Merge branch 'misc.poll' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[linux-2.6-microblaze.git] / mm / zsmalloc.c
1 /*
2  * zsmalloc memory allocator
3  *
4  * Copyright (C) 2011  Nitin Gupta
5  * Copyright (C) 2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the license that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  */
13
14 /*
15  * Following is how we use various fields and flags of underlying
16  * struct page(s) to form a zspage.
17  *
18  * Usage of struct page fields:
19  *      page->private: points to zspage
20  *      page->freelist(index): links together all component pages of a zspage
21  *              For the huge page, this is always 0, so we use this field
22  *              to store handle.
23  *      page->units: first object offset in a subpage of zspage
24  *
25  * Usage of struct page flags:
26  *      PG_private: identifies the first component page
27  *      PG_owner_priv_1: identifies the huge component page
28  *
29  */
30
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
33 #include <linux/module.h>
34 #include <linux/kernel.h>
35 #include <linux/sched.h>
36 #include <linux/magic.h>
37 #include <linux/bitops.h>
38 #include <linux/errno.h>
39 #include <linux/highmem.h>
40 #include <linux/string.h>
41 #include <linux/slab.h>
42 #include <asm/tlbflush.h>
43 #include <asm/pgtable.h>
44 #include <linux/cpumask.h>
45 #include <linux/cpu.h>
46 #include <linux/vmalloc.h>
47 #include <linux/preempt.h>
48 #include <linux/spinlock.h>
49 #include <linux/types.h>
50 #include <linux/debugfs.h>
51 #include <linux/zsmalloc.h>
52 #include <linux/zpool.h>
53 #include <linux/mount.h>
54 #include <linux/migrate.h>
55 #include <linux/pagemap.h>
56 #include <linux/fs.h>
57
58 #define ZSPAGE_MAGIC    0x58
59
60 /*
61  * This must be power of 2 and greater than of equal to sizeof(link_free).
62  * These two conditions ensure that any 'struct link_free' itself doesn't
63  * span more than 1 page which avoids complex case of mapping 2 pages simply
64  * to restore link_free pointer values.
65  */
66 #define ZS_ALIGN                8
67
68 /*
69  * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
70  * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
71  */
72 #define ZS_MAX_ZSPAGE_ORDER 2
73 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
74
75 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
76
77 /*
78  * Object location (<PFN>, <obj_idx>) is encoded as
79  * as single (unsigned long) handle value.
80  *
81  * Note that object index <obj_idx> starts from 0.
82  *
83  * This is made more complicated by various memory models and PAE.
84  */
85
86 #ifndef MAX_PHYSMEM_BITS
87 #ifdef CONFIG_HIGHMEM64G
88 #define MAX_PHYSMEM_BITS 36
89 #else /* !CONFIG_HIGHMEM64G */
90 /*
91  * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
92  * be PAGE_SHIFT
93  */
94 #define MAX_PHYSMEM_BITS BITS_PER_LONG
95 #endif
96 #endif
97 #define _PFN_BITS               (MAX_PHYSMEM_BITS - PAGE_SHIFT)
98
99 /*
100  * Memory for allocating for handle keeps object position by
101  * encoding <page, obj_idx> and the encoded value has a room
102  * in least bit(ie, look at obj_to_location).
103  * We use the bit to synchronize between object access by
104  * user and migration.
105  */
106 #define HANDLE_PIN_BIT  0
107
108 /*
109  * Head in allocated object should have OBJ_ALLOCATED_TAG
110  * to identify the object was allocated or not.
111  * It's okay to add the status bit in the least bit because
112  * header keeps handle which is 4byte-aligned address so we
113  * have room for two bit at least.
114  */
115 #define OBJ_ALLOCATED_TAG 1
116 #define OBJ_TAG_BITS 1
117 #define OBJ_INDEX_BITS  (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
118 #define OBJ_INDEX_MASK  ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
119
120 #define FULLNESS_BITS   2
121 #define CLASS_BITS      8
122 #define ISOLATED_BITS   3
123 #define MAGIC_VAL_BITS  8
124
125 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
126 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
127 #define ZS_MIN_ALLOC_SIZE \
128         MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
129 /* each chunk includes extra space to keep handle */
130 #define ZS_MAX_ALLOC_SIZE       PAGE_SIZE
131
132 /*
133  * On systems with 4K page size, this gives 255 size classes! There is a
134  * trader-off here:
135  *  - Large number of size classes is potentially wasteful as free page are
136  *    spread across these classes
137  *  - Small number of size classes causes large internal fragmentation
138  *  - Probably its better to use specific size classes (empirically
139  *    determined). NOTE: all those class sizes must be set as multiple of
140  *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
141  *
142  *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
143  *  (reason above)
144  */
145 #define ZS_SIZE_CLASS_DELTA     (PAGE_SIZE >> CLASS_BITS)
146 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
147                                       ZS_SIZE_CLASS_DELTA) + 1)
148
149 enum fullness_group {
150         ZS_EMPTY,
151         ZS_ALMOST_EMPTY,
152         ZS_ALMOST_FULL,
153         ZS_FULL,
154         NR_ZS_FULLNESS,
155 };
156
157 enum zs_stat_type {
158         CLASS_EMPTY,
159         CLASS_ALMOST_EMPTY,
160         CLASS_ALMOST_FULL,
161         CLASS_FULL,
162         OBJ_ALLOCATED,
163         OBJ_USED,
164         NR_ZS_STAT_TYPE,
165 };
166
167 struct zs_size_stat {
168         unsigned long objs[NR_ZS_STAT_TYPE];
169 };
170
171 #ifdef CONFIG_ZSMALLOC_STAT
172 static struct dentry *zs_stat_root;
173 #endif
174
175 #ifdef CONFIG_COMPACTION
176 static struct vfsmount *zsmalloc_mnt;
177 #endif
178
179 /*
180  * We assign a page to ZS_ALMOST_EMPTY fullness group when:
181  *      n <= N / f, where
182  * n = number of allocated objects
183  * N = total number of objects zspage can store
184  * f = fullness_threshold_frac
185  *
186  * Similarly, we assign zspage to:
187  *      ZS_ALMOST_FULL  when n > N / f
188  *      ZS_EMPTY        when n == 0
189  *      ZS_FULL         when n == N
190  *
191  * (see: fix_fullness_group())
192  */
193 static const int fullness_threshold_frac = 4;
194
195 struct size_class {
196         spinlock_t lock;
197         struct list_head fullness_list[NR_ZS_FULLNESS];
198         /*
199          * Size of objects stored in this class. Must be multiple
200          * of ZS_ALIGN.
201          */
202         int size;
203         int objs_per_zspage;
204         /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
205         int pages_per_zspage;
206
207         unsigned int index;
208         struct zs_size_stat stats;
209 };
210
211 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
212 static void SetPageHugeObject(struct page *page)
213 {
214         SetPageOwnerPriv1(page);
215 }
216
217 static void ClearPageHugeObject(struct page *page)
218 {
219         ClearPageOwnerPriv1(page);
220 }
221
222 static int PageHugeObject(struct page *page)
223 {
224         return PageOwnerPriv1(page);
225 }
226
227 /*
228  * Placed within free objects to form a singly linked list.
229  * For every zspage, zspage->freeobj gives head of this list.
230  *
231  * This must be power of 2 and less than or equal to ZS_ALIGN
232  */
233 struct link_free {
234         union {
235                 /*
236                  * Free object index;
237                  * It's valid for non-allocated object
238                  */
239                 unsigned long next;
240                 /*
241                  * Handle of allocated object.
242                  */
243                 unsigned long handle;
244         };
245 };
246
247 struct zs_pool {
248         const char *name;
249
250         struct size_class *size_class[ZS_SIZE_CLASSES];
251         struct kmem_cache *handle_cachep;
252         struct kmem_cache *zspage_cachep;
253
254         atomic_long_t pages_allocated;
255
256         struct zs_pool_stats stats;
257
258         /* Compact classes */
259         struct shrinker shrinker;
260         /*
261          * To signify that register_shrinker() was successful
262          * and unregister_shrinker() will not Oops.
