Merge tag 'drm-for-v4.15-part2' of git://people.freedesktop.org/~airlied/linux
[linux-2.6-microblaze.git] / net / bluetooth / hci_core.c
1 /*
2    BlueZ - Bluetooth protocol stack for Linux
3    Copyright (C) 2000-2001 Qualcomm Incorporated
4    Copyright (C) 2011 ProFUSION Embedded Systems
5
6    Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
7
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License version 2 as
10    published by the Free Software Foundation;
11
12    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
13    OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
14    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
15    IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
16    CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
17    WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18    ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19    OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20
21    ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
22    COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
23    SOFTWARE IS DISCLAIMED.
24 */
25
26 /* Bluetooth HCI core. */
27
28 #include <linux/export.h>
29 #include <linux/idr.h>
30 #include <linux/rfkill.h>
31 #include <linux/debugfs.h>
32 #include <linux/crypto.h>
33 #include <asm/unaligned.h>
34
35 #include <net/bluetooth/bluetooth.h>
36 #include <net/bluetooth/hci_core.h>
37 #include <net/bluetooth/l2cap.h>
38 #include <net/bluetooth/mgmt.h>
39
40 #include "hci_request.h"
41 #include "hci_debugfs.h"
42 #include "smp.h"
43 #include "leds.h"
44
45 static void hci_rx_work(struct work_struct *work);
46 static void hci_cmd_work(struct work_struct *work);
47 static void hci_tx_work(struct work_struct *work);
48
49 /* HCI device list */
50 LIST_HEAD(hci_dev_list);
51 DEFINE_RWLOCK(hci_dev_list_lock);
52
53 /* HCI callback list */
54 LIST_HEAD(hci_cb_list);
55 DEFINE_MUTEX(hci_cb_list_lock);
56
57 /* HCI ID Numbering */
58 static DEFINE_IDA(hci_index_ida);
59
60 /* ---- HCI debugfs entries ---- */
61
62 static ssize_t dut_mode_read(struct file *file, char __user *user_buf,
63                              size_t count, loff_t *ppos)
64 {
65         struct hci_dev *hdev = file->private_data;
66         char buf[3];
67
68         buf[0] = hci_dev_test_flag(hdev, HCI_DUT_MODE) ? 'Y' : 'N';
69         buf[1] = '\n';
70         buf[2] = '\0';
71         return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
72 }
73
74 static ssize_t dut_mode_write(struct file *file, const char __user *user_buf,
75                               size_t count, loff_t *ppos)
76 {
77         struct hci_dev *hdev = file->private_data;
78         struct sk_buff *skb;
79         char buf[32];
80         size_t buf_size = min(count, (sizeof(buf)-1));
81         bool enable;
82
83         if (!test_bit(HCI_UP, &hdev->flags))
84                 return -ENETDOWN;
85
86         if (copy_from_user(buf, user_buf, buf_size))
87                 return -EFAULT;
88
89         buf[buf_size] = '\0';
90         if (strtobool(buf, &enable))
91                 return -EINVAL;
92
93         if (enable == hci_dev_test_flag(hdev, HCI_DUT_MODE))
94                 return -EALREADY;
95
96         hci_req_sync_lock(hdev);
97         if (enable)
98                 skb = __hci_cmd_sync(hdev, HCI_OP_ENABLE_DUT_MODE, 0, NULL,
99                                      HCI_CMD_TIMEOUT);
100         else
101                 skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL,
102                                      HCI_CMD_TIMEOUT);
103         hci_req_sync_unlock(hdev);
104
105         if (IS_ERR(skb))
106                 return PTR_ERR(skb);
107
108         kfree_skb(skb);
109
110         hci_dev_change_flag(hdev, HCI_DUT_MODE);
111
112         return count;
113 }
114
115 static const struct file_operations dut_mode_fops = {
116         .open           = simple_open,
117         .read           = dut_mode_read,
118         .write          = dut_mode_write,
119         .llseek         = default_llseek,
120 };
121
122 static ssize_t vendor_diag_read(struct file *file, char __user *user_buf,
123                                 size_t count, loff_t *ppos)
124 {
125         struct hci_dev *hdev = file->private_data;
126         char buf[3];
127
128         buf[0] = hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) ? 'Y' : 'N';
129         buf[1] = '\n';
130         buf[2] = '\0';
131         return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
132 }
133
134 static ssize_t vendor_diag_write(struct file *file, const char __user *user_buf,
135                                  size_t count, loff_t *ppos)
136 {
137         struct hci_dev *hdev = file->private_data;
138         char buf[32];
139         size_t buf_size = min(count, (sizeof(buf)-1));
140         bool enable;
141         int err;
142
143         if (copy_from_user(buf, user_buf, buf_size))
144                 return -EFAULT;
145
146         buf[buf_size] = '\0';
147         if (strtobool(buf, &enable))
148                 return -EINVAL;
149
150         /* When the diagnostic flags are not persistent and the transport
151          * is not active or in user channel operation, then there is no need
152          * for the vendor callback. Instead just store the desired value and
153          * the setting will be programmed when the controller gets powered on.
154          */
155         if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
156             (!test_bit(HCI_RUNNING, &hdev->flags) ||
157              hci_dev_test_flag(hdev, HCI_USER_CHANNEL)))
158                 goto done;
159
160         hci_req_sync_lock(hdev);
161         err = hdev->set_diag(hdev, enable);
162         hci_req_sync_unlock(hdev);
163
164         if (err < 0)
165                 return err;
166
167 done:
168         if (enable)
169                 hci_dev_set_flag(hdev, HCI_VENDOR_DIAG);
170         else
171                 hci_dev_clear_flag(hdev, HCI_VENDOR_DIAG);
172
173         return count;
174 }
175
176 static const struct file_operations vendor_diag_fops = {
177         .open           = simple_open,
178         .read           = vendor_diag_read,
179         .write          = vendor_diag_write,
180         .llseek         = default_llseek,
181 };
182
183 static void hci_debugfs_create_basic(struct hci_dev *hdev)
184 {
185         debugfs_create_file("dut_mode", 0644, hdev->debugfs, hdev,
186                             &dut_mode_fops);
187
188         if (hdev->set_diag)
189                 debugfs_create_file("vendor_diag", 0644, hdev->debugfs, hdev,
190                                     &vendor_diag_fops);
191 }
192
193 static int hci_reset_req(struct hci_request *req, unsigned long opt)
194 {
195         BT_DBG("%s %ld", req->hdev->name, opt);
196
197         /* Reset device */
198         set_bit(HCI_RESET, &req->hdev->flags);
199         hci_req_add(req, HCI_OP_RESET, 0, NULL);
200         return 0;
201 }
202
203 static void bredr_init(struct hci_request *req)
204 {
205         req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
206
207         /* Read Local Supported Features */
208         hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
209
210         /* Read Local Version */
211         hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
212
213         /* Read BD Address */
214         hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
215 }
216
217 static void amp_init1(struct hci_request *req)
218 {
219         req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
220
221         /* Read Local Version */
222         hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
223
224         /* Read Local Supported Commands */
225         hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
226
227         /* Read Local AMP Info */
228         hci_req_add(req, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL);
229
230         /* Read Data Blk size */
231         hci_req_add(req, HCI_OP_READ_DATA_BLOCK_SIZE, 0, NULL);
232
233         /* Read Flow Control Mode */
234         hci_req_add(req, HCI_OP_READ_FLOW_CONTROL_MODE, 0, NULL);
235
236         /* Read Location Data */
237         hci_req_add(req, HCI_OP_READ_LOCATION_DATA, 0, NULL);
238 }
239
240 static int amp_init2(struct hci_request *req)
241 {
242         /* Read Local Supported Features. Not all AMP controllers
243          * support this so it's placed conditionally in the second
244          * stage init.
245          */
246         if (req->hdev->commands[14] & 0x20)
247                 hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
248
249         return 0;
250 }
251
252 static int hci_init1_req(struct hci_request *req, unsigned long opt)
253 {
254         struct hci_dev *hdev = req->hdev;
255
256         BT_DBG("%s %ld", hdev->name, opt);
257
258         /* Reset */
259         if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
260                 hci_reset_req(req, 0);
261
262         switch (hdev->dev_type) {
263         case HCI_PRIMARY:
264                 bredr_init(req);
265                 break;
266         case HCI_AMP:
267                 amp_init1(req);
268                 break;
269         default:
270                 bt_dev_err(hdev, "Unknown device type %d", hdev->dev_type);
271                 break;
272         }
273
274         return 0;
275 }
276
277 static void bredr_setup(struct hci_request *req)
278 {
279         __le16 param;
280         __u8 flt_type;
281
282         /* Read Buffer Size (ACL mtu, max pkt, etc.) */
283         hci_req_add(req, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
284
285         /* Read Class of Device */
286         hci_req_add(req, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
287
288         /* Read Local Name */
289         hci_req_add(req, HCI_OP_READ_LOCAL_NAME, 0, NULL);
290
291         /* Read Voice Setting */
292         hci_req_add(req, HCI_OP_READ_VOICE_SETTING, 0, NULL);
293
294         /* Read Number of Supported IAC */
295         hci_req_add(req, HCI_OP_READ_NUM_SUPPORTED_IAC, 0, NULL);
296
297         /* Read Current IAC LAP */
298         hci_req_add(req, HCI_OP_READ_CURRENT_IAC_LAP, 0, NULL);
299
300         /* Clear Event Filters */
301         flt_type = HCI_FLT_CLEAR_ALL;
302         hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
303
304         /* Connection accept timeout ~20 secs */
305         param = cpu_to_le16(0x7d00);
306         hci_req_add(req, HCI_OP_WRITE_CA_TIMEOUT, 2, &param);
307 }
308
309 static void le_setup(struct hci_request *req)
310 {
311         struct hci_dev *hdev = req->hdev;
312
313         /* Read LE Buffer Size */
314         hci_req_add(req, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
315
316         /* Read LE Local Supported Features */
317         hci_req_add(req, HCI_OP_LE_READ_LOCAL_FEATURES, 0, NULL);
318
319         /* Read LE Supported States */
320         hci_req_add(req, HCI_OP_LE_READ_SUPPORTED_STATES, 0, NULL);
321
322         /* LE-only controllers have LE implicitly enabled */
323         if (!lmp_bredr_capable(hdev))
324                 hci_dev_set_flag(hdev, HCI_LE_ENABLED);
325 }
326
327 static void hci_setup_event_mask(struct hci_request *req)
328 {
329         struct hci_dev *hdev = req->hdev;
330
331         /* The second byte is 0xff instead of 0x9f (two reserved bits
332          * disabled) since a Broadcom 1.2 dongle doesn't respond to the
333          * command otherwise.
334          */
335         u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
336
337         /* CSR 1.1 dongles does not accept any bitfield so don't try to set
338          * any event mask for pre 1.2 devices.
339          */
340         if (hdev->hci_ver < BLUETOOTH_VER_1_2)
341                 return;
342
343         if (lmp_bredr_capable(hdev)) {
344                 events[4] |= 0x01; /* Flow Specification Complete */
345         } else {
346                 /* Use a different default for LE-only devices */
347                 memset(events, 0, sizeof(events));
348                 events[1] |= 0x20; /* Command Complete */
349                 events[1] |= 0x40; /* Command Status */
350                 events[1] |= 0x80; /* Hardware Error */
351
352                 /* If the controller supports the Disconnect command, enable
353                  * the corresponding event. In addition enable packet flow
354                  * control related events.
355                  */
356                 if (hdev->commands[0] & 0x20) {
357                         events[0] |= 0x10; /* Disconnection Complete */
358                         events[2] |= 0x04; /* Number of Completed Packets */
359                         events[3] |= 0x02; /* Data Buffer Overflow */
360                 }
361
362                 /* If the controller supports the Read Remote Version
363                  * Information command, enable the corresponding event.
364                  */
365                 if (hdev->commands[2] & 0x80)
366                         events[1] |= 0x08; /* Read Remote Version Information
367                                             * Complete
368                                             */
369
370                 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
371                         events[0] |= 0x80; /* Encryption Change */
372                         events[5] |= 0x80; /* Encryption Key Refresh Complete */
373                 }
374         }
375
376         if (lmp_inq_rssi_capable(hdev) ||
377             test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
378                 events[4] |= 0x02; /* Inquiry Result with RSSI */
379
380         if (lmp_ext_feat_capable(hdev))
381                 events[4] |= 0x04; /* Read Remote Extended Features Complete */
382
383         if (lmp_esco_capable(hdev)) {
384                 events[5] |= 0x08; /* Synchronous Connection Complete */
385                 events[5] |= 0x10; /* Synchronous Connection Changed */
386         }
387
388         if (lmp_sniffsubr_capable(hdev))
389                 events[5] |= 0x20; /* Sniff Subrating */
390
391         if (lmp_pause_enc_capable(hdev))
392                 events[5] |= 0x80; /* Encryption Key Refresh Complete */
393
394         if (lmp_ext_inq_capable(hdev))
395                 events[5] |= 0x40; /* Extended Inquiry Result */
396
397         if (lmp_no_flush_capable(hdev))
398                 events[7] |= 0x01; /* Enhanced Flush Complete */
399
400         if (lmp_lsto_capable(hdev))
401                 events[6] |= 0x80; /* Link Supervision Timeout Changed */
402
403         if (lmp_ssp_capable(hdev)) {
404                 events[6] |= 0x01;      /* IO Capability Request */
405                 events[6] |= 0x02;      /* IO Capability Response */
406                 events[6] |= 0x04;      /* User Confirmation Request */
407                 events[6] |= 0x08;      /* User Passkey Request */
408                 events[6] |= 0x10;      /* Remote OOB Data Request */
409                 events[6] |= 0x20;      /* Simple Pairing Complete */
410                 events[7] |= 0x04;      /* User Passkey Notification */
411                 events[7] |= 0x08;      /* Keypress Notification */
412                 events[7] |= 0x10;      /* Remote Host Supported
413                                          * Features Notification
414                                          */
415         }
416
417         if (lmp_le_capable(hdev))
418                 events[7] |= 0x20;      /* LE Meta-Event */
419
420         hci_req_add(req, HCI_OP_SET_EVENT_MASK, sizeof(events), events);
421 }
422
423 static int hci_init2_req(struct hci_request *req, unsigned long opt)
424 {
425         struct hci_dev *hdev = req->hdev;
426
427         if (hdev->dev_type == HCI_AMP)
428                 return amp_init2(req);
429
430         if (lmp_bredr_capable(hdev))
431                 bredr_setup(req);
432         else
433                 hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
434
435         if (lmp_le_capable(hdev))
436                 le_setup(req);
437
438         /* All Bluetooth 1.2 and later controllers should support the
439          * HCI command for reading the local supported commands.
440          *
441          * Unfortunately some controllers indicate Bluetooth 1.2 support,
442          * but do not have support for this command. If that is the case,
443          * the driver can quirk the behavior and skip reading the local
444          * supported commands.
445          */
446         if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
447             !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
448                 hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
449
450         if (lmp_ssp_capable(hdev)) {
451                 /* When SSP is available, then the host features page
452                  * should also be available as well. However some
453                  * controllers list the max_page as 0 as long as SSP
454                  * has not been enabled. To achieve proper debugging
455                  * output, force the minimum max_page to 1 at least.
456                  */
457                 hdev->max_page = 0x01;
458
459                 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) {
460                         u8 mode = 0x01;
461
462                         hci_req_add(req, HCI_OP_WRITE_SSP_MODE,
463                                     sizeof(mode), &mode);
464                 } else {
465                         struct hci_cp_write_eir cp;
466
467                         memset(hdev->eir, 0, sizeof(hdev->eir));
468                         memset(&cp, 0, sizeof(cp));
469
470                         hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
471                 }
472         }
473
474         if (lmp_inq_rssi_capable(hdev) ||
475             test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) {
476                 u8 mode;
477
478                 /* If Extended Inquiry Result events are supported, then
479                  * they are clearly preferred over Inquiry Result with RSSI
480                  * events.
