zsmalloc: remove zspage isolation for migration
[linux-2.6-microblaze.git] / mm / zsmalloc.c
1 /*
2  * zsmalloc memory allocator
3  *
4  * Copyright (C) 2011  Nitin Gupta
5  * Copyright (C) 2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the license that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  */
13
14 /*
15  * Following is how we use various fields and flags of underlying
16  * struct page(s) to form a zspage.
17  *
18  * Usage of struct page fields:
19  *      page->private: points to zspage
20  *      page->index: links together all component pages of a zspage
21  *              For the huge page, this is always 0, so we use this field
22  *              to store handle.
23  *      page->page_type: first object offset in a subpage of zspage
24  *
25  * Usage of struct page flags:
26  *      PG_private: identifies the first component page
27  *      PG_owner_priv_1: identifies the huge component page
28  *
29  */
30
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
33 #include <linux/module.h>
34 #include <linux/kernel.h>
35 #include <linux/sched.h>
36 #include <linux/magic.h>
37 #include <linux/bitops.h>
38 #include <linux/errno.h>
39 #include <linux/highmem.h>
40 #include <linux/string.h>
41 #include <linux/slab.h>
42 #include <linux/pgtable.h>
43 #include <asm/tlbflush.h>
44 #include <linux/cpumask.h>
45 #include <linux/cpu.h>
46 #include <linux/vmalloc.h>
47 #include <linux/preempt.h>
48 #include <linux/spinlock.h>
49 #include <linux/shrinker.h>
50 #include <linux/types.h>
51 #include <linux/debugfs.h>
52 #include <linux/zsmalloc.h>
53 #include <linux/zpool.h>
54 #include <linux/mount.h>
55 #include <linux/pseudo_fs.h>
56 #include <linux/migrate.h>
57 #include <linux/wait.h>
58 #include <linux/pagemap.h>
59 #include <linux/fs.h>
60
61 #define ZSPAGE_MAGIC    0x58
62
63 /*
64  * This must be power of 2 and greater than or equal to sizeof(link_free).
65  * These two conditions ensure that any 'struct link_free' itself doesn't
66  * span more than 1 page which avoids complex case of mapping 2 pages simply
67  * to restore link_free pointer values.
68  */
69 #define ZS_ALIGN                8
70
71 /*
72  * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
73  * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
74  */
75 #define ZS_MAX_ZSPAGE_ORDER 2
76 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
77
78 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
79
80 /*
81  * Object location (<PFN>, <obj_idx>) is encoded as
82  * a single (unsigned long) handle value.
83  *
84  * Note that object index <obj_idx> starts from 0.
85  *
86  * This is made more complicated by various memory models and PAE.
87  */
88
89 #ifndef MAX_POSSIBLE_PHYSMEM_BITS
90 #ifdef MAX_PHYSMEM_BITS
91 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
92 #else
93 /*
94  * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
95  * be PAGE_SHIFT
96  */
97 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
98 #endif
99 #endif
100
101 #define _PFN_BITS               (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
102
103 /*
104  * Memory for allocating for handle keeps object position by
105  * encoding <page, obj_idx> and the encoded value has a room
106  * in least bit(ie, look at obj_to_location).
107  * We use the bit to synchronize between object access by
108  * user and migration.
109  */
110 #define HANDLE_PIN_BIT  0
111
112 /*
113  * Head in allocated object should have OBJ_ALLOCATED_TAG
114  * to identify the object was allocated or not.
115  * It's okay to add the status bit in the least bit because
116  * header keeps handle which is 4byte-aligned address so we
117  * have room for two bit at least.
118  */
119 #define OBJ_ALLOCATED_TAG 1
120 #define OBJ_TAG_BITS 1
121 #define OBJ_INDEX_BITS  (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
122 #define OBJ_INDEX_MASK  ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
123
124 #define HUGE_BITS       1
125 #define FULLNESS_BITS   2
126 #define CLASS_BITS      8
127 #define ISOLATED_BITS   3
128 #define MAGIC_VAL_BITS  8
129
130 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
131 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
132 #define ZS_MIN_ALLOC_SIZE \
133         MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
134 /* each chunk includes extra space to keep handle */
135 #define ZS_MAX_ALLOC_SIZE       PAGE_SIZE
136
137 /*
138  * On systems with 4K page size, this gives 255 size classes! There is a
139  * trader-off here:
140  *  - Large number of size classes is potentially wasteful as free page are
141  *    spread across these classes
142  *  - Small number of size classes causes large internal fragmentation
143  *  - Probably its better to use specific size classes (empirically
144  *    determined). NOTE: all those class sizes must be set as multiple of
145  *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
146  *
147  *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
148  *  (reason above)
149  */
150 #define ZS_SIZE_CLASS_DELTA     (PAGE_SIZE >> CLASS_BITS)
151 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
152                                       ZS_SIZE_CLASS_DELTA) + 1)
153
154 enum fullness_group {
155         ZS_EMPTY,
156         ZS_ALMOST_EMPTY,
157         ZS_ALMOST_FULL,
158         ZS_FULL,
159         NR_ZS_FULLNESS,
160 };
161
162 enum class_stat_type {
163         CLASS_EMPTY,
164         CLASS_ALMOST_EMPTY,
165         CLASS_ALMOST_FULL,
166         CLASS_FULL,
167         OBJ_ALLOCATED,
168         OBJ_USED,
169         NR_ZS_STAT_TYPE,
170 };
171
172 struct zs_size_stat {
173         unsigned long objs[NR_ZS_STAT_TYPE];
174 };
175
176 #ifdef CONFIG_ZSMALLOC_STAT
177 static struct dentry *zs_stat_root;
178 #endif
179
180 #ifdef CONFIG_COMPACTION
181 static struct vfsmount *zsmalloc_mnt;
182 #endif
183
184 /*
185  * We assign a page to ZS_ALMOST_EMPTY fullness group when:
186  *      n <= N / f, where
187  * n = number of allocated objects
188  * N = total number of objects zspage can store
189  * f = fullness_threshold_frac
190  *
191  * Similarly, we assign zspage to:
192  *      ZS_ALMOST_FULL  when n > N / f
193  *      ZS_EMPTY        when n == 0
194  *      ZS_FULL         when n == N
195  *
196  * (see: fix_fullness_group())
197  */
198 static const int fullness_threshold_frac = 4;
199 static size_t huge_class_size;
200
201 struct size_class {
202         spinlock_t lock;
203         struct list_head fullness_list[NR_ZS_FULLNESS];
204         /*
205          * Size of objects stored in this class. Must be multiple
206          * of ZS_ALIGN.
207          */
208         int size;
209         int objs_per_zspage;
210         /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
211         int pages_per_zspage;
212
213         unsigned int index;
214         struct zs_size_stat stats;
215 };
216
217 /*
218  * Placed within free objects to form a singly linked list.
219  * For every zspage, zspage->freeobj gives head of this list.
220  *
221  * This must be power of 2 and less than or equal to ZS_ALIGN
222  */
223 struct link_free {
224         union {
225                 /*
226                  * Free object index;
227                  * It's valid for non-allocated object
228                  */
229                 unsigned long next;
230                 /*
231                  * Handle of allocated object.
232                  */
233                 unsigned long handle;
234         };
235 };
236
237 struct zs_pool {
238         const char *name;
239
240         struct size_class *size_class[ZS_SIZE_CLASSES];
241         struct kmem_cache *handle_cachep;
242         struct kmem_cache *zspage_cachep;
243
244         atomic_long_t pages_allocated;
245
246         struct zs_pool_stats stats;
247
248         /* Compact classes */
249         struct shrinker shrinker;
250
251 #ifdef CONFIG_ZSMALLOC_STAT
252         struct dentry *stat_dentry;
253 #endif
254 #ifdef CONFIG_COMPACTION
255         struct inode *inode;
256         struct work_struct free_work;
257 #endif
258 };
259
260 struct zspage {
261         struct {
262                 unsigned int huge:HUGE_BITS;
263                 unsigned int fullness:FULLNESS_BITS;
264                 unsigned int class:CLASS_BITS + 1;
265                 unsigned int isolated:ISOLATED_BITS;
266                 unsigned int magic:MAGIC_VAL_BITS;
267         };
268         unsigned int inuse;
269         unsigned int freeobj;
270         struct page *first_page;
271         struct list_head list; /* fullness list */
272 #ifdef CONFIG_COMPACTION
273         rwlock_t lock;
274 #endif
275 };
276
277 struct mapping_area {
278         char *vm_buf; /* copy buffer for objects that span pages */
279         char *vm_addr; /* address of kmap_atomic()'ed pages */
280         enum zs_mapmode vm_mm; /* mapping mode */
281 };
282
283 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
284 static void SetZsHugePage(struct zspage *zspage)
285 {
286         zspage->huge = 1;
287 }
288
289 static bool ZsHugePage(struct zspage *zspage)
290 {
291         return zspage->huge;
292 }
293
294 #ifdef CONFIG_COMPACTION
295 static int zs_register_migration(struct zs_pool *pool);
296 static void zs_unregister_migration(struct zs_pool *pool);
297 static void migrate_lock_init(struct zspage *zspage);
298 static void migrate_read_lock(struct zspage *zspage);
299 static void migrate_read_unlock(struct zspage *zspage);
300 static void kick_deferred_free(struct zs_pool *pool);
301 static void init_deferred_free(struct zs_pool *pool);
302 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
303 #else
304 static int zsmalloc_mount(void) { return 0; }
305 static void zsmalloc_unmount(void) {}
306 static int zs_register_migration(struct zs_pool *pool) { return 0; }
307 static void zs_unregister_migration(struct zs_pool *pool) {}
308 static void migrate_lock_init(struct zspage *zspage) {}
309 static void migrate_read_lock(struct zspage *zspage) {}
310 static void migrate_read_unlock(struct zspage *zspage) {}
311 static void kick_deferred_free(struct zs_pool *pool) {}
312 static void init_deferred_free(struct zs_pool *pool) {}
313 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
314 #endif
315
316 static int create_cache(struct zs_pool *pool)
317 {
318         pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
319                                         0, 0, NULL);
320         if (!pool->handle_cachep)
321                 return 1;
322
323         pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
324                                         0, 0, NULL);
325         if (!pool->zspage_cachep) {
326                 kmem_cache_destroy(pool->handle_cachep);
327                 pool->handle_cachep = NULL;
328                 return 1;
329         }
330
331         return 0;
332 }
333
334 static void destroy_cache(struct zs_pool *pool)
335 {
336         kmem_cache_destroy(pool->handle_cachep);
337         kmem_cache_destroy(pool->zspage_cachep);
338 }
339
340 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
341 {
342         return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
343                         gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
344 }
345
346 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
347 {
348         kmem_cache_free(pool->handle_cachep, (void *)handle);
349 }
350
351 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
352 {
353         return kmem_cache_zalloc(pool->zspage_cachep,
354                         flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
355 }
356
357 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
358 {
359         kmem_cache_free(pool->zspage_cachep, zspage);
360 }
361
362 static void record_obj(unsigned long handle, unsigned long obj)
363 {
364         /*
365          * lsb of @obj represents handle lock while other bits
366          * represent object value the handle is pointing so
367          * updating shouldn't do store tearing.