263          */
264         bool shrinker_enabled;
265 #ifdef CONFIG_ZSMALLOC_STAT
266         struct dentry *stat_dentry;
267 #endif
268 #ifdef CONFIG_COMPACTION
269         struct inode *inode;
270         struct work_struct free_work;
271 #endif
272 };
273
274 struct zspage {
275         struct {
276                 unsigned int fullness:FULLNESS_BITS;
277                 unsigned int class:CLASS_BITS + 1;
278                 unsigned int isolated:ISOLATED_BITS;
279                 unsigned int magic:MAGIC_VAL_BITS;
280         };
281         unsigned int inuse;
282         unsigned int freeobj;
283         struct page *first_page;
284         struct list_head list; /* fullness list */
285 #ifdef CONFIG_COMPACTION
286         rwlock_t lock;
287 #endif
288 };
289
290 struct mapping_area {
291 #ifdef CONFIG_PGTABLE_MAPPING
292         struct vm_struct *vm; /* vm area for mapping object that span pages */
293 #else
294         char *vm_buf; /* copy buffer for objects that span pages */
295 #endif
296         char *vm_addr; /* address of kmap_atomic()'ed pages */
297         enum zs_mapmode vm_mm; /* mapping mode */
298 };
299
300 #ifdef CONFIG_COMPACTION
301 static int zs_register_migration(struct zs_pool *pool);
302 static void zs_unregister_migration(struct zs_pool *pool);
303 static void migrate_lock_init(struct zspage *zspage);
304 static void migrate_read_lock(struct zspage *zspage);
305 static void migrate_read_unlock(struct zspage *zspage);
306 static void kick_deferred_free(struct zs_pool *pool);
307 static void init_deferred_free(struct zs_pool *pool);
308 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
309 #else
310 static int zsmalloc_mount(void) { return 0; }
311 static void zsmalloc_unmount(void) {}
312 static int zs_register_migration(struct zs_pool *pool) { return 0; }
313 static void zs_unregister_migration(struct zs_pool *pool) {}
314 static void migrate_lock_init(struct zspage *zspage) {}
315 static void migrate_read_lock(struct zspage *zspage) {}
316 static void migrate_read_unlock(struct zspage *zspage) {}
317 static void kick_deferred_free(struct zs_pool *pool) {}
318 static void init_deferred_free(struct zs_pool *pool) {}
319 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
320 #endif
321
322 static int create_cache(struct zs_pool *pool)
323 {
324         pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
325                                         0, 0, NULL);
326         if (!pool->handle_cachep)
327                 return 1;
328
329         pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
330                                         0, 0, NULL);
331         if (!pool->zspage_cachep) {
332                 kmem_cache_destroy(pool->handle_cachep);
333                 pool->handle_cachep = NULL;
334                 return 1;
335         }
336
337         return 0;
338 }
339
340 static void destroy_cache(struct zs_pool *pool)
341 {
342         kmem_cache_destroy(pool->handle_cachep);
343         kmem_cache_destroy(pool->zspage_cachep);
344 }
345
346 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
347 {
348         return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
349                         gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
350 }
351
352 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
353 {
354         kmem_cache_free(pool->handle_cachep, (void *)handle);
355 }
356
357 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
358 {
359         return kmem_cache_alloc(pool->zspage_cachep,
360                         flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
361 }
362
363 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
364 {
365         kmem_cache_free(pool->zspage_cachep, zspage);
366 }
367
368 static void record_obj(unsigned long handle, unsigned long obj)
369 {
370         /*
371          * lsb of @obj represents handle lock while other bits
372          * represent object value the handle is pointing so
373          * updating shouldn't do store tearing.
374          */
375         WRITE_ONCE(*(unsigned long *)handle, obj);
376 }
377
378 /* zpool driver */
379
380 #ifdef CONFIG_ZPOOL
381
382 static void *zs_zpool_create(const char *name, gfp_t gfp,
383                              const struct zpool_ops *zpool_ops,
384                              struct zpool *zpool)
385 {
386         /*
387          * Ignore global gfp flags: zs_malloc() may be invoked from
388          * different contexts and its caller must provide a valid
389          * gfp mask.
390          */
391         return zs_create_pool(name);
392 }
393
394 static void zs_zpool_destroy(void *pool)
395 {
396         zs_destroy_pool(pool);
397 }
398
399 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
400                         unsigned long *handle)
401 {
402         *handle = zs_malloc(pool, size, gfp);
403         return *handle ? 0 : -1;
404 }
405 static void zs_zpool_free(void *pool, unsigned long handle)
406 {
407         zs_free(pool, handle);
408 }
409
410 static int zs_zpool_shrink(void *pool, unsigned int pages,
411                         unsigned int *reclaimed)
412 {
413         return -EINVAL;
414 }
415
416 static void *zs_zpool_map(void *pool, unsigned long handle,
417                         enum zpool_mapmode mm)
418 {
419         enum zs_mapmode zs_mm;
420
421         switch (mm) {
422         case ZPOOL_MM_RO:
423                 zs_mm = ZS_MM_RO;
424                 break;
425         case ZPOOL_MM_WO:
426                 zs_mm = ZS_MM_WO;
427                 break;
428         case ZPOOL_MM_RW: /* fallthru */
429         default:
430                 zs_mm = ZS_MM_RW;
431                 break;
432         }
433
434         return zs_map_object(pool, handle, zs_mm);
435 }
436 static void zs_zpool_unmap(void *pool, unsigned long handle)
437 {
438         zs_unmap_object(pool, handle);
439 }
440
441 static u64 zs_zpool_total_size(void *pool)
442 {
443         return zs_get_total_pages(pool) << PAGE_SHIFT;
444 }
445
446 static struct zpool_driver zs_zpool_driver = {
447         .type =         "zsmalloc",
448         .owner =        THIS_MODULE,
449         .create =       zs_zpool_create,
450         .destroy =      zs_zpool_destroy,
451         .malloc =       zs_zpool_malloc,
452         .free =         zs_zpool_free,
453         .shrink =       zs_zpool_shrink,
454         .map =          zs_zpool_map,
455         .unmap =        zs_zpool_unmap,
456         .total_size =   zs_zpool_total_size,
457 };
458
459 MODULE_ALIAS("zpool-zsmalloc");
460 #endif /* CONFIG_ZPOOL */
461
462 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
463 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
464
465 static bool is_zspage_isolated(struct zspage *zspage)
466 {
467         return zspage->isolated;
468 }
469
470 static __maybe_unused int is_first_page(struct page *page)
471 {
472         return PagePrivate(page);
473 }
474
475 /* Protected by class->lock */
476 static inline int get_zspage_inuse(struct zspage *zspage)
477 {
478         return zspage->inuse;
479 }
480
481 static inline void set_zspage_inuse(struct zspage *zspage, int val)
482 {
483         zspage->inuse = val;
484 }
485
486 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
487 {
488         zspage->inuse += val;
489 }
490
491 static inline struct page *get_first_page(struct zspage *zspage)
492 {
493         struct page *first_page = zspage->first_page;
494
495         VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
496         return first_page;
497 }
498
499 static inline int get_first_obj_offset(struct page *page)
500 {
501         return page->units;
502 }
503
504 static inline void set_first_obj_offset(struct page *page, int offset)
505 {
506         page->units = offset;
507 }
508
509 static inline unsigned int get_freeobj(struct zspage *zspage)
510 {
511         return zspage->freeobj;
512 }
513
514 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
515 {
516         zspage->freeobj = obj;
517 }
518
519 static void get_zspage_mapping(struct zspage *zspage,
520                                 unsigned int *class_idx,
521                                 enum fullness_group *fullness)
522 {
523         BUG_ON(zspage->magic != ZSPAGE_MAGIC);
524
525         *fullness = zspage->fullness;
526         *class_idx = zspage->class;
527 }
528
529 static void set_zspage_mapping(struct zspage *zspage,
530                                 unsigned int class_idx,
531                                 enum fullness_group fullness)
532 {
533         zspage->class = class_idx;
534         zspage->fullness = fullness;
535 }
536
537 /*
538  * zsmalloc divides the pool into various size classes where each
539  * class maintains a list of zspages where each zspage is divided
540  * into equal sized chunks. Each allocation falls into one of these
541  * classes depending on its size. This function returns index of the
542  * size class which has chunk size big enough to hold the give size.
543  */
544 static int get_size_class_index(int size)
545 {
546         int idx = 0;
547
548         if (likely(size > ZS_MIN_ALLOC_SIZE))
549                 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
550                                 ZS_SIZE_CLASS_DELTA);
551
552         return min_t(int, ZS_SIZE_CLASSES - 1, idx);
553 }
554
555 /* type can be of enum type zs_stat_type or fullness_group */
556 static inline void zs_stat_inc(struct size_class *class,
557                                 int type, unsigned long cnt)
558 {
559         class->stats.objs[type] += cnt;
560 }
561
562 /* type can be of enum type zs_stat_type or fullness_group */
563 static inline void zs_stat_dec(struct size_class *class,
564                                 int type, unsigned long cnt)
565 {
566         class->stats.objs[type] -= cnt;
567 }
568
569 /* type can be of enum type zs_stat_type or fullness_group */
570 static inline unsigned long zs_stat_get(struct size_class *class,
571                                 int type)
572 {
573         return class->stats.objs[type];
574 }
575
576 #ifdef CONFIG_ZSMALLOC_STAT
577
578 static void __init zs_stat_init(void)
579 {
580         if (!debugfs_initialized()) {
581                 pr_warn("debugfs not available, stat dir not created\n");
582                 return;
583         }
584
585         zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
586         if (!zs_stat_root)
587                 pr_warn("debugfs 'zsmalloc' stat dir creation failed\n");
588 }
589
590 static void __exit zs_stat_exit(void)
591 {
592         debugfs_remove_recursive(zs_stat_root);
593 }
594
595 static unsigned long zs_can_compact(struct size_class *class);
596
597 static int zs_stats_size_show(struct seq_file *s, void *v)
598 {
599         int i;
600         struct zs_pool *pool = s->private;
601         struct size_class *class;
602         int objs_per_zspage;
603         unsigned long class_almost_full, class_almost_empty;
604         unsigned long obj_allocated, obj_used, pages_used, freeable;
605         unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
606         unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
607         unsigned long total_freeable = 0;
608
609         seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
610                         "class", "size", "almost_full", "almost_empty",
611                         "obj_allocated", "obj_used", "pages_used",
612                         "pages_per_zspage", "freeable");
613
614         for (i = 0; i < ZS_SIZE_CLASSES; i++) {
615                 class = pool->size_class[i];
616
617                 if (class->index != i)
618                         continue;
619
620                 spin_lock(&class->lock);
621                 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
622                 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
623                 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
624                 obj_used = zs_stat_get(class, OBJ_USED);
625                 freeable = zs_can_compact(class);
626                 spin_unlock(&class->lock);
627
628                 objs_per_zspage = class->objs_per_zspage;
629                 pages_used = obj_allocated / objs_per_zspage *
630                                 class->pages_per_zspage;
631
632                 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
633                                 " %10lu %10lu %16d %8lu\n",
634                         i, class->size, class_almost_full, class_almost_empty,
635                         obj_allocated, obj_used, pages_used,
636                         class->pages_per_zspage, freeable);
637
638                 total_class_almost_full += class_almost_full;
639                 total_class_almost_empty += class_almost_empty;
640                 total_objs += obj_allocated;
641                 total_used_objs += obj_used;
642                 total_pages += pages_used;
643                 total_freeable += freeable;
644         }
645
646         seq_puts(s, "\n");
647         seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
648                         "Total", "", total_class_almost_full,
649                         total_class_almost_empty, total_objs,
650                         total_used_objs, total_pages, "", total_freeable);
651
652         return 0;
653 }
654
655 static int zs_stats_size_open(struct inode *inode, struct file *file)
656 {
657         return single_open(file, zs_stats_size_show, inode->i_private);
658 }
659
660 static const struct file_operations zs_stat_size_ops = {
661         .open           = zs_stats_size_open,
662         .read           = seq_read,
663         .llseek         = seq_lseek,
664         .release        = single_release,
665 };
666
667 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
668 {
669         struct dentry *entry;
670
671         if (!zs_stat_root) {
672                 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
673                 return;
674         }
675
676         entry = debugfs_create_dir(name, zs_stat_root);
677         if (!entry) {
678                 pr_warn("debugfs dir <%s> creation failed\n", name);
679                 return;
680         }
681         pool->stat_dentry = entry;
682
683         entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
684                         pool->stat_dentry, pool, &zs_stat_size_ops);
685         if (!entry) {
686                 pr_warn("%s: debugfs file entry <%s> creation failed\n",
687                                 name, "classes");
688                 debugfs_remove_recursive(pool->stat_dentry);
689                 pool->stat_dentry = NULL;
690         }
691 }
692
693 static void zs_pool_stat_destroy(struct zs_pool *pool)
694 {
695         debugfs_remove_recursive(pool->stat_dentry);
696 }
697
698 #else /* CONFIG_ZSMALLOC_STAT */
699 static void __init zs_stat_init(void)
700 {
701 }
702
703 static void __exit zs_stat_exit(void)
704 {
705 }
706
707 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
708 {
709 }
710
711 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
712 {
713 }
714 #endif
715
716
717 /*
718  * For each size class, zspages are divided into different groups
719  * depending on how "full" they are. This was done so that we could
720  * easily find empty or nearly empty zspages when we try to shrink
721  * the pool (not yet implemented). This function returns fullness
722  * status of the given page.