481                  */
482                 mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
483
484                 hci_req_add(req, HCI_OP_WRITE_INQUIRY_MODE, 1, &mode);
485         }
486
487         if (lmp_inq_tx_pwr_capable(hdev))
488                 hci_req_add(req, HCI_OP_READ_INQ_RSP_TX_POWER, 0, NULL);
489
490         if (lmp_ext_feat_capable(hdev)) {
491                 struct hci_cp_read_local_ext_features cp;
492
493                 cp.page = 0x01;
494                 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
495                             sizeof(cp), &cp);
496         }
497
498         if (hci_dev_test_flag(hdev, HCI_LINK_SECURITY)) {
499                 u8 enable = 1;
500                 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, sizeof(enable),
501                             &enable);
502         }
503
504         return 0;
505 }
506
507 static void hci_setup_link_policy(struct hci_request *req)
508 {
509         struct hci_dev *hdev = req->hdev;
510         struct hci_cp_write_def_link_policy cp;
511         u16 link_policy = 0;
512
513         if (lmp_rswitch_capable(hdev))
514                 link_policy |= HCI_LP_RSWITCH;
515         if (lmp_hold_capable(hdev))
516                 link_policy |= HCI_LP_HOLD;
517         if (lmp_sniff_capable(hdev))
518                 link_policy |= HCI_LP_SNIFF;
519         if (lmp_park_capable(hdev))
520                 link_policy |= HCI_LP_PARK;
521
522         cp.policy = cpu_to_le16(link_policy);
523         hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, sizeof(cp), &cp);
524 }
525
526 static void hci_set_le_support(struct hci_request *req)
527 {
528         struct hci_dev *hdev = req->hdev;
529         struct hci_cp_write_le_host_supported cp;
530
531         /* LE-only devices do not support explicit enablement */
532         if (!lmp_bredr_capable(hdev))
533                 return;
534
535         memset(&cp, 0, sizeof(cp));
536
537         if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
538                 cp.le = 0x01;
539                 cp.simul = 0x00;
540         }
541
542         if (cp.le != lmp_host_le_capable(hdev))
543                 hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, sizeof(cp),
544                             &cp);
545 }
546
547 static void hci_set_event_mask_page_2(struct hci_request *req)
548 {
549         struct hci_dev *hdev = req->hdev;
550         u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
551         bool changed = false;
552
553         /* If Connectionless Slave Broadcast master role is supported
554          * enable all necessary events for it.
555          */
556         if (lmp_csb_master_capable(hdev)) {
557                 events[1] |= 0x40;      /* Triggered Clock Capture */
558                 events[1] |= 0x80;      /* Synchronization Train Complete */
559                 events[2] |= 0x10;      /* Slave Page Response Timeout */
560                 events[2] |= 0x20;      /* CSB Channel Map Change */
561                 changed = true;
562         }
563
564         /* If Connectionless Slave Broadcast slave role is supported
565          * enable all necessary events for it.
566          */
567         if (lmp_csb_slave_capable(hdev)) {
568                 events[2] |= 0x01;      /* Synchronization Train Received */
569                 events[2] |= 0x02;      /* CSB Receive */
570                 events[2] |= 0x04;      /* CSB Timeout */
571                 events[2] |= 0x08;      /* Truncated Page Complete */
572                 changed = true;
573         }
574
575         /* Enable Authenticated Payload Timeout Expired event if supported */
576         if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) {
577                 events[2] |= 0x80;
578                 changed = true;
579         }
580
581         /* Some Broadcom based controllers indicate support for Set Event
582          * Mask Page 2 command, but then actually do not support it. Since
583          * the default value is all bits set to zero, the command is only
584          * required if the event mask has to be changed. In case no change
585          * to the event mask is needed, skip this command.
586          */
587         if (changed)
588                 hci_req_add(req, HCI_OP_SET_EVENT_MASK_PAGE_2,
589                             sizeof(events), events);
590 }
591
592 static int hci_init3_req(struct hci_request *req, unsigned long opt)
593 {
594         struct hci_dev *hdev = req->hdev;
595         u8 p;
596
597         hci_setup_event_mask(req);
598
599         if (hdev->commands[6] & 0x20 &&
600             !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
601                 struct hci_cp_read_stored_link_key cp;
602
603                 bacpy(&cp.bdaddr, BDADDR_ANY);
604                 cp.read_all = 0x01;
605                 hci_req_add(req, HCI_OP_READ_STORED_LINK_KEY, sizeof(cp), &cp);
606         }
607
608         if (hdev->commands[5] & 0x10)
609                 hci_setup_link_policy(req);
610
611         if (hdev->commands[8] & 0x01)
612                 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 0, NULL);
613
614         /* Some older Broadcom based Bluetooth 1.2 controllers do not
615          * support the Read Page Scan Type command. Check support for
616          * this command in the bit mask of supported commands.
617          */
618         if (hdev->commands[13] & 0x01)
619                 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_TYPE, 0, NULL);
620
621         if (lmp_le_capable(hdev)) {
622                 u8 events[8];
623
624                 memset(events, 0, sizeof(events));
625
626                 if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
627                         events[0] |= 0x10;      /* LE Long Term Key Request */
628
629                 /* If controller supports the Connection Parameters Request
630                  * Link Layer Procedure, enable the corresponding event.
631                  */
632                 if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
633                         events[0] |= 0x20;      /* LE Remote Connection
634                                                  * Parameter Request
635                                                  */
636
637                 /* If the controller supports the Data Length Extension
638                  * feature, enable the corresponding event.
639                  */
640                 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
641                         events[0] |= 0x40;      /* LE Data Length Change */
642
643                 /* If the controller supports Extended Scanner Filter
644                  * Policies, enable the correspondig event.
645                  */
646                 if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
647                         events[1] |= 0x04;      /* LE Direct Advertising
648                                                  * Report
649                                                  */
650
651                 /* If the controller supports Channel Selection Algorithm #2
652                  * feature, enable the corresponding event.
653                  */
654                 if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2)
655                         events[2] |= 0x08;      /* LE Channel Selection
656                                                  * Algorithm
657                                                  */
658
659                 /* If the controller supports the LE Set Scan Enable command,
660                  * enable the corresponding advertising report event.
661                  */
662                 if (hdev->commands[26] & 0x08)
663                         events[0] |= 0x02;      /* LE Advertising Report */
664
665                 /* If the controller supports the LE Create Connection
666                  * command, enable the corresponding event.
667                  */
668                 if (hdev->commands[26] & 0x10)
669                         events[0] |= 0x01;      /* LE Connection Complete */
670
671                 /* If the controller supports the LE Connection Update
672                  * command, enable the corresponding event.
673                  */
674                 if (hdev->commands[27] & 0x04)
675                         events[0] |= 0x04;      /* LE Connection Update
676                                                  * Complete
677                                                  */
678
679                 /* If the controller supports the LE Read Remote Used Features
680                  * command, enable the corresponding event.
681                  */
682                 if (hdev->commands[27] & 0x20)
683                         events[0] |= 0x08;      /* LE Read Remote Used
684                                                  * Features Complete
685                                                  */
686
687                 /* If the controller supports the LE Read Local P-256
688                  * Public Key command, enable the corresponding event.
689                  */
690                 if (hdev->commands[34] & 0x02)
691                         events[0] |= 0x80;      /* LE Read Local P-256
692                                                  * Public Key Complete
693                                                  */
694
695                 /* If the controller supports the LE Generate DHKey
696                  * command, enable the corresponding event.
697                  */
698                 if (hdev->commands[34] & 0x04)
699                         events[1] |= 0x01;      /* LE Generate DHKey Complete */
700
701                 /* If the controller supports the LE Set Default PHY or
702                  * LE Set PHY commands, enable the corresponding event.
703                  */
704                 if (hdev->commands[35] & (0x20 | 0x40))
705                         events[1] |= 0x08;        /* LE PHY Update Complete */
706
707                 hci_req_add(req, HCI_OP_LE_SET_EVENT_MASK, sizeof(events),
708                             events);
709
710                 if (hdev->commands[25] & 0x40) {
711                         /* Read LE Advertising Channel TX Power */
712                         hci_req_add(req, HCI_OP_LE_READ_ADV_TX_POWER, 0, NULL);
713                 }
714
715                 if (hdev->commands[26] & 0x40) {
716                         /* Read LE White List Size */
717                         hci_req_add(req, HCI_OP_LE_READ_WHITE_LIST_SIZE,
718                                     0, NULL);
719                 }
720
721                 if (hdev->commands[26] & 0x80) {
722                         /* Clear LE White List */
723                         hci_req_add(req, HCI_OP_LE_CLEAR_WHITE_LIST, 0, NULL);
724                 }
725
726                 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
727                         /* Read LE Maximum Data Length */
728                         hci_req_add(req, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL);
729
730                         /* Read LE Suggested Default Data Length */
731                         hci_req_add(req, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL);
732                 }
733
734                 hci_set_le_support(req);
735         }
736
737         /* Read features beyond page 1 if available */
738         for (p = 2; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) {
739                 struct hci_cp_read_local_ext_features cp;
740
741                 cp.page = p;
742                 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
743                             sizeof(cp), &cp);
744         }
745
746         return 0;
747 }
748
749 static int hci_init4_req(struct hci_request *req, unsigned long opt)
750 {
751         struct hci_dev *hdev = req->hdev;
752
753         /* Some Broadcom based Bluetooth controllers do not support the
754          * Delete Stored Link Key command. They are clearly indicating its
755          * absence in the bit mask of supported commands.
756          *
757          * Check the supported commands and only if the the command is marked
758          * as supported send it. If not supported assume that the controller
759          * does not have actual support for stored link keys which makes this
760          * command redundant anyway.
761          *
762          * Some controllers indicate that they support handling deleting
763          * stored link keys, but they don't. The quirk lets a driver
764          * just disable this command.
765          */
766         if (hdev->commands[6] & 0x80 &&
767             !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
768                 struct hci_cp_delete_stored_link_key cp;
769
770                 bacpy(&cp.bdaddr, BDADDR_ANY);
771                 cp.delete_all = 0x01;
772                 hci_req_add(req, HCI_OP_DELETE_STORED_LINK_KEY,
773                             sizeof(cp), &cp);
774         }
775
776         /* Set event mask page 2 if the HCI command for it is supported */
777         if (hdev->commands[22] & 0x04)
778                 hci_set_event_mask_page_2(req);
779
780         /* Read local codec list if the HCI command is supported */
781         if (hdev->commands[29] & 0x20)
782                 hci_req_add(req, HCI_OP_READ_LOCAL_CODECS, 0, NULL);
783
784         /* Get MWS transport configuration if the HCI command is supported */
785         if (hdev->commands[30] & 0x08)
786                 hci_req_add(req, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 0, NULL);
787
788         /* Check for Synchronization Train support */
789         if (lmp_sync_train_capable(hdev))
790                 hci_req_add(req, HCI_OP_READ_SYNC_TRAIN_PARAMS, 0, NULL);
791
792         /* Enable Secure Connections if supported and configured */
793         if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
794             bredr_sc_enabled(hdev)) {
795                 u8 support = 0x01;
796
797                 hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
798                             sizeof(support), &support);
799         }
800
801         /* Set Suggested Default Data Length to maximum if supported */
802         if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
803                 struct hci_cp_le_write_def_data_len cp;
804
805                 cp.tx_len = hdev->le_max_tx_len;
806                 cp.tx_time = hdev->le_max_tx_time;
807                 hci_req_add(req, HCI_OP_LE_WRITE_DEF_DATA_LEN, sizeof(cp), &cp);
808         }
809
810         /* Set Default PHY parameters if command is supported */
811         if (hdev->commands[35] & 0x20) {
812                 struct hci_cp_le_set_default_phy cp;
813
814                 /* No transmitter PHY or receiver PHY preferences */
815                 cp.all_phys = 0x03;
816                 cp.tx_phys = 0;
817                 cp.rx_phys = 0;
818
819                 hci_req_add(req, HCI_OP_LE_SET_DEFAULT_PHY, sizeof(cp), &cp);
820         }
821
822         return 0;
823 }
824
825 static int __hci_init(struct hci_dev *hdev)
826 {
827         int err;
828
829         err = __hci_req_sync(hdev, hci_init1_req, 0, HCI_INIT_TIMEOUT, NULL);
830         if (err < 0)
831                 return err;
832
833         if (hci_dev_test_flag(hdev, HCI_SETUP))
834                 hci_debugfs_create_basic(hdev);
835
836         err = __hci_req_sync(hdev, hci_init2_req, 0, HCI_INIT_TIMEOUT, NULL);
837         if (err < 0)
838                 return err;
839
840         /* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode
841          * BR/EDR/LE type controllers. AMP controllers only need the
842          * first two stages of init.
843          */
844         if (hdev->dev_type != HCI_PRIMARY)
845                 return 0;
846
847         err = __hci_req_sync(hdev, hci_init3_req, 0, HCI_INIT_TIMEOUT, NULL);
848         if (err < 0)
849                 return err;
850
851         err = __hci_req_sync(hdev, hci_init4_req, 0, HCI_INIT_TIMEOUT, NULL);
852         if (err < 0)
853                 return err;
854
855         /* This function is only called when the controller is actually in
856          * configured state. When the controller is marked as unconfigured,
857          * this initialization procedure is not run.
858          *
859          * It means that it is possible that a controller runs through its
860          * setup phase and then discovers missing settings. If that is the
861          * case, then this function will not be called. It then will only
862          * be called during the config phase.
863          *
864          * So only when in setup phase or config phase, create the debugfs
865          * entries and register the SMP channels.
866          */
867         if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
868             !hci_dev_test_flag(hdev, HCI_CONFIG))
869                 return 0;
870
871         hci_debugfs_create_common(hdev);
872
873         if (lmp_bredr_capable(hdev))
874                 hci_debugfs_create_bredr(hdev);
875
876         if (lmp_le_capable(hdev))
877                 hci_debugfs_create_le(hdev);
878
879         return 0;
880 }
881
882 static int hci_init0_req(struct hci_request *req, unsigned long opt)
883 {
884         struct hci_dev *hdev = req->hdev;
885
886         BT_DBG("%s %ld", hdev->name, opt);
887
888         /* Reset */
889         if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
890                 hci_reset_req(req, 0);
891
892         /* Read Local Version */
893         hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
894
895         /* Read BD Address */
896         if (hdev->set_bdaddr)
897                 hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
898
899         return 0;
900 }
901
902 static int __hci_unconf_init(struct hci_dev *hdev)
903 {
904         int err;
905
906         if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
907                 return 0;
908
909         err = __hci_req_sync(hdev, hci_init0_req, 0, HCI_INIT_TIMEOUT, NULL);
910         if (err < 0)
911                 return err;
912
913         if (hci_dev_test_flag(hdev, HCI_SETUP))
914                 hci_debugfs_create_basic(hdev);
915
916         return 0;
917 }
918
919 static int hci_scan_req(struct hci_request *req, unsigned long opt)
920 {
921         __u8 scan = opt;
922
923         BT_DBG("%s %x", req->hdev->name, scan);
924
925         /* Inquiry and Page scans */
926         hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
927         return 0;
928 }
929
930 static int hci_auth_req(struct hci_request *req, unsigned long opt)
931 {
932         __u8 auth = opt;
933
934         BT_DBG("%s %x", req->hdev->name, auth);
935
936         /* Authentication */
937         hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
938         return 0;
939 }
940
941 static int hci_encrypt_req(struct hci_request *req, unsigned long opt)
942 {
943         __u8 encrypt = opt;
944
945         BT_DBG("%s %x", req->hdev->name, encrypt);
946
947         /* Encryption */
948         hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
949         return 0;
950 }
951
952 static int hci_linkpol_req(struct hci_request *req, unsigned long opt)
953 {
954         __le16 policy = cpu_to_le16(opt);
955
956         BT_DBG("%s %x", req->hdev->name, policy);
957
958         /* Default link policy */
959         hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
960         return 0;
961 }
962
963 /* Get HCI device by index.
