kconfig: fix memory leak from range properties
[linux-2.6-microblaze.git] / net / core / dev.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *      Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:        Ross Biro
7  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *      Additional Authors:
11  *              Florian la Roche <rzsfl@rz.uni-sb.de>
12  *              Alan Cox <gw4pts@gw4pts.ampr.org>
13  *              David Hinds <dahinds@users.sourceforge.net>
14  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *              Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *      Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *              Alan Cox        :       device private ioctl copies fields back.
24  *              Alan Cox        :       Transmit queue code does relevant
25  *                                      stunts to keep the queue safe.
26  *              Alan Cox        :       Fixed double lock.
27  *              Alan Cox        :       Fixed promisc NULL pointer trap
28  *              ????????        :       Support the full private ioctl range
29  *              Alan Cox        :       Moved ioctl permission check into
30  *                                      drivers
31  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
32  *              Alan Cox        :       100 backlog just doesn't cut it when
33  *                                      you start doing multicast video 8)
34  *              Alan Cox        :       Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *              Alan Cox        :       Took out transmit every packet pass
37  *                                      Saved a few bytes in the ioctl handler
38  *              Alan Cox        :       Network driver sets packet type before
39  *                                      calling netif_rx. Saves a function
40  *                                      call a packet.
41  *              Alan Cox        :       Hashed net_bh()
42  *              Richard Kooijman:       Timestamp fixes.
43  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
44  *              Alan Cox        :       Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *                                      changes.
47  *              Rudi Cilibrasi  :       Pass the right thing to
48  *                                      set_mac_address()
49  *              Dave Miller     :       32bit quantity for the device lock to
50  *                                      make it work out on a Sparc.
51  *              Bjorn Ekwall    :       Added KERNELD hack.
52  *              Alan Cox        :       Cleaned up the backlog initialise.
53  *              Craig Metz      :       SIOCGIFCONF fix if space for under
54  *                                      1 device.
55  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
56  *                                      is no device open function.
57  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
58  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
59  *              Cyrus Durgin    :       Cleaned for KMOD
60  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
61  *                                      A network device unload needs to purge
62  *                                      the backlog queue.
63  *      Paul Rusty Russell      :       SIOCSIFNAME
64  *              Pekka Riikonen  :       Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *                                      - netif_rx() feedback
69  */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <net/tcx.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <trace/events/qdisc.h>
136 #include <trace/events/xdp.h>
137 #include <linux/inetdevice.h>
138 #include <linux/cpu_rmap.h>
139 #include <linux/static_key.h>
140 #include <linux/hashtable.h>
141 #include <linux/vmalloc.h>
142 #include <linux/if_macvlan.h>
143 #include <linux/errqueue.h>
144 #include <linux/hrtimer.h>
145 #include <linux/netfilter_netdev.h>
146 #include <linux/crash_dump.h>
147 #include <linux/sctp.h>
148 #include <net/udp_tunnel.h>
149 #include <linux/net_namespace.h>
150 #include <linux/indirect_call_wrapper.h>
151 #include <net/devlink.h>
152 #include <linux/pm_runtime.h>
153 #include <linux/prandom.h>
154 #include <linux/once_lite.h>
155 #include <net/netdev_rx_queue.h>
156
157 #include "dev.h"
158 #include "net-sysfs.h"
159
160 static DEFINE_SPINLOCK(ptype_lock);
161 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
162 struct list_head ptype_all __read_mostly;       /* Taps */
163
164 static int netif_rx_internal(struct sk_buff *skb);
165 static int call_netdevice_notifiers_extack(unsigned long val,
166                                            struct net_device *dev,
167                                            struct netlink_ext_ack *extack);
168 static struct napi_struct *napi_by_id(unsigned int napi_id);
169
170 /*
171  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
172  * semaphore.
173  *
174  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
175  *
176  * Writers must hold the rtnl semaphore while they loop through the
177  * dev_base_head list, and hold dev_base_lock for writing when they do the
178  * actual updates.  This allows pure readers to access the list even
179  * while a writer is preparing to update it.
180  *
181  * To put it another way, dev_base_lock is held for writing only to
182  * protect against pure readers; the rtnl semaphore provides the
183  * protection against other writers.
184  *
185  * See, for example usages, register_netdevice() and
186  * unregister_netdevice(), which must be called with the rtnl
187  * semaphore held.
188  */
189 DEFINE_RWLOCK(dev_base_lock);
190 EXPORT_SYMBOL(dev_base_lock);
191
192 static DEFINE_MUTEX(ifalias_mutex);
193
194 /* protects napi_hash addition/deletion and napi_gen_id */
195 static DEFINE_SPINLOCK(napi_hash_lock);
196
197 static unsigned int napi_gen_id = NR_CPUS;
198 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
199
200 static DECLARE_RWSEM(devnet_rename_sem);
201
202 static inline void dev_base_seq_inc(struct net *net)
203 {
204         while (++net->dev_base_seq == 0)
205                 ;
206 }
207
208 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
209 {
210         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
211
212         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
213 }
214
215 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
216 {
217         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
218 }
219
220 static inline void rps_lock_irqsave(struct softnet_data *sd,
221                                     unsigned long *flags)
222 {
223         if (IS_ENABLED(CONFIG_RPS))
224                 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
225         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
226                 local_irq_save(*flags);
227 }
228
229 static inline void rps_lock_irq_disable(struct softnet_data *sd)
230 {
231         if (IS_ENABLED(CONFIG_RPS))
232                 spin_lock_irq(&sd->input_pkt_queue.lock);
233         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
234                 local_irq_disable();
235 }
236
237 static inline void rps_unlock_irq_restore(struct softnet_data *sd,
238                                           unsigned long *flags)
239 {
240         if (IS_ENABLED(CONFIG_RPS))
241                 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
242         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
243                 local_irq_restore(*flags);
244 }
245
246 static inline void rps_unlock_irq_enable(struct softnet_data *sd)
247 {
248         if (IS_ENABLED(CONFIG_RPS))
249                 spin_unlock_irq(&sd->input_pkt_queue.lock);
250         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
251                 local_irq_enable();
252 }
253
254 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
255                                                        const char *name)
256 {
257         struct netdev_name_node *name_node;
258
259         name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
260         if (!name_node)
261                 return NULL;
262         INIT_HLIST_NODE(&name_node->hlist);
263         name_node->dev = dev;
264         name_node->name = name;
265         return name_node;
266 }
267
268 static struct netdev_name_node *
269 netdev_name_node_head_alloc(struct net_device *dev)
270 {
271         struct netdev_name_node *name_node;
272
273         name_node = netdev_name_node_alloc(dev, dev->name);
274         if (!name_node)
275                 return NULL;
276         INIT_LIST_HEAD(&name_node->list);
277         return name_node;
278 }
279
280 static void netdev_name_node_free(struct netdev_name_node *name_node)
281 {
282         kfree(name_node);
283 }
284
285 static void netdev_name_node_add(struct net *net,
286                                  struct netdev_name_node *name_node)
287 {
288         hlist_add_head_rcu(&name_node->hlist,
289                            dev_name_hash(net, name_node->name));
290 }
291
292 static void netdev_name_node_del(struct netdev_name_node *name_node)
293 {
294         hlist_del_rcu(&name_node->hlist);
295 }
296
297 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
298                                                         const char *name)
299 {
300         struct hlist_head *head = dev_name_hash(net, name);
301         struct netdev_name_node *name_node;
302
303         hlist_for_each_entry(name_node, head, hlist)
304                 if (!strcmp(name_node->name, name))
305                         return name_node;
306         return NULL;
307 }
308
309 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
310                                                             const char *name)
311 {
312         struct hlist_head *head = dev_name_hash(net, name);
313         struct netdev_name_node *name_node;
314
315         hlist_for_each_entry_rcu(name_node, head, hlist)
316                 if (!strcmp(name_node->name, name))
317                         return name_node;
318         return NULL;
319 }
320
321 bool netdev_name_in_use(struct net *net, const char *name)
322 {
323         return netdev_name_node_lookup(net, name);
324 }
325 EXPORT_SYMBOL(netdev_name_in_use);
326
327 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
328 {
329         struct netdev_name_node *name_node;
330         struct net *net = dev_net(dev);
331
332         name_node = netdev_name_node_lookup(net, name);
333         if (name_node)
334                 return -EEXIST;
335         name_node = netdev_name_node_alloc(dev, name);
336         if (!name_node)
337                 return -ENOMEM;
338         netdev_name_node_add(net, name_node);
339         /* The node that holds dev->name acts as a head of per-device list. */
340         list_add_tail(&name_node->list, &dev->name_node->list);
341
342         return 0;
343 }
344
345 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
346 {
347         list_del(&name_node->list);
348         kfree(name_node->name);
349         netdev_name_node_free(name_node);
350 }
351
352 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
353 {
354         struct netdev_name_node *name_node;
355         struct net *net = dev_net(dev);
356
357         name_node = netdev_name_node_lookup(net, name);
358         if (!name_node)
359                 return -ENOENT;
360         /* lookup might have found our primary name or a name belonging
361          * to another device.
362          */
363         if (name_node == dev->name_node || name_node->dev != dev)
364                 return -EINVAL;
365
366         netdev_name_node_del(name_node);
367         synchronize_rcu();
368         __netdev_name_node_alt_destroy(name_node);
369
370         return 0;
371 }
372
373 static void netdev_name_node_alt_flush(struct net_device *dev)
374 {
375         struct netdev_name_node *name_node, *tmp;
376
377         list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
378                 __netdev_name_node_alt_destroy(name_node);
379 }
380
381 /* Device list insertion */
382 static void list_netdevice(struct net_device *dev)
383 {
384         struct netdev_name_node *name_node;
385         struct net *net = dev_net(dev);
386
387         ASSERT_RTNL();
388
389         write_lock(&dev_base_lock);
390         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
391         netdev_name_node_add(net, dev->name_node);
392         hlist_add_head_rcu(&dev->index_hlist,
393                            dev_index_hash(net, dev->ifindex));
394         write_unlock(&dev_base_lock);
395
396         netdev_for_each_altname(dev, name_node)
397                 netdev_name_node_add(net, name_node);
398
399         /* We reserved the ifindex, this can't fail */
400         WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
401
402         dev_base_seq_inc(net);
403 }
404
405 /* Device list removal
406  * caller must respect a RCU grace period before freeing/reusing dev
407  */
408 static void unlist_netdevice(struct net_device *dev, bool lock)
409 {
410         struct netdev_name_node *name_node;
411         struct net *net = dev_net(dev);
412
413         ASSERT_RTNL();
414
415         xa_erase(&net->dev_by_index, dev->ifindex);
416
417         netdev_for_each_altname(dev, name_node)
418                 netdev_name_node_del(name_node);
419
420         /* Unlink dev from the device chain */
421         if (lock)
422                 write_lock(&dev_base_lock);
423         list_del_rcu(&dev->dev_list);
424         netdev_name_node_del(dev->name_node);
425         hlist_del_rcu(&dev->index_hlist);
426         if (lock)
427                 write_unlock(&dev_base_lock);
428
429         dev_base_seq_inc(dev_net(dev));
430 }
431
432 /*
433  *      Our notifier list
434  */
435
436 static RAW_NOTIFIER_HEAD(netdev_chain);
437
438 /*
439  *      Device drivers call our routines to queue packets here. We empty the
440  *      queue in the local softnet handler.
441  */
442
443 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
444 EXPORT_PER_CPU_SYMBOL(softnet_data);
445
446 #ifdef CONFIG_LOCKDEP
447 /*
448  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
449  * according to dev->type
450  */
451 static const unsigned short netdev_lock_type[] = {
452          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
453          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
454          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
455          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
456          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
457          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
458          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
459          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
460          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
461          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
462          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
463          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
464          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
465          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
466          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
467
468 static const char *const netdev_lock_name[] = {
469         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
470         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
471         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
472         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
473         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
474         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
475         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
476         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
477         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
478         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
479         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
480         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
481         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
482         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
483         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
484
485 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
486 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
487
488 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
489 {
490         int i;
491
492         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
493                 if (netdev_lock_type[i] == dev_type)
494                         return i;
495         /* the last key is used by default */
496         return ARRAY_SIZE(netdev_lock_type) - 1;
497 }
498
499 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
500                                                  unsigned short dev_type)
501 {
502         int i;
503
504         i = netdev_lock_pos(dev_type);
505         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
506                                    netdev_lock_name[i]);
507 }
508
509 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
510 {
511         int i;
512
513         i = netdev_lock_pos(dev->type);
514         lockdep_set_class_and_name(&dev->addr_list_lock,
515                                    &netdev_addr_lock_key[i],
516                                    netdev_lock_name[i]);
517 }
518 #else
519 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
520                                                  unsigned short dev_type)
521 {
522 }
523
524 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
525 {
526 }
527 #endif
528
529 /*******************************************************************************
530  *
531  *              Protocol management and registration routines
532  *
533  *******************************************************************************/
534
535
536 /*
537  *      Add a protocol ID to the list. Now that the input handler is
538  *      smarter we can dispense with all the messy stuff that used to be
539  *      here.
540  *
541  *      BEWARE!!! Protocol handlers, mangling input packets,
542  *      MUST BE last in hash buckets and checking protocol handlers
543  *      MUST start from promiscuous ptype_all chain in net_bh.
544  *      It is true now, do not change it.
545  *      Explanation follows: if protocol handler, mangling packet, will
546  *      be the first on list, it is not able to sense, that packet
547  *      is cloned and should be copied-on-write, so that it will
548  *      change it and subsequent readers will get broken packet.
549  *                                                      --ANK (980803)
550  */
551
552 static inline struct list_head *ptype_head(const struct packet_type *pt)
553 {
554         if (pt->type == htons(ETH_P_ALL))
555                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
556         else
557                 return pt->dev ? &pt->dev->ptype_specific :
558                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
559 }
560
561 /**
562  *      dev_add_pack - add packet handler
563  *      @pt: packet type declaration
564  *
565  *      Add a protocol handler to the networking stack. The passed &packet_type
566  *      is linked into kernel lists and may not be freed until it has been
567  *      removed from the kernel lists.
568  *
569  *      This call does not sleep therefore it can not
570  *      guarantee all CPU's that are in middle of receiving packets
571  *      will see the new packet type (until the next received packet).
572  */
573
574 void dev_add_pack(struct packet_type *pt)
575 {
576         struct list_head *head = ptype_head(pt);
577
578         spin_lock(&ptype_lock);
579         list_add_rcu(&pt->list, head);
580         spin_unlock(&ptype_lock);
581 }
582 EXPORT_SYMBOL(dev_add_pack);
583
584 /**
585  *      __dev_remove_pack        - remove packet handler
586  *      @pt: packet type declaration
587  *
588  *      Remove a protocol handler that was previously added to the kernel
589  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
590  *      from the kernel lists and can be freed or reused once this function
591  *      returns.
592  *
593  *      The packet type might still be in use by receivers
594  *      and must not be freed until after all the CPU's have gone
595  *      through a quiescent state.
596  */
597 void __dev_remove_pack(struct packet_type *pt)
598 {
599         struct list_head *head = ptype_head(pt);
600         struct packet_type *pt1;
601
602         spin_lock(&ptype_lock);
603
604         list_for_each_entry(pt1, head, list) {
605                 if (pt == pt1) {
606                         list_del_rcu(&pt->list);
607                         goto out;
608                 }
609         }
610
611         pr_warn("dev_remove_pack: %p not found\n", pt);
612 out:
613         spin_unlock(&ptype_lock);
614 }
615 EXPORT_SYMBOL(__dev_remove_pack);
616
617 /**
618  *      dev_remove_pack  - remove packet handler
619  *      @pt: packet type declaration
620  *
621  *      Remove a protocol handler that was previously added to the kernel
622  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
623  *      from the kernel lists and can be freed or reused once this function
624  *      returns.
625  *
626  *      This call sleeps to guarantee that no CPU is looking at the packet
627  *      type after return.
628  */
629 void dev_remove_pack(struct packet_type *pt)
630 {
631         __dev_remove_pack(pt);
632
633         synchronize_net();
634 }
635 EXPORT_SYMBOL(dev_remove_pack);
636
637
638 /*******************************************************************************
639  *
640  *                          Device Interface Subroutines
641  *
642  *******************************************************************************/
643
644 /**
645  *      dev_get_iflink  - get 'iflink' value of a interface
646  *      @dev: targeted interface
647  *
648  *      Indicates the ifindex the interface is linked to.
649  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
650  */
651
652 int dev_get_iflink(const struct net_device *dev)
653 {
654         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
655                 return dev->netdev_ops->ndo_get_iflink(dev);
656
657         return dev->ifindex;
658 }
659 EXPORT_SYMBOL(dev_get_iflink);
660
661 /**
662  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
663  *      @dev: targeted interface
664  *      @skb: The packet.
665  *
666  *      For better visibility of tunnel traffic OVS needs to retrieve
667  *      egress tunnel information for a packet. Following API allows
668  *      user to get this info.
669  */
670 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
671 {
672         struct ip_tunnel_info *info;
673
674         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
675                 return -EINVAL;
676
677         info = skb_tunnel_info_unclone(skb);
678         if (!info)
679                 return -ENOMEM;
680         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
681                 return -EINVAL;
682
683         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
684 }
685 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
686
687 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
688 {
689         int k = stack->num_paths++;
690
691         if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
692                 return NULL;
693
694         return &stack->path[k];
695 }
696
697 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
698                           struct net_device_path_stack *stack)
699 {
700         const struct net_device *last_dev;
701         struct net_device_path_ctx ctx = {
702                 .dev    = dev,
703         };
704         struct net_device_path *path;
705         int ret = 0;
706
707         memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
708         stack->num_paths = 0;
709         while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
710                 last_dev = ctx.dev;
711                 path = dev_fwd_path(stack);
712                 if (!path)
713                         return -1;
714
715                 memset(path, 0, sizeof(struct net_device_path));
716                 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
717                 if (ret < 0)
718                         return -1;
719
720                 if (WARN_ON_ONCE(last_dev == ctx.dev))
721                         return -1;
722         }
723
724         if (!ctx.dev)
725                 return ret;
726
727         path = dev_fwd_path(stack);
728         if (!path)
729                 return -1;
730         path->type = DEV_PATH_ETHERNET;
731         path->dev = ctx.dev;
732
733         return ret;
734 }
735 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
736
737 /**
738  *      __dev_get_by_name       - find a device by its name
739  *      @net: the applicable net namespace
740  *      @name: name to find
741  *
742  *      Find an interface by name. Must be called under RTNL semaphore
743  *      or @dev_base_lock. If the name is found a pointer to the device
744  *      is returned. If the name is not found then %NULL is returned. The
745  *      reference counters are not incremented so the caller must be
746  *      careful with locks.
747  */
748
749 struct net_device *__dev_get_by_name(struct net *net, const char *name)
750 {
751         struct netdev_name_node *node_name;
752
753         node_name = netdev_name_node_lookup(net, name);
754         return node_name ? node_name->dev : NULL;
755 }
756 EXPORT_SYMBOL(__dev_get_by_name);
757
758 /**
759  * dev_get_by_name_rcu  - find a device by its name
760  * @net: the applicable net namespace
761  * @name: name to find
762  *
763  * Find an interface by name.
764  * If the name is found a pointer to the device is returned.
765  * If the name is not found then %NULL is returned.
766  * The reference counters are not incremented so the caller must be
767  * careful with locks. The caller must hold RCU lock.
768  */
769
770 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
771 {
772         struct netdev_name_node *node_name;
773
774         node_name = netdev_name_node_lookup_rcu(net, name);
775         return node_name ? node_name->dev : NULL;
776 }
777 EXPORT_SYMBOL(dev_get_by_name_rcu);
778
779 /* Deprecated for new users, call netdev_get_by_name() instead */
780 struct net_device *dev_get_by_name(struct net *net, const char *name)
781 {
782         struct net_device *dev;
783
784         rcu_read_lock();
785         dev = dev_get_by_name_rcu(net, name);
786         dev_hold(dev);
787         rcu_read_unlock();
788         return dev;
789 }
790 EXPORT_SYMBOL(dev_get_by_name);
791
792 /**
793  *      netdev_get_by_name() - find a device by its name
794  *      @net: the applicable net namespace
795  *      @name: name to find
796  *      @tracker: tracking object for the acquired reference
797  *      @gfp: allocation flags for the tracker
798  *
799  *      Find an interface by name. This can be called from any
800  *      context and does its own locking. The returned handle has
801  *      the usage count incremented and the caller must use netdev_put() to
802  *      release it when it is no longer needed. %NULL is returned if no
803  *      matching device is found.
804  */
805 struct net_device *netdev_get_by_name(struct net *net, const char *name,
806                                       netdevice_tracker *tracker, gfp_t gfp)
807 {
808         struct net_device *dev;
809
810         dev = dev_get_by_name(net, name);
811         if (dev)
812                 netdev_tracker_alloc(dev, tracker, gfp);
813         return dev;
814 }
815 EXPORT_SYMBOL(netdev_get_by_name);
816
817 /**
818  *      __dev_get_by_index - find a device by its ifindex
819  *      @net: the applicable net namespace
820  *      @ifindex: index of device
821  *
822  *      Search for an interface by index. Returns %NULL if the device
823  *      is not found or a pointer to the device. The device has not
824  *      had its reference counter increased so the caller must be careful
825  *      about locking. The caller must hold either the RTNL semaphore
826  *      or @dev_base_lock.
827  */
828
829 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
830 {
831         struct net_device *dev;
832         struct hlist_head *head = dev_index_hash(net, ifindex);
833
834         hlist_for_each_entry(dev, head, index_hlist)
835                 if (dev->ifindex == ifindex)
836                         return dev;
837
838         return NULL;
839 }
840 EXPORT_SYMBOL(__dev_get_by_index);
841
842 /**
843  *      dev_get_by_index_rcu - find a device by its ifindex
844  *      @net: the applicable net namespace
845  *      @ifindex: index of device
846  *
847  *      Search for an interface by index. Returns %NULL if the device
848  *      is not found or a pointer to the device. The device has not
849  *      had its reference counter increased so the caller must be careful
850  *      about locking. The caller must hold RCU lock.
851  */
852
853 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
854 {
855         struct net_device *dev;
856         struct hlist_head *head = dev_index_hash(net, ifindex);
857
858         hlist_for_each_entry_rcu(dev, head, index_hlist)
859                 if (dev->ifindex == ifindex)
860                         return dev;
861
862         return NULL;
863 }
864 EXPORT_SYMBOL(dev_get_by_index_rcu);
865
866 /* Deprecated for new users, call netdev_get_by_index() instead */
867 struct net_device *dev_get_by_index(struct net *net, int ifindex)
868 {
869         struct net_device *dev;
870
871         rcu_read_lock();
872         dev = dev_get_by_index_rcu(net, ifindex);
873         dev_hold(dev);
874         rcu_read_unlock();
875         return dev;
876 }
877 EXPORT_SYMBOL(dev_get_by_index);
878
879 /**
880  *      netdev_get_by_index() - find a device by its ifindex
881  *      @net: the applicable net namespace
882  *      @ifindex: index of device
883  *      @tracker: tracking object for the acquired reference
884  *      @gfp: allocation flags for the tracker
885  *
886  *      Search for an interface by index. Returns NULL if the device
887  *      is not found or a pointer to the device. The device returned has
888  *      had a reference added and the pointer is safe until the user calls
889  *      netdev_put() to indicate they have finished with it.
890  */
891 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
892                                        netdevice_tracker *tracker, gfp_t gfp)
893 {
894         struct net_device *dev;
895
896         dev = dev_get_by_index(net, ifindex);
897         if (dev)
898                 netdev_tracker_alloc(dev, tracker, gfp);
899         return dev;
900 }
901 EXPORT_SYMBOL(netdev_get_by_index);
902
903 /**
904  *      dev_get_by_napi_id - find a device by napi_id
905  *      @napi_id: ID of the NAPI struct
906  *
907  *      Search for an interface by NAPI ID. Returns %NULL if the device
908  *      is not found or a pointer to the device. The device has not had
909  *      its reference counter increased so the caller must be careful
910  *      about locking. The caller must hold RCU lock.
911  */
912
913 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
914 {
915         struct napi_struct *napi;
916
917         WARN_ON_ONCE(!rcu_read_lock_held());
918
919         if (napi_id < MIN_NAPI_ID)
920                 return NULL;
921
922         napi = napi_by_id(napi_id);
923
924         return napi ? napi->dev : NULL;
925 }
926 EXPORT_SYMBOL(dev_get_by_napi_id);
927
928 /**
929  *      netdev_get_name - get a netdevice name, knowing its ifindex.
930  *      @net: network namespace
931  *      @name: a pointer to the buffer where the name will be stored.
932  *      @ifindex: the ifindex of the interface to get the name from.
933  */
934 int netdev_get_name(struct net *net, char *name, int ifindex)
935 {
936         struct net_device *dev;
937         int ret;
938
939         down_read(&devnet_rename_sem);
940         rcu_read_lock();
941
942         dev = dev_get_by_index_rcu(net, ifindex);
943         if (!dev) {
944                 ret = -ENODEV;
945                 goto out;
946         }
947
948         strcpy(name, dev->name);
949
950         ret = 0;
951 out:
952         rcu_read_unlock();
953         up_read(&devnet_rename_sem);
954         return ret;
955 }
956
957 /**
958  *      dev_getbyhwaddr_rcu - find a device by its hardware address
959  *      @net: the applicable net namespace
960  *      @type: media type of device
961  *      @ha: hardware address
962  *
963  *      Search for an interface by MAC address. Returns NULL if the device
964  *      is not found or a pointer to the device.
965  *      The caller must hold RCU or RTNL.
966  *      The returned device has not had its ref count increased
967  *      and the caller must therefore be careful about locking
968  *
969  */
970
971 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
972                                        const char *ha)
973 {
974         struct net_device *dev;
975
976         for_each_netdev_rcu(net, dev)
977                 if (dev->type == type &&
978                     !memcmp(dev->dev_addr, ha, dev->addr_len))
979                         return dev;
980
981         return NULL;
982 }
983 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
984
985 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
986 {
987         struct net_device *dev, *ret = NULL;
988
989         rcu_read_lock();
990         for_each_netdev_rcu(net, dev)
991                 if (dev->type == type) {
992                         dev_hold(dev);
993                         ret = dev;
994                         break;
995                 }
996         rcu_read_unlock();
997         return ret;
998 }
999 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1000
1001 /**
1002  *      __dev_get_by_flags - find any device with given flags
1003  *      @net: the applicable net namespace
1004  *      @if_flags: IFF_* values
1005  *      @mask: bitmask of bits in if_flags to check
1006  *
1007  *      Search for any interface with the given flags. Returns NULL if a device
1008  *      is not found or a pointer to the device. Must be called inside
1009  *      rtnl_lock(), and result refcount is unchanged.
1010  */
1011
1012 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1013                                       unsigned short mask)
1014 {
1015         struct net_device *dev, *ret;
1016
1017         ASSERT_RTNL();
1018
1019         ret = NULL;
1020         for_each_netdev(net, dev) {
1021                 if (((dev->flags ^ if_flags) & mask) == 0) {
1022                         ret = dev;
1023                         break;
1024                 }
1025         }
1026         return ret;
1027 }
1028 EXPORT_SYMBOL(__dev_get_by_flags);
1029
1030 /**
1031  *      dev_valid_name - check if name is okay for network device
1032  *      @name: name string
1033  *
1034  *      Network device names need to be valid file names to
1035  *      allow sysfs to work.  We also disallow any kind of
1036  *      whitespace.
1037  */
1038 bool dev_valid_name(const char *name)
1039 {
1040         if (*name == '\0')
1041                 return false;
1042         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1043                 return false;
1044         if (!strcmp(name, ".") || !strcmp(name, ".."))
1045                 return false;
1046
1047         while (*name) {
1048                 if (*name == '/' || *name == ':' || isspace(*name))
1049                         return false;
1050                 name++;
1051         }
1052         return true;
1053 }
1054 EXPORT_SYMBOL(dev_valid_name);
1055
1056 /**
1057  *      __dev_alloc_name - allocate a name for a device
1058  *      @net: network namespace to allocate the device name in
1059  *      @name: name format string
1060  *      @res: result name string
1061  *
1062  *      Passed a format string - eg "lt%d" it will try and find a suitable
1063  *      id. It scans list of devices to build up a free map, then chooses
1064  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1065  *      while allocating the name and adding the device in order to avoid
1066  *      duplicates.
1067  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1068  *      Returns the number of the unit assigned or a negative errno code.
1069  */
1070
1071 static int __dev_alloc_name(struct net *net, const char *name, char *res)
1072 {
1073         int i = 0;
1074         const char *p;
1075         const int max_netdevices = 8*PAGE_SIZE;
1076         unsigned long *inuse;
1077         struct net_device *d;
1078         char buf[IFNAMSIZ];
1079
1080         /* Verify the string as this thing may have come from the user.
1081          * There must be one "%d" and no other "%" characters.
1082          */
1083         p = strchr(name, '%');
1084         if (!p || p[1] != 'd' || strchr(p + 2, '%'))
1085                 return -EINVAL;
1086
1087         /* Use one page as a bit array of possible slots */
1088         inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1089         if (!inuse)
1090                 return -ENOMEM;
1091
1092         for_each_netdev(net, d) {
1093                 struct netdev_name_node *name_node;
1094
1095                 netdev_for_each_altname(d, name_node) {
1096                         if (!sscanf(name_node->name, name, &i))
1097                                 continue;
1098                         if (i < 0 || i >= max_netdevices)
1099                                 continue;
1100
1101                         /* avoid cases where sscanf is not exact inverse of printf */
1102                         snprintf(buf, IFNAMSIZ, name, i);
1103                         if (!strncmp(buf, name_node->name, IFNAMSIZ))
1104                                 __set_bit(i, inuse);
1105                 }
1106                 if (!sscanf(d->name, name, &i))
1107                         continue;
1108                 if (i < 0 || i >= max_netdevices)
1109                         continue;
1110
1111                 /* avoid cases where sscanf is not exact inverse of printf */
1112                 snprintf(buf, IFNAMSIZ, name, i);
1113                 if (!strncmp(buf, d->name, IFNAMSIZ))
1114                         __set_bit(i, inuse);
1115         }
1116
1117         i = find_first_zero_bit(inuse, max_netdevices);
1118         bitmap_free(inuse);
1119         if (i == max_netdevices)
1120                 return -ENFILE;
1121
1122         snprintf(res, IFNAMSIZ, name, i);
1123         return i;
1124 }
1125
1126 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
1127 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1128                                const char *want_name, char *out_name,
1129                                int dup_errno)
1130 {
1131         if (!dev_valid_name(want_name))
1132                 return -EINVAL;
1133
1134         if (strchr(want_name, '%'))
1135                 return __dev_alloc_name(net, want_name, out_name);
1136
1137         if (netdev_name_in_use(net, want_name))
1138                 return -dup_errno;
1139         if (out_name != want_name)
1140                 strscpy(out_name, want_name, IFNAMSIZ);
1141         return 0;
1142 }
1143
1144 /**
1145  *      dev_alloc_name - allocate a name for a device
1146  *      @dev: device
1147  *      @name: name format string
1148  *
1149  *      Passed a format string - eg "lt%d" it will try and find a suitable
1150  *      id. It scans list of devices to build up a free map, then chooses
1151  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1152  *      while allocating the name and adding the device in order to avoid
1153  *      duplicates.
1154  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1155  *      Returns the number of the unit assigned or a negative errno code.
1156  */
1157
1158 int dev_alloc_name(struct net_device *dev, const char *name)
1159 {
1160         return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
1161 }
1162 EXPORT_SYMBOL(dev_alloc_name);
1163
1164 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1165                               const char *name)
1166 {
1167         int ret;
1168
1169         ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
1170         return ret < 0 ? ret : 0;
1171 }
1172
1173 /**
1174  *      dev_change_name - change name of a device
1175  *      @dev: device
1176  *      @newname: name (or format string) must be at least IFNAMSIZ
1177  *
1178  *      Change name of a device, can pass format strings "eth%d".
1179  *      for wildcarding.
1180  */
1181 int dev_change_name(struct net_device *dev, const char *newname)
1182 {
1183         unsigned char old_assign_type;
1184         char oldname[IFNAMSIZ];
1185         int err = 0;
1186         int ret;
1187         struct net *net;
1188
1189         ASSERT_RTNL();
1190         BUG_ON(!dev_net(dev));
1191
1192         net = dev_net(dev);
1193
1194         down_write(&devnet_rename_sem);
1195
1196         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1197                 up_write(&devnet_rename_sem);
1198                 return 0;
1199         }
1200
1201         memcpy(oldname, dev->name, IFNAMSIZ);
1202
1203         err = dev_get_valid_name(net, dev, newname);
1204         if (err < 0) {
1205                 up_write(&devnet_rename_sem);
1206                 return err;
1207         }
1208
1209         if (oldname[0] && !strchr(oldname, '%'))
1210                 netdev_info(dev, "renamed from %s%s\n", oldname,
1211                             dev->flags & IFF_UP ? " (while UP)" : "");
1212
1213         old_assign_type = dev->name_assign_type;
1214         dev->name_assign_type = NET_NAME_RENAMED;
1215
1216 rollback:
1217         ret = device_rename(&dev->dev, dev->name);
1218         if (ret) {
1219                 memcpy(dev->name, oldname, IFNAMSIZ);
1220                 dev->name_assign_type = old_assign_type;
1221                 up_write(&devnet_rename_sem);
1222                 return ret;
1223         }
1224
1225         up_write(&devnet_rename_sem);
1226
1227         netdev_adjacent_rename_links(dev, oldname);
1228
1229         write_lock(&dev_base_lock);
1230         netdev_name_node_del(dev->name_node);
1231         write_unlock(&dev_base_lock);
1232
1233         synchronize_rcu();
1234
1235         write_lock(&dev_base_lock);
1236         netdev_name_node_add(net, dev->name_node);
1237         write_unlock(&dev_base_lock);
1238
1239         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1240         ret = notifier_to_errno(ret);
1241
1242         if (ret) {
1243                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1244                 if (err >= 0) {
1245                         err = ret;
1246                         down_write(&devnet_rename_sem);
1247                         memcpy(dev->name, oldname, IFNAMSIZ);
1248                         memcpy(oldname, newname, IFNAMSIZ);
1249                         dev->name_assign_type = old_assign_type;
1250                         old_assign_type = NET_NAME_RENAMED;
1251                         goto rollback;
1252                 } else {
1253                         netdev_err(dev, "name change rollback failed: %d\n",
1254                                    ret);
1255                 }
1256         }
1257
1258         return err;
1259 }
1260
1261 /**
1262  *      dev_set_alias - change ifalias of a device
1263  *      @dev: device
1264  *      @alias: name up to IFALIASZ
1265  *      @len: limit of bytes to copy from info
1266  *
1267  *      Set ifalias for a device,
1268  */
1269 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1270 {
1271         struct dev_ifalias *new_alias = NULL;
1272
1273         if (len >= IFALIASZ)
1274                 return -EINVAL;
1275
1276         if (len) {
1277                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1278                 if (!new_alias)
1279                         return -ENOMEM;
1280
1281                 memcpy(new_alias->ifalias, alias, len);
1282                 new_alias->ifalias[len] = 0;
1283         }
1284
1285         mutex_lock(&ifalias_mutex);
1286         new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1287                                         mutex_is_locked(&ifalias_mutex));
1288         mutex_unlock(&ifalias_mutex);
1289
1290         if (new_alias)
1291                 kfree_rcu(new_alias, rcuhead);
1292
1293         return len;
1294 }
1295 EXPORT_SYMBOL(dev_set_alias);
1296
1297 /**
1298  *      dev_get_alias - get ifalias of a device
1299  *      @dev: device
1300  *      @name: buffer to store name of ifalias
1301  *      @len: size of buffer
1302  *
1303  *      get ifalias for a device.  Caller must make sure dev cannot go
1304  *      away,  e.g. rcu read lock or own a reference count to device.
1305  */
1306 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1307 {
1308         const struct dev_ifalias *alias;
1309         int ret = 0;
1310
1311         rcu_read_lock();
1312         alias = rcu_dereference(dev->ifalias);
1313         if (alias)
1314                 ret = snprintf(name, len, "%s", alias->ifalias);
1315         rcu_read_unlock();
1316
1317         return ret;
1318 }
1319
1320 /**
1321  *      netdev_features_change - device changes features
1322  *      @dev: device to cause notification
1323  *
1324  *      Called to indicate a device has changed features.
1325  */
1326 void netdev_features_change(struct net_device *dev)
1327 {
1328         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1329 }
1330 EXPORT_SYMBOL(netdev_features_change);
1331
1332 /**
1333  *      netdev_state_change - device changes state
1334  *      @dev: device to cause notification
1335  *
1336  *      Called to indicate a device has changed state. This function calls
1337  *      the notifier chains for netdev_chain and sends a NEWLINK message
1338  *      to the routing socket.
1339  */
1340 void netdev_state_change(struct net_device *dev)
1341 {
1342         if (dev->flags & IFF_UP) {
1343                 struct netdev_notifier_change_info change_info = {
1344                         .info.dev = dev,
1345                 };
1346
1347                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1348                                               &change_info.info);
1349                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1350         }
1351 }
1352 EXPORT_SYMBOL(netdev_state_change);
1353
1354 /**
1355  * __netdev_notify_peers - notify network peers about existence of @dev,
1356  * to be called when rtnl lock is already held.
1357  * @dev: network device
1358  *
1359  * Generate traffic such that interested network peers are aware of
1360  * @dev, such as by generating a gratuitous ARP. This may be used when
1361  * a device wants to inform the rest of the network about some sort of
1362  * reconfiguration such as a failover event or virtual machine
1363  * migration.
1364  */
1365 void __netdev_notify_peers(struct net_device *dev)
1366 {
1367         ASSERT_RTNL();
1368         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1369         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1370 }
1371 EXPORT_SYMBOL(__netdev_notify_peers);
1372
1373 /**
1374  * netdev_notify_peers - notify network peers about existence of @dev
1375  * @dev: network device
1376  *
1377  * Generate traffic such that interested network peers are aware of
1378  * @dev, such as by generating a gratuitous ARP. This may be used when
1379  * a device wants to inform the rest of the network about some sort of
1380  * reconfiguration such as a failover event or virtual machine
1381  * migration.
1382  */
1383 void netdev_notify_peers(struct net_device *dev)
1384 {
1385         rtnl_lock();
1386         __netdev_notify_peers(dev);
1387         rtnl_unlock();
1388 }
1389 EXPORT_SYMBOL(netdev_notify_peers);
1390
1391 static int napi_threaded_poll(void *data);
1392
1393 static int napi_kthread_create(struct napi_struct *n)
1394 {
1395         int err = 0;
1396
1397         /* Create and wake up the kthread once to put it in
1398          * TASK_INTERRUPTIBLE mode to avoid the blocked task
1399          * warning and work with loadavg.
1400          */
1401         n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1402                                 n->dev->name, n->napi_id);
1403         if (IS_ERR(n->thread)) {
1404                 err = PTR_ERR(n->thread);
1405                 pr_err("kthread_run failed with err %d\n", err);
1406                 n->thread = NULL;
1407         }
1408
1409         return err;
1410 }
1411
1412 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1413 {
1414         const struct net_device_ops *ops = dev->netdev_ops;
1415         int ret;
1416
1417         ASSERT_RTNL();
1418         dev_addr_check(dev);
1419
1420         if (!netif_device_present(dev)) {
1421                 /* may be detached because parent is runtime-suspended */
1422                 if (dev->dev.parent)
1423                         pm_runtime_resume(dev->dev.parent);
1424                 if (!netif_device_present(dev))
1425                         return -ENODEV;
1426         }
1427
1428         /* Block netpoll from trying to do any rx path servicing.
1429          * If we don't do this there is a chance ndo_poll_controller
1430          * or ndo_poll may be running while we open the device
1431          */
1432         netpoll_poll_disable(dev);
1433
1434         ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1435         ret = notifier_to_errno(ret);
1436         if (ret)
1437                 return ret;
1438
1439         set_bit(__LINK_STATE_START, &dev->state);
1440
1441         if (ops->ndo_validate_addr)
1442                 ret = ops->ndo_validate_addr(dev);
1443
1444         if (!ret && ops->ndo_open)
1445                 ret = ops->ndo_open(dev);
1446
1447         netpoll_poll_enable(dev);
1448
1449         if (ret)
1450                 clear_bit(__LINK_STATE_START, &dev->state);
1451         else {
1452                 dev->flags |= IFF_UP;
1453                 dev_set_rx_mode(dev);
1454                 dev_activate(dev);
1455                 add_device_randomness(dev->dev_addr, dev->addr_len);
1456         }
1457
1458         return ret;
1459 }
1460
1461 /**
1462  *      dev_open        - prepare an interface for use.
1463  *      @dev: device to open
1464  *      @extack: netlink extended ack
1465  *
1466  *      Takes a device from down to up state. The device's private open
1467  *      function is invoked and then the multicast lists are loaded. Finally
1468  *      the device is moved into the up state and a %NETDEV_UP message is
1469  *      sent to the netdev notifier chain.
1470  *
1471  *      Calling this function on an active interface is a nop. On a failure
1472  *      a negative errno code is returned.
1473  */
1474 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1475 {
1476         int ret;
1477
1478         if (dev->flags & IFF_UP)
1479                 return 0;
1480
1481         ret = __dev_open(dev, extack);
1482         if (ret < 0)
1483                 return ret;
1484
1485         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1486         call_netdevice_notifiers(NETDEV_UP, dev);
1487
1488         return ret;
1489 }
1490 EXPORT_SYMBOL(dev_open);
1491
1492 static void __dev_close_many(struct list_head *head)
1493 {
1494         struct net_device *dev;
1495
1496         ASSERT_RTNL();
1497         might_sleep();
1498
1499         list_for_each_entry(dev, head, close_list) {
1500                 /* Temporarily disable netpoll until the interface is down */
1501                 netpoll_poll_disable(dev);
1502
1503                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1504
1505                 clear_bit(__LINK_STATE_START, &dev->state);
1506
1507                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1508                  * can be even on different cpu. So just clear netif_running().
1509                  *
1510                  * dev->stop() will invoke napi_disable() on all of it's
1511                  * napi_struct instances on this device.
1512                  */
1513                 smp_mb__after_atomic(); /* Commit netif_running(). */
1514         }
1515
1516         dev_deactivate_many(head);
1517
1518         list_for_each_entry(dev, head, close_list) {
1519                 const struct net_device_ops *ops = dev->netdev_ops;
1520
1521                 /*
1522                  *      Call the device specific close. This cannot fail.
1523                  *      Only if device is UP
1524                  *
1525                  *      We allow it to be called even after a DETACH hot-plug
1526                  *      event.
