Merge branch 'x86/fpu' into x86/asm
[linux-2.6-microblaze.git] / net / core / dev.c
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *              This program is free software; you can redistribute it and/or
5  *              modify it under the terms of the GNU General Public License
6  *              as published by the Free Software Foundation; either version
7  *              2 of the License, or (at your option) any later version.
8  *
9  *      Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:        Ross Biro
11  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *      Additional Authors:
15  *              Florian la Roche <rzsfl@rz.uni-sb.de>
16  *              Alan Cox <gw4pts@gw4pts.ampr.org>
17  *              David Hinds <dahinds@users.sourceforge.net>
18  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *              Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *      Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *              Alan Cox        :       device private ioctl copies fields back.
28  *              Alan Cox        :       Transmit queue code does relevant
29  *                                      stunts to keep the queue safe.
30  *              Alan Cox        :       Fixed double lock.
31  *              Alan Cox        :       Fixed promisc NULL pointer trap
32  *              ????????        :       Support the full private ioctl range
33  *              Alan Cox        :       Moved ioctl permission check into
34  *                                      drivers
35  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
36  *              Alan Cox        :       100 backlog just doesn't cut it when
37  *                                      you start doing multicast video 8)
38  *              Alan Cox        :       Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *              Alan Cox        :       Took out transmit every packet pass
41  *                                      Saved a few bytes in the ioctl handler
42  *              Alan Cox        :       Network driver sets packet type before
43  *                                      calling netif_rx. Saves a function
44  *                                      call a packet.
45  *              Alan Cox        :       Hashed net_bh()
46  *              Richard Kooijman:       Timestamp fixes.
47  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
48  *              Alan Cox        :       Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *                                      changes.
51  *              Rudi Cilibrasi  :       Pass the right thing to
52  *                                      set_mac_address()
53  *              Dave Miller     :       32bit quantity for the device lock to
54  *                                      make it work out on a Sparc.
55  *              Bjorn Ekwall    :       Added KERNELD hack.
56  *              Alan Cox        :       Cleaned up the backlog initialise.
57  *              Craig Metz      :       SIOCGIFCONF fix if space for under
58  *                                      1 device.
59  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
60  *                                      is no device open function.
61  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
62  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
63  *              Cyrus Durgin    :       Cleaned for KMOD
64  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
65  *                                      A network device unload needs to purge
66  *                                      the backlog queue.
67  *      Paul Rusty Russell      :       SIOCSIFNAME
68  *              Pekka Riikonen  :       Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *                                      - netif_rx() feedback
73  */
74
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dst.h>
106 #include <net/dst_metadata.h>
107 #include <net/pkt_sched.h>
108 #include <net/pkt_cls.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <linux/pci.h>
136 #include <linux/inetdevice.h>
137 #include <linux/cpu_rmap.h>
138 #include <linux/static_key.h>
139 #include <linux/hashtable.h>
140 #include <linux/vmalloc.h>
141 #include <linux/if_macvlan.h>
142 #include <linux/errqueue.h>
143 #include <linux/hrtimer.h>
144 #include <linux/netfilter_ingress.h>
145 #include <linux/crash_dump.h>
146 #include <linux/sctp.h>
147 #include <net/udp_tunnel.h>
148
149 #include "net-sysfs.h"
150
151 /* Instead of increasing this, you should create a hash table. */
152 #define MAX_GRO_SKBS 8
153
154 /* This should be increased if a protocol with a bigger head is added. */
155 #define GRO_MAX_HEAD (MAX_HEADER + 128)
156
157 static DEFINE_SPINLOCK(ptype_lock);
158 static DEFINE_SPINLOCK(offload_lock);
159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160 struct list_head ptype_all __read_mostly;       /* Taps */
161 static struct list_head offload_base __read_mostly;
162
163 static int netif_rx_internal(struct sk_buff *skb);
164 static int call_netdevice_notifiers_info(unsigned long val,
165                                          struct net_device *dev,
166                                          struct netdev_notifier_info *info);
167 static struct napi_struct *napi_by_id(unsigned int napi_id);
168
169 /*
170  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
171  * semaphore.
172  *
173  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
174  *
175  * Writers must hold the rtnl semaphore while they loop through the
176  * dev_base_head list, and hold dev_base_lock for writing when they do the
177  * actual updates.  This allows pure readers to access the list even
178  * while a writer is preparing to update it.
179  *
180  * To put it another way, dev_base_lock is held for writing only to
181  * protect against pure readers; the rtnl semaphore provides the
182  * protection against other writers.
183  *
184  * See, for example usages, register_netdevice() and
185  * unregister_netdevice(), which must be called with the rtnl
186  * semaphore held.
187  */
188 DEFINE_RWLOCK(dev_base_lock);
189 EXPORT_SYMBOL(dev_base_lock);
190
191 /* protects napi_hash addition/deletion and napi_gen_id */
192 static DEFINE_SPINLOCK(napi_hash_lock);
193
194 static unsigned int napi_gen_id = NR_CPUS;
195 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
196
197 static seqcount_t devnet_rename_seq;
198
199 static inline void dev_base_seq_inc(struct net *net)
200 {
201         while (++net->dev_base_seq == 0)
202                 ;
203 }
204
205 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
206 {
207         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
208
209         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
210 }
211
212 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
213 {
214         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
215 }
216
217 static inline void rps_lock(struct softnet_data *sd)
218 {
219 #ifdef CONFIG_RPS
220         spin_lock(&sd->input_pkt_queue.lock);
221 #endif
222 }
223
224 static inline void rps_unlock(struct softnet_data *sd)
225 {
226 #ifdef CONFIG_RPS
227         spin_unlock(&sd->input_pkt_queue.lock);
228 #endif
229 }
230
231 /* Device list insertion */
232 static void list_netdevice(struct net_device *dev)
233 {
234         struct net *net = dev_net(dev);
235
236         ASSERT_RTNL();
237
238         write_lock_bh(&dev_base_lock);
239         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
240         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
241         hlist_add_head_rcu(&dev->index_hlist,
242                            dev_index_hash(net, dev->ifindex));
243         write_unlock_bh(&dev_base_lock);
244
245         dev_base_seq_inc(net);
246 }
247
248 /* Device list removal
249  * caller must respect a RCU grace period before freeing/reusing dev
250  */
251 static void unlist_netdevice(struct net_device *dev)
252 {
253         ASSERT_RTNL();
254
255         /* Unlink dev from the device chain */
256         write_lock_bh(&dev_base_lock);
257         list_del_rcu(&dev->dev_list);
258         hlist_del_rcu(&dev->name_hlist);
259         hlist_del_rcu(&dev->index_hlist);
260         write_unlock_bh(&dev_base_lock);
261
262         dev_base_seq_inc(dev_net(dev));
263 }
264
265 /*
266  *      Our notifier list
267  */
268
269 static RAW_NOTIFIER_HEAD(netdev_chain);
270
271 /*
272  *      Device drivers call our routines to queue packets here. We empty the
273  *      queue in the local softnet handler.
274  */
275
276 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
277 EXPORT_PER_CPU_SYMBOL(softnet_data);
278
279 #ifdef CONFIG_LOCKDEP
280 /*
281  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
282  * according to dev->type
283  */
284 static const unsigned short netdev_lock_type[] = {
285          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
286          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
287          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
288          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
289          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
290          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
291          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
292          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
293          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
294          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
295          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
296          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
297          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
298          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
299          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
300
301 static const char *const netdev_lock_name[] = {
302         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
303         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
304         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
305         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
306         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
307         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
308         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
309         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
310         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
311         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
312         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
313         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
314         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
315         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
316         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
317
318 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
319 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
320
321 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
322 {
323         int i;
324
325         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
326                 if (netdev_lock_type[i] == dev_type)
327                         return i;
328         /* the last key is used by default */
329         return ARRAY_SIZE(netdev_lock_type) - 1;
330 }
331
332 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
333                                                  unsigned short dev_type)
334 {
335         int i;
336
337         i = netdev_lock_pos(dev_type);
338         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
339                                    netdev_lock_name[i]);
340 }
341
342 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
343 {
344         int i;
345
346         i = netdev_lock_pos(dev->type);
347         lockdep_set_class_and_name(&dev->addr_list_lock,
348                                    &netdev_addr_lock_key[i],
349                                    netdev_lock_name[i]);
350 }
351 #else
352 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
353                                                  unsigned short dev_type)
354 {
355 }
356 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
357 {
358 }
359 #endif
360
361 /*******************************************************************************
362  *
363  *              Protocol management and registration routines
364  *
365  *******************************************************************************/
366
367
368 /*
369  *      Add a protocol ID to the list. Now that the input handler is
370  *      smarter we can dispense with all the messy stuff that used to be
371  *      here.
372  *
373  *      BEWARE!!! Protocol handlers, mangling input packets,
374  *      MUST BE last in hash buckets and checking protocol handlers
375  *      MUST start from promiscuous ptype_all chain in net_bh.
376  *      It is true now, do not change it.
377  *      Explanation follows: if protocol handler, mangling packet, will
378  *      be the first on list, it is not able to sense, that packet
379  *      is cloned and should be copied-on-write, so that it will
380  *      change it and subsequent readers will get broken packet.
381  *                                                      --ANK (980803)
382  */
383
384 static inline struct list_head *ptype_head(const struct packet_type *pt)
385 {
386         if (pt->type == htons(ETH_P_ALL))
387                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
388         else
389                 return pt->dev ? &pt->dev->ptype_specific :
390                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
391 }
392
393 /**
394  *      dev_add_pack - add packet handler
395  *      @pt: packet type declaration
396  *
397  *      Add a protocol handler to the networking stack. The passed &packet_type
398  *      is linked into kernel lists and may not be freed until it has been
399  *      removed from the kernel lists.
400  *
401  *      This call does not sleep therefore it can not
402  *      guarantee all CPU's that are in middle of receiving packets
403  *      will see the new packet type (until the next received packet).
404  */
405
406 void dev_add_pack(struct packet_type *pt)
407 {
408         struct list_head *head = ptype_head(pt);
409
410         spin_lock(&ptype_lock);
411         list_add_rcu(&pt->list, head);
412         spin_unlock(&ptype_lock);
413 }
414 EXPORT_SYMBOL(dev_add_pack);
415
416 /**
417  *      __dev_remove_pack        - remove packet handler
418  *      @pt: packet type declaration
419  *
420  *      Remove a protocol handler that was previously added to the kernel
421  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
422  *      from the kernel lists and can be freed or reused once this function
423  *      returns.
424  *
425  *      The packet type might still be in use by receivers
426  *      and must not be freed until after all the CPU's have gone
427  *      through a quiescent state.
428  */
429 void __dev_remove_pack(struct packet_type *pt)
430 {
431         struct list_head *head = ptype_head(pt);
432         struct packet_type *pt1;
433
434         spin_lock(&ptype_lock);
435
436         list_for_each_entry(pt1, head, list) {
437                 if (pt == pt1) {
438                         list_del_rcu(&pt->list);
439                         goto out;
440                 }
441         }
442
443         pr_warn("dev_remove_pack: %p not found\n", pt);
444 out:
445         spin_unlock(&ptype_lock);
446 }
447 EXPORT_SYMBOL(__dev_remove_pack);
448
449 /**
450  *      dev_remove_pack  - remove packet handler
451  *      @pt: packet type declaration
452  *
453  *      Remove a protocol handler that was previously added to the kernel
454  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
455  *      from the kernel lists and can be freed or reused once this function
456  *      returns.
457  *
458  *      This call sleeps to guarantee that no CPU is looking at the packet
459  *      type after return.
460  */
461 void dev_remove_pack(struct packet_type *pt)
462 {
463         __dev_remove_pack(pt);
464
465         synchronize_net();
466 }
467 EXPORT_SYMBOL(dev_remove_pack);
468
469
470 /**
471  *      dev_add_offload - register offload handlers
472  *      @po: protocol offload declaration
473  *
474  *      Add protocol offload handlers to the networking stack. The passed
475  *      &proto_offload is linked into kernel lists and may not be freed until
476  *      it has been removed from the kernel lists.
477  *
478  *      This call does not sleep therefore it can not
479  *      guarantee all CPU's that are in middle of receiving packets
480  *      will see the new offload handlers (until the next received packet).
481  */
482 void dev_add_offload(struct packet_offload *po)
483 {
484         struct packet_offload *elem;
485
486         spin_lock(&offload_lock);
487         list_for_each_entry(elem, &offload_base, list) {
488                 if (po->priority < elem->priority)
489                         break;
490         }
491         list_add_rcu(&po->list, elem->list.prev);
492         spin_unlock(&offload_lock);
493 }
494 EXPORT_SYMBOL(dev_add_offload);
495
496 /**
497  *      __dev_remove_offload     - remove offload handler
498  *      @po: packet offload declaration
499  *
500  *      Remove a protocol offload handler that was previously added to the
501  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
502  *      is removed from the kernel lists and can be freed or reused once this
503  *      function returns.
504  *
505  *      The packet type might still be in use by receivers
506  *      and must not be freed until after all the CPU's have gone
507  *      through a quiescent state.
508  */
509 static void __dev_remove_offload(struct packet_offload *po)
510 {
511         struct list_head *head = &offload_base;
512         struct packet_offload *po1;
513
514         spin_lock(&offload_lock);
515
516         list_for_each_entry(po1, head, list) {
517                 if (po == po1) {
518                         list_del_rcu(&po->list);
519                         goto out;
520                 }
521         }
522
523         pr_warn("dev_remove_offload: %p not found\n", po);
524 out:
525         spin_unlock(&offload_lock);
526 }
527
528 /**
529  *      dev_remove_offload       - remove packet offload handler
530  *      @po: packet offload declaration
531  *
532  *      Remove a packet offload handler that was previously added to the kernel
533  *      offload handlers by dev_add_offload(). The passed &offload_type is
534  *      removed from the kernel lists and can be freed or reused once this
535  *      function returns.
536  *
537  *      This call sleeps to guarantee that no CPU is looking at the packet
538  *      type after return.
539  */
540 void dev_remove_offload(struct packet_offload *po)
541 {
542         __dev_remove_offload(po);
543
544         synchronize_net();
545 }
546 EXPORT_SYMBOL(dev_remove_offload);
547
548 /******************************************************************************
549  *
550  *                    Device Boot-time Settings Routines
551  *
552  ******************************************************************************/
553
554 /* Boot time configuration table */
555 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
556
557 /**
558  *      netdev_boot_setup_add   - add new setup entry
559  *      @name: name of the device
560  *      @map: configured settings for the device
561  *
562  *      Adds new setup entry to the dev_boot_setup list.  The function
563  *      returns 0 on error and 1 on success.  This is a generic routine to
564  *      all netdevices.
565  */
566 static int netdev_boot_setup_add(char *name, struct ifmap *map)
567 {
568         struct netdev_boot_setup *s;
569         int i;
570
571         s = dev_boot_setup;
572         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
573                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
574                         memset(s[i].name, 0, sizeof(s[i].name));
575                         strlcpy(s[i].name, name, IFNAMSIZ);
576                         memcpy(&s[i].map, map, sizeof(s[i].map));
577                         break;
578                 }
579         }
580
581         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
582 }
583
584 /**
585  * netdev_boot_setup_check      - check boot time settings
586  * @dev: the netdevice
587  *
588  * Check boot time settings for the device.
589  * The found settings are set for the device to be used
590  * later in the device probing.
591  * Returns 0 if no settings found, 1 if they are.
592  */
593 int netdev_boot_setup_check(struct net_device *dev)
594 {
595         struct netdev_boot_setup *s = dev_boot_setup;
596         int i;
597
598         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
599                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
600                     !strcmp(dev->name, s[i].name)) {
601                         dev->irq = s[i].map.irq;
602                         dev->base_addr = s[i].map.base_addr;
603                         dev->mem_start = s[i].map.mem_start;
604                         dev->mem_end = s[i].map.mem_end;
605                         return 1;
606                 }
607         }
608         return 0;
609 }
610 EXPORT_SYMBOL(netdev_boot_setup_check);
611
612
613 /**
614  * netdev_boot_base     - get address from boot time settings
615  * @prefix: prefix for network device
616  * @unit: id for network device
617  *
618  * Check boot time settings for the base address of device.
619  * The found settings are set for the device to be used
620  * later in the device probing.
621  * Returns 0 if no settings found.
622  */
623 unsigned long netdev_boot_base(const char *prefix, int unit)
624 {
625         const struct netdev_boot_setup *s = dev_boot_setup;
626         char name[IFNAMSIZ];
627         int i;
628
629         sprintf(name, "%s%d", prefix, unit);
630
631         /*
632          * If device already registered then return base of 1
633          * to indicate not to probe for this interface
634          */
635         if (__dev_get_by_name(&init_net, name))
636                 return 1;
637
638         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
639                 if (!strcmp(name, s[i].name))
640                         return s[i].map.base_addr;
641         return 0;
642 }
643
644 /*
645  * Saves at boot time configured settings for any netdevice.
646  */
647 int __init netdev_boot_setup(char *str)
648 {
649         int ints[5];
650         struct ifmap map;
651
652         str = get_options(str, ARRAY_SIZE(ints), ints);
653         if (!str || !*str)
654                 return 0;
655
656         /* Save settings */
657         memset(&map, 0, sizeof(map));
658         if (ints[0] > 0)
659                 map.irq = ints[1];
660         if (ints[0] > 1)
661                 map.base_addr = ints[2];
662         if (ints[0] > 2)
663                 map.mem_start = ints[3];
664         if (ints[0] > 3)
665                 map.mem_end = ints[4];
666
667         /* Add new entry to the list */
668         return netdev_boot_setup_add(str, &map);
669 }
670
671 __setup("netdev=", netdev_boot_setup);
672
673 /*******************************************************************************
674  *
675  *                          Device Interface Subroutines
676  *
677  *******************************************************************************/
678
679 /**
680  *      dev_get_iflink  - get 'iflink' value of a interface
681  *      @dev: targeted interface
682  *
683  *      Indicates the ifindex the interface is linked to.
684  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
685  */
686
687 int dev_get_iflink(const struct net_device *dev)
688 {
689         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
690                 return dev->netdev_ops->ndo_get_iflink(dev);
691
692         return dev->ifindex;
693 }
694 EXPORT_SYMBOL(dev_get_iflink);
695
696 /**
697  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
698  *      @dev: targeted interface
699  *      @skb: The packet.
700  *
701  *      For better visibility of tunnel traffic OVS needs to retrieve
702  *      egress tunnel information for a packet. Following API allows
703  *      user to get this info.
704  */
705 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
706 {
707         struct ip_tunnel_info *info;
708
709         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
710                 return -EINVAL;
711
712         info = skb_tunnel_info_unclone(skb);
713         if (!info)
714                 return -ENOMEM;
715         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
716                 return -EINVAL;
717
718         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
719 }
720 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
721
722 /**
723  *      __dev_get_by_name       - find a device by its name
724  *      @net: the applicable net namespace
725  *      @name: name to find
726  *
727  *      Find an interface by name. Must be called under RTNL semaphore
728  *      or @dev_base_lock. If the name is found a pointer to the device
729  *      is returned. If the name is not found then %NULL is returned. The
730  *      reference counters are not incremented so the caller must be
731  *      careful with locks.
732  */
733
734 struct net_device *__dev_get_by_name(struct net *net, const char *name)
735 {
736         struct net_device *dev;
737         struct hlist_head *head = dev_name_hash(net, name);
738
739         hlist_for_each_entry(dev, head, name_hlist)
740                 if (!strncmp(dev->name, name, IFNAMSIZ))
741                         return dev;
742
743         return NULL;
744 }
745 EXPORT_SYMBOL(__dev_get_by_name);
746
747 /**
748  * dev_get_by_name_rcu  - find a device by its name
749  * @net: the applicable net namespace
750  * @name: name to find
751  *
752  * Find an interface by name.
753  * If the name is found a pointer to the device is returned.
754  * If the name is not found then %NULL is returned.
755  * The reference counters are not incremented so the caller must be
756  * careful with locks. The caller must hold RCU lock.
757  */
758
759 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
760 {
761         struct net_device *dev;
762         struct hlist_head *head = dev_name_hash(net, name);
763
764         hlist_for_each_entry_rcu(dev, head, name_hlist)
765                 if (!strncmp(dev->name, name, IFNAMSIZ))
766                         return dev;
767
768         return NULL;
769 }
770 EXPORT_SYMBOL(dev_get_by_name_rcu);
771
772 /**
773  *      dev_get_by_name         - find a device by its name
774  *      @net: the applicable net namespace
775  *      @name: name to find
776  *
777  *      Find an interface by name. This can be called from any
778  *      context and does its own locking. The returned handle has
779  *      the usage count incremented and the caller must use dev_put() to
780  *      release it when it is no longer needed. %NULL is returned if no
781  *      matching device is found.
782  */
783
784 struct net_device *dev_get_by_name(struct net *net, const char *name)
785 {
786         struct net_device *dev;
787
788         rcu_read_lock();
789         dev = dev_get_by_name_rcu(net, name);
790         if (dev)
791                 dev_hold(dev);
792         rcu_read_unlock();
793         return dev;
794 }
795 EXPORT_SYMBOL(dev_get_by_name);
796
797 /**
798  *      __dev_get_by_index - find a device by its ifindex
799  *      @net: the applicable net namespace
800  *      @ifindex: index of device
801  *
802  *      Search for an interface by index. Returns %NULL if the device
803  *      is not found or a pointer to the device. The device has not
804  *      had its reference counter increased so the caller must be careful
805  *      about locking. The caller must hold either the RTNL semaphore
806  *      or @dev_base_lock.
807  */
808
809 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
810 {
811         struct net_device *dev;
812         struct hlist_head *head = dev_index_hash(net, ifindex);
813
814         hlist_for_each_entry(dev, head, index_hlist)
815                 if (dev->ifindex == ifindex)
816                         return dev;
817
818         return NULL;
819 }
820 EXPORT_SYMBOL(__dev_get_by_index);
821
822 /**
823  *      dev_get_by_index_rcu - find a device by its ifindex
824  *      @net: the applicable net namespace
825  *      @ifindex: index of device
826  *
827  *      Search for an interface by index. Returns %NULL if the device
828  *      is not found or a pointer to the device. The device has not
829  *      had its reference counter increased so the caller must be careful
830  *      about locking. The caller must hold RCU lock.
831  */
832
833 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
834 {
835         struct net_device *dev;
836         struct hlist_head *head = dev_index_hash(net, ifindex);
837
838         hlist_for_each_entry_rcu(dev, head, index_hlist)
839                 if (dev->ifindex == ifindex)
840                         return dev;
841
842         return NULL;
843 }
844 EXPORT_SYMBOL(dev_get_by_index_rcu);
845
846
847 /**
848  *      dev_get_by_index - find a device by its ifindex
849  *      @net: the applicable net namespace
850  *      @ifindex: index of device
851  *
852  *      Search for an interface by index. Returns NULL if the device
853  *      is not found or a pointer to the device. The device returned has
854  *      had a reference added and the pointer is safe until the user calls
855  *      dev_put to indicate they have finished with it.
856  */
857
858 struct net_device *dev_get_by_index(struct net *net, int ifindex)
859 {
860         struct net_device *dev;
861
862         rcu_read_lock();
863         dev = dev_get_by_index_rcu(net, ifindex);
864         if (dev)
865                 dev_hold(dev);
866         rcu_read_unlock();
867         return dev;
868 }
869 EXPORT_SYMBOL(dev_get_by_index);
870
871 /**
872  *      dev_get_by_napi_id - find a device by napi_id
873  *      @napi_id: ID of the NAPI struct
874  *
875  *      Search for an interface by NAPI ID. Returns %NULL if the device
876  *      is not found or a pointer to the device. The device has not had
877  *      its reference counter increased so the caller must be careful
878  *      about locking. The caller must hold RCU lock.
879  */
880
881 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
882 {
883         struct napi_struct *napi;
884
885         WARN_ON_ONCE(!rcu_read_lock_held());
886
887         if (napi_id < MIN_NAPI_ID)
888                 return NULL;
889
890         napi = napi_by_id(napi_id);
891
892         return napi ? napi->dev : NULL;
893 }
894 EXPORT_SYMBOL(dev_get_by_napi_id);
895
896 /**
897  *      netdev_get_name - get a netdevice name, knowing its ifindex.
898  *      @net: network namespace
899  *      @name: a pointer to the buffer where the name will be stored.
900  *      @ifindex: the ifindex of the interface to get the name from.
901  *
902  *      The use of raw_seqcount_begin() and cond_resched() before
903  *      retrying is required as we want to give the writers a chance
904  *      to complete when CONFIG_PREEMPT is not set.
905  */
906 int netdev_get_name(struct net *net, char *name, int ifindex)
907 {
908         struct net_device *dev;
909         unsigned int seq;
910
911 retry:
912         seq = raw_seqcount_begin(&devnet_rename_seq);
913         rcu_read_lock();
914         dev = dev_get_by_index_rcu(net, ifindex);
915         if (!dev) {
916                 rcu_read_unlock();
917                 return -ENODEV;
918         }
919
920         strcpy(name, dev->name);
921         rcu_read_unlock();
922         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
923                 cond_resched();
924                 goto retry;
925         }
926
927         return 0;
928 }
929
930 /**
931  *      dev_getbyhwaddr_rcu - find a device by its hardware address
932  *      @net: the applicable net namespace
933  *      @type: media type of device
934  *      @ha: hardware address
935  *
936  *      Search for an interface by MAC address. Returns NULL if the device
937  *      is not found or a pointer to the device.
938  *      The caller must hold RCU or RTNL.
939  *      The returned device has not had its ref count increased
940  *      and the caller must therefore be careful about locking
941  *
942  */
943
944 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
945                                        const char *ha)
946 {
947         struct net_device *dev;
948
949         for_each_netdev_rcu(net, dev)
950                 if (dev->type == type &&
951                     !memcmp(dev->dev_addr, ha, dev->addr_len))
952                         return dev;
953
954         return NULL;
955 }
956 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
957
958 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
959 {
960         struct net_device *dev;
961
962         ASSERT_RTNL();
963         for_each_netdev(net, dev)
964                 if (dev->type == type)
965                         return dev;
966
967         return NULL;
968 }
969 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
970
971 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
972 {
973         struct net_device *dev, *ret = NULL;
974
975         rcu_read_lock();
976         for_each_netdev_rcu(net, dev)
977                 if (dev->type == type) {
978                         dev_hold(dev);
979                         ret = dev;
980                         break;
981                 }
982         rcu_read_unlock();
983         return ret;
984 }
985 EXPORT_SYMBOL(dev_getfirstbyhwtype);
986
987 /**
988  *      __dev_get_by_flags - find any device with given flags
989  *      @net: the applicable net namespace
990  *      @if_flags: IFF_* values
991  *      @mask: bitmask of bits in if_flags to check
992  *
993  *      Search for any interface with the given flags. Returns NULL if a device
994  *      is not found or a pointer to the device. Must be called inside
995  *      rtnl_lock(), and result refcount is unchanged.
996  */
997
998 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
999                                       unsigned short mask)
1000 {
1001         struct net_device *dev, *ret;
1002
1003         ASSERT_RTNL();
1004
1005         ret = NULL;
1006         for_each_netdev(net, dev) {
1007                 if (((dev->flags ^ if_flags) & mask) == 0) {
1008                         ret = dev;
1009                         break;
1010                 }
1011         }
1012         return ret;
1013 }
1014 EXPORT_SYMBOL(__dev_get_by_flags);
1015
1016 /**
1017  *      dev_valid_name - check if name is okay for network device
1018  *      @name: name string
1019  *
1020  *      Network device names need to be valid file names to
1021  *      to allow sysfs to work.  We also disallow any kind of
1022  *      whitespace.
1023  */
1024 bool dev_valid_name(const char *name)
1025 {
1026         if (*name == '\0')
1027                 return false;
1028         if (strlen(name) >= IFNAMSIZ)
1029                 return false;
1030         if (!strcmp(name, ".") || !strcmp(name, ".."))
1031                 return false;
1032
1033         while (*name) {
1034                 if (*name == '/' || *name == ':' || isspace(*name))
1035                         return false;
1036                 name++;
1037         }
1038         return true;
1039 }
1040 EXPORT_SYMBOL(dev_valid_name);
1041
1042 /**
1043  *      __dev_alloc_name - allocate a name for a device
1044  *      @net: network namespace to allocate the device name in
1045  *      @name: name format string
1046  *      @buf:  scratch buffer and result name string
1047  *
1048  *      Passed a format string - eg "lt%d" it will try and find a suitable
1049  *      id. It scans list of devices to build up a free map, then chooses
1050  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1051  *      while allocating the name and adding the device in order to avoid
1052  *      duplicates.
1053  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1054  *      Returns the number of the unit assigned or a negative errno code.
1055  */
1056
1057 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1058 {
1059         int i = 0;
1060         const char *p;
1061         const int max_netdevices = 8*PAGE_SIZE;
1062         unsigned long *inuse;
1063         struct net_device *d;
1064
1065         p = strnchr(name, IFNAMSIZ-1, '%');
1066         if (p) {
1067                 /*
1068                  * Verify the string as this thing may have come from
1069                  * the user.  There must be either one "%d" and no other "%"
1070                  * characters.
1071                  */
1072                 if (p[1] != 'd' || strchr(p + 2, '%'))
1073                         return -EINVAL;
1074
1075                 /* Use one page as a bit array of possible slots */
1076                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1077                 if (!inuse)
1078                         return -ENOMEM;
1079
1080                 for_each_netdev(net, d) {
1081                         if (!sscanf(d->name, name, &i))
1082                                 continue;
1083                         if (i < 0 || i >= max_netdevices)
1084                                 continue;
1085
1086                         /*  avoid cases where sscanf is not exact inverse of printf */
1087                         snprintf(buf, IFNAMSIZ, name, i);
1088                         if (!strncmp(buf, d->name, IFNAMSIZ))
1089                                 set_bit(i, inuse);
1090                 }
1091
1092                 i = find_first_zero_bit(inuse, max_netdevices);
1093                 free_page((unsigned long) inuse);
1094         }
1095
1096         if (buf != name)
1097                 snprintf(buf, IFNAMSIZ, name, i);
1098         if (!__dev_get_by_name(net, buf))
1099                 return i;
1100
1101         /* It is possible to run out of possible slots
1102          * when the name is long and there isn't enough space left
1103          * for the digits, or if all bits are used.
1104          */
1105         return -ENFILE;
1106 }
1107
1108 /**
1109  *      dev_alloc_name - allocate a name for a device
1110  *      @dev: device
1111  *      @name: name format string
1112  *
1113  *      Passed a format string - eg "lt%d" it will try and find a suitable
1114  *      id. It scans list of devices to build up a free map, then chooses
1115  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1116  *      while allocating the name and adding the device in order to avoid
1117  *      duplicates.
1118  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1119  *      Returns the number of the unit assigned or a negative errno code.
1120  */
1121
1122 int dev_alloc_name(struct net_device *dev, const char *name)
1123 {
1124         char buf[IFNAMSIZ];
1125         struct net *net;
1126         int ret;
1127
1128         BUG_ON(!dev_net(dev));
1129         net = dev_net(dev);
1130         ret = __dev_alloc_name(net, name, buf);
1131         if (ret >= 0)
1132                 strlcpy(dev->name, buf, IFNAMSIZ);
1133         return ret;
1134 }
1135 EXPORT_SYMBOL(dev_alloc_name);
1136
1137 static int dev_alloc_name_ns(struct net *net,
1138                              struct net_device *dev,
1139                              const char *name)
1140 {
1141         char buf[IFNAMSIZ];
1142         int ret;
1143
1144         ret = __dev_alloc_name(net, name, buf);
1145         if (ret >= 0)
1146                 strlcpy(dev->name, buf, IFNAMSIZ);
1147         return ret;
1148 }
1149
1150 int dev_get_valid_name(struct net *net, struct net_device *dev,
1151                        const char *name)
1152 {
1153         BUG_ON(!net);
1154
1155         if (!dev_valid_name(name))
1156                 return -EINVAL;
1157
1158         if (strchr(name, '%'))
1159                 return dev_alloc_name_ns(net, dev, name);
1160         else if (__dev_get_by_name(net, name))
1161                 return -EEXIST;
1162         else if (dev->name != name)
1163                 strlcpy(dev->name, name, IFNAMSIZ);
1164
1165         return 0;
1166 }
1167 EXPORT_SYMBOL(dev_get_valid_name);
1168
1169 /**
1170  *      dev_change_name - change name of a device
1171  *      @dev: device
1172  *      @newname: name (or format string) must be at least IFNAMSIZ
1173  *
1174  *      Change name of a device, can pass format strings "eth%d".
1175  *      for wildcarding.