964  * Device is held on return. */
965 struct hci_dev *hci_dev_get(int index)
966 {
967         struct hci_dev *hdev = NULL, *d;
968
969         BT_DBG("%d", index);
970
971         if (index < 0)
972                 return NULL;
973
974         read_lock(&hci_dev_list_lock);
975         list_for_each_entry(d, &hci_dev_list, list) {
976                 if (d->id == index) {
977                         hdev = hci_dev_hold(d);
978                         break;
979                 }
980         }
981         read_unlock(&hci_dev_list_lock);
982         return hdev;
983 }
984
985 /* ---- Inquiry support ---- */
986
987 bool hci_discovery_active(struct hci_dev *hdev)
988 {
989         struct discovery_state *discov = &hdev->discovery;
990
991         switch (discov->state) {
992         case DISCOVERY_FINDING:
993         case DISCOVERY_RESOLVING:
994                 return true;
995
996         default:
997                 return false;
998         }
999 }
1000
1001 void hci_discovery_set_state(struct hci_dev *hdev, int state)
1002 {
1003         int old_state = hdev->discovery.state;
1004
1005         BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
1006
1007         if (old_state == state)
1008                 return;
1009
1010         hdev->discovery.state = state;
1011
1012         switch (state) {
1013         case DISCOVERY_STOPPED:
1014                 hci_update_background_scan(hdev);
1015
1016                 if (old_state != DISCOVERY_STARTING)
1017                         mgmt_discovering(hdev, 0);
1018                 break;
1019         case DISCOVERY_STARTING:
1020                 break;
1021         case DISCOVERY_FINDING:
1022                 mgmt_discovering(hdev, 1);
1023                 break;
1024         case DISCOVERY_RESOLVING:
1025                 break;
1026         case DISCOVERY_STOPPING:
1027                 break;
1028         }
1029 }
1030
1031 void hci_inquiry_cache_flush(struct hci_dev *hdev)
1032 {
1033         struct discovery_state *cache = &hdev->discovery;
1034         struct inquiry_entry *p, *n;
1035
1036         list_for_each_entry_safe(p, n, &cache->all, all) {
1037                 list_del(&p->all);
1038                 kfree(p);
1039         }
1040
1041         INIT_LIST_HEAD(&cache->unknown);
1042         INIT_LIST_HEAD(&cache->resolve);
1043 }
1044
1045 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
1046                                                bdaddr_t *bdaddr)
1047 {
1048         struct discovery_state *cache = &hdev->discovery;
1049         struct inquiry_entry *e;
1050
1051         BT_DBG("cache %p, %pMR", cache, bdaddr);
1052
1053         list_for_each_entry(e, &cache->all, all) {
1054                 if (!bacmp(&e->data.bdaddr, bdaddr))
1055                         return e;
1056         }
1057
1058         return NULL;
1059 }
1060
1061 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
1062                                                        bdaddr_t *bdaddr)
1063 {
1064         struct discovery_state *cache = &hdev->discovery;
1065         struct inquiry_entry *e;
1066
1067         BT_DBG("cache %p, %pMR", cache, bdaddr);
1068
1069         list_for_each_entry(e, &cache->unknown, list) {
1070                 if (!bacmp(&e->data.bdaddr, bdaddr))
1071                         return e;
1072         }
1073
1074         return NULL;
1075 }
1076
1077 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
1078                                                        bdaddr_t *bdaddr,
1079                                                        int state)
1080 {
1081         struct discovery_state *cache = &hdev->discovery;
1082         struct inquiry_entry *e;
1083
1084         BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
1085
1086         list_for_each_entry(e, &cache->resolve, list) {
1087                 if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
1088                         return e;
1089                 if (!bacmp(&e->data.bdaddr, bdaddr))
1090                         return e;
1091         }
1092
1093         return NULL;
1094 }
1095
1096 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
1097                                       struct inquiry_entry *ie)
1098 {
1099         struct discovery_state *cache = &hdev->discovery;
1100         struct list_head *pos = &cache->resolve;
1101         struct inquiry_entry *p;
1102
1103         list_del(&ie->list);
1104
1105         list_for_each_entry(p, &cache->resolve, list) {
1106                 if (p->name_state != NAME_PENDING &&
1107                     abs(p->data.rssi) >= abs(ie->data.rssi))
1108                         break;
1109                 pos = &p->list;
1110         }
1111
1112         list_add(&ie->list, pos);
1113 }
1114
1115 u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
1116                              bool name_known)
1117 {
1118         struct discovery_state *cache = &hdev->discovery;
1119         struct inquiry_entry *ie;
1120         u32 flags = 0;
1121
1122         BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
1123
1124         hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
1125
1126         if (!data->ssp_mode)
1127                 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1128
1129         ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
1130         if (ie) {
1131                 if (!ie->data.ssp_mode)
1132                         flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1133
1134                 if (ie->name_state == NAME_NEEDED &&
1135                     data->rssi != ie->data.rssi) {
1136                         ie->data.rssi = data->rssi;
1137                         hci_inquiry_cache_update_resolve(hdev, ie);
1138                 }
1139
1140                 goto update;
1141         }
1142
1143         /* Entry not in the cache. Add new one. */
1144         ie = kzalloc(sizeof(*ie), GFP_KERNEL);
1145         if (!ie) {
1146                 flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1147                 goto done;
1148         }
1149
1150         list_add(&ie->all, &cache->all);
1151
1152         if (name_known) {
1153                 ie->name_state = NAME_KNOWN;
1154         } else {
1155                 ie->name_state = NAME_NOT_KNOWN;
1156                 list_add(&ie->list, &cache->unknown);
1157         }
1158
1159 update:
1160         if (name_known && ie->name_state != NAME_KNOWN &&
1161             ie->name_state != NAME_PENDING) {
1162                 ie->name_state = NAME_KNOWN;
1163                 list_del(&ie->list);
1164         }
1165
1166         memcpy(&ie->data, data, sizeof(*data));
1167         ie->timestamp = jiffies;
1168         cache->timestamp = jiffies;
1169
1170         if (ie->name_state == NAME_NOT_KNOWN)
1171                 flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1172
1173 done:
1174         return flags;
1175 }
1176
1177 static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
1178 {
1179         struct discovery_state *cache = &hdev->discovery;
1180         struct inquiry_info *info = (struct inquiry_info *) buf;
1181         struct inquiry_entry *e;
1182         int copied = 0;
1183
1184         list_for_each_entry(e, &cache->all, all) {
1185                 struct inquiry_data *data = &e->data;
1186
1187                 if (copied >= num)
1188                         break;
1189
1190                 bacpy(&info->bdaddr, &data->bdaddr);
1191                 info->pscan_rep_mode    = data->pscan_rep_mode;
1192                 info->pscan_period_mode = data->pscan_period_mode;
1193                 info->pscan_mode        = data->pscan_mode;
1194                 memcpy(info->dev_class, data->dev_class, 3);
1195                 info->clock_offset      = data->clock_offset;
1196
1197                 info++;
1198                 copied++;
1199         }
1200
1201         BT_DBG("cache %p, copied %d", cache, copied);
1202         return copied;
1203 }
1204
1205 static int hci_inq_req(struct hci_request *req, unsigned long opt)
1206 {
1207         struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
1208         struct hci_dev *hdev = req->hdev;
1209         struct hci_cp_inquiry cp;
1210
1211         BT_DBG("%s", hdev->name);
1212
1213         if (test_bit(HCI_INQUIRY, &hdev->flags))
1214                 return 0;
1215
1216         /* Start Inquiry */
1217         memcpy(&cp.lap, &ir->lap, 3);
1218         cp.length  = ir->length;
1219         cp.num_rsp = ir->num_rsp;
1220         hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
1221
1222         return 0;
1223 }
1224
1225 int hci_inquiry(void __user *arg)
1226 {
1227         __u8 __user *ptr = arg;
1228         struct hci_inquiry_req ir;
1229         struct hci_dev *hdev;
1230         int err = 0, do_inquiry = 0, max_rsp;
1231         long timeo;
1232         __u8 *buf;
1233
1234         if (copy_from_user(&ir, ptr, sizeof(ir)))
1235                 return -EFAULT;
1236
1237         hdev = hci_dev_get(ir.dev_id);
1238         if (!hdev)
1239                 return -ENODEV;
1240
1241         if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1242                 err = -EBUSY;
1243                 goto done;
1244         }
1245
1246         if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1247                 err = -EOPNOTSUPP;
1248                 goto done;
1249         }
1250
1251         if (hdev->dev_type != HCI_PRIMARY) {
1252                 err = -EOPNOTSUPP;
1253                 goto done;
1254         }
1255
1256         if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1257                 err = -EOPNOTSUPP;
1258                 goto done;
1259         }
1260
1261         hci_dev_lock(hdev);
1262         if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
1263             inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
1264                 hci_inquiry_cache_flush(hdev);
1265                 do_inquiry = 1;
1266         }
1267         hci_dev_unlock(hdev);
1268
1269         timeo = ir.length * msecs_to_jiffies(2000);
1270
1271         if (do_inquiry) {
1272                 err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
1273                                    timeo, NULL);
1274                 if (err < 0)
1275                         goto done;
1276
1277                 /* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
1278                  * cleared). If it is interrupted by a signal, return -EINTR.
1279                  */
1280                 if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
1281                                 TASK_INTERRUPTIBLE))
1282                         return -EINTR;
1283         }
1284
1285         /* for unlimited number of responses we will use buffer with
1286          * 255 entries
1287          */
1288         max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
1289
1290         /* cache_dump can't sleep. Therefore we allocate temp buffer and then
1291          * copy it to the user space.
1292          */
1293         buf = kmalloc(sizeof(struct inquiry_info) * max_rsp, GFP_KERNEL);
1294         if (!buf) {
1295                 err = -ENOMEM;
1296                 goto done;
1297         }
1298
1299         hci_dev_lock(hdev);
1300         ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
1301         hci_dev_unlock(hdev);
1302
1303         BT_DBG("num_rsp %d", ir.num_rsp);
1304
1305         if (!copy_to_user(ptr, &ir, sizeof(ir))) {
1306                 ptr += sizeof(ir);
1307                 if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
1308                                  ir.num_rsp))
1309                         err = -EFAULT;
1310         } else
1311                 err = -EFAULT;
1312
1313         kfree(buf);
1314
1315 done:
1316         hci_dev_put(hdev);
1317         return err;
1318 }
1319
1320 static int hci_dev_do_open(struct hci_dev *hdev)
1321 {
1322         int ret = 0;
1323
1324         BT_DBG("%s %p", hdev->name, hdev);
1325
1326         hci_req_sync_lock(hdev);
1327
1328         if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
1329                 ret = -ENODEV;
1330                 goto done;
1331         }
1332
1333         if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1334             !hci_dev_test_flag(hdev, HCI_CONFIG)) {
1335                 /* Check for rfkill but allow the HCI setup stage to
1336                  * proceed (which in itself doesn't cause any RF activity).
1337                  */
1338                 if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
1339                         ret = -ERFKILL;
1340                         goto done;
1341                 }
1342
1343                 /* Check for valid public address or a configured static
1344                  * random adddress, but let the HCI setup proceed to
1345                  * be able to determine if there is a public address
1346                  * or not.
1347                  *
1348                  * In case of user channel usage, it is not important
1349                  * if a public address or static random address is
1350                  * available.
1351                  *
1352                  * This check is only valid for BR/EDR controllers
1353                  * since AMP controllers do not have an address.
1354                  */
1355                 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1356                     hdev->dev_type == HCI_PRIMARY &&
1357                     !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
1358                     !bacmp(&hdev->static_addr, BDADDR_ANY)) {
1359                         ret = -EADDRNOTAVAIL;
1360                         goto done;
1361                 }
1362         }
1363
1364         if (test_bit(HCI_UP, &hdev->flags)) {
1365                 ret = -EALREADY;
1366                 goto done;
1367         }
1368
1369         if (hdev->open(hdev)) {
1370                 ret = -EIO;
1371                 goto done;
1372         }
1373
1374         set_bit(HCI_RUNNING, &hdev->flags);
1375         hci_sock_dev_event(hdev, HCI_DEV_OPEN);
1376
1377         atomic_set(&hdev->cmd_cnt, 1);
1378         set_bit(HCI_INIT, &hdev->flags);
1379
1380         if (hci_dev_test_flag(hdev, HCI_SETUP)) {
1381                 hci_sock_dev_event(hdev, HCI_DEV_SETUP);
1382
1383                 if (hdev->setup)
1384                         ret = hdev->setup(hdev);
1385
1386                 /* The transport driver can set these quirks before
1387                  * creating the HCI device or in its setup callback.
1388                  *
1389                  * In case any of them is set, the controller has to
1390                  * start up as unconfigured.
1391                  */
1392                 if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
1393                     test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks))
1394                         hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
1395
1396                 /* For an unconfigured controller it is required to
1397                  * read at least the version information provided by
1398                  * the Read Local Version Information command.
1399                  *
1400                  * If the set_bdaddr driver callback is provided, then
1401                  * also the original Bluetooth public device address
1402                  * will be read using the Read BD Address command.
1403                  */
1404                 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1405                         ret = __hci_unconf_init(hdev);
1406         }
1407
1408         if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
1409                 /* If public address change is configured, ensure that
1410                  * the address gets programmed. If the driver does not
1411                  * support changing the public address, fail the power
1412                  * on procedure.
1413                  */
1414                 if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1415                     hdev->set_bdaddr)
1416                         ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
1417                 else
1418                         ret = -EADDRNOTAVAIL;
1419         }
1420
1421         if (!ret) {
1422                 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1423                     !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1424                         ret = __hci_init(hdev);
1425                         if (!ret && hdev->post_init)
1426                                 ret = hdev->post_init(hdev);
1427                 }
1428         }
1429
1430         /* If the HCI Reset command is clearing all diagnostic settings,
1431          * then they need to be reprogrammed after the init procedure
1432          * completed.
1433          */
1434         if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
1435             !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1436             hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag)
1437                 ret = hdev->set_diag(hdev, true);
1438
1439         clear_bit(HCI_INIT, &hdev->flags);
1440
1441         if (!ret) {
1442                 hci_dev_hold(hdev);
1443                 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
1444                 set_bit(HCI_UP, &hdev->flags);
1445                 hci_sock_dev_event(hdev, HCI_DEV_UP);
1446                 hci_leds_update_powered(hdev, true);
1447                 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1448                     !hci_dev_test_flag(hdev, HCI_CONFIG) &&
1449                     !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1450                     !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1451                     hci_dev_test_flag(hdev, HCI_MGMT) &&
1452                     hdev->dev_type == HCI_PRIMARY) {
1453                         ret = __hci_req_hci_power_on(hdev);
1454                         mgmt_power_on(hdev, ret);
1455                 }
1456         } else {
1457                 /* Init failed, cleanup */
1458                 flush_work(&hdev->tx_work);
1459                 flush_work(&hdev->cmd_work);
1460                 flush_work(&hdev->rx_work);
1461
1462                 skb_queue_purge(&hdev->cmd_q);
1463                 skb_queue_purge(&hdev->rx_q);
1464
1465                 if (hdev->flush)
1466                         hdev->flush(hdev);
1467
1468                 if (hdev->sent_cmd) {
1469                         kfree_skb(hdev->sent_cmd);
1470                         hdev->sent_cmd = NULL;
1471                 }
1472
1473                 clear_bit(HCI_RUNNING, &hdev->flags);
1474                 hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1475
1476                 hdev->close(hdev);
1477                 hdev->flags &= BIT(HCI_RAW);
1478         }
1479
1480 done:
1481         hci_req_sync_unlock(hdev);
1482         return ret;
1483 }
1484
1485 /* ---- HCI ioctl helpers ---- */
1486
1487 int hci_dev_open(__u16 dev)
1488 {
1489         struct hci_dev *hdev;
1490         int err;
1491
1492         hdev = hci_dev_get(dev);
1493         if (!hdev)
1494                 return -ENODEV;
1495
1496         /* Devices that are marked as unconfigured can only be powered
1497          * up as user channel. Trying to bring them up as normal devices
1498          * will result into a failure. Only user channel operation is
1499          * possible.
1500          *
1501          * When this function is called for a user channel, the flag
1502          * HCI_USER_CHANNEL will be set first before attempting to
1503          * open the device.
1504          */
1505         if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1506             !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1507                 err = -EOPNOTSUPP;
1508                 goto done;
1509         }
1510
1511         /* We need to ensure that no other power on/off work is pending
1512          * before proceeding to call hci_dev_do_open. This is
1513          * particularly important if the setup procedure has not yet
1514          * completed.
1515          */
1516         if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1517                 cancel_delayed_work(&hdev->power_off);
1518
1519         /* After this call it is guaranteed that the setup procedure
1520          * has finished. This means that error conditions like RFKILL
1521          * or no valid public or static random address apply.
1522          */
1523         flush_workqueue(hdev->req_workqueue);
1524
1525         /* For controllers not using the management interface and that
1526          * are brought up using legacy ioctl, set the HCI_BONDABLE bit
1527          * so that pairing works for them. Once the management interface
1528          * is in use this bit will be cleared again and userspace has
1529          * to explicitly enable it.