723  */
724 static enum fullness_group get_fullness_group(struct size_class *class,
725                                                 struct zspage *zspage)
726 {
727         int inuse, objs_per_zspage;
728         enum fullness_group fg;
729
730         inuse = get_zspage_inuse(zspage);
731         objs_per_zspage = class->objs_per_zspage;
732
733         if (inuse == 0)
734                 fg = ZS_EMPTY;
735         else if (inuse == objs_per_zspage)
736                 fg = ZS_FULL;
737         else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
738                 fg = ZS_ALMOST_EMPTY;
739         else
740                 fg = ZS_ALMOST_FULL;
741
742         return fg;
743 }
744
745 /*
746  * Each size class maintains various freelists and zspages are assigned
747  * to one of these freelists based on the number of live objects they
748  * have. This functions inserts the given zspage into the freelist
749  * identified by <class, fullness_group>.
750  */
751 static void insert_zspage(struct size_class *class,
752                                 struct zspage *zspage,
753                                 enum fullness_group fullness)
754 {
755         struct zspage *head;
756
757         zs_stat_inc(class, fullness, 1);
758         head = list_first_entry_or_null(&class->fullness_list[fullness],
759                                         struct zspage, list);
760         /*
761          * We want to see more ZS_FULL pages and less almost empty/full.
762          * Put pages with higher ->inuse first.
763          */
764         if (head) {
765                 if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) {
766                         list_add(&zspage->list, &head->list);
767                         return;
768                 }
769         }
770         list_add(&zspage->list, &class->fullness_list[fullness]);
771 }
772
773 /*
774  * This function removes the given zspage from the freelist identified
775  * by <class, fullness_group>.
776  */
777 static void remove_zspage(struct size_class *class,
778                                 struct zspage *zspage,
779                                 enum fullness_group fullness)
780 {
781         VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
782         VM_BUG_ON(is_zspage_isolated(zspage));
783
784         list_del_init(&zspage->list);
785         zs_stat_dec(class, fullness, 1);
786 }
787
788 /*
789  * Each size class maintains zspages in different fullness groups depending
790  * on the number of live objects they contain. When allocating or freeing
791  * objects, the fullness status of the page can change, say, from ALMOST_FULL
792  * to ALMOST_EMPTY when freeing an object. This function checks if such
793  * a status change has occurred for the given page and accordingly moves the
794  * page from the freelist of the old fullness group to that of the new
795  * fullness group.
796  */
797 static enum fullness_group fix_fullness_group(struct size_class *class,
798                                                 struct zspage *zspage)
799 {
800         int class_idx;
801         enum fullness_group currfg, newfg;
802
803         get_zspage_mapping(zspage, &class_idx, &currfg);
804         newfg = get_fullness_group(class, zspage);
805         if (newfg == currfg)
806                 goto out;
807
808         if (!is_zspage_isolated(zspage)) {
809                 remove_zspage(class, zspage, currfg);
810                 insert_zspage(class, zspage, newfg);
811         }
812
813         set_zspage_mapping(zspage, class_idx, newfg);
814
815 out:
816         return newfg;
817 }
818
819 /*
820  * We have to decide on how many pages to link together
821  * to form a zspage for each size class. This is important
822  * to reduce wastage due to unusable space left at end of
823  * each zspage which is given as:
824  *     wastage = Zp % class_size
825  *     usage = Zp - wastage
826  * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
827  *
828  * For example, for size class of 3/8 * PAGE_SIZE, we should
829  * link together 3 PAGE_SIZE sized pages to form a zspage
830  * since then we can perfectly fit in 8 such objects.
831  */
832 static int get_pages_per_zspage(int class_size)
833 {
834         int i, max_usedpc = 0;
835         /* zspage order which gives maximum used size per KB */
836         int max_usedpc_order = 1;
837
838         for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
839                 int zspage_size;
840                 int waste, usedpc;
841
842                 zspage_size = i * PAGE_SIZE;
843                 waste = zspage_size % class_size;
844                 usedpc = (zspage_size - waste) * 100 / zspage_size;
845
846                 if (usedpc > max_usedpc) {
847                         max_usedpc = usedpc;
848                         max_usedpc_order = i;
849                 }
850         }
851
852         return max_usedpc_order;
853 }
854
855 static struct zspage *get_zspage(struct page *page)
856 {
857         struct zspage *zspage = (struct zspage *)page->private;
858
859         BUG_ON(zspage->magic != ZSPAGE_MAGIC);
860         return zspage;
861 }
862
863 static struct page *get_next_page(struct page *page)
864 {
865         if (unlikely(PageHugeObject(page)))
866                 return NULL;
867
868         return page->freelist;
869 }
870
871 /**
872  * obj_to_location - get (<page>, <obj_idx>) from encoded object value
873  * @page: page object resides in zspage
874  * @obj_idx: object index
875  */
876 static void obj_to_location(unsigned long obj, struct page **page,
877                                 unsigned int *obj_idx)
878 {
879         obj >>= OBJ_TAG_BITS;
880         *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
881         *obj_idx = (obj & OBJ_INDEX_MASK);
882 }
883
884 /**
885  * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
886  * @page: page object resides in zspage
887  * @obj_idx: object index
888  */
889 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
890 {
891         unsigned long obj;
892
893         obj = page_to_pfn(page) << OBJ_INDEX_BITS;
894         obj |= obj_idx & OBJ_INDEX_MASK;
895         obj <<= OBJ_TAG_BITS;
896
897         return obj;
898 }
899
900 static unsigned long handle_to_obj(unsigned long handle)
901 {
902         return *(unsigned long *)handle;
903 }
904
905 static unsigned long obj_to_head(struct page *page, void *obj)
906 {
907         if (unlikely(PageHugeObject(page))) {
908                 VM_BUG_ON_PAGE(!is_first_page(page), page);
909                 return page->index;
910         } else
911                 return *(unsigned long *)obj;
912 }
913
914 static inline int testpin_tag(unsigned long handle)
915 {
916         return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle);
917 }
918
919 static inline int trypin_tag(unsigned long handle)
920 {
921         return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
922 }
923
924 static void pin_tag(unsigned long handle)
925 {
926         bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
927 }
928
929 static void unpin_tag(unsigned long handle)
930 {
931         bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
932 }
933
934 static void reset_page(struct page *page)
935 {
936         __ClearPageMovable(page);
937         ClearPagePrivate(page);
938         set_page_private(page, 0);
939         page_mapcount_reset(page);
940         ClearPageHugeObject(page);
941         page->freelist = NULL;
942 }
943
944 /*
945  * To prevent zspage destroy during migration, zspage freeing should
946  * hold locks of all pages in the zspage.