1176  */
1177 int dev_change_name(struct net_device *dev, const char *newname)
1178 {
1179         unsigned char old_assign_type;
1180         char oldname[IFNAMSIZ];
1181         int err = 0;
1182         int ret;
1183         struct net *net;
1184
1185         ASSERT_RTNL();
1186         BUG_ON(!dev_net(dev));
1187
1188         net = dev_net(dev);
1189         if (dev->flags & IFF_UP)
1190                 return -EBUSY;
1191
1192         write_seqcount_begin(&devnet_rename_seq);
1193
1194         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1195                 write_seqcount_end(&devnet_rename_seq);
1196                 return 0;
1197         }
1198
1199         memcpy(oldname, dev->name, IFNAMSIZ);
1200
1201         err = dev_get_valid_name(net, dev, newname);
1202         if (err < 0) {
1203                 write_seqcount_end(&devnet_rename_seq);
1204                 return err;
1205         }
1206
1207         if (oldname[0] && !strchr(oldname, '%'))
1208                 netdev_info(dev, "renamed from %s\n", oldname);
1209
1210         old_assign_type = dev->name_assign_type;
1211         dev->name_assign_type = NET_NAME_RENAMED;
1212
1213 rollback:
1214         ret = device_rename(&dev->dev, dev->name);
1215         if (ret) {
1216                 memcpy(dev->name, oldname, IFNAMSIZ);
1217                 dev->name_assign_type = old_assign_type;
1218                 write_seqcount_end(&devnet_rename_seq);
1219                 return ret;
1220         }
1221
1222         write_seqcount_end(&devnet_rename_seq);
1223
1224         netdev_adjacent_rename_links(dev, oldname);
1225
1226         write_lock_bh(&dev_base_lock);
1227         hlist_del_rcu(&dev->name_hlist);
1228         write_unlock_bh(&dev_base_lock);
1229
1230         synchronize_rcu();
1231
1232         write_lock_bh(&dev_base_lock);
1233         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1234         write_unlock_bh(&dev_base_lock);
1235
1236         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1237         ret = notifier_to_errno(ret);
1238
1239         if (ret) {
1240                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1241                 if (err >= 0) {
1242                         err = ret;
1243                         write_seqcount_begin(&devnet_rename_seq);
1244                         memcpy(dev->name, oldname, IFNAMSIZ);
1245                         memcpy(oldname, newname, IFNAMSIZ);
1246                         dev->name_assign_type = old_assign_type;
1247                         old_assign_type = NET_NAME_RENAMED;
1248                         goto rollback;
1249                 } else {
1250                         pr_err("%s: name change rollback failed: %d\n",
1251                                dev->name, ret);
1252                 }
1253         }
1254
1255         return err;
1256 }
1257
1258 /**
1259  *      dev_set_alias - change ifalias of a device
1260  *      @dev: device
1261  *      @alias: name up to IFALIASZ
1262  *      @len: limit of bytes to copy from info
1263  *
1264  *      Set ifalias for a device,
1265  */
1266 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1267 {
1268         char *new_ifalias;
1269
1270         ASSERT_RTNL();
1271
1272         if (len >= IFALIASZ)
1273                 return -EINVAL;
1274
1275         if (!len) {
1276                 kfree(dev->ifalias);
1277                 dev->ifalias = NULL;
1278                 return 0;
1279         }
1280
1281         new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1282         if (!new_ifalias)
1283                 return -ENOMEM;
1284         dev->ifalias = new_ifalias;
1285         memcpy(dev->ifalias, alias, len);
1286         dev->ifalias[len] = 0;
1287
1288         return len;
1289 }
1290
1291
1292 /**
1293  *      netdev_features_change - device changes features
1294  *      @dev: device to cause notification
1295  *
1296  *      Called to indicate a device has changed features.
1297  */
1298 void netdev_features_change(struct net_device *dev)
1299 {
1300         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1301 }
1302 EXPORT_SYMBOL(netdev_features_change);
1303
1304 /**
1305  *      netdev_state_change - device changes state
1306  *      @dev: device to cause notification
1307  *
1308  *      Called to indicate a device has changed state. This function calls
1309  *      the notifier chains for netdev_chain and sends a NEWLINK message
1310  *      to the routing socket.
1311  */
1312 void netdev_state_change(struct net_device *dev)
1313 {
1314         if (dev->flags & IFF_UP) {
1315                 struct netdev_notifier_change_info change_info;
1316
1317                 change_info.flags_changed = 0;
1318                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1319                                               &change_info.info);
1320                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1321         }
1322 }
1323 EXPORT_SYMBOL(netdev_state_change);
1324
1325 /**
1326  * netdev_notify_peers - notify network peers about existence of @dev
1327  * @dev: network device
1328  *
1329  * Generate traffic such that interested network peers are aware of
1330  * @dev, such as by generating a gratuitous ARP. This may be used when
1331  * a device wants to inform the rest of the network about some sort of
1332  * reconfiguration such as a failover event or virtual machine
1333  * migration.
1334  */
1335 void netdev_notify_peers(struct net_device *dev)
1336 {
1337         rtnl_lock();
1338         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1339         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1340         rtnl_unlock();
1341 }
1342 EXPORT_SYMBOL(netdev_notify_peers);
1343
1344 static int __dev_open(struct net_device *dev)
1345 {
1346         const struct net_device_ops *ops = dev->netdev_ops;
1347         int ret;
1348
1349         ASSERT_RTNL();
1350
1351         if (!netif_device_present(dev))
1352                 return -ENODEV;
1353
1354         /* Block netpoll from trying to do any rx path servicing.
1355          * If we don't do this there is a chance ndo_poll_controller
1356          * or ndo_poll may be running while we open the device
1357          */
1358         netpoll_poll_disable(dev);
1359
1360         ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1361         ret = notifier_to_errno(ret);
1362         if (ret)
1363                 return ret;
1364
1365         set_bit(__LINK_STATE_START, &dev->state);
1366
1367         if (ops->ndo_validate_addr)
1368                 ret = ops->ndo_validate_addr(dev);
1369
1370         if (!ret && ops->ndo_open)
1371                 ret = ops->ndo_open(dev);
1372
1373         netpoll_poll_enable(dev);
1374
1375         if (ret)
1376                 clear_bit(__LINK_STATE_START, &dev->state);
1377         else {
1378                 dev->flags |= IFF_UP;
1379                 dev_set_rx_mode(dev);
1380                 dev_activate(dev);
1381                 add_device_randomness(dev->dev_addr, dev->addr_len);
1382         }
1383
1384         return ret;
1385 }
1386
1387 /**
1388  *      dev_open        - prepare an interface for use.
1389  *      @dev:   device to open
1390  *
1391  *      Takes a device from down to up state. The device's private open
1392  *      function is invoked and then the multicast lists are loaded. Finally
1393  *      the device is moved into the up state and a %NETDEV_UP message is
1394  *      sent to the netdev notifier chain.
1395  *
1396  *      Calling this function on an active interface is a nop. On a failure
1397  *      a negative errno code is returned.
1398  */
1399 int dev_open(struct net_device *dev)
1400 {
1401         int ret;
1402
1403         if (dev->flags & IFF_UP)
1404                 return 0;
1405
1406         ret = __dev_open(dev);
1407         if (ret < 0)
1408                 return ret;
1409
1410         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1411         call_netdevice_notifiers(NETDEV_UP, dev);
1412
1413         return ret;
1414 }
1415 EXPORT_SYMBOL(dev_open);
1416
1417 static void __dev_close_many(struct list_head *head)
1418 {
1419         struct net_device *dev;
1420
1421         ASSERT_RTNL();
1422         might_sleep();
1423
1424         list_for_each_entry(dev, head, close_list) {
1425                 /* Temporarily disable netpoll until the interface is down */
1426                 netpoll_poll_disable(dev);
1427
1428                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1429
1430                 clear_bit(__LINK_STATE_START, &dev->state);
1431
1432                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1433                  * can be even on different cpu. So just clear netif_running().
1434                  *
1435                  * dev->stop() will invoke napi_disable() on all of it's
1436                  * napi_struct instances on this device.
1437                  */
1438                 smp_mb__after_atomic(); /* Commit netif_running(). */
1439         }
1440
1441         dev_deactivate_many(head);
1442
1443         list_for_each_entry(dev, head, close_list) {
1444                 const struct net_device_ops *ops = dev->netdev_ops;
1445
1446                 /*
1447                  *      Call the device specific close. This cannot fail.
1448                  *      Only if device is UP
1449                  *
1450                  *      We allow it to be called even after a DETACH hot-plug
1451                  *      event.
1452                  */
1453                 if (ops->ndo_stop)
1454                         ops->ndo_stop(dev);
1455
1456                 dev->flags &= ~IFF_UP;
1457                 netpoll_poll_enable(dev);
1458         }
1459 }
1460
1461 static void __dev_close(struct net_device *dev)
1462 {
1463         LIST_HEAD(single);
1464
1465         list_add(&dev->close_list, &single);
1466         __dev_close_many(&single);
1467         list_del(&single);
1468 }
1469
1470 void dev_close_many(struct list_head *head, bool unlink)
1471 {
1472         struct net_device *dev, *tmp;
1473
1474         /* Remove the devices that don't need to be closed */
1475         list_for_each_entry_safe(dev, tmp, head, close_list)
1476                 if (!(dev->flags & IFF_UP))
1477                         list_del_init(&dev->close_list);
1478
1479         __dev_close_many(head);
1480
1481         list_for_each_entry_safe(dev, tmp, head, close_list) {
1482                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1483                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1484                 if (unlink)
1485                         list_del_init(&dev->close_list);
1486         }
1487 }
1488 EXPORT_SYMBOL(dev_close_many);
1489
1490 /**
1491  *      dev_close - shutdown an interface.
1492  *      @dev: device to shutdown
1493  *
1494  *      This function moves an active device into down state. A
1495  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1496  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1497  *      chain.
1498  */
1499 void dev_close(struct net_device *dev)
1500 {
1501         if (dev->flags & IFF_UP) {
1502                 LIST_HEAD(single);
1503
1504                 list_add(&dev->close_list, &single);
1505                 dev_close_many(&single, true);
1506                 list_del(&single);
1507         }
1508 }
1509 EXPORT_SYMBOL(dev_close);
1510
1511
1512 /**
1513  *      dev_disable_lro - disable Large Receive Offload on a device
1514  *      @dev: device
1515  *
1516  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1517  *      called under RTNL.  This is needed if received packets may be
1518  *      forwarded to another interface.
1519  */
1520 void dev_disable_lro(struct net_device *dev)
1521 {
1522         struct net_device *lower_dev;
1523         struct list_head *iter;
1524
1525         dev->wanted_features &= ~NETIF_F_LRO;
1526         netdev_update_features(dev);
1527
1528         if (unlikely(dev->features & NETIF_F_LRO))
1529                 netdev_WARN(dev, "failed to disable LRO!\n");
1530
1531         netdev_for_each_lower_dev(dev, lower_dev, iter)
1532                 dev_disable_lro(lower_dev);
1533 }
1534 EXPORT_SYMBOL(dev_disable_lro);
1535
1536 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1537                                    struct net_device *dev)
1538 {
1539         struct netdev_notifier_info info;
1540
1541         netdev_notifier_info_init(&info, dev);
1542         return nb->notifier_call(nb, val, &info);
1543 }
1544
1545 static int dev_boot_phase = 1;
1546
1547 /**
1548  * register_netdevice_notifier - register a network notifier block
1549  * @nb: notifier
1550  *
1551  * Register a notifier to be called when network device events occur.
1552  * The notifier passed is linked into the kernel structures and must
1553  * not be reused until it has been unregistered. A negative errno code
1554  * is returned on a failure.
1555  *
1556  * When registered all registration and up events are replayed
1557  * to the new notifier to allow device to have a race free
1558  * view of the network device list.
1559  */
1560
1561 int register_netdevice_notifier(struct notifier_block *nb)
1562 {
1563         struct net_device *dev;
1564         struct net_device *last;
1565         struct net *net;
1566         int err;
1567
1568         rtnl_lock();
1569         err = raw_notifier_chain_register(&netdev_chain, nb);
1570         if (err)
1571                 goto unlock;
1572         if (dev_boot_phase)
1573                 goto unlock;
1574         for_each_net(net) {
1575                 for_each_netdev(net, dev) {
1576                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1577                         err = notifier_to_errno(err);
1578                         if (err)
1579                                 goto rollback;
1580
1581                         if (!(dev->flags & IFF_UP))
1582                                 continue;
1583
1584                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1585                 }
1586         }
1587
1588 unlock:
1589         rtnl_unlock();
1590         return err;
1591
1592 rollback:
1593         last = dev;
1594         for_each_net(net) {
1595                 for_each_netdev(net, dev) {
1596                         if (dev == last)
1597                                 goto outroll;
1598
1599                         if (dev->flags & IFF_UP) {
1600                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1601                                                         dev);
1602                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1603                         }
1604                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1605                 }
1606         }
1607
1608 outroll:
1609         raw_notifier_chain_unregister(&netdev_chain, nb);
1610         goto unlock;
1611 }
1612 EXPORT_SYMBOL(register_netdevice_notifier);
1613
1614 /**
1615  * unregister_netdevice_notifier - unregister a network notifier block
1616  * @nb: notifier
1617  *
1618  * Unregister a notifier previously registered by
1619  * register_netdevice_notifier(). The notifier is unlinked into the
1620  * kernel structures and may then be reused. A negative errno code
1621  * is returned on a failure.
1622  *
1623  * After unregistering unregister and down device events are synthesized
1624  * for all devices on the device list to the removed notifier to remove
1625  * the need for special case cleanup code.
1626  */
1627
1628 int unregister_netdevice_notifier(struct notifier_block *nb)
1629 {
1630         struct net_device *dev;
1631         struct net *net;
1632         int err;
1633
1634         rtnl_lock();
1635         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1636         if (err)
1637                 goto unlock;
1638
1639         for_each_net(net) {
1640                 for_each_netdev(net, dev) {
1641                         if (dev->flags & IFF_UP) {
1642                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1643                                                         dev);
1644                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1645                         }
1646                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1647                 }
1648         }
1649 unlock:
1650         rtnl_unlock();
1651         return err;
1652 }
1653 EXPORT_SYMBOL(unregister_netdevice_notifier);
1654
1655 /**
1656  *      call_netdevice_notifiers_info - call all network notifier blocks
1657  *      @val: value passed unmodified to notifier function
1658  *      @dev: net_device pointer passed unmodified to notifier function
1659  *      @info: notifier information data
1660  *
1661  *      Call all network notifier blocks.  Parameters and return value
1662  *      are as for raw_notifier_call_chain().
1663  */
1664
1665 static int call_netdevice_notifiers_info(unsigned long val,
1666                                          struct net_device *dev,
1667                                          struct netdev_notifier_info *info)
1668 {
1669         ASSERT_RTNL();
1670         netdev_notifier_info_init(info, dev);
1671         return raw_notifier_call_chain(&netdev_chain, val, info);
1672 }
1673
1674 /**
1675  *      call_netdevice_notifiers - call all network notifier blocks
1676  *      @val: value passed unmodified to notifier function
1677  *      @dev: net_device pointer passed unmodified to notifier function
1678  *
1679  *      Call all network notifier blocks.  Parameters and return value
1680  *      are as for raw_notifier_call_chain().
1681  */
1682
1683 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1684 {
1685         struct netdev_notifier_info info;
1686
1687         return call_netdevice_notifiers_info(val, dev, &info);
1688 }
1689 EXPORT_SYMBOL(call_netdevice_notifiers);
1690
1691 #ifdef CONFIG_NET_INGRESS
1692 static struct static_key ingress_needed __read_mostly;
1693
1694 void net_inc_ingress_queue(void)
1695 {
1696         static_key_slow_inc(&ingress_needed);
1697 }
1698 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1699
1700 void net_dec_ingress_queue(void)
1701 {
1702         static_key_slow_dec(&ingress_needed);
1703 }
1704 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1705 #endif
1706
1707 #ifdef CONFIG_NET_EGRESS
1708 static struct static_key egress_needed __read_mostly;
1709
1710 void net_inc_egress_queue(void)
1711 {
1712         static_key_slow_inc(&egress_needed);
1713 }
1714 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1715
1716 void net_dec_egress_queue(void)
1717 {
1718         static_key_slow_dec(&egress_needed);
1719 }
1720 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1721 #endif
1722
1723 static struct static_key netstamp_needed __read_mostly;
1724 #ifdef HAVE_JUMP_LABEL
1725 static atomic_t netstamp_needed_deferred;
1726 static atomic_t netstamp_wanted;
1727 static void netstamp_clear(struct work_struct *work)
1728 {
1729         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1730         int wanted;
1731
1732         wanted = atomic_add_return(deferred, &netstamp_wanted);
1733         if (wanted > 0)
1734                 static_key_enable(&netstamp_needed);
1735         else
1736                 static_key_disable(&netstamp_needed);
1737 }
1738 static DECLARE_WORK(netstamp_work, netstamp_clear);
1739 #endif
1740
1741 void net_enable_timestamp(void)
1742 {
1743 #ifdef HAVE_JUMP_LABEL
1744         int wanted;
1745
1746         while (1) {
1747                 wanted = atomic_read(&netstamp_wanted);
1748                 if (wanted <= 0)
1749                         break;
1750                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1751                         return;
1752         }
1753         atomic_inc(&netstamp_needed_deferred);
1754         schedule_work(&netstamp_work);
1755 #else
1756         static_key_slow_inc(&netstamp_needed);
1757 #endif
1758 }
1759 EXPORT_SYMBOL(net_enable_timestamp);
1760
1761 void net_disable_timestamp(void)
1762 {
1763 #ifdef HAVE_JUMP_LABEL
1764         int wanted;
1765
1766         while (1) {
1767                 wanted = atomic_read(&netstamp_wanted);
1768                 if (wanted <= 1)
1769                         break;
1770                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1771                         return;
1772         }
1773         atomic_dec(&netstamp_needed_deferred);
1774         schedule_work(&netstamp_work);
1775 #else
1776         static_key_slow_dec(&netstamp_needed);
1777 #endif
1778 }
1779 EXPORT_SYMBOL(net_disable_timestamp);
1780
1781 static inline void net_timestamp_set(struct sk_buff *skb)
1782 {
1783         skb->tstamp = 0;
1784         if (static_key_false(&netstamp_needed))
1785                 __net_timestamp(skb);
1786 }
1787
1788 #define net_timestamp_check(COND, SKB)                  \
1789         if (static_key_false(&netstamp_needed)) {               \
1790                 if ((COND) && !(SKB)->tstamp)   \
1791                         __net_timestamp(SKB);           \
1792         }                                               \
1793
1794 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1795 {
1796         unsigned int len;
1797
1798         if (!(dev->flags & IFF_UP))
1799                 return false;
1800
1801         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1802         if (skb->len <= len)
1803                 return true;
1804
1805         /* if TSO is enabled, we don't care about the length as the packet
1806          * could be forwarded without being segmented before
1807          */
1808         if (skb_is_gso(skb))
1809                 return true;
1810
1811         return false;
1812 }
1813 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1814
1815 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1816 {
1817         int ret = ____dev_forward_skb(dev, skb);
1818
1819         if (likely(!ret)) {
1820                 skb->protocol = eth_type_trans(skb, dev);
1821                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1822         }
1823
1824         return ret;
1825 }
1826 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1827
1828 /**
1829  * dev_forward_skb - loopback an skb to another netif
1830  *
1831  * @dev: destination network device
1832  * @skb: buffer to forward
1833  *
1834  * return values:
1835  *      NET_RX_SUCCESS  (no congestion)
1836  *      NET_RX_DROP     (packet was dropped, but freed)
1837  *
1838  * dev_forward_skb can be used for injecting an skb from the
1839  * start_xmit function of one device into the receive queue
1840  * of another device.
1841  *
1842  * The receiving device may be in another namespace, so
1843  * we have to clear all information in the skb that could
1844  * impact namespace isolation.
1845  */
1846 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1847 {
1848         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1849 }
1850 EXPORT_SYMBOL_GPL(dev_forward_skb);
1851
1852 static inline int deliver_skb(struct sk_buff *skb,
1853                               struct packet_type *pt_prev,
1854                               struct net_device *orig_dev)
1855 {
1856         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1857                 return -ENOMEM;
1858         refcount_inc(&skb->users);
1859         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1860 }
1861
1862 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1863                                           struct packet_type **pt,
1864                                           struct net_device *orig_dev,
1865                                           __be16 type,
1866                                           struct list_head *ptype_list)
1867 {
1868         struct packet_type *ptype, *pt_prev = *pt;
1869
1870         list_for_each_entry_rcu(ptype, ptype_list, list) {
1871                 if (ptype->type != type)
1872                         continue;
1873                 if (pt_prev)
1874                         deliver_skb(skb, pt_prev, orig_dev);
1875                 pt_prev = ptype;
1876         }
1877         *pt = pt_prev;
1878 }
1879
1880 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1881 {
1882         if (!ptype->af_packet_priv || !skb->sk)
1883                 return false;
1884
1885         if (ptype->id_match)
1886                 return ptype->id_match(ptype, skb->sk);
1887         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1888                 return true;
1889
1890         return false;
1891 }
1892
1893 /*
1894  *      Support routine. Sends outgoing frames to any network
1895  *      taps currently in use.
1896  */
1897
1898 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1899 {
1900         struct packet_type *ptype;
1901         struct sk_buff *skb2 = NULL;
1902         struct packet_type *pt_prev = NULL;
1903         struct list_head *ptype_list = &ptype_all;
1904
1905         rcu_read_lock();
1906 again:
1907         list_for_each_entry_rcu(ptype, ptype_list, list) {
1908                 /* Never send packets back to the socket
1909                  * they originated from - MvS (miquels@drinkel.ow.org)
1910                  */
1911                 if (skb_loop_sk(ptype, skb))
1912                         continue;
1913
1914                 if (pt_prev) {
1915                         deliver_skb(skb2, pt_prev, skb->dev);
1916                         pt_prev = ptype;
1917                         continue;
1918                 }
1919
1920                 /* need to clone skb, done only once */
1921                 skb2 = skb_clone(skb, GFP_ATOMIC);
1922                 if (!skb2)
1923                         goto out_unlock;
1924
1925                 net_timestamp_set(skb2);
1926
1927                 /* skb->nh should be correctly
1928                  * set by sender, so that the second statement is
1929                  * just protection against buggy protocols.
1930                  */
1931                 skb_reset_mac_header(skb2);
1932
1933                 if (skb_network_header(skb2) < skb2->data ||
1934                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1935                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1936                                              ntohs(skb2->protocol),
1937                                              dev->name);
1938                         skb_reset_network_header(skb2);
1939                 }
1940
1941                 skb2->transport_header = skb2->network_header;
1942                 skb2->pkt_type = PACKET_OUTGOING;
1943                 pt_prev = ptype;
1944         }
1945
1946         if (ptype_list == &ptype_all) {
1947                 ptype_list = &dev->ptype_all;
1948                 goto again;
1949         }
1950 out_unlock:
1951         if (pt_prev) {
1952                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
1953                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1954                 else
1955                         kfree_skb(skb2);
1956         }
1957         rcu_read_unlock();
1958 }
1959 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1960
1961 /**
1962  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1963  * @dev: Network device
1964  * @txq: number of queues available
1965  *
1966  * If real_num_tx_queues is changed the tc mappings may no longer be
1967  * valid. To resolve this verify the tc mapping remains valid and if
1968  * not NULL the mapping. With no priorities mapping to this
1969  * offset/count pair it will no longer be used. In the worst case TC0
1970  * is invalid nothing can be done so disable priority mappings. If is
1971  * expected that drivers will fix this mapping if they can before
1972  * calling netif_set_real_num_tx_queues.
1973  */
1974 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1975 {
1976         int i;
1977         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1978
1979         /* If TC0 is invalidated disable TC mapping */
1980         if (tc->offset + tc->count > txq) {
1981                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1982                 dev->num_tc = 0;
1983                 return;
1984         }
1985
1986         /* Invalidated prio to tc mappings set to TC0 */
1987         for (i = 1; i < TC_BITMASK + 1; i++) {
1988                 int q = netdev_get_prio_tc_map(dev, i);
1989
1990                 tc = &dev->tc_to_txq[q];
1991                 if (tc->offset + tc->count > txq) {
1992                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1993                                 i, q);
1994                         netdev_set_prio_tc_map(dev, i, 0);
1995                 }
1996         }
1997 }
1998
1999 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2000 {
2001         if (dev->num_tc) {
2002                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2003                 int i;
2004
2005                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2006                         if ((txq - tc->offset) < tc->count)
2007                                 return i;
2008                 }
2009
2010                 return -1;
2011         }
2012
2013         return 0;
2014 }
2015
2016 #ifdef CONFIG_XPS
2017 static DEFINE_MUTEX(xps_map_mutex);
2018 #define xmap_dereference(P)             \
2019         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2020
2021 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2022                              int tci, u16 index)
2023 {
2024         struct xps_map *map = NULL;
2025         int pos;
2026
2027         if (dev_maps)
2028                 map = xmap_dereference(dev_maps->cpu_map[tci]);
2029         if (!map)
2030                 return false;
2031
2032         for (pos = map->len; pos--;) {
2033                 if (map->queues[pos] != index)
2034                         continue;
2035
2036                 if (map->len > 1) {
2037                         map->queues[pos] = map->queues[--map->len];
2038                         break;
2039                 }
2040
2041                 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
2042                 kfree_rcu(map, rcu);
2043                 return false;
2044         }
2045
2046         return true;
2047 }
2048
2049 static bool remove_xps_queue_cpu(struct net_device *dev,
2050                                  struct xps_dev_maps *dev_maps,
2051                                  int cpu, u16 offset, u16 count)
2052 {
2053         int num_tc = dev->num_tc ? : 1;
2054         bool active = false;
2055         int tci;
2056
2057         for (tci = cpu * num_tc; num_tc--; tci++) {
2058                 int i, j;
2059
2060                 for (i = count, j = offset; i--; j++) {
2061                         if (!remove_xps_queue(dev_maps, cpu, j))
2062                                 break;
2063                 }
2064
2065                 active |= i < 0;
2066         }
2067
2068         return active;
2069 }
2070
2071 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2072                                    u16 count)
2073 {
2074         struct xps_dev_maps *dev_maps;
2075         int cpu, i;
2076         bool active = false;
2077
2078         mutex_lock(&xps_map_mutex);
2079         dev_maps = xmap_dereference(dev->xps_maps);
2080
2081         if (!dev_maps)
2082                 goto out_no_maps;
2083
2084         for_each_possible_cpu(cpu)
2085                 active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2086                                                offset, count);
2087
2088         if (!active) {
2089                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2090                 kfree_rcu(dev_maps, rcu);
2091         }
2092
2093         for (i = offset + (count - 1); count--; i--)
2094                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2095                                              NUMA_NO_NODE);
2096
2097 out_no_maps:
2098         mutex_unlock(&xps_map_mutex);
2099 }
2100
2101 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2102 {
2103         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2104 }
2105
2106 static struct xps_map *expand_xps_map(struct xps_map *map,
2107                                       int cpu, u16 index)
2108 {
2109         struct xps_map *new_map;
2110         int alloc_len = XPS_MIN_MAP_ALLOC;
2111         int i, pos;
2112
2113         for (pos = 0; map && pos < map->len; pos++) {
2114                 if (map->queues[pos] != index)
2115                         continue;
2116                 return map;
2117         }
2118
2119         /* Need to add queue to this CPU's existing map */
2120         if (map) {
2121                 if (pos < map->alloc_len)
2122                         return map;
2123
2124                 alloc_len = map->alloc_len * 2;
2125         }
2126
2127         /* Need to allocate new map to store queue on this CPU's map */
2128         new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2129                                cpu_to_node(cpu));
2130         if (!new_map)
2131                 return NULL;
2132
2133         for (i = 0; i < pos; i++)
2134                 new_map->queues[i] = map->queues[i];
2135         new_map->alloc_len = alloc_len;
2136         new_map->len = pos;
2137
2138         return new_map;
2139 }
2140
2141 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2142                         u16 index)
2143 {
2144         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2145         int i, cpu, tci, numa_node_id = -2;
2146         int maps_sz, num_tc = 1, tc = 0;
2147         struct xps_map *map, *new_map;
2148         bool active = false;
2149
2150         if (dev->num_tc) {
2151                 num_tc = dev->num_tc;
2152                 tc = netdev_txq_to_tc(dev, index);
2153                 if (tc < 0)
2154                         return -EINVAL;
2155         }
2156
2157         maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2158         if (maps_sz < L1_CACHE_BYTES)
2159                 maps_sz = L1_CACHE_BYTES;
2160
2161         mutex_lock(&xps_map_mutex);
2162
2163         dev_maps = xmap_dereference(dev->xps_maps);
2164
2165         /* allocate memory for queue storage */
2166         for_each_cpu_and(cpu, cpu_online_mask, mask) {
2167                 if (!new_dev_maps)
2168                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2169                 if (!new_dev_maps) {
2170                         mutex_unlock(&xps_map_mutex);
2171                         return -ENOMEM;
2172                 }
2173
2174                 tci = cpu * num_tc + tc;
2175                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2176                                  NULL;
2177
2178                 map = expand_xps_map(map, cpu, index);
2179                 if (!map)
2180                         goto error;
2181
2182                 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2183         }
2184
2185         if (!new_dev_maps)
2186                 goto out_no_new_maps;
2187
2188         for_each_possible_cpu(cpu) {
2189                 /* copy maps belonging to foreign traffic classes */
2190                 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2191                         /* fill in the new device map from the old device map */
2192                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2193                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2194                 }
2195
2196                 /* We need to explicitly update tci as prevous loop
2197                  * could break out early if dev_maps is NULL.
2198                  */
2199                 tci = cpu * num_tc + tc;
2200
2201                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2202                         /* add queue to CPU maps */
2203                         int pos = 0;
2204
2205                         map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2206                         while ((pos < map->len) && (map->queues[pos] != index))
2207                                 pos++;
2208
2209                         if (pos == map->len)
2210                                 map->queues[map->len++] = index;
2211 #ifdef CONFIG_NUMA
2212                         if (numa_node_id == -2)
2213                                 numa_node_id = cpu_to_node(cpu);
2214                         else if (numa_node_id != cpu_to_node(cpu))
2215                                 numa_node_id = -1;
2216 #endif
2217                 } else if (dev_maps) {
2218                         /* fill in the new device map from the old device map */
2219                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2220                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2221                 }
2222
2223                 /* copy maps belonging to foreign traffic classes */
2224                 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2225                         /* fill in the new device map from the old device map */
2226                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2227                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2228                 }
2229         }
2230
2231         rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2232
2233         /* Cleanup old maps */
2234         if (!dev_maps)
2235                 goto out_no_old_maps;
2236
2237         for_each_possible_cpu(cpu) {
2238                 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2239                         new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2240                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2241                         if (map && map != new_map)
2242                                 kfree_rcu(map, rcu);
2243                 }
2244         }
2245
2246         kfree_rcu(dev_maps, rcu);
2247
2248 out_no_old_maps:
2249         dev_maps = new_dev_maps;
2250         active = true;
2251
2252 out_no_new_maps:
2253         /* update Tx queue numa node */
2254         netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2255                                      (numa_node_id >= 0) ? numa_node_id :
2256                                      NUMA_NO_NODE);
2257
2258         if (!dev_maps)
2259                 goto out_no_maps;
2260
2261         /* removes queue from unused CPUs */
2262         for_each_possible_cpu(cpu) {
2263                 for (i = tc, tci = cpu * num_tc; i--; tci++)
2264                         active |= remove_xps_queue(dev_maps, tci, index);
2265                 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2266                         active |= remove_xps_queue(dev_maps, tci, index);
2267                 for (i = num_tc - tc, tci++; --i; tci++)
2268                         active |= remove_xps_queue(dev_maps, tci, index);
2269         }
2270
2271         /* free map if not active */
2272         if (!active) {
2273                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2274                 kfree_rcu(dev_maps, rcu);
2275         }
2276
2277 out_no_maps:
2278         mutex_unlock(&xps_map_mutex);
2279
2280         return 0;
2281 error:
2282         /* remove any maps that we added */
2283         for_each_possible_cpu(cpu) {
2284                 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2285                         new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2286                         map = dev_maps ?