1527                  */
1528                 if (ops->ndo_stop)
1529                         ops->ndo_stop(dev);
1530
1531                 dev->flags &= ~IFF_UP;
1532                 netpoll_poll_enable(dev);
1533         }
1534 }
1535
1536 static void __dev_close(struct net_device *dev)
1537 {
1538         LIST_HEAD(single);
1539
1540         list_add(&dev->close_list, &single);
1541         __dev_close_many(&single);
1542         list_del(&single);
1543 }
1544
1545 void dev_close_many(struct list_head *head, bool unlink)
1546 {
1547         struct net_device *dev, *tmp;
1548
1549         /* Remove the devices that don't need to be closed */
1550         list_for_each_entry_safe(dev, tmp, head, close_list)
1551                 if (!(dev->flags & IFF_UP))
1552                         list_del_init(&dev->close_list);
1553
1554         __dev_close_many(head);
1555
1556         list_for_each_entry_safe(dev, tmp, head, close_list) {
1557                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1558                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1559                 if (unlink)
1560                         list_del_init(&dev->close_list);
1561         }
1562 }
1563 EXPORT_SYMBOL(dev_close_many);
1564
1565 /**
1566  *      dev_close - shutdown an interface.
1567  *      @dev: device to shutdown
1568  *
1569  *      This function moves an active device into down state. A
1570  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1571  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1572  *      chain.
1573  */
1574 void dev_close(struct net_device *dev)
1575 {
1576         if (dev->flags & IFF_UP) {
1577                 LIST_HEAD(single);
1578
1579                 list_add(&dev->close_list, &single);
1580                 dev_close_many(&single, true);
1581                 list_del(&single);
1582         }
1583 }
1584 EXPORT_SYMBOL(dev_close);
1585
1586
1587 /**
1588  *      dev_disable_lro - disable Large Receive Offload on a device
1589  *      @dev: device
1590  *
1591  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1592  *      called under RTNL.  This is needed if received packets may be
1593  *      forwarded to another interface.
1594  */
1595 void dev_disable_lro(struct net_device *dev)
1596 {
1597         struct net_device *lower_dev;
1598         struct list_head *iter;
1599
1600         dev->wanted_features &= ~NETIF_F_LRO;
1601         netdev_update_features(dev);
1602
1603         if (unlikely(dev->features & NETIF_F_LRO))
1604                 netdev_WARN(dev, "failed to disable LRO!\n");
1605
1606         netdev_for_each_lower_dev(dev, lower_dev, iter)
1607                 dev_disable_lro(lower_dev);
1608 }
1609 EXPORT_SYMBOL(dev_disable_lro);
1610
1611 /**
1612  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1613  *      @dev: device
1614  *
1615  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1616  *      called under RTNL.  This is needed if Generic XDP is installed on
1617  *      the device.
1618  */
1619 static void dev_disable_gro_hw(struct net_device *dev)
1620 {
1621         dev->wanted_features &= ~NETIF_F_GRO_HW;
1622         netdev_update_features(dev);
1623
1624         if (unlikely(dev->features & NETIF_F_GRO_HW))
1625                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1626 }
1627
1628 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1629 {
1630 #define N(val)                                          \
1631         case NETDEV_##val:                              \
1632                 return "NETDEV_" __stringify(val);
1633         switch (cmd) {
1634         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1635         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1636         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1637         N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1638         N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1639         N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1640         N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1641         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1642         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1643         N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1644         N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1645         N(XDP_FEAT_CHANGE)
1646         }
1647 #undef N
1648         return "UNKNOWN_NETDEV_EVENT";
1649 }
1650 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1651
1652 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1653                                    struct net_device *dev)
1654 {
1655         struct netdev_notifier_info info = {
1656                 .dev = dev,
1657         };
1658
1659         return nb->notifier_call(nb, val, &info);
1660 }
1661
1662 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1663                                              struct net_device *dev)
1664 {
1665         int err;
1666
1667         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1668         err = notifier_to_errno(err);
1669         if (err)
1670                 return err;
1671
1672         if (!(dev->flags & IFF_UP))
1673                 return 0;
1674
1675         call_netdevice_notifier(nb, NETDEV_UP, dev);
1676         return 0;
1677 }
1678
1679 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1680                                                 struct net_device *dev)
1681 {
1682         if (dev->flags & IFF_UP) {
1683                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1684                                         dev);
1685                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1686         }
1687         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1688 }
1689
1690 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1691                                                  struct net *net)
1692 {
1693         struct net_device *dev;
1694         int err;
1695
1696         for_each_netdev(net, dev) {
1697                 err = call_netdevice_register_notifiers(nb, dev);
1698                 if (err)
1699                         goto rollback;
1700         }
1701         return 0;
1702
1703 rollback:
1704         for_each_netdev_continue_reverse(net, dev)
1705                 call_netdevice_unregister_notifiers(nb, dev);
1706         return err;
1707 }
1708
1709 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1710                                                     struct net *net)
1711 {
1712         struct net_device *dev;
1713
1714         for_each_netdev(net, dev)
1715                 call_netdevice_unregister_notifiers(nb, dev);
1716 }
1717
1718 static int dev_boot_phase = 1;
1719
1720 /**
1721  * register_netdevice_notifier - register a network notifier block
1722  * @nb: notifier
1723  *
1724  * Register a notifier to be called when network device events occur.
1725  * The notifier passed is linked into the kernel structures and must
1726  * not be reused until it has been unregistered. A negative errno code
1727  * is returned on a failure.
1728  *
1729  * When registered all registration and up events are replayed
1730  * to the new notifier to allow device to have a race free
1731  * view of the network device list.
1732  */
1733
1734 int register_netdevice_notifier(struct notifier_block *nb)
1735 {
1736         struct net *net;
1737         int err;
1738
1739         /* Close race with setup_net() and cleanup_net() */
1740         down_write(&pernet_ops_rwsem);
1741         rtnl_lock();
1742         err = raw_notifier_chain_register(&netdev_chain, nb);
1743         if (err)
1744                 goto unlock;
1745         if (dev_boot_phase)
1746                 goto unlock;
1747         for_each_net(net) {
1748                 err = call_netdevice_register_net_notifiers(nb, net);
1749                 if (err)
1750                         goto rollback;
1751         }
1752
1753 unlock:
1754         rtnl_unlock();
1755         up_write(&pernet_ops_rwsem);
1756         return err;
1757
1758 rollback:
1759         for_each_net_continue_reverse(net)
1760                 call_netdevice_unregister_net_notifiers(nb, net);
1761
1762         raw_notifier_chain_unregister(&netdev_chain, nb);
1763         goto unlock;
1764 }
1765 EXPORT_SYMBOL(register_netdevice_notifier);
1766
1767 /**
1768  * unregister_netdevice_notifier - unregister a network notifier block
1769  * @nb: notifier
1770  *
1771  * Unregister a notifier previously registered by
1772  * register_netdevice_notifier(). The notifier is unlinked into the
1773  * kernel structures and may then be reused. A negative errno code
1774  * is returned on a failure.
1775  *
1776  * After unregistering unregister and down device events are synthesized
1777  * for all devices on the device list to the removed notifier to remove
1778  * the need for special case cleanup code.
1779  */
1780
1781 int unregister_netdevice_notifier(struct notifier_block *nb)
1782 {
1783         struct net *net;
1784         int err;
1785
1786         /* Close race with setup_net() and cleanup_net() */
1787         down_write(&pernet_ops_rwsem);
1788         rtnl_lock();
1789         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1790         if (err)
1791                 goto unlock;
1792
1793         for_each_net(net)
1794                 call_netdevice_unregister_net_notifiers(nb, net);
1795
1796 unlock:
1797         rtnl_unlock();
1798         up_write(&pernet_ops_rwsem);
1799         return err;
1800 }
1801 EXPORT_SYMBOL(unregister_netdevice_notifier);
1802
1803 static int __register_netdevice_notifier_net(struct net *net,
1804                                              struct notifier_block *nb,
1805                                              bool ignore_call_fail)
1806 {
1807         int err;
1808
1809         err = raw_notifier_chain_register(&net->netdev_chain, nb);
1810         if (err)
1811                 return err;
1812         if (dev_boot_phase)
1813                 return 0;
1814
1815         err = call_netdevice_register_net_notifiers(nb, net);
1816         if (err && !ignore_call_fail)
1817                 goto chain_unregister;
1818
1819         return 0;
1820
1821 chain_unregister:
1822         raw_notifier_chain_unregister(&net->netdev_chain, nb);
1823         return err;
1824 }
1825
1826 static int __unregister_netdevice_notifier_net(struct net *net,
1827                                                struct notifier_block *nb)
1828 {
1829         int err;
1830
1831         err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1832         if (err)
1833                 return err;
1834
1835         call_netdevice_unregister_net_notifiers(nb, net);
1836         return 0;
1837 }
1838
1839 /**
1840  * register_netdevice_notifier_net - register a per-netns network notifier block
1841  * @net: network namespace
1842  * @nb: notifier
1843  *
1844  * Register a notifier to be called when network device events occur.
1845  * The notifier passed is linked into the kernel structures and must
1846  * not be reused until it has been unregistered. A negative errno code
1847  * is returned on a failure.
1848  *
1849  * When registered all registration and up events are replayed
1850  * to the new notifier to allow device to have a race free
1851  * view of the network device list.
1852  */
1853
1854 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1855 {
1856         int err;
1857
1858         rtnl_lock();
1859         err = __register_netdevice_notifier_net(net, nb, false);
1860         rtnl_unlock();
1861         return err;
1862 }
1863 EXPORT_SYMBOL(register_netdevice_notifier_net);
1864
1865 /**
1866  * unregister_netdevice_notifier_net - unregister a per-netns
1867  *                                     network notifier block
1868  * @net: network namespace
1869  * @nb: notifier
1870  *
1871  * Unregister a notifier previously registered by
1872  * register_netdevice_notifier_net(). The notifier is unlinked from the
1873  * kernel structures and may then be reused. A negative errno code
1874  * is returned on a failure.
1875  *
1876  * After unregistering unregister and down device events are synthesized
1877  * for all devices on the device list to the removed notifier to remove
1878  * the need for special case cleanup code.
1879  */
1880
1881 int unregister_netdevice_notifier_net(struct net *net,
1882                                       struct notifier_block *nb)
1883 {
1884         int err;
1885
1886         rtnl_lock();
1887         err = __unregister_netdevice_notifier_net(net, nb);
1888         rtnl_unlock();
1889         return err;
1890 }
1891 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1892
1893 static void __move_netdevice_notifier_net(struct net *src_net,
1894                                           struct net *dst_net,
1895                                           struct notifier_block *nb)
1896 {
1897         __unregister_netdevice_notifier_net(src_net, nb);
1898         __register_netdevice_notifier_net(dst_net, nb, true);
1899 }
1900
1901 int register_netdevice_notifier_dev_net(struct net_device *dev,
1902                                         struct notifier_block *nb,
1903                                         struct netdev_net_notifier *nn)
1904 {
1905         int err;
1906
1907         rtnl_lock();
1908         err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1909         if (!err) {
1910                 nn->nb = nb;
1911                 list_add(&nn->list, &dev->net_notifier_list);
1912         }
1913         rtnl_unlock();
1914         return err;
1915 }
1916 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1917
1918 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1919                                           struct notifier_block *nb,
1920                                           struct netdev_net_notifier *nn)
1921 {
1922         int err;
1923
1924         rtnl_lock();
1925         list_del(&nn->list);
1926         err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1927         rtnl_unlock();
1928         return err;
1929 }
1930 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1931
1932 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1933                                              struct net *net)
1934 {
1935         struct netdev_net_notifier *nn;
1936
1937         list_for_each_entry(nn, &dev->net_notifier_list, list)
1938                 __move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
1939 }
1940
1941 /**
1942  *      call_netdevice_notifiers_info - call all network notifier blocks
1943  *      @val: value passed unmodified to notifier function
1944  *      @info: notifier information data
1945  *
1946  *      Call all network notifier blocks.  Parameters and return value
1947  *      are as for raw_notifier_call_chain().
1948  */
1949
1950 int call_netdevice_notifiers_info(unsigned long val,
1951                                   struct netdev_notifier_info *info)
1952 {
1953         struct net *net = dev_net(info->dev);
1954         int ret;
1955
1956         ASSERT_RTNL();
1957
1958         /* Run per-netns notifier block chain first, then run the global one.
1959          * Hopefully, one day, the global one is going to be removed after
1960          * all notifier block registrators get converted to be per-netns.
1961          */
1962         ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1963         if (ret & NOTIFY_STOP_MASK)
1964                 return ret;
1965         return raw_notifier_call_chain(&netdev_chain, val, info);
1966 }
1967
1968 /**
1969  *      call_netdevice_notifiers_info_robust - call per-netns notifier blocks
1970  *                                             for and rollback on error
1971  *      @val_up: value passed unmodified to notifier function
1972  *      @val_down: value passed unmodified to the notifier function when
1973  *                 recovering from an error on @val_up
1974  *      @info: notifier information data
1975  *
1976  *      Call all per-netns network notifier blocks, but not notifier blocks on
1977  *      the global notifier chain. Parameters and return value are as for
1978  *      raw_notifier_call_chain_robust().
1979  */
1980
1981 static int
1982 call_netdevice_notifiers_info_robust(unsigned long val_up,
1983                                      unsigned long val_down,
1984                                      struct netdev_notifier_info *info)
1985 {
1986         struct net *net = dev_net(info->dev);
1987
1988         ASSERT_RTNL();
1989
1990         return raw_notifier_call_chain_robust(&net->netdev_chain,
1991                                               val_up, val_down, info);
1992 }
1993
1994 static int call_netdevice_notifiers_extack(unsigned long val,
1995                                            struct net_device *dev,
1996                                            struct netlink_ext_ack *extack)
1997 {
1998         struct netdev_notifier_info info = {
1999                 .dev = dev,
2000                 .extack = extack,
2001         };
2002
2003         return call_netdevice_notifiers_info(val, &info);
2004 }
2005
2006 /**
2007  *      call_netdevice_notifiers - call all network notifier blocks
2008  *      @val: value passed unmodified to notifier function
2009  *      @dev: net_device pointer passed unmodified to notifier function
2010  *
2011  *      Call all network notifier blocks.  Parameters and return value
2012  *      are as for raw_notifier_call_chain().
2013  */
2014
2015 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2016 {
2017         return call_netdevice_notifiers_extack(val, dev, NULL);
2018 }
2019 EXPORT_SYMBOL(call_netdevice_notifiers);
2020
2021 /**
2022  *      call_netdevice_notifiers_mtu - call all network notifier blocks
2023  *      @val: value passed unmodified to notifier function
2024  *      @dev: net_device pointer passed unmodified to notifier function
2025  *      @arg: additional u32 argument passed to the notifier function
2026  *
2027  *      Call all network notifier blocks.  Parameters and return value
2028  *      are as for raw_notifier_call_chain().
2029  */
2030 static int call_netdevice_notifiers_mtu(unsigned long val,
2031                                         struct net_device *dev, u32 arg)
2032 {
2033         struct netdev_notifier_info_ext info = {
2034                 .info.dev = dev,
2035                 .ext.mtu = arg,
2036         };
2037
2038         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2039
2040         return call_netdevice_notifiers_info(val, &info.info);
2041 }
2042
2043 #ifdef CONFIG_NET_INGRESS
2044 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2045
2046 void net_inc_ingress_queue(void)
2047 {
2048         static_branch_inc(&ingress_needed_key);
2049 }
2050 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2051
2052 void net_dec_ingress_queue(void)
2053 {
2054         static_branch_dec(&ingress_needed_key);
2055 }
2056 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2057 #endif
2058
2059 #ifdef CONFIG_NET_EGRESS
2060 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2061
2062 void net_inc_egress_queue(void)
2063 {
2064         static_branch_inc(&egress_needed_key);
2065 }
2066 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2067
2068 void net_dec_egress_queue(void)
2069 {
2070         static_branch_dec(&egress_needed_key);
2071 }
2072 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2073 #endif
2074
2075 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2076 EXPORT_SYMBOL(netstamp_needed_key);
2077 #ifdef CONFIG_JUMP_LABEL
2078 static atomic_t netstamp_needed_deferred;
2079 static atomic_t netstamp_wanted;
2080 static void netstamp_clear(struct work_struct *work)
2081 {
2082         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2083         int wanted;
2084
2085         wanted = atomic_add_return(deferred, &netstamp_wanted);
2086         if (wanted > 0)
2087                 static_branch_enable(&netstamp_needed_key);
2088         else
2089                 static_branch_disable(&netstamp_needed_key);
2090 }
2091 static DECLARE_WORK(netstamp_work, netstamp_clear);
2092 #endif
2093
2094 void net_enable_timestamp(void)
2095 {
2096 #ifdef CONFIG_JUMP_LABEL
2097         int wanted = atomic_read(&netstamp_wanted);
2098
2099         while (wanted > 0) {
2100                 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2101                         return;
2102         }
2103         atomic_inc(&netstamp_needed_deferred);
2104         schedule_work(&netstamp_work);
2105 #else
2106         static_branch_inc(&netstamp_needed_key);
2107 #endif
2108 }
2109 EXPORT_SYMBOL(net_enable_timestamp);
2110
2111 void net_disable_timestamp(void)
2112 {
2113 #ifdef CONFIG_JUMP_LABEL
2114         int wanted = atomic_read(&netstamp_wanted);
2115
2116         while (wanted > 1) {
2117                 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2118                         return;
2119         }
2120         atomic_dec(&netstamp_needed_deferred);
2121         schedule_work(&netstamp_work);
2122 #else
2123         static_branch_dec(&netstamp_needed_key);
2124 #endif
2125 }
2126 EXPORT_SYMBOL(net_disable_timestamp);
2127
2128 static inline void net_timestamp_set(struct sk_buff *skb)
2129 {
2130         skb->tstamp = 0;
2131         skb->mono_delivery_time = 0;
2132         if (static_branch_unlikely(&netstamp_needed_key))
2133                 skb->tstamp = ktime_get_real();
2134 }
2135
2136 #define net_timestamp_check(COND, SKB)                          \
2137         if (static_branch_unlikely(&netstamp_needed_key)) {     \
2138                 if ((COND) && !(SKB)->tstamp)                   \
2139                         (SKB)->tstamp = ktime_get_real();       \
2140         }                                                       \
2141
2142 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2143 {
2144         return __is_skb_forwardable(dev, skb, true);
2145 }
2146 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2147
2148 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2149                               bool check_mtu)
2150 {
2151         int ret = ____dev_forward_skb(dev, skb, check_mtu);
2152
2153         if (likely(!ret)) {
2154                 skb->protocol = eth_type_trans(skb, dev);
2155                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2156         }
2157
2158         return ret;
2159 }
2160
2161 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2162 {
2163         return __dev_forward_skb2(dev, skb, true);
2164 }
2165 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2166
2167 /**
2168  * dev_forward_skb - loopback an skb to another netif
2169  *
2170  * @dev: destination network device
2171  * @skb: buffer to forward
2172  *
2173  * return values:
2174  *      NET_RX_SUCCESS  (no congestion)
2175  *      NET_RX_DROP     (packet was dropped, but freed)
2176  *
2177  * dev_forward_skb can be used for injecting an skb from the
2178  * start_xmit function of one device into the receive queue
2179  * of another device.
2180  *
2181  * The receiving device may be in another namespace, so
2182  * we have to clear all information in the skb that could
2183  * impact namespace isolation.
2184  */
2185 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2186 {
2187         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2188 }
2189 EXPORT_SYMBOL_GPL(dev_forward_skb);
2190
2191 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2192 {
2193         return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2194 }
2195
2196 static inline int deliver_skb(struct sk_buff *skb,
2197                               struct packet_type *pt_prev,
2198                               struct net_device *orig_dev)
2199 {
2200         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2201                 return -ENOMEM;
2202         refcount_inc(&skb->users);
2203         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2204 }
2205
2206 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2207                                           struct packet_type **pt,
2208                                           struct net_device *orig_dev,
2209                                           __be16 type,
2210                                           struct list_head *ptype_list)
2211 {
2212         struct packet_type *ptype, *pt_prev = *pt;
2213
2214         list_for_each_entry_rcu(ptype, ptype_list, list) {
2215                 if (ptype->type != type)
2216                         continue;
2217                 if (pt_prev)
2218                         deliver_skb(skb, pt_prev, orig_dev);
2219                 pt_prev = ptype;
2220         }
2221         *pt = pt_prev;
2222 }
2223
2224 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2225 {
2226         if (!ptype->af_packet_priv || !skb->sk)
2227                 return false;
2228
2229         if (ptype->id_match)
2230                 return ptype->id_match(ptype, skb->sk);
2231         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2232                 return true;
2233
2234         return false;
2235 }
2236
2237 /**
2238  * dev_nit_active - return true if any network interface taps are in use
2239  *
2240  * @dev: network device to check for the presence of taps
2241  */
2242 bool dev_nit_active(struct net_device *dev)
2243 {
2244         return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2245 }
2246 EXPORT_SYMBOL_GPL(dev_nit_active);
2247
2248 /*
2249  *      Support routine. Sends outgoing frames to any network
2250  *      taps currently in use.
2251  */
2252
2253 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2254 {
2255         struct packet_type *ptype;
2256         struct sk_buff *skb2 = NULL;
2257         struct packet_type *pt_prev = NULL;
2258         struct list_head *ptype_list = &ptype_all;
2259
2260         rcu_read_lock();
2261 again:
2262         list_for_each_entry_rcu(ptype, ptype_list, list) {
2263                 if (ptype->ignore_outgoing)
2264                         continue;
2265
2266                 /* Never send packets back to the socket
2267                  * they originated from - MvS (miquels@drinkel.ow.org)
2268                  */
2269                 if (skb_loop_sk(ptype, skb))
2270                         continue;
2271
2272                 if (pt_prev) {
2273                         deliver_skb(skb2, pt_prev, skb->dev);
2274                         pt_prev = ptype;
2275                         continue;
2276                 }
2277
2278                 /* need to clone skb, done only once */
2279                 skb2 = skb_clone(skb, GFP_ATOMIC);
2280                 if (!skb2)
2281                         goto out_unlock;
2282
2283                 net_timestamp_set(skb2);
2284
2285                 /* skb->nh should be correctly
2286                  * set by sender, so that the second statement is
2287                  * just protection against buggy protocols.
2288                  */
2289                 skb_reset_mac_header(skb2);
2290
2291                 if (skb_network_header(skb2) < skb2->data ||
2292                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2293                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2294                                              ntohs(skb2->protocol),
2295                                              dev->name);
2296                         skb_reset_network_header(skb2);
2297                 }
2298
2299                 skb2->transport_header = skb2->network_header;
2300                 skb2->pkt_type = PACKET_OUTGOING;
2301                 pt_prev = ptype;
2302         }
2303
2304         if (ptype_list == &ptype_all) {
2305                 ptype_list = &dev->ptype_all;
2306                 goto again;
2307         }
2308 out_unlock:
2309         if (pt_prev) {
2310                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2311                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2312                 else
2313                         kfree_skb(skb2);
2314         }
2315         rcu_read_unlock();
2316 }
2317 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2318
2319 /**
2320  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2321  * @dev: Network device
2322  * @txq: number of queues available
2323  *
2324  * If real_num_tx_queues is changed the tc mappings may no longer be
2325  * valid. To resolve this verify the tc mapping remains valid and if
2326  * not NULL the mapping. With no priorities mapping to this
2327  * offset/count pair it will no longer be used. In the worst case TC0
2328  * is invalid nothing can be done so disable priority mappings. If is
2329  * expected that drivers will fix this mapping if they can before
2330  * calling netif_set_real_num_tx_queues.
2331  */
2332 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2333 {
2334         int i;
2335         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2336
2337         /* If TC0 is invalidated disable TC mapping */
2338         if (tc->offset + tc->count > txq) {
2339                 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2340                 dev->num_tc = 0;
2341                 return;
2342         }
2343
2344         /* Invalidated prio to tc mappings set to TC0 */
2345         for (i = 1; i < TC_BITMASK + 1; i++) {
2346                 int q = netdev_get_prio_tc_map(dev, i);
2347
2348                 tc = &dev->tc_to_txq[q];
2349                 if (tc->offset + tc->count > txq) {
2350                         netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2351                                     i, q);
2352                         netdev_set_prio_tc_map(dev, i, 0);
2353                 }
2354         }
2355 }
2356
2357 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2358 {
2359         if (dev->num_tc) {
2360                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2361                 int i;
2362
2363                 /* walk through the TCs and see if it falls into any of them */
2364                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2365                         if ((txq - tc->offset) < tc->count)
2366                                 return i;
2367                 }
2368
2369                 /* didn't find it, just return -1 to indicate no match */
2370                 return -1;
2371         }
2372
2373         return 0;
2374 }
2375 EXPORT_SYMBOL(netdev_txq_to_tc);
2376
2377 #ifdef CONFIG_XPS
2378 static struct static_key xps_needed __read_mostly;
2379 static struct static_key xps_rxqs_needed __read_mostly;
2380 static DEFINE_MUTEX(xps_map_mutex);
2381 #define xmap_dereference(P)             \
2382         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2383
2384 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2385                              struct xps_dev_maps *old_maps, int tci, u16 index)
2386 {
2387         struct xps_map *map = NULL;
2388         int pos;
2389
2390         map = xmap_dereference(dev_maps->attr_map[tci]);
2391         if (!map)
2392                 return false;
2393
2394         for (pos = map->len; pos--;) {
2395                 if (map->queues[pos] != index)
2396                         continue;
2397
2398                 if (map->len > 1) {
2399                         map->queues[pos] = map->queues[--map->len];
2400                         break;
2401                 }
2402
2403                 if (old_maps)
2404                         RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2405                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2406                 kfree_rcu(map, rcu);
2407                 return false;
2408         }
2409
2410         return true;
2411 }
2412
2413 static bool remove_xps_queue_cpu(struct net_device *dev,
2414                                  struct xps_dev_maps *dev_maps,
2415                                  int cpu, u16 offset, u16 count)
2416 {
2417         int num_tc = dev_maps->num_tc;
2418         bool active = false;
2419         int tci;
2420
2421         for (tci = cpu * num_tc; num_tc--; tci++) {
2422                 int i, j;
2423
2424                 for (i = count, j = offset; i--; j++) {
2425                         if (!remove_xps_queue(dev_maps, NULL, tci, j))
2426                                 break;
2427                 }
2428
2429                 active |= i < 0;
2430         }
2431
2432         return active;
2433 }
2434
2435 static void reset_xps_maps(struct net_device *dev,
2436                            struct xps_dev_maps *dev_maps,
2437                            enum xps_map_type type)
2438 {
2439         static_key_slow_dec_cpuslocked(&xps_needed);
2440         if (type == XPS_RXQS)
2441                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2442
2443         RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2444
2445         kfree_rcu(dev_maps, rcu);
2446 }
2447
2448 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2449                            u16 offset, u16 count)
2450 {
2451         struct xps_dev_maps *dev_maps;
2452         bool active = false;
2453         int i, j;
2454
2455         dev_maps = xmap_dereference(dev->xps_maps[type]);
2456         if (!dev_maps)
2457                 return;
2458
2459         for (j = 0; j < dev_maps->nr_ids; j++)
2460                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2461         if (!active)
2462                 reset_xps_maps(dev, dev_maps, type);
2463
2464         if (type == XPS_CPUS) {
2465                 for (i = offset + (count - 1); count--; i--)
2466                         netdev_queue_numa_node_write(
2467                                 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2468         }
2469 }
2470
2471 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2472                                    u16 count)
2473 {
2474         if (!static_key_false(&xps_needed))
2475                 return;
2476
2477         cpus_read_lock();
2478         mutex_lock(&xps_map_mutex);
2479
2480         if (static_key_false(&xps_rxqs_needed))
2481                 clean_xps_maps(dev, XPS_RXQS, offset, count);
2482
2483         clean_xps_maps(dev, XPS_CPUS, offset, count);
2484
2485         mutex_unlock(&xps_map_mutex);
2486         cpus_read_unlock();
2487 }
2488
2489 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2490 {
2491         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2492 }
2493
2494 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2495                                       u16 index, bool is_rxqs_map)
2496 {
2497         struct xps_map *new_map;
2498         int alloc_len = XPS_MIN_MAP_ALLOC;
2499         int i, pos;
2500
2501         for (pos = 0; map && pos < map->len; pos++) {
2502                 if (map->queues[pos] != index)
2503                         continue;
2504                 return map;
2505         }
2506
2507         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2508         if (map) {
2509                 if (pos < map->alloc_len)
2510                         return map;
2511
2512                 alloc_len = map->alloc_len * 2;
2513         }
2514
2515         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2516          *  map
2517          */
2518         if (is_rxqs_map)
2519                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2520         else
2521                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2522                                        cpu_to_node(attr_index));
2523         if (!new_map)
2524                 return NULL;
2525
2526         for (i = 0; i < pos; i++)
2527                 new_map->queues[i] = map->queues[i];
2528         new_map->alloc_len = alloc_len;
2529         new_map->len = pos;
2530
2531         return new_map;
2532 }
2533
2534 /* Copy xps maps at a given index */
2535 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2536                               struct xps_dev_maps *new_dev_maps, int index,
2537                               int tc, bool skip_tc)
2538 {
2539         int i, tci = index * dev_maps->num_tc;
2540         struct xps_map *map;
2541
2542         /* copy maps belonging to foreign traffic classes */
2543         for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2544                 if (i == tc && skip_tc)
2545                         continue;
2546
2547                 /* fill in the new device map from the old device map */
2548                 map = xmap_dereference(dev_maps->attr_map[tci]);
2549                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2550         }
2551 }
2552
2553 /* Must be called under cpus_read_lock */
2554 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2555                           u16 index, enum xps_map_type type)
2556 {
2557         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2558         const unsigned long *online_mask = NULL;
2559         bool active = false, copy = false;
2560         int i, j, tci, numa_node_id = -2;
2561         int maps_sz, num_tc = 1, tc = 0;
2562         struct xps_map *map, *new_map;
2563         unsigned int nr_ids;
2564
2565         WARN_ON_ONCE(index >= dev->num_tx_queues);
2566
2567         if (dev->num_tc) {
2568                 /* Do not allow XPS on subordinate device directly */
2569                 num_tc = dev->num_tc;
2570                 if (num_tc < 0)
2571                         return -EINVAL;
2572
2573                 /* If queue belongs to subordinate dev use its map */
2574                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2575
2576                 tc = netdev_txq_to_tc(dev, index);
2577                 if (tc < 0)
2578                         return -EINVAL;
2579         }
2580
2581         mutex_lock(&xps_map_mutex);
2582
2583         dev_maps = xmap_dereference(dev->xps_maps[type]);
2584         if (type == XPS_RXQS) {
2585                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2586                 nr_ids = dev->num_rx_queues;
2587         } else {
2588                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2589                 if (num_possible_cpus() > 1)
2590                         online_mask = cpumask_bits(cpu_online_mask);
2591                 nr_ids = nr_cpu_ids;
2592         }
2593
2594         if (maps_sz < L1_CACHE_BYTES)
2595                 maps_sz = L1_CACHE_BYTES;
2596
2597         /* The old dev_maps could be larger or smaller than the one we're
2598          * setting up now, as dev->num_tc or nr_ids could have been updated in
2599          * between. We could try to be smart, but let's be safe instead and only
2600          * copy foreign traffic classes if the two map sizes match.
2601          */
2602         if (dev_maps &&
2603             dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2604                 copy = true;
2605
2606         /* allocate memory for queue storage */
2607         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2608              j < nr_ids;) {
2609                 if (!new_dev_maps) {
2610                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2611                         if (!new_dev_maps) {
2612                                 mutex_unlock(&xps_map_mutex);
2613                                 return -ENOMEM;
2614                         }
2615
2616                         new_dev_maps->nr_ids = nr_ids;
2617                         new_dev_maps->num_tc = num_tc;
2618                 }
2619
2620                 tci = j * num_tc + tc;
2621                 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2622
2623                 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2624                 if (!map)
2625                         goto error;
2626
2627                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2628         }
2629
2630         if (!new_dev_maps)
2631                 goto out_no_new_maps;
2632
2633         if (!dev_maps) {
2634                 /* Increment static keys at most once per type */
2635                 static_key_slow_inc_cpuslocked(&xps_needed);
2636                 if (type == XPS_RXQS)
2637                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2638         }
2639
2640         for (j = 0; j < nr_ids; j++) {
2641                 bool skip_tc = false;
2642
2643                 tci = j * num_tc + tc;
2644                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2645                     netif_attr_test_online(j, online_mask, nr_ids)) {
2646                         /* add tx-queue to CPU/rx-queue maps */
2647                         int pos = 0;
2648
2649                         skip_tc = true;
2650
2651                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2652                         while ((pos < map->len) && (map->queues[pos] != index))
2653                                 pos++;
2654
2655                         if (pos == map->len)
2656                                 map->queues[map->len++] = index;
2657 #ifdef CONFIG_NUMA
2658                         if (type == XPS_CPUS) {
2659                                 if (numa_node_id == -2)
2660                                         numa_node_id = cpu_to_node(j);
2661                                 else if (numa_node_id != cpu_to_node(j))
2662                                         numa_node_id = -1;
2663                         }
2664 #endif
2665                 }
2666
2667                 if (copy)
2668                         xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2669                                           skip_tc);
2670         }
2671
2672         rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2673
2674         /* Cleanup old maps */
2675         if (!dev_maps)
2676                 goto out_no_old_maps;
2677
2678         for (j = 0; j < dev_maps->nr_ids; j++) {
2679                 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2680                         map = xmap_dereference(dev_maps->attr_map[tci]);
2681                         if (!map)
2682                                 continue;
2683
2684                         if (copy) {
2685                                 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2686                                 if (map == new_map)
2687                                         continue;
2688                         }
2689
2690                         RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2691                         kfree_rcu(map, rcu);
2692                 }
2693         }
2694
2695         old_dev_maps = dev_maps;
2696
2697 out_no_old_maps:
2698         dev_maps = new_dev_maps;
2699         active = true;
2700
2701 out_no_new_maps:
2702         if (type == XPS_CPUS)
2703                 /* update Tx queue numa node */
2704                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2705                                              (numa_node_id >= 0) ?
2706                                              numa_node_id : NUMA_NO_NODE);
2707
2708         if (!dev_maps)
2709                 goto out_no_maps;
2710
2711         /* removes tx-queue from unused CPUs/rx-queues */
2712         for (j = 0; j < dev_maps->nr_ids; j++) {
2713                 tci = j * dev_maps->num_tc;
2714
2715                 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2716                         if (i == tc &&
2717                             netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2718                             netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2719                                 continue;
2720
2721                         active |= remove_xps_queue(dev_maps,
2722                                                    copy ? old_dev_maps : NULL,
2723                                                    tci, index);
2724                 }
2725         }
2726
2727         if (old_dev_maps)
2728                 kfree_rcu(old_dev_maps, rcu);
2729
2730         /* free map if not active */
2731         if (!active)
2732                 reset_xps_maps(dev, dev_maps, type);
2733
2734 out_no_maps:
2735         mutex_unlock(&xps_map_mutex);
2736
2737         return 0;
2738 error:
2739         /* remove any maps that we added */
2740         for (j = 0; j < nr_ids; j++) {
2741                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2742                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2743                         map = copy ?
2744                               xmap_dereference(dev_maps->attr_map[tci]) :
2745                               NULL;
2746                         if (new_map && new_map != map)
2747                                 kfree(new_map);
2748                 }
2749         }
2750
2751         mutex_unlock(&xps_map_mutex);
2752
2753         kfree(new_dev_maps);
2754         return -ENOMEM;
2755 }
2756 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2757
2758 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2759                         u16 index)
2760 {
2761         int ret;
2762
2763         cpus_read_lock();
2764         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2765         cpus_read_unlock();
2766
2767         return ret;
2768 }
2769 EXPORT_SYMBOL(netif_set_xps_queue);
2770
2771 #endif
2772 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2773 {
2774         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2775
2776         /* Unbind any subordinate channels */
2777         while (txq-- != &dev->_tx[0]) {
2778                 if (txq->sb_dev)
2779                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2780         }
2781 }
2782
2783 void netdev_reset_tc(struct net_device *dev)
2784 {
2785 #ifdef CONFIG_XPS
2786         netif_reset_xps_queues_gt(dev, 0);
2787 #endif
2788         netdev_unbind_all_sb_channels(dev);
2789
2790         /* Reset TC configuration of device */
2791         dev->num_tc = 0;
2792         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2793         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2794 }
2795 EXPORT_SYMBOL(netdev_reset_tc);
2796
2797 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2798 {
2799         if (tc >= dev->num_tc)
2800                 return -EINVAL;
2801
2802 #ifdef CONFIG_XPS
2803         netif_reset_xps_queues(dev, offset, count);
2804 #endif
2805         dev->tc_to_txq[tc].count = count;
2806         dev->tc_to_txq[tc].offset = offset;
2807         return 0;
2808 }
2809 EXPORT_SYMBOL(netdev_set_tc_queue);
2810
2811 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2812 {
2813         if (num_tc > TC_MAX_QUEUE)
2814                 return -EINVAL;
2815
2816 #ifdef CONFIG_XPS
2817         netif_reset_xps_queues_gt(dev, 0);
2818 #endif
2819         netdev_unbind_all_sb_channels(dev);
2820
2821         dev->num_tc = num_tc;
2822         return 0;
2823 }
2824 EXPORT_SYMBOL(netdev_set_num_tc);
2825
2826 void netdev_unbind_sb_channel(struct net_device *dev,
2827                               struct net_device *sb_dev)
2828 {
2829         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2830
2831 #ifdef CONFIG_XPS
2832         netif_reset_xps_queues_gt(sb_dev, 0);
2833 #endif
2834         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2835         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2836
2837         while (txq-- != &dev->_tx[0]) {
2838                 if (txq->sb_dev == sb_dev)
2839                         txq->sb_dev = NULL;
2840         }
2841 }
2842 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2843
2844 int netdev_bind_sb_channel_queue(struct net_device *dev,
2845                                  struct net_device *sb_dev,
2846                                  u8 tc, u16 count, u16 offset)
2847 {
2848         /* Make certain the sb_dev and dev are already configured */
2849         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2850                 return -EINVAL;
2851
2852         /* We cannot hand out queues we don't have */
2853         if ((offset + count) > dev->real_num_tx_queues)
2854                 return -EINVAL;
2855
2856         /* Record the mapping */
2857         sb_dev->tc_to_txq[tc].count = count;
2858         sb_dev->tc_to_txq[tc].offset = offset;
2859
2860         /* Provide a way for Tx queue to find the tc_to_txq map or
2861          * XPS map for itself.
2862          */
2863         while (count--)
2864                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2865
2866         return 0;
2867 }
2868 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2869
2870 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2871 {
2872         /* Do not use a multiqueue device to represent a subordinate channel */
2873         if (netif_is_multiqueue(dev))
2874                 return -ENODEV;
2875
2876         /* We allow channels 1 - 32767 to be used for subordinate channels.
2877          * Channel 0 is meant to be "native" mode and used only to represent
2878          * the main root device. We allow writing 0 to reset the device back
2879          * to normal mode after being used as a subordinate channel.
2880          */
2881         if (channel > S16_MAX)
2882                 return -EINVAL;
2883
2884         dev->num_tc = -channel;
2885
2886         return 0;
2887 }
2888 EXPORT_SYMBOL(netdev_set_sb_channel);
2889
2890 /*
2891  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2892  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2893  */
2894 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2895 {
2896         bool disabling;
2897         int rc;
2898
2899         disabling = txq < dev->real_num_tx_queues;
2900
2901         if (txq < 1 || txq > dev->num_tx_queues)
2902                 return -EINVAL;
2903
2904         if (dev->reg_state == NETREG_REGISTERED ||
2905             dev->reg_state == NETREG_UNREGISTERING) {
2906                 ASSERT_RTNL();
2907
2908                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2909                                                   txq);
2910                 if (rc)
2911                         return rc;
2912
2913                 if (dev->num_tc)
2914                         netif_setup_tc(dev, txq);
2915
2916                 dev_qdisc_change_real_num_tx(dev, txq);
2917
2918                 dev->real_num_tx_queues = txq;
2919
2920                 if (disabling) {
2921                         synchronize_net();
2922                         qdisc_reset_all_tx_gt(dev, txq);
2923 #ifdef CONFIG_XPS
2924                         netif_reset_xps_queues_gt(dev, txq);
2925 #endif
2926                 }
2927         } else {
2928                 dev->real_num_tx_queues = txq;
2929         }
2930
2931         return 0;
2932 }
2933 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2934
2935 #ifdef CONFIG_SYSFS
2936 /**
2937  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2938  *      @dev: Network device
2939  *      @rxq: Actual number of RX queues
2940  *
2941  *      This must be called either with the rtnl_lock held or before
2942  *      registration of the net device.  Returns 0 on success, or a
2943  *      negative error code.  If called before registration, it always
2944  *      succeeds.
2945  */
2946 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2947 {
2948         int rc;
2949
2950         if (rxq < 1 || rxq > dev->num_rx_queues)
2951                 return -EINVAL;
2952
2953         if (dev->reg_state == NETREG_REGISTERED) {
2954                 ASSERT_RTNL();
2955
2956                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2957                                                   rxq);
2958                 if (rc)
2959                         return rc;
2960         }
2961
2962         dev->real_num_rx_queues = rxq;
2963         return 0;
2964 }
2965 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2966 #endif
2967
2968 /**
2969  *      netif_set_real_num_queues - set actual number of RX and TX queues used
2970  *      @dev: Network device
2971  *      @txq: Actual number of TX queues
2972  *      @rxq: Actual number of RX queues
2973  *
2974  *      Set the real number of both TX and RX queues.
2975  *      Does nothing if the number of queues is already correct.
2976  */
2977 int netif_set_real_num_queues(struct net_device *dev,
2978                               unsigned int txq, unsigned int rxq)
2979 {
2980         unsigned int old_rxq = dev->real_num_rx_queues;
2981         int err;
2982
2983         if (txq < 1 || txq > dev->num_tx_queues ||
2984             rxq < 1 || rxq > dev->num_rx_queues)
2985                 return -EINVAL;
2986
2987         /* Start from increases, so the error path only does decreases -
2988          * decreases can't fail.
2989          */
2990         if (rxq > dev->real_num_rx_queues) {
2991                 err = netif_set_real_num_rx_queues(dev, rxq);
2992                 if (err)
2993                         return err;
2994         }
2995         if (txq > dev->real_num_tx_queues) {
2996                 err = netif_set_real_num_tx_queues(dev, txq);
2997                 if (err)
2998                         goto undo_rx;
2999         }
3000         if (rxq < dev->real_num_rx_queues)
3001                 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3002         if (txq < dev->real_num_tx_queues)
3003                 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3004
3005         return 0;
3006 undo_rx:
3007         WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3008         return err;
3009 }
3010 EXPORT_SYMBOL(netif_set_real_num_queues);
3011
3012 /**
3013  * netif_set_tso_max_size() - set the max size of TSO frames supported
3014  * @dev:        netdev to update
3015  * @size:       max skb->len of a TSO frame
3016  *
3017  * Set the limit on the size of TSO super-frames the device can handle.
3018  * Unless explicitly set the stack will assume the value of
3019  * %GSO_LEGACY_MAX_SIZE.