368          */
369         WRITE_ONCE(*(unsigned long *)handle, obj);
370 }
371
372 /* zpool driver */
373
374 #ifdef CONFIG_ZPOOL
375
376 static void *zs_zpool_create(const char *name, gfp_t gfp,
377                              const struct zpool_ops *zpool_ops,
378                              struct zpool *zpool)
379 {
380         /*
381          * Ignore global gfp flags: zs_malloc() may be invoked from
382          * different contexts and its caller must provide a valid
383          * gfp mask.
384          */
385         return zs_create_pool(name);
386 }
387
388 static void zs_zpool_destroy(void *pool)
389 {
390         zs_destroy_pool(pool);
391 }
392
393 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
394                         unsigned long *handle)
395 {
396         *handle = zs_malloc(pool, size, gfp);
397         return *handle ? 0 : -1;
398 }
399 static void zs_zpool_free(void *pool, unsigned long handle)
400 {
401         zs_free(pool, handle);
402 }
403
404 static void *zs_zpool_map(void *pool, unsigned long handle,
405                         enum zpool_mapmode mm)
406 {
407         enum zs_mapmode zs_mm;
408
409         switch (mm) {
410         case ZPOOL_MM_RO:
411                 zs_mm = ZS_MM_RO;
412                 break;
413         case ZPOOL_MM_WO:
414                 zs_mm = ZS_MM_WO;
415                 break;
416         case ZPOOL_MM_RW:
417         default:
418                 zs_mm = ZS_MM_RW;
419                 break;
420         }
421
422         return zs_map_object(pool, handle, zs_mm);
423 }
424 static void zs_zpool_unmap(void *pool, unsigned long handle)
425 {
426         zs_unmap_object(pool, handle);
427 }
428
429 static u64 zs_zpool_total_size(void *pool)
430 {
431         return zs_get_total_pages(pool) << PAGE_SHIFT;
432 }
433
434 static struct zpool_driver zs_zpool_driver = {
435         .type =                   "zsmalloc",
436         .owner =                  THIS_MODULE,
437         .create =                 zs_zpool_create,
438         .destroy =                zs_zpool_destroy,
439         .malloc_support_movable = true,
440         .malloc =                 zs_zpool_malloc,
441         .free =                   zs_zpool_free,
442         .map =                    zs_zpool_map,
443         .unmap =                  zs_zpool_unmap,
444         .total_size =             zs_zpool_total_size,
445 };
446
447 MODULE_ALIAS("zpool-zsmalloc");
448 #endif /* CONFIG_ZPOOL */
449
450 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
451 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
452
453 static __maybe_unused int is_first_page(struct page *page)
454 {
455         return PagePrivate(page);
456 }
457
458 /* Protected by class->lock */
459 static inline int get_zspage_inuse(struct zspage *zspage)
460 {
461         return zspage->inuse;
462 }
463
464
465 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
466 {
467         zspage->inuse += val;
468 }
469
470 static inline struct page *get_first_page(struct zspage *zspage)
471 {
472         struct page *first_page = zspage->first_page;
473
474         VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
475         return first_page;
476 }
477
478 static inline int get_first_obj_offset(struct page *page)
479 {
480         return page->page_type;
481 }
482
483 static inline void set_first_obj_offset(struct page *page, int offset)
484 {
485         page->page_type = offset;
486 }
487
488 static inline unsigned int get_freeobj(struct zspage *zspage)
489 {
490         return zspage->freeobj;
491 }
492
493 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
494 {
495         zspage->freeobj = obj;
496 }
497
498 static void get_zspage_mapping(struct zspage *zspage,
499                                 unsigned int *class_idx,
500                                 enum fullness_group *fullness)
501 {
502         BUG_ON(zspage->magic != ZSPAGE_MAGIC);
503
504         *fullness = zspage->fullness;
505         *class_idx = zspage->class;
506 }
507
508 static struct size_class *zspage_class(struct zs_pool *pool,
509                                              struct zspage *zspage)
510 {
511         return pool->size_class[zspage->class];
512 }
513
514 static void set_zspage_mapping(struct zspage *zspage,
515                                 unsigned int class_idx,
516                                 enum fullness_group fullness)
517 {
518         zspage->class = class_idx;
519         zspage->fullness = fullness;
520 }
521
522 /*
523  * zsmalloc divides the pool into various size classes where each
524  * class maintains a list of zspages where each zspage is divided
525  * into equal sized chunks. Each allocation falls into one of these
526  * classes depending on its size. This function returns index of the
527  * size class which has chunk size big enough to hold the given size.
528  */
529 static int get_size_class_index(int size)
530 {
531         int idx = 0;
532
533         if (likely(size > ZS_MIN_ALLOC_SIZE))
534                 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
535                                 ZS_SIZE_CLASS_DELTA);
536
537         return min_t(int, ZS_SIZE_CLASSES - 1, idx);
538 }
539
540 /* type can be of enum type class_stat_type or fullness_group */
541 static inline void class_stat_inc(struct size_class *class,
542                                 int type, unsigned long cnt)
543 {
544         class->stats.objs[type] += cnt;
545 }
546
547 /* type can be of enum type class_stat_type or fullness_group */
548 static inline void class_stat_dec(struct size_class *class,
549                                 int type, unsigned long cnt)
550 {
551         class->stats.objs[type] -= cnt;
552 }
553
554 /* type can be of enum type class_stat_type or fullness_group */
555 static inline unsigned long zs_stat_get(struct size_class *class,
556                                 int type)
557 {
558         return class->stats.objs[type];
559 }
560
561 #ifdef CONFIG_ZSMALLOC_STAT
562
563 static void __init zs_stat_init(void)
564 {
565         if (!debugfs_initialized()) {
566                 pr_warn("debugfs not available, stat dir not created\n");
567                 return;
568         }
569
570         zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
571 }
572
573 static void __exit zs_stat_exit(void)
574 {
575         debugfs_remove_recursive(zs_stat_root);
576 }
577
578 static unsigned long zs_can_compact(struct size_class *class);
579
580 static int zs_stats_size_show(struct seq_file *s, void *v)
581 {
582         int i;
583         struct zs_pool *pool = s->private;
584         struct size_class *class;
585         int objs_per_zspage;
586         unsigned long class_almost_full, class_almost_empty;
587         unsigned long obj_allocated, obj_used, pages_used, freeable;
588         unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
589         unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
590         unsigned long total_freeable = 0;
591
592         seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
593                         "class", "size", "almost_full", "almost_empty",
594                         "obj_allocated", "obj_used", "pages_used",
595                         "pages_per_zspage", "freeable");
596
597         for (i = 0; i < ZS_SIZE_CLASSES; i++) {
598                 class = pool->size_class[i];
599
600                 if (class->index != i)
601                         continue;
602
603                 spin_lock(&class->lock);
604                 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
605                 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
606                 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
607                 obj_used = zs_stat_get(class, OBJ_USED);
608                 freeable = zs_can_compact(class);
609                 spin_unlock(&class->lock);
610
611                 objs_per_zspage = class->objs_per_zspage;
612                 pages_used = obj_allocated / objs_per_zspage *
613                                 class->pages_per_zspage;
614
615                 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
616                                 " %10lu %10lu %16d %8lu\n",
617                         i, class->size, class_almost_full, class_almost_empty,
618                         obj_allocated, obj_used, pages_used,
619                         class->pages_per_zspage, freeable);
620
621                 total_class_almost_full += class_almost_full;
622                 total_class_almost_empty += class_almost_empty;
623                 total_objs += obj_allocated;
624                 total_used_objs += obj_used;
625                 total_pages += pages_used;
626                 total_freeable += freeable;
627         }
628
629         seq_puts(s, "\n");
630         seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
631                         "Total", "", total_class_almost_full,
632                         total_class_almost_empty, total_objs,
633                         total_used_objs, total_pages, "", total_freeable);
634
635         return 0;
636 }
637 DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
638
639 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
640 {
641         if (!zs_stat_root) {
642                 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
643                 return;
644         }
645
646         pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
647
648         debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
649                             &zs_stats_size_fops);
650 }
651
652 static void zs_pool_stat_destroy(struct zs_pool *pool)
653 {
654         debugfs_remove_recursive(pool->stat_dentry);
655 }
656
657 #else /* CONFIG_ZSMALLOC_STAT */
658 static void __init zs_stat_init(void)
659 {
660 }
661
662 static void __exit zs_stat_exit(void)
663 {
664 }
665
666 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
667 {
668 }
669
670 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
671 {
672 }
673 #endif
674
675
676 /*
677  * For each size class, zspages are divided into different groups
678  * depending on how "full" they are. This was done so that we could
679  * easily find empty or nearly empty zspages when we try to shrink
680  * the pool (not yet implemented). This function returns fullness
681  * status of the given page.