2287                               xmap_dereference(dev_maps->cpu_map[tci]) :
2288                               NULL;
2289                         if (new_map && new_map != map)
2290                                 kfree(new_map);
2291                 }
2292         }
2293
2294         mutex_unlock(&xps_map_mutex);
2295
2296         kfree(new_dev_maps);
2297         return -ENOMEM;
2298 }
2299 EXPORT_SYMBOL(netif_set_xps_queue);
2300
2301 #endif
2302 void netdev_reset_tc(struct net_device *dev)
2303 {
2304 #ifdef CONFIG_XPS
2305         netif_reset_xps_queues_gt(dev, 0);
2306 #endif
2307         dev->num_tc = 0;
2308         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2309         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2310 }
2311 EXPORT_SYMBOL(netdev_reset_tc);
2312
2313 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2314 {
2315         if (tc >= dev->num_tc)
2316                 return -EINVAL;
2317
2318 #ifdef CONFIG_XPS
2319         netif_reset_xps_queues(dev, offset, count);
2320 #endif
2321         dev->tc_to_txq[tc].count = count;
2322         dev->tc_to_txq[tc].offset = offset;
2323         return 0;
2324 }
2325 EXPORT_SYMBOL(netdev_set_tc_queue);
2326
2327 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2328 {
2329         if (num_tc > TC_MAX_QUEUE)
2330                 return -EINVAL;
2331
2332 #ifdef CONFIG_XPS
2333         netif_reset_xps_queues_gt(dev, 0);
2334 #endif
2335         dev->num_tc = num_tc;
2336         return 0;
2337 }
2338 EXPORT_SYMBOL(netdev_set_num_tc);
2339
2340 /*
2341  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2342  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2343  */
2344 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2345 {
2346         int rc;
2347
2348         if (txq < 1 || txq > dev->num_tx_queues)
2349                 return -EINVAL;
2350
2351         if (dev->reg_state == NETREG_REGISTERED ||
2352             dev->reg_state == NETREG_UNREGISTERING) {
2353                 ASSERT_RTNL();
2354
2355                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2356                                                   txq);
2357                 if (rc)
2358                         return rc;
2359
2360                 if (dev->num_tc)
2361                         netif_setup_tc(dev, txq);
2362
2363                 if (txq < dev->real_num_tx_queues) {
2364                         qdisc_reset_all_tx_gt(dev, txq);
2365 #ifdef CONFIG_XPS
2366                         netif_reset_xps_queues_gt(dev, txq);
2367 #endif
2368                 }
2369         }
2370
2371         dev->real_num_tx_queues = txq;
2372         return 0;
2373 }
2374 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2375
2376 #ifdef CONFIG_SYSFS
2377 /**
2378  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2379  *      @dev: Network device
2380  *      @rxq: Actual number of RX queues
2381  *
2382  *      This must be called either with the rtnl_lock held or before
2383  *      registration of the net device.  Returns 0 on success, or a
2384  *      negative error code.  If called before registration, it always
2385  *      succeeds.
2386  */
2387 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2388 {
2389         int rc;
2390
2391         if (rxq < 1 || rxq > dev->num_rx_queues)
2392                 return -EINVAL;
2393
2394         if (dev->reg_state == NETREG_REGISTERED) {
2395                 ASSERT_RTNL();
2396
2397                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2398                                                   rxq);
2399                 if (rc)
2400                         return rc;
2401         }
2402
2403         dev->real_num_rx_queues = rxq;
2404         return 0;
2405 }
2406 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2407 #endif
2408
2409 /**
2410  * netif_get_num_default_rss_queues - default number of RSS queues
2411  *
2412  * This routine should set an upper limit on the number of RSS queues
2413  * used by default by multiqueue devices.
2414  */
2415 int netif_get_num_default_rss_queues(void)
2416 {
2417         return is_kdump_kernel() ?
2418                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2419 }
2420 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2421
2422 static void __netif_reschedule(struct Qdisc *q)
2423 {
2424         struct softnet_data *sd;
2425         unsigned long flags;
2426
2427         local_irq_save(flags);
2428         sd = this_cpu_ptr(&softnet_data);
2429         q->next_sched = NULL;
2430         *sd->output_queue_tailp = q;
2431         sd->output_queue_tailp = &q->next_sched;
2432         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2433         local_irq_restore(flags);
2434 }
2435
2436 void __netif_schedule(struct Qdisc *q)
2437 {
2438         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2439                 __netif_reschedule(q);
2440 }
2441 EXPORT_SYMBOL(__netif_schedule);
2442
2443 struct dev_kfree_skb_cb {
2444         enum skb_free_reason reason;
2445 };
2446
2447 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2448 {
2449         return (struct dev_kfree_skb_cb *)skb->cb;
2450 }
2451
2452 void netif_schedule_queue(struct netdev_queue *txq)
2453 {
2454         rcu_read_lock();
2455         if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2456                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2457
2458                 __netif_schedule(q);
2459         }
2460         rcu_read_unlock();
2461 }
2462 EXPORT_SYMBOL(netif_schedule_queue);
2463
2464 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2465 {
2466         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2467                 struct Qdisc *q;
2468
2469                 rcu_read_lock();
2470                 q = rcu_dereference(dev_queue->qdisc);
2471                 __netif_schedule(q);
2472                 rcu_read_unlock();
2473         }
2474 }
2475 EXPORT_SYMBOL(netif_tx_wake_queue);
2476
2477 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2478 {
2479         unsigned long flags;
2480
2481         if (unlikely(!skb))
2482                 return;
2483
2484         if (likely(refcount_read(&skb->users) == 1)) {
2485                 smp_rmb();
2486                 refcount_set(&skb->users, 0);
2487         } else if (likely(!refcount_dec_and_test(&skb->users))) {
2488                 return;
2489         }
2490         get_kfree_skb_cb(skb)->reason = reason;
2491         local_irq_save(flags);
2492         skb->next = __this_cpu_read(softnet_data.completion_queue);
2493         __this_cpu_write(softnet_data.completion_queue, skb);
2494         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2495         local_irq_restore(flags);
2496 }
2497 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2498
2499 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2500 {
2501         if (in_irq() || irqs_disabled())
2502                 __dev_kfree_skb_irq(skb, reason);
2503         else
2504                 dev_kfree_skb(skb);
2505 }
2506 EXPORT_SYMBOL(__dev_kfree_skb_any);
2507
2508
2509 /**
2510  * netif_device_detach - mark device as removed
2511  * @dev: network device
2512  *
2513  * Mark device as removed from system and therefore no longer available.
2514  */
2515 void netif_device_detach(struct net_device *dev)
2516 {
2517         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2518             netif_running(dev)) {
2519                 netif_tx_stop_all_queues(dev);
2520         }
2521 }
2522 EXPORT_SYMBOL(netif_device_detach);
2523
2524 /**
2525  * netif_device_attach - mark device as attached
2526  * @dev: network device
2527  *
2528  * Mark device as attached from system and restart if needed.
2529  */
2530 void netif_device_attach(struct net_device *dev)
2531 {
2532         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2533             netif_running(dev)) {
2534                 netif_tx_wake_all_queues(dev);
2535                 __netdev_watchdog_up(dev);
2536         }
2537 }
2538 EXPORT_SYMBOL(netif_device_attach);
2539
2540 /*
2541  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2542  * to be used as a distribution range.
2543  */
2544 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2545                   unsigned int num_tx_queues)
2546 {
2547         u32 hash;
2548         u16 qoffset = 0;
2549         u16 qcount = num_tx_queues;
2550
2551         if (skb_rx_queue_recorded(skb)) {
2552                 hash = skb_get_rx_queue(skb);
2553                 while (unlikely(hash >= num_tx_queues))
2554                         hash -= num_tx_queues;
2555                 return hash;
2556         }
2557
2558         if (dev->num_tc) {
2559                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2560
2561                 qoffset = dev->tc_to_txq[tc].offset;
2562                 qcount = dev->tc_to_txq[tc].count;
2563         }
2564
2565         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2566 }
2567 EXPORT_SYMBOL(__skb_tx_hash);
2568
2569 static void skb_warn_bad_offload(const struct sk_buff *skb)
2570 {
2571         static const netdev_features_t null_features;
2572         struct net_device *dev = skb->dev;
2573         const char *name = "";
2574
2575         if (!net_ratelimit())
2576                 return;
2577
2578         if (dev) {
2579                 if (dev->dev.parent)
2580                         name = dev_driver_string(dev->dev.parent);
2581                 else
2582                         name = netdev_name(dev);
2583         }
2584         WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2585              "gso_type=%d ip_summed=%d\n",
2586              name, dev ? &dev->features : &null_features,
2587              skb->sk ? &skb->sk->sk_route_caps : &null_features,
2588              skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2589              skb_shinfo(skb)->gso_type, skb->ip_summed);
2590 }
2591
2592 /*
2593  * Invalidate hardware checksum when packet is to be mangled, and
2594  * complete checksum manually on outgoing path.
2595  */
2596 int skb_checksum_help(struct sk_buff *skb)
2597 {
2598         __wsum csum;
2599         int ret = 0, offset;
2600
2601         if (skb->ip_summed == CHECKSUM_COMPLETE)
2602                 goto out_set_summed;
2603
2604         if (unlikely(skb_shinfo(skb)->gso_size)) {
2605                 skb_warn_bad_offload(skb);
2606                 return -EINVAL;
2607         }
2608
2609         /* Before computing a checksum, we should make sure no frag could
2610          * be modified by an external entity : checksum could be wrong.
2611          */
2612         if (skb_has_shared_frag(skb)) {
2613                 ret = __skb_linearize(skb);
2614                 if (ret)
2615                         goto out;
2616         }
2617
2618         offset = skb_checksum_start_offset(skb);
2619         BUG_ON(offset >= skb_headlen(skb));
2620         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2621
2622         offset += skb->csum_offset;
2623         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2624
2625         if (skb_cloned(skb) &&
2626             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2627                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2628                 if (ret)
2629                         goto out;
2630         }
2631
2632         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2633 out_set_summed:
2634         skb->ip_summed = CHECKSUM_NONE;
2635 out:
2636         return ret;
2637 }
2638 EXPORT_SYMBOL(skb_checksum_help);
2639
2640 int skb_crc32c_csum_help(struct sk_buff *skb)
2641 {
2642         __le32 crc32c_csum;
2643         int ret = 0, offset, start;
2644
2645         if (skb->ip_summed != CHECKSUM_PARTIAL)
2646                 goto out;
2647
2648         if (unlikely(skb_is_gso(skb)))
2649                 goto out;
2650
2651         /* Before computing a checksum, we should make sure no frag could
2652          * be modified by an external entity : checksum could be wrong.
2653          */
2654         if (unlikely(skb_has_shared_frag(skb))) {
2655                 ret = __skb_linearize(skb);
2656                 if (ret)
2657                         goto out;
2658         }
2659         start = skb_checksum_start_offset(skb);
2660         offset = start + offsetof(struct sctphdr, checksum);
2661         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2662                 ret = -EINVAL;
2663                 goto out;
2664         }
2665         if (skb_cloned(skb) &&
2666             !skb_clone_writable(skb, offset + sizeof(__le32))) {
2667                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2668                 if (ret)
2669                         goto out;
2670         }
2671         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2672                                                   skb->len - start, ~(__u32)0,
2673                                                   crc32c_csum_stub));
2674         *(__le32 *)(skb->data + offset) = crc32c_csum;
2675         skb->ip_summed = CHECKSUM_NONE;
2676         skb->csum_not_inet = 0;
2677 out:
2678         return ret;
2679 }
2680
2681 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2682 {
2683         __be16 type = skb->protocol;
2684
2685         /* Tunnel gso handlers can set protocol to ethernet. */
2686         if (type == htons(ETH_P_TEB)) {
2687                 struct ethhdr *eth;
2688
2689                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2690                         return 0;
2691
2692                 eth = (struct ethhdr *)skb_mac_header(skb);
2693                 type = eth->h_proto;
2694         }
2695
2696         return __vlan_get_protocol(skb, type, depth);
2697 }
2698
2699 /**
2700  *      skb_mac_gso_segment - mac layer segmentation handler.
2701  *      @skb: buffer to segment
2702  *      @features: features for the output path (see dev->features)
2703  */
2704 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2705                                     netdev_features_t features)
2706 {
2707         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2708         struct packet_offload *ptype;
2709         int vlan_depth = skb->mac_len;
2710         __be16 type = skb_network_protocol(skb, &vlan_depth);
2711
2712         if (unlikely(!type))
2713                 return ERR_PTR(-EINVAL);
2714
2715         __skb_pull(skb, vlan_depth);
2716
2717         rcu_read_lock();
2718         list_for_each_entry_rcu(ptype, &offload_base, list) {
2719                 if (ptype->type == type && ptype->callbacks.gso_segment) {
2720                         segs = ptype->callbacks.gso_segment(skb, features);
2721                         break;
2722                 }
2723         }
2724         rcu_read_unlock();
2725
2726         __skb_push(skb, skb->data - skb_mac_header(skb));
2727
2728         return segs;
2729 }
2730 EXPORT_SYMBOL(skb_mac_gso_segment);
2731
2732
2733 /* openvswitch calls this on rx path, so we need a different check.
2734  */
2735 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2736 {
2737         if (tx_path)
2738                 return skb->ip_summed != CHECKSUM_PARTIAL;
2739
2740         return skb->ip_summed == CHECKSUM_NONE;
2741 }
2742
2743 /**
2744  *      __skb_gso_segment - Perform segmentation on skb.
2745  *      @skb: buffer to segment
2746  *      @features: features for the output path (see dev->features)
2747  *      @tx_path: whether it is called in TX path
2748  *
2749  *      This function segments the given skb and returns a list of segments.
2750  *
2751  *      It may return NULL if the skb requires no segmentation.  This is
2752  *      only possible when GSO is used for verifying header integrity.
2753  *
2754  *      Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2755  */
2756 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2757                                   netdev_features_t features, bool tx_path)
2758 {
2759         struct sk_buff *segs;
2760
2761         if (unlikely(skb_needs_check(skb, tx_path))) {
2762                 int err;
2763
2764                 /* We're going to init ->check field in TCP or UDP header */
2765                 err = skb_cow_head(skb, 0);
2766                 if (err < 0)
2767                         return ERR_PTR(err);
2768         }
2769
2770         /* Only report GSO partial support if it will enable us to
2771          * support segmentation on this frame without needing additional
2772          * work.
2773          */
2774         if (features & NETIF_F_GSO_PARTIAL) {
2775                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2776                 struct net_device *dev = skb->dev;
2777
2778                 partial_features |= dev->features & dev->gso_partial_features;
2779                 if (!skb_gso_ok(skb, features | partial_features))
2780                         features &= ~NETIF_F_GSO_PARTIAL;
2781         }
2782
2783         BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2784                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2785
2786         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2787         SKB_GSO_CB(skb)->encap_level = 0;
2788
2789         skb_reset_mac_header(skb);
2790         skb_reset_mac_len(skb);
2791
2792         segs = skb_mac_gso_segment(skb, features);
2793
2794         if (unlikely(skb_needs_check(skb, tx_path)))
2795                 skb_warn_bad_offload(skb);
2796
2797         return segs;
2798 }
2799 EXPORT_SYMBOL(__skb_gso_segment);
2800
2801 /* Take action when hardware reception checksum errors are detected. */
2802 #ifdef CONFIG_BUG
2803 void netdev_rx_csum_fault(struct net_device *dev)
2804 {
2805         if (net_ratelimit()) {
2806                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2807                 dump_stack();
2808         }
2809 }
2810 EXPORT_SYMBOL(netdev_rx_csum_fault);
2811 #endif
2812
2813 /* Actually, we should eliminate this check as soon as we know, that:
2814  * 1. IOMMU is present and allows to map all the memory.
2815  * 2. No high memory really exists on this machine.
2816  */
2817
2818 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2819 {
2820 #ifdef CONFIG_HIGHMEM
2821         int i;
2822
2823         if (!(dev->features & NETIF_F_HIGHDMA)) {
2824                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2825                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2826
2827                         if (PageHighMem(skb_frag_page(frag)))
2828                                 return 1;
2829                 }
2830         }
2831
2832         if (PCI_DMA_BUS_IS_PHYS) {
2833                 struct device *pdev = dev->dev.parent;
2834
2835                 if (!pdev)
2836                         return 0;
2837                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2838                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2839                         dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2840
2841                         if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2842                                 return 1;
2843                 }
2844         }
2845 #endif
2846         return 0;
2847 }
2848
2849 /* If MPLS offload request, verify we are testing hardware MPLS features
2850  * instead of standard features for the netdev.
2851  */
2852 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2853 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2854                                            netdev_features_t features,
2855                                            __be16 type)
2856 {
2857         if (eth_p_mpls(type))
2858                 features &= skb->dev->mpls_features;
2859
2860         return features;
2861 }
2862 #else
2863 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2864                                            netdev_features_t features,
2865                                            __be16 type)
2866 {
2867         return features;
2868 }
2869 #endif
2870
2871 static netdev_features_t harmonize_features(struct sk_buff *skb,
2872         netdev_features_t features)
2873 {
2874         int tmp;
2875         __be16 type;
2876
2877         type = skb_network_protocol(skb, &tmp);
2878         features = net_mpls_features(skb, features, type);
2879
2880         if (skb->ip_summed != CHECKSUM_NONE &&
2881             !can_checksum_protocol(features, type)) {
2882                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2883         }
2884         if (illegal_highdma(skb->dev, skb))
2885                 features &= ~NETIF_F_SG;
2886
2887         return features;
2888 }
2889
2890 netdev_features_t passthru_features_check(struct sk_buff *skb,
2891                                           struct net_device *dev,
2892                                           netdev_features_t features)
2893 {
2894         return features;
2895 }
2896 EXPORT_SYMBOL(passthru_features_check);
2897
2898 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2899                                              struct net_device *dev,
2900                                              netdev_features_t features)
2901 {
2902         return vlan_features_check(skb, features);
2903 }
2904
2905 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2906                                             struct net_device *dev,
2907                                             netdev_features_t features)
2908 {
2909         u16 gso_segs = skb_shinfo(skb)->gso_segs;
2910
2911         if (gso_segs > dev->gso_max_segs)
2912                 return features & ~NETIF_F_GSO_MASK;
2913
2914         /* Support for GSO partial features requires software
2915          * intervention before we can actually process the packets
2916          * so we need to strip support for any partial features now
2917          * and we can pull them back in after we have partially
2918          * segmented the frame.
2919          */
2920         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2921                 features &= ~dev->gso_partial_features;
2922
2923         /* Make sure to clear the IPv4 ID mangling feature if the
2924          * IPv4 header has the potential to be fragmented.
2925          */
2926         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2927                 struct iphdr *iph = skb->encapsulation ?
2928                                     inner_ip_hdr(skb) : ip_hdr(skb);
2929
2930                 if (!(iph->frag_off & htons(IP_DF)))
2931                         features &= ~NETIF_F_TSO_MANGLEID;
2932         }
2933
2934         return features;
2935 }
2936
2937 netdev_features_t netif_skb_features(struct sk_buff *skb)
2938 {
2939         struct net_device *dev = skb->dev;
2940         netdev_features_t features = dev->features;
2941
2942         if (skb_is_gso(skb))
2943                 features = gso_features_check(skb, dev, features);
2944
2945         /* If encapsulation offload request, verify we are testing
2946          * hardware encapsulation features instead of standard
2947          * features for the netdev
2948          */
2949         if (skb->encapsulation)
2950                 features &= dev->hw_enc_features;
2951
2952         if (skb_vlan_tagged(skb))
2953                 features = netdev_intersect_features(features,
2954                                                      dev->vlan_features |
2955                                                      NETIF_F_HW_VLAN_CTAG_TX |
2956                                                      NETIF_F_HW_VLAN_STAG_TX);
2957
2958         if (dev->netdev_ops->ndo_features_check)
2959                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2960                                                                 features);
2961         else
2962                 features &= dflt_features_check(skb, dev, features);
2963
2964         return harmonize_features(skb, features);
2965 }
2966 EXPORT_SYMBOL(netif_skb_features);
2967
2968 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2969                     struct netdev_queue *txq, bool more)
2970 {
2971         unsigned int len;
2972         int rc;
2973
2974         if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2975                 dev_queue_xmit_nit(skb, dev);
2976
2977         len = skb->len;
2978         trace_net_dev_start_xmit(skb, dev);
2979         rc = netdev_start_xmit(skb, dev, txq, more);
2980         trace_net_dev_xmit(skb, rc, dev, len);
2981
2982         return rc;
2983 }
2984
2985 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2986                                     struct netdev_queue *txq, int *ret)
2987 {
2988         struct sk_buff *skb = first;
2989         int rc = NETDEV_TX_OK;
2990
2991         while (skb) {
2992                 struct sk_buff *next = skb->next;
2993
2994                 skb->next = NULL;
2995                 rc = xmit_one(skb, dev, txq, next != NULL);
2996                 if (unlikely(!dev_xmit_complete(rc))) {
2997                         skb->next = next;
2998                         goto out;
2999                 }
3000
3001                 skb = next;
3002                 if (netif_xmit_stopped(txq) && skb) {
3003                         rc = NETDEV_TX_BUSY;
3004                         break;
3005                 }
3006         }
3007
3008 out:
3009         *ret = rc;
3010         return skb;
3011 }
3012
3013 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3014                                           netdev_features_t features)
3015 {
3016         if (skb_vlan_tag_present(skb) &&
3017             !vlan_hw_offload_capable(features, skb->vlan_proto))
3018                 skb = __vlan_hwaccel_push_inside(skb);
3019         return skb;
3020 }
3021
3022 int skb_csum_hwoffload_help(struct sk_buff *skb,
3023                             const netdev_features_t features)
3024 {
3025         if (unlikely(skb->csum_not_inet))
3026                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3027                         skb_crc32c_csum_help(skb);
3028
3029         return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3030 }
3031 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3032
3033 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
3034 {
3035         netdev_features_t features;
3036
3037         features = netif_skb_features(skb);
3038         skb = validate_xmit_vlan(skb, features);
3039         if (unlikely(!skb))
3040                 goto out_null;
3041
3042         if (netif_needs_gso(skb, features)) {
3043                 struct sk_buff *segs;
3044
3045                 segs = skb_gso_segment(skb, features);
3046                 if (IS_ERR(segs)) {
3047                         goto out_kfree_skb;
3048                 } else if (segs) {
3049                         consume_skb(skb);
3050                         skb = segs;
3051                 }
3052         } else {
3053                 if (skb_needs_linearize(skb, features) &&
3054                     __skb_linearize(skb))
3055                         goto out_kfree_skb;
3056
3057                 if (validate_xmit_xfrm(skb, features))
3058                         goto out_kfree_skb;
3059
3060                 /* If packet is not checksummed and device does not
3061                  * support checksumming for this protocol, complete
3062                  * checksumming here.
3063                  */
3064                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3065                         if (skb->encapsulation)
3066                                 skb_set_inner_transport_header(skb,
3067                                                                skb_checksum_start_offset(skb));
3068                         else
3069                                 skb_set_transport_header(skb,
3070                                                          skb_checksum_start_offset(skb));
3071                         if (skb_csum_hwoffload_help(skb, features))
3072                                 goto out_kfree_skb;
3073                 }
3074         }
3075
3076         return skb;
3077
3078 out_kfree_skb:
3079         kfree_skb(skb);
3080 out_null:
3081         atomic_long_inc(&dev->tx_dropped);
3082         return NULL;
3083 }
3084
3085 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3086 {
3087         struct sk_buff *next, *head = NULL, *tail;
3088
3089         for (; skb != NULL; skb = next) {
3090                 next = skb->next;
3091                 skb->next = NULL;
3092
3093                 /* in case skb wont be segmented, point to itself */
3094                 skb->prev = skb;
3095
3096                 skb = validate_xmit_skb(skb, dev);
3097                 if (!skb)
3098                         continue;
3099
3100                 if (!head)
3101                         head = skb;
3102                 else
3103                         tail->next = skb;
3104                 /* If skb was segmented, skb->prev points to
3105                  * the last segment. If not, it still contains skb.
3106                  */
3107                 tail = skb->prev;
3108         }
3109         return head;
3110 }
3111 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3112
3113 static void qdisc_pkt_len_init(struct sk_buff *skb)
3114 {
3115         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3116
3117         qdisc_skb_cb(skb)->pkt_len = skb->len;
3118
3119         /* To get more precise estimation of bytes sent on wire,
3120          * we add to pkt_len the headers size of all segments
3121          */
3122         if (shinfo->gso_size)  {
3123                 unsigned int hdr_len;
3124                 u16 gso_segs = shinfo->gso_segs;
3125
3126                 /* mac layer + network layer */
3127                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3128
3129                 /* + transport layer */
3130                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3131                         hdr_len += tcp_hdrlen(skb);
3132                 else
3133                         hdr_len += sizeof(struct udphdr);
3134
3135                 if (shinfo->gso_type & SKB_GSO_DODGY)
3136                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3137                                                 shinfo->gso_size);
3138
3139                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3140         }
3141 }
3142
3143 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3144                                  struct net_device *dev,
3145                                  struct netdev_queue *txq)
3146 {
3147         spinlock_t *root_lock = qdisc_lock(q);
3148         struct sk_buff *to_free = NULL;
3149         bool contended;
3150         int rc;
3151
3152         qdisc_calculate_pkt_len(skb, q);
3153         /*
3154          * Heuristic to force contended enqueues to serialize on a
3155          * separate lock before trying to get qdisc main lock.
3156          * This permits qdisc->running owner to get the lock more
3157          * often and dequeue packets faster.
3158          */
3159         contended = qdisc_is_running(q);
3160         if (unlikely(contended))
3161                 spin_lock(&q->busylock);
3162
3163         spin_lock(root_lock);
3164         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3165                 __qdisc_drop(skb, &to_free);
3166                 rc = NET_XMIT_DROP;
3167         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3168                    qdisc_run_begin(q)) {
3169                 /*
3170                  * This is a work-conserving queue; there are no old skbs
3171                  * waiting to be sent out; and the qdisc is not running -
3172                  * xmit the skb directly.
3173                  */
3174
3175                 qdisc_bstats_update(q, skb);
3176
3177                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3178                         if (unlikely(contended)) {
3179                                 spin_unlock(&q->busylock);
3180                                 contended = false;
3181                         }
3182                         __qdisc_run(q);
3183                 } else
3184                         qdisc_run_end(q);
3185
3186                 rc = NET_XMIT_SUCCESS;
3187         } else {
3188                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3189                 if (qdisc_run_begin(q)) {
3190                         if (unlikely(contended)) {
3191                                 spin_unlock(&q->busylock);
3192                                 contended = false;
3193                         }
3194                         __qdisc_run(q);
3195                 }
3196         }
3197         spin_unlock(root_lock);
3198         if (unlikely(to_free))
3199                 kfree_skb_list(to_free);
3200         if (unlikely(contended))
3201                 spin_unlock(&q->busylock);
3202         return rc;
3203 }
3204
3205 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3206 static void skb_update_prio(struct sk_buff *skb)
3207 {
3208         struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3209
3210         if (!skb->priority && skb->sk && map) {
3211                 unsigned int prioidx =
3212                         sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3213
3214                 if (prioidx < map->priomap_len)
3215                         skb->priority = map->priomap[prioidx];
3216         }
3217 }
3218 #else
3219 #define skb_update_prio(skb)
3220 #endif
3221
3222 DEFINE_PER_CPU(int, xmit_recursion);
3223 EXPORT_SYMBOL(xmit_recursion);
3224
3225 /**
3226  *      dev_loopback_xmit - loop back @skb
3227  *      @net: network namespace this loopback is happening in
3228  *      @sk:  sk needed to be a netfilter okfn
3229  *      @skb: buffer to transmit
3230  */
3231 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3232 {
3233         skb_reset_mac_header(skb);
3234         __skb_pull(skb, skb_network_offset(skb));
3235         skb->pkt_type = PACKET_LOOPBACK;
3236         skb->ip_summed = CHECKSUM_UNNECESSARY;
3237         WARN_ON(!skb_dst(skb));
3238         skb_dst_force(skb);
3239         netif_rx_ni(skb);
3240         return 0;
3241 }
3242 EXPORT_SYMBOL(dev_loopback_xmit);
3243
3244 #ifdef CONFIG_NET_EGRESS
3245 static struct sk_buff *
3246 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3247 {
3248         struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3249         struct tcf_result cl_res;
3250
3251         if (!cl)
3252                 return skb;
3253
3254         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3255         qdisc_bstats_cpu_update(cl->q, skb);
3256
3257         switch (tcf_classify(skb, cl, &cl_res, false)) {
3258         case TC_ACT_OK:
3259         case TC_ACT_RECLASSIFY:
3260                 skb->tc_index = TC_H_MIN(cl_res.classid);
3261                 break;
3262         case TC_ACT_SHOT:
3263                 qdisc_qstats_cpu_drop(cl->q);
3264                 *ret = NET_XMIT_DROP;
3265                 kfree_skb(skb);
3266                 return NULL;
3267         case TC_ACT_STOLEN:
3268         case TC_ACT_QUEUED:
3269         case TC_ACT_TRAP:
3270                 *ret = NET_XMIT_SUCCESS;
3271                 consume_skb(skb);
3272                 return NULL;
3273         case TC_ACT_REDIRECT:
3274                 /* No need to push/pop skb's mac_header here on egress! */
3275                 skb_do_redirect(skb);
3276                 *ret = NET_XMIT_SUCCESS;
3277                 return NULL;
3278         default:
3279                 break;
3280         }
3281
3282         return skb;
3283 }
3284 #endif /* CONFIG_NET_EGRESS */
3285
3286 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3287 {
3288 #ifdef CONFIG_XPS
3289         struct xps_dev_maps *dev_maps;
3290         struct xps_map *map;
3291         int queue_index = -1;
3292
3293         rcu_read_lock();
3294         dev_maps = rcu_dereference(dev->xps_maps);
3295         if (dev_maps) {
3296                 unsigned int tci = skb->sender_cpu - 1;
3297
3298                 if (dev->num_tc) {
3299                         tci *= dev->num_tc;
3300                         tci += netdev_get_prio_tc_map(dev, skb->priority);
3301                 }
3302
3303                 map = rcu_dereference(dev_maps->cpu_map[tci]);
3304                 if (map) {
3305                         if (map->len == 1)
3306                                 queue_index = map->queues[0];
3307                         else
3308                                 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3309                                                                            map->len)];
3310                         if (unlikely(queue_index >= dev->real_num_tx_queues))
3311                                 queue_index = -1;
3312                 }
3313         }
3314         rcu_read_unlock();
3315
3316         return queue_index;
3317 #else
3318         return -1;
3319 #endif
3320 }
3321
3322 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3323 {
3324         struct sock *sk = skb->sk;
3325         int queue_index = sk_tx_queue_get(sk);
3326
3327         if (queue_index < 0 || skb->ooo_okay ||
3328             queue_index >= dev->real_num_tx_queues) {
3329                 int new_index = get_xps_queue(dev, skb);
3330
3331                 if (new_index < 0)
3332                         new_index = skb_tx_hash(dev, skb);
3333
3334                 if (queue_index != new_index && sk &&
3335                     sk_fullsock(sk) &&
3336                     rcu_access_pointer(sk->sk_dst_cache))
3337                         sk_tx_queue_set(sk, new_index);
3338
3339                 queue_index = new_index;
3340         }
3341
3342         return queue_index;
3343 }
3344
3345 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3346                                     struct sk_buff *skb,
3347                                     void *accel_priv)
3348 {
3349         int queue_index = 0;
3350
3351 #ifdef CONFIG_XPS
3352         u32 sender_cpu = skb->sender_cpu - 1;
3353
3354         if (sender_cpu >= (u32)NR_CPUS)
3355                 skb->sender_cpu = raw_smp_processor_id() + 1;
3356 #endif
3357
3358         if (dev->real_num_tx_queues != 1) {
3359                 const struct net_device_ops *ops = dev->netdev_ops;
3360
3361                 if (ops->ndo_select_queue)
3362                         queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3363                                                             __netdev_pick_tx);
3364                 else
3365                         queue_index = __netdev_pick_tx(dev, skb);
3366
3367                 if (!accel_priv)
3368                         queue_index = netdev_cap_txqueue(dev, queue_index);
3369         }
3370
3371         skb_set_queue_mapping(skb, queue_index);
3372         return netdev_get_tx_queue(dev, queue_index);
3373 }
3374
3375 /**
3376  *      __dev_queue_xmit - transmit a buffer
3377  *      @skb: buffer to transmit
3378  *      @accel_priv: private data used for L2 forwarding offload
3379  *
3380  *      Queue a buffer for transmission to a network device. The caller must
3381  *      have set the device and priority and built the buffer before calling
3382  *      this function. The function can be called from an interrupt.
3383  *
3384  *      A negative errno code is returned on a failure. A success does not
3385  *      guarantee the frame will be transmitted as it may be dropped due
3386  *      to congestion or traffic shaping.
3387  *
3388  * -----------------------------------------------------------------------------------
3389  *      I notice this method can also return errors from the queue disciplines,
3390  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3391  *      be positive.
3392  *
3393  *      Regardless of the return value, the skb is consumed, so it is currently
3394  *      difficult to retry a send to this method.  (You can bump the ref count
3395  *      before sending to hold a reference for retry if you are careful.)
