zsmalloc: replace per zpage lock with pool->migrate_lock
[linux-2.6-microblaze.git] / mm / zsmalloc.c
1 /*
2  * zsmalloc memory allocator
3  *
4  * Copyright (C) 2011  Nitin Gupta
5  * Copyright (C) 2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the license that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  */
13
14 /*
15  * Following is how we use various fields and flags of underlying
16  * struct page(s) to form a zspage.
17  *
18  * Usage of struct page fields:
19  *      page->private: points to zspage
20  *      page->index: links together all component pages of a zspage
21  *              For the huge page, this is always 0, so we use this field
22  *              to store handle.
23  *      page->page_type: first object offset in a subpage of zspage
24  *
25  * Usage of struct page flags:
26  *      PG_private: identifies the first component page
27  *      PG_owner_priv_1: identifies the huge component page
28  *
29  */
30
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
33 /*
34  * lock ordering:
35  *      page_lock
36  *      pool->migrate_lock
37  *      class->lock
38  *      zspage->lock
39  */
40
41 #include <linux/module.h>
42 #include <linux/kernel.h>
43 #include <linux/sched.h>
44 #include <linux/magic.h>
45 #include <linux/bitops.h>
46 #include <linux/errno.h>
47 #include <linux/highmem.h>
48 #include <linux/string.h>
49 #include <linux/slab.h>
50 #include <linux/pgtable.h>
51 #include <asm/tlbflush.h>
52 #include <linux/cpumask.h>
53 #include <linux/cpu.h>
54 #include <linux/vmalloc.h>
55 #include <linux/preempt.h>
56 #include <linux/spinlock.h>
57 #include <linux/shrinker.h>
58 #include <linux/types.h>
59 #include <linux/debugfs.h>
60 #include <linux/zsmalloc.h>
61 #include <linux/zpool.h>
62 #include <linux/mount.h>
63 #include <linux/pseudo_fs.h>
64 #include <linux/migrate.h>
65 #include <linux/wait.h>
66 #include <linux/pagemap.h>
67 #include <linux/fs.h>
68
69 #define ZSPAGE_MAGIC    0x58
70
71 /*
72  * This must be power of 2 and greater than or equal to sizeof(link_free).
73  * These two conditions ensure that any 'struct link_free' itself doesn't
74  * span more than 1 page which avoids complex case of mapping 2 pages simply
75  * to restore link_free pointer values.
76  */
77 #define ZS_ALIGN                8
78
79 /*
80  * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
81  * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
82  */
83 #define ZS_MAX_ZSPAGE_ORDER 2
84 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
85
86 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
87
88 /*
89  * Object location (<PFN>, <obj_idx>) is encoded as
90  * a single (unsigned long) handle value.
91  *
92  * Note that object index <obj_idx> starts from 0.
93  *
94  * This is made more complicated by various memory models and PAE.
95  */
96
97 #ifndef MAX_POSSIBLE_PHYSMEM_BITS
98 #ifdef MAX_PHYSMEM_BITS
99 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
100 #else
101 /*
102  * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
103  * be PAGE_SHIFT
104  */
105 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
106 #endif
107 #endif
108
109 #define _PFN_BITS               (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
110
111 /*
112  * Head in allocated object should have OBJ_ALLOCATED_TAG
113  * to identify the object was allocated or not.
114  * It's okay to add the status bit in the least bit because
115  * header keeps handle which is 4byte-aligned address so we
116  * have room for two bit at least.
117  */
118 #define OBJ_ALLOCATED_TAG 1
119 #define OBJ_TAG_BITS 1
120 #define OBJ_INDEX_BITS  (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
121 #define OBJ_INDEX_MASK  ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
122
123 #define HUGE_BITS       1
124 #define FULLNESS_BITS   2
125 #define CLASS_BITS      8
126 #define ISOLATED_BITS   3
127 #define MAGIC_VAL_BITS  8
128
129 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
130 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
131 #define ZS_MIN_ALLOC_SIZE \
132         MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
133 /* each chunk includes extra space to keep handle */
134 #define ZS_MAX_ALLOC_SIZE       PAGE_SIZE
135
136 /*
137  * On systems with 4K page size, this gives 255 size classes! There is a
138  * trader-off here:
139  *  - Large number of size classes is potentially wasteful as free page are
140  *    spread across these classes
141  *  - Small number of size classes causes large internal fragmentation
142  *  - Probably its better to use specific size classes (empirically
143  *    determined). NOTE: all those class sizes must be set as multiple of
144  *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
145  *
146  *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
147  *  (reason above)
148  */
149 #define ZS_SIZE_CLASS_DELTA     (PAGE_SIZE >> CLASS_BITS)
150 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
151                                       ZS_SIZE_CLASS_DELTA) + 1)
152
153 enum fullness_group {
154         ZS_EMPTY,
155         ZS_ALMOST_EMPTY,
156         ZS_ALMOST_FULL,
157         ZS_FULL,
158         NR_ZS_FULLNESS,
159 };
160
161 enum class_stat_type {
162         CLASS_EMPTY,
163         CLASS_ALMOST_EMPTY,
164         CLASS_ALMOST_FULL,
165         CLASS_FULL,
166         OBJ_ALLOCATED,
167         OBJ_USED,
168         NR_ZS_STAT_TYPE,
169 };
170
171 struct zs_size_stat {
172         unsigned long objs[NR_ZS_STAT_TYPE];
173 };
174
175 #ifdef CONFIG_ZSMALLOC_STAT
176 static struct dentry *zs_stat_root;
177 #endif
178
179 #ifdef CONFIG_COMPACTION
180 static struct vfsmount *zsmalloc_mnt;
181 #endif
182
183 /*
184  * We assign a page to ZS_ALMOST_EMPTY fullness group when:
185  *      n <= N / f, where
186  * n = number of allocated objects
187  * N = total number of objects zspage can store
188  * f = fullness_threshold_frac
189  *
190  * Similarly, we assign zspage to:
191  *      ZS_ALMOST_FULL  when n > N / f
192  *      ZS_EMPTY        when n == 0
193  *      ZS_FULL         when n == N
194  *
195  * (see: fix_fullness_group())
196  */
197 static const int fullness_threshold_frac = 4;
198 static size_t huge_class_size;
199
200 struct size_class {
201         spinlock_t lock;
202         struct list_head fullness_list[NR_ZS_FULLNESS];
203         /*
204          * Size of objects stored in this class. Must be multiple
205          * of ZS_ALIGN.
206          */
207         int size;
208         int objs_per_zspage;
209         /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
210         int pages_per_zspage;
211
212         unsigned int index;
213         struct zs_size_stat stats;
214 };
215
216 /*
217  * Placed within free objects to form a singly linked list.
218  * For every zspage, zspage->freeobj gives head of this list.
219  *
220  * This must be power of 2 and less than or equal to ZS_ALIGN
221  */
222 struct link_free {
223         union {
224                 /*
225                  * Free object index;
226                  * It's valid for non-allocated object
227                  */
228                 unsigned long next;
229                 /*
230                  * Handle of allocated object.