3020  */
3021 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3022 {
3023         dev->tso_max_size = min(GSO_MAX_SIZE, size);
3024         if (size < READ_ONCE(dev->gso_max_size))
3025                 netif_set_gso_max_size(dev, size);
3026         if (size < READ_ONCE(dev->gso_ipv4_max_size))
3027                 netif_set_gso_ipv4_max_size(dev, size);
3028 }
3029 EXPORT_SYMBOL(netif_set_tso_max_size);
3030
3031 /**
3032  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3033  * @dev:        netdev to update
3034  * @segs:       max number of TCP segments
3035  *
3036  * Set the limit on the number of TCP segments the device can generate from
3037  * a single TSO super-frame.
3038  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3039  */
3040 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3041 {
3042         dev->tso_max_segs = segs;
3043         if (segs < READ_ONCE(dev->gso_max_segs))
3044                 netif_set_gso_max_segs(dev, segs);
3045 }
3046 EXPORT_SYMBOL(netif_set_tso_max_segs);
3047
3048 /**
3049  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3050  * @to:         netdev to update
3051  * @from:       netdev from which to copy the limits
3052  */
3053 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3054 {
3055         netif_set_tso_max_size(to, from->tso_max_size);
3056         netif_set_tso_max_segs(to, from->tso_max_segs);
3057 }
3058 EXPORT_SYMBOL(netif_inherit_tso_max);
3059
3060 /**
3061  * netif_get_num_default_rss_queues - default number of RSS queues
3062  *
3063  * Default value is the number of physical cores if there are only 1 or 2, or
3064  * divided by 2 if there are more.
3065  */
3066 int netif_get_num_default_rss_queues(void)
3067 {
3068         cpumask_var_t cpus;
3069         int cpu, count = 0;
3070
3071         if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3072                 return 1;
3073
3074         cpumask_copy(cpus, cpu_online_mask);
3075         for_each_cpu(cpu, cpus) {
3076                 ++count;
3077                 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3078         }
3079         free_cpumask_var(cpus);
3080
3081         return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3082 }
3083 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3084
3085 static void __netif_reschedule(struct Qdisc *q)
3086 {
3087         struct softnet_data *sd;
3088         unsigned long flags;
3089
3090         local_irq_save(flags);
3091         sd = this_cpu_ptr(&softnet_data);
3092         q->next_sched = NULL;
3093         *sd->output_queue_tailp = q;
3094         sd->output_queue_tailp = &q->next_sched;
3095         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3096         local_irq_restore(flags);
3097 }
3098
3099 void __netif_schedule(struct Qdisc *q)
3100 {
3101         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3102                 __netif_reschedule(q);
3103 }
3104 EXPORT_SYMBOL(__netif_schedule);
3105
3106 struct dev_kfree_skb_cb {
3107         enum skb_drop_reason reason;
3108 };
3109
3110 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3111 {
3112         return (struct dev_kfree_skb_cb *)skb->cb;
3113 }
3114
3115 void netif_schedule_queue(struct netdev_queue *txq)
3116 {
3117         rcu_read_lock();
3118         if (!netif_xmit_stopped(txq)) {
3119                 struct Qdisc *q = rcu_dereference(txq->qdisc);
3120
3121                 __netif_schedule(q);
3122         }
3123         rcu_read_unlock();
3124 }
3125 EXPORT_SYMBOL(netif_schedule_queue);
3126
3127 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3128 {
3129         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3130                 struct Qdisc *q;
3131
3132                 rcu_read_lock();
3133                 q = rcu_dereference(dev_queue->qdisc);
3134                 __netif_schedule(q);
3135                 rcu_read_unlock();
3136         }
3137 }
3138 EXPORT_SYMBOL(netif_tx_wake_queue);
3139
3140 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3141 {
3142         unsigned long flags;
3143
3144         if (unlikely(!skb))
3145                 return;
3146
3147         if (likely(refcount_read(&skb->users) == 1)) {
3148                 smp_rmb();
3149                 refcount_set(&skb->users, 0);
3150         } else if (likely(!refcount_dec_and_test(&skb->users))) {
3151                 return;
3152         }
3153         get_kfree_skb_cb(skb)->reason = reason;
3154         local_irq_save(flags);
3155         skb->next = __this_cpu_read(softnet_data.completion_queue);
3156         __this_cpu_write(softnet_data.completion_queue, skb);
3157         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3158         local_irq_restore(flags);
3159 }
3160 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3161
3162 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3163 {
3164         if (in_hardirq() || irqs_disabled())
3165                 dev_kfree_skb_irq_reason(skb, reason);
3166         else
3167                 kfree_skb_reason(skb, reason);
3168 }
3169 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3170
3171
3172 /**
3173  * netif_device_detach - mark device as removed
3174  * @dev: network device
3175  *
3176  * Mark device as removed from system and therefore no longer available.
3177  */
3178 void netif_device_detach(struct net_device *dev)
3179 {
3180         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3181             netif_running(dev)) {
3182                 netif_tx_stop_all_queues(dev);
3183         }
3184 }
3185 EXPORT_SYMBOL(netif_device_detach);
3186
3187 /**
3188  * netif_device_attach - mark device as attached
3189  * @dev: network device
3190  *
3191  * Mark device as attached from system and restart if needed.
3192  */
3193 void netif_device_attach(struct net_device *dev)
3194 {
3195         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3196             netif_running(dev)) {
3197                 netif_tx_wake_all_queues(dev);
3198                 __netdev_watchdog_up(dev);
3199         }
3200 }
3201 EXPORT_SYMBOL(netif_device_attach);
3202
3203 /*
3204  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3205  * to be used as a distribution range.
3206  */
3207 static u16 skb_tx_hash(const struct net_device *dev,
3208                        const struct net_device *sb_dev,
3209                        struct sk_buff *skb)
3210 {
3211         u32 hash;
3212         u16 qoffset = 0;
3213         u16 qcount = dev->real_num_tx_queues;
3214
3215         if (dev->num_tc) {
3216                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3217
3218                 qoffset = sb_dev->tc_to_txq[tc].offset;
3219                 qcount = sb_dev->tc_to_txq[tc].count;
3220                 if (unlikely(!qcount)) {
3221                         net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3222                                              sb_dev->name, qoffset, tc);
3223                         qoffset = 0;
3224                         qcount = dev->real_num_tx_queues;
3225                 }
3226         }
3227
3228         if (skb_rx_queue_recorded(skb)) {
3229                 DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3230                 hash = skb_get_rx_queue(skb);
3231                 if (hash >= qoffset)
3232                         hash -= qoffset;
3233                 while (unlikely(hash >= qcount))
3234                         hash -= qcount;
3235                 return hash + qoffset;
3236         }
3237
3238         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3239 }
3240
3241 void skb_warn_bad_offload(const struct sk_buff *skb)
3242 {
3243         static const netdev_features_t null_features;
3244         struct net_device *dev = skb->dev;
3245         const char *name = "";
3246
3247         if (!net_ratelimit())
3248                 return;
3249
3250         if (dev) {
3251                 if (dev->dev.parent)
3252                         name = dev_driver_string(dev->dev.parent);
3253                 else
3254                         name = netdev_name(dev);
3255         }
3256         skb_dump(KERN_WARNING, skb, false);
3257         WARN(1, "%s: caps=(%pNF, %pNF)\n",
3258              name, dev ? &dev->features : &null_features,
3259              skb->sk ? &skb->sk->sk_route_caps : &null_features);
3260 }
3261
3262 /*
3263  * Invalidate hardware checksum when packet is to be mangled, and
3264  * complete checksum manually on outgoing path.
3265  */
3266 int skb_checksum_help(struct sk_buff *skb)
3267 {
3268         __wsum csum;
3269         int ret = 0, offset;
3270
3271         if (skb->ip_summed == CHECKSUM_COMPLETE)
3272                 goto out_set_summed;
3273
3274         if (unlikely(skb_is_gso(skb))) {
3275                 skb_warn_bad_offload(skb);
3276                 return -EINVAL;
3277         }
3278
3279         /* Before computing a checksum, we should make sure no frag could
3280          * be modified by an external entity : checksum could be wrong.
3281          */
3282         if (skb_has_shared_frag(skb)) {
3283                 ret = __skb_linearize(skb);
3284                 if (ret)
3285                         goto out;
3286         }
3287
3288         offset = skb_checksum_start_offset(skb);
3289         ret = -EINVAL;
3290         if (unlikely(offset >= skb_headlen(skb))) {
3291                 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3292                 WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3293                           offset, skb_headlen(skb));
3294                 goto out;
3295         }
3296         csum = skb_checksum(skb, offset, skb->len - offset, 0);
3297
3298         offset += skb->csum_offset;
3299         if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3300                 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3301                 WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3302                           offset + sizeof(__sum16), skb_headlen(skb));
3303                 goto out;
3304         }
3305         ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3306         if (ret)
3307                 goto out;
3308
3309         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3310 out_set_summed:
3311         skb->ip_summed = CHECKSUM_NONE;
3312 out:
3313         return ret;
3314 }
3315 EXPORT_SYMBOL(skb_checksum_help);
3316
3317 int skb_crc32c_csum_help(struct sk_buff *skb)
3318 {
3319         __le32 crc32c_csum;
3320         int ret = 0, offset, start;
3321
3322         if (skb->ip_summed != CHECKSUM_PARTIAL)
3323                 goto out;
3324
3325         if (unlikely(skb_is_gso(skb)))
3326                 goto out;
3327
3328         /* Before computing a checksum, we should make sure no frag could
3329          * be modified by an external entity : checksum could be wrong.
3330          */
3331         if (unlikely(skb_has_shared_frag(skb))) {
3332                 ret = __skb_linearize(skb);
3333                 if (ret)
3334                         goto out;
3335         }
3336         start = skb_checksum_start_offset(skb);
3337         offset = start + offsetof(struct sctphdr, checksum);
3338         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3339                 ret = -EINVAL;
3340                 goto out;
3341         }
3342
3343         ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3344         if (ret)
3345                 goto out;
3346
3347         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3348                                                   skb->len - start, ~(__u32)0,
3349                                                   crc32c_csum_stub));
3350         *(__le32 *)(skb->data + offset) = crc32c_csum;
3351         skb_reset_csum_not_inet(skb);
3352 out:
3353         return ret;
3354 }
3355
3356 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3357 {
3358         __be16 type = skb->protocol;
3359
3360         /* Tunnel gso handlers can set protocol to ethernet. */
3361         if (type == htons(ETH_P_TEB)) {
3362                 struct ethhdr *eth;
3363
3364                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3365                         return 0;
3366
3367                 eth = (struct ethhdr *)skb->data;
3368                 type = eth->h_proto;
3369         }
3370
3371         return vlan_get_protocol_and_depth(skb, type, depth);
3372 }
3373
3374
3375 /* Take action when hardware reception checksum errors are detected. */
3376 #ifdef CONFIG_BUG
3377 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3378 {
3379         netdev_err(dev, "hw csum failure\n");
3380         skb_dump(KERN_ERR, skb, true);
3381         dump_stack();
3382 }
3383
3384 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3385 {
3386         DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3387 }
3388 EXPORT_SYMBOL(netdev_rx_csum_fault);
3389 #endif
3390
3391 /* XXX: check that highmem exists at all on the given machine. */
3392 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3393 {
3394 #ifdef CONFIG_HIGHMEM
3395         int i;
3396
3397         if (!(dev->features & NETIF_F_HIGHDMA)) {
3398                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3399                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3400
3401                         if (PageHighMem(skb_frag_page(frag)))
3402                                 return 1;
3403                 }
3404         }
3405 #endif
3406         return 0;
3407 }
3408
3409 /* If MPLS offload request, verify we are testing hardware MPLS features
3410  * instead of standard features for the netdev.
3411  */
3412 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3413 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3414                                            netdev_features_t features,
3415                                            __be16 type)
3416 {
3417         if (eth_p_mpls(type))
3418                 features &= skb->dev->mpls_features;
3419
3420         return features;
3421 }
3422 #else
3423 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3424                                            netdev_features_t features,
3425                                            __be16 type)
3426 {
3427         return features;
3428 }
3429 #endif
3430
3431 static netdev_features_t harmonize_features(struct sk_buff *skb,
3432         netdev_features_t features)
3433 {
3434         __be16 type;
3435
3436         type = skb_network_protocol(skb, NULL);
3437         features = net_mpls_features(skb, features, type);
3438
3439         if (skb->ip_summed != CHECKSUM_NONE &&
3440             !can_checksum_protocol(features, type)) {
3441                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3442         }
3443         if (illegal_highdma(skb->dev, skb))
3444                 features &= ~NETIF_F_SG;
3445
3446         return features;
3447 }
3448
3449 netdev_features_t passthru_features_check(struct sk_buff *skb,
3450                                           struct net_device *dev,
3451                                           netdev_features_t features)
3452 {
3453         return features;
3454 }
3455 EXPORT_SYMBOL(passthru_features_check);
3456
3457 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3458                                              struct net_device *dev,
3459                                              netdev_features_t features)
3460 {
3461         return vlan_features_check(skb, features);
3462 }
3463
3464 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3465                                             struct net_device *dev,
3466                                             netdev_features_t features)
3467 {
3468         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3469
3470         if (gso_segs > READ_ONCE(dev->gso_max_segs))
3471                 return features & ~NETIF_F_GSO_MASK;
3472
3473         if (!skb_shinfo(skb)->gso_type) {
3474                 skb_warn_bad_offload(skb);
3475                 return features & ~NETIF_F_GSO_MASK;
3476         }
3477
3478         /* Support for GSO partial features requires software
3479          * intervention before we can actually process the packets
3480          * so we need to strip support for any partial features now
3481          * and we can pull them back in after we have partially
3482          * segmented the frame.
3483          */
3484         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3485                 features &= ~dev->gso_partial_features;
3486
3487         /* Make sure to clear the IPv4 ID mangling feature if the
3488          * IPv4 header has the potential to be fragmented.
3489          */
3490         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3491                 struct iphdr *iph = skb->encapsulation ?
3492                                     inner_ip_hdr(skb) : ip_hdr(skb);
3493
3494                 if (!(iph->frag_off & htons(IP_DF)))
3495                         features &= ~NETIF_F_TSO_MANGLEID;
3496         }
3497
3498         return features;
3499 }
3500
3501 netdev_features_t netif_skb_features(struct sk_buff *skb)
3502 {
3503         struct net_device *dev = skb->dev;
3504         netdev_features_t features = dev->features;
3505
3506         if (skb_is_gso(skb))
3507                 features = gso_features_check(skb, dev, features);
3508
3509         /* If encapsulation offload request, verify we are testing
3510          * hardware encapsulation features instead of standard
3511          * features for the netdev
3512          */
3513         if (skb->encapsulation)
3514                 features &= dev->hw_enc_features;
3515
3516         if (skb_vlan_tagged(skb))
3517                 features = netdev_intersect_features(features,
3518                                                      dev->vlan_features |
3519                                                      NETIF_F_HW_VLAN_CTAG_TX |
3520                                                      NETIF_F_HW_VLAN_STAG_TX);
3521
3522         if (dev->netdev_ops->ndo_features_check)
3523                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3524                                                                 features);
3525         else
3526                 features &= dflt_features_check(skb, dev, features);
3527
3528         return harmonize_features(skb, features);
3529 }
3530 EXPORT_SYMBOL(netif_skb_features);
3531
3532 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3533                     struct netdev_queue *txq, bool more)
3534 {
3535         unsigned int len;
3536         int rc;
3537
3538         if (dev_nit_active(dev))
3539                 dev_queue_xmit_nit(skb, dev);
3540
3541         len = skb->len;
3542         trace_net_dev_start_xmit(skb, dev);
3543         rc = netdev_start_xmit(skb, dev, txq, more);
3544         trace_net_dev_xmit(skb, rc, dev, len);
3545
3546         return rc;
3547 }
3548
3549 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3550                                     struct netdev_queue *txq, int *ret)
3551 {
3552         struct sk_buff *skb = first;
3553         int rc = NETDEV_TX_OK;
3554
3555         while (skb) {
3556                 struct sk_buff *next = skb->next;
3557
3558                 skb_mark_not_on_list(skb);
3559                 rc = xmit_one(skb, dev, txq, next != NULL);
3560                 if (unlikely(!dev_xmit_complete(rc))) {
3561                         skb->next = next;
3562                         goto out;
3563                 }
3564
3565                 skb = next;
3566                 if (netif_tx_queue_stopped(txq) && skb) {
3567                         rc = NETDEV_TX_BUSY;
3568                         break;
3569                 }
3570         }
3571
3572 out:
3573         *ret = rc;
3574         return skb;
3575 }
3576
3577 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3578                                           netdev_features_t features)
3579 {
3580         if (skb_vlan_tag_present(skb) &&
3581             !vlan_hw_offload_capable(features, skb->vlan_proto))
3582                 skb = __vlan_hwaccel_push_inside(skb);
3583         return skb;
3584 }
3585
3586 int skb_csum_hwoffload_help(struct sk_buff *skb,
3587                             const netdev_features_t features)
3588 {
3589         if (unlikely(skb_csum_is_sctp(skb)))
3590                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3591                         skb_crc32c_csum_help(skb);
3592
3593         if (features & NETIF_F_HW_CSUM)
3594                 return 0;
3595
3596         if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3597                 switch (skb->csum_offset) {
3598                 case offsetof(struct tcphdr, check):
3599                 case offsetof(struct udphdr, check):
3600                         return 0;
3601                 }
3602         }
3603
3604         return skb_checksum_help(skb);
3605 }
3606 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3607
3608 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3609 {
3610         netdev_features_t features;
3611
3612         features = netif_skb_features(skb);
3613         skb = validate_xmit_vlan(skb, features);
3614         if (unlikely(!skb))
3615                 goto out_null;
3616
3617         skb = sk_validate_xmit_skb(skb, dev);
3618         if (unlikely(!skb))
3619                 goto out_null;
3620
3621         if (netif_needs_gso(skb, features)) {
3622                 struct sk_buff *segs;
3623
3624                 segs = skb_gso_segment(skb, features);
3625                 if (IS_ERR(segs)) {
3626                         goto out_kfree_skb;
3627                 } else if (segs) {
3628                         consume_skb(skb);
3629                         skb = segs;
3630                 }
3631         } else {
3632                 if (skb_needs_linearize(skb, features) &&
3633                     __skb_linearize(skb))
3634                         goto out_kfree_skb;
3635
3636                 /* If packet is not checksummed and device does not
3637                  * support checksumming for this protocol, complete
3638                  * checksumming here.
3639                  */
3640                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3641                         if (skb->encapsulation)
3642                                 skb_set_inner_transport_header(skb,
3643                                                                skb_checksum_start_offset(skb));
3644                         else
3645                                 skb_set_transport_header(skb,
3646                                                          skb_checksum_start_offset(skb));
3647                         if (skb_csum_hwoffload_help(skb, features))
3648                                 goto out_kfree_skb;
3649                 }
3650         }
3651
3652         skb = validate_xmit_xfrm(skb, features, again);
3653
3654         return skb;
3655
3656 out_kfree_skb:
3657         kfree_skb(skb);
3658 out_null:
3659         dev_core_stats_tx_dropped_inc(dev);
3660         return NULL;
3661 }
3662
3663 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3664 {
3665         struct sk_buff *next, *head = NULL, *tail;
3666
3667         for (; skb != NULL; skb = next) {
3668                 next = skb->next;
3669                 skb_mark_not_on_list(skb);
3670
3671                 /* in case skb wont be segmented, point to itself */
3672                 skb->prev = skb;
3673
3674                 skb = validate_xmit_skb(skb, dev, again);
3675                 if (!skb)
3676                         continue;
3677
3678                 if (!head)
3679                         head = skb;
3680                 else
3681                         tail->next = skb;
3682                 /* If skb was segmented, skb->prev points to
3683                  * the last segment. If not, it still contains skb.
3684                  */
3685                 tail = skb->prev;
3686         }
3687         return head;
3688 }
3689 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3690
3691 static void qdisc_pkt_len_init(struct sk_buff *skb)
3692 {
3693         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3694
3695         qdisc_skb_cb(skb)->pkt_len = skb->len;
3696
3697         /* To get more precise estimation of bytes sent on wire,
3698          * we add to pkt_len the headers size of all segments
3699          */
3700         if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3701                 u16 gso_segs = shinfo->gso_segs;
3702                 unsigned int hdr_len;
3703
3704                 /* mac layer + network layer */
3705                 hdr_len = skb_transport_offset(skb);
3706
3707                 /* + transport layer */
3708                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3709                         const struct tcphdr *th;
3710                         struct tcphdr _tcphdr;
3711
3712                         th = skb_header_pointer(skb, hdr_len,
3713                                                 sizeof(_tcphdr), &_tcphdr);
3714                         if (likely(th))
3715                                 hdr_len += __tcp_hdrlen(th);
3716                 } else {
3717                         struct udphdr _udphdr;
3718
3719                         if (skb_header_pointer(skb, hdr_len,
3720                                                sizeof(_udphdr), &_udphdr))
3721                                 hdr_len += sizeof(struct udphdr);
3722                 }
3723
3724                 if (shinfo->gso_type & SKB_GSO_DODGY)
3725                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3726                                                 shinfo->gso_size);
3727
3728                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3729         }
3730 }
3731
3732 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3733                              struct sk_buff **to_free,
3734                              struct netdev_queue *txq)
3735 {
3736         int rc;
3737
3738         rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3739         if (rc == NET_XMIT_SUCCESS)
3740                 trace_qdisc_enqueue(q, txq, skb);
3741         return rc;
3742 }
3743
3744 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3745                                  struct net_device *dev,
3746                                  struct netdev_queue *txq)
3747 {
3748         spinlock_t *root_lock = qdisc_lock(q);
3749         struct sk_buff *to_free = NULL;
3750         bool contended;
3751         int rc;
3752
3753         qdisc_calculate_pkt_len(skb, q);
3754
3755         if (q->flags & TCQ_F_NOLOCK) {
3756                 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3757                     qdisc_run_begin(q)) {
3758                         /* Retest nolock_qdisc_is_empty() within the protection
3759                          * of q->seqlock to protect from racing with requeuing.
3760                          */
3761                         if (unlikely(!nolock_qdisc_is_empty(q))) {
3762                                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3763                                 __qdisc_run(q);
3764                                 qdisc_run_end(q);
3765
3766                                 goto no_lock_out;
3767                         }
3768
3769                         qdisc_bstats_cpu_update(q, skb);
3770                         if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3771                             !nolock_qdisc_is_empty(q))
3772                                 __qdisc_run(q);
3773
3774                         qdisc_run_end(q);
3775                         return NET_XMIT_SUCCESS;
3776                 }
3777
3778                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3779                 qdisc_run(q);
3780
3781 no_lock_out:
3782                 if (unlikely(to_free))
3783                         kfree_skb_list_reason(to_free,
3784                                               SKB_DROP_REASON_QDISC_DROP);
3785                 return rc;
3786         }
3787
3788         /*
3789          * Heuristic to force contended enqueues to serialize on a
3790          * separate lock before trying to get qdisc main lock.
3791          * This permits qdisc->running owner to get the lock more
3792          * often and dequeue packets faster.
3793          * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3794          * and then other tasks will only enqueue packets. The packets will be
3795          * sent after the qdisc owner is scheduled again. To prevent this
3796          * scenario the task always serialize on the lock.
3797          */
3798         contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3799         if (unlikely(contended))
3800                 spin_lock(&q->busylock);
3801
3802         spin_lock(root_lock);
3803         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3804                 __qdisc_drop(skb, &to_free);
3805                 rc = NET_XMIT_DROP;
3806         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3807                    qdisc_run_begin(q)) {
3808                 /*
3809                  * This is a work-conserving queue; there are no old skbs
3810                  * waiting to be sent out; and the qdisc is not running -
3811                  * xmit the skb directly.
3812                  */
3813
3814                 qdisc_bstats_update(q, skb);
3815
3816                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3817                         if (unlikely(contended)) {
3818                                 spin_unlock(&q->busylock);
3819                                 contended = false;
3820                         }
3821                         __qdisc_run(q);
3822                 }
3823
3824                 qdisc_run_end(q);
3825                 rc = NET_XMIT_SUCCESS;
3826         } else {
3827                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3828                 if (qdisc_run_begin(q)) {
3829                         if (unlikely(contended)) {
3830                                 spin_unlock(&q->busylock);
3831                                 contended = false;
3832                         }
3833                         __qdisc_run(q);
3834                         qdisc_run_end(q);
3835                 }
3836         }
3837         spin_unlock(root_lock);
3838         if (unlikely(to_free))
3839                 kfree_skb_list_reason(to_free, SKB_DROP_REASON_QDISC_DROP);
3840         if (unlikely(contended))
3841                 spin_unlock(&q->busylock);
3842         return rc;
3843 }
3844
3845 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3846 static void skb_update_prio(struct sk_buff *skb)
3847 {
3848         const struct netprio_map *map;
3849         const struct sock *sk;
3850         unsigned int prioidx;
3851
3852         if (skb->priority)
3853                 return;
3854         map = rcu_dereference_bh(skb->dev->priomap);
3855         if (!map)
3856                 return;
3857         sk = skb_to_full_sk(skb);
3858         if (!sk)
3859                 return;
3860
3861         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3862
3863         if (prioidx < map->priomap_len)
3864                 skb->priority = map->priomap[prioidx];
3865 }
3866 #else
3867 #define skb_update_prio(skb)
3868 #endif
3869
3870 /**
3871  *      dev_loopback_xmit - loop back @skb
3872  *      @net: network namespace this loopback is happening in
3873  *      @sk:  sk needed to be a netfilter okfn
3874  *      @skb: buffer to transmit
3875  */
3876 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3877 {
3878         skb_reset_mac_header(skb);
3879         __skb_pull(skb, skb_network_offset(skb));
3880         skb->pkt_type = PACKET_LOOPBACK;
3881         if (skb->ip_summed == CHECKSUM_NONE)
3882                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3883         DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3884         skb_dst_force(skb);
3885         netif_rx(skb);
3886         return 0;
3887 }
3888 EXPORT_SYMBOL(dev_loopback_xmit);
3889
3890 #ifdef CONFIG_NET_EGRESS
3891 static struct netdev_queue *
3892 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3893 {
3894         int qm = skb_get_queue_mapping(skb);
3895
3896         return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3897 }
3898
3899 static bool netdev_xmit_txqueue_skipped(void)
3900 {
3901         return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3902 }
3903
3904 void netdev_xmit_skip_txqueue(bool skip)
3905 {
3906         __this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3907 }
3908 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3909 #endif /* CONFIG_NET_EGRESS */
3910
3911 #ifdef CONFIG_NET_XGRESS
3912 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
3913                   enum skb_drop_reason *drop_reason)
3914 {
3915         int ret = TC_ACT_UNSPEC;
3916 #ifdef CONFIG_NET_CLS_ACT
3917         struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
3918         struct tcf_result res;
3919
3920         if (!miniq)
3921                 return ret;
3922
3923         tc_skb_cb(skb)->mru = 0;
3924         tc_skb_cb(skb)->post_ct = false;
3925         res.drop_reason = *drop_reason;
3926
3927         mini_qdisc_bstats_cpu_update(miniq, skb);
3928         ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
3929         /* Only tcf related quirks below. */
3930         switch (ret) {
3931         case TC_ACT_SHOT:
3932                 *drop_reason = res.drop_reason;
3933                 mini_qdisc_qstats_cpu_drop(miniq);
3934                 break;
3935         case TC_ACT_OK:
3936         case TC_ACT_RECLASSIFY:
3937                 skb->tc_index = TC_H_MIN(res.classid);
3938                 break;
3939         }
3940 #endif /* CONFIG_NET_CLS_ACT */
3941         return ret;
3942 }
3943
3944 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
3945
3946 void tcx_inc(void)
3947 {
3948         static_branch_inc(&tcx_needed_key);
3949 }
3950
3951 void tcx_dec(void)
3952 {
3953         static_branch_dec(&tcx_needed_key);
3954 }
3955
3956 static __always_inline enum tcx_action_base
3957 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
3958         const bool needs_mac)
3959 {
3960         const struct bpf_mprog_fp *fp;
3961         const struct bpf_prog *prog;
3962         int ret = TCX_NEXT;
3963
3964         if (needs_mac)
3965                 __skb_push(skb, skb->mac_len);
3966         bpf_mprog_foreach_prog(entry, fp, prog) {
3967                 bpf_compute_data_pointers(skb);
3968                 ret = bpf_prog_run(prog, skb);
3969                 if (ret != TCX_NEXT)
3970                         break;
3971         }
3972         if (needs_mac)
3973                 __skb_pull(skb, skb->mac_len);
3974         return tcx_action_code(skb, ret);
3975 }
3976
3977 static __always_inline struct sk_buff *
3978 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3979                    struct net_device *orig_dev, bool *another)
3980 {
3981         struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
3982         enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
3983         int sch_ret;
3984
3985         if (!entry)
3986                 return skb;
3987         if (*pt_prev) {
3988                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3989                 *pt_prev = NULL;
3990         }
3991
3992         qdisc_skb_cb(skb)->pkt_len = skb->len;
3993         tcx_set_ingress(skb, true);
3994
3995         if (static_branch_unlikely(&tcx_needed_key)) {
3996                 sch_ret = tcx_run(entry, skb, true);
3997                 if (sch_ret != TC_ACT_UNSPEC)
3998                         goto ingress_verdict;
3999         }
4000         sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4001 ingress_verdict:
4002         switch (sch_ret) {
4003         case TC_ACT_REDIRECT:
4004                 /* skb_mac_header check was done by BPF, so we can safely
4005                  * push the L2 header back before redirecting to another
4006                  * netdev.
4007                  */
4008                 __skb_push(skb, skb->mac_len);
4009                 if (skb_do_redirect(skb) == -EAGAIN) {
4010                         __skb_pull(skb, skb->mac_len);
4011                         *another = true;
4012                         break;
4013                 }
4014                 *ret = NET_RX_SUCCESS;
4015                 return NULL;
4016         case TC_ACT_SHOT:
4017                 kfree_skb_reason(skb, drop_reason);
4018                 *ret = NET_RX_DROP;
4019                 return NULL;
4020         /* used by tc_run */
4021         case TC_ACT_STOLEN:
4022         case TC_ACT_QUEUED:
4023         case TC_ACT_TRAP:
4024                 consume_skb(skb);
4025                 fallthrough;
4026         case TC_ACT_CONSUMED:
4027                 *ret = NET_RX_SUCCESS;
4028                 return NULL;
4029         }
4030
4031         return skb;
4032 }
4033
4034 static __always_inline struct sk_buff *
4035 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4036 {
4037         struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4038         enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
4039         int sch_ret;
4040
4041         if (!entry)
4042                 return skb;
4043
4044         /* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4045          * already set by the caller.
4046          */
4047         if (static_branch_unlikely(&tcx_needed_key)) {
4048                 sch_ret = tcx_run(entry, skb, false);
4049                 if (sch_ret != TC_ACT_UNSPEC)
4050                         goto egress_verdict;
4051         }
4052         sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4053 egress_verdict:
4054         switch (sch_ret) {
4055         case TC_ACT_REDIRECT:
4056                 /* No need to push/pop skb's mac_header here on egress! */
4057                 skb_do_redirect(skb);
4058                 *ret = NET_XMIT_SUCCESS;
4059                 return NULL;
4060         case TC_ACT_SHOT:
4061                 kfree_skb_reason(skb, drop_reason);
4062                 *ret = NET_XMIT_DROP;
4063                 return NULL;
4064         /* used by tc_run */
4065         case TC_ACT_STOLEN:
4066         case TC_ACT_QUEUED:
4067         case TC_ACT_TRAP:
4068                 consume_skb(skb);
4069                 fallthrough;
4070         case TC_ACT_CONSUMED:
4071                 *ret = NET_XMIT_SUCCESS;
4072                 return NULL;
4073         }
4074
4075         return skb;
4076 }
4077 #else
4078 static __always_inline struct sk_buff *
4079 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4080                    struct net_device *orig_dev, bool *another)
4081 {
4082         return skb;
4083 }
4084
4085 static __always_inline struct sk_buff *
4086 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4087 {
4088         return skb;
4089 }
4090 #endif /* CONFIG_NET_XGRESS */
4091
4092 #ifdef CONFIG_XPS
4093 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4094                                struct xps_dev_maps *dev_maps, unsigned int tci)
4095 {
4096         int tc = netdev_get_prio_tc_map(dev, skb->priority);
4097         struct xps_map *map;
4098         int queue_index = -1;
4099
4100         if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4101                 return queue_index;
4102
4103         tci *= dev_maps->num_tc;
4104         tci += tc;
4105
4106         map = rcu_dereference(dev_maps->attr_map[tci]);
4107         if (map) {
4108                 if (map->len == 1)
4109                         queue_index = map->queues[0];
4110                 else
4111                         queue_index = map->queues[reciprocal_scale(
4112                                                 skb_get_hash(skb), map->len)];
4113                 if (unlikely(queue_index >= dev->real_num_tx_queues))
4114                         queue_index = -1;
4115         }
4116         return queue_index;
4117 }
4118 #endif
4119
4120 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4121                          struct sk_buff *skb)
4122 {
4123 #ifdef CONFIG_XPS
4124         struct xps_dev_maps *dev_maps;
4125         struct sock *sk = skb->sk;
4126         int queue_index = -1;
4127
4128         if (!static_key_false(&xps_needed))
4129                 return -1;
4130
4131         rcu_read_lock();
4132         if (!static_key_false(&xps_rxqs_needed))
4133                 goto get_cpus_map;
4134
4135         dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4136         if (dev_maps) {
4137                 int tci = sk_rx_queue_get(sk);
4138
4139                 if (tci >= 0)
4140                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4141                                                           tci);
4142         }
4143
4144 get_cpus_map:
4145         if (queue_index < 0) {
4146                 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4147                 if (dev_maps) {
4148                         unsigned int tci = skb->sender_cpu - 1;
4149
4150                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4151                                                           tci);
4152                 }
4153         }
4154         rcu_read_unlock();
4155
4156         return queue_index;
4157 #else
4158         return -1;
4159 #endif
4160 }
4161
4162 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4163                      struct net_device *sb_dev)
4164 {
4165         return 0;
4166 }
4167 EXPORT_SYMBOL(dev_pick_tx_zero);
4168
4169 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4170                        struct net_device *sb_dev)
4171 {
4172         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4173 }
4174 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4175
4176 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4177                      struct net_device *sb_dev)
4178 {
4179         struct sock *sk = skb->sk;
4180         int queue_index = sk_tx_queue_get(sk);
4181
4182         sb_dev = sb_dev ? : dev;
4183
4184         if (queue_index < 0 || skb->ooo_okay ||
4185             queue_index >= dev->real_num_tx_queues) {
4186                 int new_index = get_xps_queue(dev, sb_dev, skb);
4187
4188                 if (new_index < 0)
4189                         new_index = skb_tx_hash(dev, sb_dev, skb);
4190
4191                 if (queue_index != new_index && sk &&
4192                     sk_fullsock(sk) &&
4193                     rcu_access_pointer(sk->sk_dst_cache))
4194                         sk_tx_queue_set(sk, new_index);
4195
4196                 queue_index = new_index;
4197         }
4198
4199         return queue_index;
4200 }
4201 EXPORT_SYMBOL(netdev_pick_tx);
4202
4203 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4204                                          struct sk_buff *skb,
4205                                          struct net_device *sb_dev)
4206 {
4207         int queue_index = 0;
4208
4209 #ifdef CONFIG_XPS
4210         u32 sender_cpu = skb->sender_cpu - 1;
4211
4212         if (sender_cpu >= (u32)NR_CPUS)
4213                 skb->sender_cpu = raw_smp_processor_id() + 1;
4214 #endif
4215
4216         if (dev->real_num_tx_queues != 1) {
4217                 const struct net_device_ops *ops = dev->netdev_ops;
4218
4219                 if (ops->ndo_select_queue)
4220                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4221                 else
4222                         queue_index = netdev_pick_tx(dev, skb, sb_dev);
4223
4224                 queue_index = netdev_cap_txqueue(dev, queue_index);
4225         }
4226
4227         skb_set_queue_mapping(skb, queue_index);
4228         return netdev_get_tx_queue(dev, queue_index);
4229 }
4230
4231 /**
4232  * __dev_queue_xmit() - transmit a buffer
4233  * @skb:        buffer to transmit
4234  * @sb_dev:     suboordinate device used for L2 forwarding offload
4235  *
4236  * Queue a buffer for transmission to a network device. The caller must
4237  * have set the device and priority and built the buffer before calling
4238  * this function. The function can be called from an interrupt.
4239  *
4240  * When calling this method, interrupts MUST be enabled. This is because
4241  * the BH enable code must have IRQs enabled so that it will not deadlock.
4242  *
4243  * Regardless of the return value, the skb is consumed, so it is currently
4244  * difficult to retry a send to this method. (You can bump the ref count
4245  * before sending to hold a reference for retry if you are careful.)
4246  *
4247  * Return:
4248  * * 0                          - buffer successfully transmitted
4249  * * positive qdisc return code - NET_XMIT_DROP etc.
4250  * * negative errno             - other errors
4251  */
4252 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4253 {
4254         struct net_device *dev = skb->dev;
4255         struct netdev_queue *txq = NULL;
4256         struct Qdisc *q;
4257         int rc = -ENOMEM;
4258         bool again = false;
4259
4260         skb_reset_mac_header(skb);
4261         skb_assert_len(skb);
4262
4263         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4264                 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4265
4266         /* Disable soft irqs for various locks below. Also
4267          * stops preemption for RCU.
4268          */
4269         rcu_read_lock_bh();
4270
4271         skb_update_prio(skb);
4272
4273         qdisc_pkt_len_init(skb);
4274         tcx_set_ingress(skb, false);
4275 #ifdef CONFIG_NET_EGRESS
4276         if (static_branch_unlikely(&egress_needed_key)) {
4277                 if (nf_hook_egress_active()) {
4278                         skb = nf_hook_egress(skb, &rc, dev);
4279                         if (!skb)
4280                                 goto out;
4281                 }
4282
4283                 netdev_xmit_skip_txqueue(false);
4284
4285                 nf_skip_egress(skb, true);
4286                 skb = sch_handle_egress(skb, &rc, dev);
4287                 if (!skb)
4288                         goto out;
4289                 nf_skip_egress(skb, false);
4290
4291                 if (netdev_xmit_txqueue_skipped())
4292                         txq = netdev_tx_queue_mapping(dev, skb);
4293         }
4294 #endif
4295         /* If device/qdisc don't need skb->dst, release it right now while
4296          * its hot in this cpu cache.
4297          */
4298         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4299                 skb_dst_drop(skb);
4300         else
4301                 skb_dst_force(skb);
4302
4303         if (!txq)
4304                 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4305
4306         q = rcu_dereference_bh(txq->qdisc);
4307
4308         trace_net_dev_queue(skb);
4309         if (q->enqueue) {
4310                 rc = __dev_xmit_skb(skb, q, dev, txq);
4311                 goto out;
4312         }
4313
4314         /* The device has no queue. Common case for software devices:
4315          * loopback, all the sorts of tunnels...
4316
4317          * Really, it is unlikely that netif_tx_lock protection is necessary
4318          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4319          * counters.)
4320          * However, it is possible, that they rely on protection
4321          * made by us here.
4322
4323          * Check this and shot the lock. It is not prone from deadlocks.
4324          *Either shot noqueue qdisc, it is even simpler 8)
4325          */
4326         if (dev->flags & IFF_UP) {
4327                 int cpu = smp_processor_id(); /* ok because BHs are off */
4328
4329                 /* Other cpus might concurrently change txq->xmit_lock_owner
4330                  * to -1 or to their cpu id, but not to our id.
4331                  */
4332                 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4333                         if (dev_xmit_recursion())
4334                                 goto recursion_alert;
4335
4336                         skb = validate_xmit_skb(skb, dev, &again);
4337                         if (!skb)
4338                                 goto out;
4339
4340                         HARD_TX_LOCK(dev, txq, cpu);
4341
4342                         if (!netif_xmit_stopped(txq)) {
4343                                 dev_xmit_recursion_inc();
4344                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4345                                 dev_xmit_recursion_dec();
4346                                 if (dev_xmit_complete(rc)) {
4347                                         HARD_TX_UNLOCK(dev, txq);
4348                                         goto out;
4349                                 }
4350                         }
4351                         HARD_TX_UNLOCK(dev, txq);
4352                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4353                                              dev->name);
4354                 } else {
4355                         /* Recursion is detected! It is possible,
4356                          * unfortunately
4357                          */
4358 recursion_alert:
4359                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4360                                              dev->name);
4361                 }
4362         }
4363
4364         rc = -ENETDOWN;
4365         rcu_read_unlock_bh();
4366
4367         dev_core_stats_tx_dropped_inc(dev);
4368         kfree_skb_list(skb);
4369         return rc;
4370 out:
4371         rcu_read_unlock_bh();
4372         return rc;
4373 }
4374 EXPORT_SYMBOL(__dev_queue_xmit);
4375
4376 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4377 {
4378         struct net_device *dev = skb->dev;
4379         struct sk_buff *orig_skb = skb;
4380         struct netdev_queue *txq;
4381         int ret = NETDEV_TX_BUSY;
4382         bool again = false;
4383
4384         if (unlikely(!netif_running(dev) ||
4385                      !netif_carrier_ok(dev)))
4386                 goto drop;
4387
4388         skb = validate_xmit_skb_list(skb, dev, &again);
4389         if (skb != orig_skb)
4390                 goto drop;
4391
4392         skb_set_queue_mapping(skb, queue_id);
4393         txq = skb_get_tx_queue(dev, skb);
4394
4395         local_bh_disable();
4396
4397         dev_xmit_recursion_inc();
4398         HARD_TX_LOCK(dev, txq, smp_processor_id());
4399         if (!netif_xmit_frozen_or_drv_stopped(txq))
4400                 ret = netdev_start_xmit(skb, dev, txq, false);
4401         HARD_TX_UNLOCK(dev, txq);
4402         dev_xmit_recursion_dec();
4403
4404         local_bh_enable();
4405         return ret;
4406 drop:
4407         dev_core_stats_tx_dropped_inc(dev);
4408         kfree_skb_list(skb);
4409         return NET_XMIT_DROP;
4410 }
4411 EXPORT_SYMBOL(__dev_direct_xmit);
4412
4413 /*************************************************************************
4414  *                      Receiver routines
4415  *************************************************************************/
4416
4417 int netdev_max_backlog __read_mostly = 1000;
4418 EXPORT_SYMBOL(netdev_max_backlog);
4419
4420 int netdev_tstamp_prequeue __read_mostly = 1;
4421 unsigned int sysctl_skb_defer_max __read_mostly = 64;
4422 int netdev_budget __read_mostly = 300;
4423 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4424 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4425 int weight_p __read_mostly = 64;           /* old backlog weight */
4426 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4427 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4428 int dev_rx_weight __read_mostly = 64;
4429 int dev_tx_weight __read_mostly = 64;
4430
4431 /* Called with irq disabled */
4432 static inline void ____napi_schedule(struct softnet_data *sd,
4433                                      struct napi_struct *napi)
4434 {
4435         struct task_struct *thread;
4436
4437         lockdep_assert_irqs_disabled();
4438
4439         if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4440                 /* Paired with smp_mb__before_atomic() in
4441                  * napi_enable()/dev_set_threaded().