3396  *
3397  *      When calling this method, interrupts MUST be enabled.  This is because
3398  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3399  *          --BLG
3400  */
3401 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3402 {
3403         struct net_device *dev = skb->dev;
3404         struct netdev_queue *txq;
3405         struct Qdisc *q;
3406         int rc = -ENOMEM;
3407
3408         skb_reset_mac_header(skb);
3409
3410         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3411                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3412
3413         /* Disable soft irqs for various locks below. Also
3414          * stops preemption for RCU.
3415          */
3416         rcu_read_lock_bh();
3417
3418         skb_update_prio(skb);
3419
3420         qdisc_pkt_len_init(skb);
3421 #ifdef CONFIG_NET_CLS_ACT
3422         skb->tc_at_ingress = 0;
3423 # ifdef CONFIG_NET_EGRESS
3424         if (static_key_false(&egress_needed)) {
3425                 skb = sch_handle_egress(skb, &rc, dev);
3426                 if (!skb)
3427                         goto out;
3428         }
3429 # endif
3430 #endif
3431         /* If device/qdisc don't need skb->dst, release it right now while
3432          * its hot in this cpu cache.
3433          */
3434         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3435                 skb_dst_drop(skb);
3436         else
3437                 skb_dst_force(skb);
3438
3439         txq = netdev_pick_tx(dev, skb, accel_priv);
3440         q = rcu_dereference_bh(txq->qdisc);
3441
3442         trace_net_dev_queue(skb);
3443         if (q->enqueue) {
3444                 rc = __dev_xmit_skb(skb, q, dev, txq);
3445                 goto out;
3446         }
3447
3448         /* The device has no queue. Common case for software devices:
3449          * loopback, all the sorts of tunnels...
3450
3451          * Really, it is unlikely that netif_tx_lock protection is necessary
3452          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3453          * counters.)
3454          * However, it is possible, that they rely on protection
3455          * made by us here.
3456
3457          * Check this and shot the lock. It is not prone from deadlocks.
3458          *Either shot noqueue qdisc, it is even simpler 8)
3459          */
3460         if (dev->flags & IFF_UP) {
3461                 int cpu = smp_processor_id(); /* ok because BHs are off */
3462
3463                 if (txq->xmit_lock_owner != cpu) {
3464                         if (unlikely(__this_cpu_read(xmit_recursion) >
3465                                      XMIT_RECURSION_LIMIT))
3466                                 goto recursion_alert;
3467
3468                         skb = validate_xmit_skb(skb, dev);
3469                         if (!skb)
3470                                 goto out;
3471
3472                         HARD_TX_LOCK(dev, txq, cpu);
3473
3474                         if (!netif_xmit_stopped(txq)) {
3475                                 __this_cpu_inc(xmit_recursion);
3476                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3477                                 __this_cpu_dec(xmit_recursion);
3478                                 if (dev_xmit_complete(rc)) {
3479                                         HARD_TX_UNLOCK(dev, txq);
3480                                         goto out;
3481                                 }
3482                         }
3483                         HARD_TX_UNLOCK(dev, txq);
3484                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3485                                              dev->name);
3486                 } else {
3487                         /* Recursion is detected! It is possible,
3488                          * unfortunately
3489                          */
3490 recursion_alert:
3491                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3492                                              dev->name);
3493                 }
3494         }
3495
3496         rc = -ENETDOWN;
3497         rcu_read_unlock_bh();
3498
3499         atomic_long_inc(&dev->tx_dropped);
3500         kfree_skb_list(skb);
3501         return rc;
3502 out:
3503         rcu_read_unlock_bh();
3504         return rc;
3505 }
3506
3507 int dev_queue_xmit(struct sk_buff *skb)
3508 {
3509         return __dev_queue_xmit(skb, NULL);
3510 }
3511 EXPORT_SYMBOL(dev_queue_xmit);
3512
3513 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3514 {
3515         return __dev_queue_xmit(skb, accel_priv);
3516 }
3517 EXPORT_SYMBOL(dev_queue_xmit_accel);
3518
3519
3520 /*************************************************************************
3521  *                      Receiver routines
3522  *************************************************************************/
3523
3524 int netdev_max_backlog __read_mostly = 1000;
3525 EXPORT_SYMBOL(netdev_max_backlog);
3526
3527 int netdev_tstamp_prequeue __read_mostly = 1;
3528 int netdev_budget __read_mostly = 300;
3529 unsigned int __read_mostly netdev_budget_usecs = 2000;
3530 int weight_p __read_mostly = 64;           /* old backlog weight */
3531 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3532 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3533 int dev_rx_weight __read_mostly = 64;
3534 int dev_tx_weight __read_mostly = 64;
3535
3536 /* Called with irq disabled */
3537 static inline void ____napi_schedule(struct softnet_data *sd,
3538                                      struct napi_struct *napi)
3539 {
3540         list_add_tail(&napi->poll_list, &sd->poll_list);
3541         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3542 }
3543
3544 #ifdef CONFIG_RPS
3545
3546 /* One global table that all flow-based protocols share. */
3547 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3548 EXPORT_SYMBOL(rps_sock_flow_table);
3549 u32 rps_cpu_mask __read_mostly;
3550 EXPORT_SYMBOL(rps_cpu_mask);
3551
3552 struct static_key rps_needed __read_mostly;
3553 EXPORT_SYMBOL(rps_needed);
3554 struct static_key rfs_needed __read_mostly;
3555 EXPORT_SYMBOL(rfs_needed);
3556
3557 static struct rps_dev_flow *
3558 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3559             struct rps_dev_flow *rflow, u16 next_cpu)
3560 {
3561         if (next_cpu < nr_cpu_ids) {
3562 #ifdef CONFIG_RFS_ACCEL
3563                 struct netdev_rx_queue *rxqueue;
3564                 struct rps_dev_flow_table *flow_table;
3565                 struct rps_dev_flow *old_rflow;
3566                 u32 flow_id;
3567                 u16 rxq_index;
3568                 int rc;
3569
3570                 /* Should we steer this flow to a different hardware queue? */
3571                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3572                     !(dev->features & NETIF_F_NTUPLE))
3573                         goto out;
3574                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3575                 if (rxq_index == skb_get_rx_queue(skb))
3576                         goto out;
3577
3578                 rxqueue = dev->_rx + rxq_index;
3579                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3580                 if (!flow_table)
3581                         goto out;
3582                 flow_id = skb_get_hash(skb) & flow_table->mask;
3583                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3584                                                         rxq_index, flow_id);
3585                 if (rc < 0)
3586                         goto out;
3587                 old_rflow = rflow;
3588                 rflow = &flow_table->flows[flow_id];
3589                 rflow->filter = rc;
3590                 if (old_rflow->filter == rflow->filter)
3591                         old_rflow->filter = RPS_NO_FILTER;
3592         out:
3593 #endif
3594                 rflow->last_qtail =
3595                         per_cpu(softnet_data, next_cpu).input_queue_head;
3596         }
3597
3598         rflow->cpu = next_cpu;
3599         return rflow;
3600 }
3601
3602 /*
3603  * get_rps_cpu is called from netif_receive_skb and returns the target
3604  * CPU from the RPS map of the receiving queue for a given skb.
3605  * rcu_read_lock must be held on entry.
3606  */
3607 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3608                        struct rps_dev_flow **rflowp)
3609 {
3610         const struct rps_sock_flow_table *sock_flow_table;
3611         struct netdev_rx_queue *rxqueue = dev->_rx;
3612         struct rps_dev_flow_table *flow_table;
3613         struct rps_map *map;
3614         int cpu = -1;
3615         u32 tcpu;
3616         u32 hash;
3617
3618         if (skb_rx_queue_recorded(skb)) {
3619                 u16 index = skb_get_rx_queue(skb);
3620
3621                 if (unlikely(index >= dev->real_num_rx_queues)) {
3622                         WARN_ONCE(dev->real_num_rx_queues > 1,
3623                                   "%s received packet on queue %u, but number "
3624                                   "of RX queues is %u\n",
3625                                   dev->name, index, dev->real_num_rx_queues);
3626                         goto done;
3627                 }
3628                 rxqueue += index;
3629         }
3630
3631         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3632
3633         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3634         map = rcu_dereference(rxqueue->rps_map);
3635         if (!flow_table && !map)
3636                 goto done;
3637
3638         skb_reset_network_header(skb);
3639         hash = skb_get_hash(skb);
3640         if (!hash)
3641                 goto done;
3642
3643         sock_flow_table = rcu_dereference(rps_sock_flow_table);
3644         if (flow_table && sock_flow_table) {
3645                 struct rps_dev_flow *rflow;
3646                 u32 next_cpu;
3647                 u32 ident;
3648
3649                 /* First check into global flow table if there is a match */
3650                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3651                 if ((ident ^ hash) & ~rps_cpu_mask)
3652                         goto try_rps;
3653
3654                 next_cpu = ident & rps_cpu_mask;
3655
3656                 /* OK, now we know there is a match,
3657                  * we can look at the local (per receive queue) flow table
3658                  */
3659                 rflow = &flow_table->flows[hash & flow_table->mask];
3660                 tcpu = rflow->cpu;
3661
3662                 /*
3663                  * If the desired CPU (where last recvmsg was done) is
3664                  * different from current CPU (one in the rx-queue flow
3665                  * table entry), switch if one of the following holds:
3666                  *   - Current CPU is unset (>= nr_cpu_ids).
3667                  *   - Current CPU is offline.
3668                  *   - The current CPU's queue tail has advanced beyond the
3669                  *     last packet that was enqueued using this table entry.
3670                  *     This guarantees that all previous packets for the flow
3671                  *     have been dequeued, thus preserving in order delivery.
3672                  */
3673                 if (unlikely(tcpu != next_cpu) &&
3674                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3675                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3676                       rflow->last_qtail)) >= 0)) {
3677                         tcpu = next_cpu;
3678                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3679                 }
3680
3681                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3682                         *rflowp = rflow;
3683                         cpu = tcpu;
3684                         goto done;
3685                 }
3686         }
3687
3688 try_rps:
3689
3690         if (map) {
3691                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3692                 if (cpu_online(tcpu)) {
3693                         cpu = tcpu;
3694                         goto done;
3695                 }
3696         }
3697
3698 done:
3699         return cpu;
3700 }
3701
3702 #ifdef CONFIG_RFS_ACCEL
3703
3704 /**
3705  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3706  * @dev: Device on which the filter was set
3707  * @rxq_index: RX queue index
3708  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3709  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3710  *
3711  * Drivers that implement ndo_rx_flow_steer() should periodically call
3712  * this function for each installed filter and remove the filters for
3713  * which it returns %true.
3714  */
3715 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3716                          u32 flow_id, u16 filter_id)
3717 {
3718         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3719         struct rps_dev_flow_table *flow_table;
3720         struct rps_dev_flow *rflow;
3721         bool expire = true;
3722         unsigned int cpu;
3723
3724         rcu_read_lock();
3725         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3726         if (flow_table && flow_id <= flow_table->mask) {
3727                 rflow = &flow_table->flows[flow_id];
3728                 cpu = ACCESS_ONCE(rflow->cpu);
3729                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3730                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3731                            rflow->last_qtail) <
3732                      (int)(10 * flow_table->mask)))
3733                         expire = false;
3734         }
3735         rcu_read_unlock();
3736         return expire;
3737 }
3738 EXPORT_SYMBOL(rps_may_expire_flow);
3739
3740 #endif /* CONFIG_RFS_ACCEL */
3741
3742 /* Called from hardirq (IPI) context */
3743 static void rps_trigger_softirq(void *data)
3744 {
3745         struct softnet_data *sd = data;
3746
3747         ____napi_schedule(sd, &sd->backlog);
3748         sd->received_rps++;
3749 }
3750
3751 #endif /* CONFIG_RPS */
3752
3753 /*
3754  * Check if this softnet_data structure is another cpu one
3755  * If yes, queue it to our IPI list and return 1
3756  * If no, return 0
3757  */
3758 static int rps_ipi_queued(struct softnet_data *sd)
3759 {
3760 #ifdef CONFIG_RPS
3761         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3762
3763         if (sd != mysd) {
3764                 sd->rps_ipi_next = mysd->rps_ipi_list;
3765                 mysd->rps_ipi_list = sd;
3766
3767                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3768                 return 1;
3769         }
3770 #endif /* CONFIG_RPS */
3771         return 0;
3772 }
3773
3774 #ifdef CONFIG_NET_FLOW_LIMIT
3775 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3776 #endif
3777
3778 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3779 {
3780 #ifdef CONFIG_NET_FLOW_LIMIT
3781         struct sd_flow_limit *fl;
3782         struct softnet_data *sd;
3783         unsigned int old_flow, new_flow;
3784
3785         if (qlen < (netdev_max_backlog >> 1))
3786                 return false;
3787
3788         sd = this_cpu_ptr(&softnet_data);
3789
3790         rcu_read_lock();
3791         fl = rcu_dereference(sd->flow_limit);
3792         if (fl) {
3793                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3794                 old_flow = fl->history[fl->history_head];
3795                 fl->history[fl->history_head] = new_flow;
3796
3797                 fl->history_head++;
3798                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3799
3800                 if (likely(fl->buckets[old_flow]))
3801                         fl->buckets[old_flow]--;
3802
3803                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3804                         fl->count++;
3805                         rcu_read_unlock();
3806                         return true;
3807                 }
3808         }
3809         rcu_read_unlock();
3810 #endif
3811         return false;
3812 }
3813
3814 /*
3815  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3816  * queue (may be a remote CPU queue).
3817  */
3818 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3819                               unsigned int *qtail)
3820 {
3821         struct softnet_data *sd;
3822         unsigned long flags;
3823         unsigned int qlen;
3824
3825         sd = &per_cpu(softnet_data, cpu);
3826
3827         local_irq_save(flags);
3828
3829         rps_lock(sd);
3830         if (!netif_running(skb->dev))
3831                 goto drop;
3832         qlen = skb_queue_len(&sd->input_pkt_queue);
3833         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3834                 if (qlen) {
3835 enqueue:
3836                         __skb_queue_tail(&sd->input_pkt_queue, skb);
3837                         input_queue_tail_incr_save(sd, qtail);
3838                         rps_unlock(sd);
3839                         local_irq_restore(flags);
3840                         return NET_RX_SUCCESS;
3841                 }
3842
3843                 /* Schedule NAPI for backlog device
3844                  * We can use non atomic operation since we own the queue lock
3845                  */
3846                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3847                         if (!rps_ipi_queued(sd))
3848                                 ____napi_schedule(sd, &sd->backlog);
3849                 }
3850                 goto enqueue;
3851         }
3852
3853 drop:
3854         sd->dropped++;
3855         rps_unlock(sd);
3856
3857         local_irq_restore(flags);
3858
3859         atomic_long_inc(&skb->dev->rx_dropped);
3860         kfree_skb(skb);
3861         return NET_RX_DROP;
3862 }
3863
3864 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
3865                                      struct bpf_prog *xdp_prog)
3866 {
3867         struct xdp_buff xdp;
3868         u32 act = XDP_DROP;
3869         void *orig_data;
3870         int hlen, off;
3871         u32 mac_len;
3872
3873         /* Reinjected packets coming from act_mirred or similar should
3874          * not get XDP generic processing.
3875          */
3876         if (skb_cloned(skb))
3877                 return XDP_PASS;
3878
3879         if (skb_linearize(skb))
3880                 goto do_drop;
3881
3882         /* The XDP program wants to see the packet starting at the MAC
3883          * header.
3884          */
3885         mac_len = skb->data - skb_mac_header(skb);
3886         hlen = skb_headlen(skb) + mac_len;
3887         xdp.data = skb->data - mac_len;
3888         xdp.data_end = xdp.data + hlen;
3889         xdp.data_hard_start = skb->data - skb_headroom(skb);
3890         orig_data = xdp.data;
3891
3892         act = bpf_prog_run_xdp(xdp_prog, &xdp);
3893
3894         off = xdp.data - orig_data;
3895         if (off > 0)
3896                 __skb_pull(skb, off);
3897         else if (off < 0)
3898                 __skb_push(skb, -off);
3899         skb->mac_header += off;
3900
3901         switch (act) {
3902         case XDP_REDIRECT:
3903         case XDP_TX:
3904                 __skb_push(skb, mac_len);
3905                 /* fall through */
3906         case XDP_PASS:
3907                 break;
3908
3909         default:
3910                 bpf_warn_invalid_xdp_action(act);
3911                 /* fall through */
3912         case XDP_ABORTED:
3913                 trace_xdp_exception(skb->dev, xdp_prog, act);
3914                 /* fall through */
3915         case XDP_DROP:
3916         do_drop:
3917                 kfree_skb(skb);
3918                 break;
3919         }
3920
3921         return act;
3922 }
3923
3924 /* When doing generic XDP we have to bypass the qdisc layer and the
3925  * network taps in order to match in-driver-XDP behavior.
3926  */
3927 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
3928 {
3929         struct net_device *dev = skb->dev;
3930         struct netdev_queue *txq;
3931         bool free_skb = true;
3932         int cpu, rc;
3933
3934         txq = netdev_pick_tx(dev, skb, NULL);
3935         cpu = smp_processor_id();
3936         HARD_TX_LOCK(dev, txq, cpu);
3937         if (!netif_xmit_stopped(txq)) {
3938                 rc = netdev_start_xmit(skb, dev, txq, 0);
3939                 if (dev_xmit_complete(rc))
3940                         free_skb = false;
3941         }
3942         HARD_TX_UNLOCK(dev, txq);
3943         if (free_skb) {
3944                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
3945                 kfree_skb(skb);
3946         }
3947 }
3948 EXPORT_SYMBOL_GPL(generic_xdp_tx);
3949
3950 static struct static_key generic_xdp_needed __read_mostly;
3951
3952 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
3953 {
3954         if (xdp_prog) {
3955                 u32 act = netif_receive_generic_xdp(skb, xdp_prog);
3956                 int err;
3957
3958                 if (act != XDP_PASS) {
3959                         switch (act) {
3960                         case XDP_REDIRECT:
3961                                 err = xdp_do_generic_redirect(skb->dev, skb,
3962                                                               xdp_prog);
3963                                 if (err)
3964                                         goto out_redir;
3965                         /* fallthru to submit skb */
3966                         case XDP_TX:
3967                                 generic_xdp_tx(skb, xdp_prog);
3968                                 break;
3969                         }
3970                         return XDP_DROP;
3971                 }
3972         }
3973         return XDP_PASS;
3974 out_redir:
3975         kfree_skb(skb);
3976         return XDP_DROP;
3977 }
3978 EXPORT_SYMBOL_GPL(do_xdp_generic);
3979
3980 static int netif_rx_internal(struct sk_buff *skb)
3981 {
3982         int ret;
3983
3984         net_timestamp_check(netdev_tstamp_prequeue, skb);
3985
3986         trace_netif_rx(skb);
3987
3988         if (static_key_false(&generic_xdp_needed)) {
3989                 int ret;
3990
3991                 preempt_disable();
3992                 rcu_read_lock();
3993                 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
3994                 rcu_read_unlock();
3995                 preempt_enable();
3996
3997                 /* Consider XDP consuming the packet a success from
3998                  * the netdev point of view we do not want to count
3999                  * this as an error.
4000                  */
4001                 if (ret != XDP_PASS)
4002                         return NET_RX_SUCCESS;
4003         }
4004
4005 #ifdef CONFIG_RPS
4006         if (static_key_false(&rps_needed)) {
4007                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4008                 int cpu;
4009
4010                 preempt_disable();
4011                 rcu_read_lock();
4012
4013                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4014                 if (cpu < 0)
4015                         cpu = smp_processor_id();
4016
4017                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4018
4019                 rcu_read_unlock();
4020                 preempt_enable();
4021         } else
4022 #endif
4023         {
4024                 unsigned int qtail;
4025
4026                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4027                 put_cpu();
4028         }
4029         return ret;
4030 }
4031
4032 /**
4033  *      netif_rx        -       post buffer to the network code
4034  *      @skb: buffer to post
4035  *
4036  *      This function receives a packet from a device driver and queues it for
4037  *      the upper (protocol) levels to process.  It always succeeds. The buffer
4038  *      may be dropped during processing for congestion control or by the
4039  *      protocol layers.
4040  *
4041  *      return values:
4042  *      NET_RX_SUCCESS  (no congestion)
4043  *      NET_RX_DROP     (packet was dropped)
4044  *
4045  */
4046
4047 int netif_rx(struct sk_buff *skb)
4048 {
4049         trace_netif_rx_entry(skb);
4050
4051         return netif_rx_internal(skb);
4052 }
4053 EXPORT_SYMBOL(netif_rx);
4054
4055 int netif_rx_ni(struct sk_buff *skb)
4056 {
4057         int err;
4058
4059         trace_netif_rx_ni_entry(skb);
4060
4061         preempt_disable();
4062         err = netif_rx_internal(skb);
4063         if (local_softirq_pending())
4064                 do_softirq();
4065         preempt_enable();
4066
4067         return err;
4068 }
4069 EXPORT_SYMBOL(netif_rx_ni);
4070
4071 static __latent_entropy void net_tx_action(struct softirq_action *h)
4072 {
4073         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4074
4075         if (sd->completion_queue) {
4076                 struct sk_buff *clist;
4077
4078                 local_irq_disable();
4079                 clist = sd->completion_queue;
4080                 sd->completion_queue = NULL;
4081                 local_irq_enable();
4082
4083                 while (clist) {
4084                         struct sk_buff *skb = clist;
4085
4086                         clist = clist->next;
4087
4088                         WARN_ON(refcount_read(&skb->users));
4089                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4090                                 trace_consume_skb(skb);
4091                         else
4092                                 trace_kfree_skb(skb, net_tx_action);
4093
4094                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4095                                 __kfree_skb(skb);
4096                         else
4097                                 __kfree_skb_defer(skb);
4098                 }
4099
4100                 __kfree_skb_flush();
4101         }
4102
4103         if (sd->output_queue) {
4104                 struct Qdisc *head;
4105
4106                 local_irq_disable();
4107                 head = sd->output_queue;
4108                 sd->output_queue = NULL;
4109                 sd->output_queue_tailp = &sd->output_queue;
4110                 local_irq_enable();
4111
4112                 while (head) {
4113                         struct Qdisc *q = head;
4114                         spinlock_t *root_lock;
4115
4116                         head = head->next_sched;
4117
4118                         root_lock = qdisc_lock(q);
4119                         spin_lock(root_lock);
4120                         /* We need to make sure head->next_sched is read
4121                          * before clearing __QDISC_STATE_SCHED
4122                          */
4123                         smp_mb__before_atomic();
4124                         clear_bit(__QDISC_STATE_SCHED, &q->state);
4125                         qdisc_run(q);
4126                         spin_unlock(root_lock);
4127                 }
4128         }
4129 }
4130
4131 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4132 /* This hook is defined here for ATM LANE */
4133 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4134                              unsigned char *addr) __read_mostly;
4135 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4136 #endif
4137
4138 static inline struct sk_buff *
4139 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4140                    struct net_device *orig_dev)
4141 {
4142 #ifdef CONFIG_NET_CLS_ACT
4143         struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
4144         struct tcf_result cl_res;
4145
4146         /* If there's at least one ingress present somewhere (so
4147          * we get here via enabled static key), remaining devices
4148          * that are not configured with an ingress qdisc will bail
4149          * out here.
4150          */
4151         if (!cl)
4152                 return skb;
4153         if (*pt_prev) {
4154                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4155                 *pt_prev = NULL;
4156         }
4157
4158         qdisc_skb_cb(skb)->pkt_len = skb->len;
4159         skb->tc_at_ingress = 1;
4160         qdisc_bstats_cpu_update(cl->q, skb);
4161
4162         switch (tcf_classify(skb, cl, &cl_res, false)) {
4163         case TC_ACT_OK:
4164         case TC_ACT_RECLASSIFY:
4165                 skb->tc_index = TC_H_MIN(cl_res.classid);
4166                 break;
4167         case TC_ACT_SHOT:
4168                 qdisc_qstats_cpu_drop(cl->q);
4169                 kfree_skb(skb);
4170                 return NULL;
4171         case TC_ACT_STOLEN:
4172         case TC_ACT_QUEUED:
4173         case TC_ACT_TRAP:
4174                 consume_skb(skb);
4175                 return NULL;
4176         case TC_ACT_REDIRECT:
4177                 /* skb_mac_header check was done by cls/act_bpf, so
4178                  * we can safely push the L2 header back before
4179                  * redirecting to another netdev
4180                  */
4181                 __skb_push(skb, skb->mac_len);
4182                 skb_do_redirect(skb);
4183                 return NULL;
4184         default:
4185                 break;
4186         }
4187 #endif /* CONFIG_NET_CLS_ACT */
4188         return skb;
4189 }
4190
4191 /**
4192  *      netdev_is_rx_handler_busy - check if receive handler is registered
4193  *      @dev: device to check
4194  *
4195  *      Check if a receive handler is already registered for a given device.
4196  *      Return true if there one.
4197  *
4198  *      The caller must hold the rtnl_mutex.
4199  */
4200 bool netdev_is_rx_handler_busy(struct net_device *dev)
4201 {
4202         ASSERT_RTNL();
4203         return dev && rtnl_dereference(dev->rx_handler);
4204 }
4205 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4206
4207 /**
4208  *      netdev_rx_handler_register - register receive handler
4209  *      @dev: device to register a handler for
4210  *      @rx_handler: receive handler to register
4211  *      @rx_handler_data: data pointer that is used by rx handler
4212  *
4213  *      Register a receive handler for a device. This handler will then be
4214  *      called from __netif_receive_skb. A negative errno code is returned
4215  *      on a failure.
4216  *
4217  *      The caller must hold the rtnl_mutex.
4218  *
4219  *      For a general description of rx_handler, see enum rx_handler_result.
4220  */
4221 int netdev_rx_handler_register(struct net_device *dev,
4222                                rx_handler_func_t *rx_handler,
4223                                void *rx_handler_data)
4224 {
4225         if (netdev_is_rx_handler_busy(dev))
4226                 return -EBUSY;
4227
4228         /* Note: rx_handler_data must be set before rx_handler */
4229         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4230         rcu_assign_pointer(dev->rx_handler, rx_handler);
4231
4232         return 0;
4233 }
4234 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4235
4236 /**
4237  *      netdev_rx_handler_unregister - unregister receive handler
4238  *      @dev: device to unregister a handler from
4239  *
4240  *      Unregister a receive handler from a device.
4241  *
4242  *      The caller must hold the rtnl_mutex.
4243  */
4244 void netdev_rx_handler_unregister(struct net_device *dev)
4245 {
4246
4247         ASSERT_RTNL();
4248         RCU_INIT_POINTER(dev->rx_handler, NULL);
4249         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4250          * section has a guarantee to see a non NULL rx_handler_data
4251          * as well.
4252          */
4253         synchronize_net();
4254         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4255 }
4256 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4257
4258 /*
4259  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4260  * the special handling of PFMEMALLOC skbs.
4261  */
4262 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4263 {
4264         switch (skb->protocol) {
4265         case htons(ETH_P_ARP):
4266         case htons(ETH_P_IP):
4267         case htons(ETH_P_IPV6):
4268         case htons(ETH_P_8021Q):
4269         case htons(ETH_P_8021AD):
4270                 return true;
4271         default:
4272                 return false;
4273         }
4274 }
4275
4276 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4277                              int *ret, struct net_device *orig_dev)
4278 {
4279 #ifdef CONFIG_NETFILTER_INGRESS
4280         if (nf_hook_ingress_active(skb)) {
4281                 int ingress_retval;
4282
4283                 if (*pt_prev) {
4284                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
4285                         *pt_prev = NULL;
4286                 }
4287
4288                 rcu_read_lock();
4289                 ingress_retval = nf_hook_ingress(skb);
4290                 rcu_read_unlock();
4291                 return ingress_retval;
4292         }
4293 #endif /* CONFIG_NETFILTER_INGRESS */
4294         return 0;
4295 }
4296
4297 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4298 {
4299         struct packet_type *ptype, *pt_prev;
4300         rx_handler_func_t *rx_handler;
4301         struct net_device *orig_dev;
4302         bool deliver_exact = false;
4303         int ret = NET_RX_DROP;
4304         __be16 type;
4305
4306         net_timestamp_check(!netdev_tstamp_prequeue, skb);
4307
4308         trace_netif_receive_skb(skb);
4309
4310         orig_dev = skb->dev;
4311
4312         skb_reset_network_header(skb);
4313         if (!skb_transport_header_was_set(skb))
4314                 skb_reset_transport_header(skb);
4315         skb_reset_mac_len(skb);
4316
4317         pt_prev = NULL;
4318
4319 another_round:
4320         skb->skb_iif = skb->dev->ifindex;
4321
4322         __this_cpu_inc(softnet_data.processed);
4323
4324         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4325             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4326                 skb = skb_vlan_untag(skb);
4327                 if (unlikely(!skb))
4328                         goto out;
4329         }
4330
4331         if (skb_skip_tc_classify(skb))
4332                 goto skip_classify;
4333
4334         if (pfmemalloc)
4335                 goto skip_taps;
4336
4337         list_for_each_entry_rcu(ptype, &ptype_all, list) {
4338                 if (pt_prev)
4339                         ret = deliver_skb(skb, pt_prev, orig_dev);
4340                 pt_prev = ptype;
4341         }
4342
4343         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4344                 if (pt_prev)
4345                         ret = deliver_skb(skb, pt_prev, orig_dev);
4346                 pt_prev = ptype;
4347         }
4348
4349 skip_taps:
4350 #ifdef CONFIG_NET_INGRESS
4351         if (static_key_false(&ingress_needed)) {
4352                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4353                 if (!skb)
4354                         goto out;
4355
4356                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4357                         goto out;
4358         }
4359 #endif
4360         skb_reset_tc(skb);
4361 skip_classify:
4362         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4363                 goto drop;
4364
4365         if (skb_vlan_tag_present(skb)) {
4366                 if (pt_prev) {
4367                         ret = deliver_skb(skb, pt_prev, orig_dev);
4368                         pt_prev = NULL;
4369                 }
4370                 if (vlan_do_receive(&skb))
4371                         goto another_round;
4372                 else if (unlikely(!skb))
4373                         goto out;
4374         }
4375
4376         rx_handler = rcu_dereference(skb->dev->rx_handler);
4377         if (rx_handler) {
4378                 if (pt_prev) {
4379                         ret = deliver_skb(skb, pt_prev, orig_dev);
4380                         pt_prev = NULL;
4381                 }
4382                 switch (rx_handler(&skb)) {
4383                 case RX_HANDLER_CONSUMED:
4384                         ret = NET_RX_SUCCESS;
4385                         goto out;
4386                 case RX_HANDLER_ANOTHER:
4387                         goto another_round;
4388                 case RX_HANDLER_EXACT:
4389                         deliver_exact = true;
4390                 case RX_HANDLER_PASS:
4391                         break;
4392                 default:
4393                         BUG();
4394                 }
4395         }
4396
4397         if (unlikely(skb_vlan_tag_present(skb))) {
4398                 if (skb_vlan_tag_get_id(skb))
4399                         skb->pkt_type = PACKET_OTHERHOST;
4400                 /* Note: we might in the future use prio bits
4401                  * and set skb->priority like in vlan_do_receive()
4402                  * For the time being, just ignore Priority Code Point
4403                  */
4404                 skb->vlan_tci = 0;
4405         }
4406
4407         type = skb->protocol;
4408
4409         /* deliver only exact match when indicated */
4410         if (likely(!deliver_exact)) {
4411                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4412                                        &ptype_base[ntohs(type) &
4413                                                    PTYPE_HASH_MASK]);
4414         }
4415
4416         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4417                                &orig_dev->ptype_specific);
4418
4419         if (unlikely(skb->dev != orig_dev)) {
4420                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4421                                        &skb->dev->ptype_specific);
4422         }
4423
4424         if (pt_prev) {
4425                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4426                         goto drop;
4427                 else
4428                         ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4429         } else {
4430 drop:
4431                 if (!deliver_exact)
4432                         atomic_long_inc(&skb->dev->rx_dropped);
4433                 else
4434                         atomic_long_inc(&skb->dev->rx_nohandler);
4435                 kfree_skb(skb);
4436                 /* Jamal, now you will not able to escape explaining
4437                  * me how you were going to use this. :-)
4438                  */
4439                 ret = NET_RX_DROP;
4440         }
4441
4442 out:
4443         return ret;
4444 }
4445
4446 static int __netif_receive_skb(struct sk_buff *skb)
4447 {
4448         int ret;
4449
4450         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4451                 unsigned int noreclaim_flag;
4452
4453                 /*
4454                  * PFMEMALLOC skbs are special, they should
4455                  * - be delivered to SOCK_MEMALLOC sockets only
4456                  * - stay away from userspace
4457                  * - have bounded memory usage
4458                  *
4459                  * Use PF_MEMALLOC as this saves us from propagating the allocation
4460                  * context down to all allocation sites.