947  */
948 void lock_zspage(struct zspage *zspage)
949 {
950         struct page *page = get_first_page(zspage);
951
952         do {
953                 lock_page(page);
954         } while ((page = get_next_page(page)) != NULL);
955 }
956
957 int trylock_zspage(struct zspage *zspage)
958 {
959         struct page *cursor, *fail;
960
961         for (cursor = get_first_page(zspage); cursor != NULL; cursor =
962                                         get_next_page(cursor)) {
963                 if (!trylock_page(cursor)) {
964                         fail = cursor;
965                         goto unlock;
966                 }
967         }
968
969         return 1;
970 unlock:
971         for (cursor = get_first_page(zspage); cursor != fail; cursor =
972                                         get_next_page(cursor))
973                 unlock_page(cursor);
974
975         return 0;
976 }
977
978 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
979                                 struct zspage *zspage)
980 {
981         struct page *page, *next;
982         enum fullness_group fg;
983         unsigned int class_idx;
984
985         get_zspage_mapping(zspage, &class_idx, &fg);
986
987         assert_spin_locked(&class->lock);
988
989         VM_BUG_ON(get_zspage_inuse(zspage));
990         VM_BUG_ON(fg != ZS_EMPTY);
991
992         next = page = get_first_page(zspage);
993         do {
994                 VM_BUG_ON_PAGE(!PageLocked(page), page);
995                 next = get_next_page(page);
996                 reset_page(page);
997                 unlock_page(page);
998                 dec_zone_page_state(page, NR_ZSPAGES);
999                 put_page(page);
1000                 page = next;
1001         } while (page != NULL);
1002
1003         cache_free_zspage(pool, zspage);
1004
1005         zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
1006         atomic_long_sub(class->pages_per_zspage,
1007                                         &pool->pages_allocated);
1008 }
1009
1010 static void free_zspage(struct zs_pool *pool, struct size_class *class,
1011                                 struct zspage *zspage)
1012 {
1013         VM_BUG_ON(get_zspage_inuse(zspage));
1014         VM_BUG_ON(list_empty(&zspage->list));
1015
1016         if (!trylock_zspage(zspage)) {
1017                 kick_deferred_free(pool);
1018                 return;
1019         }
1020
1021         remove_zspage(class, zspage, ZS_EMPTY);
1022         __free_zspage(pool, class, zspage);
1023 }
1024
1025 /* Initialize a newly allocated zspage */
1026 static void init_zspage(struct size_class *class, struct zspage *zspage)
1027 {
1028         unsigned int freeobj = 1;
1029         unsigned long off = 0;
1030         struct page *page = get_first_page(zspage);
1031
1032         while (page) {
1033                 struct page *next_page;
1034                 struct link_free *link;
1035                 void *vaddr;
1036
1037                 set_first_obj_offset(page, off);
1038
1039                 vaddr = kmap_atomic(page);
1040                 link = (struct link_free *)vaddr + off / sizeof(*link);
1041
1042                 while ((off += class->size) < PAGE_SIZE) {
1043                         link->next = freeobj++ << OBJ_TAG_BITS;
1044                         link += class->size / sizeof(*link);
1045                 }
1046
1047                 /*
1048                  * We now come to the last (full or partial) object on this
1049                  * page, which must point to the first object on the next
1050                  * page (if present)
1051                  */
1052                 next_page = get_next_page(page);
1053                 if (next_page) {
1054                         link->next = freeobj++ << OBJ_TAG_BITS;
1055                 } else {
1056                         /*
1057                          * Reset OBJ_TAG_BITS bit to last link to tell
1058                          * whether it's allocated object or not.
1059                          */
1060                         link->next = -1 << OBJ_TAG_BITS;
1061                 }
1062                 kunmap_atomic(vaddr);
1063                 page = next_page;
1064                 off %= PAGE_SIZE;
1065         }
1066
1067         set_freeobj(zspage, 0);
1068 }
1069
1070 static void create_page_chain(struct size_class *class, struct zspage *zspage,
1071                                 struct page *pages[])
1072 {
1073         int i;
1074         struct page *page;
1075         struct page *prev_page = NULL;
1076         int nr_pages = class->pages_per_zspage;
1077
1078         /*
1079          * Allocate individual pages and link them together as:
1080          * 1. all pages are linked together using page->freelist
1081          * 2. each sub-page point to zspage using page->private
1082          *
1083          * we set PG_private to identify the first page (i.e. no other sub-page
1084          * has this flag set).
1085          */
1086         for (i = 0; i < nr_pages; i++) {
1087                 page = pages[i];
1088                 set_page_private(page, (unsigned long)zspage);
1089                 page->freelist = NULL;
1090                 if (i == 0) {
1091                         zspage->first_page = page;
1092                         SetPagePrivate(page);
1093                         if (unlikely(class->objs_per_zspage == 1 &&
1094                                         class->pages_per_zspage == 1))
1095                                 SetPageHugeObject(page);
1096                 } else {
1097                         prev_page->freelist = page;
1098                 }
1099                 prev_page = page;
1100         }
1101 }
1102
1103 /*
1104  * Allocate a zspage for the given size class
1105  */
1106 static struct zspage *alloc_zspage(struct zs_pool *pool,
1107                                         struct size_class *class,
1108                                         gfp_t gfp)
1109 {
1110         int i;
1111         struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1112         struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1113
1114         if (!zspage)
1115                 return NULL;
1116
1117         memset(zspage, 0, sizeof(struct zspage));
1118         zspage->magic = ZSPAGE_MAGIC;
1119         migrate_lock_init(zspage);
1120
1121         for (i = 0; i < class->pages_per_zspage; i++) {
1122                 struct page *page;
1123
1124                 page = alloc_page(gfp);
1125                 if (!page) {
1126                         while (--i >= 0) {
1127                                 dec_zone_page_state(pages[i], NR_ZSPAGES);
1128                                 __free_page(pages[i]);
1129                         }
1130                         cache_free_zspage(pool, zspage);
1131                         return NULL;
1132                 }
1133
1134                 inc_zone_page_state(page, NR_ZSPAGES);
1135                 pages[i] = page;
1136         }
1137
1138         create_page_chain(class, zspage, pages);
1139         init_zspage(class, zspage);
1140
1141         return zspage;
1142 }
1143
1144 static struct zspage *find_get_zspage(struct size_class *class)
1145 {
1146         int i;
1147         struct zspage *zspage;
1148
1149         for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1150                 zspage = list_first_entry_or_null(&class->fullness_list[i],
1151                                 struct zspage, list);
1152                 if (zspage)
1153                         break;
1154         }
1155
1156         return zspage;
1157 }
1158
1159 #ifdef CONFIG_PGTABLE_MAPPING
1160 static inline int __zs_cpu_up(struct mapping_area *area)
1161 {
1162         /*
1163          * Make sure we don't leak memory if a cpu UP notification
1164          * and zs_init() race and both call zs_cpu_up() on the same cpu
1165          */
1166         if (area->vm)
1167                 return 0;
1168         area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1169         if (!area->vm)
1170                 return -ENOMEM;
1171         return 0;
1172 }
1173
1174 static inline void __zs_cpu_down(struct mapping_area *area)
1175 {
1176         if (area->vm)
1177                 free_vm_area(area->vm);
1178         area->vm = NULL;
1179 }
1180
1181 static inline void *__zs_map_object(struct mapping_area *area,
1182                                 struct page *pages[2], int off, int size)
1183 {
1184         BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
1185         area->vm_addr = area->vm->addr;
1186         return area->vm_addr + off;
1187 }
1188
1189 static inline void __zs_unmap_object(struct mapping_area *area,
1190                                 struct page *pages[2], int off, int size)
1191 {
1192         unsigned long addr = (unsigned long)area->vm_addr;
1193
1194         unmap_kernel_range(addr, PAGE_SIZE * 2);
1195 }
1196
1197 #else /* CONFIG_PGTABLE_MAPPING */
1198
1199 static inline int __zs_cpu_up(struct mapping_area *area)
1200 {
1201         /*
1202          * Make sure we don't leak memory if a cpu UP notification
1203          * and zs_init() race and both call zs_cpu_up() on the same cpu
1204          */
1205         if (area->vm_buf)
1206                 return 0;
1207         area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1208         if (!area->vm_buf)
1209                 return -ENOMEM;
1210         return 0;
1211 }
1212
1213 static inline void __zs_cpu_down(struct mapping_area *area)
1214 {
1215         kfree(area->vm_buf);
1216         area->vm_buf = NULL;
1217 }
1218
1219 static void *__zs_map_object(struct mapping_area *area,
1220                         struct page *pages[2], int off, int size)
1221 {
1222         int sizes[2];
1223         void *addr;
1224         char *buf = area->vm_buf;
1225
1226         /* disable page faults to match kmap_atomic() return conditions */
1227         pagefault_disable();
1228
1229         /* no read fastpath */
1230         if (area->vm_mm == ZS_MM_WO)
1231                 goto out;
1232
1233         sizes[0] = PAGE_SIZE - off;
1234         sizes[1] = size - sizes[0];
1235
1236         /* copy object to per-cpu buffer */
1237         addr = kmap_atomic(pages[0]);
1238         memcpy(buf, addr + off, sizes[0]);
1239         kunmap_atomic(addr);
1240         addr = kmap_atomic(pages[1]);
1241         memcpy(buf + sizes[0], addr, sizes[1]);
1242         kunmap_atomic(addr);
1243 out:
1244         return area->vm_buf;
1245 }
1246
1247 static void __zs_unmap_object(struct mapping_area *area,
1248                         struct page *pages[2], int off, int size)
1249 {
1250         int sizes[2];
1251         void *addr;
1252         char *buf;
1253
1254         /* no write fastpath */
1255         if (area->vm_mm == ZS_MM_RO)
1256                 goto out;
1257
1258         buf = area->vm_buf;
1259         buf = buf + ZS_HANDLE_SIZE;
1260         size -= ZS_HANDLE_SIZE;
1261         off += ZS_HANDLE_SIZE;
1262
1263         sizes[0] = PAGE_SIZE - off;
1264         sizes[1] = size - sizes[0];
1265
1266         /* copy per-cpu buffer to object */
1267         addr = kmap_atomic(pages[0]);
1268         memcpy(addr + off, buf, sizes[0]);
1269         kunmap_atomic(addr);
1270         addr = kmap_atomic(pages[1]);
1271         memcpy(addr, buf + sizes[0], sizes[1]);
1272         kunmap_atomic(addr);
1273
1274 out:
1275         /* enable page faults to match kunmap_atomic() return conditions */
1276         pagefault_enable();
1277 }
1278
1279 #endif /* CONFIG_PGTABLE_MAPPING */
1280
1281 static int zs_cpu_prepare(unsigned int cpu)
1282 {
1283         struct mapping_area *area;
1284
1285         area = &per_cpu(zs_map_area, cpu);
1286         return __zs_cpu_up(area);
1287 }
1288
1289 static int zs_cpu_dead(unsigned int cpu)
1290 {
1291         struct mapping_area *area;
1292
1293         area = &per_cpu(zs_map_area, cpu);
1294         __zs_cpu_down(area);
1295         return 0;
1296 }
1297
1298 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1299                                         int objs_per_zspage)
1300 {
1301         if (prev->pages_per_zspage == pages_per_zspage &&
1302                 prev->objs_per_zspage == objs_per_zspage)
1303                 return true;
1304
1305         return false;
1306 }
1307
1308 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1309 {
1310         return get_zspage_inuse(zspage) == class->objs_per_zspage;
1311 }
1312
1313 unsigned long zs_get_total_pages(struct zs_pool *pool)
1314 {
1315         return atomic_long_read(&pool->pages_allocated);
1316 }
1317 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1318
1319 /**
1320  * zs_map_object - get address of allocated object from handle.