231                  */
232                 unsigned long handle;
233         };
234 };
235
236 struct zs_pool {
237         const char *name;
238
239         struct size_class *size_class[ZS_SIZE_CLASSES];
240         struct kmem_cache *handle_cachep;
241         struct kmem_cache *zspage_cachep;
242
243         atomic_long_t pages_allocated;
244
245         struct zs_pool_stats stats;
246
247         /* Compact classes */
248         struct shrinker shrinker;
249
250 #ifdef CONFIG_ZSMALLOC_STAT
251         struct dentry *stat_dentry;
252 #endif
253 #ifdef CONFIG_COMPACTION
254         struct inode *inode;
255         struct work_struct free_work;
256 #endif
257         /* protect page/zspage migration */
258         rwlock_t migrate_lock;
259 };
260
261 struct zspage {
262         struct {
263                 unsigned int huge:HUGE_BITS;
264                 unsigned int fullness:FULLNESS_BITS;
265                 unsigned int class:CLASS_BITS + 1;
266                 unsigned int isolated:ISOLATED_BITS;
267                 unsigned int magic:MAGIC_VAL_BITS;
268         };
269         unsigned int inuse;
270         unsigned int freeobj;
271         struct page *first_page;
272         struct list_head list; /* fullness list */
273 #ifdef CONFIG_COMPACTION
274         rwlock_t lock;
275 #endif
276 };
277
278 struct mapping_area {
279         char *vm_buf; /* copy buffer for objects that span pages */
280         char *vm_addr; /* address of kmap_atomic()'ed pages */
281         enum zs_mapmode vm_mm; /* mapping mode */
282 };
283
284 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
285 static void SetZsHugePage(struct zspage *zspage)
286 {
287         zspage->huge = 1;
288 }
289
290 static bool ZsHugePage(struct zspage *zspage)
291 {
292         return zspage->huge;
293 }
294
295 #ifdef CONFIG_COMPACTION
296 static int zs_register_migration(struct zs_pool *pool);
297 static void zs_unregister_migration(struct zs_pool *pool);
298 static void migrate_lock_init(struct zspage *zspage);
299 static void migrate_read_lock(struct zspage *zspage);
300 static void migrate_read_unlock(struct zspage *zspage);
301 static void migrate_write_lock(struct zspage *zspage);
302 static void migrate_write_lock_nested(struct zspage *zspage);
303 static void migrate_write_unlock(struct zspage *zspage);
304 static void kick_deferred_free(struct zs_pool *pool);
305 static void init_deferred_free(struct zs_pool *pool);
306 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
307 #else
308 static int zsmalloc_mount(void) { return 0; }
309 static void zsmalloc_unmount(void) {}
310 static int zs_register_migration(struct zs_pool *pool) { return 0; }
311 static void zs_unregister_migration(struct zs_pool *pool) {}
312 static void migrate_lock_init(struct zspage *zspage) {}
313 static void migrate_read_lock(struct zspage *zspage) {}
314 static void migrate_read_unlock(struct zspage *zspage) {}
315 static void migrate_write_lock(struct zspage *zspage) {}
316 static void migrate_write_lock_nested(struct zspage *zspage) {}
317 static void migrate_write_unlock(struct zspage *zspage) {}
318 static void kick_deferred_free(struct zs_pool *pool) {}
319 static void init_deferred_free(struct zs_pool *pool) {}
320 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
321 #endif
322
323 static int create_cache(struct zs_pool *pool)
324 {
325         pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
326                                         0, 0, NULL);
327         if (!pool->handle_cachep)
328                 return 1;
329
330         pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
331                                         0, 0, NULL);
332         if (!pool->zspage_cachep) {
333                 kmem_cache_destroy(pool->handle_cachep);
334                 pool->handle_cachep = NULL;
335                 return 1;
336         }
337
338         return 0;
339 }
340
341 static void destroy_cache(struct zs_pool *pool)
342 {
343         kmem_cache_destroy(pool->handle_cachep);
344         kmem_cache_destroy(pool->zspage_cachep);
345 }
346
347 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
348 {
349         return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
350                         gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
351 }
352
353 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
354 {
355         kmem_cache_free(pool->handle_cachep, (void *)handle);
356 }
357
358 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
359 {
360         return kmem_cache_zalloc(pool->zspage_cachep,
361                         flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
362 }
363
364 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
365 {
366         kmem_cache_free(pool->zspage_cachep, zspage);
367 }
368
369 /* class->lock(which owns the handle) synchronizes races */
370 static void record_obj(unsigned long handle, unsigned long obj)
371 {
372         *(unsigned long *)handle = obj;
373 }
374
375 /* zpool driver */
376
377 #ifdef CONFIG_ZPOOL
378
379 static void *zs_zpool_create(const char *name, gfp_t gfp,
380                              const struct zpool_ops *zpool_ops,
381                              struct zpool *zpool)
382 {
383         /*
384          * Ignore global gfp flags: zs_malloc() may be invoked from
385          * different contexts and its caller must provide a valid
386          * gfp mask.
387          */
388         return zs_create_pool(name);
389 }
390
391 static void zs_zpool_destroy(void *pool)
392 {
393         zs_destroy_pool(pool);
394 }
395
396 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
397                         unsigned long *handle)
398 {
399         *handle = zs_malloc(pool, size, gfp);
400         return *handle ? 0 : -1;
401 }
402 static void zs_zpool_free(void *pool, unsigned long handle)
403 {
404         zs_free(pool, handle);
405 }
406
407 static void *zs_zpool_map(void *pool, unsigned long handle,
408                         enum zpool_mapmode mm)
409 {
410         enum zs_mapmode zs_mm;
411
412         switch (mm) {
413         case ZPOOL_MM_RO:
414                 zs_mm = ZS_MM_RO;
415                 break;
416         case ZPOOL_MM_WO:
417                 zs_mm = ZS_MM_WO;
418                 break;
419         case ZPOOL_MM_RW:
420         default:
421                 zs_mm = ZS_MM_RW;
422                 break;
423         }
424
425         return zs_map_object(pool, handle, zs_mm);
426 }
427 static void zs_zpool_unmap(void *pool, unsigned long handle)
428 {
429         zs_unmap_object(pool, handle);
430 }
431
432 static u64 zs_zpool_total_size(void *pool)
433 {
434         return zs_get_total_pages(pool) << PAGE_SHIFT;
435 }
436
437 static struct zpool_driver zs_zpool_driver = {
438         .type =                   "zsmalloc",
439         .owner =                  THIS_MODULE,
440         .create =                 zs_zpool_create,
441         .destroy =                zs_zpool_destroy,
442         .malloc_support_movable = true,
443         .malloc =                 zs_zpool_malloc,
444         .free =                   zs_zpool_free,
445         .map =                    zs_zpool_map,
446         .unmap =                  zs_zpool_unmap,
447         .total_size =             zs_zpool_total_size,
448 };
449
450 MODULE_ALIAS("zpool-zsmalloc");
451 #endif /* CONFIG_ZPOOL */
452
453 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
454 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
455
456 static __maybe_unused int is_first_page(struct page *page)
457 {
458         return PagePrivate(page);
459 }
460
461 /* Protected by class->lock */
462 static inline int get_zspage_inuse(struct zspage *zspage)
463 {
464         return zspage->inuse;
465 }
466
467
468 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
469 {
470         zspage->inuse += val;
471 }
472
473 static inline struct page *get_first_page(struct zspage *zspage)
474 {
475         struct page *first_page = zspage->first_page;
476
477         VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
478         return first_page;
479 }
480
481 static inline int get_first_obj_offset(struct page *page)
482 {
483         return page->page_type;
484 }
485
486 static inline void set_first_obj_offset(struct page *page, int offset)
487 {
488         page->page_type = offset;
489 }
490
491 static inline unsigned int get_freeobj(struct zspage *zspage)
492 {
493         return zspage->freeobj;
494 }
495
496 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
497 {
498         zspage->freeobj = obj;
499 }
500
501 static void get_zspage_mapping(struct zspage *zspage,
502                                 unsigned int *class_idx,
503                                 enum fullness_group *fullness)
504 {
505         BUG_ON(zspage->magic != ZSPAGE_MAGIC);
506
507         *fullness = zspage->fullness;
508         *class_idx = zspage->class;
509 }
510
511 static struct size_class *zspage_class(struct zs_pool *pool,
512                                              struct zspage *zspage)
513 {
514         return pool->size_class[zspage->class];
515 }
516
517 static void set_zspage_mapping(struct zspage *zspage,
518                                 unsigned int class_idx,
519                                 enum fullness_group fullness)
520 {
521         zspage->class = class_idx;
522         zspage->fullness = fullness;
523 }
524
525 /*
526  * zsmalloc divides the pool into various size classes where each
527  * class maintains a list of zspages where each zspage is divided
528  * into equal sized chunks. Each allocation falls into one of these
529  * classes depending on its size. This function returns index of the
530  * size class which has chunk size big enough to hold the given size.
531  */
532 static int get_size_class_index(int size)
533 {
534         int idx = 0;
535
536         if (likely(size > ZS_MIN_ALLOC_SIZE))
537                 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
538                                 ZS_SIZE_CLASS_DELTA);
539
540         return min_t(int, ZS_SIZE_CLASSES - 1, idx);
541 }
542
543 /* type can be of enum type class_stat_type or fullness_group */
544 static inline void class_stat_inc(struct size_class *class,
545                                 int type, unsigned long cnt)
546 {
547         class->stats.objs[type] += cnt;
548 }
549
550 /* type can be of enum type class_stat_type or fullness_group */
551 static inline void class_stat_dec(struct size_class *class,
552                                 int type, unsigned long cnt)
553 {
554         class->stats.objs[type] -= cnt;
555 }
556
557 /* type can be of enum type class_stat_type or fullness_group */
558 static inline unsigned long zs_stat_get(struct size_class *class,
559                                 int type)
560 {
561         return class->stats.objs[type];
562 }
563
564 #ifdef CONFIG_ZSMALLOC_STAT
565
566 static void __init zs_stat_init(void)
567 {
568         if (!debugfs_initialized()) {
569                 pr_warn("debugfs not available, stat dir not created\n");
570                 return;
571         }
572
573         zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
574 }
575
576 static void __exit zs_stat_exit(void)
577 {
578         debugfs_remove_recursive(zs_stat_root);
579 }
580
581 static unsigned long zs_can_compact(struct size_class *class);
582
583 static int zs_stats_size_show(struct seq_file *s, void *v)
584 {
585         int i;
586         struct zs_pool *pool = s->private;
587         struct size_class *class;
588         int objs_per_zspage;
589         unsigned long class_almost_full, class_almost_empty;
590         unsigned long obj_allocated, obj_used, pages_used, freeable;
591         unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
592         unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
593         unsigned long total_freeable = 0;
594
595         seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
596                         "class", "size", "almost_full", "almost_empty",
597                         "obj_allocated", "obj_used", "pages_used",
598                         "pages_per_zspage", "freeable");
599
600         for (i = 0; i < ZS_SIZE_CLASSES; i++) {
601                 class = pool->size_class[i];
602
603                 if (class->index != i)
604                         continue;
605
606                 spin_lock(&class->lock);
607                 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
608                 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
609                 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
610                 obj_used = zs_stat_get(class, OBJ_USED);
611                 freeable = zs_can_compact(class);
612                 spin_unlock(&class->lock);
613
614                 objs_per_zspage = class->objs_per_zspage;
615                 pages_used = obj_allocated / objs_per_zspage *
616                                 class->pages_per_zspage;
617
618                 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
619                                 " %10lu %10lu %16d %8lu\n",
620                         i, class->size, class_almost_full, class_almost_empty,
621                         obj_allocated, obj_used, pages_used,
622                         class->pages_per_zspage, freeable);
623
624                 total_class_almost_full += class_almost_full;
625                 total_class_almost_empty += class_almost_empty;
626                 total_objs += obj_allocated;
627                 total_used_objs += obj_used;
628                 total_pages += pages_used;
629                 total_freeable += freeable;
630         }
631
632         seq_puts(s, "\n");
633         seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
634                         "Total", "", total_class_almost_full,
635                         total_class_almost_empty, total_objs,
636                         total_used_objs, total_pages, "", total_freeable);
637
638         return 0;
639 }
640 DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
641
642 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
643 {
644         if (!zs_stat_root) {
645                 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
646                 return;
647         }
648
649         pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
650
651         debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
652                             &zs_stats_size_fops);
653 }
654
655 static void zs_pool_stat_destroy(struct zs_pool *pool)
656 {
657         debugfs_remove_recursive(pool->stat_dentry);
658 }
659
660 #else /* CONFIG_ZSMALLOC_STAT */
661 static void __init zs_stat_init(void)
662 {
663 }
664
665 static void __exit zs_stat_exit(void)
666 {
667 }
668
669 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
670 {
671 }
672
673 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
674 {
675 }
676 #endif
677
678
679 /*
680  * For each size class, zspages are divided into different groups
681  * depending on how "full" they are. This was done so that we could
682  * easily find empty or nearly empty zspages when we try to shrink
683  * the pool (not yet implemented). This function returns fullness
684  * status of the given page.