682  */
683 static enum fullness_group get_fullness_group(struct size_class *class,
684                                                 struct zspage *zspage)
685 {
686         int inuse, objs_per_zspage;
687         enum fullness_group fg;
688
689         inuse = get_zspage_inuse(zspage);
690         objs_per_zspage = class->objs_per_zspage;
691
692         if (inuse == 0)
693                 fg = ZS_EMPTY;
694         else if (inuse == objs_per_zspage)
695                 fg = ZS_FULL;
696         else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
697                 fg = ZS_ALMOST_EMPTY;
698         else
699                 fg = ZS_ALMOST_FULL;
700
701         return fg;
702 }
703
704 /*
705  * Each size class maintains various freelists and zspages are assigned
706  * to one of these freelists based on the number of live objects they
707  * have. This functions inserts the given zspage into the freelist
708  * identified by <class, fullness_group>.
709  */
710 static void insert_zspage(struct size_class *class,
711                                 struct zspage *zspage,
712                                 enum fullness_group fullness)
713 {
714         struct zspage *head;
715
716         class_stat_inc(class, fullness, 1);
717         head = list_first_entry_or_null(&class->fullness_list[fullness],
718                                         struct zspage, list);
719         /*
720          * We want to see more ZS_FULL pages and less almost empty/full.
721          * Put pages with higher ->inuse first.
722          */
723         if (head && get_zspage_inuse(zspage) < get_zspage_inuse(head))
724                 list_add(&zspage->list, &head->list);
725         else
726                 list_add(&zspage->list, &class->fullness_list[fullness]);
727 }
728
729 /*
730  * This function removes the given zspage from the freelist identified
731  * by <class, fullness_group>.
732  */
733 static void remove_zspage(struct size_class *class,
734                                 struct zspage *zspage,
735                                 enum fullness_group fullness)
736 {
737         VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
738
739         list_del_init(&zspage->list);
740         class_stat_dec(class, fullness, 1);
741 }
742
743 /*
744  * Each size class maintains zspages in different fullness groups depending
745  * on the number of live objects they contain. When allocating or freeing
746  * objects, the fullness status of the page can change, say, from ALMOST_FULL
747  * to ALMOST_EMPTY when freeing an object. This function checks if such
748  * a status change has occurred for the given page and accordingly moves the
749  * page from the freelist of the old fullness group to that of the new
750  * fullness group.
751  */
752 static enum fullness_group fix_fullness_group(struct size_class *class,
753                                                 struct zspage *zspage)
754 {
755         int class_idx;
756         enum fullness_group currfg, newfg;
757
758         get_zspage_mapping(zspage, &class_idx, &currfg);
759         newfg = get_fullness_group(class, zspage);
760         if (newfg == currfg)
761                 goto out;
762
763         remove_zspage(class, zspage, currfg);
764         insert_zspage(class, zspage, newfg);
765         set_zspage_mapping(zspage, class_idx, newfg);
766 out:
767         return newfg;
768 }
769
770 /*
771  * We have to decide on how many pages to link together
772  * to form a zspage for each size class. This is important
773  * to reduce wastage due to unusable space left at end of
774  * each zspage which is given as:
775  *     wastage = Zp % class_size
776  *     usage = Zp - wastage
777  * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
778  *
779  * For example, for size class of 3/8 * PAGE_SIZE, we should
780  * link together 3 PAGE_SIZE sized pages to form a zspage
781  * since then we can perfectly fit in 8 such objects.
782  */
783 static int get_pages_per_zspage(int class_size)
784 {
785         int i, max_usedpc = 0;
786         /* zspage order which gives maximum used size per KB */
787         int max_usedpc_order = 1;
788
789         for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
790                 int zspage_size;
791                 int waste, usedpc;
792
793                 zspage_size = i * PAGE_SIZE;
794                 waste = zspage_size % class_size;
795                 usedpc = (zspage_size - waste) * 100 / zspage_size;
796
797                 if (usedpc > max_usedpc) {
798                         max_usedpc = usedpc;
799                         max_usedpc_order = i;
800                 }
801         }
802
803         return max_usedpc_order;
804 }
805
806 static struct zspage *get_zspage(struct page *page)
807 {
808         struct zspage *zspage = (struct zspage *)page_private(page);
809
810         BUG_ON(zspage->magic != ZSPAGE_MAGIC);
811         return zspage;
812 }
813
814 static struct page *get_next_page(struct page *page)
815 {
816         struct zspage *zspage = get_zspage(page);
817
818         if (unlikely(ZsHugePage(zspage)))
819                 return NULL;
820
821         return (struct page *)page->index;
822 }
823
824 /**
825  * obj_to_location - get (<page>, <obj_idx>) from encoded object value
826  * @obj: the encoded object value
827  * @page: page object resides in zspage
828  * @obj_idx: object index
829  */
830 static void obj_to_location(unsigned long obj, struct page **page,
831                                 unsigned int *obj_idx)
832 {
833         obj >>= OBJ_TAG_BITS;
834         *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
835         *obj_idx = (obj & OBJ_INDEX_MASK);
836 }
837
838 static void obj_to_page(unsigned long obj, struct page **page)
839 {
840         obj >>= OBJ_TAG_BITS;
841         *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
842 }
843
844 /**
845  * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
846  * @page: page object resides in zspage
847  * @obj_idx: object index
848  */
849 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
850 {
851         unsigned long obj;
852
853         obj = page_to_pfn(page) << OBJ_INDEX_BITS;
854         obj |= obj_idx & OBJ_INDEX_MASK;
855         obj <<= OBJ_TAG_BITS;
856
857         return obj;
858 }
859
860 static unsigned long handle_to_obj(unsigned long handle)
861 {
862         return *(unsigned long *)handle;
863 }
864
865 static bool obj_allocated(struct page *page, void *obj, unsigned long *phandle)
866 {
867         unsigned long handle;
868         struct zspage *zspage = get_zspage(page);
869
870         if (unlikely(ZsHugePage(zspage))) {
871                 VM_BUG_ON_PAGE(!is_first_page(page), page);
872                 handle = page->index;
873         } else
874                 handle = *(unsigned long *)obj;
875
876         if (!(handle & OBJ_ALLOCATED_TAG))
877                 return false;
878
879         *phandle = handle & ~OBJ_ALLOCATED_TAG;
880         return true;
881 }
882
883 static inline int testpin_tag(unsigned long handle)
884 {
885         return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle);
886 }
887
888 static inline int trypin_tag(unsigned long handle)
889 {
890         return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
891 }
892
893 static void pin_tag(unsigned long handle) __acquires(bitlock)
894 {
895         bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
896 }
897
898 static void unpin_tag(unsigned long handle) __releases(bitlock)
899 {
900         bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
901 }
902
903 static void reset_page(struct page *page)
904 {
905         __ClearPageMovable(page);
906         ClearPagePrivate(page);
907         set_page_private(page, 0);
908         page_mapcount_reset(page);
909         page->index = 0;
910 }
911
912 static int trylock_zspage(struct zspage *zspage)
913 {
914         struct page *cursor, *fail;
915
916         for (cursor = get_first_page(zspage); cursor != NULL; cursor =
917                                         get_next_page(cursor)) {
918                 if (!trylock_page(cursor)) {
919                         fail = cursor;
920                         goto unlock;
921                 }
922         }
923
924         return 1;
925 unlock:
926         for (cursor = get_first_page(zspage); cursor != fail; cursor =
927                                         get_next_page(cursor))
928                 unlock_page(cursor);
929
930         return 0;
931 }
932
933 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
934                                 struct zspage *zspage)
935 {
936         struct page *page, *next;
937         enum fullness_group fg;
938         unsigned int class_idx;
939
940         get_zspage_mapping(zspage, &class_idx, &fg);
941
942         assert_spin_locked(&class->lock);
943
944         VM_BUG_ON(get_zspage_inuse(zspage));
945         VM_BUG_ON(fg != ZS_EMPTY);
946
947         next = page = get_first_page(zspage);
948         do {
949                 VM_BUG_ON_PAGE(!PageLocked(page), page);
950                 next = get_next_page(page);
951                 reset_page(page);
952                 unlock_page(page);
953                 dec_zone_page_state(page, NR_ZSPAGES);
954                 put_page(page);
955                 page = next;
956         } while (page != NULL);
957
958         cache_free_zspage(pool, zspage);
959
960         class_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
961         atomic_long_sub(class->pages_per_zspage,
962                                         &pool->pages_allocated);
963 }
964
965 static void free_zspage(struct zs_pool *pool, struct size_class *class,
966                                 struct zspage *zspage)
967 {
968         VM_BUG_ON(get_zspage_inuse(zspage));
969         VM_BUG_ON(list_empty(&zspage->list));
970
971         if (!trylock_zspage(zspage)) {
972                 kick_deferred_free(pool);
973                 return;
974         }
975
976         remove_zspage(class, zspage, ZS_EMPTY);
977         __free_zspage(pool, class, zspage);
978 }
979
980 /* Initialize a newly allocated zspage */
981 static void init_zspage(struct size_class *class, struct zspage *zspage)
982 {
983         unsigned int freeobj = 1;
984         unsigned long off = 0;
985         struct page *page = get_first_page(zspage);
986
987         while (page) {
988                 struct page *next_page;
989                 struct link_free *link;
990                 void *vaddr;
991
992                 set_first_obj_offset(page, off);
993
994                 vaddr = kmap_atomic(page);
995                 link = (struct link_free *)vaddr + off / sizeof(*link);
996
997                 while ((off += class->size) < PAGE_SIZE) {
998                         link->next = freeobj++ << OBJ_TAG_BITS;
999                         link += class->size / sizeof(*link);
1000                 }
1001
1002                 /*
1003                  * We now come to the last (full or partial) object on this
1004                  * page, which must point to the first object on the next
1005                  * page (if present)
1006                  */
1007                 next_page = get_next_page(page);
1008                 if (next_page) {
1009                         link->next = freeobj++ << OBJ_TAG_BITS;
1010                 } else {
1011                         /*
1012                          * Reset OBJ_TAG_BITS bit to last link to tell
1013                          * whether it's allocated object or not.
