id();
9833         sd = &per_cpu(softnet_data, cpu);
9834         oldsd = &per_cpu(softnet_data, oldcpu);
9835
9836         /* Find end of our completion_queue. */
9837         list_skb = &sd->completion_queue;
9838         while (*list_skb)
9839                 list_skb = &(*list_skb)->next;
9840         /* Append completion queue from offline CPU. */
9841         *list_skb = oldsd->completion_queue;
9842         oldsd->completion_queue = NULL;
9843
9844         /* Append output queue from offline CPU. */
9845         if (oldsd->output_queue) {
9846                 *sd->output_queue_tailp = oldsd->output_queue;
9847                 sd->output_queue_tailp = oldsd->output_queue_tailp;
9848                 oldsd->output_queue = NULL;
9849                 oldsd->output_queue_tailp = &oldsd->output_queue;
9850         }
9851         /* Append NAPI poll list from offline CPU, with one exception :
9852          * process_backlog() must be called by cpu owning percpu backlog.
9853          * We properly handle process_queue & input_pkt_queue later.
9854          */
9855         while (!list_empty(&oldsd->poll_list)) {
9856                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
9857                                                             struct napi_struct,
9858                                                             poll_list);
9859
9860                 list_del_init(&napi->poll_list);
9861                 if (napi->poll == process_backlog)
9862                         napi->state = 0;
9863                 else
9864                         ____napi_schedule(sd, napi);
9865         }
9866
9867         raise_softirq_irqoff(NET_TX_SOFTIRQ);
9868         local_irq_enable();
9869
9870 #ifdef CONFIG_RPS
9871         remsd = oldsd->rps_ipi_list;
9872         oldsd->rps_ipi_list = NULL;
9873 #endif
9874         /* send out pending IPI's on offline CPU */
9875         net_rps_send_ipi(remsd);
9876
9877         /* Process offline CPU's input_pkt_queue */
9878         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
9879                 netif_rx_ni(skb);
9880                 input_queue_head_incr(oldsd);
9881         }
9882         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
9883                 netif_rx_ni(skb);
9884                 input_queue_head_incr(oldsd);
9885         }
9886
9887         return 0;
9888 }
9889
9890 /**
9891  *      netdev_increment_features - increment feature set by one
9892  *      @all: current feature set
9893  *      @one: new feature set
9894  *      @mask: mask feature set
9895  *
9896  *      Computes a new feature set after adding a device with feature set
9897  *      @one to the master device with current feature set @all.  Will not
9898  *      enable anything that is off in @mask. Returns the new feature set.
9899  */
9900 netdev_features_t netdev_increment_features(netdev_features_t all,
9901         netdev_features_t one, netdev_features_t mask)
9902 {
9903         if (mask & NETIF_F_HW_CSUM)
9904                 mask |= NETIF_F_CSUM_MASK;
9905         mask |= NETIF_F_VLAN_CHALLENGED;
9906
9907         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
9908         all &= one | ~NETIF_F_ALL_FOR_ALL;
9909
9910         /* If one device supports hw checksumming, set for all. */
9911         if (all & NETIF_F_HW_CSUM)
9912                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
9913
9914         return all;
9915 }
9916 EXPORT_SYMBOL(netdev_increment_features);
9917
9918 static struct hlist_head * __net_init netdev_create_hash(void)
9919 {
9920         int i;
9921         struct hlist_head *hash;
9922
9923         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
9924         if (hash != NULL)
9925                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
9926                         INIT_HLIST_HEAD(&hash[i]);
9927
9928         return hash;
9929 }
9930
9931 /* Initialize per network namespace state */
9932 static int __net_init netdev_init(struct net *net)
9933 {
9934         BUILD_BUG_ON(GRO_HASH_BUCKETS >
9935                      8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask));
9936
9937         if (net != &init_net)
9938                 INIT_LIST_HEAD(&net->dev_base_head);
9939
9940         net->dev_name_head = netdev_create_hash();
9941         if (net->dev_name_head == NULL)
9942                 goto err_name;
9943
9944         net->dev_index_head = netdev_create_hash();
9945         if (net->dev_index_head == NULL)
9946                 goto err_idx;
9947
9948         return 0;
9949
9950 err_idx:
9951         kfree(net->dev_name_head);
9952 err_name:
9953         return -ENOMEM;
9954 }
9955
9956 /**
9957  *      netdev_drivername - network driver for the device
9958  *      @dev: network device
9959  *
9960  *      Determine network driver for device.