685  */
686 static enum fullness_group get_fullness_group(struct size_class *class,
687                                                 struct zspage *zspage)
688 {
689         int inuse, objs_per_zspage;
690         enum fullness_group fg;
691
692         inuse = get_zspage_inuse(zspage);
693         objs_per_zspage = class->objs_per_zspage;
694
695         if (inuse == 0)
696                 fg = ZS_EMPTY;
697         else if (inuse == objs_per_zspage)
698                 fg = ZS_FULL;
699         else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
700                 fg = ZS_ALMOST_EMPTY;
701         else
702                 fg = ZS_ALMOST_FULL;
703
704         return fg;
705 }
706
707 /*
708  * Each size class maintains various freelists and zspages are assigned
709  * to one of these freelists based on the number of live objects they
710  * have. This functions inserts the given zspage into the freelist
711  * identified by <class, fullness_group>.
712  */
713 static void insert_zspage(struct size_class *class,
714                                 struct zspage *zspage,
715                                 enum fullness_group fullness)
716 {
717         struct zspage *head;
718
719         class_stat_inc(class, fullness, 1);
720         head = list_first_entry_or_null(&class->fullness_list[fullness],
721                                         struct zspage, list);
722         /*
723          * We want to see more ZS_FULL pages and less almost empty/full.
724          * Put pages with higher ->inuse first.
725          */
726         if (head && get_zspage_inuse(zspage) < get_zspage_inuse(head))
727                 list_add(&zspage->list, &head->list);
728         else
729                 list_add(&zspage->list, &class->fullness_list[fullness]);
730 }
731
732 /*
733  * This function removes the given zspage from the freelist identified
734  * by <class, fullness_group>.
735  */
736 static void remove_zspage(struct size_class *class,
737                                 struct zspage *zspage,
738                                 enum fullness_group fullness)
739 {
740         VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
741
742         list_del_init(&zspage->list);
743         class_stat_dec(class, fullness, 1);
744 }
745
746 /*
747  * Each size class maintains zspages in different fullness groups depending
748  * on the number of live objects they contain. When allocating or freeing
749  * objects, the fullness status of the page can change, say, from ALMOST_FULL
750  * to ALMOST_EMPTY when freeing an object. This function checks if such
751  * a status change has occurred for the given page and accordingly moves the
752  * page from the freelist of the old fullness group to that of the new
753  * fullness group.
754  */
755 static enum fullness_group fix_fullness_group(struct size_class *class,
756                                                 struct zspage *zspage)
757 {
758         int class_idx;
759         enum fullness_group currfg, newfg;
760
761         get_zspage_mapping(zspage, &class_idx, &currfg);
762         newfg = get_fullness_group(class, zspage);
763         if (newfg == currfg)
764                 goto out;
765
766         remove_zspage(class, zspage, currfg);
767         insert_zspage(class, zspage, newfg);
768         set_zspage_mapping(zspage, class_idx, newfg);
769 out:
770         return newfg;
771 }
772
773 /*
774  * We have to decide on how many pages to link together
775  * to form a zspage for each size class. This is important
776  * to reduce wastage due to unusable space left at end of
777  * each zspage which is given as:
778  *     wastage = Zp % class_size
779  *     usage = Zp - wastage
780  * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
781  *
782  * For example, for size class of 3/8 * PAGE_SIZE, we should
783  * link together 3 PAGE_SIZE sized pages to form a zspage
784  * since then we can perfectly fit in 8 such objects.
785  */
786 static int get_pages_per_zspage(int class_size)
787 {
788         int i, max_usedpc = 0;
789         /* zspage order which gives maximum used size per KB */
790         int max_usedpc_order = 1;
791
792         for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
793                 int zspage_size;
794                 int waste, usedpc;
795
796                 zspage_size = i * PAGE_SIZE;
797                 waste = zspage_size % class_size;
798                 usedpc = (zspage_size - waste) * 100 / zspage_size;
799
800                 if (usedpc > max_usedpc) {
801                         max_usedpc = usedpc;
802                         max_usedpc_order = i;
803                 }
804         }
805
806         return max_usedpc_order;
807 }
808
809 static struct zspage *get_zspage(struct page *page)
810 {
811         struct zspage *zspage = (struct zspage *)page_private(page);
812
813         BUG_ON(zspage->magic != ZSPAGE_MAGIC);
814         return zspage;
815 }
816
817 static struct page *get_next_page(struct page *page)
818 {
819         struct zspage *zspage = get_zspage(page);
820
821         if (unlikely(ZsHugePage(zspage)))
822                 return NULL;
823
824         return (struct page *)page->index;
825 }
826
827 /**
828  * obj_to_location - get (<page>, <obj_idx>) from encoded object value
829  * @obj: the encoded object value
830  * @page: page object resides in zspage
831  * @obj_idx: object index
832  */
833 static void obj_to_location(unsigned long obj, struct page **page,
834                                 unsigned int *obj_idx)
835 {
836         obj >>= OBJ_TAG_BITS;
837         *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
838         *obj_idx = (obj & OBJ_INDEX_MASK);
839 }
840
841 static void obj_to_page(unsigned long obj, struct page **page)
842 {
843         obj >>= OBJ_TAG_BITS;
844         *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
845 }
846
847 /**
848  * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
849  * @page: page object resides in zspage
850  * @obj_idx: object index
851  */
852 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
853 {
854         unsigned long obj;
855
856         obj = page_to_pfn(page) << OBJ_INDEX_BITS;
857         obj |= obj_idx & OBJ_INDEX_MASK;
858         obj <<= OBJ_TAG_BITS;
859
860         return obj;
861 }
862
863 static unsigned long handle_to_obj(unsigned long handle)
864 {
865         return *(unsigned long *)handle;
866 }
867
868 static bool obj_allocated(struct page *page, void *obj, unsigned long *phandle)
869 {
870         unsigned long handle;
871         struct zspage *zspage = get_zspage(page);
872
873         if (unlikely(ZsHugePage(zspage))) {
874                 VM_BUG_ON_PAGE(!is_first_page(page), page);
875                 handle = page->index;
876         } else
877                 handle = *(unsigned long *)obj;
878
879         if (!(handle & OBJ_ALLOCATED_TAG))
880                 return false;
881
882         *phandle = handle & ~OBJ_ALLOCATED_TAG;
883         return true;
884 }
885
886 static void reset_page(struct page *page)
887 {
888         __ClearPageMovable(page);
889         ClearPagePrivate(page);
890         set_page_private(page, 0);
891         page_mapcount_reset(page);
892         page->index = 0;
893 }
894
895 static int trylock_zspage(struct zspage *zspage)
896 {
897         struct page *cursor, *fail;
898
899         for (cursor = get_first_page(zspage); cursor != NULL; cursor =
900                                         get_next_page(cursor)) {
901                 if (!trylock_page(cursor)) {
902                         fail = cursor;
903                         goto unlock;
904                 }
905         }
906
907         return 1;
908 unlock:
909         for (cursor = get_first_page(zspage); cursor != fail; cursor =
910                                         get_next_page(cursor))
911                 unlock_page(cursor);
912
913         return 0;
914 }
915
916 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
917                                 struct zspage *zspage)
918 {
919         struct page *page, *next;
920         enum fullness_group fg;
921         unsigned int class_idx;
922
923         get_zspage_mapping(zspage, &class_idx, &fg);
924
925         assert_spin_locked(&class->lock);
926
927         VM_BUG_ON(get_zspage_inuse(zspage));
928         VM_BUG_ON(fg != ZS_EMPTY);
929
930         next = page = get_first_page(zspage);
931         do {
932                 VM_BUG_ON_PAGE(!PageLocked(page), page);
933                 next = get_next_page(page);
934                 reset_page(page);
935                 unlock_page(page);
936                 dec_zone_page_state(page, NR_ZSPAGES);
937                 put_page(page);
938                 page = next;
939         } while (page != NULL);
940
941         cache_free_zspage(pool, zspage);
942
943         class_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
944         atomic_long_sub(class->pages_per_zspage,
945                                         &pool->pages_allocated);
946 }
947
948 static void free_zspage(struct zs_pool *pool, struct size_class *class,
949                                 struct zspage *zspage)
950 {
951         VM_BUG_ON(get_zspage_inuse(zspage));
952         VM_BUG_ON(list_empty(&zspage->list));
953
954         /*
955          * Since zs_free couldn't be sleepable, this function cannot call
956          * lock_page. The page locks trylock_zspage got will be released
957          * by __free_zspage.