4442                  * Use READ_ONCE() to guarantee a complete
4443                  * read on napi->thread. Only call
4444                  * wake_up_process() when it's not NULL.
4445                  */
4446                 thread = READ_ONCE(napi->thread);
4447                 if (thread) {
4448                         /* Avoid doing set_bit() if the thread is in
4449                          * INTERRUPTIBLE state, cause napi_thread_wait()
4450                          * makes sure to proceed with napi polling
4451                          * if the thread is explicitly woken from here.
4452                          */
4453                         if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4454                                 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4455                         wake_up_process(thread);
4456                         return;
4457                 }
4458         }
4459
4460         list_add_tail(&napi->poll_list, &sd->poll_list);
4461         WRITE_ONCE(napi->list_owner, smp_processor_id());
4462         /* If not called from net_rx_action()
4463          * we have to raise NET_RX_SOFTIRQ.
4464          */
4465         if (!sd->in_net_rx_action)
4466                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4467 }
4468
4469 #ifdef CONFIG_RPS
4470
4471 /* One global table that all flow-based protocols share. */
4472 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4473 EXPORT_SYMBOL(rps_sock_flow_table);
4474 u32 rps_cpu_mask __read_mostly;
4475 EXPORT_SYMBOL(rps_cpu_mask);
4476
4477 struct static_key_false rps_needed __read_mostly;
4478 EXPORT_SYMBOL(rps_needed);
4479 struct static_key_false rfs_needed __read_mostly;
4480 EXPORT_SYMBOL(rfs_needed);
4481
4482 static struct rps_dev_flow *
4483 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4484             struct rps_dev_flow *rflow, u16 next_cpu)
4485 {
4486         if (next_cpu < nr_cpu_ids) {
4487 #ifdef CONFIG_RFS_ACCEL
4488                 struct netdev_rx_queue *rxqueue;
4489                 struct rps_dev_flow_table *flow_table;
4490                 struct rps_dev_flow *old_rflow;
4491                 u32 flow_id;
4492                 u16 rxq_index;
4493                 int rc;
4494
4495                 /* Should we steer this flow to a different hardware queue? */
4496                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4497                     !(dev->features & NETIF_F_NTUPLE))
4498                         goto out;
4499                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4500                 if (rxq_index == skb_get_rx_queue(skb))
4501                         goto out;
4502
4503                 rxqueue = dev->_rx + rxq_index;
4504                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4505                 if (!flow_table)
4506                         goto out;
4507                 flow_id = skb_get_hash(skb) & flow_table->mask;
4508                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4509                                                         rxq_index, flow_id);
4510                 if (rc < 0)
4511                         goto out;
4512                 old_rflow = rflow;
4513                 rflow = &flow_table->flows[flow_id];
4514                 rflow->filter = rc;
4515                 if (old_rflow->filter == rflow->filter)
4516                         old_rflow->filter = RPS_NO_FILTER;
4517         out:
4518 #endif
4519                 rflow->last_qtail =
4520                         per_cpu(softnet_data, next_cpu).input_queue_head;
4521         }
4522
4523         rflow->cpu = next_cpu;
4524         return rflow;
4525 }
4526
4527 /*
4528  * get_rps_cpu is called from netif_receive_skb and returns the target
4529  * CPU from the RPS map of the receiving queue for a given skb.
4530  * rcu_read_lock must be held on entry.
4531  */
4532 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4533                        struct rps_dev_flow **rflowp)
4534 {
4535         const struct rps_sock_flow_table *sock_flow_table;
4536         struct netdev_rx_queue *rxqueue = dev->_rx;
4537         struct rps_dev_flow_table *flow_table;
4538         struct rps_map *map;
4539         int cpu = -1;
4540         u32 tcpu;
4541         u32 hash;
4542
4543         if (skb_rx_queue_recorded(skb)) {
4544                 u16 index = skb_get_rx_queue(skb);
4545
4546                 if (unlikely(index >= dev->real_num_rx_queues)) {
4547                         WARN_ONCE(dev->real_num_rx_queues > 1,
4548                                   "%s received packet on queue %u, but number "
4549                                   "of RX queues is %u\n",
4550                                   dev->name, index, dev->real_num_rx_queues);
4551                         goto done;
4552                 }
4553                 rxqueue += index;
4554         }
4555
4556         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4557
4558         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4559         map = rcu_dereference(rxqueue->rps_map);
4560         if (!flow_table && !map)
4561                 goto done;
4562
4563         skb_reset_network_header(skb);
4564         hash = skb_get_hash(skb);
4565         if (!hash)
4566                 goto done;
4567
4568         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4569         if (flow_table && sock_flow_table) {
4570                 struct rps_dev_flow *rflow;
4571                 u32 next_cpu;
4572                 u32 ident;
4573
4574                 /* First check into global flow table if there is a match.
4575                  * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4576                  */
4577                 ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4578                 if ((ident ^ hash) & ~rps_cpu_mask)
4579                         goto try_rps;
4580
4581                 next_cpu = ident & rps_cpu_mask;
4582
4583                 /* OK, now we know there is a match,
4584                  * we can look at the local (per receive queue) flow table
4585                  */
4586                 rflow = &flow_table->flows[hash & flow_table->mask];
4587                 tcpu = rflow->cpu;
4588
4589                 /*
4590                  * If the desired CPU (where last recvmsg was done) is
4591                  * different from current CPU (one in the rx-queue flow
4592                  * table entry), switch if one of the following holds:
4593                  *   - Current CPU is unset (>= nr_cpu_ids).
4594                  *   - Current CPU is offline.
4595                  *   - The current CPU's queue tail has advanced beyond the
4596                  *     last packet that was enqueued using this table entry.
4597                  *     This guarantees that all previous packets for the flow
4598                  *     have been dequeued, thus preserving in order delivery.
4599                  */
4600                 if (unlikely(tcpu != next_cpu) &&
4601                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4602                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4603                       rflow->last_qtail)) >= 0)) {
4604                         tcpu = next_cpu;
4605                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4606                 }
4607
4608                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4609                         *rflowp = rflow;
4610                         cpu = tcpu;
4611                         goto done;
4612                 }
4613         }
4614
4615 try_rps:
4616
4617         if (map) {
4618                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4619                 if (cpu_online(tcpu)) {
4620                         cpu = tcpu;
4621                         goto done;
4622                 }
4623         }
4624
4625 done:
4626         return cpu;
4627 }
4628
4629 #ifdef CONFIG_RFS_ACCEL
4630
4631 /**
4632  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4633  * @dev: Device on which the filter was set
4634  * @rxq_index: RX queue index
4635  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4636  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4637  *
4638  * Drivers that implement ndo_rx_flow_steer() should periodically call
4639  * this function for each installed filter and remove the filters for
4640  * which it returns %true.
4641  */
4642 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4643                          u32 flow_id, u16 filter_id)
4644 {
4645         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4646         struct rps_dev_flow_table *flow_table;
4647         struct rps_dev_flow *rflow;
4648         bool expire = true;
4649         unsigned int cpu;
4650
4651         rcu_read_lock();
4652         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4653         if (flow_table && flow_id <= flow_table->mask) {
4654                 rflow = &flow_table->flows[flow_id];
4655                 cpu = READ_ONCE(rflow->cpu);
4656                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4657                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4658                            rflow->last_qtail) <
4659                      (int)(10 * flow_table->mask)))
4660                         expire = false;
4661         }
4662         rcu_read_unlock();
4663         return expire;
4664 }
4665 EXPORT_SYMBOL(rps_may_expire_flow);
4666
4667 #endif /* CONFIG_RFS_ACCEL */
4668
4669 /* Called from hardirq (IPI) context */
4670 static void rps_trigger_softirq(void *data)
4671 {
4672         struct softnet_data *sd = data;
4673
4674         ____napi_schedule(sd, &sd->backlog);
4675         sd->received_rps++;
4676 }
4677
4678 #endif /* CONFIG_RPS */
4679
4680 /* Called from hardirq (IPI) context */
4681 static void trigger_rx_softirq(void *data)
4682 {
4683         struct softnet_data *sd = data;
4684
4685         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4686         smp_store_release(&sd->defer_ipi_scheduled, 0);
4687 }
4688
4689 /*
4690  * After we queued a packet into sd->input_pkt_queue,
4691  * we need to make sure this queue is serviced soon.
4692  *
4693  * - If this is another cpu queue, link it to our rps_ipi_list,
4694  *   and make sure we will process rps_ipi_list from net_rx_action().
4695  *
4696  * - If this is our own queue, NAPI schedule our backlog.
4697  *   Note that this also raises NET_RX_SOFTIRQ.
4698  */
4699 static void napi_schedule_rps(struct softnet_data *sd)
4700 {
4701         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4702
4703 #ifdef CONFIG_RPS
4704         if (sd != mysd) {
4705                 sd->rps_ipi_next = mysd->rps_ipi_list;
4706                 mysd->rps_ipi_list = sd;
4707
4708                 /* If not called from net_rx_action() or napi_threaded_poll()
4709                  * we have to raise NET_RX_SOFTIRQ.
4710                  */
4711                 if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
4712                         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4713                 return;
4714         }
4715 #endif /* CONFIG_RPS */
4716         __napi_schedule_irqoff(&mysd->backlog);
4717 }
4718
4719 #ifdef CONFIG_NET_FLOW_LIMIT
4720 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4721 #endif
4722
4723 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4724 {
4725 #ifdef CONFIG_NET_FLOW_LIMIT
4726         struct sd_flow_limit *fl;
4727         struct softnet_data *sd;
4728         unsigned int old_flow, new_flow;
4729
4730         if (qlen < (READ_ONCE(netdev_max_backlog) >> 1))
4731                 return false;
4732
4733         sd = this_cpu_ptr(&softnet_data);
4734
4735         rcu_read_lock();
4736         fl = rcu_dereference(sd->flow_limit);
4737         if (fl) {
4738                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4739                 old_flow = fl->history[fl->history_head];
4740                 fl->history[fl->history_head] = new_flow;
4741
4742                 fl->history_head++;
4743                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4744
4745                 if (likely(fl->buckets[old_flow]))
4746                         fl->buckets[old_flow]--;
4747
4748                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4749                         fl->count++;
4750                         rcu_read_unlock();
4751                         return true;
4752                 }
4753         }
4754         rcu_read_unlock();
4755 #endif
4756         return false;
4757 }
4758
4759 /*
4760  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4761  * queue (may be a remote CPU queue).
4762  */
4763 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4764                               unsigned int *qtail)
4765 {
4766         enum skb_drop_reason reason;
4767         struct softnet_data *sd;
4768         unsigned long flags;
4769         unsigned int qlen;
4770
4771         reason = SKB_DROP_REASON_NOT_SPECIFIED;
4772         sd = &per_cpu(softnet_data, cpu);
4773
4774         rps_lock_irqsave(sd, &flags);
4775         if (!netif_running(skb->dev))
4776                 goto drop;
4777         qlen = skb_queue_len(&sd->input_pkt_queue);
4778         if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) {
4779                 if (qlen) {
4780 enqueue:
4781                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4782                         input_queue_tail_incr_save(sd, qtail);
4783                         rps_unlock_irq_restore(sd, &flags);
4784                         return NET_RX_SUCCESS;
4785                 }
4786
4787                 /* Schedule NAPI for backlog device
4788                  * We can use non atomic operation since we own the queue lock
4789                  */
4790                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4791                         napi_schedule_rps(sd);
4792                 goto enqueue;
4793         }
4794         reason = SKB_DROP_REASON_CPU_BACKLOG;
4795
4796 drop:
4797         sd->dropped++;
4798         rps_unlock_irq_restore(sd, &flags);
4799
4800         dev_core_stats_rx_dropped_inc(skb->dev);
4801         kfree_skb_reason(skb, reason);
4802         return NET_RX_DROP;
4803 }
4804
4805 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4806 {
4807         struct net_device *dev = skb->dev;
4808         struct netdev_rx_queue *rxqueue;
4809
4810         rxqueue = dev->_rx;
4811
4812         if (skb_rx_queue_recorded(skb)) {
4813                 u16 index = skb_get_rx_queue(skb);
4814
4815                 if (unlikely(index >= dev->real_num_rx_queues)) {
4816                         WARN_ONCE(dev->real_num_rx_queues > 1,
4817                                   "%s received packet on queue %u, but number "
4818                                   "of RX queues is %u\n",
4819                                   dev->name, index, dev->real_num_rx_queues);
4820
4821                         return rxqueue; /* Return first rxqueue */
4822                 }
4823                 rxqueue += index;
4824         }
4825         return rxqueue;
4826 }
4827
4828 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4829                              struct bpf_prog *xdp_prog)
4830 {
4831         void *orig_data, *orig_data_end, *hard_start;
4832         struct netdev_rx_queue *rxqueue;
4833         bool orig_bcast, orig_host;
4834         u32 mac_len, frame_sz;
4835         __be16 orig_eth_type;
4836         struct ethhdr *eth;
4837         u32 metalen, act;
4838         int off;
4839
4840         /* The XDP program wants to see the packet starting at the MAC
4841          * header.
4842          */
4843         mac_len = skb->data - skb_mac_header(skb);
4844         hard_start = skb->data - skb_headroom(skb);
4845
4846         /* SKB "head" area always have tailroom for skb_shared_info */
4847         frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4848         frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4849
4850         rxqueue = netif_get_rxqueue(skb);
4851         xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4852         xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4853                          skb_headlen(skb) + mac_len, true);
4854
4855         orig_data_end = xdp->data_end;
4856         orig_data = xdp->data;
4857         eth = (struct ethhdr *)xdp->data;
4858         orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4859         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4860         orig_eth_type = eth->h_proto;
4861
4862         act = bpf_prog_run_xdp(xdp_prog, xdp);
4863
4864         /* check if bpf_xdp_adjust_head was used */
4865         off = xdp->data - orig_data;
4866         if (off) {
4867                 if (off > 0)
4868                         __skb_pull(skb, off);
4869                 else if (off < 0)
4870                         __skb_push(skb, -off);
4871
4872                 skb->mac_header += off;
4873                 skb_reset_network_header(skb);
4874         }
4875
4876         /* check if bpf_xdp_adjust_tail was used */
4877         off = xdp->data_end - orig_data_end;
4878         if (off != 0) {
4879                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4880                 skb->len += off; /* positive on grow, negative on shrink */
4881         }
4882
4883         /* check if XDP changed eth hdr such SKB needs update */
4884         eth = (struct ethhdr *)xdp->data;
4885         if ((orig_eth_type != eth->h_proto) ||
4886             (orig_host != ether_addr_equal_64bits(eth->h_dest,
4887                                                   skb->dev->dev_addr)) ||
4888             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4889                 __skb_push(skb, ETH_HLEN);
4890                 skb->pkt_type = PACKET_HOST;
4891                 skb->protocol = eth_type_trans(skb, skb->dev);
4892         }
4893
4894         /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4895          * before calling us again on redirect path. We do not call do_redirect
4896          * as we leave that up to the caller.
4897          *
4898          * Caller is responsible for managing lifetime of skb (i.e. calling
4899          * kfree_skb in response to actions it cannot handle/XDP_DROP).
4900          */
4901         switch (act) {
4902         case XDP_REDIRECT:
4903         case XDP_TX:
4904                 __skb_push(skb, mac_len);
4905                 break;
4906         case XDP_PASS:
4907                 metalen = xdp->data - xdp->data_meta;
4908                 if (metalen)
4909                         skb_metadata_set(skb, metalen);
4910                 break;
4911         }
4912
4913         return act;
4914 }
4915
4916 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4917                                      struct xdp_buff *xdp,
4918                                      struct bpf_prog *xdp_prog)
4919 {
4920         u32 act = XDP_DROP;
4921
4922         /* Reinjected packets coming from act_mirred or similar should
4923          * not get XDP generic processing.
4924          */
4925         if (skb_is_redirected(skb))
4926                 return XDP_PASS;
4927
4928         /* XDP packets must be linear and must have sufficient headroom
4929          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4930          * native XDP provides, thus we need to do it here as well.
4931          */
4932         if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4933             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4934                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4935                 int troom = skb->tail + skb->data_len - skb->end;
4936
4937                 /* In case we have to go down the path and also linearize,
4938                  * then lets do the pskb_expand_head() work just once here.
4939                  */
4940                 if (pskb_expand_head(skb,
4941                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4942                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4943                         goto do_drop;
4944                 if (skb_linearize(skb))
4945                         goto do_drop;
4946         }
4947
4948         act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4949         switch (act) {
4950         case XDP_REDIRECT:
4951         case XDP_TX:
4952         case XDP_PASS:
4953                 break;
4954         default:
4955                 bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
4956                 fallthrough;
4957         case XDP_ABORTED:
4958                 trace_xdp_exception(skb->dev, xdp_prog, act);
4959                 fallthrough;
4960         case XDP_DROP:
4961         do_drop:
4962                 kfree_skb(skb);
4963                 break;
4964         }
4965
4966         return act;
4967 }
4968
4969 /* When doing generic XDP we have to bypass the qdisc layer and the
4970  * network taps in order to match in-driver-XDP behavior. This also means
4971  * that XDP packets are able to starve other packets going through a qdisc,
4972  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
4973  * queues, so they do not have this starvation issue.
4974  */
4975 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4976 {
4977         struct net_device *dev = skb->dev;
4978         struct netdev_queue *txq;
4979         bool free_skb = true;
4980         int cpu, rc;
4981
4982         txq = netdev_core_pick_tx(dev, skb, NULL);
4983         cpu = smp_processor_id();
4984         HARD_TX_LOCK(dev, txq, cpu);
4985         if (!netif_xmit_frozen_or_drv_stopped(txq)) {
4986                 rc = netdev_start_xmit(skb, dev, txq, 0);
4987                 if (dev_xmit_complete(rc))
4988                         free_skb = false;
4989         }
4990         HARD_TX_UNLOCK(dev, txq);
4991         if (free_skb) {
4992                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4993                 dev_core_stats_tx_dropped_inc(dev);
4994                 kfree_skb(skb);
4995         }
4996 }
4997
4998 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4999
5000 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
5001 {
5002         if (xdp_prog) {
5003                 struct xdp_buff xdp;
5004                 u32 act;
5005                 int err;
5006
5007                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
5008                 if (act != XDP_PASS) {
5009                         switch (act) {
5010                         case XDP_REDIRECT:
5011                                 err = xdp_do_generic_redirect(skb->dev, skb,
5012                                                               &xdp, xdp_prog);
5013                                 if (err)
5014                                         goto out_redir;
5015                                 break;
5016                         case XDP_TX:
5017                                 generic_xdp_tx(skb, xdp_prog);
5018                                 break;
5019                         }
5020                         return XDP_DROP;
5021                 }
5022         }
5023         return XDP_PASS;
5024 out_redir:
5025         kfree_skb_reason(skb, SKB_DROP_REASON_XDP);
5026         return XDP_DROP;
5027 }
5028 EXPORT_SYMBOL_GPL(do_xdp_generic);
5029
5030 static int netif_rx_internal(struct sk_buff *skb)
5031 {
5032         int ret;
5033
5034         net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5035
5036         trace_netif_rx(skb);
5037
5038 #ifdef CONFIG_RPS
5039         if (static_branch_unlikely(&rps_needed)) {
5040                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5041                 int cpu;
5042
5043                 rcu_read_lock();
5044
5045                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
5046                 if (cpu < 0)
5047                         cpu = smp_processor_id();
5048
5049                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5050
5051                 rcu_read_unlock();
5052         } else
5053 #endif
5054         {
5055                 unsigned int qtail;
5056
5057                 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5058         }
5059         return ret;
5060 }
5061
5062 /**
5063  *      __netif_rx      -       Slightly optimized version of netif_rx
5064  *      @skb: buffer to post
5065  *
5066  *      This behaves as netif_rx except that it does not disable bottom halves.
5067  *      As a result this function may only be invoked from the interrupt context
5068  *      (either hard or soft interrupt).
5069  */
5070 int __netif_rx(struct sk_buff *skb)
5071 {
5072         int ret;
5073
5074         lockdep_assert_once(hardirq_count() | softirq_count());
5075
5076         trace_netif_rx_entry(skb);
5077         ret = netif_rx_internal(skb);
5078         trace_netif_rx_exit(ret);
5079         return ret;
5080 }
5081 EXPORT_SYMBOL(__netif_rx);
5082
5083 /**
5084  *      netif_rx        -       post buffer to the network code
5085  *      @skb: buffer to post
5086  *
5087  *      This function receives a packet from a device driver and queues it for
5088  *      the upper (protocol) levels to process via the backlog NAPI device. It
5089  *      always succeeds. The buffer may be dropped during processing for
5090  *      congestion control or by the protocol layers.
5091  *      The network buffer is passed via the backlog NAPI device. Modern NIC
5092  *      driver should use NAPI and GRO.
5093  *      This function can used from interrupt and from process context. The
5094  *      caller from process context must not disable interrupts before invoking
5095  *      this function.
5096  *
5097  *      return values:
5098  *      NET_RX_SUCCESS  (no congestion)
5099  *      NET_RX_DROP     (packet was dropped)
5100  *
5101  */
5102 int netif_rx(struct sk_buff *skb)
5103 {
5104         bool need_bh_off = !(hardirq_count() | softirq_count());
5105         int ret;
5106
5107         if (need_bh_off)
5108                 local_bh_disable();
5109         trace_netif_rx_entry(skb);
5110         ret = netif_rx_internal(skb);
5111         trace_netif_rx_exit(ret);
5112         if (need_bh_off)
5113                 local_bh_enable();
5114         return ret;
5115 }
5116 EXPORT_SYMBOL(netif_rx);
5117
5118 static __latent_entropy void net_tx_action(struct softirq_action *h)
5119 {
5120         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5121
5122         if (sd->completion_queue) {
5123                 struct sk_buff *clist;
5124
5125                 local_irq_disable();
5126                 clist = sd->completion_queue;
5127                 sd->completion_queue = NULL;
5128                 local_irq_enable();
5129
5130                 while (clist) {
5131                         struct sk_buff *skb = clist;
5132
5133                         clist = clist->next;
5134
5135                         WARN_ON(refcount_read(&skb->users));
5136                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5137                                 trace_consume_skb(skb, net_tx_action);
5138                         else
5139                                 trace_kfree_skb(skb, net_tx_action,
5140                                                 get_kfree_skb_cb(skb)->reason);
5141
5142                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5143                                 __kfree_skb(skb);
5144                         else
5145                                 __napi_kfree_skb(skb,
5146                                                  get_kfree_skb_cb(skb)->reason);
5147                 }
5148         }
5149
5150         if (sd->output_queue) {
5151                 struct Qdisc *head;
5152
5153                 local_irq_disable();
5154                 head = sd->output_queue;
5155                 sd->output_queue = NULL;
5156                 sd->output_queue_tailp = &sd->output_queue;
5157                 local_irq_enable();
5158
5159                 rcu_read_lock();
5160
5161                 while (head) {
5162                         struct Qdisc *q = head;
5163                         spinlock_t *root_lock = NULL;
5164
5165                         head = head->next_sched;
5166
5167                         /* We need to make sure head->next_sched is read
5168                          * before clearing __QDISC_STATE_SCHED
5169                          */
5170                         smp_mb__before_atomic();
5171
5172                         if (!(q->flags & TCQ_F_NOLOCK)) {
5173                                 root_lock = qdisc_lock(q);
5174                                 spin_lock(root_lock);
5175                         } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5176                                                      &q->state))) {
5177                                 /* There is a synchronize_net() between
5178                                  * STATE_DEACTIVATED flag being set and
5179                                  * qdisc_reset()/some_qdisc_is_busy() in
5180                                  * dev_deactivate(), so we can safely bail out
5181                                  * early here to avoid data race between
5182                                  * qdisc_deactivate() and some_qdisc_is_busy()
5183                                  * for lockless qdisc.
5184                                  */
5185                                 clear_bit(__QDISC_STATE_SCHED, &q->state);
5186                                 continue;
5187                         }
5188
5189                         clear_bit(__QDISC_STATE_SCHED, &q->state);
5190                         qdisc_run(q);
5191                         if (root_lock)
5192                                 spin_unlock(root_lock);
5193                 }
5194
5195                 rcu_read_unlock();
5196         }
5197
5198         xfrm_dev_backlog(sd);
5199 }
5200
5201 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5202 /* This hook is defined here for ATM LANE */
5203 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5204                              unsigned char *addr) __read_mostly;
5205 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5206 #endif
5207
5208 /**
5209  *      netdev_is_rx_handler_busy - check if receive handler is registered
5210  *      @dev: device to check
5211  *
5212  *      Check if a receive handler is already registered for a given device.
5213  *      Return true if there one.
5214  *
5215  *      The caller must hold the rtnl_mutex.
5216  */
5217 bool netdev_is_rx_handler_busy(struct net_device *dev)
5218 {
5219         ASSERT_RTNL();
5220         return dev && rtnl_dereference(dev->rx_handler);
5221 }
5222 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5223
5224 /**
5225  *      netdev_rx_handler_register - register receive handler
5226  *      @dev: device to register a handler for
5227  *      @rx_handler: receive handler to register
5228  *      @rx_handler_data: data pointer that is used by rx handler
5229  *
5230  *      Register a receive handler for a device. This handler will then be
5231  *      called from __netif_receive_skb. A negative errno code is returned
5232  *      on a failure.
5233  *
5234  *      The caller must hold the rtnl_mutex.
5235  *
5236  *      For a general description of rx_handler, see enum rx_handler_result.
5237  */
5238 int netdev_rx_handler_register(struct net_device *dev,
5239                                rx_handler_func_t *rx_handler,
5240                                void *rx_handler_data)
5241 {
5242         if (netdev_is_rx_handler_busy(dev))
5243                 return -EBUSY;
5244
5245         if (dev->priv_flags & IFF_NO_RX_HANDLER)
5246                 return -EINVAL;
5247
5248         /* Note: rx_handler_data must be set before rx_handler */
5249         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5250         rcu_assign_pointer(dev->rx_handler, rx_handler);
5251
5252         return 0;
5253 }
5254 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5255
5256 /**
5257  *      netdev_rx_handler_unregister - unregister receive handler
5258  *      @dev: device to unregister a handler from
5259  *
5260  *      Unregister a receive handler from a device.
5261  *
5262  *      The caller must hold the rtnl_mutex.
5263  */
5264 void netdev_rx_handler_unregister(struct net_device *dev)
5265 {
5266
5267         ASSERT_RTNL();
5268         RCU_INIT_POINTER(dev->rx_handler, NULL);
5269         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5270          * section has a guarantee to see a non NULL rx_handler_data
5271          * as well.
5272          */
5273         synchronize_net();
5274         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5275 }
5276 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5277
5278 /*
5279  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5280  * the special handling of PFMEMALLOC skbs.
5281  */
5282 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5283 {
5284         switch (skb->protocol) {
5285         case htons(ETH_P_ARP):
5286         case htons(ETH_P_IP):
5287         case htons(ETH_P_IPV6):
5288         case htons(ETH_P_8021Q):
5289         case htons(ETH_P_8021AD):
5290                 return true;
5291         default:
5292                 return false;
5293         }
5294 }
5295
5296 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5297                              int *ret, struct net_device *orig_dev)
5298 {
5299         if (nf_hook_ingress_active(skb)) {
5300                 int ingress_retval;
5301
5302                 if (*pt_prev) {
5303                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
5304                         *pt_prev = NULL;
5305                 }
5306
5307                 rcu_read_lock();
5308                 ingress_retval = nf_hook_ingress(skb);
5309                 rcu_read_unlock();
5310                 return ingress_retval;
5311         }
5312         return 0;
5313 }
5314
5315 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5316                                     struct packet_type **ppt_prev)
5317 {
5318         struct packet_type *ptype, *pt_prev;
5319         rx_handler_func_t *rx_handler;
5320         struct sk_buff *skb = *pskb;
5321         struct net_device *orig_dev;
5322         bool deliver_exact = false;
5323         int ret = NET_RX_DROP;
5324         __be16 type;
5325
5326         net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb);
5327
5328         trace_netif_receive_skb(skb);
5329
5330         orig_dev = skb->dev;
5331
5332         skb_reset_network_header(skb);
5333         if (!skb_transport_header_was_set(skb))
5334                 skb_reset_transport_header(skb);
5335         skb_reset_mac_len(skb);
5336
5337         pt_prev = NULL;
5338
5339 another_round:
5340         skb->skb_iif = skb->dev->ifindex;
5341
5342         __this_cpu_inc(softnet_data.processed);
5343
5344         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5345                 int ret2;
5346
5347                 migrate_disable();
5348                 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5349                 migrate_enable();
5350
5351                 if (ret2 != XDP_PASS) {
5352                         ret = NET_RX_DROP;
5353                         goto out;
5354                 }
5355         }
5356
5357         if (eth_type_vlan(skb->protocol)) {
5358                 skb = skb_vlan_untag(skb);
5359                 if (unlikely(!skb))
5360                         goto out;
5361         }
5362
5363         if (skb_skip_tc_classify(skb))
5364                 goto skip_classify;
5365
5366         if (pfmemalloc)
5367                 goto skip_taps;
5368
5369         list_for_each_entry_rcu(ptype, &ptype_all, list) {
5370                 if (pt_prev)
5371                         ret = deliver_skb(skb, pt_prev, orig_dev);
5372                 pt_prev = ptype;
5373         }
5374
5375         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5376                 if (pt_prev)
5377                         ret = deliver_skb(skb, pt_prev, orig_dev);
5378                 pt_prev = ptype;
5379         }
5380
5381 skip_taps:
5382 #ifdef CONFIG_NET_INGRESS
5383         if (static_branch_unlikely(&ingress_needed_key)) {
5384                 bool another = false;
5385
5386                 nf_skip_egress(skb, true);
5387                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5388                                          &another);
5389                 if (another)
5390                         goto another_round;
5391                 if (!skb)
5392                         goto out;
5393
5394                 nf_skip_egress(skb, false);
5395                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5396                         goto out;
5397         }
5398 #endif
5399         skb_reset_redirect(skb);
5400 skip_classify:
5401         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5402                 goto drop;
5403
5404         if (skb_vlan_tag_present(skb)) {
5405                 if (pt_prev) {
5406                         ret = deliver_skb(skb, pt_prev, orig_dev);
5407                         pt_prev = NULL;
5408                 }
5409                 if (vlan_do_receive(&skb))
5410                         goto another_round;
5411                 else if (unlikely(!skb))
5412                         goto out;
5413         }
5414
5415         rx_handler = rcu_dereference(skb->dev->rx_handler);
5416         if (rx_handler) {
5417                 if (pt_prev) {
5418                         ret = deliver_skb(skb, pt_prev, orig_dev);
5419                         pt_prev = NULL;
5420                 }
5421                 switch (rx_handler(&skb)) {
5422                 case RX_HANDLER_CONSUMED:
5423                         ret = NET_RX_SUCCESS;
5424                         goto out;
5425                 case RX_HANDLER_ANOTHER:
5426                         goto another_round;
5427                 case RX_HANDLER_EXACT:
5428                         deliver_exact = true;
5429                         break;
5430                 case RX_HANDLER_PASS:
5431                         break;
5432                 default:
5433                         BUG();
5434                 }
5435         }
5436
5437         if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5438 check_vlan_id:
5439                 if (skb_vlan_tag_get_id(skb)) {
5440                         /* Vlan id is non 0 and vlan_do_receive() above couldn't
5441                          * find vlan device.
5442                          */
5443                         skb->pkt_type = PACKET_OTHERHOST;
5444                 } else if (eth_type_vlan(skb->protocol)) {
5445                         /* Outer header is 802.1P with vlan 0, inner header is
5446                          * 802.1Q or 802.1AD and vlan_do_receive() above could
5447                          * not find vlan dev for vlan id 0.
5448                          */
5449                         __vlan_hwaccel_clear_tag(skb);
5450                         skb = skb_vlan_untag(skb);
5451                         if (unlikely(!skb))
5452                                 goto out;
5453                         if (vlan_do_receive(&skb))
5454                                 /* After stripping off 802.1P header with vlan 0
5455                                  * vlan dev is found for inner header.
5456                                  */
5457                                 goto another_round;
5458                         else if (unlikely(!skb))
5459                                 goto out;
5460                         else
5461                                 /* We have stripped outer 802.1P vlan 0 header.
5462                                  * But could not find vlan dev.
5463                                  * check again for vlan id to set OTHERHOST.
5464                                  */
5465                                 goto check_vlan_id;
5466                 }
5467                 /* Note: we might in the future use prio bits
5468                  * and set skb->priority like in vlan_do_receive()
5469                  * For the time being, just ignore Priority Code Point
5470                  */
5471                 __vlan_hwaccel_clear_tag(skb);
5472         }
5473
5474         type = skb->protocol;
5475
5476         /* deliver only exact match when indicated */
5477         if (likely(!deliver_exact)) {
5478                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5479                                        &ptype_base[ntohs(type) &
5480                                                    PTYPE_HASH_MASK]);
5481         }
5482
5483         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5484                                &orig_dev->ptype_specific);
5485
5486         if (unlikely(skb->dev != orig_dev)) {
5487                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5488                                        &skb->dev->ptype_specific);
5489         }
5490
5491         if (pt_prev) {
5492                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5493                         goto drop;
5494                 *ppt_prev = pt_prev;
5495         } else {
5496 drop:
5497                 if (!deliver_exact)
5498                         dev_core_stats_rx_dropped_inc(skb->dev);
5499                 else
5500                         dev_core_stats_rx_nohandler_inc(skb->dev);
5501                 kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5502                 /* Jamal, now you will not able to escape explaining
5503                  * me how you were going to use this. :-)
5504                  */
5505                 ret = NET_RX_DROP;
5506         }
5507
5508 out:
5509         /* The invariant here is that if *ppt_prev is not NULL
5510          * then skb should also be non-NULL.
5511          *
5512          * Apparently *ppt_prev assignment above holds this invariant due to
5513          * skb dereferencing near it.
5514          */
5515         *pskb = skb;
5516         return ret;
5517 }
5518
5519 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5520 {
5521         struct net_device *orig_dev = skb->dev;
5522         struct packet_type *pt_prev = NULL;
5523         int ret;
5524
5525         ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5526         if (pt_prev)
5527                 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5528                                          skb->dev, pt_prev, orig_dev);
5529         return ret;
5530 }
5531
5532 /**
5533  *      netif_receive_skb_core - special purpose version of netif_receive_skb
5534  *      @skb: buffer to process
5535  *
5536  *      More direct receive version of netif_receive_skb().  It should
5537  *      only be used by callers that have a need to skip RPS and Generic XDP.
5538  *      Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5539  *
5540  *      This function may only be called from softirq context and interrupts
5541  *      should be enabled.
5542  *
5543  *      Return values (usually ignored):
5544  *      NET_RX_SUCCESS: no congestion
5545  *      NET_RX_DROP: packet was dropped
5546  */
5547 int netif_receive_skb_core(struct sk_buff *skb)
5548 {
5549         int ret;
5550
5551         rcu_read_lock();
5552         ret = __netif_receive_skb_one_core(skb, false);
5553         rcu_read_unlock();
5554
5555         return ret;
5556 }
5557 EXPORT_SYMBOL(netif_receive_skb_core);
5558
5559 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5560                                                   struct packet_type *pt_prev,
5561                                                   struct net_device *orig_dev)
5562 {
5563         struct sk_buff *skb, *next;
5564
5565         if (!pt_prev)
5566                 return;
5567         if (list_empty(head))
5568                 return;
5569         if (pt_prev->list_func != NULL)
5570                 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5571                                    ip_list_rcv, head, pt_prev, orig_dev);
5572         else
5573                 list_for_each_entry_safe(skb, next, head, list) {
5574                         skb_list_del_init(skb);
5575                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5576                 }
5577 }
5578
5579 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5580 {
5581         /* Fast-path assumptions:
5582          * - There is no RX handler.
5583          * - Only one packet_type matches.
5584          * If either of these fails, we will end up doing some per-packet
5585          * processing in-line, then handling the 'last ptype' for the whole
5586          * sublist.  This can't cause out-of-order delivery to any single ptype,
5587          * because the 'last ptype' must be constant across the sublist, and all
5588          * other ptypes are handled per-packet.
5589          */
5590         /* Current (common) ptype of sublist */
5591         struct packet_type *pt_curr = NULL;
5592         /* Current (common) orig_dev of sublist */
5593         struct net_device *od_curr = NULL;
5594         struct list_head sublist;
5595         struct sk_buff *skb, *next;
5596
5597         INIT_LIST_HEAD(&sublist);
5598         list_for_each_entry_safe(skb, next, head, list) {
5599                 struct net_device *orig_dev = skb->dev;
5600                 struct packet_type *pt_prev = NULL;
5601
5602                 skb_list_del_init(skb);
5603                 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5604                 if (!pt_prev)
5605                         continue;
5606                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5607                         /* dispatch old sublist */
5608                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5609                         /* start new sublist */
5610                         INIT_LIST_HEAD(&sublist);
5611                         pt_curr = pt_prev;
5612                         od_curr = orig_dev;
5613                 }
5614                 list_add_tail(&skb->list, &sublist);
5615         }
5616
5617         /* dispatch final sublist */
5618         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5619 }
5620
5621 static int __netif_receive_skb(struct sk_buff *skb)
5622 {
5623         int ret;
5624
5625         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5626                 unsigned int noreclaim_flag;
5627
5628                 /*
5629                  * PFMEMALLOC skbs are special, they should
5630                  * - be delivered to SOCK_MEMALLOC sockets only
5631                  * - stay away from userspace
5632                  * - have bounded memory usage
5633                  *
5634                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5635                  * context down to all allocation sites.
5636                  */
5637                 noreclaim_flag = memalloc_noreclaim_save();
5638                 ret = __netif_receive_skb_one_core(skb, true);
5639                 memalloc_noreclaim_restore(noreclaim_flag);
5640         } else
5641                 ret = __netif_receive_skb_one_core(skb, false);
5642
5643         return ret;
5644 }
5645
5646 static void __netif_receive_skb_list(struct list_head *head)
5647 {
5648         unsigned long noreclaim_flag = 0;
5649         struct sk_buff *skb, *next;
5650         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5651
5652         list_for_each_entry_safe(skb, next, head, list) {
5653                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5654                         struct list_head sublist;
5655
5656                         /* Handle the previous sublist */
5657                         list_cut_before(&sublist, head, &skb->list);
5658                         if (!list_empty(&sublist))
5659                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5660                         pfmemalloc = !pfmemalloc;
5661                         /* See comments in __netif_receive_skb */
5662                         if (pfmemalloc)
5663                                 noreclaim_flag = memalloc_noreclaim_save();
5664                         else
5665                                 memalloc_noreclaim_restore(noreclaim_flag);
5666                 }
5667         }
5668         /* Handle the remaining sublist */
5669         if (!list_empty(head))
5670                 __netif_receive_skb_list_core(head, pfmemalloc);
5671         /* Restore pflags */
5672         if (pfmemalloc)
5673                 memalloc_noreclaim_restore(noreclaim_flag);
5674 }
5675
5676 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5677 {
5678         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5679         struct bpf_prog *new = xdp->prog;
5680         int ret = 0;
5681
5682         switch (xdp->command) {
5683         case XDP_SETUP_PROG:
5684                 rcu_assign_pointer(dev->xdp_prog, new);
5685                 if (old)
5686                         bpf_prog_put(old);
5687
5688                 if (old && !new) {
5689                         static_branch_dec(&generic_xdp_needed_key);
5690                 } else if (new && !old) {
5691                         static_branch_inc(&generic_xdp_needed_key);
5692                         dev_disable_lro(dev);
5693                         dev_disable_gro_hw(dev);
5694                 }
5695                 break;
5696
5697         default:
5698                 ret = -EINVAL;
5699                 break;
5700         }
5701
5702         return ret;
5703 }
5704
5705 static int netif_receive_skb_internal(struct sk_buff *skb)
5706 {
5707         int ret;
5708
5709         net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5710
5711         if (skb_defer_rx_timestamp(skb))
5712                 return NET_RX_SUCCESS;
5713
5714         rcu_read_lock();
5715 #ifdef CONFIG_RPS
5716         if (static_branch_unlikely(&rps_needed)) {
5717                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5718                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5719
5720                 if (cpu >= 0) {
5721                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5722                         rcu_read_unlock();
5723                         return ret;
5724                 }
5725         }
5726 #endif
5727         ret = __netif_receive_skb(skb);
5728         rcu_read_unlock();
5729         return ret;
5730 }
5731
5732 void netif_receive_skb_list_internal(struct list_head *head)
5733 {
5734         struct sk_buff *skb, *next;
5735         struct list_head sublist;
5736
5737         INIT_LIST_HEAD(&sublist);
5738         list_for_each_entry_safe(skb, next, head, list) {
5739                 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5740                 skb_list_del_init(skb);
5741                 if (!skb_defer_rx_timestamp(skb))
5742                         list_add_tail(&skb->list, &sublist);
5743         }
5744         list_splice_init(&sublist, head);
5745
5746         rcu_read_lock();
5747 #ifdef CONFIG_RPS
5748         if (static_branch_unlikely(&rps_needed)) {
5749                 list_for_each_entry_safe(skb, next, head, list) {
5750                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5751                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5752
5753                         if (cpu >= 0) {
5754                                 /* Will be handled, remove from list */
5755                                 skb_list_del_init(skb);
5756                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5757                         }
5758                 }
5759         }
5760 #endif
5761         __netif_receive_skb_list(head);
5762         rcu_read_unlock();
5763 }
5764
5765 /**
5766  *      netif_receive_skb - process receive buffer from network
5767  *      @skb: buffer to process
5768  *
5769  *      netif_receive_skb() is the main receive data processing function.
5770  *      It always succeeds. The buffer may be dropped during processing
5771  *      for congestion control or by the protocol layers.
5772  *
5773  *      This function may only be called from softirq context and interrupts
5774  *      should be enabled.
5775  *
5776  *      Return values (usually ignored):
5777  *      NET_RX_SUCCESS: no congestion
5778  *      NET_RX_DROP: packet was dropped
5779  */
5780 int netif_receive_skb(struct sk_buff *skb)
5781 {
5782         int ret;
5783
5784         trace_netif_receive_skb_entry(skb);
5785
5786         ret = netif_receive_skb_internal(skb);
5787         trace_netif_receive_skb_exit(ret);
5788
5789         return ret;
5790 }
5791 EXPORT_SYMBOL(netif_receive_skb);
5792
5793 /**
5794  *      netif_receive_skb_list - process many receive buffers from network
5795  *      @head: list of skbs to process.
5796  *
5797  *      Since return value of netif_receive_skb() is normally ignored, and
5798  *      wouldn't be meaningful for a list, this function returns void.
5799  *
5800  *      This function may only be called from softirq context and interrupts
5801  *      should be enabled.