1530          */
1531         if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1532             !hci_dev_test_flag(hdev, HCI_MGMT))
1533                 hci_dev_set_flag(hdev, HCI_BONDABLE);
1534
1535         err = hci_dev_do_open(hdev);
1536
1537 done:
1538         hci_dev_put(hdev);
1539         return err;
1540 }
1541
1542 /* This function requires the caller holds hdev->lock */
1543 static void hci_pend_le_actions_clear(struct hci_dev *hdev)
1544 {
1545         struct hci_conn_params *p;
1546
1547         list_for_each_entry(p, &hdev->le_conn_params, list) {
1548                 if (p->conn) {
1549                         hci_conn_drop(p->conn);
1550                         hci_conn_put(p->conn);
1551                         p->conn = NULL;
1552                 }
1553                 list_del_init(&p->action);
1554         }
1555
1556         BT_DBG("All LE pending actions cleared");
1557 }
1558
1559 int hci_dev_do_close(struct hci_dev *hdev)
1560 {
1561         bool auto_off;
1562
1563         BT_DBG("%s %p", hdev->name, hdev);
1564
1565         if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
1566             !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1567             test_bit(HCI_UP, &hdev->flags)) {
1568                 /* Execute vendor specific shutdown routine */
1569                 if (hdev->shutdown)
1570                         hdev->shutdown(hdev);
1571         }
1572
1573         cancel_delayed_work(&hdev->power_off);
1574
1575         hci_request_cancel_all(hdev);
1576         hci_req_sync_lock(hdev);
1577
1578         if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
1579                 cancel_delayed_work_sync(&hdev->cmd_timer);
1580                 hci_req_sync_unlock(hdev);
1581                 return 0;
1582         }
1583
1584         hci_leds_update_powered(hdev, false);
1585
1586         /* Flush RX and TX works */
1587         flush_work(&hdev->tx_work);
1588         flush_work(&hdev->rx_work);
1589
1590         if (hdev->discov_timeout > 0) {
1591                 hdev->discov_timeout = 0;
1592                 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
1593                 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1594         }
1595
1596         if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
1597                 cancel_delayed_work(&hdev->service_cache);
1598
1599         if (hci_dev_test_flag(hdev, HCI_MGMT))
1600                 cancel_delayed_work_sync(&hdev->rpa_expired);
1601
1602         /* Avoid potential lockdep warnings from the *_flush() calls by
1603          * ensuring the workqueue is empty up front.
1604          */
1605         drain_workqueue(hdev->workqueue);
1606
1607         hci_dev_lock(hdev);
1608
1609         hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
1610
1611         auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF);
1612
1613         if (!auto_off && hdev->dev_type == HCI_PRIMARY &&
1614             !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1615             hci_dev_test_flag(hdev, HCI_MGMT))
1616                 __mgmt_power_off(hdev);
1617
1618         hci_inquiry_cache_flush(hdev);
1619         hci_pend_le_actions_clear(hdev);
1620         hci_conn_hash_flush(hdev);
1621         hci_dev_unlock(hdev);
1622
1623         smp_unregister(hdev);
1624
1625         hci_sock_dev_event(hdev, HCI_DEV_DOWN);
1626
1627         if (hdev->flush)
1628                 hdev->flush(hdev);
1629
1630         /* Reset device */
1631         skb_queue_purge(&hdev->cmd_q);
1632         atomic_set(&hdev->cmd_cnt, 1);
1633         if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) &&
1634             !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1635                 set_bit(HCI_INIT, &hdev->flags);
1636                 __hci_req_sync(hdev, hci_reset_req, 0, HCI_CMD_TIMEOUT, NULL);
1637                 clear_bit(HCI_INIT, &hdev->flags);
1638         }
1639
1640         /* flush cmd  work */
1641         flush_work(&hdev->cmd_work);
1642
1643         /* Drop queues */
1644         skb_queue_purge(&hdev->rx_q);
1645         skb_queue_purge(&hdev->cmd_q);
1646         skb_queue_purge(&hdev->raw_q);
1647
1648         /* Drop last sent command */
1649         if (hdev->sent_cmd) {
1650                 cancel_delayed_work_sync(&hdev->cmd_timer);
1651                 kfree_skb(hdev->sent_cmd);
1652                 hdev->sent_cmd = NULL;
1653         }
1654
1655         clear_bit(HCI_RUNNING, &hdev->flags);
1656         hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1657
1658         /* After this point our queues are empty
1659          * and no tasks are scheduled. */
1660         hdev->close(hdev);
1661
1662         /* Clear flags */
1663         hdev->flags &= BIT(HCI_RAW);
1664         hci_dev_clear_volatile_flags(hdev);
1665
1666         /* Controller radio is available but is currently powered down */
1667         hdev->amp_status = AMP_STATUS_POWERED_DOWN;
1668
1669         memset(hdev->eir, 0, sizeof(hdev->eir));
1670         memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
1671         bacpy(&hdev->random_addr, BDADDR_ANY);
1672
1673         hci_req_sync_unlock(hdev);
1674
1675         hci_dev_put(hdev);
1676         return 0;
1677 }
1678
1679 int hci_dev_close(__u16 dev)
1680 {
1681         struct hci_dev *hdev;
1682         int err;
1683
1684         hdev = hci_dev_get(dev);
1685         if (!hdev)
1686                 return -ENODEV;
1687
1688         if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1689                 err = -EBUSY;
1690                 goto done;
1691         }
1692
1693         if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1694                 cancel_delayed_work(&hdev->power_off);
1695
1696         err = hci_dev_do_close(hdev);
1697
1698 done:
1699         hci_dev_put(hdev);
1700         return err;
1701 }
1702
1703 static int hci_dev_do_reset(struct hci_dev *hdev)
1704 {
1705         int ret;
1706
1707         BT_DBG("%s %p", hdev->name, hdev);
1708
1709         hci_req_sync_lock(hdev);
1710
1711         /* Drop queues */
1712         skb_queue_purge(&hdev->rx_q);
1713         skb_queue_purge(&hdev->cmd_q);
1714
1715         /* Avoid potential lockdep warnings from the *_flush() calls by
1716          * ensuring the workqueue is empty up front.
1717          */
1718         drain_workqueue(hdev->workqueue);
1719
1720         hci_dev_lock(hdev);
1721         hci_inquiry_cache_flush(hdev);
1722         hci_conn_hash_flush(hdev);
1723         hci_dev_unlock(hdev);
1724
1725         if (hdev->flush)
1726                 hdev->flush(hdev);
1727
1728         atomic_set(&hdev->cmd_cnt, 1);
1729         hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
1730
1731         ret = __hci_req_sync(hdev, hci_reset_req, 0, HCI_INIT_TIMEOUT, NULL);
1732
1733         hci_req_sync_unlock(hdev);
1734         return ret;
1735 }
1736
1737 int hci_dev_reset(__u16 dev)
1738 {
1739         struct hci_dev *hdev;
1740         int err;
1741
1742         hdev = hci_dev_get(dev);
1743         if (!hdev)
1744                 return -ENODEV;
1745
1746         if (!test_bit(HCI_UP, &hdev->flags)) {
1747                 err = -ENETDOWN;
1748                 goto done;
1749         }
1750
1751         if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1752                 err = -EBUSY;
1753                 goto done;
1754         }
1755
1756         if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1757                 err = -EOPNOTSUPP;
1758                 goto done;
1759         }
1760
1761         err = hci_dev_do_reset(hdev);
1762
1763 done:
1764         hci_dev_put(hdev);
1765         return err;
1766 }
1767
1768 int hci_dev_reset_stat(__u16 dev)
1769 {
1770         struct hci_dev *hdev;
1771         int ret = 0;
1772
1773         hdev = hci_dev_get(dev);
1774         if (!hdev)
1775                 return -ENODEV;
1776
1777         if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1778                 ret = -EBUSY;
1779                 goto done;
1780         }
1781
1782         if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1783                 ret = -EOPNOTSUPP;
1784                 goto done;
1785         }
1786
1787         memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
1788
1789 done:
1790         hci_dev_put(hdev);
1791         return ret;
1792 }
1793
1794 static void hci_update_scan_state(struct hci_dev *hdev, u8 scan)
1795 {
1796         bool conn_changed, discov_changed;
1797
1798         BT_DBG("%s scan 0x%02x", hdev->name, scan);
1799
1800         if ((scan & SCAN_PAGE))
1801                 conn_changed = !hci_dev_test_and_set_flag(hdev,
1802                                                           HCI_CONNECTABLE);
1803         else
1804                 conn_changed = hci_dev_test_and_clear_flag(hdev,
1805                                                            HCI_CONNECTABLE);
1806
1807         if ((scan & SCAN_INQUIRY)) {
1808                 discov_changed = !hci_dev_test_and_set_flag(hdev,
1809                                                             HCI_DISCOVERABLE);
1810         } else {
1811                 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1812                 discov_changed = hci_dev_test_and_clear_flag(hdev,
1813                                                              HCI_DISCOVERABLE);
1814         }
1815
1816         if (!hci_dev_test_flag(hdev, HCI_MGMT))
1817                 return;
1818
1819         if (conn_changed || discov_changed) {
1820                 /* In case this was disabled through mgmt */
1821                 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
1822
1823                 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1824                         hci_req_update_adv_data(hdev, hdev->cur_adv_instance);
1825
1826                 mgmt_new_settings(hdev);
1827         }
1828 }
1829
1830 int hci_dev_cmd(unsigned int cmd, void __user *arg)
1831 {
1832         struct hci_dev *hdev;
1833         struct hci_dev_req dr;
1834         int err = 0;
1835
1836         if (copy_from_user(&dr, arg, sizeof(dr)))
1837                 return -EFAULT;
1838
1839         hdev = hci_dev_get(dr.dev_id);
1840         if (!hdev)
1841                 return -ENODEV;
1842
1843         if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1844                 err = -EBUSY;
1845                 goto done;
1846         }
1847
1848         if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1849                 err = -EOPNOTSUPP;
1850                 goto done;
1851         }
1852
1853         if (hdev->dev_type != HCI_PRIMARY) {
1854                 err = -EOPNOTSUPP;
1855                 goto done;
1856         }
1857
1858         if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1859                 err = -EOPNOTSUPP;
1860                 goto done;
1861         }
1862
1863         switch (cmd) {
1864         case HCISETAUTH:
1865                 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1866                                    HCI_INIT_TIMEOUT, NULL);
1867                 break;
1868
1869         case HCISETENCRYPT:
1870                 if (!lmp_encrypt_capable(hdev)) {
1871                         err = -EOPNOTSUPP;
1872                         break;
1873                 }
1874
1875                 if (!test_bit(HCI_AUTH, &hdev->flags)) {
1876                         /* Auth must be enabled first */
1877                         err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1878                                            HCI_INIT_TIMEOUT, NULL);
1879                         if (err)
1880                                 break;
1881                 }
1882
1883                 err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
1884                                    HCI_INIT_TIMEOUT, NULL);
1885                 break;
1886
1887         case HCISETSCAN:
1888                 err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
1889                                    HCI_INIT_TIMEOUT, NULL);
1890
1891                 /* Ensure that the connectable and discoverable states
1892                  * get correctly modified as this was a non-mgmt change.
1893                  */
1894                 if (!err)
1895                         hci_update_scan_state(hdev, dr.dev_opt);
1896                 break;
1897
1898         case HCISETLINKPOL:
1899                 err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
1900                                    HCI_INIT_TIMEOUT, NULL);
1901                 break;
1902
1903         case HCISETLINKMODE:
1904                 hdev->link_mode = ((__u16) dr.dev_opt) &
1905                                         (HCI_LM_MASTER | HCI_LM_ACCEPT);
1906                 break;
1907
1908         case HCISETPTYPE:
1909                 hdev->pkt_type = (__u16) dr.dev_opt;
1910                 break;
1911
1912         case HCISETACLMTU:
1913                 hdev->acl_mtu  = *((__u16 *) &dr.dev_opt + 1);
1914                 hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
1915                 break;
1916
1917         case HCISETSCOMTU:
1918                 hdev->sco_mtu  = *((__u16 *) &dr.dev_opt + 1);
1919                 hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
1920                 break;
1921
1922         default:
1923                 err = -EINVAL;
1924                 break;
1925         }
1926
1927 done:
1928         hci_dev_put(hdev);
1929         return err;
1930 }
1931
1932 int hci_get_dev_list(void __user *arg)
1933 {
1934         struct hci_dev *hdev;
1935         struct hci_dev_list_req *dl;
1936         struct hci_dev_req *dr;
1937         int n = 0, size, err;
1938         __u16 dev_num;
1939
1940         if (get_user(dev_num, (__u16 __user *) arg))
1941                 return -EFAULT;
1942
1943         if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
1944                 return -EINVAL;
1945
1946         size = sizeof(*dl) + dev_num * sizeof(*dr);
1947
1948         dl = kzalloc(size, GFP_KERNEL);
1949         if (!dl)
1950                 return -ENOMEM;
1951
1952         dr = dl->dev_req;
1953
1954         read_lock(&hci_dev_list_lock);
1955         list_for_each_entry(hdev, &hci_dev_list, list) {
1956                 unsigned long flags = hdev->flags;
1957
1958                 /* When the auto-off is configured it means the transport
1959                  * is running, but in that case still indicate that the
1960                  * device is actually down.
1961                  */
1962                 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
1963                         flags &= ~BIT(HCI_UP);
1964
1965                 (dr + n)->dev_id  = hdev->id;
1966                 (dr + n)->dev_opt = flags;
1967
1968                 if (++n >= dev_num)
1969                         break;
1970         }
1971         read_unlock(&hci_dev_list_lock);
1972
1973         dl->dev_num = n;
1974         size = sizeof(*dl) + n * sizeof(*dr);
1975
1976         err = copy_to_user(arg, dl, size);
1977         kfree(dl);
1978
1979         return err ? -EFAULT : 0;
1980 }
1981
1982 int hci_get_dev_info(void __user *arg)
1983 {
1984         struct hci_dev *hdev;
1985         struct hci_dev_info di;
1986         unsigned long flags;
1987         int err = 0;
1988
1989         if (copy_from_user(&di, arg, sizeof(di)))
1990                 return -EFAULT;
1991
1992         hdev = hci_dev_get(di.dev_id);
1993         if (!hdev)
1994                 return -ENODEV;
1995
1996         /* When the auto-off is configured it means the transport
1997          * is running, but in that case still indicate that the
1998          * device is actually down.
1999          */
2000         if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
2001                 flags = hdev->flags & ~BIT(HCI_UP);
2002         else
2003                 flags = hdev->flags;
2004
2005         strcpy(di.name, hdev->name);
2006         di.bdaddr   = hdev->bdaddr;
2007         di.type     = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4);
2008         di.flags    = flags;
2009         di.pkt_type = hdev->pkt_type;
2010         if (lmp_bredr_capable(hdev)) {
2011                 di.acl_mtu  = hdev->acl_mtu;
2012                 di.acl_pkts = hdev->acl_pkts;
2013                 di.sco_mtu  = hdev->sco_mtu;
2014                 di.sco_pkts = hdev->sco_pkts;
2015         } else {
2016                 di.acl_mtu  = hdev->le_mtu;
2017                 di.acl_pkts = hdev->le_pkts;
2018                 di.sco_mtu  = 0;
2019                 di.sco_pkts = 0;
2020         }
2021         di.link_policy = hdev->link_policy;
2022         di.link_mode   = hdev->link_mode;
2023
2024         memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
2025         memcpy(&di.features, &hdev->features, sizeof(di.features));
2026
2027         if (copy_to_user(arg, &di, sizeof(di)))
2028                 err = -EFAULT;
2029
2030         hci_dev_put(hdev);
2031
2032         return err;
2033 }
2034
2035 /* ---- Interface to HCI drivers ---- */
2036
2037 static int hci_rfkill_set_block(void *data, bool blocked)
2038 {
2039         struct hci_dev *hdev = data;
2040
2041         BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
2042
2043         if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
2044                 return -EBUSY;
2045
2046         if (blocked) {
2047                 hci_dev_set_flag(hdev, HCI_RFKILLED);
2048                 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
2049                     !hci_dev_test_flag(hdev, HCI_CONFIG))
2050                         hci_dev_do_close(hdev);
2051         } else {
2052                 hci_dev_clear_flag(hdev, HCI_RFKILLED);
2053         }
2054
2055         return 0;
2056 }
2057
2058 static const struct rfkill_ops hci_rfkill_ops = {
2059         .set_block = hci_rfkill_set_block,
2060 };
2061
2062 static void hci_power_on(struct work_struct *work)
2063 {
2064         struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
2065         int err;
2066
2067         BT_DBG("%s", hdev->name);
2068
2069         if (test_bit(HCI_UP, &hdev->flags) &&
2070             hci_dev_test_flag(hdev, HCI_MGMT) &&
2071             hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
2072                 cancel_delayed_work(&hdev->power_off);
2073                 hci_req_sync_lock(hdev);
2074                 err = __hci_req_hci_power_on(hdev);
2075                 hci_req_sync_unlock(hdev);
2076                 mgmt_power_on(hdev, err);
2077                 return;
2078         }
2079
2080         err = hci_dev_do_open(hdev);
2081         if (err < 0) {
2082                 hci_dev_lock(hdev);
2083                 mgmt_set_powered_failed(hdev, err);
2084                 hci_dev_unlock(hdev);
2085                 return;
2086         }
2087
2088         /* During the HCI setup phase, a few error conditions are
2089          * ignored and they need to be checked now. If they are still
2090          * valid, it is important to turn the device back off.
2091          */
2092         if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
2093             hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
2094             (hdev->dev_type == HCI_PRIMARY &&
2095              !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
2096              !bacmp(&hdev->static_addr, BDADDR_ANY))) {
2097                 hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
2098                 hci_dev_do_close(hdev);
2099         } else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
2100                 queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
2101                                    HCI_AUTO_OFF_TIMEOUT);
2102         }
2103
2104         if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
2105                 /* For unconfigured devices, set the HCI_RAW flag
2106                  * so that userspace can easily identify them.