9961  */
9962 const char *netdev_drivername(const struct net_device *dev)
9963 {
9964         const struct device_driver *driver;
9965         const struct device *parent;
9966         const char *empty = "";
9967
9968         parent = dev->dev.parent;
9969         if (!parent)
9970                 return empty;
9971
9972         driver = parent->driver;
9973         if (driver && driver->name)
9974                 return driver->name;
9975         return empty;
9976 }
9977
9978 static void __netdev_printk(const char *level, const struct net_device *dev,
9979                             struct va_format *vaf)
9980 {
9981         if (dev && dev->dev.parent) {
9982                 dev_printk_emit(level[1] - '0',
9983                                 dev->dev.parent,
9984                                 "%s %s %s%s: %pV",
9985                                 dev_driver_string(dev->dev.parent),
9986                                 dev_name(dev->dev.parent),
9987                                 netdev_name(dev), netdev_reg_state(dev),
9988                                 vaf);
9989         } else if (dev) {
9990                 printk("%s%s%s: %pV",
9991                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
9992         } else {
9993                 printk("%s(NULL net_device): %pV", level, vaf);
9994         }
9995 }
9996
9997 void netdev_printk(const char *level, const struct net_device *dev,
9998                    const char *format, ...)
9999 {
10000         struct va_format vaf;
10001         va_list args;
10002
10003         va_start(args, format);
10004
10005         vaf.fmt = format;
10006         vaf.va = &args;
10007
10008         __netdev_printk(level, dev, &vaf);
10009
10010         va_end(args);
10011 }
10012 EXPORT_SYMBOL(netdev_printk);
10013
10014 #define define_netdev_printk_level(func, level)                 \
10015 void func(const struct net_device *dev, const char *fmt, ...)   \
10016 {                                                               \
10017         struct va_format vaf;                                   \
10018         va_list args;                                           \
10019                                                                 \
10020         va_start(args, fmt);                                    \
10021                                                                 \
10022         vaf.fmt = fmt;                                          \
10023         vaf.va = &args;                                         \
10024                                                                 \
10025         __netdev_printk(level, dev, &vaf);                      \
10026                                                                 \
10027         va_end(args);                                           \
10028 }                                                               \
10029 EXPORT_SYMBOL(func);
10030
10031 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
10032 define_netdev_printk_level(netdev_alert, KERN_ALERT);
10033 define_netdev_printk_level(netdev_crit, KERN_CRIT);
10034 define_netdev_printk_level(netdev_err, KERN_ERR);
10035 define_netdev_printk_level(netdev_warn, KERN_WARNING);
10036 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
10037 define_netdev_printk_level(netdev_info, KERN_INFO);
10038
10039 static void __net_exit netdev_exit(struct net *net)
10040 {
10041         kfree(net->dev_name_head);
10042         kfree(net->dev_index_head);
10043         if (net != &init_net)
10044                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
10045 }
10046
10047 static struct pernet_operations __net_initdata netdev_net_ops = {
10048         .init = netdev_init,
10049         .exit = netdev_exit,
10050 };
10051
10052 static void __net_exit default_device_exit(struct net *net)
10053 {
10054         struct net_device *dev, *aux;
10055         /*
10056          * Push all migratable network devices back to the
10057          * initial network namespace
10058          */
10059         rtnl_lock();
10060         for_each_netdev_safe(net, dev, aux) {
10061                 int err;
10062                 char fb_name[IFNAMSIZ];
10063
10064                 /* Ignore unmoveable devices (i.e. loopback) */
10065                 if (dev->features & NETIF_F_NETNS_LOCAL)
10066                         continue;
10067
10068                 /* Leave virtual devices for the generic cleanup */
10069                 if (dev->rtnl_link_ops)
10070                         continue;
10071
10072                 /* Push remaining network devices to init_net */
10073                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
10074                 if (__dev_get_by_name(&init_net, fb_name))
10075                         snprintf(fb_name, IFNAMSIZ, "dev%%d");
10076                 err = dev_change_net_namespace(dev, &init_net, fb_name);
10077                 if (err) {
10078                         pr_emerg("%s: failed to move %s to init_net: %d\n",
10079                                  __func__, dev->name, err);
10080                         BUG();
10081                 }
10082         }
10083         rtnl_unlock();
10084 }
10085
10086 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
10087 {
10088         /* Return with the rtnl_lock held when there are no network
10089          * devices unregistering in any network namespace in net_list.
10090          */
10091         struct net *net;
10092         bool unregistering;
10093         DEFINE_WAIT_FUNC(wait, woken_wake_function);
10094
10095         add_wait_queue(&netdev_unregistering_wq, &wait);
10096         for (;;) {
10097                 unregistering = false;
10098                 rtnl_lock();
10099                 list_for_each_entry(net, net_list, exit_list) {
10100                         if (net->dev_unreg_count > 0) {
10101                                 unregistering = true;
10102                                 break;
10103                         }
10104                 }
10105                 if (!unregistering)
10106                         break;
10107                 __rtnl_unlock();
10108
10109                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
10110         }
10111         remove_wait_queue(&netdev_unregistering_wq, &wait);
10112 }
10113
10114 static void __net_exit default_device_exit_batch(struct list_head *net_list)
10115 {
10116         /* At exit all network devices most be removed from a network
10117          * namespace.  Do this in the reverse order of registration.