5802  */
5803 void netif_receive_skb_list(struct list_head *head)
5804 {
5805         struct sk_buff *skb;
5806
5807         if (list_empty(head))
5808                 return;
5809         if (trace_netif_receive_skb_list_entry_enabled()) {
5810                 list_for_each_entry(skb, head, list)
5811                         trace_netif_receive_skb_list_entry(skb);
5812         }
5813         netif_receive_skb_list_internal(head);
5814         trace_netif_receive_skb_list_exit(0);
5815 }
5816 EXPORT_SYMBOL(netif_receive_skb_list);
5817
5818 static DEFINE_PER_CPU(struct work_struct, flush_works);
5819
5820 /* Network device is going away, flush any packets still pending */
5821 static void flush_backlog(struct work_struct *work)
5822 {
5823         struct sk_buff *skb, *tmp;
5824         struct softnet_data *sd;
5825
5826         local_bh_disable();
5827         sd = this_cpu_ptr(&softnet_data);
5828
5829         rps_lock_irq_disable(sd);
5830         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5831                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5832                         __skb_unlink(skb, &sd->input_pkt_queue);
5833                         dev_kfree_skb_irq(skb);
5834                         input_queue_head_incr(sd);
5835                 }
5836         }
5837         rps_unlock_irq_enable(sd);
5838
5839         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5840                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5841                         __skb_unlink(skb, &sd->process_queue);
5842                         kfree_skb(skb);
5843                         input_queue_head_incr(sd);
5844                 }
5845         }
5846         local_bh_enable();
5847 }
5848
5849 static bool flush_required(int cpu)
5850 {
5851 #if IS_ENABLED(CONFIG_RPS)
5852         struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5853         bool do_flush;
5854
5855         rps_lock_irq_disable(sd);
5856
5857         /* as insertion into process_queue happens with the rps lock held,
5858          * process_queue access may race only with dequeue
5859          */
5860         do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5861                    !skb_queue_empty_lockless(&sd->process_queue);
5862         rps_unlock_irq_enable(sd);
5863
5864         return do_flush;
5865 #endif
5866         /* without RPS we can't safely check input_pkt_queue: during a
5867          * concurrent remote skb_queue_splice() we can detect as empty both
5868          * input_pkt_queue and process_queue even if the latter could end-up
5869          * containing a lot of packets.
5870          */
5871         return true;
5872 }
5873
5874 static void flush_all_backlogs(void)
5875 {
5876         static cpumask_t flush_cpus;
5877         unsigned int cpu;
5878
5879         /* since we are under rtnl lock protection we can use static data
5880          * for the cpumask and avoid allocating on stack the possibly
5881          * large mask
5882          */
5883         ASSERT_RTNL();
5884
5885         cpus_read_lock();
5886
5887         cpumask_clear(&flush_cpus);
5888         for_each_online_cpu(cpu) {
5889                 if (flush_required(cpu)) {
5890                         queue_work_on(cpu, system_highpri_wq,
5891                                       per_cpu_ptr(&flush_works, cpu));
5892                         cpumask_set_cpu(cpu, &flush_cpus);
5893                 }
5894         }
5895
5896         /* we can have in flight packet[s] on the cpus we are not flushing,
5897          * synchronize_net() in unregister_netdevice_many() will take care of
5898          * them
5899          */
5900         for_each_cpu(cpu, &flush_cpus)
5901                 flush_work(per_cpu_ptr(&flush_works, cpu));
5902
5903         cpus_read_unlock();
5904 }
5905
5906 static void net_rps_send_ipi(struct softnet_data *remsd)
5907 {
5908 #ifdef CONFIG_RPS
5909         while (remsd) {
5910                 struct softnet_data *next = remsd->rps_ipi_next;
5911
5912                 if (cpu_online(remsd->cpu))
5913                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
5914                 remsd = next;
5915         }
5916 #endif
5917 }
5918
5919 /*
5920  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5921  * Note: called with local irq disabled, but exits with local irq enabled.
5922  */
5923 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5924 {
5925 #ifdef CONFIG_RPS
5926         struct softnet_data *remsd = sd->rps_ipi_list;
5927
5928         if (remsd) {
5929                 sd->rps_ipi_list = NULL;
5930
5931                 local_irq_enable();
5932
5933                 /* Send pending IPI's to kick RPS processing on remote cpus. */
5934                 net_rps_send_ipi(remsd);
5935         } else
5936 #endif
5937                 local_irq_enable();
5938 }
5939
5940 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5941 {
5942 #ifdef CONFIG_RPS
5943         return sd->rps_ipi_list != NULL;
5944 #else
5945         return false;
5946 #endif
5947 }
5948
5949 static int process_backlog(struct napi_struct *napi, int quota)
5950 {
5951         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5952         bool again = true;
5953         int work = 0;
5954
5955         /* Check if we have pending ipi, its better to send them now,
5956          * not waiting net_rx_action() end.
5957          */
5958         if (sd_has_rps_ipi_waiting(sd)) {
5959                 local_irq_disable();
5960                 net_rps_action_and_irq_enable(sd);
5961         }
5962
5963         napi->weight = READ_ONCE(dev_rx_weight);
5964         while (again) {
5965                 struct sk_buff *skb;
5966
5967                 while ((skb = __skb_dequeue(&sd->process_queue))) {
5968                         rcu_read_lock();
5969                         __netif_receive_skb(skb);
5970                         rcu_read_unlock();
5971                         input_queue_head_incr(sd);
5972                         if (++work >= quota)
5973                                 return work;
5974
5975                 }
5976
5977                 rps_lock_irq_disable(sd);
5978                 if (skb_queue_empty(&sd->input_pkt_queue)) {
5979                         /*
5980                          * Inline a custom version of __napi_complete().
5981                          * only current cpu owns and manipulates this napi,
5982                          * and NAPI_STATE_SCHED is the only possible flag set
5983                          * on backlog.
5984                          * We can use a plain write instead of clear_bit(),
5985                          * and we dont need an smp_mb() memory barrier.
5986                          */
5987                         napi->state = 0;
5988                         again = false;
5989                 } else {
5990                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
5991                                                    &sd->process_queue);
5992                 }
5993                 rps_unlock_irq_enable(sd);
5994         }
5995
5996         return work;
5997 }
5998
5999 /**
6000  * __napi_schedule - schedule for receive
6001  * @n: entry to schedule
6002  *
6003  * The entry's receive function will be scheduled to run.
6004  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6005  */
6006 void __napi_schedule(struct napi_struct *n)
6007 {
6008         unsigned long flags;
6009
6010         local_irq_save(flags);
6011         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6012         local_irq_restore(flags);
6013 }
6014 EXPORT_SYMBOL(__napi_schedule);
6015
6016 /**
6017  *      napi_schedule_prep - check if napi can be scheduled
6018  *      @n: napi context
6019  *
6020  * Test if NAPI routine is already running, and if not mark
6021  * it as running.  This is used as a condition variable to
6022  * insure only one NAPI poll instance runs.  We also make
6023  * sure there is no pending NAPI disable.
6024  */
6025 bool napi_schedule_prep(struct napi_struct *n)
6026 {
6027         unsigned long new, val = READ_ONCE(n->state);
6028
6029         do {
6030                 if (unlikely(val & NAPIF_STATE_DISABLE))
6031                         return false;
6032                 new = val | NAPIF_STATE_SCHED;
6033
6034                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6035                  * This was suggested by Alexander Duyck, as compiler
6036                  * emits better code than :
6037                  * if (val & NAPIF_STATE_SCHED)
6038                  *     new |= NAPIF_STATE_MISSED;
6039                  */
6040                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6041                                                    NAPIF_STATE_MISSED;
6042         } while (!try_cmpxchg(&n->state, &val, new));
6043
6044         return !(val & NAPIF_STATE_SCHED);
6045 }
6046 EXPORT_SYMBOL(napi_schedule_prep);
6047
6048 /**
6049  * __napi_schedule_irqoff - schedule for receive
6050  * @n: entry to schedule
6051  *
6052  * Variant of __napi_schedule() assuming hard irqs are masked.
6053  *
6054  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6055  * because the interrupt disabled assumption might not be true
6056  * due to force-threaded interrupts and spinlock substitution.
6057  */
6058 void __napi_schedule_irqoff(struct napi_struct *n)
6059 {
6060         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6061                 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6062         else
6063                 __napi_schedule(n);
6064 }
6065 EXPORT_SYMBOL(__napi_schedule_irqoff);
6066
6067 bool napi_complete_done(struct napi_struct *n, int work_done)
6068 {
6069         unsigned long flags, val, new, timeout = 0;
6070         bool ret = true;
6071
6072         /*
6073          * 1) Don't let napi dequeue from the cpu poll list
6074          *    just in case its running on a different cpu.
6075          * 2) If we are busy polling, do nothing here, we have
6076          *    the guarantee we will be called later.
6077          */
6078         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6079                                  NAPIF_STATE_IN_BUSY_POLL)))
6080                 return false;
6081
6082         if (work_done) {
6083                 if (n->gro_bitmask)
6084                         timeout = READ_ONCE(n->dev->gro_flush_timeout);
6085                 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6086         }
6087         if (n->defer_hard_irqs_count > 0) {
6088                 n->defer_hard_irqs_count--;
6089                 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6090                 if (timeout)
6091                         ret = false;
6092         }
6093         if (n->gro_bitmask) {
6094                 /* When the NAPI instance uses a timeout and keeps postponing
6095                  * it, we need to bound somehow the time packets are kept in
6096                  * the GRO layer
6097                  */
6098                 napi_gro_flush(n, !!timeout);
6099         }
6100
6101         gro_normal_list(n);
6102
6103         if (unlikely(!list_empty(&n->poll_list))) {
6104                 /* If n->poll_list is not empty, we need to mask irqs */
6105                 local_irq_save(flags);
6106                 list_del_init(&n->poll_list);
6107                 local_irq_restore(flags);
6108         }
6109         WRITE_ONCE(n->list_owner, -1);
6110
6111         val = READ_ONCE(n->state);
6112         do {
6113                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6114
6115                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6116                               NAPIF_STATE_SCHED_THREADED |
6117                               NAPIF_STATE_PREFER_BUSY_POLL);
6118
6119                 /* If STATE_MISSED was set, leave STATE_SCHED set,
6120                  * because we will call napi->poll() one more time.
6121                  * This C code was suggested by Alexander Duyck to help gcc.
6122                  */
6123                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6124                                                     NAPIF_STATE_SCHED;
6125         } while (!try_cmpxchg(&n->state, &val, new));
6126
6127         if (unlikely(val & NAPIF_STATE_MISSED)) {
6128                 __napi_schedule(n);
6129                 return false;
6130         }
6131
6132         if (timeout)
6133                 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6134                               HRTIMER_MODE_REL_PINNED);
6135         return ret;
6136 }
6137 EXPORT_SYMBOL(napi_complete_done);
6138
6139 /* must be called under rcu_read_lock(), as we dont take a reference */
6140 static struct napi_struct *napi_by_id(unsigned int napi_id)
6141 {
6142         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6143         struct napi_struct *napi;
6144
6145         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6146                 if (napi->napi_id == napi_id)
6147                         return napi;
6148
6149         return NULL;
6150 }
6151
6152 #if defined(CONFIG_NET_RX_BUSY_POLL)
6153
6154 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6155 {
6156         if (!skip_schedule) {
6157                 gro_normal_list(napi);
6158                 __napi_schedule(napi);
6159                 return;
6160         }
6161
6162         if (napi->gro_bitmask) {
6163                 /* flush too old packets
6164                  * If HZ < 1000, flush all packets.
6165                  */
6166                 napi_gro_flush(napi, HZ >= 1000);
6167         }
6168
6169         gro_normal_list(napi);
6170         clear_bit(NAPI_STATE_SCHED, &napi->state);
6171 }
6172
6173 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6174                            u16 budget)
6175 {
6176         bool skip_schedule = false;
6177         unsigned long timeout;
6178         int rc;
6179
6180         /* Busy polling means there is a high chance device driver hard irq
6181          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6182          * set in napi_schedule_prep().
6183          * Since we are about to call napi->poll() once more, we can safely
6184          * clear NAPI_STATE_MISSED.
6185          *
6186          * Note: x86 could use a single "lock and ..." instruction
6187          * to perform these two clear_bit()
6188          */
6189         clear_bit(NAPI_STATE_MISSED, &napi->state);
6190         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6191
6192         local_bh_disable();
6193
6194         if (prefer_busy_poll) {
6195                 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6196                 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6197                 if (napi->defer_hard_irqs_count && timeout) {
6198                         hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6199                         skip_schedule = true;
6200                 }
6201         }
6202
6203         /* All we really want here is to re-enable device interrupts.
6204          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6205          */
6206         rc = napi->poll(napi, budget);
6207         /* We can't gro_normal_list() here, because napi->poll() might have
6208          * rearmed the napi (napi_complete_done()) in which case it could
6209          * already be running on another CPU.
6210          */
6211         trace_napi_poll(napi, rc, budget);
6212         netpoll_poll_unlock(have_poll_lock);
6213         if (rc == budget)
6214                 __busy_poll_stop(napi, skip_schedule);
6215         local_bh_enable();
6216 }
6217
6218 void napi_busy_loop(unsigned int napi_id,
6219                     bool (*loop_end)(void *, unsigned long),
6220                     void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6221 {
6222         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6223         int (*napi_poll)(struct napi_struct *napi, int budget);
6224         void *have_poll_lock = NULL;
6225         struct napi_struct *napi;
6226
6227 restart:
6228         napi_poll = NULL;
6229
6230         rcu_read_lock();
6231
6232         napi = napi_by_id(napi_id);
6233         if (!napi)
6234                 goto out;
6235
6236         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6237                 preempt_disable();
6238         for (;;) {
6239                 int work = 0;
6240
6241                 local_bh_disable();
6242                 if (!napi_poll) {
6243                         unsigned long val = READ_ONCE(napi->state);
6244
6245                         /* If multiple threads are competing for this napi,
6246                          * we avoid dirtying napi->state as much as we can.
6247                          */
6248                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6249                                    NAPIF_STATE_IN_BUSY_POLL)) {
6250                                 if (prefer_busy_poll)
6251                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6252                                 goto count;
6253                         }
6254                         if (cmpxchg(&napi->state, val,
6255                                     val | NAPIF_STATE_IN_BUSY_POLL |
6256                                           NAPIF_STATE_SCHED) != val) {
6257                                 if (prefer_busy_poll)
6258                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6259                                 goto count;
6260                         }
6261                         have_poll_lock = netpoll_poll_lock(napi);
6262                         napi_poll = napi->poll;
6263                 }
6264                 work = napi_poll(napi, budget);
6265                 trace_napi_poll(napi, work, budget);
6266                 gro_normal_list(napi);
6267 count:
6268                 if (work > 0)
6269                         __NET_ADD_STATS(dev_net(napi->dev),
6270                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6271                 local_bh_enable();
6272
6273                 if (!loop_end || loop_end(loop_end_arg, start_time))
6274                         break;
6275
6276                 if (unlikely(need_resched())) {
6277                         if (napi_poll)
6278                                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6279                         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6280                                 preempt_enable();
6281                         rcu_read_unlock();
6282                         cond_resched();
6283                         if (loop_end(loop_end_arg, start_time))
6284                                 return;
6285                         goto restart;
6286                 }
6287                 cpu_relax();
6288         }
6289         if (napi_poll)
6290                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6291         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6292                 preempt_enable();
6293 out:
6294         rcu_read_unlock();
6295 }
6296 EXPORT_SYMBOL(napi_busy_loop);
6297
6298 #endif /* CONFIG_NET_RX_BUSY_POLL */
6299
6300 static void napi_hash_add(struct napi_struct *napi)
6301 {
6302         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6303                 return;
6304
6305         spin_lock(&napi_hash_lock);
6306
6307         /* 0..NR_CPUS range is reserved for sender_cpu use */
6308         do {
6309                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6310                         napi_gen_id = MIN_NAPI_ID;
6311         } while (napi_by_id(napi_gen_id));
6312         napi->napi_id = napi_gen_id;
6313
6314         hlist_add_head_rcu(&napi->napi_hash_node,
6315                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6316
6317         spin_unlock(&napi_hash_lock);
6318 }
6319
6320 /* Warning : caller is responsible to make sure rcu grace period
6321  * is respected before freeing memory containing @napi
6322  */
6323 static void napi_hash_del(struct napi_struct *napi)
6324 {
6325         spin_lock(&napi_hash_lock);
6326
6327         hlist_del_init_rcu(&napi->napi_hash_node);
6328
6329         spin_unlock(&napi_hash_lock);
6330 }
6331
6332 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6333 {
6334         struct napi_struct *napi;
6335
6336         napi = container_of(timer, struct napi_struct, timer);
6337
6338         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6339          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6340          */
6341         if (!napi_disable_pending(napi) &&
6342             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6343                 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6344                 __napi_schedule_irqoff(napi);
6345         }
6346
6347         return HRTIMER_NORESTART;
6348 }
6349
6350 static void init_gro_hash(struct napi_struct *napi)
6351 {
6352         int i;
6353
6354         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6355                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6356                 napi->gro_hash[i].count = 0;
6357         }
6358         napi->gro_bitmask = 0;
6359 }
6360
6361 int dev_set_threaded(struct net_device *dev, bool threaded)
6362 {
6363         struct napi_struct *napi;
6364         int err = 0;
6365
6366         if (dev->threaded == threaded)
6367                 return 0;
6368
6369         if (threaded) {
6370                 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6371                         if (!napi->thread) {
6372                                 err = napi_kthread_create(napi);
6373                                 if (err) {
6374                                         threaded = false;
6375                                         break;
6376                                 }
6377                         }
6378                 }
6379         }
6380
6381         dev->threaded = threaded;
6382
6383         /* Make sure kthread is created before THREADED bit
6384          * is set.
6385          */
6386         smp_mb__before_atomic();
6387
6388         /* Setting/unsetting threaded mode on a napi might not immediately
6389          * take effect, if the current napi instance is actively being
6390          * polled. In this case, the switch between threaded mode and
6391          * softirq mode will happen in the next round of napi_schedule().
6392          * This should not cause hiccups/stalls to the live traffic.
6393          */
6394         list_for_each_entry(napi, &dev->napi_list, dev_list)
6395                 assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6396
6397         return err;
6398 }
6399 EXPORT_SYMBOL(dev_set_threaded);
6400
6401 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6402                            int (*poll)(struct napi_struct *, int), int weight)
6403 {
6404         if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6405                 return;
6406
6407         INIT_LIST_HEAD(&napi->poll_list);
6408         INIT_HLIST_NODE(&napi->napi_hash_node);
6409         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6410         napi->timer.function = napi_watchdog;
6411         init_gro_hash(napi);
6412         napi->skb = NULL;
6413         INIT_LIST_HEAD(&napi->rx_list);
6414         napi->rx_count = 0;
6415         napi->poll = poll;
6416         if (weight > NAPI_POLL_WEIGHT)
6417                 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6418                                 weight);
6419         napi->weight = weight;
6420         napi->dev = dev;
6421 #ifdef CONFIG_NETPOLL
6422         napi->poll_owner = -1;
6423 #endif
6424         napi->list_owner = -1;
6425         set_bit(NAPI_STATE_SCHED, &napi->state);
6426         set_bit(NAPI_STATE_NPSVC, &napi->state);
6427         list_add_rcu(&napi->dev_list, &dev->napi_list);
6428         napi_hash_add(napi);
6429         napi_get_frags_check(napi);
6430         /* Create kthread for this napi if dev->threaded is set.
6431          * Clear dev->threaded if kthread creation failed so that
6432          * threaded mode will not be enabled in napi_enable().
6433          */
6434         if (dev->threaded && napi_kthread_create(napi))
6435                 dev->threaded = 0;
6436 }
6437 EXPORT_SYMBOL(netif_napi_add_weight);
6438
6439 void napi_disable(struct napi_struct *n)
6440 {
6441         unsigned long val, new;
6442
6443         might_sleep();
6444         set_bit(NAPI_STATE_DISABLE, &n->state);
6445
6446         val = READ_ONCE(n->state);
6447         do {
6448                 while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6449                         usleep_range(20, 200);
6450                         val = READ_ONCE(n->state);
6451                 }
6452
6453                 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6454                 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6455         } while (!try_cmpxchg(&n->state, &val, new));
6456
6457         hrtimer_cancel(&n->timer);
6458
6459         clear_bit(NAPI_STATE_DISABLE, &n->state);
6460 }
6461 EXPORT_SYMBOL(napi_disable);
6462
6463 /**
6464  *      napi_enable - enable NAPI scheduling
6465  *      @n: NAPI context
6466  *
6467  * Resume NAPI from being scheduled on this context.
6468  * Must be paired with napi_disable.
6469  */
6470 void napi_enable(struct napi_struct *n)
6471 {
6472         unsigned long new, val = READ_ONCE(n->state);
6473
6474         do {
6475                 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6476
6477                 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6478                 if (n->dev->threaded && n->thread)
6479                         new |= NAPIF_STATE_THREADED;
6480         } while (!try_cmpxchg(&n->state, &val, new));
6481 }
6482 EXPORT_SYMBOL(napi_enable);
6483
6484 static void flush_gro_hash(struct napi_struct *napi)
6485 {
6486         int i;
6487
6488         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6489                 struct sk_buff *skb, *n;
6490
6491                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6492                         kfree_skb(skb);
6493                 napi->gro_hash[i].count = 0;
6494         }
6495 }
6496
6497 /* Must be called in process context */
6498 void __netif_napi_del(struct napi_struct *napi)
6499 {
6500         if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6501                 return;
6502
6503         napi_hash_del(napi);
6504         list_del_rcu(&napi->dev_list);
6505         napi_free_frags(napi);
6506
6507         flush_gro_hash(napi);
6508         napi->gro_bitmask = 0;
6509
6510         if (napi->thread) {
6511                 kthread_stop(napi->thread);
6512                 napi->thread = NULL;
6513         }
6514 }
6515 EXPORT_SYMBOL(__netif_napi_del);
6516
6517 static int __napi_poll(struct napi_struct *n, bool *repoll)
6518 {
6519         int work, weight;
6520
6521         weight = n->weight;
6522
6523         /* This NAPI_STATE_SCHED test is for avoiding a race
6524          * with netpoll's poll_napi().  Only the entity which
6525          * obtains the lock and sees NAPI_STATE_SCHED set will
6526          * actually make the ->poll() call.  Therefore we avoid
6527          * accidentally calling ->poll() when NAPI is not scheduled.
6528          */
6529         work = 0;
6530         if (napi_is_scheduled(n)) {
6531                 work = n->poll(n, weight);
6532                 trace_napi_poll(n, work, weight);
6533
6534                 xdp_do_check_flushed(n);
6535         }
6536
6537         if (unlikely(work > weight))
6538                 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6539                                 n->poll, work, weight);
6540
6541         if (likely(work < weight))
6542                 return work;
6543
6544         /* Drivers must not modify the NAPI state if they
6545          * consume the entire weight.  In such cases this code
6546          * still "owns" the NAPI instance and therefore can
6547          * move the instance around on the list at-will.
6548          */
6549         if (unlikely(napi_disable_pending(n))) {
6550                 napi_complete(n);
6551                 return work;
6552         }
6553
6554         /* The NAPI context has more processing work, but busy-polling
6555          * is preferred. Exit early.
6556          */
6557         if (napi_prefer_busy_poll(n)) {
6558                 if (napi_complete_done(n, work)) {
6559                         /* If timeout is not set, we need to make sure
6560                          * that the NAPI is re-scheduled.
6561                          */
6562                         napi_schedule(n);
6563                 }
6564                 return work;
6565         }
6566
6567         if (n->gro_bitmask) {
6568                 /* flush too old packets
6569                  * If HZ < 1000, flush all packets.
6570                  */
6571                 napi_gro_flush(n, HZ >= 1000);
6572         }
6573
6574         gro_normal_list(n);
6575
6576         /* Some drivers may have called napi_schedule
6577          * prior to exhausting their budget.
6578          */
6579         if (unlikely(!list_empty(&n->poll_list))) {
6580                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6581                              n->dev ? n->dev->name : "backlog");
6582                 return work;
6583         }
6584
6585         *repoll = true;
6586
6587         return work;
6588 }
6589
6590 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6591 {
6592         bool do_repoll = false;
6593         void *have;
6594         int work;
6595
6596         list_del_init(&n->poll_list);
6597
6598         have = netpoll_poll_lock(n);
6599
6600         work = __napi_poll(n, &do_repoll);
6601
6602         if (do_repoll)
6603                 list_add_tail(&n->poll_list, repoll);
6604
6605         netpoll_poll_unlock(have);
6606
6607         return work;
6608 }
6609
6610 static int napi_thread_wait(struct napi_struct *napi)
6611 {
6612         bool woken = false;
6613
6614         set_current_state(TASK_INTERRUPTIBLE);
6615
6616         while (!kthread_should_stop()) {
6617                 /* Testing SCHED_THREADED bit here to make sure the current
6618                  * kthread owns this napi and could poll on this napi.
6619                  * Testing SCHED bit is not enough because SCHED bit might be
6620                  * set by some other busy poll thread or by napi_disable().
6621                  */
6622                 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6623                         WARN_ON(!list_empty(&napi->poll_list));
6624                         __set_current_state(TASK_RUNNING);
6625                         return 0;
6626                 }
6627
6628                 schedule();
6629                 /* woken being true indicates this thread owns this napi. */
6630                 woken = true;
6631                 set_current_state(TASK_INTERRUPTIBLE);
6632         }
6633         __set_current_state(TASK_RUNNING);
6634
6635         return -1;
6636 }
6637
6638 static void skb_defer_free_flush(struct softnet_data *sd)
6639 {
6640         struct sk_buff *skb, *next;
6641
6642         /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6643         if (!READ_ONCE(sd->defer_list))
6644                 return;
6645
6646         spin_lock(&sd->defer_lock);
6647         skb = sd->defer_list;
6648         sd->defer_list = NULL;
6649         sd->defer_count = 0;
6650         spin_unlock(&sd->defer_lock);
6651
6652         while (skb != NULL) {
6653                 next = skb->next;
6654                 napi_consume_skb(skb, 1);
6655                 skb = next;
6656         }
6657 }
6658
6659 static int napi_threaded_poll(void *data)
6660 {
6661         struct napi_struct *napi = data;
6662         struct softnet_data *sd;
6663         void *have;
6664
6665         while (!napi_thread_wait(napi)) {
6666                 for (;;) {
6667                         bool repoll = false;
6668
6669                         local_bh_disable();
6670                         sd = this_cpu_ptr(&softnet_data);
6671                         sd->in_napi_threaded_poll = true;
6672
6673                         have = netpoll_poll_lock(napi);
6674                         __napi_poll(napi, &repoll);
6675                         netpoll_poll_unlock(have);
6676
6677                         sd->in_napi_threaded_poll = false;
6678                         barrier();
6679
6680                         if (sd_has_rps_ipi_waiting(sd)) {
6681                                 local_irq_disable();
6682                                 net_rps_action_and_irq_enable(sd);
6683                         }
6684                         skb_defer_free_flush(sd);
6685                         local_bh_enable();
6686
6687                         if (!repoll)
6688                                 break;
6689
6690                         cond_resched();
6691                 }
6692         }
6693         return 0;
6694 }
6695
6696 static __latent_entropy void net_rx_action(struct softirq_action *h)
6697 {
6698         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6699         unsigned long time_limit = jiffies +
6700                 usecs_to_jiffies(READ_ONCE(netdev_budget_usecs));
6701         int budget = READ_ONCE(netdev_budget);
6702         LIST_HEAD(list);
6703         LIST_HEAD(repoll);
6704
6705 start:
6706         sd->in_net_rx_action = true;
6707         local_irq_disable();
6708         list_splice_init(&sd->poll_list, &list);
6709         local_irq_enable();
6710
6711         for (;;) {
6712                 struct napi_struct *n;
6713
6714                 skb_defer_free_flush(sd);
6715
6716                 if (list_empty(&list)) {
6717                         if (list_empty(&repoll)) {
6718                                 sd->in_net_rx_action = false;
6719                                 barrier();
6720                                 /* We need to check if ____napi_schedule()
6721                                  * had refilled poll_list while
6722                                  * sd->in_net_rx_action was true.
6723                                  */
6724                                 if (!list_empty(&sd->poll_list))
6725                                         goto start;
6726                                 if (!sd_has_rps_ipi_waiting(sd))
6727                                         goto end;
6728                         }
6729                         break;
6730                 }
6731
6732                 n = list_first_entry(&list, struct napi_struct, poll_list);
6733                 budget -= napi_poll(n, &repoll);
6734
6735                 /* If softirq window is exhausted then punt.
6736                  * Allow this to run for 2 jiffies since which will allow
6737                  * an average latency of 1.5/HZ.
6738                  */
6739                 if (unlikely(budget <= 0 ||
6740                              time_after_eq(jiffies, time_limit))) {
6741                         sd->time_squeeze++;
6742                         break;
6743                 }
6744         }
6745
6746         local_irq_disable();
6747
6748         list_splice_tail_init(&sd->poll_list, &list);
6749         list_splice_tail(&repoll, &list);
6750         list_splice(&list, &sd->poll_list);
6751         if (!list_empty(&sd->poll_list))
6752                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6753         else
6754                 sd->in_net_rx_action = false;
6755
6756         net_rps_action_and_irq_enable(sd);
6757 end:;
6758 }
6759
6760 struct netdev_adjacent {
6761         struct net_device *dev;
6762         netdevice_tracker dev_tracker;
6763
6764         /* upper master flag, there can only be one master device per list */
6765         bool master;
6766
6767         /* lookup ignore flag */
6768         bool ignore;
6769
6770         /* counter for the number of times this device was added to us */
6771         u16 ref_nr;
6772
6773         /* private field for the users */
6774         void *private;
6775
6776         struct list_head list;
6777         struct rcu_head rcu;
6778 };
6779
6780 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6781                                                  struct list_head *adj_list)
6782 {
6783         struct netdev_adjacent *adj;
6784
6785         list_for_each_entry(adj, adj_list, list) {
6786                 if (adj->dev == adj_dev)
6787                         return adj;
6788         }
6789         return NULL;
6790 }
6791
6792 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6793                                     struct netdev_nested_priv *priv)
6794 {
6795         struct net_device *dev = (struct net_device *)priv->data;
6796
6797         return upper_dev == dev;
6798 }
6799
6800 /**
6801  * netdev_has_upper_dev - Check if device is linked to an upper device
6802  * @dev: device
6803  * @upper_dev: upper device to check
6804  *
6805  * Find out if a device is linked to specified upper device and return true
6806  * in case it is. Note that this checks only immediate upper device,
6807  * not through a complete stack of devices. The caller must hold the RTNL lock.
6808  */
6809 bool netdev_has_upper_dev(struct net_device *dev,
6810                           struct net_device *upper_dev)
6811 {
6812         struct netdev_nested_priv priv = {
6813                 .data = (void *)upper_dev,
6814         };
6815
6816         ASSERT_RTNL();
6817
6818         return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6819                                              &priv);
6820 }
6821 EXPORT_SYMBOL(netdev_has_upper_dev);
6822
6823 /**
6824  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6825  * @dev: device
6826  * @upper_dev: upper device to check
6827  *
6828  * Find out if a device is linked to specified upper device and return true
6829  * in case it is. Note that this checks the entire upper device chain.
6830  * The caller must hold rcu lock.
6831  */
6832
6833 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6834                                   struct net_device *upper_dev)
6835 {
6836         struct netdev_nested_priv priv = {
6837                 .data = (void *)upper_dev,
6838         };
6839
6840         return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6841                                                &priv);
6842 }
6843 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6844
6845 /**
6846  * netdev_has_any_upper_dev - Check if device is linked to some device
6847  * @dev: device
6848  *
6849  * Find out if a device is linked to an upper device and return true in case
6850  * it is. The caller must hold the RTNL lock.
6851  */
6852 bool netdev_has_any_upper_dev(struct net_device *dev)
6853 {
6854         ASSERT_RTNL();
6855
6856         return !list_empty(&dev->adj_list.upper);
6857 }
6858 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6859
6860 /**
6861  * netdev_master_upper_dev_get - Get master upper device
6862  * @dev: device
6863  *
6864  * Find a master upper device and return pointer to it or NULL in case
6865  * it's not there. The caller must hold the RTNL lock.
6866  */
6867 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6868 {
6869         struct netdev_adjacent *upper;
6870
6871         ASSERT_RTNL();
6872
6873         if (list_empty(&dev->adj_list.upper))
6874                 return NULL;
6875
6876         upper = list_first_entry(&dev->adj_list.upper,
6877                                  struct netdev_adjacent, list);
6878         if (likely(upper->master))
6879                 return upper->dev;
6880         return NULL;
6881 }
6882 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6883
6884 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6885 {
6886         struct netdev_adjacent *upper;
6887
6888         ASSERT_RTNL();
6889
6890         if (list_empty(&dev->adj_list.upper))
6891                 return NULL;
6892
6893         upper = list_first_entry(&dev->adj_list.upper,
6894                                  struct netdev_adjacent, list);
6895         if (likely(upper->master) && !upper->ignore)
6896                 return upper->dev;
6897         return NULL;
6898 }
6899
6900 /**
6901  * netdev_has_any_lower_dev - Check if device is linked to some device
6902  * @dev: device
6903  *
6904  * Find out if a device is linked to a lower device and return true in case
6905  * it is. The caller must hold the RTNL lock.
6906  */
6907 static bool netdev_has_any_lower_dev(struct net_device *dev)
6908 {
6909         ASSERT_RTNL();
6910
6911         return !list_empty(&dev->adj_list.lower);
6912 }
6913
6914 void *netdev_adjacent_get_private(struct list_head *adj_list)
6915 {
6916         struct netdev_adjacent *adj;
6917
6918         adj = list_entry(adj_list, struct netdev_adjacent, list);
6919
6920         return adj->private;
6921 }
6922 EXPORT_SYMBOL(netdev_adjacent_get_private);
6923
6924 /**
6925  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6926  * @dev: device
6927  * @iter: list_head ** of the current position
6928  *
6929  * Gets the next device from the dev's upper list, starting from iter
6930  * position. The caller must hold RCU read lock.
6931  */
6932 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6933                                                  struct list_head **iter)
6934 {
6935         struct netdev_adjacent *upper;
6936
6937         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6938
6939         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6940
6941         if (&upper->list == &dev->adj_list.upper)
6942                 return NULL;
6943
6944         *iter = &upper->list;
6945
6946         return upper->dev;
6947 }
6948 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6949
6950 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6951                                                   struct list_head **iter,
6952                                                   bool *ignore)
6953 {
6954         struct netdev_adjacent *upper;
6955
6956         upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6957
6958         if (&upper->list == &dev->adj_list.upper)
6959                 return NULL;
6960
6961         *iter = &upper->list;
6962         *ignore = upper->ignore;
6963
6964         return upper->dev;
6965 }
6966
6967 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6968                                                     struct list_head **iter)
6969 {
6970         struct netdev_adjacent *upper;
6971
6972         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6973
6974         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6975
6976         if (&upper->list == &dev->adj_list.upper)
6977                 return NULL;
6978
6979         *iter = &upper->list;
6980
6981         return upper->dev;
6982 }
6983
6984 static int __netdev_walk_all_upper_dev(struct net_device *dev,
6985                                        int (*fn)(struct net_device *dev,
6986                                          struct netdev_nested_priv *priv),
6987                                        struct netdev_nested_priv *priv)
6988 {
6989         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6990         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6991         int ret, cur = 0;
6992         bool ignore;
6993
6994         now = dev;
6995         iter = &dev->adj_list.upper;
6996
6997         while (1) {
6998                 if (now != dev) {
6999                         ret = fn(now, priv);
7000                         if (ret)
7001                                 return ret;
7002                 }
7003
7004                 next = NULL;
7005                 while (1) {
7006                         udev = __netdev_next_upper_dev(now, &iter, &ignore);
7007                         if (!udev)
7008                                 break;
7009                         if (ignore)
7010                                 continue;
7011
7012                         next = udev;
7013                         niter = &udev->adj_list.upper;
7014                         dev_stack[cur] = now;
7015                         iter_stack[cur++] = iter;
7016                         break;
7017                 }
7018
7019                 if (!next) {
7020                         if (!cur)
7021                                 return 0;
7022                         next = dev_stack[--cur];
7023                         niter = iter_stack[cur];
7024                 }
7025
7026                 now = next;
7027                 iter = niter;
7028         }
7029
7030         return 0;
7031 }
7032
7033 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7034                                   int (*fn)(struct net_device *dev,
7035                                             struct netdev_nested_priv *priv),
7036                                   struct netdev_nested_priv *priv)
7037 {
7038         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7039         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7040         int ret, cur = 0;
7041
7042         now = dev;
7043         iter = &dev->adj_list.upper;
7044
7045         while (1) {
7046                 if (now != dev) {
7047                         ret = fn(now, priv);
7048                         if (ret)
7049                                 return ret;
7050                 }
7051
7052                 next = NULL;
7053                 while (1) {
7054                         udev = netdev_next_upper_dev_rcu(now, &iter);
7055                         if (!udev)
7056                                 break;
7057
7058                         next = udev;
7059                         niter = &udev->adj_list.upper;
7060                         dev_stack[cur] = now;
7061                         iter_stack[cur++] = iter;
7062                         break;
7063                 }
7064
7065                 if (!next) {
7066                         if (!cur)
7067                                 return 0;
7068                         next = dev_stack[--cur];
7069                         niter = iter_stack[cur];
7070                 }
7071
7072                 now = next;
7073                 iter = niter;
7074         }
7075
7076         return 0;
7077 }
7078 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7079
7080 static bool __netdev_has_upper_dev(struct net_device *dev,
7081                                    struct net_device *upper_dev)
7082 {
7083         struct netdev_nested_priv priv = {
7084                 .flags = 0,
7085                 .data = (void *)upper_dev,
7086         };
7087
7088         ASSERT_RTNL();
7089
7090         return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7091                                            &priv);
7092 }
7093
7094 /**
7095  * netdev_lower_get_next_private - Get the next ->private from the
7096  *                                 lower neighbour list
7097  * @dev: device
7098  * @iter: list_head ** of the current position
7099  *
7100  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7101  * list, starting from iter position. The caller must hold either hold the
7102  * RTNL lock or its own locking that guarantees that the neighbour lower
7103  * list will remain unchanged.
7104  */
7105 void *netdev_lower_get_next_private(struct net_device *dev,
7106                                     struct list_head **iter)
7107 {
7108         struct netdev_adjacent *lower;
7109
7110         lower = list_entry(*iter, struct netdev_adjacent, list);
7111
7112         if (&lower->list == &dev->adj_list.lower)
7113                 return NULL;
7114
7115         *iter = lower->list.next;
7116
7117         return lower->private;
7118 }
7119 EXPORT_SYMBOL(netdev_lower_get_next_private);
7120
7121 /**
7122  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7123  *                                     lower neighbour list, RCU
7124  *                                     variant
7125  * @dev: device
7126  * @iter: list_head ** of the current position
7127  *
7128  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7129  * list, starting from iter position. The caller must hold RCU read lock.
7130  */
7131 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7132                                         struct list_head **iter)
7133 {
7134         struct netdev_adjacent *lower;
7135
7136         WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7137
7138         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7139
7140         if (&lower->list == &dev->adj_list.lower)
7141                 return NULL;
7142
7143         *iter = &lower->list;
7144
7145         return lower->private;
7146 }
7147 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7148
7149 /**
7150  * netdev_lower_get_next - Get the next device from the lower neighbour
7151  *                         list
7152  * @dev: device
7153  * @iter: list_head ** of the current position
7154  *
7155  * Gets the next netdev_adjacent from the dev's lower neighbour
7156  * list, starting from iter position. The caller must hold RTNL lock or
7157  * its own locking that guarantees that the neighbour lower
7158  * list will remain unchanged.