1321  * @pool: pool from which the object was allocated
1322  * @handle: handle returned from zs_malloc
1323  *
1324  * Before using an object allocated from zs_malloc, it must be mapped using
1325  * this function. When done with the object, it must be unmapped using
1326  * zs_unmap_object.
1327  *
1328  * Only one object can be mapped per cpu at a time. There is no protection
1329  * against nested mappings.
1330  *
1331  * This function returns with preemption and page faults disabled.
1332  */
1333 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1334                         enum zs_mapmode mm)
1335 {
1336         struct zspage *zspage;
1337         struct page *page;
1338         unsigned long obj, off;
1339         unsigned int obj_idx;
1340
1341         unsigned int class_idx;
1342         enum fullness_group fg;
1343         struct size_class *class;
1344         struct mapping_area *area;
1345         struct page *pages[2];
1346         void *ret;
1347
1348         /*
1349          * Because we use per-cpu mapping areas shared among the
1350          * pools/users, we can't allow mapping in interrupt context
1351          * because it can corrupt another users mappings.
1352          */
1353         BUG_ON(in_interrupt());
1354
1355         /* From now on, migration cannot move the object */
1356         pin_tag(handle);
1357
1358         obj = handle_to_obj(handle);
1359         obj_to_location(obj, &page, &obj_idx);
1360         zspage = get_zspage(page);
1361
1362         /* migration cannot move any subpage in this zspage */
1363         migrate_read_lock(zspage);
1364
1365         get_zspage_mapping(zspage, &class_idx, &fg);
1366         class = pool->size_class[class_idx];
1367         off = (class->size * obj_idx) & ~PAGE_MASK;
1368
1369         area = &get_cpu_var(zs_map_area);
1370         area->vm_mm = mm;
1371         if (off + class->size <= PAGE_SIZE) {
1372                 /* this object is contained entirely within a page */
1373                 area->vm_addr = kmap_atomic(page);
1374                 ret = area->vm_addr + off;
1375                 goto out;
1376         }
1377
1378         /* this object spans two pages */
1379         pages[0] = page;
1380         pages[1] = get_next_page(page);
1381         BUG_ON(!pages[1]);
1382
1383         ret = __zs_map_object(area, pages, off, class->size);
1384 out:
1385         if (likely(!PageHugeObject(page)))
1386                 ret += ZS_HANDLE_SIZE;
1387
1388         return ret;
1389 }
1390 EXPORT_SYMBOL_GPL(zs_map_object);
1391
1392 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1393 {
1394         struct zspage *zspage;
1395         struct page *page;
1396         unsigned long obj, off;
1397         unsigned int obj_idx;
1398
1399         unsigned int class_idx;
1400         enum fullness_group fg;
1401         struct size_class *class;
1402         struct mapping_area *area;
1403
1404         obj = handle_to_obj(handle);
1405         obj_to_location(obj, &page, &obj_idx);
1406         zspage = get_zspage(page);
1407         get_zspage_mapping(zspage, &class_idx, &fg);
1408         class = pool->size_class[class_idx];
1409         off = (class->size * obj_idx) & ~PAGE_MASK;
1410
1411         area = this_cpu_ptr(&zs_map_area);
1412         if (off + class->size <= PAGE_SIZE)
1413                 kunmap_atomic(area->vm_addr);
1414         else {
1415                 struct page *pages[2];
1416
1417                 pages[0] = page;
1418                 pages[1] = get_next_page(page);
1419                 BUG_ON(!pages[1]);
1420
1421                 __zs_unmap_object(area, pages, off, class->size);
1422         }
1423         put_cpu_var(zs_map_area);
1424
1425         migrate_read_unlock(zspage);
1426         unpin_tag(handle);
1427 }
1428 EXPORT_SYMBOL_GPL(zs_unmap_object);
1429
1430 static unsigned long obj_malloc(struct size_class *class,
1431                                 struct zspage *zspage, unsigned long handle)
1432 {
1433         int i, nr_page, offset;
1434         unsigned long obj;
1435         struct link_free *link;
1436
1437         struct page *m_page;
1438         unsigned long m_offset;
1439         void *vaddr;
1440
1441         handle |= OBJ_ALLOCATED_TAG;
1442         obj = get_freeobj(zspage);
1443
1444         offset = obj * class->size;
1445         nr_page = offset >> PAGE_SHIFT;
1446         m_offset = offset & ~PAGE_MASK;
1447         m_page = get_first_page(zspage);
1448
1449         for (i = 0; i < nr_page; i++)
1450                 m_page = get_next_page(m_page);
1451
1452         vaddr = kmap_atomic(m_page);
1453         link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1454         set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1455         if (likely(!PageHugeObject(m_page)))
1456                 /* record handle in the header of allocated chunk */
1457                 link->handle = handle;
1458         else
1459                 /* record handle to page->index */
1460                 zspage->first_page->index = handle;
1461
1462         kunmap_atomic(vaddr);
1463         mod_zspage_inuse(zspage, 1);
1464         zs_stat_inc(class, OBJ_USED, 1);
1465
1466         obj = location_to_obj(m_page, obj);
1467
1468         return obj;
1469 }
1470
1471
1472 /**
1473  * zs_malloc - Allocate block of given size from pool.
1474  * @pool: pool to allocate from
1475  * @size: size of block to allocate
1476  * @gfp: gfp flags when allocating object
1477  *
1478  * On success, handle to the allocated object is returned,
1479  * otherwise 0.
1480  * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1481  */
1482 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1483 {
1484         unsigned long handle, obj;
1485         struct size_class *class;
1486         enum fullness_group newfg;
1487         struct zspage *zspage;
1488
1489         if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1490                 return 0;
1491
1492         handle = cache_alloc_handle(pool, gfp);
1493         if (!handle)
1494                 return 0;
1495
1496         /* extra space in chunk to keep the handle */
1497         size += ZS_HANDLE_SIZE;
1498         class = pool->size_class[get_size_class_index(size)];
1499
1500         spin_lock(&class->lock);
1501         zspage = find_get_zspage(class);
1502         if (likely(zspage)) {
1503                 obj = obj_malloc(class, zspage, handle);
1504                 /* Now move the zspage to another fullness group, if required */
1505                 fix_fullness_group(class, zspage);
1506                 record_obj(handle, obj);
1507                 spin_unlock(&class->lock);
1508
1509                 return handle;
1510         }
1511
1512         spin_unlock(&class->lock);
1513
1514         zspage = alloc_zspage(pool, class, gfp);
1515         if (!zspage) {
1516                 cache_free_handle(pool, handle);
1517                 return 0;
1518         }
1519
1520         spin_lock(&class->lock);
1521         obj = obj_malloc(class, zspage, handle);
1522         newfg = get_fullness_group(class, zspage);
1523         insert_zspage(class, zspage, newfg);
1524         set_zspage_mapping(zspage, class->index, newfg);
1525         record_obj(handle, obj);
1526         atomic_long_add(class->pages_per_zspage,
1527                                 &pool->pages_allocated);
1528         zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
1529
1530         /* We completely set up zspage so mark them as movable */
1531         SetZsPageMovable(pool, zspage);
1532         spin_unlock(&class->lock);
1533
1534         return handle;
1535 }
1536 EXPORT_SYMBOL_GPL(zs_malloc);
1537
1538 static void obj_free(struct size_class *class, unsigned long obj)
1539 {
1540         struct link_free *link;
1541         struct zspage *zspage;
1542         struct page *f_page;
1543         unsigned long f_offset;
1544         unsigned int f_objidx;
1545         void *vaddr;
1546
1547         obj &= ~OBJ_ALLOCATED_TAG;
1548         obj_to_location(obj, &f_page, &f_objidx);
1549         f_offset = (class->size * f_objidx) & ~PAGE_MASK;
1550         zspage = get_zspage(f_page);
1551
1552         vaddr = kmap_atomic(f_page);
1553
1554         /* Insert this object in containing zspage's freelist */
1555         link = (struct link_free *)(vaddr + f_offset);
1556         link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1557         kunmap_atomic(vaddr);
1558         set_freeobj(zspage, f_objidx);
1559         mod_zspage_inuse(zspage, -1);
1560         zs_stat_dec(class, OBJ_USED, 1);
1561 }
1562
1563 void zs_free(struct zs_pool *pool, unsigned long handle)
1564 {
1565         struct zspage *zspage;
1566         struct page *f_page;
1567         unsigned long obj;
1568         unsigned int f_objidx;
1569         int class_idx;
1570         struct size_class *class;
1571         enum fullness_group fullness;
1572         bool isolated;
1573
1574         if (unlikely(!handle))
1575                 return;
1576
1577         pin_tag(handle);
1578         obj = handle_to_obj(handle);
1579         obj_to_location(obj, &f_page, &f_objidx);
1580         zspage = get_zspage(f_page);
1581
1582         migrate_read_lock(zspage);
1583
1584         get_zspage_mapping(zspage, &class_idx, &fullness);
1585         class = pool->size_class[class_idx];
1586
1587         spin_lock(&class->lock);
1588         obj_free(class, obj);
1589         fullness = fix_fullness_group(class, zspage);
1590         if (fullness != ZS_EMPTY) {
1591                 migrate_read_unlock(zspage);
1592                 goto out;
1593         }
1594
1595         isolated = is_zspage_isolated(zspage);
1596         migrate_read_unlock(zspage);
1597         /* If zspage is isolated, zs_page_putback will free the zspage */
1598         if (likely(!isolated))
1599                 free_zspage(pool, class, zspage);
1600 out:
1601
1602         spin_unlock(&class->lock);
1603         unpin_tag(handle);
1604         cache_free_handle(pool, handle);
1605 }
1606 EXPORT_SYMBOL_GPL(zs_free);
1607
1608 static void zs_object_copy(struct size_class *class, unsigned long dst,
1609                                 unsigned long src)
1610 {
1611         struct page *s_page, *d_page;
1612         unsigned int s_objidx, d_objidx;
1613         unsigned long s_off, d_off;