4461                  */
4462                 noreclaim_flag = memalloc_noreclaim_save();
4463                 ret = __netif_receive_skb_core(skb, true);
4464                 memalloc_noreclaim_restore(noreclaim_flag);
4465         } else
4466                 ret = __netif_receive_skb_core(skb, false);
4467
4468         return ret;
4469 }
4470
4471 static int generic_xdp_install(struct net_device *dev, struct netdev_xdp *xdp)
4472 {
4473         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
4474         struct bpf_prog *new = xdp->prog;
4475         int ret = 0;
4476
4477         switch (xdp->command) {
4478         case XDP_SETUP_PROG:
4479                 rcu_assign_pointer(dev->xdp_prog, new);
4480                 if (old)
4481                         bpf_prog_put(old);
4482
4483                 if (old && !new) {
4484                         static_key_slow_dec(&generic_xdp_needed);
4485                 } else if (new && !old) {
4486                         static_key_slow_inc(&generic_xdp_needed);
4487                         dev_disable_lro(dev);
4488                 }
4489                 break;
4490
4491         case XDP_QUERY_PROG:
4492                 xdp->prog_attached = !!old;
4493                 xdp->prog_id = old ? old->aux->id : 0;
4494                 break;
4495
4496         default:
4497                 ret = -EINVAL;
4498                 break;
4499         }
4500
4501         return ret;
4502 }
4503
4504 static int netif_receive_skb_internal(struct sk_buff *skb)
4505 {
4506         int ret;
4507
4508         net_timestamp_check(netdev_tstamp_prequeue, skb);
4509
4510         if (skb_defer_rx_timestamp(skb))
4511                 return NET_RX_SUCCESS;
4512
4513         if (static_key_false(&generic_xdp_needed)) {
4514                 int ret;
4515
4516                 preempt_disable();
4517                 rcu_read_lock();
4518                 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4519                 rcu_read_unlock();
4520                 preempt_enable();
4521
4522                 if (ret != XDP_PASS)
4523                         return NET_RX_DROP;
4524         }
4525
4526         rcu_read_lock();
4527 #ifdef CONFIG_RPS
4528         if (static_key_false(&rps_needed)) {
4529                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4530                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4531
4532                 if (cpu >= 0) {
4533                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4534                         rcu_read_unlock();
4535                         return ret;
4536                 }
4537         }
4538 #endif
4539         ret = __netif_receive_skb(skb);
4540         rcu_read_unlock();
4541         return ret;
4542 }
4543
4544 /**
4545  *      netif_receive_skb - process receive buffer from network
4546  *      @skb: buffer to process
4547  *
4548  *      netif_receive_skb() is the main receive data processing function.
4549  *      It always succeeds. The buffer may be dropped during processing
4550  *      for congestion control or by the protocol layers.
4551  *
4552  *      This function may only be called from softirq context and interrupts
4553  *      should be enabled.
4554  *
4555  *      Return values (usually ignored):
4556  *      NET_RX_SUCCESS: no congestion
4557  *      NET_RX_DROP: packet was dropped
4558  */
4559 int netif_receive_skb(struct sk_buff *skb)
4560 {
4561         trace_netif_receive_skb_entry(skb);
4562
4563         return netif_receive_skb_internal(skb);
4564 }
4565 EXPORT_SYMBOL(netif_receive_skb);
4566
4567 DEFINE_PER_CPU(struct work_struct, flush_works);
4568
4569 /* Network device is going away, flush any packets still pending */
4570 static void flush_backlog(struct work_struct *work)
4571 {
4572         struct sk_buff *skb, *tmp;
4573         struct softnet_data *sd;
4574
4575         local_bh_disable();
4576         sd = this_cpu_ptr(&softnet_data);
4577
4578         local_irq_disable();
4579         rps_lock(sd);
4580         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4581                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4582                         __skb_unlink(skb, &sd->input_pkt_queue);
4583                         kfree_skb(skb);
4584                         input_queue_head_incr(sd);
4585                 }
4586         }
4587         rps_unlock(sd);
4588         local_irq_enable();
4589
4590         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4591                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4592                         __skb_unlink(skb, &sd->process_queue);
4593                         kfree_skb(skb);
4594                         input_queue_head_incr(sd);
4595                 }
4596         }
4597         local_bh_enable();
4598 }
4599
4600 static void flush_all_backlogs(void)
4601 {
4602         unsigned int cpu;
4603
4604         get_online_cpus();
4605
4606         for_each_online_cpu(cpu)
4607                 queue_work_on(cpu, system_highpri_wq,
4608                               per_cpu_ptr(&flush_works, cpu));
4609
4610         for_each_online_cpu(cpu)
4611                 flush_work(per_cpu_ptr(&flush_works, cpu));
4612
4613         put_online_cpus();
4614 }
4615
4616 static int napi_gro_complete(struct sk_buff *skb)
4617 {
4618         struct packet_offload *ptype;
4619         __be16 type = skb->protocol;
4620         struct list_head *head = &offload_base;
4621         int err = -ENOENT;
4622
4623         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4624
4625         if (NAPI_GRO_CB(skb)->count == 1) {
4626                 skb_shinfo(skb)->gso_size = 0;
4627                 goto out;
4628         }
4629
4630         rcu_read_lock();
4631         list_for_each_entry_rcu(ptype, head, list) {
4632                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4633                         continue;
4634
4635                 err = ptype->callbacks.gro_complete(skb, 0);
4636                 break;
4637         }
4638         rcu_read_unlock();
4639
4640         if (err) {
4641                 WARN_ON(&ptype->list == head);
4642                 kfree_skb(skb);
4643                 return NET_RX_SUCCESS;
4644         }
4645
4646 out:
4647         return netif_receive_skb_internal(skb);
4648 }
4649
4650 /* napi->gro_list contains packets ordered by age.
4651  * youngest packets at the head of it.
4652  * Complete skbs in reverse order to reduce latencies.
4653  */
4654 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4655 {
4656         struct sk_buff *skb, *prev = NULL;
4657
4658         /* scan list and build reverse chain */
4659         for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4660                 skb->prev = prev;
4661                 prev = skb;
4662         }
4663
4664         for (skb = prev; skb; skb = prev) {
4665                 skb->next = NULL;
4666
4667                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4668                         return;
4669
4670                 prev = skb->prev;
4671                 napi_gro_complete(skb);
4672                 napi->gro_count--;
4673         }
4674
4675         napi->gro_list = NULL;
4676 }
4677 EXPORT_SYMBOL(napi_gro_flush);
4678
4679 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4680 {
4681         struct sk_buff *p;
4682         unsigned int maclen = skb->dev->hard_header_len;
4683         u32 hash = skb_get_hash_raw(skb);
4684
4685         for (p = napi->gro_list; p; p = p->next) {
4686                 unsigned long diffs;
4687
4688                 NAPI_GRO_CB(p)->flush = 0;
4689
4690                 if (hash != skb_get_hash_raw(p)) {
4691                         NAPI_GRO_CB(p)->same_flow = 0;
4692                         continue;
4693                 }
4694
4695                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4696                 diffs |= p->vlan_tci ^ skb->vlan_tci;
4697                 diffs |= skb_metadata_dst_cmp(p, skb);
4698                 if (maclen == ETH_HLEN)
4699                         diffs |= compare_ether_header(skb_mac_header(p),
4700                                                       skb_mac_header(skb));
4701                 else if (!diffs)
4702                         diffs = memcmp(skb_mac_header(p),
4703                                        skb_mac_header(skb),
4704                                        maclen);
4705                 NAPI_GRO_CB(p)->same_flow = !diffs;
4706         }
4707 }
4708
4709 static void skb_gro_reset_offset(struct sk_buff *skb)
4710 {
4711         const struct skb_shared_info *pinfo = skb_shinfo(skb);
4712         const skb_frag_t *frag0 = &pinfo->frags[0];
4713
4714         NAPI_GRO_CB(skb)->data_offset = 0;
4715         NAPI_GRO_CB(skb)->frag0 = NULL;
4716         NAPI_GRO_CB(skb)->frag0_len = 0;
4717
4718         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4719             pinfo->nr_frags &&
4720             !PageHighMem(skb_frag_page(frag0))) {
4721                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4722                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4723                                                     skb_frag_size(frag0),
4724                                                     skb->end - skb->tail);
4725         }
4726 }
4727
4728 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4729 {
4730         struct skb_shared_info *pinfo = skb_shinfo(skb);
4731
4732         BUG_ON(skb->end - skb->tail < grow);
4733
4734         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4735
4736         skb->data_len -= grow;
4737         skb->tail += grow;
4738
4739         pinfo->frags[0].page_offset += grow;
4740         skb_frag_size_sub(&pinfo->frags[0], grow);
4741
4742         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4743                 skb_frag_unref(skb, 0);
4744                 memmove(pinfo->frags, pinfo->frags + 1,
4745                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4746         }
4747 }
4748
4749 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4750 {
4751         struct sk_buff **pp = NULL;
4752         struct packet_offload *ptype;
4753         __be16 type = skb->protocol;
4754         struct list_head *head = &offload_base;
4755         int same_flow;
4756         enum gro_result ret;
4757         int grow;
4758
4759         if (netif_elide_gro(skb->dev))
4760                 goto normal;
4761
4762         gro_list_prepare(napi, skb);
4763
4764         rcu_read_lock();
4765         list_for_each_entry_rcu(ptype, head, list) {
4766                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4767                         continue;
4768
4769                 skb_set_network_header(skb, skb_gro_offset(skb));
4770                 skb_reset_mac_len(skb);
4771                 NAPI_GRO_CB(skb)->same_flow = 0;
4772                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
4773                 NAPI_GRO_CB(skb)->free = 0;
4774                 NAPI_GRO_CB(skb)->encap_mark = 0;
4775                 NAPI_GRO_CB(skb)->recursion_counter = 0;
4776                 NAPI_GRO_CB(skb)->is_fou = 0;
4777                 NAPI_GRO_CB(skb)->is_atomic = 1;
4778                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4779
4780                 /* Setup for GRO checksum validation */
4781                 switch (skb->ip_summed) {
4782                 case CHECKSUM_COMPLETE:
4783                         NAPI_GRO_CB(skb)->csum = skb->csum;
4784                         NAPI_GRO_CB(skb)->csum_valid = 1;
4785                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4786                         break;
4787                 case CHECKSUM_UNNECESSARY:
4788                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4789                         NAPI_GRO_CB(skb)->csum_valid = 0;
4790                         break;
4791                 default:
4792                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4793                         NAPI_GRO_CB(skb)->csum_valid = 0;
4794                 }
4795
4796                 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4797                 break;
4798         }
4799         rcu_read_unlock();
4800
4801         if (&ptype->list == head)
4802                 goto normal;
4803
4804         if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
4805                 ret = GRO_CONSUMED;
4806                 goto ok;
4807         }
4808
4809         same_flow = NAPI_GRO_CB(skb)->same_flow;
4810         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4811
4812         if (pp) {
4813                 struct sk_buff *nskb = *pp;
4814
4815                 *pp = nskb->next;
4816                 nskb->next = NULL;
4817                 napi_gro_complete(nskb);
4818                 napi->gro_count--;
4819         }
4820
4821         if (same_flow)
4822                 goto ok;
4823
4824         if (NAPI_GRO_CB(skb)->flush)
4825                 goto normal;
4826
4827         if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4828                 struct sk_buff *nskb = napi->gro_list;
4829
4830                 /* locate the end of the list to select the 'oldest' flow */
4831                 while (nskb->next) {
4832                         pp = &nskb->next;
4833                         nskb = *pp;
4834                 }
4835                 *pp = NULL;
4836                 nskb->next = NULL;
4837                 napi_gro_complete(nskb);
4838         } else {
4839                 napi->gro_count++;
4840         }
4841         NAPI_GRO_CB(skb)->count = 1;
4842         NAPI_GRO_CB(skb)->age = jiffies;
4843         NAPI_GRO_CB(skb)->last = skb;
4844         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4845         skb->next = napi->gro_list;
4846         napi->gro_list = skb;
4847         ret = GRO_HELD;
4848
4849 pull:
4850         grow = skb_gro_offset(skb) - skb_headlen(skb);
4851         if (grow > 0)
4852                 gro_pull_from_frag0(skb, grow);
4853 ok:
4854         return ret;
4855
4856 normal:
4857         ret = GRO_NORMAL;
4858         goto pull;
4859 }
4860
4861 struct packet_offload *gro_find_receive_by_type(__be16 type)
4862 {
4863         struct list_head *offload_head = &offload_base;
4864         struct packet_offload *ptype;
4865
4866         list_for_each_entry_rcu(ptype, offload_head, list) {
4867                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4868                         continue;
4869                 return ptype;
4870         }
4871         return NULL;
4872 }
4873 EXPORT_SYMBOL(gro_find_receive_by_type);
4874
4875 struct packet_offload *gro_find_complete_by_type(__be16 type)
4876 {
4877         struct list_head *offload_head = &offload_base;
4878         struct packet_offload *ptype;
4879
4880         list_for_each_entry_rcu(ptype, offload_head, list) {
4881                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4882                         continue;
4883                 return ptype;
4884         }
4885         return NULL;
4886 }
4887 EXPORT_SYMBOL(gro_find_complete_by_type);
4888
4889 static void napi_skb_free_stolen_head(struct sk_buff *skb)
4890 {
4891         skb_dst_drop(skb);
4892         secpath_reset(skb);
4893         kmem_cache_free(skbuff_head_cache, skb);
4894 }
4895
4896 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4897 {
4898         switch (ret) {
4899         case GRO_NORMAL:
4900                 if (netif_receive_skb_internal(skb))
4901                         ret = GRO_DROP;
4902                 break;
4903
4904         case GRO_DROP:
4905                 kfree_skb(skb);
4906                 break;
4907
4908         case GRO_MERGED_FREE:
4909                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4910                         napi_skb_free_stolen_head(skb);
4911                 else
4912                         __kfree_skb(skb);
4913                 break;
4914
4915         case GRO_HELD:
4916         case GRO_MERGED:
4917         case GRO_CONSUMED:
4918                 break;
4919         }
4920
4921         return ret;
4922 }
4923
4924 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4925 {
4926         skb_mark_napi_id(skb, napi);
4927         trace_napi_gro_receive_entry(skb);
4928
4929         skb_gro_reset_offset(skb);
4930
4931         return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4932 }
4933 EXPORT_SYMBOL(napi_gro_receive);
4934
4935 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4936 {
4937         if (unlikely(skb->pfmemalloc)) {
4938                 consume_skb(skb);
4939                 return;
4940         }
4941         __skb_pull(skb, skb_headlen(skb));
4942         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4943         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4944         skb->vlan_tci = 0;
4945         skb->dev = napi->dev;
4946         skb->skb_iif = 0;
4947         skb->encapsulation = 0;
4948         skb_shinfo(skb)->gso_type = 0;
4949         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4950         secpath_reset(skb);
4951
4952         napi->skb = skb;
4953 }
4954
4955 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4956 {
4957         struct sk_buff *skb = napi->skb;
4958
4959         if (!skb) {
4960                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4961                 if (skb) {
4962                         napi->skb = skb;
4963                         skb_mark_napi_id(skb, napi);
4964                 }
4965         }
4966         return skb;
4967 }
4968 EXPORT_SYMBOL(napi_get_frags);
4969
4970 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4971                                       struct sk_buff *skb,
4972                                       gro_result_t ret)
4973 {
4974         switch (ret) {
4975         case GRO_NORMAL:
4976         case GRO_HELD:
4977                 __skb_push(skb, ETH_HLEN);
4978                 skb->protocol = eth_type_trans(skb, skb->dev);
4979                 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4980                         ret = GRO_DROP;
4981                 break;
4982
4983         case GRO_DROP:
4984                 napi_reuse_skb(napi, skb);
4985                 break;
4986
4987         case GRO_MERGED_FREE:
4988                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4989                         napi_skb_free_stolen_head(skb);
4990                 else
4991                         napi_reuse_skb(napi, skb);
4992                 break;
4993
4994         case GRO_MERGED:
4995         case GRO_CONSUMED:
4996                 break;
4997         }
4998
4999         return ret;
5000 }
5001
5002 /* Upper GRO stack assumes network header starts at gro_offset=0
5003  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5004  * We copy ethernet header into skb->data to have a common layout.
5005  */
5006 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5007 {
5008         struct sk_buff *skb = napi->skb;
5009         const struct ethhdr *eth;
5010         unsigned int hlen = sizeof(*eth);
5011
5012         napi->skb = NULL;
5013
5014         skb_reset_mac_header(skb);
5015         skb_gro_reset_offset(skb);
5016
5017         eth = skb_gro_header_fast(skb, 0);
5018         if (unlikely(skb_gro_header_hard(skb, hlen))) {
5019                 eth = skb_gro_header_slow(skb, hlen, 0);
5020                 if (unlikely(!eth)) {
5021                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5022                                              __func__, napi->dev->name);
5023                         napi_reuse_skb(napi, skb);
5024                         return NULL;
5025                 }
5026         } else {
5027                 gro_pull_from_frag0(skb, hlen);
5028                 NAPI_GRO_CB(skb)->frag0 += hlen;
5029                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
5030         }
5031         __skb_pull(skb, hlen);
5032
5033         /*
5034          * This works because the only protocols we care about don't require
5035          * special handling.
5036          * We'll fix it up properly in napi_frags_finish()
5037          */
5038         skb->protocol = eth->h_proto;
5039
5040         return skb;
5041 }
5042
5043 gro_result_t napi_gro_frags(struct napi_struct *napi)
5044 {
5045         struct sk_buff *skb = napi_frags_skb(napi);
5046
5047         if (!skb)
5048                 return GRO_DROP;
5049
5050         trace_napi_gro_frags_entry(skb);
5051
5052         return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5053 }
5054 EXPORT_SYMBOL(napi_gro_frags);
5055
5056 /* Compute the checksum from gro_offset and return the folded value
5057  * after adding in any pseudo checksum.
5058  */
5059 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5060 {
5061         __wsum wsum;
5062         __sum16 sum;
5063
5064         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5065
5066         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5067         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5068         if (likely(!sum)) {
5069                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5070                     !skb->csum_complete_sw)
5071                         netdev_rx_csum_fault(skb->dev);
5072         }
5073
5074         NAPI_GRO_CB(skb)->csum = wsum;
5075         NAPI_GRO_CB(skb)->csum_valid = 1;
5076
5077         return sum;
5078 }
5079 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5080
5081 static void net_rps_send_ipi(struct softnet_data *remsd)
5082 {
5083 #ifdef CONFIG_RPS
5084         while (remsd) {
5085                 struct softnet_data *next = remsd->rps_ipi_next;
5086
5087                 if (cpu_online(remsd->cpu))
5088                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
5089                 remsd = next;
5090         }
5091 #endif
5092 }
5093
5094 /*
5095  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5096  * Note: called with local irq disabled, but exits with local irq enabled.
5097  */
5098 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5099 {
5100 #ifdef CONFIG_RPS
5101         struct softnet_data *remsd = sd->rps_ipi_list;
5102
5103         if (remsd) {
5104                 sd->rps_ipi_list = NULL;
5105
5106                 local_irq_enable();
5107
5108                 /* Send pending IPI's to kick RPS processing on remote cpus. */
5109                 net_rps_send_ipi(remsd);
5110         } else
5111 #endif
5112                 local_irq_enable();
5113 }
5114
5115 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5116 {
5117 #ifdef CONFIG_RPS
5118         return sd->rps_ipi_list != NULL;
5119 #else
5120         return false;
5121 #endif
5122 }
5123
5124 static int process_backlog(struct napi_struct *napi, int quota)
5125 {
5126         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5127         bool again = true;
5128         int work = 0;
5129
5130         /* Check if we have pending ipi, its better to send them now,
5131          * not waiting net_rx_action() end.
5132          */
5133         if (sd_has_rps_ipi_waiting(sd)) {
5134                 local_irq_disable();
5135                 net_rps_action_and_irq_enable(sd);
5136         }
5137
5138         napi->weight = dev_rx_weight;
5139         while (again) {
5140                 struct sk_buff *skb;
5141
5142                 while ((skb = __skb_dequeue(&sd->process_queue))) {
5143                         rcu_read_lock();
5144                         __netif_receive_skb(skb);
5145                         rcu_read_unlock();
5146                         input_queue_head_incr(sd);
5147                         if (++work >= quota)
5148                                 return work;
5149
5150                 }
5151
5152                 local_irq_disable();
5153                 rps_lock(sd);
5154                 if (skb_queue_empty(&sd->input_pkt_queue)) {
5155                         /*
5156                          * Inline a custom version of __napi_complete().
5157                          * only current cpu owns and manipulates this napi,
5158                          * and NAPI_STATE_SCHED is the only possible flag set
5159                          * on backlog.
5160                          * We can use a plain write instead of clear_bit(),
5161                          * and we dont need an smp_mb() memory barrier.
5162                          */
5163                         napi->state = 0;
5164                         again = false;
5165                 } else {
5166                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
5167                                                    &sd->process_queue);
5168                 }
5169                 rps_unlock(sd);
5170                 local_irq_enable();
5171         }
5172
5173         return work;
5174 }
5175
5176 /**
5177  * __napi_schedule - schedule for receive
5178  * @n: entry to schedule
5179  *
5180  * The entry's receive function will be scheduled to run.
5181  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5182  */
5183 void __napi_schedule(struct napi_struct *n)
5184 {
5185         unsigned long flags;
5186
5187         local_irq_save(flags);
5188         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5189         local_irq_restore(flags);
5190 }
5191 EXPORT_SYMBOL(__napi_schedule);
5192
5193 /**
5194  *      napi_schedule_prep - check if napi can be scheduled
5195  *      @n: napi context
5196  *
5197  * Test if NAPI routine is already running, and if not mark
5198  * it as running.  This is used as a condition variable
5199  * insure only one NAPI poll instance runs.  We also make
5200  * sure there is no pending NAPI disable.
5201  */
5202 bool napi_schedule_prep(struct napi_struct *n)
5203 {
5204         unsigned long val, new;
5205
5206         do {
5207                 val = READ_ONCE(n->state);
5208                 if (unlikely(val & NAPIF_STATE_DISABLE))
5209                         return false;
5210                 new = val | NAPIF_STATE_SCHED;
5211
5212                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5213                  * This was suggested by Alexander Duyck, as compiler
5214                  * emits better code than :
5215                  * if (val & NAPIF_STATE_SCHED)
5216                  *     new |= NAPIF_STATE_MISSED;
5217                  */
5218                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5219                                                    NAPIF_STATE_MISSED;
5220         } while (cmpxchg(&n->state, val, new) != val);
5221
5222         return !(val & NAPIF_STATE_SCHED);
5223 }
5224 EXPORT_SYMBOL(napi_schedule_prep);
5225
5226 /**
5227  * __napi_schedule_irqoff - schedule for receive
5228  * @n: entry to schedule
5229  *
5230  * Variant of __napi_schedule() assuming hard irqs are masked
5231  */
5232 void __napi_schedule_irqoff(struct napi_struct *n)
5233 {
5234         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5235 }
5236 EXPORT_SYMBOL(__napi_schedule_irqoff);
5237
5238 bool napi_complete_done(struct napi_struct *n, int work_done)
5239 {
5240         unsigned long flags, val, new;
5241
5242         /*
5243          * 1) Don't let napi dequeue from the cpu poll list
5244          *    just in case its running on a different cpu.
5245          * 2) If we are busy polling, do nothing here, we have
5246          *    the guarantee we will be called later.
5247          */
5248         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5249                                  NAPIF_STATE_IN_BUSY_POLL)))
5250                 return false;
5251
5252         if (n->gro_list) {
5253                 unsigned long timeout = 0;
5254
5255                 if (work_done)
5256                         timeout = n->dev->gro_flush_timeout;
5257
5258                 if (timeout)
5259                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
5260                                       HRTIMER_MODE_REL_PINNED);
5261                 else
5262                         napi_gro_flush(n, false);
5263         }
5264         if (unlikely(!list_empty(&n->poll_list))) {
5265                 /* If n->poll_list is not empty, we need to mask irqs */
5266                 local_irq_save(flags);
5267                 list_del_init(&n->poll_list);
5268                 local_irq_restore(flags);
5269         }
5270
5271         do {
5272                 val = READ_ONCE(n->state);
5273
5274                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5275
5276                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5277
5278                 /* If STATE_MISSED was set, leave STATE_SCHED set,
5279                  * because we will call napi->poll() one more time.
5280                  * This C code was suggested by Alexander Duyck to help gcc.
5281                  */
5282                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5283                                                     NAPIF_STATE_SCHED;
5284         } while (cmpxchg(&n->state, val, new) != val);
5285
5286         if (unlikely(val & NAPIF_STATE_MISSED)) {
5287                 __napi_schedule(n);
5288                 return false;
5289         }
5290
5291         return true;
5292 }
5293 EXPORT_SYMBOL(napi_complete_done);
5294
5295 /* must be called under rcu_read_lock(), as we dont take a reference */
5296 static struct napi_struct *napi_by_id(unsigned int napi_id)
5297 {
5298         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5299         struct napi_struct *napi;
5300
5301         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5302                 if (napi->napi_id == napi_id)
5303                         return napi;
5304
5305         return NULL;
5306 }
5307
5308 #if defined(CONFIG_NET_RX_BUSY_POLL)
5309
5310 #define BUSY_POLL_BUDGET 8
5311
5312 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5313 {
5314         int rc;
5315
5316         /* Busy polling means there is a high chance device driver hard irq
5317          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5318          * set in napi_schedule_prep().
5319          * Since we are about to call napi->poll() once more, we can safely
5320          * clear NAPI_STATE_MISSED.
5321          *
5322          * Note: x86 could use a single "lock and ..." instruction
5323          * to perform these two clear_bit()
5324          */
5325         clear_bit(NAPI_STATE_MISSED, &napi->state);
5326         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5327
5328         local_bh_disable();
5329
5330         /* All we really want here is to re-enable device interrupts.
5331          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5332          */
5333         rc = napi->poll(napi, BUSY_POLL_BUDGET);
5334         trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5335         netpoll_poll_unlock(have_poll_lock);
5336         if (rc == BUSY_POLL_BUDGET)
5337                 __napi_schedule(napi);
5338         local_bh_enable();
5339 }
5340
5341 void napi_busy_loop(unsigned int napi_id,
5342                     bool (*loop_end)(void *, unsigned long),
5343                     void *loop_end_arg)
5344 {
5345         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
5346         int (*napi_poll)(struct napi_struct *napi, int budget);
5347         void *have_poll_lock = NULL;
5348         struct napi_struct *napi;
5349
5350 restart:
5351         napi_poll = NULL;
5352
5353         rcu_read_lock();
5354
5355         napi = napi_by_id(napi_id);
5356         if (!napi)
5357                 goto out;
5358
5359         preempt_disable();
5360         for (;;) {
5361                 int work = 0;
5362
5363                 local_bh_disable();
5364                 if (!napi_poll) {
5365                         unsigned long val = READ_ONCE(napi->state);
5366
5367                         /* If multiple threads are competing for this napi,
5368                          * we avoid dirtying napi->state as much as we can.
5369                          */
5370                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5371                                    NAPIF_STATE_IN_BUSY_POLL))
5372                                 goto count;
5373                         if (cmpxchg(&napi->state, val,
5374                                     val | NAPIF_STATE_IN_BUSY_POLL |
5375                                           NAPIF_STATE_SCHED) != val)
5376                                 goto count;
5377                         have_poll_lock = netpoll_poll_lock(napi);
5378                         napi_poll = napi->poll;
5379                 }
5380                 work = napi_poll(napi, BUSY_POLL_BUDGET);
5381                 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
5382 count:
5383                 if (work > 0)
5384                         __NET_ADD_STATS(dev_net(napi->dev),
5385                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
5386                 local_bh_enable();
5387
5388                 if (!loop_end || loop_end(loop_end_arg, start_time))
5389                         break;
5390
5391                 if (unlikely(need_resched())) {
5392                         if (napi_poll)
5393                                 busy_poll_stop(napi, have_poll_lock);
5394                         preempt_enable();
5395                         rcu_read_unlock();
5396                         cond_resched();
5397                         if (loop_end(loop_end_arg, start_time))
5398                                 return;
5399                         goto restart;
5400                 }
5401                 cpu_relax();
5402         }
5403         if (napi_poll)
5404                 busy_poll_stop(napi, have_poll_lock);
5405         preempt_enable();
5406 out:
5407         rcu_read_unlock();
5408 }
5409 EXPORT_SYMBOL(napi_busy_loop);
5410
5411 #endif /* CONFIG_NET_RX_BUSY_POLL */
5412
5413 static void napi_hash_add(struct napi_struct *napi)
5414 {
5415         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5416             test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5417                 return;
5418
5419         spin_lock(&napi_hash_lock);
5420
5421         /* 0..NR_CPUS range is reserved for sender_cpu use */
5422         do {
5423                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
5424                         napi_gen_id = MIN_NAPI_ID;
5425         } while (napi_by_id(napi_gen_id));
5426         napi->napi_id = napi_gen_id;
5427
5428         hlist_add_head_rcu(&napi->napi_hash_node,
5429                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5430
5431         spin_unlock(&napi_hash_lock);
5432 }
5433
5434 /* Warning : caller is responsible to make sure rcu grace period
5435  * is respected before freeing memory containing @napi
5436  */
5437 bool napi_hash_del(struct napi_struct *napi)
5438 {
5439         bool rcu_sync_needed = false;
5440
5441         spin_lock(&napi_hash_lock);
5442
5443         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5444                 rcu_sync_needed = true;
5445                 hlist_del_rcu(&napi->napi_hash_node);
5446         }
5447         spin_unlock(&napi_hash_lock);
5448         return rcu_sync_needed;
5449 }
5450 EXPORT_SYMBOL_GPL(napi_hash_del);
5451
5452 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5453 {
5454         struct napi_struct *napi;
5455
5456         napi = container_of(timer, struct napi_struct, timer);
5457
5458         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
5459          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5460          */
5461         if (napi->gro_list && !napi_disable_pending(napi) &&
5462             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5463                 __napi_schedule_irqoff(napi);
5464
5465         return HRTIMER_NORESTART;
5466 }
5467
5468 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5469                     int (*poll)(struct napi_struct *, int), int weight)
5470 {
5471         INIT_LIST_HEAD(&napi->poll_list);
5472         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5473         napi->timer.function = napi_watchdog;
5474         napi->gro_count = 0;
5475         napi->gro_list = NULL;
5476         napi->skb = NULL;
5477         napi->poll = poll;
5478         if (weight > NAPI_POLL_WEIGHT)
5479                 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5480                             weight, dev->name);
5481         napi->weight = weight;
5482         list_add(&napi->dev_list, &dev->napi_list);
5483         napi->dev = dev;
5484 #ifdef CONFIG_NETPOLL
5485         napi->poll_owner = -1;
5486 #endif
5487         set_bit(NAPI_STATE_SCHED, &napi->state);
5488         napi_hash_add(napi);
5489 }
5490 EXPORT_SYMBOL(netif_napi_add);
5491
5492 void napi_disable(struct napi_struct *n)
5493 {
5494         might_sleep();
5495         set_bit(NAPI_STATE_DISABLE, &n->state);
5496
5497         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5498                 msleep(1);
5499         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5500                 msleep(1);
5501
5502         hrtimer_cancel(&n->timer);
5503
5504         clear_bit(NAPI_STATE_DISABLE, &n->state);
5505 }
5506 EXPORT_SYMBOL(napi_disable);
5507
5508 /* Must be called in process context */
5509 void netif_napi_del(struct napi_struct *napi)
5510 {
5511         might_sleep();
5512         if (napi_hash_del(napi))
5513                 synchronize_net();
5514         list_del_init(&napi->dev_list);
5515         napi_free_frags(napi);
5516
5517         kfree_skb_list(napi->gro_list);
5518         napi->gro_list = NULL;
5519         napi->gro_count = 0;
5520 }
5521 EXPORT_SYMBOL(netif_napi_del);
5522
5523 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5524 {
5525         void *have;
5526         int work, weight;
5527
5528         list_del_init(&n->poll_list);
5529
5530         have = netpoll_poll_lock(n);
5531
5532         weight = n->weight;
5533
5534         /* This NAPI_STATE_SCHED test is for avoiding a race
5535          * with netpoll's poll_napi().  Only the entity which
5536          * obtains the lock and sees NAPI_STATE_SCHED set will
5537          * actually make the ->poll() call.  Therefore we avoid
5538          * accidentally calling ->poll() when NAPI is not scheduled.
5539          */
5540         work = 0;
5541         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5542                 work = n->poll(n, weight);
5543                 trace_napi_poll(n, work, weight);
5544         }
5545
5546         WARN_ON_ONCE(work > weight);
5547
5548         if (likely(work < weight))
5549                 goto out_unlock;
5550
5551         /* Drivers must not modify the NAPI state if they
5552          * consume the entire weight.  In such cases this code
5553          * still "owns" the NAPI instance and therefore can
5554          * move the instance around on the list at-will.