7159  */
7160 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7161 {
7162         struct netdev_adjacent *lower;
7163
7164         lower = list_entry(*iter, struct netdev_adjacent, list);
7165
7166         if (&lower->list == &dev->adj_list.lower)
7167                 return NULL;
7168
7169         *iter = lower->list.next;
7170
7171         return lower->dev;
7172 }
7173 EXPORT_SYMBOL(netdev_lower_get_next);
7174
7175 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7176                                                 struct list_head **iter)
7177 {
7178         struct netdev_adjacent *lower;
7179
7180         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7181
7182         if (&lower->list == &dev->adj_list.lower)
7183                 return NULL;
7184
7185         *iter = &lower->list;
7186
7187         return lower->dev;
7188 }
7189
7190 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7191                                                   struct list_head **iter,
7192                                                   bool *ignore)
7193 {
7194         struct netdev_adjacent *lower;
7195
7196         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7197
7198         if (&lower->list == &dev->adj_list.lower)
7199                 return NULL;
7200
7201         *iter = &lower->list;
7202         *ignore = lower->ignore;
7203
7204         return lower->dev;
7205 }
7206
7207 int netdev_walk_all_lower_dev(struct net_device *dev,
7208                               int (*fn)(struct net_device *dev,
7209                                         struct netdev_nested_priv *priv),
7210                               struct netdev_nested_priv *priv)
7211 {
7212         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7213         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7214         int ret, cur = 0;
7215
7216         now = dev;
7217         iter = &dev->adj_list.lower;
7218
7219         while (1) {
7220                 if (now != dev) {
7221                         ret = fn(now, priv);
7222                         if (ret)
7223                                 return ret;
7224                 }
7225
7226                 next = NULL;
7227                 while (1) {
7228                         ldev = netdev_next_lower_dev(now, &iter);
7229                         if (!ldev)
7230                                 break;
7231
7232                         next = ldev;
7233                         niter = &ldev->adj_list.lower;
7234                         dev_stack[cur] = now;
7235                         iter_stack[cur++] = iter;
7236                         break;
7237                 }
7238
7239                 if (!next) {
7240                         if (!cur)
7241                                 return 0;
7242                         next = dev_stack[--cur];
7243                         niter = iter_stack[cur];
7244                 }
7245
7246                 now = next;
7247                 iter = niter;
7248         }
7249
7250         return 0;
7251 }
7252 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7253
7254 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7255                                        int (*fn)(struct net_device *dev,
7256                                          struct netdev_nested_priv *priv),
7257                                        struct netdev_nested_priv *priv)
7258 {
7259         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7260         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7261         int ret, cur = 0;
7262         bool ignore;
7263
7264         now = dev;
7265         iter = &dev->adj_list.lower;
7266
7267         while (1) {
7268                 if (now != dev) {
7269                         ret = fn(now, priv);
7270                         if (ret)
7271                                 return ret;
7272                 }
7273
7274                 next = NULL;
7275                 while (1) {
7276                         ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7277                         if (!ldev)
7278                                 break;
7279                         if (ignore)
7280                                 continue;
7281
7282                         next = ldev;
7283                         niter = &ldev->adj_list.lower;
7284                         dev_stack[cur] = now;
7285                         iter_stack[cur++] = iter;
7286                         break;
7287                 }
7288
7289                 if (!next) {
7290                         if (!cur)
7291                                 return 0;
7292                         next = dev_stack[--cur];
7293                         niter = iter_stack[cur];
7294                 }
7295
7296                 now = next;
7297                 iter = niter;
7298         }
7299
7300         return 0;
7301 }
7302
7303 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7304                                              struct list_head **iter)
7305 {
7306         struct netdev_adjacent *lower;
7307
7308         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7309         if (&lower->list == &dev->adj_list.lower)
7310                 return NULL;
7311
7312         *iter = &lower->list;
7313
7314         return lower->dev;
7315 }
7316 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7317
7318 static u8 __netdev_upper_depth(struct net_device *dev)
7319 {
7320         struct net_device *udev;
7321         struct list_head *iter;
7322         u8 max_depth = 0;
7323         bool ignore;
7324
7325         for (iter = &dev->adj_list.upper,
7326              udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7327              udev;
7328              udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7329                 if (ignore)
7330                         continue;
7331                 if (max_depth < udev->upper_level)
7332                         max_depth = udev->upper_level;
7333         }
7334
7335         return max_depth;
7336 }
7337
7338 static u8 __netdev_lower_depth(struct net_device *dev)
7339 {
7340         struct net_device *ldev;
7341         struct list_head *iter;
7342         u8 max_depth = 0;
7343         bool ignore;
7344
7345         for (iter = &dev->adj_list.lower,
7346              ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7347              ldev;
7348              ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7349                 if (ignore)
7350                         continue;
7351                 if (max_depth < ldev->lower_level)
7352                         max_depth = ldev->lower_level;
7353         }
7354
7355         return max_depth;
7356 }
7357
7358 static int __netdev_update_upper_level(struct net_device *dev,
7359                                        struct netdev_nested_priv *__unused)
7360 {
7361         dev->upper_level = __netdev_upper_depth(dev) + 1;
7362         return 0;
7363 }
7364
7365 #ifdef CONFIG_LOCKDEP
7366 static LIST_HEAD(net_unlink_list);
7367
7368 static void net_unlink_todo(struct net_device *dev)
7369 {
7370         if (list_empty(&dev->unlink_list))
7371                 list_add_tail(&dev->unlink_list, &net_unlink_list);
7372 }
7373 #endif
7374
7375 static int __netdev_update_lower_level(struct net_device *dev,
7376                                        struct netdev_nested_priv *priv)
7377 {
7378         dev->lower_level = __netdev_lower_depth(dev) + 1;
7379
7380 #ifdef CONFIG_LOCKDEP
7381         if (!priv)
7382                 return 0;
7383
7384         if (priv->flags & NESTED_SYNC_IMM)
7385                 dev->nested_level = dev->lower_level - 1;
7386         if (priv->flags & NESTED_SYNC_TODO)
7387                 net_unlink_todo(dev);
7388 #endif
7389         return 0;
7390 }
7391
7392 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7393                                   int (*fn)(struct net_device *dev,
7394                                             struct netdev_nested_priv *priv),
7395                                   struct netdev_nested_priv *priv)
7396 {
7397         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7398         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7399         int ret, cur = 0;
7400
7401         now = dev;
7402         iter = &dev->adj_list.lower;
7403
7404         while (1) {
7405                 if (now != dev) {
7406                         ret = fn(now, priv);
7407                         if (ret)
7408                                 return ret;
7409                 }
7410
7411                 next = NULL;
7412                 while (1) {
7413                         ldev = netdev_next_lower_dev_rcu(now, &iter);
7414                         if (!ldev)
7415                                 break;
7416
7417                         next = ldev;
7418                         niter = &ldev->adj_list.lower;
7419                         dev_stack[cur] = now;
7420                         iter_stack[cur++] = iter;
7421                         break;
7422                 }
7423
7424                 if (!next) {
7425                         if (!cur)
7426                                 return 0;
7427                         next = dev_stack[--cur];
7428                         niter = iter_stack[cur];
7429                 }
7430
7431                 now = next;
7432                 iter = niter;
7433         }
7434
7435         return 0;
7436 }
7437 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7438
7439 /**
7440  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7441  *                                     lower neighbour list, RCU
7442  *                                     variant
7443  * @dev: device
7444  *
7445  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7446  * list. The caller must hold RCU read lock.
7447  */
7448 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7449 {
7450         struct netdev_adjacent *lower;
7451
7452         lower = list_first_or_null_rcu(&dev->adj_list.lower,
7453                         struct netdev_adjacent, list);
7454         if (lower)
7455                 return lower->private;
7456         return NULL;
7457 }
7458 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7459
7460 /**
7461  * netdev_master_upper_dev_get_rcu - Get master upper device
7462  * @dev: device
7463  *
7464  * Find a master upper device and return pointer to it or NULL in case
7465  * it's not there. The caller must hold the RCU read lock.
7466  */
7467 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7468 {
7469         struct netdev_adjacent *upper;
7470
7471         upper = list_first_or_null_rcu(&dev->adj_list.upper,
7472                                        struct netdev_adjacent, list);
7473         if (upper && likely(upper->master))
7474                 return upper->dev;
7475         return NULL;
7476 }
7477 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7478
7479 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7480                               struct net_device *adj_dev,
7481                               struct list_head *dev_list)
7482 {
7483         char linkname[IFNAMSIZ+7];
7484
7485         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7486                 "upper_%s" : "lower_%s", adj_dev->name);
7487         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7488                                  linkname);
7489 }
7490 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7491                                char *name,
7492                                struct list_head *dev_list)
7493 {
7494         char linkname[IFNAMSIZ+7];
7495
7496         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7497                 "upper_%s" : "lower_%s", name);
7498         sysfs_remove_link(&(dev->dev.kobj), linkname);
7499 }
7500
7501 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7502                                                  struct net_device *adj_dev,
7503                                                  struct list_head *dev_list)
7504 {
7505         return (dev_list == &dev->adj_list.upper ||
7506                 dev_list == &dev->adj_list.lower) &&
7507                 net_eq(dev_net(dev), dev_net(adj_dev));
7508 }
7509
7510 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7511                                         struct net_device *adj_dev,
7512                                         struct list_head *dev_list,
7513                                         void *private, bool master)
7514 {
7515         struct netdev_adjacent *adj;
7516         int ret;
7517
7518         adj = __netdev_find_adj(adj_dev, dev_list);
7519
7520         if (adj) {
7521                 adj->ref_nr += 1;
7522                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7523                          dev->name, adj_dev->name, adj->ref_nr);
7524
7525                 return 0;
7526         }
7527
7528         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7529         if (!adj)
7530                 return -ENOMEM;
7531
7532         adj->dev = adj_dev;
7533         adj->master = master;
7534         adj->ref_nr = 1;
7535         adj->private = private;
7536         adj->ignore = false;
7537         netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7538
7539         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7540                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7541
7542         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7543                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7544                 if (ret)
7545                         goto free_adj;
7546         }
7547
7548         /* Ensure that master link is always the first item in list. */
7549         if (master) {
7550                 ret = sysfs_create_link(&(dev->dev.kobj),
7551                                         &(adj_dev->dev.kobj), "master");
7552                 if (ret)
7553                         goto remove_symlinks;
7554
7555                 list_add_rcu(&adj->list, dev_list);
7556         } else {
7557                 list_add_tail_rcu(&adj->list, dev_list);
7558         }
7559
7560         return 0;
7561
7562 remove_symlinks:
7563         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7564                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7565 free_adj:
7566         netdev_put(adj_dev, &adj->dev_tracker);
7567         kfree(adj);
7568
7569         return ret;
7570 }
7571
7572 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7573                                          struct net_device *adj_dev,
7574                                          u16 ref_nr,
7575                                          struct list_head *dev_list)
7576 {
7577         struct netdev_adjacent *adj;
7578
7579         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7580                  dev->name, adj_dev->name, ref_nr);
7581
7582         adj = __netdev_find_adj(adj_dev, dev_list);
7583
7584         if (!adj) {
7585                 pr_err("Adjacency does not exist for device %s from %s\n",
7586                        dev->name, adj_dev->name);
7587                 WARN_ON(1);
7588                 return;
7589         }
7590
7591         if (adj->ref_nr > ref_nr) {
7592                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7593                          dev->name, adj_dev->name, ref_nr,
7594                          adj->ref_nr - ref_nr);
7595                 adj->ref_nr -= ref_nr;
7596                 return;
7597         }
7598
7599         if (adj->master)
7600                 sysfs_remove_link(&(dev->dev.kobj), "master");
7601
7602         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7603                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7604
7605         list_del_rcu(&adj->list);
7606         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7607                  adj_dev->name, dev->name, adj_dev->name);
7608         netdev_put(adj_dev, &adj->dev_tracker);
7609         kfree_rcu(adj, rcu);
7610 }
7611
7612 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7613                                             struct net_device *upper_dev,
7614                                             struct list_head *up_list,
7615                                             struct list_head *down_list,
7616                                             void *private, bool master)
7617 {
7618         int ret;
7619
7620         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7621                                            private, master);
7622         if (ret)
7623                 return ret;
7624
7625         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7626                                            private, false);
7627         if (ret) {
7628                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7629                 return ret;
7630         }
7631
7632         return 0;
7633 }
7634
7635 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7636                                                struct net_device *upper_dev,
7637                                                u16 ref_nr,
7638                                                struct list_head *up_list,
7639                                                struct list_head *down_list)
7640 {
7641         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7642         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7643 }
7644
7645 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7646                                                 struct net_device *upper_dev,
7647                                                 void *private, bool master)
7648 {
7649         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7650                                                 &dev->adj_list.upper,
7651                                                 &upper_dev->adj_list.lower,
7652                                                 private, master);
7653 }
7654
7655 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7656                                                    struct net_device *upper_dev)
7657 {
7658         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7659                                            &dev->adj_list.upper,
7660                                            &upper_dev->adj_list.lower);
7661 }
7662
7663 static int __netdev_upper_dev_link(struct net_device *dev,
7664                                    struct net_device *upper_dev, bool master,
7665                                    void *upper_priv, void *upper_info,
7666                                    struct netdev_nested_priv *priv,
7667                                    struct netlink_ext_ack *extack)
7668 {
7669         struct netdev_notifier_changeupper_info changeupper_info = {
7670                 .info = {
7671                         .dev = dev,
7672                         .extack = extack,
7673                 },
7674                 .upper_dev = upper_dev,
7675                 .master = master,
7676                 .linking = true,
7677                 .upper_info = upper_info,
7678         };
7679         struct net_device *master_dev;
7680         int ret = 0;
7681
7682         ASSERT_RTNL();
7683
7684         if (dev == upper_dev)
7685                 return -EBUSY;
7686
7687         /* To prevent loops, check if dev is not upper device to upper_dev. */
7688         if (__netdev_has_upper_dev(upper_dev, dev))
7689                 return -EBUSY;
7690
7691         if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7692                 return -EMLINK;
7693
7694         if (!master) {
7695                 if (__netdev_has_upper_dev(dev, upper_dev))
7696                         return -EEXIST;
7697         } else {
7698                 master_dev = __netdev_master_upper_dev_get(dev);
7699                 if (master_dev)
7700                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
7701         }
7702
7703         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7704                                             &changeupper_info.info);
7705         ret = notifier_to_errno(ret);
7706         if (ret)
7707                 return ret;
7708
7709         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7710                                                    master);
7711         if (ret)
7712                 return ret;
7713
7714         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7715                                             &changeupper_info.info);
7716         ret = notifier_to_errno(ret);
7717         if (ret)
7718                 goto rollback;
7719
7720         __netdev_update_upper_level(dev, NULL);
7721         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7722
7723         __netdev_update_lower_level(upper_dev, priv);
7724         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7725                                     priv);
7726
7727         return 0;
7728
7729 rollback:
7730         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7731
7732         return ret;
7733 }
7734
7735 /**
7736  * netdev_upper_dev_link - Add a link to the upper device
7737  * @dev: device
7738  * @upper_dev: new upper device
7739  * @extack: netlink extended ack
7740  *
7741  * Adds a link to device which is upper to this one. The caller must hold
7742  * the RTNL lock. On a failure a negative errno code is returned.
7743  * On success the reference counts are adjusted and the function
7744  * returns zero.
7745  */
7746 int netdev_upper_dev_link(struct net_device *dev,
7747                           struct net_device *upper_dev,
7748                           struct netlink_ext_ack *extack)
7749 {
7750         struct netdev_nested_priv priv = {
7751                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7752                 .data = NULL,
7753         };
7754
7755         return __netdev_upper_dev_link(dev, upper_dev, false,
7756                                        NULL, NULL, &priv, extack);
7757 }
7758 EXPORT_SYMBOL(netdev_upper_dev_link);
7759
7760 /**
7761  * netdev_master_upper_dev_link - Add a master link to the upper device
7762  * @dev: device
7763  * @upper_dev: new upper device
7764  * @upper_priv: upper device private
7765  * @upper_info: upper info to be passed down via notifier
7766  * @extack: netlink extended ack
7767  *
7768  * Adds a link to device which is upper to this one. In this case, only
7769  * one master upper device can be linked, although other non-master devices
7770  * might be linked as well. The caller must hold the RTNL lock.
7771  * On a failure a negative errno code is returned. On success the reference
7772  * counts are adjusted and the function returns zero.
7773  */
7774 int netdev_master_upper_dev_link(struct net_device *dev,
7775                                  struct net_device *upper_dev,
7776                                  void *upper_priv, void *upper_info,
7777                                  struct netlink_ext_ack *extack)
7778 {
7779         struct netdev_nested_priv priv = {
7780                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7781                 .data = NULL,
7782         };
7783
7784         return __netdev_upper_dev_link(dev, upper_dev, true,
7785                                        upper_priv, upper_info, &priv, extack);
7786 }
7787 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7788
7789 static void __netdev_upper_dev_unlink(struct net_device *dev,
7790                                       struct net_device *upper_dev,
7791                                       struct netdev_nested_priv *priv)
7792 {
7793         struct netdev_notifier_changeupper_info changeupper_info = {
7794                 .info = {
7795                         .dev = dev,
7796                 },
7797                 .upper_dev = upper_dev,
7798                 .linking = false,
7799         };
7800
7801         ASSERT_RTNL();
7802
7803         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7804
7805         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7806                                       &changeupper_info.info);
7807
7808         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7809
7810         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7811                                       &changeupper_info.info);
7812
7813         __netdev_update_upper_level(dev, NULL);
7814         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7815
7816         __netdev_update_lower_level(upper_dev, priv);
7817         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7818                                     priv);
7819 }
7820
7821 /**
7822  * netdev_upper_dev_unlink - Removes a link to upper device
7823  * @dev: device
7824  * @upper_dev: new upper device
7825  *
7826  * Removes a link to device which is upper to this one. The caller must hold
7827  * the RTNL lock.
7828  */
7829 void netdev_upper_dev_unlink(struct net_device *dev,
7830                              struct net_device *upper_dev)
7831 {
7832         struct netdev_nested_priv priv = {
7833                 .flags = NESTED_SYNC_TODO,
7834                 .data = NULL,
7835         };
7836
7837         __netdev_upper_dev_unlink(dev, upper_dev, &priv);
7838 }
7839 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7840
7841 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7842                                       struct net_device *lower_dev,
7843                                       bool val)
7844 {
7845         struct netdev_adjacent *adj;
7846
7847         adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7848         if (adj)
7849                 adj->ignore = val;
7850
7851         adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7852         if (adj)
7853                 adj->ignore = val;
7854 }
7855
7856 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7857                                         struct net_device *lower_dev)
7858 {
7859         __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7860 }
7861
7862 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7863                                        struct net_device *lower_dev)
7864 {
7865         __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7866 }
7867
7868 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7869                                    struct net_device *new_dev,
7870                                    struct net_device *dev,
7871                                    struct netlink_ext_ack *extack)
7872 {
7873         struct netdev_nested_priv priv = {
7874                 .flags = 0,
7875                 .data = NULL,
7876         };
7877         int err;
7878
7879         if (!new_dev)
7880                 return 0;
7881
7882         if (old_dev && new_dev != old_dev)
7883                 netdev_adjacent_dev_disable(dev, old_dev);
7884         err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7885                                       extack);
7886         if (err) {
7887                 if (old_dev && new_dev != old_dev)
7888                         netdev_adjacent_dev_enable(dev, old_dev);
7889                 return err;
7890         }
7891
7892         return 0;
7893 }
7894 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7895
7896 void netdev_adjacent_change_commit(struct net_device *old_dev,
7897                                    struct net_device *new_dev,
7898                                    struct net_device *dev)
7899 {
7900         struct netdev_nested_priv priv = {
7901                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7902                 .data = NULL,
7903         };
7904
7905         if (!new_dev || !old_dev)
7906                 return;
7907
7908         if (new_dev == old_dev)
7909                 return;
7910
7911         netdev_adjacent_dev_enable(dev, old_dev);
7912         __netdev_upper_dev_unlink(old_dev, dev, &priv);
7913 }
7914 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7915
7916 void netdev_adjacent_change_abort(struct net_device *old_dev,
7917                                   struct net_device *new_dev,
7918                                   struct net_device *dev)
7919 {
7920         struct netdev_nested_priv priv = {
7921                 .flags = 0,
7922                 .data = NULL,
7923         };
7924
7925         if (!new_dev)
7926                 return;
7927
7928         if (old_dev && new_dev != old_dev)
7929                 netdev_adjacent_dev_enable(dev, old_dev);
7930
7931         __netdev_upper_dev_unlink(new_dev, dev, &priv);
7932 }
7933 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7934
7935 /**
7936  * netdev_bonding_info_change - Dispatch event about slave change
7937  * @dev: device
7938  * @bonding_info: info to dispatch
7939  *
7940  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7941  * The caller must hold the RTNL lock.
7942  */
7943 void netdev_bonding_info_change(struct net_device *dev,
7944                                 struct netdev_bonding_info *bonding_info)
7945 {
7946         struct netdev_notifier_bonding_info info = {
7947                 .info.dev = dev,
7948         };
7949
7950         memcpy(&info.bonding_info, bonding_info,
7951                sizeof(struct netdev_bonding_info));
7952         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7953                                       &info.info);
7954 }
7955 EXPORT_SYMBOL(netdev_bonding_info_change);
7956
7957 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
7958                                            struct netlink_ext_ack *extack)
7959 {
7960         struct netdev_notifier_offload_xstats_info info = {
7961                 .info.dev = dev,
7962                 .info.extack = extack,
7963                 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7964         };
7965         int err;
7966         int rc;
7967
7968         dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
7969                                          GFP_KERNEL);
7970         if (!dev->offload_xstats_l3)
7971                 return -ENOMEM;
7972
7973         rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
7974                                                   NETDEV_OFFLOAD_XSTATS_DISABLE,
7975                                                   &info.info);
7976         err = notifier_to_errno(rc);
7977         if (err)
7978                 goto free_stats;
7979
7980         return 0;
7981
7982 free_stats:
7983         kfree(dev->offload_xstats_l3);
7984         dev->offload_xstats_l3 = NULL;
7985         return err;
7986 }
7987
7988 int netdev_offload_xstats_enable(struct net_device *dev,
7989                                  enum netdev_offload_xstats_type type,
7990                                  struct netlink_ext_ack *extack)
7991 {
7992         ASSERT_RTNL();
7993
7994         if (netdev_offload_xstats_enabled(dev, type))
7995                 return -EALREADY;
7996
7997         switch (type) {
7998         case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7999                 return netdev_offload_xstats_enable_l3(dev, extack);
8000         }
8001
8002         WARN_ON(1);
8003         return -EINVAL;
8004 }
8005 EXPORT_SYMBOL(netdev_offload_xstats_enable);
8006
8007 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8008 {
8009         struct netdev_notifier_offload_xstats_info info = {
8010                 .info.dev = dev,
8011                 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8012         };
8013
8014         call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8015                                       &info.info);
8016         kfree(dev->offload_xstats_l3);
8017         dev->offload_xstats_l3 = NULL;
8018 }
8019
8020 int netdev_offload_xstats_disable(struct net_device *dev,
8021                                   enum netdev_offload_xstats_type type)
8022 {
8023         ASSERT_RTNL();
8024
8025         if (!netdev_offload_xstats_enabled(dev, type))
8026                 return -EALREADY;
8027
8028         switch (type) {
8029         case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8030                 netdev_offload_xstats_disable_l3(dev);
8031                 return 0;
8032         }
8033
8034         WARN_ON(1);
8035         return -EINVAL;
8036 }
8037 EXPORT_SYMBOL(netdev_offload_xstats_disable);
8038
8039 static void netdev_offload_xstats_disable_all(struct net_device *dev)
8040 {
8041         netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8042 }
8043
8044 static struct rtnl_hw_stats64 *
8045 netdev_offload_xstats_get_ptr(const struct net_device *dev,
8046                               enum netdev_offload_xstats_type type)
8047 {
8048         switch (type) {
8049         case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8050                 return dev->offload_xstats_l3;
8051         }
8052
8053         WARN_ON(1);
8054         return NULL;
8055 }
8056
8057 bool netdev_offload_xstats_enabled(const struct net_device *dev,
8058                                    enum netdev_offload_xstats_type type)
8059 {
8060         ASSERT_RTNL();
8061
8062         return netdev_offload_xstats_get_ptr(dev, type);
8063 }
8064 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8065
8066 struct netdev_notifier_offload_xstats_ru {
8067         bool used;
8068 };
8069
8070 struct netdev_notifier_offload_xstats_rd {
8071         struct rtnl_hw_stats64 stats;
8072         bool used;
8073 };
8074
8075 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8076                                   const struct rtnl_hw_stats64 *src)
8077 {
8078         dest->rx_packets          += src->rx_packets;
8079         dest->tx_packets          += src->tx_packets;
8080         dest->rx_bytes            += src->rx_bytes;
8081         dest->tx_bytes            += src->tx_bytes;
8082         dest->rx_errors           += src->rx_errors;
8083         dest->tx_errors           += src->tx_errors;
8084         dest->rx_dropped          += src->rx_dropped;
8085         dest->tx_dropped          += src->tx_dropped;
8086         dest->multicast           += src->multicast;
8087 }
8088
8089 static int netdev_offload_xstats_get_used(struct net_device *dev,
8090                                           enum netdev_offload_xstats_type type,
8091                                           bool *p_used,
8092                                           struct netlink_ext_ack *extack)
8093 {
8094         struct netdev_notifier_offload_xstats_ru report_used = {};
8095         struct netdev_notifier_offload_xstats_info info = {
8096                 .info.dev = dev,
8097                 .info.extack = extack,
8098                 .type = type,
8099                 .report_used = &report_used,
8100         };
8101         int rc;
8102
8103         WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8104         rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8105                                            &info.info);
8106         *p_used = report_used.used;
8107         return notifier_to_errno(rc);
8108 }
8109
8110 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8111                                            enum netdev_offload_xstats_type type,
8112                                            struct rtnl_hw_stats64 *p_stats,
8113                                            bool *p_used,
8114                                            struct netlink_ext_ack *extack)
8115 {
8116         struct netdev_notifier_offload_xstats_rd report_delta = {};
8117         struct netdev_notifier_offload_xstats_info info = {
8118                 .info.dev = dev,
8119                 .info.extack = extack,
8120                 .type = type,
8121                 .report_delta = &report_delta,
8122         };
8123         struct rtnl_hw_stats64 *stats;
8124         int rc;
8125
8126         stats = netdev_offload_xstats_get_ptr(dev, type);
8127         if (WARN_ON(!stats))
8128                 return -EINVAL;
8129
8130         rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8131                                            &info.info);
8132
8133         /* Cache whatever we got, even if there was an error, otherwise the
8134          * successful stats retrievals would get lost.
8135          */
8136         netdev_hw_stats64_add(stats, &report_delta.stats);
8137
8138         if (p_stats)
8139                 *p_stats = *stats;
8140         *p_used = report_delta.used;
8141
8142         return notifier_to_errno(rc);
8143 }
8144
8145 int netdev_offload_xstats_get(struct net_device *dev,
8146                               enum netdev_offload_xstats_type type,
8147                               struct rtnl_hw_stats64 *p_stats, bool *p_used,
8148                               struct netlink_ext_ack *extack)
8149 {
8150         ASSERT_RTNL();
8151
8152         if (p_stats)
8153                 return netdev_offload_xstats_get_stats(dev, type, p_stats,
8154                                                        p_used, extack);
8155         else
8156                 return netdev_offload_xstats_get_used(dev, type, p_used,
8157                                                       extack);
8158 }
8159 EXPORT_SYMBOL(netdev_offload_xstats_get);
8160
8161 void
8162 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8163                                    const struct rtnl_hw_stats64 *stats)
8164 {
8165         report_delta->used = true;
8166         netdev_hw_stats64_add(&report_delta->stats, stats);
8167 }
8168 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8169
8170 void
8171 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8172 {
8173         report_used->used = true;
8174 }
8175 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8176
8177 void netdev_offload_xstats_push_delta(struct net_device *dev,
8178                                       enum netdev_offload_xstats_type type,
8179                                       const struct rtnl_hw_stats64 *p_stats)
8180 {
8181         struct rtnl_hw_stats64 *stats;
8182
8183         ASSERT_RTNL();
8184
8185         stats = netdev_offload_xstats_get_ptr(dev, type);
8186         if (WARN_ON(!stats))
8187                 return;
8188
8189         netdev_hw_stats64_add(stats, p_stats);
8190 }
8191 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8192
8193 /**
8194  * netdev_get_xmit_slave - Get the xmit slave of master device
8195  * @dev: device
8196  * @skb: The packet
8197  * @all_slaves: assume all the slaves are active
8198  *
8199  * The reference counters are not incremented so the caller must be
8200  * careful with locks. The caller must hold RCU lock.
8201  * %NULL is returned if no slave is found.
8202  */
8203
8204 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8205                                          struct sk_buff *skb,
8206                                          bool all_slaves)
8207 {
8208         const struct net_device_ops *ops = dev->netdev_ops;
8209
8210         if (!ops->ndo_get_xmit_slave)
8211                 return NULL;
8212         return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8213 }
8214 EXPORT_SYMBOL(netdev_get_xmit_slave);
8215
8216 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8217                                                   struct sock *sk)
8218 {
8219         const struct net_device_ops *ops = dev->netdev_ops;
8220
8221         if (!ops->ndo_sk_get_lower_dev)
8222                 return NULL;
8223         return ops->ndo_sk_get_lower_dev(dev, sk);
8224 }
8225
8226 /**
8227  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8228  * @dev: device
8229  * @sk: the socket
8230  *
8231  * %NULL is returned if no lower device is found.
8232  */
8233
8234 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8235                                             struct sock *sk)
8236 {
8237         struct net_device *lower;
8238
8239         lower = netdev_sk_get_lower_dev(dev, sk);
8240         while (lower) {
8241                 dev = lower;
8242                 lower = netdev_sk_get_lower_dev(dev, sk);
8243         }
8244
8245         return dev;
8246 }
8247 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8248
8249 static void netdev_adjacent_add_links(struct net_device *dev)
8250 {
8251         struct netdev_adjacent *iter;
8252
8253         struct net *net = dev_net(dev);
8254
8255         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8256                 if (!net_eq(net, dev_net(iter->dev)))
8257                         continue;
8258                 netdev_adjacent_sysfs_add(iter->dev, dev,
8259                                           &iter->dev->adj_list.lower);
8260                 netdev_adjacent_sysfs_add(dev, iter->dev,
8261                                           &dev->adj_list.upper);
8262         }
8263
8264         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8265                 if (!net_eq(net, dev_net(iter->dev)))
8266                         continue;
8267                 netdev_adjacent_sysfs_add(iter->dev, dev,
8268                                           &iter->dev->adj_list.upper);
8269                 netdev_adjacent_sysfs_add(dev, iter->dev,
8270                                           &dev->adj_list.lower);
8271         }
8272 }
8273
8274 static void netdev_adjacent_del_links(struct net_device *dev)
8275 {
8276         struct netdev_adjacent *iter;
8277
8278         struct net *net = dev_net(dev);
8279
8280         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8281                 if (!net_eq(net, dev_net(iter->dev)))
8282                         continue;
8283                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8284                                           &iter->dev->adj_list.lower);
8285                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8286                                           &dev->adj_list.upper);
8287         }
8288
8289         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8290                 if (!net_eq(net, dev_net(iter->dev)))
8291                         continue;
8292                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8293                                           &iter->dev->adj_list.upper);
8294                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8295                                           &dev->adj_list.lower);
8296         }
8297 }
8298
8299 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8300 {
8301         struct netdev_adjacent *iter;
8302
8303         struct net *net = dev_net(dev);
8304
8305         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8306                 if (!net_eq(net, dev_net(iter->dev)))
8307                         continue;
8308                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8309                                           &iter->dev->adj_list.lower);
8310                 netdev_adjacent_sysfs_add(iter->dev, dev,
8311                                           &iter->dev->adj_list.lower);
8312         }
8313
8314         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8315                 if (!net_eq(net, dev_net(iter->dev)))
8316                         continue;
8317                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8318                                           &iter->dev->adj_list.upper);
8319                 netdev_adjacent_sysfs_add(iter->dev, dev,
8320                                           &iter->dev->adj_list.upper);
8321         }
8322 }
8323
8324 void *netdev_lower_dev_get_private(struct net_device *dev,
8325                                    struct net_device *lower_dev)
8326 {
8327         struct netdev_adjacent *lower;
8328
8329         if (!lower_dev)
8330                 return NULL;
8331         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8332         if (!lower)
8333                 return NULL;
8334
8335         return lower->private;
8336 }
8337 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8338
8339
8340 /**
8341  * netdev_lower_state_changed - Dispatch event about lower device state change
8342  * @lower_dev: device
8343  * @lower_state_info: state to dispatch
8344  *
8345  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8346  * The caller must hold the RTNL lock.
8347  */
8348 void netdev_lower_state_changed(struct net_device *lower_dev,
8349                                 void *lower_state_info)
8350 {
8351         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8352                 .info.dev = lower_dev,
8353         };
8354
8355         ASSERT_RTNL();
8356         changelowerstate_info.lower_state_info = lower_state_info;
8357         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8358                                       &changelowerstate_info.info);
8359 }
8360 EXPORT_SYMBOL(netdev_lower_state_changed);
8361
8362 static void dev_change_rx_flags(struct net_device *dev, int flags)
8363 {
8364         const struct net_device_ops *ops = dev->netdev_ops;
8365
8366         if (ops->ndo_change_rx_flags)
8367                 ops->ndo_change_rx_flags(dev, flags);
8368 }
8369
8370 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8371 {
8372         unsigned int old_flags = dev->flags;
8373         kuid_t uid;
8374         kgid_t gid;
8375
8376         ASSERT_RTNL();
8377
8378         dev->flags |= IFF_PROMISC;
8379         dev->promiscuity += inc;
8380         if (dev->promiscuity == 0) {
8381                 /*
8382                  * Avoid overflow.
8383                  * If inc causes overflow, untouch promisc and return error.
8384                  */
8385                 if (inc < 0)
8386                         dev->flags &= ~IFF_PROMISC;
8387                 else {
8388                         dev->promiscuity -= inc;
8389                         netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8390                         return -EOVERFLOW;
8391                 }
8392         }
8393         if (dev->flags != old_flags) {
8394                 netdev_info(dev, "%s promiscuous mode\n",
8395                             dev->flags & IFF_PROMISC ? "entered" : "left");
8396                 if (audit_enabled) {
8397                         current_uid_gid(&uid, &gid);
8398                         audit_log(audit_context(), GFP_ATOMIC,
8399                                   AUDIT_ANOM_PROMISCUOUS,
8400                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8401                                   dev->name, (dev->flags & IFF_PROMISC),
8402                                   (old_flags & IFF_PROMISC),
8403                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
8404                                   from_kuid(&init_user_ns, uid),
8405                                   from_kgid(&init_user_ns, gid),
8406                                   audit_get_sessionid(current));
8407                 }
8408
8409                 dev_change_rx_flags(dev, IFF_PROMISC);
8410         }
8411         if (notify)
8412                 __dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
8413         return 0;
8414 }
8415
8416 /**
8417  *      dev_set_promiscuity     - update promiscuity count on a device
8418  *      @dev: device
8419  *      @inc: modifier
8420  *
8421  *      Add or remove promiscuity from a device. While the count in the device
8422  *      remains above zero the interface remains promiscuous. Once it hits zero
8423  *      the device reverts back to normal filtering operation. A negative inc
8424  *      value is used to drop promiscuity on the device.
8425  *      Return 0 if successful or a negative errno code on error.
8426  */
8427 int dev_set_promiscuity(struct net_device *dev, int inc)
8428 {
8429         unsigned int old_flags = dev->flags;
8430         int err;
8431
8432         err = __dev_set_promiscuity(dev, inc, true);
8433         if (err < 0)
8434                 return err;
8435         if (dev->flags != old_flags)
8436                 dev_set_rx_mode(dev);
8437         return err;
8438 }
8439 EXPORT_SYMBOL(dev_set_promiscuity);
8440
8441 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8442 {
8443         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8444
8445         ASSERT_RTNL();
8446
8447         dev->flags |= IFF_ALLMULTI;
8448         dev->allmulti += inc;
8449         if (dev->allmulti == 0) {
8450                 /*
8451                  * Avoid overflow.
8452                  * If inc causes overflow, untouch allmulti and return error.
8453                  */
8454                 if (inc < 0)
8455                         dev->flags &= ~IFF_ALLMULTI;
8456                 else {
8457                         dev->allmulti -= inc;
8458                         netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8459                         return -EOVERFLOW;
8460                 }
8461         }
8462         if (dev->flags ^ old_flags) {
8463                 netdev_info(dev, "%s allmulticast mode\n",
8464                             dev->flags & IFF_ALLMULTI ? "entered" : "left");
8465                 dev_change_rx_flags(dev, IFF_ALLMULTI);
8466                 dev_set_rx_mode(dev);
8467                 if (notify)
8468                         __dev_notify_flags(dev, old_flags,
8469                                            dev->gflags ^ old_gflags, 0, NULL);
8470         }
8471         return 0;
8472 }
8473
8474 /**
8475  *      dev_set_allmulti        - update allmulti count on a device
8476  *      @dev: device
8477  *      @inc: modifier
8478  *
8479  *      Add or remove reception of all multicast frames to a device. While the
8480  *      count in the device remains above zero the interface remains listening
8481  *      to all interfaces. Once it hits zero the device reverts back to normal
8482  *      filtering operation. A negative @inc value is used to drop the counter
8483  *      when releasing a resource needing all multicasts.
8484  *      Return 0 if successful or a negative errno code on error.
8485  */
8486
8487 int dev_set_allmulti(struct net_device *dev, int inc)
8488 {
8489         return __dev_set_allmulti(dev, inc, true);
8490 }
8491 EXPORT_SYMBOL(dev_set_allmulti);
8492
8493 /*
8494  *      Upload unicast and multicast address lists to device and
8495  *      configure RX filtering. When the device doesn't support unicast
8496  *      filtering it is put in promiscuous mode while unicast addresses
8497  *      are present.
8498  */
8499 void __dev_set_rx_mode(struct net_device *dev)
8500 {
8501         const struct net_device_ops *ops = dev->netdev_ops;
8502
8503         /* dev_open will call this function so the list will stay sane. */
8504         if (!(dev->flags&IFF_UP))
8505                 return;
8506
8507         if (!netif_device_present(dev))
8508                 return;
8509
8510         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8511                 /* Unicast addresses changes may only happen under the rtnl,
8512                  * therefore calling __dev_set_promiscuity here is safe.
8513                  */
8514                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8515                         __dev_set_promiscuity(dev, 1, false);
8516                         dev->uc_promisc = true;
8517                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8518                         __dev_set_promiscuity(dev, -1, false);
8519                         dev->uc_promisc = false;
8520                 }
8521         }
8522
8523         if (ops->ndo_set_rx_mode)
8524                 ops->ndo_set_rx_mode(dev);
8525 }
8526
8527 void dev_set_rx_mode(struct net_device *dev)
8528 {
8529         netif_addr_lock_bh(dev);
8530         __dev_set_rx_mode(dev);
8531         netif_addr_unlock_bh(dev);
8532 }
8533
8534 /**
8535  *      dev_get_flags - get flags reported to userspace
8536  *      @dev: device
8537  *
8538  *      Get the combination of flag bits exported through APIs to userspace.
8539  */
8540 unsigned int dev_get_flags(const struct net_device *dev)
8541 {
8542         unsigned int flags;
8543
8544         flags = (dev->flags & ~(IFF_PROMISC |
8545                                 IFF_ALLMULTI |
8546                                 IFF_RUNNING |
8547                                 IFF_LOWER_UP |
8548                                 IFF_DORMANT)) |
8549                 (dev->gflags & (IFF_PROMISC |
8550                                 IFF_ALLMULTI));
8551
8552         if (netif_running(dev)) {
8553                 if (netif_oper_up(dev))
8554                         flags |= IFF_RUNNING;
8555                 if (netif_carrier_ok(dev))
8556                         flags |= IFF_LOWER_UP;
8557                 if (netif_dormant(dev))
8558                         flags |= IFF_DORMANT;
8559         }
8560
8561         return flags;
8562 }
8563 EXPORT_SYMBOL(dev_get_flags);
8564
8565 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8566                        struct netlink_ext_ack *extack)
8567 {
8568         unsigned int old_flags = dev->flags;
8569         int ret;
8570
8571         ASSERT_RTNL();
8572
8573         /*
8574          *      Set the flags on our device.
8575          */
8576
8577         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8578                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8579                                IFF_AUTOMEDIA)) |
8580                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8581                                     IFF_ALLMULTI));
8582
8583         /*
8584          *      Load in the correct multicast list now the flags have changed.
8585          */
8586
8587         if ((old_flags ^ flags) & IFF_MULTICAST)
8588                 dev_change_rx_flags(dev, IFF_MULTICAST);
8589
8590         dev_set_rx_mode(dev);
8591
8592         /*
8593          *      Have we downed the interface. We handle IFF_UP ourselves
8594          *      according to user attempts to set it, rather than blindly
8595          *      setting it.
8596          */
8597
8598         ret = 0;
8599         if ((old_flags ^ flags) & IFF_UP) {
8600                 if (old_flags & IFF_UP)
8601                         __dev_close(dev);
8602                 else
8603                         ret = __dev_open(dev, extack);
8604         }
8605
8606         if ((flags ^ dev->gflags) & IFF_PROMISC) {
8607                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8608                 unsigned int old_flags = dev->flags;
8609
8610                 dev->gflags ^= IFF_PROMISC;
8611
8612                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8613                         if (dev->flags != old_flags)
8614                                 dev_set_rx_mode(dev);
8615         }
8616
8617         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8618          * is important. Some (broken) drivers set IFF_PROMISC, when
8619          * IFF_ALLMULTI is requested not asking us and not reporting.
8620          */
8621         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8622                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8623
8624                 dev->gflags ^= IFF_ALLMULTI;
8625                 __dev_set_allmulti(dev, inc, false);
8626         }
8627
8628         return ret;
8629 }
8630
8631 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8632                         unsigned int gchanges, u32 portid,
8633                         const struct nlmsghdr *nlh)
8634 {
8635         unsigned int changes = dev->flags ^ old_flags;
8636
8637         if (gchanges)
8638                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
8639
8640         if (changes & IFF_UP) {
8641                 if (dev->flags & IFF_UP)
8642                         call_netdevice_notifiers(NETDEV_UP, dev);
8643                 else
8644                         call_netdevice_notifiers(NETDEV_DOWN, dev);
8645         }
8646
8647         if (dev->flags & IFF_UP &&
8648             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8649                 struct netdev_notifier_change_info change_info = {
8650                         .info = {
8651                                 .dev = dev,
8652                         },
8653                         .flags_changed = changes,
8654                 };
8655
8656                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8657         }
8658 }
8659
8660 /**
8661  *      dev_change_flags - change device settings
8662  *      @dev: device
8663  *      @flags: device state flags
8664  *      @extack: netlink extended ack
8665  *
8666  *      Change settings on device based state flags. The flags are
8667  *      in the userspace exported format.
8668  */
8669 int dev_change_flags(struct net_device *dev, unsigned int flags,
8670                      struct netlink_ext_ack *extack)
8671 {
8672         int ret;
8673         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8674
8675         ret = __dev_change_flags(dev, flags, extack);
8676         if (ret < 0)
8677                 return ret;
8678
8679         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8680         __dev_notify_flags(dev, old_flags, changes, 0, NULL);
8681         return ret;
8682 }
8683 EXPORT_SYMBOL(dev_change_flags);
8684
8685 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8686 {
8687         const struct net_device_ops *ops = dev->netdev_ops;
8688
8689         if (ops->ndo_change_mtu)
8690                 return ops->ndo_change_mtu(dev, new_mtu);
8691
8692         /* Pairs with all the lockless reads of dev->mtu in the stack */
8693         WRITE_ONCE(dev->mtu, new_mtu);
8694         return 0;
8695 }
8696 EXPORT_SYMBOL(__dev_set_mtu);
8697
8698 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8699                      struct netlink_ext_ack *extack)
8700 {
8701         /* MTU must be positive, and in range */
8702         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8703                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8704                 return -EINVAL;
8705         }
8706
8707         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8708                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8709                 return -EINVAL;
8710         }
8711         return 0;
8712 }
8713
8714 /**
8715  *      dev_set_mtu_ext - Change maximum transfer unit
8716  *      @dev: device
8717  *      @new_mtu: new transfer unit
8718  *      @extack: netlink extended ack
8719  *
8720  *      Change the maximum transfer size of the network device.
8721  */
8722 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8723                     struct netlink_ext_ack *extack)
8724 {
8725         int err, orig_mtu;
8726
8727         if (new_mtu == dev->mtu)
8728                 return 0;
8729
8730         err = dev_validate_mtu(dev, new_mtu, extack);
8731         if (err)
8732                 return err;
8733
8734         if (!netif_device_present(dev))
8735                 return -ENODEV;
8736
8737         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8738         err = notifier_to_errno(err);
8739         if (err)
8740                 return err;
8741
8742         orig_mtu = dev->mtu;
8743         err = __dev_set_mtu(dev, new_mtu);
8744
8745         if (!err) {
8746                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8747                                                    orig_mtu);
8748                 err = notifier_to_errno(err);
8749                 if (err) {
8750                         /* setting mtu back and notifying everyone again,
8751                          * so that they have a chance to revert changes.