2107                  */
2108                 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2109                         set_bit(HCI_RAW, &hdev->flags);
2110
2111                 /* For fully configured devices, this will send
2112                  * the Index Added event. For unconfigured devices,
2113                  * it will send Unconfigued Index Added event.
2114                  *
2115                  * Devices with HCI_QUIRK_RAW_DEVICE are ignored
2116                  * and no event will be send.
2117                  */
2118                 mgmt_index_added(hdev);
2119         } else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
2120                 /* When the controller is now configured, then it
2121                  * is important to clear the HCI_RAW flag.
2122                  */
2123                 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2124                         clear_bit(HCI_RAW, &hdev->flags);
2125
2126                 /* Powering on the controller with HCI_CONFIG set only
2127                  * happens with the transition from unconfigured to
2128                  * configured. This will send the Index Added event.
2129                  */
2130                 mgmt_index_added(hdev);
2131         }
2132 }
2133
2134 static void hci_power_off(struct work_struct *work)
2135 {
2136         struct hci_dev *hdev = container_of(work, struct hci_dev,
2137                                             power_off.work);
2138
2139         BT_DBG("%s", hdev->name);
2140
2141         hci_dev_do_close(hdev);
2142 }
2143
2144 static void hci_error_reset(struct work_struct *work)
2145 {
2146         struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
2147
2148         BT_DBG("%s", hdev->name);
2149
2150         if (hdev->hw_error)
2151                 hdev->hw_error(hdev, hdev->hw_error_code);
2152         else
2153                 bt_dev_err(hdev, "hardware error 0x%2.2x", hdev->hw_error_code);
2154
2155         if (hci_dev_do_close(hdev))
2156                 return;
2157
2158         hci_dev_do_open(hdev);
2159 }
2160
2161 void hci_uuids_clear(struct hci_dev *hdev)
2162 {
2163         struct bt_uuid *uuid, *tmp;
2164
2165         list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
2166                 list_del(&uuid->list);
2167                 kfree(uuid);
2168         }
2169 }
2170
2171 void hci_link_keys_clear(struct hci_dev *hdev)
2172 {
2173         struct link_key *key;
2174
2175         list_for_each_entry_rcu(key, &hdev->link_keys, list) {
2176                 list_del_rcu(&key->list);
2177                 kfree_rcu(key, rcu);
2178         }
2179 }
2180
2181 void hci_smp_ltks_clear(struct hci_dev *hdev)
2182 {
2183         struct smp_ltk *k;
2184
2185         list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2186                 list_del_rcu(&k->list);
2187                 kfree_rcu(k, rcu);
2188         }
2189 }
2190
2191 void hci_smp_irks_clear(struct hci_dev *hdev)
2192 {
2193         struct smp_irk *k;
2194
2195         list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2196                 list_del_rcu(&k->list);
2197                 kfree_rcu(k, rcu);
2198         }
2199 }
2200
2201 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2202 {
2203         struct link_key *k;
2204
2205         rcu_read_lock();
2206         list_for_each_entry_rcu(k, &hdev->link_keys, list) {
2207                 if (bacmp(bdaddr, &k->bdaddr) == 0) {
2208                         rcu_read_unlock();
2209                         return k;
2210                 }
2211         }
2212         rcu_read_unlock();
2213
2214         return NULL;
2215 }
2216
2217 static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
2218                                u8 key_type, u8 old_key_type)
2219 {
2220         /* Legacy key */
2221         if (key_type < 0x03)
2222                 return true;
2223
2224         /* Debug keys are insecure so don't store them persistently */
2225         if (key_type == HCI_LK_DEBUG_COMBINATION)
2226                 return false;
2227
2228         /* Changed combination key and there's no previous one */
2229         if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
2230                 return false;
2231
2232         /* Security mode 3 case */
2233         if (!conn)
2234                 return true;
2235
2236         /* BR/EDR key derived using SC from an LE link */
2237         if (conn->type == LE_LINK)
2238                 return true;
2239
2240         /* Neither local nor remote side had no-bonding as requirement */
2241         if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
2242                 return true;
2243
2244         /* Local side had dedicated bonding as requirement */
2245         if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
2246                 return true;
2247
2248         /* Remote side had dedicated bonding as requirement */
2249         if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
2250                 return true;
2251
2252         /* If none of the above criteria match, then don't store the key
2253          * persistently */
2254         return false;
2255 }
2256
2257 static u8 ltk_role(u8 type)
2258 {
2259         if (type == SMP_LTK)
2260                 return HCI_ROLE_MASTER;
2261
2262         return HCI_ROLE_SLAVE;
2263 }
2264
2265 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2266                              u8 addr_type, u8 role)
2267 {
2268         struct smp_ltk *k;
2269
2270         rcu_read_lock();
2271         list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2272                 if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
2273                         continue;
2274
2275                 if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
2276                         rcu_read_unlock();
2277                         return k;
2278                 }
2279         }
2280         rcu_read_unlock();
2281
2282         return NULL;
2283 }
2284
2285 struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
2286 {
2287         struct smp_irk *irk;
2288
2289         rcu_read_lock();
2290         list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2291                 if (!bacmp(&irk->rpa, rpa)) {
2292                         rcu_read_unlock();
2293                         return irk;
2294                 }
2295         }
2296
2297         list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2298                 if (smp_irk_matches(hdev, irk->val, rpa)) {
2299                         bacpy(&irk->rpa, rpa);
2300                         rcu_read_unlock();
2301                         return irk;
2302                 }
2303         }
2304         rcu_read_unlock();
2305
2306         return NULL;
2307 }
2308
2309 struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
2310                                      u8 addr_type)
2311 {
2312         struct smp_irk *irk;
2313
2314         /* Identity Address must be public or static random */
2315         if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
2316                 return NULL;
2317
2318         rcu_read_lock();
2319         list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2320                 if (addr_type == irk->addr_type &&
2321                     bacmp(bdaddr, &irk->bdaddr) == 0) {
2322                         rcu_read_unlock();
2323                         return irk;
2324                 }
2325         }
2326         rcu_read_unlock();
2327
2328         return NULL;
2329 }
2330
2331 struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
2332                                   bdaddr_t *bdaddr, u8 *val, u8 type,
2333                                   u8 pin_len, bool *persistent)
2334 {
2335         struct link_key *key, *old_key;
2336         u8 old_key_type;
2337
2338         old_key = hci_find_link_key(hdev, bdaddr);
2339         if (old_key) {
2340                 old_key_type = old_key->type;
2341                 key = old_key;
2342         } else {
2343                 old_key_type = conn ? conn->key_type : 0xff;
2344                 key = kzalloc(sizeof(*key), GFP_KERNEL);
2345                 if (!key)
2346                         return NULL;
2347                 list_add_rcu(&key->list, &hdev->link_keys);
2348         }
2349
2350         BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
2351
2352         /* Some buggy controller combinations generate a changed
2353          * combination key for legacy pairing even when there's no
2354          * previous key */
2355         if (type == HCI_LK_CHANGED_COMBINATION &&
2356             (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
2357                 type = HCI_LK_COMBINATION;
2358                 if (conn)
2359                         conn->key_type = type;
2360         }
2361
2362         bacpy(&key->bdaddr, bdaddr);
2363         memcpy(key->val, val, HCI_LINK_KEY_SIZE);
2364         key->pin_len = pin_len;
2365
2366         if (type == HCI_LK_CHANGED_COMBINATION)
2367                 key->type = old_key_type;
2368         else
2369                 key->type = type;
2370
2371         if (persistent)
2372                 *persistent = hci_persistent_key(hdev, conn, type,
2373                                                  old_key_type);
2374
2375         return key;
2376 }
2377
2378 struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2379                             u8 addr_type, u8 type, u8 authenticated,
2380                             u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
2381 {
2382         struct smp_ltk *key, *old_key;
2383         u8 role = ltk_role(type);
2384
2385         old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
2386         if (old_key)
2387                 key = old_key;
2388         else {
2389                 key = kzalloc(sizeof(*key), GFP_KERNEL);
2390                 if (!key)
2391                         return NULL;
2392                 list_add_rcu(&key->list, &hdev->long_term_keys);
2393         }
2394
2395         bacpy(&key->bdaddr, bdaddr);
2396         key->bdaddr_type = addr_type;
2397         memcpy(key->val, tk, sizeof(key->val));
2398         key->authenticated = authenticated;
2399         key->ediv = ediv;
2400         key->rand = rand;
2401         key->enc_size = enc_size;
2402         key->type = type;
2403
2404         return key;
2405 }
2406
2407 struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2408                             u8 addr_type, u8 val[16], bdaddr_t *rpa)
2409 {
2410         struct smp_irk *irk;
2411
2412         irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
2413         if (!irk) {
2414                 irk = kzalloc(sizeof(*irk), GFP_KERNEL);
2415                 if (!irk)
2416                         return NULL;
2417
2418                 bacpy(&irk->bdaddr, bdaddr);
2419                 irk->addr_type = addr_type;
2420
2421                 list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
2422         }
2423
2424         memcpy(irk->val, val, 16);
2425         bacpy(&irk->rpa, rpa);
2426
2427         return irk;
2428 }
2429
2430 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2431 {
2432         struct link_key *key;
2433
2434         key = hci_find_link_key(hdev, bdaddr);
2435         if (!key)
2436                 return -ENOENT;
2437
2438         BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2439
2440         list_del_rcu(&key->list);
2441         kfree_rcu(key, rcu);
2442
2443         return 0;
2444 }
2445
2446 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
2447 {
2448         struct smp_ltk *k;
2449         int removed = 0;
2450
2451         list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2452                 if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
2453                         continue;
2454
2455                 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2456
2457                 list_del_rcu(&k->list);
2458                 kfree_rcu(k, rcu);
2459                 removed++;
2460         }
2461
2462         return removed ? 0 : -ENOENT;
2463 }
2464
2465 void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
2466 {
2467         struct smp_irk *k;
2468
2469         list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2470                 if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
2471                         continue;
2472
2473                 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2474
2475                 list_del_rcu(&k->list);
2476                 kfree_rcu(k, rcu);
2477         }
2478 }
2479
2480 bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
2481 {
2482         struct smp_ltk *k;
2483         struct smp_irk *irk;
2484         u8 addr_type;
2485
2486         if (type == BDADDR_BREDR) {
2487                 if (hci_find_link_key(hdev, bdaddr))
2488                         return true;
2489                 return false;
2490         }
2491
2492         /* Convert to HCI addr type which struct smp_ltk uses */
2493         if (type == BDADDR_LE_PUBLIC)
2494                 addr_type = ADDR_LE_DEV_PUBLIC;
2495         else
2496                 addr_type = ADDR_LE_DEV_RANDOM;
2497
2498         irk = hci_get_irk(hdev, bdaddr, addr_type);
2499         if (irk) {
2500                 bdaddr = &irk->bdaddr;
2501                 addr_type = irk->addr_type;
2502         }
2503
2504         rcu_read_lock();
2505         list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2506                 if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
2507                         rcu_read_unlock();
2508                         return true;
2509                 }
2510         }
2511         rcu_read_unlock();
2512
2513         return false;
2514 }
2515
2516 /* HCI command timer function */
2517 static void hci_cmd_timeout(struct work_struct *work)
2518 {
2519         struct hci_dev *hdev = container_of(work, struct hci_dev,
2520                                             cmd_timer.work);
2521
2522         if (hdev->sent_cmd) {
2523                 struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
2524                 u16 opcode = __le16_to_cpu(sent->opcode);
2525
2526                 bt_dev_err(hdev, "command 0x%4.4x tx timeout", opcode);
2527         } else {
2528                 bt_dev_err(hdev, "command tx timeout");
2529         }
2530
2531         atomic_set(&hdev->cmd_cnt, 1);
2532         queue_work(hdev->workqueue, &hdev->cmd_work);
2533 }
2534
2535 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
2536                                           bdaddr_t *bdaddr, u8 bdaddr_type)
2537 {
2538         struct oob_data *data;
2539
2540         list_for_each_entry(data, &hdev->remote_oob_data, list) {
2541                 if (bacmp(bdaddr, &data->bdaddr) != 0)
2542                         continue;
2543                 if (data->bdaddr_type != bdaddr_type)
2544                         continue;
2545                 return data;
2546         }
2547
2548         return NULL;
2549 }
2550
2551 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2552                                u8 bdaddr_type)
2553 {
2554         struct oob_data *data;
2555
2556         data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2557         if (!data)
2558                 return -ENOENT;
2559
2560         BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
2561
2562         list_del(&data->list);
2563         kfree(data);
2564
2565         return 0;
2566 }
2567
2568 void hci_remote_oob_data_clear(struct hci_dev *hdev)
2569 {
2570         struct oob_data *data, *n;
2571
2572         list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
2573                 list_del(&data->list);
2574                 kfree(data);
2575         }
2576 }
2577
2578 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2579                             u8 bdaddr_type, u8 *hash192, u8 *rand192,
2580                             u8 *hash256, u8 *rand256)
2581 {
2582         struct oob_data *data;
2583
2584         data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2585         if (!data) {
2586                 data = kmalloc(sizeof(*data), GFP_KERNEL);
2587                 if (!data)
2588                         return -ENOMEM;
2589
2590                 bacpy(&data->bdaddr, bdaddr);
2591                 data->bdaddr_type = bdaddr_type;
2592                 list_add(&data->list, &hdev->remote_oob_data);
2593         }
2594
2595         if (hash192 && rand192) {
2596                 memcpy(data->hash192, hash192, sizeof(data->hash192));
2597                 memcpy(data->rand192, rand192, sizeof(data->rand192));
2598                 if (hash256 && rand256)
2599                         data->present = 0x03;
2600         } else {
2601                 memset(data->hash192, 0, sizeof(data->hash192));
2602                 memset(data->rand192, 0, sizeof(data->rand192));
2603                 if (hash256 && rand256)
2604                         data->present = 0x02;
2605                 else
2606                         data->present = 0x00;
2607         }
2608
2609         if (hash256 && rand256) {
2610                 memcpy(data->hash256, hash256, sizeof(data->hash256));
2611                 memcpy(data->rand256, rand256, sizeof(data->rand256));
2612         } else {
2613                 memset(data->hash256, 0, sizeof(data->hash256));
2614                 memset(data->rand256, 0, sizeof(data->rand256));
2615                 if (hash192 && rand192)
2616                         data->present = 0x01;
2617         }
2618
2619         BT_DBG("%s for %pMR", hdev->name, bdaddr);
2620
2621         return 0;
2622 }
2623
2624 /* This function requires the caller holds hdev->lock */
2625 struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
2626 {
2627         struct adv_info *adv_instance;
2628
2629         list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
2630                 if (adv_instance->instance == instance)
2631                         return adv_instance;
2632         }
2633
2634         return NULL;
2635 }
2636
2637 /* This function requires the caller holds hdev->lock */
2638 struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
2639 {
2640         struct adv_info *cur_instance;
2641
2642         cur_instance = hci_find_adv_instance(hdev, instance);
2643         if (!cur_instance)
2644                 return NULL;
2645
2646         if (cur_instance == list_last_entry(&hdev->adv_instances,