1014                          */
1015                         link->next = -1UL << OBJ_TAG_BITS;
1016                 }
1017                 kunmap_atomic(vaddr);
1018                 page = next_page;
1019                 off %= PAGE_SIZE;
1020         }
1021
1022         set_freeobj(zspage, 0);
1023 }
1024
1025 static void create_page_chain(struct size_class *class, struct zspage *zspage,
1026                                 struct page *pages[])
1027 {
1028         int i;
1029         struct page *page;
1030         struct page *prev_page = NULL;
1031         int nr_pages = class->pages_per_zspage;
1032
1033         /*
1034          * Allocate individual pages and link them together as:
1035          * 1. all pages are linked together using page->index
1036          * 2. each sub-page point to zspage using page->private
1037          *
1038          * we set PG_private to identify the first page (i.e. no other sub-page
1039          * has this flag set).
1040          */
1041         for (i = 0; i < nr_pages; i++) {
1042                 page = pages[i];
1043                 set_page_private(page, (unsigned long)zspage);
1044                 page->index = 0;
1045                 if (i == 0) {
1046                         zspage->first_page = page;
1047                         SetPagePrivate(page);
1048                         if (unlikely(class->objs_per_zspage == 1 &&
1049                                         class->pages_per_zspage == 1))
1050                                 SetZsHugePage(zspage);
1051                 } else {
1052                         prev_page->index = (unsigned long)page;
1053                 }
1054                 prev_page = page;
1055         }
1056 }
1057
1058 /*
1059  * Allocate a zspage for the given size class
1060  */
1061 static struct zspage *alloc_zspage(struct zs_pool *pool,
1062                                         struct size_class *class,
1063                                         gfp_t gfp)
1064 {
1065         int i;
1066         struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1067         struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1068
1069         if (!zspage)
1070                 return NULL;
1071
1072         zspage->magic = ZSPAGE_MAGIC;
1073         migrate_lock_init(zspage);
1074
1075         for (i = 0; i < class->pages_per_zspage; i++) {
1076                 struct page *page;
1077
1078                 page = alloc_page(gfp);
1079                 if (!page) {
1080                         while (--i >= 0) {
1081                                 dec_zone_page_state(pages[i], NR_ZSPAGES);
1082                                 __free_page(pages[i]);
1083                         }
1084                         cache_free_zspage(pool, zspage);
1085                         return NULL;
1086                 }
1087
1088                 inc_zone_page_state(page, NR_ZSPAGES);
1089                 pages[i] = page;
1090         }
1091
1092         create_page_chain(class, zspage, pages);
1093         init_zspage(class, zspage);
1094
1095         return zspage;
1096 }
1097
1098 static struct zspage *find_get_zspage(struct size_class *class)
1099 {
1100         int i;
1101         struct zspage *zspage;
1102
1103         for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1104                 zspage = list_first_entry_or_null(&class->fullness_list[i],
1105                                 struct zspage, list);
1106                 if (zspage)
1107                         break;
1108         }
1109
1110         return zspage;
1111 }
1112
1113 static inline int __zs_cpu_up(struct mapping_area *area)
1114 {
1115         /*
1116          * Make sure we don't leak memory if a cpu UP notification
1117          * and zs_init() race and both call zs_cpu_up() on the same cpu
1118          */
1119         if (area->vm_buf)
1120                 return 0;
1121         area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1122         if (!area->vm_buf)
1123                 return -ENOMEM;
1124         return 0;
1125 }
1126
1127 static inline void __zs_cpu_down(struct mapping_area *area)
1128 {
1129         kfree(area->vm_buf);
1130         area->vm_buf = NULL;
1131 }
1132
1133 static void *__zs_map_object(struct mapping_area *area,
1134                         struct page *pages[2], int off, int size)
1135 {
1136         int sizes[2];
1137         void *addr;
1138         char *buf = area->vm_buf;
1139
1140         /* disable page faults to match kmap_atomic() return conditions */
1141         pagefault_disable();
1142
1143         /* no read fastpath */
1144         if (area->vm_mm == ZS_MM_WO)
1145                 goto out;
1146
1147         sizes[0] = PAGE_SIZE - off;
1148         sizes[1] = size - sizes[0];
1149
1150         /* copy object to per-cpu buffer */
1151         addr = kmap_atomic(pages[0]);
1152         memcpy(buf, addr + off, sizes[0]);
1153         kunmap_atomic(addr);
1154         addr = kmap_atomic(pages[1]);
1155         memcpy(buf + sizes[0], addr, sizes[1]);
1156         kunmap_atomic(addr);
1157 out:
1158         return area->vm_buf;
1159 }
1160
1161 static void __zs_unmap_object(struct mapping_area *area,
1162                         struct page *pages[2], int off, int size)
1163 {
1164         int sizes[2];
1165         void *addr;
1166         char *buf;
1167
1168         /* no write fastpath */
1169         if (area->vm_mm == ZS_MM_RO)
1170                 goto out;
1171
1172         buf = area->vm_buf;
1173         buf = buf + ZS_HANDLE_SIZE;
1174         size -= ZS_HANDLE_SIZE;
1175         off += ZS_HANDLE_SIZE;
1176
1177         sizes[0] = PAGE_SIZE - off;
1178         sizes[1] = size - sizes[0];
1179
1180         /* copy per-cpu buffer to object */
1181         addr = kmap_atomic(pages[0]);
1182         memcpy(addr + off, buf, sizes[0]);
1183         kunmap_atomic(addr);
1184         addr = kmap_atomic(pages[1]);
1185         memcpy(addr, buf + sizes[0], sizes[1]);
1186         kunmap_atomic(addr);
1187
1188 out:
1189         /* enable page faults to match kunmap_atomic() return conditions */
1190         pagefault_enable();
1191 }
1192
1193 static int zs_cpu_prepare(unsigned int cpu)
1194 {
1195         struct mapping_area *area;
1196
1197         area = &per_cpu(zs_map_area, cpu);
1198         return __zs_cpu_up(area);
1199 }
1200
1201 static int zs_cpu_dead(unsigned int cpu)
1202 {
1203         struct mapping_area *area;
1204
1205         area = &per_cpu(zs_map_area, cpu);
1206         __zs_cpu_down(area);
1207         return 0;
1208 }
1209
1210 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1211                                         int objs_per_zspage)
1212 {
1213         if (prev->pages_per_zspage == pages_per_zspage &&
1214                 prev->objs_per_zspage == objs_per_zspage)
1215                 return true;
1216
1217         return false;
1218 }
1219
1220 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1221 {
1222         return get_zspage_inuse(zspage) == class->objs_per_zspage;
1223 }
1224
1225 unsigned long zs_get_total_pages(struct zs_pool *pool)
1226 {
1227         return atomic_long_read(&pool->pages_allocated);
1228 }
1229 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1230
1231 /**
1232  * zs_map_object - get address of allocated object from handle.