8752                          */
8753                         __dev_set_mtu(dev, orig_mtu);
8754                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8755                                                      new_mtu);
8756                 }
8757         }
8758         return err;
8759 }
8760
8761 int dev_set_mtu(struct net_device *dev, int new_mtu)
8762 {
8763         struct netlink_ext_ack extack;
8764         int err;
8765
8766         memset(&extack, 0, sizeof(extack));
8767         err = dev_set_mtu_ext(dev, new_mtu, &extack);
8768         if (err && extack._msg)
8769                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8770         return err;
8771 }
8772 EXPORT_SYMBOL(dev_set_mtu);
8773
8774 /**
8775  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
8776  *      @dev: device
8777  *      @new_len: new tx queue length
8778  */
8779 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8780 {
8781         unsigned int orig_len = dev->tx_queue_len;
8782         int res;
8783
8784         if (new_len != (unsigned int)new_len)
8785                 return -ERANGE;
8786
8787         if (new_len != orig_len) {
8788                 dev->tx_queue_len = new_len;
8789                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8790                 res = notifier_to_errno(res);
8791                 if (res)
8792                         goto err_rollback;
8793                 res = dev_qdisc_change_tx_queue_len(dev);
8794                 if (res)
8795                         goto err_rollback;
8796         }
8797
8798         return 0;
8799
8800 err_rollback:
8801         netdev_err(dev, "refused to change device tx_queue_len\n");
8802         dev->tx_queue_len = orig_len;
8803         return res;
8804 }
8805
8806 /**
8807  *      dev_set_group - Change group this device belongs to
8808  *      @dev: device
8809  *      @new_group: group this device should belong to
8810  */
8811 void dev_set_group(struct net_device *dev, int new_group)
8812 {
8813         dev->group = new_group;
8814 }
8815
8816 /**
8817  *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8818  *      @dev: device
8819  *      @addr: new address
8820  *      @extack: netlink extended ack
8821  */
8822 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8823                               struct netlink_ext_ack *extack)
8824 {
8825         struct netdev_notifier_pre_changeaddr_info info = {
8826                 .info.dev = dev,
8827                 .info.extack = extack,
8828                 .dev_addr = addr,
8829         };
8830         int rc;
8831
8832         rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8833         return notifier_to_errno(rc);
8834 }
8835 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8836
8837 /**
8838  *      dev_set_mac_address - Change Media Access Control Address
8839  *      @dev: device
8840  *      @sa: new address
8841  *      @extack: netlink extended ack
8842  *
8843  *      Change the hardware (MAC) address of the device
8844  */
8845 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8846                         struct netlink_ext_ack *extack)
8847 {
8848         const struct net_device_ops *ops = dev->netdev_ops;
8849         int err;
8850
8851         if (!ops->ndo_set_mac_address)
8852                 return -EOPNOTSUPP;
8853         if (sa->sa_family != dev->type)
8854                 return -EINVAL;
8855         if (!netif_device_present(dev))
8856                 return -ENODEV;
8857         err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8858         if (err)
8859                 return err;
8860         if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
8861                 err = ops->ndo_set_mac_address(dev, sa);
8862                 if (err)
8863                         return err;
8864         }
8865         dev->addr_assign_type = NET_ADDR_SET;
8866         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8867         add_device_randomness(dev->dev_addr, dev->addr_len);
8868         return 0;
8869 }
8870 EXPORT_SYMBOL(dev_set_mac_address);
8871
8872 static DECLARE_RWSEM(dev_addr_sem);
8873
8874 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8875                              struct netlink_ext_ack *extack)
8876 {
8877         int ret;
8878
8879         down_write(&dev_addr_sem);
8880         ret = dev_set_mac_address(dev, sa, extack);
8881         up_write(&dev_addr_sem);
8882         return ret;
8883 }
8884 EXPORT_SYMBOL(dev_set_mac_address_user);
8885
8886 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8887 {
8888         size_t size = sizeof(sa->sa_data_min);
8889         struct net_device *dev;
8890         int ret = 0;
8891
8892         down_read(&dev_addr_sem);
8893         rcu_read_lock();
8894
8895         dev = dev_get_by_name_rcu(net, dev_name);
8896         if (!dev) {
8897                 ret = -ENODEV;
8898                 goto unlock;
8899         }
8900         if (!dev->addr_len)
8901                 memset(sa->sa_data, 0, size);
8902         else
8903                 memcpy(sa->sa_data, dev->dev_addr,
8904                        min_t(size_t, size, dev->addr_len));
8905         sa->sa_family = dev->type;
8906
8907 unlock:
8908         rcu_read_unlock();
8909         up_read(&dev_addr_sem);
8910         return ret;
8911 }
8912 EXPORT_SYMBOL(dev_get_mac_address);
8913
8914 /**
8915  *      dev_change_carrier - Change device carrier
8916  *      @dev: device
8917  *      @new_carrier: new value
8918  *
8919  *      Change device carrier
8920  */
8921 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8922 {
8923         const struct net_device_ops *ops = dev->netdev_ops;
8924
8925         if (!ops->ndo_change_carrier)
8926                 return -EOPNOTSUPP;
8927         if (!netif_device_present(dev))
8928                 return -ENODEV;
8929         return ops->ndo_change_carrier(dev, new_carrier);
8930 }
8931
8932 /**
8933  *      dev_get_phys_port_id - Get device physical port ID
8934  *      @dev: device
8935  *      @ppid: port ID
8936  *
8937  *      Get device physical port ID
8938  */
8939 int dev_get_phys_port_id(struct net_device *dev,
8940                          struct netdev_phys_item_id *ppid)
8941 {
8942         const struct net_device_ops *ops = dev->netdev_ops;
8943
8944         if (!ops->ndo_get_phys_port_id)
8945                 return -EOPNOTSUPP;
8946         return ops->ndo_get_phys_port_id(dev, ppid);
8947 }
8948
8949 /**
8950  *      dev_get_phys_port_name - Get device physical port name
8951  *      @dev: device
8952  *      @name: port name
8953  *      @len: limit of bytes to copy to name
8954  *
8955  *      Get device physical port name
8956  */
8957 int dev_get_phys_port_name(struct net_device *dev,
8958                            char *name, size_t len)
8959 {
8960         const struct net_device_ops *ops = dev->netdev_ops;
8961         int err;
8962
8963         if (ops->ndo_get_phys_port_name) {
8964                 err = ops->ndo_get_phys_port_name(dev, name, len);
8965                 if (err != -EOPNOTSUPP)
8966                         return err;
8967         }
8968         return devlink_compat_phys_port_name_get(dev, name, len);
8969 }
8970
8971 /**
8972  *      dev_get_port_parent_id - Get the device's port parent identifier
8973  *      @dev: network device
8974  *      @ppid: pointer to a storage for the port's parent identifier
8975  *      @recurse: allow/disallow recursion to lower devices
8976  *
8977  *      Get the devices's port parent identifier
8978  */
8979 int dev_get_port_parent_id(struct net_device *dev,
8980                            struct netdev_phys_item_id *ppid,
8981                            bool recurse)
8982 {
8983         const struct net_device_ops *ops = dev->netdev_ops;
8984         struct netdev_phys_item_id first = { };
8985         struct net_device *lower_dev;
8986         struct list_head *iter;
8987         int err;
8988
8989         if (ops->ndo_get_port_parent_id) {
8990                 err = ops->ndo_get_port_parent_id(dev, ppid);
8991                 if (err != -EOPNOTSUPP)
8992                         return err;
8993         }
8994
8995         err = devlink_compat_switch_id_get(dev, ppid);
8996         if (!recurse || err != -EOPNOTSUPP)
8997                 return err;
8998
8999         netdev_for_each_lower_dev(dev, lower_dev, iter) {
9000                 err = dev_get_port_parent_id(lower_dev, ppid, true);
9001                 if (err)
9002                         break;
9003                 if (!first.id_len)
9004                         first = *ppid;
9005                 else if (memcmp(&first, ppid, sizeof(*ppid)))
9006                         return -EOPNOTSUPP;
9007         }
9008
9009         return err;
9010 }
9011 EXPORT_SYMBOL(dev_get_port_parent_id);
9012
9013 /**
9014  *      netdev_port_same_parent_id - Indicate if two network devices have
9015  *      the same port parent identifier
9016  *      @a: first network device
9017  *      @b: second network device
9018  */
9019 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9020 {
9021         struct netdev_phys_item_id a_id = { };
9022         struct netdev_phys_item_id b_id = { };
9023
9024         if (dev_get_port_parent_id(a, &a_id, true) ||
9025             dev_get_port_parent_id(b, &b_id, true))
9026                 return false;
9027
9028         return netdev_phys_item_id_same(&a_id, &b_id);
9029 }
9030 EXPORT_SYMBOL(netdev_port_same_parent_id);
9031
9032 static void netdev_dpll_pin_assign(struct net_device *dev, struct dpll_pin *dpll_pin)
9033 {
9034 #if IS_ENABLED(CONFIG_DPLL)
9035         rtnl_lock();
9036         dev->dpll_pin = dpll_pin;
9037         rtnl_unlock();
9038 #endif
9039 }
9040
9041 void netdev_dpll_pin_set(struct net_device *dev, struct dpll_pin *dpll_pin)
9042 {
9043         WARN_ON(!dpll_pin);
9044         netdev_dpll_pin_assign(dev, dpll_pin);
9045 }
9046 EXPORT_SYMBOL(netdev_dpll_pin_set);
9047
9048 void netdev_dpll_pin_clear(struct net_device *dev)
9049 {
9050         netdev_dpll_pin_assign(dev, NULL);
9051 }
9052 EXPORT_SYMBOL(netdev_dpll_pin_clear);
9053
9054 /**
9055  *      dev_change_proto_down - set carrier according to proto_down.
9056  *
9057  *      @dev: device
9058  *      @proto_down: new value
9059  */
9060 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9061 {
9062         if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
9063                 return -EOPNOTSUPP;
9064         if (!netif_device_present(dev))
9065                 return -ENODEV;
9066         if (proto_down)
9067                 netif_carrier_off(dev);
9068         else
9069                 netif_carrier_on(dev);
9070         dev->proto_down = proto_down;
9071         return 0;
9072 }
9073
9074 /**
9075  *      dev_change_proto_down_reason - proto down reason
9076  *
9077  *      @dev: device
9078  *      @mask: proto down mask
9079  *      @value: proto down value
9080  */
9081 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9082                                   u32 value)
9083 {
9084         int b;
9085
9086         if (!mask) {
9087                 dev->proto_down_reason = value;
9088         } else {
9089                 for_each_set_bit(b, &mask, 32) {
9090                         if (value & (1 << b))
9091                                 dev->proto_down_reason |= BIT(b);
9092                         else
9093                                 dev->proto_down_reason &= ~BIT(b);
9094                 }
9095         }
9096 }
9097
9098 struct bpf_xdp_link {
9099         struct bpf_link link;
9100         struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9101         int flags;
9102 };
9103
9104 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9105 {
9106         if (flags & XDP_FLAGS_HW_MODE)
9107                 return XDP_MODE_HW;
9108         if (flags & XDP_FLAGS_DRV_MODE)
9109                 return XDP_MODE_DRV;
9110         if (flags & XDP_FLAGS_SKB_MODE)
9111                 return XDP_MODE_SKB;
9112         return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9113 }
9114
9115 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9116 {
9117         switch (mode) {
9118         case XDP_MODE_SKB:
9119                 return generic_xdp_install;
9120         case XDP_MODE_DRV:
9121         case XDP_MODE_HW:
9122                 return dev->netdev_ops->ndo_bpf;
9123         default:
9124                 return NULL;
9125         }
9126 }
9127
9128 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9129                                          enum bpf_xdp_mode mode)
9130 {
9131         return dev->xdp_state[mode].link;
9132 }
9133
9134 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9135                                      enum bpf_xdp_mode mode)
9136 {
9137         struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9138
9139         if (link)
9140                 return link->link.prog;
9141         return dev->xdp_state[mode].prog;
9142 }
9143
9144 u8 dev_xdp_prog_count(struct net_device *dev)
9145 {
9146         u8 count = 0;
9147         int i;
9148
9149         for (i = 0; i < __MAX_XDP_MODE; i++)
9150                 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9151                         count++;
9152         return count;
9153 }
9154 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9155
9156 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9157 {
9158         struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9159
9160         return prog ? prog->aux->id : 0;
9161 }
9162
9163 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9164                              struct bpf_xdp_link *link)
9165 {
9166         dev->xdp_state[mode].link = link;
9167         dev->xdp_state[mode].prog = NULL;
9168 }
9169
9170 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9171                              struct bpf_prog *prog)
9172 {
9173         dev->xdp_state[mode].link = NULL;
9174         dev->xdp_state[mode].prog = prog;
9175 }
9176
9177 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9178                            bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9179                            u32 flags, struct bpf_prog *prog)
9180 {
9181         struct netdev_bpf xdp;
9182         int err;
9183
9184         memset(&xdp, 0, sizeof(xdp));
9185         xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9186         xdp.extack = extack;
9187         xdp.flags = flags;
9188         xdp.prog = prog;
9189
9190         /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9191          * "moved" into driver), so they don't increment it on their own, but
9192          * they do decrement refcnt when program is detached or replaced.
9193          * Given net_device also owns link/prog, we need to bump refcnt here
9194          * to prevent drivers from underflowing it.
9195          */
9196         if (prog)
9197                 bpf_prog_inc(prog);
9198         err = bpf_op(dev, &xdp);
9199         if (err) {
9200                 if (prog)
9201                         bpf_prog_put(prog);
9202                 return err;
9203         }
9204
9205         if (mode != XDP_MODE_HW)
9206                 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9207
9208         return 0;
9209 }
9210
9211 static void dev_xdp_uninstall(struct net_device *dev)
9212 {
9213         struct bpf_xdp_link *link;
9214         struct bpf_prog *prog;
9215         enum bpf_xdp_mode mode;
9216         bpf_op_t bpf_op;
9217
9218         ASSERT_RTNL();
9219
9220         for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9221                 prog = dev_xdp_prog(dev, mode);
9222                 if (!prog)
9223                         continue;
9224
9225                 bpf_op = dev_xdp_bpf_op(dev, mode);
9226                 if (!bpf_op)
9227                         continue;
9228
9229                 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9230
9231                 /* auto-detach link from net device */
9232                 link = dev_xdp_link(dev, mode);
9233                 if (link)
9234                         link->dev = NULL;
9235                 else
9236                         bpf_prog_put(prog);
9237
9238                 dev_xdp_set_link(dev, mode, NULL);
9239         }
9240 }
9241
9242 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9243                           struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9244                           struct bpf_prog *old_prog, u32 flags)
9245 {
9246         unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9247         struct bpf_prog *cur_prog;
9248         struct net_device *upper;
9249         struct list_head *iter;
9250         enum bpf_xdp_mode mode;
9251         bpf_op_t bpf_op;
9252         int err;
9253
9254         ASSERT_RTNL();
9255
9256         /* either link or prog attachment, never both */
9257         if (link && (new_prog || old_prog))
9258                 return -EINVAL;
9259         /* link supports only XDP mode flags */
9260         if (link && (flags & ~XDP_FLAGS_MODES)) {
9261                 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9262                 return -EINVAL;
9263         }
9264         /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9265         if (num_modes > 1) {
9266                 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9267                 return -EINVAL;
9268         }
9269         /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9270         if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9271                 NL_SET_ERR_MSG(extack,
9272                                "More than one program loaded, unset mode is ambiguous");
9273                 return -EINVAL;
9274         }
9275         /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9276         if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9277                 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9278                 return -EINVAL;
9279         }
9280
9281         mode = dev_xdp_mode(dev, flags);
9282         /* can't replace attached link */
9283         if (dev_xdp_link(dev, mode)) {
9284                 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9285                 return -EBUSY;
9286         }
9287
9288         /* don't allow if an upper device already has a program */
9289         netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9290                 if (dev_xdp_prog_count(upper) > 0) {
9291                         NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9292                         return -EEXIST;
9293                 }
9294         }
9295
9296         cur_prog = dev_xdp_prog(dev, mode);
9297         /* can't replace attached prog with link */
9298         if (link && cur_prog) {
9299                 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9300                 return -EBUSY;
9301         }
9302         if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9303                 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9304                 return -EEXIST;
9305         }
9306
9307         /* put effective new program into new_prog */
9308         if (link)
9309                 new_prog = link->link.prog;
9310
9311         if (new_prog) {
9312                 bool offload = mode == XDP_MODE_HW;
9313                 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9314                                                ? XDP_MODE_DRV : XDP_MODE_SKB;
9315
9316                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9317                         NL_SET_ERR_MSG(extack, "XDP program already attached");
9318                         return -EBUSY;
9319                 }
9320                 if (!offload && dev_xdp_prog(dev, other_mode)) {
9321                         NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9322                         return -EEXIST;
9323                 }
9324                 if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
9325                         NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
9326                         return -EINVAL;
9327                 }
9328                 if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
9329                         NL_SET_ERR_MSG(extack, "Program bound to different device");
9330                         return -EINVAL;
9331                 }
9332                 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9333                         NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9334                         return -EINVAL;
9335                 }
9336                 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9337                         NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9338                         return -EINVAL;
9339                 }
9340         }
9341
9342         /* don't call drivers if the effective program didn't change */
9343         if (new_prog != cur_prog) {
9344                 bpf_op = dev_xdp_bpf_op(dev, mode);
9345                 if (!bpf_op) {
9346                         NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9347                         return -EOPNOTSUPP;
9348                 }
9349
9350                 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9351                 if (err)
9352                         return err;
9353         }
9354
9355         if (link)
9356                 dev_xdp_set_link(dev, mode, link);
9357         else
9358                 dev_xdp_set_prog(dev, mode, new_prog);
9359         if (cur_prog)
9360                 bpf_prog_put(cur_prog);
9361
9362         return 0;
9363 }
9364
9365 static int dev_xdp_attach_link(struct net_device *dev,
9366                                struct netlink_ext_ack *extack,
9367                                struct bpf_xdp_link *link)
9368 {
9369         return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9370 }
9371
9372 static int dev_xdp_detach_link(struct net_device *dev,
9373                                struct netlink_ext_ack *extack,
9374                                struct bpf_xdp_link *link)
9375 {
9376         enum bpf_xdp_mode mode;
9377         bpf_op_t bpf_op;
9378
9379         ASSERT_RTNL();
9380
9381         mode = dev_xdp_mode(dev, link->flags);
9382         if (dev_xdp_link(dev, mode) != link)
9383                 return -EINVAL;
9384
9385         bpf_op = dev_xdp_bpf_op(dev, mode);
9386         WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9387         dev_xdp_set_link(dev, mode, NULL);
9388         return 0;
9389 }
9390
9391 static void bpf_xdp_link_release(struct bpf_link *link)
9392 {
9393         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9394
9395         rtnl_lock();
9396
9397         /* if racing with net_device's tear down, xdp_link->dev might be
9398          * already NULL, in which case link was already auto-detached
9399          */
9400         if (xdp_link->dev) {
9401                 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9402                 xdp_link->dev = NULL;
9403         }
9404
9405         rtnl_unlock();
9406 }
9407
9408 static int bpf_xdp_link_detach(struct bpf_link *link)
9409 {
9410         bpf_xdp_link_release(link);
9411         return 0;
9412 }
9413
9414 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9415 {
9416         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9417
9418         kfree(xdp_link);
9419 }
9420
9421 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9422                                      struct seq_file *seq)
9423 {
9424         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9425         u32 ifindex = 0;
9426
9427         rtnl_lock();
9428         if (xdp_link->dev)
9429                 ifindex = xdp_link->dev->ifindex;
9430         rtnl_unlock();
9431
9432         seq_printf(seq, "ifindex:\t%u\n", ifindex);
9433 }
9434
9435 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9436                                        struct bpf_link_info *info)
9437 {
9438         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9439         u32 ifindex = 0;
9440
9441         rtnl_lock();
9442         if (xdp_link->dev)
9443                 ifindex = xdp_link->dev->ifindex;
9444         rtnl_unlock();
9445
9446         info->xdp.ifindex = ifindex;
9447         return 0;
9448 }
9449
9450 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9451                                struct bpf_prog *old_prog)
9452 {
9453         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9454         enum bpf_xdp_mode mode;
9455         bpf_op_t bpf_op;
9456         int err = 0;
9457
9458         rtnl_lock();
9459
9460         /* link might have been auto-released already, so fail */
9461         if (!xdp_link->dev) {
9462                 err = -ENOLINK;
9463                 goto out_unlock;
9464         }
9465
9466         if (old_prog && link->prog != old_prog) {
9467                 err = -EPERM;
9468                 goto out_unlock;
9469         }
9470         old_prog = link->prog;
9471         if (old_prog->type != new_prog->type ||
9472             old_prog->expected_attach_type != new_prog->expected_attach_type) {
9473                 err = -EINVAL;
9474                 goto out_unlock;
9475         }
9476
9477         if (old_prog == new_prog) {
9478                 /* no-op, don't disturb drivers */
9479                 bpf_prog_put(new_prog);
9480                 goto out_unlock;
9481         }
9482
9483         mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9484         bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9485         err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9486                               xdp_link->flags, new_prog);
9487         if (err)
9488                 goto out_unlock;
9489
9490         old_prog = xchg(&link->prog, new_prog);
9491         bpf_prog_put(old_prog);
9492
9493 out_unlock:
9494         rtnl_unlock();
9495         return err;
9496 }
9497
9498 static const struct bpf_link_ops bpf_xdp_link_lops = {
9499         .release = bpf_xdp_link_release,
9500         .dealloc = bpf_xdp_link_dealloc,
9501         .detach = bpf_xdp_link_detach,
9502         .show_fdinfo = bpf_xdp_link_show_fdinfo,
9503         .fill_link_info = bpf_xdp_link_fill_link_info,
9504         .update_prog = bpf_xdp_link_update,
9505 };
9506
9507 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9508 {
9509         struct net *net = current->nsproxy->net_ns;
9510         struct bpf_link_primer link_primer;
9511         struct netlink_ext_ack extack = {};
9512         struct bpf_xdp_link *link;
9513         struct net_device *dev;
9514         int err, fd;
9515
9516         rtnl_lock();
9517         dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9518         if (!dev) {
9519                 rtnl_unlock();
9520                 return -EINVAL;
9521         }
9522
9523         link = kzalloc(sizeof(*link), GFP_USER);
9524         if (!link) {
9525                 err = -ENOMEM;
9526                 goto unlock;
9527         }
9528
9529         bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9530         link->dev = dev;
9531         link->flags = attr->link_create.flags;
9532
9533         err = bpf_link_prime(&link->link, &link_primer);
9534         if (err) {
9535                 kfree(link);
9536                 goto unlock;
9537         }
9538
9539         err = dev_xdp_attach_link(dev, &extack, link);
9540         rtnl_unlock();
9541
9542         if (err) {
9543                 link->dev = NULL;
9544                 bpf_link_cleanup(&link_primer);
9545                 trace_bpf_xdp_link_attach_failed(extack._msg);
9546                 goto out_put_dev;
9547         }
9548
9549         fd = bpf_link_settle(&link_primer);
9550         /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9551         dev_put(dev);
9552         return fd;
9553
9554 unlock:
9555         rtnl_unlock();
9556
9557 out_put_dev:
9558         dev_put(dev);
9559         return err;
9560 }
9561
9562 /**
9563  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
9564  *      @dev: device
9565  *      @extack: netlink extended ack
9566  *      @fd: new program fd or negative value to clear
9567  *      @expected_fd: old program fd that userspace expects to replace or clear
9568  *      @flags: xdp-related flags
9569  *
9570  *      Set or clear a bpf program for a device
9571  */
9572 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9573                       int fd, int expected_fd, u32 flags)
9574 {
9575         enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9576         struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9577         int err;
9578
9579         ASSERT_RTNL();
9580
9581         if (fd >= 0) {
9582                 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9583                                                  mode != XDP_MODE_SKB);
9584                 if (IS_ERR(new_prog))
9585                         return PTR_ERR(new_prog);
9586         }
9587
9588         if (expected_fd >= 0) {
9589                 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9590                                                  mode != XDP_MODE_SKB);
9591                 if (IS_ERR(old_prog)) {
9592                         err = PTR_ERR(old_prog);
9593                         old_prog = NULL;
9594                         goto err_out;
9595                 }
9596         }
9597
9598         err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9599
9600 err_out:
9601         if (err && new_prog)
9602                 bpf_prog_put(new_prog);
9603         if (old_prog)
9604                 bpf_prog_put(old_prog);
9605         return err;
9606 }
9607
9608 /**
9609  * dev_index_reserve() - allocate an ifindex in a namespace
9610  * @net: the applicable net namespace
9611  * @ifindex: requested ifindex, pass %0 to get one allocated
9612  *
9613  * Allocate a ifindex for a new device. Caller must either use the ifindex
9614  * to store the device (via list_netdevice()) or call dev_index_release()
9615  * to give the index up.
9616  *
9617  * Return: a suitable unique value for a new device interface number or -errno.
9618  */
9619 static int dev_index_reserve(struct net *net, u32 ifindex)
9620 {
9621         int err;
9622
9623         if (ifindex > INT_MAX) {
9624                 DEBUG_NET_WARN_ON_ONCE(1);
9625                 return -EINVAL;
9626         }
9627
9628         if (!ifindex)
9629                 err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
9630                                       xa_limit_31b, &net->ifindex, GFP_KERNEL);
9631         else
9632                 err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
9633         if (err < 0)
9634                 return err;
9635
9636         return ifindex;
9637 }
9638
9639 static void dev_index_release(struct net *net, int ifindex)
9640 {
9641         /* Expect only unused indexes, unlist_netdevice() removes the used */
9642         WARN_ON(xa_erase(&net->dev_by_index, ifindex));
9643 }
9644
9645 /* Delayed registration/unregisteration */
9646 LIST_HEAD(net_todo_list);
9647 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9648
9649 static void net_set_todo(struct net_device *dev)
9650 {
9651         list_add_tail(&dev->todo_list, &net_todo_list);
9652         atomic_inc(&dev_net(dev)->dev_unreg_count);
9653 }
9654
9655 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9656         struct net_device *upper, netdev_features_t features)
9657 {
9658         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9659         netdev_features_t feature;
9660         int feature_bit;
9661
9662         for_each_netdev_feature(upper_disables, feature_bit) {
9663                 feature = __NETIF_F_BIT(feature_bit);
9664                 if (!(upper->wanted_features & feature)
9665                     && (features & feature)) {
9666                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9667                                    &feature, upper->name);
9668                         features &= ~feature;
9669                 }
9670         }
9671
9672         return features;
9673 }
9674
9675 static void netdev_sync_lower_features(struct net_device *upper,
9676         struct net_device *lower, netdev_features_t features)
9677 {
9678         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9679         netdev_features_t feature;
9680         int feature_bit;
9681
9682         for_each_netdev_feature(upper_disables, feature_bit) {
9683                 feature = __NETIF_F_BIT(feature_bit);
9684                 if (!(features & feature) && (lower->features & feature)) {
9685                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9686                                    &feature, lower->name);
9687                         lower->wanted_features &= ~feature;
9688                         __netdev_update_features(lower);
9689
9690                         if (unlikely(lower->features & feature))
9691                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9692                                             &feature, lower->name);
9693                         else
9694                                 netdev_features_change(lower);
9695                 }
9696         }
9697 }
9698
9699 static netdev_features_t netdev_fix_features(struct net_device *dev,
9700         netdev_features_t features)
9701 {
9702         /* Fix illegal checksum combinations */
9703         if ((features & NETIF_F_HW_CSUM) &&
9704             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9705                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9706                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9707         }
9708
9709         /* TSO requires that SG is present as well. */
9710         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9711                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9712                 features &= ~NETIF_F_ALL_TSO;
9713         }
9714
9715         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9716                                         !(features & NETIF_F_IP_CSUM)) {
9717                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9718                 features &= ~NETIF_F_TSO;
9719                 features &= ~NETIF_F_TSO_ECN;
9720         }
9721
9722         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9723                                          !(features & NETIF_F_IPV6_CSUM)) {
9724                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9725                 features &= ~NETIF_F_TSO6;
9726         }
9727
9728         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9729         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9730                 features &= ~NETIF_F_TSO_MANGLEID;
9731
9732         /* TSO ECN requires that TSO is present as well. */
9733         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9734                 features &= ~NETIF_F_TSO_ECN;
9735
9736         /* Software GSO depends on SG. */
9737         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9738                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9739                 features &= ~NETIF_F_GSO;
9740         }
9741
9742         /* GSO partial features require GSO partial be set */
9743         if ((features & dev->gso_partial_features) &&
9744             !(features & NETIF_F_GSO_PARTIAL)) {
9745                 netdev_dbg(dev,
9746                            "Dropping partially supported GSO features since no GSO partial.\n");
9747                 features &= ~dev->gso_partial_features;
9748         }
9749
9750         if (!(features & NETIF_F_RXCSUM)) {
9751                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9752                  * successfully merged by hardware must also have the
9753                  * checksum verified by hardware.  If the user does not
9754                  * want to enable RXCSUM, logically, we should disable GRO_HW.
9755                  */
9756                 if (features & NETIF_F_GRO_HW) {
9757                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9758                         features &= ~NETIF_F_GRO_HW;
9759                 }
9760         }
9761
9762         /* LRO/HW-GRO features cannot be combined with RX-FCS */
9763         if (features & NETIF_F_RXFCS) {
9764                 if (features & NETIF_F_LRO) {
9765                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9766                         features &= ~NETIF_F_LRO;
9767                 }
9768
9769                 if (features & NETIF_F_GRO_HW) {
9770                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9771                         features &= ~NETIF_F_GRO_HW;
9772                 }
9773         }
9774
9775         if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9776                 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9777                 features &= ~NETIF_F_LRO;
9778         }
9779
9780         if (features & NETIF_F_HW_TLS_TX) {
9781                 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9782                         (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9783                 bool hw_csum = features & NETIF_F_HW_CSUM;
9784
9785                 if (!ip_csum && !hw_csum) {
9786                         netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9787                         features &= ~NETIF_F_HW_TLS_TX;
9788                 }
9789         }
9790
9791         if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9792                 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9793                 features &= ~NETIF_F_HW_TLS_RX;
9794         }
9795
9796         return features;
9797 }
9798
9799 int __netdev_update_features(struct net_device *dev)
9800 {
9801         struct net_device *upper, *lower;
9802         netdev_features_t features;
9803         struct list_head *iter;
9804         int err = -1;
9805
9806         ASSERT_RTNL();
9807
9808         features = netdev_get_wanted_features(dev);
9809
9810         if (dev->netdev_ops->ndo_fix_features)
9811                 features = dev->netdev_ops->ndo_fix_features(dev, features);
9812
9813         /* driver might be less strict about feature dependencies */
9814         features = netdev_fix_features(dev, features);
9815
9816         /* some features can't be enabled if they're off on an upper device */
9817         netdev_for_each_upper_dev_rcu(dev, upper, iter)
9818                 features = netdev_sync_upper_features(dev, upper, features);
9819
9820         if (dev->features == features)
9821                 goto sync_lower;
9822
9823         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9824                 &dev->features, &features);
9825
9826         if (dev->netdev_ops->ndo_set_features)
9827                 err = dev->netdev_ops->ndo_set_features(dev, features);
9828         else
9829                 err = 0;
9830
9831         if (unlikely(err < 0)) {
9832                 netdev_err(dev,
9833                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
9834                         err, &features, &dev->features);
9835                 /* return non-0 since some features might have changed and
9836                  * it's better to fire a spurious notification than miss it
9837                  */
9838                 return -1;
9839         }
9840
9841 sync_lower:
9842         /* some features must be disabled on lower devices when disabled
9843          * on an upper device (think: bonding master or bridge)
9844          */
9845         netdev_for_each_lower_dev(dev, lower, iter)
9846                 netdev_sync_lower_features(dev, lower, features);
9847
9848         if (!err) {
9849                 netdev_features_t diff = features ^ dev->features;
9850
9851                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9852                         /* udp_tunnel_{get,drop}_rx_info both need
9853                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9854                          * device, or they won't do anything.
9855                          * Thus we need to update dev->features
9856                          * *before* calling udp_tunnel_get_rx_info,
9857                          * but *after* calling udp_tunnel_drop_rx_info.
9858                          */
9859                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9860                                 dev->features = features;
9861                                 udp_tunnel_get_rx_info(dev);
9862                         } else {
9863                                 udp_tunnel_drop_rx_info(dev);
9864                         }
9865                 }
9866
9867                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9868                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9869                                 dev->features = features;
9870                                 err |= vlan_get_rx_ctag_filter_info(dev);
9871                         } else {
9872                                 vlan_drop_rx_ctag_filter_info(dev);
9873                         }
9874                 }
9875
9876                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9877                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9878                                 dev->features = features;
9879                                 err |= vlan_get_rx_stag_filter_info(dev);
9880                         } else {
9881                                 vlan_drop_rx_stag_filter_info(dev);
9882                         }
9883                 }
9884
9885                 dev->features = features;
9886         }
9887
9888         return err < 0 ? 0 : 1;
9889 }
9890
9891 /**
9892  *      netdev_update_features - recalculate device features
9893  *      @dev: the device to check
9894  *
9895  *      Recalculate dev->features set and send notifications if it
9896  *      has changed. Should be called after driver or hardware dependent
9897  *      conditions might have changed that influence the features.
9898  */
9899 void netdev_update_features(struct net_device *dev)
9900 {
9901         if (__netdev_update_features(dev))
9902                 netdev_features_change(dev);
9903 }
9904 EXPORT_SYMBOL(netdev_update_features);
9905
9906 /**
9907  *      netdev_change_features - recalculate device features
9908  *      @dev: the device to check
9909  *
9910  *      Recalculate dev->features set and send notifications even
9911  *      if they have not changed. Should be called instead of
9912  *      netdev_update_features() if also dev->vlan_features might
9913  *      have changed to allow the changes to be propagated to stacked
9914  *      VLAN devices.
9915  */
9916 void netdev_change_features(struct net_device *dev)
9917 {
9918         __netdev_update_features(dev);
9919         netdev_features_change(dev);
9920 }
9921 EXPORT_SYMBOL(netdev_change_features);
9922
9923 /**
9924  *      netif_stacked_transfer_operstate -      transfer operstate
9925  *      @rootdev: the root or lower level device to transfer state from
9926  *      @dev: the device to transfer operstate to
9927  *
9928  *      Transfer operational state from root to device. This is normally
9929  *      called when a stacking relationship exists between the root
9930  *      device and the device(a leaf device).
9931  */
9932 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9933                                         struct net_device *dev)
9934 {
9935         if (rootdev->operstate == IF_OPER_DORMANT)
9936                 netif_dormant_on(dev);
9937         else
9938                 netif_dormant_off(dev);
9939
9940         if (rootdev->operstate == IF_OPER_TESTING)
9941                 netif_testing_on(dev);
9942         else
9943                 netif_testing_off(dev);
9944
9945         if (netif_carrier_ok(rootdev))
9946                 netif_carrier_on(dev);
9947         else
9948                 netif_carrier_off(dev);
9949 }
9950 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9951
9952 static int netif_alloc_rx_queues(struct net_device *dev)
9953 {
9954         unsigned int i, count = dev->num_rx_queues;
9955         struct netdev_rx_queue *rx;
9956         size_t sz = count * sizeof(*rx);
9957         int err = 0;
9958
9959         BUG_ON(count < 1);
9960
9961         rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9962         if (!rx)
9963                 return -ENOMEM;
9964
9965         dev->_rx = rx;
9966
9967         for (i = 0; i < count; i++) {
9968                 rx[i].dev = dev;
9969
9970                 /* XDP RX-queue setup */
9971                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9972                 if (err < 0)
9973                         goto err_rxq_info;
9974         }
9975         return 0;
9976
9977 err_rxq_info:
9978         /* Rollback successful reg's and free other resources */
9979         while (i--)
9980                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9981         kvfree(dev->_rx);
9982         dev->_rx = NULL;
9983         return err;
9984 }
9985
9986 static void netif_free_rx_queues(struct net_device *dev)
9987 {
9988         unsigned int i, count = dev->num_rx_queues;
9989
9990         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9991         if (!dev->_rx)
9992                 return;
9993
9994         for (i = 0; i < count; i++)
9995                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9996
9997         kvfree(dev->_rx);
9998 }
9999
10000 static void netdev_init_one_queue(struct net_device *dev,
10001                                   struct netdev_queue *queue, void *_unused)
10002 {
10003         /* Initialize queue lock */
10004         spin_lock_init(&queue->_xmit_lock);
10005         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10006         queue->xmit_lock_owner = -1;
10007         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10008         queue->dev = dev;
10009 #ifdef CONFIG_BQL
10010         dql_init(&queue->dql, HZ);
10011 #endif
10012 }
10013
10014 static void netif_free_tx_queues(struct net_device *dev)
10015 {
10016         kvfree(dev->_tx);
10017 }
10018
10019 static int netif_alloc_netdev_queues(struct net_device *dev)
10020 {
10021         unsigned int count = dev->num_tx_queues;
10022         struct netdev_queue *tx;
10023         size_t sz = count * sizeof(*tx);
10024
10025         if (count < 1 || count > 0xffff)
10026                 return -EINVAL;
10027
10028         tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10029         if (!tx)
10030                 return -ENOMEM;
10031
10032         dev->_tx = tx;
10033
10034         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10035         spin_lock_init(&dev->tx_global_lock);
10036
10037         return 0;
10038 }
10039
10040 void netif_tx_stop_all_queues(struct net_device *dev)
10041 {
10042         unsigned int i;
10043
10044         for (i = 0; i < dev->num_tx_queues; i++) {
10045                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10046
10047                 netif_tx_stop_queue(txq);
10048         }
10049 }
10050 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10051
10052 /**
10053  * register_netdevice() - register a network device
10054  * @dev: device to register
10055  *
10056  * Take a prepared network device structure and make it externally accessible.
10057  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10058  * Callers must hold the rtnl lock - you may want register_netdev()
10059  * instead of this.
10060  */
10061 int register_netdevice(struct net_device *dev)
10062 {
10063         int ret;
10064         struct net *net = dev_net(dev);
10065
10066         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10067                      NETDEV_FEATURE_COUNT);
10068         BUG_ON(dev_boot_phase);
10069         ASSERT_RTNL();
10070
10071         might_sleep();
10072
10073         /* When net_device's are persistent, this will be fatal. */
10074         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10075         BUG_ON(!net);
10076
10077         ret = ethtool_check_ops(dev->ethtool_ops);
10078         if (ret)
10079                 return ret;
10080
10081         spin_lock_init(&dev->addr_list_lock);
10082         netdev_set_addr_lockdep_class(dev);
10083
10084         ret = dev_get_valid_name(net, dev, dev->name);
10085         if (ret < 0)
10086                 goto out;
10087
10088         ret = -ENOMEM;
10089         dev->name_node = netdev_name_node_head_alloc(dev);
10090         if (!dev->name_node)
10091                 goto out;
10092
10093         /* Init, if this function is available */
10094         if (dev->netdev_ops->ndo_init) {
10095                 ret = dev->netdev_ops->ndo_init(dev);
10096                 if (ret) {
10097                         if (ret > 0)
10098                                 ret = -EIO;
10099                         goto err_free_name;
10100                 }
10101         }
10102
10103         if (((dev->hw_features | dev->features) &
10104              NETIF_F_HW_VLAN_CTAG_FILTER) &&
10105             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10106              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10107                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10108                 ret = -EINVAL;
10109                 goto err_uninit;
10110         }
10111
10112         ret = dev_index_reserve(net, dev->ifindex);
10113         if (ret < 0)
10114                 goto err_uninit;
10115         dev->ifindex = ret;
10116
10117         /* Transfer changeable features to wanted_features and enable
10118          * software offloads (GSO and GRO).
10119          */
10120         dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10121         dev->features |= NETIF_F_SOFT_FEATURES;
10122
10123         if (dev->udp_tunnel_nic_info) {
10124                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10125                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10126         }
10127
10128         dev->wanted_features = dev->features & dev->hw_features;
10129
10130         if (!(dev->flags & IFF_LOOPBACK))
10131                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10132
10133         /* If IPv4 TCP segmentation offload is supported we should also
10134          * allow the device to enable segmenting the frame with the option
10135          * of ignoring a static IP ID value.  This doesn't enable the
10136          * feature itself but allows the user to enable it later.
10137          */
10138         if (dev->hw_features & NETIF_F_TSO)
10139                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10140         if (dev->vlan_features & NETIF_F_TSO)
10141                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10142         if (dev->mpls_features & NETIF_F_TSO)
10143                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10144         if (dev->hw_enc_features & NETIF_F_TSO)
10145                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10146
10147         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10148          */
10149         dev->vlan_features |= NETIF_F_HIGHDMA;
10150
10151         /* Make NETIF_F_SG inheritable to tunnel devices.
10152          */
10153         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10154
10155         /* Make NETIF_F_SG inheritable to MPLS.
10156          */
10157         dev->mpls_features |= NETIF_F_SG;
10158
10159         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10160         ret = notifier_to_errno(ret);
10161         if (ret)
10162                 goto err_ifindex_release;
10163
10164         ret = netdev_register_kobject(dev);
10165         write_lock(&dev_base_lock);
10166         dev->reg_state = ret ? NETREG_UNREGISTERED : NETREG_REGISTERED;
10167         write_unlock(&dev_base_lock);
10168         if (ret)
10169                 goto err_uninit_notify;
10170
10171         __netdev_update_features(dev);
10172
10173         /*
10174          *      Default initial state at registry is that the
10175          *      device is present.
10176          */
10177
10178         set_bit(__LINK_STATE_PRESENT, &dev->state);
10179
10180         linkwatch_init_dev(dev);
10181
10182         dev_init_scheduler(dev);
10183
10184         netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10185         list_netdevice(dev);
10186
10187         add_device_randomness(dev->dev_addr, dev->addr_len);
10188
10189         /* If the device has permanent device address, driver should
10190          * set dev_addr and also addr_assign_type should be set to
10191          * NET_ADDR_PERM (default value).
10192          */
10193         if (dev->addr_assign_type == NET_ADDR_PERM)
10194                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10195
10196         /* Notify protocols, that a new device appeared. */
10197         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10198         ret = notifier_to_errno(ret);
10199         if (ret) {
10200                 /* Expect explicit free_netdev() on failure */
10201                 dev->needs_free_netdev = false;
10202                 unregister_netdevice_queue(dev, NULL);
10203                 goto out;
10204         }
10205         /*
10206          *      Prevent userspace races by waiting until the network
10207          *      device is fully setup before sending notifications.
10208          */
10209         if (!dev->rtnl_link_ops ||
10210             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10211                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10212
10213 out:
10214         return ret;
10215
10216 err_uninit_notify:
10217         call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10218 err_ifindex_release:
10219         dev_index_release(net, dev->ifindex);
10220 err_uninit:
10221         if (dev->netdev_ops->ndo_uninit)
10222                 dev->netdev_ops->ndo_uninit(dev);
10223         if (dev->priv_destructor)
10224                 dev->priv_destructor(dev);
10225 err_free_name:
10226         netdev_name_node_free(dev->name_node);
10227         goto out;
10228 }
10229 EXPORT_SYMBOL(register_netdevice);
10230
10231 /**
10232  *      init_dummy_netdev       - init a dummy network device for NAPI
10233  *      @dev: device to init
10234  *
10235  *      This takes a network device structure and initialize the minimum
10236  *      amount of fields so it can be used to schedule NAPI polls without
10237  *      registering a full blown interface. This is to be used by drivers
10238  *      that need to tie several hardware interfaces to a single NAPI
10239  *      poll scheduler due to HW limitations.
10240  */
10241 int init_dummy_netdev(struct net_device *dev)
10242 {
10243         /* Clear everything. Note we don't initialize spinlocks
10244          * are they aren't supposed to be taken by any of the
10245          * NAPI code and this dummy netdev is supposed to be
10246          * only ever used for NAPI polls
10247          */
10248         memset(dev, 0, sizeof(struct net_device));
10249
10250         /* make sure we BUG if trying to hit standard
10251          * register/unregister code path
10252          */
10253         dev->reg_state = NETREG_DUMMY;
10254
10255         /* NAPI wants this */
10256         INIT_LIST_HEAD(&dev->napi_list);
10257
10258         /* a dummy interface is started by default */
10259         set_bit(__LINK_STATE_PRESENT, &dev->state);
10260         set_bit(__LINK_STATE_START, &dev->state);
10261
10262         /* napi_busy_loop stats accounting wants this */
10263         dev_net_set(dev, &init_net);
10264
10265         /* Note : We dont allocate pcpu_refcnt for dummy devices,
10266          * because users of this 'device' dont need to change
10267          * its refcount.