5555          */
5556         if (unlikely(napi_disable_pending(n))) {
5557                 napi_complete(n);
5558                 goto out_unlock;
5559         }
5560
5561         if (n->gro_list) {
5562                 /* flush too old packets
5563                  * If HZ < 1000, flush all packets.
5564                  */
5565                 napi_gro_flush(n, HZ >= 1000);
5566         }
5567
5568         /* Some drivers may have called napi_schedule
5569          * prior to exhausting their budget.
5570          */
5571         if (unlikely(!list_empty(&n->poll_list))) {
5572                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5573                              n->dev ? n->dev->name : "backlog");
5574                 goto out_unlock;
5575         }
5576
5577         list_add_tail(&n->poll_list, repoll);
5578
5579 out_unlock:
5580         netpoll_poll_unlock(have);
5581
5582         return work;
5583 }
5584
5585 static __latent_entropy void net_rx_action(struct softirq_action *h)
5586 {
5587         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5588         unsigned long time_limit = jiffies +
5589                 usecs_to_jiffies(netdev_budget_usecs);
5590         int budget = netdev_budget;
5591         LIST_HEAD(list);
5592         LIST_HEAD(repoll);
5593
5594         local_irq_disable();
5595         list_splice_init(&sd->poll_list, &list);
5596         local_irq_enable();
5597
5598         for (;;) {
5599                 struct napi_struct *n;
5600
5601                 if (list_empty(&list)) {
5602                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5603                                 goto out;
5604                         break;
5605                 }
5606
5607                 n = list_first_entry(&list, struct napi_struct, poll_list);
5608                 budget -= napi_poll(n, &repoll);
5609
5610                 /* If softirq window is exhausted then punt.
5611                  * Allow this to run for 2 jiffies since which will allow
5612                  * an average latency of 1.5/HZ.
5613                  */
5614                 if (unlikely(budget <= 0 ||
5615                              time_after_eq(jiffies, time_limit))) {
5616                         sd->time_squeeze++;
5617                         break;
5618                 }
5619         }
5620
5621         local_irq_disable();
5622
5623         list_splice_tail_init(&sd->poll_list, &list);
5624         list_splice_tail(&repoll, &list);
5625         list_splice(&list, &sd->poll_list);
5626         if (!list_empty(&sd->poll_list))
5627                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5628
5629         net_rps_action_and_irq_enable(sd);
5630 out:
5631         __kfree_skb_flush();
5632 }
5633
5634 struct netdev_adjacent {
5635         struct net_device *dev;
5636
5637         /* upper master flag, there can only be one master device per list */
5638         bool master;
5639
5640         /* counter for the number of times this device was added to us */
5641         u16 ref_nr;
5642
5643         /* private field for the users */
5644         void *private;
5645
5646         struct list_head list;
5647         struct rcu_head rcu;
5648 };
5649
5650 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5651                                                  struct list_head *adj_list)
5652 {
5653         struct netdev_adjacent *adj;
5654
5655         list_for_each_entry(adj, adj_list, list) {
5656                 if (adj->dev == adj_dev)
5657                         return adj;
5658         }
5659         return NULL;
5660 }
5661
5662 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5663 {
5664         struct net_device *dev = data;
5665
5666         return upper_dev == dev;
5667 }
5668
5669 /**
5670  * netdev_has_upper_dev - Check if device is linked to an upper device
5671  * @dev: device
5672  * @upper_dev: upper device to check
5673  *
5674  * Find out if a device is linked to specified upper device and return true
5675  * in case it is. Note that this checks only immediate upper device,
5676  * not through a complete stack of devices. The caller must hold the RTNL lock.
5677  */
5678 bool netdev_has_upper_dev(struct net_device *dev,
5679                           struct net_device *upper_dev)
5680 {
5681         ASSERT_RTNL();
5682
5683         return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5684                                              upper_dev);
5685 }
5686 EXPORT_SYMBOL(netdev_has_upper_dev);
5687
5688 /**
5689  * netdev_has_upper_dev_all - Check if device is linked to an upper device
5690  * @dev: device
5691  * @upper_dev: upper device to check
5692  *
5693  * Find out if a device is linked to specified upper device and return true
5694  * in case it is. Note that this checks the entire upper device chain.
5695  * The caller must hold rcu lock.
5696  */
5697
5698 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5699                                   struct net_device *upper_dev)
5700 {
5701         return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5702                                                upper_dev);
5703 }
5704 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5705
5706 /**
5707  * netdev_has_any_upper_dev - Check if device is linked to some device
5708  * @dev: device
5709  *
5710  * Find out if a device is linked to an upper device and return true in case
5711  * it is. The caller must hold the RTNL lock.
5712  */
5713 bool netdev_has_any_upper_dev(struct net_device *dev)
5714 {
5715         ASSERT_RTNL();
5716
5717         return !list_empty(&dev->adj_list.upper);
5718 }
5719 EXPORT_SYMBOL(netdev_has_any_upper_dev);
5720
5721 /**
5722  * netdev_master_upper_dev_get - Get master upper device
5723  * @dev: device
5724  *
5725  * Find a master upper device and return pointer to it or NULL in case
5726  * it's not there. The caller must hold the RTNL lock.
5727  */
5728 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5729 {
5730         struct netdev_adjacent *upper;
5731
5732         ASSERT_RTNL();
5733
5734         if (list_empty(&dev->adj_list.upper))
5735                 return NULL;
5736
5737         upper = list_first_entry(&dev->adj_list.upper,
5738                                  struct netdev_adjacent, list);
5739         if (likely(upper->master))
5740                 return upper->dev;
5741         return NULL;
5742 }
5743 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5744
5745 /**
5746  * netdev_has_any_lower_dev - Check if device is linked to some device
5747  * @dev: device
5748  *
5749  * Find out if a device is linked to a lower device and return true in case
5750  * it is. The caller must hold the RTNL lock.
5751  */
5752 static bool netdev_has_any_lower_dev(struct net_device *dev)
5753 {
5754         ASSERT_RTNL();
5755
5756         return !list_empty(&dev->adj_list.lower);
5757 }
5758
5759 void *netdev_adjacent_get_private(struct list_head *adj_list)
5760 {
5761         struct netdev_adjacent *adj;
5762
5763         adj = list_entry(adj_list, struct netdev_adjacent, list);
5764
5765         return adj->private;
5766 }
5767 EXPORT_SYMBOL(netdev_adjacent_get_private);
5768
5769 /**
5770  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5771  * @dev: device
5772  * @iter: list_head ** of the current position
5773  *
5774  * Gets the next device from the dev's upper list, starting from iter
5775  * position. The caller must hold RCU read lock.
5776  */
5777 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5778                                                  struct list_head **iter)
5779 {
5780         struct netdev_adjacent *upper;
5781
5782         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5783
5784         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5785
5786         if (&upper->list == &dev->adj_list.upper)
5787                 return NULL;
5788
5789         *iter = &upper->list;
5790
5791         return upper->dev;
5792 }
5793 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5794
5795 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5796                                                     struct list_head **iter)
5797 {
5798         struct netdev_adjacent *upper;
5799
5800         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5801
5802         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5803
5804         if (&upper->list == &dev->adj_list.upper)
5805                 return NULL;
5806
5807         *iter = &upper->list;
5808
5809         return upper->dev;
5810 }
5811
5812 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5813                                   int (*fn)(struct net_device *dev,
5814                                             void *data),
5815                                   void *data)
5816 {
5817         struct net_device *udev;
5818         struct list_head *iter;
5819         int ret;
5820
5821         for (iter = &dev->adj_list.upper,
5822              udev = netdev_next_upper_dev_rcu(dev, &iter);
5823              udev;
5824              udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5825                 /* first is the upper device itself */
5826                 ret = fn(udev, data);
5827                 if (ret)
5828                         return ret;
5829
5830                 /* then look at all of its upper devices */
5831                 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5832                 if (ret)
5833                         return ret;
5834         }
5835
5836         return 0;
5837 }
5838 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5839
5840 /**
5841  * netdev_lower_get_next_private - Get the next ->private from the
5842  *                                 lower neighbour list
5843  * @dev: device
5844  * @iter: list_head ** of the current position
5845  *
5846  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5847  * list, starting from iter position. The caller must hold either hold the
5848  * RTNL lock or its own locking that guarantees that the neighbour lower
5849  * list will remain unchanged.
5850  */
5851 void *netdev_lower_get_next_private(struct net_device *dev,
5852                                     struct list_head **iter)
5853 {
5854         struct netdev_adjacent *lower;
5855
5856         lower = list_entry(*iter, struct netdev_adjacent, list);
5857
5858         if (&lower->list == &dev->adj_list.lower)
5859                 return NULL;
5860
5861         *iter = lower->list.next;
5862
5863         return lower->private;
5864 }
5865 EXPORT_SYMBOL(netdev_lower_get_next_private);
5866
5867 /**
5868  * netdev_lower_get_next_private_rcu - Get the next ->private from the
5869  *                                     lower neighbour list, RCU
5870  *                                     variant
5871  * @dev: device
5872  * @iter: list_head ** of the current position
5873  *
5874  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5875  * list, starting from iter position. The caller must hold RCU read lock.
5876  */
5877 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5878                                         struct list_head **iter)
5879 {
5880         struct netdev_adjacent *lower;
5881
5882         WARN_ON_ONCE(!rcu_read_lock_held());
5883
5884         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5885
5886         if (&lower->list == &dev->adj_list.lower)
5887                 return NULL;
5888
5889         *iter = &lower->list;
5890
5891         return lower->private;
5892 }
5893 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5894
5895 /**
5896  * netdev_lower_get_next - Get the next device from the lower neighbour
5897  *                         list
5898  * @dev: device
5899  * @iter: list_head ** of the current position
5900  *
5901  * Gets the next netdev_adjacent from the dev's lower neighbour
5902  * list, starting from iter position. The caller must hold RTNL lock or
5903  * its own locking that guarantees that the neighbour lower
5904  * list will remain unchanged.
5905  */
5906 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5907 {
5908         struct netdev_adjacent *lower;
5909
5910         lower = list_entry(*iter, struct netdev_adjacent, list);
5911
5912         if (&lower->list == &dev->adj_list.lower)
5913                 return NULL;
5914
5915         *iter = lower->list.next;
5916
5917         return lower->dev;
5918 }
5919 EXPORT_SYMBOL(netdev_lower_get_next);
5920
5921 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
5922                                                 struct list_head **iter)
5923 {
5924         struct netdev_adjacent *lower;
5925
5926         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5927
5928         if (&lower->list == &dev->adj_list.lower)
5929                 return NULL;
5930
5931         *iter = &lower->list;
5932
5933         return lower->dev;
5934 }
5935
5936 int netdev_walk_all_lower_dev(struct net_device *dev,
5937                               int (*fn)(struct net_device *dev,
5938                                         void *data),
5939                               void *data)
5940 {
5941         struct net_device *ldev;
5942         struct list_head *iter;
5943         int ret;
5944
5945         for (iter = &dev->adj_list.lower,
5946              ldev = netdev_next_lower_dev(dev, &iter);
5947              ldev;
5948              ldev = netdev_next_lower_dev(dev, &iter)) {
5949                 /* first is the lower device itself */
5950                 ret = fn(ldev, data);
5951                 if (ret)
5952                         return ret;
5953
5954                 /* then look at all of its lower devices */
5955                 ret = netdev_walk_all_lower_dev(ldev, fn, data);
5956                 if (ret)
5957                         return ret;
5958         }
5959
5960         return 0;
5961 }
5962 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
5963
5964 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
5965                                                     struct list_head **iter)
5966 {
5967         struct netdev_adjacent *lower;
5968
5969         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5970         if (&lower->list == &dev->adj_list.lower)
5971                 return NULL;
5972
5973         *iter = &lower->list;
5974
5975         return lower->dev;
5976 }
5977
5978 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
5979                                   int (*fn)(struct net_device *dev,
5980                                             void *data),
5981                                   void *data)
5982 {
5983         struct net_device *ldev;
5984         struct list_head *iter;
5985         int ret;
5986
5987         for (iter = &dev->adj_list.lower,
5988              ldev = netdev_next_lower_dev_rcu(dev, &iter);
5989              ldev;
5990              ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
5991                 /* first is the lower device itself */
5992                 ret = fn(ldev, data);
5993                 if (ret)
5994                         return ret;
5995
5996                 /* then look at all of its lower devices */
5997                 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
5998                 if (ret)
5999                         return ret;
6000         }
6001
6002         return 0;
6003 }
6004 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6005
6006 /**
6007  * netdev_lower_get_first_private_rcu - Get the first ->private from the
6008  *                                     lower neighbour list, RCU
6009  *                                     variant
6010  * @dev: device
6011  *
6012  * Gets the first netdev_adjacent->private from the dev's lower neighbour
6013  * list. The caller must hold RCU read lock.
6014  */
6015 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6016 {
6017         struct netdev_adjacent *lower;
6018
6019         lower = list_first_or_null_rcu(&dev->adj_list.lower,
6020                         struct netdev_adjacent, list);
6021         if (lower)
6022                 return lower->private;
6023         return NULL;
6024 }
6025 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6026
6027 /**
6028  * netdev_master_upper_dev_get_rcu - Get master upper device
6029  * @dev: device
6030  *
6031  * Find a master upper device and return pointer to it or NULL in case
6032  * it's not there. The caller must hold the RCU read lock.
6033  */
6034 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6035 {
6036         struct netdev_adjacent *upper;
6037
6038         upper = list_first_or_null_rcu(&dev->adj_list.upper,
6039                                        struct netdev_adjacent, list);
6040         if (upper && likely(upper->master))
6041                 return upper->dev;
6042         return NULL;
6043 }
6044 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6045
6046 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6047                               struct net_device *adj_dev,
6048                               struct list_head *dev_list)
6049 {
6050         char linkname[IFNAMSIZ+7];
6051
6052         sprintf(linkname, dev_list == &dev->adj_list.upper ?
6053                 "upper_%s" : "lower_%s", adj_dev->name);
6054         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6055                                  linkname);
6056 }
6057 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6058                                char *name,
6059                                struct list_head *dev_list)
6060 {
6061         char linkname[IFNAMSIZ+7];
6062
6063         sprintf(linkname, dev_list == &dev->adj_list.upper ?
6064                 "upper_%s" : "lower_%s", name);
6065         sysfs_remove_link(&(dev->dev.kobj), linkname);
6066 }
6067
6068 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6069                                                  struct net_device *adj_dev,
6070                                                  struct list_head *dev_list)
6071 {
6072         return (dev_list == &dev->adj_list.upper ||
6073                 dev_list == &dev->adj_list.lower) &&
6074                 net_eq(dev_net(dev), dev_net(adj_dev));
6075 }
6076
6077 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6078                                         struct net_device *adj_dev,
6079                                         struct list_head *dev_list,
6080                                         void *private, bool master)
6081 {
6082         struct netdev_adjacent *adj;
6083         int ret;
6084
6085         adj = __netdev_find_adj(adj_dev, dev_list);
6086
6087         if (adj) {
6088                 adj->ref_nr += 1;
6089                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6090                          dev->name, adj_dev->name, adj->ref_nr);
6091
6092                 return 0;
6093         }
6094
6095         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6096         if (!adj)
6097                 return -ENOMEM;
6098
6099         adj->dev = adj_dev;
6100         adj->master = master;
6101         adj->ref_nr = 1;
6102         adj->private = private;
6103         dev_hold(adj_dev);
6104
6105         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6106                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6107
6108         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6109                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6110                 if (ret)
6111                         goto free_adj;
6112         }
6113
6114         /* Ensure that master link is always the first item in list. */
6115         if (master) {
6116                 ret = sysfs_create_link(&(dev->dev.kobj),
6117                                         &(adj_dev->dev.kobj), "master");
6118                 if (ret)
6119                         goto remove_symlinks;
6120
6121                 list_add_rcu(&adj->list, dev_list);
6122         } else {
6123                 list_add_tail_rcu(&adj->list, dev_list);
6124         }
6125
6126         return 0;
6127
6128 remove_symlinks:
6129         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6130                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6131 free_adj:
6132         kfree(adj);
6133         dev_put(adj_dev);
6134
6135         return ret;
6136 }
6137
6138 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6139                                          struct net_device *adj_dev,
6140                                          u16 ref_nr,
6141                                          struct list_head *dev_list)
6142 {
6143         struct netdev_adjacent *adj;
6144
6145         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6146                  dev->name, adj_dev->name, ref_nr);
6147
6148         adj = __netdev_find_adj(adj_dev, dev_list);
6149
6150         if (!adj) {
6151                 pr_err("Adjacency does not exist for device %s from %s\n",
6152                        dev->name, adj_dev->name);
6153                 WARN_ON(1);
6154                 return;
6155         }
6156
6157         if (adj->ref_nr > ref_nr) {
6158                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6159                          dev->name, adj_dev->name, ref_nr,
6160                          adj->ref_nr - ref_nr);
6161                 adj->ref_nr -= ref_nr;
6162                 return;
6163         }
6164
6165         if (adj->master)
6166                 sysfs_remove_link(&(dev->dev.kobj), "master");
6167
6168         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6169                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6170
6171         list_del_rcu(&adj->list);
6172         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6173                  adj_dev->name, dev->name, adj_dev->name);
6174         dev_put(adj_dev);
6175         kfree_rcu(adj, rcu);
6176 }
6177
6178 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6179                                             struct net_device *upper_dev,
6180                                             struct list_head *up_list,
6181                                             struct list_head *down_list,
6182                                             void *private, bool master)
6183 {
6184         int ret;
6185
6186         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6187                                            private, master);
6188         if (ret)
6189                 return ret;
6190
6191         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6192                                            private, false);
6193         if (ret) {
6194                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6195                 return ret;
6196         }
6197
6198         return 0;
6199 }
6200
6201 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6202                                                struct net_device *upper_dev,
6203                                                u16 ref_nr,
6204                                                struct list_head *up_list,
6205                                                struct list_head *down_list)
6206 {
6207         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6208         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6209 }
6210
6211 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6212                                                 struct net_device *upper_dev,
6213                                                 void *private, bool master)
6214 {
6215         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6216                                                 &dev->adj_list.upper,
6217                                                 &upper_dev->adj_list.lower,
6218                                                 private, master);
6219 }
6220
6221 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6222                                                    struct net_device *upper_dev)
6223 {
6224         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6225                                            &dev->adj_list.upper,
6226                                            &upper_dev->adj_list.lower);
6227 }
6228
6229 static int __netdev_upper_dev_link(struct net_device *dev,
6230                                    struct net_device *upper_dev, bool master,
6231                                    void *upper_priv, void *upper_info)
6232 {
6233         struct netdev_notifier_changeupper_info changeupper_info;
6234         int ret = 0;
6235
6236         ASSERT_RTNL();
6237
6238         if (dev == upper_dev)
6239                 return -EBUSY;
6240
6241         /* To prevent loops, check if dev is not upper device to upper_dev. */
6242         if (netdev_has_upper_dev(upper_dev, dev))
6243                 return -EBUSY;
6244
6245         if (netdev_has_upper_dev(dev, upper_dev))
6246                 return -EEXIST;
6247
6248         if (master && netdev_master_upper_dev_get(dev))
6249                 return -EBUSY;
6250
6251         changeupper_info.upper_dev = upper_dev;
6252         changeupper_info.master = master;
6253         changeupper_info.linking = true;
6254         changeupper_info.upper_info = upper_info;
6255
6256         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
6257                                             &changeupper_info.info);
6258         ret = notifier_to_errno(ret);
6259         if (ret)
6260                 return ret;
6261
6262         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
6263                                                    master);
6264         if (ret)
6265                 return ret;
6266
6267         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6268                                             &changeupper_info.info);
6269         ret = notifier_to_errno(ret);
6270         if (ret)
6271                 goto rollback;
6272
6273         return 0;
6274
6275 rollback:
6276         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6277
6278         return ret;
6279 }
6280
6281 /**
6282  * netdev_upper_dev_link - Add a link to the upper device
6283  * @dev: device
6284  * @upper_dev: new upper device
6285  *
6286  * Adds a link to device which is upper to this one. The caller must hold
6287  * the RTNL lock. On a failure a negative errno code is returned.
6288  * On success the reference counts are adjusted and the function
6289  * returns zero.
6290  */
6291 int netdev_upper_dev_link(struct net_device *dev,
6292                           struct net_device *upper_dev)
6293 {
6294         return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
6295 }
6296 EXPORT_SYMBOL(netdev_upper_dev_link);
6297
6298 /**
6299  * netdev_master_upper_dev_link - Add a master link to the upper device
6300  * @dev: device
6301  * @upper_dev: new upper device
6302  * @upper_priv: upper device private
6303  * @upper_info: upper info to be passed down via notifier
6304  *
6305  * Adds a link to device which is upper to this one. In this case, only
6306  * one master upper device can be linked, although other non-master devices
6307  * might be linked as well. The caller must hold the RTNL lock.
6308  * On a failure a negative errno code is returned. On success the reference
6309  * counts are adjusted and the function returns zero.
6310  */
6311 int netdev_master_upper_dev_link(struct net_device *dev,
6312                                  struct net_device *upper_dev,
6313                                  void *upper_priv, void *upper_info)
6314 {
6315         return __netdev_upper_dev_link(dev, upper_dev, true,
6316                                        upper_priv, upper_info);
6317 }
6318 EXPORT_SYMBOL(netdev_master_upper_dev_link);
6319
6320 /**
6321  * netdev_upper_dev_unlink - Removes a link to upper device
6322  * @dev: device
6323  * @upper_dev: new upper device
6324  *
6325  * Removes a link to device which is upper to this one. The caller must hold
6326  * the RTNL lock.
6327  */
6328 void netdev_upper_dev_unlink(struct net_device *dev,
6329                              struct net_device *upper_dev)
6330 {
6331         struct netdev_notifier_changeupper_info changeupper_info;
6332
6333         ASSERT_RTNL();
6334
6335         changeupper_info.upper_dev = upper_dev;
6336         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
6337         changeupper_info.linking = false;
6338
6339         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
6340                                       &changeupper_info.info);
6341
6342         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6343
6344         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6345                                       &changeupper_info.info);
6346 }
6347 EXPORT_SYMBOL(netdev_upper_dev_unlink);
6348
6349 /**
6350  * netdev_bonding_info_change - Dispatch event about slave change
6351  * @dev: device
6352  * @bonding_info: info to dispatch
6353  *
6354  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6355  * The caller must hold the RTNL lock.
6356  */
6357 void netdev_bonding_info_change(struct net_device *dev,
6358                                 struct netdev_bonding_info *bonding_info)
6359 {
6360         struct netdev_notifier_bonding_info     info;
6361
6362         memcpy(&info.bonding_info, bonding_info,
6363                sizeof(struct netdev_bonding_info));
6364         call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
6365                                       &info.info);
6366 }
6367 EXPORT_SYMBOL(netdev_bonding_info_change);
6368
6369 static void netdev_adjacent_add_links(struct net_device *dev)
6370 {
6371         struct netdev_adjacent *iter;
6372
6373         struct net *net = dev_net(dev);
6374
6375         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6376                 if (!net_eq(net, dev_net(iter->dev)))
6377                         continue;
6378                 netdev_adjacent_sysfs_add(iter->dev, dev,
6379                                           &iter->dev->adj_list.lower);
6380                 netdev_adjacent_sysfs_add(dev, iter->dev,
6381                                           &dev->adj_list.upper);
6382         }
6383
6384         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6385                 if (!net_eq(net, dev_net(iter->dev)))
6386                         continue;
6387                 netdev_adjacent_sysfs_add(iter->dev, dev,
6388                                           &iter->dev->adj_list.upper);
6389                 netdev_adjacent_sysfs_add(dev, iter->dev,
6390                                           &dev->adj_list.lower);
6391         }
6392 }
6393
6394 static void netdev_adjacent_del_links(struct net_device *dev)
6395 {
6396         struct netdev_adjacent *iter;
6397
6398         struct net *net = dev_net(dev);
6399
6400         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6401                 if (!net_eq(net, dev_net(iter->dev)))
6402                         continue;
6403                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6404                                           &iter->dev->adj_list.lower);
6405                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6406                                           &dev->adj_list.upper);
6407         }
6408
6409         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6410                 if (!net_eq(net, dev_net(iter->dev)))
6411                         continue;
6412                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6413                                           &iter->dev->adj_list.upper);
6414                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6415                                           &dev->adj_list.lower);
6416         }
6417 }
6418
6419 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6420 {
6421         struct netdev_adjacent *iter;
6422
6423         struct net *net = dev_net(dev);
6424
6425         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6426                 if (!net_eq(net, dev_net(iter->dev)))
6427                         continue;
6428                 netdev_adjacent_sysfs_del(iter->dev, oldname,
6429                                           &iter->dev->adj_list.lower);
6430                 netdev_adjacent_sysfs_add(iter->dev, dev,
6431                                           &iter->dev->adj_list.lower);
6432         }
6433
6434         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6435                 if (!net_eq(net, dev_net(iter->dev)))
6436                         continue;
6437                 netdev_adjacent_sysfs_del(iter->dev, oldname,
6438                                           &iter->dev->adj_list.upper);
6439                 netdev_adjacent_sysfs_add(iter->dev, dev,
6440                                           &iter->dev->adj_list.upper);
6441         }
6442 }
6443
6444 void *netdev_lower_dev_get_private(struct net_device *dev,
6445                                    struct net_device *lower_dev)
6446 {
6447         struct netdev_adjacent *lower;
6448
6449         if (!lower_dev)
6450                 return NULL;
6451         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6452         if (!lower)
6453                 return NULL;
6454
6455         return lower->private;
6456 }
6457 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6458
6459
6460 int dev_get_nest_level(struct net_device *dev)
6461 {
6462         struct net_device *lower = NULL;
6463         struct list_head *iter;
6464         int max_nest = -1;
6465         int nest;
6466
6467         ASSERT_RTNL();
6468
6469         netdev_for_each_lower_dev(dev, lower, iter) {
6470                 nest = dev_get_nest_level(lower);
6471                 if (max_nest < nest)
6472                         max_nest = nest;
6473         }
6474
6475         return max_nest + 1;
6476 }
6477 EXPORT_SYMBOL(dev_get_nest_level);
6478
6479 /**
6480  * netdev_lower_change - Dispatch event about lower device state change
6481  * @lower_dev: device
6482  * @lower_state_info: state to dispatch
6483  *
6484  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6485  * The caller must hold the RTNL lock.
6486  */
6487 void netdev_lower_state_changed(struct net_device *lower_dev,
6488                                 void *lower_state_info)
6489 {
6490         struct netdev_notifier_changelowerstate_info changelowerstate_info;
6491
6492         ASSERT_RTNL();
6493         changelowerstate_info.lower_state_info = lower_state_info;
6494         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6495                                       &changelowerstate_info.info);
6496 }
6497 EXPORT_SYMBOL(netdev_lower_state_changed);
6498
6499 static void dev_change_rx_flags(struct net_device *dev, int flags)
6500 {
6501         const struct net_device_ops *ops = dev->netdev_ops;
6502
6503         if (ops->ndo_change_rx_flags)
6504                 ops->ndo_change_rx_flags(dev, flags);
6505 }
6506
6507 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6508 {
6509         unsigned int old_flags = dev->flags;
6510         kuid_t uid;
6511         kgid_t gid;
6512
6513         ASSERT_RTNL();
6514
6515         dev->flags |= IFF_PROMISC;
6516         dev->promiscuity += inc;
6517         if (dev->promiscuity == 0) {
6518                 /*
6519                  * Avoid overflow.
6520                  * If inc causes overflow, untouch promisc and return error.
6521                  */
6522                 if (inc < 0)
6523                         dev->flags &= ~IFF_PROMISC;
6524                 else {
6525                         dev->promiscuity -= inc;
6526                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6527                                 dev->name);
6528                         return -EOVERFLOW;
6529                 }
6530         }
6531         if (dev->flags != old_flags) {
6532                 pr_info("device %s %s promiscuous mode\n",
6533                         dev->name,
6534                         dev->flags & IFF_PROMISC ? "entered" : "left");
6535                 if (audit_enabled) {
6536                         current_uid_gid(&uid, &gid);
6537                         audit_log(current->audit_context, GFP_ATOMIC,
6538                                 AUDIT_ANOM_PROMISCUOUS,
6539                                 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6540                                 dev->name, (dev->flags & IFF_PROMISC),
6541                                 (old_flags & IFF_PROMISC),
6542                                 from_kuid(&init_user_ns, audit_get_loginuid(current)),
6543                                 from_kuid(&init_user_ns, uid),
6544                                 from_kgid(&init_user_ns, gid),
6545                                 audit_get_sessionid(current));
6546                 }
6547
6548                 dev_change_rx_flags(dev, IFF_PROMISC);
6549         }
6550         if (notify)
6551                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6552         return 0;
6553 }
6554
6555 /**
6556  *      dev_set_promiscuity     - update promiscuity count on a device
6557  *      @dev: device
6558  *      @inc: modifier
6559  *
6560  *      Add or remove promiscuity from a device. While the count in the device
6561  *      remains above zero the interface remains promiscuous. Once it hits zero
6562  *      the device reverts back to normal filtering operation. A negative inc
6563  *      value is used to drop promiscuity on the device.
6564  *      Return 0 if successful or a negative errno code on error.
6565  */
6566 int dev_set_promiscuity(struct net_device *dev, int inc)
6567 {
6568         unsigned int old_flags = dev->flags;
6569         int err;
6570
6571         err = __dev_set_promiscuity(dev, inc, true);
6572         if (err < 0)
6573                 return err;
6574         if (dev->flags != old_flags)
6575                 dev_set_rx_mode(dev);
6576         return err;
6577 }
6578 EXPORT_SYMBOL(dev_set_promiscuity);
6579
6580 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6581 {
6582         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6583
6584         ASSERT_RTNL();
6585
6586         dev->flags |= IFF_ALLMULTI;
6587         dev->allmulti += inc;
6588         if (dev->allmulti == 0) {
6589                 /*
6590                  * Avoid overflow.
6591                  * If inc causes overflow, untouch allmulti and return error.
6592                  */
6593                 if (inc < 0)
6594                         dev->flags &= ~IFF_ALLMULTI;
6595                 else {
6596                         dev->allmulti -= inc;
6597                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6598                                 dev->name);
6599                         return -EOVERFLOW;
6600                 }
6601         }
6602         if (dev->flags ^ old_flags) {
6603                 dev_change_rx_flags(dev, IFF_ALLMULTI);
6604                 dev_set_rx_mode(dev);
6605                 if (notify)
6606                         __dev_notify_flags(dev, old_flags,
6607                                            dev->gflags ^ old_gflags);
6608         }
6609         return 0;
6610 }
6611
6612 /**
6613  *      dev_set_allmulti        - update allmulti count on a device
6614  *      @dev: device
6615  *      @inc: modifier
6616  *
6617  *      Add or remove reception of all multicast frames to a device. While the
6618  *      count in the device remains above zero the interface remains listening
6619  *      to all interfaces. Once it hits zero the device reverts back to normal
6620  *      filtering operation. A negative @inc value is used to drop the counter
6621  *      when releasing a resource needing all multicasts.
6622  *      Return 0 if successful or a negative errno code on error.
6623  */
6624
6625 int dev_set_allmulti(struct net_device *dev, int inc)
6626 {
6627         return __dev_set_allmulti(dev, inc, true);
6628 }
6629 EXPORT_SYMBOL(dev_set_allmulti);
6630
6631 /*
6632  *      Upload unicast and multicast address lists to device and
6633  *      configure RX filtering. When the device doesn't support unicast
6634  *      filtering it is put in promiscuous mode while unicast addresses
6635  *      are present.
6636  */
6637 void __dev_set_rx_mode(struct net_device *dev)
6638 {
6639         const struct net_device_ops *ops = dev->netdev_ops;
6640
6641         /* dev_open will call this function so the list will stay sane. */
6642         if (!(dev->flags&IFF_UP))
6643                 return;
6644
6645         if (!netif_device_present(dev))
6646                 return;
6647
6648         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6649                 /* Unicast addresses changes may only happen under the rtnl,
6650                  * therefore calling __dev_set_promiscuity here is safe.
6651                  */
6652                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6653                         __dev_set_promiscuity(dev, 1, false);
6654                         dev->uc_promisc = true;
6655                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6656                         __dev_set_promiscuity(dev, -1, false);
6657                         dev->uc_promisc = false;
6658                 }
6659         }
6660
6661         if (ops->ndo_set_rx_mode)
6662                 ops->ndo_set_rx_mode(dev);
6663 }
6664
6665 void dev_set_rx_mode(struct net_device *dev)
6666 {
6667         netif_addr_lock_bh(dev);
6668         __dev_set_rx_mode(dev);
6669         netif_addr_unlock_bh(dev);
6670 }
6671
6672 /**
6673  *      dev_get_flags - get flags reported to userspace
6674  *      @dev: device
6675  *
6676  *      Get the combination of flag bits exported through APIs to userspace.