10118          * Do this across as many network namespaces as possible to
10119          * improve batching efficiency.
10120          */
10121         struct net_device *dev;
10122         struct net *net;
10123         LIST_HEAD(dev_kill_list);
10124
10125         /* To prevent network device cleanup code from dereferencing
10126          * loopback devices or network devices that have been freed
10127          * wait here for all pending unregistrations to complete,
10128          * before unregistring the loopback device and allowing the
10129          * network namespace be freed.
10130          *
10131          * The netdev todo list containing all network devices
10132          * unregistrations that happen in default_device_exit_batch
10133          * will run in the rtnl_unlock() at the end of
10134          * default_device_exit_batch.
10135          */
10136         rtnl_lock_unregistering(net_list);
10137         list_for_each_entry(net, net_list, exit_list) {
10138                 for_each_netdev_reverse(net, dev) {
10139                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
10140                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
10141                         else
10142                                 unregister_netdevice_queue(dev, &dev_kill_list);
10143                 }
10144         }
10145         unregister_netdevice_many(&dev_kill_list);
10146         rtnl_unlock();
10147 }
10148
10149 static struct pernet_operations __net_initdata default_device_ops = {
10150         .exit = default_device_exit,
10151         .exit_batch = default_device_exit_batch,
10152 };
10153
10154 /*
10155  *      Initialize the DEV module. At boot time this walks the device list and
10156  *      unhooks any devices that fail to initialise (normally hardware not
10157  *      present) and leaves us with a valid list of present and active devices.
10158  *
10159  */
10160
10161 /*
10162  *       This is called single threaded during boot, so no need
10163  *       to take the rtnl semaphore.
10164  */
10165 static int __init net_dev_init(void)
10166 {
10167         int i, rc = -ENOMEM;
10168
10169         BUG_ON(!dev_boot_phase);
10170
10171         if (dev_proc_init())
10172                 goto out;
10173
10174         if (netdev_kobject_init())
10175                 goto out;
10176
10177         INIT_LIST_HEAD(&ptype_all);
10178         for (i = 0; i < PTYPE_HASH_SIZE; i++)
10179                 INIT_LIST_HEAD(&ptype_base[i]);
10180
10181         INIT_LIST_HEAD(&offload_base);
10182
10183         if (register_pernet_subsys(&netdev_net_ops))
10184                 goto out;
10185
10186         /*
10187          *      Initialise the packet receive queues.
10188          */
10189
10190         for_each_possible_cpu(i) {
10191                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
10192                 struct softnet_data *sd = &per_cpu(softnet_data, i);
10193
10194                 INIT_WORK(flush, flush_backlog);
10195
10196                 skb_queue_head_init(&sd->input_pkt_queue);
10197                 skb_queue_head_init(&sd->process_queue);
10198 #ifdef CONFIG_XFRM_OFFLOAD
10199                 skb_queue_head_init(&sd->xfrm_backlog);
10200 #endif
10201                 INIT_LIST_HEAD(&sd->poll_list);
10202                 sd->output_queue_tailp = &sd->output_queue;
10203 #ifdef CONFIG_RPS
10204                 sd->csd.func = rps_trigger_softirq;
10205                 sd->csd.info = sd;
10206                 sd->cpu = i;
10207 #endif
10208
10209                 init_gro_hash(&sd->backlog);
10210                 sd->backlog.poll = process_backlog;
10211                 sd->backlog.weight = weight_p;
10212         }
10213
10214         dev_boot_phase = 0;
10215
10216         /* The loopback device is special if any other network devices
10217          * is present in a network namespace the loopback device must
10218          * be present. Since we now dynamically allocate and free the
10219          * loopback device ensure this invariant is maintained by
10220          * keeping the loopback device as the first device on the
10221          * list of network devices.  Ensuring the loopback devices
10222          * is the first device that appears and the last network device
10223          * that disappears.
10224          */
10225         if (register_pernet_device(&loopback_net_ops))
10226                 goto out;
10227
10228         if (register_pernet_device(&default_device_ops))
10229                 goto out;
10230
10231         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
10232         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
10233
10234         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
10235                                        NULL, dev_cpu_dead);
10236         WARN_ON(rc < 0);
10237         rc = 0;
10238 out:
10239         return rc;
10240 }
10241
10242 subsys_initcall(net_dev_init);