10268          */
10269
10270         return 0;
10271 }
10272 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10273
10274
10275 /**
10276  *      register_netdev - register a network device
10277  *      @dev: device to register
10278  *
10279  *      Take a completed network device structure and add it to the kernel
10280  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10281  *      chain. 0 is returned on success. A negative errno code is returned
10282  *      on a failure to set up the device, or if the name is a duplicate.
10283  *
10284  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
10285  *      and expands the device name if you passed a format string to
10286  *      alloc_netdev.
10287  */
10288 int register_netdev(struct net_device *dev)
10289 {
10290         int err;
10291
10292         if (rtnl_lock_killable())
10293                 return -EINTR;
10294         err = register_netdevice(dev);
10295         rtnl_unlock();
10296         return err;
10297 }
10298 EXPORT_SYMBOL(register_netdev);
10299
10300 int netdev_refcnt_read(const struct net_device *dev)
10301 {
10302 #ifdef CONFIG_PCPU_DEV_REFCNT
10303         int i, refcnt = 0;
10304
10305         for_each_possible_cpu(i)
10306                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10307         return refcnt;
10308 #else
10309         return refcount_read(&dev->dev_refcnt);
10310 #endif
10311 }
10312 EXPORT_SYMBOL(netdev_refcnt_read);
10313
10314 int netdev_unregister_timeout_secs __read_mostly = 10;
10315
10316 #define WAIT_REFS_MIN_MSECS 1
10317 #define WAIT_REFS_MAX_MSECS 250
10318 /**
10319  * netdev_wait_allrefs_any - wait until all references are gone.
10320  * @list: list of net_devices to wait on
10321  *
10322  * This is called when unregistering network devices.
10323  *
10324  * Any protocol or device that holds a reference should register
10325  * for netdevice notification, and cleanup and put back the
10326  * reference if they receive an UNREGISTER event.
10327  * We can get stuck here if buggy protocols don't correctly
10328  * call dev_put.
10329  */
10330 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10331 {
10332         unsigned long rebroadcast_time, warning_time;
10333         struct net_device *dev;
10334         int wait = 0;
10335
10336         rebroadcast_time = warning_time = jiffies;
10337
10338         list_for_each_entry(dev, list, todo_list)
10339                 if (netdev_refcnt_read(dev) == 1)
10340                         return dev;
10341
10342         while (true) {
10343                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10344                         rtnl_lock();
10345
10346                         /* Rebroadcast unregister notification */
10347                         list_for_each_entry(dev, list, todo_list)
10348                                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10349
10350                         __rtnl_unlock();
10351                         rcu_barrier();
10352                         rtnl_lock();
10353
10354                         list_for_each_entry(dev, list, todo_list)
10355                                 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10356                                              &dev->state)) {
10357                                         /* We must not have linkwatch events
10358                                          * pending on unregister. If this
10359                                          * happens, we simply run the queue
10360                                          * unscheduled, resulting in a noop
10361                                          * for this device.
10362                                          */
10363                                         linkwatch_run_queue();
10364                                         break;
10365                                 }
10366
10367                         __rtnl_unlock();
10368
10369                         rebroadcast_time = jiffies;
10370                 }
10371
10372                 if (!wait) {
10373                         rcu_barrier();
10374                         wait = WAIT_REFS_MIN_MSECS;
10375                 } else {
10376                         msleep(wait);
10377                         wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10378                 }
10379
10380                 list_for_each_entry(dev, list, todo_list)
10381                         if (netdev_refcnt_read(dev) == 1)
10382                                 return dev;
10383
10384                 if (time_after(jiffies, warning_time +
10385                                READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10386                         list_for_each_entry(dev, list, todo_list) {
10387                                 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10388                                          dev->name, netdev_refcnt_read(dev));
10389                                 ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10390                         }
10391
10392                         warning_time = jiffies;
10393                 }
10394         }
10395 }
10396
10397 /* The sequence is:
10398  *
10399  *      rtnl_lock();
10400  *      ...
10401  *      register_netdevice(x1);
10402  *      register_netdevice(x2);
10403  *      ...
10404  *      unregister_netdevice(y1);
10405  *      unregister_netdevice(y2);
10406  *      ...
10407  *      rtnl_unlock();
10408  *      free_netdev(y1);
10409  *      free_netdev(y2);
10410  *
10411  * We are invoked by rtnl_unlock().
10412  * This allows us to deal with problems:
10413  * 1) We can delete sysfs objects which invoke hotplug
10414  *    without deadlocking with linkwatch via keventd.
10415  * 2) Since we run with the RTNL semaphore not held, we can sleep
10416  *    safely in order to wait for the netdev refcnt to drop to zero.
10417  *
10418  * We must not return until all unregister events added during
10419  * the interval the lock was held have been completed.
10420  */
10421 void netdev_run_todo(void)
10422 {
10423         struct net_device *dev, *tmp;
10424         struct list_head list;
10425 #ifdef CONFIG_LOCKDEP
10426         struct list_head unlink_list;
10427
10428         list_replace_init(&net_unlink_list, &unlink_list);
10429
10430         while (!list_empty(&unlink_list)) {
10431                 struct net_device *dev = list_first_entry(&unlink_list,
10432                                                           struct net_device,
10433                                                           unlink_list);
10434                 list_del_init(&dev->unlink_list);
10435                 dev->nested_level = dev->lower_level - 1;
10436         }
10437 #endif
10438
10439         /* Snapshot list, allow later requests */
10440         list_replace_init(&net_todo_list, &list);
10441
10442         __rtnl_unlock();
10443
10444         /* Wait for rcu callbacks to finish before next phase */
10445         if (!list_empty(&list))
10446                 rcu_barrier();
10447
10448         list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10449                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10450                         netdev_WARN(dev, "run_todo but not unregistering\n");
10451                         list_del(&dev->todo_list);
10452                         continue;
10453                 }
10454
10455                 write_lock(&dev_base_lock);
10456                 dev->reg_state = NETREG_UNREGISTERED;
10457                 write_unlock(&dev_base_lock);
10458                 linkwatch_forget_dev(dev);
10459         }
10460
10461         while (!list_empty(&list)) {
10462                 dev = netdev_wait_allrefs_any(&list);
10463                 list_del(&dev->todo_list);
10464
10465                 /* paranoia */
10466                 BUG_ON(netdev_refcnt_read(dev) != 1);
10467                 BUG_ON(!list_empty(&dev->ptype_all));
10468                 BUG_ON(!list_empty(&dev->ptype_specific));
10469                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10470                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10471
10472                 if (dev->priv_destructor)
10473                         dev->priv_destructor(dev);
10474                 if (dev->needs_free_netdev)
10475                         free_netdev(dev);
10476
10477                 if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count))
10478                         wake_up(&netdev_unregistering_wq);
10479
10480                 /* Free network device */
10481                 kobject_put(&dev->dev.kobj);
10482         }
10483 }
10484
10485 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10486  * all the same fields in the same order as net_device_stats, with only
10487  * the type differing, but rtnl_link_stats64 may have additional fields
10488  * at the end for newer counters.
10489  */
10490 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10491                              const struct net_device_stats *netdev_stats)
10492 {
10493         size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10494         const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10495         u64 *dst = (u64 *)stats64;
10496
10497         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10498         for (i = 0; i < n; i++)
10499                 dst[i] = (unsigned long)atomic_long_read(&src[i]);
10500         /* zero out counters that only exist in rtnl_link_stats64 */
10501         memset((char *)stats64 + n * sizeof(u64), 0,
10502                sizeof(*stats64) - n * sizeof(u64));
10503 }
10504 EXPORT_SYMBOL(netdev_stats_to_stats64);
10505
10506 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
10507                 struct net_device *dev)
10508 {
10509         struct net_device_core_stats __percpu *p;
10510
10511         p = alloc_percpu_gfp(struct net_device_core_stats,
10512                              GFP_ATOMIC | __GFP_NOWARN);
10513
10514         if (p && cmpxchg(&dev->core_stats, NULL, p))
10515                 free_percpu(p);
10516
10517         /* This READ_ONCE() pairs with the cmpxchg() above */
10518         return READ_ONCE(dev->core_stats);
10519 }
10520
10521 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
10522 {
10523         /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10524         struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
10525         unsigned long __percpu *field;
10526
10527         if (unlikely(!p)) {
10528                 p = netdev_core_stats_alloc(dev);
10529                 if (!p)
10530                         return;
10531         }
10532
10533         field = (__force unsigned long __percpu *)((__force void *)p + offset);
10534         this_cpu_inc(*field);
10535 }
10536 EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
10537
10538 /**
10539  *      dev_get_stats   - get network device statistics
10540  *      @dev: device to get statistics from
10541  *      @storage: place to store stats
10542  *
10543  *      Get network statistics from device. Return @storage.
10544  *      The device driver may provide its own method by setting
10545  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10546  *      otherwise the internal statistics structure is used.
10547  */
10548 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10549                                         struct rtnl_link_stats64 *storage)
10550 {
10551         const struct net_device_ops *ops = dev->netdev_ops;
10552         const struct net_device_core_stats __percpu *p;
10553
10554         if (ops->ndo_get_stats64) {
10555                 memset(storage, 0, sizeof(*storage));
10556                 ops->ndo_get_stats64(dev, storage);
10557         } else if (ops->ndo_get_stats) {
10558                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10559         } else {
10560                 netdev_stats_to_stats64(storage, &dev->stats);
10561         }
10562
10563         /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10564         p = READ_ONCE(dev->core_stats);
10565         if (p) {
10566                 const struct net_device_core_stats *core_stats;
10567                 int i;
10568
10569                 for_each_possible_cpu(i) {
10570                         core_stats = per_cpu_ptr(p, i);
10571                         storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10572                         storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10573                         storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10574                         storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10575                 }
10576         }
10577         return storage;
10578 }
10579 EXPORT_SYMBOL(dev_get_stats);
10580
10581 /**
10582  *      dev_fetch_sw_netstats - get per-cpu network device statistics
10583  *      @s: place to store stats
10584  *      @netstats: per-cpu network stats to read from
10585  *
10586  *      Read per-cpu network statistics and populate the related fields in @s.
10587  */
10588 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10589                            const struct pcpu_sw_netstats __percpu *netstats)
10590 {
10591         int cpu;
10592
10593         for_each_possible_cpu(cpu) {
10594                 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10595                 const struct pcpu_sw_netstats *stats;
10596                 unsigned int start;
10597
10598                 stats = per_cpu_ptr(netstats, cpu);
10599                 do {
10600                         start = u64_stats_fetch_begin(&stats->syncp);
10601                         rx_packets = u64_stats_read(&stats->rx_packets);
10602                         rx_bytes   = u64_stats_read(&stats->rx_bytes);
10603                         tx_packets = u64_stats_read(&stats->tx_packets);
10604                         tx_bytes   = u64_stats_read(&stats->tx_bytes);
10605                 } while (u64_stats_fetch_retry(&stats->syncp, start));
10606
10607                 s->rx_packets += rx_packets;
10608                 s->rx_bytes   += rx_bytes;
10609                 s->tx_packets += tx_packets;
10610                 s->tx_bytes   += tx_bytes;
10611         }
10612 }
10613 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10614
10615 /**
10616  *      dev_get_tstats64 - ndo_get_stats64 implementation
10617  *      @dev: device to get statistics from
10618  *      @s: place to store stats
10619  *
10620  *      Populate @s from dev->stats and dev->tstats. Can be used as
10621  *      ndo_get_stats64() callback.
10622  */
10623 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10624 {
10625         netdev_stats_to_stats64(s, &dev->stats);
10626         dev_fetch_sw_netstats(s, dev->tstats);
10627 }
10628 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10629
10630 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10631 {
10632         struct netdev_queue *queue = dev_ingress_queue(dev);
10633
10634 #ifdef CONFIG_NET_CLS_ACT
10635         if (queue)
10636                 return queue;
10637         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10638         if (!queue)
10639                 return NULL;
10640         netdev_init_one_queue(dev, queue, NULL);
10641         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10642         RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
10643         rcu_assign_pointer(dev->ingress_queue, queue);
10644 #endif
10645         return queue;
10646 }
10647
10648 static const struct ethtool_ops default_ethtool_ops;
10649
10650 void netdev_set_default_ethtool_ops(struct net_device *dev,
10651                                     const struct ethtool_ops *ops)
10652 {
10653         if (dev->ethtool_ops == &default_ethtool_ops)
10654                 dev->ethtool_ops = ops;
10655 }
10656 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10657
10658 /**
10659  * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
10660  * @dev: netdev to enable the IRQ coalescing on
10661  *
10662  * Sets a conservative default for SW IRQ coalescing. Users can use
10663  * sysfs attributes to override the default values.
10664  */
10665 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
10666 {
10667         WARN_ON(dev->reg_state == NETREG_REGISTERED);
10668
10669         if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
10670                 dev->gro_flush_timeout = 20000;
10671                 dev->napi_defer_hard_irqs = 1;
10672         }
10673 }
10674 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
10675
10676 void netdev_freemem(struct net_device *dev)
10677 {
10678         char *addr = (char *)dev - dev->padded;
10679
10680         kvfree(addr);
10681 }
10682
10683 /**
10684  * alloc_netdev_mqs - allocate network device
10685  * @sizeof_priv: size of private data to allocate space for
10686  * @name: device name format string
10687  * @name_assign_type: origin of device name
10688  * @setup: callback to initialize device
10689  * @txqs: the number of TX subqueues to allocate
10690  * @rxqs: the number of RX subqueues to allocate
10691  *
10692  * Allocates a struct net_device with private data area for driver use
10693  * and performs basic initialization.  Also allocates subqueue structs
10694  * for each queue on the device.
10695  */
10696 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10697                 unsigned char name_assign_type,
10698                 void (*setup)(struct net_device *),
10699                 unsigned int txqs, unsigned int rxqs)
10700 {
10701         struct net_device *dev;
10702         unsigned int alloc_size;
10703         struct net_device *p;
10704
10705         BUG_ON(strlen(name) >= sizeof(dev->name));
10706
10707         if (txqs < 1) {
10708                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10709                 return NULL;
10710         }
10711
10712         if (rxqs < 1) {
10713                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10714                 return NULL;
10715         }
10716
10717         alloc_size = sizeof(struct net_device);
10718         if (sizeof_priv) {
10719                 /* ensure 32-byte alignment of private area */
10720                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10721                 alloc_size += sizeof_priv;
10722         }
10723         /* ensure 32-byte alignment of whole construct */
10724         alloc_size += NETDEV_ALIGN - 1;
10725
10726         p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10727         if (!p)
10728                 return NULL;
10729
10730         dev = PTR_ALIGN(p, NETDEV_ALIGN);
10731         dev->padded = (char *)dev - (char *)p;
10732
10733         ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
10734 #ifdef CONFIG_PCPU_DEV_REFCNT
10735         dev->pcpu_refcnt = alloc_percpu(int);
10736         if (!dev->pcpu_refcnt)
10737                 goto free_dev;
10738         __dev_hold(dev);
10739 #else
10740         refcount_set(&dev->dev_refcnt, 1);
10741 #endif
10742
10743         if (dev_addr_init(dev))
10744                 goto free_pcpu;
10745
10746         dev_mc_init(dev);
10747         dev_uc_init(dev);
10748
10749         dev_net_set(dev, &init_net);
10750
10751         dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
10752         dev->xdp_zc_max_segs = 1;
10753         dev->gso_max_segs = GSO_MAX_SEGS;
10754         dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
10755         dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
10756         dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
10757         dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
10758         dev->tso_max_segs = TSO_MAX_SEGS;
10759         dev->upper_level = 1;
10760         dev->lower_level = 1;
10761 #ifdef CONFIG_LOCKDEP
10762         dev->nested_level = 0;
10763         INIT_LIST_HEAD(&dev->unlink_list);
10764 #endif
10765
10766         INIT_LIST_HEAD(&dev->napi_list);
10767         INIT_LIST_HEAD(&dev->unreg_list);
10768         INIT_LIST_HEAD(&dev->close_list);
10769         INIT_LIST_HEAD(&dev->link_watch_list);
10770         INIT_LIST_HEAD(&dev->adj_list.upper);
10771         INIT_LIST_HEAD(&dev->adj_list.lower);
10772         INIT_LIST_HEAD(&dev->ptype_all);
10773         INIT_LIST_HEAD(&dev->ptype_specific);
10774         INIT_LIST_HEAD(&dev->net_notifier_list);
10775 #ifdef CONFIG_NET_SCHED
10776         hash_init(dev->qdisc_hash);
10777 #endif
10778         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10779         setup(dev);
10780
10781         if (!dev->tx_queue_len) {
10782                 dev->priv_flags |= IFF_NO_QUEUE;
10783                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10784         }
10785
10786         dev->num_tx_queues = txqs;
10787         dev->real_num_tx_queues = txqs;
10788         if (netif_alloc_netdev_queues(dev))
10789                 goto free_all;
10790
10791         dev->num_rx_queues = rxqs;
10792         dev->real_num_rx_queues = rxqs;
10793         if (netif_alloc_rx_queues(dev))
10794                 goto free_all;
10795
10796         strcpy(dev->name, name);
10797         dev->name_assign_type = name_assign_type;
10798         dev->group = INIT_NETDEV_GROUP;
10799         if (!dev->ethtool_ops)
10800                 dev->ethtool_ops = &default_ethtool_ops;
10801
10802         nf_hook_netdev_init(dev);
10803
10804         return dev;
10805
10806 free_all:
10807         free_netdev(dev);
10808         return NULL;
10809
10810 free_pcpu:
10811 #ifdef CONFIG_PCPU_DEV_REFCNT
10812         free_percpu(dev->pcpu_refcnt);
10813 free_dev:
10814 #endif
10815         netdev_freemem(dev);
10816         return NULL;
10817 }
10818 EXPORT_SYMBOL(alloc_netdev_mqs);
10819
10820 /**
10821  * free_netdev - free network device
10822  * @dev: device
10823  *
10824  * This function does the last stage of destroying an allocated device
10825  * interface. The reference to the device object is released. If this
10826  * is the last reference then it will be freed.Must be called in process
10827  * context.
10828  */
10829 void free_netdev(struct net_device *dev)
10830 {
10831         struct napi_struct *p, *n;
10832
10833         might_sleep();
10834
10835         /* When called immediately after register_netdevice() failed the unwind
10836          * handling may still be dismantling the device. Handle that case by
10837          * deferring the free.
10838          */
10839         if (dev->reg_state == NETREG_UNREGISTERING) {
10840                 ASSERT_RTNL();
10841                 dev->needs_free_netdev = true;
10842                 return;
10843         }
10844
10845         netif_free_tx_queues(dev);
10846         netif_free_rx_queues(dev);
10847
10848         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10849
10850         /* Flush device addresses */
10851         dev_addr_flush(dev);
10852
10853         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10854                 netif_napi_del(p);
10855
10856         ref_tracker_dir_exit(&dev->refcnt_tracker);
10857 #ifdef CONFIG_PCPU_DEV_REFCNT
10858         free_percpu(dev->pcpu_refcnt);
10859         dev->pcpu_refcnt = NULL;
10860 #endif
10861         free_percpu(dev->core_stats);
10862         dev->core_stats = NULL;
10863         free_percpu(dev->xdp_bulkq);
10864         dev->xdp_bulkq = NULL;
10865
10866         /*  Compatibility with error handling in drivers */
10867         if (dev->reg_state == NETREG_UNINITIALIZED) {
10868                 netdev_freemem(dev);
10869                 return;
10870         }
10871
10872         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10873         dev->reg_state = NETREG_RELEASED;
10874
10875         /* will free via device release */
10876         put_device(&dev->dev);
10877 }
10878 EXPORT_SYMBOL(free_netdev);
10879
10880 /**
10881  *      synchronize_net -  Synchronize with packet receive processing
10882  *
10883  *      Wait for packets currently being received to be done.
10884  *      Does not block later packets from starting.
10885  */
10886 void synchronize_net(void)
10887 {
10888         might_sleep();
10889         if (rtnl_is_locked())
10890                 synchronize_rcu_expedited();
10891         else
10892                 synchronize_rcu();
10893 }
10894 EXPORT_SYMBOL(synchronize_net);
10895
10896 /**
10897  *      unregister_netdevice_queue - remove device from the kernel
10898  *      @dev: device
10899  *      @head: list
10900  *
10901  *      This function shuts down a device interface and removes it
10902  *      from the kernel tables.
10903  *      If head not NULL, device is queued to be unregistered later.
10904  *
10905  *      Callers must hold the rtnl semaphore.  You may want
10906  *      unregister_netdev() instead of this.
10907  */
10908
10909 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10910 {
10911         ASSERT_RTNL();
10912
10913         if (head) {
10914                 list_move_tail(&dev->unreg_list, head);
10915         } else {
10916                 LIST_HEAD(single);
10917
10918                 list_add(&dev->unreg_list, &single);
10919                 unregister_netdevice_many(&single);
10920         }
10921 }
10922 EXPORT_SYMBOL(unregister_netdevice_queue);
10923
10924 void unregister_netdevice_many_notify(struct list_head *head,
10925                                       u32 portid, const struct nlmsghdr *nlh)
10926 {
10927         struct net_device *dev, *tmp;
10928         LIST_HEAD(close_head);
10929
10930         BUG_ON(dev_boot_phase);
10931         ASSERT_RTNL();
10932
10933         if (list_empty(head))
10934                 return;
10935
10936         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10937                 /* Some devices call without registering
10938                  * for initialization unwind. Remove those
10939                  * devices and proceed with the remaining.
10940                  */
10941                 if (dev->reg_state == NETREG_UNINITIALIZED) {
10942                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10943                                  dev->name, dev);
10944
10945                         WARN_ON(1);
10946                         list_del(&dev->unreg_list);
10947                         continue;
10948                 }
10949                 dev->dismantle = true;
10950                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
10951         }
10952
10953         /* If device is running, close it first. */
10954         list_for_each_entry(dev, head, unreg_list)
10955                 list_add_tail(&dev->close_list, &close_head);
10956         dev_close_many(&close_head, true);
10957
10958         list_for_each_entry(dev, head, unreg_list) {
10959                 /* And unlink it from device chain. */
10960                 write_lock(&dev_base_lock);
10961                 unlist_netdevice(dev, false);
10962                 dev->reg_state = NETREG_UNREGISTERING;
10963                 write_unlock(&dev_base_lock);
10964         }
10965         flush_all_backlogs();
10966
10967         synchronize_net();
10968
10969         list_for_each_entry(dev, head, unreg_list) {
10970                 struct sk_buff *skb = NULL;
10971
10972                 /* Shutdown queueing discipline. */
10973                 dev_shutdown(dev);
10974                 dev_tcx_uninstall(dev);
10975                 dev_xdp_uninstall(dev);
10976                 bpf_dev_bound_netdev_unregister(dev);
10977
10978                 netdev_offload_xstats_disable_all(dev);
10979
10980                 /* Notify protocols, that we are about to destroy
10981                  * this device. They should clean all the things.
10982                  */
10983                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10984
10985                 if (!dev->rtnl_link_ops ||
10986                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10987                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
10988                                                      GFP_KERNEL, NULL, 0,
10989                                                      portid, nlh);
10990
10991                 /*
10992                  *      Flush the unicast and multicast chains
10993                  */
10994                 dev_uc_flush(dev);
10995                 dev_mc_flush(dev);
10996
10997                 netdev_name_node_alt_flush(dev);
10998                 netdev_name_node_free(dev->name_node);
10999
11000                 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11001
11002                 if (dev->netdev_ops->ndo_uninit)
11003                         dev->netdev_ops->ndo_uninit(dev);
11004
11005                 if (skb)
11006                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
11007
11008                 /* Notifier chain MUST detach us all upper devices. */
11009                 WARN_ON(netdev_has_any_upper_dev(dev));
11010                 WARN_ON(netdev_has_any_lower_dev(dev));
11011
11012                 /* Remove entries from kobject tree */
11013                 netdev_unregister_kobject(dev);
11014 #ifdef CONFIG_XPS
11015                 /* Remove XPS queueing entries */
11016                 netif_reset_xps_queues_gt(dev, 0);
11017 #endif
11018         }
11019
11020         synchronize_net();
11021
11022         list_for_each_entry(dev, head, unreg_list) {
11023                 netdev_put(dev, &dev->dev_registered_tracker);
11024                 net_set_todo(dev);
11025         }
11026
11027         list_del(head);
11028 }
11029
11030 /**
11031  *      unregister_netdevice_many - unregister many devices
11032  *      @head: list of devices
11033  *
11034  *  Note: As most callers use a stack allocated list_head,
11035  *  we force a list_del() to make sure stack wont be corrupted later.
11036  */
11037 void unregister_netdevice_many(struct list_head *head)
11038 {
11039         unregister_netdevice_many_notify(head, 0, NULL);
11040 }
11041 EXPORT_SYMBOL(unregister_netdevice_many);
11042
11043 /**
11044  *      unregister_netdev - remove device from the kernel
11045  *      @dev: device
11046  *
11047  *      This function shuts down a device interface and removes it
11048  *      from the kernel tables.
11049  *
11050  *      This is just a wrapper for unregister_netdevice that takes
11051  *      the rtnl semaphore.  In general you want to use this and not
11052  *      unregister_netdevice.
11053  */
11054 void unregister_netdev(struct net_device *dev)
11055 {
11056         rtnl_lock();
11057         unregister_netdevice(dev);
11058         rtnl_unlock();
11059 }
11060 EXPORT_SYMBOL(unregister_netdev);
11061
11062 /**
11063  *      __dev_change_net_namespace - move device to different nethost namespace
11064  *      @dev: device
11065  *      @net: network namespace
11066  *      @pat: If not NULL name pattern to try if the current device name
11067  *            is already taken in the destination network namespace.
11068  *      @new_ifindex: If not zero, specifies device index in the target
11069  *                    namespace.
11070  *
11071  *      This function shuts down a device interface and moves it
11072  *      to a new network namespace. On success 0 is returned, on
11073  *      a failure a netagive errno code is returned.
11074  *
11075  *      Callers must hold the rtnl semaphore.
11076  */
11077
11078 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11079                                const char *pat, int new_ifindex)
11080 {
11081         struct netdev_name_node *name_node;
11082         struct net *net_old = dev_net(dev);
11083         char new_name[IFNAMSIZ] = {};
11084         int err, new_nsid;
11085
11086         ASSERT_RTNL();
11087
11088         /* Don't allow namespace local devices to be moved. */
11089         err = -EINVAL;
11090         if (dev->features & NETIF_F_NETNS_LOCAL)
11091                 goto out;
11092
11093         /* Ensure the device has been registrered */
11094         if (dev->reg_state != NETREG_REGISTERED)
11095                 goto out;
11096
11097         /* Get out if there is nothing todo */
11098         err = 0;
11099         if (net_eq(net_old, net))
11100                 goto out;
11101
11102         /* Pick the destination device name, and ensure
11103          * we can use it in the destination network namespace.
11104          */
11105         err = -EEXIST;
11106         if (netdev_name_in_use(net, dev->name)) {
11107                 /* We get here if we can't use the current device name */
11108                 if (!pat)
11109                         goto out;
11110                 err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
11111                 if (err < 0)
11112                         goto out;
11113         }
11114         /* Check that none of the altnames conflicts. */
11115         err = -EEXIST;
11116         netdev_for_each_altname(dev, name_node)
11117                 if (netdev_name_in_use(net, name_node->name))
11118                         goto out;
11119
11120         /* Check that new_ifindex isn't used yet. */
11121         if (new_ifindex) {
11122                 err = dev_index_reserve(net, new_ifindex);
11123                 if (err < 0)
11124                         goto out;
11125         } else {
11126                 /* If there is an ifindex conflict assign a new one */
11127                 err = dev_index_reserve(net, dev->ifindex);
11128                 if (err == -EBUSY)
11129                         err = dev_index_reserve(net, 0);
11130                 if (err < 0)
11131                         goto out;
11132                 new_ifindex = err;
11133         }
11134
11135         /*
11136          * And now a mini version of register_netdevice unregister_netdevice.
11137          */
11138
11139         /* If device is running close it first. */
11140         dev_close(dev);
11141
11142         /* And unlink it from device chain */
11143         unlist_netdevice(dev, true);
11144
11145         synchronize_net();
11146
11147         /* Shutdown queueing discipline. */
11148         dev_shutdown(dev);
11149
11150         /* Notify protocols, that we are about to destroy
11151          * this device. They should clean all the things.
11152          *
11153          * Note that dev->reg_state stays at NETREG_REGISTERED.
11154          * This is wanted because this way 8021q and macvlan know
11155          * the device is just moving and can keep their slaves up.
11156          */
11157         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11158         rcu_barrier();
11159
11160         new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11161
11162         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11163                             new_ifindex);
11164
11165         /*
11166          *      Flush the unicast and multicast chains
11167          */
11168         dev_uc_flush(dev);
11169         dev_mc_flush(dev);
11170
11171         /* Send a netdev-removed uevent to the old namespace */
11172         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11173         netdev_adjacent_del_links(dev);
11174
11175         /* Move per-net netdevice notifiers that are following the netdevice */
11176         move_netdevice_notifiers_dev_net(dev, net);
11177
11178         /* Actually switch the network namespace */
11179         dev_net_set(dev, net);
11180         dev->ifindex = new_ifindex;
11181
11182         /* Send a netdev-add uevent to the new namespace */
11183         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11184         netdev_adjacent_add_links(dev);
11185
11186         if (new_name[0]) /* Rename the netdev to prepared name */
11187                 strscpy(dev->name, new_name, IFNAMSIZ);
11188
11189         /* Fixup kobjects */
11190         err = device_rename(&dev->dev, dev->name);
11191         WARN_ON(err);
11192
11193         /* Adapt owner in case owning user namespace of target network
11194          * namespace is different from the original one.
11195          */
11196         err = netdev_change_owner(dev, net_old, net);
11197         WARN_ON(err);
11198
11199         /* Add the device back in the hashes */
11200         list_netdevice(dev);
11201
11202         /* Notify protocols, that a new device appeared. */
11203         call_netdevice_notifiers(NETDEV_REGISTER, dev);
11204
11205         /*
11206          *      Prevent userspace races by waiting until the network
11207          *      device is fully setup before sending notifications.
11208          */
11209         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11210
11211         synchronize_net();
11212         err = 0;
11213 out:
11214         return err;
11215 }
11216 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11217
11218 static int dev_cpu_dead(unsigned int oldcpu)
11219 {
11220         struct sk_buff **list_skb;
11221         struct sk_buff *skb;
11222         unsigned int cpu;
11223         struct softnet_data *sd, *oldsd, *remsd = NULL;
11224
11225         local_irq_disable();
11226         cpu = smp_processor_id();
11227         sd = &per_cpu(softnet_data, cpu);
11228         oldsd = &per_cpu(softnet_data, oldcpu);
11229
11230         /* Find end of our completion_queue. */
11231         list_skb = &sd->completion_queue;
11232         while (*list_skb)
11233                 list_skb = &(*list_skb)->next;
11234         /* Append completion queue from offline CPU. */
11235         *list_skb = oldsd->completion_queue;
11236         oldsd->completion_queue = NULL;
11237
11238         /* Append output queue from offline CPU. */
11239         if (oldsd->output_queue) {
11240                 *sd->output_queue_tailp = oldsd->output_queue;
11241                 sd->output_queue_tailp = oldsd->output_queue_tailp;
11242                 oldsd->output_queue = NULL;
11243                 oldsd->output_queue_tailp = &oldsd->output_queue;
11244         }
11245         /* Append NAPI poll list from offline CPU, with one exception :
11246          * process_backlog() must be called by cpu owning percpu backlog.
11247          * We properly handle process_queue & input_pkt_queue later.
11248          */
11249         while (!list_empty(&oldsd->poll_list)) {
11250                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11251                                                             struct napi_struct,
11252                                                             poll_list);
11253
11254                 list_del_init(&napi->poll_list);
11255                 if (napi->poll == process_backlog)
11256                         napi->state = 0;
11257                 else
11258                         ____napi_schedule(sd, napi);
11259         }
11260
11261         raise_softirq_irqoff(NET_TX_SOFTIRQ);
11262         local_irq_enable();
11263
11264 #ifdef CONFIG_RPS
11265         remsd = oldsd->rps_ipi_list;
11266         oldsd->rps_ipi_list = NULL;
11267 #endif
11268         /* send out pending IPI's on offline CPU */
11269         net_rps_send_ipi(remsd);
11270
11271         /* Process offline CPU's input_pkt_queue */
11272         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11273                 netif_rx(skb);
11274                 input_queue_head_incr(oldsd);
11275         }
11276         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11277                 netif_rx(skb);
11278                 input_queue_head_incr(oldsd);
11279         }
11280
11281         return 0;
11282 }
11283
11284 /**
11285  *      netdev_increment_features - increment feature set by one
11286  *      @all: current feature set
11287  *      @one: new feature set
11288  *      @mask: mask feature set
11289  *
11290  *      Computes a new feature set after adding a device with feature set
11291  *      @one to the master device with current feature set @all.  Will not
11292  *      enable anything that is off in @mask. Returns the new feature set.
11293  */
11294 netdev_features_t netdev_increment_features(netdev_features_t all,
11295         netdev_features_t one, netdev_features_t mask)
11296 {
11297         if (mask & NETIF_F_HW_CSUM)
11298                 mask |= NETIF_F_CSUM_MASK;
11299         mask |= NETIF_F_VLAN_CHALLENGED;
11300
11301         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11302         all &= one | ~NETIF_F_ALL_FOR_ALL;
11303
11304         /* If one device supports hw checksumming, set for all. */
11305         if (all & NETIF_F_HW_CSUM)
11306                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11307
11308         return all;
11309 }
11310 EXPORT_SYMBOL(netdev_increment_features);
11311
11312 static struct hlist_head * __net_init netdev_create_hash(void)
11313 {
11314         int i;
11315         struct hlist_head *hash;
11316
11317         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11318         if (hash != NULL)
11319                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11320                         INIT_HLIST_HEAD(&hash[i]);
11321
11322         return hash;
11323 }
11324
11325 /* Initialize per network namespace state */
11326 static int __net_init netdev_init(struct net *net)
11327 {
11328         BUILD_BUG_ON(GRO_HASH_BUCKETS >
11329                      8 * sizeof_field(struct napi_struct, gro_bitmask));
11330
11331         INIT_LIST_HEAD(&net->dev_base_head);
11332
11333         net->dev_name_head = netdev_create_hash();
11334         if (net->dev_name_head == NULL)
11335                 goto err_name;
11336
11337         net->dev_index_head = netdev_create_hash();
11338         if (net->dev_index_head == NULL)
11339                 goto err_idx;
11340
11341         xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
11342
11343         RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11344
11345         return 0;
11346
11347 err_idx:
11348         kfree(net->dev_name_head);
11349 err_name:
11350         return -ENOMEM;
11351 }
11352
11353 /**
11354  *      netdev_drivername - network driver for the device
11355  *      @dev: network device
11356  *
11357  *      Determine network driver for device.
11358  */
11359 const char *netdev_drivername(const struct net_device *dev)
11360 {
11361         const struct device_driver *driver;
11362         const struct device *parent;
11363         const char *empty = "";
11364
11365         parent = dev->dev.parent;
11366         if (!parent)
11367                 return empty;
11368
11369         driver = parent->driver;
11370         if (driver && driver->name)
11371                 return driver->name;
11372         return empty;
11373 }
11374
11375 static void __netdev_printk(const char *level, const struct net_device *dev,
11376                             struct va_format *vaf)
11377 {
11378         if (dev && dev->dev.parent) {
11379                 dev_printk_emit(level[1] - '0',
11380                                 dev->dev.parent,
11381                                 "%s %s %s%s: %pV",
11382                                 dev_driver_string(dev->dev.parent),
11383                                 dev_name(dev->dev.parent),
11384                                 netdev_name(dev), netdev_reg_state(dev),
11385                                 vaf);
11386         } else if (dev) {
11387                 printk("%s%s%s: %pV",
11388                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
11389         } else {
11390                 printk("%s(NULL net_device): %pV", level, vaf);
11391         }
11392 }
11393
11394 void netdev_printk(const char *level, const struct net_device *dev,
11395                    const char *format, ...)
11396 {
11397         struct va_format vaf;
11398         va_list args;
11399
11400         va_start(args, format);
11401
11402         vaf.fmt = format;
11403         vaf.va = &args;
11404
11405         __netdev_printk(level, dev, &vaf);
11406
11407         va_end(args);
11408 }
11409 EXPORT_SYMBOL(netdev_printk);
11410
11411 #define define_netdev_printk_level(func, level)                 \
11412 void func(const struct net_device *dev, const char *fmt, ...)   \
11413 {                                                               \
11414         struct va_format vaf;                                   \
11415         va_list args;                                           \
11416                                                                 \
11417         va_start(args, fmt);                                    \
11418                                                                 \
11419         vaf.fmt = fmt;                                          \
11420         vaf.va = &args;                                         \
11421                                                                 \
11422         __netdev_printk(level, dev, &vaf);                      \
11423                                                                 \
11424         va_end(args);                                           \
11425 }                                                               \
11426 EXPORT_SYMBOL(func);
11427
11428 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11429 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11430 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11431 define_netdev_printk_level(netdev_err, KERN_ERR);
11432 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11433 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11434 define_netdev_printk_level(netdev_info, KERN_INFO);
11435
11436 static void __net_exit netdev_exit(struct net *net)
11437 {
11438         kfree(net->dev_name_head);
11439         kfree(net->dev_index_head);
11440         xa_destroy(&net->dev_by_index);
11441         if (net != &init_net)
11442                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11443 }
11444
11445 static struct pernet_operations __net_initdata netdev_net_ops = {
11446         .init = netdev_init,
11447         .exit = netdev_exit,
11448 };
11449
11450 static void __net_exit default_device_exit_net(struct net *net)
11451 {
11452         struct net_device *dev, *aux;
11453         /*
11454          * Push all migratable network devices back to the
11455          * initial network namespace
11456          */
11457         ASSERT_RTNL();
11458         for_each_netdev_safe(net, dev, aux) {
11459                 int err;
11460                 char fb_name[IFNAMSIZ];
11461
11462                 /* Ignore unmoveable devices (i.e. loopback) */
11463                 if (dev->features & NETIF_F_NETNS_LOCAL)
11464                         continue;
11465
11466                 /* Leave virtual devices for the generic cleanup */
11467                 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11468                         continue;
11469
11470                 /* Push remaining network devices to init_net */
11471                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11472                 if (netdev_name_in_use(&init_net, fb_name))
11473                         snprintf(fb_name, IFNAMSIZ, "dev%%d");
11474                 err = dev_change_net_namespace(dev, &init_net, fb_name);
11475                 if (err) {
11476                         pr_emerg("%s: failed to move %s to init_net: %d\n",
11477                                  __func__, dev->name, err);
11478                         BUG();
11479                 }
11480         }
11481 }
11482
11483 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11484 {
11485         /* At exit all network devices most be removed from a network
11486          * namespace.  Do this in the reverse order of registration.
11487          * Do this across as many network namespaces as possible to
11488          * improve batching efficiency.
11489          */
11490         struct net_device *dev;
11491         struct net *net;
11492         LIST_HEAD(dev_kill_list);
11493
11494         rtnl_lock();
11495         list_for_each_entry(net, net_list, exit_list) {
11496                 default_device_exit_net(net);
11497                 cond_resched();
11498         }
11499
11500         list_for_each_entry(net, net_list, exit_list) {
11501                 for_each_netdev_reverse(net, dev) {
11502                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11503                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11504                         else
11505                                 unregister_netdevice_queue(dev, &dev_kill_list);
11506                 }
11507         }
11508         unregister_netdevice_many(&dev_kill_list);
11509         rtnl_unlock();
11510 }
11511
11512 static struct pernet_operations __net_initdata default_device_ops = {
11513         .exit_batch = default_device_exit_batch,
11514 };
11515
11516 /*
11517  *      Initialize the DEV module. At boot time this walks the device list and
11518  *      unhooks any devices that fail to initialise (normally hardware not
11519  *      present) and leaves us with a valid list of present and active devices.
11520  *
11521  */
11522
11523 /*
11524  *       This is called single threaded during boot, so no need
11525  *       to take the rtnl semaphore.
11526  */
11527 static int __init net_dev_init(void)
11528 {
11529         int i, rc = -ENOMEM;
11530
11531         BUG_ON(!dev_boot_phase);
11532
11533         if (dev_proc_init())
11534                 goto out;
11535
11536         if (netdev_kobject_init())
11537                 goto out;
11538
11539         INIT_LIST_HEAD(&ptype_all);
11540         for (i = 0; i < PTYPE_HASH_SIZE; i++)
11541                 INIT_LIST_HEAD(&ptype_base[i]);
11542
11543         if (register_pernet_subsys(&netdev_net_ops))
11544                 goto out;
11545
11546         /*
11547          *      Initialise the packet receive queues.
11548          */
11549
11550         for_each_possible_cpu(i) {
11551                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11552                 struct softnet_data *sd = &per_cpu(softnet_data, i);
11553
11554                 INIT_WORK(flush, flush_backlog);
11555
11556                 skb_queue_head_init(&sd->input_pkt_queue);
11557                 skb_queue_head_init(&sd->process_queue);
11558 #ifdef CONFIG_XFRM_OFFLOAD
11559                 skb_queue_head_init(&sd->xfrm_backlog);
11560 #endif
11561                 INIT_LIST_HEAD(&sd->poll_list);
11562                 sd->output_queue_tailp = &sd->output_queue;
11563 #ifdef CONFIG_RPS
11564                 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11565                 sd->cpu = i;
11566 #endif
11567                 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
11568                 spin_lock_init(&sd->defer_lock);
11569
11570                 init_gro_hash(&sd->backlog);
11571                 sd->backlog.poll = process_backlog;
11572                 sd->backlog.weight = weight_p;
11573         }
11574
11575         dev_boot_phase = 0;
11576
11577         /* The loopback device is special if any other network devices
11578          * is present in a network namespace the loopback device must
11579          * be present. Since we now dynamically allocate and free the
11580          * loopback device ensure this invariant is maintained by
11581          * keeping the loopback device as the first device on the
11582          * list of network devices.  Ensuring the loopback devices
11583          * is the first device that appears and the last network device
11584          * that disappears.
11585          */
11586         if (register_pernet_device(&loopback_net_ops))
11587                 goto out;
11588
11589         if (register_pernet_device(&default_device_ops))
11590                 goto out;
11591
11592         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11593         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11594
11595         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11596                                        NULL, dev_cpu_dead);
11597         WARN_ON(rc < 0);
11598         rc = 0;
11599 out:
11600         return rc;
11601 }
11602
11603 subsys_initcall(net_dev_init);