6677  */
6678 unsigned int dev_get_flags(const struct net_device *dev)
6679 {
6680         unsigned int flags;
6681
6682         flags = (dev->flags & ~(IFF_PROMISC |
6683                                 IFF_ALLMULTI |
6684                                 IFF_RUNNING |
6685                                 IFF_LOWER_UP |
6686                                 IFF_DORMANT)) |
6687                 (dev->gflags & (IFF_PROMISC |
6688                                 IFF_ALLMULTI));
6689
6690         if (netif_running(dev)) {
6691                 if (netif_oper_up(dev))
6692                         flags |= IFF_RUNNING;
6693                 if (netif_carrier_ok(dev))
6694                         flags |= IFF_LOWER_UP;
6695                 if (netif_dormant(dev))
6696                         flags |= IFF_DORMANT;
6697         }
6698
6699         return flags;
6700 }
6701 EXPORT_SYMBOL(dev_get_flags);
6702
6703 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6704 {
6705         unsigned int old_flags = dev->flags;
6706         int ret;
6707
6708         ASSERT_RTNL();
6709
6710         /*
6711          *      Set the flags on our device.
6712          */
6713
6714         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6715                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6716                                IFF_AUTOMEDIA)) |
6717                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6718                                     IFF_ALLMULTI));
6719
6720         /*
6721          *      Load in the correct multicast list now the flags have changed.
6722          */
6723
6724         if ((old_flags ^ flags) & IFF_MULTICAST)
6725                 dev_change_rx_flags(dev, IFF_MULTICAST);
6726
6727         dev_set_rx_mode(dev);
6728
6729         /*
6730          *      Have we downed the interface. We handle IFF_UP ourselves
6731          *      according to user attempts to set it, rather than blindly
6732          *      setting it.
6733          */
6734
6735         ret = 0;
6736         if ((old_flags ^ flags) & IFF_UP) {
6737                 if (old_flags & IFF_UP)
6738                         __dev_close(dev);
6739                 else
6740                         ret = __dev_open(dev);
6741         }
6742
6743         if ((flags ^ dev->gflags) & IFF_PROMISC) {
6744                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6745                 unsigned int old_flags = dev->flags;
6746
6747                 dev->gflags ^= IFF_PROMISC;
6748
6749                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6750                         if (dev->flags != old_flags)
6751                                 dev_set_rx_mode(dev);
6752         }
6753
6754         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6755          * is important. Some (broken) drivers set IFF_PROMISC, when
6756          * IFF_ALLMULTI is requested not asking us and not reporting.
6757          */
6758         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6759                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6760
6761                 dev->gflags ^= IFF_ALLMULTI;
6762                 __dev_set_allmulti(dev, inc, false);
6763         }
6764
6765         return ret;
6766 }
6767
6768 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6769                         unsigned int gchanges)
6770 {
6771         unsigned int changes = dev->flags ^ old_flags;
6772
6773         if (gchanges)
6774                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6775
6776         if (changes & IFF_UP) {
6777                 if (dev->flags & IFF_UP)
6778                         call_netdevice_notifiers(NETDEV_UP, dev);
6779                 else
6780                         call_netdevice_notifiers(NETDEV_DOWN, dev);
6781         }
6782
6783         if (dev->flags & IFF_UP &&
6784             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6785                 struct netdev_notifier_change_info change_info;
6786
6787                 change_info.flags_changed = changes;
6788                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6789                                               &change_info.info);
6790         }
6791 }
6792
6793 /**
6794  *      dev_change_flags - change device settings
6795  *      @dev: device
6796  *      @flags: device state flags
6797  *
6798  *      Change settings on device based state flags. The flags are
6799  *      in the userspace exported format.
6800  */
6801 int dev_change_flags(struct net_device *dev, unsigned int flags)
6802 {
6803         int ret;
6804         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6805
6806         ret = __dev_change_flags(dev, flags);
6807         if (ret < 0)
6808                 return ret;
6809
6810         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6811         __dev_notify_flags(dev, old_flags, changes);
6812         return ret;
6813 }
6814 EXPORT_SYMBOL(dev_change_flags);
6815
6816 int __dev_set_mtu(struct net_device *dev, int new_mtu)
6817 {
6818         const struct net_device_ops *ops = dev->netdev_ops;
6819
6820         if (ops->ndo_change_mtu)
6821                 return ops->ndo_change_mtu(dev, new_mtu);
6822
6823         dev->mtu = new_mtu;
6824         return 0;
6825 }
6826 EXPORT_SYMBOL(__dev_set_mtu);
6827
6828 /**
6829  *      dev_set_mtu - Change maximum transfer unit
6830  *      @dev: device
6831  *      @new_mtu: new transfer unit
6832  *
6833  *      Change the maximum transfer size of the network device.
6834  */
6835 int dev_set_mtu(struct net_device *dev, int new_mtu)
6836 {
6837         int err, orig_mtu;
6838
6839         if (new_mtu == dev->mtu)
6840                 return 0;
6841
6842         /* MTU must be positive, and in range */
6843         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
6844                 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6845                                     dev->name, new_mtu, dev->min_mtu);
6846                 return -EINVAL;
6847         }
6848
6849         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
6850                 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
6851                                     dev->name, new_mtu, dev->max_mtu);
6852                 return -EINVAL;
6853         }
6854
6855         if (!netif_device_present(dev))
6856                 return -ENODEV;
6857
6858         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6859         err = notifier_to_errno(err);
6860         if (err)
6861                 return err;
6862
6863         orig_mtu = dev->mtu;
6864         err = __dev_set_mtu(dev, new_mtu);
6865
6866         if (!err) {
6867                 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6868                 err = notifier_to_errno(err);
6869                 if (err) {
6870                         /* setting mtu back and notifying everyone again,
6871                          * so that they have a chance to revert changes.
6872                          */
6873                         __dev_set_mtu(dev, orig_mtu);
6874                         call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6875                 }
6876         }
6877         return err;
6878 }
6879 EXPORT_SYMBOL(dev_set_mtu);
6880
6881 /**
6882  *      dev_set_group - Change group this device belongs to
6883  *      @dev: device
6884  *      @new_group: group this device should belong to
6885  */
6886 void dev_set_group(struct net_device *dev, int new_group)
6887 {
6888         dev->group = new_group;
6889 }
6890 EXPORT_SYMBOL(dev_set_group);
6891
6892 /**
6893  *      dev_set_mac_address - Change Media Access Control Address
6894  *      @dev: device
6895  *      @sa: new address
6896  *
6897  *      Change the hardware (MAC) address of the device
6898  */
6899 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6900 {
6901         const struct net_device_ops *ops = dev->netdev_ops;
6902         int err;
6903
6904         if (!ops->ndo_set_mac_address)
6905                 return -EOPNOTSUPP;
6906         if (sa->sa_family != dev->type)
6907                 return -EINVAL;
6908         if (!netif_device_present(dev))
6909                 return -ENODEV;
6910         err = ops->ndo_set_mac_address(dev, sa);
6911         if (err)
6912                 return err;
6913         dev->addr_assign_type = NET_ADDR_SET;
6914         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6915         add_device_randomness(dev->dev_addr, dev->addr_len);
6916         return 0;
6917 }
6918 EXPORT_SYMBOL(dev_set_mac_address);
6919
6920 /**
6921  *      dev_change_carrier - Change device carrier
6922  *      @dev: device
6923  *      @new_carrier: new value
6924  *
6925  *      Change device carrier
6926  */
6927 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6928 {
6929         const struct net_device_ops *ops = dev->netdev_ops;
6930
6931         if (!ops->ndo_change_carrier)
6932                 return -EOPNOTSUPP;
6933         if (!netif_device_present(dev))
6934                 return -ENODEV;
6935         return ops->ndo_change_carrier(dev, new_carrier);
6936 }
6937 EXPORT_SYMBOL(dev_change_carrier);
6938
6939 /**
6940  *      dev_get_phys_port_id - Get device physical port ID
6941  *      @dev: device
6942  *      @ppid: port ID
6943  *
6944  *      Get device physical port ID
6945  */
6946 int dev_get_phys_port_id(struct net_device *dev,
6947                          struct netdev_phys_item_id *ppid)
6948 {
6949         const struct net_device_ops *ops = dev->netdev_ops;
6950
6951         if (!ops->ndo_get_phys_port_id)
6952                 return -EOPNOTSUPP;
6953         return ops->ndo_get_phys_port_id(dev, ppid);
6954 }
6955 EXPORT_SYMBOL(dev_get_phys_port_id);
6956
6957 /**
6958  *      dev_get_phys_port_name - Get device physical port name
6959  *      @dev: device
6960  *      @name: port name
6961  *      @len: limit of bytes to copy to name
6962  *
6963  *      Get device physical port name
6964  */
6965 int dev_get_phys_port_name(struct net_device *dev,
6966                            char *name, size_t len)
6967 {
6968         const struct net_device_ops *ops = dev->netdev_ops;
6969
6970         if (!ops->ndo_get_phys_port_name)
6971                 return -EOPNOTSUPP;
6972         return ops->ndo_get_phys_port_name(dev, name, len);
6973 }
6974 EXPORT_SYMBOL(dev_get_phys_port_name);
6975
6976 /**
6977  *      dev_change_proto_down - update protocol port state information
6978  *      @dev: device
6979  *      @proto_down: new value
6980  *
6981  *      This info can be used by switch drivers to set the phys state of the
6982  *      port.
6983  */
6984 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6985 {
6986         const struct net_device_ops *ops = dev->netdev_ops;
6987
6988         if (!ops->ndo_change_proto_down)
6989                 return -EOPNOTSUPP;
6990         if (!netif_device_present(dev))
6991                 return -ENODEV;
6992         return ops->ndo_change_proto_down(dev, proto_down);
6993 }
6994 EXPORT_SYMBOL(dev_change_proto_down);
6995
6996 u8 __dev_xdp_attached(struct net_device *dev, xdp_op_t xdp_op, u32 *prog_id)
6997 {
6998         struct netdev_xdp xdp;
6999
7000         memset(&xdp, 0, sizeof(xdp));
7001         xdp.command = XDP_QUERY_PROG;
7002
7003         /* Query must always succeed. */
7004         WARN_ON(xdp_op(dev, &xdp) < 0);
7005         if (prog_id)
7006                 *prog_id = xdp.prog_id;
7007
7008         return xdp.prog_attached;
7009 }
7010
7011 static int dev_xdp_install(struct net_device *dev, xdp_op_t xdp_op,
7012                            struct netlink_ext_ack *extack, u32 flags,
7013                            struct bpf_prog *prog)
7014 {
7015         struct netdev_xdp xdp;
7016
7017         memset(&xdp, 0, sizeof(xdp));
7018         if (flags & XDP_FLAGS_HW_MODE)
7019                 xdp.command = XDP_SETUP_PROG_HW;
7020         else
7021                 xdp.command = XDP_SETUP_PROG;
7022         xdp.extack = extack;
7023         xdp.flags = flags;
7024         xdp.prog = prog;
7025
7026         return xdp_op(dev, &xdp);
7027 }
7028
7029 /**
7030  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
7031  *      @dev: device
7032  *      @extack: netlink extended ack
7033  *      @fd: new program fd or negative value to clear
7034  *      @flags: xdp-related flags
7035  *
7036  *      Set or clear a bpf program for a device
7037  */
7038 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7039                       int fd, u32 flags)
7040 {
7041         const struct net_device_ops *ops = dev->netdev_ops;
7042         struct bpf_prog *prog = NULL;
7043         xdp_op_t xdp_op, xdp_chk;
7044         int err;
7045
7046         ASSERT_RTNL();
7047
7048         xdp_op = xdp_chk = ops->ndo_xdp;
7049         if (!xdp_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
7050                 return -EOPNOTSUPP;
7051         if (!xdp_op || (flags & XDP_FLAGS_SKB_MODE))
7052                 xdp_op = generic_xdp_install;
7053         if (xdp_op == xdp_chk)
7054                 xdp_chk = generic_xdp_install;
7055
7056         if (fd >= 0) {
7057                 if (xdp_chk && __dev_xdp_attached(dev, xdp_chk, NULL))
7058                         return -EEXIST;
7059                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
7060                     __dev_xdp_attached(dev, xdp_op, NULL))
7061                         return -EBUSY;
7062
7063                 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
7064                 if (IS_ERR(prog))
7065                         return PTR_ERR(prog);
7066         }
7067
7068         err = dev_xdp_install(dev, xdp_op, extack, flags, prog);
7069         if (err < 0 && prog)
7070                 bpf_prog_put(prog);
7071
7072         return err;
7073 }
7074
7075 /**
7076  *      dev_new_index   -       allocate an ifindex
7077  *      @net: the applicable net namespace
7078  *
7079  *      Returns a suitable unique value for a new device interface
7080  *      number.  The caller must hold the rtnl semaphore or the
7081  *      dev_base_lock to be sure it remains unique.
7082  */
7083 static int dev_new_index(struct net *net)
7084 {
7085         int ifindex = net->ifindex;
7086
7087         for (;;) {
7088                 if (++ifindex <= 0)
7089                         ifindex = 1;
7090                 if (!__dev_get_by_index(net, ifindex))
7091                         return net->ifindex = ifindex;
7092         }
7093 }
7094
7095 /* Delayed registration/unregisteration */
7096 static LIST_HEAD(net_todo_list);
7097 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
7098
7099 static void net_set_todo(struct net_device *dev)
7100 {
7101         list_add_tail(&dev->todo_list, &net_todo_list);
7102         dev_net(dev)->dev_unreg_count++;
7103 }
7104
7105 static void rollback_registered_many(struct list_head *head)
7106 {
7107         struct net_device *dev, *tmp;
7108         LIST_HEAD(close_head);
7109
7110         BUG_ON(dev_boot_phase);
7111         ASSERT_RTNL();
7112
7113         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
7114                 /* Some devices call without registering
7115                  * for initialization unwind. Remove those
7116                  * devices and proceed with the remaining.
7117                  */
7118                 if (dev->reg_state == NETREG_UNINITIALIZED) {
7119                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7120                                  dev->name, dev);
7121
7122                         WARN_ON(1);
7123                         list_del(&dev->unreg_list);
7124                         continue;
7125                 }
7126                 dev->dismantle = true;
7127                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
7128         }
7129
7130         /* If device is running, close it first. */
7131         list_for_each_entry(dev, head, unreg_list)
7132                 list_add_tail(&dev->close_list, &close_head);
7133         dev_close_many(&close_head, true);
7134
7135         list_for_each_entry(dev, head, unreg_list) {
7136                 /* And unlink it from device chain. */
7137                 unlist_netdevice(dev);
7138
7139                 dev->reg_state = NETREG_UNREGISTERING;
7140         }
7141         flush_all_backlogs();
7142
7143         synchronize_net();
7144
7145         list_for_each_entry(dev, head, unreg_list) {
7146                 struct sk_buff *skb = NULL;
7147
7148                 /* Shutdown queueing discipline. */
7149                 dev_shutdown(dev);
7150
7151
7152                 /* Notify protocols, that we are about to destroy
7153                  * this device. They should clean all the things.
7154                  */
7155                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7156
7157                 if (!dev->rtnl_link_ops ||
7158                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7159                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
7160                                                      GFP_KERNEL);
7161
7162                 /*
7163                  *      Flush the unicast and multicast chains
7164                  */
7165                 dev_uc_flush(dev);
7166                 dev_mc_flush(dev);
7167
7168                 if (dev->netdev_ops->ndo_uninit)
7169                         dev->netdev_ops->ndo_uninit(dev);
7170
7171                 if (skb)
7172                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
7173
7174                 /* Notifier chain MUST detach us all upper devices. */
7175                 WARN_ON(netdev_has_any_upper_dev(dev));
7176                 WARN_ON(netdev_has_any_lower_dev(dev));
7177
7178                 /* Remove entries from kobject tree */
7179                 netdev_unregister_kobject(dev);
7180 #ifdef CONFIG_XPS
7181                 /* Remove XPS queueing entries */
7182                 netif_reset_xps_queues_gt(dev, 0);
7183 #endif
7184         }
7185
7186         synchronize_net();
7187
7188         list_for_each_entry(dev, head, unreg_list)
7189                 dev_put(dev);
7190 }
7191
7192 static void rollback_registered(struct net_device *dev)
7193 {
7194         LIST_HEAD(single);
7195
7196         list_add(&dev->unreg_list, &single);
7197         rollback_registered_many(&single);
7198         list_del(&single);
7199 }
7200
7201 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
7202         struct net_device *upper, netdev_features_t features)
7203 {
7204         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7205         netdev_features_t feature;
7206         int feature_bit;
7207
7208         for_each_netdev_feature(&upper_disables, feature_bit) {
7209                 feature = __NETIF_F_BIT(feature_bit);
7210                 if (!(upper->wanted_features & feature)
7211                     && (features & feature)) {
7212                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
7213                                    &feature, upper->name);
7214                         features &= ~feature;
7215                 }
7216         }
7217
7218         return features;
7219 }
7220
7221 static void netdev_sync_lower_features(struct net_device *upper,
7222         struct net_device *lower, netdev_features_t features)
7223 {
7224         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7225         netdev_features_t feature;
7226         int feature_bit;
7227
7228         for_each_netdev_feature(&upper_disables, feature_bit) {
7229                 feature = __NETIF_F_BIT(feature_bit);
7230                 if (!(features & feature) && (lower->features & feature)) {
7231                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
7232                                    &feature, lower->name);
7233                         lower->wanted_features &= ~feature;
7234                         netdev_update_features(lower);
7235
7236                         if (unlikely(lower->features & feature))
7237                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
7238                                             &feature, lower->name);
7239                 }
7240         }
7241 }
7242
7243 static netdev_features_t netdev_fix_features(struct net_device *dev,
7244         netdev_features_t features)
7245 {
7246         /* Fix illegal checksum combinations */
7247         if ((features & NETIF_F_HW_CSUM) &&
7248             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
7249                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
7250                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
7251         }
7252
7253         /* TSO requires that SG is present as well. */
7254         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
7255                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
7256                 features &= ~NETIF_F_ALL_TSO;
7257         }
7258
7259         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
7260                                         !(features & NETIF_F_IP_CSUM)) {
7261                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
7262                 features &= ~NETIF_F_TSO;
7263                 features &= ~NETIF_F_TSO_ECN;
7264         }
7265
7266         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
7267                                          !(features & NETIF_F_IPV6_CSUM)) {
7268                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
7269                 features &= ~NETIF_F_TSO6;
7270         }
7271
7272         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
7273         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
7274                 features &= ~NETIF_F_TSO_MANGLEID;
7275
7276         /* TSO ECN requires that TSO is present as well. */
7277         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
7278                 features &= ~NETIF_F_TSO_ECN;
7279
7280         /* Software GSO depends on SG. */
7281         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
7282                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
7283                 features &= ~NETIF_F_GSO;
7284         }
7285
7286         /* GSO partial features require GSO partial be set */
7287         if ((features & dev->gso_partial_features) &&
7288             !(features & NETIF_F_GSO_PARTIAL)) {
7289                 netdev_dbg(dev,
7290                            "Dropping partially supported GSO features since no GSO partial.\n");
7291                 features &= ~dev->gso_partial_features;
7292         }
7293
7294         return features;
7295 }
7296
7297 int __netdev_update_features(struct net_device *dev)
7298 {
7299         struct net_device *upper, *lower;
7300         netdev_features_t features;
7301         struct list_head *iter;
7302         int err = -1;
7303
7304         ASSERT_RTNL();
7305
7306         features = netdev_get_wanted_features(dev);
7307
7308         if (dev->netdev_ops->ndo_fix_features)
7309                 features = dev->netdev_ops->ndo_fix_features(dev, features);
7310
7311         /* driver might be less strict about feature dependencies */
7312         features = netdev_fix_features(dev, features);
7313
7314         /* some features can't be enabled if they're off an an upper device */
7315         netdev_for_each_upper_dev_rcu(dev, upper, iter)
7316                 features = netdev_sync_upper_features(dev, upper, features);
7317
7318         if (dev->features == features)
7319                 goto sync_lower;
7320
7321         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7322                 &dev->features, &features);
7323
7324         if (dev->netdev_ops->ndo_set_features)
7325                 err = dev->netdev_ops->ndo_set_features(dev, features);
7326         else
7327                 err = 0;
7328
7329         if (unlikely(err < 0)) {
7330                 netdev_err(dev,
7331                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
7332                         err, &features, &dev->features);
7333                 /* return non-0 since some features might have changed and
7334                  * it's better to fire a spurious notification than miss it
7335                  */
7336                 return -1;
7337         }
7338
7339 sync_lower:
7340         /* some features must be disabled on lower devices when disabled
7341          * on an upper device (think: bonding master or bridge)
7342          */
7343         netdev_for_each_lower_dev(dev, lower, iter)
7344                 netdev_sync_lower_features(dev, lower, features);
7345
7346         if (!err) {
7347                 netdev_features_t diff = features ^ dev->features;
7348
7349                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
7350                         /* udp_tunnel_{get,drop}_rx_info both need
7351                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
7352                          * device, or they won't do anything.
7353                          * Thus we need to update dev->features
7354                          * *before* calling udp_tunnel_get_rx_info,
7355                          * but *after* calling udp_tunnel_drop_rx_info.
7356                          */
7357                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
7358                                 dev->features = features;
7359                                 udp_tunnel_get_rx_info(dev);
7360                         } else {
7361                                 udp_tunnel_drop_rx_info(dev);
7362                         }
7363                 }
7364
7365                 dev->features = features;
7366         }
7367
7368         return err < 0 ? 0 : 1;
7369 }
7370
7371 /**
7372  *      netdev_update_features - recalculate device features
7373  *      @dev: the device to check
7374  *
7375  *      Recalculate dev->features set and send notifications if it
7376  *      has changed. Should be called after driver or hardware dependent
7377  *      conditions might have changed that influence the features.
7378  */
7379 void netdev_update_features(struct net_device *dev)
7380 {
7381         if (__netdev_update_features(dev))
7382                 netdev_features_change(dev);
7383 }
7384 EXPORT_SYMBOL(netdev_update_features);
7385
7386 /**
7387  *      netdev_change_features - recalculate device features
7388  *      @dev: the device to check
7389  *
7390  *      Recalculate dev->features set and send notifications even
7391  *      if they have not changed. Should be called instead of
7392  *      netdev_update_features() if also dev->vlan_features might
7393  *      have changed to allow the changes to be propagated to stacked
7394  *      VLAN devices.
7395  */
7396 void netdev_change_features(struct net_device *dev)
7397 {
7398         __netdev_update_features(dev);
7399         netdev_features_change(dev);
7400 }
7401 EXPORT_SYMBOL(netdev_change_features);
7402
7403 /**
7404  *      netif_stacked_transfer_operstate -      transfer operstate
7405  *      @rootdev: the root or lower level device to transfer state from
7406  *      @dev: the device to transfer operstate to
7407  *
7408  *      Transfer operational state from root to device. This is normally
7409  *      called when a stacking relationship exists between the root
7410  *      device and the device(a leaf device).
7411  */
7412 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7413                                         struct net_device *dev)
7414 {
7415         if (rootdev->operstate == IF_OPER_DORMANT)
7416                 netif_dormant_on(dev);
7417         else
7418                 netif_dormant_off(dev);
7419
7420         if (netif_carrier_ok(rootdev))
7421                 netif_carrier_on(dev);
7422         else
7423                 netif_carrier_off(dev);
7424 }
7425 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7426
7427 #ifdef CONFIG_SYSFS
7428 static int netif_alloc_rx_queues(struct net_device *dev)
7429 {
7430         unsigned int i, count = dev->num_rx_queues;
7431         struct netdev_rx_queue *rx;
7432         size_t sz = count * sizeof(*rx);
7433
7434         BUG_ON(count < 1);
7435
7436         rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7437         if (!rx)
7438                 return -ENOMEM;
7439
7440         dev->_rx = rx;
7441
7442         for (i = 0; i < count; i++)
7443                 rx[i].dev = dev;
7444         return 0;
7445 }
7446 #endif
7447
7448 static void netdev_init_one_queue(struct net_device *dev,
7449                                   struct netdev_queue *queue, void *_unused)
7450 {
7451         /* Initialize queue lock */
7452         spin_lock_init(&queue->_xmit_lock);
7453         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7454         queue->xmit_lock_owner = -1;
7455         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7456         queue->dev = dev;
7457 #ifdef CONFIG_BQL
7458         dql_init(&queue->dql, HZ);
7459 #endif
7460 }
7461
7462 static void netif_free_tx_queues(struct net_device *dev)
7463 {
7464         kvfree(dev->_tx);
7465 }
7466
7467 static int netif_alloc_netdev_queues(struct net_device *dev)
7468 {
7469         unsigned int count = dev->num_tx_queues;
7470         struct netdev_queue *tx;
7471         size_t sz = count * sizeof(*tx);
7472
7473         if (count < 1 || count > 0xffff)
7474                 return -EINVAL;
7475
7476         tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7477         if (!tx)
7478                 return -ENOMEM;
7479
7480         dev->_tx = tx;
7481
7482         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7483         spin_lock_init(&dev->tx_global_lock);
7484
7485         return 0;
7486 }
7487
7488 void netif_tx_stop_all_queues(struct net_device *dev)
7489 {
7490         unsigned int i;
7491
7492         for (i = 0; i < dev->num_tx_queues; i++) {
7493                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7494
7495                 netif_tx_stop_queue(txq);
7496         }
7497 }
7498 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7499
7500 /**
7501  *      register_netdevice      - register a network device
7502  *      @dev: device to register
7503  *
7504  *      Take a completed network device structure and add it to the kernel
7505  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7506  *      chain. 0 is returned on success. A negative errno code is returned
7507  *      on a failure to set up the device, or if the name is a duplicate.
7508  *
7509  *      Callers must hold the rtnl semaphore. You may want
7510  *      register_netdev() instead of this.
7511  *
7512  *      BUGS:
7513  *      The locking appears insufficient to guarantee two parallel registers
7514  *      will not get the same name.
7515  */
7516
7517 int register_netdevice(struct net_device *dev)
7518 {
7519         int ret;
7520         struct net *net = dev_net(dev);
7521
7522         BUG_ON(dev_boot_phase);
7523         ASSERT_RTNL();
7524
7525         might_sleep();
7526
7527         /* When net_device's are persistent, this will be fatal. */
7528         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7529         BUG_ON(!net);
7530
7531         spin_lock_init(&dev->addr_list_lock);
7532         netdev_set_addr_lockdep_class(dev);
7533
7534         ret = dev_get_valid_name(net, dev, dev->name);
7535         if (ret < 0)
7536                 goto out;
7537
7538         /* Init, if this function is available */
7539         if (dev->netdev_ops->ndo_init) {
7540                 ret = dev->netdev_ops->ndo_init(dev);
7541                 if (ret) {
7542                         if (ret > 0)
7543                                 ret = -EIO;
7544                         goto out;
7545                 }
7546         }
7547
7548         if (((dev->hw_features | dev->features) &
7549              NETIF_F_HW_VLAN_CTAG_FILTER) &&
7550             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7551              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7552                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7553                 ret = -EINVAL;
7554                 goto err_uninit;
7555         }
7556
7557         ret = -EBUSY;
7558         if (!dev->ifindex)
7559                 dev->ifindex = dev_new_index(net);
7560         else if (__dev_get_by_index(net, dev->ifindex))
7561                 goto err_uninit;
7562
7563         /* Transfer changeable features to wanted_features and enable
7564          * software offloads (GSO and GRO).
7565          */
7566         dev->hw_features |= NETIF_F_SOFT_FEATURES;
7567         dev->features |= NETIF_F_SOFT_FEATURES;
7568
7569         if (dev->netdev_ops->ndo_udp_tunnel_add) {
7570                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7571                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7572         }
7573
7574         dev->wanted_features = dev->features & dev->hw_features;
7575
7576         if (!(dev->flags & IFF_LOOPBACK))
7577                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
7578
7579         /* If IPv4 TCP segmentation offload is supported we should also
7580          * allow the device to enable segmenting the frame with the option
7581          * of ignoring a static IP ID value.  This doesn't enable the
7582          * feature itself but allows the user to enable it later.
7583          */
7584         if (dev->hw_features & NETIF_F_TSO)
7585                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7586         if (dev->vlan_features & NETIF_F_TSO)
7587                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7588         if (dev->mpls_features & NETIF_F_TSO)
7589                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7590         if (dev->hw_enc_features & NETIF_F_TSO)
7591                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7592
7593         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7594          */
7595         dev->vlan_features |= NETIF_F_HIGHDMA;
7596
7597         /* Make NETIF_F_SG inheritable to tunnel devices.
7598          */
7599         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7600
7601         /* Make NETIF_F_SG inheritable to MPLS.
7602          */
7603         dev->mpls_features |= NETIF_F_SG;
7604
7605         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7606         ret = notifier_to_errno(ret);
7607         if (ret)
7608                 goto err_uninit;
7609
7610         ret = netdev_register_kobject(dev);
7611         if (ret)
7612                 goto err_uninit;
7613         dev->reg_state = NETREG_REGISTERED;
7614
7615         __netdev_update_features(dev);
7616
7617         /*
7618          *      Default initial state at registry is that the
7619          *      device is present.
7620          */
7621
7622         set_bit(__LINK_STATE_PRESENT, &dev->state);
7623
7624         linkwatch_init_dev(dev);
7625
7626         dev_init_scheduler(dev);
7627         dev_hold(dev);
7628         list_netdevice(dev);
7629         add_device_randomness(dev->dev_addr, dev->addr_len);
7630
7631         /* If the device has permanent device address, driver should
7632          * set dev_addr and also addr_assign_type should be set to
7633          * NET_ADDR_PERM (default value).
7634          */
7635         if (dev->addr_assign_type == NET_ADDR_PERM)
7636                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7637
7638         /* Notify protocols, that a new device appeared. */
7639         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7640         ret = notifier_to_errno(ret);
7641         if (ret) {
7642                 rollback_registered(dev);
7643                 dev->reg_state = NETREG_UNREGISTERED;
7644         }
7645         /*
7646          *      Prevent userspace races by waiting until the network
7647          *      device is fully setup before sending notifications.
7648          */
7649         if (!dev->rtnl_link_ops ||
7650             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7651                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7652
7653 out:
7654         return ret;
7655
7656 err_uninit:
7657         if (dev->netdev_ops->ndo_uninit)
7658                 dev->netdev_ops->ndo_uninit(dev);
7659         if (dev->priv_destructor)
7660                 dev->priv_destructor(dev);
7661         goto out;
7662 }
7663 EXPORT_SYMBOL(register_netdevice);
7664
7665 /**
7666  *      init_dummy_netdev       - init a dummy network device for NAPI
7667  *      @dev: device to init
7668  *
7669  *      This takes a network device structure and initialize the minimum
7670  *      amount of fields so it can be used to schedule NAPI polls without
7671  *      registering a full blown interface. This is to be used by drivers
7672  *      that need to tie several hardware interfaces to a single NAPI
7673  *      poll scheduler due to HW limitations.
7674  */
7675 int init_dummy_netdev(struct net_device *dev)
7676 {
7677         /* Clear everything. Note we don't initialize spinlocks
7678          * are they aren't supposed to be taken by any of the
7679          * NAPI code and this dummy netdev is supposed to be
7680          * only ever used for NAPI polls
7681          */
7682         memset(dev, 0, sizeof(struct net_device));
7683
7684         /* make sure we BUG if trying to hit standard
7685          * register/unregister code path
7686          */
7687         dev->reg_state = NETREG_DUMMY;
7688
7689         /* NAPI wants this */
7690         INIT_LIST_HEAD(&dev->napi_list);
7691
7692         /* a dummy interface is started by default */
7693         set_bit(__LINK_STATE_PRESENT, &dev->state);
7694         set_bit(__LINK_STATE_START, &dev->state);
7695
7696         /* Note : We dont allocate pcpu_refcnt for dummy devices,
7697          * because users of this 'device' dont need to change
7698          * its refcount.
7699          */
7700
7701         return 0;
7702 }
7703 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7704
7705
7706 /**
7707  *      register_netdev - register a network device
7708  *      @dev: device to register
7709  *
7710  *      Take a completed network device structure and add it to the kernel
7711  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7712  *      chain. 0 is returned on success. A negative errno code is returned
7713  *      on a failure to set up the device, or if the name is a duplicate.
7714  *
7715  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
7716  *      and expands the device name if you passed a format string to
7717  *      alloc_netdev.