958          */
959         if (!trylock_zspage(zspage)) {
960                 kick_deferred_free(pool);
961                 return;
962         }
963
964         remove_zspage(class, zspage, ZS_EMPTY);
965         __free_zspage(pool, class, zspage);
966 }
967
968 /* Initialize a newly allocated zspage */
969 static void init_zspage(struct size_class *class, struct zspage *zspage)
970 {
971         unsigned int freeobj = 1;
972         unsigned long off = 0;
973         struct page *page = get_first_page(zspage);
974
975         while (page) {
976                 struct page *next_page;
977                 struct link_free *link;
978                 void *vaddr;
979
980                 set_first_obj_offset(page, off);
981
982                 vaddr = kmap_atomic(page);
983                 link = (struct link_free *)vaddr + off / sizeof(*link);
984
985                 while ((off += class->size) < PAGE_SIZE) {
986                         link->next = freeobj++ << OBJ_TAG_BITS;
987                         link += class->size / sizeof(*link);
988                 }
989
990                 /*
991                  * We now come to the last (full or partial) object on this
992                  * page, which must point to the first object on the next
993                  * page (if present)
994                  */
995                 next_page = get_next_page(page);
996                 if (next_page) {
997                         link->next = freeobj++ << OBJ_TAG_BITS;
998                 } else {
999                         /*
1000                          * Reset OBJ_TAG_BITS bit to last link to tell
1001                          * whether it's allocated object or not.
1002                          */
1003                         link->next = -1UL << OBJ_TAG_BITS;
1004                 }
1005                 kunmap_atomic(vaddr);
1006                 page = next_page;
1007                 off %= PAGE_SIZE;
1008         }
1009
1010         set_freeobj(zspage, 0);
1011 }
1012
1013 static void create_page_chain(struct size_class *class, struct zspage *zspage,
1014                                 struct page *pages[])
1015 {
1016         int i;
1017         struct page *page;
1018         struct page *prev_page = NULL;
1019         int nr_pages = class->pages_per_zspage;
1020
1021         /*
1022          * Allocate individual pages and link them together as:
1023          * 1. all pages are linked together using page->index
1024          * 2. each sub-page point to zspage using page->private
1025          *
1026          * we set PG_private to identify the first page (i.e. no other sub-page
1027          * has this flag set).
1028          */
1029         for (i = 0; i < nr_pages; i++) {
1030                 page = pages[i];
1031                 set_page_private(page, (unsigned long)zspage);
1032                 page->index = 0;
1033                 if (i == 0) {
1034                         zspage->first_page = page;
1035                         SetPagePrivate(page);
1036                         if (unlikely(class->objs_per_zspage == 1 &&
1037                                         class->pages_per_zspage == 1))
1038                                 SetZsHugePage(zspage);
1039                 } else {
1040                         prev_page->index = (unsigned long)page;
1041                 }
1042                 prev_page = page;
1043         }
1044 }
1045
1046 /*
1047  * Allocate a zspage for the given size class
1048  */
1049 static struct zspage *alloc_zspage(struct zs_pool *pool,
1050                                         struct size_class *class,
1051                                         gfp_t gfp)
1052 {
1053         int i;
1054         struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1055         struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1056
1057         if (!zspage)
1058                 return NULL;
1059
1060         zspage->magic = ZSPAGE_MAGIC;
1061         migrate_lock_init(zspage);
1062
1063         for (i = 0; i < class->pages_per_zspage; i++) {
1064                 struct page *page;
1065
1066                 page = alloc_page(gfp);
1067                 if (!page) {
1068                         while (--i >= 0) {
1069                                 dec_zone_page_state(pages[i], NR_ZSPAGES);
1070                                 __free_page(pages[i]);
1071                         }
1072                         cache_free_zspage(pool, zspage);
1073                         return NULL;
1074                 }
1075
1076                 inc_zone_page_state(page, NR_ZSPAGES);
1077                 pages[i] = page;
1078         }
1079
1080         create_page_chain(class, zspage, pages);
1081         init_zspage(class, zspage);
1082
1083         return zspage;
1084 }
1085
1086 static struct zspage *find_get_zspage(struct size_class *class)
1087 {
1088         int i;
1089         struct zspage *zspage;
1090
1091         for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1092                 zspage = list_first_entry_or_null(&class->fullness_list[i],
1093                                 struct zspage, list);
1094                 if (zspage)
1095                         break;
1096         }
1097
1098         return zspage;
1099 }
1100
1101 static inline int __zs_cpu_up(struct mapping_area *area)
1102 {
1103         /*
1104          * Make sure we don't leak memory if a cpu UP notification
1105          * and zs_init() race and both call zs_cpu_up() on the same cpu
1106          */
1107         if (area->vm_buf)
1108                 return 0;
1109         area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1110         if (!area->vm_buf)
1111                 return -ENOMEM;
1112         return 0;
1113 }
1114
1115 static inline void __zs_cpu_down(struct mapping_area *area)
1116 {
1117         kfree(area->vm_buf);
1118         area->vm_buf = NULL;
1119 }
1120
1121 static void *__zs_map_object(struct mapping_area *area,
1122                         struct page *pages[2], int off, int size)
1123 {
1124         int sizes[2];
1125         void *addr;
1126         char *buf = area->vm_buf;
1127
1128         /* disable page faults to match kmap_atomic() return conditions */
1129         pagefault_disable();
1130
1131         /* no read fastpath */
1132         if (area->vm_mm == ZS_MM_WO)
1133                 goto out;
1134
1135         sizes[0] = PAGE_SIZE - off;
1136         sizes[1] = size - sizes[0];
1137
1138         /* copy object to per-cpu buffer */
1139         addr = kmap_atomic(pages[0]);
1140         memcpy(buf, addr + off, sizes[0]);
1141         kunmap_atomic(addr);
1142         addr = kmap_atomic(pages[1]);
1143         memcpy(buf + sizes[0], addr, sizes[1]);
1144         kunmap_atomic(addr);
1145 out:
1146         return area->vm_buf;
1147 }
1148
1149 static void __zs_unmap_object(struct mapping_area *area,
1150                         struct page *pages[2], int off, int size)
1151 {
1152         int sizes[2];
1153         void *addr;
1154         char *buf;
1155
1156         /* no write fastpath */
1157         if (area->vm_mm == ZS_MM_RO)
1158                 goto out;
1159
1160         buf = area->vm_buf;
1161         buf = buf + ZS_HANDLE_SIZE;
1162         size -= ZS_HANDLE_SIZE;
1163         off += ZS_HANDLE_SIZE;
1164
1165         sizes[0] = PAGE_SIZE - off;
1166         sizes[1] = size - sizes[0];
1167
1168         /* copy per-cpu buffer to object */
1169         addr = kmap_atomic(pages[0]);
1170         memcpy(addr + off, buf, sizes[0]);
1171         kunmap_atomic(addr);
1172         addr = kmap_atomic(pages[1]);
1173         memcpy(addr, buf + sizes[0], sizes[1]);
1174         kunmap_atomic(addr);
1175
1176 out:
1177         /* enable page faults to match kunmap_atomic() return conditions */
1178         pagefault_enable();
1179 }
1180
1181 static int zs_cpu_prepare(unsigned int cpu)
1182 {
1183         struct mapping_area *area;
1184
1185         area = &per_cpu(zs_map_area, cpu);
1186         return __zs_cpu_up(area);
1187 }
1188
1189 static int zs_cpu_dead(unsigned int cpu)
1190 {
1191         struct mapping_area *area;
1192
1193         area = &per_cpu(zs_map_area, cpu);
1194         __zs_cpu_down(area);
1195         return 0;
1196 }
1197
1198 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1199                                         int objs_per_zspage)
1200 {
1201         if (prev->pages_per_zspage == pages_per_zspage &&
1202                 prev->objs_per_zspage == objs_per_zspage)
1203                 return true;
1204
1205         return false;
1206 }
1207
1208 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1209 {
1210         return get_zspage_inuse(zspage) == class->objs_per_zspage;
1211 }
1212
1213 unsigned long zs_get_total_pages(struct zs_pool *pool)
1214 {
1215         return atomic_long_read(&pool->pages_allocated);
1216 }
1217 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1218
1219 /**
1220  * zs_map_object - get address of allocated object from handle.
1221  * @pool: pool from which the object was allocated
1222  * @handle: handle returned from zs_malloc
1223  * @mm: mapping mode to use
1224  *
1225  * Before using an object allocated from zs_malloc, it must be mapped using
1226  * this function. When done with the object, it must be unmapped using
1227  * zs_unmap_object.