2647                                             struct adv_info, list))
2648                 return list_first_entry(&hdev->adv_instances,
2649                                                  struct adv_info, list);
2650         else
2651                 return list_next_entry(cur_instance, list);
2652 }
2653
2654 /* This function requires the caller holds hdev->lock */
2655 int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
2656 {
2657         struct adv_info *adv_instance;
2658
2659         adv_instance = hci_find_adv_instance(hdev, instance);
2660         if (!adv_instance)
2661                 return -ENOENT;
2662
2663         BT_DBG("%s removing %dMR", hdev->name, instance);
2664
2665         if (hdev->cur_adv_instance == instance) {
2666                 if (hdev->adv_instance_timeout) {
2667                         cancel_delayed_work(&hdev->adv_instance_expire);
2668                         hdev->adv_instance_timeout = 0;
2669                 }
2670                 hdev->cur_adv_instance = 0x00;
2671         }
2672
2673         list_del(&adv_instance->list);
2674         kfree(adv_instance);
2675
2676         hdev->adv_instance_cnt--;
2677
2678         return 0;
2679 }
2680
2681 /* This function requires the caller holds hdev->lock */
2682 void hci_adv_instances_clear(struct hci_dev *hdev)
2683 {
2684         struct adv_info *adv_instance, *n;
2685
2686         if (hdev->adv_instance_timeout) {
2687                 cancel_delayed_work(&hdev->adv_instance_expire);
2688                 hdev->adv_instance_timeout = 0;
2689         }
2690
2691         list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
2692                 list_del(&adv_instance->list);
2693                 kfree(adv_instance);
2694         }
2695
2696         hdev->adv_instance_cnt = 0;
2697         hdev->cur_adv_instance = 0x00;
2698 }
2699
2700 /* This function requires the caller holds hdev->lock */
2701 int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags,
2702                          u16 adv_data_len, u8 *adv_data,
2703                          u16 scan_rsp_len, u8 *scan_rsp_data,
2704                          u16 timeout, u16 duration)
2705 {
2706         struct adv_info *adv_instance;
2707
2708         adv_instance = hci_find_adv_instance(hdev, instance);
2709         if (adv_instance) {
2710                 memset(adv_instance->adv_data, 0,
2711                        sizeof(adv_instance->adv_data));
2712                 memset(adv_instance->scan_rsp_data, 0,
2713                        sizeof(adv_instance->scan_rsp_data));
2714         } else {
2715                 if (hdev->adv_instance_cnt >= HCI_MAX_ADV_INSTANCES ||
2716                     instance < 1 || instance > HCI_MAX_ADV_INSTANCES)
2717                         return -EOVERFLOW;
2718
2719                 adv_instance = kzalloc(sizeof(*adv_instance), GFP_KERNEL);
2720                 if (!adv_instance)
2721                         return -ENOMEM;
2722
2723                 adv_instance->pending = true;
2724                 adv_instance->instance = instance;
2725                 list_add(&adv_instance->list, &hdev->adv_instances);
2726                 hdev->adv_instance_cnt++;
2727         }
2728
2729         adv_instance->flags = flags;
2730         adv_instance->adv_data_len = adv_data_len;
2731         adv_instance->scan_rsp_len = scan_rsp_len;
2732
2733         if (adv_data_len)
2734                 memcpy(adv_instance->adv_data, adv_data, adv_data_len);
2735
2736         if (scan_rsp_len)
2737                 memcpy(adv_instance->scan_rsp_data,
2738                        scan_rsp_data, scan_rsp_len);
2739
2740         adv_instance->timeout = timeout;
2741         adv_instance->remaining_time = timeout;
2742
2743         if (duration == 0)
2744                 adv_instance->duration = HCI_DEFAULT_ADV_DURATION;
2745         else
2746                 adv_instance->duration = duration;
2747
2748         BT_DBG("%s for %dMR", hdev->name, instance);
2749
2750         return 0;
2751 }
2752
2753 struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
2754                                          bdaddr_t *bdaddr, u8 type)
2755 {
2756         struct bdaddr_list *b;
2757
2758         list_for_each_entry(b, bdaddr_list, list) {
2759                 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2760                         return b;
2761         }
2762
2763         return NULL;
2764 }
2765
2766 void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
2767 {
2768         struct bdaddr_list *b, *n;
2769
2770         list_for_each_entry_safe(b, n, bdaddr_list, list) {
2771                 list_del(&b->list);
2772                 kfree(b);
2773         }
2774 }
2775
2776 int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2777 {
2778         struct bdaddr_list *entry;
2779
2780         if (!bacmp(bdaddr, BDADDR_ANY))
2781                 return -EBADF;
2782
2783         if (hci_bdaddr_list_lookup(list, bdaddr, type))
2784                 return -EEXIST;
2785
2786         entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2787         if (!entry)
2788                 return -ENOMEM;
2789
2790         bacpy(&entry->bdaddr, bdaddr);
2791         entry->bdaddr_type = type;
2792
2793         list_add(&entry->list, list);
2794
2795         return 0;
2796 }
2797
2798 int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2799 {
2800         struct bdaddr_list *entry;
2801
2802         if (!bacmp(bdaddr, BDADDR_ANY)) {
2803                 hci_bdaddr_list_clear(list);
2804                 return 0;
2805         }
2806
2807         entry = hci_bdaddr_list_lookup(list, bdaddr, type);
2808         if (!entry)
2809                 return -ENOENT;
2810
2811         list_del(&entry->list);
2812         kfree(entry);
2813
2814         return 0;
2815 }
2816
2817 /* This function requires the caller holds hdev->lock */
2818 struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
2819                                                bdaddr_t *addr, u8 addr_type)
2820 {
2821         struct hci_conn_params *params;
2822
2823         list_for_each_entry(params, &hdev->le_conn_params, list) {
2824                 if (bacmp(&params->addr, addr) == 0 &&
2825                     params->addr_type == addr_type) {
2826                         return params;
2827                 }
2828         }
2829
2830         return NULL;
2831 }
2832
2833 /* This function requires the caller holds hdev->lock */
2834 struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
2835                                                   bdaddr_t *addr, u8 addr_type)
2836 {
2837         struct hci_conn_params *param;
2838
2839         list_for_each_entry(param, list, action) {
2840                 if (bacmp(&param->addr, addr) == 0 &&
2841                     param->addr_type == addr_type)
2842                         return param;
2843         }
2844
2845         return NULL;
2846 }
2847
2848 /* This function requires the caller holds hdev->lock */
2849 struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
2850                                             bdaddr_t *addr, u8 addr_type)
2851 {
2852         struct hci_conn_params *params;
2853
2854         params = hci_conn_params_lookup(hdev, addr, addr_type);
2855         if (params)
2856                 return params;
2857
2858         params = kzalloc(sizeof(*params), GFP_KERNEL);
2859         if (!params) {
2860                 bt_dev_err(hdev, "out of memory");
2861                 return NULL;
2862         }
2863
2864         bacpy(&params->addr, addr);
2865         params->addr_type = addr_type;
2866
2867         list_add(&params->list, &hdev->le_conn_params);
2868         INIT_LIST_HEAD(&params->action);
2869
2870         params->conn_min_interval = hdev->le_conn_min_interval;
2871         params->conn_max_interval = hdev->le_conn_max_interval;
2872         params->conn_latency = hdev->le_conn_latency;
2873         params->supervision_timeout = hdev->le_supv_timeout;
2874         params->auto_connect = HCI_AUTO_CONN_DISABLED;
2875
2876         BT_DBG("addr %pMR (type %u)", addr, addr_type);
2877
2878         return params;
2879 }
2880
2881 static void hci_conn_params_free(struct hci_conn_params *params)
2882 {
2883         if (params->conn) {
2884                 hci_conn_drop(params->conn);
2885                 hci_conn_put(params->conn);
2886         }
2887
2888         list_del(&params->action);
2889         list_del(&params->list);
2890         kfree(params);
2891 }
2892
2893 /* This function requires the caller holds hdev->lock */
2894 void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
2895 {
2896         struct hci_conn_params *params;
2897
2898         params = hci_conn_params_lookup(hdev, addr, addr_type);
2899         if (!params)
2900                 return;
2901
2902         hci_conn_params_free(params);
2903
2904         hci_update_background_scan(hdev);
2905
2906         BT_DBG("addr %pMR (type %u)", addr, addr_type);
2907 }
2908
2909 /* This function requires the caller holds hdev->lock */
2910 void hci_conn_params_clear_disabled(struct hci_dev *hdev)
2911 {
2912         struct hci_conn_params *params, *tmp;
2913
2914         list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
2915                 if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
2916                         continue;
2917
2918                 /* If trying to estabilish one time connection to disabled
2919                  * device, leave the params, but mark them as just once.
2920                  */
2921                 if (params->explicit_connect) {
2922                         params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
2923                         continue;
2924                 }
2925
2926                 list_del(&params->list);
2927                 kfree(params);
2928         }
2929
2930         BT_DBG("All LE disabled connection parameters were removed");
2931 }
2932
2933 /* This function requires the caller holds hdev->lock */
2934 static void hci_conn_params_clear_all(struct hci_dev *hdev)
2935 {
2936         struct hci_conn_params *params, *tmp;
2937
2938         list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
2939                 hci_conn_params_free(params);
2940
2941         BT_DBG("All LE connection parameters were removed");
2942 }
2943
2944 /* Copy the Identity Address of the controller.
2945  *
2946  * If the controller has a public BD_ADDR, then by default use that one.
2947  * If this is a LE only controller without a public address, default to
2948  * the static random address.
2949  *
2950  * For debugging purposes it is possible to force controllers with a
2951  * public address to use the static random address instead.
2952  *
2953  * In case BR/EDR has been disabled on a dual-mode controller and
2954  * userspace has configured a static address, then that address
2955  * becomes the identity address instead of the public BR/EDR address.
2956  */
2957 void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
2958                                u8 *bdaddr_type)
2959 {
2960         if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
2961             !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
2962             (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
2963              bacmp(&hdev->static_addr, BDADDR_ANY))) {
2964                 bacpy(bdaddr, &hdev->static_addr);
2965                 *bdaddr_type = ADDR_LE_DEV_RANDOM;
2966         } else {
2967                 bacpy(bdaddr, &hdev->bdaddr);
2968                 *bdaddr_type = ADDR_LE_DEV_PUBLIC;
2969         }
2970 }
2971
2972 /* Alloc HCI device */
2973 struct hci_dev *hci_alloc_dev(void)
2974 {
2975         struct hci_dev *hdev;
2976
2977         hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2978         if (!hdev)
2979                 return NULL;
2980
2981         hdev->pkt_type  = (HCI_DM1 | HCI_DH1 | HCI_HV1);
2982         hdev->esco_type = (ESCO_HV1);
2983         hdev->link_mode = (HCI_LM_ACCEPT);
2984         hdev->num_iac = 0x01;           /* One IAC support is mandatory */
2985         hdev->io_capability = 0x03;     /* No Input No Output */
2986         hdev->manufacturer = 0xffff;    /* Default to internal use */
2987         hdev->inq_tx_power = HCI_TX_POWER_INVALID;
2988         hdev->adv_tx_power = HCI_TX_POWER_INVALID;
2989         hdev->adv_instance_cnt = 0;
2990         hdev->cur_adv_instance = 0x00;
2991         hdev->adv_instance_timeout = 0;
2992
2993         hdev->sniff_max_interval = 800;
2994         hdev->sniff_min_interval = 80;
2995
2996         hdev->le_adv_channel_map = 0x07;
2997         hdev->le_adv_min_interval = 0x0800;
2998         hdev->le_adv_max_interval = 0x0800;
2999         hdev->le_scan_interval = 0x0060;
3000         hdev->le_scan_window = 0x0030;
3001         hdev->le_conn_min_interval = 0x0018;
3002         hdev->le_conn_max_interval = 0x0028;
3003         hdev->le_conn_latency = 0x0000;
3004         hdev->le_supv_timeout = 0x002a;
3005         hdev->le_def_tx_len = 0x001b;
3006         hdev->le_def_tx_time = 0x0148;
3007         hdev->le_max_tx_len = 0x001b;
3008         hdev->le_max_tx_time = 0x0148;
3009         hdev->le_max_rx_len = 0x001b;
3010         hdev->le_max_rx_time = 0x0148;
3011
3012         hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
3013         hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
3014         hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
3015         hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
3016
3017         mutex_init(&hdev->lock);
3018         mutex_init(&hdev->req_lock);
3019
3020         INIT_LIST_HEAD(&hdev->mgmt_pending);
3021         INIT_LIST_HEAD(&hdev->blacklist);
3022         INIT_LIST_HEAD(&hdev->whitelist);
3023         INIT_LIST_HEAD(&hdev->uuids);
3024         INIT_LIST_HEAD(&hdev->link_keys);
3025         INIT_LIST_HEAD(&hdev->long_term_keys);
3026         INIT_LIST_HEAD(&hdev->identity_resolving_keys);
3027         INIT_LIST_HEAD(&hdev->remote_oob_data);
3028         INIT_LIST_HEAD(&hdev->le_white_list);
3029         INIT_LIST_HEAD(&hdev->le_conn_params);
3030         INIT_LIST_HEAD(&hdev->pend_le_conns);
3031         INIT_LIST_HEAD(&hdev->pend_le_reports);
3032         INIT_LIST_HEAD(&hdev->conn_hash.list);
3033         INIT_LIST_HEAD(&hdev->adv_instances);
3034
3035         INIT_WORK(&hdev->rx_work, hci_rx_work);
3036         INIT_WORK(&hdev->cmd_work, hci_cmd_work);
3037         INIT_WORK(&hdev->tx_work, hci_tx_work);
3038         INIT_WORK(&hdev->power_on, hci_power_on);
3039         INIT_WORK(&hdev->error_reset, hci_error_reset);
3040
3041         INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
3042
3043         skb_queue_head_init(&hdev->rx_q);
3044         skb_queue_head_init(&hdev->cmd_q);
3045         skb_queue_head_init(&hdev->raw_q);
3046
3047         init_waitqueue_head(&hdev->req_wait_q);
3048
3049         INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
3050
3051         hci_request_setup(hdev);
3052
3053         hci_init_sysfs(hdev);
3054         discovery_init(hdev);
3055
3056         return hdev;
3057 }
3058 EXPORT_SYMBOL(hci_alloc_dev);
3059
3060 /* Free HCI device */
3061 void hci_free_dev(struct hci_dev *hdev)
3062 {
3063         /* will free via device release */
3064         put_device(&hdev->dev);
3065 }
3066 EXPORT_SYMBOL(hci_free_dev);
3067
3068 /* Register HCI device */
3069 int hci_register_dev(struct hci_dev *hdev)
3070 {
3071         int id, error;
3072
3073         if (!hdev->open || !hdev->close || !hdev->send)
3074                 return -EINVAL;
3075
3076         /* Do not allow HCI_AMP devices to register at index 0,
3077          * so the index can be used as the AMP controller ID.
3078          */
3079         switch (hdev->dev_type) {
3080         case HCI_PRIMARY:
3081                 id = ida_simple_get(&hci_index_ida, 0, 0, GFP_KERNEL);
3082                 break;
3083         case HCI_AMP:
3084                 id = ida_simple_get(&hci_index_ida, 1, 0, GFP_KERNEL);
3085                 break;
3086         default:
3087                 return -EINVAL;
3088         }
3089
3090         if (id < 0)
3091                 return id;
3092
3093         sprintf(hdev->name, "hci%d", id);
3094         hdev->id = id;
3095
3096         BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3097
3098         hdev->workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, hdev->name);
3099         if (!hdev->workqueue) {
3100                 error = -ENOMEM;
3101                 goto err;
3102         }
3103
3104         hdev->req_workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI,
3105                                                       hdev->name);
3106         if (!hdev->req_workqueue) {
3107                 destroy_workqueue(hdev->workqueue);
3108                 error = -ENOMEM;
3109                 goto err;
3110         }
3111
3112         if (!IS_ERR_OR_NULL(bt_debugfs))
3113                 hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
3114
3115         dev_set_name(&hdev->dev, "%s", hdev->name);
3116
3117         error = device_add(&hdev->dev);
3118         if (error < 0)
3119                 goto err_wqueue;
3120
3121         hci_leds_init(hdev);
3122
3123         hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
3124                                     RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
3125                                     hdev);
3126         if (hdev->rfkill) {
3127                 if (rfkill_register(hdev->rfkill) < 0) {
3128                         rfkill_destroy(hdev->rfkill);
3129                         hdev->rfkill = NULL;
3130                 }
3131         }
3132
3133         if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
3134                 hci_dev_set_flag(hdev, HCI_RFKILLED);
3135
3136         hci_dev_set_flag(hdev, HCI_SETUP);
3137         hci_dev_set_flag(hdev, HCI_AUTO_OFF);
3138
3139         if (hdev->dev_type == HCI_PRIMARY) {
3140                 /* Assume BR/EDR support until proven otherwise (such as
3141                  * through reading supported features during init.
3142                  */
3143                 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
3144         }
3145
3146         write_lock(&hci_dev_list_lock);
3147         list_add(&hdev->list, &hci_dev_list);
3148         write_unlock(&hci_dev_list_lock);
3149
3150         /* Devices that are marked for raw-only usage are unconfigured
3151          * and should not be included in normal operation.