7718  */
7719 int register_netdev(struct net_device *dev)
7720 {
7721         int err;
7722
7723         rtnl_lock();
7724         err = register_netdevice(dev);
7725         rtnl_unlock();
7726         return err;
7727 }
7728 EXPORT_SYMBOL(register_netdev);
7729
7730 int netdev_refcnt_read(const struct net_device *dev)
7731 {
7732         int i, refcnt = 0;
7733
7734         for_each_possible_cpu(i)
7735                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7736         return refcnt;
7737 }
7738 EXPORT_SYMBOL(netdev_refcnt_read);
7739
7740 /**
7741  * netdev_wait_allrefs - wait until all references are gone.
7742  * @dev: target net_device
7743  *
7744  * This is called when unregistering network devices.
7745  *
7746  * Any protocol or device that holds a reference should register
7747  * for netdevice notification, and cleanup and put back the
7748  * reference if they receive an UNREGISTER event.
7749  * We can get stuck here if buggy protocols don't correctly
7750  * call dev_put.
7751  */
7752 static void netdev_wait_allrefs(struct net_device *dev)
7753 {
7754         unsigned long rebroadcast_time, warning_time;
7755         int refcnt;
7756
7757         linkwatch_forget_dev(dev);
7758
7759         rebroadcast_time = warning_time = jiffies;
7760         refcnt = netdev_refcnt_read(dev);
7761
7762         while (refcnt != 0) {
7763                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7764                         rtnl_lock();
7765
7766                         /* Rebroadcast unregister notification */
7767                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7768
7769                         __rtnl_unlock();
7770                         rcu_barrier();
7771                         rtnl_lock();
7772
7773                         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7774                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7775                                      &dev->state)) {
7776                                 /* We must not have linkwatch events
7777                                  * pending on unregister. If this
7778                                  * happens, we simply run the queue
7779                                  * unscheduled, resulting in a noop
7780                                  * for this device.
7781                                  */
7782                                 linkwatch_run_queue();
7783                         }
7784
7785                         __rtnl_unlock();
7786
7787                         rebroadcast_time = jiffies;
7788                 }
7789
7790                 msleep(250);
7791
7792                 refcnt = netdev_refcnt_read(dev);
7793
7794                 if (time_after(jiffies, warning_time + 10 * HZ)) {
7795                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7796                                  dev->name, refcnt);
7797                         warning_time = jiffies;
7798                 }
7799         }
7800 }
7801
7802 /* The sequence is:
7803  *
7804  *      rtnl_lock();
7805  *      ...
7806  *      register_netdevice(x1);
7807  *      register_netdevice(x2);
7808  *      ...
7809  *      unregister_netdevice(y1);
7810  *      unregister_netdevice(y2);
7811  *      ...
7812  *      rtnl_unlock();
7813  *      free_netdev(y1);
7814  *      free_netdev(y2);
7815  *
7816  * We are invoked by rtnl_unlock().
7817  * This allows us to deal with problems:
7818  * 1) We can delete sysfs objects which invoke hotplug
7819  *    without deadlocking with linkwatch via keventd.
7820  * 2) Since we run with the RTNL semaphore not held, we can sleep
7821  *    safely in order to wait for the netdev refcnt to drop to zero.
7822  *
7823  * We must not return until all unregister events added during
7824  * the interval the lock was held have been completed.
7825  */
7826 void netdev_run_todo(void)
7827 {
7828         struct list_head list;
7829
7830         /* Snapshot list, allow later requests */
7831         list_replace_init(&net_todo_list, &list);
7832
7833         __rtnl_unlock();
7834
7835
7836         /* Wait for rcu callbacks to finish before next phase */
7837         if (!list_empty(&list))
7838                 rcu_barrier();
7839
7840         while (!list_empty(&list)) {
7841                 struct net_device *dev
7842                         = list_first_entry(&list, struct net_device, todo_list);
7843                 list_del(&dev->todo_list);
7844
7845                 rtnl_lock();
7846                 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7847                 __rtnl_unlock();
7848
7849                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7850                         pr_err("network todo '%s' but state %d\n",
7851                                dev->name, dev->reg_state);
7852                         dump_stack();
7853                         continue;
7854                 }
7855
7856                 dev->reg_state = NETREG_UNREGISTERED;
7857
7858                 netdev_wait_allrefs(dev);
7859
7860                 /* paranoia */
7861                 BUG_ON(netdev_refcnt_read(dev));
7862                 BUG_ON(!list_empty(&dev->ptype_all));
7863                 BUG_ON(!list_empty(&dev->ptype_specific));
7864                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7865                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7866                 WARN_ON(dev->dn_ptr);
7867
7868                 if (dev->priv_destructor)
7869                         dev->priv_destructor(dev);
7870                 if (dev->needs_free_netdev)
7871                         free_netdev(dev);
7872
7873                 /* Report a network device has been unregistered */
7874                 rtnl_lock();
7875                 dev_net(dev)->dev_unreg_count--;
7876                 __rtnl_unlock();
7877                 wake_up(&netdev_unregistering_wq);
7878
7879                 /* Free network device */
7880                 kobject_put(&dev->dev.kobj);
7881         }
7882 }
7883
7884 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7885  * all the same fields in the same order as net_device_stats, with only
7886  * the type differing, but rtnl_link_stats64 may have additional fields
7887  * at the end for newer counters.
7888  */
7889 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7890                              const struct net_device_stats *netdev_stats)
7891 {
7892 #if BITS_PER_LONG == 64
7893         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7894         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
7895         /* zero out counters that only exist in rtnl_link_stats64 */
7896         memset((char *)stats64 + sizeof(*netdev_stats), 0,
7897                sizeof(*stats64) - sizeof(*netdev_stats));
7898 #else
7899         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7900         const unsigned long *src = (const unsigned long *)netdev_stats;
7901         u64 *dst = (u64 *)stats64;
7902
7903         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7904         for (i = 0; i < n; i++)
7905                 dst[i] = src[i];
7906         /* zero out counters that only exist in rtnl_link_stats64 */
7907         memset((char *)stats64 + n * sizeof(u64), 0,
7908                sizeof(*stats64) - n * sizeof(u64));
7909 #endif
7910 }
7911 EXPORT_SYMBOL(netdev_stats_to_stats64);
7912
7913 /**
7914  *      dev_get_stats   - get network device statistics
7915  *      @dev: device to get statistics from
7916  *      @storage: place to store stats
7917  *
7918  *      Get network statistics from device. Return @storage.
7919  *      The device driver may provide its own method by setting
7920  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7921  *      otherwise the internal statistics structure is used.
7922  */
7923 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7924                                         struct rtnl_link_stats64 *storage)
7925 {
7926         const struct net_device_ops *ops = dev->netdev_ops;
7927
7928         if (ops->ndo_get_stats64) {
7929                 memset(storage, 0, sizeof(*storage));
7930                 ops->ndo_get_stats64(dev, storage);
7931         } else if (ops->ndo_get_stats) {
7932                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7933         } else {
7934                 netdev_stats_to_stats64(storage, &dev->stats);
7935         }
7936         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
7937         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
7938         storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
7939         return storage;
7940 }
7941 EXPORT_SYMBOL(dev_get_stats);
7942
7943 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7944 {
7945         struct netdev_queue *queue = dev_ingress_queue(dev);
7946
7947 #ifdef CONFIG_NET_CLS_ACT
7948         if (queue)
7949                 return queue;
7950         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7951         if (!queue)
7952                 return NULL;
7953         netdev_init_one_queue(dev, queue, NULL);
7954         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7955         queue->qdisc_sleeping = &noop_qdisc;
7956         rcu_assign_pointer(dev->ingress_queue, queue);
7957 #endif
7958         return queue;
7959 }
7960
7961 static const struct ethtool_ops default_ethtool_ops;
7962
7963 void netdev_set_default_ethtool_ops(struct net_device *dev,
7964                                     const struct ethtool_ops *ops)
7965 {
7966         if (dev->ethtool_ops == &default_ethtool_ops)
7967                 dev->ethtool_ops = ops;
7968 }
7969 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7970
7971 void netdev_freemem(struct net_device *dev)
7972 {
7973         char *addr = (char *)dev - dev->padded;
7974
7975         kvfree(addr);
7976 }
7977
7978 /**
7979  * alloc_netdev_mqs - allocate network device
7980  * @sizeof_priv: size of private data to allocate space for
7981  * @name: device name format string
7982  * @name_assign_type: origin of device name
7983  * @setup: callback to initialize device
7984  * @txqs: the number of TX subqueues to allocate
7985  * @rxqs: the number of RX subqueues to allocate
7986  *
7987  * Allocates a struct net_device with private data area for driver use
7988  * and performs basic initialization.  Also allocates subqueue structs
7989  * for each queue on the device.
7990  */
7991 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7992                 unsigned char name_assign_type,
7993                 void (*setup)(struct net_device *),
7994                 unsigned int txqs, unsigned int rxqs)
7995 {
7996         struct net_device *dev;
7997         size_t alloc_size;
7998         struct net_device *p;
7999
8000         BUG_ON(strlen(name) >= sizeof(dev->name));
8001
8002         if (txqs < 1) {
8003                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
8004                 return NULL;
8005         }
8006
8007 #ifdef CONFIG_SYSFS
8008         if (rxqs < 1) {
8009                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
8010                 return NULL;
8011         }
8012 #endif
8013
8014         alloc_size = sizeof(struct net_device);
8015         if (sizeof_priv) {
8016                 /* ensure 32-byte alignment of private area */
8017                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
8018                 alloc_size += sizeof_priv;
8019         }
8020         /* ensure 32-byte alignment of whole construct */
8021         alloc_size += NETDEV_ALIGN - 1;
8022
8023         p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8024         if (!p)
8025                 return NULL;
8026
8027         dev = PTR_ALIGN(p, NETDEV_ALIGN);
8028         dev->padded = (char *)dev - (char *)p;
8029
8030         dev->pcpu_refcnt = alloc_percpu(int);
8031         if (!dev->pcpu_refcnt)
8032                 goto free_dev;
8033
8034         if (dev_addr_init(dev))
8035                 goto free_pcpu;
8036
8037         dev_mc_init(dev);
8038         dev_uc_init(dev);
8039
8040         dev_net_set(dev, &init_net);
8041
8042         dev->gso_max_size = GSO_MAX_SIZE;
8043         dev->gso_max_segs = GSO_MAX_SEGS;
8044
8045         INIT_LIST_HEAD(&dev->napi_list);
8046         INIT_LIST_HEAD(&dev->unreg_list);
8047         INIT_LIST_HEAD(&dev->close_list);
8048         INIT_LIST_HEAD(&dev->link_watch_list);
8049         INIT_LIST_HEAD(&dev->adj_list.upper);
8050         INIT_LIST_HEAD(&dev->adj_list.lower);
8051         INIT_LIST_HEAD(&dev->ptype_all);
8052         INIT_LIST_HEAD(&dev->ptype_specific);
8053 #ifdef CONFIG_NET_SCHED
8054         hash_init(dev->qdisc_hash);
8055 #endif
8056         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8057         setup(dev);
8058
8059         if (!dev->tx_queue_len) {
8060                 dev->priv_flags |= IFF_NO_QUEUE;
8061                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
8062         }
8063
8064         dev->num_tx_queues = txqs;
8065         dev->real_num_tx_queues = txqs;
8066         if (netif_alloc_netdev_queues(dev))
8067                 goto free_all;
8068
8069 #ifdef CONFIG_SYSFS
8070         dev->num_rx_queues = rxqs;
8071         dev->real_num_rx_queues = rxqs;
8072         if (netif_alloc_rx_queues(dev))
8073                 goto free_all;
8074 #endif
8075
8076         strcpy(dev->name, name);
8077         dev->name_assign_type = name_assign_type;
8078         dev->group = INIT_NETDEV_GROUP;
8079         if (!dev->ethtool_ops)
8080                 dev->ethtool_ops = &default_ethtool_ops;
8081
8082         nf_hook_ingress_init(dev);
8083
8084         return dev;
8085
8086 free_all:
8087         free_netdev(dev);
8088         return NULL;
8089
8090 free_pcpu:
8091         free_percpu(dev->pcpu_refcnt);
8092 free_dev:
8093         netdev_freemem(dev);
8094         return NULL;
8095 }
8096 EXPORT_SYMBOL(alloc_netdev_mqs);
8097
8098 /**
8099  * free_netdev - free network device
8100  * @dev: device
8101  *
8102  * This function does the last stage of destroying an allocated device
8103  * interface. The reference to the device object is released. If this
8104  * is the last reference then it will be freed.Must be called in process
8105  * context.
8106  */
8107 void free_netdev(struct net_device *dev)
8108 {
8109         struct napi_struct *p, *n;
8110         struct bpf_prog *prog;
8111
8112         might_sleep();
8113         netif_free_tx_queues(dev);
8114 #ifdef CONFIG_SYSFS
8115         kvfree(dev->_rx);
8116 #endif
8117
8118         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
8119
8120         /* Flush device addresses */
8121         dev_addr_flush(dev);
8122
8123         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
8124                 netif_napi_del(p);
8125
8126         free_percpu(dev->pcpu_refcnt);
8127         dev->pcpu_refcnt = NULL;
8128
8129         prog = rcu_dereference_protected(dev->xdp_prog, 1);
8130         if (prog) {
8131                 bpf_prog_put(prog);
8132                 static_key_slow_dec(&generic_xdp_needed);
8133         }
8134
8135         /*  Compatibility with error handling in drivers */
8136         if (dev->reg_state == NETREG_UNINITIALIZED) {
8137                 netdev_freemem(dev);
8138                 return;
8139         }
8140
8141         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
8142         dev->reg_state = NETREG_RELEASED;
8143
8144         /* will free via device release */
8145         put_device(&dev->dev);
8146 }
8147 EXPORT_SYMBOL(free_netdev);
8148
8149 /**
8150  *      synchronize_net -  Synchronize with packet receive processing
8151  *
8152  *      Wait for packets currently being received to be done.
8153  *      Does not block later packets from starting.
8154  */
8155 void synchronize_net(void)
8156 {
8157         might_sleep();
8158         if (rtnl_is_locked())
8159                 synchronize_rcu_expedited();
8160         else
8161                 synchronize_rcu();
8162 }
8163 EXPORT_SYMBOL(synchronize_net);
8164
8165 /**
8166  *      unregister_netdevice_queue - remove device from the kernel
8167  *      @dev: device
8168  *      @head: list
8169  *
8170  *      This function shuts down a device interface and removes it
8171  *      from the kernel tables.
8172  *      If head not NULL, device is queued to be unregistered later.
8173  *
8174  *      Callers must hold the rtnl semaphore.  You may want
8175  *      unregister_netdev() instead of this.
8176  */
8177
8178 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
8179 {
8180         ASSERT_RTNL();
8181
8182         if (head) {
8183                 list_move_tail(&dev->unreg_list, head);
8184         } else {
8185                 rollback_registered(dev);
8186                 /* Finish processing unregister after unlock */
8187                 net_set_todo(dev);
8188         }
8189 }
8190 EXPORT_SYMBOL(unregister_netdevice_queue);
8191
8192 /**
8193  *      unregister_netdevice_many - unregister many devices
8194  *      @head: list of devices
8195  *
8196  *  Note: As most callers use a stack allocated list_head,
8197  *  we force a list_del() to make sure stack wont be corrupted later.
8198  */
8199 void unregister_netdevice_many(struct list_head *head)
8200 {
8201         struct net_device *dev;
8202
8203         if (!list_empty(head)) {
8204                 rollback_registered_many(head);
8205                 list_for_each_entry(dev, head, unreg_list)
8206                         net_set_todo(dev);
8207                 list_del(head);
8208         }
8209 }
8210 EXPORT_SYMBOL(unregister_netdevice_many);
8211
8212 /**
8213  *      unregister_netdev - remove device from the kernel
8214  *      @dev: device
8215  *
8216  *      This function shuts down a device interface and removes it
8217  *      from the kernel tables.
8218  *
8219  *      This is just a wrapper for unregister_netdevice that takes
8220  *      the rtnl semaphore.  In general you want to use this and not
8221  *      unregister_netdevice.
8222  */
8223 void unregister_netdev(struct net_device *dev)
8224 {
8225         rtnl_lock();
8226         unregister_netdevice(dev);
8227         rtnl_unlock();
8228 }
8229 EXPORT_SYMBOL(unregister_netdev);
8230
8231 /**
8232  *      dev_change_net_namespace - move device to different nethost namespace
8233  *      @dev: device
8234  *      @net: network namespace
8235  *      @pat: If not NULL name pattern to try if the current device name
8236  *            is already taken in the destination network namespace.
8237  *
8238  *      This function shuts down a device interface and moves it
8239  *      to a new network namespace. On success 0 is returned, on
8240  *      a failure a netagive errno code is returned.
8241  *
8242  *      Callers must hold the rtnl semaphore.
8243  */
8244
8245 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
8246 {
8247         int err;
8248
8249         ASSERT_RTNL();
8250
8251         /* Don't allow namespace local devices to be moved. */
8252         err = -EINVAL;
8253         if (dev->features & NETIF_F_NETNS_LOCAL)
8254                 goto out;
8255
8256         /* Ensure the device has been registrered */
8257         if (dev->reg_state != NETREG_REGISTERED)
8258                 goto out;
8259
8260         /* Get out if there is nothing todo */
8261         err = 0;
8262         if (net_eq(dev_net(dev), net))
8263                 goto out;
8264
8265         /* Pick the destination device name, and ensure
8266          * we can use it in the destination network namespace.
8267          */
8268         err = -EEXIST;
8269         if (__dev_get_by_name(net, dev->name)) {
8270                 /* We get here if we can't use the current device name */
8271                 if (!pat)
8272                         goto out;
8273                 if (dev_get_valid_name(net, dev, pat) < 0)
8274                         goto out;
8275         }
8276
8277         /*
8278          * And now a mini version of register_netdevice unregister_netdevice.
8279          */
8280
8281         /* If device is running close it first. */
8282         dev_close(dev);
8283
8284         /* And unlink it from device chain */
8285         err = -ENODEV;
8286         unlist_netdevice(dev);
8287
8288         synchronize_net();
8289
8290         /* Shutdown queueing discipline. */
8291         dev_shutdown(dev);
8292
8293         /* Notify protocols, that we are about to destroy
8294          * this device. They should clean all the things.
8295          *
8296          * Note that dev->reg_state stays at NETREG_REGISTERED.
8297          * This is wanted because this way 8021q and macvlan know
8298          * the device is just moving and can keep their slaves up.
8299          */
8300         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8301         rcu_barrier();
8302         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
8303         rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
8304
8305         /*
8306          *      Flush the unicast and multicast chains
8307          */
8308         dev_uc_flush(dev);
8309         dev_mc_flush(dev);
8310
8311         /* Send a netdev-removed uevent to the old namespace */
8312         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
8313         netdev_adjacent_del_links(dev);
8314
8315         /* Actually switch the network namespace */
8316         dev_net_set(dev, net);
8317
8318         /* If there is an ifindex conflict assign a new one */
8319         if (__dev_get_by_index(net, dev->ifindex))
8320                 dev->ifindex = dev_new_index(net);
8321
8322         /* Send a netdev-add uevent to the new namespace */
8323         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
8324         netdev_adjacent_add_links(dev);
8325
8326         /* Fixup kobjects */
8327         err = device_rename(&dev->dev, dev->name);
8328         WARN_ON(err);
8329
8330         /* Add the device back in the hashes */
8331         list_netdevice(dev);
8332
8333         /* Notify protocols, that a new device appeared. */
8334         call_netdevice_notifiers(NETDEV_REGISTER, dev);
8335
8336         /*
8337          *      Prevent userspace races by waiting until the network
8338          *      device is fully setup before sending notifications.
8339          */
8340         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8341
8342         synchronize_net();
8343         err = 0;
8344 out:
8345         return err;
8346 }
8347 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
8348
8349 static int dev_cpu_dead(unsigned int oldcpu)
8350 {
8351         struct sk_buff **list_skb;
8352         struct sk_buff *skb;
8353         unsigned int cpu;
8354         struct softnet_data *sd, *oldsd, *remsd = NULL;
8355
8356         local_irq_disable();
8357         cpu = smp_processor_id();
8358         sd = &per_cpu(softnet_data, cpu);
8359         oldsd = &per_cpu(softnet_data, oldcpu);
8360
8361         /* Find end of our completion_queue. */
8362         list_skb = &sd->completion_queue;
8363         while (*list_skb)
8364                 list_skb = &(*list_skb)->next;
8365         /* Append completion queue from offline CPU. */
8366         *list_skb = oldsd->completion_queue;
8367         oldsd->completion_queue = NULL;
8368
8369         /* Append output queue from offline CPU. */
8370         if (oldsd->output_queue) {
8371                 *sd->output_queue_tailp = oldsd->output_queue;
8372                 sd->output_queue_tailp = oldsd->output_queue_tailp;
8373                 oldsd->output_queue = NULL;
8374                 oldsd->output_queue_tailp = &oldsd->output_queue;
8375         }
8376         /* Append NAPI poll list from offline CPU, with one exception :
8377          * process_backlog() must be called by cpu owning percpu backlog.
8378          * We properly handle process_queue & input_pkt_queue later.
8379          */
8380         while (!list_empty(&oldsd->poll_list)) {
8381                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8382                                                             struct napi_struct,
8383                                                             poll_list);
8384
8385                 list_del_init(&napi->poll_list);
8386                 if (napi->poll == process_backlog)
8387                         napi->state = 0;
8388                 else
8389                         ____napi_schedule(sd, napi);
8390         }
8391
8392         raise_softirq_irqoff(NET_TX_SOFTIRQ);
8393         local_irq_enable();
8394
8395 #ifdef CONFIG_RPS
8396         remsd = oldsd->rps_ipi_list;
8397         oldsd->rps_ipi_list = NULL;
8398 #endif
8399         /* send out pending IPI's on offline CPU */
8400         net_rps_send_ipi(remsd);
8401
8402         /* Process offline CPU's input_pkt_queue */
8403         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8404                 netif_rx_ni(skb);
8405                 input_queue_head_incr(oldsd);
8406         }
8407         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8408                 netif_rx_ni(skb);
8409                 input_queue_head_incr(oldsd);
8410         }
8411
8412         return 0;
8413 }
8414
8415 /**
8416  *      netdev_increment_features - increment feature set by one
8417  *      @all: current feature set
8418  *      @one: new feature set
8419  *      @mask: mask feature set
8420  *
8421  *      Computes a new feature set after adding a device with feature set
8422  *      @one to the master device with current feature set @all.  Will not
8423  *      enable anything that is off in @mask. Returns the new feature set.
8424  */
8425 netdev_features_t netdev_increment_features(netdev_features_t all,
8426         netdev_features_t one, netdev_features_t mask)
8427 {
8428         if (mask & NETIF_F_HW_CSUM)
8429                 mask |= NETIF_F_CSUM_MASK;
8430         mask |= NETIF_F_VLAN_CHALLENGED;
8431
8432         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8433         all &= one | ~NETIF_F_ALL_FOR_ALL;
8434
8435         /* If one device supports hw checksumming, set for all. */
8436         if (all & NETIF_F_HW_CSUM)
8437                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8438
8439         return all;
8440 }
8441 EXPORT_SYMBOL(netdev_increment_features);
8442
8443 static struct hlist_head * __net_init netdev_create_hash(void)
8444 {
8445         int i;
8446         struct hlist_head *hash;
8447
8448         hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8449         if (hash != NULL)
8450                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8451                         INIT_HLIST_HEAD(&hash[i]);
8452
8453         return hash;
8454 }
8455
8456 /* Initialize per network namespace state */
8457 static int __net_init netdev_init(struct net *net)
8458 {
8459         if (net != &init_net)
8460                 INIT_LIST_HEAD(&net->dev_base_head);
8461
8462         net->dev_name_head = netdev_create_hash();
8463         if (net->dev_name_head == NULL)
8464                 goto err_name;
8465
8466         net->dev_index_head = netdev_create_hash();
8467         if (net->dev_index_head == NULL)
8468                 goto err_idx;
8469
8470         return 0;
8471
8472 err_idx:
8473         kfree(net->dev_name_head);
8474 err_name:
8475         return -ENOMEM;
8476 }
8477
8478 /**
8479  *      netdev_drivername - network driver for the device
8480  *      @dev: network device
8481  *
8482  *      Determine network driver for device.
8483  */
8484 const char *netdev_drivername(const struct net_device *dev)
8485 {
8486         const struct device_driver *driver;
8487         const struct device *parent;
8488         const char *empty = "";
8489
8490         parent = dev->dev.parent;
8491         if (!parent)
8492                 return empty;
8493
8494         driver = parent->driver;
8495         if (driver && driver->name)
8496                 return driver->name;
8497         return empty;
8498 }
8499
8500 static void __netdev_printk(const char *level, const struct net_device *dev,
8501                             struct va_format *vaf)
8502 {
8503         if (dev && dev->dev.parent) {
8504                 dev_printk_emit(level[1] - '0',
8505                                 dev->dev.parent,
8506                                 "%s %s %s%s: %pV",
8507                                 dev_driver_string(dev->dev.parent),
8508                                 dev_name(dev->dev.parent),
8509                                 netdev_name(dev), netdev_reg_state(dev),
8510                                 vaf);
8511         } else if (dev) {
8512                 printk("%s%s%s: %pV",
8513                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
8514         } else {
8515                 printk("%s(NULL net_device): %pV", level, vaf);
8516         }
8517 }
8518
8519 void netdev_printk(const char *level, const struct net_device *dev,
8520                    const char *format, ...)
8521 {
8522         struct va_format vaf;
8523         va_list args;
8524
8525         va_start(args, format);
8526
8527         vaf.fmt = format;
8528         vaf.va = &args;
8529
8530         __netdev_printk(level, dev, &vaf);
8531
8532         va_end(args);
8533 }
8534 EXPORT_SYMBOL(netdev_printk);
8535
8536 #define define_netdev_printk_level(func, level)                 \
8537 void func(const struct net_device *dev, const char *fmt, ...)   \
8538 {                                                               \
8539         struct va_format vaf;                                   \
8540         va_list args;                                           \
8541                                                                 \
8542         va_start(args, fmt);                                    \
8543                                                                 \
8544         vaf.fmt = fmt;                                          \
8545         vaf.va = &args;                                         \
8546                                                                 \
8547         __netdev_printk(level, dev, &vaf);                      \
8548                                                                 \
8549         va_end(args);                                           \
8550 }                                                               \
8551 EXPORT_SYMBOL(func);
8552
8553 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8554 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8555 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8556 define_netdev_printk_level(netdev_err, KERN_ERR);
8557 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8558 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8559 define_netdev_printk_level(netdev_info, KERN_INFO);
8560
8561 static void __net_exit netdev_exit(struct net *net)
8562 {
8563         kfree(net->dev_name_head);
8564         kfree(net->dev_index_head);
8565 }
8566
8567 static struct pernet_operations __net_initdata netdev_net_ops = {
8568         .init = netdev_init,
8569         .exit = netdev_exit,
8570 };
8571
8572 static void __net_exit default_device_exit(struct net *net)
8573 {
8574         struct net_device *dev, *aux;
8575         /*
8576          * Push all migratable network devices back to the
8577          * initial network namespace
8578          */
8579         rtnl_lock();
8580         for_each_netdev_safe(net, dev, aux) {
8581                 int err;
8582                 char fb_name[IFNAMSIZ];
8583
8584                 /* Ignore unmoveable devices (i.e. loopback) */
8585                 if (dev->features & NETIF_F_NETNS_LOCAL)
8586                         continue;
8587
8588                 /* Leave virtual devices for the generic cleanup */
8589                 if (dev->rtnl_link_ops)
8590                         continue;
8591
8592                 /* Push remaining network devices to init_net */
8593                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8594                 err = dev_change_net_namespace(dev, &init_net, fb_name);
8595                 if (err) {
8596                         pr_emerg("%s: failed to move %s to init_net: %d\n",
8597                                  __func__, dev->name, err);
8598                         BUG();
8599                 }
8600         }
8601         rtnl_unlock();
8602 }
8603
8604 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8605 {
8606         /* Return with the rtnl_lock held when there are no network
8607          * devices unregistering in any network namespace in net_list.
8608          */
8609         struct net *net;
8610         bool unregistering;
8611         DEFINE_WAIT_FUNC(wait, woken_wake_function);
8612
8613         add_wait_queue(&netdev_unregistering_wq, &wait);
8614         for (;;) {
8615                 unregistering = false;
8616                 rtnl_lock();
8617                 list_for_each_entry(net, net_list, exit_list) {
8618                         if (net->dev_unreg_count > 0) {
8619                                 unregistering = true;
8620                                 break;
8621                         }
8622                 }
8623                 if (!unregistering)
8624                         break;
8625                 __rtnl_unlock();
8626
8627                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8628         }
8629         remove_wait_queue(&netdev_unregistering_wq, &wait);
8630 }
8631
8632 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8633 {
8634         /* At exit all network devices most be removed from a network
8635          * namespace.  Do this in the reverse order of registration.
8636          * Do this across as many network namespaces as possible to
8637          * improve batching efficiency.
8638          */
8639         struct net_device *dev;
8640         struct net *net;
8641         LIST_HEAD(dev_kill_list);
8642
8643         /* To prevent network device cleanup code from dereferencing
8644          * loopback devices or network devices that have been freed
8645          * wait here for all pending unregistrations to complete,
8646          * before unregistring the loopback device and allowing the
8647          * network namespace be freed.
8648          *
8649          * The netdev todo list containing all network devices
8650          * unregistrations that happen in default_device_exit_batch
8651          * will run in the rtnl_unlock() at the end of
8652          * default_device_exit_batch.
8653          */
8654         rtnl_lock_unregistering(net_list);
8655         list_for_each_entry(net, net_list, exit_list) {
8656                 for_each_netdev_reverse(net, dev) {
8657                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8658                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8659                         else
8660                                 unregister_netdevice_queue(dev, &dev_kill_list);
8661                 }
8662         }
8663         unregister_netdevice_many(&dev_kill_list);
8664         rtnl_unlock();
8665 }
8666
8667 static struct pernet_operations __net_initdata default_device_ops = {
8668         .exit = default_device_exit,
8669         .exit_batch = default_device_exit_batch,
8670 };
8671
8672 /*
8673  *      Initialize the DEV module. At boot time this walks the device list and
8674  *      unhooks any devices that fail to initialise (normally hardware not
8675  *      present) and leaves us with a valid list of present and active devices.
8676  *
8677  */
8678
8679 /*
8680  *       This is called single threaded during boot, so no need
8681  *       to take the rtnl semaphore.
8682  */
8683 static int __init net_dev_init(void)
8684 {
8685         int i, rc = -ENOMEM;
8686
8687         BUG_ON(!dev_boot_phase);
8688
8689         if (dev_proc_init())
8690                 goto out;
8691
8692         if (netdev_kobject_init())
8693                 goto out;
8694
8695         INIT_LIST_HEAD(&ptype_all);
8696         for (i = 0; i < PTYPE_HASH_SIZE; i++)
8697                 INIT_LIST_HEAD(&ptype_base[i]);
8698
8699         INIT_LIST_HEAD(&offload_base);
8700
8701         if (register_pernet_subsys(&netdev_net_ops))
8702                 goto out;
8703
8704         /*
8705          *      Initialise the packet receive queues.
8706          */
8707
8708         for_each_possible_cpu(i) {
8709                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
8710                 struct softnet_data *sd = &per_cpu(softnet_data, i);
8711
8712                 INIT_WORK(flush, flush_backlog);
8713
8714                 skb_queue_head_init(&sd->input_pkt_queue);
8715                 skb_queue_head_init(&sd->process_queue);
8716                 INIT_LIST_HEAD(&sd->poll_list);
8717                 sd->output_queue_tailp = &sd->output_queue;
8718 #ifdef CONFIG_RPS
8719                 sd->csd.func = rps_trigger_softirq;
8720                 sd->csd.info = sd;
8721                 sd->cpu = i;
8722 #endif
8723
8724                 sd->backlog.poll = process_backlog;
8725                 sd->backlog.weight = weight_p;
8726         }
8727
8728         dev_boot_phase = 0;
8729
8730         /* The loopback device is special if any other network devices
8731          * is present in a network namespace the loopback device must
8732          * be present. Since we now dynamically allocate and free the
8733          * loopback device ensure this invariant is maintained by
8734          * keeping the loopback device as the first device on the
8735          * list of network devices.  Ensuring the loopback devices
8736          * is the first device that appears and the last network device
8737          * that disappears.
8738          */
8739         if (register_pernet_device(&loopback_net_ops))
8740                 goto out;
8741
8742         if (register_pernet_device(&default_device_ops))
8743                 goto out;
8744
8745         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8746         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8747
8748         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
8749                                        NULL, dev_cpu_dead);
8750         WARN_ON(rc < 0);
8751         rc = 0;
8752 out:
8753         return rc;
8754 }
8755
8756 subsys_initcall(net_dev_init);