1228  *
1229  * Only one object can be mapped per cpu at a time. There is no protection
1230  * against nested mappings.
1231  *
1232  * This function returns with preemption and page faults disabled.
1233  */
1234 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1235                         enum zs_mapmode mm)
1236 {
1237         struct zspage *zspage;
1238         struct page *page;
1239         unsigned long obj, off;
1240         unsigned int obj_idx;
1241
1242         struct size_class *class;
1243         struct mapping_area *area;
1244         struct page *pages[2];
1245         void *ret;
1246
1247         /*
1248          * Because we use per-cpu mapping areas shared among the
1249          * pools/users, we can't allow mapping in interrupt context
1250          * because it can corrupt another users mappings.
1251          */
1252         BUG_ON(in_interrupt());
1253
1254         /* It guarantees it can get zspage from handle safely */
1255         read_lock(&pool->migrate_lock);
1256         obj = handle_to_obj(handle);
1257         obj_to_location(obj, &page, &obj_idx);
1258         zspage = get_zspage(page);
1259
1260         /*
1261          * migration cannot move any zpages in this zspage. Here, class->lock
1262          * is too heavy since callers would take some time until they calls
1263          * zs_unmap_object API so delegate the locking from class to zspage
1264          * which is smaller granularity.
1265          */
1266         migrate_read_lock(zspage);
1267         read_unlock(&pool->migrate_lock);
1268
1269         class = zspage_class(pool, zspage);
1270         off = (class->size * obj_idx) & ~PAGE_MASK;
1271
1272         area = &get_cpu_var(zs_map_area);
1273         area->vm_mm = mm;
1274         if (off + class->size <= PAGE_SIZE) {
1275                 /* this object is contained entirely within a page */
1276                 area->vm_addr = kmap_atomic(page);
1277                 ret = area->vm_addr + off;
1278                 goto out;
1279         }
1280
1281         /* this object spans two pages */
1282         pages[0] = page;
1283         pages[1] = get_next_page(page);
1284         BUG_ON(!pages[1]);
1285
1286         ret = __zs_map_object(area, pages, off, class->size);
1287 out:
1288         if (likely(!ZsHugePage(zspage)))
1289                 ret += ZS_HANDLE_SIZE;
1290
1291         return ret;
1292 }
1293 EXPORT_SYMBOL_GPL(zs_map_object);
1294
1295 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1296 {
1297         struct zspage *zspage;
1298         struct page *page;
1299         unsigned long obj, off;
1300         unsigned int obj_idx;
1301
1302         struct size_class *class;
1303         struct mapping_area *area;
1304
1305         obj = handle_to_obj(handle);
1306         obj_to_location(obj, &page, &obj_idx);
1307         zspage = get_zspage(page);
1308         class = zspage_class(pool, zspage);
1309         off = (class->size * obj_idx) & ~PAGE_MASK;
1310
1311         area = this_cpu_ptr(&zs_map_area);
1312         if (off + class->size <= PAGE_SIZE)
1313                 kunmap_atomic(area->vm_addr);
1314         else {
1315                 struct page *pages[2];
1316
1317                 pages[0] = page;
1318                 pages[1] = get_next_page(page);
1319                 BUG_ON(!pages[1]);
1320
1321                 __zs_unmap_object(area, pages, off, class->size);
1322         }
1323         put_cpu_var(zs_map_area);
1324
1325         migrate_read_unlock(zspage);
1326 }
1327 EXPORT_SYMBOL_GPL(zs_unmap_object);
1328
1329 /**
1330  * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1331  *                        zsmalloc &size_class.
1332  * @pool: zsmalloc pool to use
1333  *
1334  * The function returns the size of the first huge class - any object of equal
1335  * or bigger size will be stored in zspage consisting of a single physical
1336  * page.
1337  *
1338  * Context: Any context.
1339  *
1340  * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1341  */
1342 size_t zs_huge_class_size(struct zs_pool *pool)
1343 {
1344         return huge_class_size;
1345 }
1346 EXPORT_SYMBOL_GPL(zs_huge_class_size);
1347
1348 static unsigned long obj_malloc(struct zs_pool *pool,
1349                                 struct zspage *zspage, unsigned long handle)
1350 {
1351         int i, nr_page, offset;
1352         unsigned long obj;
1353         struct link_free *link;
1354         struct size_class *class;
1355
1356         struct page *m_page;
1357         unsigned long m_offset;
1358         void *vaddr;
1359
1360         class = pool->size_class[zspage->class];
1361         handle |= OBJ_ALLOCATED_TAG;
1362         obj = get_freeobj(zspage);
1363
1364         offset = obj * class->size;
1365         nr_page = offset >> PAGE_SHIFT;
1366         m_offset = offset & ~PAGE_MASK;
1367         m_page = get_first_page(zspage);
1368
1369         for (i = 0; i < nr_page; i++)
1370                 m_page = get_next_page(m_page);
1371
1372         vaddr = kmap_atomic(m_page);
1373         link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1374         set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1375         if (likely(!ZsHugePage(zspage)))
1376                 /* record handle in the header of allocated chunk */
1377                 link->handle = handle;
1378         else
1379                 /* record handle to page->index */
1380                 zspage->first_page->index = handle;
1381
1382         kunmap_atomic(vaddr);
1383         mod_zspage_inuse(zspage, 1);
1384
1385         obj = location_to_obj(m_page, obj);
1386
1387         return obj;
1388 }
1389
1390
1391 /**
1392  * zs_malloc - Allocate block of given size from pool.
1393  * @pool: pool to allocate from
1394  * @size: size of block to allocate
1395  * @gfp: gfp flags when allocating object
1396  *
1397  * On success, handle to the allocated object is returned,
1398  * otherwise 0.
1399  * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1400  */
1401 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1402 {
1403         unsigned long handle, obj;
1404         struct size_class *class;
1405         enum fullness_group newfg;
1406         struct zspage *zspage;
1407
1408         if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1409                 return 0;
1410
1411         handle = cache_alloc_handle(pool, gfp);
1412         if (!handle)
1413                 return 0;
1414
1415         /* extra space in chunk to keep the handle */
1416         size += ZS_HANDLE_SIZE;
1417         class = pool->size_class[get_size_class_index(size)];
1418
1419         /* class->lock effectively protects the zpage migration */
1420         spin_lock(&class->lock);
1421         zspage = find_get_zspage(class);
1422         if (likely(zspage)) {
1423                 obj = obj_malloc(pool, zspage, handle);
1424                 /* Now move the zspage to another fullness group, if required */
1425                 fix_fullness_group(class, zspage);
1426                 record_obj(handle, obj);
1427                 class_stat_inc(class, OBJ_USED, 1);
1428                 spin_unlock(&class->lock);
1429
1430                 return handle;
1431         }
1432
1433         spin_unlock(&class->lock);
1434
1435         zspage = alloc_zspage(pool, class, gfp);
1436         if (!zspage) {
1437                 cache_free_handle(pool, handle);
1438                 return 0;
1439         }
1440
1441         spin_lock(&class->lock);
1442         obj = obj_malloc(pool, zspage, handle);
1443         newfg = get_fullness_group(class, zspage);
1444         insert_zspage(class, zspage, newfg);
1445         set_zspage_mapping(zspage, class->index, newfg);
1446         record_obj(handle, obj);
1447         atomic_long_add(class->pages_per_zspage,
1448                                 &pool->pages_allocated);
1449         class_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
1450         class_stat_inc(class, OBJ_USED, 1);
1451
1452         /* We completely set up zspage so mark them as movable */
1453         SetZsPageMovable(pool, zspage);
1454         spin_unlock(&class->lock);
1455
1456         return handle;
1457 }
1458 EXPORT_SYMBOL_GPL(zs_malloc);
1459
1460 static void obj_free(int class_size, unsigned long obj)
1461 {
1462         struct link_free *link;
1463         struct zspage *zspage;
1464         struct page *f_page;
1465         unsigned long f_offset;
1466         unsigned int f_objidx;
1467         void *vaddr;
1468
1469         obj_to_location(obj, &f_page, &f_objidx);
1470         f_offset = (class_size * f_objidx) & ~PAGE_MASK;
1471         zspage = get_zspage(f_page);
1472
1473         vaddr = kmap_atomic(f_page);
1474
1475         /* Insert this object in containing zspage's freelist */
1476         link = (struct link_free *)(vaddr + f_offset);
1477         if (likely(!ZsHugePage(zspage)))
1478                 link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1479         else
1480                 f_page->index = 0;
1481         kunmap_atomic(vaddr);
1482         set_freeobj(zspage, f_objidx);
1483         mod_zspage_inuse(zspage, -1);
1484 }
1485
1486 void zs_free(struct zs_pool *pool, unsigned long handle)
1487 {
1488         struct zspage *zspage;
1489         struct page *f_page;
1490         unsigned long obj;
1491         struct size_class *class;
1492         enum fullness_group fullness;
1493
1494         if (unlikely(!handle))
1495                 return;
1496
1497         /*
1498          * The pool->migrate_lock protects the race with zpage's migration
1499          * so it's safe to get the page from handle.