3152          */
3153         if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
3154                 hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
3155
3156         hci_sock_dev_event(hdev, HCI_DEV_REG);
3157         hci_dev_hold(hdev);
3158
3159         queue_work(hdev->req_workqueue, &hdev->power_on);
3160
3161         return id;
3162
3163 err_wqueue:
3164         destroy_workqueue(hdev->workqueue);
3165         destroy_workqueue(hdev->req_workqueue);
3166 err:
3167         ida_simple_remove(&hci_index_ida, hdev->id);
3168
3169         return error;
3170 }
3171 EXPORT_SYMBOL(hci_register_dev);
3172
3173 /* Unregister HCI device */
3174 void hci_unregister_dev(struct hci_dev *hdev)
3175 {
3176         int id;
3177
3178         BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3179
3180         hci_dev_set_flag(hdev, HCI_UNREGISTER);
3181
3182         id = hdev->id;
3183
3184         write_lock(&hci_dev_list_lock);
3185         list_del(&hdev->list);
3186         write_unlock(&hci_dev_list_lock);
3187
3188         cancel_work_sync(&hdev->power_on);
3189
3190         hci_dev_do_close(hdev);
3191
3192         if (!test_bit(HCI_INIT, &hdev->flags) &&
3193             !hci_dev_test_flag(hdev, HCI_SETUP) &&
3194             !hci_dev_test_flag(hdev, HCI_CONFIG)) {
3195                 hci_dev_lock(hdev);
3196                 mgmt_index_removed(hdev);
3197                 hci_dev_unlock(hdev);
3198         }
3199
3200         /* mgmt_index_removed should take care of emptying the
3201          * pending list */
3202         BUG_ON(!list_empty(&hdev->mgmt_pending));
3203
3204         hci_sock_dev_event(hdev, HCI_DEV_UNREG);
3205
3206         if (hdev->rfkill) {
3207                 rfkill_unregister(hdev->rfkill);
3208                 rfkill_destroy(hdev->rfkill);
3209         }
3210
3211         device_del(&hdev->dev);
3212
3213         debugfs_remove_recursive(hdev->debugfs);
3214         kfree_const(hdev->hw_info);
3215         kfree_const(hdev->fw_info);
3216
3217         destroy_workqueue(hdev->workqueue);
3218         destroy_workqueue(hdev->req_workqueue);
3219
3220         hci_dev_lock(hdev);
3221         hci_bdaddr_list_clear(&hdev->blacklist);
3222         hci_bdaddr_list_clear(&hdev->whitelist);
3223         hci_uuids_clear(hdev);
3224         hci_link_keys_clear(hdev);
3225         hci_smp_ltks_clear(hdev);
3226         hci_smp_irks_clear(hdev);
3227         hci_remote_oob_data_clear(hdev);
3228         hci_adv_instances_clear(hdev);
3229         hci_bdaddr_list_clear(&hdev->le_white_list);
3230         hci_conn_params_clear_all(hdev);
3231         hci_discovery_filter_clear(hdev);
3232         hci_dev_unlock(hdev);
3233
3234         hci_dev_put(hdev);
3235
3236         ida_simple_remove(&hci_index_ida, id);
3237 }
3238 EXPORT_SYMBOL(hci_unregister_dev);
3239
3240 /* Suspend HCI device */
3241 int hci_suspend_dev(struct hci_dev *hdev)
3242 {
3243         hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
3244         return 0;
3245 }
3246 EXPORT_SYMBOL(hci_suspend_dev);
3247
3248 /* Resume HCI device */
3249 int hci_resume_dev(struct hci_dev *hdev)
3250 {
3251         hci_sock_dev_event(hdev, HCI_DEV_RESUME);
3252         return 0;
3253 }
3254 EXPORT_SYMBOL(hci_resume_dev);
3255
3256 /* Reset HCI device */
3257 int hci_reset_dev(struct hci_dev *hdev)
3258 {
3259         const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
3260         struct sk_buff *skb;
3261
3262         skb = bt_skb_alloc(3, GFP_ATOMIC);
3263         if (!skb)
3264                 return -ENOMEM;
3265
3266         hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
3267         skb_put_data(skb, hw_err, 3);
3268
3269         /* Send Hardware Error to upper stack */
3270         return hci_recv_frame(hdev, skb);
3271 }
3272 EXPORT_SYMBOL(hci_reset_dev);
3273
3274 /* Receive frame from HCI drivers */
3275 int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
3276 {
3277         if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
3278                       && !test_bit(HCI_INIT, &hdev->flags))) {
3279                 kfree_skb(skb);
3280                 return -ENXIO;
3281         }
3282
3283         if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT &&
3284             hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
3285             hci_skb_pkt_type(skb) != HCI_SCODATA_PKT) {
3286                 kfree_skb(skb);
3287                 return -EINVAL;
3288         }
3289
3290         /* Incoming skb */
3291         bt_cb(skb)->incoming = 1;
3292
3293         /* Time stamp */
3294         __net_timestamp(skb);
3295
3296         skb_queue_tail(&hdev->rx_q, skb);
3297         queue_work(hdev->workqueue, &hdev->rx_work);
3298
3299         return 0;
3300 }
3301 EXPORT_SYMBOL(hci_recv_frame);
3302
3303 /* Receive diagnostic message from HCI drivers */
3304 int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
3305 {
3306         /* Mark as diagnostic packet */
3307         hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
3308
3309         /* Time stamp */
3310         __net_timestamp(skb);
3311
3312         skb_queue_tail(&hdev->rx_q, skb);
3313         queue_work(hdev->workqueue, &hdev->rx_work);
3314
3315         return 0;
3316 }
3317 EXPORT_SYMBOL(hci_recv_diag);
3318
3319 void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...)
3320 {
3321         va_list vargs;
3322
3323         va_start(vargs, fmt);
3324         kfree_const(hdev->hw_info);
3325         hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
3326         va_end(vargs);
3327 }
3328 EXPORT_SYMBOL(hci_set_hw_info);
3329
3330 void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...)
3331 {
3332         va_list vargs;
3333
3334         va_start(vargs, fmt);
3335         kfree_const(hdev->fw_info);
3336         hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
3337         va_end(vargs);
3338 }
3339 EXPORT_SYMBOL(hci_set_fw_info);
3340
3341 /* ---- Interface to upper protocols ---- */
3342
3343 int hci_register_cb(struct hci_cb *cb)
3344 {
3345         BT_DBG("%p name %s", cb, cb->name);
3346
3347         mutex_lock(&hci_cb_list_lock);
3348         list_add_tail(&cb->list, &hci_cb_list);
3349         mutex_unlock(&hci_cb_list_lock);
3350
3351         return 0;
3352 }
3353 EXPORT_SYMBOL(hci_register_cb);
3354
3355 int hci_unregister_cb(struct hci_cb *cb)
3356 {
3357         BT_DBG("%p name %s", cb, cb->name);
3358
3359         mutex_lock(&hci_cb_list_lock);
3360         list_del(&cb->list);
3361         mutex_unlock(&hci_cb_list_lock);
3362
3363         return 0;
3364 }
3365 EXPORT_SYMBOL(hci_unregister_cb);
3366
3367 static void hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
3368 {
3369         int err;
3370
3371         BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
3372                skb->len);
3373
3374         /* Time stamp */
3375         __net_timestamp(skb);
3376
3377         /* Send copy to monitor */
3378         hci_send_to_monitor(hdev, skb);
3379
3380         if (atomic_read(&hdev->promisc)) {
3381                 /* Send copy to the sockets */
3382                 hci_send_to_sock(hdev, skb);
3383         }
3384
3385         /* Get rid of skb owner, prior to sending to the driver. */
3386         skb_orphan(skb);
3387
3388         if (!test_bit(HCI_RUNNING, &hdev->flags)) {
3389                 kfree_skb(skb);
3390                 return;
3391         }
3392
3393         err = hdev->send(hdev, skb);
3394         if (err < 0) {
3395                 bt_dev_err(hdev, "sending frame failed (%d)", err);
3396                 kfree_skb(skb);
3397         }
3398 }
3399
3400 /* Send HCI command */
3401 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
3402                  const void *param)
3403 {
3404         struct sk_buff *skb;
3405
3406         BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
3407
3408         skb = hci_prepare_cmd(hdev, opcode, plen, param);
3409         if (!skb) {
3410                 bt_dev_err(hdev, "no memory for command");
3411                 return -ENOMEM;
3412         }
3413
3414         /* Stand-alone HCI commands must be flagged as
3415          * single-command requests.
3416          */
3417         bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
3418
3419         skb_queue_tail(&hdev->cmd_q, skb);
3420         queue_work(hdev->workqueue, &hdev->cmd_work);
3421
3422         return 0;
3423 }
3424
3425 /* Get data from the previously sent command */
3426 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
3427 {
3428         struct hci_command_hdr *hdr;
3429
3430         if (!hdev->sent_cmd)
3431                 return NULL;
3432
3433         hdr = (void *) hdev->sent_cmd->data;
3434
3435         if (hdr->opcode != cpu_to_le16(opcode))
3436                 return NULL;
3437
3438         BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
3439
3440         return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
3441 }
3442
3443 /* Send HCI command and wait for command commplete event */
3444 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
3445                              const void *param, u32 timeout)
3446 {
3447         struct sk_buff *skb;
3448
3449         if (!test_bit(HCI_UP, &hdev->flags))
3450                 return ERR_PTR(-ENETDOWN);
3451
3452         bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
3453
3454         hci_req_sync_lock(hdev);
3455         skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout);
3456         hci_req_sync_unlock(hdev);
3457
3458         return skb;
3459 }
3460 EXPORT_SYMBOL(hci_cmd_sync);
3461
3462 /* Send ACL data */
3463 static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
3464 {
3465         struct hci_acl_hdr *hdr;
3466         int len = skb->len;
3467
3468         skb_push(skb, HCI_ACL_HDR_SIZE);
3469         skb_reset_transport_header(skb);
3470         hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
3471         hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3472         hdr->dlen   = cpu_to_le16(len);
3473 }
3474
3475 static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
3476                           struct sk_buff *skb, __u16 flags)
3477 {
3478         struct hci_conn *conn = chan->conn;
3479         struct hci_dev *hdev = conn->hdev;
3480         struct sk_buff *list;
3481
3482         skb->len = skb_headlen(skb);
3483         skb->data_len = 0;
3484
3485         hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3486
3487         switch (hdev->dev_type) {
3488         case HCI_PRIMARY:
3489                 hci_add_acl_hdr(skb, conn->handle, flags);
3490                 break;
3491         case HCI_AMP:
3492                 hci_add_acl_hdr(skb, chan->handle, flags);
3493                 break;
3494         default:
3495                 bt_dev_err(hdev, "unknown dev_type %d", hdev->dev_type);
3496                 return;
3497         }
3498
3499         list = skb_shinfo(skb)->frag_list;
3500         if (!list) {
3501                 /* Non fragmented */
3502                 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3503
3504                 skb_queue_tail(queue, skb);
3505         } else {
3506                 /* Fragmented */
3507                 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3508
3509                 skb_shinfo(skb)->frag_list = NULL;
3510
3511                 /* Queue all fragments atomically. We need to use spin_lock_bh
3512                  * here because of 6LoWPAN links, as there this function is
3513                  * called from softirq and using normal spin lock could cause
3514                  * deadlocks.
3515                  */
3516                 spin_lock_bh(&queue->lock);
3517
3518                 __skb_queue_tail(queue, skb);
3519
3520                 flags &= ~ACL_START;
3521                 flags |= ACL_CONT;
3522                 do {
3523                         skb = list; list = list->next;
3524
3525                         hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3526                         hci_add_acl_hdr(skb, conn->handle, flags);
3527
3528                         BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3529
3530                         __skb_queue_tail(queue, skb);
3531                 } while (list);
3532
3533                 spin_unlock_bh(&queue->lock);
3534         }
3535 }
3536
3537 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
3538 {
3539         struct hci_dev *hdev = chan->conn->hdev;
3540
3541         BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
3542
3543         hci_queue_acl(chan, &chan->data_q, skb, flags);
3544
3545         queue_work(hdev->workqueue, &hdev->tx_work);
3546 }
3547
3548 /* Send SCO data */
3549 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
3550 {
3551         struct hci_dev *hdev = conn->hdev;
3552         struct hci_sco_hdr hdr;
3553
3554         BT_DBG("%s len %d", hdev->name, skb->len);
3555
3556         hdr.handle = cpu_to_le16(conn->handle);
3557         hdr.dlen   = skb->len;
3558
3559         skb_push(skb, HCI_SCO_HDR_SIZE);
3560         skb_reset_transport_header(skb);
3561         memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
3562
3563         hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
3564
3565         skb_queue_tail(&conn->data_q, skb);
3566         queue_work(hdev->workqueue, &hdev->tx_work);
3567 }
3568
3569 /* ---- HCI TX task (outgoing data) ---- */
3570
3571 /* HCI Connection scheduler */
3572 static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
3573                                      int *quote)
3574 {
3575         struct hci_conn_hash *h = &hdev->conn_hash;
3576         struct hci_conn *conn = NULL, *c;
3577         unsigned int num = 0, min = ~0;
3578
3579         /* We don't have to lock device here. Connections are always
3580          * added and removed with TX task disabled. */
3581
3582         rcu_read_lock();
3583
3584         list_for_each_entry_rcu(c, &h->list, list) {
3585                 if (c->type != type || skb_queue_empty(&c->data_q))
3586                         continue;
3587
3588                 if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
3589                         continue;
3590
3591                 num++;
3592
3593                 if (c->sent < min) {
3594                         min  = c->sent;
3595                         conn = c;
3596                 }
3597
3598                 if (hci_conn_num(hdev, type) == num)
3599                         break;
3600         }
3601
3602         rcu_read_unlock();
3603
3604         if (conn) {
3605                 int cnt, q;
3606
3607                 switch (conn->type) {
3608                 case ACL_LINK:
3609                         cnt = hdev->acl_cnt;
3610                         break;
3611                 case SCO_LINK:
3612                 case ESCO_LINK:
3613                         cnt = hdev->sco_cnt;
3614                         break;
3615                 case LE_LINK:
3616                         cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3617                         break;
3618                 default:
3619                         cnt = 0;
3620                         bt_dev_err(hdev, "unknown link type %d", conn->type);
3621                 }
3622
3623                 q = cnt / num;
3624                 *quote = q ? q : 1;
3625         } else
3626                 *quote = 0;
3627
3628         BT_DBG("conn %p quote %d", conn, *quote);
3629         return conn;
3630 }
3631
3632 static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
3633 {
3634         struct hci_conn_hash *h = &hdev->conn_hash;
3635         struct hci_conn *c;
3636
3637         bt_dev_err(hdev, "link tx timeout");
3638
3639         rcu_read_lock();
3640
3641         /* Kill stalled connections */
3642         list_for_each_entry_rcu(c, &h->list, list) {
3643                 if (c->type == type && c->sent) {
3644                         bt_dev_err(hdev, "killing stalled connection %pMR",
3645                                    &c->dst);
3646                         hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
3647                 }
3648         }
3649
3650         rcu_read_unlock();
3651 }
3652
3653 static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
3654                                       int *quote)
3655 {
3656         struct hci_conn_hash *h = &hdev->conn_hash;
3657         struct hci_chan *chan = NULL;
3658         unsigned int num = 0, min = ~0, cur_prio = 0;
3659         struct hci_conn *conn;
3660         int cnt, q, conn_num = 0;
3661
3662         BT_DBG("%s", hdev->name);
3663
3664         rcu_read_lock();
3665
3666         list_for_each_entry_rcu(conn, &h->list, list) {
3667                 struct hci_chan *tmp;
3668
3669                 if (conn->type != type)
3670                         continue;
3671
3672                 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3673                         continue;
3674
3675                 conn_num++;
3676
3677                 list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
3678                         struct sk_buff *skb;
3679
3680                         if (skb_queue_empty(&tmp->data_q))
3681                                 continue;
3682
3683                         skb = skb_peek(&tmp->data_q);
3684                         if (skb->priority < cur_prio)
3685                                 continue;
3686
3687                         if (skb->priority > cur_prio) {
3688                                 num = 0;
3689                                 min = ~0;
3690                                 cur_prio = skb->priority;
3691                         }
3692
3693                         num++;
3694
3695                         if (conn->sent < min) {
3696                                 min  = conn->sent;
3697                                 chan = tmp;
3698                         }
3699                 }
3700
3701                 if (hci_conn_num(hdev, type) == conn_num)
3702                         break;
3703         }
3704
3705         rcu_read_unlock();
3706
3707         if (!chan)
3708                 return NULL;
3709
3710         switch (chan->conn->type) {
3711         case ACL_LINK:
3712                 cnt = hdev->acl_cnt;
3713                 break;
3714         case AMP_LINK:
3715                 cnt = hdev->block_cnt;
3716                 break;
3717         case SCO_LINK:
3718         case ESCO_LINK:
3719                 cnt = hdev->sco_cnt;
3720                 break;
3721         case LE_LINK:
3722                 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3723                 break;
3724         default:
3725                 cnt = 0;
3726                 bt_dev_err(hdev, "unknown link type %d", chan->conn->type);
3727         }
3728
3729         q = cnt / num;
3730         *quote = q ? q : 1;
3731         BT_DBG("chan %p quote %d", chan, *quote);
3732         return chan;
3733 }
3734
3735 static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
3736 {
3737         struct hci_conn_hash *h = &hdev->conn_hash;
3738         struct hci_conn *conn;
3739         int num = 0;
3740
3741         BT_DBG("%s", hdev->name);
3742
3743         rcu_read_lock();
3744
3745         list_for_each_entry_rcu(conn, &h->list, list) {
3746                 struct hci_chan *chan;
3747
3748                 if (conn->type != type)
3749                         continue;
3750
3751                 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3752                         continue;
3753
3754                 num++;