1614         void *s_addr, *d_addr;
1615         int s_size, d_size, size;
1616         int written = 0;
1617
1618         s_size = d_size = class->size;
1619
1620         obj_to_location(src, &s_page, &s_objidx);
1621         obj_to_location(dst, &d_page, &d_objidx);
1622
1623         s_off = (class->size * s_objidx) & ~PAGE_MASK;
1624         d_off = (class->size * d_objidx) & ~PAGE_MASK;
1625
1626         if (s_off + class->size > PAGE_SIZE)
1627                 s_size = PAGE_SIZE - s_off;
1628
1629         if (d_off + class->size > PAGE_SIZE)
1630                 d_size = PAGE_SIZE - d_off;
1631
1632         s_addr = kmap_atomic(s_page);
1633         d_addr = kmap_atomic(d_page);
1634
1635         while (1) {
1636                 size = min(s_size, d_size);
1637                 memcpy(d_addr + d_off, s_addr + s_off, size);
1638                 written += size;
1639
1640                 if (written == class->size)
1641                         break;
1642
1643                 s_off += size;
1644                 s_size -= size;
1645                 d_off += size;
1646                 d_size -= size;
1647
1648                 if (s_off >= PAGE_SIZE) {
1649                         kunmap_atomic(d_addr);
1650                         kunmap_atomic(s_addr);
1651                         s_page = get_next_page(s_page);
1652                         s_addr = kmap_atomic(s_page);
1653                         d_addr = kmap_atomic(d_page);
1654                         s_size = class->size - written;
1655                         s_off = 0;
1656                 }
1657
1658                 if (d_off >= PAGE_SIZE) {
1659                         kunmap_atomic(d_addr);
1660                         d_page = get_next_page(d_page);
1661                         d_addr = kmap_atomic(d_page);
1662                         d_size = class->size - written;
1663                         d_off = 0;
1664                 }
1665         }
1666
1667         kunmap_atomic(d_addr);
1668         kunmap_atomic(s_addr);
1669 }
1670
1671 /*
1672  * Find alloced object in zspage from index object and
1673  * return handle.
1674  */
1675 static unsigned long find_alloced_obj(struct size_class *class,
1676                                         struct page *page, int *obj_idx)
1677 {
1678         unsigned long head;
1679         int offset = 0;
1680         int index = *obj_idx;
1681         unsigned long handle = 0;
1682         void *addr = kmap_atomic(page);
1683
1684         offset = get_first_obj_offset(page);
1685         offset += class->size * index;
1686
1687         while (offset < PAGE_SIZE) {
1688                 head = obj_to_head(page, addr + offset);
1689                 if (head & OBJ_ALLOCATED_TAG) {
1690                         handle = head & ~OBJ_ALLOCATED_TAG;
1691                         if (trypin_tag(handle))
1692                                 break;
1693                         handle = 0;
1694                 }
1695
1696                 offset += class->size;
1697                 index++;
1698         }
1699
1700         kunmap_atomic(addr);
1701
1702         *obj_idx = index;
1703
1704         return handle;
1705 }
1706
1707 struct zs_compact_control {
1708         /* Source spage for migration which could be a subpage of zspage */
1709         struct page *s_page;
1710         /* Destination page for migration which should be a first page
1711          * of zspage. */
1712         struct page *d_page;
1713          /* Starting object index within @s_page which used for live object
1714           * in the subpage. */
1715         int obj_idx;
1716 };
1717
1718 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1719                                 struct zs_compact_control *cc)
1720 {
1721         unsigned long used_obj, free_obj;
1722         unsigned long handle;
1723         struct page *s_page = cc->s_page;
1724         struct page *d_page = cc->d_page;
1725         int obj_idx = cc->obj_idx;
1726         int ret = 0;
1727
1728         while (1) {
1729                 handle = find_alloced_obj(class, s_page, &obj_idx);
1730                 if (!handle) {
1731                         s_page = get_next_page(s_page);
1732                         if (!s_page)
1733                                 break;
1734                         obj_idx = 0;
1735                         continue;
1736                 }
1737
1738                 /* Stop if there is no more space */
1739                 if (zspage_full(class, get_zspage(d_page))) {
1740                         unpin_tag(handle);
1741                         ret = -ENOMEM;
1742                         break;
1743                 }
1744
1745                 used_obj = handle_to_obj(handle);
1746                 free_obj = obj_malloc(class, get_zspage(d_page), handle);
1747                 zs_object_copy(class, free_obj, used_obj);
1748                 obj_idx++;
1749                 /*
1750                  * record_obj updates handle's value to free_obj and it will
1751                  * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1752                  * breaks synchronization using pin_tag(e,g, zs_free) so
1753                  * let's keep the lock bit.
1754                  */
1755                 free_obj |= BIT(HANDLE_PIN_BIT);
1756                 record_obj(handle, free_obj);
1757                 unpin_tag(handle);
1758                 obj_free(class, used_obj);
1759         }
1760
1761         /* Remember last position in this iteration */
1762         cc->s_page = s_page;
1763         cc->obj_idx = obj_idx;
1764
1765         return ret;
1766 }
1767
1768 static struct zspage *isolate_zspage(struct size_class *class, bool source)
1769 {
1770         int i;
1771         struct zspage *zspage;
1772         enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1773
1774         if (!source) {
1775                 fg[0] = ZS_ALMOST_FULL;
1776                 fg[1] = ZS_ALMOST_EMPTY;
1777         }
1778
1779         for (i = 0; i < 2; i++) {
1780                 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1781                                                         struct zspage, list);
1782                 if (zspage) {
1783                         VM_BUG_ON(is_zspage_isolated(zspage));
1784                         remove_zspage(class, zspage, fg[i]);
1785                         return zspage;
1786                 }
1787         }
1788
1789         return zspage;
1790 }
1791
1792 /*
1793  * putback_zspage - add @zspage into right class's fullness list
1794  * @class: destination class
1795  * @zspage: target page
1796  *
1797  * Return @zspage's fullness_group
1798  */
1799 static enum fullness_group putback_zspage(struct size_class *class,
1800                         struct zspage *zspage)
1801 {
1802         enum fullness_group fullness;
1803
1804         VM_BUG_ON(is_zspage_isolated(zspage));
1805
1806         fullness = get_fullness_group(class, zspage);
1807         insert_zspage(class, zspage, fullness);
1808         set_zspage_mapping(zspage, class->index, fullness);
1809
1810         return fullness;
1811 }
1812
1813 #ifdef CONFIG_COMPACTION
1814 static struct dentry *zs_mount(struct file_system_type *fs_type,
1815                                 int flags, const char *dev_name, void *data)
1816 {
1817         static const struct dentry_operations ops = {
1818                 .d_dname = simple_dname,
1819         };
1820
1821         return mount_pseudo(fs_type, "zsmalloc:", NULL, &ops, ZSMALLOC_MAGIC);
1822 }
1823
1824 static struct file_system_type zsmalloc_fs = {
1825         .name           = "zsmalloc",
1826         .mount          = zs_mount,
1827         .kill_sb        = kill_anon_super,
1828 };
1829
1830 static int zsmalloc_mount(void)
1831 {
1832         int ret = 0;
1833
1834         zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1835         if (IS_ERR(zsmalloc_mnt))
1836                 ret = PTR_ERR(zsmalloc_mnt);
1837
1838         return ret;
1839 }
1840
1841 static void zsmalloc_unmount(void)
1842 {
1843         kern_unmount(zsmalloc_mnt);
1844 }
1845
1846 static void migrate_lock_init(struct zspage *zspage)
1847 {
1848         rwlock_init(&zspage->lock);
1849 }
1850
1851 static void migrate_read_lock(struct zspage *zspage)
1852 {
1853         read_lock(&zspage->lock);
1854 }
1855
1856 static void migrate_read_unlock(struct zspage *zspage)
1857 {
1858         read_unlock(&zspage->lock);
1859 }
1860
1861 static void migrate_write_lock(struct zspage *zspage)
1862 {
1863         write_lock(&zspage->lock);
1864 }
1865
1866 static void migrate_write_unlock(struct zspage *zspage)
1867 {
1868         write_unlock(&zspage->lock);
1869 }
1870
1871 /* Number of isolated subpage for *page migration* in this zspage */
1872 static void inc_zspage_isolation(struct zspage *zspage)
1873 {
1874         zspage->isolated++;
1875 }
1876
1877 static void dec_zspage_isolation(struct zspage *zspage)
1878 {
1879         zspage->isolated--;
1880 }
1881
1882 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1883                                 struct page *newpage, struct page *oldpage)
1884 {
1885         struct page *page;
1886         struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1887         int idx = 0;
1888
1889         page = get_first_page(zspage);
1890         do {
1891                 if (page == oldpage)
1892                         pages[idx] = newpage;
1893                 else
1894                         pages[idx] = page;
1895                 idx++;
1896         } while ((page = get_next_page(page)) != NULL);
1897
1898         create_page_chain(class, zspage, pages);
1899         set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1900         if (unlikely(PageHugeObject(oldpage)))
1901                 newpage->index = oldpage->index;
1902         __SetPageMovable(newpage, page_mapping(oldpage));
1903 }
1904
1905 bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1906 {
1907         struct zs_pool *pool;
1908         struct size_class *class;
1909         int class_idx;
1910         enum fullness_group fullness;
1911         struct zspage *zspage;
1912         struct address_space *mapping;
1913
1914         /*
1915          * Page is locked so zspage couldn't be destroyed. For detail, look at
1916          * lock_zspage in free_zspage.