1500          */
1501         read_lock(&pool->migrate_lock);
1502         obj = handle_to_obj(handle);
1503         obj_to_page(obj, &f_page);
1504         zspage = get_zspage(f_page);
1505         class = zspage_class(pool, zspage);
1506         spin_lock(&class->lock);
1507         read_unlock(&pool->migrate_lock);
1508
1509         obj_free(class->size, obj);
1510         class_stat_dec(class, OBJ_USED, 1);
1511         fullness = fix_fullness_group(class, zspage);
1512         if (fullness != ZS_EMPTY)
1513                 goto out;
1514
1515         free_zspage(pool, class, zspage);
1516 out:
1517         spin_unlock(&class->lock);
1518         cache_free_handle(pool, handle);
1519 }
1520 EXPORT_SYMBOL_GPL(zs_free);
1521
1522 static void zs_object_copy(struct size_class *class, unsigned long dst,
1523                                 unsigned long src)
1524 {
1525         struct page *s_page, *d_page;
1526         unsigned int s_objidx, d_objidx;
1527         unsigned long s_off, d_off;
1528         void *s_addr, *d_addr;
1529         int s_size, d_size, size;
1530         int written = 0;
1531
1532         s_size = d_size = class->size;
1533
1534         obj_to_location(src, &s_page, &s_objidx);
1535         obj_to_location(dst, &d_page, &d_objidx);
1536
1537         s_off = (class->size * s_objidx) & ~PAGE_MASK;
1538         d_off = (class->size * d_objidx) & ~PAGE_MASK;
1539
1540         if (s_off + class->size > PAGE_SIZE)
1541                 s_size = PAGE_SIZE - s_off;
1542
1543         if (d_off + class->size > PAGE_SIZE)
1544                 d_size = PAGE_SIZE - d_off;
1545
1546         s_addr = kmap_atomic(s_page);
1547         d_addr = kmap_atomic(d_page);
1548
1549         while (1) {
1550                 size = min(s_size, d_size);
1551                 memcpy(d_addr + d_off, s_addr + s_off, size);
1552                 written += size;
1553
1554                 if (written == class->size)
1555                         break;
1556
1557                 s_off += size;
1558                 s_size -= size;
1559                 d_off += size;
1560                 d_size -= size;
1561
1562                 if (s_off >= PAGE_SIZE) {
1563                         kunmap_atomic(d_addr);
1564                         kunmap_atomic(s_addr);
1565                         s_page = get_next_page(s_page);
1566                         s_addr = kmap_atomic(s_page);
1567                         d_addr = kmap_atomic(d_page);
1568                         s_size = class->size - written;
1569                         s_off = 0;
1570                 }
1571
1572                 if (d_off >= PAGE_SIZE) {
1573                         kunmap_atomic(d_addr);
1574                         d_page = get_next_page(d_page);
1575                         d_addr = kmap_atomic(d_page);
1576                         d_size = class->size - written;
1577                         d_off = 0;
1578                 }
1579         }
1580
1581         kunmap_atomic(d_addr);
1582         kunmap_atomic(s_addr);
1583 }
1584
1585 /*
1586  * Find alloced object in zspage from index object and
1587  * return handle.
1588  */
1589 static unsigned long find_alloced_obj(struct size_class *class,
1590                                         struct page *page, int *obj_idx)
1591 {
1592         int offset = 0;
1593         int index = *obj_idx;
1594         unsigned long handle = 0;
1595         void *addr = kmap_atomic(page);
1596
1597         offset = get_first_obj_offset(page);
1598         offset += class->size * index;
1599
1600         while (offset < PAGE_SIZE) {
1601                 if (obj_allocated(page, addr + offset, &handle))
1602                         break;
1603
1604                 offset += class->size;
1605                 index++;
1606         }
1607
1608         kunmap_atomic(addr);
1609
1610         *obj_idx = index;
1611
1612         return handle;
1613 }
1614
1615 struct zs_compact_control {
1616         /* Source spage for migration which could be a subpage of zspage */
1617         struct page *s_page;
1618         /* Destination page for migration which should be a first page
1619          * of zspage. */
1620         struct page *d_page;
1621          /* Starting object index within @s_page which used for live object
1622           * in the subpage. */
1623         int obj_idx;
1624 };
1625
1626 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1627                                 struct zs_compact_control *cc)
1628 {
1629         unsigned long used_obj, free_obj;
1630         unsigned long handle;
1631         struct page *s_page = cc->s_page;
1632         struct page *d_page = cc->d_page;
1633         int obj_idx = cc->obj_idx;
1634         int ret = 0;
1635
1636         while (1) {
1637                 handle = find_alloced_obj(class, s_page, &obj_idx);
1638                 if (!handle) {
1639                         s_page = get_next_page(s_page);
1640                         if (!s_page)
1641                                 break;
1642                         obj_idx = 0;
1643                         continue;
1644                 }
1645
1646                 /* Stop if there is no more space */
1647                 if (zspage_full(class, get_zspage(d_page))) {
1648                         ret = -ENOMEM;
1649                         break;
1650                 }
1651
1652                 used_obj = handle_to_obj(handle);
1653                 free_obj = obj_malloc(pool, get_zspage(d_page), handle);
1654                 zs_object_copy(class, free_obj, used_obj);
1655                 obj_idx++;
1656                 record_obj(handle, free_obj);
1657                 obj_free(class->size, used_obj);
1658         }
1659
1660         /* Remember last position in this iteration */
1661         cc->s_page = s_page;
1662         cc->obj_idx = obj_idx;
1663
1664         return ret;
1665 }
1666
1667 static struct zspage *isolate_zspage(struct size_class *class, bool source)
1668 {
1669         int i;
1670         struct zspage *zspage;
1671         enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1672
1673         if (!source) {
1674                 fg[0] = ZS_ALMOST_FULL;
1675                 fg[1] = ZS_ALMOST_EMPTY;
1676         }
1677
1678         for (i = 0; i < 2; i++) {
1679                 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1680                                                         struct zspage, list);
1681                 if (zspage) {
1682                         remove_zspage(class, zspage, fg[i]);
1683                         return zspage;
1684                 }
1685         }
1686
1687         return zspage;
1688 }
1689
1690 /*
1691  * putback_zspage - add @zspage into right class's fullness list
1692  * @class: destination class
1693  * @zspage: target page
1694  *
1695  * Return @zspage's fullness_group
1696  */
1697 static enum fullness_group putback_zspage(struct size_class *class,
1698                         struct zspage *zspage)
1699 {
1700         enum fullness_group fullness;
1701
1702         fullness = get_fullness_group(class, zspage);
1703         insert_zspage(class, zspage, fullness);
1704         set_zspage_mapping(zspage, class->index, fullness);
1705
1706         return fullness;
1707 }
1708
1709 #ifdef CONFIG_COMPACTION
1710 /*
1711  * To prevent zspage destroy during migration, zspage freeing should
1712  * hold locks of all pages in the zspage.
1713  */
1714 static void lock_zspage(struct zspage *zspage)
1715 {
1716         struct page *page = get_first_page(zspage);
1717
1718         do {
1719                 lock_page(page);
1720         } while ((page = get_next_page(page)) != NULL);
1721 }
1722
1723 static int zs_init_fs_context(struct fs_context *fc)
1724 {
1725         return init_pseudo(fc, ZSMALLOC_MAGIC) ? 0 : -ENOMEM;
1726 }
1727
1728 static struct file_system_type zsmalloc_fs = {
1729         .name           = "zsmalloc",
1730         .init_fs_context = zs_init_fs_context,
1731         .kill_sb        = kill_anon_super,
1732 };
1733
1734 static int zsmalloc_mount(void)
1735 {
1736         int ret = 0;
1737
1738         zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1739         if (IS_ERR(zsmalloc_mnt))
1740                 ret = PTR_ERR(zsmalloc_mnt);
1741
1742         return ret;
1743 }
1744
1745 static void zsmalloc_unmount(void)
1746 {
1747         kern_unmount(zsmalloc_mnt);
1748 }
1749
1750 static void migrate_lock_init(struct zspage *zspage)
1751 {
1752         rwlock_init(&zspage->lock);
1753 }
1754
1755 static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock)
1756 {
1757         read_lock(&zspage->lock);
1758 }
1759
1760 static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock)
1761 {
1762         read_unlock(&zspage->lock);
1763 }
1764
1765 static void migrate_write_lock(struct zspage *zspage)
1766 {
1767         write_lock(&zspage->lock);
1768 }
1769
1770 static void migrate_write_lock_nested(struct zspage *zspage)
1771 {
1772         write_lock_nested(&zspage->lock, SINGLE_DEPTH_NESTING);
1773 }
1774
1775 static void migrate_write_unlock(struct zspage *zspage)
1776 {
1777         write_unlock(&zspage->lock);
1778 }
1779
1780 /* Number of isolated subpage for *page migration* in this zspage */
1781 static void inc_zspage_isolation(struct zspage *zspage)
1782 {
1783         zspage->isolated++;
1784 }
1785
1786 static void dec_zspage_isolation(struct zspage *zspage)
1787 {
1788         VM_BUG_ON(zspage->isolated == 0);
1789         zspage->isolated--;
1790 }
1791
1792 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1793                                 struct page *newpage, struct page *oldpage)
1794 {
1795         struct page *page;
1796         struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1797         int idx = 0;
1798
1799         page = get_first_page(zspage);
1800         do {
1801                 if (page == oldpage)
1802                         pages[idx] = newpage;
1803                 else
1804                         pages[idx] = page;
1805                 idx++;
1806         } while ((page = get_next_page(page)) != NULL);
1807
1808         create_page_chain(class, zspage, pages);
1809         set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1810         if (unlikely(ZsHugePage(zspage)))
1811                 newpage->index = oldpage->index;
1812         __SetPageMovable(newpage, page_mapping(oldpage));
1813 }
1814
1815 static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1816 {
1817         struct zspage *zspage;
1818
1819         /*
1820          * Page is locked so zspage couldn't be destroyed. For detail, look at
1821          * lock_zspage in free_zspage.