3755
3756                 list_for_each_entry_rcu(chan, &conn->chan_list, list) {
3757                         struct sk_buff *skb;
3758
3759                         if (chan->sent) {
3760                                 chan->sent = 0;
3761                                 continue;
3762                         }
3763
3764                         if (skb_queue_empty(&chan->data_q))
3765                                 continue;
3766
3767                         skb = skb_peek(&chan->data_q);
3768                         if (skb->priority >= HCI_PRIO_MAX - 1)
3769                                 continue;
3770
3771                         skb->priority = HCI_PRIO_MAX - 1;
3772
3773                         BT_DBG("chan %p skb %p promoted to %d", chan, skb,
3774                                skb->priority);
3775                 }
3776
3777                 if (hci_conn_num(hdev, type) == num)
3778                         break;
3779         }
3780
3781         rcu_read_unlock();
3782
3783 }
3784
3785 static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
3786 {
3787         /* Calculate count of blocks used by this packet */
3788         return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
3789 }
3790
3791 static void __check_timeout(struct hci_dev *hdev, unsigned int cnt)
3792 {
3793         if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
3794                 /* ACL tx timeout must be longer than maximum
3795                  * link supervision timeout (40.9 seconds) */
3796                 if (!cnt && time_after(jiffies, hdev->acl_last_tx +
3797                                        HCI_ACL_TX_TIMEOUT))
3798                         hci_link_tx_to(hdev, ACL_LINK);
3799         }
3800 }
3801
3802 static void hci_sched_acl_pkt(struct hci_dev *hdev)
3803 {
3804         unsigned int cnt = hdev->acl_cnt;
3805         struct hci_chan *chan;
3806         struct sk_buff *skb;
3807         int quote;
3808
3809         __check_timeout(hdev, cnt);
3810
3811         while (hdev->acl_cnt &&
3812                (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
3813                 u32 priority = (skb_peek(&chan->data_q))->priority;
3814                 while (quote-- && (skb = skb_peek(&chan->data_q))) {
3815                         BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3816                                skb->len, skb->priority);
3817
3818                         /* Stop if priority has changed */
3819                         if (skb->priority < priority)
3820                                 break;
3821
3822                         skb = skb_dequeue(&chan->data_q);
3823
3824                         hci_conn_enter_active_mode(chan->conn,
3825                                                    bt_cb(skb)->force_active);
3826
3827                         hci_send_frame(hdev, skb);
3828                         hdev->acl_last_tx = jiffies;
3829
3830                         hdev->acl_cnt--;
3831                         chan->sent++;
3832                         chan->conn->sent++;
3833                 }
3834         }
3835
3836         if (cnt != hdev->acl_cnt)
3837                 hci_prio_recalculate(hdev, ACL_LINK);
3838 }
3839
3840 static void hci_sched_acl_blk(struct hci_dev *hdev)
3841 {
3842         unsigned int cnt = hdev->block_cnt;
3843         struct hci_chan *chan;
3844         struct sk_buff *skb;
3845         int quote;
3846         u8 type;
3847
3848         __check_timeout(hdev, cnt);
3849
3850         BT_DBG("%s", hdev->name);
3851
3852         if (hdev->dev_type == HCI_AMP)
3853                 type = AMP_LINK;
3854         else
3855                 type = ACL_LINK;
3856
3857         while (hdev->block_cnt > 0 &&
3858                (chan = hci_chan_sent(hdev, type, &quote))) {
3859                 u32 priority = (skb_peek(&chan->data_q))->priority;
3860                 while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
3861                         int blocks;
3862
3863                         BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3864                                skb->len, skb->priority);
3865
3866                         /* Stop if priority has changed */
3867                         if (skb->priority < priority)
3868                                 break;
3869
3870                         skb = skb_dequeue(&chan->data_q);
3871
3872                         blocks = __get_blocks(hdev, skb);
3873                         if (blocks > hdev->block_cnt)
3874                                 return;
3875
3876                         hci_conn_enter_active_mode(chan->conn,
3877                                                    bt_cb(skb)->force_active);
3878
3879                         hci_send_frame(hdev, skb);
3880                         hdev->acl_last_tx = jiffies;
3881
3882                         hdev->block_cnt -= blocks;
3883                         quote -= blocks;
3884
3885                         chan->sent += blocks;
3886                         chan->conn->sent += blocks;
3887                 }
3888         }
3889
3890         if (cnt != hdev->block_cnt)
3891                 hci_prio_recalculate(hdev, type);
3892 }
3893
3894 static void hci_sched_acl(struct hci_dev *hdev)
3895 {
3896         BT_DBG("%s", hdev->name);
3897
3898         /* No ACL link over BR/EDR controller */
3899         if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_PRIMARY)
3900                 return;
3901
3902         /* No AMP link over AMP controller */
3903         if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
3904                 return;
3905
3906         switch (hdev->flow_ctl_mode) {
3907         case HCI_FLOW_CTL_MODE_PACKET_BASED:
3908                 hci_sched_acl_pkt(hdev);
3909                 break;
3910
3911         case HCI_FLOW_CTL_MODE_BLOCK_BASED:
3912                 hci_sched_acl_blk(hdev);
3913                 break;
3914         }
3915 }
3916
3917 /* Schedule SCO */
3918 static void hci_sched_sco(struct hci_dev *hdev)
3919 {
3920         struct hci_conn *conn;
3921         struct sk_buff *skb;
3922         int quote;
3923
3924         BT_DBG("%s", hdev->name);
3925
3926         if (!hci_conn_num(hdev, SCO_LINK))
3927                 return;
3928
3929         while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
3930                 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3931                         BT_DBG("skb %p len %d", skb, skb->len);
3932                         hci_send_frame(hdev, skb);
3933
3934                         conn->sent++;
3935                         if (conn->sent == ~0)
3936                                 conn->sent = 0;
3937                 }
3938         }
3939 }
3940
3941 static void hci_sched_esco(struct hci_dev *hdev)
3942 {
3943         struct hci_conn *conn;
3944         struct sk_buff *skb;
3945         int quote;
3946
3947         BT_DBG("%s", hdev->name);
3948
3949         if (!hci_conn_num(hdev, ESCO_LINK))
3950                 return;
3951
3952         while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
3953                                                      &quote))) {
3954                 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3955                         BT_DBG("skb %p len %d", skb, skb->len);
3956                         hci_send_frame(hdev, skb);
3957
3958                         conn->sent++;
3959                         if (conn->sent == ~0)
3960                                 conn->sent = 0;
3961                 }
3962         }
3963 }
3964
3965 static void hci_sched_le(struct hci_dev *hdev)
3966 {
3967         struct hci_chan *chan;
3968         struct sk_buff *skb;
3969         int quote, cnt, tmp;
3970
3971         BT_DBG("%s", hdev->name);
3972
3973         if (!hci_conn_num(hdev, LE_LINK))
3974                 return;
3975
3976         if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
3977                 /* LE tx timeout must be longer than maximum
3978                  * link supervision timeout (40.9 seconds) */
3979                 if (!hdev->le_cnt && hdev->le_pkts &&
3980                     time_after(jiffies, hdev->le_last_tx + HZ * 45))
3981                         hci_link_tx_to(hdev, LE_LINK);
3982         }
3983
3984         cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
3985         tmp = cnt;
3986         while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
3987                 u32 priority = (skb_peek(&chan->data_q))->priority;
3988                 while (quote-- && (skb = skb_peek(&chan->data_q))) {
3989                         BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3990                                skb->len, skb->priority);
3991
3992                         /* Stop if priority has changed */
3993                         if (skb->priority < priority)
3994                                 break;
3995
3996                         skb = skb_dequeue(&chan->data_q);
3997
3998                         hci_send_frame(hdev, skb);
3999                         hdev->le_last_tx = jiffies;
4000
4001                         cnt--;
4002                         chan->sent++;
4003                         chan->conn->sent++;
4004                 }
4005         }
4006
4007         if (hdev->le_pkts)
4008                 hdev->le_cnt = cnt;
4009         else
4010                 hdev->acl_cnt = cnt;
4011
4012         if (cnt != tmp)
4013                 hci_prio_recalculate(hdev, LE_LINK);
4014 }
4015
4016 static void hci_tx_work(struct work_struct *work)
4017 {
4018         struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
4019         struct sk_buff *skb;
4020
4021         BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
4022                hdev->sco_cnt, hdev->le_cnt);
4023
4024         if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4025                 /* Schedule queues and send stuff to HCI driver */
4026                 hci_sched_acl(hdev);
4027                 hci_sched_sco(hdev);
4028                 hci_sched_esco(hdev);
4029                 hci_sched_le(hdev);
4030         }
4031
4032         /* Send next queued raw (unknown type) packet */
4033         while ((skb = skb_dequeue(&hdev->raw_q)))
4034                 hci_send_frame(hdev, skb);
4035 }
4036
4037 /* ----- HCI RX task (incoming data processing) ----- */
4038
4039 /* ACL data packet */
4040 static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4041 {
4042         struct hci_acl_hdr *hdr = (void *) skb->data;
4043         struct hci_conn *conn;
4044         __u16 handle, flags;
4045
4046         skb_pull(skb, HCI_ACL_HDR_SIZE);
4047
4048         handle = __le16_to_cpu(hdr->handle);
4049         flags  = hci_flags(handle);
4050         handle = hci_handle(handle);
4051
4052         BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
4053                handle, flags);
4054
4055         hdev->stat.acl_rx++;
4056
4057         hci_dev_lock(hdev);
4058         conn = hci_conn_hash_lookup_handle(hdev, handle);
4059         hci_dev_unlock(hdev);
4060
4061         if (conn) {
4062                 hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
4063
4064                 /* Send to upper protocol */
4065                 l2cap_recv_acldata(conn, skb, flags);
4066                 return;
4067         } else {
4068                 bt_dev_err(hdev, "ACL packet for unknown connection handle %d",
4069                            handle);
4070         }
4071
4072         kfree_skb(skb);
4073 }
4074
4075 /* SCO data packet */
4076 static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4077 {
4078         struct hci_sco_hdr *hdr = (void *) skb->data;
4079         struct hci_conn *conn;
4080         __u16 handle;
4081
4082         skb_pull(skb, HCI_SCO_HDR_SIZE);
4083
4084         handle = __le16_to_cpu(hdr->handle);
4085
4086         BT_DBG("%s len %d handle 0x%4.4x", hdev->name, skb->len, handle);
4087
4088         hdev->stat.sco_rx++;
4089
4090         hci_dev_lock(hdev);
4091         conn = hci_conn_hash_lookup_handle(hdev, handle);
4092         hci_dev_unlock(hdev);
4093
4094         if (conn) {
4095                 /* Send to upper protocol */
4096                 sco_recv_scodata(conn, skb);
4097                 return;
4098         } else {
4099                 bt_dev_err(hdev, "SCO packet for unknown connection handle %d",
4100                            handle);
4101         }
4102
4103         kfree_skb(skb);
4104 }
4105
4106 static bool hci_req_is_complete(struct hci_dev *hdev)
4107 {
4108         struct sk_buff *skb;
4109
4110         skb = skb_peek(&hdev->cmd_q);
4111         if (!skb)
4112                 return true;
4113
4114         return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
4115 }
4116
4117 static void hci_resend_last(struct hci_dev *hdev)
4118 {
4119         struct hci_command_hdr *sent;
4120         struct sk_buff *skb;
4121         u16 opcode;
4122
4123         if (!hdev->sent_cmd)
4124                 return;
4125
4126         sent = (void *) hdev->sent_cmd->data;
4127         opcode = __le16_to_cpu(sent->opcode);
4128         if (opcode == HCI_OP_RESET)
4129                 return;
4130
4131         skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
4132         if (!skb)
4133                 return;
4134
4135         skb_queue_head(&hdev->cmd_q, skb);
4136         queue_work(hdev->workqueue, &hdev->cmd_work);
4137 }
4138
4139 void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
4140                           hci_req_complete_t *req_complete,
4141                           hci_req_complete_skb_t *req_complete_skb)
4142 {
4143         struct sk_buff *skb;
4144         unsigned long flags;
4145
4146         BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
4147
4148         /* If the completed command doesn't match the last one that was
4149          * sent we need to do special handling of it.
4150          */
4151         if (!hci_sent_cmd_data(hdev, opcode)) {
4152                 /* Some CSR based controllers generate a spontaneous
4153                  * reset complete event during init and any pending
4154                  * command will never be completed. In such a case we
4155                  * need to resend whatever was the last sent
4156                  * command.
4157                  */
4158                 if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
4159                         hci_resend_last(hdev);
4160
4161                 return;
4162         }
4163
4164         /* If the command succeeded and there's still more commands in
4165          * this request the request is not yet complete.
4166          */
4167         if (!status && !hci_req_is_complete(hdev))
4168                 return;
4169
4170         /* If this was the last command in a request the complete
4171          * callback would be found in hdev->sent_cmd instead of the
4172          * command queue (hdev->cmd_q).
4173          */
4174         if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) {
4175                 *req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb;
4176                 return;
4177         }
4178
4179         if (bt_cb(hdev->sent_cmd)->hci.req_complete) {
4180                 *req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete;
4181                 return;
4182         }
4183
4184         /* Remove all pending commands belonging to this request */
4185         spin_lock_irqsave(&hdev->cmd_q.lock, flags);
4186         while ((skb = __skb_dequeue(&hdev->cmd_q))) {
4187                 if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
4188                         __skb_queue_head(&hdev->cmd_q, skb);
4189                         break;
4190                 }
4191
4192                 if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
4193                         *req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
4194                 else
4195                         *req_complete = bt_cb(skb)->hci.req_complete;
4196                 kfree_skb(skb);
4197         }
4198         spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
4199 }
4200
4201 static void hci_rx_work(struct work_struct *work)
4202 {
4203         struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
4204         struct sk_buff *skb;
4205
4206         BT_DBG("%s", hdev->name);
4207
4208         while ((skb = skb_dequeue(&hdev->rx_q))) {
4209                 /* Send copy to monitor */
4210                 hci_send_to_monitor(hdev, skb);
4211
4212                 if (atomic_read(&hdev->promisc)) {
4213                         /* Send copy to the sockets */
4214                         hci_send_to_sock(hdev, skb);
4215                 }
4216
4217                 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4218                         kfree_skb(skb);
4219                         continue;
4220                 }
4221
4222                 if (test_bit(HCI_INIT, &hdev->flags)) {
4223                         /* Don't process data packets in this states. */
4224                         switch (hci_skb_pkt_type(skb)) {
4225                         case HCI_ACLDATA_PKT:
4226                         case HCI_SCODATA_PKT:
4227                                 kfree_skb(skb);
4228                                 continue;
4229                         }
4230                 }
4231
4232                 /* Process frame */
4233                 switch (hci_skb_pkt_type(skb)) {
4234                 case HCI_EVENT_PKT:
4235                         BT_DBG("%s Event packet", hdev->name);
4236                         hci_event_packet(hdev, skb);
4237                         break;
4238
4239                 case HCI_ACLDATA_PKT:
4240                         BT_DBG("%s ACL data packet", hdev->name);
4241                         hci_acldata_packet(hdev, skb);
4242                         break;
4243
4244                 case HCI_SCODATA_PKT:
4245                         BT_DBG("%s SCO data packet", hdev->name);
4246                         hci_scodata_packet(hdev, skb);
4247                         break;
4248
4249                 default:
4250                         kfree_skb(skb);
4251                         break;
4252                 }
4253         }
4254 }
4255
4256 static void hci_cmd_work(struct work_struct *work)
4257 {
4258         struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4259         struct sk_buff *skb;
4260
4261         BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4262                atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4263
4264         /* Send queued commands */
4265         if (atomic_read(&hdev->cmd_cnt)) {
4266                 skb = skb_dequeue(&hdev->cmd_q);
4267                 if (!skb)
4268                         return;
4269
4270                 kfree_skb(hdev->sent_cmd);
4271
4272                 hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4273                 if (hdev->sent_cmd) {
4274                         atomic_dec(&hdev->cmd_cnt);
4275                         hci_send_frame(hdev, skb);
4276                         if (test_bit(HCI_RESET, &hdev->flags))
4277                                 cancel_delayed_work(&hdev->cmd_timer);
4278                         else
4279                                 schedule_delayed_work(&hdev->cmd_timer,
4280                                                       HCI_CMD_TIMEOUT);
4281                 } else {
4282                         skb_queue_head(&hdev->cmd_q, skb);
4283                         queue_work(hdev->workqueue, &hdev->cmd_work);
4284                 }
4285         }
4286 }