1917          */
1918         VM_BUG_ON_PAGE(!PageMovable(page), page);
1919         VM_BUG_ON_PAGE(PageIsolated(page), page);
1920
1921         zspage = get_zspage(page);
1922
1923         /*
1924          * Without class lock, fullness could be stale while class_idx is okay
1925          * because class_idx is constant unless page is freed so we should get
1926          * fullness again under class lock.
1927          */
1928         get_zspage_mapping(zspage, &class_idx, &fullness);
1929         mapping = page_mapping(page);
1930         pool = mapping->private_data;
1931         class = pool->size_class[class_idx];
1932
1933         spin_lock(&class->lock);
1934         if (get_zspage_inuse(zspage) == 0) {
1935                 spin_unlock(&class->lock);
1936                 return false;
1937         }
1938
1939         /* zspage is isolated for object migration */
1940         if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1941                 spin_unlock(&class->lock);
1942                 return false;
1943         }
1944
1945         /*
1946          * If this is first time isolation for the zspage, isolate zspage from
1947          * size_class to prevent further object allocation from the zspage.
1948          */
1949         if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1950                 get_zspage_mapping(zspage, &class_idx, &fullness);
1951                 remove_zspage(class, zspage, fullness);
1952         }
1953
1954         inc_zspage_isolation(zspage);
1955         spin_unlock(&class->lock);
1956
1957         return true;
1958 }
1959
1960 int zs_page_migrate(struct address_space *mapping, struct page *newpage,
1961                 struct page *page, enum migrate_mode mode)
1962 {
1963         struct zs_pool *pool;
1964         struct size_class *class;
1965         int class_idx;
1966         enum fullness_group fullness;
1967         struct zspage *zspage;
1968         struct page *dummy;
1969         void *s_addr, *d_addr, *addr;
1970         int offset, pos;
1971         unsigned long handle, head;
1972         unsigned long old_obj, new_obj;
1973         unsigned int obj_idx;
1974         int ret = -EAGAIN;
1975
1976         /*
1977          * We cannot support the _NO_COPY case here, because copy needs to
1978          * happen under the zs lock, which does not work with
1979          * MIGRATE_SYNC_NO_COPY workflow.
1980          */
1981         if (mode == MIGRATE_SYNC_NO_COPY)
1982                 return -EINVAL;
1983
1984         VM_BUG_ON_PAGE(!PageMovable(page), page);
1985         VM_BUG_ON_PAGE(!PageIsolated(page), page);
1986
1987         zspage = get_zspage(page);
1988
1989         /* Concurrent compactor cannot migrate any subpage in zspage */
1990         migrate_write_lock(zspage);
1991         get_zspage_mapping(zspage, &class_idx, &fullness);
1992         pool = mapping->private_data;
1993         class = pool->size_class[class_idx];
1994         offset = get_first_obj_offset(page);
1995
1996         spin_lock(&class->lock);
1997         if (!get_zspage_inuse(zspage)) {
1998                 /*
1999                  * Set "offset" to end of the page so that every loops
2000                  * skips unnecessary object scanning.
2001                  */
2002                 offset = PAGE_SIZE;
2003         }
2004
2005         pos = offset;
2006         s_addr = kmap_atomic(page);
2007         while (pos < PAGE_SIZE) {
2008                 head = obj_to_head(page, s_addr + pos);
2009                 if (head & OBJ_ALLOCATED_TAG) {
2010                         handle = head & ~OBJ_ALLOCATED_TAG;
2011                         if (!trypin_tag(handle))
2012                                 goto unpin_objects;
2013                 }
2014                 pos += class->size;
2015         }
2016
2017         /*
2018          * Here, any user cannot access all objects in the zspage so let's move.
2019          */
2020         d_addr = kmap_atomic(newpage);
2021         memcpy(d_addr, s_addr, PAGE_SIZE);
2022         kunmap_atomic(d_addr);
2023
2024         for (addr = s_addr + offset; addr < s_addr + pos;
2025                                         addr += class->size) {
2026                 head = obj_to_head(page, addr);
2027                 if (head & OBJ_ALLOCATED_TAG) {
2028                         handle = head & ~OBJ_ALLOCATED_TAG;
2029                         if (!testpin_tag(handle))
2030                                 BUG();
2031
2032                         old_obj = handle_to_obj(handle);
2033                         obj_to_location(old_obj, &dummy, &obj_idx);
2034                         new_obj = (unsigned long)location_to_obj(newpage,
2035                                                                 obj_idx);
2036                         new_obj |= BIT(HANDLE_PIN_BIT);
2037                         record_obj(handle, new_obj);
2038                 }
2039         }
2040
2041         replace_sub_page(class, zspage, newpage, page);
2042         get_page(newpage);
2043
2044         dec_zspage_isolation(zspage);
2045
2046         /*
2047          * Page migration is done so let's putback isolated zspage to
2048          * the list if @page is final isolated subpage in the zspage.
2049          */
2050         if (!is_zspage_isolated(zspage))
2051                 putback_zspage(class, zspage);
2052
2053         reset_page(page);
2054         put_page(page);
2055         page = newpage;
2056
2057         ret = MIGRATEPAGE_SUCCESS;
2058 unpin_objects:
2059         for (addr = s_addr + offset; addr < s_addr + pos;
2060                                                 addr += class->size) {
2061                 head = obj_to_head(page, addr);
2062                 if (head & OBJ_ALLOCATED_TAG) {
2063                         handle = head & ~OBJ_ALLOCATED_TAG;
2064                         if (!testpin_tag(handle))
2065                                 BUG();
2066                         unpin_tag(handle);
2067                 }
2068         }
2069         kunmap_atomic(s_addr);
2070         spin_unlock(&class->lock);
2071         migrate_write_unlock(zspage);
2072
2073         return ret;
2074 }
2075
2076 void zs_page_putback(struct page *page)
2077 {
2078         struct zs_pool *pool;
2079         struct size_class *class;
2080         int class_idx;
2081         enum fullness_group fg;
2082         struct address_space *mapping;
2083         struct zspage *zspage;
2084
2085         VM_BUG_ON_PAGE(!PageMovable(page), page);
2086         VM_BUG_ON_PAGE(!PageIsolated(page), page);
2087
2088         zspage = get_zspage(page);
2089         get_zspage_mapping(zspage, &class_idx, &fg);
2090         mapping = page_mapping(page);
2091         pool = mapping->private_data;
2092         class = pool->size_class[class_idx];
2093
2094         spin_lock(&class->lock);
2095         dec_zspage_isolation(zspage);
2096         if (!is_zspage_isolated(zspage)) {
2097                 fg = putback_zspage(class, zspage);
2098                 /*
2099                  * Due to page_lock, we cannot free zspage immediately
2100                  * so let's defer.
2101                  */
2102                 if (fg == ZS_EMPTY)
2103                         schedule_work(&pool->free_work);
2104         }
2105         spin_unlock(&class->lock);
2106 }
2107
2108 const struct address_space_operations zsmalloc_aops = {
2109         .isolate_page = zs_page_isolate,
2110         .migratepage = zs_page_migrate,
2111         .putback_page = zs_page_putback,
2112 };
2113
2114 static int zs_register_migration(struct zs_pool *pool)
2115 {
2116         pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
2117         if (IS_ERR(pool->inode)) {
2118                 pool->inode = NULL;
2119                 return 1;
2120         }
2121
2122         pool->inode->i_mapping->private_data = pool;
2123         pool->inode->i_mapping->a_ops = &zsmalloc_aops;
2124         return 0;
2125 }
2126
2127 static void zs_unregister_migration(struct zs_pool *pool)
2128 {
2129         flush_work(&pool->free_work);
2130         iput(pool->inode);
2131 }
2132
2133 /*
2134  * Caller should hold page_lock of all pages in the zspage
2135  * In here, we cannot use zspage meta data.
2136  */
2137 static void async_free_zspage(struct work_struct *work)
2138 {
2139         int i;
2140         struct size_class *class;
2141         unsigned int class_idx;
2142         enum fullness_group fullness;
2143         struct zspage *zspage, *tmp;
2144         LIST_HEAD(free_pages);
2145         struct zs_pool *pool = container_of(work, struct zs_pool,
2146                                         free_work);
2147
2148         for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2149                 class = pool->size_class[i];
2150                 if (class->index != i)
2151                         continue;
2152
2153                 spin_lock(&class->lock);
2154                 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2155                 spin_unlock(&class->lock);
2156         }
2157
2158
2159         list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2160                 list_del(&zspage->list);
2161                 lock_zspage(zspage);
2162
2163                 get_zspage_mapping(zspage, &class_idx, &fullness);
2164                 VM_BUG_ON(fullness != ZS_EMPTY);
2165                 class = pool->size_class[class_idx];
2166                 spin_lock(&class->lock);
2167                 __free_zspage(pool, pool->size_class[class_idx], zspage);
2168                 spin_unlock(&class->lock);
2169         }
2170 };
2171
2172 static void kick_deferred_free(struct zs_pool *pool)
2173 {
2174         schedule_work(&pool->free_work);
2175 }
2176
2177 static void init_deferred_free(struct zs_pool *pool)
2178 {
2179         INIT_WORK(&pool->free_work, async_free_zspage);
2180 }
2181
2182 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2183 {
2184         struct page *page = get_first_page(zspage);
2185
2186         do {
2187                 WARN_ON(!trylock_page(page));
2188                 __SetPageMovable(page, pool->inode->i_mapping);
2189                 unlock_page(page);
2190         } while ((page = get_next_page(page)) != NULL);
2191 }
2192 #endif
2193
2194 /*
2195  *
2196  * Based on the number of unused allocated objects calculate
2197  * and return the number of pages that we can free.