1822          */
1823         VM_BUG_ON_PAGE(!PageMovable(page), page);
1824         VM_BUG_ON_PAGE(PageIsolated(page), page);
1825
1826         zspage = get_zspage(page);
1827         migrate_write_lock(zspage);
1828         inc_zspage_isolation(zspage);
1829         migrate_write_unlock(zspage);
1830
1831         return true;
1832 }
1833
1834 static int zs_page_migrate(struct address_space *mapping, struct page *newpage,
1835                 struct page *page, enum migrate_mode mode)
1836 {
1837         struct zs_pool *pool;
1838         struct size_class *class;
1839         struct zspage *zspage;
1840         struct page *dummy;
1841         void *s_addr, *d_addr, *addr;
1842         int offset;
1843         unsigned long handle;
1844         unsigned long old_obj, new_obj;
1845         unsigned int obj_idx;
1846
1847         /*
1848          * We cannot support the _NO_COPY case here, because copy needs to
1849          * happen under the zs lock, which does not work with
1850          * MIGRATE_SYNC_NO_COPY workflow.
1851          */
1852         if (mode == MIGRATE_SYNC_NO_COPY)
1853                 return -EINVAL;
1854
1855         VM_BUG_ON_PAGE(!PageMovable(page), page);
1856         VM_BUG_ON_PAGE(!PageIsolated(page), page);
1857
1858         pool = mapping->private_data;
1859
1860         /*
1861          * The pool migrate_lock protects the race between zpage migration
1862          * and zs_free.
1863          */
1864         write_lock(&pool->migrate_lock);
1865         zspage = get_zspage(page);
1866         class = zspage_class(pool, zspage);
1867
1868         /*
1869          * the class lock protects zpage alloc/free in the zspage.
1870          */
1871         spin_lock(&class->lock);
1872         /* the migrate_write_lock protects zpage access via zs_map_object */
1873         migrate_write_lock(zspage);
1874
1875         offset = get_first_obj_offset(page);
1876         s_addr = kmap_atomic(page);
1877
1878         /*
1879          * Here, any user cannot access all objects in the zspage so let's move.
1880          */
1881         d_addr = kmap_atomic(newpage);
1882         memcpy(d_addr, s_addr, PAGE_SIZE);
1883         kunmap_atomic(d_addr);
1884
1885         for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE;
1886                                         addr += class->size) {
1887                 if (obj_allocated(page, addr, &handle)) {
1888
1889                         old_obj = handle_to_obj(handle);
1890                         obj_to_location(old_obj, &dummy, &obj_idx);
1891                         new_obj = (unsigned long)location_to_obj(newpage,
1892                                                                 obj_idx);
1893                         record_obj(handle, new_obj);
1894                 }
1895         }
1896         kunmap_atomic(s_addr);
1897
1898         replace_sub_page(class, zspage, newpage, page);
1899         /*
1900          * Since we complete the data copy and set up new zspage structure,
1901          * it's okay to release migration_lock.
1902          */
1903         write_unlock(&pool->migrate_lock);
1904         spin_unlock(&class->lock);
1905         dec_zspage_isolation(zspage);
1906         migrate_write_unlock(zspage);
1907
1908         get_page(newpage);
1909         if (page_zone(newpage) != page_zone(page)) {
1910                 dec_zone_page_state(page, NR_ZSPAGES);
1911                 inc_zone_page_state(newpage, NR_ZSPAGES);
1912         }
1913
1914         reset_page(page);
1915         put_page(page);
1916
1917         return MIGRATEPAGE_SUCCESS;
1918 }
1919
1920 static void zs_page_putback(struct page *page)
1921 {
1922         struct zspage *zspage;
1923
1924         VM_BUG_ON_PAGE(!PageMovable(page), page);
1925         VM_BUG_ON_PAGE(!PageIsolated(page), page);
1926
1927         zspage = get_zspage(page);
1928         migrate_write_lock(zspage);
1929         dec_zspage_isolation(zspage);
1930         migrate_write_unlock(zspage);
1931 }
1932
1933 static const struct address_space_operations zsmalloc_aops = {
1934         .isolate_page = zs_page_isolate,
1935         .migratepage = zs_page_migrate,
1936         .putback_page = zs_page_putback,
1937 };
1938
1939 static int zs_register_migration(struct zs_pool *pool)
1940 {
1941         pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
1942         if (IS_ERR(pool->inode)) {
1943                 pool->inode = NULL;
1944                 return 1;
1945         }
1946
1947         pool->inode->i_mapping->private_data = pool;
1948         pool->inode->i_mapping->a_ops = &zsmalloc_aops;
1949         return 0;
1950 }
1951
1952 static void zs_unregister_migration(struct zs_pool *pool)
1953 {
1954         flush_work(&pool->free_work);
1955         iput(pool->inode);
1956 }
1957
1958 /*
1959  * Caller should hold page_lock of all pages in the zspage
1960  * In here, we cannot use zspage meta data.
1961  */
1962 static void async_free_zspage(struct work_struct *work)
1963 {
1964         int i;
1965         struct size_class *class;
1966         unsigned int class_idx;
1967         enum fullness_group fullness;
1968         struct zspage *zspage, *tmp;
1969         LIST_HEAD(free_pages);
1970         struct zs_pool *pool = container_of(work, struct zs_pool,
1971                                         free_work);
1972
1973         for (i = 0; i < ZS_SIZE_CLASSES; i++) {
1974                 class = pool->size_class[i];
1975                 if (class->index != i)
1976                         continue;
1977
1978                 spin_lock(&class->lock);
1979                 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
1980                 spin_unlock(&class->lock);
1981         }
1982
1983         list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
1984                 list_del(&zspage->list);
1985                 lock_zspage(zspage);
1986
1987                 get_zspage_mapping(zspage, &class_idx, &fullness);
1988                 VM_BUG_ON(fullness != ZS_EMPTY);
1989                 class = pool->size_class[class_idx];
1990                 spin_lock(&class->lock);
1991                 __free_zspage(pool, class, zspage);
1992                 spin_unlock(&class->lock);
1993         }
1994 };
1995
1996 static void kick_deferred_free(struct zs_pool *pool)
1997 {
1998         schedule_work(&pool->free_work);
1999 }
2000
2001 static void init_deferred_free(struct zs_pool *pool)
2002 {
2003         INIT_WORK(&pool->free_work, async_free_zspage);
2004 }
2005
2006 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2007 {
2008         struct page *page = get_first_page(zspage);
2009
2010         do {
2011                 WARN_ON(!trylock_page(page));
2012                 __SetPageMovable(page, pool->inode->i_mapping);
2013                 unlock_page(page);
2014         } while ((page = get_next_page(page)) != NULL);
2015 }
2016 #endif
2017
2018 /*
2019  *
2020  * Based on the number of unused allocated objects calculate
2021  * and return the number of pages that we can free.
2022  */
2023 static unsigned long zs_can_compact(struct size_class *class)
2024 {
2025         unsigned long obj_wasted;
2026         unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2027         unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2028
2029         if (obj_allocated <= obj_used)
2030                 return 0;
2031
2032         obj_wasted = obj_allocated - obj_used;
2033         obj_wasted /= class->objs_per_zspage;
2034
2035         return obj_wasted * class->pages_per_zspage;
2036 }
2037
2038 static unsigned long __zs_compact(struct zs_pool *pool,
2039                                   struct size_class *class)
2040 {
2041         struct zs_compact_control cc;
2042         struct zspage *src_zspage;
2043         struct zspage *dst_zspage = NULL;
2044         unsigned long pages_freed = 0;
2045
2046         /* protect the race between zpage migration and zs_free */
2047         write_lock(&pool->migrate_lock);
2048         /* protect zpage allocation/free */
2049         spin_lock(&class->lock);
2050         while ((src_zspage = isolate_zspage(class, true))) {
2051                 /* protect someone accessing the zspage(i.e., zs_map_object) */
2052                 migrate_write_lock(src_zspage);
2053
2054                 if (!zs_can_compact(class))
2055                         break;
2056
2057                 cc.obj_idx = 0;
2058                 cc.s_page = get_first_page(src_zspage);
2059
2060                 while ((dst_zspage = isolate_zspage(class, false))) {
2061                         migrate_write_lock_nested(dst_zspage);
2062
2063                         cc.d_page = get_first_page(dst_zspage);
2064                         /*
2065                          * If there is no more space in dst_page, resched
2066                          * and see if anyone had allocated another zspage.