1233  * @pool: pool from which the object was allocated
1234  * @handle: handle returned from zs_malloc
1235  * @mm: mapping mode to use
1236  *
1237  * Before using an object allocated from zs_malloc, it must be mapped using
1238  * this function. When done with the object, it must be unmapped using
1239  * zs_unmap_object.
1240  *
1241  * Only one object can be mapped per cpu at a time. There is no protection
1242  * against nested mappings.
1243  *
1244  * This function returns with preemption and page faults disabled.
1245  */
1246 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1247                         enum zs_mapmode mm)
1248 {
1249         struct zspage *zspage;
1250         struct page *page;
1251         unsigned long obj, off;
1252         unsigned int obj_idx;
1253
1254         struct size_class *class;
1255         struct mapping_area *area;
1256         struct page *pages[2];
1257         void *ret;
1258
1259         /*
1260          * Because we use per-cpu mapping areas shared among the
1261          * pools/users, we can't allow mapping in interrupt context
1262          * because it can corrupt another users mappings.
1263          */
1264         BUG_ON(in_interrupt());
1265
1266         /* From now on, migration cannot move the object */
1267         pin_tag(handle);
1268
1269         obj = handle_to_obj(handle);
1270         obj_to_location(obj, &page, &obj_idx);
1271         zspage = get_zspage(page);
1272
1273         /* migration cannot move any subpage in this zspage */
1274         migrate_read_lock(zspage);
1275
1276         class = zspage_class(pool, zspage);
1277         off = (class->size * obj_idx) & ~PAGE_MASK;
1278
1279         area = &get_cpu_var(zs_map_area);
1280         area->vm_mm = mm;
1281         if (off + class->size <= PAGE_SIZE) {
1282                 /* this object is contained entirely within a page */
1283                 area->vm_addr = kmap_atomic(page);
1284                 ret = area->vm_addr + off;
1285                 goto out;
1286         }
1287
1288         /* this object spans two pages */
1289         pages[0] = page;
1290         pages[1] = get_next_page(page);
1291         BUG_ON(!pages[1]);
1292
1293         ret = __zs_map_object(area, pages, off, class->size);
1294 out:
1295         if (likely(!ZsHugePage(zspage)))
1296                 ret += ZS_HANDLE_SIZE;
1297
1298         return ret;
1299 }
1300 EXPORT_SYMBOL_GPL(zs_map_object);
1301
1302 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1303 {
1304         struct zspage *zspage;
1305         struct page *page;
1306         unsigned long obj, off;
1307         unsigned int obj_idx;
1308
1309         struct size_class *class;
1310         struct mapping_area *area;
1311
1312         obj = handle_to_obj(handle);
1313         obj_to_location(obj, &page, &obj_idx);
1314         zspage = get_zspage(page);
1315         class = zspage_class(pool, zspage);
1316         off = (class->size * obj_idx) & ~PAGE_MASK;
1317
1318         area = this_cpu_ptr(&zs_map_area);
1319         if (off + class->size <= PAGE_SIZE)
1320                 kunmap_atomic(area->vm_addr);
1321         else {
1322                 struct page *pages[2];
1323
1324                 pages[0] = page;
1325                 pages[1] = get_next_page(page);
1326                 BUG_ON(!pages[1]);
1327
1328                 __zs_unmap_object(area, pages, off, class->size);
1329         }
1330         put_cpu_var(zs_map_area);
1331
1332         migrate_read_unlock(zspage);
1333         unpin_tag(handle);
1334 }
1335 EXPORT_SYMBOL_GPL(zs_unmap_object);
1336
1337 /**
1338  * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1339  *                        zsmalloc &size_class.
1340  * @pool: zsmalloc pool to use
1341  *
1342  * The function returns the size of the first huge class - any object of equal
1343  * or bigger size will be stored in zspage consisting of a single physical
1344  * page.
1345  *
1346  * Context: Any context.
1347  *
1348  * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1349  */
1350 size_t zs_huge_class_size(struct zs_pool *pool)
1351 {
1352         return huge_class_size;
1353 }
1354 EXPORT_SYMBOL_GPL(zs_huge_class_size);
1355
1356 static unsigned long obj_malloc(struct zs_pool *pool,
1357                                 struct zspage *zspage, unsigned long handle)
1358 {
1359         int i, nr_page, offset;
1360         unsigned long obj;
1361         struct link_free *link;
1362         struct size_class *class;
1363
1364         struct page *m_page;
1365         unsigned long m_offset;
1366         void *vaddr;
1367
1368         class = pool->size_class[zspage->class];
1369         handle |= OBJ_ALLOCATED_TAG;
1370         obj = get_freeobj(zspage);
1371
1372         offset = obj * class->size;
1373         nr_page = offset >> PAGE_SHIFT;
1374         m_offset = offset & ~PAGE_MASK;
1375         m_page = get_first_page(zspage);
1376
1377         for (i = 0; i < nr_page; i++)
1378                 m_page = get_next_page(m_page);
1379
1380         vaddr = kmap_atomic(m_page);
1381         link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1382         set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1383         if (likely(!ZsHugePage(zspage)))
1384                 /* record handle in the header of allocated chunk */
1385                 link->handle = handle;
1386         else
1387                 /* record handle to page->index */
1388                 zspage->first_page->index = handle;
1389
1390         kunmap_atomic(vaddr);
1391         mod_zspage_inuse(zspage, 1);
1392
1393         obj = location_to_obj(m_page, obj);
1394
1395         return obj;
1396 }
1397
1398
1399 /**
1400  * zs_malloc - Allocate block of given size from pool.
1401  * @pool: pool to allocate from
1402  * @size: size of block to allocate
1403  * @gfp: gfp flags when allocating object
1404  *
1405  * On success, handle to the allocated object is returned,
1406  * otherwise 0.
1407  * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1408  */
1409 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1410 {
1411         unsigned long handle, obj;
1412         struct size_class *class;
1413         enum fullness_group newfg;
1414         struct zspage *zspage;
1415
1416         if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1417                 return 0;
1418
1419         handle = cache_alloc_handle(pool, gfp);
1420         if (!handle)
1421                 return 0;
1422
1423         /* extra space in chunk to keep the handle */
1424         size += ZS_HANDLE_SIZE;
1425         class = pool->size_class[get_size_class_index(size)];
1426
1427         spin_lock(&class->lock);
1428         zspage = find_get_zspage(class);
1429         if (likely(zspage)) {
1430                 obj = obj_malloc(pool, zspage, handle);
1431                 /* Now move the zspage to another fullness group, if required */
1432                 fix_fullness_group(class, zspage);
1433                 record_obj(handle, obj);
1434                 class_stat_inc(class, OBJ_USED, 1);
1435                 spin_unlock(&class->lock);
1436
1437                 return handle;
1438         }
1439
1440         spin_unlock(&class->lock);
1441
1442         zspage = alloc_zspage(pool, class, gfp);
1443         if (!zspage) {
1444                 cache_free_handle(pool, handle);
1445                 return 0;
1446         }
1447
1448         spin_lock(&class->lock);
1449         obj = obj_malloc(pool, zspage, handle);
1450         newfg = get_fullness_group(class, zspage);
1451         insert_zspage(class, zspage, newfg);
1452         set_zspage_mapping(zspage, class->index, newfg);
1453         record_obj(handle, obj);
1454         atomic_long_add(class->pages_per_zspage,
1455                                 &pool->pages_allocated);
1456         class_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
1457         class_stat_inc(class, OBJ_USED, 1);
1458
1459         /* We completely set up zspage so mark them as movable */
1460         SetZsPageMovable(pool, zspage);
1461         spin_unlock(&class->lock);
1462
1463         return handle;
1464 }
1465 EXPORT_SYMBOL_GPL(zs_malloc);
1466
1467 static void obj_free(int class_size, unsigned long obj)
1468 {
1469         struct link_free *link;
1470         struct zspage *zspage;
1471         struct page *f_page;
1472         unsigned long f_offset;
1473         unsigned int f_objidx;
1474         void *vaddr;
1475
1476         obj_to_location(obj, &f_page, &f_objidx);
1477         f_offset = (class_size * f_objidx) & ~PAGE_MASK;
1478         zspage = get_zspage(f_page);
1479
1480         vaddr = kmap_atomic(f_page);
1481
1482         /* Insert this object in containing zspage's freelist */
1483         link = (struct link_free *)(vaddr + f_offset);
1484         if (likely(!ZsHugePage(zspage)))
1485                 link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1486         else
1487                 f_page->index = 0;
1488         kunmap_atomic(vaddr);
1489         set_freeobj(zspage, f_objidx);
1490         mod_zspage_inuse(zspage, -1);
1491 }
1492
1493 void zs_free(struct zs_pool *pool, unsigned long handle)
1494 {
1495         struct zspage *zspage;
1496         struct page *f_page;
1497         unsigned long obj;
1498         struct size_class *class;
1499         enum fullness_group fullness;
1500
1501         if (unlikely(!handle))
1502                 return;
1503
1504         pin_tag(handle);
1505         obj = handle_to_obj(handle);
1506         obj_to_page(obj, &f_page);
1507         zspage = get_zspage(f_page);
1508
1509         migrate_read_lock(zspage);
1510         class = zspage_class(pool, zspage);
1511
1512         spin_lock(&class->lock);
1513         obj_free(class->size, obj);
1514         class_stat_dec(class, OBJ_USED, 1);
1515         fullness = fix_fullness_group(class, zspage);
1516         if (fullness != ZS_EMPTY) {
1517                 migrate_read_unlock(zspage);
1518                 goto out;
1519         }
1520
1521         migrate_read_unlock(zspage);
1522         /* If zspage is isolated, zs_page_putback will free the zspage */
1523         free_zspage(pool, class, zspage);
1524 out:
1525
1526         spin_unlock(&class->lock);
1527         unpin_tag(handle);
1528         cache_free_handle(pool, handle);
1529 }
1530 EXPORT_SYMBOL_GPL(zs_free);