2198  */
2199 static unsigned long zs_can_compact(struct size_class *class)
2200 {
2201         unsigned long obj_wasted;
2202         unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2203         unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2204
2205         if (obj_allocated <= obj_used)
2206                 return 0;
2207
2208         obj_wasted = obj_allocated - obj_used;
2209         obj_wasted /= class->objs_per_zspage;
2210
2211         return obj_wasted * class->pages_per_zspage;
2212 }
2213
2214 static void __zs_compact(struct zs_pool *pool, struct size_class *class)
2215 {
2216         struct zs_compact_control cc;
2217         struct zspage *src_zspage;
2218         struct zspage *dst_zspage = NULL;
2219
2220         spin_lock(&class->lock);
2221         while ((src_zspage = isolate_zspage(class, true))) {
2222
2223                 if (!zs_can_compact(class))
2224                         break;
2225
2226                 cc.obj_idx = 0;
2227                 cc.s_page = get_first_page(src_zspage);
2228
2229                 while ((dst_zspage = isolate_zspage(class, false))) {
2230                         cc.d_page = get_first_page(dst_zspage);
2231                         /*
2232                          * If there is no more space in dst_page, resched
2233                          * and see if anyone had allocated another zspage.
2234                          */
2235                         if (!migrate_zspage(pool, class, &cc))
2236                                 break;
2237
2238                         putback_zspage(class, dst_zspage);
2239                 }
2240
2241                 /* Stop if we couldn't find slot */
2242                 if (dst_zspage == NULL)
2243                         break;
2244
2245                 putback_zspage(class, dst_zspage);
2246                 if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2247                         free_zspage(pool, class, src_zspage);
2248                         pool->stats.pages_compacted += class->pages_per_zspage;
2249                 }
2250                 spin_unlock(&class->lock);
2251                 cond_resched();
2252                 spin_lock(&class->lock);
2253         }
2254
2255         if (src_zspage)
2256                 putback_zspage(class, src_zspage);
2257
2258         spin_unlock(&class->lock);
2259 }
2260
2261 unsigned long zs_compact(struct zs_pool *pool)
2262 {
2263         int i;
2264         struct size_class *class;
2265
2266         for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2267                 class = pool->size_class[i];
2268                 if (!class)
2269                         continue;
2270                 if (class->index != i)
2271                         continue;
2272                 __zs_compact(pool, class);
2273         }
2274
2275         return pool->stats.pages_compacted;
2276 }
2277 EXPORT_SYMBOL_GPL(zs_compact);
2278
2279 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2280 {
2281         memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2282 }
2283 EXPORT_SYMBOL_GPL(zs_pool_stats);
2284
2285 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2286                 struct shrink_control *sc)
2287 {
2288         unsigned long pages_freed;
2289         struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2290                         shrinker);
2291
2292         pages_freed = pool->stats.pages_compacted;
2293         /*
2294          * Compact classes and calculate compaction delta.
2295          * Can run concurrently with a manually triggered
2296          * (by user) compaction.
2297          */
2298         pages_freed = zs_compact(pool) - pages_freed;
2299
2300         return pages_freed ? pages_freed : SHRINK_STOP;
2301 }
2302
2303 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2304                 struct shrink_control *sc)
2305 {
2306         int i;
2307         struct size_class *class;
2308         unsigned long pages_to_free = 0;
2309         struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2310                         shrinker);
2311
2312         for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2313                 class = pool->size_class[i];
2314                 if (!class)
2315                         continue;
2316                 if (class->index != i)
2317                         continue;
2318
2319                 pages_to_free += zs_can_compact(class);
2320         }
2321
2322         return pages_to_free;
2323 }
2324
2325 static void zs_unregister_shrinker(struct zs_pool *pool)
2326 {
2327         if (pool->shrinker_enabled) {
2328                 unregister_shrinker(&pool->shrinker);
2329                 pool->shrinker_enabled = false;
2330         }
2331 }
2332
2333 static int zs_register_shrinker(struct zs_pool *pool)
2334 {
2335         pool->shrinker.scan_objects = zs_shrinker_scan;
2336         pool->shrinker.count_objects = zs_shrinker_count;
2337         pool->shrinker.batch = 0;
2338         pool->shrinker.seeks = DEFAULT_SEEKS;
2339
2340         return register_shrinker(&pool->shrinker);
2341 }
2342
2343 /**
2344  * zs_create_pool - Creates an allocation pool to work from.
2345  * @name: pool name to be created
2346  *
2347  * This function must be called before anything when using
2348  * the zsmalloc allocator.
2349  *
2350  * On success, a pointer to the newly created pool is returned,
2351  * otherwise NULL.
2352  */
2353 struct zs_pool *zs_create_pool(const char *name)
2354 {
2355         int i;
2356         struct zs_pool *pool;
2357         struct size_class *prev_class = NULL;
2358
2359         pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2360         if (!pool)
2361                 return NULL;
2362
2363         init_deferred_free(pool);
2364
2365         pool->name = kstrdup(name, GFP_KERNEL);
2366         if (!pool->name)
2367                 goto err;
2368
2369         if (create_cache(pool))
2370                 goto err;
2371
2372         /*
2373          * Iterate reversely, because, size of size_class that we want to use
2374          * for merging should be larger or equal to current size.
2375          */
2376         for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2377                 int size;
2378                 int pages_per_zspage;
2379                 int objs_per_zspage;
2380                 struct size_class *class;
2381                 int fullness = 0;
2382
2383                 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2384                 if (size > ZS_MAX_ALLOC_SIZE)
2385                         size = ZS_MAX_ALLOC_SIZE;
2386                 pages_per_zspage = get_pages_per_zspage(size);
2387                 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2388
2389                 /*
2390                  * size_class is used for normal zsmalloc operation such
2391                  * as alloc/free for that size. Although it is natural that we
2392                  * have one size_class for each size, there is a chance that we
2393                  * can get more memory utilization if we use one size_class for
2394                  * many different sizes whose size_class have same
2395                  * characteristics. So, we makes size_class point to
2396                  * previous size_class if possible.
2397                  */
2398                 if (prev_class) {
2399                         if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2400                                 pool->size_class[i] = prev_class;
2401                                 continue;
2402                         }
2403                 }
2404
2405                 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2406                 if (!class)
2407                         goto err;
2408
2409                 class->size = size;
2410                 class->index = i;
2411                 class->pages_per_zspage = pages_per_zspage;
2412                 class->objs_per_zspage = objs_per_zspage;
2413                 spin_lock_init(&class->lock);
2414                 pool->size_class[i] = class;
2415                 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2416                                                         fullness++)
2417                         INIT_LIST_HEAD(&class->fullness_list[fullness]);
2418
2419                 prev_class = class;
2420         }
2421
2422         /* debug only, don't abort if it fails */
2423         zs_pool_stat_create(pool, name);
2424
2425         if (zs_register_migration(pool))
2426                 goto err;
2427
2428         /*
2429          * Not critical, we still can use the pool
2430          * and user can trigger compaction manually.
2431          */
2432         if (zs_register_shrinker(pool) == 0)
2433                 pool->shrinker_enabled = true;
2434         return pool;
2435
2436 err:
2437         zs_destroy_pool(pool);
2438         return NULL;
2439 }
2440 EXPORT_SYMBOL_GPL(zs_create_pool);
2441
2442 void zs_destroy_pool(struct zs_pool *pool)
2443 {
2444         int i;
2445
2446         zs_unregister_shrinker(pool);
2447         zs_unregister_migration(pool);
2448         zs_pool_stat_destroy(pool);
2449
2450         for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2451                 int fg;
2452                 struct size_class *class = pool->size_class[i];
2453
2454                 if (!class)
2455                         continue;
2456
2457                 if (class->index != i)
2458                         continue;
2459
2460                 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2461                         if (!list_empty(&class->fullness_list[fg])) {
2462                                 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2463                                         class->size, fg);
2464                         }
2465                 }
2466                 kfree(class);
2467         }
2468
2469         destroy_cache(pool);
2470         kfree(pool->name);
2471         kfree(pool);
2472 }
2473 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2474
2475 static int __init zs_init(void)
2476 {
2477         int ret;
2478
2479         ret = zsmalloc_mount();
2480         if (ret)
2481                 goto out;
2482
2483         ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2484                                 zs_cpu_prepare, zs_cpu_dead);
2485         if (ret)
2486                 goto hp_setup_fail;
2487
2488 #ifdef CONFIG_ZPOOL
2489         zpool_register_driver(&zs_zpool_driver);
2490 #endif
2491
2492         zs_stat_init();
2493
2494         return 0;
2495
2496 hp_setup_fail:
2497         zsmalloc_unmount();
2498 out:
2499         return ret;
2500 }
2501
2502 static void __exit zs_exit(void)
2503 {
2504 #ifdef CONFIG_ZPOOL
2505         zpool_unregister_driver(&zs_zpool_driver);
2506 #endif
2507         zsmalloc_unmount();
2508         cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2509
2510         zs_stat_exit();
2511 }
2512
2513 module_init(zs_init);
2514 module_exit(zs_exit);
2515
2516 MODULE_LICENSE("Dual BSD/GPL");
2517 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");