2067                          */
2068                         if (!migrate_zspage(pool, class, &cc))
2069                                 break;
2070
2071                         putback_zspage(class, dst_zspage);
2072                         migrate_write_unlock(dst_zspage);
2073                         dst_zspage = NULL;
2074                         if (rwlock_is_contended(&pool->migrate_lock))
2075                                 break;
2076                 }
2077
2078                 /* Stop if we couldn't find slot */
2079                 if (dst_zspage == NULL)
2080                         break;
2081
2082                 putback_zspage(class, dst_zspage);
2083                 migrate_write_unlock(dst_zspage);
2084
2085                 if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2086                         migrate_write_unlock(src_zspage);
2087                         free_zspage(pool, class, src_zspage);
2088                         pages_freed += class->pages_per_zspage;
2089                 } else
2090                         migrate_write_unlock(src_zspage);
2091                 spin_unlock(&class->lock);
2092                 write_unlock(&pool->migrate_lock);
2093                 cond_resched();
2094                 write_lock(&pool->migrate_lock);
2095                 spin_lock(&class->lock);
2096         }
2097
2098         if (src_zspage) {
2099                 putback_zspage(class, src_zspage);
2100                 migrate_write_unlock(src_zspage);
2101         }
2102
2103         spin_unlock(&class->lock);
2104         write_unlock(&pool->migrate_lock);
2105
2106         return pages_freed;
2107 }
2108
2109 unsigned long zs_compact(struct zs_pool *pool)
2110 {
2111         int i;
2112         struct size_class *class;
2113         unsigned long pages_freed = 0;
2114
2115         for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2116                 class = pool->size_class[i];
2117                 if (!class)
2118                         continue;
2119                 if (class->index != i)
2120                         continue;
2121                 pages_freed += __zs_compact(pool, class);
2122         }
2123         atomic_long_add(pages_freed, &pool->stats.pages_compacted);
2124
2125         return pages_freed;
2126 }
2127 EXPORT_SYMBOL_GPL(zs_compact);
2128
2129 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2130 {
2131         memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2132 }
2133 EXPORT_SYMBOL_GPL(zs_pool_stats);
2134
2135 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2136                 struct shrink_control *sc)
2137 {
2138         unsigned long pages_freed;
2139         struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2140                         shrinker);
2141
2142         /*
2143          * Compact classes and calculate compaction delta.
2144          * Can run concurrently with a manually triggered
2145          * (by user) compaction.
2146          */
2147         pages_freed = zs_compact(pool);
2148
2149         return pages_freed ? pages_freed : SHRINK_STOP;
2150 }
2151
2152 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2153                 struct shrink_control *sc)
2154 {
2155         int i;
2156         struct size_class *class;
2157         unsigned long pages_to_free = 0;
2158         struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2159                         shrinker);
2160
2161         for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2162                 class = pool->size_class[i];
2163                 if (!class)
2164                         continue;
2165                 if (class->index != i)
2166                         continue;
2167
2168                 pages_to_free += zs_can_compact(class);
2169         }
2170
2171         return pages_to_free;
2172 }
2173
2174 static void zs_unregister_shrinker(struct zs_pool *pool)
2175 {
2176         unregister_shrinker(&pool->shrinker);
2177 }
2178
2179 static int zs_register_shrinker(struct zs_pool *pool)
2180 {
2181         pool->shrinker.scan_objects = zs_shrinker_scan;
2182         pool->shrinker.count_objects = zs_shrinker_count;
2183         pool->shrinker.batch = 0;
2184         pool->shrinker.seeks = DEFAULT_SEEKS;
2185
2186         return register_shrinker(&pool->shrinker);
2187 }
2188
2189 /**
2190  * zs_create_pool - Creates an allocation pool to work from.
2191  * @name: pool name to be created
2192  *
2193  * This function must be called before anything when using
2194  * the zsmalloc allocator.
2195  *
2196  * On success, a pointer to the newly created pool is returned,
2197  * otherwise NULL.
2198  */
2199 struct zs_pool *zs_create_pool(const char *name)
2200 {
2201         int i;
2202         struct zs_pool *pool;
2203         struct size_class *prev_class = NULL;
2204
2205         pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2206         if (!pool)
2207                 return NULL;
2208
2209         init_deferred_free(pool);
2210         rwlock_init(&pool->migrate_lock);
2211
2212         pool->name = kstrdup(name, GFP_KERNEL);
2213         if (!pool->name)
2214                 goto err;
2215
2216         if (create_cache(pool))
2217                 goto err;
2218
2219         /*
2220          * Iterate reversely, because, size of size_class that we want to use
2221          * for merging should be larger or equal to current size.
2222          */
2223         for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2224                 int size;
2225                 int pages_per_zspage;
2226                 int objs_per_zspage;
2227                 struct size_class *class;
2228                 int fullness = 0;
2229
2230                 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2231                 if (size > ZS_MAX_ALLOC_SIZE)
2232                         size = ZS_MAX_ALLOC_SIZE;
2233                 pages_per_zspage = get_pages_per_zspage(size);
2234                 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2235
2236                 /*
2237                  * We iterate from biggest down to smallest classes,
2238                  * so huge_class_size holds the size of the first huge
2239                  * class. Any object bigger than or equal to that will
2240                  * endup in the huge class.
2241                  */
2242                 if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2243                                 !huge_class_size) {
2244                         huge_class_size = size;
2245                         /*
2246                          * The object uses ZS_HANDLE_SIZE bytes to store the
2247                          * handle. We need to subtract it, because zs_malloc()
2248                          * unconditionally adds handle size before it performs
2249                          * size class search - so object may be smaller than
2250                          * huge class size, yet it still can end up in the huge
2251                          * class because it grows by ZS_HANDLE_SIZE extra bytes
2252                          * right before class lookup.
2253                          */
2254                         huge_class_size -= (ZS_HANDLE_SIZE - 1);
2255                 }
2256
2257                 /*
2258                  * size_class is used for normal zsmalloc operation such
2259                  * as alloc/free for that size. Although it is natural that we
2260                  * have one size_class for each size, there is a chance that we
2261                  * can get more memory utilization if we use one size_class for
2262                  * many different sizes whose size_class have same
2263                  * characteristics. So, we makes size_class point to
2264                  * previous size_class if possible.
2265                  */
2266                 if (prev_class) {
2267                         if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2268                                 pool->size_class[i] = prev_class;
2269                                 continue;
2270                         }
2271                 }
2272
2273                 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2274                 if (!class)
2275                         goto err;
2276
2277                 class->size = size;
2278                 class->index = i;
2279                 class->pages_per_zspage = pages_per_zspage;
2280                 class->objs_per_zspage = objs_per_zspage;
2281                 spin_lock_init(&class->lock);
2282                 pool->size_class[i] = class;
2283                 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2284                                                         fullness++)
2285                         INIT_LIST_HEAD(&class->fullness_list[fullness]);
2286
2287                 prev_class = class;
2288         }
2289
2290         /* debug only, don't abort if it fails */
2291         zs_pool_stat_create(pool, name);
2292
2293         if (zs_register_migration(pool))
2294                 goto err;
2295
2296         /*
2297          * Not critical since shrinker is only used to trigger internal
2298          * defragmentation of the pool which is pretty optional thing.  If
2299          * registration fails we still can use the pool normally and user can
2300          * trigger compaction manually. Thus, ignore return code.
2301          */
2302         zs_register_shrinker(pool);
2303
2304         return pool;
2305
2306 err:
2307         zs_destroy_pool(pool);
2308         return NULL;
2309 }
2310 EXPORT_SYMBOL_GPL(zs_create_pool);
2311
2312 void zs_destroy_pool(struct zs_pool *pool)
2313 {
2314         int i;
2315
2316         zs_unregister_shrinker(pool);
2317         zs_unregister_migration(pool);
2318         zs_pool_stat_destroy(pool);
2319
2320         for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2321                 int fg;
2322                 struct size_class *class = pool->size_class[i];
2323
2324                 if (!class)
2325                         continue;
2326
2327                 if (class->index != i)
2328                         continue;
2329
2330                 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2331                         if (!list_empty(&class->fullness_list[fg])) {
2332                                 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2333                                         class->size, fg);
2334                         }
2335                 }
2336                 kfree(class);
2337         }
2338
2339         destroy_cache(pool);
2340         kfree(pool->name);
2341         kfree(pool);
2342 }
2343 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2344
2345 static int __init zs_init(void)
2346 {
2347         int ret;
2348
2349         ret = zsmalloc_mount();
2350         if (ret)
2351                 goto out;
2352
2353         ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2354                                 zs_cpu_prepare, zs_cpu_dead);
2355         if (ret)
2356                 goto hp_setup_fail;
2357
2358 #ifdef CONFIG_ZPOOL
2359         zpool_register_driver(&zs_zpool_driver);
2360 #endif
2361
2362         zs_stat_init();
2363
2364         return 0;
2365
2366 hp_setup_fail:
2367         zsmalloc_unmount();
2368 out:
2369         return ret;
2370 }
2371
2372 static void __exit zs_exit(void)
2373 {
2374 #ifdef CONFIG_ZPOOL
2375         zpool_unregister_driver(&zs_zpool_driver);
2376 #endif
2377         zsmalloc_unmount();
2378         cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2379
2380         zs_stat_exit();
2381 }
2382
2383 module_init(zs_init);
2384 module_exit(zs_exit);
2385
2386 MODULE_LICENSE("Dual BSD/GPL");
2387 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");