1531
1532 static void zs_object_copy(struct size_class *class, unsigned long dst,
1533                                 unsigned long src)
1534 {
1535         struct page *s_page, *d_page;
1536         unsigned int s_objidx, d_objidx;
1537         unsigned long s_off, d_off;
1538         void *s_addr, *d_addr;
1539         int s_size, d_size, size;
1540         int written = 0;
1541
1542         s_size = d_size = class->size;
1543
1544         obj_to_location(src, &s_page, &s_objidx);
1545         obj_to_location(dst, &d_page, &d_objidx);
1546
1547         s_off = (class->size * s_objidx) & ~PAGE_MASK;
1548         d_off = (class->size * d_objidx) & ~PAGE_MASK;
1549
1550         if (s_off + class->size > PAGE_SIZE)
1551                 s_size = PAGE_SIZE - s_off;
1552
1553         if (d_off + class->size > PAGE_SIZE)
1554                 d_size = PAGE_SIZE - d_off;
1555
1556         s_addr = kmap_atomic(s_page);
1557         d_addr = kmap_atomic(d_page);
1558
1559         while (1) {
1560                 size = min(s_size, d_size);
1561                 memcpy(d_addr + d_off, s_addr + s_off, size);
1562                 written += size;
1563
1564                 if (written == class->size)
1565                         break;
1566
1567                 s_off += size;
1568                 s_size -= size;
1569                 d_off += size;
1570                 d_size -= size;
1571
1572                 if (s_off >= PAGE_SIZE) {
1573                         kunmap_atomic(d_addr);
1574                         kunmap_atomic(s_addr);
1575                         s_page = get_next_page(s_page);
1576                         s_addr = kmap_atomic(s_page);
1577                         d_addr = kmap_atomic(d_page);
1578                         s_size = class->size - written;
1579                         s_off = 0;
1580                 }
1581
1582                 if (d_off >= PAGE_SIZE) {
1583                         kunmap_atomic(d_addr);
1584                         d_page = get_next_page(d_page);
1585                         d_addr = kmap_atomic(d_page);
1586                         d_size = class->size - written;
1587                         d_off = 0;
1588                 }
1589         }
1590
1591         kunmap_atomic(d_addr);
1592         kunmap_atomic(s_addr);
1593 }
1594
1595 /*
1596  * Find alloced object in zspage from index object and
1597  * return handle.
1598  */
1599 static unsigned long find_alloced_obj(struct size_class *class,
1600                                         struct page *page, int *obj_idx)
1601 {
1602         int offset = 0;
1603         int index = *obj_idx;
1604         unsigned long handle = 0;
1605         void *addr = kmap_atomic(page);
1606
1607         offset = get_first_obj_offset(page);
1608         offset += class->size * index;
1609
1610         while (offset < PAGE_SIZE) {
1611                 if (obj_allocated(page, addr + offset, &handle)) {
1612                         if (trypin_tag(handle))
1613                                 break;
1614                         handle = 0;
1615                 }
1616
1617                 offset += class->size;
1618                 index++;
1619         }
1620
1621         kunmap_atomic(addr);
1622
1623         *obj_idx = index;
1624
1625         return handle;
1626 }
1627
1628 struct zs_compact_control {
1629         /* Source spage for migration which could be a subpage of zspage */
1630         struct page *s_page;
1631         /* Destination page for migration which should be a first page
1632          * of zspage. */
1633         struct page *d_page;
1634          /* Starting object index within @s_page which used for live object
1635           * in the subpage. */
1636         int obj_idx;
1637 };
1638
1639 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1640                                 struct zs_compact_control *cc)
1641 {
1642         unsigned long used_obj, free_obj;
1643         unsigned long handle;
1644         struct page *s_page = cc->s_page;
1645         struct page *d_page = cc->d_page;
1646         int obj_idx = cc->obj_idx;
1647         int ret = 0;
1648
1649         while (1) {
1650                 handle = find_alloced_obj(class, s_page, &obj_idx);
1651                 if (!handle) {
1652                         s_page = get_next_page(s_page);
1653                         if (!s_page)
1654                                 break;
1655                         obj_idx = 0;
1656                         continue;
1657                 }
1658
1659                 /* Stop if there is no more space */
1660                 if (zspage_full(class, get_zspage(d_page))) {
1661                         unpin_tag(handle);
1662                         ret = -ENOMEM;
1663                         break;
1664                 }
1665
1666                 used_obj = handle_to_obj(handle);
1667                 free_obj = obj_malloc(pool, get_zspage(d_page), handle);
1668                 zs_object_copy(class, free_obj, used_obj);
1669                 obj_idx++;
1670                 /*
1671                  * record_obj updates handle's value to free_obj and it will
1672                  * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1673                  * breaks synchronization using pin_tag(e,g, zs_free) so
1674                  * let's keep the lock bit.
1675                  */
1676                 free_obj |= BIT(HANDLE_PIN_BIT);
1677                 record_obj(handle, free_obj);
1678                 unpin_tag(handle);
1679                 obj_free(class->size, used_obj);
1680         }
1681
1682         /* Remember last position in this iteration */
1683         cc->s_page = s_page;
1684         cc->obj_idx = obj_idx;
1685
1686         return ret;
1687 }
1688
1689 static struct zspage *isolate_zspage(struct size_class *class, bool source)
1690 {
1691         int i;
1692         struct zspage *zspage;
1693         enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1694
1695         if (!source) {
1696                 fg[0] = ZS_ALMOST_FULL;
1697                 fg[1] = ZS_ALMOST_EMPTY;
1698         }
1699
1700         for (i = 0; i < 2; i++) {
1701                 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1702                                                         struct zspage, list);
1703                 if (zspage) {
1704                         remove_zspage(class, zspage, fg[i]);
1705                         return zspage;
1706                 }
1707         }
1708
1709         return zspage;
1710 }
1711
1712 /*
1713  * putback_zspage - add @zspage into right class's fullness list
1714  * @class: destination class
1715  * @zspage: target page
1716  *
1717  * Return @zspage's fullness_group
1718  */
1719 static enum fullness_group putback_zspage(struct size_class *class,
1720                         struct zspage *zspage)
1721 {
1722         enum fullness_group fullness;
1723
1724         fullness = get_fullness_group(class, zspage);
1725         insert_zspage(class, zspage, fullness);
1726         set_zspage_mapping(zspage, class->index, fullness);
1727
1728         return fullness;
1729 }
1730
1731 #ifdef CONFIG_COMPACTION
1732 /*
1733  * To prevent zspage destroy during migration, zspage freeing should
1734  * hold locks of all pages in the zspage.
1735  */
1736 static void lock_zspage(struct zspage *zspage)
1737 {
1738         struct page *page = get_first_page(zspage);
1739
1740         do {
1741                 lock_page(page);
1742         } while ((page = get_next_page(page)) != NULL);
1743 }
1744
1745 static int zs_init_fs_context(struct fs_context *fc)
1746 {
1747         return init_pseudo(fc, ZSMALLOC_MAGIC) ? 0 : -ENOMEM;
1748 }
1749
1750 static struct file_system_type zsmalloc_fs = {
1751         .name           = "zsmalloc",
1752         .init_fs_context = zs_init_fs_context,
1753         .kill_sb        = kill_anon_super,
1754 };
1755
1756 static int zsmalloc_mount(void)
1757 {
1758         int ret = 0;
1759
1760         zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1761         if (IS_ERR(zsmalloc_mnt))
1762                 ret = PTR_ERR(zsmalloc_mnt);
1763
1764         return ret;
1765 }
1766
1767 static void zsmalloc_unmount(void)
1768 {
1769         kern_unmount(zsmalloc_mnt);
1770 }
1771
1772 static void migrate_lock_init(struct zspage *zspage)
1773 {
1774         rwlock_init(&zspage->lock);
1775 }
1776
1777 static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock)
1778 {
1779         read_lock(&zspage->lock);
1780 }
1781
1782 static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock)
1783 {
1784         read_unlock(&zspage->lock);
1785 }
1786
1787 static void migrate_write_lock(struct zspage *zspage)
1788 {
1789         write_lock(&zspage->lock);
1790 }
1791
1792 static void migrate_write_unlock(struct zspage *zspage)
1793 {
1794         write_unlock(&zspage->lock);
1795 }
1796
1797 /* Number of isolated subpage for *page migration* in this zspage */
1798 static void inc_zspage_isolation(struct zspage *zspage)
1799 {
1800         zspage->isolated++;
1801 }
1802
1803 static void dec_zspage_isolation(struct zspage *zspage)
1804 {
1805         VM_BUG_ON(zspage->isolated == 0);
1806         zspage->isolated--;
1807 }
1808
1809 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1810                                 struct page *newpage, struct page *oldpage)
1811 {
1812         struct page *page;
1813         struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1814         int idx = 0;
1815
1816         page = get_first_page(zspage);
1817         do {
1818                 if (page == oldpage)
1819                         pages[idx] = newpage;
1820                 else
1821                         pages[idx] = page;
1822                 idx++;
1823         } while ((page = get_next_page(page)) != NULL);
1824
1825         create_page_chain(class, zspage, pages);
1826         set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1827         if (unlikely(ZsHugePage(zspage)))
1828                 newpage->index = oldpage->index;
1829         __SetPageMovable(newpage, page_mapping(oldpage));
1830 }
1831
1832 static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1833 {
1834         struct zspage *zspage;
1835
1836         /*
1837          * Page is locked so zspage couldn't be destroyed. For detail, look at
1838          * lock_zspage in free_zspage.
1839          */
1840         VM_BUG_ON_PAGE(!PageMovable(page), page);
1841         VM_BUG_ON_PAGE(PageIsolated(page), page);
1842
1843         zspage = get_zspage(page);
1844         migrate_write_lock(zspage);
1845         inc_zspage_isolation(zspage);
1846         migrate_write_unlock(zspage);
1847
1848         return true;
1849 }
1850
1851 static int zs_page_migrate(struct address_space *mapping, struct page *newpage,
1852                 struct page *page, enum migrate_mode mode)
1853 {
1854         struct zs_pool *pool;
1855         struct size_class *class;
1856         struct zspage *zspage;
1857         struct page *dummy;
1858         void *s_addr, *d_addr, *addr;
1859         int offset, pos;
1860         unsigned long handle;
1861         unsigned long old_obj, new_obj;
1862         unsigned int obj_idx;
1863         int ret = -EAGAIN;
1864
1865         /*
1866          * We cannot support the _NO_COPY case here, because copy needs to
1867          * happen under the zs lock, which does not work with
1868          * MIGRATE_SYNC_NO_COPY workflow.
1869          */
1870         if (mode == MIGRATE_SYNC_NO_COPY)
1871                 return -EINVAL;
1872
1873         VM_BUG_ON_PAGE(!PageMovable(page), page);
1874         VM_BUG_ON_PAGE(!PageIsolated(page), page);
1875
1876         zspage = get_zspage(page);
1877
1878         /* Concurrent compactor cannot migrate any subpage in zspage */
1879         migrate_write_lock(zspage);
1880         pool = mapping->private_data;
1881         class = zspage_class(pool, zspage);
1882         offset = get_first_obj_offset(page);
1883
1884         spin_lock(&class->lock);
1885         if (!get_zspage_inuse(zspage)) {
1886                 /*
1887                  * Set "offset" to end of the page so that every loops
1888                  * skips unnecessary object scanning.
1889                  */
1890                 offset = PAGE_SIZE;
1891         }
1892
1893         pos = offset;
1894         s_addr = kmap_atomic(page);
1895         while (pos < PAGE_SIZE) {
1896                 if (obj_allocated(page, s_addr + pos, &handle)) {
1897                         if (!trypin_tag(handle))
1898                                 goto unpin_objects;
1899                 }
1900                 pos += class->size;
1901         }
1902
1903         /*
1904          * Here, any user cannot access all objects in the zspage so let's move.
1905          */
1906         d_addr = kmap_atomic(newpage);
1907         memcpy(d_addr, s_addr, PAGE_SIZE);
1908         kunmap_atomic(d_addr);
1909
1910         for (addr = s_addr + offset; addr < s_addr + pos;
1911                                         addr += class->size) {
1912                 if (obj_allocated(page, addr, &handle)) {
1913                         BUG_ON(!testpin_tag(handle));
1914
1915                         old_obj = handle_to_obj(handle);
1916                         obj_to_location(old_obj, &dummy, &obj_idx);
1917                         new_obj = (unsigned long)location_to_obj(newpage,
1918                                                                 obj_idx);
1919                         new_obj |= BIT(HANDLE_PIN_BIT);
1920                         record_obj(handle, new_obj);
1921                 }
1922         }
1923
1924         replace_sub_page(class, zspage, newpage, page);
1925         get_page(newpage);
1926
1927         dec_zspage_isolation(zspage);
1928
1929         if (page_zone(newpage) != page_zone(page)) {
1930                 dec_zone_page_state(page, NR_ZSPAGES);
1931                 inc_zone_page_state(newpage, NR_ZSPAGES);
1932         }
1933
1934         reset_page(page);
1935         put_page(page);
1936         page = newpage;
1937
1938         ret = MIGRATEPAGE_SUCCESS;
1939 unpin_objects:
1940         for (addr = s_addr + offset; addr < s_addr + pos;
1941                                                 addr += class->size) {
1942                 if (obj_allocated(page, addr, &handle)) {
1943                         BUG_ON(!testpin_tag(handle));
1944                         unpin_tag(handle);
1945                 }
1946         }
1947         kunmap_atomic(s_addr);
1948         spin_unlock(&class->lock);
1949         migrate_write_unlock(zspage);
1950
1951         return ret;
1952 }
1953
1954 static void zs_page_putback(struct page *page)
1955 {
1956         struct zspage *zspage;
1957
1958         VM_BUG_ON_PAGE(!PageMovable(page), page);
1959         VM_BUG_ON_PAGE(!PageIsolated(page), page);
1960
1961         zspage = get_zspage(page);
1962         migrate_write_lock(zspage);
1963         dec_zspage_isolation(zspage);
1964         migrate_write_unlock(zspage);
1965 }
1966
1967 static const struct address_space_operations zsmalloc_aops = {
1968         .isolate_page = zs_page_isolate,
1969         .migratepage = zs_page_migrate,
1970         .putback_page = zs_page_putback,
1971 };
1972
1973 static int zs_register_migration(struct zs_pool *pool)
1974 {
1975         pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
1976         if (IS_ERR(pool->inode)) {
1977                 pool->inode = NULL;
1978                 return 1;
1979         }
1980
1981         pool->inode->i_mapping->private_data = pool;
1982         pool->inode->i_mapping->a_ops = &zsmalloc_aops;
1983         return 0;
1984 }
1985
1986 static void zs_unregister_migration(struct zs_pool *pool)
1987 {
1988         flush_work(&pool->free_work);
1989         iput(pool->inode);
1990 }
1991
1992 /*
1993  * Caller should hold page_lock of all pages in the zspage
1994  * In here, we cannot use zspage meta data.
1995  */
1996 static void async_free_zspage(struct work_struct *work)
1997 {
1998         int i;
1999         struct size_class *class;
2000         unsigned int class_idx;
2001         enum fullness_group fullness;
2002         struct zspage *zspage, *tmp;
2003         LIST_HEAD(free_pages);
2004         struct zs_pool *pool = container_of(work, struct zs_pool,
2005                                         free_work);
2006
2007         for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2008                 class = pool->size_class[i];
2009                 if (class->index != i)
2010                         continue;
2011
2012                 spin_lock(&class->lock);
2013                 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2014                 spin_unlock(&class->lock);
2015         }
2016
2017         list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2018                 list_del(&zspage->list);
2019                 lock_zspage(zspage);
2020
2021                 get_zspage_mapping(zspage, &class_idx, &fullness);
2022                 VM_BUG_ON(fullness != ZS_EMPTY);
2023                 class = pool->size_class[class_idx];
2024                 spin_lock(&class->lock);
2025                 __free_zspage(pool, class, zspage);
2026                 spin_unlock(&class->lock);
2027         }
2028 };
2029
2030 static void kick_deferred_free(struct zs_pool *pool)
2031 {
2032         schedule_work(&pool->free_work);
2033 }
2034
2035 static void init_deferred_free(struct zs_pool *pool)
2036 {
2037         INIT_WORK(&pool->free_work, async_free_zspage);
2038 }
2039
2040 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2041 {
2042         struct page *page = get_first_page(zspage);
2043
2044         do {
2045                 WARN_ON(!trylock_page(page));
2046                 __SetPageMovable(page, pool->inode->i_mapping);
2047                 unlock_page(page);
2048         } while ((page = get_next_page(page)) != NULL);
2049 }
2050 #endif
2051
2052 /*
2053  *
2054  * Based on the number of unused allocated objects calculate
2055  * and return the number of pages that we can free.
2056  */
2057 static unsigned long zs_can_compact(struct size_class *class)
2058 {
2059         unsigned long obj_wasted;
2060         unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2061         unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2062
2063         if (obj_allocated <= obj_used)
2064                 return 0;
2065
2066         obj_wasted = obj_allocated - obj_used;
2067         obj_wasted /= class->objs_per_zspage;
2068
2069         return obj_wasted * class->pages_per_zspage;
2070 }
2071
2072 static unsigned long __zs_compact(struct zs_pool *pool,
2073                                   struct size_class *class)
2074 {
2075         struct zs_compact_control cc;
2076         struct zspage *src_zspage;
2077         struct zspage *dst_zspage = NULL;
2078         unsigned long pages_freed = 0;
2079
2080         spin_lock(&class->lock);
2081         while ((src_zspage = isolate_zspage(class, true))) {
2082
2083                 if (!zs_can_compact(class))
2084                         break;
2085
2086                 cc.obj_idx = 0;
2087                 cc.s_page = get_first_page(src_zspage);
2088
2089                 while ((dst_zspage = isolate_zspage(class, false))) {
2090                         cc.d_page = get_first_page(dst_zspage);
2091                         /*
2092                          * If there is no more space in dst_page, resched
2093                          * and see if anyone had allocated another zspage.
2094                          */
2095                         if (!migrate_zspage(pool, class, &cc))
2096                                 break;
2097
2098                         putback_zspage(class, dst_zspage);
2099                 }
2100
2101                 /* Stop if we couldn't find slot */
2102                 if (dst_zspage == NULL)
2103                         break;
2104
2105                 putback_zspage(class, dst_zspage);
2106                 if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2107                         free_zspage(pool, class, src_zspage);
2108                         pages_freed += class->pages_per_zspage;
2109                 }
2110                 spin_unlock(&class->lock);
2111                 cond_resched();
2112                 spin_lock(&class->lock);
2113         }
2114
2115         if (src_zspage)
2116                 putback_zspage(class, src_zspage);
2117
2118         spin_unlock(&class->lock);
2119
2120         return pages_freed;
2121 }
2122
2123 unsigned long zs_compact(struct zs_pool *pool)
2124 {
2125         int i;
2126         struct size_class *class;
2127         unsigned long pages_freed = 0;
2128
2129         for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2130                 class = pool->size_class[i];
2131                 if (!class)
2132                         continue;
2133                 if (class->index != i)
2134                         continue;
2135                 pages_freed += __zs_compact(pool, class);
2136         }
2137         atomic_long_add(pages_freed, &pool->stats.pages_compacted);
2138
2139         return pages_freed;
2140 }
2141 EXPORT_SYMBOL_GPL(zs_compact);
2142
2143 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2144 {
2145         memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2146 }
2147 EXPORT_SYMBOL_GPL(zs_pool_stats);
2148
2149 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2150                 struct shrink_control *sc)
2151 {
2152         unsigned long pages_freed;
2153         struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2154                         shrinker);
2155
2156         /*
2157          * Compact classes and calculate compaction delta.
2158          * Can run concurrently with a manually triggered
2159          * (by user) compaction.
2160          */
2161         pages_freed = zs_compact(pool);
2162
2163         return pages_freed ? pages_freed : SHRINK_STOP;
2164 }
2165
2166 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2167                 struct shrink_control *sc)
2168 {
2169         int i;
2170         struct size_class *class;
2171         unsigned long pages_to_free = 0;
2172         struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2173                         shrinker);
2174
2175         for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2176                 class = pool->size_class[i];
2177                 if (!class)
2178                         continue;
2179                 if (class->index != i)
2180                         continue;
2181
2182                 pages_to_free += zs_can_compact(class);
2183         }
2184
2185         return pages_to_free;
2186 }
2187
2188 static void zs_unregister_shrinker(struct zs_pool *pool)
2189 {
2190         unregister_shrinker(&pool->shrinker);
2191 }
2192
2193 static int zs_register_shrinker(struct zs_pool *pool)
2194 {
2195         pool->shrinker.scan_objects = zs_shrinker_scan;
2196         pool->shrinker.count_objects = zs_shrinker_count;
2197         pool->shrinker.batch = 0;
2198         pool->shrinker.seeks = DEFAULT_SEEKS;
2199
2200         return register_shrinker(&pool->shrinker);
2201 }
2202
2203 /**
2204  * zs_create_pool - Creates an allocation pool to work from.
2205  * @name: pool name to be created
2206  *
2207  * This function must be called before anything when using
2208  * the zsmalloc allocator.
2209  *
2210  * On success, a pointer to the newly created pool is returned,
2211  * otherwise NULL.
2212  */
2213 struct zs_pool *zs_create_pool(const char *name)
2214 {
2215         int i;
2216         struct zs_pool *pool;
2217         struct size_class *prev_class = NULL;
2218
2219         pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2220         if (!pool)
2221                 return NULL;
2222
2223         init_deferred_free(pool);
2224
2225         pool->name = kstrdup(name, GFP_KERNEL);
2226         if (!pool->name)
2227                 goto err;
2228
2229         if (create_cache(pool))
2230                 goto err;
2231
2232         /*
2233          * Iterate reversely, because, size of size_class that we want to use
2234          * for merging should be larger or equal to current size.
2235          */
2236         for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2237                 int size;
2238                 int pages_per_zspage;
2239                 int objs_per_zspage;
2240                 struct size_class *class;
2241                 int fullness = 0;
2242
2243                 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2244                 if (size > ZS_MAX_ALLOC_SIZE)
2245                         size = ZS_MAX_ALLOC_SIZE;
2246                 pages_per_zspage = get_pages_per_zspage(size);
2247                 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2248
2249                 /*
2250                  * We iterate from biggest down to smallest classes,
2251                  * so huge_class_size holds the size of the first huge
2252                  * class. Any object bigger than or equal to that will
2253                  * endup in the huge class.
2254                  */
2255                 if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2256                                 !huge_class_size) {
2257                         huge_class_size = size;
2258                         /*
2259                          * The object uses ZS_HANDLE_SIZE bytes to store the
2260                          * handle. We need to subtract it, because zs_malloc()
2261                          * unconditionally adds handle size before it performs
2262                          * size class search - so object may be smaller than
2263                          * huge class size, yet it still can end up in the huge
2264                          * class because it grows by ZS_HANDLE_SIZE extra bytes
2265                          * right before class lookup.
2266                          */
2267                         huge_class_size -= (ZS_HANDLE_SIZE - 1);
2268                 }
2269
2270                 /*
2271                  * size_class is used for normal zsmalloc operation such
2272                  * as alloc/free for that size. Although it is natural that we
2273                  * have one size_class for each size, there is a chance that we
2274                  * can get more memory utilization if we use one size_class for
2275                  * many different sizes whose size_class have same
2276                  * characteristics. So, we makes size_class point to
2277                  * previous size_class if possible.
2278                  */
2279                 if (prev_class) {
2280                         if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2281                                 pool->size_class[i] = prev_class;
2282                                 continue;
2283                         }
2284                 }
2285
2286                 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2287                 if (!class)
2288                         goto err;
2289
2290                 class->size = size;
2291                 class->index = i;
2292                 class->pages_per_zspage = pages_per_zspage;
2293                 class->objs_per_zspage = objs_per_zspage;
2294                 spin_lock_init(&class->lock);
2295                 pool->size_class[i] = class;
2296                 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2297                                                         fullness++)
2298                         INIT_LIST_HEAD(&class->fullness_list[fullness]);
2299
2300                 prev_class = class;
2301         }
2302
2303         /* debug only, don't abort if it fails */
2304         zs_pool_stat_create(pool, name);
2305
2306         if (zs_register_migration(pool))
2307                 goto err;
2308
2309         /*
2310          * Not critical since shrinker is only used to trigger internal
2311          * defragmentation of the pool which is pretty optional thing.  If
2312          * registration fails we still can use the pool normally and user can
2313          * trigger compaction manually. Thus, ignore return code.
2314          */
2315         zs_register_shrinker(pool);
2316
2317         return pool;
2318
2319 err:
2320         zs_destroy_pool(pool);
2321         return NULL;
2322 }
2323 EXPORT_SYMBOL_GPL(zs_create_pool);
2324
2325 void zs_destroy_pool(struct zs_pool *pool)
2326 {
2327         int i;
2328
2329         zs_unregister_shrinker(pool);
2330         zs_unregister_migration(pool);
2331         zs_pool_stat_destroy(pool);
2332
2333         for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2334                 int fg;
2335                 struct size_class *class = pool->size_class[i];
2336
2337                 if (!class)
2338                         continue;
2339
2340                 if (class->index != i)
2341                         continue;
2342
2343                 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2344                         if (!list_empty(&class->fullness_list[fg])) {
2345                                 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2346                                         class->size, fg);
2347                         }
2348                 }
2349                 kfree(class);
2350         }
2351
2352         destroy_cache(pool);
2353         kfree(pool->name);
2354         kfree(pool);
2355 }
2356 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2357
2358 static int __init zs_init(void)
2359 {
2360         int ret;
2361
2362         ret = zsmalloc_mount();
2363         if (ret)
2364                 goto out;
2365
2366         ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2367                                 zs_cpu_prepare, zs_cpu_dead);
2368         if (ret)
2369                 goto hp_setup_fail;
2370
2371 #ifdef CONFIG_ZPOOL
2372         zpool_register_driver(&zs_zpool_driver);
2373 #endif
2374
2375         zs_stat_init();
2376
2377         return 0;
2378
2379 hp_setup_fail:
2380         zsmalloc_unmount();
2381 out:
2382         return ret;
2383 }
2384
2385 static void __exit zs_exit(void)
2386 {
2387 #ifdef CONFIG_ZPOOL
2388         zpool_unregister_driver(&zs_zpool_driver);
2389 #endif
2390         zsmalloc_unmount();
2391         cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2392
2393         zs_stat_exit();
2394 }
2395
2396 module_init(zs_init);
2397 module_exit(zs_exit);
2398
2399 MODULE_LICENSE("Dual BSD/GPL");
2400 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");